

Summary of Contents

Preface . xv

1. Introductory Topics . 1

2. .NET 2.0 Core Libraries . 29

3. Data Access . 71

4. Pushing the Boundaries of the GridView . 123

5. Form Validation . 159

6. Maintaining State . 189

7. Membership and Access Control . 219

8. Component-based Development . 243

9. ASP.NET and Web Standards . 279

10. Ajax and JavaScript . 303

11. Working with Email . 339

12. Rendering Binary Content . 355

13. Handling Errors . 391

14. Configuration . 415

15. Performance and Scaling . 435

16. Search Engine Optimization . 485

17. Advanced Topics . 513

Index . 553

THE ASP.NET 2.0
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS
BY SCOTT ALLEN
JEFF ATWOOD

WYATT BARNETT
JON GALLOWAY

PHIL HAACK

iv

The ASP.NET 2.0 Anthology: 101 Essential Tips, Tricks & Hacks
by Scott Allen, Jeff Atwood, Wyatt Barnett, Jon Galloway, and Phil Haack

Copyright © 2007 SitePoint Pty. Ltd.

Expert Reviewer: Wyatt Barnett Editor: Georgina Laidlaw

Managing Editor: Simon Mackie Editor: Hilary Reynolds

Technical Editor: Matthew Magain Index Editor: Fred Brown

Technical Director: Kevin Yank Cover Design: Alex Walker

Printing History:

First Edition: August 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9802858-1-9

Printed and bound in the United States of America

mailto:business@sitepoint.com

v

About the Authors

Scott Allen is a consultant and founder of OdeToCode.com. Scott is also an instructor for

Pluralsight—a premier Microsoft .NET training provider and home to many of the top author

ities on .NET today. In 15 years of software development, Scott has shipped commercial

software on everything from 8 bit embedded devices to 64 bit web servers. You can reach

Scott through his blog at http://www.OdeToCode.com/blogs/scott/.

Jeff Atwood lives near Berkeley, California with his wife, two cats, and far more computers

than he cares to mention. His first computer was the Texas Instruments TI-99/4a. He’s been

a Microsoft Windows developer since 1992. Most of his programming was in Visual Basic,

although he spent significant time with early versions of Delphi, and now he’s quite comfort

able with C# or VB.NET. Jeff is particularly interested in best practices and human factors

in software development, as represented in his blog, http://www.codinghorror.com/.

Wyatt Barnett leads the in-house development team for a major industry trade association

in Washington DC. He also writes for SitePoint’s .NET blog, Daily Catch, and worked as the

Expert Reviewer for this book.

After working hard as a submarine lieutenant, Jon Galloway was amazed to find that people

would pay him to goof off with computers all day. He spends most of his time with ASP.NET

and SQL Server, but likes to keep involved with a variety of other technologies, including

Silverlight, Mono, vector graphics, web technologies, and open source .NET development.

Jon co-founded the Monoppix project, has contributed to several open source projects, in

cluding SubSonic, and regularly releases open source utilities (late at night, when his wife

and three daughters are fast asleep). He’s a senior software engineer at Vertigo Software, and

blogs at http://weblogs.asp.net/jgalloway/.

Phil Haack has over eight years of experience in software development, consulting, and

software management, which he puts to good use as the CTO and co-founder of VelocIT. In

his spare time, he leads the Subtext open source blogging engine and contributes to various

other open source projects. To keep his sanity, he also plays soccer regularly.

About the Technical Editor

Before joining the SitePoint team as a technical editor, Matthew Magain worked as a software

developer for IBM and also spent several years teaching English in Japan. He is the organizer

for Melbourne’s Web Standards Group,1 and enjoys candlelit dinners and long walks on the

beach. He also enjoys writing bios that sound like they belong in the personals column.

Matthew lives with his wife Kimberley and daughter Sophia.

1 http://webstandardsgroup.org/

http://webstandardsgroup.org/
http:OdeToCode.com
http://www.OdeToCode.com/blogs/scott/
http://www.codinghorror.com/
http://weblogs.asp.net/jgalloway/
http://webstandardsgroup.org/

vi

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica

tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,

but is best known for his book, Build Your Own Database Driven Website Using PHP &

MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy

theater and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

http://www.sitepoint.com/

Table of Contents

Preface . xv

The SitePoint Forums . xx

The SitePoint Newsletters . xx

Your Feedback . xx

Conventions Used in this Book . xx

Who Should Read this Book? . xvi

What’s Covered in this Book? . xvi

The Book’s Web Site . xix

Chapter 1 Introductory Topics . 1

Which web project model should I choose? . 1

How do I deploy my web site? . 8

How do I choose a third-party web host? . 12

How do I use source control? . 16

How do I go about using open source code? . 21

Where can I find more information about ASP.NET? 24

Summary . 27

Chapter 2 .NET 2.0 Core Libraries 29

How do I use strings? . 29

How do I display an object as a string? . 31

How do I display formatted strings? . 34

How do I use generics? . 40

How do I filter items in a generic collection? . 45

How can I get more use out of my custom logic? 48

How do I convert generic lists to specific classes? 51

viii

How do I concatenate delimited strings from object properties? 53

How do I batch operations with large collections? 56

How do I choose the right collection? . 61

Summary . 69

Chapter 3 Data Access . 71

How can I get started using ADO.NET? . 71

How do I configure my database connection? . 73

How do I read data from my database? . 77

How do I sort and filter data? . 79

How do I fill a DropDownList from a database table? 81

How can I perform data binding without having to write all that

repetitive code? . 83

How do I display the contents of a database table? 91

How do I allow the modification of a single record? 99

How can I data bind without using the SqlDataSource? 106

Summary . 121

Chapter 4 Pushing the Boundaries of the
GridView . 123

How do I add a data-bound drop-down to a GridView? 124

How do I sort on multiple columns? . 133

How do I display the sort state? . 137

How do I implement custom paging? . 143

How can I allow users to download tabular data as a Microsoft Excel

file? . 149

Summary . 157

ix

Chapter 5 Form Validation . 159

How do I validate form input? . 160

How do I validate multiple forms? . 165

How do I set up custom validation? . 170

How do I perform custom client-side validation? 174

How do I build my own validator control? . 177

How do I perform client-side validation with my custom validator

control? . 180

Summary . 187

Chapter 6 Maintaining State . 189

How can I maintain session state in a web farm using a state

How can I make sure my custom control works when view state is

How do I maintain per-request state in a web application? 190

server? . 193

How can I maintain session state in a web farm using a database? . . . 196

Where should I store application state? . 201

What’s the cleanest way to access a page’s view state? 206

turned off? . 209

Summary . 217

Chapter 7 Membership and Access
Control . 219

What’s the easiest way to add membership to my site? 220

How do I allow users to register for my site? . 222

How do I manage users on my site? . 226

How do I require users to log in? . 229

How do I grant access to users who have forgotten their

passwords? . 231

x

How do I display content based on roles? . 237

Summary . 242

Chapter 8 Component-based Development . . . 243

How can I use master pages? . 244

How can my content page override data on my master page? 248

How can I have my master page interact with my content page? 253

How do I use URLs in a master page? . 257

How do I modify header elements in a master page? 260

How do I use themes effectively in conjunction with CSS? 262

How do I treat user controls as components? . 268

How do I embed resources into my components? 273

Summary . 278

Chapter 9 ASP.NET and Web Standards 279

What are all these span tags doing in my HTML output? 281

How do I obtain DataList-style functionality without using a

table? . 285

How do I use ASP.NET’s fancy menus without the fancy HTML? 287

How do I make sense of the CSS maze produced by the CSS Friendly

menu? . 292

Summary . 300

Chapter 10 Ajax and JavaScript 303

How can I write better JavaScript? . 304

How can libraries make writing robust, cross-platform JavaScript

easier? . 310

How do I use Microsoft's ASP.NET AJAX? . 314

How do I perform partial page rendering? . 318

xi

How do I show progress during a partial page render? 322

How do I periodically refresh an UpdatePanel? 324

How do I work with generated IDs? . 326

Where can I get some fancy ASP.NET controls? 331

How can I debug JavaScript? . 334

Summary . 337

Chapter 11 Working with Email 339

How do I send a plain-text email? . 339

How do I send an HTML email? . 342

How do I attach a file to my email? . 344

How do I send personalized form letters? . 345

How do I allow users to submit content via email? 347

How do I send an email without waiting for it to complete? 351

Summary . 353

Chapter 12 Rendering Binary Content 355

How do I write binary content? . 355

How do I write raw data to the response? . 357

How do I request an HttpHandler? . 359

How do I write non-text binary data? . 363

How do I render simple bars? . 366

How do I create a real bar graph handler? . 369

How can I improve the quality of my dynamic images? 374

How can I use a handler to control access to the images on my

site? . 377

Summary . 390

xii

Chapter 13 Handling Errors . 391

How can I handle exceptions in my code? . 391

How can I handle errors in my web site? . 393

How can I use a pre-built exception handling strategy? 401

What’s the best way to write a log file? . 404

How do I debug log4net? . 407

How do I perform tracing? . 409

Summary . 413

Chapter 14 Configuration . 415

How do I store and retrieve basic settings? . 415

How do I store connection strings? . 417

How do I retrieve settings declaratively? . 417

How do I create a custom configuration section? 418

How can I simplify my Web.config file? . 424

How can I manage Web.config values between deployment

environments? . 427

How can I encrypt a section of my Web.config file? 429

Summary . 433

Chapter 15 Performance and Scaling 435

How do I determine what to optimize? . 436

How can I decrease the size of the view state? . 441

How can I decrease the bandwidth that my site uses? 446

How can I improve the speed of my site? . 452

How do I refresh my cache when the data changes? 458

How can I gain more control over the ASP.NET cache? 460

How do I speed up my database queries? . 463

How can I troubleshoot a slow query? . 476

xiii

Summary . 484

Chapter 16 Search Engine Optimization 485

How do I ensure search engines review only search-relevant

How do I ensure my web pages produce descriptive search

How does Google rank pages? . 486

content? . 487

How do I rewrite my URLs for human readability? 495

How do I ensure my web pages are visible to search engines? 505

results? . 509

Summary . 511

Chapter 17 Advanced Topics . 513

How can I tell what’s going on behind the scenes? 513

How do I build a screen scraper? . 517

How do I build a data access layer? . 526

How do I automatically generate a data access layer? 531

Summary . 552

Index . 553

Preface

This is the book I wish I had when I was starting out with ASP.NET. Now, if you’d

be so kind as to hop into a time machine, go back five years, and give me a copy,

I’d be eternally grateful.

What’s that? Time machines haven’t been invented yet? Drat. I guess we’re stuck

in the here and now.

Many ASP.NET books try to be complete, exhaustive references. They’re dense, fat

books with an inflated sense of self-importance—books that take up lots of room

on your bookshelf. But who actually reads these giant tomes of universal knowledge?

Even if you could read one cover to cover, would it really be complete or exhaustive?

The .NET framework is vast. As much as I’ve learned, I still discover new features

of ASP.NET and the .NET Framework on a daily basis. And the platform itself is

still actively evolving and growing. .NET 3.0 is already here, and .NET 3.5 is on the

horizon.

This book is different from the rest. It doesn’t pretend to be a complete reference.

It won’t waste your time with hundreds of pages on every obscure feature of

ASP.NET. And it won’t insult your intelligence by suggesting that it contains every

last detail of ASP.NET.

Instead, this book will be your native guide to the ASP.NET jungle. As its authors,

we’ll share with you our cumulative experience in building ASP.NET sites large

and small, commercial and open source, and all flavors in between. We’re seasoned

veterans with more than our share of scars, bumps, and bruises. We’ll show you

the most practical features, the best approaches, the useful features that are off the

beaten path—in short, the stuff that matters. We absolutely, positively promise not

to bore you with the same tired old tourist attractions that everyone else gets herded

through.

Each chapter of this book is laid out in a problem–solution format. We’ll start with

a common problem that an intermediate ASP.NET developer may face, then provide

a concise solution to that problem. In some cases, when the topic warrants it, we’ll

include a brief discussion of the solution to provide context.

http:ASP.NET
http:ASP.NET
http:ASP.NET

xvi

We’ve grouped the chapters of this book to cover major areas of ASP.NET function

ality. Inside, you’ll find solutions to the most common challenges that ASP.NET

developers face—at least in our experience.

Who Should Read this Book?
This book is for beginner and intermediate ASP.NET developers who want to get

more out of the ASP.NET 2.0 framework. It’s also for those programmers who have

always just stumbled their way through ASP.NET without really understanding

how things worked, or when it’s appropriate to bend the rules or sidestep the

“normal” way of building web applications. Finally, this book should serve ASP.NET

1.x developers who want to learn what’s new in ASP.NET 2.0 (I’ll give you a hint—a

lot!)

This book assumes a few things. For one, it assumes that you are across the basics

of ASP.NET—web forms, C# syntax, code-beside structure, and basic web project

configuration. Readers of SitePoint’s beginner ASP.NET book, Build Your Own

ASP.NET 2.0 Web Site Using C# and VB, 2nd Edition, will find that this book fills

in a lot of the gaps left by that title. This book also assumes that you’re using Visual

Studio 2005. You might be able to get by with the free Visual Web Developer Express

Edition, but we offer no guarantees—this book is firmly targeted at serious ASP.NET

2.0 developers who use serious tools.

What’s Covered in this Book?
Chapter 1: Introductory Topics

This chapter lists some of the solid skills that every ASP.NET developer should

have—how to set up and use a source control repository, choose a web project

model, and deploy a project. If you’re confident that you’ve got this stuff under

control you can skip this chapter, but you’d want to be absolutely certain—there’s

some good stuff here, trust me!

Chapter 2: .NET 2.0 Core Libraries

In this chapter we dissect some of the primitive classes that many developers

take for granted, just to see what makes them tick. We look at the most efficient

way to manipulate strings and generic collections, and how best to implement

recursive logic.

xvii

Chapter 3: Data Access

The most exciting web applications are data-driven—but you have to store all

that data somewhere. Here we look at common problems surrounding storing,

retrieving, modifying, and displaying data stored in a database, and suggest

some solutions for you to try in your own projects.

Chapter 4: Pushing the Boundaries of the GridView

The GridView control is one of the most frequently used data controls in the

ASP.NET arsenal, and for good reason—it’s flexible, it’s reliable, and it displays

tabular data admirably. But every now and then you hit a ceiling above which

you doubt the GridView is capable of moving … and that’s when you turn to

this chapter.

Chapter 5: Form Validation

Forms are the key to interactivity on the Web … but they can also be extremely

daunting and difficult for developers to get right. In this chapter we look at ways

of synchronizing client-side and server-side validation, and we discuss ap

proaches for building custom validation tools, so that form validation is never

daunting again!

Chapter 6: Maintaining State

ASP.NET’s built-in state management is a double-edged sword. In some situ

ations, it can make handling the state of a user session a breeze, but there are

times when it’s more trouble than it’s worth. This chapter reveals when you

should use it, and when you should resort to alternative methods of maintaining

state.

Chapter 7: Membership and Access Control

This chapter will show you how to utilize the built-in controls in ASP.NET 2.0

to add a membership system to your site that’s both secure and flexible. We’ll

cover registration, forgotten passwords, remote user management, and more.

Chapter 8: Component-based Development

Good developers know that separating code into stand-alone components makes

it more reusable and maintainable—but can this philosophy be applied to

master pages and user controls? Luckily for you, the answer is “yes,” and this

chapter will show you how it’s done.

xviii

Chapter 9: ASP.NET and Web Standards

The ASP.NET framework is not necessarily synonymous with the term “web

standards,” but there’s no reason why your applications can’t produce valid,

semantic, standards-compliant markup. In this chapter we’ll look at the CSS-

friendly Control Adapters toolkit and learn how it can help ensure that our ap

plication’s markup stays on the straight and narrow.

Chapter 10: Ajax and JavaScript

Mostly as a result of the rising popularity of Ajax as a means to enhance an ap

plication’s interactivity and responsiveness, JavaScript is presently the new

black. In this chapter we’ll see how you can improve the custom JavaScript that

you write, and investigate a number of libraries that can make your client-side

scripting tasks a whole lot easier.

Chapter 11: Working with Email

There’s a lot you can do with ASP.NET's built-in email functionality—you can

send it, receive it, parse it, and add attachments. You can make it look pretty

using HTML, or keep it as plain old text. Whatever your email needs, this chapter

has the advice you’re after!

Chapter 12: Rendering Binary Content

In this chapter we’ll look at how ASP.NET makes it possible to deal directly

with binary files, such as Microsoft Excel spreadsheets, and images. We’ll create

these types of files from scratch, as well as processing and modifying existing

files. Who said the Web was just about text?

Chapter 13: Handling Errors

Even the best programmers make mistakes—but they also know how to find

them and deal with them swiftly. This chapter will show you how to establish

a strategy for writing log messages, handling exceptions, and debugging your

application.

Chapter 14: Configuration

The Web.config file enables you to store configuration information for your ap

plication in one central location. In this chapter we’ll explore some techniques

for simplifying this file when it grows to be unmanageable, learn to secure the

file through encryption, and understand how to get the most out of the ASP.NET

configuration API.

xix

Chapter 15: Performance and Scaling

We all want our applications to be fast and responsive to users, but this noble

goal can be difficult to achieve when your application is voted the Next Big

Thing™ and membership skyrockets! This chapter will show you how best to

scale, and introduce a strategy for optimizing your application.

Chapter 16: Search Engine Optimization

Your ground-breaking web application might contain pages and pages of inspir

ing content, but your efforts creating it will all be in vain if nobody can find it.

In this chapter we’ll look at ways to ensure that your content can be found by

both search engines and humans.

Chapter 17: Advanced Topics

This chapter contains a collection of random tips and techniques that didn’t fit

neatly into the previous chapters. We’ll look at everything from screen scraping

and creating portable data access layers to poking around the internals of the

ASP.NET framework itself.

In short, this book is about getting things done in ASP.NET 2.0. There’s a lot to

cover, so let’s get started!

The Book’s Web Site
Located at http://www.sitepoint.com/books/aspnetant1/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site, at

http://www.sitepoint.com/books/aspnetant1/errata.php, will provide the latest in

http://www.sitepoint.com/books/aspnetant1/
http://www.sitepoint.com/books/aspnetant1/errata.php

xx

formation about known typographical and code errors, and will offer necessary

updates for new releases of browsers and related standards.

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should

join SitePoint’s online community at http://www.sitepoint.com/forums/. The

ASP.NET forum, in particular, at http://www.sitepoint.com/launch/dotnetforum/,

offers an abundance of information above and beyond the solutions in this book,

and a lot of fun and experienced .NET developers hang out there. It’s a good way

to learn new tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, includ

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading these newsletters will keep you up to date on the latest news, product

releases, trends, tips, and techniques for all aspects of web development. If nothing

else, you’ll receive useful CSS articles and tips, but if you’re interested in learning

other technologies, you’ll find them especially valuable. Sign up to one or more

SitePoint newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Conventions Used in this Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/dotnetforum/
http://www.sitepoint.com/newsletter/
http:books@sitepoint.com

xxi

<h1>A perfect summer's day</h1> <p>It

 was a lovely day for a walk in the park. The birds were

singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer { background-color: #CCC; border-top: 1px
 solid #333; }

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a page-break that exists for

formatting purposes only, and should be ignored.

URL.open.("http://www.sitepoint.com/blogs/2007/05/28/user-style-shee

➥ets-come-of-age/");

xxii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Chapter1
Introductory Topics
Okay, so you’ve picked up this book with the aim of solving some ASP.NET prob

lems. Great! But before we set off trying to solve any and every problem an ASP.NET

developer might face, let’s lay down a little groundwork.

This chapter covers some of the critical elements that you might want to consider

before rushing off to furiously code your next web site.

Which web project model should I choose?
Starting with Visual Studio 2005, Microsoft introduced a new type of web project

known as the Web Site project. A Web Site project is a radically simplified version

of the more complex Web Application project. For instance, a Web Site project has

no project file: in a Web Site project, the file system is the project.

Although Web Site projects are pleasingly simple on the surface, so many limitations

were inherent in the file system model that developers soon demanded the old Web

Application model back. And Microsoft evidently thought the issue was important

enough to warrant action because, as of Visual Studio 2005 Service Pack 1, we can

choose between two different web project models:

2 The ASP.NET 2.0 Anthology

■	 Web Application project

■	 Web Site project

Selecting a project model is one of the first things you’ll need to do on any .NET

web project.

Solution
Choice is good. But to make an informed decision, you’ll need to understand the

differences between these two project models. This is an important choice that will

have many repercussions for your project, so you should be familiar with how both

models work.

Web Site Projects Versus Web Application Projects
Let’s take a moment to investigate the differences between the two project models.

■	 Web Site projects are special cases. They do not behave like any other project

type in Visual Studio.

■	 Web Application projects have a project file. Web Site projects do not.

■	 Web Application projects compile into one monolithic assembly DLL; to run

and debug pages, the entire project must be compiled every time. Web Site pro

jects compile dynamically at the page level; each page can be compiled and de

bugged independently.

■	 Web Application projects are deployed “all at once,” as a single DLL, along with

necessary static content files. Web Site projects are deployed as a set of files,

each of which can be updated independently.

Each project type has its strengths and weaknesses, and Visual Studio 2005 will

continue to fully support both project types, so either is a valid choice.

That said, web forums are overflowing with complaints about, and criticisms of,

the Web Site project model. I’ve experienced enough problems with the Web Site

project model myself to avoid using it. And there’s definitely a reason why Microsoft

did such a quick about-face and retrospectively added support for Web Application

projects with the release of Service Pack 1.

3 Introductory Topics

The Web Site project’s complete reliance on the file system as its statement of record

makes it a little too “magical” for its own good, at least in my opinion. For example,

the only way to exclude a file from a Web Site project is to rename it with the .exclude

file extension. In a Web Application project, a file can be easily excluded—we

simply remove the reference to it from the project file.

In general, I recommend that you avoid the Web Site project model. If you’re starting

a new project, you should choose the Web Application project by default. Web Sites

seem like a good idea on paper, but in practice, they’re too simplified and, ultimately,

too limiting.

That said, there are a few cases in which the Web Site project type remains the best

option:

■	 The Express editions of Visual Studio do not support the Web Application project

type. So if you’re using Visual Web Developer Express Edition, or planning to

share code with developers who only have access to this tool, you should use

Web Site projects.

■	 For small, demonstration projects, the Web Site model is often more appropriate

than a full-blown Web Application. If your project is simple, choose the simple

Web Site project type.

Creating Web Projects
The process you’ll use to create a web project will depend on the type of project

you need.

Creating a Web Site Project

Web Site projects are the default web project type in Visual Studio 2005 and

(Visual Web Developer 2005 Express Edition). To create a new Web Site project,

open the File menu and select New > Web Site…, as I’ve done in Figure 1.1.

4 The ASP.NET 2.0 Anthology

Figure 1.1. Creating a new Web Site project in Visual Studio

Next, you’re presented with the New Web Site dialog, which lets you choose where

you want the Web Site project to be stored—either on the local file system, or in a

remote location via HTTP or FTP, as Figure 1.2 shows.

Figure 1.2. Choosing the location of our new Web Site project

5 Introductory Topics

Click OK to create the project. Once you’ve done this, the name of the solution dis

played in the Solution Explorer reflects the location of the solution in the file system,

as demonstrated in Figure 1.7.

Figure 1.3. The project as viewed in the Solution Explorer

If we right-click the solution and select Properties, the Web Site project’s properties

are displayed, as shown in Figure 1.4.

Figure 1.4. Displaying the Web Site project’s properties

Web Site project properties are radically different from the properties for every

other Visual Studio project type. Only a small subset of the options you’d expect

to be here are present.

6 The ASP.NET 2.0 Anthology

Creating a Web Application Project

Visual Studio 2005 Service Pack 1 Required!

You must have Visual Studio 2005 Service Pack 1 or later to create a Web Applic

ation project. If you’re wondering why you can’t create or open Web Application

projects, you probably haven’t installed Service Pack 1 yet, or you may be running

the free Visual Web Developer 2005 Express Edition.

Use the File > New > Project… menu to create a new Web Application project, as

shown in Figure 1.5.

Figure 1.5. Creating a new Web Application project

In the New Project dialog, select ASP.NET Web Application, give the project a name,

and select a location within the file system for the project, as depicted in Figure 1.6.

7 Introductory Topics

Figure 1.6. Specifying a name and location for a Web Application project

Once you’ve created the Web Application project, the title of the solution will reflect

the name that you specified for the project, as Figure 1.7 shows.

Figure 1.7. Viewing the Web Application project in Solution Explorer

8 The ASP.NET 2.0 Anthology

Note that a Web Application project has quite a few more elements than the simpler

Web Site project. It has:

■ a Web.config file

■ an AssemblyInfo.cs file

■ a References folder containing a number of items

This is consistent with the way other project types—such as the Console and Win

dows Forms project types—work in Visual Studio. If you right-click the project and

select Properties, you can browse the project properties, as Figure 1.8 shows.

Figure 1.8. Browsing the project properties for a Web Application

Web Application projects behave almost identically to other Visual Studio project

types, though Web Application projects offer the new Web tab for the management

of web-specific settings.

How do I deploy my web site?
If you’ve chosen to build your ASP.NET project as a Web Site project, your compil

ation and deployment options are limited to the Publish Web Site menu option, the

details of which are illustrated in Figure 1.9.

9 Introductory Topics

Figure 1.9. Deploying a Web Site project using the Publish Web Site option

While there’s nothing wrong with the publish functionality that’s built into Visual

Studio 2005, the available deployment options are rudimentary at best.

Solution
One of the biggest weaknesses of Web Site projects is that they lack a project file—an

umbrella file that keeps track of every other file in the project. For better or worse,

Web Site projects are completely file system-based, so there’s only one way to deploy

a Web Site, and that’s to copy everything in the file system to the target location.

This sounds convenient at first, but in practice it can be incredibly annoying—you

don’t always want every file in the file system to be deployed.

That’s where a Web Deployment project comes in handy. Web Deployment projects

add the sorely missed project file to your Web Site project. Having an explicit project

file provides much more robust and flexible support for deployment.

10 The ASP.NET 2.0 Anthology

Don’t Leave Home Without One!

As we discussed in the previous solution, Web Application projects are definitely

the preferred option for most sites. However, if you do need to go the Web Site

route, you should always add a Web Deployment project to your solution to ensure

flexibility when it comes to deployment.

You can download the Web Deployment project add-in from the MSDN site.1 Once

you have the add-in installed, right-click on your project and select Add Web Deploy

ment Project…, as I’ve done in Figure 1.10.

Figure 1.10. Adding a Web Deployment project

A new Web Deployment project will appear in your solution, along with its own

set of property pages. Figure 1.11 shows how it displays.

1 http://msdn2.microsoft.com/en-us/asp.net/aa336619.aspx

http://msdn2.microsoft.com/en-us/asp.net/aa336619.aspx
http://msdn2.microsoft.com/en-us/asp.net/aa336619.aspx

Introductory Topics 11

Figure 1.11. The Web Deployment project as viewed in the Solution Explorer

I won’t elaborate on the Web Deployment project property pages here, but they offer

lots of functionality that you won’t get out of the box with a standard Web Site

project, including:

■	 integration with the standard MSBuild process for complete and precise control

over how your Web Site is compiled

■	 the ability to build a single named assembly, or one assembly per folder

■	 the ability to take advantage of build configurations in Visual Studio, such as

Debug, Release, and custom build configurations

■	 the ability to modify Web.config at deployment, so that you can use different

configurations for each deployment target (development, testing, staging, produc

tion, and so forth)

When you build the project, you’ll see the following structure in your file system:

\Solution1\Solution1.sln

\Solution1\WebSite1

\Solution1\WebSite1\Default.aspx

\Solution1\WebSite1\Default.cs

\Solution1\WebSite1_Deploy

\Solution1\WebSite1_Deploy\WebSite1_deploy.wdproj

\Solution1\WebSite1_Deploy\Debug

12 The ASP.NET 2.0 Anthology

\Solution1\WebSite1_Deploy\Debug\Default.aspx

\Solution1\WebSite1_Deploy\Debug\PrecompiledApp.config

\Solution1\WebSite1_Deploy\Debug\bin

I think you’ll agree that this is quite an improvement on the default build options

for a Web Site project, which produce no output whatsoever during deployment.

To deploy your Web Site project, simply copy the contents of the folder with the

correct build configuration (Debug, in this example) to the target location.

How do I choose a third-party
web host?
Most of the sites built by professional developers are hosted on servers that are

completely under the developer’s (or the company’s IT department’s) control. For

large companies, the servers tend to be managed dedicated servers.

However, for smaller companies and personal web sites, large hosting companies

are prohibitively expensive. Fortunately, plenty of smaller hosting companies offer

hosting for very reasonable prices, and focus on the special hosting requirements

of ASP.NET web applications.

Every application will have different needs and requirements, so you should shop

around for a web hosting provider that best meets your specific needs. This solution

will provide some guidelines and considerations to keep in mind as you look for a

hosting provider.

In addition, this section will discuss some of the unique challenges and “gotchas”

that you should be aware of when using the services of a hosting provider. In this

section, we’ll discuss how to choose a hosting provider and some points you might

need to take into consideration in your code.

Solution
The costs of web site hosting can range from being free, to a couple dollars a month,

to several hundred dollars a month. The first step is to identify what your application

needs—you can then compare this list against what each host can offer for their

Introductory Topics 13

price. Make a list of the technologies and requirements for your application, paying

special attention to the following questions:

How much disk space does your application require?

If you plan to stream music or video, you will want to find a web hosting pro

vider that offers large amounts of disk space.

How much bandwidth will your application require?

This can be a difficult figure to estimate, but most small business and personal

web sites will be under 4GB a month.

What type of database does your application require?

Many hosting providers will provide a SQL Server database or two as part of

the package, which is great for those who can’t afford a full license to SQL

Server: you can develop against the free SQL Server Express Edition and deploy

to SQL Server when your application goes live. An option that many hosting

providers provide for free is MySQL: a full-featured, open source database engine.

Many ASP.NET developers are unfamiliar with MySQL, so be sure to read up

on it before you make this choice.

How much space does your database require?

Generally, web hosting providers charge less per megabyte of file storage then

they do for each megabyte of database storage. This may affect whether you

design your application to store images and other binary data in a BLOB (Binary

Large Object) field of your database, or on a file system.

Do you need an SSL certificate to process credit card orders securely?

If so, you may want to look for a host that can acquire and install a certificate

for your site at a reasonable price. This approach may be more straightforward

(and possibly cheaper) than acquiring a certificate on your own, then handing

it over to the host.

Does your application need to send email to members?

Make sure the hosting provider supplies a mail server you can use for sending

email.

14 The ASP.NET 2.0 Anthology

Do you need to receive email through the same domain as the web site?

Most providers will offer free email services to customers, but check to make

sure the number of mailboxes and the mail management features meet your

needs.

Keep your list handy while working through the sites of web hosting providers.

Discard those providers that don’t meet your needs for ASP.NET hosting, or don’t

have flexible bandwidth and storage plans.

Narrowing the Field
Once you’ve narrowed the potential hosting providers down to four or five candid

ates, it’s time to drill into specifics. You should consider calling or emailing your

short-listed web hosting providers with any questions that may arise from the fol

lowing material. You’ll want to get an idea of how easy the provider is to work with,

how quickly they can respond, and how technically accurate their answers are. If

they cannot impress you as a potential customer, chances are that they won’t impress

you once you’ve signed up and sent them your hard-earned dollars.

Here are several areas in which you’ll want to evaluate each web hosting provider.

Backups

Ask for details of your hosting provider’s backup strategy. Find out how often they

back up the file system and the database, and ask about the average turn-around

time for restoring a site.

Reliability

You might want to know a bit about the provider’s infrastructure. First, find out if

they have redundant connections to the Internet. You might also ask about a pro

vider’s reliability in newsgroups and email forms, but take any third-party feedback

from an untrusted source with a grain of salt. People are more likely to complain

about small problems than they are to praise small successes.

Deployment and Management

What will you do when the time comes to get your application to the hosting pro

vider? Most hosts offer FTP access, and Visual Studio 2005 provides you the ability

to deploy a web project to a remote server over FTP. Some hosting providers require

you to use a web-based file manager to deploy files, but you should avoid these

Introductory Topics 15

kinds of services. They’re usually quite cumbersome and won’t allow you to use

Visual Studio 2005 for deployment.

For SQL Server, hosting providers should allow SQL Server users to connect directly

to their databases with a tool like Visual Studio .NET 2005, SQL Management Studio,

or Query Analyzer. If the hosting provider offers only a web interface, you may find

it challenging to use standard tools and scripts when installing, maintaining, and

updating your database.

Statistics

You’ll want to know the who, what, when, and where of the traffic that reaches

your site. Most web hosting providers will provide reports built from the web

server’s logs to let you know how many hits you receive. Ask the web host for a

sample of these reports to see if they give you information that you can use. Reports

that include referrers (how people reached your site) and 404 errors (so you know

when you have a bad link on the site) can be extremely useful. Some providers will

also let you download the raw log files if you want to build your own reports—check

whether the host offers this capability if you believe you’ll need it.

Security

As an ASP.NET developer, you’ll want to make sure your web host is using Windows

Server 2003 and keeps up to date with the application of patches. Also ask the

provider about how and when they apply security fixes.

Keep in mind that, in many cases, the hosting provider is allowing your code to

execute on a server that hosts web sites that belong to others. As such, the hosting

providers need to trust that your code won’t do anything obnoxious. In reality, they

don’t. Many hosting providers (unless they provide a dedicated server or dedicated

virtual server), will make sure that your web application runs in a partial trust en

vironment, which is also known as Medium Trust within ASP.NET.

The best way to prepare your site for Medium Trust hosting is to set your trust level

to medium and test the site thoroughly. This setting is altered via the trust element

in Web.config:

<system.web>

 <trust level="Medium" />

</system.web>

http:ASP.NET

16 The ASP.NET 2.0 Anthology

If your web site makes outgoing HTTP requests, be sure to set the originUrl attribute

of the <trust /> section like so:

<system.web>

 <trust level="Medium" originUrl="*" />

</system.web>

Note that, in the machine.config file, your hosting provider may dictate which web

sites your site may make requests to. So if you run into problems when making re

quests, be sure to contact your hosting provider’s technical support team.

For more information on partial trust, see the Microsoft document Using Code Access

Security with ASP .NET. 2

Special Needs
Does your application make use of any components or services outside the .NET

Framework? Do you rely on MSXML 4 or WSE 2, or on running a scheduled task

every night? If so, you’ll want to ask the web hosting provider if these components

and services are available.

Perhaps your application uses an HttpModule or HttpHandler for URL rewriting or

other special processing tasks. In such cases, you’ll want to check if the web host

allows these technologies.

Free Stuff
Most web hosting providers will offer free components and controls with your

hosting package. Many of the controls are already free, so evaluate each package

with a critical eye. Other web hosts may offer additional services, like SQL Server

Reporting Services, for a fee.

How do I use source control?
Source control is one of the pillars of modern software engineering. A sane software

developer would no sooner work outside source control than a climber would climb

without safety ropes, or a fireman enter a fire without flame retardant clothing and

breathing apparatus.

2 http://msdn2.microsoft.com/en-us/library/aa302425.aspx

http://msdn2.microsoft.com/en-us/library/aa302425.aspx
http://msdn2.microsoft.com/en-us/library/aa302425.aspx
http://msdn2.microsoft.com/en-us/library/aa302425.aspx

Introductory Topics 17

But before we dive into the wonderful world of source control, let’s start with a true

story that exemplifies its importance in real terms.

On April 30, 1999, US taxpayers lost over $1.2 billion due to a small mistake in

software configuration management. It was on this day that a Titan IVB rocket was

scheduled to put the US Air Force’s most advanced communication satellite into

orbit. The Titan rocket track record includes over 300 successful launches, but on

this day the Titan failed to deliver the satellite into the desired orbit at 22,300 miles

from earth. Flight controllers had to put the satellite into an ineffective elliptical

orbit of 2,781 by 592 nautical miles, drain the electrical power, and disable all

functions before the satellite ever performed service.

Why did this error occur? Because somebody forgot to put a parameter file under

source control and the file was lost. When an engineer modified a similar file to

recreate the lost file, the engineer typed in a value of -0.1992476 instead of the

correct value: -1.992476. This small error meant an $800 million satellite and a $400

million rocket launcher produced zero payoff. Fortunately, for the majority of us,

the cost of not using (or misusing) source control software will be orders of mag

nitude smaller—yet the cost is still there.

Solution
It’s a common misconception that the only purpose of source control software is to

enable a team of developers to work on source code without overwriting one anoth

er’s changes. While a source control system does facilitate this kind of method of

working, there’s much more to the tools known as source control or version control

systems.

The Elements of Source Control
In this section, we’ll review the basic features that are common to source control

systems and see how they work in the software development process.

The Repository

All source control systems feature a repository where source code and other files

related to the software product are stored. Developers retrieve source code from the

repository, make changes, perhaps add some new files, and finally commit (or check

in) those changes to the repository.

18 The ASP.NET 2.0 Anthology

Not only does the repository store the current version of the source files, it also

tracks every single change that’s made to a file as developers commit new versions

of files to the repository. If you use a source control system, you can look at the

entire history of any file in the repository to get a clear idea of the specific changes

that have been made to it over time. Sometimes, just knowing what’s changed since

yesterday can help you track down an elusive bug that appeared today.

Perhaps if an engineer had checked in the parameter file, the Titan mission would

have been successful—it’s hard to say with 100% certainty, but I’m sure the chances

of success would have been better. Likewise, you can dramatically decrease the

risks to your software project by keeping the assets required by that project in a re

pository. The repository should be located on a secure machine and backed up

regularly, of course.

Labeling

Labeling, also known tagging, is a feature of source control systems that allows you

to apply a friendly name to a specific version of your files. It’s a good idea to label

files every time a product is built—perhaps with just the name of the product and

an auto-incremented build number (WhizzBang.1186, for instance). If a problem is

found during a test, you can delve into the repository and identify the exact set of

files that were used to build the version of the software you’re testing.

Another great time to apply a label is whenever you deliver your software to the

outside world. Imagine, for example, that build 1186 of WhizzBang has passed all

tests and is ready to be delivered to customers. You can apply another label to this

set of files, perhaps calling it Whizz Bang 1.2 if you’ve already delivered versions

1.0 and 1.1. Now, if, in six months’ time, one of your customers calls with a severe

bug report for version 1.2, you’ll know exactly what was deployed to the customer,

because the files were labeled. A developer can simply retrieve all the files labeled

Whizz Bang 1.2 and reproduce the problem.

Branching

The most common development workflow involves every developer always retrieving

the latest version of code from the repository, making changes, and checking those

changes back into the repository. If you think of your project as a source control

tree, the latest version of the files represents the trunk of the tree.

Introductory Topics 19

Sometimes it’s necessary to branch away from the trunk to perform parallel devel

opment on the product. Fortunately, source control also provides the ability to

branch your project. For instance, suppose you’ve identified the problem in Whizz

Bang 1.2, and now you need to get a fix to the customer. You could apply the fix to

the latest version of the code (the trunk), but the rest of the product may not be

ready for deployment. Perhaps you’re already one month into a three-month project

plan for version 2.0, and many new features are still incomplete. You can’t send an

incomplete version to the customer, so you can’t build the latest version as a fix.

In this scenario, it would be prudent to apply the change to the stable version of

the product labeled as version 1.2. Source control will allow you to branch the main

tree at the version 1.2 label. While some developers begin to work on delivering

version 1.2.1 from the branch, the rest of the team can continue working on the

main trunk to finish the version 2.0 features. A good source control system will

automatically merge changes made on a branch back into the trunk, in effect adding

the fix to version 2.0 also.

The scenario above is just one example of branching in action. Branching is a

powerful feature and there are many different ways to use branching to meet the

style of your development, so make yourself familiar with the capabilities of the

versioning system you choose.

Who Should Use Source Control?
Obviously, source control is valuable for teams of developers, and those working

in a professional capacity for paying clients. Perhaps you’re a solo software de

veloper, or just experimenting at home with some code. If you’ve read this far,

hopefully you’ve already realized that source control isn’t just for big development

teams. How many times have you started to make massive changes to a code base,

but after an hour, decided that you don’t like the new approach, and wished you

could roll back to what was working before? Well, if you use source control, that

wish is easily granted.

It’s also advantageous to use a repository for storing all of your code, and to perform

backups of this repository regularly. Tracking history, versioning, and labeling are

all there to help you manage your code—even if you’re “just tinkering!”

20 The ASP.NET 2.0 Anthology

Source Control Tools
Source control products are available to fit every project and budget. If you’re not

using source control today, I hope we have convinced you to start using it tomorrow.

Once you’ve embraced source control, you’ll find it to be just like oxygen—you

won’t notice once you have it in place, but you’ll be acutely aware of how much

you rely on it once it’s gone.

Figure 1.12 shows TortoiseSVN,3 a client for the SubVersion source control tool.4

Figure 1.12. Revision control with SubVersion and the TortoiseSVN client

TortoiseSVN is popular because it integrates well with the Windows Explorer shell,

but many other options—open source and commercial—are available.

3 http://tortoisesvn.tigris.org/
4 http://subversion.tigris.org/

http://tortoisesvn.tigris.org/
http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://subversion.tigris.org/

Introductory Topics 21

How do I go about using open
source code?
ASP.NET is a huge platform with amazing functionality. You’ll find yourself con

tinually discovering new features, even after several years spent working with the

framework. Even so, it doesn’t take long to start bumping into the limits of what

ASP.NET does well. While it may be a large platform, the developers who create

ASP.NET can’t think of everything, nor supply every feature.

An active and thriving industry has sprung up around building components and

libraries for use with ASP.NET, and .NET in general. If your company is willing to

shell out the money to purchase these components, it’s often a good investment—the

well polished components can provide a great deal of functionality. Of course, not

all companies understand the business need to purchase such components, which

can leave developers in a bind. Even if you do purchase components, many of the

commercial libraries don’t come with source code. So the component that you

thought would solve your needs may not—though it could if you were able to change

just a couple lines of code. If only!

Fortunately, a large community of open source developers is actively building tools,

applications, and libraries that fill the gaps for many common tasks. These projects

provide developers with source code, allowing us to make tweaks and even to

contribute patches to the original code base.

Solution
Using open source projects involve some licensing considerations, which we discuss

below. Once you have a basic understanding of licensing, you can start looking

around for suitable projects!

Open Source Licensing
A license is permission granted by a copyright holder to others to allow them to

reproduce or distribute a work. It’s a means by which the copyright holder can allow

others to have some rights when it comes to using the work, without actually assign

ing the copyright to those other users.

http:ASP.NET

22 The ASP.NET 2.0 Anthology

Although there’s a huge variety of licenses that could be used to manage the rights

associated with open source projects, most tend to employ one of the Open Source

Initiative, or OSI, approved licenses.5

The GNU GPL (General Public License) is the most widely used of these licenses,

but it’s often shunned by those producing commercial products. GPL is often called

a viral license as it requires that any changes that developers make to the code must

be released to the public. If you wish to use GPL in your code, I recommend that

you consult your company lawyer, or avoid it unless your company wishes to make

its code public.

A range of licenses, such as the LGPL, Apache, MIT, and New BSD licenses, do not

place any such “give back” restrictions on code usage, which explains why they

tend to be very popular among corporate users and those developing proprietary

software.

Most of these licenses allow any and all use of the code (commercial or otherwise),

as long as a set of requirements is met. Typically, the developers are required to

keep the copyright notice in the code, and provide proper attribution.

Finding Open Source .NET Resources
If you think you’d like to use an open source library to solve a particular problem,

where do you go to find that code? The Google search engine is a good starting

point,6 though you may spend a lot of time sifting through commercial products

looking for the open source options. In my experience, though, open source projects

tend to rank well in the search results because the community involvement in their

development usually results in a lot of links to the project.

Another great place to look is SourceForge—the single largest repository of open

source code.7 For Microsoft-specific technologies, CodePlex is an excellent resource.8

Google also recently deployed an open source code hosting service called Google

Code.9

5 http://www.opensource.org/licenses/alphabetical

6 http://google.com/

7 http://sourceforge.net/

8 http://www.codeplex.com/

9 http://code.google.com/

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://google.com/
http://google.com/
http://sourceforge.net/
http://sourceforge.net/
http://www.codeplex.com/
http://code.google.com/
http://code.google.com/
http://www.opensource.org/licenses/alphabetical
http://google.com/
http://sourceforge.net/
http://www.codeplex.com/
http://code.google.com/

Introductory Topics 23

Recommended Open Source Projects
A huge number of useful open source libraries exist out there in the wild. In fact,

we’ll cover several of them in this very book. But for easy reference, the list below

includes a few open source projects with which the authors of this book are familiar.

Log4Net (http://logging.apache.org/log4net/)

Log4Net is a port of the popular Log4J logging framework for Java. Log4Net is

extremely extensible, allowing logging to a variety of output targets. It’s also

extremely fast, as performance is a major consideration for the Log4Net team.

NUnit (http://www.nunit.org/) and MbUnit (http://www.mbunit.com/)

NUnit is a port of the JUnit unit-testing framework for Java. NUnit is useful for

automatic regression testing and Test Driven Development. MbUnit deserves

special mention for the innovations it introduces to unit testing such as row-

based testing, combinatorial testing, and transactional rollbacks.

NHibernate (http://www.nhibernate.org/)

NHibernate is a port of the Hibernate OR/M mapping tool for Java (are you no

ticing a theme here?). NHibernate provides mapping capabilities between your

objects and the underlying database store. It dynamically generates the SQL

necessary to load and persist your objects.

SubSonic (http://subsonicproject.com/)

SubSonic is a lightweight data access layer and code generator. It’s often called

OR/M Light, as it’s designed to improve a developer’s productivity by being

really quick and easy to use. We’ve included an overview of SubSonic in

Chapter 17.

DotNetNuke (http://www.dotnetnuke.com/)

DotNetNuke—DNN for short—is a free, open source, web portal application

that has a very large and active community of contributors and supporters. Many

companies have formed solely to build web sites on DNN, and sell custom

modules and support.

FCKeditor (http://www.fckeditor.net/)

FCKeditor is an open source rich text editor for web sites that works with mul

tiple web platforms, including ASP.NET. As a user, authoring content using

FCKeditor is very similar to using Microsoft Word.

(http://logging.apache.org/log4net/)
(http://www.nunit.org/)
(http://www.mbunit.com/)
(http://www.nhibernate.org/)
(http://subsonicproject.com/)
(http://www.dotnetnuke.com/)
(http://www.fckeditor.net/)
http:ASP.NET

24 The ASP.NET 2.0 Anthology

Where can I find more information
about ASP.NET?
I’d love to tell you that this book contains all you’ll ever need to know about

ASP.NET, but I’d be lying. Any book that even tried to make such a quixotic claim

would be too large a reference to hold in one’s hands, much less read.

This book provides some valuable solutions to some of the common, tricky problems

that we’ve run into—things we wish we had discovered in a book, rather than

learned the hard way. But the true secret to navigating the jungles of ASP.NET is

knowing where to look for answers when the books on your shelves fall short.

Solution
A number of detailed and well-maintained resources are available to ASP.NET de

velopers. So when you run into what seems to be a dead-end, use these references

to help move your project forward.

Searching for Information
When you’re stuck on a problem, one of the first things you should do is fire up

your favorite search engine. But don’t just randomly type in search terms—to get

good search results, think before you type. Consider what you’re searching for, and

what keywords are likely to produce the most relevant results.

For example, you might consider adding the word ASP.NET to your search terms to

focus the scope of your search. So rather than searching for GridView is not

working, search for ASP.NET GridView is not working. Better still would be to

search for ASP.NET GridView SqlDataSource no data displayed, because a spe

cific search phrase is much more likely to get you a helpful answer.

If you’re searching for information on a specific class, conduct your search on the

fully qualified type name to find the class’s documentation. In fact, this may prove

to be a faster way to locate the MSDN documentation for a type than navigating

through the MSDN site.

Another option is to use a customized .NET search engine that searches specific

sites. You can add as search providers any sites that support the OpenSearch

standard (including IE 7 and Firefox), which allows you to run a .NET-focused

http:ASP.NET

Introductory Topics 25

search from your browser’s search bar. Dan Appleman’s searchdotnet.com is a good

example of a .NET-centric search site, and Dan’s also been nice enough to list some

of the other top .NET search providers on the site.10

When your code has an unexpected exception, it’s often helpful to search using the

error message—this can be the quickest way to find information that may help to

fix the problem. And if your search isn’t generating good results, look through the

near misses in your search results and see if any of the terms on those pages make

good candidates for your next search attempt.

When in doubt, search. And if you’re feeling generous, start your own blog and

write about the solutions you found, so your fellow coders can find your results in

their future searches. It’s a virtuous cycle!

Google Groups
Before the World Wide Web—before web forums and blogs—the only online forum

for public discussion was the USENET newsgroups. Although their importance has

diminished over time, USENET newsgroups are still useful as a secondary search

target.

If a regular Google search doesn’t turn up the information you’re looking for, try a

quick search of Google Groups, which is a huge database of USENET newsgroup

posts. It’s quite possible that someone has run into the same problem you’re having,

and has posted a solution in a newsgroup posting.

The ASP.NET Web Site
The ASP.NET forums web site,11 which is managed by Microsoft, is much like

Google groups in that it’s a place for users to post questions and receive answers

from other members of the coding community.

Unlike Google Groups, these forums are solely focused on ASP.NET, which makes

them a more targeted place to search for information. The rest of the ASP.NET do

main is fairly good, too—there’s a lot of great content and tutorials, especially under

the Learn12 and Resources categories.13

10 http://www.searchdotnet.com/
11 http://forums.asp.net/
12 http://asp.net/learn/
13 http://asp.net/resources/

http://www.searchdotnet.com/
http://forums.asp.net/
http://asp.net/learn/
http://asp.net/resources/
http:ASP.NET
http://www.searchdotnet.com/
http://forums.asp.net/
http://asp.net/learn/
http://asp.net/resources/

26 The ASP.NET 2.0 Anthology

ASP.NET-focused Blogs
The blog isn’t just a fad format that gives people an outlet to write about the wacky

antics of their cats. In the .NET world, there are many Microsoft bloggers—and Mi

crosoft technology-focused bloggers—who provide a real service to the community

via their blogs. These blogs are full of useful tips, tricks, and in-depth information

about ASP.NET.

Table 1.1 contains a list of some blogs that we recommend for learning more about

ASP.NET and .NET, selfishly starting with the authors’ very own blogs, of course!

Table 1.1. Essential Blogs About ASP.NET and .NET

DescriptionBlog

Jeff Atwood’s blog is very highly regarded in the software

development community. His blog tends to focus on software

usability and high-level issues regarding software

development.

http://codinghorror.com/

http://odetocode.com/blogs/scott/ Scott Allen’s blog is a rich source of in-depth information

about ASP.NET. He also covers Windows Workflow Foundation

(WF) and other ins and out of .NET technologies.

http://haacked.com/	 Phil Haack tends to cover all sorts of information regarding

software development in general, and ASP.NET in particular.

http://weblogs.asp.net/jgalloway/	 Like the others in this list, Jon Galloway’s blog covers .NET

technologies, but he also likes to delve into SQL Server,

providing useful advanced tips.

http://weblogs.asp.net/scottgu/	 Scott Guthrie is a General Manager within the Microsoft

Developer Division. He’s in charge of ASP.NET, among many

other technologies, and his blog is a great resource for

learning about new features of ASP.NET.

http://hanselman.com/blog/	 Scott Hanselman’s blog is very popular among the .NET crowd.

He likes to delve really deep into the intricacies of ASP.NET

and other technologies.

Fritz Onion wrote the book on ASP.NET—well, not the only

book, but one of the best ones. His blog is a great resource

on ASP.NET.

http://www.pluralsight.com/blogs/fritz/

http:ASP.NET
http://odetocode.com/blogs/scott/
http:ASP.NET
http://haacked.com/
http://weblogs.asp.net/jgalloway/
http://weblogs.asp.net/scottgu/
http:ASP.NET
http:ASP.NET
http://hanselman.com/blog/

Introductory Topics 27

Reference Books
Table 1.2 lists a number of books that should be on every ASP.NET developer’s

bookshelf.

Table 1.2. Essential ASP.NET 2.0 Reading List

DescriptionBook

This introductory title from SitePoint represents assumed

knowledge for the book you’re currently reading. It

introduces readers to programming with ASP.NET, and

touches on the most commonly used aspects of the

framework.

Build Your Own ASP.NET 2.0 Web Site Using

C# & VB by Cristian Darie and Zak

Ruvalcaba (Melbourne: SitePoint, 2006)

Essential ASP.NET with Examples in C# These two books cover ASP.NET 1.0 and ASP.NET 2.0

(Boston: Addison-Wesley Professional, 2003) respectively. The reason they’re both listed here together

and Essential ASP.NET 2.0 (Boston: is that the second book only covers features of ASP.NET

Addison-Wesley Professional, 2006) by Fritz 2.0 that weren’t covered in the first book. Together they

Onion make a complete volume.

Professional ASP.NET 2.0, Special Edition If you’re going to get one big ASP.NET tome, this is the

by Bill Evjen, Scott Hanselman, Devin Rader, one. It’s huge, but it’s a solid reference. It’s nice to have

Farhan Muhammad, and Srinivasa this one on hand when your web searches are coming up

Sivakumar (Hoboken: Wrox Press, 2006) empty.

CLR via C#, 2nd Edition by Jeffrey Richter Not strictly about ASP.NET, this book is essential for

(Redmond: Microsoft Press, 2006)	 developers who wish to understand how the CLR and .NET

work under the hood. Being armed with this knowledge

is very helpful when debugging odd problems you may

encounter with ASP.NET.

This book isn’t about .NET, but no list of software-related

books is complete without Code Complete. It’s the essential

guide to writing better code.

Code Complete, 2nd Edition by Steve

McConnell (Redmond: Microsoft Press,

2004)

Summary
In this chapter, we’ve discussed some of the decisions and information you need

to consider before starting your next application. We’ve seen how to decide between

using a Web Site and a Web Application project, investigated the topic of source

control, discussed choosing a hosting provider, explored the considerations involved

in the use of open source code, and listed some great sources of ASP.NET informa

tion.

http:ASP.NET
http:ASP.NET

28 The ASP.NET 2.0 Anthology

This information lays strong foundations from which you can build your ASP.NET

knowledge, whether it comes from reading this book, or from using other books and

online materials.

The topics we’ve covered in this chapter will likely come into play in any project

you may encounter, so the knowledge you’ve gained here will serve you well in

your .NET career.

Chapter2
.NET 2.0 Core Libraries
ASP.NET 2.0 is part of a very large and extensive application framework—the .NET

Framework 2.0—and many of the great new features in ASP.NET 2.0 are closely

related to improvements to the .NET core libraries. You may have put off learning

some of these newer features because they’re fairly complex and they don’t provide

the immediate feedback that you get from a data-bound GridView. Think of it this

way, though—if these features power ASP.NET, they can really help power your

applications.

In this chapter, we’ll show you how to use some of our favorite features of the core

libraries to solve common problems.

How do I use strings?
One of the simplest ways to render an object to the screen is to convert it to a human-

readable string. But how do we do that? And why do we do it? I know these questions

seem basic—maybe too basic—but strings are as fundamental to programming as

are objects themselves. Allow me to illustrate.

http:ASP.NET

30 The ASP.NET 2.0 Anthology

Brad Abrams was a founding member of the .NET common language runtime team

way back in 1998. He’s also the co-author of many essential books on .NET, including

both volumes of the .NET Framework Standard Library Annotated Reference. 1 I

attended a presentation Brad gave to the Triangle .NET User’s Group in Durham,

North Carolina, early in 2005. During the question-and-answer period, an audience

member—and a friend of mine—asked Brad, “What's your favorite class in the .NET

1.1 common language runtime?”

His answer?

“The string class.”

That statement comes from a guy who will forget more about the .NET runtime than

I will ever know about it. I still have my .NET class library reference poster, with

Brad’s autograph right next to the String class.

Solution
I've always felt that the string is the most noble of data types. Computers run on

ones and zeros, sure, but people don't. They use words, sentences, and paragraphs

to communicate. People communicate with strings. The meteoric rise of HTTP,

HTML, REST, serialization, and other heavily string-oriented, human-readable

techniques vindicates—at least in my mind—my lifelong preference for the humble

string.

Of course, you could argue that, as we have so much computing power and band

width available today, passing friendly strings around in lieu of opaque binary data

is actually practical and convenient. But I wouldn’t want to be a killjoy.

Guess what my favorite new .NET 2.0 feature is. Go ahead—guess! Generics? Nope.

Partial classes? Nope again. It’s the String.Contains method. And I’m awfully fond

of String.IsNullOrEmpty, too.

What I love most about strings is that they have a million and one uses. They’re the

Swiss Army Knife of data types.

1 Brad Abrams, .NET Framework Standard Library Annotated Reference (Boston: Addison-Wesley Pro

fessional, 2004).

.NET 2.0 Core Libraries 31

Regular expressions, for example, are themselves strings:

RegEx = "<[a-z]|<!|&#|\Won[a-z]*\s*=|(script\s*:)|expression\(";

SQL queries are strings, too:

Sql = "SELECT * FROM Customers WHERE State = 'NY'

 ORDER BY ZipCode";

Regular Expressions and SQL are mini-languages that wield considerable power—all

inside a humble string. I love strings, and so should you. The String class is an

integral part of any programmer’s toolkit—mastering it is essential.

How do I display an object as a string?
Numeric types, enumerated types, exceptions … they all serve their purpose in a

web application, but none of them is as good as strings at displaying content to

users. Luckily, we have a few options for taking the content of these objects and

writing it out to a string.

Solution
Every class in .NET should have a meaningful ToString method. ToStringmagically

and automatically converts an object into a human-readable string representation

of itself. It’s not quite serialization, but it’s certainly a close cousin.

One classic example of the utility of ToString can be seen in the task of trapping

exceptions:

ToStringExample1.cs

// Compile and execute from the command line
using System;
class ToStringExample1 {
 public static void Main()
 {
 int x = 0;
 int y = 0;

 try
 {

32 The ASP.NET 2.0 Anthology

y = 10/x;

 }

 catch (DivideByZeroException ex)

 {

 Console.WriteLine(ex.Message);

 }

 }

}

If you do this, all you’ll get is the exception message Attempted to divide by

zero. Good luck troubleshooting your application on that meager bit of information!

But what if we change the last line to use ToString instead?

ToStringExample2.cs

// Compile and execute from the command line
using System;
class ToStringExample2 {
 public static void Main()
 {
 int x = 0;
 int y = 0;

 try
 {
 y = 10/x;

 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine(ex.ToString());

 }
 }
}

When compiled in debug mode, we now get an automatically generated string rep

resentation of that particular Exception object:

System.DivideByZeroException: Attempted to divide by zero.

at ConsoleApplication1.Program.Main(String[] args)

in C:\Program.cs:line 15

.NET 2.0 Core Libraries 33

That’s a lot more helpful—you could actually diagnose a problem with this detailed

exception information by exploiting the ability of ToString to force the computer

to provide human-readable output.

Discussion
Unfortunately, not all .NET classes have good ToString methods. If you have a

DataSet, you might naturally try calling DataSet.ToString. Guess what you’ll get

when you do?

System.Data.DataSet

That’s utterly useless. You might’ve expected something like this:

+---+

| DataSet1 |

+---+

| Table1 |

+---+

| field01 | field02 | field03 | field04 | field05 |

+---+

1	first	NULL	NULL	NULL
2	second	foo	2006-10-31	10:30:00
3	third	bar	2006-10-31	10:30:01
+---+

This seems perfectly logical to me, but DataSet.ToString doesn’t work that way

out of the box.

When you’re creating your own classes, include ToString methods that make sense

and produce human-readable output, even if the only human who will ever see that

output is another programmer. If you’re working with someone else’s classes, con

sider overriding the ToString implementation to obtain the proper behavior that

should have been present in the first place.

34 The ASP.NET 2.0 Anthology

How do I display formatted strings?

When providing user feedback, site elements, or error reporting, you won’t just echo

data to the user as strings. Along with those strings, you’ll echo all kinds of variables:

numbers, dates, times, enumerations, and so forth. How do we specify the format

of these variables so they display correctly as strings?

Solution
We looked at the ToString method very briefly in the previous solution. Considering

that it can leverage standard .NET string formatting, you may well be tempted to

use ToString in conjunction with the concatenation operator (+), as I’ve done in

the following example:

"Date is " + DateTime.Now.ToString("MM/dd hh:mm:ss");

Here, I’m using ToString to specify the format of the DateTime object. It might be

intuitive, but it’s not the best solution. A much more efficient approach that produces

identical output is to call the String.Format method on that DateTime object, as

I’ve done here:

String.Format("Date is {0:MM/dd hh:mm:ss}", DateTime.Now);

This is reminiscent of one of the classic uses for a string that dates back to the days

of C and sprintf—for specifying an output format. String formatting is incredibly

powerful, but it doesn’t have to be complicated—in fact most of the time you’ll find

yourself performing only simple types of string concatenation.

Here’s another example:

d.SelectSingleNode("/a/b[value='" + value + "']");

While this approach works, it gives us a lot of plus signs and broken string fragments

to keep track of. You may forget to close the quotes, or you might lose track of the

number of brackets because they’re separated by multiple plus signs. Moreover,

should you use this code often, there may be serious implications for the performance

of your application.

.NET 2.0 Core Libraries 35

Let’s replace that concatenation with a single String.Format command:

d.SelectSingleNode(String.Format("/a/b[value='{0}']", value));

We now have one unbroken string with a simple replacement operation. It’s unam

biguous, and it performs well.

Some people feel so strongly about using String.Format that they vow never to

use + to concatenate strings ever again. I don’t feel quite that strongly about it—I

believe that concatenation has its place for very simple tasks. But you should defin

itely use String.Format whenever possible, for these reasons:

■ Your code will be cleaner.

■ You’ll avoid potential concatenation performance problems.

■ Using String.Format is a far more powerful approach than concatenation.

String Concatenation Versus String Builder

For more information about the performance implications of string concatenation,

see the MSDN article titled Improving String Handling Performance in .NET

Framework Applications. 2

How Powerful is String.Format?
We’ve only encountered the very simplest string formatting option so far, which is

quite basic—direct, numbered replacement:

String.Format("I like {1}, {0}, and {2}", "ninjas", "pirates",

"cowboys");

In the example above, the first variable replaces the {0}, the second variable replaces

the {1}, and so forth. This code may be easy to understand, but it’s not particularly

exciting. Let’s add some features to make it more compelling.

We’ll start by adding the Format identifier to specify alignment. A positive value

indicates that the string should be right-justified, while a negative means it should

2 http://msdn2.microsoft.com/en-us/library/aa302329.aspx

http://msdn2.microsoft.com/en-us/library/aa302329.aspx
http://msdn2.microsoft.com/en-us/library/aa302329.aspx
http://msdn2.microsoft.com/en-us/library/aa302329.aspx

36 The ASP.NET 2.0 Anthology

be left-justified. The value specifies the total length that the resulting string should

take when padded with spaces:

String.Format("{0,-10}", "left"); // "left "

String.Format("{0, 10}", "right"); // " right"

Another common way to use the format string—the characters to the right of the

colon—is to specify the formatting of numbers, dates, and enumerations:

String.Format("{0,-8:G2}", 3.14159); // "3.1 "

Here’s where the real power of String.Format reveals itself. String.Format has a

number of built-in number formatting specifiers, which are shown in the code listing

below. Note that each specifier has a relatively easy-to-remember, case-insensitive,

single-letter mnemonic associated with it: d for decimal, x for hexadecimal, and so

forth:3

int i = 32768;

String.Format("{0:c}", i); // $32,768 (currency)

String.Format("{0:d}", i); // 32768 (decimal)

String.Format("{0:e}", i); // 3.276800e+004 (scientific notation)

String.Format("{0:f}", i); // 32768.00 (fixed-point)

String.Format("{0:g}", i); // 32768 (general)

String.Format("{0:n}", i); // 32,768.00 (number with commas)

String.Format("{0:p}", i); // 32,768% (percent)

String.Format("{0:r}", i); // 32768 (round trip)

String.Format("{0:x}", i); // 8000 (hexadecimal)

We can add a digit to some of the built-in numeric format specifiers to indicate how

many decimal places we want the output to display; however, d and x cannot take

a numeric format specifier because they require the number to be an integer:

String.Format("{0:c3}", i); // $32,768.000

String.Format("{0:c2}", i); // $32,768.00

In addition to the pre-built number formatting specifiers, ASP.NET permits the use

of custom number formatters. A complete description of all the formatters is beyond

3 Complete descriptions of each of the standard numeric format strings can be found in the online MSDN

documentation: http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx.

http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx

.NET 2.0 Core Libraries 37

the scope of this book, but here are a few examples to give you a glimpse of the

possibilities:

double d = 1234.56;

String.Format("{0:00.0000}", d); // 1234.5600 (zero placeholder)

String.Format("{0:(#).##}", d); // (1234).56 (digit placeholder)

String.Format("{0:0.0}", d); // 1234.6 (decimal point)

String.Format("{0:0,0}", d); // 1,235 (thousands)

String.Format("{0:0,.}", d); // 1 (number scaling)

String.Format("{0:0%}", d); // 123456% (percent)

String.Format("{0:00e+0}", d); // 12e+2 (scientific notation)

These are some of the more common combinations that are available; you can view

a more detailed list on the MSDN site.4

But what about dates and times? Let’s see one of the built-in date formatters in action:

String.Format("{0:g}", DateTime.Now);

This outputs the current date and time in the following format:

8/05/2007 11:13 AM

There’s a plethora of ways in which a date and time can be formatted, as shown by

the following examples (note that I’ve omitted the call to String.format for brevity).

These date formatters also come with single-letter mnemonics, although they’re

perhaps not quite as intuitive as those used to format numbers. The default date

format is the general format used in the example above. Formats include:

"{0:d}" // 8/21/2007 (short date)

"{0:D}" // Tuesday, 21 August 2007 (long Date)

"{0:f}" // Tuesday, 21 August 2007 11:13 AM (full short)

"{0:F}" // Tuesday, 21 August 2007 11:13:17 AM (Full long)

"{0:g}" // 21/08/2007 11:13 AM (general)

"{0:G}" // 21/08/2007 11:13:17 AM (General long)

"{0:m}" // 21 August (month day)

"{0:o}" // 2007-08-21T11:13:17.4687500+10:00 (round trip)

"{0:R}" // Tue, 21 August 2007 11:13:17 GMT (RFC1123 pattern)

"{0:s}" // 2007-08-21T11:13:17 (sortable)

4 http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx

http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx

38 The ASP.NET 2.0 Anthology

"{0:t}" // 11:13 AM (short time)

"{0:T}" // 11:13:17 AM (long Time)

"{0:u}" // 2007-08-21 11:13:17Z (universal)

"{0:U}" // Tuesday, 21 August 2007 1:13:17 AM (Universal GMT)

"{0:Y}" // August 2007 (Year month)

Whew, that’s quite a list! If you’re still not quite satisfied with any of the predefined

date and time format specifiers, you can use the custom date formats to create your

own. Here are a few examples:

"{0:dd}" // 06 (day)
"{0:ddd}" // Sat (day abbr)
"{0:dddd}" // Saturday (day full)
"{0:fff}" // 692 (second fraction)
"{0:gg}" // A.D. (era)
"{0:hh}" // 07 (12 hour)
"{0:HH}" // 19 (24 hour)
"{0:mm}" // 21 (minute)
"{0:MM}" // 01 (month)
"{0:MMM}" // Jan (month abbr)
"{0:MMMM}" // January (month full)
"{0:ss}" // 29 (seconds)
"{0:tt}" // PM (am/pm)
"{0:yy}" // 07 (year)
"{0:yyyy}" // 2007 (year full)
"{0:zz}" // -08 (timezone)
"{0:zzz}" // -08:00 (timezone full)
"{0:hh:mm:ss}" // 07:21:29 (separators)
"{0:MM/dd/yyyy}" // 01/06/2007 (separators)

Months and Minutes

Watch out for the minutes and month mnemonic (go on, say that three times fast—I

dare you!). The standard, single-letter formatter (m or M) is case-insensitive and

means month. However, when you begin specifying your own custom format

string (using multiple letters, such as mm or MMM), you’ll soon discover that case

does matter.

For custom format strings, a lowercase m means minutes, and an uppercase M

means month. Here’s how I remember that: months are “larger” than minutes.

.NET 2.0 Core Libraries 39

Dates are Culture-sensitive

There is one very important caveat to keep in mind whenever you’re working

with dates. All date and time output is heavily dependent on the system’s current

regional settings. Don’t assume that because you live in the Eastern Time Zone

the names you use for months will be identical to those used by a person living

in Kazakhstan, for example. If you’re worried about culture-independent date

display, use the overloaded version of String.Format that accepts a culture:

String.Format(
 System.Globalization.CultureInfo.InvariantCulture,

 "{0:d}", d
)

If you pass in InvariantCulture, you’re guaranteed that the date and time

output will be universally understood, no matter where your code happens to be

running in the world. Tim Berners-Lee would be proud of you for putting the

“world” back into World Wide Web!

Discussion
If you need to use a reserved character in a formatting string, you can surround it

with single quotes to escape it; your character will show up verbatim in the output.

In the example below, I’ve escaped the percentage symbol:

String.Format("{0:##.00'%'", 1.23) // "1.23%"

If you still doubt the power of string formatting, consider this little nugget:

int i = 1;

String.Format("{0:yes;;no}", i);

The output of this line of code depends on the value of the variable i—a value of

zero outputs no, and a non-zero value outputs yes. What we have here is an example

of conditional formatting—an output that is conditional on the value of the variable

passed in. Conditional formats take the following form:

String.Format("{0:positive;negative;zero}", variable);

40 The ASP.NET 2.0 Anthology

As you can see, the three possible outputs of a conditionally formatted string are

separated by semicolons. If variable has a value that is positive, the first string fol

lowing the colon is displayed (in this case, positive); if variable is negative, the

second string (negative) is displayed; and if variable has a value of 0, the third string

(zero) is displayed.

Here’s another example—one that’s used quite often:

String.Format("{0:$#,##0.00;($#,##0.00);Zero}", d);

This conditional format string follows the accountant’s convention of placing neg

ative values in parentheses, and replaces the value 0 with the string Zero.

As you can see from the large number of examples listed in this solution, ASP.NET

contains two extremely powerful tools for formatting strings: String.Format and,

to a lesser degree, ToString. Yet these methods are just two small parts of the String

class.

Strings, I’ve fallen in love with you all over again.

How do I use generics?
The biggest language change in the .NET 2.0 Framework was the introduction of

generics—object types that allow us to define properties and methods without

locking them down to a specific class. This gives us the ability to reuse code in a

very efficient and type-safe manner.

Solution
You’ll want to become really handy with generics for two reasons:

1. The framework makes heavy use of generics, so you’ll need to understand them

in order to put the .NET Framework to good use.

2. Generics can really supercharge and streamline your code. Doing more with less

code is a great thing—after all, writing less code means writing fewer bugs!

Using generic collections, you can make your code more powerful and simpler at

the same time. You don’t even need to rewrite your container code to benefit! The

.NET 2.0 Array object implements some interfaces—including IList, ICollection,

.NET 2.0 Core Libraries 41

and IEnumerable—in System.Collections.Generic, giving a lot of new power to

old Array-based code without any additional effort on your part.

Prior to .NET 2.0, the .NET Framework offered two kinds of collection objects: we

could store objects in untyped collections (like the ArrayList), or typed containers

(like a StringCollection or an integer array). Both options had their problems.

Untyped containers provided flexibility and features, but at a heavy price: developers

who used them had to give up type safety. We always needed to cast objects to re

trieve the containers, and each addition or retrieval incurred a performance hit.

Typed containers were safer and offered better performance, but they required code

to be repeated for each object that the container held. Developers had to write a

CustomerCollection, an OrderCollection, a ProductCollection, and a

SupplierCollection, even though they all did the same things! Additionally, since

each container had to re-implement each feature, typed containers generally weren’t

as rich in features as their untyped counterparts.

Generic containers give us the best of both worlds—we can store groups of objects

using the flexibility of untyped containers, and gain the type safety and performance

benefits of typed containers. The generic class is implemented only once, but can

be declared and used with any type.

The best way to illustrate these benefits is with an example that compares the ways

in which ASP.NET 2.0’s generic collections are better than those of ASP.NET 1.1.

Suppose we were building an application to display our comic book collection to

the world. We’d probably start with a ComicBook class:

public class ComicBook

{

 public ComicBook(string title)

 {

 this.title = title;

 }

 public string Title

 {

 get

 {

 return this.title;

 }

42 The ASP.NET 2.0 Anthology

}

 string title;

}

With .NET 1.1, we might create our comic book collection using an ArrayList:

ArrayList comics = new ArrayList();

comics.Add(new ComicBook("The Amazing Spiderman #1"));

comics.Add(new ComicBook("X-Men #3"));

This might seem fine on the surface, but imagine someone came along and added

the following code:

comics.Add(new BaseBallCard("Mickey Mantle Rookie"));

Hey! That’s not a comic book!

No, it’s not. But as far as the ArrayList is concerned, it’s perfectly valid—the

ArrayList is a collection of Object instances. Since every class is derived from

Object, the ArrayList isn’t very discriminating. Ideally we’d like our classes to be

more strongly typed.

It was possible to create strongly typed classes back in the days of .NET 1.1, but it

typically required a lot of code. Not only that, but you had to write a lot of repetitive

code if you planned on using strongly typed collections for every type that you

wanted to aggregate. Amit Goel’s article from 2003 gives an insight into just how

much code was required to implement generics in .NET 1.1.5

With .NET 2.0, we can avoid all this repetitive code and gain type safety using a

generic collection—a container that can be used to store objects of any class. We

can specify a generic version of the ArrayList above using the syntax List<T>. The

T between the brackets is called a type parameter, and it indicates that the type of

the member objects in the list has not yet been specified. This could be any object

class at all—which is why its container is called a generic collection.

We only specify the type of object to be held by the list at the time we create an in

stance of List<T>. For example, we could specify that our list should only contain

5 http://www.ondotnet.com/pub/a/dotnet/2003/03/10/collections.html

http://www.ondotnet.com/pub/a/dotnet/2003/03/10/collections.html
http://www.ondotnet.com/pub/a/dotnet/2003/03/10/collections.html
http://www.ondotnet.com/pub/a/dotnet/2003/03/10/collections.html

.NET 2.0 Core Libraries 43

ComicBook instances (or instances of classes that inherit from ComicBook). Here’s

how we’d do that:

List<ComicBook> comics = new List<ComicBook>();

comics.Add(new ComicBook("Sandman"));

comics.Add(new ComicBook("Arkham Asylum"));

// The following line does not compile.

comics.Add(new BaseBallCard("Kirby Pucket Rookie"));

With this additional level of detail in place, we can no longer slip a BaseBallCard

instance into our List<T>—it won’t compile. Providing the same type safety for an

ArrayList would have required a considerable amount of additional code.

Generic collections have other advantages over untyped collections; for instance,

they offer improved performance when storing value types in the collection. Here’s

an example:

ArrayList randomNumbers = new ArrayList();

randomNumbers.Add(8); //boxing occurs

randomNumbers.Add(8);

randomNumbers.Add(8);

int firstNumber = (int)randomNumbers[0];

In the above code listing, the Add method for the ArrayList accepts a parameter of

type Object. This means that every time you add a value type (like an integer, as

we’ve done here), the value type has to be cast to an instance of type Object—a

process known as boxing.

When we retrieve a value, unboxing occurs. Because boxing and unboxing are ex

pensive operations, doing them too often can hurt your application’s performance.

44 The ASP.NET 2.0 Anthology

Boxing and Unboxing your Objects

The terms boxing and unboxing refer to the way that C# handles the conversion

between value types (primitive types such as integers) and reference types (such

as classes and more complex data structures). Converting from a value type to a

reference type is referred to as boxing, because the value is copied to a container

in memory (a “box”) where it is stored. Converting from a reference type back to

a value type is called unboxing, as the value is copied out of the container and

into the appropriate location.

While the handling of types in this manner is convenient, both the boxing and

unboxing operations take a small amount of time. For large numbers of objects,

this can cause a performance bottleneck.

We can avoid the performance penalty incurred in the above code by using a generic

collection. Here’s the same example rewritten as a generic collection:

List<int> randomNumbers = new List<int>();

randomNumbers.Add(8); // no boxing occurs

randomNumbers.Add(8);

randomNumbers.Add(8);

int firstNumber = randomNumbers[0]; // no casting necessary

Not only does the above code perform better than our previous attempt, which used

an ArrayList, but it’s also cleaner: when retrieving a value from the generic list, as

we’ve done in the last line of code above, there’s no need to manually cast the object.

Generics: Under the Hood

How do generic containers work? The type conversion magic is performed by the

JIT, or Just In Time, compiler at runtime. For example, if your application uses a

generic List object to store integers, then the first time your application references

that class, the JIT compiler will create a List that’s strongly typed to hold only

int objects. From then on, every time you reference a List of ints, the JIT

compiler will simply reuse the integer-typed List, rather than create a new class

from scratch. Collections of custom classes (such as, for example, Customer ob

jects) are even simpler—the JIT compiler only needs to create a single List for

storing objects of the generic class object. The List can then be reused to store

any reference object that we choose.

.NET 2.0 Core Libraries 45

What’s a Predicate?

Some of the most powerful utility methods provided by generic collections make

use of predicates. But what is a predicate?

A predicate is a function that takes an element from a generic list and returns a

Boolean result. When used as a hook for accessing a collection of generic objects,

a predicate makes it easy for us to perform bulk operations on the objects without

needing to know their types.

One example of a predicate in use is the Find method. To use Find on a generic

collection, you must write code for the body of the method to return true if a

matching element in the collection is found. The .NET runtime takes over the

grunt work of looping through the collection—all we have to do is fill in the

business logic.

Other functions in the System.Delegate library—actions, converters, and

comparers—have been defined for use in generic collection methods, but in this

chapter we’ll focus most heavily on predicates.

How do I filter items in a generic collection?
The benefits we gain from using generics are all well and good, but how do we filter

and retrieve groups of items from a generic collection?

Solution
To filter items in a generic collection, we use the FindAll method with a match

predicate—a predicate that returns true when an item in the collection meets our

custom filter criteria.

Let’s dig into some examples. To begin with, we’ll look at how we can use the

List.FindAll method to find all employees who are managers by filtering them

from a collection of Employees; we’ll name this method GetManagers. The syntax

for defining the collection of employees is List<Employee>.

To keep things simple, we’ll assume that we have in place a basic Employee class,

and a method called GetEmployees for retrieving Employee objects from the database:

46 The ASP.NET 2.0 Anthology

Employee.cs (excerpt)

public class Employee : Person {
 public int EmployeeID;
public bool IsManager;

}

public List<Employee> GetEmployees() {
 return new List<Employee>();

}

Our GetManagers method will first retrieve all employees. We’ll then call FindAll

and pass the IsManager method as the match predicate:

public List<Employee> GetManagers()

{

 List<Employee> employeeList = GetEmployees();

 return employeeList.FindAll(IsManager);

}

public bool IsManager(Employee emp)

{

return emp.IsManager == true;

}

Great! The FindAll method iterated through the collection and jumped into the

IsManager function for each Employee in the list. Every time the function returned

true, FindAll added the Employee to the list of managers.

We can simplify this process slightly by replacing that IsManager method with an

anonymous delegate.

Whoah—the jargon is flowing thick and fast now! Let’s break that down:

■	 A delegate is a type of function pointer. Unlike the function pointers that are

used in languages such as C and C++, delegates are both object oriented and

type-safe. For a deeper understanding of delegates, read the MSDN article “An

Introduction to Delegates” by Jeffrey Richter.6

■	 An anonymous delegate is a delegate function that is declared inline.

6 http://msdn.microsoft.com/msdnmag/issues/01/04/net/default.aspx

http://msdn.microsoft.com/msdnmag/issues/01/04/net/default.aspx
http://msdn.microsoft.com/msdnmag/issues/01/04/net/default.aspx
http://msdn.microsoft.com/msdnmag/issues/01/04/net/default.aspx

.NET 2.0 Core Libraries 47

Some predicates don’t offer any values as reusable functions, so using an anonymous

delegate allows us to specify a return value that we can actually use, while at the

same time keeping our code simple. Here’s how our GetManagers function looks

once we introduce an anonymous delegate predicate:

Predicates.aspx.cs (excerpt)

public List<Employee> GetManagers()
{

 List<Employee> employeeList = GetEmployees();
 return employeeList.FindAll(

delegate (Employee emp)
 { return emp.IsManager == true; }

);
}

As you can see, the result is identical functionality that’s achieved using less code.

There’s another case that might cause you to use anonymous delegates: the situation

that arises when a predicate needs additional parameters. List methods like Find

and FindAll take a single parameter of type Predicate<T>. In English, this means

that the predicate doesn’t have access to anything other than the item in the collec

tion to which it’s being passed.

To see what I’m talking about, let’s experiment with a function that looks up an

Employee by the Employee’s id. Here’s how you might try to write this function

without using an anonymous delegate:

public static Employee Get(int id)

{

 List<Employee> EmployeeList = GetEmployees();

 return EmployeeList.Find(

 EmployeeMatch(Employee employee, int id)

);

}

// THIS DOESN'T COMPILE - NOT A VALID PREDICATE

public static bool EmployeeMatch(Employee employee, int id)

{

return employee.EmployeeID == id;

}

48 The ASP.NET 2.0 Anthology

Unfortunately, that code won’t compile—try, and you’ll receive a series of errors.

The compiler can’t make sense of our attempt to pass two parameters to the predicate,

and goes looking for additional parentheses and semicolons to compensate. This is

because Find(Predicate<T>) method can accept only one parameter—the generic

type object (in this case, Employee). Here, we can use an anonymous delegate to

write our logic inside the Get function, and give us access to the id parameter:

Predicates.aspx.cs (excerpt)

public Employee Get(int id)
{

 List<Employee> employeeList = GetEmployees();
 return employeeList.Find(

delegate(Employee emp)
{ return emp.EmployeeID == id; }

);
}

This procedure is referred to as local variable capturing; in this case it’s the id that

has been “captured.”

How can I get more use out of my
custom logic?
In the section called “How do I use generics?”, we promised we’d show you how

to get more out of the code you’ve already written. Let’s look at two solutions to the

“Too Much Code” conundrum.

Solutions
In making the most of your code, you have two options: you can use generic methods

or reusable delegates.

Using Generic Methods
Of course, one of the benefits of generic methods is that they can be reused with

collections of different types. A very simple example is a function that sorts a col

lection and writes it to the console window:

.NET 2.0 Core Libraries 49

static void WriteSortedValues<T>(List<T> list)

{

 list.Sort();

 list.ForEach(

 delegate(T item) { Console.WriteLine(item); }

)

}

ForEach Uses Action Delegates

In the above example, we’re using the ForEach method with an action delegate.

An action delegate is another type of anonymous delegate, only it doesn’t return

anything. The idea behind an action delegate is that it defines an action to be

performed for each item in the collection. This compares with predicate delegates,

which contain the decision logic. This action delegate uses the same logic that

we saw with Find and FindAll in the section called “How do I filter items in a

generic collection?”.

The WriteSortedValues function is generic, as indicated by the <T> parameter that

follows the function name. When we call WriteSortedValues and pass it a

List<int>, .NET knows to replace those Ts with ints. And as WriteSortedValues

is generic, we can use it with lists of any type that .NET knows how to sort. The

following example shows the function in action, handling three different types of

objects—a string, an int, and a DateTime:

Predicates.aspx.cs (excerpt)

private void SortingDemonstration()
{
 string[] names = { "Bob", "Sue", "Jim", "Edgar" };
 int[] values = { 456, 234, 567, 123, 890 };
 DateTime[] dates = {

new DateTime(1950,2,3),
new DateTime(1970,4,5),
 new DateTime(2000,1,1)

};
 WriteSortedValues(new List<string>(names));
 WriteSortedValues(new List<int>(values));
 WriteSortedValues(new List<DateTime>(dates));
}

50 The ASP.NET 2.0 Anthology

We can’t necessarily use this solution with a collection of custom objects, such as

List<Employee>, since the List object doesn’t know how to sort them. An attempt

to call WriteSortedValues(List<Employee>) would compile, but it would throw

the runtime error: Failed to compare two elements in the array. It’s not tough

to fix that problem, though—we can either implement the IComparable interface

in our Employee class, or we can call the overloaded Sort method and pass it a

Comparison or IComparer delegate.7

Using Reusable Delegates
Most of our samples so far have implemented predicates and actions as anonymous

delegates. We looked at the reasons for this (simpler code, local variable capturing)

in the section called “How do I filter items in a generic collection?”. However, you

should keep an eye out for delegates that can be reused, and promote them to

methods.

For example, let’s assume that an application we’ve written for our employer consists

of multiple classes, including Customers, Employees, Stores, and an Address

structure.8 This Address contains a Region property.

Our company is headquartered in California, so for various reasons (sales tax, em

ployee taxes, benefits, and so on), we may want to filter our different lists so that

our results include only items whose Region is California.

As such, our delegate method for retrieving Californian employees might look like

this:

 return employeeList.Find(

p.Address.Region == "California"

);

We can move this into a reusable delegate method as follows:

7 For more information on implementing the IComparable interface, see David Hayden’s excellent

blog post [http://codebetter.com/blogs/david.hayden/archive/2005/03/06/56584.aspx].
8 A structure, represented by the keyword struct in C#, is a composite data type. A structure can

contain fields, methods, constants, constructors, properties, indexers, operators and other structure

types.

http://codebetter.com/blogs/david.hayden/archive/2005/03/06/56584.aspx
http://codebetter.com/blogs/david.hayden/archive/2005/03/06/56584.aspx
[http://codebetter.com/blogs/david.hayden/archive/2005/03/06/56584.aspx]

.NET 2.0 Core Libraries 51

Predicates.aspx.cs (excerpt)

public static bool IsCalifornian(Person p)
{
 return (p.Address.Region == "California");
}

Now we can use that method with any list that contains the Address structure—for

example, a list of Employees or Customers:

Predicates.aspx.cs (excerpt)

public List<Employee> GetCaliforniaEmployees()
{
 List<Employee> employees = GetEmployees();
 return employees.FindAll(Person.IsCalifornian);
}
public List<Customer> GetNonCaliforniaCustomers()
{
 List<Customer> customers = GetCustomers();
 customers.RemoveAll(Person.IsCalifornian);
 return customers;
}

In the above code listing, we’re using the same predicate in two different ways. In

the first example, GetCaliforniaEmployees, we’re using it with FindAll to return

all employees who have a Californian address. In the second example,

GetNonCaliforniaCustomers, we’re using the predicate with RemoveAll to remove

all Customers with Californian addresses from the customer list.

How do I convert generic lists to
specific classes?
It’s all very well to make the most of our code using generic lists. But once our objects

are in a generic list, how do we get them back out again?

Solution
Using the ConvertAll function with a converter delegate is the easiest way to convert

a list of generic objects into specific types. As you might have inferred from its

52 The ASP.NET 2.0 Anthology

name, a converter delegate is yet another incarnation of anonymous delegates, but

one that performs the conversion of each item in a list from a generic object to a

specific class.

To see ConvertAll in action, let’s convert a list of DateTime values to a list of other

types. First let’s build up a quick List<DateTime>:

Predicates.aspx.cs (excerpt)

List<DateTime> dates = new List<DateTime>();
for (DateTime d = DateTime.Now;

 d < DateTime.Now.AddMonths(10);
 d.AddDays(2)

) { dates.Add(d); }

Now we’ll call dates.ConvertAll with a few different converter delegates to show

how easy this approach to converting objects is:

Predicates.aspx.cs (excerpt)

// Convert date list to short date (string) list
List<string> strings = dates.ConvertAll<string>(
 delegate(DateTime value)

{ return value.ToShortDateString(); }
);

// Convert date list to day of year (int) list
List<int> ints = dates.ConvertAll<int>(
 delegate(DateTime value)
 { return value.DayOfYear; }

);

// Convert date list to daylight savings time (bool) list
List<bool> bools = dates.ConvertAll<bool>(
 delegate(DateTime value)
 { return value.IsDaylightSavingTime(); }

);

Note that we’re taking advantage of type inference to simplify the syntax a little.

You can define the converter source and destination types explicitly if you want,

like this:

.NET 2.0 Core Libraries 53

Predicates.aspx.cs (excerpt)

List<string> strings = dates.ConvertAll<string>
 (new Converter<DateTime, string>
 (
 delegate(DateTime d) { return d.ToShortDateString(); }

)
);

However, as the compiler can see what you’re converting from and to, it will infer

those types for you.

How do I concatenate delimited strings
from object properties?
The sample code we’ve looked at so far has been reasonably simple. Let’s look at a

more difficult problem—building a delimited list composed of values that are cal

culated from object properties.

Suppose we have a simple class named Party:

PartyDemo.cs (excerpt)

public class Party
{
 public Party(DateTime partyDate)
 {
 this.partyDate = partyDate;

 }

 public DateTime PartyDate
 {
 get
 {
 return partyDate;

 }
 }

 DateTime partyDate;
}

54 The ASP.NET 2.0 Anthology

Consider the scenario that we need to concatenate instances of this class together.

The desired output is a pipe-delimited list of the number of days between now and

the SomeDate value.

Solution
Our first step is to determine where to place the logic that will perform the calcula

tion and concatenation. The best place for this logic is in a predicate method that’s

called from the collection’s Join method.

Performing predicate-based operations on your generic collections can really sim

plify and enhance your code.

The following example, in which we concatenate our Party objects, is not only

useful on its own—it should also help to demonstrate the thought process behind

moving from loop-based logic to clean, simple code that leverages predicates.

Let’s start by defining a new Join method that can take in a delimiter, an enumera

tion, and an instance of the converter delegate. The converter delegate has the fol

lowing signature:

delegate TOutput Converter<TIn,TOutput> (TIn input)

As an argument to the Join method, we specify that TOutput should be a String,

leaving the input as a generic object:

PartyDemo.cs (excerpt)

public static string Join<T>(string delimiter
 , IEnumerable<T> items
 , Converter<T, string> converter)

{
 StringBuilder builder = new StringBuilder();
 foreach(T item in items)
 {
 builder.Append(converter(item));
 builder.Append(delimiter);

 }
 if (builder.Length > 0)
{
 builder.Length = builder.Length - delimiter.Length;

.NET 2.0 Core Libraries 55

}

 return builder.ToString();

}

With this method defined, we can concatenate an Array or collection of Party in

stances, like so:

PartyDemo.cs (excerpt)

Party[] parties = new Party[]
{
 new Party(DateTime.Parse("1/23/2006"))
 , new Party(DateTime.Parse("12/25/2005"))
 , new Party(DateTime.Parse("5/25/2004"))

};
string result = Join<Party>('|', parties

 , delegate(Party item)
 {
 TimeSpan ts = DateTime.Parse("11/24/2006") - item.PartyDate;
 return ((int)ts.TotalDays).ToString();

 });
Console.WriteLine(result);

Note that we make use of an anonymous delegate that examines an instance of Party

and calculates the number of days that have passed since PartyDate. This calculation

returns a string that will be concatenated to the previous item in the list.

That code produces the following output: 305|334|913.

Discussion
Here’s what you’ll gain by moving from “dumb” loops to predicate-based operations:

■	 Your code will be more reusable, since you can reuse generic methods with

different objects. A good example of this is the ActiveRecord implementation

in SubSonic, an open source Data Access Layer that we’ll be exploring in detail

in Chapter 17.9

9 http://www.codeplex.com/actionpack/Wiki/View.aspx?title=ActiveRecord

http://www.codeplex.com/actionpack/Wiki/View.aspx?title=ActiveRecord
http://www.codeplex.com/actionpack/Wiki/View.aspx?title=ActiveRecord
http://www.codeplex.com/actionpack/Wiki/View.aspx?title=ActiveRecord

56 The ASP.NET 2.0 Anthology

■	 Your code will leverage framework methods rather than require you to write

your own repetitive code. Less custom code means fewer custom bugs.

■	 Your library code will be likely to perform better, since it will be strongly typed.

Where to Sort and Filter

In this solution, and those prior to it, we’ve looked at ways to sort and filter objects

in the application layer. But don’t take this to mean that you should necessarily

handle tasks like this in your application code rather than in the database. Gener

ally, databases will be more efficient when it comes to sorting and filtering, al

though complex operations like string manipulation are better handled by applic

ation code.

How do I batch operations with large
collections?
Every now and then, we run into programming situations in which we need to

perform an action on a large amount of data. Such large operations can really put

a strain on system resources, such as memory, if we’re not careful.

Suppose, for example, that you have a blog engine with thousands of blog posts

stored in a database. You decide to build an export page that allows the site’s users

to export every post in the system to a file using a serialization format such as

BlogML.10

Solutions
A couple of solutions are available to address this problem. We’ll first take a look

at a naïve solution, and then explore an improved version that uses iterators.

The Naïve Solution
First, let’s look at a naïve solution. Since we don’t have the space or time to build

an entire blog engine just for this demonstration, we’ll have to do some hand-waving

10 BlogML is an XML format designed for storing the entire content of a blog—most often for the purpose

of transferring content from one blog to another. Read more at http://www.blogml.com/.

http://www.blogml.com/

.NET 2.0 Core Libraries 57

here and pretend that we’ve already defined a BlogPost class and created a database

consisting of thousands of blog post records.

In this solution, we’ll need a method to retrieve every blog post:

static ICollection<BlogPost> GetAllBlogPosts()

{

 // returns all blog posts

}

We’ll also need a method for serializing a blog post to a file via a TextWriter in

stance:

public void Serialize(BlogPost post, TextWriter writer)

{

 // Serializes post to the writer.

}

In our naïve solution, we simply load a collection containing every blog post and

iterate over each one, serializing it to the file:

ICollection<BlogPost> allPosts = GetAllDataBatch();

using(TextWriter writer = CreateXmlStream())

{

 int i = 0;

 foreach (BlogPost post in allPosts)

 {

 SerializeBlogPost(post, writer);

 writer.Flush();

 }

}

The Naïve Solution’s Pitfalls

There are two problems with this naïve approach. First, we have to load every blog

record into memory before we can start writing posts to a file. If there are a lot of

records, this could use up a lot of memory and damage the site’s performance. The

other problem is that we’re flushing each post to the file, one at a time. Ideally, we

should only be writing to the file in batches.

58 The ASP.NET 2.0 Anthology

To Flush or to Batch?

Note that classes that implement TextWriter usually handle the task of flushing

contents to the file appropriately—the developer doesn’t need to worry about this

detail.

But imagine if, instead of flushing contents to a file, we were calling SQL state

ments. In this case, it might be better to batch groups of statements together.

The BatchIterator Class Solution
There are a few techniques that we could use to improve the memory usage and

performance issues discussed in our naïve solution. One optimization we could

make to that solution would be to pull in records from the database one batch at a

time. Let’s look at using iterators to implement this optimization in a clean and re

usable manner.

The iterator is a new language feature that was introduced with C# 2.0. As an ex

ample, we could use iterators to create a class to iterate over “batches” of data,

pulling each batch of data from the database when we need it, rather than loading

it all at the start. Allow me to explain.

Our first step is to define a generic delegate that will return a collection containing

a “batch” of blog posts:

BatchIterator.cs (excerpt)

public delegate ICollection<T> BatchSource<T>(int batchIndex);

This method returns a generic collection that corresponds to the specified

batchIndex.

Next, we’ll define our new BatchIterator class:

BatchIterator.cs (excerpt)

public class BatchIterator<T> : IEnumerable<ICollection<T>>
{
 BatchSource<T> batchDataSource;
 private int batchIndex = 0;
 public BatchIterator(BatchSource<T> batchSource)

.NET 2.0 Core Libraries 59

{
 this.batchDataSource = batchSource;

 }
 public IEnumerator<ICollection<T>> GetEnumerator()
 {
 // First batch.
 ICollection<T> nextBatch = this.batchDataSource(0);
 while(nextBatch != null)
 {
 yield return nextBatch;
 nextBatch = this.batchDataSource(++batchIndex);

 }
 }
 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();

 }
}

Let’s walk through some of the specifics of this class:

You’ll notice that the BatchIterator class itself is a generic class. It implements

the generic interface IEnumerable<T>, but in this case T just happens to be

ICollection<T>. Confusing? Yes, especially when you’re not very familiar

with generics. But if you think of a BatchIterator as a collection of collections,

this approach should start to make sense.

The constructor of this class takes a BatchSource<T> delegate as a parameter.

As you’ll recall, earlier we defined this delegate to return an instance of

ICollection<T>. This constructor method will be used to populate the collec

tions that we are iterating over with this class.

Finally, we get to the GetEnumerator method, which we need in order to im

plement the IEnumerable<T> interface. This method defines the approach we’ll

take to iterate over the contents of the BatchIterator. First, we populate a

collection using batchDataSource, which is our delegate of type BatchSource:

 ICollection<T> nextBatch = this.batchDataSource(0);

60 The ASP.NET 2.0 Anthology

Then, we start a loop while nextBatch is null. At this point we reach what

appears to be a particularly odd line of code—especially if you’ve never used

an iterator before:

 yield return nextBatch;

This tells the iterator to place a bookmark at that line of code, and returns the

nextBatch instance. Then, when the code asks for the next item in the enumer

ation, code execution begins again right where it left off at the bookmark.

To help solidify this concept, let’s rewrite our naïve solution using the

BatchIterator class. First, we’ll need to define a method that meets the BatchSource

delegate method signature:

Iterators.aspx.cs (excerpt)

static ICollection<BlogPost> GetPostBatch(int index)
{
 // Gets the next batch of blog posts from
 // the database corresponding to the index.
}

Then, we simply create an instance of the batch iterator, passing in the method we

used to populate each batch of blog posts:

Iterators.aspx.cs (excerpt)

BatchIterator<BlogPost> batches =
new BatchIterator<BlogPost>(GetPostBatch);

Finally, we can iterate over each collection of blog posts:

Iterators.aspx.cs (excerpt)

using (TextWriter writer = CreateXmlStream())
{
 foreach (ICollection<BlogPost> blogPostBatch in batches)
 {
 // At this point, the iterator is stopped at the following
 // line in the method GetEnumerator()

.NET 2.0 Core Libraries 61

// yield return nextBatch;

 // The next time GetEnumerator() is called,

 // it will execute the next line of code:

 // nextBatch = this.batchDataSource(++batchIndex);

 foreach (BlogPost post in blogPostBatch)

 {

 SerializeBlogPost(post, writer);

 }

 writer.Flush();

 }

}

The beauty of this code is that rather than loading all blog posts into memory at

once, the BatchIterator only loads a few blog posts at a time, depending on how

many blog posts are returned by the method GetPostBatch. It also calls the Flush

method after each small collection of blog posts—a more efficient way of streaming

all the blog post records into a file.

As it uses generics, this BatchIterator class can be used any time you need to iterate

over a large set of data and perform an action on that data in small chunks.

How do I choose the right collection?
Making effective use of data collections is an essential skill of software developers.

Nearly all computer science programs require students to take one or more courses

focused solely on data structures.

The various collection types within the .NET Framework implement many of the

most common data structures. The MSDN reference site lists the following as the

most commonly used collection types:11

■ Array

■ ArrayList and List

■ HashTable and Dictionary

■ SortedList and SortedDictionary

■ Queue

■ Stack

11 http://msdn2.microsoft.com/en-us/library/0ytkdh4s.aspx

http://msdn2.microsoft.com/en-us/library/0ytkdh4s.aspx
http://msdn2.microsoft.com/en-us/library/0ytkdh4s.aspx

62 The ASP.NET 2.0 Anthology

Of course, there are more collection types than these, but for the most part, you can

get a lot done with just the types presented here. The big question is, how do we

choose one collection over another?

Solutions
Your choice of collection should, of course, be based on the role it will serve. Per

formance and memory considerations should also influence your decision. Some

of the questions you need to ask yourself before you choose a collection include:

■	 Do I need to access elements at random, or will I only need to access them se

quentially?

■	 If I need random access, is it good enough to access them using an index, or will

I need to access them with a key?

■	 Does the collection need to grow, or do I know its size in advance?

■	 Do I need to be able to sort elements?

The Array
The lowly but powerful Array is the simplest of collection types. It’s represented

in memory as a sequence of values or references (depending on whether the array

is storing value types or reference types, respectively).

An Array is useful when performance is an issue and you know how many elements

you will need to store in advance.

The .NET Framework Design Guidelines recommend that you don’t use an Array

as the return type of a public property.12 Most of the time, arrays are used in low-

level programming as parameters to methods—for example, when working with

streams:

byte[] data = new byte[] {0x0f, 0x0e, 0x13};

data[0] = 0xff; // random access

MemoryStream stream = new MemoryStream(data);

As the above code demonstrates, one benefit of using arrays is that the syntax for

instantiating an Array in C# is very human readable.

12 http://msdn2.microsoft.com/en-us/library/k2604h5s.aspx#ctl00_LibFrame_ctl18img

http://msdn2.microsoft.com/en-us/library/k2604h5s.aspx#ctl00_LibFrame_ctl18img
http://msdn2.microsoft.com/en-us/library/k2604h5s.aspx#ctl00_LibFrame_ctl18img
http://msdn2.microsoft.com/en-us/library/k2604h5s.aspx#ctl00_LibFrame_ctl18img

.NET 2.0 Core Libraries 63

The ArrayList and the List<T>
The Array quickly loses its charm when you don’t know in advance the number of

items that you need to store. The ArrayList object fills this void; it’s a replacement

for an Array that’s capable of growing dynamically.

The ArrayList basically implements the same interface as the Array, but includes

methods for adding new items:

ArrayList items = new ArrayList(new byte[] { 0x0f, 0x0e, 0x13 });

items[0] = 0x00; // Random access

items.Add(0xff); // Dynamically growing the ArrayList

Notice that instantiating an ArrayList is not as syntactically clean as it is with an

Array. However, because the constructor of an ArrayList takes in an ICollection,

and Array implements the ICollection interface, you can achieve the desired result

with something that vaguely resembles our nice, neat Array syntax, as I’ve done

above.

One problem with this code is that the ArrayList accepts items of type Object.

This means that storing and retrieving values causes boxing and unboxing to take

place, which can create a performance bottleneck. It’s in situations like this that

the generic List<T> class can be particularly useful.

In fact, the List<T> class possesses so many improvements under the hood that the

Microsoft Framework team recommends it over the ArrayList in almost all cases.

Let’s revisit the previous code snippet, which I’ve rewritten to use the List<T>

class:

List<byte> items = new List<byte>(

 new byte[] { 0x0f, 0x0e, 0x13 });

items[0] = 0x00;

items.Add(0xff);

As you can see, the code basically looks the same, but now it’s also type-safe, the

result of which is that we’ve avoided the boxing and unboxing of each item in the

list.

64 The ASP.NET 2.0 Anthology

The Hashtable and the Dictionary

One potential problem with accessing elements via an index is that the index for a

given item in the collection can change over time. Consider the following code

sample:

List<int> scores = new List<int>(new int[] {962, 175, 238});

Console.WriteLine("At index 0 we have: " + scores[0]);

scores.Insert(0, 23);

Console.WriteLine(scores[1] + " is now t index 1.");

The code adds three integers (in this case, high scores in a video game) to the List

instance, then writes out the value at index 0—the value 962—to the console. We

then insert another value at index 0, and write out the value stored at index 1. As

you can see, the value 962 is now stored at index 1. This situation is problematic

if your application relies on a stored value being retrieved from the same index at

which it was inserted.

Using a Hashtable instead of a List<T> would allow us to associate a key with each

value. We might choose to use the person’s name as the key, to ensure that our key-

value relationship is maintained, as I’ve done in the following code listing:

Hashtable scores = new Hashtable();

scores.Add("Phil", 196); // boxing occurs

scores.Add("Jon", 250);

scores.Add("Scott", 750);

scores.Add("Jeff", 901);

Console.WriteLine("Phil's Score is: " + scores["Phil"]);

While lookups are extremely fast, the speed at which a Hashtable performs the

lookup comes at the cost of increased memory usage.

The Dictionary class is the generic equivalent of the Hashtable; while a Hashtable

only stores an Object for the key and value, a Dictionary allows us to specify the

type of both the key and value, and thereby create a strongly typed hash table. Be

cause storage and retrievals from a Dictionary are not subject to boxing or unboxing,

the performance of these operations is greatly increased. Let’s see Dictionary in

action:

.NET 2.0 Core Libraries 65

Dictionary<string, int> scores = new Dictionary<string, int>();

scores.Add("Phil", 196); //no boxing occurs.

scores.Add("Jon", 250);

scores.Add("Scott", 750);

scores.Add("Jeff", 901);

Console.WriteLine("Phil's Score is: " + scores["Phil"]);

SortedList and SortedDictionary
Continuing the example of video game scores that we discussed above, let’s imagine

that our application needed to access a score both by index and by key. For example,

suppose we wanted to keep the scores in an alphabetical order based on user

names—using a Hashtablewould give us no guarantee that the items would remain

in any particular order.

The SortedList and SortedDictionary classes, both of which come in generic and

non-generic flavors, are perfect for such a situation. While the interfaces for these

classes are largely the same, for this discussion we’ll focus on SortedList. The

following code demonstrates a SortedList in action:

SortedList<string, int> scores = new SortedList<string, int>();

scores.Add("Phil", 196);

scores.Add("Jon", 250);

scores.Add("Scott", 750);

scores.Add("Jeff", 901);

Console.WriteLine("Scores in alphabetical order");

foreach(string key in scores.Keys)

{

 Console.WriteLine("{0}: {1}", key, scores[key]);

}

// I can still access score by key.

Console.WriteLine("Phil's Score is: " + scores["Phil"]);

Although this code has added our name-score combinations in random order, when

we iterate over the sorted list, the scores will be displayed in alphabetical order:

Jeff: 901

Jon: 250

Phil: 196

Scott: 750

66 The ASP.NET 2.0 Anthology

We can pass in an IComparer instance to apply a different sort to our items. For

example, suppose we wanted to sort the items on the basis of the lengths of the

users’ names, rather than in alphabetical order. We could write a quick class that

implements IComparer to achieve this:

public class KeyLengthComparer : IComparer<string>

{

 public int Compare(string x, string y)

 {

 return x.Length.CompareTo(y.Length);

 }

}

We’d then pass this class into the constructor for SortedList:

SortedList<string, int> scores =

new SortedList<string, int>(new KeyLengthComparer());

So, how can you choose between using SortedList and SortedDictionary? Accord

ing to the MSDN documentation,13 these two classes have very similar object

models, although the SortedDictionary does not support the efficient random access

of its Key and Value collections by index.

These classes’ performance in retrieving items is also similar, though the SortedList

uses less memory than the SortedDictionary. If your collections are quite large,

and memory usage is a concern, the SortedList is the class to use. However, for

smaller collections that don’t need to be accessed by an index, a SortedDictionary

is the way to go.

Queue
A queue is a First In, First Out (FIFO) collection. It’s easy to think of queues in

terms of waiting in line to enter a theater—the first person to get into line is the first

person to enter the theater.

In thinking about the circumstances under which we might use a queue, we need

to consider why queues form in the real world. Queues usually form because there

13 http://msdn2.microsoft.com/en-us/library/ms132319.aspx

http://msdn2.microsoft.com/en-us/library/ms132319.aspx
http://msdn2.microsoft.com/en-us/library/ms132319.aspx

.NET 2.0 Core Libraries 67

is more demand for a particular action or item than the system can meet. So there

may be fifty people waiting to go into the theater, but only two people selling tickets.

In software development terms, queues are useful when we need to store messages

in the order in which they were received so that we can handle them sequentially.

As a demonstration, let’s look at some code for an imaginary blog engine. Every

comment in the system needs to be submitted to a third-party web service that will

determine whether the comment is spam or not.

First, we instantiate a Queue<Comment> as a private static instance:

static Queue<Comment> queue = new Queue<Comment>();

Our method for adding comments to the Queue needs first to obtain a lock on the

Queue for thread safety, because we’ll be using another thread to read from the

Queue. Here’s how we obtain that lock:

public void AddToFilterQueue(Comment comment)

{

 lock(queue)

 {

 queue.Enqueue(comment);

}

}

Every time a user submits a comment, the AddToFilterQueue method is called,

which immediately adds the comment to the queue. We need to create a method to

process this queue in a separate background thread:

public void ProcessQueue()

{

 Queue<Comment> localQueue = new Queue<Comment>();

 // Keep the queue locked for as short as possible.

 lock (queue)

 {

 // Put comments from global queue into local queue.

 while(queue.Count > 0) localQueue.Enqueue(queue.Dequeue());

 // Tell any waiting threads we're done with the queue.

68 The ASP.NET 2.0 Anthology

Monitor.PulseAll(queue);

 }

 while(localQueue.Count > 0)

 {

 CommentService.Filter(comment);

 }

}

One thing to notice here is that we copy the queue to a separate local Queue instance:

 while(queue.Count > 0) localQueue.Enqueue(queue.Dequeue());

We do this because we don’t want to hold the lock on the Queue any longer than

we have to, since sending the comment to the comment filter service could take a

while. Other parts of our application cannot add new entries to the Queue while

we’re holding a lock on it.

After we’ve pulled the comments into the local queue from the global queue, we

notify any waiting threads that they can proceed to add new comments to the

global Queue:

 Monitor.PulseAll(queue);

Stack
In contrast to the queue, which, as we saw, is a First In, First Out (FIFO) collection,

a stack implements a Last In, First Out (LIFO) collection. Stacks are used extensively

by modern operating systems, as well as by the .NET Framework. For example—and

this is a simplification—calling a method involves placing the parameters on the

stack one after the other, in the order in which they’re encountered in the code. As

the method is executed, each parameter is popped from the top of the stack—starting

with the parameter that was added most recently, then working backwards through

the added parameters—and processed in turn.

Stacks can also be useful for implementing recursive logic. One problem with re

cursive method calls is that the code can become to difficult to read. In fact, any

recursive algorithm can be rewritten to use a stack. For example, a method I’ve

found myself writing countless times is one that finds a control with a specific ID

within a nested control hierarchy. Since web controls form a tree structure, one

.NET 2.0 Core Libraries 69

natural way to implement a method to find a specific control would be to use recur

sion. The following method accomplishes this by using a Stack:

public static Control FindControlUsingStack(Control root,

string id)

{

 // Seed it.

 Stack<Control> stack = new Stack<Control>();

 stack.Push(root);

 while(stack.Count > 0)

 {

 Control current = stack.Pop();

 if (current.ID == id)

 return current;

 foreach (Control control in current.Controls)

 {

 stack.Push(control);

 }

 }

 return null;

}

Using a stack to implement recursion results in code that is much easier to follow

than code containing a method that calls itself.

Summary
It’s always good to spend some quality time with the .NET core libraries. In this

chapter, we showed how to leverage core features like strings and generics to solve

real world problems, then took a look inside the .NET core libraries to get a better

understanding of how they work.

We’ll continue to build on these core features as we solve ASP.NET problems in

the following chapters.

Chapter3
Data Access
Just about every ASP.NET application needs to deal with data access, but the topic’s

not a highlight of most developers’ days. You need effective, efficient data access

for your sites, but you’d rather spend your time on features your users will notice,

right? I’m with you.

Data access in ASP.NET 2.0 can be a little overwhelming due to the large range of

access options available. It’s important to know how to pick the right data access

strategy for your application—you want one that meets your current needs and can

scale to meet future requirements. We’ll start this chapter with a review of the

available options; then we’ll explore some practical tips for selecting and applying

data access techniques that fit your current application.

How can I get started using ADO.NET?
Visual Studio provides a rich set of tools for building data access code quickly.

Before we dig into them, though, let’s review some of the underlying ADO.NET

technologies on which those tools are built. Even if you don’t think you’ll ever need

to dive under the hood in order to write your own data access code, it’s important

72 The ASP.NET 2.0 Anthology

to know how ASP.NET works with your data—with this knowledge, you can make

smart choices every time you use the ASP.NET data access controls.

Solution
The ADO.NET components in ASP.NET 2.0 offer two main methods of data access:

connected (DataReader-based)

This method uses a firehose cursor connection, meaning that it returns only

one row of data at a time. DataReader gives you fast, no-frills access to the data.

disconnected (DataSet-based)

This approach grabs a local, in-memory copy of the data, then disconnects from

the database. Since the data is held in memory, you can do more with it (such

as sorting and filtering), but this method’s not as efficient as using a DataReader.

The DataSet class also supports hierarchies composed of multiple data tables

with foreign-key relationships. These hierarchies are serializable, and they allow

you to perform disconnected data updates that are synchronized on the next

connection.

So, you ask, which approach should you use? Well, it’s true that many developers

select a preferred method for data access, ignoring the other. A more pragmatic ap

proach is to see the two options as different tools at your disposal. Carpenters don’t

argue that drills are better than hammers; they understand that these tools serve

different purposes.

Psst! Don’t tell anyone, but a DataSet gets its data the same way every other object

does—it uses a DataReader.

Discussion
Back in the ASP.NET 1.x days, some programmers saw the benefit of accessing their

data via a rich-object wrapper, but weren’t happy with the way the DataSetworked.

What emerged were several third-party data access frameworks that use a

DataReader behind the scenes, while still providing some of the convenience of a

DataSet.

In ASP.NET 1.x, any operation other than stock-standard data access—such as using

data integration features like declarative data binding—was not well supported.

Microsoft recognized that developers wanted flexibility in their data access, and as

Data Access 73

a result, ASP.NET 2.0 supports data-source controls such as the ObjectDataSource.

This control acts as an interface for data-aware controls, should you decide to use

your own data access layer.

How do I configure my database
connection?
A database isn’t much good to us if we can’t connect to it to extract our data. Creating

a database connection used to be a lot more difficult during the reign of ASP.NET

1.1, but fortunately, it’s dead simple in ASP.NET 2.0.

Solution
You can use a Data Connection component to configure a database connection. A

Data Connection makes it easy to store and use database connection string informa

tion. Best of all, the component stores the information in a separate section in the

Web.config file, called (appropriately enough) connectionStrings.

The easiest way to add a Data Connection is through the Server Explorer, which

can be accessed via the View menu, and displays as shown in Figure 3.1.1

Figure 3.1. Viewing the Server Explorer in Visual Studio

Click the Connect to Database button to display the dialog shown in Figure 3.2. After

selecting a server and a database, it’s a good idea to click the Test Connection button

to make sure that your application and database are able to talk to each other.

1 If you’re using the free Visual Web Developer Express Edition tool, you can instead add a new data

connection through the Database Explorer.

74 The ASP.NET 2.0 Anthology

Figure 3.2. Adding a database connection

There are a few points to note here:

■	 If you’re developing against a database that’s running on your development

machine, it’s a good idea to type in (local) rather than to select your computer’s

name from the Server name drop-down. (local) is a generic way to refer to the

default instance of SQL Server running on the same machine as the web server.

It’s helpful to keep this value generic so that your data connection setting can

work as-is on other computers that have different names (for instance, on ma

chines belonging to other developers on your team).

Data Access 75

■	 One benefit of the new connectionStrings section of the Web.config file is that

it allows you to use named connection strings. This is useful for deployment

purposes, as your Web.config file can contain the connection string for every

environment to which you wish to deploy your application (for example, devel

opment, staging, and production). When you’re deploying the site to a new en

vironment, you can specify which connection string you want to use by adding

an appSetting section to the file, or using the dataConfiguration section if

you’re using the latest Microsoft Data Access Application Block.2

■	 If possible, try to connect using the Use Windows Authentication option. While

this approach can take a little more work to configure, it’s much more secure

than listing your username and password in your Web.config file, since the con

nection string doesn’t include a username or password.

Don’t Connect as sa!

Unfortunately, it’s an all-too-common practice to connect to the database as the

sa SQL Server user account during development. While this option is usually

chosen for the sake of convenience, this potentially disastrous setting has a habit

of finding its way into the production site.

Connecting as the sa user violates the security principle of least privilege, which

states that, generally speaking, your web application shouldn’t require permissions

to drop a database or perform other system administration operations. A bug in

the application that allowed an SQL injection attack, for instance, would be dis

astrous if the sa user was in use in production—in that case, your system would

lack a safety net of database permissions that could to prevent the attack.

I’ve even seen clients use the sa account with no password on production web

sites. A double no-no!

If you’re using a Web Application project, then clicking the OK button will result

in your connection string information being added to the Web.config file:

2 http://msdn2.microsoft.com/en-us/library/aa480458.aspx

http://msdn2.microsoft.com/en-us/library/aa480458.aspx
http://msdn2.microsoft.com/en-us/library/aa480458.aspx

76 The ASP.NET 2.0 Anthology

Web.config (excerpt)

<connectionStrings>
 <add name="NorthwindConnectionString"

connectionString="Data Source=WORK;Initial Catalog=Northwind;
➥Integrated Security=True"

 providerName="System.Data.SqlClient"/>
</connectionStrings>

Of course, if you’d rather add these connection settings manually, you can edit the

Web.config file directly. I recommend using the dialog to do so, since the drop-down

menus and Test Connection button in that dialog can help you avoid errors, but either

method should work if you enter the settings correctly.

Note that many of the data-related examples throughout this book utilize the

Northwind example database that ships with Microsoft SQL Server. If you don’t

have Northwind installed, you can download it from the project’s download site.3

A Useful connectionString Resource

I tend to write my connection strings by hand for no good reason. Fortunately, I

keep my browser closely focused on the ConnectionStrings web site.4 This resource

provides the formats for connection strings to nearly every type of data source.

Once you’ve configured a data connection, ASP.NET makes the data source easily

accessible to your code in either code-behind or code-front approaches. You can

reference a connection string from the code-behind file like this:

string northwindConnectionString = ConfigurationManager.ConnectionSt

➥rings["NorthwindConnectionString"].ConnectionString;

It’s even easier to read a connection string using code-front code, since it’s exposed

as an expression:

3 http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EE

BC53A68034/

4 http://connectionstrings.com/

http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EEBC53A68034/
http://connectionstrings.com/
http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EE-
http://connectionstrings.com/

Data Access 77

ConnectionString =

 "<%$ ConnectionStrings:NorthwindConnectionString %>"

You’ll notice that the data-source controls (which are discussed in detail in the

section called “How can I perform data binding without having to write all that re

petitive code?”) use this syntax to configure their connections.

How do I read data from my database?
What use is a data connection if we don’t do anything with it? In this solution, we’ll

read data from our database for a very simple case—we want to fill an array with

values from a table in our database.

Solution
A DataReader is an efficient solution for instances when you just want to read some

data. This code shows the DataReader in action:

SimpleDataAccess.aspx.cs (excerpt)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Generic;
using System.Data.SqlClient;

public partial class SimpleDataAccess : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected List<string> GetProductList()
 {
 List<string> products = new List<string>();
 string connectionString =

78 The ASP.NET 2.0 Anthology

ConfigurationManager.ConnectionStrings["NorthwindConnectionStr

➥ing"].ConnectionString;

 string query = "SELECT * FROM Products";

 using (SqlConnection connection =

 new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(query, connection))

 {

 connection.Open();

 IDataReader dr =

 command.ExecuteReader(

 CommandBehavior.CloseConnection

);

 while (dr.Read())

 {

 products.Add(dr["ProductName"].ToString());

 }

 }f

 return products;

 }

}

Notice anything unusual about this code? (I’ll give you a hint—I’ve highlighted the

interesting lines in bold!) While we’re using an instance of SQLDataReader, we’re

talking to it through an IDataReader interface. Talking to objects through interfaces

makes our code more portable—for instance, it could more easily be converted to

work with a data provider other than SQL Server—so use IDataReader unless you

need additional functionality that the basic IDataReader interface doesn’t support.

Look at the documentation for the System.Data.Common namespace to see the full

list of classes shared by .NET Framework data providers.5

You can work with three primary classes to retrieve data directly from a SQL Server

database via a DataReader:

SqlConnection

This class allows us to specify the server and database to which we want to talk,

and to provide login information for them.

5 http://msdn2.microsoft.com/en-us/library/system.data.common.aspx

http://msdn2.microsoft.com/en-us/library/system.data.common.aspx
http://msdn2.microsoft.com/en-us/library/system.data.common.aspx

Data Access 79

SqlCommand

Once we’ve connected to a database, we use a SqlCommand to do the actual work.

SqlDataReader

The SqlDataReader allows us to read through the command’s results. The

SqlDataReader stays connected to the database while we’re using it, and it only

has access to one row of data at a time. A component that provides this kind of

data access is often described as a firehose cursor, as we first learned in the

section called “How can I get started using ADO.NET?”, because the

DataReader “sprays” the data one row at a time. Don’t bother to ask it about

anything other than the current row—it can’t tell you.

How do I sort and filter data?
Usually the best place to undertake sorting and filtering is in the database, but there

are times where this approach isn’t practical—for instance, when the data is being

returned by a stored procedure that can’t be changed easily because of its complexity,

or because of the impact such a change might have on other areas of the application.

Solution
When we’re faced with the challenge of sorting data on the server, the best solution

is to use a DataTable:

DataReaderSample.aspx.cs

using System;
using System.Data;
using System.Data.SqlClient;
using System.Collections.Generic;

public class DataReaderSample
{
 public static void Main()
 {
 List<string> products = GetProductList();
 products.ForEach(delegate(String name)
 {
 Console.WriteLine(name);

 }
);

80 The ASP.NET 2.0 Anthology

}

 public static List<string> GetProductList()

 {

 List<string> products = new List<string>();

 string connectionString =

 ConfigurationManager.ConnectionStrings["NorthwindConnectionStr

➥ing"].ConnectionString;

 string query = "SELECT * FROM Products";

 using(SqlConnection connection =

new SqlConnection(connectionString))

 using(SqlCommand command = new SqlCommand(query,connection))

 using(SqlDataAdapter adapter = new SqlDataAdapter(command))

 {

 DataTable table = new DataTable();

 adapter.Fill(table);

 string sort = "UnitPrice";

 string filter = "ProductName LIKE 'T%'" +

 " AND UnitsInStock > 0";

 // Using the current time to randomly alter the filter.

 if(System.DateTime.Now.Second % 2 == 1)

 filter = "ProductName LIKE 'E%'" +

 " AND UnitPrice > 5";

 foreach (DataRow dataRow in table.Select(filter, sort))

 {

 products.Add(

 string.Format("{0}\t{1}",

 dataRow["ProductName"].ToString(),

 dataRow["UnitsInStock"].ToString()

)

);

 }

 }

 return products;

 }

}

Data Access 81

Discussion
The disconnected data access model is built on DataTables; a DataSet can hold

one or more DataTables and manage links between them. In this case, though, we

didn’t need to support a rich hierarchy, so we used a single DataTable.

Note that the DataTable.Select method allows for both sorting and filtering tasks.

In the example above, for instance, we randomly select between two different cri

teria to filter our data. This randomness is implemented by inspecting the value of

the current time—if the final digit of that value is even, then products beginning

with T that are in stock are displayed; if the digit is odd, then the application will

display products beginning with E that have a unit price greater than $5.00. This

method is a lot simpler than the implementation of dynamic sorting and filtering

in the database, but you should keep in mind that it’s also a less efficient one, since

it retrieves all products from the database, then sorts them on the web server.

In this example, it would have been more efficient to vary the SQL query so that

the sorting and filtering were handled by the database, for two reasons:

1. Databases are more efficient than application code at processes such as sorting,

aggregation, and filtering.

2. Filtering data in the database cuts down on network traffic between the database

and the web server.

However, if the query was to select the output from a stored procedure or view,

changing the sort and filter expressions might be a lot more complex. It’s also pos

sible to add processing power to the web layer by adding another server—you gen

erally can’t scale an SQL Server database very easily.

We’ve hit a problem that has two competing solutions. The right choice will depend

on the needs of your application.

How do I fill a DropDownList from a
database table?
The DropDownList control is super-useful for allowing users to make a selection

from a list of options. But what’s the best way to get those options out of the database

and into the list?

82 The ASP.NET 2.0 Anthology

Solution
The optimal way to populate a DropDownList from a database is to use data binding,

which is best suited to controls containing visual elements that are tied to a database

table. To kick off this solution, I’ll show you how to bind your data to a control

manually; then, in the section called “How can I perform data binding without

having to write all that repetitive code?”, we’ll see how we can perform the same

exercise using a new ASP.NET 2.0 feature: the DataSource control.

The following code shows how to set up a data source manually, using an example

Default.aspx file that contains a single DropDownList that’s set to AutoPostBack:

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Data Access – DropDownList – Manual Binding</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:DropDownList ID="productDropDown" runat="server"

AutoPostBack="true">

 </asp:DropDownList>

 </div>

 </form>

</body>

</html>

To keep things simple, we’ll do all of the data loading in the Page_Load method:

protected void Page_Load(object sender, EventArgs e)

{

 if (!Page.IsPostBack)

 {

 string connectionString =

 ConfigurationManager.

 ConnectionStrings["NorthwindConnectionString"].

 ConnectionString;

string query = "SELECT * FROM Products";

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Data Access 83

using (SqlConnection connection =

 new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(query, connection))

 {

 connection.Open();

 IDataReader dr =

 command.ExecuteReader(CommandBehavior.CloseConnection);

 productDropDown.DataSource = dr;

 productDropDown.DataValueField = "ProductID";

 productDropDown.DataTextField = "ProductName";

 productDropDown.DataBind();

 }

 }

 else

 Response.Write ("You picked " +

productDropDown.SelectedItem.Text);

}

Here, we’re using the same basic data access code that we used earlier to retrieve a

DataReader, but instead of putting the values into a list, we’ve bound them to a

control. That’s as good as it got in ASP.NET 1.1, and it’s worth knowing how to

wire this up in case you’re dealing with a complex control that requires you to get

your hands dirty. Most of the time, though, it’s better if you can take advantage of

the ASP.NET 2.0 Data Source Controls. We’ll explore those features next.

How can I perform data binding without
having to write all that repetitive code?
ASP.NET 1.1 developers soon began to realize that data binding code was fairly

repetitive. While the specifics change—connection, query, fields, and so on—the

data access code was always the same. Developers found ways to encapsulate the

code manually, but ASP.NET 2.0’s DataSource controls make this encapsulation

really simple.

Solution
The most efficient way to perform data binding is to use declarative data binding

with a DataSource control.

84 The ASP.NET 2.0 Anthology

DataSource controls are well named, as they provide a source of data for other data-

bound controls. Although they’re commonly used in a declarative context, they are

standard .NET controls and can be manipulated programmatically as well.

You’ll find the SqlDataSource in the Toolbox under the Data heading. Drag it onto

your web form (either in Design or Source View), as shown in Figure 3.3.

Figure 3.3. Adding a SqlDataSource object to the page

Click on the small button in the upper right-hand corner to show the smart tag task

menu associated with the SqlDataSource control; it’s shown in Figure 3.4.

Figure 3.4. Displaying the control’s smart tag task menu

Data Access 85

We’ll select the only option, Configure Data Source…. The first page of the Configure

Data Source wizard allows us to select an existing data connection or to create a new

one. If you’re creating a new data connection, you’ll be presented with the dialog

that we saw previously, in the section called “How do I configure my database

connection?”.

Press OK to accept your settings, and press Next > to go to the next page in the wizard.

By default, the wizard will save your connection string using the name of the data

base—in the example shown in Figure 3.5, it will select NorthwindConnection-

String. You can change the string if you like, then press Next >.

Figure 3.5. Choosing a Data Connection

The purpose of the Configure the Select Statement wizard screen depicted in Fig

ure 3.6, is self-explanatory. You can either specify a SQL query or stored procedure

to call, or use the user interface to design one. I generally avoid tools that generate

SQL for me, but this one works well because it displays the query text as the query

is constructed. Here I’ve selected the Products table and the two columns that I’ll

be data binding to my DropDownList.

It’s tempting to use SELECT * (all columns), or to manually select all columns, in

case you might want them later, but restrain yourself! Remember that you want to

return the minimum information necessary from your database to eliminate unne

86 The ASP.NET 2.0 Anthology

cessary work—on both the database server and the web server. It’s very easy to add

a column to the query at a later stage, once the data source has been configured.

SqlCacheDependency Won’t Work with SELECT * Queries

Here’s one more reason to avoid SELECT * queries: you can’t make use of the

SqlCacheDependency on a data source that uses such queries. We’ll talk more

about the SqlCacheDependency in Chapter 15.

Figure 3.6. Configuring the SELECT statement for data binding

Finally, we’ll test the query—click the Test Query button shown in Figure 3.7. If you

don’t receive any error messages, you’re done! Click Finish and the wizard will close.

If you’re having trouble connecting, double-check that your SQL Server instance is

indeed running, and that your connection details are correct.

Data Access 87

Figure 3.7. Testing the data bind query

Now, that may seem like a lot of work compared to just cranking out the data

binding code. Trust me, it’s not!

■	 First of all, we had to set up our database connection. However, remember that

this is a one-off task; the next time you add a SqlDataSource control to a page,

you can just select the database connection and move on.

■	 Secondly, the Configure the Select Statement screen is really simple, so you can

breeze through it in seconds. If you’re better at writing SQL by hand, select the

first option on that page and knock yourself out.

■	 Finally, if you’re a fast typist, you can avoid the wizard altogether and just type

out the control properties. Here’s the ASPX source that we just built with the

wizard—it’s not all that difficult to type this if you’re so inclined:

88 The ASP.NET 2.0 Anthology

DropDownList.aspx (excerpt)

<asp:SqlDataSource
 ID="SqlDataSource1"
 runat="server"
 ConnectionString=

 "<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand=

 "SELECT [ProductID], [ProductName] FROM [Products]">
</asp:SqlDataSource>

Notice that the ConnectionString information isn’t included here. Visual Studio

added that to our Web.config file under the connectionStrings section, so it’s shared

between pages. The <%$ %> syntax indicates an expression, and the ASP.NET

parser understands that expressions beginning with ConnectionStrings indicate

a reference to that section of the Web.config file.

Finally, we’ll need to wire up the DropDownList to the SQLDataSource. Open the

Smart Tab task menu and select Choose Data Source…, as depicted in Figure 3.8.

The dialog shown in Figure 3.9 will appear.

Figure 3.8. Viewing the SmartTab task menu for our data source

This page is quite simple—we need to take just three actions:

1. Select the data source that we just configured.

2. Select the database table to be displayed. This will control the values that appear

in the DropDownList.

3. Select the database table to use for identifying each value in the list. It’s possible

to use the same column that you selected for the Display field here, but it’s much

better practice to use an ID column to represent the value if one is available.

Data Access 89

Figure 3.9. Choosing a data source

Great, we’re done … almost. There’s one more setting to tweak, and it’s not visible

in the wizard. The DataSourceMode property (available in the Properties grid, and

editable manually in the Source View) defaults to DataSet. It’s fine to use that default

setting if you need the advanced capabilities a DataSet provides—for instance, if

you’re going to enable sorting or paging on a GridView. For simple binding scenarios,

however, it’s a good practice to switch your DataSourceMode from DataSet to

DataReader. If you’re not sure whether or not you need a DataSet, just set your data

source to DataReader and test it out—if you’re attempting to use functionality that

requires a DataSet, you’ll get an error message which tells you just that:

The SqlDataSource 'SqlDataSource1' does not have paging enabled. Set

the DataSourceMode to DataSet to enable paging.

That’s reasonably straightforward, huh?

Since we’ve been “coding by clicking,” let’s take a look at the code that we’ve gen

erated. First, the ASPX code:

90 The ASP.NET 2.0 Anthology

DropDownList.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="DataSourceControl.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Sql Data Source</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:DropDownList

 ID="productDropDown"
 runat="server"
 AutoPostBack="True"
 SelectedIndexChanged="OnSelectedIndexChanged"
 DataSourceID="SqlDataSource1"
 DataTextField="ProductName"
 DataValueField="ProductID">

 </asp:DropDownList>
 <asp:SqlDataSource ID="SqlDataSource1"

 runat="server"
 DataSourceMode="DataReader"
 ConnectionString=
 "<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT [ProductID], [ProductName]

FROM [Products]">
 </asp:SqlDataSource>

 </div>
 </form>
</body>
</html>

As the data access and binding is done in code, our Page_Load method doesn’t re

quire any additional code in order to work. We just need to add an event handler

method to handle the SelectedIndexChanged event, as follows:

Data Access 91

DropDownList.aspx.cs (excerpt)

protected void OnSelectedIndexChanged(object sender, EventArgs e)
{
 Response.Write ("You picked " +

productDropDown.SelectedItem.Text);
}

Figure 3.10 shows the page in action.

Figure 3.10. The DropDownList populated with data

How do I display the contents of a
database table?
Writing SQL queries is one way of exploring the contents of your database table,

but surely there are more flexible ways to access this data? I’m glad you asked …

Solution
To dump the contents of a database table into a format that’s useful, use a GridView

bound to a SqlDataSource. The easiest way to do this is to find the table in the

Server Explorer window, then to drag and drop it onto your web form. Let’s walk

through this process first, then look under the hood to see how it works.

92 The ASP.NET 2.0 Anthology

1.	 Ensure you’ve set up a data connection to your database.

2.	 Locate the table in the Server Explorer, as shown in the section called “How do

I configure my database connection?”.

Figure 3.11. Selecting a table to display

3.	 Drag and drop the table onto the design surface for your web form, as depicted

in Figure 3.12. You can do this in either Design or Source View. Design View

is fine for a simple or empty page, but if you’re adding the GridView to an ex

isting page with a complex structure, you’ll probably find that it’s easier to use

the Source View instead.

Figure 3.12. Placing the table on the page

Data Access 93

4.	 Configure the GridView. When you first add the table, the GridView’s smart tag

task menu will automatically expand, as Figure 3.13 demonstrates. If you’re

like me, browser popups may have conditioned you to close this menu automat

ically, but resist the urge and keep the menu open for a moment. You can fine-

tune most of the important GridView features from this menu—that’s probably

a good approach until you become familiar enough with the properties to be

confident to do your editing in the Source View.

Figure 3.13. Configuring the table using the smart tag task menu

Discussion
Let’s take a look at the grid options. You can enable paging, sorting, editing, deletion,

and selection via the checkboxes. As I mentioned in the section called “How can I

perform data binding without having to write all that repetitive code?”, paging and

sorting require you to keep the SqlDataSource’s DataSourceMode in DataSet, which

is not terribly efficient. I’ve selected Enable Paging and Enable Editing.

Next, we’ll look at the Fields dialog shown in Figure 3.14, which can be launched

by selecting the Edit Columns… menu item from the GridView’s smart tag task menu.

The default GridView column settings might be okay for a basic administration page,

but there are a few aspects that you’ll want to change before you unveil the grid for

the world to see:

94 The ASP.NET 2.0 Anthology

■	 By default, all columns are shown, including ID columns. Users probably don’t

need to see those IDs, though.

■	 The grid column titles are generated from the table column names—that spells

bad news for most database tables. For instance, the Products table in the

Northwind example database has column names like ProductID and Quanti

tyPerUnit. At a minimum, we’d want to put some spaces between the words—for

example, Quantity Per Unit is much nicer for our users to see than Quanti

tyPerUnit.

Figure 3.14. Default settings in the Fields dialog

Keep these points in mind when you’re working with the Fields dialog:

■	 Auto-generate fields is unchecked by default. This is a good thing—it tells you

that Visual Studio generated the columns for the table and stored them with the

GridView’s source, rather than just relying on ASP.NET to auto-generate the

columns every time the page is displayed.

Data Access 95

■	 All table columns are added by default. The user interface for correcting this is

fairly intuitive—to remove a field, select it in the Selected fields list and click the

red X button to delete it.

■	 You can configure a column by selecting it in the Selected fields list, then making

changes in the BoundField properties grid on the right. For example, you’ll probably

want to change the HeaderText to be a little more presentable. This interface is

fine for making a small number of changes, but in most cases you’re going to

need to edit all of the columns. Using this interface to make all those changes

will become tiresome very quickly. For that reason, I recommend that you make

column-by-column changes in the Source View.

Close the Edit Columns dialog and switch to Source View, where we’ll do the rest of

the grid configuration. Your page’s source should look something like this:

Gridview.aspx (excerpt)

<asp:GridView ID="GridView1"
 runat="server"
 AutoGenerateColumns="False"
 DataKeyNames="ProductID"
DataSourceID="SqlDataSource1"
 EmptyDataText="There are no data records to display.">
 <Columns>

 <asp:BoundField DataField="ProductID"
 HeaderText="ProductID"
 ReadOnly="True"
 SortExpression="ProductID" />

 <asp:BoundField DataField="ProductName"
 HeaderText="ProductName"
 SortExpression="ProductName" />

 <!--Additional columns omitted from listing-->
 </Columns>
</asp:GridView>

This view of our column mapping makes it easier to make bulk changes, so it’s the

best place for editing your HeaderText values to add those spaces.

The GridView default formatting properties are generally reasonably good, but you’ll

want to make sure that date and currency fields have appropriate formatting. For

instance, the Northwind Products table has a Decimal valued UnitPrice column,

96 The ASP.NET 2.0 Anthology

which will display with four decimal places rather than two. We can take care of

this issue by setting the column’s DataFormatString value as follows:

DataFormatString="{0:c}"

There’s just one small gotcha to be aware of: when a column’s HtmlEncode property

is true (which it is by default) the associated format string isn’t applied. So when

you set a DataFormatString, make sure to set HtmlEncode to false.

There is one more setting I’d like to discuss before we give our table a run: Auto

Format styling. To view the styles available, select your GridView, click on the smart

tag to open the object’s task menu, and choose Auto Format….

Auto Format styling works by hard-coding style values into each tr and a element.

I don’t like this approach for several reasons:

■	 The correct way to style a GridView (from an HTML purist’s viewpoint) is to set

the CssClass property of the GridView and do your styling where it belongs: in

a style sheet.

■	 Auto Format repeats the same style attributes for each row, which is unnecessarily

inefficient. Assigning a class to the GridView allows you to define your styles

once for the entire site.

■	 Last but certainly not least, Auto Format settings are a bit ugly. They’re better

than no formatting at all, but they’re not going to win you any design awards.

That said, an Auto Format style may be appropriate for a quick, internal page. If

you do decide to use Auto Format styling, you have a selection of styles to choose

from. Select one from the list on the left—in Figure 3.15, I’ve selected the Professional

style.

Data Access 97

Figure 3.15. Using the Professional Auto Format style option

Figure 3.16 shows the result of our work.

Figure 3.16. The Professional Auto Format style option in action

While I tend to steer away from using Auto Format styling, I’m happy to concede

that this is not a bad result for dragging a table onto a form and setting a few prop

erties! Visual Studio configured a SqlDataSource and added a GridView, and we

fixed up the column headers and cleaned up the style a little. Nice!

98 The ASP.NET 2.0 Anthology

Styling the GridView in CSS

Earlier, we said that the correct way to style a GridView is with CSS. The best

way to do that is with the CSS Friendly Control Adapters, which we’ll explore in

more detail in Chapter 9.

In the meantime, though, here are the general steps you’d take to convert your

GridView styling from Auto Format styling to CSS:

1.	 Use the CSS Friendly Gridview Adapter. The download page for the CSS

Friendly Control Adapters Toolkit contains an example of the Gridview Ad

apter,6 and Fritz Onion has published an excellent overview of the adapter.7

2.	 Remove your Auto Format styles by applying the Remove Formatting Auto

Format scheme (yes, this is kind of like clicking Start to shut your computer

down).

3.	 Modify an existing gridview.css style sheet to match your site’s design and

color scheme, rather than tackling the style for your table from scratch. You

can download a working gridview.css file from the CSS Friendly Control Ad

apters tutorial mini-site, which comes bundled with the toolkit. See Fritz

Onion’s article (noted in Step 1 above) for information on how to go about

this.

Two-way Data Binding?

Windows Forms developers have long enjoyed the ability not only to bind controls

to a data source, but to have the data source automatically updated to reflect user

changes to the values in the controls. Such two-way data binding capabilities are

not natively supported in ASP.NET Web Forms.

Fortunately, Rick Strahl has developed a control that addresses this shortcoming;

the details were published in MSDN Magazine as an article titled “Simplify Data

Binding In ASP.NET 2.0 With Our Custom Control.”8 Rick makes great use of

control extenders to build a rich control for two-way data binding and validation.

6 http://www.asp.net/cssadapters/gridview.aspx
7 http://www.pluralsight.com/blogs/fritz/archive/2007/03/27/46598.aspx
8 http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx

http://www.asp.net/cssadapters/gridview.aspx
http://www.asp.net/cssadapters/gridview.aspx
http://www.pluralsight.com/blogs/fritz/archive/2007/03/27/46598.aspx
http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx
http://www.asp.net/cssadapters/gridview.aspx
http://www.pluralsight.com/blogs/fritz/archive/2007/03/27/46598.aspx
http://msdn.microsoft.com/msdnmag/issues/06/12/ExtendASPNET/default.aspx

Data Access 99

How do I allow the modification of a
single record?
The GridView is handy for displaying lots of data at once, but in many cases a grid

is not the right interface for viewing, editing, or updating individual records. To

achieve this in ASP.NET 1.1, developers had to write detailed forms by hand (we

also had to walk barefoot seven miles to school in the snow, uphill both ways, but

that’s another story!). ASP.NET 2.0 delivers a much better solution.

Solution
The best way to modify a single record in a modern ASP.NET application is to use

the DetailsView control.

The DetailsView control does just what you’d expect—it binds to a single row in

a database table, and has modes for viewing, editing, and deleting the row.

We’ll demonstrate this method by hooking up a DetailsView control to a

DropDownList populated by our Northwind Products list. Select a Product Name in

the drop-down, and the details of that product will be displayed in the DetailsView.

The simplest way to set up this control is to use two SqlDataSources. The one we

use to populate the Products DropDownList only needs the product name and ID,

so we’ll set it to only select those columns. We’ll then place a DropDownList on the

page and bind it to that control.

The resulting markup for those two controls looks like this:

DetailsView.aspx (excerpt)

<asp:DropDownList
 ID="productDropDown"
 runat="server"
 AutoPostBack="True"
 DataSourceID="dataSourceProductNames"
 DataTextField="ProductName"
 DataValueField="ProductID">
</asp:DropDownList>
<asp:SqlDataSource ID="dataSourceProductNames"
 runat="server"

100 The ASP.NET 2.0 Anthology

ConnectionString=

 "<%$ ConnectionStrings:NorthwindConnectionString %>"

 SelectCommand="SELECT [ProductID], [ProductName] FROM [Products]">

</asp:SqlDataSource>

Next we’ll create an SqlDataSource that pulls all the details for a selected Product,

and uses a WHERE clause to tie the SqlDataSource query parameter for ProductID

to the product that has been selected in the DropDownList.

First we select from our Products table the columns we want to use in our query.

As Figure 3.17 shows, I’ve selected eight.

Figure 3.17. Configuring the SELECT statement for our query

Now click the WHERE… button on the right-hand side to show the Add WHERE Clause

dialog. Set the ProductID column to equal the value of the Product’s DropDownList,

as shown in Figure 3.18.

Data Access 101

Figure 3.18. Building the WHERE clause for our query

Other Ways to Select a Row

In our example, we’ll be selecting the row we want to display via a DropDownList.

Other common ways to select a row are to use a QueryString parameter or to

select a row in a GridView. Keep in mind that you can easily adapt the technique

demonstrated here to other GUI controls by changing the way the

SelectParameter for the SqlDataSource is set. It’s very straightforward to

declaratively bind it to a control or QueryString value; you can also set it pro

grammatically if needed.

It’s all downhill from here—we just place a DetailsView control on the page and

select the Product’s SqlDataSource as the DataSourceID. I applied an Auto Format

style for the DetailsView, which produces the table shown in Figure 3.19.

102 The ASP.NET 2.0 Anthology

Figure 3.19. The DetailsView, styled and populated

We can turn on Edit, Delete, and New buttons for the control, but we’ll need to make

sure that the data source has the appropriate queries defined. For example, I need

do two things to allow deletion:

1. Define a DELETE query for the data source.

2. Set the DetailsView’s AutoGenerateDeleteButton value to true.

To define the DELETE query, select the SqlDataSource associated with the Product,

and click the ellipsis button in the DeleteQuery field of the Properties grid. You’ll

see the Command and Parameter Editor pictured in Figure 3.20, with a DELETE command

specified.

Data Access 103

Figure 3.20. Defining the DELETE query

Foreign Keys and Stored Procedures

This query is just a sample—in the actual Northwind sample database, a foreign

key from the Products table to the Orders table prevents the deletion of a product

associated with orders. The correct way to handle this deletion would be to write

a stored procedure that handles the deletion of products, then call that procedure

in the DataQuery.

The source for the page ends up looking like this (I’ve removed the Auto Format

style for the DetailsView to clear up the markup):

DetailsView.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="DetailsView.aspx.cs" Inherits="DetailsView" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

104 The ASP.NET 2.0 Anthology

<html xmlns="http://www.w3.org/1999/xhtml" >

<head id="Head1" runat="server">

 <title>DetailsView Sample</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:DropDownList ID="productDropDown"

 runat="server"

 AutoPostBack="True"

 DataSourceID="dataSourceProductNames"

 DataTextField="ProductName"

 DataValueField="ProductID">

 </asp:DropDownList>

 <asp:SqlDataSource ID="dataSourceProductNames"

 runat="server"

 ConnectionString=

 "<%$ ConnectionStrings:NorthwindConnectionString %>"

 SelectCommand=

 "SELECT [ProductID], [ProductName] FROM [Products]">

 </asp:SqlDataSource>

 <asp:SqlDataSource ID="dataSourceProductDetails"

 runat="server"

 ConnectionString =

 "<%$ ConnectionStrings:NorthwindConnectionString %>"

 SelectCommand="SELECT [ProductID], [ProductName], [UnitPrice],

 [QuantityPerUnit], [UnitsInStock], [UnitsOnOrder],

 [ReorderLevel], [Discontinued], [CategoryID],

[SupplierID]

 FROM [Products] WHERE ([ProductID] = @ProductID)">

 <SelectParameters>

 <asp:ControlParameter ControlID="productDropDown"

Name="ProductID" PropertyName="SelectedValue"

Type="Int32" />

 </SelectParameters>

 </asp:SqlDataSource>

 <asp:DetailsView ID="productDetails" runat="server"

 AutoGenerateRows="False" DataKeyNames="ProductID"

 DataSourceID="dataSourceProductDetails">

 <Fields>

 <asp:BoundField DataField="ProductID"

 HeaderText="ProductID" InsertVisible="False"

 ReadOnly="True" SortExpression="ProductID" />

 <asp:BoundField DataField="ProductName"

Data Access 105

HeaderText=

 "ProductName" SortExpression="ProductName" />

 <asp:BoundField DataField="UnitPrice"

 HeaderText="UnitPrice" SortExpression="UnitPrice" />

 <asp:BoundField DataField="QuantityPerUnit"

 HeaderText="QuantityPerUnit"

 SortExpression="QuantityPerUnit" />

 <asp:BoundField DataField="UnitsInStock"

 HeaderText="UnitsInStock"

 SortExpression="UnitsInStock" />

 <asp:BoundField DataField="UnitsOnOrder"

 HeaderText="UnitsOnOrder"

 SortExpression="UnitsOnOrder" />

 <asp:BoundField DataField="ReorderLevel"

 HeaderText="ReorderLevel"

 SortExpression="ReorderLevel" />

 <asp:CheckBoxField DataField="Discontinued"

 HeaderText="Discontinued"

 SortExpression="Discontinued" />

 </Fields>

 </asp:DetailsView>

 </div>

 </form>

</body>

</html>

Using the FormView to Control your Layout

If you want more control over the HTML than the GridView provides, use the

FormView. It’s similar to the GridView control, but provides additional function

ality; for instance, it allows you to take control of data-bound output by defining

templates—much like the Repeater control. Scott Mitchell’s tutorial is a good

place to get started on using the FormView. 9

9 http://asp.net/learn/data-access/tutorial-14-cs.aspx

http://asp.net/learn/data-access/tutorial-14-cs.aspx
http://asp.net/learn/data-access/tutorial-14-cs.aspx
http://asp.net/learn/data-access/tutorial-14-cs.aspx

106 The ASP.NET 2.0 Anthology

How can I data bind without using the
SqlDataSource?
The SqlDataSource control makes it easy to hook directly into your SQL Server

database. This approach may be fine for small or simple applications, but as your

application grows, you’ll probably want to funnel your data access through some

other layers, such as business and data objects.

Solution
Abandoning the SqlDataSource control doesn’t mean abandoning the convenience

that comes with declarative data binding. You can still use declarative data binding

with your objects by utilizing the ObjectDataSource control.

Binding to Objects that Support IEnumerable

In ASP.NET 1.1, it was common to write code to bind data to objects that imple

mented the IEnumerable interface. For instance, you could create a custom collec

tion that implemented IEnumerable, or just use a native .NET collection that

already implemented IEnumerable (you could store Customer instances in an

ArrayList, for example).

Of course, this approach still works in ASP.NET 2.0. However, while binding to

such an object works to display data, it can’t take advantage of some of the more

advanced features exposed by data-aware controls—features such as being able

to insert, update, and delete records. Unfortunately, there is no way for an IEnu

merable object to indicate to the data-aware controls whether or not the object

supports in-place editing (and if so, which method to call to take advantage of

this).

Instead of using the IEnumerable interface, use an ObjectDataSource—it

provides far more flexibility.

If you’ve ever implemented an object that supported data-binding, you may be ex

pecting that your object will need to implement some difficult interfaces to support

declarative data-binding. Not in this case! The ObjectDataSource is really flexible—it

allows you to declaratively map data-binding functions to your existing class

methods without having to implement any new interfaces. It’s very likely that your

existing entity objects can work as ObjectDataSources without any changes.

Data Access 107

There are some gotchas, though. The ObjectDataSource can be configured to work

with most entity objects, but advanced features like paging and sorting will require

code changes. In this solution, we’ll start with a simple data-binding case; then

we’ll talk about some advanced usage scenarios.

Take a look at this simple Customer entity object:

Customer.cs (excerpt)

using System;
using System.Web;
using System.Data;
using System.Collections.Generic;

[Serializable]
public class Customer
{
 private int customerID;
 public int CustomerID
 {
 get { return customerID; }
 set { customerID = value; }

 }
 private string firstName;
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }

 }

 private string lastName;
 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }

 }

 private string address;
 public string Address
 {
 get { return address; }
 set { address = value; }

 }

108 The ASP.NET 2.0 Anthology

private string city;

 public string City

 {

 get { return city; }

 set { city = value; }

 }

 private string state;

 public string State

 {

 get { return state; }

 set { state = value; }

 }

 public Customer()

 {

 }

 public Customer(int customerID,

 string firstName,

 string lastName,

 string address,

 string city,

 string state)

 {

 this.CustomerID = customerID;

 this.FirstName = firstName;

 this.LastName = lastName;

 this.Address = address;

 this.City = city;

 this.State = state;

 }

}

What we’ve done here is define a simple Customer class with some bare-bones

properties and getter/setter methods.

Next, we’ll implement a business object, named CustomerData, that provides access

to the Customer entity:

Data Access 109

Customer.cs (excerpt)

public class CustomerData
{
 public CustomerData()
 {
 if (Customers.Rows.Count == 0)
 {
 FetchCustomers();

 }
 }

 public void Update(int customerID,
 string firstName,
 string lastName,
 string address,
 string city,
 string state)

 {
 Customer c = Get(customerID);

 c.CustomerID = customerID;
 c.FirstName = firstName;
 c.LastName = lastName;
 c.Address = address;
 c.City = city;
 c.State = state;

 }

 public IEnumerable<Customer> GetCustomers()
 {
 foreach (DataRow row in Customers.Rows)
 yield return CustomerFromRow(row);

 }

 public Customer Get(int id)
 {
 return FetchCustomerById(id);

 }

 public void Add(Customer c)
 {
 Customers.Rows.Add(
 c.CustomerID,
 c.FirstName,

110 The ASP.NET 2.0 Anthology

c.LastName,

 c.Address,

 c.City,

 c.State

);

 }

 public void Delete(int id)

 {

 DataRow[] rows = Customers.Select("CustomerID = " + id);

 if (rows.Length == 1)

 Customers.Rows.Remove(rows[0]);

 }

 public void Delete(Customer c)

 {

 Delete(c.CustomerID);

 }

 public int Count()

 {

 return Customers.Rows.Count;

 }

 // For simplicity, we're reading from internal DataTable.

 // The following methods populate and manipulate our test data.

 // These methods could be working against any data source,

 // including webservices, files, etc.

 private void FetchCustomers()

 {

 string[] First = new string[] {

 "Bob", "Phil", "Edna", "Sue", "George" };

 string[] Last = new string[] {

 "Smith", "Johnson", "Williams", "Jones", "Brown" };

 Random rng = new Random(Guid.NewGuid().GetHashCode());

 for (int i = 1; i < 50; i++)

 this.Add(

 new Customer(

 i, First[rng.Next(5)],

 Last[rng.Next(5)],

 rng.Next(1000) + " Main St.",

 "Dallas",

 "TX"));

Data Access 111

}

 private Customer FetchCustomerById(int id)

 {

 DataRow[] rows = Customers.Select("CustomerID = " + id);

 if (rows.Length == 1)

 {

 return CustomerFromRow(rows[0]);

 }

 return null;

 }

 private Customer CustomerFromRow(DataRow row)

 {

 Customer c = new Customer(

 int.Parse(row["CustomerID"].ToString()),

 row["FirstName"].ToString(),

 row["LastName"].ToString(),

 row["Address"].ToString(),

 row["City"].ToString(),

 row["State"].ToString()

);

 return c;

 }

 private DataTable Customers

 {

 get

 {

 System.Web.HttpContext context =

System.Web.HttpContext.Current;

 DataTable dt = context.Session["CustomerData"] as DataTable;

 if (context.Session["CustomerData"] as DataTable == null)

 {

 context.Session["CustomerData"] = CreateCustomerTable();

 }

 return context.Session["CustomerData"] as DataTable;

 }

 set

 {

 System.Web.HttpContext.

 Current.Session["CustomerData"] = value;

 }

 }

112 The ASP.NET 2.0 Anthology

private DataTable CreateCustomerTable()

 {

 DataTable dt = new DataTable("Customers");

 dt.Columns.Add("CustomerID", typeof(Int32));

 dt.Columns.Add("FirstName", typeof(string));

 dt.Columns.Add("LastName", typeof(string));

 dt.Columns.Add("Address", typeof(string));

 dt.Columns.Add("City", typeof(string));

 dt.Columns.Add("State", typeof(string));

 return dt;

 }

}

This implementation includes private methods that load and update sample data

(a DataTable stored in the ASP.NET Session). This code is intended only for

demonstration purposes—your data access object could be pulling data from a

database, a file, or a web service. Don’t be confused by the fact that we’re using a

DataTable internally to store our state. The CustomerData object never publicly

exposes the DataTable control; the CustomerData object communicates via Customer

objects, Customer properties, and List<Customer> generic types.

Now let’s hook up that ObjectDataSource and see how it performs. Drop an

ObjectDataSource on a web form and select the Configure Data Source… task, as

shown in Figure 3.21.

Figure 3.21. Selecting the configuration screen from the smart tag task menu

The general flow of the ObjectDataSource configuration wizard is similar to the

SqlDataSource configuration wizard (see the section called “How can I perform

data binding without having to write all that repetitive code?”), but it has a focus

on business objects.

The first screen in the wizard is shown in Figure 3.22; begin by selecting a business

object from the drop-down menu.

Data Access 113

Figure 3.22. Choosing a Business Object to bind to

After clicking Next >, you’re presented with a screen that allows you to configure

SELECT, UPDATE, INSERT, and DELETE methods for your object, as shown in Fig

ure 3.23. The wizard does a fairly good job of guessing the appropriate methods

based on the parameter and return types required for each operation.

Note that the only required method is SELECT; if you leave UPDATE, INSERT, or DELETE

methods unmapped, you can still bind to the ObjectDataSource. However, the data

will be available for read-only purposes when it is retrieved.

Note also that the SELECT method can return either standard ADO.NET objects

(DataSet and DataReader) or a strongly typed collection. In this case, our

GetCustomers method returns an IEnumerable generic collection of Customers.

Figure 3.24, Figure 3.25, and Figure 3.26 show the wizard building UPDATE, INSERT,

and DELETE methods respectively.

114 The ASP.NET 2.0 Anthology

Figure 3.23. Configuring the SELECT method for our business object

Figure 3.24. Defining the UPDATE method

Data Access 115

Figure 3.25. Defining the INSERT method

Figure 3.26. Defining the DELETE method

116 The ASP.NET 2.0 Anthology

Now that we have our queries in place, we can go ahead and data-bind a GridView

to the ObjectDataSource, as shown in Figure 3.27.

Figure 3.27. Binding the GridView to an ObjectDataSource

This data-binding experience that we’ve just stepped through is relatively pain-free,

but it would be true to say that it’s not as pleasant as binding to a standard data

source. The biggest inconvenience is that the columns aren’t in the order in which

they appeared in the Customer class—the order in the final display looks as if it’s

random. When data-aware controls bind to a conventional data source, they can

read the column order. Since the ObjectDataSource generates columns by reflecting

the class’s public properties, it isn’t able to determine the intended order for those

columns.

There are a few ways to fix the column order:

■	 One approach is to select a column by clicking on the column header. The

GridView smart tag task menu, shown in Figure 3.28, will be updated to include

column-specific tasks, including Move Column Left and Move Column Right.

Data Access 117

Figure 3.28. Correcting column order using the object’s smart tag task menu

■	 Another option is to select the Edit Columns… task from the smart tag task menu.

This displays the good old Fields editor, shown in Figure 3.29. In this dialog, you

can choose a column in the Selected fields list and use the Up and Down arrow

buttons to change the order.

Figure 3.29. Correcting column order using the Fields editor

118 The ASP.NET 2.0 Anthology

■ Yet another approach would be to just switch to Source View and manually reorder

the <asp:BoundField> tags, as shown in the following code:

ObjectDataSource.aspx (excerpt)

<asp:BoundField DataField="CustomerID" HeaderText="CustomerID"
SortExpression="CustomerID" />

<asp:BoundField DataField="FirstName" HeaderText="FirstName"
SortExpression="FirstName" />

<asp:BoundField DataField="LastName" HeaderText="LastName"
SortExpression="LastName" />

<asp:BoundField DataField="Address" HeaderText="Address"
SortExpression="Address" />

<asp:BoundField DataField="City" HeaderText="City"
SortExpression="City" />

<asp:BoundField DataField="State" HeaderText="State"
SortExpression="State" />

Figure 3.30 shows our data-bound GridView with the correct column order.

Figure 3.30. The GridView object with data populated from the ObjectDataSource

Now that we’ve got our column order correct, we’re ready for the next hurdle. The

user interface in Visual Studio would have us believe that we can enable paging for

the GridView—on the GridView Tasks, in the GridView properties editor, or in the

ASPX source. However, if your ObjectDataSource SELECT method doesn’t return

a DataSet or a DataReader, you’ll get the following runtime error when the GridView

is bound:

System.NotSupportedException: The data source does not support

server-side data paging.

Data Access 119

To enable paging, you’ll need to implement a new method, GetCustomers, which

takes two parameters. The first parameter, Rows, represents the total number of rows

to return. The second parameter, StartIndex, specifies the number of rows to return

on a single page.

You may also expect that you could just make a simple modification to the existing

GetCustomers method to implement the paging logic, as shown below:

//Won't work

public IEnumerable<Customer> GetCustomers(int rows, int startIndex)

{

 if (rows == 0) rows = Customers.Rows.Count;

 List<Customer> pageCustomers = new List<Customer>();

 for (int i = startIndex;

i <= rows && i <= Customers.Rows.Count - 1;

i++)

 yield return CustomerFromRow(Customers.Rows[i]);

}

An IEnumerable method with a yield return, such as we have here, is certainly an

elegant and efficient solution—it streams the results to the calling function rather

than evaluating the entire list and sending it en masse. However, the

ObjectDataSource we used doesn’t support paging against an IEnumerable select

method. Instead, our paging select method will need to return a populated

List<Customer> object:

Customer.cs (excerpt)

public List<Customer> GetCustomers(int rows, int startIndex)
{
 if (rows == 0)
 {
 rows = Customers.Rows.Count;

 }
 List<Customer> pageCustomers = new List<Customer>();
 for (int i = startIndex; i <= rows && i <=

Customers.Rows.Count - 1; i++)
 {
 pageCustomers.Add(CustomerFromRow(Customers.Rows[i]));

 }
 return pageCustomers;
}

120 The ASP.NET 2.0 Anthology

Another ObjectDataSource Gotcha

Since ObjectDataSource uses reflection to determine column fields, it can only

bind to properties, not public fields. If the Customer class simply implemented

Customer as a public integer field, the class wouldn’t be exposed via the

ObjectDataSource.

The ObjectDataSource also tries to use every public property in the object—even

those that aren’t intended to be used as data properties. For example, when it’s

trying to save changes to a property, ObjectDataSource will try to write to a

read-only property, unless you specify otherwise.

We’ve highlighted a few of the potential issues you may face when mapping an

existing business object to an ObjectDataSource. Performing a direct mapping

works, but you end up having to modify your business objects to allow binding to

them. If you can’t (or don’t want to) modify your existing business objects, you can

use an adapter class that calls into your object and converts the output to an object

type that the ObjectDataSource can handle easily. The benefit of this approach is

that you don’t need to change the way your business objects work in order to accom

modate the ObjectDataSource; instead, you build your business objects as you’d

like, then use the adapter to perform the mapping. If you take this approach, it’s

best to just return your data in standard ADO.NET objects (DataSet, DataTable, or

DataReader).

For example, let’s say we want to support paging with our CustomerData class, but

we don’t want to modify the way CustomerData works just to support advanced

data binding. We decide to implement a CustomerDataSource class that has

ObjectDataSource-friendly methods. For instance, it has a GetDataTable method,

which calls the GetDatamethod on the CustomerData class and converts the output

to a DataTable.

One Final ObjectDataSource Gotcha

Providing data to the ObjectDataSource in DataTable objects simplifies a lot

of issues such as paging and sorting. However, the ObjectDataSource won’t

automatically read your column names from the DataTable, so you’ll need to

configure this functionality yourself.

Data Access 121

While the code in the adapter class itself might be a little ugly (simple to write, just

ugly!), it allows you to use the ObjectDataSource without changing the way you

write your business objects.

Summary
As you can see, the topic of data access is an involved one—it’s impossible to do it

justice in a single chapter. In fact, it’s hard to do it justice in a single book, though

many authors have made valiant efforts to do so. This just goes to show how extens

ive and rich data access functionality is within ASP.NET.

Data access is at the core of every significant web application. In this chapter, we

refreshed our knowledge of some of the basics of data access, and quickly stepped

through a number of examples that used the new data source controls, covering

some of the common scenarios you may run into throughout your ASP.NET devel

opment career.

For more in-depth coverage of data access in ASP.NET, I recommend you start with

the ASP.NET 2.0 Data Tutorials on the official ASP.NET web site.10

10 http://www.asp.net/learn/dataaccess/

http://www.asp.net/learn/dataaccess/
http:ASP.NET
http:ASP.NET
http://www.asp.net/learn/dataaccess/

Chapter4
Pushing the Boundaries of the
GridView

The introduction of the GridView control in ASP.NET 2.0 basically sent the DataGrid

control to the dustbin of ASP.NET history. While the DataGrid served us well in

its time, the GridView is the table control of choice now, as it boasts more function

ality and extensibility than its predecessor.

Of course, there are still many situations in which Repeater or DataList controls

are appropriate, but when you need rich sorting and paging, the GridView is hard

to beat.

In fact, we like the GridView so much that we’ve dedicated this whole chapter to

accomplishing various non-trivial tasks with the GridView. However, some of these

techniques can be used with any of the table controls. For example, the following

section covers nested data binding, which could also apply to a Repeater control.

124 The ASP.NET 2.0 Anthology

How do I add a data-bound drop-down to
a GridView?
Suppose you have a table of product details that you’d like to display to an admin

istrative user so that he or she can edit the information about each product. This is

a common task, and one that can easily be handled by binding a Gridview to your

products table. Figure 4.1 shows a possible interface through which we could allow

users to edit product details.

Figure 4.1. A simple UI to accompany a GridView control

You can see that the Products table contains a column called CategoryID, which

is a foreign key into another table, namely Categories. You’ll notice, however, that

at present the CategoryID column requires that the user know the range of available

category IDs.

Pushing the Boundaries of the GridView 125

It would be ideal if we could present users with a DropDownList containing the

available category IDs. Let’s look into how we can do this.

Solution
For this solution, we’ll use the sample Northwind database that comes with SQL

Server. If you don’t have this database installed, the scripts are available for down

load from the Microsoft web site.1

In order to get up and running quickly, we’ll use the designer and IDE to full effect

here. For more detailed coverage of data binding a GridView, see Chapter 3.

Click on the Server Explorer and create a Data Connection to the Northwind database.

Once this is set up, add a new Web Form to your project and make sure it’s in Design

View. Now expand the Northwind database in the Server Explorer and drag the

Products table over to the Web Form designer. Visual Studio will automatically

create a GridView that’s bound to a SqlDataSource, as depicted in Figure 4.2.

Figure 4.2. The generated GridView

1 http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-ee

bc53a68034&displaylang=en

http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-ee-

126 The ASP.NET 2.0 Anthology

If you click on the Source tab, you can see the markup that the designer generates.

In the code below, I removed some of the columns and the commands for updating,

deleting and inserting rows. Note that no source code is generated—it’s just declar

ative markup:

NestedDataBinding.aspx (excerpt)

<asp:GridView ID="GridView1" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
 DataSourceID="SqlDataSource1" EmptyDataText="There are no data
records to display.">

 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"

ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="ProductName" HeaderText="ProductName"

 SortExpression="ProductName" />
⋮
 <asp:CheckBoxField DataField="Discontinued"

HeaderText="Discontinued" SortExpression="Discontinued" />
 </Columns>
</asp:GridView>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString =

"<%$ ConnectionStrings:NorthwindConnectionString1 %>"
 SelectCommand="SELECT [ProductID], [ProductName], [SupplierID],

[CategoryID], [QuantityPerUnit], [UnitPrice],
[UnitsInStock], [UnitsOnOrder], [ReorderLevel],
[Discontinued] FROM [Products]" … >

 <InsertParameters>
 <asp:Parameter Name="ProductName" Type="String" />

⋮
 <asp:Parameter Name="Discontinued" Type="Boolean" />

 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name="ProductName" Type="String" />

⋮
 <asp:Parameter Name="ProductID" Type="Int32" />

 </UpdateParameters>
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />

 </DeleteParameters>
</asp:SqlDataSource>

Pushing the Boundaries of the GridView 127

Switch back to Design View, and click on the upper right arrow of the GridView to

display the GridView’s smart tag. Be sure to check Enable Editing, as shown in Fig

ure 4.3.

Figure 4.3. Enabling editing of the GridView

If you compile and run this page, you’ll see the interface shown in Figure 4.1. Think

it looks good? We’re just getting warmed up!

Bring up the smart tag again and select Edit Columns to display the dialog shown in

Figure 4.4.

128 The ASP.NET 2.0 Anthology

Figure 4.4. The Fields dialog

We need to convert the CategoryID column from a bound column to a template

column. Select CategoryID in the Selected fields area, click the Convert this field into

a TemplateField link, then click OK.

Once again, bring up the smart tag and click Edit Templates. This will display a dialog

that will allow you to select a template for any of the template columns, though in

this case, we’re focusing on CategoryID. Select the EditItemTemplate for the Cat

egoryID column.

Next, we remove the default TextBox from the template and replace it with a

DropDownList control.

Now we need to add a data source for the Category DropDownList—a task that we

can accomplish simply by dragging the Categories table to the web form. After

you do so, delete the Categories grid view that was created by the designer. We

need only the data source.

Pushing the Boundaries of the GridView 129

Switching to Source View, you should see the following additional markup for the

new SqlDataSource. In the following snippet, I removed the DeleteCommand,

InsertCommand, and UpdateCommand attributes as we won’t need them:

NestedDataBinding.aspx (excerpt)

<asp:SqlDataSource ID="SqlDataSource2" runat="server"
ConnectionString =

"<%$ ConnectionStrings:NorthwindConnectionString1 %>"
 ProviderName =
"<%$ ConnectionStrings:NorthwindConnectionString1.ProviderName %>"
 SelectCommand = "SELECT [CategoryID], [CategoryName],

[Description], [Picture] FROM [Categories]"
 <InsertParameters>

 <asp:Parameter Name="CategoryName" Type="String" />
 <asp:Parameter Name="Description" Type="String" />

 </InsertParameters>
 <UpdateParameters>

 <asp:Parameter Name="CategoryName" Type="String" />
 <asp:Parameter Name="Description" Type="String" />
 <asp:Parameter Name="CategoryID" Type="Int32" />

 </UpdateParameters>
 <DeleteParameters>

 <asp:Parameter Name="CategoryID" Type="Int32" />
 </DeleteParameters>

</asp:SqlDataSource>

Now bring up the smart tag for the DropDownList—as shown in Figure 4.5—and

select Choose Data Source.

Figure 4.5. Choosing the data source for the DropDownList

130 The ASP.NET 2.0 Anthology

Select the data source containing the Categories table data (it will still be name

by its default filename, SqlDataSource2, unless you’ve renamed it), then select

CategoryName as the display field and CategoryId as the value field for our new

DropDownList.

Figure 4.6. Using the Data Source Configuration Wizard to choose a data source

We’re almost done: we just need to make sure that the value we selected for the

Category drop-down is bound to the product’s CategoryID.

Bring up the smart tag for the drop-down and click on Edit > DataBindings. The

DataBindings dialog for the DropDownList will display.

From the list headed Bindable properties, choose SelectedValue. Then, in the right-

hand column, select the field to which you want to bind this property—Category-

ID—as shown in Figure 4.7.

Pushing the Boundaries of the GridView 131

Figure 4.7. Binding a DropDownList control

When we switch to the Source View, we see the updated markup for the CategoryID

column:

NestedDataBinding.aspx (excerpt)

<asp:TemplateField HeaderText="CategoryID"
SortExpression="CategoryID">
 <EditItemTemplate>
 <asp:DropDownList ID="DropDownList1" runat="server"

DataSourceID="SqlDataSource2" DataTextField="CategoryName"
DataValueField="CategoryID"
SelectedValue='<%# Bind("CategoryID") %>'>

 </asp:DropDownList>
 </EditItemTemplate>
 <ItemTemplate>
 <sp:LookupLabel id="lookupLabel" runat="server"

DataSourceID="SqlDataSource2" DataTextField="CategoryName"
DataValueField="CategoryID"
SelectedValue='<%# Bind("CategoryID") %>' />

 </ItemTemplate>
</asp:TemplateField>

132 The ASP.NET 2.0 Anthology

We’re now ready to build and run the page again. This time, when you click on the

Edit link to edit a row in the table, you’ll see a drop-down list of product categories

from which you can choose, like the one shown in Figure 4.8.

Figure 4.8. Selecting a category via the drop-down

Select a category, click the Update link, and you should see that the CategoryID has

changed to reflect your new selection.

Discussion
A more generic term for the technique we demonstrated in this section is nested

data binding. ASP.NET 2.0 Data Source controls make it easy to set up nested data

binding declaratively.

Although we demonstrated nested data binding with a DropDownList control, it

will work with any bindable control. For example, we could have swapped the

DropDownList for a RadioButtonList, or even another nested GridView control.

Pushing the Boundaries of the GridView 133

How do I sort on multiple columns?

Enabling sorting with the GridView control is extremely easy—simply set the

AllowSorting property to true:

<asp:GridView ID="GridView1" runat="server"

AllowSorting="True" />

The only problem is that this solution allows you to sort only one column at a time.

What if you want to sort on two columns? Well, as it turns out, this isn’t too difficult.

Solution
The trick here is to handle the Sorting event of the GridView and set the sort ex

pression via code. For this demonstration, we’ll display the Suppliers table from

the Northwind sample database that comes with SQL Server.

The quick and easy way to display a GridView with the data from the Suppliers

table is to follow the instructions from the section called “How do I add a data-

bound drop-down to a GridView?”.

Now, within the code behind, we need to attach an event handler to the Sorting

event:

MultiSorting.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 this.GridView1.Sorting +=

new GridViewSortEventHandler(GridView1_Sorting);
}
void GridView1_Sorting(object sender, GridViewSortEventArgs e)
{

⋮
}

134 The ASP.NET 2.0 Anthology

Handling Events Declaratively

Another way to handle the Sorting event for the GridView is to declaratively

specify the method in the markup for the GridView, like so:

<asp:GridView ID="GridView1" runat="server"
Sorting="GridView1_Sorting" />

You’ll find that some people are opposed to this approach because it hides what’s

really happening under the hood. While explicitly wiring up the event handlers

avoids this “Magic behind the curtain” issue, the authors believe the choice of

one or the other of these approaches to be primarily a matter of taste.

Some might bring up so called “performance” issues with this approach because

it uses reflection. While it is true in theory that the page will execute slightly

slower using this approach than it would if you explicitly wired up the event

handling directly, unless you measure, you won’t know whether the performance

hit is significant. Compared to the performance of the data access code, it’s probably

negligible in most cases.

The next step is to fill in the GridView1_Sorting method with our implementation,

which will track the columns we’re sorting on and adjust the SortExpression ac

cordingly:

MultiSorting.aspx.cs (excerpt)

void GridView1_Sorting(object sender, GridViewSortEventArgs e)
{
string currentExpression = GridView1.SortExpression;
 if (currentExpression.Length == 0) return;
//First column to sort, no need for anything special.
//Want to keep the clicked on sort expression in the front.
string[] sortedColumns = currentExpression.Split(',');
string newSortExpression = e.SortExpression;
foreach (string sortExpression in sortedColumns)
{
if(sortExpression != e.SortExpression) newSortExpression

+= "," + sortExpression;
}

}

Pushing the Boundaries of the GridView 135

Notice that the method has a parameter of type GridViewSortEventArgs. This

contains a property, SortExpression, which holds the value of the sort expression

for the column the user clicked.

The basic idea is to build a sort expression by concatenating each SortExpression

from the columns on which the user clicks. However, we want to keep the most

recent column at the front of the expression.

Our first task is to grab the SortExpression from the GridView. This is the current

full sort expression at the time the sort column was clicked. If this value is empty,

then we know that this is the first time a sort column has been clicked (otherwise

we would already have a sort expression), so we can just return from the method

and let the default behavior apply. This procedure takes place in this snippet of

code:

string currentExpression = GridView1.SortExpression;

if (currentExpression.Length == 0)

return; //First column to sort, no need for anything special

The next section of code handles the situation after one or more sort columns has

been clicked. In this situation, the GridView.SortExpression property will not be

empty—it’ll contain the current sort expression, which will be a comma-delimited

list of column sort expressions.

First, we split this sort expression into an array using the comma as a delimiter.

Then, we simply want to iterate through the existing sort expressions and append

them to the end of the sort expression for the column the user clicked on, which

we obtained via the GridViewSortEventArgs.SortExpression property. That’s

what this snippet of code accomplishes:

string[] sortedColumns = currentExpression.Split(',');

string newSortExpression = e.SortExpression;

foreach (string sortExpression in sortedColumns)

{

 if(sortExpression != e.SortExpression)

newSortExpression += "," + sortExpression;

}

136 The ASP.NET 2.0 Anthology

As we build this new sort expression, we must be careful not to include the sort

expression for the currently active column twice—the conditional check within the

for loop ensures that we avoid this.

Discussion
One drawback to this approach is that when the user sorts the data on multiple

columns, the sort direction will always be ascending. Why?

The SortDirection property of the GridView control is an enumerated value of

type System.Web.UI.WebControls.SortDirection. Since this property is not a

string, we cannot append multiple sort directions to the value.

But even if you try to sort multiple columns in descending order by setting the

SortDirection in the Sorting event handler, it won’t work: the SortDirection

property seems to ignore anything other than Ascending:

e.SortDirection = SortDirection.Descending; //ignored

Changing the SortDirection

The SortDirection property of the GridView class is a read-only property. So

how would you change the sort direction for a column? The only way to change

it is within the event handler for the Sorting event. The event handler is passed

an argument of type GridViewSortEventArgs, and you can change the sort

direction by setting the SortDirection property of the GridViewSortEvent-

Args argument.

Pushing the Boundaries of the GridView 137

How do I display the sort state?

When you enable sorting on a GridView, each column’s title is displayed as a hyper-

link. Click on the hyperlink, and the GridView sorts the table on the basis of that

column, but it does not give any visual indication of which column is being used

to sort the data, or in which direction the data is being sorted. Let’s learn how to

resolve this issue.

Solution
In this demonstration, we’ll display the Suppliers table from the Northwind sample

database that comes with SQL Server.

Figure 4.9 shows a GridView displaying the raw data from the Suppliers table with

sorting enabled. In this case, we’ve sorted the data by CompanyName, but there’s no

indication that we’ve sorted the data by that column.

Figure 4.9. The display failing to indicate which is the sort-by column

138 The ASP.NET 2.0 Anthology

In order to rectify this situation, we need to handle the GridView’s Sorting event

to create a visual indication of the sort-by column. In our Sorting event handler,

we’re passed an instance of GridViewSortEventArgs, which contains the

SortExpression property that we can use to find the sorted column like so:

SortableGridView.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 this.GridView1.Sorting += GridView1_Sorting;
}
void GridView1_Sorting(object sender, GridViewSortEventArgs e)
{
 foreach(DataControlField column in GridView1.Columns)
 {
 if(column.SortExpression == e.SortExpression)
 {
 column.HeaderStyle.CssClass = "sorted";
 column.HeaderStyle.BackColor = Color.Khaki;

 }
 else
 {
 column.HeaderStyle.CssClass = "";
 column.HeaderStyle.BackColor = Color.White;

 }
 }
}

Notice that when we find the sorted column, we set the CSSClass property to sorted,

which allows us to style the sorted column via CSS. While this is my preferred ap

proach, for the sake of this demonstration, I’ll also set the background color to Khaki

so that we don’t have to set up an external style sheet to see the results.

Upon refreshing your browser, you should see something like Figure 4.10.

Pushing the Boundaries of the GridView 139

Figure 4.10. Indicating the sort-by column using color

This is helpful, but we’re not done yet. How do we get the column to display the

direction in which the data was sorted? This is a slightly trickier problem, but it’s

not too difficult.

Showing Sort Direction via CSS

One approach to showing users the sort direction of tabular content is to use the

CSS trick we saw above, assigning a CSS class for an ascending sort, and a different

CSS class for a descending sort. We can use these CSS classes to differentiate

between the sort directions by using different styles—for example, setting a

background image with an up or down arrow.

In this example, we’ll simply append the words [asc] or [desc] to the end of the

HeaderText of the column by which the data was sorted.

140 The ASP.NET 2.0 Anthology

The only tricky part is that we need to store the original HeaderText value for all

columns so that when we stop sorting the data on that column, we can return its

HeaderText back to its original value.

In order to do this, we’ll add the HeaderText for each column to the ViewState

object, using the column’s SortExpression as the key. Within the OnLoad method,

we’ll initialize the ViewState object to contain the original HeaderText values (the

new code is shown in bold):

SortableGridView.aspx.cs (excerpt)

protected override void OnLoad(EventArgs e)
{
 AllowSorting = true;
if (!Page.IsPostBack)

 {
 foreach (DataControlField column in Columns)
 {
 if (ViewState[column.SortExpression] == null)
 ViewState[column.SortExpression] = column.HeaderText;

 }
 }
 base.OnLoad(e);
}

Now, through our GridView Sort event handler, we’ll append the word [asc] or

[desc] to the column’s HeaderText, depending on the sort direction (again, the

new code is shown in bold):

SortableGridView.aspx.cs (excerpt)

protected override void OnSorting(GridViewSortEventArgs e)
{
 foreach (DataControlField column in Columns)
 {

if (column.SortExpression == e.SortExpression)
 {
 column.HeaderStyle.CssClass = "sorted";
 column.HeaderStyle.BackColor = Color.Khaki;
 if (e.SortDirection == SortDirection.Descending)
 column.HeaderText = ViewState[column.SortExpression]

+ " [asc]";

Pushing the Boundaries of the GridView 141

else

 column.HeaderText = ViewState[column.SortExpression]

+ " [desc]";

 }

 else

 {

 if (ViewState[column.SortExpression] != null)

 {

 column.HeaderText = ViewState[column.SortExpression]

as string;

 }

 column.HeaderStyle.CssClass = "";

 column.HeaderStyle.BackColor = Color.White;

 }

 }

 base.OnSorting(e);

}

Now when we sort a column in ascending order, we’ll see the word characters

[desc] to indicate that clicking on that column will sort the column in descending

order, as Figure 4.11 illustrates.

Figure 4.11. Identifying the sort-by column with color and label indicators

142 The ASP.NET 2.0 Anthology

Discussion
It’s worth mentioning that while it is possible to customize the GridView control

by responding to its various events within the code for the host page, this isn’t a

very reusable approach.

Instead, it makes more sense to extend the GridView by writing a custom version

of the control, which ensures that you only need to write that code once. For ex

ample, we might create a class called SortableGridView like so:

SortableGridView.aspx.cs (excerpt)

using System;
using System.Drawing;
using System.Web.UI.WebControls;
namespace SitePoint.Cookbook.GridViews
{
 public class SortableGridView : GridView
 {
 // Classes that inherit from this class and override OnLoad
 // must be sure to call base.OnLoad or they lose this
// functionality.
 protected override void OnLoad(EventArgs e)
 {
 AllowSorting = true;
 if (!Page.IsPostBack)
 {
 foreach (DataControlField column in Columns)
 {
 if (ViewState[column.SortExpression] == null)
 ViewState[column.SortExpression] = column.HeaderText;

 }
 }
 base.OnLoad(e);

 }
 protected override void OnSorting(GridViewSortEventArgs e)
 {
 foreach (DataControlField column in Columns)
 {
 if (column.SortExpression == e.SortExpression)
 {
 column.HeaderStyle.CssClass = "sorted";
 column.HeaderStyle.BackColor = Color.Khaki;
 if (e.SortDirection == SortDirection.Descending)

Pushing the Boundaries of the GridView 143

{

 column.HeaderText = ViewState[column.SortExpression] +

 " [asc]";elsecolumn.HeaderText =

ViewState[column.SortExpression] + " [desc]";

 }

 }

 else

 {

 if (ViewState[column.SortExpression] != null)

 column.HeaderText = ViewState[column.SortExpression]

as string;

 column.HeaderStyle.CssClass = "";

 column.HeaderStyle.BackColor = Color.White;

 }

 }

 base.OnSorting(e);

 }

 }

}

How do I implement custom paging?
As in the previous two examples, we’re going to begin by dragging a Northwind

table onto the Web Form designer. In this discussion, let’s mix things up by dragging

the OrderDetails table to the form.

Enable sorting and paging on the GridView. Once you’ve built the project, view the

page in the browser—you should see something that looks like Figure 4.12.

144 The ASP.NET 2.0 Anthology

Figure 4.12. Default paging on a GridView

At the bottom of the grid is a paging control that allows us to click through the

various pages of data. This is useful for navigating through the data, but it could be

improved upon in a number of ways. Let’s see how.

Using PagerSettings

The PagerSettings element within the GridView markup gives us a lot of

control over the pager output without requiring us to deal with any custom pro

gramming, or modification of the pager template.

However, when you need total control, modifying the PagerSettings is the only

way to go.

Solution
First, we need to edit the PagerTemplate within the GridView. In the designer, bring

up the GridView’s smart tag and click Edit Templates. Select PagerTemplate as shown

in Figure 4.13.

Pushing the Boundaries of the GridView 145

Figure 4.13. Selecting PagerTemplate from the drop-down

Within this template we’re going to drag several LinkButton controls which will

be used to navigate back and forth between pages, much like a WizardControl.

In fact, the paging in a GridView works exactly like a WizardControl. By specifying

the appropriate CommandArgument property of each button, the GridView automagic

ally wires up the button to the appropriate navigation event.

In Source View, the final result of the PagerTemplate should look like this:

Paging.aspx (excerpt)

<PagerTemplate>
 <asp:LinkButton ID="first" runat="server" Text="<< First"

 CommandArgument="First" CommandName="Page" />
 <asp:LinkButton ID="prev" runat="server" Text="< Previous"

 CommandArgument="Prev"
 CommandName="Page" />

 Page <asp:DropDownList ID="pages" runat="server"
 AutoPostBack="True"/> of <asp:Label ID="count"
runat="server" />

 <asp:LinkButton ID="next" runat="server" Text="Next >"
 CommandArgument="Next" CommandName="Page" />

 <asp:LinkButton ID="last" runat="server" Text="Last >>"
CommandArgument="Last" CommandName="Page" />

</PagerTemplate>

146 The ASP.NET 2.0 Anthology

The LinkButton instances will navigate back and forth between pages, while the

DropDownList will contain all the page numbers. When the user selects a page in

the DropDownList, the control will AutoPostBack and navigate to the selected page.

With the paging UI set up, let’s dig into the code to make the magic happen. The

first step we need to take is to wire up the DataBind event of the GridView1 to an

event handler and to the DropDownList’s SelectedIndexChanged event:

Paging.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 GridView1.DataBound += GridView1_DataBound;
 GridViewRow row = GridView1.BottomPagerRow;
 if (row == null) return;
 DropDownList pages =

(DropDownList)row.Cells[0].FindControl("pages");
 pages.SelectedIndexChanged += OnSelectedIndexChanged;
}
void GridView1_DataBound(object sender, EventArgs e)
{
 //…
}
protected void OnSelectedIndexChanged(Object sender, EventArgs e)
{
 //…
}

Most of our work happens within the GridView.DataBound event handler. Take a

look at the full code here, then we’ll walk through it piece by piece:

Paging.aspx.cs (excerpt)

private void GridView1_DataBound(object sender, EventArgs e)
{
 GridViewRow row = GridView1.BottomPagerRow;
 if (row == null) return;

 // get your controls from the gridview
 DropDownList pages =

(DropDownList)row.Cells[0].FindControl("pages");
 pages.SelectedIndexChanged += OnSelectedIndexChanged;
 Label count = (Label) row.Cells[0].FindControl("count");

Pushing the Boundaries of the GridView 147

if (pages != null)

 {

 // populate pager

 for (int i = 0; i < GridView1.PageCount; i++)

 {

 int pageNumber = i + 1;

 ListItem pageItem = new ListItem(pageNumber.ToString());

 if (i == GridView1.PageIndex)pageItem.Selected = true;

 pages.Items.Add(pageItem);

 }

 }

 // populate page count

 if (count != null)

 {

count.Text = string.Format("{0}",

GridView1.PageCount);

 }

 LinkButton prev = (LinkButton) row.Cells[0].FindControl("prev");

 LinkButton next = (LinkButton) row.Cells[0].FindControl("next");

 LinkButton first = (LinkButton) row.Cells[0].FindControl("first");

 LinkButton last = (LinkButton) row.Cells[0].FindControl("last");

 // set the pager nav state based on the current page

 if (GridView1.PageIndex == 0)

 {

 prev.Enabled = false;

 first.Enabled = false;

 }

 else if (GridView1.PageIndex + 1 == GridView1.PageCount)

 {

 last.Enabled = false;

 next.Enabled = false;

 }

 else

 {

 last.Enabled = true;

 next.Enabled = true;

 prev.Enabled = true;

 first.Enabled = true;

 }

}

148 The ASP.NET 2.0 Anthology

The first couple of lines check to make sure the BottomPagerRow exists, and

grab a reference to it.

This is a defensive coding technique that we’ll use to protect us just in case

someone later deletes the PagerTemplate from the markup, or we find we don’t

have any data to data bind to.

The next step is to retrieve the DropDownList and label defined in the

PagerTemplate. At this point, we know we’ll find the controls within the first

cell of the Pager row. We also attach an event handler to the DropDownList.

Now we populate the DropDownList with an item for every page of data. In

this loop we simply iterate over an index and create a ListItem for each page

number. Notice that the PageIndex property is a zero-based index, but obvi

ously, for the purposes of presentation, we want our page numbers to be a one-

based index.

As a convenience, we populate the Label control with the total count of pages.

The final step is to obtain a reference to each of our navigation buttons, and

set their Enabled properties on the basis of the current page. This approach

ensures that when the user is on the first page, the First Page and Previous links

are not enabled—it wouldn’t make any sense for them to be usable at that point.

Now we can implement the event handler for the SelectedIndexChanged event of

the DropDownList:

protected void OnSelectedIndexChanged(Object sender, EventArgs e)

{

 GridViewRow pager = GridView1.BottomPagerRow;

 DropDownList pages =

 (DropDownList)pager.Cells[0].FindControl("pages");

 GridView1.PageIndex = pages.SelectedIndex;

 // a method to populate your grid

 GridView1.DataBind();

}

All we’re doing here is setting the GridView’s page index to the same index as the

drop-down list, then rebinding the GridView. It’s fairly straightforward. Figure 4.14

shows the results of our work.

Pushing the Boundaries of the GridView 149

Figure 4.14. Our custom paging controls

Discussion
As we just demonstrated, the GridView’s extensibility enables us to create just about

any kind of paging user interface we’d want. Although it may seem unorthodox to

use a DropDownList control, one minor benefit of this approach is that the user can

tab into the DropDownList, quickly type a page number, and hit the Enter key to be

taken directly to a specific page.

How can I allow users to download tabular
data as a Microsoft Excel file?
It’s a common requirement—we show pretty tabular data on a web page, and Wilbur,

that pencil pusher in accounting, immediately says he needs to export it to Microsoft

Excel. Fine, we can do that.

150 The ASP.NET 2.0 Anthology

Solution
If you’ve got a simple grid that will fit into a single Excel worksheet, you can use

the old HTML table trick, which takes advantage of the fact that Excel can read

HTML documents and interpret tabular data. We’ll create a standard GridView, but

when we send the output to the browser, we’ll make sure the content is as simple

as possible and set the content type to that of an Excel file. Wilbur’s browser will

see an Excel file downloading and pass the buck to Excel, which will display the

document.

First, we’ll need a simple GridView that we can preview before the export takes

place. To keep things simple, we’ll be working with a default GridView generated

by dragging the Northwind Products table onto an empty form. The only change

we’ll make to the form is to add a button:

ExcelExport.aspx (excerpt)

<asp:Button ID="btnExport"
runat="server"
OnClick="btnExport_Click"
Text="Export to Excel"

/>

Great! Now let’s handle the export:

ExcelExport.aspx.cs (excerpt)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.IO;
public partial class _Default : System.Web.UI.Page
{

 GridView gridToExport = null;
 protected void btnExport_Click(object sender, EventArgs e)
 {

Pushing the Boundaries of the GridView 151

gridToExport = grdProducts;

 }

 protected override void Render(HtmlTextWriter writer)

 {

 if (gridToExport as GridView != null)

 ExportGridToExcel(gridToExport, "Products.xls");

 base.Render(writer);

 }

 private void ExportGridToExcel(GridView grid, string filename)

 {

 if(string.IsNullOrEmpty(filename))

 throw new ArgumentException(

 "Export filename is required");

 if(!filename.EndsWith(".xls"))

 filename += ".xls";

 grid.AllowPaging = false;

 grid.AllowSorting = false;

 grid.DataBind();

 StringWriter tw = new StringWriter();

 HtmlTextWriter hw = new HtmlTextWriter(tw);

 Response.Clear();

 Response.ContentType = "application/vnd.ms-excel";

 Response.AddHeader(

 "content-disposition",

"attachment;filename=" + filename);

 Response.Charset = string.Empty;

 Page.EnableViewState = false;

 grid.RenderControl(hw);

 Response.Write(tw.ToString());

 Response.End();

 }

 /// <summary>

 /// Need to override this to prevent checking that controls are

 /// in a webform, since we're rendering the gridview by itself.

 /// </summary>

 /// <param name="control"></param>

 public override void VerifyRenderingInServerForm(

 Control control)

 {

 }

}

152 The ASP.NET 2.0 Anthology

Discussion
This task used to be simpler in ASP.NET 1.1; ASP.NET 2.0’s improved security

complicates things a little. First of all, you’ll notice that the button click event isn’t

directly calling the export; it’s just setting it up to be called in the Render method.

That’s because ASP.NET’s event validation doesn’t allow us to modify controls that

participate in event validation outside the Rendermethod. The simplest workaround

is to add EnableEventValidation="false" to your @Page declaration, but that’s

not the best solution. Event validation checks provide additional security for your

site, so it’s best to leave them in place if possible. We’re working with the event

validation mechanism by modifying our page controls inside the Render method.

There’s more information on exporting a GridView to Excel at the site of Grid-

ViewGuy.2

Numeric Formatting and Formulæ
It’s only natural that, once we’re exporting our tabular data in Excel files, those

Excel users will want their numbers to be formatted correctly.

No problem! The trick is to set up an Excel file with the formatting you need, export

the file to HTML, and check the HTML source. When you do that, you’ll see that

each table cell has a class attribute assigned to it, and that the CSS rule-set for that

class includes Excel-specific formatting instructions. In order to duplicate the

formatting when you export, you’ll need to write out the style information to define

the cell format, then assign the style to each table cell to which you want it to apply.

For example, let’s say we want to format the Unit Price column as a US currency

value rather than a simple numeric value. Instead of values like 18 and 23.5, we

want to see $18.00 and $23.50.

Start by exporting the GridView as an Excel file without any special formatting,

then open it in Excel, select all the cells in the Unit Price column, and set the format

to Currency.

Next, export the Excel file as HTML, and open the HTML file in a text editor, like

Notepad. You’ll need to dig through some pretty dense HTML code, but you’ll find

that the cells in the Unit Price column have a class named something like x126:

2 http://gridviewguy.com/ArticleDetails.aspx?articleID=197

http://gridviewguy.com/ArticleDetails.aspx?articleID=197
http://gridviewguy.com/ArticleDetails.aspx?articleID=197
http://gridviewguy.com/ArticleDetails.aspx?articleID=197

Pushing the Boundaries of the GridView 153

<td class=xl26

 align=right

width=65

style='border-top:none;border-left:none;width:49pt'

 x:num="9.2">

$9.20

</td>

Now, scroll to the top of the file and find the definition of that style:

.xl26 {

 mso-style-parent: style0;

 mso-number-format: "\0022$\0022\#\,\#\#0\.00";

 border: .5pt solid black;

 white-space: normal;

}

The only thing we care about right now is that format line, but if you want to apply

fancy formatting like borders or cell colors, you’ll need to include those declarations

as well.

Let’s add a method that applies the formatting for a grid. The method takes the grid

as a parameter, so we could support the export of different grids if needed. Note

that we had to escape several characters in that format string. The one that’s not

obvious is the \0, which, while it will compile, will write out null characters. It

needs to be replaced with a \\0:

ExcelExport.aspx.cs (excerpt)

private string GetExcelStyle(GridView grid)
{
 if(grid == grdProducts)
 return

"<style>" +
 "excelCurrency{mso-number-format:" +
"\"\\0022$\\0022\\#\\,\\#\\#0\\.00\";" +

"</style>";
 return string.Empty;
}

154 The ASP.NET 2.0 Anthology

We call the new GetExcelStyle method from our Render method, right before we

write out the rest of the HTML:

ExcelExport.aspx.cs (excerpt)

 grid.RenderControl(hw);
 Response.Write(GetExcelStyle(grid));
 Response.Write(tw.ToString());
 Response.End();

The last step is to add the class attribute of xl26 to the cells we want to style. The

cleanest way to add a class attribute to a GridView cell is to set its

ItemStyle-CssClass property:

ExcelExport.aspx.cs (excerpt)

<asp:BoundField
DataField="UnitPrice"
ItemStyle-CssClass="excelCurrency"
HeaderText="UnitPrice"
SortExpression="UnitPrice" />

Figure 4.15 depicts our work so far, when viewed in Excel.

Figure 4.15. Viewing the styled content in Excel

Pushing the Boundaries of the GridView 155

While we’re at it, we can even dress our data up a little—Wilbur will love it! Let’s

add autofilters to those columns. By adding autofilter to the headers and

viewing the HTML, we can see that we need to add an x:autofilter attribute to

the header cells. Since we’re adding a non-standard attribute, we’ll need to handle

it in the RowDataBound of our GridView event:

ExcelExport.aspx.cs (excerpt)

protected void grdProducts_RowDataBound(
 object sender, GridViewRowEventArgs e)

{
 if (e.Row.RowType == DataControlRowType.Header)
 {
 foreach (TableCell cell in e.Row.Cells)
 {
 cell.Attributes.Add("x:autofilter", "all");

 }
 }
}

The x: at the beginning of the x:autofilter attribute shows that we’ll need to de

clare an XML namespace for the HTML document. We’ll do that in the Render

method, right before we write out our cell format:

ExcelExport.aspx.cs (excerpt)

 grid.RenderControl(hw);
 Response.Write(

 "<html xmlns:x=\"urn:schemas-microsoft-com:" +
 "office:excel\" >");

 Response.Write(GetExcelStyle(grid));

That explanation should give you enough detail to handle most Excel formatting

issues. Using CSS you can include fonts, colors, borders—even formulas—in your

made-for-Excel HTML. Just follow the pattern we used here: add a single feature,

view the HTML, then duplicate it in your export.

156 The ASP.NET 2.0 Anthology

Exporting Multiple Worksheets in One Excel File

After playing with Excel’s HTML support for a bit, you might get the idea that

you can implement any Excel feature by adding a few HTML attributes and styles.

There’s one feature that you can’t implement with Excel HTML, though: exporting

multiple worksheets in one Excel document.

If you need to do that, take a look at using Excel’s XML format, which can contain

multiple Worksheet elements. Obviously, including multiple worksheets is going

to take more work than rendering the GridView to the response and tweaking it

a bit.

In this case, you’ll want to skip over the GridView and just convert a DataSet

to XML, then convert it to Excel XML via XSLT.

Excel 2003 introduced Microsoft’s first XML spreadsheet format, called Spread

sheetML.3 Another method for creating SpreadsheetML is the free CarlosAG Excel

Writer.4 Wyatt Barnett has published a great introduction to this library on the

SitePoint web site.5 Using the CarlosAG Excel writer, you can create a spreadsheet

programmatically:

using CarlosAg.ExcelXmlWriter;

class TestApp

{

 static void Main(string[] args)

 {

 Workbook book = new Workbook();

 Worksheet sheet = book.Worksheets.Add("Sample");

 WorksheetRow row = sheet.Table.Rows.Add();

 row.Cells.Add("Hello World");

 book.Save(@"c:\test.xls");

 }

}

While Excel 2007 continues to support the Excel 2003 SpreadsheetML format,

Microsoft released a new XML-based spreadsheet format with Excel 2007. This

was part of Microsoft’s transition to using open, published XML formats, known

as the Open XML formats, in Office 2007. Like the other Open XML formats, the

3 http://support.microsoft.com/kb/319180/
4 http://www.carlosag.net/Tools/ExcelXmlWriter/Default.aspx
5 http://www.sitepoint.com/blogs/2006/08/22/making-excel-the-carlosag-way/

http://support.microsoft.com/kb/319180/
http://support.microsoft.com/kb/319180/
http://www.carlosag.net/Tools/ExcelXmlWriter/Default.aspx
http://www.carlosag.net/Tools/ExcelXmlWriter/Default.aspx
http://www.sitepoint.com/blogs/2006/08/22/making-excel-the-carlosag-way/
http://www.sitepoint.com/blogs/2006/08/22/making-excel-the-carlosag-way/
http://support.microsoft.com/kb/319180/
http://www.carlosag.net/Tools/ExcelXmlWriter/Default.aspx
http://www.sitepoint.com/blogs/2006/08/22/making-excel-the-carlosag-way/

Pushing the Boundaries of the GridView 157

new Excel XSLX format is actually a zip file that contains one or more XML files

as well as any images and other media that are included in the worksheet collec

tion.

Whereas the SpreadsheetML format expresses the entire document in a single

XML document (in which each worksheet is a node), the XSLX format uses a

separate XML document for each worksheet. The end result is that the XSLX file

format is very powerful, though it’s also more complex to create from within an

ASP.NET application. That’s why you’ll want to use the ExcelPackager, which is

available on CodePlex.6 OpenXmlDeveloper.org (sponsored by Microsoft) offers

sample code that demonstrates the use of ExcelPackager to generate XSLX in a

server-based application.7

Summary
A lot of the features we used to bolt onto the DataGrid come standard with the

GridView. If you need to accomplish something GridView doesn’t offer, you’ll find

that it’s usually fairly easy to add the functionality—most of these tips, for example,

didn’t require much code.

We hope this chapter showed you more than a few slick tips for jazzing up GridView,

and that you now feel confident to use the general techniques for extending this

control.

6 http://www.codeplex.com/ExcelPackage/
7 http://openxmldeveloper.org/articles/Creating_Spreadsheets_Server.aspx

http://www.codeplex.com/ExcelPackage/
http://openxmldeveloper.org/articles/Creating_Spreadsheets_Server.aspx
http://www.codeplex.com/ExcelPackage/
http://openxmldeveloper.org/articles/Creating_Spreadsheets_Server.aspx

Chapter5
Form Validation
It’s a commonly held belief that the point of validating user input is to ensure that

valid, accurate data is entered into your database. To some degree this may be true,

but search your user database for the number of users named Mickey Mouse and

you’ll soon realize that a determined user can always pass your validation rules

with inaccurate data.

The real objective of form validation is to help users who want to enter accurate

information to do so as easily as possible, while making as few mistakes as possible.

For example, if you validate an email address, you may catch a typo that the user

entered inadvertently. If you do so without requiring a post back to the server, you’ve

made it easier for the user to enter valid information.

This chapter quickly reviews the basics of form validation before discussing some

common and important tasks that must be addressed when you’re implementing

your own form validation controls.

160 The ASP.NET 2.0 Anthology

How do I validate form input?
Let’s start with the most basic example of ASP.NET form validation. Figure 5.1

shows a simplified version of a form that’s extremely common on the web: the re

gistration form. In a real application, the form would likely have more fields and

validation rules, but the general principles we’ll demonstrate here are common to

most forms.

Figure 5.1. A simple form

For the purpose of this demonstration, the Username, Password, and Repeat Password

are required fields. We’ll also make sure that the Password and Repeat Password match

exactly. The Zip field is not required, but if it’s not left blank, we will make sure it

has a valid zip code format (five digits optionally followed by a dash and four more

digits).1

When the user clicks the Submit button, the page displays a red asterisk next to each

invalid input and presents a list of error messages above the form.

1 This example is designed for U.S. sites only. For international sites, we’d replace the zip code with a

postal code and change the validation rule accordingly.

Form Validation 161

This example demonstrates the use of only a small selection of the validation con

trols. Visit the MSDN site to read up on the complete set of controls that come with

ASP.NET.2

Solution
The following snippet shows the ASPX markup for the page:

SimpleForm.aspx (excerpt)

<asp:ValidationSummary ID="vldMessages" runat="server" />

 <label for="txtUsername">Username:</label>
 <asp:TextBox ID="txtUsername" runat="server" />
 <asp:RequiredFieldValidator ID="vldUsernameRequired"

runat="server"
Text="*"
 ErrorMessage="Username is Required"
ControlToValidate="txtUsername" />

 <label for="txtZip">Zip:</label>
 <asp:TextBox ID="txtZip" runat="server" />
 <asp:RegularExpressionValidator ID="vldZip"

runat="server"
ValidationExpression="\d{5}(-?\d{4})?"
 ErrorMessage="The zip code is not valid."
 Text="*"
 ControlToValidate="txtZip" />

 <label for="txtPassword">Password:</label>
 <asp:TextBox ID="txtPassword" runat="server"

TextMode="Password" />
 <asp:RequiredFieldValidator ID="vldPasswordRequired"

runat="server"
ErrorMessage="Password is Required"
 Text="*"
 ControlToValidate="txtPassword" />

2 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconASPNETSyn

taxForValidationControls.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconASPNETSyntaxForValidationControls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconASPNETSyntaxForValidationControls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconASPNETSyn-

162 The ASP.NET 2.0 Anthology

 <label for="txtPasswordRepeated">Repeat Password:</label>

 <asp:TextBox ID="txtPasswordRepeated" runat="server"

 TextMode="Password" />

 <asp:CompareValidator ID="vldPasswordsMatch"

runat="server"

ErrorMessage="The passwords do not match"

 Text="*"

 ControlToValidate="txtPassword"

ControlToCompare="txtPasswordRepeated" />

 <asp:Button ID="btnSubmit" runat="server"

Text="Submit"

OnClick="btnSubmit_Click" />

The code-beside file is very simple. We just need to make sure that when the Submit

button is clicked, we call the Validate method of the page:

SimpleForm.aspx.cs (excerpt)

public partial class ValidationExample : System.Web.UI.Page
{
 protected void btnSubmit_Click(object sender, EventArgs e)
 {
 if(Page.IsValid) //Calls Page.Validate()
 {
 //Register user.

 }
 }
}

When the Validate method is called, the page will recursively iterate through every

control on the page looking for any control that implements the IValidator interface.

The page then calls the Validate method on each of the validator controls it finds;

this sets the IsValid property on each validator.

Form Validation 163

The ValidationSummary control’s list of error messages will include the value of

the ErrorMessage property of each validator control that’s found to be invalid.

Why Validate Again on the Server?

One question developers often ask about validator controls is, “Why do the controls

validate on the server even when client-side validation is enabled?”

Client-side validation is for the benefit of the user and should never be used in

place of server-side input validation. Any users who want to bypass client-side

validation can do so very easily by turning off JavaScript, or even by replacing

the validation functions on our live page within the context of their browsers.

Add to this the fact that bots and other automated attacks won’t have a JavaScript

engine, and you begin to understand why relying on JavaScript for the validation

of your data is foolish at best. The simple rule of thumb is “Never trust user input,”

regardless of where that input originates.

Discussion
The possible variations in the ways you can display form validation messages are

innumerable. In the previous example, we displayed a red asterisk next to each

field in which an error was detected, and used the ValidationSummary control to

display a list of error messages on the page.

Some site owners prefer to display error messages next to the invalid input. This

is easily accomplished by removing the ValidationSummary control and the Text

attribute of each validator. Here’s the code that demonstrates this technique:

SimpleFormWithSideMessages.aspx (excerpt)

 <label for="usernameTextBox">Username:</label>
 <asp:TextBox ID="usernameTextBox" runat="server" />
 <asp:RequiredFieldValidator ID="usernameRequiredValidator"

runat="server"ErrorMessage="Username is Required"
 ControlToValidate="usernameTextBox" />

 <label for="zipTextBox">Zip:</label>
 <asp:TextBox ID="zipTextBox" runat="server" />
 <asp:RegularExpressionValidator ID="zipValidator"

164 The ASP.NET 2.0 Anthology

runat="server" ValidationExpression="\d{5}(-?\d{4})?"

ErrorMessage="The zip code is not valid."

 ControlToValidate="zipTextBox" />

 <label for="passwordTextBox">Password:</label>

 <asp:TextBox ID="passwordTextBox" runat="server"

TextMode="Password" />

 <asp:RequiredFieldValidator ID="passwordRequiredValidator"

 runat="server"

ErrorMessage="Password is Required"

ControlToValidate="passwordTextBox" />

 <label for="passwordRepeatedTextBox">Repeat Password:</label>

 <asp:TextBox ID="passwordRepeatedTextBox" runat="server"

 TextMode="Password" />

 <asp:CompareValidator ID="passwordCompareValidator"

runat="server" ErrorMessage="The passwords do not match"

 Operator="Equal" ControlToValidate="passwordTextBox"

 ControlToCompare="passwordRepeatedTextBox" />

 <asp:Button ID="submitButton" runat="server" Text="Submit"

 OnClick="submitButton_Click" />

You can see the result of this approach in Figure 5.2.

Form Validation 165

Figure 5.2. Displaying form input errors

How do I validate multiple forms?
A persistent search box is a handy widget to offer on a web site, which explains

why search boxes are among the universal layout elements on so many web sites.

The SitePoint web site shown in Figure 5.3 is a case in point—the search box appears

in the header of the site.

In ASP.NET 1.1, many developers ran into a problem with the “One Method to

Validate them All” approach when attempting to implement a search box on a page

that included another form. The granularity of form validation in ASP.NET 1.1 is

at its finest at the page level. So, when the user clicks the Search button, you’ll want

to validate the search box input, but validators for all other forms on the page will

also be run concurrently.

Certainly, there are some workarounds for this scenario that are easy to implement,

but there are many circumstances in which developers want to add multiple forms

to a page, and have each of them validate independently.

166 The ASP.NET 2.0 Anthology

Figure 5.3. A search field in the header of SitePoint’s homepage

Solution
Luckily, ASP.NET 2.0 provides validation groups to solve this very problem. Let’s

see how they work. The following snippet is the stripped down markup for an ASPX

page with a single form:

WithoutValidationGroupExample.aspx (excerpt)

<p>
 <asp:ValidationSummary ID="vldMessages" runat="server" />
</p>
Search: <asp:TextBox id="txtSearch" runat="server" />
<asp:RequiredFieldValidator ID="vldSearchRequired" runat="server"

 ErrorMessage="Search" ControlToValidate="txtSearch"/>
<asp:Button ID="btnSearch" runat="server" Text="Search"

OnClick="btnSearch_Click" />

Form Validation 167

 <label for="txtFirstName">First Name:</label>

 <asp:TextBox ID="txtFirstName" runat="server" />

 <asp:RequiredFieldValidator ID="vldFirstRequired"

 runat="server" ErrorMessage="First Name"

ControlToValidate="txtFirstName" />

 <label for="txtLastName">Last Name:</label>

 <asp:TextBox ID="txtLastName" runat="server" />

 <asp:RequiredFieldValidator ID="vldLastRequired"

runat="server" ErrorMessage="Last Name"

 ControlToValidate="txtLastName" />

 <asp:Button ID="btnSubmit" runat="server" Text="Submit"

OnClick="btnSubmit_Click" />

Let’s take a quick look at the code-beside file:

WithoutValidationGroupExample.aspx.cs

public partial class ValidatorsExample : System.Web.UI.Page
{
 protected void btnSubmit_Click(object sender, EventArgs e)
 {
 if(Page.IsValid) //Calls the Page.Validate() method.
 {
 //Do Search…

 }
 }
 protected void btnSearch_Click(object sender, EventArgs e)
 {
 if(Page.IsValid)
 {
 //Submit User Info…

 }
 }
}

168 The ASP.NET 2.0 Anthology

Ideally, we’d like this page to be divided into two logical forms—the search form

on top, and the form that collects user information beneath it.

If we load this page into the browser and submit the Search form, we’ll see a result

that looks like Figure 5.4.

Figure 5.4. Validating both forms simultaneously

Notice that we receive an error message for the First Name and Last Name fields.

We’re used to seeing this behavior in ASP.NET 1.1, where calling the Page.Validate

method will validate every Validator control on the page.

Fortunately, ASP.NET 2.0 introduces the ValidationGroup attribute. By applying

this attribute to our form controls, we can create logical groupings of form elements.

Let’s revisit the ASPX markup for this page and create two validation groups. We’ll

call the first group Search and apply this to the Search textbox and button:

Form Validation 169

ValidationGroupExample.aspx (excerpt)

Search: <asp:TextBox id="txtSearch" runat="server"
ValidationGroup="Search" />

<asp:RequiredFieldValidator ID="vldSearchRequired" runat="server"
 ErrorMessage="Search"
 ControlToValidate="txtSearch"
ValidationGroup="Search" />

We’ll call the second group UserForm and apply it to the other form inputs:

ValidationGroupExample.aspx (excerpt)

 <label for="txtFirstName">First Name:</label>
 <asp:TextBox ID="txtFirstName" runat="server"

ValidationGroup="UserForm" />
 <asp:RequiredFieldValidator ID="vldFirstRequired"

runat="server" ErrorMessage="First Name"
ControlToValidate="txtFirstName"
ValidationGroup="UserForm" />

 <label for="txtLastName">Last Name:</label>
 <asp:TextBox ID="txtLastName" runat="server"

ValidationGroup="UserForm" />
 <asp:RequiredFieldValidator ID="vldLastRequired"

runat="server" ErrorMessage="Last Name"
ControlToValidate="txtLastName"
ValidationGroup="UserForm" />

 <asp:Button ID="btnSubmit" runat="server" Text="Submit"

OnClick="btnSubmit_Click"
ValidationGroup="UserForm" />

170 The ASP.NET 2.0 Anthology

Don’t Forget the Validation Group

Remember to apply the ValidationGroup attribute to the form inputs (such as

TextBox, RadioButtonList, etc.) as well as the Button control that should

trigger the validation (CausesValidation property set to true) for those inputs.

It’s common to forget to tell ASP.NET for which group a Button should trigger

validation.

Once we’ve saved this change, we won’t not need to change the code beside at all.

Simply refresh the page, and when you perform a search, you’ll see the result shown

in Figure 5.5.

Figure 5.5. Forms validating independently thanks to ValidationGroup

Searching for Waldo no longer triggers the validation controls for First Name and Last

Name.

How do I set up custom validation?
The basic validator controls are great for validating simple input, as they provide

the validation logic for free, but they won’t work in every situation. Consider, for

example, a page that allows the user to change the PIN (or personal identification

number) used to access a web site. For the sake of demonstration, we will keep this

page extremely simple, as Figure 5.6 shows.

Form Validation 171

Figure 5.6. Our one-field form

See? It’s very simple. However, we do need to apply some business logic here. For

example, the user must enter between four and eight digits, and may not change

the PIN to any of the last three PINs that he or she used.

We could simply use a RegularExpressionValidator to enforce the first of those

rules. But for the second, we’ll need to execute some custom logic.

Solution
The CustomValidator allows you to execute custom server-side logic in order to

validate a field. Let’s walk through the ASPX markup for this PIN submission page:

CustomValidatorExample.aspx (excerpt)

<div>
 <asp:Label ID="pinLabel" runat="server" Text="PIN:"

AssociatedControlID="pinTextBox" />
 <asp:TextBox ID="pinTextBox" runat="server" />
 <asp:RegularExpressionValidator ID="pinDigitValidator"

runat="server" ControlToValidate="pinTextBox"
ErrorMessage="Pin must contain four to eight digits"
ValidationExpression="\d{4,8}" />

 <asp:CustomValidator ID="pinCustomValidator"
runat="server" ErrorMessage="You used that PIN recently."
ControlToValidate="pinTextBox"
OnServerValidate="pinCustomValidator_ServerValidate"

172 The ASP.NET 2.0 Anthology

ClientValidationFunction="isValidPin" />

 <p>

 <asp:Button ID="submitButton" runat="server"

Text="Change PIN" />

 </p>

</div>

In this example, we’ve added a CustomValidator control to the page and set its

ControlToValidate property to point to txtPin. The OnServerValidate handler

requires a server-side event handler for the ServerValidate event.

The CustomValidator’s ControlToValidate Property

Notice that we set the ControlToValidate property to point to another control

on the page. Strictly speaking, this is not necessary—it merely populates the Value

property of the ServerValidateEventArgs instance passed to the validation

method. However, nothing prevents you from accessing the properties of any of

the controls directly. For example, if you need to compare the content of two text

boxes, you can access them both via the validator method and leave the

ControlToValidate property blank.

The ServerValidate event handler must have the following method signature:

void OnServerValidate(object source, ServerValidateEventArgs args)

The method takes in two parameters. The first is of type object and contains a ref

erence to the custom validator itself. The second is of type ServerValidateEventArgs

and contains information about the custom validation event.

The class ServerValidateEventArgs has two properties:

Value if set, contains the value of the form field we are validating

IsValid used to indicate whether or not the form data is valid

To implement a ServerValidate event handler, we perform our custom validation

logic and set the IsValid of the ServerValidateEventArgs to true if the input is

valid; otherwise, we set it to false.

Form Validation 173

The following code demonstrates this approach within our PIN changing example.

In order to simulate the storage of the last three PINs used in the database, we simply

store a Queue in the Session. When the user submits a PIN, we check the Queue to

see if the PIN exists. If it does, we set the ServerValidateEventArgs.IsValid

property to false. If the PIN does not exist, we add the PIN to the Queue, making

sure to keep the Queue within a maximum size of three:

CustomValidatorExample.aspx.cs (excerpt)

protected void pinCustomValidator_ServerValidate(object source,
ServerValidateEventArgs args)

{
 Queue<string> pins = Session["Pins"] as Queue<string>;
 if (pins == null)
 {
 pins = new Queue<string>(3);
 Session["Pins"] = pins;

 }
 foreach(string pin in pins)
 {
 if(pin == args.Value)
 {
 args.IsValid = false;
 return;

 }
 }
 if (pins.Count == 3)
{
 pins.Dequeue();
 pins.Enqueue(args.Value);

 }
}

Discussion
Before we move on, there’s an important point that you might like to note about

this example. A mistake that’s easy to make when we’re using validators is to forget

that, except for RequiredFieldValidator, the validators only validate controls

when the value of the control is not empty.

So, if you leave the PIN field empty in this example, the custom validator control

will not fire. In addition to the CustomValidator control, we should also use the

174 The ASP.NET 2.0 Anthology

RequiredFieldValidator control to ensure that the PIN is not empty. It’s common

to use multiple validator controls to validate a single field in this way.

How do I perform custom client-side
validation?
Validator controls support the validation of form fields on the client via Java-

Script—an approach that can save the user from waiting on round-trips to the

server. However, since we can never fully trust the browser, the server-side logic

for every validator still fires on PostBack even if the client script deems the form

field to be valid. This is a prudent security measure.

ASP.NET 2.0 has some great client-side validation features—so great, in fact, that

we’d be crazy not to take advantage of them in our PIN example. So, just how do

we validate the control on the client?

Solution
In the same way that we provide a server validation function, we can also specify

a client validation function through the aptly named ClientValidationFunction

property. Let’s add this to our earlier example:

CustomValidatorExample.aspx (excerpt)

<asp:CustomValidator ID="pinValidator" runat="server"
ErrorMessage="You used that PIN recently."
ControlToValidate="pinTextBox"
OnServerValidate="pinValidator_ServerValidate"
 ClientValidationFunction="isValidPin" />

We now need to write the JavaScript function that will validate this control. Keep

in mind that the client-side validation function is sent to the browser, so we defin

itely do not want to send the user’s last three PINs embedded as values in the

function. One way to handle this potential security hole would be to use the

XMLHttpRequest object, as shown below.

Form Validation 175

The Difference Between XMLHttp and XMLHttpRequest

The XMLHttp object was first introduced by Microsoft in Internet Explorer 5 as

an ActiveX control. Since then, it’s been adopted by every major browser under

the name XMLHttpRequest. As of Internet Explorer 7, Microsoft’s implementation

matches that of Firefox, Opera, and Safari and is no longer dependent on ActiveX.

The XmlHttpRequest object enables JavaScript to make an Ajax request—we’ll

look at Ajax in more detail in Chapter 10.

CustomValidatorExample.aspx (excerpt)

<script type="text/javascript">
function isValidPin(source, args)
{
 var pin = args.Value;
 var xmlhttp;
 if (window.XMLHttpRequest)
 {
 // if IE 7, Mozilla, Safari, Opera, etc.
 xmlhttp = new XMLHttpRequest()

 }
 else if (window.ActiveXObject)
 {
 // use the ActiveX control for IE 5.x and IE 6
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP")

 }
 xmlhttp.open('GET', '/IsPinValid.aspx?pin=' + pin, false);
 xmlhttp.send(null);
 args.IsValid = eval(xmlhttp.responseText);
}
</script>

This script makes an XMLHttpRequest call to a page named IsValidPin.aspx, and adds

a timestamp string to the request URL to ensure that we never receive cached results.

The code for the page checks the validity of the PIN and writes either true or false

to the response, as you can see below.

176 The ASP.NET 2.0 Anthology

Dealing with Sensitive Data

You may be asking yourself why we didn’t just append the PIN to the request URL

in the previous example. The reason is simple, and very important: for the sake

of security. If you were to submit a PIN via GET (that is, by placing it in the request

URL), it would appear as plain text in server and proxy logs, compromising your

customer’s privacy and putting you in a prime position to face legal action in a

worst-case scenario.

When you’re dealing with private customer information, such as PINs, it’s essential

that your form and processing pages are served from an HTTPS server, otherwise

the information is transferred in plain text, which can be spied on by malicious

hackers during transit.

InPinValid.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e){
 string pinFromJS = Request.Form["pin"];
 Queue<string> pins = Session["Pins"] as Queue<string>;
 if (pins != null)
 {
 foreach (string pin in pins)
 {
 if (pin == pinFromJS)
 {
 Response.Write("false");
 return;

 }
 }

 }
 Response.Write("true");
}

The response from this page is evaluated by the following line of code in the client

validation function:

CustomValidatorExample.aspx (excerpt)

 args.IsValid = eval(xmlhttp.responseText);

Form Validation 177

Discussion
Notice that the method signature for the client validation function is very similar

to its server-side equivalent. The code for these methods is basically the same too.

Such code duplication is one drawback of this approach. However, various methods

are available to help us avoid duplicating code between the client and server. One

approach uses an Ajax request to call from the client script the method we use for

server-side validation. Another approach is to generate the client script using the

server-side code—an experimental approach that Nikkhil Kothari takes with his

Script# framework.3

How do I build my own validator control?
The CustomValidator control can handle just about every validation scenario you

can throw at it. You’d be forgiven if you stopped right there and read no further in

this chapter. However, I should warn you that the CustomValidator control is not

a panacea.

At some point, you’re going to want to reuse that validation logic on another page,

or even another site. Perhaps a fellow developer admires the work you’ve done and

wants to use that validation logic in his or her own project. Cutting and pasting the

control declaration and associated back-end code will be a real pain. Is there a better

solution?

Solution
There is! When you want to reuse or share validation logic, building your own

validator control is the way to go. It’s common to refer to any Validator control

that you build as a custom validator control.

3 http://www.nikhilk.net/ScriptSharpIntro.aspx

http://www.nikhilk.net/ScriptSharpIntro.aspx
http://www.nikhilk.net/ScriptSharpIntro.aspx

178 The ASP.NET 2.0 Anthology

Custom Validator Versus CustomValidator

Be careful not to confuse a custom validator control with the CustomValidator

control. Unfortunately, these two concepts share very similar names, so it’s easy

to get the two mixed up.

In this section, when we use the two words together—CustomValidator—we’re

speaking of the ASP.NET validator control included with ASP.NET. When we

talk about a custom validator, we’re referring to a validator control written by a

third party, such as yourself, in order to provide custom validation.

Before we get started, we need to make a choice about how we’ll implement our

validator. The basic interface that all validators implement is the Sys

tem.Web.UI.IValidator interface:

public interface IValidator

{

 void Validate();

 string ErrorMessage { get; set; }

 bool IsValid { get; set; }

}

Technically speaking, this is the only interface your validator control needs to im

plement in order to hook into the validation framework. But you’ll notice that this

interface doesn’t provide you with the value of the control to validate. You’ll need

to use reflection to obtain that value. Using reflection introduces processing overhead

and is worth avoiding unless your application can gain substantially from it.

Fortunately, there’s a better approach to validation that works in most situations.

By having your class inherit from the abstract BaseValidator class instead, you’ll

be free to focus on your validation logic and not worry about the validation

plumbing.

BaseValidator has one abstract method that you must imple

ment—EvaluateIsValid, which has the following method signature:

protected abstract bool EvaluateIsValid();

http:ASP.NET

Form Validation 179

ASP.NET uses the result of this method to determine whether a form input is valid

or not. BaseValidator also defines many methods and properties that are useful

for implementing a validator control.

For example, to find out the name of the control you’re validating, you can look at

the ControlToValidate property. To get the value of the control you’re validating,

call the GetControlValidation method. Let’s put all this together in the implement

ation of our custom PIN validation control:

PinValidator.cs (excerpt)

public class PinValidator : BaseValidator
{
 protected override bool EvaluateIsValid()
 {
 Queue<string> pins = HttpContext.Current.Session["Pins"]

as Queue<string>;
 if (pins == null)
 {
 pins = new Queue<string>(3);
 HttpContext.Current.Session["Pins"] = pins;

 }
 string pinFromForm = GetControlValidationValue(

ControlToValidate);
 foreach (string pin in pins)
 {
 if (pin == pinFromForm)
 {
 return false;

 }
 }
 if (pins.Count == 3)
{
 pins.Dequeue();

 }
 pins.Enqueue(pinFromForm);
 return true;s

 }
}

Now we can drop the PinValidator control onto any page, set its

ControlToValidate property, and reuse this validation logic anywhere.

180 The ASP.NET 2.0 Anthology

How do I perform client-side validation
with my custom validator control?
We’re not quite done with the control we defined in the section called “How do I

build my own validator control?” just yet—we haven’t dealt with client-side valid

ation in our custom validator control.

As we saw in the introduction to this chapter, the primary purpose of form validation

is to make it easy for the user to enter accurate data. If we require the user to submit

a form and wait for the post back to find out whether or not a field is valid, we’ve

raised the difficulty and annoyance factors for the user.

However, if we do as much validation as possible on the client, via JavaScript, the

application appears more responsive and the user remains happy.

With that in mind, let’s delve into the task of building client-side validation for a

custom validator control.

Solution
This solution assumes that you’ve already written a custom validator control with

working server-side validation logic, like the one we developed in the section called

“How do I set up custom validation?”. Here, we’re going to focus on the steps neces

sary to add client-side validation logic.

The process of adding client-side validation logic to our custom validator control

takes three steps, which we will cover in more detail in a moment:

1. Write a JavaScript validation function.

2. Make sure the JavaScript validation function is available anywhere the control

is used.

3. Register the client validation function with the validation framework.

Understanding the Client Validation Function
In the previous section, we wrote a client validation function referenced by a Cus

tomValidator control. The client validation function for a custom validator control

will look similar, but not exactly the same.

Form Validation 181

For this function to be able to be called by the ASP.NET Form Validation framework,

it needs to have the following signature:

function FunctionName(val)

{

 //Return true or false based on validation logic.

 return true|false;

}

As you can see from the method signature, the client validation function takes in a

parameter and returns either true or false depending on whether or not the input

is valid.

The parameter for this method represents the custom validator control. To get the

value of the control we’re validating, we use the ValidatorGetValue method. Here’s

the full code for the client validation function:

PinValidatorEvaluateIsValid.js (excerpt)

function PinValidatorEvaluateIsValid(val)
{
 var pin = ValidatorTrim(

ValidatorGetValue(val.controltovalidate));
 var xmlhttp;
 if (window.XMLHttpRequest)
 {
 xmlhttp = new XMLHttpRequest()

 }
 else if (window.ActiveXObject)
 {
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }
 var date = new Date();
 var pinParam = "pin="+pin;
 xmlhttp.open('POST', '/FormValidation/IsPinValid.aspx?rnd='

 +date.getTime(), false);
 xmlhttp.setRequestHeader('Content-Type',

 'application/x-www-form-urlencoded');
 xmlhttp.send(pinParam);
 return eval(xmlhttp.responseText);
}

182 The ASP.NET 2.0 Anthology

As in the previous solution, this code makes an XMLHttpRequest request to a page

to determine the validity of the user-specified PIN. If you were to use this code in

a project, you’d be wise to consolidate your XMLHttpRequest conditional logic in a

function and call it when you need a new instance, like so:

function getXmlHttp ()

{

 var xmlhttp;

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest()

 }

 else if (window.ActiveXObject)

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 return xmlhttp;

}

//usage:

var httpRequest = getXmlHttp();

Embedding the Client Validation Function
Now that we’ve written our client function, we need to make sure it’s available on

any page that uses this control. We could place this script in a .js file and expect

the developer to remember to link to the script using the script element in any

page where the developer calls the function, but that solution wouldn’t be very re

usable.

Instead, we want the control to cause the page to render a link to the script automat

ically. We can accomplish this easily by embedding the script as a web resource—a

static file that is embedded into an assembly, and is therefore available for your

pages to reference.4

One common strategy for handling such resources is to create a Resources folder in

your project as the root folder for embedded resources. In Figure 5.7, you can see

that I’ve added a Scripts folder to contain embedded scripts. This folder contains

4 While a complete discussion of the ins and outs of web resources is beyond the scope of this book, if

you’re interested in exploring the web resources feature of ASP.NET 2.0, the article “Working with Web

Resources in ASP.NET 2.0” should serve you well. [http://support.microsoft.com/kb/910442/]

http://support.microsoft.com/kb/910442/
http://support.microsoft.com/kb/910442/
[http://support.microsoft.com/kb/910442/]

Form Validation 183

the file PinValidatorEvaluateIsValid.js, which contains the method we wrote in the

previous solution.

Figure 5.7. The project’s directory structure

After you add this file to the Scripts directory, select the file and make sure the Build

Action is set to Embedded Resource, as shown in Figure 5.8.

Figure 5.8. Adding our validation function as an Embedded Resource

http:PinValidatorEvaluateIsValid.js

184 The ASP.NET 2.0 Anthology

We need to register this web resource via the WebResourceAttribute assembly-level

attribute as shown here:

[assembly: WebResource("SitePoint.Cookbook.Resources.Scripts.PinVali

➥datorEvaluateIsValid.js", "text/javascript")]

This assembly-level attribute can be placed in any class within the assembly in

which it resides. I prefer to place it within the control that uses the resource, but

others may prefer to put it within AssemblyInfo.cs.

This attribute tells ASP.NET that it’s safe to make the resource described in the at

tribute value accessible via a URL. Finally, we need to register this resource so that

ASP.NET will render a proper script element using the URL described in the call

to WebResource. The OnPreRender method is a good place to do this:

PinValidator.cs (excerpt)

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);
 if(EnableClientScript)
 {
 string scriptUrl = Page.ClientScript.GetWebResourceUrl(

 this.GetType(),
"FormValidationExamples.Resources.Scripts.PinValidatorEvalua
➥teIsValid.js");

 if (!Page.ClientScript.IsClientScriptIncludeRegistered(
 "PinValidatorEvaluateIsValid"))

 {
 Page.ClientScript.RegisterClientScriptInclude(this.GetType(),

"PinValidatorEvaluateIsValid", scriptUrl)
 }

 }
}

Registering the Client Validation Function
Great! Our client validation script will be included on the page. But how does the

client validation framework know to call our client validation method when it’s

time to validate the form input?

http:AssemblyInfo.cs

Form Validation 185

We need to register the method by adding the evaluationfunction attribute to our

validator control within the AddAttributesToRender method:

PinValidator.cs (excerpt)

protected override void AddAttributesToRender(
 HtmlTextWriter writer)

{
 base.AddAttributesToRender(writer);
 if(RenderUplevel)
{
 Page.ClientScript.RegisterExpandoAttribute(this.ClientID,

"evaluationfunction", "PinValidatorEvaluateIsValid");
 }
 else
 {
 writer.AddAttribute("evaluationfunction",

"PinValidatorEvaluateIsValid");
 }
}

The ClientScriptManager.RegisterExpandoAttribute method call probably de

serves an explanation. This method uses JavaScript to add custom properties (or

attributes) to an element in the DOM.

We can add attributes to an element in two ways. The first is to simply render the

attributes in the HTML like so:

<span id="vldPin"

evaluationfunction="PinValidatorEvaluateIsValid" />

One problem with this approach is that evaluationfunction is not a valid attribute

of the span element. However, by calling ClientScriptManager.RegisterExpan

doAttribute, the evaluationfunction attribute is added to the span through

JavaScript. This renders the following HTML for the validator control:

The JavaScript that adds the evaluationfunction attribute looks like this:

186 The ASP.NET 2.0 Anthology

<script type="text/javascript">

 var vldPin = (document.getElementById) ?

document.getElementById("vldPin") :

 document.all["vldPin"];

 vldPin.controltovalidate = "txtPin";

 vldPin.errormessage = "You used that PIN recently.";

 vldPin.evaluationfunction = "PinValidatorEvaluateIsValid";

</script>

Preparing Custom Controls for Validation

We’ve learned how to build custom validator controls that are useful for validating

standard form controls. But what happens when you try to validate a composite

control that you’ve built?

Perhaps the “value” of your control is composed of the values of several controls,

or is based on a click selection such as the Calendar control. How do you use

the validation controls with your custom control?

You’ll need to add the ValidationPropertyAttribute to the start of your

class to specify which property of your control is the “value” of the control for

the purposes of validation. The following code snippet demonstrates this point:

[ValidationProperty("MyControlValue")]

Also, our client-side validation function will look for an attribute named value.

You can use the ever-useful

ClientScriptManager.RegisterExpandoAttribute method to supply this

value as follows:

RegisterExpandoAttributeExample.aspx (excerpt)

ClientScriptManager.RegisterExpandoAttribute(this.ID,
"value", MyControlValue);

Figure 5.9 shows our new custom validator control in action. We need to seed the

control by submitting a couple of PINs (I’ve added 1234 and 1235). Afterwards, we

can clear the textbox, type in “1234”, and then press Tab and wait a moment to see

the client validation at work.

Form Validation 187

Figure 5.9. Our new custom validator control in action

Summary
The solutions we covered in this chapter range from the simple validation of required

fields, to the challenge of validating input based on complex custom business rules.

In all cases, the goal of validation is to make it easy and pleasant for the user to

enter accurate information into the form.

One common theme we’ve seen among the validator controls we’ve worked with

in this chapter is that they all provide a means to validate data on both the client

and server sides. Validating data on the client side using JavaScript provides a

smooth user experience, while validating on the server side helps to keep bad data

entered by malicious user agents out of our databases.

You now have the tools to build a rich library of reusable custom validator controls

for validating various user inputs that are specific to your business needs.

Chapter6
Maintaining State
The Web is built upon HTTP—a stateless protocol. But what exactly do the terms

“state” and “stateless” mean?

The state of a web application is a sort of snapshot of an application’s configuration

values, which change over time. The fact that HTTP is stateless means that it does

not have the mechanism for maintaining any kind of history of a user’s interactions

with your application. When you make a request for a web page, and the server

sends a response back, that connection to the web server is closed. The transaction

is over. The very next request of the server could come from anyone, anywhere,

and HTTP wouldn’t know the difference between one request and the next. This is

the typical way in which requests are made over the Web, which is why it’s seen

as being stateless.

Yet we experience state all the time when we work with web applications—when

I add an item to a shopping cart, the next page on the site shows that item’s still in

the cart. If the Web we use is truly stateless, how is this information maintained?

Web developers work around the limitations of a stateless Web by storing state-re

lated information at the application level. Some of this information is sent in small

190 The ASP.NET 2.0 Anthology

chunks between the browser and the server; these bits of data are more commonly

known as cookies. Cookies contain identifiable data that informs the server about

the source of the request and whether the request is part of a multi-request operation.

In other instances, the application maintains state by storing information within

hidden form fields, and then posting that data back to the server on subsequent re

quests.

ASP.NET provides many different means for maintaining state at all levels, from

global application state to the state of a single request. Let’s look at how to make

sense of all the options available to you as an ASP.NET developer.

How do I maintain per-request state in a
web application?
A request—also known as a “hit”—refers to the process by which a user’s browser

asks the web server for an object. That object may be an HTML file, an image, a

script, or some other media file. Per-request state is therefore state that’s stored

during the processing of a single request. Let’s look at how per-request state is

maintained in an ASP.NET application.

Solution
In ASP.NET 2.0, the Page class contains an Items property that allows you to store

data as name-value pairs in a similar manner to the HttpContext object's Items

property. Using the Page.Items property, you can store data for a request within

the scope of the page. You can therefore retrieve the data from within the page or

from any control nested in that page.

The following code measures the time between the point at which ASP.NET calls

our page’s OnInit method and the moment it calls a control’s OnPreRender method.

It measures this time frame by storing a DateTime value during the initialization of

the page, and then calculating the difference between it and the current time within

the OnPreRender method:

Maintaining State 191

State.aspx.cs (excerpt)

public partial class Default : System.Web.UI.Page
{
 protected override void OnInit(EventArgs e)
 {
 Page.Items["InitTime"] = DateTime.Now;
 base.OnInit(e);

 }
 protected override void OnPreRender(EventArgs e)
 {
 double elapsed = (DateTime.Now -

(DateTime)Page.Items["InitTime"]).TotalMilliseconds;
 Response.Write(elapsed + " seconds elapsed.");
 base.OnPreRender(e);

 }
}

If you paid attention as you read through this code, you might be wondering why

we didn’t use a private member variable in this case. Good question!

I chose to use Page.Items here purely for demonstration purposes. However, suppose

for a minute that we were performing the same calculation for a deeply nested

control within the Page’s control hierarchy. If we used a private member variable,

we’d need to pass the variable down the control hierarchy somehow to ensure it

was accessible within the scope of the nested control. Rather than passing the start

time to the control, we can instead store it in the Page.Items collection, so the

control can retrieve the value directly.

We can also accomplish this task with the HttpContext.Items property. One benefit

of using the HttpContext.Items property is that state for the current request can

be stored in the Items collection very early in the request life cycle. For example,

you might add an HTTP module to store the data you’re after during the

OnAcquireRequestState method, like so:

HttpModuleTest.cs (excerpt)

public void Init(HttpApplication context)
{
 context.AcquireRequestState +=

new EventHandler(context_AcquireRequestState);

192 The ASP.NET 2.0 Anthology

}

void OnAcquireRequestState(object sender, EventArgs e)

{

 HttpContext.Current.Items["AcquireRequestState"] = DateTime.Now;

}

With this information safely stowed away, you can use the HttpContext.Items

property to store the data, which can be included in various calculations. For in

stance, the calculation I’ve created below records the time that elapses between the

application acquiring request state and the initialization of the page:

PageInitialization.aspx.cs (excerpt)

protected override void OnInit(EventArgs e)
{
 if (HttpContext.Current.Items["AcquireRequestState"] != null)
 {
 DateTime acquired =

(DateTime) HttpContext.Current.Items["AcquireRequestState"];
 double interval = (DateTime.Now - acquired).TotalMilliseconds;

 }
}

Choosing Between Page.Items and HttpContext.Items

Don’t confuse Page.Items with the HttpContext.Items property. Unlike

other Page properties that are simply wrappers around similarly named

HttpContext properties, the Page.Items collection is not a wrapper to the

HttpContext variable—it bucks the convention established by properties such

as Request and User.

Personally, I think it’s best to avoid Page.Items in favor of HttpContext, as its

use has the potential to cause confusion. Besides, the HttpContext.Items

property has a slightly larger scope, so it’s more useful in the long run.

Maintaining State 193

How can I maintain session state in a
web farm using a state server?
In comparison with per-request state, which we looked at in the previous solution,

session state is state that’s maintained across a series of requests. The most useful

implementation of session state for a web application begins from the moment a

user begins to use the application (or logs in), and ends when the user leaves the

application (either by explicitly logging out, or by timing out due to inactivity).

The Session object is a useful container for storing user-specific data for the duration

of a user’s session on a web site. The Session object exists in memory by default,

which makes it extremely useful for storing information such as the contents of a

user’s shopping cart, or the step a user is currently at in a multi-step operation.

However, what happens when your application becomes enormously popular, and

you’re forced to load-balance your site across more than one server (in a so-called

web farm environment)? Storing session state in memory can be problematic—many

load balancers are not sticky, and should your server require rebooting, the inform

ation is lost anyway.

What is Sticky Load Balancing?

Sticky load balancing is the act of distributing user requests across multiple

servers so that requests from a given user are consistently sent to the same server.

The result of implementing sticky load balancing is that you are able to maintain

session state for all of your users, despite the fact that your application is distrib

uted across several machines.

We can use two approaches to maintain session state in a web farm environment.

One option is to use a state server, whereby all the session variables for the entire

web farm are stored on a single server. The other option is to store the session

variables in a database. We’ll see how to implement a state server in this solution,

and look at the database storage approach in the section called “How can I maintain

session state in a web farm using a database?”.

194 The ASP.NET 2.0 Anthology

Solution
Setting up a state server is fairly easy: first, be sure to set the same machineKey value

for each server in your web farm.

Setting the Machine Key

Whenever you set up a web farm, it’s generally a good idea to synchronize the

machineKey across every web server, whether you plan to implement a state

server or not—this element is also used by other features that make use of encryp

tion.

You’ll find the machineKey setting in the Web.config.comments file on each web

server. By default, the machineKey section looks like this:

<machineKey validationKey="AutoGenerate,IsolateApps"

 decryptionKey="AutoGenerate,IsolateApps"

validation="SHA1"

 decryption="Auto" />

To synchronize the machine keys, you’ll need to generate some keys and turn off

the AutoGenerate feature. The end result should look something like the following:

<machineKey validationKey="ABD2EE0B66...E566D8AC5D1C045BA60"

 decryptionKey="1F090935F6...67F451CE65D0F2ABE9B"

 validation="SHA1" />

Generating Machine Keys

The MSDN Documentation recommends using the RNGCryptoServiceProvider

class to generate strong keys, but this seems like a lot of unnecessary work to me.

It’s far easier to point your browser to the ASP.NET Resources online machineKey

generator.1 This online service will generate the entire machineKey section for

you!

The next step is to make sure that the ASP.NET state service is running. The service

is installed as part of the ASP.NET and .NET Framework installation, so, on the

1 http://aspnetresources.com/tools/keycreator.aspx

http://aspnetresources.com/tools/keycreator.aspx
http://aspnetresources.com/tools/keycreator.aspx
http://aspnetresources.com/tools/keycreator.aspx

Maintaining State 195

machine that will operate as your session state server, type the following command

at the command prompt (from any directory):

C:\> net start aspnet_state

This will start the service listening, by default, on port 42424.

Automatically Starting the State Server

If you’re using the state service, you’ll probably want it to start automatically—that

way, you don’t need to start it manually every time the machine reboots. Open

the Windows Services management console, and set the Startup type for the ASP.NET

State Service to Automatic.

Now add the following few lines into the system.web section of each web server’s

Web.config file, replacing StateServerName with the name of your server:

<sessionState mode="StateServer"

 stateConnectionString="tcpip=StateServerName:42424"

 cookieless="false"

 timeout="20" />

That’s it—you’ve configured your state server! However, there’s one final and very

important step that we need to take to ensure that our machines can pass requests

among each other.

Since we’re now storing session state on another machine rather than in memory,

we’ll need to make sure that every object we store in the session is serializable. The

failure to perform this step is probably the most common mistake that developers

make when implementing sticky load balancing.

ASP.NET handles the serialization of some of the primitive types such as int, byte,

decimal, string, and so on. For other objects, ASP.NET will attempt to use its built-

in BinaryFormatter to serialize the object. Be sure to mark your types as

[Serializable] to avoid an unwelcome surprise when you deploy your application

to the production environment.

If performance is crucial for your application, you may want to consider storing all

session state information using only primitive types. For example, suppose we were

196 The ASP.NET 2.0 Anthology

storing our session data in memory on a single server environment. Our code might

look something like this:

Person person = null;

if (Session["User"] != null)

{

 person = Session["User"] as Person;

}

Once we move to a web farm environment, we could instead use the following ap

proach, thus reducing the traffic and CPU cycles being sent to and from our state

server:

Person person = null;

if (Session["UserId"] != null)

{

 person = new Person((int)Session["UserId"]

 , (string)Session["UserName"]);

}

How can I maintain session state
in a web farm using a database?
In the previous topic, we explored how to set up out-of-process session state using

a state server. One of the disadvantages of using a state server is that, should the

server require rebooting, the session state for all users would immediately be lost.

An alternative approach to maintaining state in web farms is to store session state

in the application’s database.

Solution
There are several important steps to perform when you use a database for state

storage. Let’s work through them together.

Configuring SQL Server
The first step is to set up the necessary database tables within SQL Server. To start

the SQL Server Setup Wizard, type the following at the command prompt:

Maintaining State 197

C:\> aspnet_regsql -W

Alternatively, you can double-click the file aspnet_regsql.exe, located in the directory

%SystemDrive%\Windows\Microsoft.NET\Framework\version\, from within Windows

Explorer. Figure 6.1 shows the first screen of the wizard.

Figure 6.1. The ASP.NET SQL Server Setup Wizard

This wizard is used to install various ASP.NET features that rely on SQL Server.

Click the Next > button to move to the next step, shown in Figure 6.2.

198 The ASP.NET 2.0 Anthology

Figure 6.2. Configuring SQL Server to store session data

Since we’re installing the tables and scripts necessary for storing session data in

the database, select the first option and click Next >. You’ll be presented with the

database connection details screen shown in Figure 6.3.

Figure 6.3. Configuring database and user credentials

Maintaining State 199

Replace SERVERNAME with your database server name and fill in your connection

credentials. When you click Next >, you’ll see a confirmation screen and have one

last opportunity to change your mind before the wizard executes the script.

If you’re curious, the actual script that the wizard executes is named InstallSqlState.sql

and it’s located within the following directory: %SystemDrive%\Windows\Mi

crosoft.NET\Framework\version\.

When the wizard finishes its work, you’ll have a brand new database named ASP

STATE.

Configuring ASP.NET
The next step is to configure ASP.NET to use the database to store its session data.

Modify the sessionState section within the Web.config file to include a mode attrib

ute with a value of SQLServer as well as a database connection string, as follows:

<sessionState mode="SQLServer"

 sqlConnectionString=

 "Server=SERVERNAME;Trusted_Connection=True;"

 cookieless="false"

 timeout="20"/>

Trusted Connections

If you plan to use trusted connections to connect to the session state database,

take a moment to make sure that the user account you use to connect to the data

base has sufficient permissions to use that database.

This step is often overlooked because the developer (okay, this author) is liable

to forget that the session database is yet another database for which permissions

need to be set.

In this scenario, I would recommend avoiding impersonation (a configuration

setting that allows you to tell ASP.NET to run as particular user), because if you

do, you may not be able to take advantage of connection pooling to the session

database.

200 The ASP.NET 2.0 Anthology

The final step in the process is to make sure that every web server in the web farm

has the same application path (for example \LM\W3SVC\1). The Microsoft Knowledge

Base article Session State Is Lost in Web Farm goes into more detail on this issue.2

Discussion
The storing of session state in the database has a number of advantages:

■	 Session state can be persisted across user visits, which is useful for applications

that allow users to save their positions within a multistep operation.

■	 If SQL Server Clustering is employed, the storage of session state scales well in

comparison to using a simple state server.

■	 Session state persists even after a server reboot.

Disadvantages of this approach include:

■	 Storing session state in the database can increase the load on an already heavily

loaded database.

■	 Storing state in the database is significantly slower than using in-memory state

storage or a state server. However, the database storage approach is more scalable,

and has the potential to increase the overall performance of your application.

■	 As with the state server, all session objects that are stored in the database must

be serializable.

Even with the disadvantages I’ve acknowledged here, storing session state in a

database is an excellent option should you need to persist session state across user

visits and reboots. As with all architectural choices, the decision of where to store

your session state will depend upon a number of factors, such as the features your

application will offer its users, the number of concurrent users the application will

have at any time, and the budget you have available for buying extra hardware.

2 http://support.microsoft.com/default.aspx?scid=KB;EN-US;325056&ID=KB;EN-US;325056

http://support.microsoft.com/default.aspx?scid=KB;EN-US;325056&ID=KB;EN-US;325056
http://support.microsoft.com/default.aspx?scid=KB;EN-US;325056&ID=KB;EN-US;325056

Maintaining State 201

Where should I store application state?

A common question ASP.NET developers ask is where global data and global ap

plication state should be stored. The reason why this is such a common question

is that no absolutely correct answer is available. The answer to this—as to so many

of life’s questions—is, “well … it depends.”

That said, developers can follow certain guidelines to make sure they don’t store

application state in the wrong place. Where is the wrong place, you ask? The wrong

place is any location that makes using the data more challenging than it needs to

be.

Solutions
There are a couple of factors to consider when you’re storing global data:

frequency

The frequency with which the data needs to be changed is important—read

only global data is much easier to deal with than global data that can be both

read and written to.

concurrency

If the global data can be written to, then concurrency is also an extremely im

portant factor that will need to be taken into account.

Based on these factors, three avenues are available to us to store global data: static

variables, the cache, and application variables.

Storing Data in Static Variables
For read-only data that only needs to be created once (perhaps when the application

starts), but is read often, I recommend simply using a static private member. The

following code demonstrates the use of this approach using a collection of the

countries of the world.

Countries.cs (excerpt)

public sealed class CountryHelper
{
 private static ReadOnlyCollection<Country> _countries =

GetAllCountries();

202 The ASP.NET 2.0 Anthology

public ReadOnlyCollection<Country> Country

 {

 get

 {

 return _countries;

 }

 }

 private static ReadOnlyCollection<Country> GetAllCountries()

 {

 IList<Country> countries = new List<Country>();

 countries.Add(new Country("Afghanistan"));

 countries.Add(new Country("Albania"));

 countries.Add(new Country("American Samoa"));

⋮

 countries.Add(new Country("Zimbabwe"));

 return new ReadOnlyCollection<Country>(countries);

 }

}

With this code, the list of countries can be referenced in a thread-safe manner at

any time like so:

Console.WriteLine(CountryHelper.Countries.Count);

Our use of a ReadOnlyCollection<Country> class ensures that no one can change

this collection (for example, to add a new, non-existent country). However, one

drawback to using static private members is that the data is stored in memory until

the application is terminated. This mode of storage wastes memory if the volume

of data is large and not read frequently.

Storing Data in the Cache
The cache is a good place to store global data that may be accessed frequently. Let’s

look at an example:

CountryHelper.cs (excerpt)

public sealed class CountryHelper
{
 CountryHelper()
 {
 HttpContext.Current.Cache["countries"] =

Maintaining State 203

LoadCountries();

 }

 public static IList<Country> GetCountries()

 {

 IList<Country> countries = null;

 Cache cache = HttpContext.Current.Cache;

 countries = cache["countries"] as IList<Country>;

 if (countries == null)

 {

 countries = LoadCountries();

 cache["countries"] = countries;

 }

 return countries;

 }

 static IList<Country> LoadCountries()

 {

 //pretend this came from the database.

 IList<Country> countries = new List<Country>();

 countries.Add(new Country("Afghanistan"));

 countries.Add(new Country("Albania"));

⋮

 countries.Add(new Country("Zimbabwe"));

 return countries;

 }

}

Here we have a simple helper class that lists the countries of the world. Notice that

in the static constructor for this class, we populate the cache object with all the

countries. So why do we check for null when we try to retrieve the countries from

the cache in the GetCountries method?

We check for null in this case because the framework may have removed those

values. ASP.NET always clears infrequently used objects from the cache in order

to make room for data that is used more frequently, so when you attempt to retrieve

data from the cache object, there’s no guarantee that it’ll be there.

As well as being squeezed out of the cache by other objects, it’s also possible for an

object to drop out of the cache because a timeline was set for it. The following ex

ample shows how a timeline for caching an object can be set explicitly:

204 The ASP.NET 2.0 Anthology

CounterHelper.cs (excerpt)

public sealed class UserOnlineHelper
{
 public IList<string> GetOnlineUsernames()
 {
 Cache cache = HttpContext.Current.Cache;
 IList<string> usernames = cache["online-users"]

as IList<string>;
 if(usernames == null)
 {
 usernames = LoadOnlineUserNames();
 cache.Insert("online-users"
 , usernames
 , null
 , DateTime.Now.AddMinutes(1)
 , Cache.NoSlidingExpiration);

 }
 return usernames;

 }
 IList<string> LoadOnlineUserNames()
 {
 //some code to get usernames.

 }
}

In this case, we’re caching the number of users in our application. Of course, we

don’t want to cache this value indefinitely, as the value changes constantly. Con

versely, we don’t want to calculate that number every time—for tasks such as dis

playing a count of site users to other users, having the exact figure is not a high

priority.

We therefore set an expiration time that’s one minute into the future—this way, the

number of online users will be cached for one minute at a time. Even one minute

of caching can help the performance of a very busy web site!

Storing Data in Application Variables
One final option for the storage of global data is to use an application variable. One

of the benefits of storing data in an application variable is that you know it’ll be

there when you go back to retrieve it. Let’s rewrite our previous CountryHelper

example to demonstrate this point:

Maintaining State 205

CountryHelper.cs (excerpt)

public sealed class CountryHelper
{
 CountryHelper()
 {
 HttpContext.Current.Application["countries"] = LoadCountries();

 }
 public static IList<Country> GetCountries()
 {
 IList<Country> countries = null;
 HttpApplicationState application =

HttpContext.Current.Application;
 countries = (IList<Country>)application["countries"];
 return countries;

 }
 static IList<Country> LoadCountries()
 {
 // Code to load countries from the database goes here.

 }
}

Note that we don’t need to check for nullwhen retrieving the countries application

variable—it was populated in the static constructor, so we can be certain that it’ll

still be there.

The effectiveness of this approach is dependent on the frequency with which this

data is accessed: if the countries aren’t referenced often, we’re storing a lot of data

in memory that could be better used to store data that’s more frequently accessed.

Another potential hurdle associated with using an application variable is that we’ve

sacrificed the flexibility that the Cache object provided—for example, we can’t

specify an expiration time or CacheDependency. See Chapter 15 for more on using

the ASP.NET cache.

206 The ASP.NET 2.0 Anthology

What’s the cleanest way to access
a page’s view state?
There’s nothing to prevent a developer from deciding to access the view state directly

from within a page. Yet experience shows that this approach can be error-prone, as

the potential exists for typos to creep into your code.

For example, look at the following code:

ViewState["FirstKey"] = "Hello";

ViewState["Firstkey"] += " World";

Response.Write(ViewState["Firstkey"]);

At first glance, you might expect the output of this code to be Hello World. In fact,

the output is just World. ViewState keys are case-sensitive, so it can be very easy

to make small mistakes with them.

So, if accessing the view state directly from within a page is problematic, what’s

the best approach to use?

Solution
The best solution for accessing a page’s view state is to create a ViewState-backed

property, which is a property that stores its value directly in the view state.

For example, suppose you wanted to store a city name in the view state. Rather than

using ViewState["city"] directly, you could type the following:

ViewState.aspx.cs (excerpt)

public string City
{
 get { return (string)ViewState["City"]; }
 set { ViewState["City"] = value; }
}

Override the get and set methods for your string, as we’ve done in the code above.

This code takes advantage of the object oriented concept of data hiding, where access

to a store (in this case, the view state) is hidden behind a property. The consumer

Maintaining State 207

of the class accesses the City as if it were any other property of the class, rather

than accessing the view state directly.

Now that’s all well and good, but we’re yet to account for the possibility that a value

retrieved from the view state might be null. This might have been desirable in the

above example, but what if you wanted to store a Boolean value in the ViewState

object? In this case, a value of null would be meaningless!

Wherever it’s necessary, be sure to check for null before you access your

ViewState-backed variable. Here’s one (admittedly long-winded) example that

demonstrates how this check is performed:

public bool Enabled

{

 get

 {

 if (ViewState["Enabled"] == null)

 return false;

 return (bool)ViewState["Enabled"];

 }

 set

 {

 ViewState["Enabled"] = value;

 }

}

While the check works fine, that sure is a lot of typing for a simple property! To

rewrite this code in a way that’s cleaner and shorter, you can make use of the new

Null Coalescing Operator in C# 2.0:

ViewState.aspx.cs (excerpt)

public bool Enabled
{
 get
 {
 return (bool)(ViewState["Enabled"] ?? false);

 }
 set
 {

208 The ASP.NET 2.0 Anthology

ViewState["Enabled"] = value;

 }

}

This code ensures that we’ll never retrieve a null value, yet gives us the benefits of

a clean syntax for reading and writing to the view state.

Understanding the Null Coalescing Operator

Version 2.0 of the C# language introduced some new syntax—the ?? operator,

which is called the Null Coalescing Operator.

Let’s take a look at this operator in action. The expression z = x ?? y is roughly

equivalent to the following code:

string tempX = x; // Ensures thread safety by
// using a local variable.

if (tempX != null)
 z = tempX;
z = y;

Note that the coalescing operator is thread-safe—it copies the reference to a local,

temporary variable before making the null comparison. If the coalescing operator

didn’t perform this step, it would be possible for another thread to modify the

original reference between the comparison and the assignment.

Discussion
In order to keep the discussion in this section short and sweet, I’ve only explained

this technique of accessing name-value information as it relates to the view state.

However, the technique can be applied just as effectively to any name-value storage

facility, including the Session, application variables, HttpContext.Items, and

others. In fact, any time you retrieve a property value using a string key, consider

wrapping access to that property with a strongly typed property.

A strongly typed property provides type safety and is less prone to the kinds of errors

that may easily be introduced by small typos. If we use strongly typed properties,

rather than a simple string key, gaining access to the Enabled property of the

ViewState object, for example, becomes as easy as typing the following code:

Maintaining State 209

bool enabled = this.Enabled;

This code is certainly a lot cleaner than the following awkward execution:

bool enabled = (bool)(this.ViewState["Enabled"] ?? false);

One additional benefit of this approach is that it allows the developer to take ad

vantage of Microsoft’s IntelliSense™ code completion functionality, rather than

having to memorize which ViewState keys are in use.

Dealing with an InvalidCastException

Any time you attempt to cast a ViewState property to another value, as we’ve

done in these examples, there’s always the possibility that the result will throw

an InvalidCastException.

This could happen if another piece of code has overwritten your property’s value

with an object of a different type. In the code examples we’ve looked at so far, I

haven’t tried made any effort to handle such an exception—in general, if an excep

tion like this was thrown, I would want to be notified immediately, as it could

indicate a major logic error.

I don't recommend catching such an exception and trying to handle it gracefully,

because if you did so, your application could continue in an invalid state from

the point at which the exception was thrown, causing even more damage than

the simple failure thrown by this exception. We’ll discuss error handling in detail

in Chapter 13.

How can I make sure my custom control
works when view state is turned off?
Many developers find developing with the view state to be more trouble than it’s

worth (we’ll talk more about this issue in Chapter 16). While it does provide a

convenient means of storing data between multiple requests for the same page, the

view state data stored in the page can grow quickly to an unwieldy size, causing

slow page loads and postbacks while all that data is shuttled back and forth over

the network.

210 The ASP.NET 2.0 Anthology

Ideally, controls would use the view state only to store data across postbacks (the

data displayed by a GridView, for example), rather than using it to store information

about how the control functions, which it does by default.

It’s easy enough to turn the view state off, but if our custom control relies on it to

store information between postbacks, our control will be crippled. How can we

modify our control to remove its reliance upon the view state?

Solution
In the days of ASP.NET 1.1, developers either stored everything in the ViewState

object, or spent a lot of time writing code to store values in hidden form fields. In

ASP.NET 2.0, Microsoft introduced the control state to solve this problem. If view

state is turned off in your application (for example, because you wanted to reduce

your page weight), your custom control should use the control state to store inform

ation between postbacks.

The control state is a new addition to ASP.NET 2.0, and takes slightly more work

to use than does the view state. What every responsible developer should not do,

however, is simply dump everything into the ControlState object, which would

create the same size-related problems of which the view state is often guilty.

The Control State is Here to Stay

Try to store as little as possible in the control state. Unlike the view state, there’s

no way to turn it off, so if the size of the control state balloons, you could end up

with enormous pages, leading to slow page load times and poor overall perform

ance.

Your control must override two virtual methods in order to take advantage of the

control state:

LoadControlState

This method restores the control state from a previous page request. ASP.NET

calls this method, passing in the ControlState object as a parameter.

Maintaining State 211

SaveControlState

This method saves to the view state any changes made to the page since the

page was loaded, or since the last postback. The method must return the status

of your control as the return value for ASP.NET to store.

As well as having these two methods in place, your control must inform the Page

that it will be using the control state. This step can be completed by calling the

Page.RegisterRequiresControlState method.

Allow me to demonstrate the use of the control state with some code. Let’s begin

with a very simple control; here’s the initial class definition:

ControlStateDemoControl.cs (excerpt)

public class ControlStateDemoControl : WebControl
{
 protected override void OnInit(EventArgs e)
 {
 // Let the page know this control needs the ControlState.
 Page.RegisterRequiresControlState(this);
 base.OnInit(e);

 }
 // The rest of the control implementation goes here
}

As you can see, the OnInit method is a good place to register this control’s need to

use the control state if it is to function correctly.

Let’s add two properties to our class:

ControlStateDemoControl.cs (excerpt)

public int ViewPostCount
{
 get { return (int)(ViewState["ViewProp"] ?? 0); }
 set { ViewState["ViewProp"] = value; }
}
public int ControlPostCount
{
 get { return this.controlPostCount; }
 set { this.controlPostCount = value; }

212 The ASP.NET 2.0 Anthology

}

private int controlPostCount;

The ViewPostCount property stores its value to, and retrieves its value from, the

view state. This is an example of a ViewState-backed property, as discussed in the

section called “What’s the cleanest way to access a page’s view state?”.

The ControlPostCount property uses a private member variable to store its value.

In order to store this value to, and retrieve it from, the ControlState, we’ll need to

implement the two methods discussed earlier in this section. Here’s what those

methods look like:

ControlStateDemoControl.cs (excerpt)

protected override object SaveControlState()
{
 return this.controlPostCount;
}
protected override void LoadControlState(object savedState)
{
 int state = (int)(savedState ?? 0);
 this.controlPostCount = state;
}

The SaveControlState method is called by ASP.NET late in the control’s life cycle,

when it’s time to save changes to the control state (after OnPreRender, and just before

SaveViewStateRecursive is called).

Your job as the control developer is to return an object that represents the current

state of the control. That object will be reloaded on the next request. In this case,

we store the value of controlPostCount.

The LoadControlState method is called by ASP.NET after a postback, and provides

your control with the control state data from the previous request. The data is

available in the form of an object named savedState.

Maintaining State 213

In this example, since we’re saving an int value into the control state (by returning

controlPostCount in the SaveControlState method), we can simply cast it to an

int and set controlPostCount to equal that value.

ControlState and Inheritance

In this example, we’ve inherited from the WebControl class, which doesn’t have

any state of its own. If we inherited from a control that made use of the Control-

State, we’d have to be careful not to obliterate its ControlState with that of

our custom control. We’ll explore this very issue in the Discussion section for this

solution.

Let’s add our final methods:

ControlStateDemoControl.cs (excerpt)

protected override void OnLoad(EventArgs e)
{
 ViewPostCount++;
 ControlPostCount++;
 base.OnLoad(e);
}
protected override void Render(System.Web.UI.HtmlTextWriter writer)
{
 // Each time we render, we increment.
 writer.Write("<p>ViewState: " + this.ViewPostCount + "</p>");
 writer.Write("<p>ControlState:" + this.ControlPostCount + "</p>");
 base.Render(writer);
}

Since we intend for our control’s property values to increment from one postback

to the next, we perform this increment in the OnLoad method. The Render method

writes out the value of each property to the response.

Let’s take this control for a test-drive—we’ll construct an ASP.NET page that includes

the following markup:

214 The ASP.NET 2.0 Anthology

ControlStateExample.aspx (excerpt)

<form id="form1" runat="server">
 <div>
 <sp:ControlStateDemoControl ID="demo" runat="server" />
 <asp:Button ID="button" runat="server" Text="Post Back!" />

 </div>
</form>

This simple page contains our control as well as a button that forces the page to

perform a postback. Figure 6.4 shows the output after we click the button three

times.

Figure 6.4. Storing state information with view state and control state

Now let’s disable the view state for this page and try clicking four more times. Fig

ure 6.5 shows the result.

Maintaining State 215

Figure 6.5. Our custom control, this time with view state disabled

As you can see, the view state is no longer being persisted across postbacks, but the

control state still is.

Where’s the Control State Stored?

The control state is actually stored in a hidden form field named __VIEWSTATE.

Sound familiar? It’s the same field in which the view state is saved. Once the view

state is disabled, the field is only used for the control state.

Discussion
I’ve deliberately kept the code in this solution simple in order to best demonstrate

how to load and save the ControlState. However, there’s one important question

that I have yet to address: what’s the proper way to implement the LoadControlState

and SaveControlState methods when inheriting from a control that already makes

use of the ControlState?

To demonstrate how this situation should be tackled, let’s create a subclass of the

ControlStateDemoControl control. Here’s the basic implementation without the

ControlState methods:

216 The ASP.NET 2.0 Anthology

SubControlStateDemo.cs (excerpt)

public class SubControlStateDemo : ControlStateDemoControl
{
 public int AnotherCount
 {
 get { return this.anotherCount; }
 set { this.anotherCount = value; }

 }
 private int anotherCount;

 protected override void OnLoad(EventArgs e)
 {
 AnotherCount++;
 base.OnLoad(e);

 }
 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 writer.Write("<p>AnotherCount:" + this.AnotherCount + "</p>");

 }
 // More implementation to come …
}

As you can see, all we’ve added here is a normal property, anotherCount, which

contains get and set methods. We increment this property in the OnLoad method

and display the value of the property in the Render method. So far, this control

implementation is very similar to the control that we created earlier.

This might look straightforward to you right now, but our implementation of

SaveControlState and LoadControlState is a little trickier—we have to be careful

not to lose the state of the inherited class. The body of those methods is as follows:

SubControlStateDemo.cs (excerpt)

protected override object SaveControlState()
{
 // Grab the state for the base control.
 object baseState = base.SaveControlState();

 // Create an array to hold the base control's state
 // and this control's state.
 object thisState = new object[] {baseState, this.anotherCount};

Maintaining State 217

return thisState;

}

protected override void LoadControlState(object savedState)

{

 object[] stateLastRequest = (object[]) savedState;

 // Grab the state for the base class

 // and assign it to the class.

 object baseState = stateLastRequest[0];

 base.LoadControlState(baseState);

 // Now load this control's state.

 this.anotherCount = (int) stateLastRequest[1];

}

Let’s walk through what’s happening here. In SaveControlState, we first grab the

state from the base control. As you’ll recall, this holds the value for

controlPostCount. But since we want to add anotherCount to the ControlState,

we create an array to store both values. This array is the object that’s returned.

What Form Should ControlState Data Take?

Although we’ve used an array in this example, we could have chosen any serial

izable object—the key is to use a consistent object type each time you save inform

ation to the ControlState within your application.

In the LoadControlState method, we expect to be passed an array object. We grab

the value that the base class is expecting, pass it to base.LoadControlState, and

set anotherCount to the value of the state for this control.

I recommend using this approach whenever you write a custom control that makes

use of ControlState. With the use of less comprehensive techniques, you never

know when you might inadvertently override the ControlState for a base class.

Summary
The proper handling of state is an essential task for any non-trivial web application.

Fortunately, ASP.NET provides a wealth of options and features for handling states

of varying scope, including global state, session state, or the state within a single

request.

218 The ASP.NET 2.0 Anthology

In this chapter we’ve explored the most common and essential aspects of dealing

with state. Table 6.1 displays some of the storage options we covered, along with

the scope and lifetime of each.

Table 6.1. State Storage Options for an ASP.NET Page

LifetimeScopeState Store

entire lifetime of the web application global per process Static Members

entire lifetime of the web application global per AppDomainApplication Object

lifetime of a user’s session, which by

default lasts 20 minutes after the user’s

last request

global per process for

in-memory; global for

state-server or database-backed

session

Session

entire lifetime of a single request single request HttpContext.Items

only accessible during the page life

cycle

single request Page.Items

lifetime spans multiple page requests as

long as each page posts the view state

data

typically for a single page, but

cross-page postbacks are possible

View State

lifetime spans multiple page requests as

long as each page posts the view state

data

typically for a single page, but

cross-page postbacks are possible

Control State

We could certainly fill an entire book if we were to attempt to be absolutely complete

and detailed with our coverage of state management in ASP.NET. But with the tools

provided in this chapter, you’re well equipped to make use of state reliably and ef

ficiently in your next web application.

http:ASP.NET

Chapter7
Membership and Access Control

Any site that provides a level of customization or interaction will need to be able

to authenticate and authorize its users. Authentication is the act of determining the

identity of a user, while authorization is the determination of whether a user is

permitted to perform a certain action or not.

One type of site that implements authentication and authorization is a blog (or web

log). Typically, any users have permission to read the content posted to a blog

without having to identify themselves. However, the blog won’t allow just anyone

to create a new post on the site. A user must first log in (authentication) and have

the correct permissions (authorization) before he or she can create a new post.

Despite the fact that authentication and authorization are such common functions,

it used to be the case that developers had to implement these features from scratch

in every project. With ASP.NET 2.0, developers have access to the membership API,

which consists of a MembershipProvider class and a comprehensive set of web

controls for authentication and authorization.

In this chapter’s solutions, we’ll be using the MembershipProvider class extensively.

Let’s get started!

220 The ASP.NET 2.0 Anthology

What’s the easiest way to add membership
to my site?
The MembershipProvider is designed to accommodate most developer needs for

managing users and roles, as it’s extremely configurable.

Of course, with any configurable API, the further your situation lies from the use

case upon which the class was designed, the more work it takes to use it properly.

In this section, we’ll look at the basic, default case for the MembershipProvider’s

implementation.

Solution
It only takes one line of configuration code to get started with the MembershipPro

vider. After creating a web site using Visual Studio (or Visual Web Developer),

right-click the project, select Add New Item and then Web Configuration File. Then

add the following line of code to the system.web section of Web.config file:

<authentication mode="Forms" />

The following snippet shows this setting in context, once all other Web.config ele

ments and comments have been removed:

Web.config (excerpt)

<?xml version="1.0"?>
<configuration>
<system.web>
<authentication mode="Forms" />

</system.web>
</configuration>

Discussion
That’s all it takes! This web site will inherit its MembershipProvider configuration

from the settings defined in Machine.config.

Membership and Access Control 221

For very simple sites whose MembershipProvider doesn’t need to diverge from the

default settings, there is no need to add anything to Web.config.

Of course, there’s more to be done once you add this line of code. You still need to

create a means for creating users, and allowing those users to log in to your site.

We’ll look at these functions next.

Finding machine.config

The machine.config file is located in the %SystemRoot%\Microsoft.NET\Frame

work\v2.0.50727\CONFIG\ folder. For a default installation, that should be:

C:\Windows\Microsoft.NET\Framework\v2.0.50727\CONFIG\machine.config

In you take a look at the contents of this file, you’ll find that it references a default

connection named LocalSqlServer. This points to a SQL Server Express database

called aspnetdb.mdf, which resides in the web site’s App_Data folder:

<connectionStrings>
 <add name="LocalSqlServer"
 connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
providerName="System.Data.SqlClient" />

</connectionStrings>

The ASP.NET membership provider data access calls go through

System.Web.DataAccess.SqlConnectionHelper. This helper class checks

for the presence of a membership database; if such a database doesn’t exist, it will

be created.

Adding Membership to an Existing Database

Of course, you can specify a different membership database if you’d like. The

easiest way to add membership to an existing SQL Server database is by running

aspnet_regsql.exe from the Visual Studio 2005 Command Prompt. Scott Guthrie

wrote a great walk-through of this procedure, which is available on his weblog.1

1 http://weblogs.asp.net/scottgu/423703.aspx

http://weblogs.asp.net/scottgu/423703.aspx
http://weblogs.asp.net/scottgu/423703.aspx

222 The ASP.NET 2.0 Anthology

Building your Own Membership Provider

What if your member details are stored in an existing database that can’t be

changed, or are returned to your application via a web service? In cases like this,

the default ASP.NET membership provider probably won’t work for you.

Fortunately, that doesn’t mean that you have to write your own membership system

from scratch. You can build a membership provider to allow the ASP.NET mem

bership and personalization system to work against your existing membership

store.

Building a custom membership provider is not a simple task, and is beyond the

scope of this book. You can get an idea of what’s involved by looking at the fol

lowing MSDN examples:

■	 the ReadOnlyXmlMembershipProvider example at

http://msdn2.microsoft.com/en-us/library/aa479031.aspx

■	 the SqlMembershipProvider at

http://msdn2.microsoft.com/en-us/library/ms366730.aspx

How do I allow users to register for my site?
ASP.NET provides the CreateUserWizard control to facilitate registration. In this

section, we’ll walk through the process of using this control to allow users to register

for your site.

Solution
To begin, add a new web form to the site. In this case, naming it Default.aspx

should be fine.

Make sure you’re in Design View for the page, and bring up the Toolbox. If you ex

pand the Login section, you should see the list of controls shown in Figure 7.1.

http://msdn2.microsoft.com/en-us/library/aa479031.aspx
http://msdn2.microsoft.com/en-us/library/ms366730.aspx

Membership and Access Control 223

Figure 7.1. The login controls available within the MembershipProvider class

That’s quite a list of controls! Double-click on the CreateUserWizard control, which

should add to the page the control with its smart tag options expanded, as shown

in Figure 7.2.

Figure 7.2. Adding the control to the page

For now, we’ll just leave the control as is, but as you can see, it’s possible to make

many customizations.

Press Ctrl-F5 to run the web site. This should display the wizard, as shown in Fig

ure 7.3.

224 The ASP.NET 2.0 Anthology

Figure 7.3. The CreateUserWizard control in action

Go ahead: fill in the form and click Create User. Congratulations—you just success

fully created a user for your web site!

Discussion
Okay, so we created a user. But where exactly is this user?

By default, ASP.NET stores membership information in an instance of SQL Server

Express 2005. ASP.NET creates the database when a user fills in the page generated

by the CreateUserWizard control and clicks Create User.

Go ahead: right-click the Solution Explorer and select Refresh Folder. You should

now see a new App_Data folder that contains a database named ASPNETDB.MDF, as

Figure 7.4 shows.

Membership and Access Control 225

Figure 7.4. The new database as viewed in the Solution Explorer

Right-click on the database and select Open. This will expand the database in the

Server Explorer and display the database objects, such as tables and views, which

can be seen in Figure 7.5.

Figure 7.5. Viewing the new database in the Server Explorer

Handling Connection Errors

The default database connection in the machine.config file is configured to use

SQL Server Express, but it’s possible that you may not have installed it. If you’re

receiving connection errors, first check that SQL Server Express is installed and

the service is running. SQL Server Express will appear in your services list as

“SQL Server (SQLEXPRESS).” If it’s not installed, you can install it from the

Visual Studio 2005 Installation media, but if you’ve got a fast Internet connection,

it might be easiest to just grab the 35MB download.2

The other alternative is to change your Web.config to point to an existing SQL

Server instance.

2 http://msdn.microsoft.com/vstudio/express/sql/download/

http://msdn.microsoft.com/vstudio/express/sql/download/
http://msdn.microsoft.com/vstudio/express/sql/download/

226 The ASP.NET 2.0 Anthology

Expand the Tables node and double-click on the aspnet_Members table—you can

see your newly created user in the data for the table, as Figure 7.6 shows.

Figure 7.6. Viewing the user data in our newly created table

How do I manage users on my site?
Once your site has users, roles, and profiles, you’ll need to manage them.

When you’re developing your site, the simple answer to the management question

is to use the Web Site Administration Tool (WSAT)—a browser-based tool for site

configuration. The easiest way to access this tool is to open the Project menu in

Visual Studio, and select ASP.NET Configuration. This option gives you access to a

simple web site that lets you manage several aspects of your application, including

users and roles. Figure 7.7 shows what the site looks like.

Membership and Access Control 227

Figure 7.7. The Web Site Administration Tool, a browser-based tool for site configuration

This tool comes with one major restriction, though—it’s only available on your

local machine. What can we do when we need to administer a site on another ma

chine?

Solution
We can administer a site from a remote machine in a few different ways.

My recommendation is to use Peter Kellner’s Membership Editor, which was ex

plained in an article published as a four-part series on MSDN.3 Kellner’s approach

is a smart one—he uses ObjectDataSource objects to wrap the membership provider

interfaces, and bind them to ASP.NET controls. You can use Peter’s membership

data providers to build your own editor if you like. Figure 7.8 shows the Membership

Editor tool in action.

3 http://msdn2.microsoft.com/en-us/library/aa479399.aspx

http://msdn2.microsoft.com/en-us/library/aa479399.aspx
http://msdn2.microsoft.com/en-us/library/aa479399.aspx
http://msdn2.microsoft.com/en-us/library/aa479399.aspx

228 The ASP.NET 2.0 Anthology

Figure 7.8. The Membership Editor, an administration tool that can be operated remotely

More details about this tool are available on Peter Kellner’s site.4

If this solution isn’t right for you, there are a few other options you can try:

■	 You can build your own administration interface. If you do, I’d recommend that

you utilize the membership provider object interface rather than directly modi

fying data in the membership tables—the tables are a little complex.

■	 You can copy the membership data from the production server to your develop

ment machine, and use the Web Site Administration Tool to make the necessary

changes before copying the files back again. This approach will only be practical

if your membership database is small and changes only occasionally (and of

course you’d want to formalize this process quite a bit if you were using it in a

live production environment).

■	 It’s possible to allow a remote user to access the webadmin.axd file.5 Doing so

will also make the Web Site Administration Tool available from a remote machine

(see the warning below about this).

4 http://peterkellner.net/2006/03/13/adding-personalization-via-profiles-to-the-objectdatasource-in

aspnet-20/
5 http://weblogs.asp.net/jeffwids/archive/2005/07/26/420572.aspx

http://peterkellner.net/2006/03/13/adding-personalization-via-profiles-to-the-objectdatasource-in-aspnet-20/
http://weblogs.asp.net/jeffwids/archive/2005/07/26/420572.aspx
http://peterkellner.net/2006/03/13/adding-personalization-via-profiles-to-the-objectdatasource-in-
http://weblogs.asp.net/jeffwids/archive/2005/07/26/420572.aspx

Membership and Access Control 229

Security Concerns with webadmin.axd

Early beta releases of ASP.NET 2.0 allowed remote access to the WSAT, but the

ASP.NET team removed this facility prior to release due to security concerns. As

such, I’d only recommend that you use this approach on an a well-secured intranet

application.

How do I require users to log in?
In the first two solutions in this chapter, we configured a web site to take advantage

of the MembershipProvider class, and we created a page that allowed users to register

for our site. This functionality isn’t terribly useful on its own, though, since we’re

not actually doing anything with that user data.

Let’s provide registered users with the ability to log in to our site. In this section,

we’ll create an Admin area for our site that only registered users can see.

Solution
To get started, add an Admin folder to your web site project. Within that folder, add

a page named Default.aspx. For demonstration purposes, add to the page the text,

“This page is only for registered users who have logged in.”

If you right-click on this page and select View in Browser, you’ll be able to view the

contents of the page without logging in. Let’s change this, so that the text is only

visible to users who are logged in.

First, we’ll add the following location section to our Web.config file:

Web.config (excerpt)

<?xml version="1.0"?>
 <configuration>
 <system.web>
 <authentication mode="Forms" />

 </system.web>
 <location path="Admin">
 <system.web>
 <authorization>
 <deny users="?" />

 </authorization>

230 The ASP.NET 2.0 Anthology

</system.web>

 </location>

 </configuration>

Within the location section of the above code is an authorization section that

denies access to all unregistered users (the group of users indicated by the question

mark).

Denying All Users

To deny all users access to the site, you could use the asterisk like so:

<deny users="*" />

Why would we deny access to all users? Well, we could use this facility to restrict

all users by default, then allow users with certain roles to view a page:

<deny users="*" />
<allow roles=”Administrator” />

Now we just need to add a new web form named Login.aspx to the root of the web

site. In Design View for that page, drag the Login Control from the toolbar onto

the page.

Now try right-clicking on /Admin/Default.aspx and viewing it in the browser

again—you should now be redirected to the login page, as illustrated in Figure 7.9.

Membership and Access Control 231

Figure 7.9. The login page to which users are redirected if they attempt to view the restricted page without logging in

Discussion
The LoginControl is one of several new ASP.NET 2.0 controls that are designed to

work with the MembershipProvider class. Like many other controls, the layout of

this control is easily configured via templates.

In designing these controls, their creators have been careful not to make any assump

tions about the underlying data store for users and roles. By relying upon the Mem

bershipProvider API, the LoginControl works whether an underlying user store

exists or not.

How do I grant access to users who have
forgotten their passwords?
It happens to everyone at some point, and it’s embarrassing. No, I’m not talking

about that! I’m talking about forgetting your password.

A web site that doesn’t provide an means by which users can retrieve forgotten

passwords automatically is just asking to be inundated with tech support calls.

Fortunately, the ASP.NET team has you covered!

232 The ASP.NET 2.0 Anthology

Solution
The PasswordRecovery control is extremely useful in this case. Be sure to add the

control to a page that anonymous users are authorized to access—there’s no point

burying the password recovery page within a page that requires authentication.

To use the PasswordRecovery control, just drag it onto a page. Figure 7.10 shows

the control appearing on the Login page—a perfectly suitable location.

Figure 7.10. Adding the PasswordRecovery control to the Login page

Three templates need to be configured once this control has been added to a page:

UserName

This template asks for the user for a username.

Question

This template asks for the “challenge question” that was created by the user

upon registration. Only the user should know the answer.

Success

This template defines a success message that’s displayed when the password

is recovered.

Membership and Access Control 233

There’s a fourth “view” of this control that needs to be considered—the email

message that’s sent to the user and contains the password. Expand the

MailDefinition section of the Properties dialog to set the Subject, From address,

and other email settings.

Figure 7.11. Configuring the settings for an email to be sent to users recovering passwords

At this point, you need to configure your application to use a mail server, so that

it can actually send your email. Fortunately, ASP.NET makes this easy via the built-

in web site administration utility.

Just click on the control’s smart tag and select the Administer Website option. This

will start the web-based Web Site Administration Tool (WSAT)—a tool that we

looked at in the section called “How do I manage users on my site?”. Click on the

Application tab, then select the Configure SMTP e-mail settings link within the SMTP

Settings section.

Clicking this link should display the screen shown in Figure 7.12.

234 The ASP.NET 2.0 Anthology

Figure 7.12. Using the WSAT to configure an SMTP mail server

Fill in your mail server settings and click Save. The administration tool will update

your Web.config settings with the changes you made. The following sample shows

the lines that were modified by the WSAT when I configured my application to use

a mail server on my local machine:

Web.config (excerpt)

<?xml version="1.0"?>
 <configuration>

<system.net>
 <mailSettings>
 <smtp>
 <network>

Membership and Access Control 235

host="localhost"

 port="25"

 userName="smtp-server-user-name"

 password="smpt-server-password"

 defaultCredentials="false"

 />

 </smtp>

 </mailSettings>

 </system.net>

 </configuration>

With these configuration changes complete, you’re ready to test this control. Build

the project and navigate to the login page in your browser. Enter your username in

the second form, and click Submit. You should be presented with your challenge

question, as shown in Figure 7.13.

Figure 7.13. Presenting the challenge question to the user

Once you answer the question correctly, a success message will be displayed, and

an email will be sent to your email address containing a new password.

236 The ASP.NET 2.0 Anthology

But that Wasn’t my Original Password!

The default membership provider settings store cryptographic hashes of users’

passwords rather than the passwords themselves.6 Storing encrypted passwords

is much more secure than storing the passwords in plain text—if your database

is compromised, the passwords remain secure. Unfortunately, it means that

ASP.NET is unable to provide users with their original passwords, and must

generate new passwords for them.

Your users may not appreciate their new, random passwords, as they can be quite

hard to remember, so it’s a good idea to implement a ChangePassword control

on your site, to allow them to change those freshly generated passwords to

something they can remember.

It’s possible to use plain text passwords, and if you do so, users’ original passwords

will be provided to them when they go through the password recovery process.

However, because of the potential security issues associated with this approach,

I strongly recommend that you stick with password hashes rather than storing

users’ original passwords.

Figure 7.14 shows the password recovery email that was sent to my address.

Figure 7.14. The password recovery email sent by the MembershipProvider class

6 Hashing a value is a destructive process, so it’s impossible to recover the original value from a

hash. However, every time you hash a given value, you'll get the same result. By storing only

password hashes, ASP.NET is able to verify that the user has entered the correct password without

knowing what that password is.

Membership and Access Control 237

And that’s that! We’ve created a comprehensive password recovery system, without

writing a line of code!

How do I display content based on roles?
One compelling reason for wanting to segment your users into different roles is to

vary the content that you present to them based on the types of users they are. For

example, suppose your site contained articles that were submitted by your users.

You may want to allow all users to view the final, published articles, but restrict

access to new articles that require approval to a team of administrators.

Let’s assume that, in addition to the two standard RoleGroups (LoggedIn and An

onymous) our site has a custom RoleGroup called Admin. We learned how to restrict

users from viewing pages in the section called “Solution”, but how can we vary the

content on a page based on a given user’s role?

Solution
The (somewhat confusingly named) LoginView control lets us display particular

content to users with particular roles.

After you add the LoginView control to a web form, the control’s smart tag lets you

select a view to edit. As you can see in Figure 7.15, each view in the drop-down

list corresponds to a role (with the exception of LoggedIn, which corresponds to

the user’s current login status).

238 The ASP.NET 2.0 Anthology

Figure 7.15. Selecting a role for the LoginView control

By default, only two templates are available: Anonymous and LoggedIn.

Since we want to show special content to users in the Admins role, we’ll need to

create an additional template. To do so, click Edit RoleGroups… to launch the

RoleGroup Collection Editor dialog shown in Figure 7.16.

Figure 7.16. The RoleGroup Collection Editor

Membership and Access Control 239

Click the Add button to add a role group for the Admins role. When you click OK, a

new LoginView template named RoleGroup[0] – Admins will appear in your con

trol’s smart tags menu, as shown in Figure 7.17.

Order Matters

Keep in mind that the first matching template is always chosen, so it’s important

to pay special attention to the order of the RoleGroups.

For example, if we were to use a LoginView control for users in roles of Admins

and Users, and all Admins were also Users, we would want to list the Admin

template first. Otherwise, both groups will inherit the User template.

Figure 7.17. Our LoginView control containing a new RoleGroup

Select your new RoleGroup from the smart tag, and type your admin-specific content

within the LoginView control, as shown in Figure 7.18. For the purposes of this

demonstration, we’ll just inform the members of the Admins role: “You are an ad

min!”

240 The ASP.NET 2.0 Anthology

Figure 7.18. Adding content specific to the Admins role

Now, to test our page! Log in as an Admin, and you should see a page that looks like

the one in Figure 7.19.

Figure 7.19. The page seen by those logged in as Admin

Membership and Access Control 241

To complete this demonstration, we should break the bad news to those members

who aren’t in the Admins group. Our web content team confers for a few weeks and

comes back with the following: “You are not an admin.”

However, they’ve decided to soften the blow by at least greeting the user by his or

her username. To display the username, we’ll need to add a LoginName control to

the page. So the complete template that we’ll display to a user who’s logged in, but

is not an admin, is as follows:

Admin.aspx (excerpt)

<LoggedInTemplate>
 <p>
 Hello, <asp:LoginName id="loginName" runat="Server" />.

 </p>
 <p>
 You are not an admin.

 </p>
</LoggedInTemplate>

Yes—we can include HTML and other ASP.NET controls in a LoginView control

template.

Now, when our lowly non-admin users log in, they’ll see the page shown in Fig

ure 7.20.

Figure 7.20. The page displayed to those logged in as User

242 The ASP.NET 2.0 Anthology

As we’ve seen in this example, it’s easy to use ASP.NET to deliver specific content

to users depending on their roles, so long as you choose the right control for the

job.

Summary
ASP.NET 2.0 includes a rich, extensible membership system. It can help you admin

ister your users, control site access, and manage what users see and do based on

roles that you can define. Additionally, the provider architecture that forms the

basis of the membership system allows you to plug your own logic and data into

the existing system, so that the user experience of your site’s members is limited

only by your imagination!

Chapter8
Component-based Development

It’s easy to succumb to a drag-and-drop mindset when working with ASP.NET and

Visual Studio.

This mentality might apply to small applications, but becomes a problem in large

applications built by teams of software developers. A drag-and-drop approach en

courages developers to think of web forms as simple collections of server-side

controls and HTML markup—we tend to write our code as if the names, types, and

locations of the controls will never change, making the controls very closely inter

twined and not particularly reusable. It’s this tight coupling that can introduce bugs

that result in late-night debugging sessions every time we need to make a change

to our software.

In this chapter, we’ll explore a component-based approach to web form development.

In a component-based approach, we try to divide the user interface into independent

black boxes. These black boxes can hide the details of how a component is imple

mented, resulting in increased flexibility should we need to change our code in the

future. By isolating our code into independent components, we can identify more

errors at compile time when changes are made; such compiler errors are far easier

to locate and fix than runtime errors.

244 The ASP.NET 2.0 Anthology

Also in this chapter, we’ll see how properties, events, and interfaces can help us

build loosely coupled components based on web forms, user controls, and master

pages. Let’s begin with one of the most misunderstood components in ASP.NET—the

master page.

How can I use master pages?
Our first topic for discussion is the ASP.NET 2.0 implementation of master pages.

You might question why we would cover such a low-level detail in a problem–solu

tion style book such as this. The answer is that the majority of common master page

problems arise because the master page implementation is widely misunderstood.

Even the class name MasterPage is misleading. A master page is neither a master

in charge of a web form, nor a page that can stand alone.

A master page is a template that we can use to maintain consistent markup across

multiple web forms. A master page focuses on controlling the structure of the inter

face, leaving each web form responsible for displaying its own unique content.

Let’s look at the code for a simple master page (Simple.master) with a single

ContentPlaceHolder control:

Simple.master

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Simple.master.cs" Inherits="Simple" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
 This is some default content.
</asp:contentplaceholder>

 </div>
 </form>
</body>
</html>

Component-based Development 245

The master page lays out the common elements, such as the server-side head and

form elements. A web form that uses a master page is called a content page. The

following code creates a content page that uses our simple master page:

Simple.aspx (excerpt)

<%@ Page Language="C#" MasterPageFile="~/Simple.master"
AutoEventWireup="true" CodeFile="Simple.aspx.cs"
 Inherits="_Default" Title="Home" %>

<asp:Content ID="Content1" Runat="Server"
ContentPlaceHolderID="ContentPlaceHolder1">

 This will override the default content.
</asp:Content>

Figure 8.1 shows this content page as it displays in the browser.

Figure 8.1. Viewing the simple content page

As you can see, the web form was able to plug its custom content into the master

page’s ContentPlaceHolder, almost as if by magic. Let’s take a peek behind the

magician’s curtain to see how the trick works.

Solution
Analyzing the source code of the master page gives us a few hints about its behavior.

The first hint is that we must associate a master page with a content page before the

Init event of the page is triggered. Luckily, the ASP.NET 2.0 Page class gives us

the PreInit event for just this purpose. This is particularly powerful when you

consider the fact that we can use this event to programmatically define our master

246 The ASP.NET 2.0 Anthology

page. Thus we have the ability to, say, set the master page based on a user preference

or other database setting:

Simple.master.cs (excerpt)

protected void Page_PreInit(object sender, EventArgs e)
{
 this.MasterPageFile = "~/Simple.master";
}

We can gain a second hint about master page behavior by looking at the control tree

that’s present when the page renders. You can view the control tree by adding

Trace="true" in the @ Page directive. The control tree will appear in the trace

output, as shown in Figure 8.2.

Figure 8.2. Tracing a web form to see the control tree

You may have assumed, quite reasonably, that the master page, being a master,

would be the uppermost control in the tree. Instead, the master page appears as a

child control inside the content page! This seems like a role reversal … until we

look at the inheritance hierarchy for the MasterPage class conceptualized in Fig

ure 8.3.

Component-based Development 247

Figure 8.3. UserControl is the base class for MasterPage

It turns out that MasterPage inherits from the UserControl class, which yields yet

another clue about the behavior of master pages. To find out what’s going on behind

the scenes, we can look through the source code in the ASP.NET framework’s class

library using a third-party tool like Reflector, which we’ll look at in more detail in

Chapter 17.

Just after the content page’s PreInit event is triggered (but before the Init event

is triggered), ASP.NET hands control to the master page. The master page attaches

itself as a child control of the Page object, then walks through the content page’s

Content controls. The master page matches each Content control with a

ContentPlaceHolder, and copies the controls inside the Content control into the

placeholder. At this point the master page has finished working its magic, and is

just another control inside the page (or just another rabbit in the hat, so to speak).

Discussion
We tend to think of master pages differently when we realize they are, for the most

part, just another control inside the page. However, this way of thinking can be

misleading. Master pages shouldn’t be used to manage database connections, author

ize users, or provide diagnostic and logging capabilities. These are all services that

every page in our application might need to use, but providing these services through

a central master page is not the best approach. A master page should be responsible

for maintaining a consistent user interface, and nothing more.

248 The ASP.NET 2.0 Anthology

Locating Diagnostic and Logging Code

If code to perform diagnostics and logging shouldn’t be placed inside a

MasterPage class, where should it go? One solution is to use an HTTP Module,

which lives in the ASP.NET pipeline and can subscribe to events such as

BeginRequest during the lifetime of the request. We can provide functionality

inside the module that will be available in every request for a page, but without

cluttering up pages themselves. Another solution is to create a base class (derived

from the Page class) for all the web forms in an application.

There are times, of course, when we want the master page and content page to in

teract. For example, we might want our content page to respond to a button click

event that occurs on the master page. When this requirement crops up, we should

treat the master page like a component—a black box. We want a clearly defined

interface to formalize the interaction between the two pages, rather than writing

our content page so that it depends upon the existence of a specific control in the

master page.

Keep these issues in mind as we talk about common master page scenarios in the

next few solutions.

Master Page Voodoo and ClientIDs

One nasty side-effect of using a master page is the impact it has on the ClientID

property of the controls inside a page. The MasterPage class implements a special

ASP.NET interface: INamingContainer. When ASP.NET renders a control inside

an INamingContainer, it prefixes the ID used in the client with the ID of the INam

ingContainer. This means that an input field with an ID of myValue will appear

in the browser with an ID of _ctl0_myValue, where _ctl0 is the ID of the

MasterPage control. This naming scheme is important to remember if you use

JavaScript or CSS that references an element by its ID. We’ll revisit the INaming-

Container in the section called “How do I treat user controls as components?”

How can my content page override data on
my master page?
A content page can insert custom content into a master page, but only when the

master page provides a placeholder for the content. Sometimes a content page

Component-based Development 249

doesn’t need this level of control—it might just need to tweak one property of a

control that's already inside the master page.

Let’s examine an excerpt from another master page—Interaction.master:

Interaction.master (excerpt)

<form id="form1" runat="server">
<div class="header">
 <h1>
 Welcome!

 </h1>
</div>
<div>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
</div>
</form>

This master page defines a form element and a content place holder. The master

divides the page into a header area and a content area. Inside the header is a span

element that’s processed on the server (as indicated by the runat="server" attribute).

With a little CSS styling, a page that uses this master template might look like Fig

ure 8.4.

Figure 8.4. Displaying a master page with header and content

250 The ASP.NET 2.0 Anthology

The “Welcome!” text at the top of the page is held inside the server-side span. The

master page could easily change the InnerText, InnerHtml, or other properties of

this control at run-time. A content page can also tweak these properties, but it will

first need to obtain a reference to the control.

One approach to obtaining this reference might be to use the master page’s

FindControl method, as shown in the following code:

HtmlGenericControl span;

span = Master.FindControl("HeaderSpan") as HtmlGenericControl;

if (span != null)

{

 span.InnerText = "Welcome Back!";

}

This code would allow our content page to change the “Welcome!" text on the

master page, but is this the best approach? The code assumes that the control it

needs to modify will always have the name HeaderSpan. It also assumes the control

will always be of class HtmlGenericControl. If someone were to modify the master

page, they could break this code and not know about the problem until the page

executes. Fortunately, it’s relatively easy for us to improve on this approach—let’s

see how.

Solution
For our improved solution, we’ll treat the master page like a component. If we know

that our content pages may need to modify the header text every now and then, we

can expose a public property for the content page to read and write to the header

text:

Interactions.master.cs (excerpt)

public partial class Interaction_Site : System.Web.UI.MasterPage
{
 public string WelcomeMessage
 {
 get { return this.HeaderSpan.InnerText; }
 set { HeaderSpan.InnerText = value; }

 }
}

Component-based Development 251

This property allows a content page to modify the header text on the master page

(and only the header text). We’ve hidden the fact that we’re using a span element

in the master page, and we can now change the implementation in the future if we

feel the need. To use this property from the content page in an ASP.NET 2.0 Web

Site project, we first apply a @ MasterType directive in our aspx file:

<%@ MasterType VirtualPath="~/Interaction/Interaction.master" %>

When ASP.NET is generating code for our content page and sees the @ MasterType

directive, it will look at the master page specified by the VirtualPath attribute and

generate a strongly typed Master property for our content page. The existence of

this strongly typed property means that we don’t have to cast object references or

use control names to set the header text. All the content page needs to do is make

use of the Master property, like this:

Master.WelcomeMessage = "Welcome Back!";

The end result is the same, as Figure 8.5 shows, but the solution we’re using now

is more robust.

Figure 8.5. Setting text through a strongly typed property

Discussion
There are a couple of points about this solution that warrant further discussion.

252 The ASP.NET 2.0 Anthology

Using a Strongly Typed Property
Adding a public property to our master page, as we’ve done in the code above,

formalizes the interaction between content pages and our master page. By doing so,

we’ve hidden the implementation of our page’s header in the master page.

Now, let’s imagine a scenario where some developers replaced the span in the

master page header with an ASP.NET Label control. If they were still using a

FindControl approach to modify the header text, they wouldn’t experience any

problems until runtime, at which time casting the control to type

HtmlGenericControl would fail and throw an exception.

If they used the property approach that I’ve outlined in this solution, the developers

would instead see a compiler error in the master page’s WelcomeMessage property

(the error occurs because a Label control does not have an InnerText property).

Fortunately, it’s easy for the developer to modify the code to use the Text property

of the new Label control—the application can continue running without error and

without requiring any further changes.

Handling Multiple Master Pages
One common question that arises with this solution is how we should handle an

application that uses multiple master pages. In such an application, we won’t want

our content pages to depend on a specific master page to be assigned at runtime.

After all, we may want to change the master page depending on such factors as the

user’s preferences, or the time of day.

To solve the problem of changing the master page that a content page uses, we can

create a base class for our master pages. The base class can define the public prop

erties and methods available for content pages to use, and each master page can

then inherit from this common base class.

It’s important in this scenario to revisit the content page’s @ MasterType directive,

which in our solution points to a specific master page. The directive has another

attribute, TypeName, which can be used in place of the VirtualPath attribute. By

pointing TypeName to the master page base class, we’ll give our content pages a

strongly typed Master property that can reach the public API of all our master pages.

The directive would look like the one shown below, where BaseMasterPage is the

base class for all available master pages:

Component-based Development 253

<%@ MasterType TypeName="BaseMasterPage" %>

In the next solution, we’ll turn the tables and see how a master page can work with

different content pages.

How can I have my master page interact
with my content page?
Often when we work with master pages we need to communicate with the content

page from the master page. As an example, let’s suppose that we’re building a web

site and want to give our users the ability to email the content of any page to people

they know. Since we’ll need a button on every page, along with the text Email This

Page, we’ll want to place this button, and a text box into which the user can enter

an email address, on the master page, as shown in Figure 8.6.

Figure 8.6. A master page that allows users to email content to friends

One approach to handling the event triggered by a button click—in this case, the

sending of the email—is to place the code that sends the email in the master page.

This method might work if all the content pages were to use the same code to send

an email. However, suppose we were serving different types of content, and wanted

to email each piece of content using the appropriate encoding for each type. For

254 The ASP.NET 2.0 Anthology

instance, if the user was viewing a photo album, we could email a ZIP archive

containing image files, but if the user was viewing a resume, we could email a copy

of the resume in PDF format. In this case, the code that would handle the email

event might look like the following:

protected void SendEmailButton_Click(object sender, EventArgs e)

{

 if(Request.Url == "the url to a photo album")

 {

 // send a zip file

 }

 else if (Request.Url == "the url to a resume")

 {

 // send a pdf

 }

 // and so on ...

}

As you can imagine, code like this has the potential to become a tangled, unmain

tainable mess of conditional logic and hard-coded strings. Let’s take a look at a more

robust solution that uses a component-based approach.

Solution
In an improved solution, we’ll make the content pages responsible for mailing their

own content. In this case, we need the master page to raise an event when the user

clicks the button to send an email. Content pages that are interested in this event

can subscribe to the event, and provide their own implementations for mailing

content.

First, let's write a class that will define the event arguments:

SendEmailEventArgs.cs (excerpt)

public class SendEmailEventArgs : EventArgs
{
 public SendEmailEventArgs(string emailAddress)
 {
 _emailAddress = emailAddress;

 }
 private string _emailAddress;

Component-based Development 255

public string EmailAddress

 {

 get { return _emailAddress; }

 set { _emailAddress = value; }

 }

}

These event arguments represent all the information a content page will need in

order to send out an email. We’ll also need to define a delegate for the event handlers:

SendEmailEventArgs.cs (excerpt)

public delegate void SendEmailEventHandler(object sender,
SendEmailEventArgs args);

With this code in place, we can write a new implementation of the button click

event in our master page. We also need to define a public event in our master page:

Interaction.master.cs (excerpt)

protected void SendEmailButton_Click(object sender, EventArgs e)
{
 if (SendEmail != null)
 {
 SendEmailEventArgs args;
 args = new SendEmailEventArgs(AddressTextBox.Text);
 SendEmail(this, args);

 }
}
public event SendEmailEventHandler SendEmail;

Content pages can now subscribe to the public event defined in the master page. If

we use the @ MasterType directive, as we did in the last section, the content pages

can subscribe to the event through the strongly typed Master property. Here's the

code for a content page:

256 The ASP.NET 2.0 Anthology

MasterEvents.aspx.cs (excerpt)

public partial class Interaction_Default : System.Web.UI.Page
{
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 Master.SendEmail += new SendEmailEventHandler(Master_SendEmail);

 }
 void Master_SendEmail(object sender, SendEmailEventArgs args)
 {
 string toAddress = args.EmailAddress;
 //
 // code to send the email ...
 //

 }
}

The page could use classes from the System.Net.Mail namespace to send the email.

See Chapter 11 for more details on email and ASP.NET.

Discussion
We can examine our solution from two perspectives:

from the master page’s point of view

All responsibility for mailing content has been removed from the master page.

The master page is only responsible for raising an event. This separation of

concerns keeps our master page clean and uncluttered.

from the point of view of the content page

The content page doesn’t know how—or why—the master page is raising the

SendEmail event. It only knows how to respond to the event. The event argu

ments carry all the information that the content page needs (in this case, just

an email address). The master page could change the text box control to a drop-

down control or a tree view—the change won’t impact the content page at all.

I’m sure you’ll agree that being able to change the implementation of one part

of our application without breaking code in another part is a huge benefit.

http:ASP.NET

Component-based Development 257

How do I use URLs in a master page?

There are not many web applications that can be written by placing all files into a

single directory—typically, an application’s pages are divided between multiple

folders and subfolders. While relative URLs can make an application portable, they

can also cause problems when they’re used from within master pages.

Consider the following markup:

Notice that the src attribute points to the image with a relative URL. If the master

page and the content page live in the same directory, this approach will work fine.

But should our project structure resemble that shown in Figure 8.7, we’ll run into

problems.

Figure 8.7. When relative URLs go wrong …

In this project we have a master page (URLs.master) and a content page (Default.as

px) residing in different folders. From the discussion at the beginning of this chapter,

we can deduce that the master page will write the relative link for the image into

the HTML output.

258 The ASP.NET 2.0 Anthology

It’s important to realize that the web browser knows nothing about master pages

and content pages. The browser sees only the rendered HTML that the two objects

produce in response to its request for a single resource (for example, http://local

host/URLs/subfolder/Default.aspx). The browser will process the HTML it re

trieves from the server, and in doing so will attempt to retrieve an image from the

address http://localhost/URLs/subfolder/images/disco_night.png. Unfortu

nately, the picture lives inside an images folder one directory higher, and the result

will be a 404 error: File Not Found.

What can we do to fix these fragile links inside a master page?

Solutions
There are a few techniques that we can use to manage URLs in master pages. Let’s

look at the merits of each of them.

Using Absolute URLs
The immediately obvious alternative to relative URLs is to use absolute URLs, which

remove any ambiguity as to the location of a resource. As an example, the following

code would correctly retrieve the image successfully:

URLs.master (excerpt)

<img src="http://localhost/URLs/images/disco_night.png"
alt="Disco night" />

However, this code is extremely inflexible—the machine name and application

location may change over time, or between deployment environments, yet this

static code won’t reflect those alterations. That's why, generally speaking, absolute

URLs should be avoided.

Using the ResolveClientUrl Method
A better solution is to use the ResolveClientUrl method. The master page class

inherits this method from the Control class. ResolveClientUrl is aware of the

difference between the locations of the master and content pages, and can adjust

the URL parameter accordingly. Here’s how we’d use ResolveClientUrl to refer to

our image:

http://local-
http://localhost/URLs/subfolder/images/disco_night.png

Component-based Development 259

URLs.master (excerpt)

<img src="<%= ResolveClientUrl("images/disco_night.png")%>"
alt="Disco night" />

The return value of the method will be a URL that can successfully fetch the image.

In this example, the browser will see the following img element in the HTML:

You’ll notice that this is still a relative URL, though it now points to the correct

images directory.

Although this approach frees us from embedding absolute URLs in our master page,

it still has one drawback: the image won’t appear in the master page when we’re

using the Design view of Visual Studio, so the ResolveClientUrl method will only

work at runtime. Being unable to see the images during the design phases can be a

headache. Fortunately, we have one more trick up our sleeve!

Using URL Rebasing
ASP.NET attempts to solve the problem of relative paths leading to broken links

with a feature called URL rebasing through which ASP.NET will examine URL-re

lated properties at runtime, and adjust the paths for us.

So why doesn’t this feature work with an img element? Because ASP.NET only

performs URL rebasing on server-side controls. If we add runat="server" to our

img element, as I’ve done below, we’ll suddenly have a server-side control, and

ASP.NET will automatically amend the relative URL to point to the correct location:

<img src="images/disco_night.png" runat="server"

alt="Disco night" />

As the ASP.NET Image control is a server-side control, it will have its ImageUrl

attribute rebased by ASP.NET. Therefore, the following markup will also correctly

resolve the image location:

<asp:Image runat="server" ImageUrl="images/disco_night.png"

ID="Image1" />

http:ASP.NET

260 The ASP.NET 2.0 Anthology

Although ASP.NET attempts to rebase all URLs for server-side controls, it doesn’t

catch every one. The following div element is a server control, but ASP.NET won’t

rebase the URL inside the style attribute:

URLs.master (excerpt)

<div runat="server"
style="background-image:url(images/disco_night.png)">

However, we can explicitly rebase URLs by returning to the ResolveClientUrl

method of the Control class. Here’s how we’d rebase the URL in the above markup:

URLs.master (excerpt)

<div style="background-image:url(
 <%=ResolveClientUrl("images/disco_night.png")%>)">

The Ideal Approach
As both master pages and user controls can live in different folders from their aspx

hosts, care must be taken when you’re using relative URLs. When in doubt, it’s

possible to explicitly rebase a URL to ensure that it resolves correctly.

How do I modify header elements in a
master page?
Since every page needs a head element, this element will usually be defined in a

master page. Consider the following markup from a master page—the head element

includes link and meta elements:

Header.master (excerpt)

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Header.master.cs" Inherits="Header_Header" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <link href="StyleSheet.css" rel="style sheet" type="text/css" />
 <meta name="description" content="Testing custom styles"/>

Component-based Development 261

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">

 </asp:ContentPlaceHolder>

 </div>

</form>

</body>

</html>

It’s often the case that a content page needs to change the header content provided

by the master page—some content pages may need to add custom meta information,

or link to a custom style sheet or external JavaScript file. How should a content

page go about customizing the head element?

Solution
You’ll notice the head element in the above master page contains a runat="server"

attribute, making the head element a server control. Using runat="server" in the

header is good practice, and is required in many scenarios (for instance, when using

the ASP.NET AJAX Framework, which we’ll look at in Chapter 10).

With the header now a server control, ASP.NET will expose that control as an Htm

lHead object via the Header property of the Page class. And once we have access to

it, we could potentially clear all the content from the head element by placing the

following code inside our content page:

Header.aspx.cs (excerpt)

Header.Controls.Clear();

We can also use the Header property to add controls to the head element of the

master page. For instance, the following code will add a meta element that redirects

the page:

262 The ASP.NET 2.0 Anthology

Header.aspx.cs (excerpt)

HtmlMeta meta = new HtmlMeta();
meta.HttpEquiv = "Refresh";
meta.Content = "2;URL=http://www.odetocode.com";
Header.Controls.Add(meta);

In addition to the HtmlMeta class that manages meta elements, ASP.NET provides

the HtmlLink class to manage link elements. The following code injects a link to a

style sheet into the header:

Header.aspx.cs (excerpt)

HtmlLink link = new HtmlLink();
link.Href = "customstyles.css";
link.Attributes.Add("rel", "style sheet");
link.Attributes.Add("type", "text/css");
Header.Controls.Add(link);

Remember, the Header property only works when runat="server" is present in

the opening head tag.

Discussion
ASP.NET actually offers a built-in mechanism for style sheet injection—the themes

feature in ASP.NET 2.0 can manage style sheets automatically, and when combined

with master pages, can help to build a consistent and maintainable user interface.

We’ll look at themes in the next solution.

How do I use themes effectively in
conjunction with CSS?
Just as master pages can manage the common content of multiple web forms inside

an application, themes can manage the appearance and layout of controls inside

an application. A theme uses style sheets and skin files to achieve this goal.

There’s some overlap between the features provided by master pages and themes.

Both can dictate the layout of a content page—for example, a master page could use

a table-based design to organize the sections of a user interface into table cells.

Component-based Development 263

However, while table-based designs are easy to create, they do present problems if

we want to take a component-based approach to development. Table-based designs

produce a page that entwines the content and structure of a page. For example, to

create a new layout from a table-based design, we have to copy and paste table cells

and table rows into new areas of the page—in other words, we have to rip apart the

structure of a page.

Using a CSS-based design can help separate the page's content from its structure.

And using a CSS-based design with ASP.NET 2.0 themes means that we can rearrange

the layout of a page by simply changing the page’s theme.

Solution
Let’s look at some markup from a content page. Inside the page, we have two distinct

pieces of content: links and news. Each piece of content lives inside a div element

with an appropriate id attribute:

Themes.aspx (excerpt)

<form id="form1" runat="server">
<div id="links">
 <asp:BulletedList runat="server" ID="linkList"

SkinID="LinkListSkin" >
 <asp:ListItem Value="http://www.odetocode.com/blogs/scott/">
 Scott's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://haacked.com/">
 Phil's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://weblogs.asp.net/jgalloway/">
 Jon's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://www.codinghorror.com/blog/">
 Jeff's Blog

 </asp:ListItem>
 <asp:ListItem

Value="http://www.sitepoint.com/blogs/category/net/">
 Wyatt's Blog

 </asp:ListItem>
 </asp:BulletedList>
</div>
<div id="news">

264 The ASP.NET 2.0 Anthology

"The ASP.NET Anthology" is now available!

</div>

</form>

Let's create a new theme to arrange the content on the screen. We’ll name the first

theme that we create “Plain.” Inside the theme, we’ll create a new style sheet that

contains the following CSS rules:

Plain/StyleSheet.css (excerpt)

body, div
{
 margin: 0;
 padding: 0;
 background: #99cccc;
}
#links
{
 background: #cccc99;
 float: left;
 width: 25%;
}
#news
{
 float: right;
 width: 75%;
}

Notice that we’ve specified the layout and arrangement of our content using float

and width. Figure 8.8 shows what happens when we assign the theme to our page

using the directive @ Page Theme="Plain". ASP.NET automatically applies all of

the style sheets from the theme to the page.

Component-based Development 265

Figure 8.8. Applying the “Plain” theme

We can change our layout by creating a second theme—let’s call this one “Crazy.”

Inside this theme, we’ll create a new style sheet that contains the following rules:

Crazy/StyleSheet.css (excerpt)

body
{
 margin: 0;
 padding: 0;
 background: #CCFF11;
 font-family: Impact;
}
#links
{
 background: #11FFCC;
 float: right;
 width: 25%;
}
#news
{
 float: left;
 width: 75%;
}
.list
{
 list-style-image: url(images/beachball.gif);
}

266 The ASP.NET 2.0 Anthology

Figure 8.9 shows our page display once the new theme has been applied using the

directive @ Page Theme="Crazy".

Figure 8.9. Applying the “Crazy” theme

As you can see, we’ve reversed the two columns of our page content without

modifying the structure of the page at all. This flexibility is one of the benefits of a

component-based approach to user interface design.

Discussion
Back in the Crazy theme style sheet, we defined the following style:

Crazy/StyleSheet.css (excerpt)

.list
{
 list-style-image: url(images/beachball.gif);
}

As we saw in Figure 8.9, our browser correctly applied this style to the bulleted list

of links in our content.

A couple of questions come to mind about this behavior. The first question, given

our previous discussion regarding relative URLs in master pages, is: “Isn’t it danger

ous to use a relative path to refer to the beach ball image?”

The answer is no—web browsers will always request the beach ball image relative

to the location of the style sheet. We don’t need to concern ourselves with the loca

Component-based Development 267

tion of the style sheet relative to the location of the pages that use the style sheet.

Typically, when we’re using themes and style sheets with image references, we’d

place those images inside a subdirectory of the theme. The Solution Explorer window

depicted in Figure 8.10 shows the structure for the Plain and Crazy themes used in

this solution.

Figure 8.10. Theme file locations in Solution Explorer

A second question about the list style is: “How was this style applied to the bulleted

list?” We didn’t specify a class name when we used the BulletedList ASP.NET

control, as the following markup shows:

Themes.aspx (excerpt)

<asp:BulletedList runat="server" ID="linkList"
SkinID="LinkListSkin" >

 <asp:ListItem Value="http://www.odetocode.com/blogs/scott/">
 Scott's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://haacked.com/">
 Phil's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://weblogs.asp.net/jgalloway/">
 Jon's Blog

 </asp:ListItem>
 <asp:ListItem Value="http://www.codinghorror.com/blog/">

268 The ASP.NET 2.0 Anthology

Jeff's Blog

 </asp:ListItem>

</asp:BulletedList>

The answer lies in the SkinID attribute. We’ve specified a skin for the bulleted list

control, and each theme contains a skin file, named SkinFile.skin. The skin file for

our Crazy theme contains the following code:

Crazy/SkinFile.skin (excerpt)

<asp:BulletedList runat="server" SkinID="LinkListSkin"
 DisplayMode="HyperLink" CssClass="list"
/>

A skin applies its properties to all the controls on given a page that have the same

type and SkinID. If we were to omit the SkinID, the result would be a skin that was

applied to all controls of the same type, regardless of SkinID value.

Since this skin sets the DisplayMode and CssClass properties for all BulletedList

controls that have a SkinID of LinkListSkin, the CssClass assigns a class attribute

with a value of list—hence the class name used to define the CSS rules.

Themes and skins are potent features in ASP.NET 2.0, but their real power is appar

ent when we use them in conjunction with CSS to build our applications. Many

tools and UI designers already understand CSS; by applying default CssClass

properties with skin files, and placing our style sheets in theme directories, we can

enjoy the best of both worlds.

How do I treat user controls as components?
User controls and master pages have much in common. We saw earlier that master

pages derive from the UserControl class, and both will ultimately position them

selves as child controls inside a page.

Like master pages, we can treat user controls as black-box components, and our

strategy for doing so should follow closely the strategy we used for master pages.

Component-based Development 269

Solution
User controls are in fact a fantastic tool for packaging common UI elements into

reusable components. Let’s look at an example that demonstrates this point.

In this solution, we’ll build a user control that we can use as the header for multiple

web forms. We could place this control inside a master page to ensure the control

appears on every page, but in this example we’ll place the control inside a single

web form.

Our control needs to provide:

■ a customizable greeting message

■ search functionality

Such a user control might look like this:

Header.ascx (excerpt)

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="Header.ascx.cs"
 Inherits="UserControls_Header" %>

<div class="header">
 <div id="Greeting">
 <asp:Label runat="server" ID="GreetingLabel" Text="Welcome" />

 </div>

 <div id="Search">
 <asp:TextBox runat="server" ID="SearchTermTextBox"/>
 <asp:Button runat="server"

 ID="SearchButton" Text="Search"
 PostBackUrl="~/UserControls/SearchResults.aspx" />

 </div>
</div>

Using this control is as simple as dragging and dropping it onto a page. This drag-

and-drop operation in Design View will automatically add the required @ Register

directive to our page:

270 The ASP.NET 2.0 Anthology

UserControls.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true" Theme="Default" %>
<%@ Register Src="Header.ascx" TagName="Header" TagPrefix="uc1" %>
<!-- ... -->
<uc1:Header ID="Header" runat="server" Message="Greetings!"/>
<!-- ... -->

Notice that our web form can declaratively set the greeting message that the user

control will display. It can do so because we’ve given our user control public

properties that’ll allow a page to get and set important values. Here’s the code that

facilitates this:

Header.ascx.cs (excerpt)

public partial class UserControls_Header : UserControl
{
 public string Message
 {
 get { return GreetingLabel.Text; }
 set { GreetingLabel.Text = value; }

 }
 public string SearchTerm
 {
 get { return SearchTermTextBox.Text; }
 set { SearchTermTextBox.Text = value; }

 }
}

The SearchTerm property is an interesting case. When the user clicks the Search

button, our control performs a cross-page postback to a new web form: SearchResults.as

px. A cross-page postback is controlled by the PostBackUrl property on the ASP.NET

Button control.

Unfortunately, the SearchResults page doesn’t know how to reach the SearchTerm

property, because the user control is part of a different web form. Luckily, we can

access the raw value of the TextBox control using the FindControl method. The

following code shows what the Page_Load method of the SearchResults web form

will look like if we use this approach:

Component-based Development 271

SearchResults.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 if (PreviousPage != null)
 {
 Control header = PreviousPage.FindControl("Header");
 if (header != null)
 {
 TextBox searchBox = header.FindControl("SearchTermTextBox")
 as TextBox;

 if (searchBox != null)
 {
 SearchResults.Text = "You searched for " + searchBox.Text;

 }
 }

 }
}

The PreviousPage property provides a reference to the original web form in an

ASP.NET 2.0 cross-page postback. Notice that we make two calls to FindControl:

The first call locates the user control on the page.

The second call locates the TextBox inside the user control.

This approach is required because a user control implements the INamingContainer

interface. Any control that implements this interface is known as a naming container.

The scope of the FindControl method is limited to the current naming container,

so when FindControl is traversing a control collection, it won’t search within any

controls that reside in a new naming container.

In other words, we couldn’t use the following code:

Page.FindControl("SearchTermTextBox"); // returns null

This code wouldn’t find the TextBox named SearchTermTextBox because the user

control, being a naming container, would prevent FindControl from looking inside

it.

272 The ASP.NET 2.0 Anthology

In the section called “How can my content page override data on my master page?”,

we discussed the fragility of FindControl, and saw how a public property can

formalize the communication between two UI components. We already have a

public property on our user control, but the SearchResults page doesn’t know how

to gain access to that user control. Rather than depending on the PreviousPage

class to always contain a specific user control, we can raise the level of abstraction

by defining an interface for all pages that post back to the SearchResults page, like

this:

ISearchTermSource.cs (excerpt)

public interface ISearchTermSource
{
 string SearchTerm
 {
 get;

 }
}

Our web form needs to implement this interface as follows:

UserControls.aspx.cs (excerpt)

public partial class UserControls_Default :
Page, ISearchTermSource
{
 public string SearchTerm
 {
 get { return Header.SearchTerm; }

 }
}

With an accessible public property in place, our SearchResults page doesn’t care

about user controls or text boxes—it simply looks for the ISearchTermSource inter

face, and performs the search:

SearchResults.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 ISearchTermSource source = PreviousPage as ISearchTermSource;

Component-based Development 273

if (source != null)

 {

 SearchResults.Text = "You searched for " + source.SearchTerm;

 }

}

Once again, we’ve written some extra code to decouple our user interface compon

ents. The extra code required additional work up front, but will make our application

much more maintainable in the end!

How do I embed resources into my
components?
Web controls can require many different types of resources. For example, a tree

view control might include a default set of images, or a custom grid view control

may need to include JavaScript files.

We already store these custom controls in a separate library, so it’s a reasonable

jump to think of these controls as black-box components. Unlike user controls,

which we build as a combination of markup (.ascx files) and code (.cs files), we build

custom controls entirely in code. Take, for instance, the following custom control:

public class HilightPanel: Panel

{

 public string HilightCssClass

 {

 get { return _hilightCssClass; }

 set { _hilightCssClass = value; }

 }

 protected override void AddAttributesToRender(

 HtmlTextWriter writer

) {

 writer.AddAttribute("onmouseover",

 String.Format("setPanelStyle(this, '{0}');",HilightCssClass));

 writer.AddAttribute("onmouseout",

 String.Format("setPanelStyle(this, '{0}');", CssClass));

 base.AddAttributesToRender(writer);

274 The ASP.NET 2.0 Anthology

}

 private string _hilightCssClass;

}

This custom control is a panel that will change styles whenever the user moves the

cursor inside the control’s region. A page could use the control in the following

manner:

<%@ Page Language="C#" AutoEventWireup="true" %>

<%@ Register Assembly="HilightPanel" Namespace="HilightPanel"

TagPrefix="cc1" %>

⋮

<cc1:hilightpanel id="HilightPanel1" runat="server"

CssClass="dark" HilightCssClass="bright">

Frodo lives.

</cc1:hilightpanel>

If we define contrasting dark and light styles in CSS, the panel will appear to light

up when a mouse enters the region:

StyleSheet.css (excerpt)

.bright
{
 background-color:#ffffff;
}
.dark
{
 background-color:#333333;
}

To switch styles during the onmouseover and onmouseout events, the HilightPanel

uses JavaScript. The first pieces of JavaScript are the event handlers attached to the

panel during the AddAttributesToRender method we listed earlier. These event

handlers call a simple JavaScript function like so:

Component-based Development 275

function setPanelStyle(panel, className)

{

 panel.className = className;

}

The amount of JavaScript that's required in this component is extremely small—we

could therefore just inject the above code directly into the page using the

ClientScript property and the RegisterClientScriptBlock method:

string script =

@"function setPanelStyle(panel, className) {

panel.className = className;

}";

Page.ClientScript.RegisterClientScriptBlock(

 GetType(), "HilightScript", script

);

There are a couple of drawbacks to this approach, though. First, we’re mixing our

JavaScript code with C# source code, making it difficult to locate and maintain.

Secondly, even though the amount of JavaScript code is small, we’re still adding

to the size of the page by inserting this code block into the page every time the web

form renders.

If we were to keep our JavaScript code in a separate .js file, we’d reduce page bloat

and give the browser a chance to cache the file, but unfortunately, keeping our script

in a separate .js file makes our component difficult to share and reuse. Rather than

copying a single binary file into one directory, we’d first need to copy each of the

C# files, then make sure each JavaScript file was uploaded to its correct location on

the web server. Surely there’s an easier way?

Fortunately, there is—and it's a solution that’ll give us the best of both worlds!

Solution
Version 2.0 of ASP.NET introduced a new HTTP handler by the name of WebRe

source.axd. This handler can retrieve resources embedded inside a .NET assembly—a

binary file ending with the .exe or .dll extensions. The embedded resource can be a

JavaScript file, an image file, an HTML file, or any other form of static content.

276 The ASP.NET 2.0 Anthology

The first step in using WebResource.axd is to embed our JavaScript file into the as

sembly that holds our custom control. First, we add the JavaScript file to the custom

control’s project, as I’ve done in Figure 8.11. Open this project in the code archive

if you’d like to follow along.

Figure 8.11. Adding a JavaScript file to a project

If we right-click the HilightPane.js file and examine its properties, we can tell Visual

Studio what we want to happen to the file during a build. We want to embed the

file as a resource in the assembly, so we’ll set the Build Action to Embedded Resource,

as shown in Figure 8.12.

Figure 8.12. Configuring our file as an embedded resource

WebResource.axd won’t just serve up any old embedded resource—we have to

formally advertise the resources available using one or more WebResource attributes

Component-based Development 277

on our assembly. A WebResource attribute defines the name and the content type

of an embedded resource that we want to make available to the Web. To advertise

the HilightPanel control, we can add the following code to the project’s Assembly-

Info.cs file:

[assembly: WebResource("HilightPanel.HilightPanel.js",

"text/javascript")]

This is all the information we need to provide to WebResource.axd to ensure that

our JavaScript file can be served. Back inside the HilightPanel custom control, we

simply add a reference to the JavaScript file, rather than inserting a script block:

protected override void OnInit(EventArgs e)

{

 Page.ClientScript.RegisterClientScriptResource(GetType(),

 "HilightPanel.HilightPanel.js");

 base.OnInit(e);

}

Notice the ClientScript has a RegisterClientScriptResourcemethod that makes

an embedded script file easy to use. When we load into the browser a web form that

uses the HilightPanel control, we’ll see that it’s implemented with the following

markup:

<script src="/WebResource.axd?d=Xqz0S24AQmnMAnpnYgBkkaGxJ7CJjj9d96T1

➥E-AnBM4rsQyNADm0iV5ls3-PWEs_0&t=633084819369290760"

type="text/javascript">

</script>

The long query string in this URL provides all the information WebResource.axd

needs to retrieve the HilighPanel.js from the custom control’s assembly and return

the contents of the file to the web browser. The first part of the query string is an

encrypted identifier, while the second part is a time stamp. The time stamp ensures

that the handler will always retrieve the most recent version of the resource.

Embedded resources help us build black-box components by hiding the complexity

of the resources needed by a custom component. Instead of worrying about how to

deploy images and script files, a web project needs only to reference the custom

278 The ASP.NET 2.0 Anthology

control. WebResource.axd also enables us to adhere to best practices, such as keeping

our script file inside a separate resource.

Summary
This entire chapter has focused on applying abstractions to the user interface controls

available in ASP.NET. These abstractions—properties, events, themes, and embedded

resources—all help to make a project successful in the long run by improving the

maintainability of the code base. It’s easy to slap together master pages and user

controls into a web site with the drag-and-drop designer, but taking the extra time

to build these abstractions up front will always pay dividends later in the project’s

life cycle.

http:ASP.NET

Chapter9
ASP.NET and Web Standards
The term web standards describes an approach to the use of client-side technolo

gies—primarily (X)HTML, CSS, and JavaScript—that sees them applied in a best-

practice manner. Generally, this application of standards means:

creating markup that’s semantically meaningful

This includes practices such as using elements like h1 and h2 to specify headings

and subheadings, and using div elements which have meaningful class names

to demarcate parts of a page rather than using HTML tables.

achieving good separation of content, presentation, and behavior

This means using CSS for all presentational effects (including font settings,

colors, and positioning) and using unobtrusive JavaScript rather than placing

your scripts inline in the page.

coding for accessibility

Incorporating markup techniques to make a page as accessible as possible for

users who may be vision-impaired or have difficulty using a mouse, or who

may be browsing using a non-standard browser—whether that be a screen

reader, a PDA, or a web-enabled mobile phone.

280 The ASP.NET 2.0 Anthology

Web standards are important to web developers for a number of reasons. Firstly,

the less markup an application produces, the smoother it will run—it no longer has

to generate masses of extraneous markup, which saves both processor cycles and

bandwidth. The separation of parts mentioned above makes your code easier to

maintain, and search engines eat that clean semantic markup for breakfast! Finally,

standards-compliance will give your application a competitive advantage—a

drawcard that management types will doubtless appreciate.

By embracing web standards, you can enjoy the prospect of writing less code—you

can offload the entirety of an application’s skin onto a separate, loosely coupled

file that you can edit easily without touching the core application. With a purely

CSS-driven design, you can create an application that’s easily alterable—in an aes

thetic sense, at least. In addition, these changes can be handled entirely by the

design team, rather than requiring developers to spend time making changes to the

application itself.

Possibly one of the best—albeit sometimes horrifying—examples of the power of

CSS is the social networking site MySpace.1 Users of the site can customize their

profile pages by modifying the colors, fonts, and images that are displayed. Since

these customized pages are largely CSS-powered, the application can allow users

to make these changes without having to generate a lot of extra markup.

ASP.NET—especially Visual Studio—has a poor reputation among standards-oriented

developers. And as anyone who’s spent significant time with Visual Studio 2003

can tell you, this reputation is not entirely unearned. It’s not so easily justified these

days, however: Visual Studio 2005 no longer takes creative liberties with your

HTML. Microsoft’s ASP.NET 2.0 web controls generate XHTML-compliant markup

by default. The future is even more promising, as Microsoft now takes web standards

very seriously. Orcas, the upcoming version of Visual Studio, takes CSS and

JavaScript support to new levels within the development environment. Standards-

oriented development is here to stay.

For the time being, however, we have to make an effort to ensure that our client-

side code approaches best practice. This chapter will give you a few tips for doing

just that.

1 http://www.myspace.com/

http://www.myspace.com/
http://www.myspace.com/

ASP.NET and Web Standards 281

What are all these span tags doing in
my HTML output?
Visual Studio makes it very, very easy for a developer to drag controls onto a page,

work through a few wizards, and produce a functional web form in a matter of

minutes. But this ease of use has its costs, possibly the most significant of which is

that the resulting application can produce lots of extraneous markup.

Creating a basic data-bound web page is easy: just drag a couple of Label controls

onto the page in Design view, set up the data binding parameters, and call it a day.

But take a look at the code that results:

ContentWithLabels.aspx (excerpt)

<h1>
 <asp:Label

runat="Server"
ID="PageTitleLabel"
Text='<%# PageContent.Title %>'

/>
</h1>
<asp:Label

runat="Server"
ID="IsHotLabel"
CssClass="hawt"
 Visible='<%# PageContent.IsHot %>'

/>
<asp:Label

runat="Server"
ID="ContentLabel"
Text='<%# PageContent.ContentText %>'

/>

That code’s nice and clean, right? Not quite! This example reveals a very common

issue. The poorly planned use of server controls—such as the use of Label controls

above—can lead to extraneous and invalid HTML output such as this:

282 The ASP.NET 2.0 Anthology

<h1>

First Page

</h1>

This is Hawt!

<p>Content ID 1.</p>

The output that appears in bold is directly attributable to the use of the Label con

trols to make the page. And it’s very bad. It’s bad for a couple of reasons:

■	 All the span elements are redundant.

■	 The placement of a p element (a block-level element) inside a span (an inline

element) is invalid.

Solution
To avoid the unseemly introduction of all those unnecessary spans, modify your

web form template to appear as follows:

ContentNakedBound.aspx (excerpt)

<h1><%# PageContent.Title %></h1>
<p

runat="server"
 ID="HawtParagraph"
 class="hawt"
 visible="<%# PageContent.IsHot %>"

>
 This is HAWT

</p>
<%# PageContent.ContentText %>

The HTML output produced by this form will be a vast improvement on that shown

above:

<h1>First Page</h1>

<p id="HawtParagraph" class="hawt">

 This is HAWT!

</p>

<p>Content ID 1.</p>

Much cleaner, no?

ASP.NET and Web Standards 283

Discussion
While all those Label controls are easy to manipulate within the Design view, they

create extraneous HTML span elements within the markup. To solve that problem,

we can quite easily replace each Label with a Literal control on the form, then

recompile and redeploy our project.

But what if you didn’t have the full source code handy—you had only the precom

piled application? What if you wanted to distribute a work and let its users modify

in a declarative manner the report templates that were used in the application?

In these advanced scenarios, inline data binding really begins to pay off. Using

constructs like <h1><%# PageContent.Title %></h1> or <%#

PageContent.ContentText %> allows developers to access server-side properties

directly from the markup. So any variable or method that’s available to that Page

can be included in the markup.

Using the ternary operator can make this declarative binding much more powerful,

as it allows us to include some small logical operations in the declarative markup.

The operator itself looks like this:

<p><%# IsSunny() ? "It's sunny!" : "It rains!" %></p>

That statement translates to the following:

if (IsSunny())

{

 // output "It's sunny!"

}

else

{

 // output "It rains!"

}

We could have used this ternary operator to handle the question above, like so:

<%# PageContent.IsHot ? "<p class="hawt">This is HAWT!</p>" :

 string.Empty %>

284 The ASP.NET 2.0 Anthology

What’s the Difference Between <%# i %> and <%= i %>?

We can use two constructs to access page-level variables in an ASP.NET web

template:

data binding syntax

Data binding—the hierarchical mapping of control properties to data container

values—is specified by the <%# … %> tags. Code located within a <%# … %>

code block is only executed when the DataBind method of its parent control

container is invoked.

code rendering syntax

The <%= … %> code tags output content to the browser. This content could

be hard-coded, or it may contain page-level variables.

In most cases, either of these constructs could be used to achieve the same result,

but there are some interesting nuances in the different ways in which each con

struct goes about its job.

For example, when we use data binding to place an object into a page, the ASP.NET

parser actually creates a DataBoundLiteral control. It puts the control into the

template, then fills in the value as appropriate. This control does have view state,

so it can be persisted across postbacks. It makes sense to use this approach when

we load data from a resource that’s in high demand, and we want to keep it handy

on the page. The disadvantage of using data binding is that we often need to call

DataBind explicitly on the containing control to achieve the desired effect.

Displaying content to the browser, on the other hand, is a more lightweight solu

tion, as it doesn’t create a control the way data binding does. However, there are

a couple of downsides to this approach. One is that the code within a code render

ing block is executed on every request to the page—the lack of any caching may

result in an increased server load.

Additionally, code rendering blocks occasionally produce an odd error that’s

difficult to debug. The error reads, “The Controls Collection cannot be modified

because the control contains code blocks.” This means that ASP.NET is trying to

embed expressions into the output it generates, but is unable to do so because the

output it’s embedding is dynamic. Data binding expressions, on the other hand,

are embedded at runtime, so they aren’t affected by this limitation. Therefore, it’s

important to be very careful when using injection with dynamically created con

trols, and to be prepared to switch to using data binding or other expressions if

necessary.

ASP.NET and Web Standards 285

While this example is focused on Label controls, the theory of avoiding the use of

server controls can be applied across the board—don’t use them if you don’t need

them! Avoiding server controls wherever possible will help you keep your code

cleaner.

How do I obtain DataList-style
functionality without using a table?
A common requirement of many data-driven applications is that they display ma

nipulable lists of data. However, many ASP.NET server controls output table ele

ments as well as other potentially extraneous HTML. How can we best output our

data lists without cluttering the page with layout tables and unnecessary markup?

Solution
An often-overlooked control in the ASP.NET toolbox is the trusty old Repeater.

While it lacks the glitz of the GridView, Repeater can be very powerful, and produces

clean, semantic HTML. Unlike its peers, the Repeater comes with no baggage—you,

as a developer, can control exactly what lands on the page.

For example, let’s say we have a list of Person data objects bound to the following

Repeater:

RepeaterMagic.aspx (excerpt)

<asp:Repeater runat="Server" ID="ExemplarRepeater"
DataSource="<%# Bloggers %>">

 <HeaderTemplate>

 </HeaderTemplate>
 <FooterTemplate>

 </FooterTemplate>
 <ItemTemplate>

 <%# Eval("FirstName") %>
<%# Eval("LastName") %>
 <asp:Button

runat="Server"
ID="SendReminderButton"
Text="Send a Reminder"

286 The ASP.NET 2.0 Anthology

CommandArgument='<%# Eval("Id") %>'

 OnClick="SendReminder"/>

 <span

runat="Server"

id="SentLabel"

visible="false"

 class="sent">

 SENT

</ItemTemplate>

</asp:Repeater>

The key to generating the code that provides us with DataList-style functionality

lies in the event handler for the SendReminderButton:

RepeaterMagic.aspx.cs (excerpt)

protected void SendReminder(object sender, EventArgs e)
{
 IButtonControl sButton = (IButtonControl)sender;
 Guid id = new Guid(sButton.CommandArgument);

 // Actually send the reminder.
 PersonMailerService.SendMail(id);

 Control sControl = (Control)sender;
 Control c=sControl.NamingContainer.FindControl("SentLabel");
 c.Visible = true;
 sControl.Visible = false;
}

Discussion
Each of the objects and actions we used above is very simple, but when they’re put

together, they form a potent combination. Let’s walk through it:

IButtonControl sButton = (IButtonControl)sender;

Guid id = new Guid(sButton.CommandArgument);

ASP.NET and Web Standards 287

This snippet takes a reference to the sending object—in this case the SendReminder-

Button for each Repeater item—and casts it as an IButtonControl object. Doing

so allows us to access the CommandArgument attribute of our button, which is the

most important part: it tells us which button was clicked. This approach is akin to

using the DataKeys property of a GridViewRow. You can also use server-side

HiddenFields or invisible Literal controls to store variables. Those variables are

then available for you to use in your event handling logic.

Control sControl = (Control)sender;

Control c=sControl.NamingContainer.FindControl("SentLabel");

c.Visible = true;

sControl.Visible = false;

In the code listing above, the sender is cast as a generic control, so that we can access

its NamingContainer—which, in the case of Repeaters, is the RepeaterItem that

contains the control in question and all its peers. Once this property is available,

calls to FindControl can obtain references to other controls in the row, and manip

ulate their properties and methods.

Finally, remember that just about any sort of control can be placed within a Repeater.

For example, you could develop a fancy Ajax-powered Person user control that al

lowed us to view and edit a person’s details, and which could be bound to a

Repeater should user interface requirements call for it. See Chapter 8 for information

about creating componentized user controls.

How do I use ASP.NET’s fancy menus
without the fancy HTML?
As a rule of thumb, the more complex a stock ASP.NET control is, the more verbose

its output will be. The trusty old menu is a case in point. Let’s build one, starting

with the following sitemap:

Web.sitemap (excerpt)

<siteMap
xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 <siteMapNode url="~/Default.aspx" title="Home">
 <siteMapNode url="~/Products/Default.aspx"

title="Products List">

288 The ASP.NET 2.0 Anthology

<siteMapNode url="~/Products/Books.aspx" title="Books" />

 <siteMapNode url="~/Products/CDs.aspx" title="CDs" />

 <siteMapNode url="~/Products/DVDs.aspx" title="DVDs" />

 <siteMapNode url="~/Products/Software.aspx"

title="Software" />

 </siteMapNode>

 <siteMapNode url="~/About/Default.aspx" title="About Us">

 <siteMapNode url="~/About/OurFound.aspx"

title="Our Founder" />

<siteMapNode url="~/About/Investors.aspx"

title="Investor Information" />

 <siteMapNode url="~/About/Careers.aspx"

title="Career Opportunities" />

 </siteMapNode>

 <siteMapNode url="~/ContactUs.aspx" title="Contact Us" />

 View/edit User Control

 </siteMapNode>

</siteMap>

Let’s combine the sitemap with the following menu declaration:

Site.master (excerpt)

<asp:SiteMapDataSource
ID="WebSitemap"
runat="server"
 ShowStartingNode="False"

/>
<asp:Menu

ID="SampleMenu"
runat="server"
DataSourceID="WebSitemap"
CssSelectorClass="StyledMenu"

/>

That code produces the following HTML:

<img alt="Skip Navigation Links"

src="/CssFriendly/WebResource.axd?d=_9HAj-Fpl4_U3KC59gRMDw2&

➥t=632966801392656250" width="0" height="0"
style="border-width:0px;" />

<table id="SampleMenu" class="SampleMenu_2" cellpadding="0"

ASP.NET and Web Standards 289

cellspacing="0" border="0">

<tr>

<td onmouseover="Menu_HoverStatic(this)"

onmouseout="Menu_Unhover(this)" onkeyup="Menu_Key(event)"

 id="SampleMenun0"><table cellpadding="0" cellspacing="0"

border="0" width="100%">

<!--[snip 2 pages of similarly obtuse and explicit HTML]-->

<img src="/CssFriendly/WebResource.axd?d=Bg6dmRXIOk258EPvRBAhHvMBlsz

➥JJFEJxW1KeGUAYjM1&t=632966801392656250"

alt="Scroll up" />

</div>

<div class="SampleMenu_0" id="SampleMenun1ItemsDn"

onmouseover="PopOut_Down(this)"

onmouseout="PopOut_Stop(this)" style="text-align:center;">

<img src="/CssFriendly/WebResource.axd?d=xK-_eiNXxMy41lKm3BdePL2PwrX

➥7KVf_qJT9YSSxQFY1&t=632966801392656250"

alt="Scroll down" />

</div>

</div>

In total, this markup weighs in at 5.65KB—that’s rather hefty for a very basic, un

styled menu. Had I spruced it up using the standard design properties, the file would

have been even larger—all of the style information is included inline, which makes

each menu item more resource-intensive to generate and send down the wire, which

makes the task of generating and displaying each menu item even more resource-

intensive than it is now. And, when this menu finally arrives at the client, JavaScript

had better be enabled, or ASP.NET’s fancy menus will be useless.

What’s a responsible developer to do?

Solution
Probably the best way to tame ASP.NET 2.0’s more complex server controls is to

use the CSS Friendly Control Adapters Kit. Originally created by Microsoft, these

adapters were released to the community on March 7, 2007. The project now lives

on the CodePlex site,2 and includes more than just an updated menu system—ad

apters abound for the most infamous of the server controls. You can drop these ad

2 http://www.codeplex.com/cssfriendly/

http://www.codeplex.com/cssfriendly/
http://www.codeplex.com/cssfriendly/
http://www.codeplex.com/cssfriendly/

290 The ASP.NET 2.0 Anthology

apters into your project without needing to modify a line of your existing code, as

Figure 9.1 illustrates.

Figure 9.1. Adding CSS Friendly Controls to a Web Site project

Previously, adding the kit to your project required you to use a special template, or

to jump through several hoops in an effort to add a jumble of files. Now the kit can

easily be added to any ASP.NET project, thanks to Brian DeMarzo.3 Just download

the two files—CSSFriendly.dll and CssFriendlyAdapters.browser—from the CodePlex

site. Then, add a reference to the .dll and add the .browser file to your App_Browsers

folder.

How much of a difference can two little files make? Well, if we use them in conjunc

tion with the menu declaration we saw above, the markup that’s generated is a mere

1.57KB of somewhat intelligible menu code:

<div class="StyledMenu" id="ctl00_SampleMenu">

 <div class="AspNet-Menu-Vertical">

 <ul class="AspNet-Menu">

 <li class="AspNet-Menu-WithChildren">

 <a href="/CssFriendly/Products/Default.aspx"

class="AspNet-Menu-Link">Products List

 <li class="AspNet-Menu-Leaf">

 <a href="/CssFriendly/Products/Books.aspx"

class="AspNet-Menu-Link">Books

⋮

 <li class="AspNet-Menu-Leaf">

3 http://www.demarzo.net/

http://www.demarzo.net/
http://www.demarzo.net/

ASP.NET and Web Standards 291

<a href="/CssFriendly/ContactUs.aspx"

class="AspNet-Menu-Link">Contact Us

 </div>

</div>

Discussion
The kit works by taking advantage of ASP.NET 2.0’s control adapters: convenient

intercepting filters that inject themselves near the end of the rendering cycle to

override the final output. The kit allows you to retain all the rich logic of the controls,

which output much cleaner HTML. I should add that the controls are brutally effi

cient at this task—almost none of the visual properties of the adapted controls make

it to the browser.

After you download the kit, don’t forget to read Microsoft’s excellent whitepaper

on CSS Friendly Control Adapters.4 This very readable document sheds light on

the use of Control Adapters in general, and the use of the menu’s styles in particular.

What if I’m Stuck on ASP.NET 1.1?

The short answer to this question is that, if you care about standards support, you

should really consider upgrading. Control adapters are a 2.0-only feature, and the

Visual Studio 2003 designer’s habit of mangling HTML in a semi-random fashion

does not help developers embrace standards compliance. That, and the Framework

itself, work against you.

ASP.NET 1.x features its own version of adaptive rendering, which uses the

browserCaps element in the machine.config file to determine what sort of

HTML—4.01 or 3.2—should be served to particular clients. Unfortunately, it

makes the presumption that any browser it doesn’t recognize wants HTML 3.2

output. And, in the default configuration, it doesn’t recognize any modern browser

except IE 7.

There is a fix—visit http://slingfive.com/pages/code/browserCaps/ to get an up

dated configuration that will, at least, let you serve adequate HTML to non-IE

visitors.

4 http://www.asp.net/CSSAdapters/WhitePaper.aspx

http://www.asp.net/CSSAdapters/WhitePaper.aspx
http://www.asp.net/CSSAdapters/WhitePaper.aspx
http://www.asp.net/CSSAdapters/WhitePaper.aspx

292 The ASP.NET 2.0 Anthology

How do I make sense of the CSS maze
produced by the CSS Friendly menu?
Visually speaking, the CSS Friendly menus aren’t terribly appealing straight out of

the box. An unstyled vertical menu can easily end up looking like Figure 9.2.

Figure 9.2. An unstyled menu displaying as a jumbled mess

Solution
It’s time to roll up our sleeves and dive into some CSS coding! We’re required to

employ some advanced techniques in order to take advantage of the CSS API exposed

by the CSS Friendly menu. The whitepaper I mentioned in the section called “How

do I use ASP.NET’s fancy menus without the fancy HTML?” is a great place to get

started, but it covers far more than just styling the Menu control.

Instead of trying to cover all of the aspects of how each menu item could be styled,

I’ve trimmed the menu styles down to the most important aspects of CSS—the parts

that control the size, shape, and general behavior of the vertical menu:

StyleSheet.css (excerpt)

ul.AspNet-Menu {
 width: 160px;
 border-top: 1px solid red;
}
ul.AspNet-Menu ul {

ASP.NET and Web Standards 293

width: 180px;

 left: 155px;

 top: -1em;

 z-index: 400;

 border-top: 1px solid red;

}

ul.AspNet-Menu ul ul {

 left: 175px;

}

ul.AspNet-Menu li {

 background:teal;

}

ul.AspNet-Menu li a,

ul.AspNet-Menu li span {

 color: white;

 padding: 4px 2px 4px 8px;

 border: 1px solid red;

 border-top: none;

}

AspNet-Menu li:hover,

AspNet-Menu li.AspNet-Menu-Hover {

 background: #7795BD;

}

This markup produces a much more palatable system with very usable fly-out

menus, as Figure 9.3 reveals.

Figure 9.3. The menu is much prettier, especially considering JavaScript is disabled!

294 The ASP.NET 2.0 Anthology

Discussion
For a fairly concise style sheet, this is a fantastic result! Let’s see how we arrived

at this outcome.

Simple CSS Inheritance
Similar to the way an object is extended in C#, an HTML node’s child nodes inherit

many of their parents’ CSS properties—a concept known as inheritance. We can

use CSS selectors to apply styles to specific children of a given HTML element.

Let’s look at an example:

div#mainContent h2 {

border-bottom: 1px solid blue;

font-size: 1.5em;

}

This style rule would make any h2 element contained within a div with the id of

mainContent display at 1.5 times the page body’s default font size, with a blue

bottom border.

Now, if you wanted to, you could have generated the same visual effect by applying

a new class attribute to the heading. The style rule accompanying your new markup

would look something like this:

h2.bigBlueHeader {

 border-bottom: 1px solid blue;

 font-size: 1.5em;

}

But that would be the wrong way to approach the problem, for several reasons. For

instance, what happens when you decide the headers should be red, and slightly

smaller? Should you change any reference to the CSS class? Or should you just

change the bigBlueHeader class to be small and red?

Had we used the first approach—taking advantage of the cascading aspect of Cas

cading Style Sheets by applying styles to elements within a given element—the

change would be easy, not to mention all the bandwidth you’ll save by not having

class="bigBlueHeader" all over the place.

ASP.NET and Web Standards 295

CSS Inheritance and Tables
CSS inheritance proves very handy in a number of cases. For example, if you wanted

to display alternating row colors on a table, you could declare your style rules like

so:

td.headerCell {

 border: solid 1px navy;

 padding: 3px;

 color: #e2e2e2;

 background: navy;

}

td.dataCell {

 border: solid 1px black;

 padding: 3px;

 color: navy;

 background: white;

}

td.altDataCell {

 border: solid 1px black;

 padding: 3px;

 color: navy;

 background: #e2e2e2;

}

These style rules create cells with navy text and white or gray backgrounds, depend

ing on which class is applied, but these rules require that a class be applied to each

cell in the table. So, if you had a 50-row GridView, with ten columns, you’d have

to generate class values of dataCell and altDataCell 500 times in your

HTML—that’s a total of 8750 characters for a presentational effect, once you factor

in the class attribute.

A better way to approach this task is to declare a class for the overarching table,

and use CSS inheritance to handle the job of styling rows:

table.dataGrid {

 border-collapse: collapse;

 margin: 10px auto;

}

296 The ASP.NET 2.0 Anthology

table.dataGrid td {

 padding: 3px;

 border: solid 1px black;

 color: navy;

 background: white;

}

table.dataGrid tr.headerRow td {

 color: #e2e2e2;

 background: navy;

}

table.dataGrid tr.altRow td {

 background: #e2e2e2;

}

Now all you have to do is set the class of the overarching table to dataGrid, the

header row’s class to headerRow, and the alternate row’s class to altRow, and your

work is done! If we applied this approach to styling the 50-row grid we discussed

above, we’d use a mere 700 characters for the CSS rule sets, saving 8KB every time

that page was sent down the wire. Inheritance can be very powerful and very useful

indeed, and we’ll make use of it to style our menu.

In fact, several layers of CSS have already been inserted into our menu by the CSS

Friendly Adapters—why else do you think the menu is an illegible jumble, rather

than a plain unordered list? The first step we’re going to have to take is to figure

out what we need to override. To do this, you could start reading through the style

sheets included in the CSS Friendly Adapters project, but that’s hardly very exciting,

is it? There must be a better approach …

There is! Install some tools to help make the situation a little more intelligible.

CSS Development Tools
CSS debugging used to be a terribly manual process—essentially, it involved reading

CSS, looking at output, and figuring out what was wrong with your web site by

touch and feel. Recently, however, the suite of tools available to develop and debug

CSS has improved dramatically:

ASP.NET and Web Standards 297

Firebug

Firebug is a powerful Firefox extension that allows the tracing, profiling, and

editing of CSS and JavaScript. This incredibly useful tool has become an indis

pensable aid for any serious client-side web developer. Thanks to Firebug, we

have the ability to see exactly what the browser sees. Firebug includes a wealth

of features, including graphs showing network activity, rulers and guides for

lining up elements, an advanced DOM browser, and more.

Download the extension, and access a quick introduction to its capabilities at

the Firebug web site.5 You can also download a lightweight version of Firebug

for use with other browsers such as Safari, Opera, and Internet Explorer.

Internet Explorer Developer Toolbar

IE is not without its own client-side development tools, however. Microsoft re

cently released the Internet Explorer Developer Toolbar, which provides IE with

a subset of the functionality provided by Firebug.6 Given that client-side CSS

implementations differ significantly between browsers, it’s quite necessary to

have tools specific to each platform.

Debuggers are key to squashing CSS bugs, but having a powerful editor is never a

bad idea. Consider these options:

Top Style Pro

Visual Studio 2005’s CSS editor is good, but personally I prefer Top Style Pro,7

mainly for one feature: its integrated CSS preview pane. The live preview

eradicates many cycles of the all-too-common CSS development dance—updating

a style sheet, saving to disk, and refreshing the browser—to significantly speed

the CSS testing cycle. And, for the purposes of cross-browser testing, the tool

allows you to view pages using any available rendering engine.

Visual Studio: code name “Orcas”

Last but not least, Orcas, the upcoming version of Visual Studio, features greatly

enhanced CSS support, including the world’s first-ever set of CSS refactoring

tools.

5 http://www.getfirebug.com/
6 http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
7 http://www.bradsoft.com/topstyle/

http://www.getfirebug.com/
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
http://www.bradsoft.com/topstyle/
http://www.getfirebug.com/
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
http://www.bradsoft.com/topstyle/

298 The ASP.NET 2.0 Anthology

Getting Back to that Menu …

Now that we have the preliminaries out of the way, let’s walk through each of the

CSS selectors in this solution and see how they shape the menu. First up is this

apparently innocuous selector:

StyleSheet.css (excerpt)

ul.AspNet-Menu {
 width: 160px;
 border-top: 1px solid red;
}

This selector sets up the width of the statically visible parts of the menu—in this

case, Products List, About Us, and Contact Us. This might seem to be an obvious place

to attach global visual properties, but it’s not—the root unordered list renders as a

1px line. The only visual property we could add here is a top border.

Next we have the second level of our menu:

StyleSheet.css (excerpt)

ul.AspNet-Menu ul {
 width: 180px;
 left: 155px;
 top: -1em;
 z-index: 400;
 border-top: solid red 1px;
}

This selector is the key to the menu’s positional magic. The styles above will be

applied to any unordered list that’s contained within another unordered list. Since

our menu exists as a series of nested, unordered lists, this means that every single

tier of the menu (apart from the top level) will receive the styles.

ASP.NET and Web Standards 299

Let’s see what each of those CSS properties does:

width This property sets the width of the submenu items. If it’s not set expli

citly, the width will inherit from the element’s parent selector.

left This property positions the fly-out menu on the x axis. The value it takes

should be slightly less than that of the initial width, as it’s offset from

the left-hand side of the menu structure.

top This property positions the fly-out menu on the y axis, and is measured

relative to the top of the parent menu item.

z-index Setting a large value for this property ensures that the menu will appear

on top of the other elements on the page.

border This property creates a border for submenu items, as can be seen in

Figure 9.3.

Next, let’s look at the list nested at the next level of our menu:

StyleSheet.css (excerpt)

ul.AspNet-Menu ul ul {
 left: 175px;
}

This style rule overrides our previous rule for ul elements that sit three levels deep

or more. The rule sets the horizontal offset to 175 pixels. Why? Because this offset

value should be slightly less than the width of menu items on the next level up,

and in this case, that width value is 180 pixels. You could continue in this way to

position lists further down the menu hierarchy, using more and more specific CSS

selectors.

Continuing on, we arrive at the list item styles:

StyleSheet.css (excerpt)

ul.AspNet-Menu li {
 background: teal;
}

300 The ASP.NET 2.0 Anthology

This little visual flourish sets the background color of our menu to a lovely shade

of teal. And, just like the ul elements that we styled previously, selecting further

nested li elements just delves another layer deeper into the menu. For example,

consider this rule, which would make the second level of menu items display with

a tan background:

StyleSheet.css (excerpt)

ul.AspNet-Menu li li {
 background: tan;
}

To round out our menu’s basic CSS, we describe the menu item links:

StyleSheet.css (excerpt)

ul.AspNet-Menu li a,
ul.AspNet-Menu li span {
 color: white;
 padding: 4px 2px 4px 8px;
 border: 1px solid red;
 border-top: 0;
}
AspNet-Menu li:hover,
AspNet-Menu li.AspNet-Menu-Hover {
 background: #7795BD;
}

The first style rule sets the text to white and applies a border to links (or, in the case

of items without links, to span elements). The second rule applies a different

background color to menu items; this background displays when the mouse hovers

over them.

Summary
In this chapter, we’ve explored a number of techniques to tweak the HTML output

of ASP.NET in order to make that output more standards compliant. We discussed

avoiding the use of server controls entirely, before learning how to use a lightweight

Repeater, rather than a heavyweight GridView, to display an interactive list.

ASP.NET and Web Standards 301

The second theme of this chapter focused on taking advantage of CSS to style your

pages the modern way. First, we examined the process of wiring up the CSS Friendly

Adapters. We then discussed a number of CSS techniques—particularly CSS inher

itance—that we used to style a menu.

By resisting the temptation to use default ASP.NET controls out of the box, you’re

well on your way to producing standards-compliant code. Having taken this step

forward, you can begin to bask in the glory of the benefits that come with such an

achievement—an application that uses less bandwidth, code that is easier to main

tain, and the glowing admiration of your peers.

Chapter10
Ajax and JavaScript
Before we begin to enhance our web applications with JavaScript, some context is

needed. Thus I invite you to accompany me through a brief history of the web

browser!

The first web browsers began to appear in the early 1990s, and their displays were

limited to text documents that linked to other text documents. These first web

browsers were relatively simple, but the ability to browse documents that were

linked together made them powerful enough to start a revolution in the way people

find and consume information.

Over the years, browsers continued to add features, such as the ability to display

images and videos. The most important new features, however, were the features

that made the web browser more interactive.

In 1995, Netscape introduced a scripting language into its web browser that today

is called JavaScript. Client-side JavaScript code could respond to events, like button

clicks, and the code could also manipulate the browser display via the browser’s

Document Object Model (DOM). JavaScript quickly became a standard feature in

all major desktop web browsers, although even today there are still minor variations

304 The ASP.NET 2.0 Anthology

in each browser’s implementation of the language. Those discrepancies aside,

JavaScript was a huge leap forward, as it gave web developers the ability to build

web applications that could rival desktop applications.

Another step forward for the Web occurred when Microsoft released Internet Explorer

5 in the year 2000, but this particular browser feature didn’t really gather steam

until 2005. In that year, Microsoft included a new component with the browser

called the XMLHttpRequest (sometimes referred to as XHR) object. This object enabled

JavaScript code to exchange text (be it XML, plain old ASCII, or some other format)

with a server using HTTP—and it allowed this exchange to be performed asynchron

ously. A web developer could therefore use JavaScript and XmlHttpRequest to

provide fresh data to a web page without having to go through the standard full-

page refresh that had become an inevitable part of browsing the Web.

XmlHttpRequest eventually became a standard component in all the popular desktop

browsers, and a new programming paradigm arose—Ajax. Ajax originally stood for

Asynchronous JavaScript And XML, but has since come to be used to refer to any

technique that communicates with the server without refreshing the page and

causing that annoying page flicker. The result is a highly interactive and responsive

web application whose user-friendly interface can, in some cases, rival that of a

desktop application.

In this chapter, we’ll look at common scenarios that involve JavaScript and Ajax.

In some cases, we’ll explore scenarios that relate to programming with JavaScript

in a general sense, while in other discussions we’ll assume that we’re using the

Microsoft web development tools.

We’ll kick off by answering a question that’s frequently asked by JavaScript program

mers—how can I do it better?

How can I write better JavaScript?
As user expectations of web applications have increased, so has the amount of

JavaScript that the average ASP.NET developer is asked to produce. The problem

is that many web developers adopt a “quick and dirty” approach to scripting—they

stuff some JavaScript functions into a file, add a few events, and move on. However,

as the amount of client-side script in our web applications grows, this approach

soon produces a tangled mess of code that’s difficult to maintain.

Ajax and JavaScript 305

It’s already difficult to work efficiently in the JavaScript environment—the tools

for writing JavaScript are less mature than those for other popular languages such

as C# and Java, and the slight variations in the ways in which web browsers imple

ment the language require us to test our code on several combinations of browsers,

versions, and platforms. As a result, we need to develop an organized approach to

writing client-side code.

Before I introduce such an approach, let’s look at some code that highlights a few

of the issues that arise from traditional approaches to writing JavaScript. Consider

the following form. It includes a button that attaches its onclick event to a JavaScript

function by the name of getServerTime:

GetServerTime.aspx (excerpt)

<head runat="server">
 <title>Get Server Time</title>
 <script type="text/javascript" src="GetServerTime.js"></script>
</head>
<body>
 <form id="form1" runat="server">
 <input type="button" id="getContentButton"

 onclick="getServerTime();" value="Get Server Time" />
 <div id="content">
 </div>

 </form>
</body>

When the user clicks the button, the page should retrieve the current time from the

web server and display it inside the div element. The following JavaScript, which

lives in an external file and can be referenced from our document using a <script>

tag, shows how a typical inexperienced developer might implement this function

ality. This script has numerous technical and style problems, which we’ll address

in a moment:

GetServerTime.js (excerpt)

var xmlHttp;
function getContent()
{
 xmlHttp = new XMLHttpRequest();
 xmlHttp.onreadystatechange = onReadyStateChange;

306 The ASP.NET 2.0 Anthology

xmlHttp.open("GET", "../ServerTime.ashx", true);

 xmlHttp.send();

}

function onReadyStateChange()

{

if (xmlHttp.readyState == 4 && xmlHttp.status == 200)

{

 updateContent(xmlHttp.responseText);

 }

}

function updateContent(text)

{

 var content = document.getElementById('content');

 content.innerHTML = text;

}

Let’s dissect this script. When the user clicks the button inside the form, the

getServerTime function executes. This function kicks off an asynchronous request

to the server, using the XMLHttpRequest object. The server returns the current time,

and when the client receives the result, the script updates the innerHTML property

of the div element.

The readyState Property

The onreadystatechange event handler will fire when the XmlHttpRequest

object’s readyState property changes. When readyState is equal to the value

4 (loaded), all data has been received and complete data is available. We also

check the status property to ensure the server returned a 200 (OK) status.

For more details on the values that readyState takes and what they mean, refer

to Cameron Adams’s seminal article on Ajax and remote scripting.1

Now, let’s isolate the first problem we want to address: our script doesn’t expose a

nice API for the page’s developers. Should they call updateContent? Should they

call getServerTime? We’d like to hide some of these implementation details and

expose an obvious API that any page could use.

1 http://www.sitepoint.com/article/remote-scripting-ajax/

http://www.sitepoint.com/article/remote-scripting-ajax/
http://www.sitepoint.com/article/remote-scripting-ajax/

Ajax and JavaScript 307

Solution
Let’s refactor our existing script so that the functionality is encapsulated in more

modular packages. Newcomers to JavaScript don’t often appreciate the extensive

(and powerful) object-oriented capabilities that JavaScript possesses. If you fall into

that category, allow me to enlighten you! Consider the following, and slightly dif

ferent, version of our form:

RefactoredGetServerTime.aspx (excerpt)

<head runat="server">
<title>Get Server Time</title>
<script type="text/javascript" src="RefactoredGetServerTime.js" />
<script type="text/javascript">

 var contentManager;

 window.onload = function()
 {
 contentManager = new ContentManager();
 contentManager.updateServerTime();

 }

 function getContent()
 {
 contentManager.updateServerTime();

 }
</script>
</head>
<body>
 <form id="form1" runat="server">
 <input type="button" id="getContentButton"

value="Get Server Time"
 onclick="getContent();" />

 <div id="content">
 </div>

 </form>
</body>

Notice that our JavaScript is now using an object named contentManager. Our

document invokes a method named updateServerTime on this object, the imple

mentation of which we can place in a separate file, as follows:

308 The ASP.NET 2.0 Anthology

RefactoredGetServerTime.js

function ContentManager()
{
 this.updateServerTime = function()
 {
 xmlHttp = new XMLHttpRequest();
 xmlHttp.onreadystatechange = onreadystatechanged;
 xmlHttp.open("GET", "../ServerTime.ashx", true);
 xmlHttp.send();
 return false;

 }
 var onreadystatechanged = function()
 {
 if (xmlHttp.readyState == 4 && xmlHttp.status == 200)
 {
 updateContent(xmlHttp.responseText);

 }
 }
 var updateContent = function(text)
 {
 document.getElementById('content').innerHTML = text;

 }
 var xmlHttp;
 var content = document.getElementById('content');
}

The above code uses a constructor function named ContentManager. A constructor

function works with the new operator in JavaScript to create a new object, defining

its methods and properties. This object hides many of its implementation details—in

this case, the updateContent and onreadystatechanged functions—from the outside

world.

Since these methods aren’t visible to other objects, the following script would fail:

<script type="text/javascript">

window.onload = function()

{

 var contentManager = new ContentManager();

 // This is an error!

Ajax and JavaScript 309

contentManager.updateContent('hello');

}

</script>

We have, however, exposed the updateServerTime function by prefixing the

definition with the this reference. When we use the var keyword in the

ContentManager constructor function, we’re declaring a local variable that will re

main private to the ContentManager object. To define any public property or

method in JavaScript, we prefix the relevant definition with the this keyword, as

we’ve done here.

Functions Are Objects!

In JavaScript, functions themselves are objects—we can pass functions as argu

ments, and use functions as return values.

Discussion
The goal of our refactoring exercise was to encapsulate the details of our client-side

code into a package that was clearly defined and loosely coupled to the page on

which it acts.

One improvement we made was to use constructor functions to hide the details of

methods that didn’t need to be public. Clearly defining the scope of our methods

makes the object’s intended use obvious to other developers who might interact

with our code.

Our solution is less than ideal, though. We still have JavaScript code mixed up with

our markup—ideally the two would be contained within completely separate files

for ease of maintenance and reusability. We also have a major problem in terms of

the way we instantiate the XmlHttpRequest object—the approach we’ve used will

only work on a subset of web browsers (most notably, this approach will not work

on Internet Explorer 6). We’ll address these issues in the coming topics.

310 The ASP.NET 2.0 Anthology

How can libraries make writing robust,
cross-platform JavaScript easier?
One of the greatest challenges of writing JavaScript code is to write scripts that will

work on all of the various browsers available in the wild: Internet Explorer, FireFox,

Safari, Opera, and others. This challenge is made even more difficult by the fact

that scripts which work on Internet Explorer 7 aren’t guaranteed to work on Internet

Explorer 6, so testing and fixing your scripts to flesh out all the idiosyncrasies can

take a considerable amount of time.

There’s no doubt about it: writing robust, cross-platform scripts is tough. Luckily,

there’s help available.

Solution
As JavaScript has matured as a language (and browsers have better and more reliable

support), so have a number of toolkits and frameworks of well-tested JavaScript

code. One of these many toolkits is the Prototype JavaScript Framework.2 Prototype

includes Ajax features and DOM extensions that you can rely upon to work across

all popular browsers. Prototype is freely distributable under an MIT-style license,

and can be obtained with a single download of the prototype.js file. Once you’ve

downloaded Prototype, you can use it by inserting a simple script reference in any

.aspx page, like this:

Prototype.aspx (excerpt)

<html>
<head runat="server">
 <title>Prototype</title>
<script type="text/javascript"

src="../scripts/prototype/prototype.js"></script>
 <script type="text/javascript"

src="PrototypeGetServerTime.js"></script>
</head>
<body>
<form id="form1" runat="server">
 <input type="button" id="getContentButton"

value="Get Server Time" />

2 http://www.prototypejs.org/

http://www.prototypejs.org/
http://www.prototypejs.org/

Ajax and JavaScript 311

<div id="content"></div>

</form>

</body>

</html>

Notice that this version of our document doesn’t include any JavaScript mixed up

alongside HTML—our code and markup are kept quite separate, as they should be.

Let’s look at a new version of our script that retrieves the current server time. This

version assumes the Prototype framework is included in the page:

PrototypeGetServerTime.js (excerpt)

var contentManager;
Event.observe(window, 'load', windowLoad);
function windowLoad()
{
 contentManager = new ContentManager();
 contentManager.updateServerTime();
 Event.observe($('getContentButton'), 'click', getContent);
}
function getContent()
{
 contentManager.updateServerTime();
}
var ContentManager = Class.create();
ContentManager.prototype.initialize = function()
{
 this.content = $('content');
}
ContentManager.prototype.updateServerTime = function()
{
 var ajax = new Ajax.Request(
 "../ServerTime.ashx",
 {
 method: 'get',
 onComplete:
 function(response)
 {
 contentManager.updateContent(response);

 }
 });
}
ContentManager.prototype.updateContent = function(response)

312 The ASP.NET 2.0 Anthology

{

 this.content.innerHTML = response.responseText;

}

This solution looks radically different from the previous script, so let’s take some

time to examine the code.

Prototype defines a number of objects that make it easy for developers to perform

Ajax calls, define classes, and manipulate the DOM:

The Event object is one of the cornerstones of the Prototype framework. Events

are triggered when the user performs an action, such as clicking a button or

hovering over a link, and the Event object is Prototype’s gateway to interaction

with the user.

The Event.observe method is able to subscribe to events in a non-destructive

manner, and works across multiple browsers. The above line of code will attach

the window’s load event to the windowLoad function. Inside the windowLoad

event, we use Event.observe again to subscribe to a button-click event. This

line of code also demonstrates another popular feature of the Prototype toolkit:

the $ function.

The $ function in Prototype is a convenience mechanism. You can use the $

function to reference an HTML element without using the carpal-tunnel-indu

cing document.getElementById method. Prototype includes a number of these

shortcuts—for example, the $F function returns the value property of an input

given the id of the input, or even the input element itself.

The Class.create method creates a new class object and works behind the

scenes to assign an initialize method as the object constructor. We merely

need to define the initialize method and include the setup instructions. The

initialize method is the first function defined in our script, and sets up a

public property by the name of content.

Notice that we use a prototype property when defining the initialize

method. Although this JavaScript feature is presumably where the Prototype

toolkit found its name, it isn’t specific to the toolkit. Every object in JavaScript

Ajax and JavaScript 313

has a prototype property. Any methods or properties defined by an object’s

prototype appear to be properties and methods of the object itself.

Another feature of Prototype is the cross-browser Ajax functionality exposed

by the Ajax object. The Ajax.Request instance encapsulates the

XmlHttpRequest object. We now have an Ajax solution that works in all popular

web browsers. Also, note that we use an anonymous function in the above code

to handle the onComplete event. This anonymous function forwards the re

sponse to the updateContent method of the ContentManager.

Prototype-based Languages

Object-oriented programming languages generally fall into one of two camps.

There are class-based languages (like C#, Visual Basic, and Java), and prototype-

based languages (like JavaScript, Squeak, and REBOL).

Prototype-based languages don’t instantiate a new object on the basis of a class

definition. Instead, they generally construct a new object by cloning the object’s

prototype—a skeleton of that object. Modification of the ContentManager’s

prototype means that we modify the template the runtime will use when it creates

new ContentManager objects.

Discussion
Some form of JavaScript library or toolkit is almost de rigeur when it comes to

building the best web applications these days, as it’s such a difficult task to figure

out all the different browsers’ quirks. Even if you target just a single browser, libraries

provide you with tested code to build on, which lets you avoid having to reinvent

the wheel.

Prototype isn’t the only popular toolkit in use today. The following are mature,

popular frameworks:

scriptaculous (http://script.aculo.us/)

scriptaculous builds on top of the Prototype toolkit to offer animation, drag-

and-drop functionality, Ajax controls, and more.

Yahoo! User Interface Library (http://developer.yahoo.com/yui/)

YUI includes a powerful library of user interface controls, as well as CSS tools

and utilities.

(http://script.aculo.us/)
(http://developer.yahoo.com/yui/)

314 The ASP.NET 2.0 Anthology

Dojo (http://dojotoolkit.org/)

Dojo includes UI widgets and Ajax wrappers, and supports client- and server-

side storage of data.

You’ll want to evaluate the JavaScript library to find the best fit for your project.

One area to assess is the feature set—some libraries go far beyond simple Ajax

wrappers to provide animations and widgets that you can use in the browser. You

should also evaluate the libraries’ documentation—some of the freely available

libraries don’t offer extensive documentation and examples from which to learn.

Finally, consider the download size of the JavaScript library. Generally, the more

features a library offers, the larger the JavaScript file your client will need to

download. You might be able to get away with using large files for intranet applic

ations, but you’ll certainly want to think long and hard before putting a 150KB

JavaScript file on the front page of your web site—although the browser will cache

the file so that it’s not downloaded with every request, first-time users on a slow

connection will experience a considerable wait.

So far, all of the libraries and toolkits we’ve mentioned are strictly collections of

JavaScript code. If you want to look for an Ajax toolkit that integrates with ASP.NET

server controls and Microsoft Visual Studio, you might consider Microsoft’s own

ASP.NET AJAX Extensions. We’ll cover these extensions in the coming sections.

How do I use Microsoft's ASP.NET AJAX?
Microsoft released the first version of an Ajax toolkit, code-named “Atlas,” in early

2005. After several versions and a name change, the toolkit now supports all modern

browsers and integrates with Visual Studio 2005. You can download the setup

package from the ASP.NET AJAX site.3 Once the package is installed, you’ll be able

to build a new Ajax-enabled web site within Visual Studio using a special project

template for the job, as shown in Figure 10.1.

3 http://ajax.asp.net/

http://ajax.asp.net/
(http://dojotoolkit.org/)
http://ajax.asp.net/

Ajax and JavaScript 315

Figure 10.1. Starting an ASP.NET AJAX-enabled web site

The project template ensures that we have in our Web.config file all the assembly

references and sections that are required to use the ASP.NET AJAX libraries.

Consider this question: how would you build a page that retrieves the current time

from the server, like the one we explored in the previous two solutions, using

ASP.NET AJAX? Well, we could take one of many different approaches. The follow

ing sections will examine two possible solutions.

Solution
One noteworthy feature of ASP.NET AJAX is that it gives us the ability to make web

service calls from client-side script. Let’s say we implemented the following web

service in the code-behind file ServerTime.cs for ServerTime.asmx:

ServerTime.cs

using System;
using System.Web.Services;
using System.Web.Script.Services;
[ScriptService]
[WebService(Namespace =

316 The ASP.NET 2.0 Anthology

"http://sitepoint.com/books/aspnetant1/getservertime")]

public class ServerTime : WebService

{

 [WebMethod]

 public string GetServerTime()

 {

 return DateTime.Now.ToLongTimeString();

 }

}

As you can see, our web service class is decorated with a ScriptService attribute.

The ScriptService attribute allows ASP.NET AJAX to generate a client-side proxy

object that represents this web service. Before we see how the proxy works, let’s

take a look at our .aspx page:

GetServerTime.aspx (excerpt)

<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/ServerTime.asmx" />

 </Services>
 <Scripts>
 <asp:ScriptReference Path="GetServerTime.js" />

 </Scripts>
 </asp:ScriptManager>

 <input type="button" id="getContentButton"
value="Get Server Time" />

 <div id="content">
 </div>

 </form>
</body>

The ScriptManager control that appears in the code above is a new, important

control in ASP.NET AJAX. The ScriptManager is responsible for sending the correct

Ajax libraries and other JavaScript files to the client. The ScriptManager also co

"http://sitepoint.com/books/aspnetant1/getservertime")]

Ajax and JavaScript 317

ordinates partial page updates, timeouts, error messages, and many other key features

needed for an Ajax-style application. Adding a ServiceReference service inside

the ScriptManager, as we’ve done above, will result in the generation of client-side

proxies for the web service. Likewise, the ScriptReferencewill make sure our own

script file (GetServerTime.js) is included in the page.

The GetServerTime.js code is as follows:

MSAjaxGetServerTime.js (excerpt)

var contentManager;
function pageLoad()
{
 contentManager = new SitePoint.ContentManager();
 contentManager.updateServerTime();
 $addHandler($get('getContentButton'), 'click', getContent);
}
function getContent()
{
 contentManager.updateServerTime();
}
Type.registerNamespace("SitePoint");
SitePoint.ContentManager = function()
{
 this.content = $get('content');
}
SitePoint.ContentManager.prototype.updateServerTime = function()
{
 ServerTime.GetServerTime
 (
 function(result)
 {
 contentManager.updateContent(result);

 }
);
}
SitePoint.ContentManager.prototype.updateContent = function(text)
{
 this.content.innerHTML = text;
}
SitePoint.ContentManager.registerClass('SitePoint.ContentManager');
if (typeof(Sys) !== 'undefined')
Sys.Application.notifyScriptLoaded();

318 The ASP.NET 2.0 Anthology

Our first function in the script is a pageLoad function. ASP.NET AJAX will automat

ically invoke this function when the body of the document finishes loading. Inside

this method, we find a shortcut used to attach event handlers—the $addHandler

function. Like the $ function in Prototype, the $addHandler function is non-destruct

ive (it doesn’t override any built-in JavaScript functions) and works in all popular

browsers.

The Type.registerNamespace method call creates a new namespace—a domain

with which variables are associated in order to avoid conflicts with other variables

of the same name. Although technically JavaScript doesn’t have namespaces, many

JavaScript libraries (ASP.NET AJAX included) simulate namespaces using objects.

Using a namespace is a good way of ensuring that your class names are globally

unique in a world where the amount of client-side code continues to grow.

ASP.NET AJAX, like Prototype, makes use of an object’s inner prototype property.

In our example, we’ve defined a constructor function immediately after the

namespace registration. This constructor function uses a $get method, which is a

shortcut for document.getElementById.

Notice the updateServerTime method uses a ServerTime object. This is the client-

side proxy that’s included in the page by the ScriptManager's web service reference.

In the call to GetServerTime, we pass an anonymous function for use when the web

service call successfully completes. This anonymous function forwards the call to

a SitePoint.ContentManager object, which will update the page with the new

time.

This solution has illustrated just a small example of how web services can be con

sumed using ASP.NET AJAX. We could have built a more complex web service that

accepted parameters, yet still have had the ability to exchange information between

client and server. As easy as this solution seemed, there’s an even easier program

ming model for ASP.NET. We’ll look at this model in the next section.

How do I perform partial page rendering?
ASP.NET AJAX includes a powerful partial page rendering feature. Partial page

rendering allows an ASP.NET developer to select regions of a page that can be up

dated asynchronously, without a complete page reload.

http:ASP.NET

Ajax and JavaScript 319

Sound familiar? That’s right—partial page rendering provides all the benefits of

Ajax, without the need to write JavaScript code. The secret lies in the server-side

controls provided by ASP.NET AJAX. These controls are found in the AJAX Exten

sions section of the Toolbox, as shown in Figure 10.2.

Figure 10.2. Server-side controls in ASP.NET AJAX

So, how can we implement our GetServerTime functionality using only server-side

controls? We use the UpdatePanel control, which we’ll explore now.

Solution
To use partial page rendering, we first need to identify the areas of a page that we

want to update asynchronously. We then place the content of those sections inside

the ContentTemplate area of an UpdatePanel control, as shown below:

UpdatePanel.aspx (excerpt)

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"

 EnablePartialRendering="true">
 </asp:ScriptManager>
 <div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server"

Text="Get Server Time" />
 <asp:Label ID="Label1" runat="server" Text="" />

 </ContentTemplate>
 </asp:UpdatePanel>

 </div>
</form>

320 The ASP.NET 2.0 Anthology

Notice that we have a ScriptManager control in play again; this time we’ve explicitly

set the EnablePartialRendering property of the ScriptManager control to true.

The ContentTemplate element of the UpdatePanel contains the Button and Label

controls that will participate in the partial page rendering.

With these controls in place, we can perform all of the updates we need from the

page’s code-beside file:

UpdatePanel.aspx.cs

using System;
public partial class updatepanel_Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 UpdateServerTime();

 }
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 UpdateServerTime();

 }
 private void UpdateServerTime()
 {
 Label1.Text = DateTime.Now.ToLongTimeString();

 }
}

Now when the user clicks the button on the page, the ASP.NET AJAX client-side

scripts will asynchronously contact the server, retrieve the updated page, and update

the portion of the page inside the UpdatePanel. Our code doesn’t need to be aware

of the partial page rendering—we would have written the same code if an Update-

Panel were not in place. In contrast to our previous solution, though, we haven’t

written any JavaScript code to achieve this—ASP.NET AJAX takes care of all the

JavaScript code, asynchronous callback functions, and DOM manipulations.

Ajax and JavaScript 321

Discussion
Any postback that originates from inside an UpdatePanelwill result in an asynchron

ous postback that updates just the portion of the page inside the UpdatePanel. In

the page we demonstrated, the button that forces the refresh lives inside the Update-

Panel; however, in a more sophisticated user interface we mightn’t be able to place

the postback controls inside the same UpdatePanel as the content. In those scenarios,

we can explicitly identify the controls that will force an UpdatePanel to refresh by

specifying the controls as triggers:

Triggered.aspx (excerpt)

<div>
<asp:Button ID="Button1" runat="server" Text="Get Server Time"

 OnClick="Button1_Click" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" Text="" />

 </ContentTemplate>

<Triggers>
 <asp:AsyncPostBackTrigger ControlID="Button1" />
 </Triggers>

 </asp:UpdatePanel>
</div>

As you can see, the above form has a button that lives outside the UpdatePanel, but

the UpdatePanel specifies the button as a trigger, so our partial page rendering

functions just fine.

UpdatePanels Behaving Badly

The UpdatePanel isn’t 100% compatible with all server-side controls. For in

stance, the Menu and Tree controls in ASP.NET don’t work correctly inside an

UpdatePanel, and neither do the ASP.NET Web Parts controls. These controls

register JavaScript blocks in a manner that’s incompatible with ASP.NET AJAX,

which can lead to erratic behavior, such as tree nodes and menu choices not dis

playing. We can reasonably expect, however, that future releases of ASP.NET will

address this issue.

322 The ASP.NET 2.0 Anthology

How do I show progress during a partial
page render?
Not every call to the server will be as simple as retrieving the current time. There’ll

be many occasions when you’ll need to perform database queries or calculations

that’ll take longer than just grabbing the current time. One tricky problem with

asynchronous postbacks is that they don’t give the user any indication that they’re

actually working behind the scenes. As a result, some users might click a button

repeatedly, thinking that the page isn’t responding. We need to provide some visual

feedback that lets a user know that the page is refreshing.

Solution
The UpdateProgress control, which we saw in the section called “How do I perform

partial page rendering?”, is designed to provide status information for asynchronous

postbacks. We can specify the content of this control inside its ProgressTemplate

section, as follows:

Slow.aspx (excerpt)

<div>
<asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>

 </ProgressTemplate>
</asp:UpdateProgress>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

⋮
 </asp:UpdatePanel>
</div>

We’re free to add any HTML or other server-side controls to this template—we’ve

added an animated GIF image, spinner.gif, inside the progress control. A spinning

or moving graphic is a well-established convention for the representation of com

puter-processing time. The UpdateProgress control itself will display this content

while an asynchronous postback is taking place, and it will hide the content when

the postback is complete. We don’t need to add any code!

When we view the page in Design view, we see a display like the one in Figure 10.3.

Ajax and JavaScript 323

Figure 10.3. Viewing the ProgressControl in the Design View

Discussion
We’ve placed the UpdateProgress control outside the UpdatePanel control on our

page, but the progress control would also work if we nest it inside the UpdatePanel.

The control also has some additional properties that we can use, as the code below

demonstrates:

Slow.aspx (excerpt)

<asp:UpdateProgress ID="UpdateProgress1" runat="server"
 AssociatedUpdatePanelID="UpdatePanel1"
 DisplayAfter="200" >

 <ProgressTemplate>

 </ProgressTemplate>
</asp:UpdateProgress>

An UpdateProgress control will display its contents when any asynchronous

postback occurs on a page—unless the control is associated with a specific Update-

Panel control. This specific association is made via the UpdateProgress control’s

AssociatedUpdatePanelID property.

324 The ASP.NET 2.0 Anthology

Another useful property is the DisplayAfter property. DisplayAfter won’t display

its content until after an amount of time specified in milliseconds elapses. If your

asynchronous postbacks are quick, you can use this property to prevent an annoying

flicker of the progress indicator.

How do I periodically refresh an
UpdatePanel?
We’re often required to create pages that must make periodic asynchronous calls

to the sever. For instance, a page that displays stock quotes might need to refresh

its content periodically. Another example is a page that must occasionally call a

server-side method in order to keep a user session alive.

Fortunately, ASP.NET AJAX makes this functionality easy to implement.

Solution
Periodic updates provide the perfect opportunity to use the ASP.NET AJAX Timer

control. The Timer control uses JavaScript to force a postback from the browser after

a specified number of milliseconds have elapsed. We control the timing with the

control’s Interval property, and during the postback, the timer control raises a

Tick event on the server.

Let’s revisit our familiar example for retrieving the time, and update the current

server time every five seconds with the following UpdatePanel:

AutoRefresh.aspx (excerpt)

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server" Text="Get Server Time"

 OnClick="Button1_Click" />
 <asp:Label ID="Label1" runat="server" Text="" />

<asp:Timer ID="Timer1" runat="server" Interval="5000"
OnTick="Timer1_Tick">

 </asp:Timer>
 </ContentTemplate>
</asp:UpdatePanel>

Ajax and JavaScript 325

As the code above shows, we’ve attached the timer’s Tick event to a Timer1_Tick

event handler on the server. This event handler calls our UpdateServerTimemethod,

as shown below:

AutoRefresh.aspx.cs (excerpt)

private void UpdateServerTime()
{
 Label1.Text = DateTime.Now.ToLongTimeString();
}
protected void Timer1_Tick(object sender, EventArgs e)
{
 UpdateServerTime();
}

Discussion
We’ve placed the Timer control inside the ContentTemplate of our UpdatePanel.

Placing the Timer here makes the Timer a trigger for the UpdatePanel, so when the

timer expires, the UpdatePanel will asynchronously update its content.

We can also use a single Timer to update multiple UpdatePanels by listing the timer

as a trigger. In the following code sample, a single timer will update two UpdatePan

els:

MultiAutoRefresh.aspx.cs (excerpt)

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:Timer ID="Timer1" runat="server" Interval="5000"

OnTick="Timer1_Tick" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" Text="" />

 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Timer1" />

 </Triggers>
 </asp:UpdatePanel>
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label2" runat="server" Text="" />

326 The ASP.NET 2.0 Anthology

</ContentTemplate>

 <Triggers>

 <asp:AsyncPostBackTrigger ControlID="Timer1" />

 </Triggers>

 </asp:UpdatePanel>

</form>

Note that setting the Interval property to lower values than we’ve used in this

example could create a tremendous amount of traffic and load on the server. Be

careful to choose a value for this property that will provide users with the informa

tion they need, but won’t tax the server heavily.

How do I work with generated IDs?
One problem that developers writing JavaScript face with ASP.NET is how to deal

with the automatically generated ID properties that ASP.NET places on page ele

ments.

The reason that ASP.NET generates IDs is to ensure that every element on the page

has a unique ID. However, this feature causes difficulty for client-side scripts that

rely on these IDs to reference elements, as they can’t easily predict what that gener

ated ID will be. Client-side IDs are generated for page elements whenever a server-

side control on the page implements the INamingContainer interface. User controls,

master pages, and many of the data-oriented controls (like GridView and Repeater)

are examples of controls that implement INamingContainer.

Let’s take a look at a concrete example. Imagine that you’ve designed a user control

to display a joke. The punchline of the joke won’t be visible until the user moves

the cursor over the joke. Such a control might look like this:

JokeHost.aspx (excerpt)

<%@ Control Language="C#" AutoEventWireup="true" %>
 <div onmouseover="jokeMouseOver();">
 <div>
 What does a proud computer call his son?

 </div>
 <div id="answer" runat="server" style="display:none;">

Ajax and JavaScript 327

A microchip off the old block ...

 </div>

</div>

The script that handles the onmouseover event might look like this:

<script type="text/javascript">

function jokeMouseOver()

{

 $get('answer').style.display = '';

}

</script>

Unfortunately, this script doesn’t work. Since the div with ID of answer is a server-

side control located within a user control, ASP.NET will assign it a different client-

side ID from the one we specified in the .aspx file. You can use the View Source feature

of your web browser to see what this ID will be:

<div onmouseover="jokeMouseOver();">

 <div>

 What does a proud computer call his son?

 </div>

 <div id="Joke1_answer" style="display:none;">

 A microchip off the old block..

 s</div>

</div>

As you can see, the div element that contains the answer to our joke has an id of

Joke1_answer. ASP.NET has prefixed the ID we assigned our element with the ID

of the user control, because a user control is an INamingContainer. In this code, our

user control has an ID of Joke1.

The naïve solution to this problem is to simply change our script to reference the

element by its generated ID, as follows:

Joke1.ascx (excerpt)

<script type="text/javascript">
function jokeMouseOver()
{

328 The ASP.NET 2.0 Anthology

$get('Joke1_answer').style.display = '';

}

</script>

The above script will work; however, it’s dependent on the ID of the user control.

This is less than ideal—the page developer could easily rename the control and

break our script. So what’s the best way to manage client-side IDs?

Solution
There are quite a number of solutions for dealing with generated IDs, and almost

all of them revolve around the ClientID property of a server-side control. The

ClientID property, as its name suggests, represents the ID that ASP.NET will use

for an element on the client. Here’s one approach we could take to improving our

code:

Joke2.ascx (excerpt)

<%@ Control Language="C#" AutoEventWireup="true" %>
<div onmouseover="jokeMouseOver();">
 <div>
 Why do computer programmers confuse Halloween and Christmas?

 </div>
 <div id="answer" runat="server" style="display:none;">
 Because oct31 = dec25.

 </div>
</div>
<script type="text/javascript">
function jokeMouseOver()
{
 $get('<%= answer.ClientID %>').style.display = '';
}
</script>

Notice that we now inject the ClientID property of the answer element into our

JavaScript. This solution ensures that we’ll always use the proper ID; however, it

does come with some drawbacks.

The biggest issue is that we rarely embed our JavaScript code directly into an .aspx

or .ascx file, like we’ve done here. In fact, as we discussed in the section called “How

Ajax and JavaScript 329

can libraries make writing robust, cross-platform JavaScript easier?”, it’s considered

best practice to keep our code in an external .js file for the sake of maintainability

and caching. One way to address this issue would be to use a single line of JavaScript

to add a variable with the ClientID to our page:

Joke3.ascx (excerpt)

<script type="text/javascript">
 var answerId = '<%= answer.ClientID %>';
</script>

The rest of the script could then be placed in an external .js file:

function jokeMouseOver()

{

 $get(answerId).style.display = '';

}

Another similar approach is to place the required ClientID in a hidden form field.

We can perform this task from our code-behind file, and leave the executable code

in the .ascx file, as follows:

Joke4.ascx.cs (excerpt)

ScriptManager.RegisterHiddenField(
 this, "answerId", answer.ClientID
);

Our JavaScript code could then retrieve this value to find the element it needs, like

so:

Joke4.ascx (excerpt)

// retrieve id from hidden field
var id = form1.answerId.value;
$get(id).style.display = '';

Another common solution to this problem is to use the ScriptManager class’s

RegisterArrayDeclaration method to place multiple ClientID values into a page.

330 The ASP.NET 2.0 Anthology

This technique is extremely useful when we need the IDs of controls that are located

inside a GridView or Repeater. Since our GridView or Repeater control is likely

to contain multiple instances of each element, any assistance in managing the IDs

of these elements is welcome.

Discussion
We’ve discussed several techniques that make use of the ClientID property, and

these solutions can be effective if they’re used sparingly. However, the addition of

global JavaScript variables to a page can sometimes lead to maintainability problems.

Some alternative approaches avoid using IDs altogether. Let’s look at one more

version of the joke control:

Joke5.ascx (excerpt)

<%@ Control Language="C#" ClassName="joke5" %>
 <div id="joke" onmouseover="jokeMouseOver(this);">
 <div>
 There are 10 kinds of people in this world ...

 </div>
 <div id="answer" runat="server" style="display:none;">
 Those who can count in binary and those who can't.

 </div>
 </div>
 <script type="text/javascript">
 function jokeMouseOver(sender)
 {
 var divs = sender.getElementsByTagName("DIV");
 divs[1].style.display = '';

 }
 </script>

In this code, we use the getElementsByTagName method (and the knowledge that

our div is the second of the two nested divs) to locate the div we’re after. While

it’s not always applicable, this approach can work well in many scenarios, and

doesn’t require any global variables, hidden form fields, or array declarations.

Ajax and JavaScript 331

Where can I get some fancy ASP.NET
controls?
These days, the fun part of writing web applications is finding ways to make web

interfaces exciting.

In the past, ASP.NET developers have had to rely on custom ActiveX controls and

technologies like Adobe’s Flash Player for animations and interactive controls—plu

gins that aren’t guaranteed to be installed on a client’s machine. However, the

combination of JavaScript, style sheets, and the DOM has given us the ability to

write advanced controls that remain lightweight and easily distributable, and are

guaranteed to be supported by all modern browsers.

Of course, we don’t always want to write these controls from scratch, and we’d like

the controls to integrate well with the ASP.NET server controls and Visual Studio

development environment. So where can we find some existing controls?

Solution
The ASP.NET AJAX Control Toolkit is both a collection of ready-to-use controls

and a toolkit for creating new controls.4 The toolkit is an open source community

project, featuring contributors from inside and outside Microsoft.

Once the toolkit is unpacked and set up, you’ll be able to choose from a plethora

of controls in the Web Forms Toolbox, which is illustrated in Figure 10.4.

4 http://www.codeplex.com/AtlasControlToolkit/

http://www.codeplex.com/AtlasControlToolkit/
http://www.codeplex.com/AtlasControlToolkit/

332 The ASP.NET 2.0 Anthology

Figure 10.4. Controls of the ASP.NET AJAX Control Toolkit

The toolkit comes with a sample web site that can be installed locally, and

demonstrates how to use each control in the toolkit. Figure 10.5 shows the demon

stration page for the Tabs control.

Ajax and JavaScript 333

Figure 10.5. The demonstration page for the Tabs control

The controls in the toolkit use the same declarative markup we’ve become accus

tomed to with ASP.NET. Any scripts that the control requires will be taken care of

by the control itself, so we don’t need to worry about registering additional JavaScript

files for the page.

The following code shows the AutoCompleteExtender control in use in an aspx

page. This control attaches to a text box and, as the user types into the box, the

control displays a popup containing words that begin with the letters the user has

entered. The control can retrieve a list of possible words by making a web service

call:

<asp:TextBox runat="server" ID="myTextBox" Width="300"

autocomplete="off"/>

<ajaxToolkit:AutoCompleteExtender

 runat="server"

 ID="autoComplete1"

 TargetControlID="myTextBox"

 ServicePath="AutoComplete.asmx"

 ServiceMethod="GetCompletionList"

 MinimumPrefixLength="2"

http:ASP.NET

334 The ASP.NET 2.0 Anthology

CompletionInterval="1000"

 EnableCaching="true"

 CompletionSetCount="12"

/>

As this example indicates, using these controls is often as simple as adding the

name of the control to your page and setting the control’s attributes.

You’ll notice that most of the controls in the toolkit are not standalone ASP.NET

server controls. Instead, the controls refer to existing ASP.NET server controls via

a TargetControlID property. The Ajax controls use script to add behaviors to this

target control.

The developers who work on the control toolkit are constantly adding controls,

features, and fixes to the toolkit. Subscribe to the toolkit homepage’s RSS feed to

keep informed of updated versions.5

How can I debug JavaScript?
Sooner or later, you’ll need to figure out what’s going wrong with your JavaScript

code and Ajax calls. As we mentioned back in the section called “How can I write

better JavaScript?”, the tools available for developing client-side scripts aren’t as

developed as those created for other languages, but there are a few approaches you

can use to troubleshoot JavaScript bugs.

Solutions
The need to debug is an unfortunate consequence of software development, and no

doubt many readers will have relied heavily on the alert function to debug their

JavaScript in the past. Come on, own up—we’ve all done it. We’d scatter multiple

calls to the JavaScript alert function throughout the page, and each call would

display the value of a variable at a given point in the script. It’s a painful technique,

but it’s all that was available at the time.

Fortunately, the use of more powerful tools can make the job of debugging JavaScript

much easier.

5 http://www.codeplex.com/AtlasControlToolkit/

http://www.codeplex.com/AtlasControlToolkit/
http://www.codeplex.com/AtlasControlToolkit/
http://www.codeplex.com/AtlasControlToolkit/

Ajax and JavaScript 335

Using Visual Studio
Visual Studio 2005 possesses a feature for debugging client-side script, which can

only be used in Internet Explorer. To enable script debugging, visit the Tools menu

in Internet Explorer, and select Internet Options. Click on the Advanced tab, and un

check the Disable Script Debugging (Internet Explorer) checkbox, as I’ve done in Fig

ure 10.6.

Figure 10.6. Enabling script debugging in IE 7

Once script debugging is enabled, we use the debugger to launch a web site or ap

plication in Internet Explorer (F5), and to set breakpoints in our JavaScript code.

We can use Visual Studio to watch, inspect, and modify JavaScript objects and their

properties. The tools in Visual Studio for debugging JavaScript are very similar to

those for debugging C# and Visual Basic code.

336 The ASP.NET 2.0 Anthology

Using Firebug
Another excellent tool is Firebug, a free extension for Firefox that’s dedicated to

JavaScript debugging and profiling.6 Open your site in Firefox, then press F12 to

launch the Firebug console and begin a debugging session, which will look like

Figure 10.7.

Figure 10.7. The Firebug JavaScript debugger

Firebug provides you with the ability to watch variables and set breakpoints in

JavaScript code. But Firebug is actually more than just a JavaScript debugger—you

can also use it to inspect and manipulate the DOM, tweak style sheets, and measure

download times.

6 http://www.getfirebug.com/

http://www.getfirebug.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

Ajax and JavaScript 337

Using Framework Tools
A third option when you come to debugging JavaScript is to make use of the features

present in the JavaScript framework that you’re using. For example, ASP.NET AJAX

includes a Sys.Debug class that can be used to trace execution, display objects, and

step into the debugger. Trace messages appear in the Output window of Visual

Studio during a debugging session, but the runtime will also send trace messages

to the page if it finds a textarea element with an id of TraceConsole.

Using Fiddler
Sometimes it’s useful simply to capture the traffic between a web browser and a

web server in order to discover how many requests are passing back and forth, or

get an idea of the sheer amount of data being transmitted between client and server.

A perfect tool for this purpose is Fiddler, a free HTTP debugging proxy.7 Fiddler

allows you to inspect the request and response parts of web server interaction, and

includes powerful logging and scripting filters to recreate and track down problems.

As we’ve seen, a number of excellent tools are available to debug JavaScript code.

So, the next time you catch yourself adding an alert message to your page to debug

a script, consider one of these tools instead—it may save you a tremendous amount

of time.

Summary
Many of the solutions we’ve explored in this chapter required us to push beyond

the level of JavaScript that most ASP.NET developers are accustomed to using. It’s

true that a learning curve is associated with exploring the new libraries and toolkits

that we’ve discussed, but the payoff is huge—with these new libraries, you can en

sure that you produce robust client-side code with minimum effort.

This chapter also gave us a chance to discuss the new techniques you can use to

take advantage of the object-oriented features of the JavaScript language, and we

touched on some new tools that will help you to manage the complexity inherent

in scripting. These new libraries, new tools, and new techniques are quickly revo

lutionizing the world of client-side scripting!

7 http://www.fiddlertool.com/

http://www.fiddlertool.com/
http://www.fiddlertool.com/

338 The ASP.NET 2.0 Anthology

If you’re still a little puzzled by the world of JavaScript, and feel the need for a book

that provides a solid foundation for this subject, then I strongly recommend you

seek out Simply JavaScript, by Kevin Yank and Cameron Adams. As with all Site-

Point books, you can download sample chapters of the book for free from the book’s

web site.8

8 http://www.sitepoint.com/books/javascript1/

http://www.sitepoint.com/books/javascript1/
http://www.sitepoint.com/books/javascript1/
http://www.sitepoint.com/books/javascript1/

Chapter11
Working with Email
Although the word email is seen by many to be synonymous with spam, email re

mains the primary means of direct, person-to-person communication on the Internet.

In some situations, technologies such as RSS and instant messaging have proven

popular alternatives, but nothing has eclipsed the classic SMTP and POP mail

protocols. Despite its problems, email is here to stay. Fortunately, dealing with

email from within ASP.NET is relatively painless.

How do I send a plain-text email?
In .NET 1.1, sending email relied upon a creaky old component called CDONTS

(short for Collaboration Data Objects for Microsoft Windows NT Server), on which

the System.Web.Mail class was dependent. It was awkward to use, had serious

performance issues, and was difficult to troubleshoot.

Sending email in .NET 2.0 is far more straightforward because this version provides

us with access to the System.Net.Mail class. The first rule of thumb when sending

mail in .NET 2.0 is therefore to avoid System.Web.Mail like the plague! It’s still

340 The ASP.NET 2.0 Anthology

there for the sake of backwards compatibility, but don’t use it—use System.Net.Mail

instead.1

Email and .NET 1.1

If you have an application that still uses .NET 1.1, and you need to send email,

you might consider using a third-party email library. One such library is FreeS-

MTP.Net from Quiksoft.2

Solution
Before you even begin sending any mail, you’ll need to configure your SMTP settings

to indicate which mail server you’ll be talking to. It’s possible to configure SMTP

programmatically, but I find it easiest to set it up once, in my Web.config file, and

forget about it.

SMTP is configured via the mailSettings element:

Web.config (excerpt)

<system.net>
 <mailSettings>
 <smtp from="michael.bolton@initech.com">
 <network host="smtp.initech.com" port="25" userName="mbolton"

 password="pcloadletter" defaultCredentials="true" />
 </smtp>

 </mailSettings>
</system.net>

In the example above, we’re configuring System.Net.Mail to connect to a remote

server (smtp.initech.com) that requires a username and password for authentication.

That reasonably verbose solution might be used on your production server. However,

if your SMTP server happens to live on the same machine as your web server (as

may be the case in your development environment), you can probably get away

with a much simpler version:

1 If you’d like a crash course in the difference between System.Web.Mail and System.Net.Mail,

the community-run web sites http://www.systemwebmail.com/ and http://www.systemnetmail.com/

are both excellent resources.

2 http://www.quicksoftcorp.com/freesmtp/

http://www.quicksoftcorp.com/freesmtp/
http://www.quicksoftcorp.com/freesmtp/
http://www.systemwebmail.com/
http://www.systemnetmail.com/
http://www.quicksoftcorp.com/freesmtp/

Working with Email 341

Web.config (excerpt)

<system.net>
 <mailSettings>
 <smtp>
 <network host="localhost" />

 </smtp>
 </mailSettings>
</system.net>

This “set and forget” configuration approach is sufficient for most web applications.

However, if your application sends mail through several different servers, you may

need to configure your SMTP settings in your application code using the properties

of the System.Net.Mail.SmtpClient class. More information about this class can

be found in the MSDN documentation.3

To send mail, make sure that your project has a reference to System.Net.Mail, and

use the MailMessage and SmtpClient classes, as shown in the following example:

SendMail.aspx.cs (excerpt)

MailMessage m = new MailMessage();
m.From = new MailAddress("manager@tchotchkes.com");
m.To.Add("joanna@tchotchkes.com");
m.Subject = "Your Flair";
m.Body = "I need to talk to you about your flair.";
SmtpClient sc = new SmtpClient();
sc.Send(m);

The code above will deliver the following email to Joanna’s inbox:

mime-version: 1.0

from: manager@tchotchkes.com

to: joanna@tchotchkes.com

date: 29 Mar 2007 22:59:24 -0700

subject: Your Flair

content-type: text/plain; charset=us-ascii

content-transfer-encoding: quoted-printable

I need to talk to you about your flair.

3 http://msdn2.microsoft.com/en-us/library/system.net.mail.smtpclient.aspx

http://msdn2.microsoft.com/en-us/library/system.net.mail.smtpclient.aspx
mailto:manager@tchotchkes.com
mailto:joanna@tchotchkes.com
http://msdn2.microsoft.com/en-us/library/system.net.mail.smtpclient.aspx

342 The ASP.NET 2.0 Anthology

The Mail class is very discoverable, so I won’t bog you down by discussing all the

various options and methods available for sending email. Whatever you want to do

with email, System.Net.Mail is a solid starting point. You can read more about

this class at the unofficial System.Net.Mail FAQ4 or the official MSDN documenta

tion.5

How do I send an HTML email?
While everyone has an opinion about which is better—plain-text or HTML

email—there’s one group of people who will always push for emails to be sent in

fancily formatted HTML: your clients.

You might think that the easiest way to send an HTML-formatted email is just to

write some markup into the body of your email. The problem with this approach

is that not all email clients are able to display HTML. Users of some clients won’t

be able to read your message easily because they’ll have to wade through raw HTML

to find it.

A better solution is to provide the HTML version of the message as an alternative

view. Email clients that are capable of displaying HTML can then display the fancy

HTML view, while less capable email clients can still view the plain-text version.

Solution
The following code sets up both plain-text and HTML content. We provide the

HTML content using the AlternateView class:

SendMultipart.aspx.cs (excerpt)

MailMessage m = new MailMessage();
m.From = new MailAddress("manager@tchotchkes.com");
m.To.Add("joanna@tchotchkes.com");
m.Subject = "Your Flair";
m.Body = "I need to talk to you about your flair.";
AlternateView html = AlternateView.CreateAlternateViewFromString(
"I need to talk to you about your flair.", null,

"text/html");

4 http://www.systemnetmail.com/
5 http://msdn2.microsoft.com/en-us/library/system.net.mail.aspx

http://www.systemnetmail.com/
http://msdn2.microsoft.com/en-us/library/system.net.mail.aspx
http://msdn2.microsoft.com/en-us/library/system.net.mail.aspx
http://www.systemnetmail.com/
http://msdn2.microsoft.com/en-us/library/system.net.mail.aspx

Working with Email 343

m.AlternateViews.Add(html);

SmtpClient sc = new SmtpClient();

sc.Send(m);

This code delivers to Joanna’s inbox a slightly larger email than the one we created

in the section called “How do I send a plain-text email?”:

mime-version: 1.0

from: manager@tchotchkes.com

to: joanna@tchotchkes.com

date: 29 Mar 2007 22:59:24 -0700

subject: Your Flair

content-type: multipart/mixed; boundary=boundary0

--boundary0

content-type: multipart/alternative; boundary=boundary1

--boundary1

content-type: text/plain; charset=us-ascii

content-transfer-encoding: quoted-printable

I need to talk to you about your flair.

--boundary1

content-type: text/html; charset=us-ascii

content-transfer-encoding: quoted-printable

I need to talk to you about your flair.

--boundary1-

--boundary0-

The email is a multipart MIME message, meaning that this single email encapsulates

multiple packages of content. Our email has two content packages: one is plain text,

and the other is HTML. The content is functionally equivalent in each case. If

Joanna’s email client understands the content type of text/html it can render that

message. If not, her email client can fall back to the plain-text message.

Discussion
You should be aware of the following issues before you send HTML-formatted email:

■	 Support for HTML and CSS among the many different mail clients is extremely

limited when compared to the support offered by web browsers. For example,

Outlook 2007 moved away from using Internet Explorer as its HTML rendering

engine for security reasons. Unlike Outlook 2003, Outlook 2007 therefore supports

a restricted subset of HTML, and offers very little support for CSS. It’s unwise

mailto:manager@tchotchkes.com
mailto:joanna@tchotchkes.com

344 The ASP.NET 2.0 Anthology

to assume that the user’s email client—whatever it may be—has browser-equi

valent, rich HTML support.

■	 For privacy reasons, modern email clients won’t automatically retrieve images

from an HTML-formatted email. Retrieving graphics via HTML necessitates that

a request be sent from the user’s computer to a remote web server. These requests

are tracked as key metrics by misguided email marketers who want to monitor

the success of their marketing campaigns. It’s a good thing that this behavior is

disabled by default, but it does mean that users must explicitly allow images

before they will display in any HTML email.

■	 You should always send a plain-text version of your email, in case the user’s

client can’t (or just won’t) render HTML.

The general rule of thumb when using HTML inside an email is to keep your content

(and layout) simple. Your email might be read with a web mail client, a mobile

phone, or a five-year-old desktop application. It’s impossible to test all the devices

and programs in the world, so aim for the lowest common denominator.

How do I attach a file to my email?
When you want to send content such as a Microsoft Word file, or a PDF file, you’ll

need to send that file as an attachment to a mail message. Fortunately, .NET 2.0

makes sending attachments easy.

Solution
The following code sends as an attachment a file named Flair.doc that exists in the

root of the web application:

SendAttachment.aspx.cs (excerpt)

MailMessage mail = new MailMessage();
mail.From = new MailAddress("manager@tchotchkes.com");
mail.To.Add("joanna@tchotchkes.com");
mail.Subject = "Flair guidelines";
mail.Body = "See the attached file for more details";
string path = Server.MapPath("~/Flair.doc");
mail.Attachments.Add(new Attachment(path));
SmtpClient client = new SmtpClient();
client.Send(mail);

Working with Email 345

Notice that we attach the file by creating an Attachment object and adding the object

to the mail’s Attachments collection. Alternatively, we could have created the

Attachment object by passing a Stream instance to the constructor. Using a stream

would mean we wouldn’t necessarily need to save a file to disk. For instance, we

could create a file attachment using data that’s already in memory from a previous

HTTP file upload.

Discussion
As with HTML email, there are a few issues to be aware of when sending attachments

via SMTP:

■	 The recipient may not have installed the software necessary to open the attach

ment.

■	 Not every email client understands how to process attachments. Remember, it’s

possible that your email could end up on any number of ancient devices.

■	 To virus scanners, attachments are prime suspects—even harmless Microsoft

Word files can be blocked by an overzealous anti-virus application wary of

macros and other forms of embeddable code that may appear inside the document.

Sending an attachment with an .exe extension, or an executable script extension

like .vbs, will almost guarantee that your attachment will be quarantined by anti

virus software.

■	 Large attachments stand a good chance of being rejected by mail server software.

How do I send personalized form letters?
It’s usually good practice when sending email—even messages that contain what

is largely the same content, such as a newsletter—to personalize the message to

some degree, rather than sending exactly the same email to every recipient. Including

details that are specific to the recipient—be it a customer’s order details, account

information, or just the person’s name—makes the process a lot more personal for

each reader.

Solution
ASP.NET boasts a built-in component for sending templated emails. It can really

save you development time.

346 The ASP.NET 2.0 Anthology

To use the component, first create a template for the email like the one shown below.

Name the file mailtemplate.txt, and place it in the root of your web site:

MailTemplate.txt

Dear <customer>,

A review of our records shows that your account was accidentally
debited by <amount>. We have credited your account for <amount> to
resolve the problem.

Regards,
INITech Technical Support

With this file in place, we can use the MailDefinition class, which provides

methods for automatically merging templated content from a file:

SendTemplated.aspx.cs (excerpt)

MailDefinition md = new MailDefinition();
md.BodyFileName = "mailtemplate.txt";
Dictionary<string, string> d = new Dictionary<string, string>();
d.Add("<customer>", "ACME Global");
d.Add("<amount>", ".0002 cents");
MailMessage m = md.CreateMailMessage("finance@acmeglobal.com", d,

new LiteralControl());
m.Subject = "account review";
m.From = new MailAddress("support@initech.com");
SmtpClient smtp = new SmtpClient();
smtp.Send(m);

Your email template can now be used to send personalized messages to multiple

recipients!

Discussion
There are two issues to be aware of when you’re using the MailDefinition class:

1. Creating a new instance of MailDefinition requires that a Control object be

passed into the CreateMailMessage method. This Control is used to derive the

Working with Email 347

correct path for the template file. Passing in null doesn’t work; instead, we’ve

passed a new, empty LiteralControl class.

2. MailDefinition requires that the From property of the smtp node be populated.

You can, of course, override the address, but it must be populated in Web.config.

Once we’ve accounted for these oddities, the properly merged email arrives as ex

pected:

Dear ACME Global,

A review of our records shows that your account was accidentally

debited .0002 cents. We have credited your account for .0002 cents

to resolve the problem.

Regards,

INITech Technical Support

Of course, if this were a real-world example, we’d be sending these emails in a loop,

building up our Dictionary with unique values from a database with each iteration.

How do I allow users to submit content
via email?
The standard approach for accepting input from a web site’s users is via an HTML

form. However, you may want to allow users to interact with your web site through

direct email (for example, to allow them to subscribe or unsubscribe from an email

newsletter).

Each of the previous examples involved sending mail using the SMTP class in

System.Net.Mail. Now, let’s reverse the situation. We need our application to receive

mail. Unfortunately, Microsoft doesn’t provide any built-in methods in .NET for

POP3, which is the receiving protocol. We’ll have to look for a third-party compon

ent—either open source or commercial—to add the missing POP3 support.

Solution
Despite extensive research, I have yet to discover any active open source projects

that I would recommend for use in this case. However, performing a search in Google

for the phrase “C# POP3” reveals several C# code samples that developers have

348 The ASP.NET 2.0 Anthology

made available online. I’ll explore one such .NET 2.0 code sample that I downloaded

from CodeProject, named Pop3MailClient.6

Gotta Keep ’Em Separated!

I recommend that you don’t mix personal mailboxes with machine mailboxes. So

if you’re planning to take advantage of unattended email accounts, for instance,

to allow users to submit content to a site, set up a new email account explicitly

for the purpose.

Begin your foray into the automated receiving of email by instantiating the POP3

object and letting it connect to the POP3 server. In the following example, I chose

to use a free Google Mail account that I set up explicitly for this purpose. I then

enabled POP3 support for the account via the Google Mail control panel. Now it’s

time to connect:

Program.cs (excerpt)

Pop3.Pop3MailClient p = new Pop3.Pop3MailClient(
"pop.gmail.com", 995, true, "someone@gmail.com", "password");
p.IsAutoReconnect = true;
p.ReadTimeout = 60000;
p.Connect();

Now that we have a connection, let’s query the account to see how many new emails

have arrived in our mailbox:

Program.cs (excerpt)

int mailcount;
int size;
p.GetMailboxStats(out mailcount, out size);

Bear in mind that these variables refer only to the number of new emails received

by the account. The POP3 protocol was not designed for emails to be stored on the

server—every time you connect, retrieve your mail, and disconnect, the Pop3Mail

Client code assumes that those emails have been successfully transferred to the

6 http://www.codeproject.com/cs/internet/Pop3MailClient.asp

http://www.codeproject.com/cs/internet/Pop3MailClient.asp
http://www.codeproject.com/cs/internet/Pop3MailClient.asp
http://www.codeproject.com/cs/internet/Pop3MailClient.asp

Working with Email 349

client and removed from the server. So the next time you connect, those messages

won’t be counted.

Now that we have the count of new emails, let’s iterate through those messages and

determine which ones we need to handle. We’ll do this by looking at the Subject

and Body content of each:

Program.cs (excerpt)

for (int i = mailcount; i > 0; i--)
{
 if (p.GetEmailSize(i) < 131072)
 {
 p.GetRawEmail(i, out email);
 if (MatchesSubject(email, "subcription change"))
 {
 if (MatchesBody(email, "unsubscribe"))
 {
 // do something with the email here..
 p.DeleteEmail(i);

 }
 }

 }
}
p.Disconnect();

In the above code, we’ve prevented the retrieval of any emails that are over a certain

size, just in case our inbox receives an email that’s too big for us to process. The

criteria we’ve specified ensure that we only process an email when:

■ The size of the email is less than 128KB (131,072 bytes).

■ The email subject line contains the phrase “subscription change.”

■ The email body contains the word “unsubscribe.”

If we see any emails that match these criteria, we’ll take action in the code, then

delete the emails in question.

The actual parsing of an email’s subject header and body is handled by a few regular

expressions:

350 The ASP.NET 2.0 Anthology

Program.cs (excerpt)

static Boolean MatchesSubject(string email, string subject)
{
 return Regex.IsMatch(email, @"^subject:\s.*" + subject + ".*$",
 RegexOptions.Multiline | RegexOptions.IgnoreCase);
}
static Boolean MatchesBody(string email, string text)
{
 // the body starts after the first blank line
 int bodystart = Regex.Matches(email, "^\r\n",
 RegexOptions.Multiline)[0].Index + 2;
 string body = email.Substring(bodystart);
 return Regex.IsMatch(body, text, RegexOptions.IgnoreCase);
}

While this code won’t account for all types of, and variations in, content, it should

serve as a good foundation from which you can experiment further.

Discussion
Parsing email is a complex topic that we’ve discussed only briefly in this solution,

although an entire chapter could easily be written about it. It’s difficult to know the

email format your site’s visitors will use, and practically impossible to force them

to send only plain-text messages. The regular expressions we used above are basic,

but they should work for simple “contains” tests on any email. If you need more

sophisticated tests, I strongly recommend using a proper MIME parser to deal with

the full breadth of the MIME format. One such formatter is the Pop3MimeClient,

written by the author of the mail client I used in the above example.7

Heavy-duty email parsing is certainly not for the faint of heart, so be sure to equip

yourself with the proper tools if you need to head down this path.

7 http://www.codeproject.com/cs/internet/Pop3MimeClient.asp

http://www.codeproject.com/cs/internet/Pop3MimeClient.asp
http://www.codeproject.com/cs/internet/Pop3MimeClient.asp
http://www.codeproject.com/cs/internet/Pop3MimeClient.asp

Working with Email 351

Somebody Call Security!

For those processing form data in a web application, ASP.NET provides a level

of protection against malicious users who try to break the application by injecting

strange values, scripts, and other evil inputs into form fields. ASP.NET tries to

detect cross-site scripting attacks, and its event validation feature will make sure

a form receives the values it expects.

There are no such security measures in place for the acceptance of input via email.

Treat all input as if it could be malicious, and never place the content of an email

into a SQL command string, for example. Chances are that, sooner or later, someone

will try to break your software via your email gateway.

How do I send an email without waiting for
it to complete?
Allowing a user to send an email from a web page is simple enough, but the actual

process of sending the email introduces unwanted network dependency to the page.

What if the remote SMTP server is down or not responding? What if the SMTP

server is responding extremely slowly? Your page won’t finish loading or displaying

until the email is sent, or until an error is returned from the SMTP server. This

could spell disaster for the responsive user experience that the rest of your applica

tion provides!

Solution
ASP.NET 2.0 provides built-in logic for handling asynchronous events at the page

level. To make use of this logic, you’ll need to enable the Boolean Async directive

in the Page element:

SendAsync.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="SendAsync.aspx.cs" Inherits="_Default" Async="true" %>

Once you’ve enabled asynchronous support on the ASP.NET page, sending email

asynchronously is as easy as setting up a delegate and calling the SendAsyncmethod,

like this:

352 The ASP.NET 2.0 Anthology

SendAsync.aspx.cs (excerpt)

MailMessage m = new MailMessage("mwaddams@initech.com",
"blumbergh@initech.com",
"Stapler",
"I believe you have my stapler.");

SmtpClient sc = new SmtpClient();
sc.SendCompleted +=

new SendCompletedEventHandler(MailSendCompleted);
sc.SendAsync(m, m);

At first glance, this code appears to be passing the mail message twice to the

SendAsync method, but it’s not. The second parameter to SendAsync is a generic

object token that will be passed back to the handler. We can actually pass any object

we like as the second parameter, but it’s convenient to use the mail object itself

there so that we can refer to it later if something goes wrong.

Within the handler, we need to check the Cancelled and Error properties of the

AsyncCompletedEventArgs object to ensure that nothing went wrong. If the Error

property is null, as it is here, the email went through:

SendAsync.aspx.cs (excerpt)

public static void MailSendCompleted(
object sender, AsyncCompletedEventArgs e)
{
 MailMessage m = e.UserState as MailMessage;
 if (e.Cancelled)
 {
 Debug.Write("Email to " + m.To + " was cancelled.");

 }
 if (e.Error != null)
 {
 Debug.Write("Email to " + m.To + " failed.");
 Debug.Write(e.Error.ToString());

 }
 else
 Debug.Write("Message sent.");

}

You can see how convenient it is to have passed in the MailMessage object for

troubleshooting and logging purposes.

Working with Email 353

Since we’ve created an asynchronous operation delegate, we can’t predict exactly

when this code will run. The code could run 15 milliseconds after the user clicks

Send, or two minutes after. So updating the user interface to provide feedback to

the user about what’s happening is more complicated than usual (read more about

this topic in Chapter 10)—a factor that you should keep in mind when you’re im

plementing this functionality from scratch.

Side-stepping the Issue where Possible

I recommend that you use a logging technique—where a record of the steps taken

to send the email is written to an external file—for asynchronous emails. The ex

ternal file can then be used to display the status of the email when queried by the

user.

With this approach, you conveniently avoid the technical hurdles involved in

providing up-to-date feedback on the status of an asynchronous action.

Summary
Email support presents a unique set of challenges for a web application. Armed

with the techniques outlined in this chapter, you’ll be fully equipped to take advant

age of the dated-but-still-useful POP3 and SMTP email protocols in your ASP.NET

application.

Chapter12
Rendering Binary Content
Developers who spend much of their time building web applications tend to start

thinking that all content is text. After all, what does our code really do other than

render text to be shuttled back and forth between a web browser and the web server?

As it turns out, text/html is not the only MIME type that matters on the Web. There

are plenty of other types of web content besides text: video files, various document

files, and images, for example. Most developers think of images as static con

tent—they’re simply files that are placed in a directory and served up by the web

server.

But you, intrepid reader, are not “most developers.” Let’s look at some of the ways

in which we can take charge of this binary content.

How do I write binary content?
Let’s jump right into a simple example of writing binary content. Afterwards, we’ll

take a step back to look at other ways of writing binary content to the browser, and

to discuss what’s happening under the hood.

356 The ASP.NET 2.0 Anthology

Solution
To kick off our very simple example, add a new Web Form (.aspx file) to your project

and implement the following code as the Page_Load method:

SimpleBinaryExample.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 Byte[] binaryData = new byte[]
 {
 0x48, 0x65, 0x6C, 0x6C,
0x6F, 0x20, 0x57, 0x6F,
 0x72, 0x6C, 0x64, 0x21

 };
 Response.OutputStream.Write(binaryData, 0, binaryData.Length);
}

Compile that and view the page in a browser. What happens?

Discussion
Figure 12.1 shows the results of the code.

Figure 12.1. The classic Hello World example

It’s not very exciting, of course, but what this code demonstrates is that we’ve been

working with binary data all along!

Rendering Binary Content 357

All the data sent from a web server is ultimately just a stream of 1s and 0s. How the

browser ends up interpreting it depends on the MIME type of that binary data. For

example, by default, an ASPX page has a content type of text/html. Thus content

sent from an ASPX page is interpreted by the browser as text—or, more specifically,

HTML text.

How Does the Browser Interpret Binary Data?

If a web server simply returns binary data to a browser, how does the browser

know how to interpret that data—how does it know to render a GIF image rather

than an HTML page, for example?

When an HTTP response is returned from the web server, the header of the re

sponse contains that information. The browser knows to interpret the header as

ASCII text.

This is a cut-down explanation, but that’s all the detail we need for the purposes

of this discussion. The point of this little exercise is to take a look under the hood

of ASP.NET!

The ASP.NET team worked very hard to abstract the underlying mechanisms that

come into play during a web application’s development, as evidenced, among other

things, but the names they gave to various objects. As you develop a new page, you

might add a Web Form to your project. In Design view, you’ll drag controls onto

the form—a button, for example. Double-click the button and the IDE takes you to

an event handler for the button click event. In some respects, building an ASP.NET

page is not much different from building a Windows Forms application. However,

the end result is very different. Windows Forms and Controls ultimately render

bitmaps on the screen. In contrast, an ASPX page and its controls are compiled into

a series of System.Web.HttpResponse.Write statements, which write text to a stream

in response to a browser request.

How do I write raw data to the response?
This solution marks a slight diversion from the main topic of this chapter, but it’s

an important one. Whether you’re writing binary content or raw (non-HTML) text

content to the browser, it doesn’t usually make sense to use an ASPX page to respond

to such a request. What should you use?

358 The ASP.NET 2.0 Anthology

Solution
One efficient approach is to use an HttpHandler. An HttpHandler is a class that

inherits directly from System.Web.IHttpHandler and is responsible for responding

to an HTTP request. For example, System.Web.UI.Page, the base class for ASPX

pages, is an HttpHandler that typically handles requests for *.aspx files.

Here’s the interface definition for IHttpHandler:

Interface IHttpHandler

{

 void ProcessRequest(System.Web.HttpContext context);

 bool IsReusable {get;}

}

The IsReusable property indicates whether ASP.NET can keep the handler in

memory to service multiple requests, or if it must create a new instance of the

handler for every request.

IsReusable Generally Shouldn’t Return false

Unless you maintain some sort of state in the handler, which is uncommon, there’s

generally no reason for IsReusable to return false.

The ProcessRequest method is responsible for handling the request by executing

any logic necessary and writing the resulting content to the Response stream. You’ll

do most of your work in the ProcessRequest method.

The following is an example of an HttpHandler that writes a short text message to

the response:

using System.Web;

public class MyHandler : IHttpHandler

{

 public void ProcessRequest(HttpContext context)

 {

 context.Response.Write("Hello SitePoint!");

 }

 public bool IsReusable

{

Rendering Binary Content 359

get{return true;}

}

}

Discussion
If the base class of an ASPX page is itself an HttpHandler, why wouldn’t we just

use an ASPX page to handle requests for raw data? The short answer is: it’s overkill.

An ASPX page is an abstraction used to generate an HTML response to a request.

When it’s compiling and executing an ASPX page, ASP.NET builds up an entire

control hierarchy, executes a series of events as part of the Page and Control life

cycle, and writes the output to the response in order to respond to the request.

If you’re sending raw content, you don’t need to use this structure just to write the

content to the response—you can write the content directly by implementing an

HttpHandler.

How do I request an HttpHandler?
In the previous section, we discussed how to build an HttpHandler. But your work

doesn’t stop there. Once you’ve built your handler, how will you make a request to

it?

Solutions
We can take either of two approaches to make a request to an HttpHandler. The

first approach is to map a file extension to the handler—a process that involves two

steps if you’re hosting your site in IIS 5 or IIS 6. The second, which we’ll cover later

in this chapter, is to use a generic handler.

Using a Custom HttpHandler
First, you need to map the file extension you choose to the ASP.NET ISAPI DLL.

Otherwise, IIS will not hand off the request to ASP.NET.

http:ASP.NET

360 The ASP.NET 2.0 Anthology

Wildcard Mappings in IIS 6

In IIS 6, ASP.NET is implemented as an ISAPI extension. Hence, only requests

that IIS recognize as being handled by ASP.NET are sent along to the ASP.NET

runtime.

However, it’s possible to introduce wildcard mapping by mapping “*” to the

ASP.NET runtime. Doing so will cause IIS to send every request to ASP.NET, in

cluding requests for static files such as images.

Although powerful, this approach can be more trouble than it’s worth, as it makes

you responsible for writing the code to handles requests for all file types, which

can cause performance problems for your web site.

Note that if you’re using IIS 7 and above you can run your ASP.NET web site in

Integrated Mode. In Integrated Mode, ASP.NET is integrated into the IIS 7 pipeline,

allowing you to use the Web.config file to choose the extensions you want to

handle.

As a demonstration, let’s suppose that we want to use the extension .spt for our

custom handler. First, let’s open the IIS Default Web Site Properties dialog—as seen

in Figure 12.2—and click on the Home Directory tab.

Click on Configuration… to see the existing application extension mappings, as

shown in Figure 12.3.

http:ASP.NET

Rendering Binary Content 361

Figure 12.2. The Default Web Site Properties dialog

Figure 12.3. Inspecting the existing configuration of extension mappings

362 The ASP.NET 2.0 Anthology

Click Add and, in the dialog that appears, which is shown in Figure 12.4, fill in the

details necessary to map the .spt extension to the ASP.NET ISAPI DLL. For ASP.NET

2.0, the path to the extension should be:

%SystemRoot%\microsoft.net\framework\v2.0.50727\aspnet_isapi.dll

Figure 12.4. Setting up our custom mapping

To finish up, we simply need to add an appropriate entry to the httpHandlers

section of Web.config, like so:

Web.config (excerpt)

<httpHandlers>
 <add verb="*" type="TypeName, AssemblyName" />
</httpHandlers>

Using a Generic Handler
If the ability to use a custom file extension isn’t important to you, there’s a much

easier way to set up an HttpHandler—by using a generic handler.

This approach was available in ASP.NET 1.1, but it wasn’t well documented or

supported by VS.NET 2003, which left many developers unaware of its existence.

Fortunately, VS.NET 2005 has made it very easy to create a Generic Handler. Simply

right-click on your project and select Add New Item. In the resulting dialog, which

is depicted in Figure 12.5, select Generic Handler, enter the filename, and click Add.

Rendering Binary Content 363

Figure 12.5. Adding a Generic Handler

This process will add a .ashx file to your project, as well as a .ashx.cs code behind

file. The code behind file contains a class definition that implements IHttpHandler.

Just implement the class, and make a request for the .ashx file, and you’re done!

There’s no need to fiddle with IIS and Web.config settings.

We’ll use this approach to set up HttpHandlers elsewhere in this chapter.

How do I write non-text binary data?
The past few sections have laid the groundwork. Now we’re ready to really dig into

the finer details of writing binary content—and this time, we’ll go beyond boring

text content, I promise!

Solution
Writing binary content from ASP.NET involves two key steps:

1. Set the content type.

2. Choose the proper method to write the binary content to the Response.

364 The ASP.NET 2.0 Anthology

Understanding Content Types
The content type (or MIME type) indicates to the browser what kind of content is

being sent. As I mentioned before, all content is sent as a stream of 1s and 0s, so we

have to indicate to the browser exactly what those 1s and 0s mean.

A MIME type is a text string in two parts:

content type/subtype

For example, a MIME type of text/html indicates that the content type is text, of

the subtype HTML.

Table 12.1 shows some common MIME types, though this list is by no means ex

haustive (it’s not even close).

Table 12.1. Some Common MIME Types

DescriptionMIME Type

the most common mime type on the web; represents

HTML content

text/html

defines plain texttext/plain

Microsoft Excel document application/vnd.ms-excel

GIF-encoded imageimage/gif

MPEG-encoded videovideo/mpeg

MPEG-encoded audioaudio/mpeg

To set the content type, we set the ContentType property of the HttpRequest in

stance. For example, within an HttpHandler, the following code will set the content

type to image/gif and send the contents of a GIF image to the response:

ImageExample.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 Response.Clear();
 Response.ContentType = "image/gif";

 // binary data as a base64-encoded string.
 string encoded = "R0lGODdhFAAUAIACABMT0kJCWiwAA"

Rendering Binary Content 365

+ "AAAFAAUAAACKISPocvowGJ4S"

 + "S567MVQT+59WMh1WkmCHrq"

 + "qp2ux79jSM5XaMSzJVgEAOw==";

 // convert to raw bytes.

 byte[] binary = Convert.FromBase64String(encoded);

 Response.BinaryWrite(binary);

 Response.Flush();

}

Give that a try and see what happens. If nothing else, you’ll soon understand why

I’m not an artist!

Forcing a Download Dialog to Display

If your browser is capable of rendering the content type (or has a plugin that does

so), it will render the binary content when you click on a link to the handler.

However, if you’d prefer to have a Download dialog appear instead, you need to

set the Content-Disposition header like so:

Response.AddHeader("Content-Disposition",
"attachment; filename=\"MyFile.doc\"");

This code will display a File Save dialog in which the filename is defaulted to

MyFile.doc.

Writing Binary Content
The approaches summarized in Table 12.2 are available for us to use to write binary

content to the response. In the example above, I called the

HttpResponse.BinaryWrite method, but we can also choose to write directly to

the output stream via the HttpResponse.OutputStream property.

The HttpResponse.WriteFile method will write the contents of a file to the output

stream. ASP.NET 2.0 introduces the HttpResponse.TransmitFile method, which

is recommended over the WriteFile method because it incorporates streaming and

avoids buffering the file in memory (WriteFile loads the whole file into memory).

366 The ASP.NET 2.0 Anthology

Choose TransmitFile over WriteFile

In general, use TransmitFile instead of WriteFile, as TransmitFile makes

better use of system memory.

Table 12.2. Four Approaches to Writing Binary Content

DescriptionMethod

writes the file specified by the filename to the

response; for large files, it’s better to use

TransmitFile instead

HttpResponse.WriteFile(string

)

streams the file to the response HttpResponse.TransmitFile(

string)

writes the set of specified bytes to the output stream HttpResponse.BinaryWrite(byte[]

)

allows you to write directly to the stream HttpResponse.OutputStream

How do I render simple bars?
For the creation of most images on a web site, you’ll want to talk to Sally in the

graphics team (or your graphic designer). However, there are many circumstances

in which you’ll want a graphic to be dynamic, either because you want to customize

it for the user, or you want to regenerate it to reflect changing data. For example, if

you wanted to use a bar graph to represent responses to a poll, it wouldn’t make

much sense to have Sally create images for every possible outcome.

Another possible application of dynamic images includes dynamically rendering

skewed text as in an image CAPTCHA control (for instance, Jeff’s CAPTCHA Server

Control).1 For now, we’ll start with a really simple image example: drawing a bar

graph.

Solution
Now we’re starting to get into the world of GDI+. GDI stands for Graphics Device

Interface—a Microsoft standard for the graphical representation of objects and for

1 http://www.codeproject.com/aspnet/CaptchaControl.asp

http://www.codeproject.com/aspnet/CaptchaControl.asp
http://www.codeproject.com/aspnet/CaptchaControl.asp
http://www.codeproject.com/aspnet/CaptchaControl.asp

Rendering Binary Content 367

the display of those objects on an output device such as the screen, a printer, and

so on.

The plus sign in GDI+ means Microsoft has had a lot of time to improve GDI and

make it easily accessible via the .NET Framework. But enough talk; let’s look at

how we can actually render images using this standard.

Release GDI+ Resources

GDI+ is built on unmanaged code. So when you create a reference to a Graphics

instance or a Bitmap, you’re dealing with an unmanaged system resource. It’s

important to release the resource, by calling the Dispose method, when you’re

finished with it.

In the code examples you’re about to see, you’ll notice we’re accessing resources

within using blocks. The using block is a construct provided by the compiler,

and is equivalent to the more common try/finally pattern. It’s a good idea to

use using blocks liberally when dealing with unmanaged code; we’ll see more

of the using block later in this chapter.

We’ll use a generic HttpHandler like the one we saw earlier in the section. For this

example, we’ll keep things simple by hard-coding some values and making only

the width of the graphic configurable via the query string. Of course, it wouldn’t be

difficult to turn this into a more generally useful configurable handler, but for now,

we’ll stick with this simple example.

If we were to naïvely assume that all user input is safe, and directly fed the query

string value to Bitmap constructor, we would create an open door for the entry of

all sorts of invalid input. So, here’s a method we’ll use to grab the width (and other

positive non-zero integers) from the query string:

SimpleBarHandler.ashx.cs (excerpt)

int GetSizeFromQueryString(HttpContext context, string key)
{
 string intText = context.Request.QueryString[key];
 int parsedInt;
 if (int.TryParse(intText, out parsedInt) && parsedInt > -1)
 return parsedInt;

 return 1;
}

368 The ASP.NET 2.0 Anthology

Now we can write the body of our ProcessRequest method:

SimpleBarHandler.ashx.cs (excerpt)

public void ProcessRequest(HttpContext context)
{
 int width = GetSizeFromQueryString(context, "width");
 int height = 20; // hard-code for now.
 using(Bitmap graph = new Bitmap(width, height))
 using(Graphics g = Graphics.FromImage(graph))
 {
 g.Clear(Color.Blue);
 context.Response.ContentType = "image/gif";
 graph.Save(context.Response.OutputStream, ImageFormat.Gif);

 }
}

The first step we take in this code is to create an instance of a Bitmap. The width

of the bitmap is determined by the query string parameter width. From that Bitmap,

we can obtain an instance of the System.Drawing.Graphics object. The Graphics

object represents a drawing surface.

For this example, we simply clear the bitmap, setting its background color to blue.

We then set the content type to image/gif and save the bitmap to the output stream

by calling the Bitmap.Save method.

Let’s now make a simple test page in a separate HTML file:

SimpleBarTest.htm (excerpt)

<html>
 <head>
 <title>Bar Example</title>
 <style type="text/css">
 img {padding: 4px;}

 </style>
 </head>
 <body>

Rendering Binary Content 369

 </body>

</html>

This markup produces the page shown in Figure 12.6.

Figure 12.6. Testing our bar graph

Voilà! A bar graph!

How do I create a real bar graph handler?
The previous example was intended to give you a taste of what we can achieve with

GDI+, but we didn’t really do any drawing: we simply rendered a bitmap to the

screen. Let’s take the next step and render a full bar graph.

Solution
This example is a little more involved, and highlights a few more features of GDI+,

than the last example. For the bar graph, we need three parameters: the width of

the image, the scale of the data, and the data points themselves.

By “scale of the data” I mean the highest possible value that we’d want to graph.

Every data point should have a value that’s less than or equal to the scale. Since

370 The ASP.NET 2.0 Anthology

the scale could be larger than the width of the image, we’ll have to scale the graph

to fit the image’s width. Let’s learn how to do that now.

First, we need to grab some values from the query string; this snippet should be

placed at the beginning of ProcessRequest:

BarGraphHandler.ashx.cs (excerpt)

int width = GetSizeFromQueryString(context, "width");
int scale = GetSizeFromQueryString(context, "scale");
int[] dataPoints = GetDataPoints(context);

// These values hard-coded for now
int barHeight = 20; // height of an individual bar
int padding = 4; // Padding between bars

Now, let’s introduce a new method that extracts the data points from the query

string:

BarGraphHandler.ashx.cs (excerpt)

int[] GetDataPoints(HttpContext context)
{
 string data = context.Request.QueryString["datapoints"];
 if (String.IsNullOrEmpty(data))
 return new int[] {};

 string[] dataPoints = data.Split(','); // Could throw an exception
 return Array.ConvertAll(dataPoints,

new Converter<string, int>(int.Parse));
}

Next, we need to ensure that the scale is at least as large as the largest data point.

Let’s write a method for this task:

BarGraphHandler.ashx.cs (excerpt)

// Scale needs to be larger than the largest data point.
private int AdjustScaleToLargestDatapoint(int[] dataPoints,

int scale)
{
 foreach(int dataPoint in dataPoints)
 {

Rendering Binary Content 371

scale = Math.Max(dataPoint, scale);

 }

 return scale;

}

The following code calculates the total height of the image. Notice that we factor

in some padding before, after, and between the bars:

BarGraphHandler.ashx.cs (excerpt)

// Get the height.
int height = (barHeight + padding) * dataPoints.Length + padding;

As in the previous example, we create instances of the Bitmap and Graphics classes.

In this case, we set the background color to white using the Clear method of the

Graphic class and draw a black border around the image using the DrawRectangle

method. Notice that I left out the code that actually draws the data points:

BarGraphHandler.ashx.cs (excerpt)

// Create the bitmap using the scale, later
// we'll scale it down to the requested width.
using (Bitmap graph = new Bitmap(width, height))
using (Graphics g = Graphics.FromImage(graph))
{
 g.Clear(Color.White);
// Draw a border.
 g.DrawRectangle(new Pen(Color.Black), 0, 0, graph.Width - 1,

 graph.Height - 1);
 // Draw the data paints
 // ...
 context.Response.ContentType = "image/gif";
 graph.Save(context.Response.OutputStream, ImageFormat.Gif);
}

We’re finally ready to draw the actual data points! The code below replaces the //

… comment above.

Earlier I mentioned that we would need to scale the data points to fit the image. For

example, suppose my data points come from a sample that contains values between

372 The ASP.NET 2.0 Anthology

1 and 1000, but I want to render a graph that’s 600 pixels wide. I’ll need to scale

the bar graphs to fit within the image area.

Fortunately, this task is very easily achieved with GDI+. We simply need to calculate

a scaling value, and apply that scaling to the graphic’s surface. Let’s add a simple

method to do this:

BarGraphHandler.ashx.cs (excerpt)

// Scale the graph to the image width.
private void ScaleGraphToImageWidth(int scale, Bitmap graph,

 Graphics g)
{
 float scaling = graph.Width /

(float)scale;g.ScaleTransform(scaling, 1);
}

By calling the Graphics.ScaleTransform method, we can specify x-coordinate and

y-coordinate scaling factors. In this case, the x scaling is equal to the quotient of the

image width divided by the scale. Since we don’t want to scale on the y axis, we

simply set the y scaling factor to 1.

Now we’re ready to draw the bars:

BarGraphHandler.ashx.cs (excerpt)

int y = padding;
foreach(int dataPoint in dataPoints)
{
 Brush brush = new SolidBrush(Color.Blue);
 g.FillRectangle(brush, 0, y, dataPoint, barHeight);
 y = y + barHeight + padding;
}

With GDI+, we use a Pen or a Brush to draw. A Pen is typically used to draw outlined

shapes, whereas a Brush is used to draw filled shapes.

To have a little more fun, let’s tweak the code that draws each bar so that it produces

a slight drop-shadow effect. To do this, we’ll use another Brush to draw a dark

rectangle slightly offset from the bar. Let’s go ahead and encapsulate this code in a

method:

Rendering Binary Content 373

BarGraphHandler.ashx.cs (excerpt)

private static void DrawBars(int barHeight, int[] dataPoints,
Graphics g, int padding)

{
 int y = padding;foreach(int dataPoint in dataPoints)
 {
 Brush brush = new SolidBrush(Color.Blue);
 Brush shadow = new SolidBrush(Color.Black);
 g.FillRectangle(shadow, 0, y + 1, dataPoint + 2, barHeight);
 g.FillRectangle(brush, 0, y, dataPoint, barHeight);
 y = y + barHeight + padding;

 }
}

The result of our work is shown in Figure 12.7.

Figure 12.7. The second iteration of our bar graph

Pretty nifty, eh? Here’s the full listing for the ProcessRequest method of the handler,

not including the helper methods we just wrote:

374 The ASP.NET 2.0 Anthology

BarGraphHandler.ashx.cs (excerpt)

public void ProcessRequest(HttpContext context)
{
 int width = GetSizeFromQueryString(context, "width");
 int scale = GetSizeFromQueryString(context, "scale");
 int[] dataPoints = GetDataPoints(context);

 // These values hard-coded for now.
 int barHeight = 20; // height of an individual bar.
 int padding = 4; // Padding between bars.
 scale = AdjustScaleToLargestDatapoint(dataPoints, scale);

 // Get the height.
 int height = (barHeight + padding) * dataPoints.Length

+ padding;

 // Create the bitmap using the scale, later
 // we'll scale it down to the requested width.
 using (Bitmap graph = new Bitmap(width, height))
 using (Graphics g = Graphics.FromImage(graph))
 {
 g.Clear(Color.White);

 // Draw a border.
 g.DrawRectangle(new Pen(Color.Black), 0, 0, graph.Width - 1,

 graph.Height - 1);
 ScaleGraphToImageWidth(scale, graph, g);
 DrawBars(barHeight, dataPoints, g, padding);
 context.Response.ContentType = "image/gif";
 graph.Save(context.Response.OutputStream, ImageFormat.Gif);

 }
}

How can I improve the quality of my
dynamic images?
As exciting as it is to see dynamically created images display in your browser for

the first time, you may be disappointed by the quality of those images. Your image

handler won’t be complete until you spend some time with image rendering formats

and image quality.

Rendering Binary Content 375

Solution
There are two parts to this solution: picking the right image format, and using the

appropriate rendering settings to optimize the image quality.

The PNG (Portable Network Graphic) format is usually the best for general-purpose

web images, and its default settings will provide you with a good quality output at

a reasonable file size. There’s one gotcha in the process of rendering PNGs to the

response stream, though: the PNG renderer requires a seekable stream (one that is

not forward-only).

Unfortunately, Response.OutputStream is not seekable, so one has to employ a

seekable MemoryStream to bridge the gap. Allow me to explain with an example.

Most image formats can be saved directly to the output stream, like this:

Response.ContentType = "image/jpeg";

image.Save(Response.OutputStream, ImageFormat.Jpeg);

However, when you render a PNG, you need to copy it to a memory stream, and

output that to the browser:

ProtectedImageHandler.ashx (excerpt)

using (Bitmap bitmapCopy = new Bitmap(image))
{
 System.IO.MemoryStream memoryStream =

new System.IO.MemoryStream();
 Response.ContentType = "image/png";
bitmapCopy.Save(

 memoryStream,
System.Drawing.Imaging.ImageFormat.Png

);
 memoryStream.WriteTo(Response.OutputStream);
}
Response.End();

JPEG is generally a good format for photographs, but the default JPEG encoder settings

might not give you sufficient image quality. You can change the quality of the image

by modifying the encoder parameters like this:

376 The ASP.NET 2.0 Anthology

ProtectedImageHandler.ashx (excerpt)

ImageCodecInfo[] codecs = ImageCodecInfo.GetImageEncoders();
ImageCodecInfo jpegFormat = Array.Find(codecs,

delegate(ImageCodecInfo ic)
{return ic.MimeType == "image/jpeg";});

EncoderParameters ep = new EncoderParameters();
ep.Param[0] = new EncoderParameter(

 System.Drawing.Imaging.Encoder.Quality,90L);
Response.ContentType = "image/jpeg";
image.Save(Response.OutputStream,jpegFormat,ep);

GIF is the most difficult of the major image formats to get right. Unless you have

some very good reasons to use GIF, I’d recommend using PNG format instead. There

are only a few reasons why you might use GIF instead of PNG:

■	 GIF is the only widely supported image format that supports animation.

■	 GIF is the only widely supported image format that supports transparency. While

PNG’s transparency support is better than GIF’s, Internet Explorer 6 doesn’t

support 24-bit PNGs properly without a CSS hack to invoke a DirectX filter.

■	 You may be sending the images as file downloads or interacting in other ways

with systems or users who expect or require GIF images.

Discussion
If you need to support GIF, you’ll need to use a different quantizer to improve the

image quality. GIF image encoding condenses the color spectrum from the original

image to a 256-color (eight-bit) palette, and the process of selecting the color palette

and mapping individuals to the correct palletized color is called quantization. The

default GIF quantizer that ships with System.Drawing isn’t going to help you win

any design awards, though—unless you’re going for a really bad retro look.

Rendering Binary Content 377

What’s Wrong with the Default GIF Encoder?

The main problem with the System.Drawing GIF quantizer is that it uses the

same palette for every image—the standard Windows 256-color palette. That might

have made sense ten years ago, but now that virtually all computers have 16-bit

color as a minimum, it doesn’t make much sense. The end result of using this

quantizer is that more than 99% of viewers with decent video cards see ugly images

as we strive to improve slightly the image quality for a few ancient computers

with eight-bit graphics (whose owners clearly don’t care much about graphic

quality anyway).

Fortunately, a number of freely available quantizers will appear in the results of a

web search for gif system.drawing quantize. Morgan Skinner wrote a great article

for MSDN in May 2003, titled "Optimizing Color Quantization for ASP.NET Images."2

The article shows how to use Octree Quantization to build a custom palette of 256

colors for your image.3

Morgan’s OctreeQuantizer is fairly simple to use. Here’s an example:

Response.ContentType = "image/gif";

OctreeQuantizer quantizer = new OctreeQuantizer (255,8);

using (Bitmap quantizedImage = quantizer.Quantize(image))

{

 quantizedImage.Save (Response.OutputStream ,ImageFormat.Gif);

}

How can I use a handler to control access
to the images on my site?
HTML wasn’t designed to protect your images. An image element’s src attribute

clearly displays the image’s location, and can reference any image on the Internet.

Since images are so exposed online, it’s very easy for others to use our images in

ways we might not have anticipated:

2 http://msdn2.microsoft.com/en-us/library/aa479306.aspx
3 For a short summary of the research, see Brendan Tompkins’s article, which includes some sample

code, at http://codebetter.com/blogs/6103.aspx.

http://msdn2.microsoft.com/en-us/library/aa479306.aspx
http://msdn2.microsoft.com/en-us/library/aa479306.aspx
http://codebetter.com/blogs/6103.aspx

378 The ASP.NET 2.0 Anthology

■	 They can download our images and use them in ways we don’t want to allow

(displaying them on their sites, for instance, defacing them, and so on).

■	 They can show our images on their sites, a practice referred to as hotlinking,

which looks like this:

<body>

 <div>Here is Google's logo:</div>

</body>

Hotlinking causes two problems—in addition to the fact that others are using

our image as if it were theirs, the image thieves are using our bandwidth to serve

the image on their sites! This can be a real problem when your image is hotlinked

from a popular site, as the extra bandwidth required to serve the image can cause

site outages and additional bandwidth fees.

Ultimately, we’d like to allow the legitimate use of our images within our site, but

discourage others from using our images.

Solution
We’ll use an HttpHandler to serve our protected images. The handler will perform

the following tasks:

■	 It will add a watermark to each image.

■	 It will issue with each image a key that expires after a set number of seconds as

a means to discourage hotlinking. Images that are shown within our site will be

issued fresh keys and will display correctly, but the use of those image links

after they’ve been issued will cause the display of downgraded images over

which our site’s URL is written.

■	 Since the above operations will add some overhead to the site, we’ll cache the

processed images.

This discussion will be easier to follow if we look at how the handler will be used

in an ASPX page first. Here’s an example page that will display images using our

protected image handler:

Rendering Binary Content 379

ProtectedImageHandler.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true" %>
<script runat="server">
 void Page_Load(object sender, EventArgs e)
 {
 System.IO.DirectoryInfo dir =

new System.IO.DirectoryInfo(Server.MapPath("images"));
 imageRepeater.DataSource = dir.GetFiles();
 imageRepeater.DataBind();

 }
</script>
<html>
 <head>
 <title>Image Handler Example</title>
 <style type="text/css">
 img {padding: 4px; float: left; clear: both;}

 </style>
 </head>
 <body>
 <asp:Repeater ID="imageRepeater" runat="server">
 <ItemTemplate>
 <img src='<%# "ProtectedImageHandler.ashx?image=images\\'+

 Eval("Name")+ '&key=" + HotlinkProtection.GetKey() %>'
 />

 </ItemTemplate>
 </asp:Repeater>

 </body>
</html>

Not too bad, huh? Here, we’re just data binding a Repeater to a list of files in a

directory, and passing each filename to our ProtectedImageHandler. We’re also

passing a key in the query string, which is supplied by the HotlinkProtection

class.

HotlinkProtection is fairly simple: it issues and validates time-sensitive keys.

This way, we’ll allow images to be requested when our page is requested, not sep

arately. The class exposes two public methods:

GetKey	 GetKey returns a key. Our keys are timestamps that identify the

number of seconds that passed between January 1st, 2005 and the

point at which the key was generated, multiplied by an arbitrary

380 The ASP.NET 2.0 Anthology

value that makes it harder to guess the keys. Note that the level of

security we chose here is commensurate with the value of the content

we’re protecting. If we were protecting the access details for a data

base, we’d choose a stronger level of security.

IsKeyValid	 IsKeyValid validates that the key was issued recently. It takes two

parameters: a key and a timeout. The method converts the key into

a timestamp, then checks whether or not that timestamp occurred

within the range specified by timeoutSeconds. We’re using an abso

lute value difference to prevent guessing; otherwise, our application

could be tricked by a very large key value.

Here’s HotlinkProtection:

HotlinkProtection.cs (excerpt)

public class HotlinkProtection
{
 // Site specific multiplier - might want to keep in Web.config
 private const long multiplier = 298467;
 public static long GetKey()
 {
 int minutes = GetSecondCount();
 return (multiplier * minutes);

 }
 private static int GetSecondCount()
 {
 TimeSpan span = DateTime.Now - new DateTime(2005, 1, 1);
 return (int)span.TotalSeconds;

 }
 public static bool IsKeyValid(long key, int timeoutSeconds)
 {
 try
 {
 int seconds = (int)(key / multiplier);
 int difference = Math.Abs(GetSecondCount() - seconds);
 return (difference < timeoutSeconds);

 }
 catch
 {
 return false;

Rendering Binary Content 381

}

 }

}

The IsKeyValid method makes it really easy for our image handler to check if the

image is hotlinked:

HotlinkProtection.cs (excerpt)

bool hotlinked = true;
long key;
// A key is only good for 30 seconds after it is issued
if (long.TryParse(context.Request.QueryString["key"], out key))
 hotlinked = !HotlinkProtection.IsKeyValid(key, 30);
else
 hotlinked = true;

Figure 12.8 depicts how an image looks when it’s displayed from within our site.

Notice that there’s a discreet watermark in the lower left-hand corner.

Figure 12.8. Applying a watermark to a hotlinked image

That image was referenced with a key that was generated when the HTML page was

rendered. Each time the page is viewed, a new key is issued; it’s valid for 30 seconds

(which should be plenty of time for the browser to download the HTML and start

to request the image).

382 The ASP.NET 2.0 Anthology

Here’s what a valid image request might look like:

http://localhost:2480/ImageHandler/ProtectedImageHandler.ashx?image=images\

➥sampleImage.png&key=19278441079911

Attempting to view the image via the above link (or without a key) will trigger our

hotlink protection mechanism, which paints over the image with a hatched brush,

and writes the domain of our web site over the degraded image. The effects of this

mechanism can be seen in Figure 12.9.

Figure 12.9. The result of loading our image from an external site

Let’s look at the ProcessRequest method to get an idea of the overall flow of the

code; we’ll then dig into the hotlink and watermark methods in more detail:

ProtectedImageHandler.ashx (excerpt)

public void ProcessRequest(HttpContext context)
{
 string imagePath = context.Request.QueryString["image"];
 bool hotlinked = true;long key;

 // A key is only good for 30 seconds after it is issued
 if (long.TryParse(context.Request.QueryString["key"], out key))
 hotlinked = !HotlinkProtection.IsKeyValid(key, 30);

 else
 hotlinked = true;

 // Check if image is cached to avoid extra graphic processing

http://localhost:2480/ImageHandler/ProtectedImageHandler.ashx?image=images\

Rendering Binary Content 383

Image cachedImage =

 context.Cache[GetCacheKey(imagePath,hotlinked)] as Image;

 if (cachedImage != null)

 {

 // We have a valid cached image, so just write it and return

 context.Response.ContentType = "image/jpeg";

 cachedImage.Save(context.Response.OutputStream,

 ImageFormat.Jpeg);

 return;

 }

 Image image = null;

 Graphics graphics = null;

 try

 {

 string watermark ="Copyright " +

GetCopyrightYear(image,DateTime.Now.Year.ToString());

 string sitename = "www.mysite.com";

 image = ConvertFromIndexed(Image.FromFile(

 context.Server.MapPath(imagePath)));

 graphics = Graphics.FromImage(image);

 // Pick an appropriate font size depending on image size

 int fontsize = 16;if (image.Width > 400) fontsize = 24;

 // Set up the font

 graphics.TextRenderingHint = TextRenderingHint.AntiAlias;

 Font font = new Font("Verdana",

fontsize, System.Drawing.FontStyle.Bold,

 System.Drawing.GraphicsUnit.Pixel);

 if (hotlinked)

 {

 WriteHotlinkMessage(context, image, sitename,

graphics, font);

 }

 WriteWatermark(image, watermark, graphics, font);

 // Add image to cache.

// Must clone image since it will be disposed

 context.Cache.Insert(GetCacheKey(imagePath,hotlinked),

 image.Clone());

 // Output as PNG

 using (Bitmap bitmapCopy = new Bitmap(image))

 {

 System.IO.MemoryStream memoryStream =

384 The ASP.NET 2.0 Anthology

new System.IO.MemoryStream();

 context.Response.ContentType = "image/png";

 bitmapCopy.Save(

 memoryStream,System.Drawing.Imaging.ImageFormat.Png);

 memoryStream.WriteTo(context.Response.OutputStream);

 }

 context.Response.End();

 }

 finally

 {

 if(graphics!=null)

 graphics.Dispose();

 if(image!=null)

 image.Dispose();

 }

}

Let’s look at the general graphics handling, as implemented above. It’s important

to dispose of our graphics objects, since they use system resources. That’s always

important, but it’s especially important in server code:

Image image = null;

try

{

 image = Image.FromFile(imagePath);

 // WORK WITH IMAGE

}

finally

{

 image.Dispose();

}

Here’s what’s happening in the code:

■ Declare the GDI object.

■ Wrap the code that creates and uses the object in a try block.

■ Dispose of the object in a finally block.

We’re using the same pattern for both the Graphics and Image objects:

Rendering Binary Content 385

Image image = null;

try

{

 image = GetImage();

 // WORK WITH IMAGE

}

finally

{

 if(image != null)

 image.Dispose();

}

Making Use of using

C# offers a shorthand syntax for the above pattern—the using block. using is a

construct provided by the compiler; it expands from using to the try/finally

pattern we saw in the previous example. Even cooler is that you can stack up

using blocks, and the compiler will make sure that it disposes of each of the ob

jects in the proper order:

using (Image image = Image.FromFile(imagePath))
using (Graphics g = Graphics.FromImage(image))
{
 // WORK WITH GDI OBJECTS
}

I highly recommend the using syntax—it’s clean, and it’s foolproof since we can

rely on the compiler to dispose of the right object at the right time. Why on earth

didn’t I use that syntax in the example, then? Well, I wanted to pass the Image

and Graphics objects by reference to a function that could modify them, and

that’s not allowed within a using block.

Let’s look at the watermark generation code:

ProtectedImageHandler.ashx (excerpt)

private static void WriteWatermark(Image image, string watermark,
 Graphics g, Font font)

{
 // Determine size of watermark to write background
 SizeF watermarkSize = g.MeasureString(watermark, font);
 int xPosition = 5;

386 The ASP.NET 2.0 Anthology

int yPosition = image.Height - (int)watermarkSize.Height - 10;

 // Draw a translucent (alpha = 100) background for watermark

 g.FillRectangle(

 new SolidBrush(

 Color.FromArgb(100, Color.GhostWhite)

),

 new Rectangle(

 xPosition, yPosition,

 (int)watermarkSize.Width,

 (int)watermarkSize.Height

)

);

 // Write watermark

 g.DrawString(

 watermark,

 font,

 new SolidBrush(Color.Blue),

 xPosition,

 yPosition

);

}

Here, we’re using the same GDI+ features we used in the section called “How do I

create a real bar graph handler?”. But this time, we’ve added some simple text op

erations, which are handled by MeasureString and DrawString. Both of these op

erations require a Font object; we’ll use the one we created in ProcessRequest:

ProtectedImageHandler.ashx (excerpt)

Font font = new Font("Verdana", 16,
 System.Drawing.FontStyle.Bold,
 System.Drawing.GraphicsUnit.Pixel);

This code is fairly straightforward. The first parameter is the font; it could be

Verdana, Tahoma, Arial—whichever font you like. The font size is a Float value,

which is used in conjunction with the GraphicsUnit. In this case, we’re specifying

the font size as 16 pixels. Any guesses what FontStyle.Bold does?

Let’s use a TextRenderingHint to make the text smoother:

Rendering Binary Content 387

ProtectedImageHandler.ashx (excerpt)

g.TextRenderingHint = TextRenderingHint.AntiAlias;

Before we draw the text onto our image, we’ll want to know how big the text will

be. We need those dimensions for the watermark because we’re going to put the

text on top of a light-colored rectangular background; we’ll also be using the rect

angle’s dimensions to center the hotlink message later. One other reason you might

measure the text is to ascertain whether or not it’s going to fit in the area you’ve got

available; if it won’t fit, you might shrink the font or decide to write a shorter text

string.

MeasureString takes a string of text and a Font object:

ProtectedImageHandler.ashx (excerpt)

SizeF textSize = g.MeasureString(textToWrite, font);

The return value is a SizeF struct, which is a simple container for two Floats,

Height and Width.

We want our watermark to be readable (but not obnoxious) over any image, be it

light, dark, or in-between. In order to achieve that, we’re drawing with a kind of

dark brush (blue) on top of a light-colored translucent background. We’ll make the

light-colored background translucent by setting the alpha index to 100. The alpha

index ranges from 0 (not visible at all) to 255 (fully opaque). A light background

with an alpha index of 100 is sufficient to make sure that our blue text is readable

on top of a black image:

ProtectedImageHandler.ashx (excerpt)

g.FillRectangle(
 new SolidBrush(Color.FromArgb(100, Color.GhostWhite)),
 new Rectangle(xPosition,
yPosition,
(int)watermarkSize.Width,
(int)watermarkSize.Height)

);

388 The ASP.NET 2.0 Anthology

Hotlinked images are overlaid with a hatched foreground which leaves the image

viewable but ugly. The desired effect is to embarrass the hotlinker into removing

the image from the site and, before it’s removed, to direct viewers to our site to see

the original. Here’s how the WriteHotlinkMessage method works:

ProtectedImageHandler.ashx (excerpt)

private static void WriteHotlinkMessage(
 HttpContext context, Image image, string sitename,
Graphics g, Font font)

{
 // If hotlinked, draw hatched overlay
 g.FillRectangle(
 new HatchBrush(HatchStyle.LargeConfetti,

 Color.FromArgb(90, Color.Blue)
),
 new Rectangle(0, 0, image.Width,

 image.Height)
);

 // Write our site name in the center of the image
 SizeF siteSize = g.MeasureString(sitename, font);
 g.DrawString(sitename, font,

 new SolidBrush(Color.White),
 (image.Width - siteSize.Width) / 2,
 (image.Height - siteSize.Height) / 2);

 context.Response.Cache.SetCacheability(
 HttpCacheability.Public);

}

We’re drawing the foreground using FillRectangle with a HatchedBrush. The

HatchedBrush constructor takes a HatchStyle and a color, and FillRectangle is

defined as the entire image size:

ProtectedImageHandler.ashx (excerpt)

g.FillRectangle(
 new HatchBrush(
 HatchStyle.LargeConfetti,
Color.FromArgb(90, Color.Blue)

),
 new Rectangle(0, 0, image.Width, image.Height)
);

Rendering Binary Content 389

Our hotlink label is centered on the image. To achieve this, we measure the string,

then subtract half the height and half the width from the center point of the image:

ProtectedImageHandler.ashx (excerpt)

SizeF siteSize = g.MeasureString(sitename, font);
g.DrawString(sitename, font,

 new SolidBrush(Color.White),
 (image.Width-siteSize.Width)/2,
 (image.Height-siteSize.Height)/2);

The Image object has the capability to expose metadata stored in the source image

file. Though metadata may or may not be present in any JPEG image, it’s most

commonly available in images from a digital camera, and contains additional in

formation that describes those images. Within the digital photography world, this

kind of information is referred to as EXIF data. Some examples of common EXIF

properties include the date the image was generated, the camera’s make, and the

shutter speed.

The Image object exposes metadata via the GetPropertyItem method. This method

is as user friendly as a malnourished pit-bull. You have to pass in an integer identi

fier to the property you want; for example, the identifier for the date on which the

image was created is 36867. An enum for these values would be much easier to work

with, so we’ve provided one with this code.

EXIF Specifications

If you’d like to know more about specific EXIF fields (or you’re having trouble

falling asleep and would like some help), you can read the specifications online.4

We’ve included some very basic EXIF handling code to get you started if you want

to read images’ metadata properties. If you call Image.GetPropertyItem with the

correct integer index, and the image doesn’t have that property, the code will return

null; if the property does exist, the code will return a PropertyItem. The

PropertyItem’s Value is a byte array, so you’ll need to convert it to the correct data

type in order to work with it. We’re working with all our data as strings, so we’ll

use the System.UFT8.Encoding.GetString method to convert the byte array:

4 http://exif.org/specifications.html

http://exif.org/specifications.html
http://exif.org/specifications.html

390 The ASP.NET 2.0 Anthology

ProtectedImageHandler.ashx (excerpt)

private bool GetExifString(
 Image image, ExifValues exifProperty, out string value)
{
 value = null;
 try
 {
 PropertyItem propertyItem =

image.GetPropertyItem((int)exifProperty);
 if (propertyItem != null)
 {
 value = Encoding.UTF8.GetString(propertyItem.Value).Trim()

 as string;
 }

 }
 catch { }
 return !string.IsNullOrEmpty(value);
}

Summary
In this chapter we’ve seen how you can create more than just text/html content

with ASP.NET code. It takes some work, but once you’ve learned the core concepts

we’ve discussed in these pages, you’ll be able to have your web site serve up a lot

more than just text. Have fun, and remember to use your new-found powers for

good!

Chapter13
Handling Errors
Sometimes it’s hard to tell a professional programmer and an amateur programmer

apart—both make mistakes in equal measure. However, there is a difference: profes

sional programmers know when they’ve made a mistake; amateurs rarely do.

One of the first things a professional programmer does when setting up a new web

project is to establish a strategy for receiving notifications of mistakes—some

method of automatically handing the inevitable error messages that users will en

counter as they using the web site.

It’s not the user’s job to tell you about problems with your web site—as a responsible

software developer, you should know about problems with your web site before

your users do!

How can I handle exceptions in my code?
Very few developers get exception handling right the first time. It’s all too common

to find code like this:

392 The ASP.NET 2.0 Anthology

try

{

 // do something that may cause an error

}

catch (Exception ex)

{

 // handle any exception here

}

This is rarely the correct strategy. There are some circumstances in which you may

need to catch every exception, but you should avoid doing so whenever possible.

Solution
Here are some guidelines that I’ve found useful when dealing with exceptions in

my own code:

The golden rule of exception handling: unless you have a good reason to catch an

exception, don’t!

It’s okay to catch exceptions in exceptional conditions. Exceptions are supposed

to be exceptional, as the dictionary definition for the word (uncommon, unusual)

indicates. When in doubt, let the calling routine—or the global exception

handler—deal with the problem. The exceptions that are the most difficult to

troubleshoot are those that don’t exist, because a developer upstream from you

decided it was a good idea to consume the exception, leaving you with nothing

but a broken application and no visible symptoms. Once you’ve had to

troubleshoot one of these monsters, you’ll vow to never catch exceptions blindly

again. So, always remember: when in doubt, do not catch any exceptions.

Catch the exception if you can correct the problem that it implies.

For example, if you try to write to a file that’s marked as read-only, try removing

the read-only flag from the file. In this case, you’d handle the exception and fix

the problem, so you should eat the exception. It doesn’t exist, because you fixed

it.

Catch the exception if you can provide additional information to the user.

For example, if your application fails to connect via HTTP to a remote web site,

you could provide details about why the connection failed. Was the DNS invalid?

Did it time out? Was the connection closed? Did the site return 401 Unauthor

Handling Errors 393

ized, which implies that credentials are needed? In these cases you want to

catch the exception, and re-throw it as an inner exception with more information.

This is a very good reason to catch an exception, but note that we are still re-

throwing it.

Catch specific exceptions, but let the rest pass through.

Avoid catching System.Exceptionwhenever possible; try to catch only the errors

that are specific to a given block of code, and let the truly unusual rest become

unhandled exceptions.

Of course, there will be times when you’ll want to bend these rules for completely

legitimate reasons—but at least consider the rules before you break them!

Also, if you need to re-throw an exception, be careful how you do it. Always re-

throw the exception using the throw keyword with no parameters, like so:

try

{

 command.Execute();

 TransactionManager.Commit();

}

catch(Exception exception)

{

 TransactionManager.Rollback();

 throw;

}

Remember that the stack trace is created at the time you throw the exception, so

using the throw keyword on its own like this (rather than using throw exception)

preserves the stack trace of the original exception.

How can I handle errors in my web site?
This is one of the first questions you should think about when you set out to develop

a web application. ASP.NET doesn’t provide you with a global exception handling

strategy out of the box. Fortunately, it does provide several different approaches for

handling global exceptions in code. Each approach comes with its own advantages

and disadvantages.

394 The ASP.NET 2.0 Anthology

Solutions
The three options you can use to handle exceptions are:

■ using the built-in health monitoring support

■ setting exception handling settings in a global.asax and in the Web.config file

■ using the HttpModule class

Let’s look at each in turn.

Handling Exceptions Via Health Monitoring
One of the easiest ways to implement a global exception handler is to use the built-

in ASP.NET health monitoring support.

Check the Event Log

In the absence of any other unhandled exception strategy, ASP.NET 2.0 does in

fact log unhandled exceptions to the event log. It’s not my favorite place to dig

around for errors, but it’s better than nothing.

To enable automatic email notifications of unhandled exceptions via health monit

oring, simply add this section to your Web.config file:

Web.config (excerpt)

<healthMonitoring enabled="true">
 <providers>
 <add name="MailProvider"

 type="System.Web.Management.SimpleMailWebEventProvider"
 from="webserver@example.com"
 to="you@example.com"
 subjectPrefix="Unhandled Exception: "
 bufferMode="Critical Notification"

 />
 </providers>
 <rules>
 <remove name="All Errors Default"/>
 <remove name="Failure Audits Default"/>
 <add name="All Errors Default"

eventName="All Errors"
provider="MailProvider"

Handling Errors 395

/>

 </rules>

</healthMonitoring>

For this code to work, you’ll also need to set up System.Net.Mail SMTP email

support in your Web.config. Here’s a representative section that enables the most

basic SMTP settings for a server named localhost:

Web.config (excerpt)

<system.net>
 <mailSettings>
 <smtp>
 <network host="localhost" />

 </smtp>
 </mailSettings>
</system.net>

And that’s it! Now every unhandled exception will automatically generate an email

that’s sent to you. The email, shown in Figure 13.1, is not a paragon of great

formatting, but it gets the job done.

Of course, ASP.NET doesn’t limit you to using email notifications—you can use

any of the built-in health monitoring event providers to direct your exception in

formation to one or more of the following providers:

■	 EventLogWebEventProvider: This class writes events to the window’s event log

for posterity. Writing exceptions to this class is enabled by default.

■	 SqlWebEventProvider: This class writes events to your application’s database.

■	 WmiWebEventProvider: This class publishes events to the Windows Management

Instrumentation. Other applications can consume these WMI events in order to

alert system administrators that an exception has occurred.

■	 SimpleMailWebEventProvider: This class sends an email (for example, to a

system administrator) in response to application health events.

396 The ASP.NET 2.0 Anthology

■	 TraceWebEventProvider: This class publishes events to the

System.Diagnostics.Trace object. This data can then be collected by a

TraceListener for debugging purposes.

Conspicuously absent from that list is any sort of disk or file destination. You could

write your own provider, but that defeats the no-code advantage of the health

monitoring solution. Luckily, armed with the providers in the above list, we have

several good alternatives to writing to a file. The official MSDN documentation for

contains more information about these and other related classes.1

Figure 13.1. A notification email containing a list of unhandled exceptions

1 http://msdn2.microsoft.com/en-us/library/system.web.management.aspx

http://msdn2.microsoft.com/en-us/library/system.web.management.aspx
http://msdn2.microsoft.com/en-us/library/system.web.management.aspx

Handling Errors 397

Specifying Exception Handling in the global.asax and Web.config
Files
The conventional way that you should implement a global exception handler is

through global.asax and Web.config.

If your project doesn’t contain a global.asax file, add one by accessing the Add New

Item menu and selecting Global Application Class. Then locate the Application_Error

method in this file and modify it to capture the error:

void Application_Error(object sender, EventArgs e)

{

 Exception ex =

 HttpContext.Current.Server.GetLastError();

 if (ex != null)

 {

 ErrorHandler.HandleException(ex);

 }

}

Next, create a new static class called ErrorHandler and add to it a new method

called HandleException that deals with the exception:

public static class ErrorHandler

{

public static void HandleException(Exception ex)

 {

 if (ex == null)

 return;

 Exception exceptionLayer = null;

 if (ex is HttpUnhandledException)

 {

 if (ex.InnerException != null)

 exceptionLayer = ex.InnerException;

 }

 else

 {

 exceptionLayer = ex;

 }

 StringBuilder sb = new StringBuilder();

 while (exceptionLayer != null)

 {

 sb.AppendLine(ex.ToString());

398 The ASP.NET 2.0 Anthology

sb.AppendLine("------------------------");

 exceptionLayer = exceptionLayer.InnerException;

 }

 Log(sb.ToString());

 }

}

The code is relatively straightforward. We make a point of discarding the outer

HttpUnhandledException—it’s a standard wrapper that comes with every ASP.NET

exception. We have to peel that layer away to get to the InnerException (and its

InnerException, and so on) that contains the real error.

Notice that, at this point in the code, I haven’t populated the generic Log method,

so the exception isn’t being passed anywhere just yet. You could easily write your

own Log method to send the exception via email, log it to a file, and so forth. But

rather than write a whole lot of extra code, you might want to save some time by

handing the exception off to the open source Log4net logging framework, which

we’ll cover in the section called “What’s the best way to write a log file?” later in

this chapter.

So we’ve satisfied our professional obligations as programmers, but what about

those poor old users? It’s bad form to let them see the Yellow Screen of Death shown

in Figure 13.2.

If we’re going to the trouble of implementing a global exception handling strategy

behind the scenes, we might as well go the final mile and implement a friendlier

user interface for users who are unlucky enough to encounter an exception.

Handling Errors 399

Figure 13.2. The Yellow Screen of Death—an ugly exception presented to the user

Implementing a custom error page is as simple as editing Web.config and adding a

customErrors element within the system.web section that points to your custom

file:

Web.config (excerpt)

<system.web>
 <customErrors mode="On" defaultRedirect="~/Error.aspx">
 </customErrors>
⋮

</system.web>

With this change, we’ve given the Yellow Screen of Death a friendlier face, as Fig

ure 13.3 illustrates.

400 The ASP.NET 2.0 Anthology

Figure 13.3. A more user-friendly error screen for users

As you can see, in this case, doing the right thing by users is very easy. They’re

already disappointed because your web site has crashed—don’t make matters worse

by scaring them with the awful default ASP.NET error page.

Handling Errors Via HttpModule
There’s nothing wrong with the methods we’ve discussed so far, but by far the most

flexible way to implement global exception handling is to use the HttpModule class.

First, let’s create a class library project containing a new HttpModule:

public class ExceptionHandlingModule : IHttpModule

{

 public void Init(System.Web.HttpApplication app)

 {

 app.Error += new EventHandler(OnError);

 }

 private void OnError(object sender, EventArgs e)

 {

 HttpApplication app = (HttpApplication)sender;

 ErrorHandler.HandleException(app.Server.GetLastError());

 }

 public void Dispose()

 {

 // Nothing to Dispose() }

}

Handling Errors 401

Clean Up After Yourself!

It’s not relevant in this example, but it’s worth mentioning: if you’re planning to

present a custom interface to the user via code that utilizes the Response.Write

method or something similar, you must clear the existing error before continuing.

The following line of code will take care of that:

app.Server.ClearError();

Compile that class library, and add a reference to it from your web project or web

site. Then edit Web.config as follows to reference our brand new HttpModule:

<httpModules>

 <add type="ExceptionHandlingModule,

ExceptionLibrary"

name="ErrorHandler" />

</httpModules>

The big advantage of this approach is that it doesn’t require you to make any code

changes in the web site that uses it.

The compiled HttpModule, along with the error handling logic, can be delivered in

a single DLL file. Simply add that file to the web site path, then modify Web.config,

and you have a perfectly portable and reusable global exception handling strategy

to use across all of your web sites.

How can I use a pre-built exception
handling strategy?
The exception handling strategies we explored earlier all require some coding on

our part to deliver a complete solution. Luckily, there’s a pre-built global exception

handler that we can employ to avoid doing all that extra work—it even uses the

flexible HttpModule model.

402 The ASP.NET 2.0 Anthology

Solution
For a robust, global exception handling strategy that you can easily plug into a web

site, look no further than the ELMAH (Error Logging Modules And Handlers) solu

tion.2

Add a reference to the ELMAH binary in your web site or web application project.

To enable ELMAH, edit your Web.config file and add a custom configuration section

that instructs ELMAH on how we want it to handle errors, like so:

Web.config (excerpt)

<configSections>
 <sectionGroup name="elmah">
 <section name="errorLog"

type="System.Configuration.SingleTagSectionHandler"/>
 <section name="errorMail"

type="System.Configuration.SingleTagSectionHandler"/>
 </sectionGroup>
</configSections>
<elmah>
 <errorLog type="CodePlex.Elmah.MemoryErrorLog, CodePlex.Elmah"

connectionStringName="ErrorDB"/>
 <errorMail from="webserver@domain.com"

to="me@domain.com" subject="Application Error" async="true"/>
</elmah>

ELMAH supports a number of logging configurations, including the use of a SQL

Server database, a MySQL database, and an XML file, but for this example we’re

going to use the in-memory database. We’ll also want an email to be sent asynchron

ously when an error occurs.

Since we’re sending mail, we’ll need to add the SMTP configuration block for Sys

tem.Net.Mail to our Web.config file, like so:

Web.config (excerpt)

<system.net>
 <mailSettings>
 <smtp>

2 http://code.google.com/p/elmah/

http://code.google.com/p/elmah/
http://code.google.com/p/elmah/
http://code.google.com/p/elmah/

Handling Errors 403

<network host="localhost"/>

 </smtp>

 </mailSettings>

</system.net>

Finally, we need to configure the ELMAH httpModules and httpHandlers. Add

these to the system.web section, as I’ve done here:

Web.config (excerpt)

<httpModules>
 <add name="ErrorLog"

type="CodePlex.Elmah.ErrorLogModule, CodePlex.Elmah" />
 <add name="ErrorMail"

type="CodePlex.Elmah.ErrorMailModule, CodePlex.Elmah" />
</httpModules>
<httpHandlers>
 <add verb="POST,GET,HEAD" path="elmah/default.aspx"

 type="CodePlex.Elmah.ErrorLogPageFactory, CodePlex.Elmah" />
</httpHandlers>

Once this code is in place, fire up your web site and trigger an exception. I often

find it useful to include a hidden method for generating an exception on any de

ployed web site, so I can periodically check and make sure the global exception

handling is working properly.

Although ELMAH doesn’t provide an interface for the unfortunate user who’s ex

periencing the exception, it does provide an excellent web interface for developers

to view exceptions. Simply browse to http://localhost:nnnnn/elmah/default.aspx

(where localhost and nnnnn are replaced by your server and port number, respect

ively). From here you can browse through all the exceptions that have occurred in

your web application, as shown in Figure 13.4.

http://localhost:nnnnn/elmah/default.aspx

404 The ASP.NET 2.0 Anthology

Figure 13.4. The ELMAH exception log

The interface lets you view details for each individual error. You can also subscribe

to the RSS feed for this page, so that you can monitor your site’s errors in the RSS

feed reader of your choice.

Since we opted to use the in-memory logger, rather than a more permanent one, we

can only view exceptions that have occurred since our application was last started.

But this is usually enough for troubleshooting purposes, as we always have the ex

ception email to fall back on.

What’s the best way to write a log file?
One of the most popular solutions for logging debug information and exceptions is

the log4net framework.3 This open source logging framework is part of the popular

log4j Java logging framework, yet, despite its popularity, many developers still

struggle to get log4net to work properly within the context of an ASP.NET web site.

In this solution, I’ll step you through the task of setting up the log4net framework.

We’ll use the best-practice technique of creating a separate configuration file, rather

than dumping the log4net settings into Web.config.

At the time of writing, the latest release of log4net was version 1.2.10; I’ll focus on

that version here.

3 http://logging.apache.org/log4net/downloads. html

http://logging.apache.org/log4net/downloads. html
http://logging.apache.org/log4net/downloads

Handling Errors 405

Solution
First, add the log4net.dll reference to your web application or web site project.

With this file in place, we need to set up a log4net configuration file. While it would

be possible to specify the log4net settings in Web.config, this is not the most desirable

place to locate these settings. Any update to Web.config causes the AppDomain to

recycle, which causes a performance hit as the sessions are dropped, cache is cleared,

and pages are recompiled. So even a small change to a log4net setting would effect

ively restart the entire web site.

However, if we put our settings in a separate log4net configuration file, log4net will

attach a FileSystemWatcher to that file and reload the logging settings any time

that file changes, without reloading the AppDomain.

While this is a matter of preference, I like to put my log4net settings in a file named

log4net.config, like so:

log4net.config

<?xml version="1.0" encoding="utf-8" ?>
<log4net>
 <appender name="RollingLogFileAppender"

 type="log4net.Appender.RollingFileAppender">
 <file value="..\\Logs\\CurrentLog" />
 <appendToFile value="true" />
 <datePattern value="yyyyMMdd" />
 <rollingStyle value="Date" />
 <filter type="log4net.Filter.LevelRangeFilter">
 <acceptOnMatch value="true" />
 <levelMin value="INFO" />
 <levelMax value="FATAL" />

 </filter>
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern

value="%-5p %d %5rms %-22.22c{1} %-18.18M –%m%n" />
 </layout>

 </appender>
 <root>
 <level value="DEBUG" />
 <appender-ref ref="RollingLogFileAppender" />

 </root>
</log4net>

406 The ASP.NET 2.0 Anthology

This sets up a RollingLogFileAppender to receive logging messages. As you might

have guessed by the name, the RollingLogFileAppender logs messages to a file,

rolling over to a new file every day, week or month, depending on your settings.

For a more in-depth understanding of these settings, refer to the configuration section

of the log4net manual.4

Now we need to tell log4net where its configuration file is located. We can do this

in two ways. For Web Application projects, you can use an XmlConfigurator attrib

ute within AssemblyInfo.cs:

AssemblyInfo.cs (excerpt)

[assembly: log4net.Config.XmlConfigurator(ConfigFile =
"Log4net.config", Watch = true)]

This code will look for a file named log4net.config within the web root.

This approach is fine for web application projects, but we can’t use it for web site

projects, as the code for a Web Site project isn’t compiled into a single assembly by

default. In Web Site projects, we can add a Global.asax file and add the following

code to the Application_Start method:

Global.asax (excerpt)

void Application_Start(object sender, EventArgs e)
{
 log4net.Config.XmlConfigurator.Configure(

 new System.IO.FileInfo(Server.MapPath("Log4net.config")));
}

Now we’re ready to start logging. To use log4net, we simply create an instance of a

logger and call its various logging methods. The most common practice is to create

a static instance of the logger at the top of every class that requires logging, as I’ve

done below:

4 http://logging.apache.org/log4net/release/manual/configuration.html

http://logging.apache.org/log4net/release/manual/configuration.html
http://logging.apache.org/log4net/release/manual/configuration.html
http://logging.apache.org/log4net/release/manual/configuration.html

Handling Errors 407

Log4Net.aspx.cs (excerpt)

public partial class _Default : System.Web.UI.Page
{
 private static readonly ILog Log =
LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);

⋮
}

Notice that we can pass any string to the GetLogger method, but by passing in

MethodBase.GetCurrentMethod().DeclaringType, the logger will be initialized

with the declaring type, which gives our log messages additional context.

Now we can start logging messages to our heart’s content:

Log4Net.aspx.cs (excerpt)

Log.Debug("Debug Message, only for debbuging.");
Log.Info("Informational message.");
Log.Warn("Warning Will Robinson!");
try
{
 // Some potientially exceptional operation
}
catch (Exception e)
{
 Log.Error("An unexpected exception occurred.", e);
}

How do I debug log4net?
Sometimes it feels like you’ve followed every instruction for configuring log4net

to the letter, but it stubbornly refuses to log a message. What do you do then?

Solution
In order to log internal debug messages from log4net, we’ll need to take advantage

of ASP.NET’s internal tracing mechanism. But first, we need to enable internal de

bugging for log4net. Add the following line to the AppSettings section in

Web.config:

408 The ASP.NET 2.0 Anthology

Web.config (excerpt)

<configuration>
 <appSettings>

<add key="Log4Net.Internal.Debug” value="true" />
 </appSettings>
</configuration>

Enabling Internal Debugging in your Code

You can also enable internal debugging programmatically by setting the static

log4net.Util.LogLog.InternalDebugging property to true. There are two

drawbacks to this approach, though:

1. Since it’s a code change, turning internal debugging off again will require the

recompilation of your project.

2. Any internal debug messages created before this line of code is reached will

not be logged.

If you decide to enable internal debugging from your application code, keep these

points in mind.

The next step is to ask a trace listener to listen for these messages, and log them to

a file, like so:

<system.diagnostics>

 <trace autoflush="true">

 <listeners>

 <add name="Log4NetTraceListener"

 type="System.Diagnostics.TextWriterTraceListener"

 initializeData="C:\log4net.txt" />

 </listeners>

 </trace>

</system.diagnostics>

This approach will create a file named log4net.txt that contains your trace messages.

Handling Errors 409

How do I perform tracing?

Before Visual Studio was released, the standard approach for debugging an ASP.NET

application was to use Response.Write statements to display troubleshooting in

formation to the screen—a technique known as tracing. ASP.NET has a built-in

tracing facility, but unfortunately it’s severely limited when logging from ASP.NET

pages. This renders it unsuitable for proper logging duties, as I’ll explain later.

With the arrival of Visual Studio’s built-in debugger, tracing has been somewhat

superseded. However it can still be a useful technique if you’re troubleshooting an

application—even if it’s no replacement for a remote debugger and the log4net

framework.

Solution
To enable tracing, add this line to Web.config:

Web.config (excerpt)

<system.web>
 <trace enabled="true">
</system.web>

Once you’ve enabled tracing, the trace.axd handler will be available on the local

host machine. Navigating to http://localhost:nnnnn/trace.axd will, by default, show

the last ten requests for your application, as Figure 13.5 indicates.

http://localhost:nnnnn/trace.axd

410 The ASP.NET 2.0 Anthology

Figure 13.5. The last ten requests, as displayed by ASP.NET’s built-in tracing log

Drilling down through each request reveals an option to view page-level tracing.

On the page for which trace output is shown in Figure 13.6, I inserted the following

code into the Page_Load event:

Trace.Write("Hello, World!");

throw new Exception("This is a demo exception.");

As Figure 13.6 shows, both calls to Trace.Write and unhandled exceptions are

automatically logged in the per-request trace handler.

Exceptions Disappearing Without a Trace

Be careful when you’re using the Trace.Write overloaded method that allows

for the passing in of an exception—the exception is not actually written to the log

by default, so it will appear to be swallowed up unless you tweak your trace logs

to display it explicitly.

Handling Errors 411

Figure 13.6. A log of all trace statements and unhandled exceptions

What you see in Figure 13.6 is a bona fide unhandled exception, not the result of

a call to Trace.Write. The Trace.Write method allows you to group your trace

messages by category:

Trace.Write(String message);

Trace.Write(String category, String message);

Trace.Write(String category, String message, Exception errorInfo);

If you’d like to see the trace output somewhere other than the trace.axd handler,

you can choose from the five built-in TraceListeners in the System.Diagnostics

namespace:

412 The ASP.NET 2.0 Anthology

1. DefaultTraceListener

2. TextWriterTraceListener

3. EventLogTraceListener

4. DelimitedListTraceListener

5. XmlWriterTraceListener

To enable these outputs, you’ll need to wire up a TraceListener. Here, I’m redir

ecting the trace output to a file named log.txt in the root of the current web site:

Web.config (excerpt)

<system.diagnostics>
 <trace autoflush="true">
 <listeners>
 <add name="log"

 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="log.txt" />

 </listeners>
 </trace>
</system.diagnostics>

Be careful, however, because both the Page and System.Diagnostics classes include

a Trace object. If you’re calling methods like Trace.Write from within an ASP.NET

page, you won’t see any output at all until you add the Boolean attribute shown in

bold below to the trace element:

Web.config (excerpt)

<system.web>
 <trace enabled="true" writeToDiagnosticsTrace="true"/>
</system.web>

Once you have this attribute in place, make some Trace.Write calls—you should

find that your trace output is being written to the log file. Unfortunately, that file

also includes all the other diagnostic tracing messages from the Page, which severely

limits its usefulness. If you intend to use Trace.Write to build a log, you should

call it from a Class Library project to avoid this limitation.

Handling Errors 413

Summary
Only amateur programmers would build an ASP.NET web application without an

exception handling strategy. With the advice we’ve provided here, hopefully you,

too, can ascend to the hallowed ranks of professional programmers. You’ll continue

to make mistakes, of course. But you’ll know about, and be able to act on, those

mistakes—before your users give up and move on to greener pastures.

Chapter14
Configuration
It’s true that .NET application deployment is a lot like tailoring a suit: one size does

not fit all. Fortunately, ASP.NET comes with a rich and powerful configuration

system that allows us to manage application settings very closely.

This chapter will briefly cover the basics of configuration, then step through a few

tricks that you can use to get the most out of your configuration efforts.

How do I store and retrieve basic settings?
ASP.NET provides the Web.config file for the storage of application settings. So how

exactly do we store and retrieve simple settings using this file?

Solution
The appSettings section of the Web.config file will be sufficient to store our config

uration settings in many situations. This section contains name-value pairs that can

be retrieved via the configuration API. The following snippet demonstrates the use

of the appSettings section:

416 The ASP.NET 2.0 Anthology

Web.config (excerpt)

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="MySetting" value="MyValue"/>
 <add key="AnotherSetting" value="SomeValue"/>

 </appSettings>
</configuration>

Retrieving an application setting value is also very easy:

using System.Configuration;

…

string setting = ConfigurationManager.AppSettings["MySetting"];

Changes in ASP.NET 2.0

The Configuration API has been moved into a new System.Configuration.dll as

sembly, so make sure your project references this assembly. Visual Studio.NET

2005 adds a reference to this class automatically as part of the ASP.NET project

template.

Also note that in ASP.NET 1.1, you could retrieve the application setting value

like so:

string setting =
ConfigurationSettings.AppSettings["MySetting"]

While this approach still works in ASP.NET 2.0, it has been deprecated and is

not guaranteed to work in future versions of ASP.NET.

http:ASP.NET

Configuration 417

How do I store connection strings?
Most web sites use data, and they find that data through connection strings. Connec

tion strings are some of the most important settings you’ll be storing in your

Web.config file.

What’s the best way to store connection strings?

Solution
In ASP.NET 1.1, we didn’t have much choice but to stuff our connection strings

into the appSettings element. But ASP.NET 2.0 introduces a new configuration

section explicitly for storing connection strings, as this Web.config example

demonstrates:

Web.config (excerpt)

<configuration>
 <connectionStrings>
 <add name="sqlDb"

 connectionString="…your conn string here…" />
 </connectionStrings>
</configuration>

The following code shows how we retrieve a connection string programmatically

from the connectionStrings section:

// indicates line-break caused by formatting

string connection = ConfigurationManager.

ConnectionStrings["sqlDb"].ConnectionString;

How do I retrieve settings declaratively?
While building an ASPX page, you might want to set the value of a control to the

value of an application setting, or to set the connection string of a SqlDataSource

to one stored in the connectionStrings section. Wouldn’t it be nice if you could

do so declaratively without having to resort to the code-behind model? You can!

418 The ASP.NET 2.0 Anthology

Solution
ASP.NET 2.0 introduces new syntax that allows us to bind to values within the

configuration file. For example, insert the following markup into your ASPX page

to render a label with the value of the setting that has the key MySetting:

<asp:Label ID="sample" Text="<%$ AppSettings:MySetting %>"

runat="server" />

Connection strings can be retrieved in a similar fashion. The following code sets

the connection string for a SqlDataSource:

<asp:SqlDataSource ID="ds" runat="server"

ConnectionString="<%$ConnectionSTrings:sqlDb%>" />

How do I create a custom configuration
section?
For many applications, the appSettings section of Web.config is a suitable place to

store configuration settings. However, there are a few drawbacks to this approach.

The first is that the list of application settings can become quite long. It would be

very helpful to be able to group them into coherent categories using something

other than comments and whitespace.

Another issue—and this is a bigger one for many developers—is that application

settings are accessed via a string key, so the entry of an invalid key will not be caught

by the compiler, and could result in a runtime error.

A third problem is that all the values in the application settings section are returned

as strings. We need to cast these values to their appropriate types when we access

them, which can clutter up our code.

Fortunately, the Configuration API built into ASP.NET provides rich support for

the addition of your own custom configuration sections to Web.config.

Configuration 419

Solution
In ASP.NET 1.1, creating your custom configuration section was a slightly involved

process that required you to write a configuration section handler as well as your

configuration class. This task becomes easier in ASP.NET 2.0, thanks to the new

ConfigurationProperty attribute.

Let’s dig right in, shall we? Suppose I want to create a class to store settings for my

blog engine. I might want to store any of a number of settings, but let’s just add two

for now—the title and the number of posts on the first page. Here’s the beginning

of the skeleton for our class:

BlogSettings.cs (excerpt)

public class BlogSettings : ConfigurationSection
{
 //implementation goes here.
}

The first thing you’ll notice is that this class inherits from

System.Configuration.ConfigurationSection. This class provides a container

in which to store our configuration settings; it’s retrieved using the this[key]

syntax.

For each setting we wish to store, we add a property getter and a setter that stores

and retrieves the value from the property container. For example, we’ll add the

property FrontPagePostCount to store the number of posts, which will be displayed

on the front page:

BlogSettings.cs (excerpt)

public int FrontPagePostCount
{
 get { return (int)this["frontPagePostCount"]; }
 set { this["frontPagePostCount"] = value; }
}

420 The ASP.NET 2.0 Anthology

We’re not done yet, though! We need to decorate this property with the

ConfigurationProperty attribute. This attribute indicates which element of the

configuration section corresponds to FrontPagePostCount:

BlogSettings.cs (excerpt)

[ConfigurationProperty("frontPagePostCount"
 , DefaultValue=20
 , IsRequired=false)]

public int FrontPagePostCount
{
 get { return (int)this["frontPagePostCount"]; }
 set { this["frontPagePostCount"] = value; }
}

Note that the first quoted parameter is the name of the configuration property. This

is the same value we use to store and retrieve the value from the property container.

To declaratively define valid property values, we can add to the property a validator

attribute that inherits from ConfigurationValidatorAttribute. As you can see in

the list below, the validator attribute specifies a corresponding class, which inherits

from ConfigurationValidatorBase, to perform the validation check.

CallbackValidatorAttribute

specifies a CallBackValidator object that’s used to validate the property value

IntegerValidatorAttribute

specifies an IntegerValidator that provides some basic integer validation such

as minimum and maximum values

LongValidatorAtribute

as for IntegerValidatorAttribute, but for long (64-bit) integers

PositiveTimeSpanValidatorAttribute

specifies a PositiveTimeSpanValidator that provides some basic validation

for positive time spans

RegexStringValidatorAttribute

allows you to specify a regular expression that the RegexStringValidator uses

to validate the property

Configuration 421

StringValidatorAttribute

specifies a StringValidator that provides some basic string validation, such

as maximum and minimum string length and allowed characters

SubclassTypeValidatorAttribute

specifies a SubclassTypeValidator that .NET will use to validate that the

property value is of a specified type

TimeSpanValidatorAttribute

specifies a TimeSpanValidator that provides basic validation for any time spans,

positive or negative

Let’s make sure that the only values considered valid for the frontPagePostCount

property lie within the range from 1 to 100:

BlogSettings.cs (excerpt)

[ConfigurationProperty("frontPagePostCount"
 , DefaultValue=20
 , IsRequired=false)]

[IntegerValidator(MinValue=1, MaxValue=100)]
public int FrontPagePostCount
{
 get { return (int)this["frontPagePostCount"]; }
 set { this["frontPagePostCount"] = value; }
}

Next, we’ll follow a similar process to add the Title property, then we’ll wrap both

properties in a neat BlogSettings class:

BlogSettings.cs (excerpt)

public class BlogSettings : ConfigurationSection
{
 [ConfigurationProperty("frontPagePostCount"

 , DefaultValue = 20
 , IsRequired = false)]

 [IntegerValidator(MinValue = 1, MaxValue = 100)]
 public int FrontPagePostCount
 {
 get { return (int)this["frontPagePostCount"]; }
 set { this["frontPagePostCount"] = value; }

422 The ASP.NET 2.0 Anthology

}

 [ConfigurationProperty("title", IsRequired=true)]

 [StringValidator(InvalidCharacters =

" ~!@#$%^&*()[]{}/;'\"|\\"

 , MinLength=1

 , MaxLength=256)]

 public string Title

 {

 get { return (string)this["title"]; }

 set { this["title"] = value; }

 }

}

Now that we have this code in place, we need to add the corresponding XML to

Web.config—a fairly straightforward process.

First, let’s add a section element within the configurationSections element:

Web.config (excerpt)

<configuration>
 <configSections>
 <section name="MySection"

type="Fully.Qualified.TypeName,
AssemblyName" />

 </configSections>
…

</configuration>

We then add the XML for our class:

Web.config (excerpt)

<BlogSettings frontPagePostCount="10"
title="Sitepoint Stirrings" />

Finally, we need to work out how to access our new custom configuration section.

It’s quite simple:

Configuration 423

using System.Configuration;

⋮
BlogSettings settings =

ConfigurationManager.GetSection("BlogSettings")

as BlogSettings;

One small pattern I always follow with my custom configuration classes is to add

a static property that I can use to access the setting—it just makes the setting easier

to discover:

BlogSettings.cs (excerpt)

private static BlogSettings settings =
ConfigurationManager.GetSection("BlogSettings")
as BlogSettings;

public static BlogSettings Settings
{
 get { return settings; }
}

Now, accessing the title of the blog is as easy as this:

String title = BlogSettings.Settings.Title;

Accessing Built-in Configuration Sections

You can access other built-in configuration sections using strongly typed config

uration section classes. For example, to access authentication settings within the

system.web configuration group, use the following code:

AuthenticationSection auth =
ConfigurationManager.GetSection(

 "system.web/authentication")
 as AuthenticationSection;

For a full list of such sections, you’ll have to pick through the list of classes derived

from System.Configuration.ConfigurationSection within MSDN.1

1 http://msdn2.microsoft.com/en-us/library/435zhefd.aspx

http://msdn2.microsoft.com/en-us/library/435zhefd.aspx
http://msdn2.microsoft.com/en-us/library/435zhefd.aspx

424 The ASP.NET 2.0 Anthology

How can I simplify my Web.config file?

One of the strengths of ASP.NET is its configurable extensibility. We can hook up

new features—many of which we’ve demonstrated in this book—simply by dropping

binaries in the bin folder and wiring them up in Web.config.

But that’s a bit of a problem. With each new feature or option we use (ASP.NET,

Ajax, providers, ASP.NET membership, ASP.NET monitoring, log4net, urlrewrit

ing.net, SubSonic, and so on), the Web.config file keeps growing until it’s an unruly

mess of XML.

How can we gain control over the Web.config file without giving up all the great

features in ASP.NET?

Solution
We can use the configSource attribute to reference external configuration files from

our Web.config file. This approach allows us to place any configuration section into

its own separate file, which can turn our enormous, cluttered Web.config into a

lightweight file that references simple configuration files, each of which meets a

single purpose.

In ASP.NET 1.1, a Web.config file’s appSettings element can reference an external

file via the file attribute:

<appSettings file=”DevSettings.config”>

 <add key=”Common” value=”External file settings are

 merged with Web.config values” />

</appSettings>

This approach suffered a big limitation, though—the file attribute was only available

for the appSettings element. Given that ASP.NET 2.0’s new features have caused

our Web.config files to balloon in size, we can be glad that these features also include

the new configSource attribute, which is available for all elements in a Web.config

file.

For example, here’s a simplified Web.config file that uses external configuration

files to handle specific configuration elements:

http:(ASP.NET
http:ing.net

Configuration 425

Web.config (excerpt)

<?xml version="1.0"?>
<configuration

xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings configSource="config/appSettings.config"/>
 <connectionStrings configSource="config/connections.config"/>
<log4net configSource="config/log4net.config"/>
 <urlrewritingnet configSource="config/log4net.config"/>
 <system.web>
 <compilation debug="true" />
 <authentication mode="Windows"/>
 <identity impersonate="true"/>
 <pages configSource="config/pages.config"/>
 <profile configSource="config/profile.config"/>
 <httpHandlers configSource="config/httpHandlers.config"/>
 <httpModules configSource="config/httpModules.config"/>

 </system.web>
</configuration>

Web.config Will Restart on External Changes

ASP.NET monitors your application’s Web.config file, and will restart your applic

ation when it’s updated. This measure is necessary to allow your application to

adopt the new configuration values, but it may disrupt your users unless your

servers are load balanced.

External configuration files that are referenced by the configSource attribute

won’t cause application restarts if their restartOnExternalChanges attributes

are set to false, however.

To check which files will trigger an application restart, look at the machine.config

file—elements with restartOnExternalChanges="false" will not trigger a

restart. If you’d like those elements to trigger a restart, you can override the

restartOnExternalChanges setting in your Web.config like so:

<appSettings

configSource="config/appSettings.config"

 restartOnExternalChanges="true" />

426 The ASP.NET 2.0 Anthology

Two Options for External Files in appSettings

As noted earlier, appSettings supported external configuration file references

with the file attribute back in ASP.NET 1.1. That support is also provided in

2.0, so we now have two options for including external files for the appSetting

element (file and configSource). Which should you use?

Well, there’s a tradeoff. If you use configSource, you can decide whether or not

you want to monitor the external config file and, when the external file changes,

trigger application restarts with the restartOnExternalChanges element. Ex

ternal files that are referenced by the file attribute aren’t monitored for changes.

The upside to using the file attribute is that you can merge settings from the

Web.config element with an external file. For example, you could employ the fol

lowing settings in your Web.config file:

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfi
➥guration/v2.0">
 <appSettings file="config/appSettings.config">
 <add key="KeyOne" value="LoadedFromWebConfig" />
<add key="KeyTwo" value="LoadedFromWebConfig" />

</appSettings>
</configuration>

Values from the file referenced in the file attribute could be merged with the

Web.config appSettings values like so:

<appSettings>
 <add key="KeyTwo" value="LoadedFromExternalFile" />
 <add key="KeyThree" value=" LoadedFromExternalFile" />

</appSettings>

This approach differs from the way configSource source works—configSource

doesn’t merge at all. For that reason, you may choose to reference appSettings

as a file, rather than a configSource.

Discussion
The way file references are merged hints at an interesting aspect of the way the

ASP.NET configuration has been developed. The entire system is based on inherit

ance:

Configuration 427

■	 The root is the machine.config file, in the C:\Windows\Microsoft.NET\Frame

work\v2.0.50727\CONFIG directory.

■	 The default settings for all ASP.NET sites on the server are stored in a Web.config

file that resides in the same folder as machine.config. This Web.config file overrides

the settings in machine.config.

■	 The Web.config folder in the root of each web site directory inherits from the

machine.config file and the default Web.config file, and overrides those settings

as necessary. If you wanted to, you could give your site’s Web.config file a blank

root element, in which case it would simply inherit all the default settings.

■	 You can further override these settings within your web site’s subfolders—an

approach that can be useful if your site has an Admin subfolder that requires

Admin-specific settings. But, while this technique can be helpful, keep in mind

that it can make site maintenance and troubleshooting slightly more complex,

because settings in the Web.config file are in effect for all but that specific sub-

folder.

■	 You can continue to override Web.config settings by adding Web.config folders

to subfolders further down through the levels of your web site’s hierarchy.

How can I manage Web.config values
between deployment environments?
Many of the settings in your Web.config file, such as the connection details for your

development and production databases, will vary between deployment environments.

However, since your Web.config is one of the most vital components of your ASP.NET

application, you should keep it under version control.

We need a solution that allows us to extract the environment-specific settings into

separate files so that we can use the same Web.config file in all deployment environ

ments, along with the external config file that’s appropriate to the specific environ

ment we’re using.

Solution
If you’ve read the section called “How can I simplify my Web.config file?”, you

probably already have a good idea of what this solution will involve! We use the

428 The ASP.NET 2.0 Anthology

configSource attribute contained within the Web.config file to reference external

files that vary between environments.

Let’s look at the most obvious example—connection strings. Here’s a stripped-down

Web.config file that references connection strings in an external file:

Web.config (excerpt)

<configuration
xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <connectionStrings configSource="Config\connections.config"/>
</configuration>

This Web.config file will remain the same in all environments (including develop

ment, testing, and production), so we can add it to version control; the aspect that

varies between environments is the Config\configurations.config file. Notice that we

store our external configuration files in a separate folder, just to indulge our desire

to keep the web site’s root folder clean.

Now here’s the neat trick—let’s add to the Config folder a subfolder called Environ

ments. Inside that folder, we’ll create a separate folder for each environment—Dev,

Test, Prod. Each folder will contain the config files appropriate to that environment.

Now, this is hardly rocket science, but the cool thing about it is that we can add the

entire Config folder to source control. The only items that we don’t add to version

control are the files at the root of the Config folder, which will differ for each envir

onment.

This is probably easier to visualize if we look at the actual folders involved. Fig

ure 14.1 shows the site’s root directory, including the Config folder.

Figure 14.1. The site’s root directory structure

Configuration 429

Inside the Config folder, we find the connections.config file, as shown in Figure 14.2,

which is referenced in our Web.config file. We also have a folder for each target en

vironment (Development, Production, and Test), each of which contains the version

of connections.config file appropriate to that environment. Every single folder and

file—except Config\connections.config—is checked into version control and is de

ployed to all environments.

Figure 14.2. Inside the Config folder

The important point here is that we can track the Web.config file and the Config\En

vironment folder via version control. The only aspect that changes between environ

ments is the connections.config file, but the environment-specific config file is stored

in that environment’s folder.

When you deploy a site to an environment, you’ll need to copy connections.config

(and any other config files) from the applicable environment folder into the Config

folder. You can automate this procedure by including it in your deployment pro

cess—for instance, you can include the file copy action in a build event.

How can I encrypt a section of my
Web.config file?
Sensitive information may reside in several configuration areas—for instance, the

connectionStrings section may contain database usernames and passwords, and

the identity section will contain a username and password if you need the runtime

to impersonate a fixed identity. You may even keep a password for a third-party

web service in appSettings or a custom section of Web.config.

Consider encrypting the sections where secrets like these reside, instead of leaving

sensitive details in plain text.

430 The ASP.NET 2.0 Anthology

Solution
Encrypting an entire section of a configuration file is straightforward, thanks to the

ASP.NET 2.0 configuration API.

The easiest way to encrypt a section of the configuration file is to call aspnet_regiis.exe

from a .NET command line using the –pe argument. To do so, launch the Visual

Studio 2005 command prompt, found in the Visual Studio Tools folder in your Start

menu, then enter this command:

C:\>aspnet_regiis -pe "connectionStrings" -app "/MyKillerSite"

In this case, we’re using the –app argument to select the application. You can use

the –pef argument to point directly to the application directory, which is handy if

you’re using the Visual Studio 2005 Web Server (formerly known as Cassini):

C:\>aspnet_regiis -pef "connectionStrings" "C:\Projects\My Site"

We use –pd (specifying an IIS application) or –pdf (specifying a file path) to decrypt

the config section:

C:\>aspnet_regiis -pdf "connectionStrings" "C:\Projects\My Site"

The WebConfigurationManager makes it fairly easy to encrypt or decrypt site con

figuration settings from within an ASP.NET application. The following code shows

how easy it is to protect (encrypt) and unprotect (decrypt) an entire configuration

section using WebConfigurationManager:

protected void toggleEncryption(object sender, EventArgs e)

{

 Configuration config;

 config = WebConfigurationManager.OpenWebConfiguration("~");

 ConnectionStringsSection section;

 section = config.GetSection("connectionStrings")

 as ConnectionStringsSection;

 if (section.SectionInformation.IsProtected)

 {

 section.SectionInformation.UnprotectSection();

 }

 else

Configuration 431

{

 section.SectionInformation.ProtectSection(

 "DataProtectionConfigurationProvider");

 }

 config.Save();

 WriteMessage("connections protected = " +

 section.SectionInformation.IsProtected);

}

Leave Decryption to the Runtime

You don’t need to unprotect a section in order to read the configuration settings

in that section—the runtime will perform the decryption necessary for your ap

plication to read the plain text values. The UnprotectSection method call in

this sample demonstrates how to return a section to its unencrypted form.

If we were to examine our Web.config file after we turned encryption on, we’d notice

that the configuration API has added some information to it:

Web.config (excerpt)

<?xml version="1.0"?>
<configuration

xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <protectedData>
 <protectedDataSections>
 <add name="connectionStrings"

 provider="DataProtectionConfigurationProvider"
 inheritedByChildren="false" />

 </protectedDataSections>
 </protectedData>
 <appSettings configSource="appSettings.config"/>
 <connectionStrings configSource="connections.config"/>
<system.web>
 <compilation debug="true" />
 <authentication mode="Windows"/>
 <identity impersonate="true"/>

 </system.web>
</configuration>

In addition, our ConnectionStrings.config file would contain a CipherValue instead

of plain text connection strings, as you can see in the code snippet shown here.

432 The ASP.NET 2.0 Anthology

Note that we don’t need to use an external configuration source to take advantage

of encryption—the configuration API would have happily encrypted the connection

strings section if it lived inside Web.config, like so:

ConnectionStrings.config (excerpt)

<connectionStrings>
 <EncryptedData>
 <CipherData>
 <CipherValue>AQAAANCMnd8BF…</CipherValue>
 </CipherData>

 </EncryptedData>
</connectionStrings>

At runtime, the configuration API will decrypt configuration sections on the fly.

We can still use WebConfigurationManager.ConnectionStrings to return connection

strings that can be used by our application without our having to worry about

whether or not they’re encrypted.

To understand what we’re seeing in the configuration file, we first need to realize

that the runtime turns to a configuration encryption provider to carry out encryption

and decryption work. The two providers that ship with .NET 2.0 are the DataPro

tectionConfigurationProvider and the RSAProtectedConfigurationProvider,

though you can also implement your own protected configuration provider if need

be. We specify the provider we want to use in the string passed to the

ProtectSection method, as seen in the earlier source code snippet for our

toggleEncryption function. In that example, we used the DataProtectionConfig

urationProvider.

Under the hood, the DataProtectionConfigurationProvider uses the Windows

Data Protection API (DPAPI). This provides a machine-specific secret key for encryp

tion and decryption work. As the DataProtectionConfigurationProvider relies

on this machine-specific key, you can only use your computer to decrypt cipher

text that was encrypted on the same machine.

If you need to move configuration files with encrypted sections from machine to

machine, you’ll need the RSAProtectedConfigurationProvider. As its name implies,

the RSAProtectedConfigurationProvider uses RSA public key encryption. You

can work with the RSAProtectedConfigurationProvider from the command line

Configuration 433

tool aspnet_regiis, which provides options that allow you to create a keypair

(-pc), export a keypair (-px), import a keypair (-pi), grant access to a keypair (-pa),

remove access from a keypair (-pr), and more. Command line arguments also allow

you to specify the encryption provider you want to use.

Some Sections Can’t be Encrypted

Some sections, such as the processModel section and the

configProtectedData element, contain data that you cannot encrypt. However,

you can use the Aspnet_setreg.exe tool to store a password for this section securely.

Summary
As ASP.NET’s feature set continues to grow, more and more of your work will in

volve hooking up and controlling functionality from within the configuration system.

In this chapter, we’ve shown you some essential tips that will help you smooth the

configuration of ASP.NET functionality, and use the Configuration API more effect

ively to configure your own applications.

Chapter15
Performance and Scaling
Now that you’ve added the finishing touches to your web site and unleashed it onto

the world, fame, fortune, and success will surely follow—won’t it?

Unfortunately, your web application’s success can lead to something less desir

able—performance and scaling problems. On a traditional desktop application, one

thousand users translate to one thousand client computers chugging away, sharing

the load of running your application. The application is effectively spread among

all the users’ machines. When it comes to a web application, though, those same

thousand users are usually serviced by a single machine—your web server.

Success can come at a cost for web applications: a cost in bandwidth and server

hardware. However, there are a few clever ways you can reduce—and sometimes

eliminate—these problems. We’ll take a look at some of the different approaches to

improving the performance of an ASP.NET site in this chapter.

436 The ASP.NET 2.0 Anthology

How do I determine what to optimize?

You want your web application to be the best, right? Like all of us, by “best” you

mean “fastest.” And what better way to create a blazingly fast application than to

optimize everything? Optimize, optimize, optimize—right? Wrong.

Premature optimization refers to the fixing of a performance problem before you

understand the problem, or before there even is a problem, and it’s a bad idea.

That’s not to say that you should write sloppy, inefficient code. My point is that

you should trust the ASP.NET Framework, and make use of the features that make

it such a terrific environment in which to develop, until you hit a problem. Once

you hit a problem, you should take the time to understand what that problem is,

and only then should you start to look at how best to address it. Dr. Joseph M.

Newcomer’s essay, “Optimization: Your Worst Enemy,” gives a fascinating overview

of the perils of optimizing in the dark.1

The tips in this chapter propose fairly lightweight solutions for some common

performance issues. I’ve steered away from dramatic changes, because I don’t want

you to end up doubling your development or maintenance time in order to shave

a meagre 2% off your page load time. While it is possible to bypass the in-built

ASP.NET Page mechanism completely (by using Response.Write, or building an

ASHX-based sites), I’m not a fan of these approaches. The ASP.NET system as a

whole has been tuned and improved for more than half a decade, and it’s reasonably

fast straight out of the box. There’s a good chance that trying to improve on it will

result in a slower and less maintainable web site.

So, with all that out of the way, let’s assume that some of your pages are running

slowly. How do you figure out what to fix?

Solution
Isolate the bottleneck in your site by measuring the actual speed of the site. This

exercise can be performed using logs, database profiling, and tracing.

We’ve discussed the task of logging using log4net in Chapter 13. If you suspect that

the database is the cause of the slowdown (for example, you know that your applic

1 http://www.flounder.com/optimization.htm

http://www.flounder.com/optimization.htm
http://www.flounder.com/optimization.htm
http://www.flounder.com/optimization.htm

Performance and Scaling 437

ation makes use of some large queries), you can either step through the page in debug

mode to see whether the database calls are taking a long time to return, or you can

use the SQL Server Profiler discussed in the section called “How do I speed up my

database queries?” later in this chapter. For a very basic analysis of what’s going on

in your pages, you can use the ASP.NET trace; while it’s not nearly as good as a

full-featured logging system, it’s easy to implement and will provide you with plenty

of timing information.

The first step in using the trace is to get into the habit of adding trace statements.

Write to the trace whenever you think there’s something you might want to see

when you debug future problems. Tracing doesn’t have any real performance impact

on your site until it’s enabled in the Web.config, and when you need to troubleshoot

a problem, you’ll be glad it’s there.

There’s more information on tracing in Chapter 13, but the general idea is that you

can write to the Trace object like this:

Trace.Write("Here's a trace message.");

Tracing is disabled by default; when you want your Trace.Write statements to ac

tually do something, you’ll need to turn tracing on in the Web.config file, as follows:

Web.config (excerpt)

<?xml version="1.0"?>
<configuration>
 <system.web>
 <trace enabled="true"

 mostRecent="true"
 localOnly="true"/>

 </system.web>
</configuration>

In this solution, we’ll look at a sample page that performs a few different actions—it

makes a call to a web service, retrieves some data from a database, and throws an

exception. Each function that we’ll use writes a trace message when it begins and

ends, via a straightforward utility method called writeTrace. However, it has one

slightly complex aspect—it uses the System.Diagnostics object to figure out the

438 The ASP.NET 2.0 Anthology

method name, so we don’t have to pass it in. The code for our sample page is as

follows:

Trace.aspx.cs (excerpt)

using System;
using System.Web;
public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 hitAWebservice();
 getSomeData();
 doSomeProcessing();
 breakSomething();
 displayTheResults();

 }
 private void getSomeData()
 {
 writeTrace(true);
 simulateWaiting(8000);
 writeTrace(false);

 }
 private void hitAWebservice()
 {
 writeTrace(true);
 Trace.Write("A message to demonstrate tracing.");
 simulateWaiting(2000);
 writeTrace(false);

 }
 private void doSomeProcessing()
 {
 writeTrace(true);
 simulateWaiting(1000);
 writeTrace(false);

 }
 private void displayTheResults()
 {
 writeTrace(true);
 simulateWaiting(500);
 writeTrace(false);

 }
 private void breakSomething()
 {
 writeTrace(true);

Performance and Scaling 439

try

 {

 int superBig = int.MaxValue;

 superBig += 1;

 }

 catch (Exception ex)

 {

 Trace.Warn("Exception", "Oops", ex);

 }

 }

 private void writeTrace(bool enteringFunction)

 {

 if (!Trace.IsEnabled)

 return;

 string callingFunctionName = "Undetermined method";

 string action = enteringFunction ? "Entering" : "Exiting";

 try

 {

 //Determine the name of the calling function.

 System.Diagnostics.StackTrace stackTrace =

 new System.Diagnostics.StackTrace();

 callingFunctionName =

 stackTrace.GetFrame(1).GetMethod().Name;

 }

 catch { }

 Trace.Write(action, callingFunctionName);

 }

 /// <summary>

 /// Wait a bit.

 /// </summary>

 /// <param name="waitTime">Time in milliseconds to wait.</param>

 private void simulateWaiting(int waitTime)

 {

 System.Threading.Thread.Sleep(waitTime);

 }

}

Right, we’ve got our trace statements in place. Now, let’s assume that this page is

taking abnormally long to load, and we’d like to get to the bottom of the problem.

With tracing enabled, we can simply load the page, then browse to Trace.axd within

our web site; it’s at http://localhost:1209/MySite/Trace.axd.

http://localhost:1209/MySite/Trace.axd

440 The ASP.NET 2.0 Anthology

Figure 15.1 shows the first part of the Trace.axd output that was returned from the

previous code.

Figure 15.1. Trace output for our sample page

Table 15.1 shows the relevant portion of the trace output.

Right away, we can see which aspect of our page load is taking the majority of

time—getSomeData takes eight seconds to execute. Without this information, we

might have assumed the web service call was at fault and spent valuable time

solving the wrong problem. This example shows how, armed with some real inform

ation, we can begin to fix the right problem.

Performance and Scaling 441

Table 15.1. A Snapshot of Trace Output for our Sample Page

From Last(s) MessageCategory

0.000019 Begin Loadaspx.page

0.001336 hitAWebservice Entering

0.000050A message to demonstrate tracing.

2.003479hitAWebservice Exiting

0.001286 getSomeDataEntering

8.000498getSomeDataExiting

0.000659doSomeProcessing Entering

1.000222 doSomeProcessing Exiting

0.000544breakSomething Entering

0.000318 displayTheResultsEntering

How can I decrease the size of the view
state?
One convenience of ASP.NET controls is that they can preserve state across post-

backs—a topic we’ve covered in depth in Chapter 6. This, of course, is a feature

that comes at a price—to implement it, we add a hidden field to the page to store

the control settings for transmission between the client and server, but depending

on the controls the page uses, the view state can sometimes become quite large.

One obvious way to reduce the size of view state is to turn it off if you don’t need

it. This adjustment can be performed either at the page level, or at the control level.

If, for whatever reason, you can’t disable the view state (for example, your page

uses controls that are dependent upon the view state), there are a few other steps

you can take to at least reduce its impact on your page size.

Solutions
You have two options for reducing the impact that view state has on your page

size—either compress the view state, or store it on the server.

442 The ASP.NET 2.0 Anthology

Compressing the View State
The following simple CompressedViewStatePage class implements basic GZIP

compression on the page’s view state. It reduced the size of the ViewState object

on my sample page from 20,442 bytes to 6,056 bytes—an impressive 70% reduction

in size! Here’s the class in all its glory:

CompressedViewStatePage.cs (excerpt)

using System;
using System.IO.Compression;
using System.IO;
using System.Web.UI;
public class CompressedViewStatePage : System.Web.UI.Page
{
 static public byte[] Compress(byte[] b)
 {
 MemoryStream ms = new MemoryStream();
 GZipStream zs = new GZipStream(ms, CompressionMode.Compress);
 zs.Write(b, 0, b.Length);
 return ms.ToArray();

 }
 static public byte[] Decompress(byte[] b)
 {
 MemoryStream ms = new MemoryStream(b.Length);
 ms.Write(b, 0, b.Length);
 // last 4 bytes of GZipStream = length of decompressed data
 ms.Seek(-4, SeekOrigin.Current);
 byte[] lb = new byte[4];
 ms.Read(lb, 0, 4);
 int len = BitConverter.ToInt32(lb, 0);
 ms.Seek(0, SeekOrigin.Begin);
 byte[] ob = new byte[len];
 GZipStream zs = new GZipStream(ms, CompressionMode.Decompress);
 zs.Read(ob, 0, len);
 return ob;

 }
 protected override object LoadPageStateFromPersistenceMedium()
 {
 byte[] b = Convert.FromBase64String(Request.Form["__VSTATE"]);
 LosFormatter lf = new LosFormatter();
 return lf.Deserialize(Convert.ToBase64String(Decompress(b)));

 }
 protected override void SavePageStateToPersistenceMedium(

 object state

Performance and Scaling 443

)

 {

 LosFormatter lf = new LosFormatter();

 StringWriter sw = new StringWriter();

 lf.Serialize(sw, state);

 byte[] b = Convert.FromBase64String(sw.ToString());

 ClientScript.RegisterHiddenField("__VSTATE",

 Convert.ToBase64String(Compress(b)));

 }

}

To use GZIP compression, simply inherit a specific page from the class, like this:

public partial class MyPage : CompressedViewStatePage

If you’re worried about the performance implications of compressing your view

state, don’t be. It’s far more likely that bandwidth is a greater bottleneck than CPU

time on any given web server. Although there are exceptions to this rule, the GZIP

algorithm is blazingly fast on the CPUs of today. Besides, if your server’s CPU oper

ates at 100% all the time, you have far graver problems to worry about than the size

of a handful of pages.

This compression algorithm could also be implemented as an HTTP module, which

could then be applied to an entire site with a simple Web.config modification. I

suggest you try implementing this module as an exercise, if you’re keen. The MSDN

article on building an HTTP module is a good place to start.2

Storing View State on the Server
The second option for reducing view state’s impact on page size is to prevent view

state data from being sent to the client altogether, and instead store the data on the

server.

The following ServerViewStatePage class allows us to use the Session object to

store the view state:

2 http://support.microsoft.com/kb/307996/en-us

http://support.microsoft.com/kb/307996/en-us
http://support.microsoft.com/kb/307996/en-us
http://support.microsoft.com/kb/307996/en-us

444 The ASP.NET 2.0 Anthology

ServerViewStatePage.cs (excerpt)

using System;
using System.Web.UI;
using System.Configuration;
using System.IO;
public class ServerViewStatePage : System.Web.UI.Page
{
 private const string _configKey = "ServerViewStateMode";
 private const string _formField = "__SERVERVIEWSTATEKEY";
 private string ViewStateData
 {
 get { return Request.Form[_formField]; }
 set { ClientScript.RegisterHiddenField(_formField, value); }

 }
 private string PersistenceType
 {
 get { return (ConfigurationManager.AppSettings[_configKey]
 ?? "").ToLower(); }

 }

 private object ToObject(string viewstate)
 {
 byte[] b = Convert.FromBase64String(viewstate);
 LosFormatter lf = new LosFormatter();
 return lf.Deserialize(Convert.ToBase64String(b));

 }
 private string ToBase64String(object state)
 {
 LosFormatter lf = new LosFormatter();
 StringWriter sw = new StringWriter();
 lf.Serialize(sw, state);
 byte[] b = Convert.FromBase64String(sw.ToString());
 return Convert.ToBase64String(b);

 }
 private string ToSession(string value)
 {
 string key = Guid.NewGuid().ToString();
 Session.Add(key, value);
 return key;

 }
 private string FromSession(string key)
 {
 string value = Convert.ToString(Session[key]);
 Session.Remove(key);

Performance and Scaling 445

return value;

 }

 protected override object LoadPageStateFromPersistenceMedium()

 {

 switch (PersistenceType)

 {

 case "session":

 return ToObject(FromSession(ViewStateData));

 default:

 return base.LoadPageStateFromPersistenceMedium();

 }

 }

 protected override void SavePageStateToPersistenceMedium(

 object ViewStateObject

)

 {

 switch (PersistenceType)

 {

 case "session":

 ViewStateData = ToSession(ToBase64String(ViewStateObject));

 break;

 default:

 base.SavePageStateToPersistenceMedium(ViewStateObject);

 break;

 }

 }

}

To use ServerViewStatePage, simply inherit a specific page from this class, like

this:

public partial class MyPage : ServerViewStatePage

This class is configured via a single setting in Web.config: ServerViewStateMode.

Once you’ve configured this setting, you’ll notice that the ViewState object disap

pears from the page—in its place is a simple ID that’s used to look up the contents

of the page’s view state on the server, in the Session object. If you feel uncomfortable

storing view state in Session, this class could easily be extended to store view state

wherever you like—in the file system, in the ASP.NET cache, or in a database.

As usual, there’s no free lunch here. The decision to push view state to the server

and store it in Session has its own drawbacks. For example, the Session object

446 The ASP.NET 2.0 Anthology

could be lost if the IIS worker process recycles (a loss that does occur every so often

in IIS, unless you’ve disabled this default behavior). Furthermore, any change to

the underlying application files (such as editing Web.config, or adding new binaries

to the bin folder of your application) will also cause the web application to recycle

and Session data to be lost. And if you use more than one web server (such as in

a web farm environment) you’ll need to manage any shared session state that’s

stored in a database.

How can I decrease the bandwidth that my
site uses?
ASP.NET abstracts a lot of traditional web development details from the developer.

Just drag and drop a few controls on a form, set some properties, write a little bit

of code, and—bam!—you’ve got a functioning web site.

However, that doesn’t mean the resulting HTML markup will necessarily be efficient

or small. It’s not unusual to see ASP.NET pages that contain more than 100 kilobytes

of markup. I recommend that you keep a close eye on the HTML markup that results

from your ASP.NET web pages—to keep these file sizes in check can sometimes

require additional effort, which is one reason we covered the topic of web standards

in Chapter 9.

Solutions
The first rule of ASP.NET bandwidth control is to know how large your pages are.

In Internet Explorer, the File > Properties dialog will tell you how many kilobytes of

HTML markup the current page has produced, as Figure 15.2 shows. Firefox has a

similar dialog, pictured in Figure 15.3, which can be accessed by selecting Tools >

Page Info.

Performance and Scaling 447

Figure 15.2. Viewing page information in Internet Explorer

Figure 15.3. Viewing page information in Firefox

448 The ASP.NET 2.0 Anthology

However, note that the Size field in Firefox reports a much smaller number than

does IE 7—13,976 bytes versus 49,774 bytes. That’s because Firefox shows the actual

number of bytes that came down over the wire, whereas IE 7 shows the size of the

page after it has been received by the browser.

How is such a discrepancy possible? Well, the ASP.NET web site uses HTTP com

pression to decrease the page size before sending the page. HTTP compression is a

W3C standard that allows the server to provide a GZIP-compressed version of the

HTML content to the client, at the cost of a very minor increase in CPU time. The

client receives the compressed content, then decompresses it on the fly before ren

dering the page. Right off the bat, you can see that this is just one easy way to reduce

the amount of bandwidth you use by an impressive 72%—simply flip the switch

to enable HTTP compression for your web site.

You can enable HTTP compression in two ways. The first takes place at the web

server level; the second is implemented via a custom HTTP module at the ASP.NET

application level.

Enabling HTTP Compression Support in IIS 6
Use the IIS Service Manager to enable HTTP Compression in IIS 6. Right-click the

node for your web site and select Properties. The Service tab contains the settings

relevant to compression, as Figure 15.4 shows.

Manual Configuration is Only Necessary in IIS 6

That’s right: it’s only necessary to configure IIS to enable HTTP compression in

IIS 6 and earlier, as IIS 7 enables static compression by default. Windows Server

2008 (which had yet to be released at the time of this writing) may offer a user

interface to configure dynamic HTTP compression, but Vista’s IIS Manager doesn’t.

Performance and Scaling 449

Figure 15.4. Configuring HTTP compression in IIS 6

The compression setting available in the GUI works; however, it only affects static

content, such as HTML pages and CSS files. This setting won’t do anything to

compress dynamic content in ASPX pages. We must resort to editing the meta

base—the IIS database for configuration and metadata storage—to deploy dynamic

content compression:

■	 Open the metabase in Notepad. For IIS 6, this is located at C:\WINDOWS\sys

tem32\inetsrv\MetaBase.xml. For IIS 5, the file is a binary file, so you’ll need to

download the Meta-data Edit tool instead.3

■	 Search for the <IIsCompressionScheme> tag. There should be two

<IIsCompressionScheme> entries: one for deflate and one for GZIP—the two

methods of compression that IIS supports. By default, IIS uses GZIP; deflate is

rarely used.

3 http://www.microsoft.com/downloads/details.aspx?FamilyID=48364A72-D54E-46DC-AACF

E3BE887D17A6

http://www.microsoft.com/downloads/details.aspx?FamilyID=48364A72-D54E-46DC-AACF-E3BE887D17A6
http://www.microsoft.com/downloads/details.aspx?FamilyID=48364A72-D54E-46DC-AACF-

450 The ASP.NET 2.0 Anthology

■	 Search for the HcScriptFileExtensions section. Add to the list aspx, asmx, php,

cgi, and any other file extensions that you want dynamically compressed. Follow

the existing format carefully—it’s return-delimited, and any extra spaces will

prevent the file extensions from working. Make the same changes in both deflate

and GZIP.

■	 Set HcDynamicCompressionLevel to level 9 (it has a default value of 0, which

means “no compression”). I recommend level 9, based on several reports that

I’ve read on the Web suggesting that level 10 requires much more CPU time,

while offering only a minimal reduction in file size over level 9. Make this change

for both deflate and GZIP.

Note that this is a global compression rule that will affect all web sites. This setting

is usually what you’ll want, since HTTP compression is so effective and the cost is

nominal. However, some poorly coded ASP.NET web sites may be incompatible

with compression. In those circumstances, you may want to enable or disable

compression on a per-site or per-folder basis—a setting that’s also supported by IIS.

The easiest way to configure this setting is to use the command line adsutil.vbs

utility:

C:\Inetpub\AdminScripts\>adsutil.vbs set w3svc/ (site#) /root/DoStat

➥icCompression False
C:\Inetpub\AdminScripts\>adsutil.vbs set w3svc/ (site#) /root/DoDyna
➥micCompression False

The (site#) number can be obtained from the log properties dialog in the IIS server

properties, and usually takes the form W3SVCn, where n is an arbitrary site number.

Enabling HTTP Compression Support in an ASP.NET Application
Perhaps you don’t have control over the IIS settings on your server. Or maybe you’d

just like a way to enable compression for your specific ASP.NET application. That’s

possible too.

The open source HttpCompress library is very easy to incorporate into an ASP.NET

web site. First, download the latest version of HttpCompress from the official web

site.4

4 http://www.blowery.org/code/HttpCompressionModule.html

http://www.blowery.org/code/HttpCompressionModule.html
http://www.blowery.org/code/HttpCompressionModule.html
http://www.blowery.org/code/HttpCompressionModule.html

Performance and Scaling 451

Place the blowery.Web.HttpCompress.dll binary somewhere logical, and add a reference

to it.

Next, add the following compression-specific configuration section to your site’s

Web.config:

Web.config (excerpt)

<configSections>
 <sectionGroup name="blowery.web">
 <section name="httpCompress"

type="blowery.Web.HttpCompress.SectionHandler,
blowery.Web.HttpCompress"/>

 </sectionGroup>
</configSections>
<blowery.web>
 <httpCompress preferredAlgorithm="gzip" compressionLevel="high">
 <excludedMimeTypes>
 <add type="image/png" />
 <add type="image/jpeg" />
 <add type="image/gif" />

 </excludedMimeTypes>
 </httpCompress>
</blowery.web>

Finally, bring the actual compression HTTP module into the pipeline:

Web.config (excerpt)

<system.web>
 <httpModules>
 <add name="CompressionModule"

type="blowery.Web.HttpCompress.HttpModule,
blowery.web.HttpCompress"/>

 </httpModules>
</system.web>

Once this is in place, you should see compressed ASPX content being returned to

the browser. To verify that this is the case, use Port80 Software’s convenient Real-

Time Compression Checker.5

5 http://www.port80software.com/products/httpzip/compresscheck/

http://www.port80software.com/products/httpzip/compresscheck/
http://www.port80software.com/products/httpzip/compresscheck/
http://www.port80software.com/products/httpzip/compresscheck/

452 The ASP.NET 2.0 Anthology

One limitation of the HttpCompress module approach is that only ASPX content

that forms part of your application will be compressed; the CSS and JavaScript

aren’t served through the ASP.NET ISAPI handler, and will therefore remain uncom

pressed. As such, I recommend that you enable compression at the web server level

whenever possible, so that these files also gain the benefits of compression.

How can I improve the speed of my site?
Most ASP.NET web servers perform a lot of unnecessarily repetitive work.

For example, suppose you have a page with a DataGrid bound to a table called

Products. Every time a user requests the Products page, ASP.NET has to:

1. Look up the products data in the database.

2. Process the page.

3. Databind the product data.

4. Render the results to HTML.

5. Output the results to the browser.

If we assume the products list changes infrequently in comparison to how often it

is requested by a user, most of that work is unnecessary. Instead of doing all that

work to send the same HTML to all users, why not just store the HTML and reuse

it until the Products table changes?

Solution
The ASP.NET cache provides the key to efficient storage and reuse of our HTML.

There are several ways to use the cache; we’ll focus on the easiest tricks to get you

started, then point you toward some resources that will help you tackle more ad

vanced ways to utilize the cache.

The simplest solution is to use the OutputCache directive on your pages or user

controls. For example, the following page will be cached for one hour (3600 seconds).

You can refresh the page all you like, but the value of DateTime.Now won’t change

until the page is cleared from the cache. Here’s the code that retrieves the current

time:

Performance and Scaling 453

OutputCacheSimple.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="OutputCacheSimple.aspx.cs"
 Inherits="chapter_15_performance.Performance.OutputCacheSimple"

%>
<%@ OutputCache Duration="3600" VaryByParam="none" %>
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Output Cache Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <h1>Output Cache Example</h1>
 <div>
 <%= DateTime.Now.ToLongTimeString() %>

 </div>
 </form>
</body>
</html>

Figure 15.5 represents our page at 11:01:41 p.m.

Figure 15.5. Loading a cached page for the first time

Figure 15.6 shows what it looks like at 11:23:01 p.m.

Figure 15.6. Subsequent reloads of a cached page showing no changes to the page content

Notice that the time didn’t change, as the page wasn’t re-rendered.

454 The ASP.NET 2.0 Anthology

Now let’s look at a slightly more complex caching example:

OutputCache.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="OutputCache.aspx.cs"
Inherits="chapter_15_performance.Performance.OutputCache" %>

<%@ OutputCache Duration="30" VaryByParam="none" %>
<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>Output Cache Example</title>
 <script type="text/javascript">
 var d = new Date();

 </script>
</head>
<body>
 <form id="form1" runat="server">
 <!-- Pausing 5 seconds to simulate a database hit -->
 <% System.Threading.Thread.Sleep(5000); %>
 <h1>Output Cache Example</h1>
 <div>
 Time written by ASP.NET:
 <%= DateTime.Now.ToLongTimeString() %>

 </div>
 <div>
 Time written by Javascript:
 <script type="text/javascript">
 document.write(d.toLocaleTimeString())

 </script>
 </div>
 <div id="divCached" style="margin-top:25px;width=300px;">
 <script type="text/javascript">
 var aspTime = new Date();
 aspTime.setSeconds(<%= DateTime.Now.Second %>);

 // If there are more than two seconds difference
 // between the ASP.NET render and the javascript
 // evaluation, the page is almost certainly cached.
 if(Math.abs(d - aspTime) > 2000)
 {
 document.write('Probably Cached');
 document.getElementById("divCached").style.backgroundColor =

"Coral";
 }
 else

Performance and Scaling 455

{

 document.write('Not Cached');

 document.getElementById("divCached").style.backgroundColor =

"Aqua";

 }

 </script>

 </div>

</form>

</body>

</html>

The above page writes out the current time according to both ASP.NET (server side,

cached) and JavaScript (client side, not cached). Additionally, if the JavaScript time

is more than two seconds after the ASP.NET time, the page will report that it has

probably been cached.

The first time this page is viewed, there’s a five-second delay (due to the call to

Thread.Sleep), then the page shown in Figure 15.7 is displayed.

Figure 15.7. The page output on first load

But if you refresh the page within 30 seconds, you’ll notice two differences. First,

the page will return immediately. Second, it looks like Figure 15.8.

Figure 15.8. The page output 30 seconds after its initial load

456 The ASP.NET 2.0 Anthology

Using VaryByParam to Cache Parameterized Pages

When you start to consider which pages in your application could be cached,

you’ll probably discover that many of them contain content that’s 90% static. The

remaining 10% of these pages is likely to contain one or two tiny portions that

vary frequently. For example, consider a page in the example Northwind database

that displays catalog information, including products filtered by category. The

category is set by a parameter in the query string, so the following two URLs will

yield different results:

■ http://www.contoso.com/Northwind/Products.aspx?Category=Seafood

■ http://www.contoso.com/Northwind/Products.aspx?Category=Produce

The novice programmer might apply the following code to cache these pages:

<%@ OutputCache Duration="30" %>

However, if you were to apply this code you’d quickly discover a problem—the

category filter would stop working. The first version of the page that was displayed

would be cached, so the filtering logic would be ignored on subsequent page

views.

That’s the exact function for which the VaryByParam attribute is used. In this

case, we’d change the OutputCache directive to the following:

<%@ OutputCache Duration="30" VaryByParam="Category" %>

The VaryByParam attribute tells the cache system to store a different version of

the page every time it sees a new value for Category in the URL. Once this attrib

ute is in place, our users will be able to access a cached copy of the page for both

the Seafood and Produce categories.

Keep in mind that storing different versions of the page for each parameter value

isn’t always the best idea—in cases where you have many different parameter

values, you can quickly use a large amount of memory to hold all possible vari

ations of the page. Use VaryByParam when your pages utilizes a limited number

of parameter values.

http://www.contoso.com/Northwind/Products.aspx?Category=Seafood
http://www.contoso.com/Northwind/Products.aspx?Category=Produce

Performance and Scaling 457

Note that the number of seconds displayed in the JavaScript-generated time has

updated to 59 seconds, while the ASP.NET time still shows 39. What this discrep

ancy suggests is that the server is sending the same HTML to the client for each re

quest. Suppose that instead of just displaying the current time, we’d bound several

GridViews to the results of several expensive database queries. With caching applied

to such a page, the savings would be considerable.

You don’t have to cache a page for long to see significant performance increases—a

cache of one minute or less can improve your site’s performance dramatically. For

example, adding a cache to a simple page that just binds a GridView to the Products

table in the example Northwind database will increase the performance of that page

by about 500%, and for a page that performs a complex database query or processor-

intensive calculation, this saving is likely to be amplified even further.

Using Post-cache Substitution

While the OutputCache directive allows you to specify that the cache should

vary with a specific parameter, it’s not really efficient to cache a multitude of

copies of one page that are nearly all identical.

Post-cache substitution, using the Substitution control, allows you to inject

dynamic content into a cached page. The result is that you can cache some pages

that you probably thought were unable to be cached. Read more on this subject

in Scott Guthrie’s article on the topic.6

One of the problems you might notice with this approach, however, is latency—the

time delay between the point at which your data is updated and the moment when

that same updated data reaches a user’s browser. In the examples we’ve looked at

in this solution, we displayed the same timestamp for 30 seconds after the page was

rendered—this is great for performance, but might be a problem if your users require

the data to always be up to date.

Fortunately, ASP.NET 2.0 has a solution to this problem, which we’ll look at next.

6 http://weblogs.asp.net/scottgu/archive/2006/11/28/tip-trick-implement-donut-caching-with-the

asp-net-2-0-output-cache-substitution-feature.aspx

http://weblogs.asp.net/scottgu/archive/2006/11/28/tip-trick-implement-donut-caching-with-the-asp-net-2-0-output-cache-substitution-feature.aspx
http://weblogs.asp.net/scottgu/archive/2006/11/28/tip-trick-implement-donut-caching-with-the-

458 The ASP.NET 2.0 Anthology

How do I refresh my cache when the data
changes?
As we saw in the previous tip, judicious use of output caching can provide dramatic

improvements in your site’s performance. Output caching works by saving the

generated HTML for a rendered ASP.NET page. As long as the cache is valid, future

requests for that page will just return that stored HTML, rather than processing the

page again, which means no page parsing, hits to the database, data binding—any

of those tasks that require precious bandwidth or processor cycles. Used correctly,

caching can improve your requests-per-second on a high-traffic page by a factor of

100 or more.

For example, suppose you had a page that contained a DataGrid bound to a table

called Products. Without caching, every page request would require ASP.NET to

look up the product data in the database, process the page, data bind the product

data, render the results to HTML, and output the results to the browser.

If the page was cached, only the first request for this page would require all that

work; after that, ASP.NET would just skip all the hard work and serve up the HTML

until the cache expired. The end result would be the same whether or not a cache

was used: the same HTML would be sent to the browser. However, since a lot less

work and network traffic is required to display cached HTML, the server can serve

the cached page much faster and to more people.

One problem with cached pages is that they don’t pick up data that has changed

right away. To continue with the example above: if we were to add a new product

to the Products table, it wouldn’t show up on the page until the cache expired.

Fortunately, ASP.NET 2.0 provides a good mechanism to refresh your cache auto

matically when the underlying data changes.

Solution
The SQL Cache Dependency was created to solve this problem. A few steps are re

quired to set it up, but once it’s up and running, you can use it throughout your

whole application.

Performance and Scaling 459

Using SQL Cache Dependencies with Older Versions of SQL Server

In this book I’ll only cover the steps for configuring SQL Server Cache Dependen

cies on SQL Server 2005; there’s a wealth of information on MSDN about how to

set it up on SQL Server 2000:

■ “ASP.NET SQL Server Registration Tool (Aspnet_regsql.exe)”

(http://msdn2.microsoft.com/en-us/library/ms229862(VS.80).aspx)

■ “Caching in ASP.NET with the SqlCacheDependency Class”

(http://msdn2.microsoft.com/en-us/library/ms178604(VS.80).aspx)

■ “Walkthrough: Using ASP.NET Output Caching with SQL Server”

(http://msdn2.microsoft.com/en-us/library/e3w8402y(VS.80).aspx)

First, you’ll need to make sure you’ve enabled SQL Server Service Broker for your

database. You can confirm that with the following query:

ALTER DATABASE Northwind SET ENABLE_BROKER;

Next, you’ll need to start the SQL Dependency event listener. The recommended

place to make the change that triggers this listener is in the Application_Start

method of Global.asax:

Global.asax (excerpt)

void Application_Start(object sender, EventArgs e)
{
 string northwindConnection = WebConfigurationManager.ConnectionStr

➥ings["NorthwindConnectionString1"].ConnectionString;
 SqlDependency.Start(northwindConnection);
}

Once the above code has been added to the Global.asax file, our connection can

employ an SQL Cache Dependency.

To illustrate how an SQL Dependency is utilized, let’s look at an example—a simple

GridView that’s bound to a table. We’ll drag the good old Northwind Products table

onto a new page, then set the following two attributes in the SqlDataSource control:

460 The ASP.NET 2.0 Anthology

EnableCaching = "True" SqlCacheDependency =

 "NorthwindConnectionString1:Products"

With this simple line of code in place, the GridView won’t read the Products table

again until it changes. As soon as the Products table changes, though, SQL Server

will notify ASP.NET to dump the cache, and the subsequent page request will reload

the page from the database. The end result is that our application gains all of the

performance benefits that come with caching, but our users will never see stale

data.

How can I gain more control over the
ASP.NET cache?
As we’ve seen, declarative caching provides a great return on investment—it’s very

easy to enable, and will give you some immediate performance benefits. However,

you can gain even more benefit from the ASP.NET cache with only a little more

work.

Solution
If you’d like to really take advantage of caching in ASP.NET, it’s time you met the

Cache API. Declarative caching might be easy to set up, but it can only take you so

far. Unlike declarative caching, which stores and reuses rendered HTML, the Cache

API allows you to store data efficiently in your application logic or code-behind

code.

The simplest way to think of the ASP.NET cache is to compare it to the Application

object. They’re similar in that you can use both to store objects or values by a string

key:

Cache["States"] = new string[] {"Alabama","Arkansas","Alaska"};

Cache["ProductData"] = GetProductDataset();

So what’s the difference between the Application object and the cache for the

storage of information? ASP.NET can remove items from the cache whenever it

needs to free up memory. The cache has a limited amount of memory to work with,

so when new content is added to the cache, the cache usually has to delete some

older, cached data.

http:ASP.NET

Performance and Scaling 461

Different classes of information can be stored in your cache:

expensive data

Expensive data is information that you want to keep in the cache whenever

possible. The term “expensive” refers to the fact that the generation of this class

of data involves valuable resources (database or processing power).

inexpensive data

Inexpensive data refers to all of the other types of information that you’d like

to put in the cache if there happens to be room, but is not particularly resource-

intensive to generate.

The challenge is to prevent the inexpensive data from pushing the expensive data

out of the cache.

The Cache object comes with some features that give you some control over which

items are placed in the cache, and how long they stay there. Using the Cache object,

you can apply custom cache dependencies, explicitly set cache expiration policies,

and define callback events that fire when an item is removed from the cache (so

you can decide whether you’d like to add it to the cache again).

One of my favorite features is the sliding expiration, which is a setting that lets you

specify that an item should stay in the cache—as long as it has been used within a

certain period of time:

Cache.Insert("ProductData", GetProducts(), null,

System.Web.Caching.Cache.NoAbsoluteExpiration,

 TimeSpan.FromMinutes(10));

The above code tells the cache that we’d like it to keep our Products data set, as

long as it has been used in the past ten minutes. The benefit of this approach is that

frequently used data will stay cached, and infrequently used data will expire and

stop taking up valuable space.

We can customize the settings for our cache, for example, setting a longer sliding

expiration timeframe on data that’s more expensive (such as that which results from

a web service call). We could even add a cache dependency on the results of a

GetLastUpdateTimestamp web service call to keep the data current if needed. Re

462 The ASP.NET 2.0 Anthology

member, though, that any data can still be removed from the cache at any time—our

sliding expiration time setting is really just a suggestion to the cache system.

Discussion
Once you’ve begun to cache your data, you’ll begin to see the benefit of what are

some tried and true cache access patterns. Steven Smith wrote about the cache data

reference pattern in his excellent MSDN article.7 Here’s some code that implements

this pattern:

public DataTable GetCustomers(bool BypassCache)

{

 string cacheKey = "CustomersDataTable";

 object cacheItem = Cache[cacheKey] as DataTable;

 if((BypassCache) || (cacheItem == null))

 {

 cacheItem = GetCustomersFromDataSource();

 Cache.Insert(cacheKey, cacheItem, null,

 DateTime.Now.AddSeconds(GetCacheSecondsFromConfig(cacheKey),

 TimeSpan.Zero);

 }

 return (DataTable)cacheItem;

}

Smith’s article explains the technique in more detail, but the most important point

to note is the possibility that the object may not be in cache, or could potentially

be removed at any time. The above code is safe because it loads the cached object,

checks whether the object is null, and, if so, loads the object data and adds it back

to the cache.

Another of my favorite cache patterns is one that Gavin Joyce uses on his Dot-

NetKicks site—the reluctant cache pattern, which relies on his

ReluctantCacheHelper class.8 This pattern prevents an application from adding

to the cache information that’s unlikely to be used.

For example, when Google indexes your site, it will load every page that it can find.

If your site implements a cache that is used by a large number of pages, your server

will perform a lot of unnecessary work adding data to the cache, only for that data

7 http://msdn2.microsoft.com/en-us/library/aa478965.aspx
8 http://weblogs.asp.net/gavinjoyce/pages/The-Reluctant-Cache-Pattern.aspx

http://msdn2.microsoft.com/en-us/library/aa478965.aspx
http://weblogs.asp.net/gavinjoyce/pages/The-Reluctant-Cache-Pattern.aspx
http://msdn2.microsoft.com/en-us/library/aa478965.aspx
http://weblogs.asp.net/gavinjoyce/pages/The-Reluctant-Cache-Pattern.aspx

Performance and Scaling 463

to be immediately dropped from the cache as other pages are added. Similar to the

sliding expiration pattern, but in reverse, this pattern only adds data to the cache

if it’s been used a lot recently. Here’s an example that implements this pattern:

public static List<Customer> GetCustomers() {

 string cacheKey = "Customers";

 int cacheDurationInSeconds = 5; // low number for demo purposes

 object customers = HttpRuntime.Cache[cacheKey] as List<Customer>;

 if (customers == null) {

 customers = CustomerDao.GetCustomers();

 if (new ReluctantCacheHelper(cacheKey,

cacheDurationInSeconds, 2).ThresholdHasBeenReached)

 {

 HttpRuntime.Cache.Insert(cacheKey,

 customers,

null,

DateTime.Now.AddSeconds(cacheDurationInSeconds),

 System.Web.Caching.Cache.NoSlidingExpiration);

 }

 }

 return (List<Customer>)customers;

}

How do I speed up my database queries?
We’ve looked at a few ways to optimize your ASP.NET code, but if your queries are

slow, you’ll still have a site that drags its heels. You can hide the problem to some

degree if you cache your data or add servers to your web farm, but eventually you

will need to deal with your slow queries.

Of course, the best bet is to work with a good Database Administrator (DBA). We’re

ASP.NET developers, and while we can’t help but learn about databases as we work

with them, database administration is not our full-time job. A good DBA is by far

the best solution to a database problem, but sometimes, it’s just not an option. If

you work on a team without a DBA, or you have limited access to your DBA, you

need to do your best to solve problems when you can.

464 The ASP.NET 2.0 Anthology

Slow Query or Slow Database?

It’s important to decide whether you’re dealing with one slow query or a whole

slow database. Is one particular page slow, or is the whole site groaning? This

solution will focus on the former; if you can narrow your database performance

problems down to individual queries, refer to the section called “How can I

troubleshoot a slow query?” later in this chapter.

Solution
Use the SQL Profiler and Database Tuning Advisor, located in the SQL Server Performance

Tools folder.

Tuning a database server is hard. Initially, it can be difficult to find out what’s re

sponsible for slowing things down. Even then, fixing one problem (for example,

applying indexes to a table to improve the speed of SELECT statements) can introduce

new problems (such as slower INSERTs and UPDATEs).

Fortunately, the existence of the SQL Performance Tools means you don’t have to

bother with guesswork.

The SQL Profiler captures what’s going on in your database, including which SQL

statements are being executed, who’s executing them, and how long they’re taking.

The profiler is the first step to determining what’s actually happening on your

server.

Note that the profiler captures both ad hoc and dynamic SQL. This means that the

profiler is especially useful when control, library, or framework code is making a

call in your database—you may not have access to the ASP.NET code, but the profiler

will reveal exactly which queries are being executed, and how long they are taking.

It’s best if you can run a profiler trace on your actual production system, but this

may not always be possible—profiling a server slows the server down, and the site’s

regular users may not appreciate the extra delays. If you can’t run on the production

system, you can still gain a reasonable idea of server activity on a local or develop

ment server by simulating the way real users would using your site on the live

server.

Performance and Scaling 465

Running the profiler can be a bit daunting the first time—there are numerous ad

vanced settings to monitor and tweak. It’s best to start out with a predefined template

like the one I’ve chosen in Figure 15.9. The two most useful templates for general

performance diagnostics are the TSQL_Duration and Tuning templates.

Figure 15.9. Selecting the TSQL_Duration template

The TSQL_Duration template is useful for giving you a quick snapshot of the queries

and stored procedures that take the longest time to execute. Figure 15.10 shows

some sample queries running against the Northwind example database. The slowest

query—the query with the greatest duration value—is highlighted at the bottom of

the list.

466 The ASP.NET 2.0 Anthology

Figure 15.10. Query duration times in SQL Server Profiler

In a simple case like the one above, you may be able to deduce enough information

from the TSQL_Duration trace to begin tuning a specific query. If you’re at all in

doubt, however, it’s best to run the profiler with the Tuning template and analyze

the results in the Database Tuning Advisor (also referred to as the DTA), a tool for

analyzing database performance and suggesting which tables should be indexed.

To do this, first save your trace file from the profiler, as shown in Figure 15.11.

Performance and Scaling 467

Figure 15.11. Saving a trace file from SQL Server Profiler

Now, we’ll use the DTA to open the trace file that we just saved, as I’ve done in

Figure 15.12, and click the Start Analysis button.

468 The ASP.NET 2.0 Anthology

Figure 15.12. Loading the trace file in the Database Tuning Advisor

For my sample queries, DTA recommended that I apply a few indexes, to produce

an estimated performance improvement of 5%, as shown in Figure 15.13. (The

Northwind database is already more or less indexed; your estimated improvement

should be a lot higher, with any luck.)

Performance and Scaling 469

Figure 15.13. The index recommendations suggested by the DTA

If you scroll to the right, so that the Description column is visible, you’ll see exactly

which indexes and statistical changes the DTA recommends. Click on a recommend

ation to see a preview of the script that will add the proposed index, as shown in

Figure 15.14.

470 The ASP.NET 2.0 Anthology

Figure 15.14. Viewing a preview of the script for applying one of the recommended indexes

To implement these changes, I suggest you save the recommendations (Actions >

Save Recommendations…), review them in SQL Server Management Studio (SSMS),

and apply them if you feel comfortable with them. Once you’ve done this, repeat

your original profiling test and verify that the changes have improved your database

performance.

Performance and Scaling 471

Running the DTA with a SQL Workload Script File

Our walkthrough of the DTA used a SQL Server Trace file for the workload, but

you can also use the DTA against a SQL script. Here’s an abbreviated copy of the

script I used for this walkthrough:

SampleSqlWorkload.sql (excerpt)

USE [Northwind]
GO
SELECT * FROM [Order Details] od
INNER JOIN Orders o on o.OrderID = od.OrderID
GO
SELECT * FROM [Category Sales for 1997]
GO
SELECT * FROM Invoices
GO
SELECT COUNT(OrderID) OrderCount, ShipPostalCode

FROM Orders
GROUP BY ShipPostalCode
ORDER BY COUNT(OrderID) DESC
GO
EXEC [Ten Most Expensive Products]
GO
SELECT COUNT(OrderID) OrderCount, c.CustomerID,

c.ContactName
FROM Orders o INNER JOIN Customers c

ON o.CustomerID = c.CustomerID
GROUP BY c.CustomerID, c.ContactName
sORDER BY COUNT(OrderID) DESC
GO
SELECT LEN(ContactName), ContactName
FROM Customers ORDER BY LEN(ContactName) DESC
GO

The important point to note is that there are GO separators between statements,

which ensures that they’re executed independently. You’ll want your SQL work

load script file to simulate actual usage, which means that you should include

repeated calls to the most commonly used queries.

472 The ASP.NET 2.0 Anthology

Using the Performance Dashboard

SQL Server includes Dynamic Management Views (DMVs)—database views that

contain lots of useful management and troubleshooting information about your

database. All the DMV views begin with the prefix sys.dm_; for example:

sys.dm_index_usage_stats.

SSMS includes some built-in reports that leverage SQL Server Reporting Services

as well as the DMVs. You can view these reports in SSMS if you right-click a

database and select Reports > Standard Reports….

SQL Server SP2 includes the ability to include custom reports, and one of the first

to be released is the Performance Dashboard.9 Once it’s installed, the Performance

Dashboard gives you a graphical snapshot that’s visible in your browser, without

you having to run a trace. Figure 15.15 shows the dashboard in action.

Figure 15.15. Viewing a handy third-party custom report in the Performance Dashboard

9 http://www.microsoft.com/downloads/details.aspx?familyid=1d3a4a0d-7e0c-4730-8204

e419218c1efc

http://www.microsoft.com/downloads/details.aspx?familyid=1d3a4a0d-7e0c-4730-8204-e419218c1efc
http://www.microsoft.com/downloads/details.aspx?familyid=1d3a4a0d-7e0c-4730-8204-

Performance and Scaling 473

Discussion
One important aspect of troubleshooting a slow database is to understand what’s

making it run slowly. There are many potential causes of slow performance, but

some common problems head the list. Let’s look at a few of them.

Lack of Indexes
The ability to index data is one of the key benefits of storing information in a data

base. Imagine for a moment that you need to look up a name in a telephone book.

You take advantage of the fact that the last names are sorted in alphabetic order—it

would take forever to find a name if the entries were listed in random order. Data

bases take advantage of the way your information is sorted for the same reason. The

default sort order in a table is called a clustered index.

Of course, you may want to search for your information in several different ways.

To continue with the phone book example, you may want to look up businesses by

zip code, business type, or name. The common approach to implementing this

capability in a database is to order the data based on the most common search order,

then place additional indexes to facilitate other search criteria. The data is sorted

by the clustered index, but the database stores additional information to help it look

up rows using other criteria. This additional lookup information is called a non-

clustered index.

One of the most common reasons for slow queries is that the database is performing

a table scan, which occurs when the database lacks an appropriate index to use to

look up data. Asking your database to perform a table scan is equivalent to asking

someone to look up a person in a phone book that lists entries in random order. To

summarize, proper indexes are a necessity for database performance.

Incorrect Indexes
If indexes are good, more indexes are great, right?

Actually, no. There’s a cost incurred when you add indexes to a database. Each time

a row is added or updated, all the indexes need to be updated, and too many indexes

can slow your database down. It’s important to select a limited number of indexes

that’ll give you quick lookups without slowing down your updates. We’ll be talking

about some tools to help you with this task later in this chapter.

474 The ASP.NET 2.0 Anthology

Poorly Written Queries
It’s easy to land yourself in trouble if you don’t really understand SQL. SQL is not

just another programming language—it’s a declarative, set-based query language.

A lot of your standard programming tricks don’t apply here.

We’ll talk about troubleshooting query plans and poorly written queries in the section

called “How can I troubleshoot a slow query?” later in this chapter.

Deadlocks
Databases use locks to prevent your data from being messed up by conflicting up

dates.

For example, we can’t apply a 10% discount to all of our product prices and delete

all products that are priced over $100 at the same time—we need to process one

product at a time. Locks allow us to do this. The SQL Server engine is reasonably

clever about how it uses database locks—it’ll often lock portions of a table (called

pages) and, sometimes, individual rows.

Yet there’s always the potential for two transactions to arrive at a state where both

are waiting for the freeing of a lock that’s simultaneously held by the other transac

tion. This situation is called a deadlock.

For example, consider two queries that use the Products and Orders tables. The

first query, which we’ll call ProductsThenOrders, uses the Products table first; the

second query, OrdersThenProducts, uses the Orders table first.

ProductsThenOrders locks the Products table and begins to make updates. Mean

while, OrdersThenProducts locks the Orders table and performs its updates. No

problems so far.

Now ProductsThenOrders is ready to update the Orders table, but it can’t—the

other query has it locked. Likewise, OrdersThenProducts wants to update the

Products table, but is also blocked for the same reason. We’re deadlocked!

When SQL Server eventually detects a deadlock, it will pick one query as the

“deadlock victim” and kill it, while the survivors are released. The result of this

conflict resolution process is that one of the queries will return with an error that

it was unable to complete—not the most efficient use of resources.

Performance and Scaling 475

Deadlocks don’t happen too frequently—unless your application executes a lot of

transactions. It’s important to be aware of them and to fix deadlock conditions

quickly. Deadlocks can be avoided by:

■ minimizing transaction length

■ accessing tables in the same order in competing queries

In the above example, accessing the Products table first in both queries would have

prevented the deadlock.

The NOLOCK Query Optimizer Hint

Even if you’re not encountering deadlocks, locks have a definite performance

impact. Locks restrict access to your data in such a way that only one query can

use it at any time—an approach that’s safe but slow.

In some cases, you mightn’t need to lock your rows. You might query historical

data that isn’t subject to change, or it mightn’t be crucial that the data returned in

the query is perfectly up to date—comments on a weblog might fall into this cat

egory.

In these cases, you can use the NOLOCK hint to tell SQL Server you want to read

directly from the table without honoring any locks. Note that this only makes

sense for SELECT statements—any data modification will always require a lock.

Best practices avoid using table hints—parameters that override the default beha

vior of a query—when possible. However, this one is relatively innocuous as long

as you understand that you may be viewing uncommitted changes. Just don’t use

it when displaying critical information, such as financial data.

Here’s how you’d use it:

SELECT COUNT(1) FROM Orders WITH (NOLOCK)

Since this statement places no locks on the data that it’s reading, other queries

won’t be forced to wait for the query to complete before they can use the Orders

table.

You can read more about deadlocks in the MSDN article, “Analyzing Deadlocks

with SQL Server Profiler.”10

10 http://msdn2.microsoft.com/en-us/library/ms188246.aspx

http://msdn2.microsoft.com/en-us/library/ms188246.aspx
http://msdn2.microsoft.com/en-us/library/ms188246.aspx
http://msdn2.microsoft.com/en-us/library/ms188246.aspx

476 The ASP.NET 2.0 Anthology

Hardware Issues
As with any software application, SQL Server performs at its optimum when it’s

running on sufficiently powerful hardware.

If upgrading your server is an option, the first thing you should look at is memory,

as SQL Server makes heavy use of available memory to cache frequently used data.

And the cost of new memory is relatively cheap—often cheaper than the time re

quired to tune an underpowered database server. Adding memory can compensate

for slow CPU or drive access, since caching can significantly reduce the work that

SQL Server needs to complete.

After you’ve exhausted your memory upgrade options, the next most common

hardware issue is a disk read/write bottleneck. Database hardware configuration is

a large topic and falls well beyond the scope of an ASP.NET book, but a great first

step is to put your log files on a drive that’s as fast possible, and is separate from

the operating system and database files.

Using a production database server for other tasks—especially IIS—is a bad idea.

It’s often necessary in a development environment, but it will have a performance

impact in production.

How can I troubleshoot a slow query?
Optimizing database performance is a complex topic that’s the subject of numerous

very thick books, so I’m not going to pretend that we can make you an expert in

query optimization in a few short pages. Instead, I’ll focus on some of my favorite

“developer to developer” tips to point you in the right direction.

Solution
Before you begin to look for a solution, it’s important to verify the problem at hand.

You can then begin the process of elimination.

Verifying the Problem
First, verify that the SQL you think is being executed is actually being executed.

The best way to confirm this is to duplicate the problem: run the query in SQL

Server Management Studio (SSMS).

Performance and Scaling 477

If you have any doubt about which SQL commands are being executed, run the SQL

Profiler for confirmation (see the section called “How do I speed up my database

queries?” earlier in this chapter for details on using the SQL Profiler). This tool is

especially helpful when used with applications that make use of declarative data

binding, or with frameworks that handle data access for you.

Clearing the SQL Cache when Testing in SSMS

SQL Server uses an intelligent caching system to enhance performance. If you run

frequent queries against a certain table, SQL Server will recognize that fact and

store the source (and result data) of those queries in its internal cache. By doing

so, future matching queries won’t need to look up this data until the next time it

changes.

This functionality, while useful, can be confusing if you conduct your tests by

running your queries from SSMS—some of your query information may be cached,

so your queries will run faster the second time you execute them.

To ensure that you make valid comparisons that don’t return cached information,

clear your cache each time you run the query. The following script does just

this—first it drops caches, then it calls a CHECKPOINT to flush pending changes

from memory to disk, and finally it clears any data that has been stored in memory:

DBCC FREESESSIONCACHE
DBCC FREEPROCCACHE
DBCC FREESYSTEMCACHE('ALL')
CHECKPOINT
DBCC DROPCLEANBUFFERS
GO -- Your query goes here

Once you’re able to duplicate the problem in SSMS, you can dig into the query itself.

Checking for Large Result Sets
If your query returns more rows than you expected it to, there are two main problems

to look at—cross joins and incomplete WHERE clauses.

A cross join occurs when you fail to specify a join correctly. Here’s an example:

SELECT * FROM Customers, Orders, [Order Details], Products

478 The ASP.NET 2.0 Anthology

In the above query, we haven’t specified how the tables should be joined, so the

SQL interpreter will attempt to return every possible combination. That means that

our result set will include every Order combined with every Customer (not just the

Orders that each Customer made). So this query returns about 12.5 billion rows (91

Customers × 830 Orders × 2155 Order Details × 77 Products)—that’s roughly 7.5GB

of data.

That return is obviously way out of line, considering there are only 830 orders in

the system. Of course, this is a slightly exaggerated example for demonstration

purposes, but it’s easy to see how a single cross join can waste a lot of database re

sources (CPU and memory) and delay network traffic between the database and web

server.

An incomplete WHERE clause isn’t quite as bad, but can still return more rows than

you need. The following query returns 2155 rows:

SELECT * FROM [Order Details]

This one, on the other hand, returns three rows:

SELECT * FROM [Order Details] WHERE OrderID = 10252

ADO.NET makes it really easy to filter your data on the server, but unfortunately

this feature is a double-edged sword—it can mask problems with a large result set.

That’s why it’s important to verify the problem with real, systematic measurement

rather than just assume that a Gridview displaying only a handful of rows couldn’t

possibly be the source of the problem.

Checking the Query Plan
If your query is indeed returning the correct number of rows, but still takes too long,

the next step is to look at the query plan, which is a visual representation of the

steps that your query takes to return its result set.

You can view the estimated query execution plan in SSMS if you first select the

query, then select Display Estimated Execution Plan from the Query menu (tor use the

toolbar button or the keyboard shortcut—Ctrl-L). You’ll also have the option to in

clude the actual query execution plan (also available from the Query menu, the

toolbar, and via the keyboard shortcut Ctrl-M). The actual plan is a little more ac

Performance and Scaling 479

curate than the estimated one, but requires that you actually execute the query and

wait for it to complete.

Let’s look at the actual execution plan for the uspGetBillOfMaterials stored pro

cedure in the AdventureWorks sample database that comes with SQL Server. Enter

the following text in the SSMS query window, then turn on the Include Actual Execu

tion Plan option and execute the query:

EXEC dbo.uspGetBillOfMaterials 800, '2001-01-09'

Figure 15.16 shows the result.

Figure 15.16. The execution plan for the uspGetBillOfMaterials stored procedure

Figure 15.17 shows a close-up of the bottom right-hand corner of our plan.

Figure 15.17. A close-up of the execution plan for the uspGetBillOfMaterials stored procedure

480 The ASP.NET 2.0 Anthology

You’ll need to look for a few important things when you’re analyzing an execution

plan:

thick lines

Thick lines in the execution plan indicate large amounts of data being passed

between steps. I was once troubleshooting an extremely slow summary report

query that returned only a dozen rows. When I looked at the execution plan, I

saw that some of the lines between steps were an inch thick—this indicated

billions of rows being passed between those steps, which were then filtered

down to the final dozen rows displayed in the browser. The solution was to

modify the query to ensure that the data was filtered as early as possible.

large values for Cost

Large percentage numbers indicate the most expensive operations—the value

of 44% in Figure 15.17 is one example of this.

any operation containing the word “scan”

If one of the steps on your plan contains the word “scan” (or, in particular,

“Table Scan”), this is an indication that the SQL engine had to step through

every row in a table to find the data that it was after. This is usually associated

with a high Cost value. There are occasions when a table scan is accept

able—such as when you’re performing a lookup against a very small table—but

in general they’re best avoided.

If you see a problem, you can troubleshoot it in SSMS: modify the query and view

the effect of your change on the execution plan.

If it looks as though your issue may be the result of an indexing problem, the best

solution is to right-click the query and select Analyze Query in Database Engine Tuning

Advisor. The DTA will launch with all the necessary options preselected, so all you

need to do is click the Start Analysis button. Figure 15.18 shows the results of one

such analysis.

Performance and Scaling 481

Figure 15.18. Analyzing a query in the DTA

As you can see, the DTA has recommended two index changes and one statistical

change that should improve this query’s performance by 31%. Of course, you’ll

need to consider the effect that these additional indexes will have on updates to

the affected tables. In this case, since the tables in this particular example are

probably updated rather infrequently, I think that these new indexes make sense.

You can apply or save these changes via the Actions menu.

Eliminating Cursors
You’ll want to look for and eliminate any unnecessary cursors—pointers for travers

ing records in the database.

Cursors let you write in a procedural style, applying logic to a single table row at a

time. While it can be tempting to drop back to those skills that are most familiar to

you in sticky situations, cursor-based queries will prevent the database engine from

taking advantage of the index optimizations and set-based operations for which it

was designed.

Resist the urge and get rid of your cursors!

482 The ASP.NET 2.0 Anthology

I’ve written a lot of SQL in ten years of professional programming, and I’ve yet to

encounter a case where cursors were required. I recently rewrote someone else’s

complex query from using cursors to standard SQL, and the time for the resulting

operation dropped from eight hours to just over one minute.

Think about how to describe the problem as a bulk operation. For example, suppose

your mode of thinking about a query was something like this:

“I’ll loop through the orders table, get the product ID, then grab the

price, and compare it to …”

Instead, consider rephrasing it to something like this:

“I want to find all orders for products that have prices greater than

a certain amount …”

Remember that you can use common table expressions (CTEs), table variables, and

temporary tables if you’re stuck. While these fallback options aren’t as efficient as

performing a bulk operation, they at least allow the query engine to make use of

indexes.

The Problem with SELECT *
Most developers will tell you that SELECT * queries are bad, but for the wrong

reason.

The commonly understood reason is that SELECT * is wasteful because it returns

columns that you don’t need. While this is true, most normalized tables don’t contain

that many columns, so these extra rows usually won’t have a noticeable impact on

your site’s performance unless they number in the millions.

Often, the bigger problem with SELECT * is the effect it will have on the execution

plan. While SQL Server primarily uses indexes to look up your data, if the index

happens to contain all of the columns you request, it won’t even need to look in

the table. This concept is known as index coverage.

Compare the following two queries (against the sample AdventureWorks database):

Performance and Scaling 483

SELECT * FROM Production.TransactionHistoryArchive

WHERE ReferenceOrderID < 100

SELECT ReferenceOrderLineID FROM

Production.TransactionHistoryArchive

 WHERE ReferenceOrderID < 100

In both cases, we’re returning the same number of rows, and the SELECT * query

only returns 15KB more data than the second query. However, take a look at the

execution plans shown in Figure 15.19.

Figure 15.19. The execution plan for two queries—one using SELECT *, and one using the table name

You’ll notice that the first query took 99% of the relative work for both queries. The

second query was able to look up the values in the index via an index seek—a search

that touches on only those rows that qualify. The first query, however, had to scan

all the rows in the table. In this case, the fact that the requested columns were all

contained in the search index resulted in a performance difference of nearly one

hundred-fold.

It’s important to include commonly queried data in your indexes—something that’s

simply not feasible if you’re using SELECT *. If you just query the rows you need,

the DTA will be able to recommend indexes to cover them.

Accessing More Information
There’s a plethora of resources to which you can turn when you’re stuck on a really

difficult SQL database issue. Here are just a few of them:

■	 The Microsoft TechNet article on troubleshooting performance problems in SQL

Server 2005

(http://www.microsoft.com/technet/prodtechnol/sql/2005/tsprfprb.mspx#E1BAG)

(http://www.microsoft.com/technet/prodtechnol/sql/2005/tsprfprb.mspx#E1BAG)

484 The ASP.NET 2.0 Anthology

■	 SQLTeam.com—one of many SQL Server community forums

(http://www.sqlteam.com/)

■	 The SitePoint Databases Forum (http://www.sitepoint.com/launch/dbforum/)

Summary
Performance optimization is an iterative process—be prepared to follow the repet

itive steps of analyzing your site’s performance, tuning your application, analyzing

the performance again, then tuning some more, until your site performs the way

you want it to. Premature optimization—tuning without understanding what’s

causing the slowdown—is likely to cause more problems than it solves.

ASP.NET and SQL Server 2005 power some of the most popular and powerful sites

upon the planet, including MySpace, which serves billions of page views per day.11

You’ve got all the tools you need to get the maximum possible use out of your web

server—I hope the tips in this chapter will help you to put them to work.

11 http://www.myspace.com/

http://www.myspace.com/
(http://www.sqlteam.com/)
(http://www.sitepoint.com/launch/dbforum/)
http://www.myspace.com/

Chapter16
Search Engine Optimization
The best web content in the world is worthless if nobody can find it.

On today’s Web, a large percentage of your audience will find your site through a

search performed on a major search engine, such as Google, Yahoo!, or MSN.

Therefore, it should be your goal to rank on the first page of search results for the

search keywords relevant to your content. The tasks involved in achieving this goal

are known collectively as Search Engine Optimization, or SEO.

The first rule of SEO is very simple: create compelling content, and people will

eventually find it, link to it, and increase its ranking. Nothing else you can do will

matter as much as following this basic first rule. Put 99% of your effort into creating

really great content—content that’s useful to people, content that solves problems

for people, content that provides helpful answers. Once you’ve done that, everything

else almost takes care of itself.

That said, there are ways to make your content more accessible to search engines.

That’s the other 1% of SEO. To ensure that potential users or customers can find

your web pages, you need to think like a search engine spider. Search engine spiders

don’t see images; they have a very limited understanding of Flash animations and

486 The ASP.NET 2.0 Anthology

JavaScript; they certainly don’t understand any fancy Ajax features. All they see is

plain text and HTML.

To get yourself in the right frame of mind, open your page in a browser and view

the source. That’s what the search engine spider will see. Does your raw HTML

look as good as the rest of your web site? Is it clean? Can you understand it?

It’s not enough to make your web site look good for users who view it in a web

browser. You need to make it look good as plain text for search engine spiders, too.

In this chapter, we’ll look at how search engines index and rank content, and explore

a number of solutions to specific issues that can hamper your search rankings.

How does Google rank pages?
Statistics—and common knowledge—show that Google is the most popular search

engine. While the tips in this chapter are applicable to all major search engines, it’s

important that you have an understanding of how Google works.

Solution
Until recently, Google’s PageRank algorithm was fairly easy to understand. Links

to your site counted as votes, so if you linked the word “monkey” from your site to

the San Diego Zoo’s web site, you increased the chances that a user searching for

the word “monkey” would see a link to the San Diego Zoo. Instead of search engines

trying to figure out what we wanted to see, Google just directed traffic based on the

road signs that content developers had set up.

This worked really well until everyone understood that links to their site meant

high rankings, and unscrupulous people started to take advantage of the fact. You

can still see the aftermath of these circumstances—especially in weblog sites, where

automated systems litter blog comment areas with comment spam. Other automated

systems copied content from legitimate weblogs and re-posted it on sites that in

cluded links to sites that were hoping for a higher Google rank, and hence more

traffic and money. As this evidence suggests, abuse of the system was rife.

Google responded with a series of updates, codenamed “Florida” (in 2003) and

“Jagger” (in 2005), which were intended to make the system a lot harder to abuse.

Search Engine Optimization 487

The exact algorithms are kept secret and regularly updated, but the basic ideas are

reasonably well known.

Google has replaced the elegant but naïve PageRank system with the more cynical

and world-weary TrustRank system. This system still counts links as votes, but it

only counts votes from sites it trusts. A site is allocated trust ratings on the basis of

links to that site from other sites that are already trusted. And trust propagates

through the system, so if The New York Times web site links to my site, and I link

to your site, your Google rank and trust rating within the system will both increase

as a result of The New York Times’s TrustRank. This system also allows site owners

to identify among their pages links that shouldn’t count towards the linked site’s

search rank: the site owner simply adds rel="nofollow" to the relevant a elements.

This facility has made the huge majority of comment spam completely useless (al

though unfortunately, the fact that it’s useless doesn’t mean it’ll go away).

This system also punishes sites that attempt to abuse the system, removing their

PageRank and TrustRank. If you follow SEO news, you’ll regularly read about top

corporations that tried to cheat the system and wound up banished from the search

results for six months or more.

Once you understand how Google determines your site’s rank, you’ll see why

everything we’re advising is geared towards just making sure the search engines

can find your pages and read the content. If you provide good content, you’ll receive

links from other sites, and advance up the Google rankings. You’ll understand that

stuffing your page with keywords is useless, because these don’t count as votes to

wards your search ranking. And you’ll know better than to waste your time trying

to cheat the system, because it’s difficult to do, and likely to see your site removed

from search results.

How do I ensure search engines review only
search-relevant content?
If you view the source of an ASP.NET page, the first thing you’ll notice is a giant

chunk of Base64-encoded text in a hidden input element at the top of the page.

You can’t miss it, as Figure 16.1 shows.

488 The ASP.NET 2.0 Anthology

Figure 16.1. The ViewState input element at the top of an ASP.NET-generated web page

This is the container for view state data. In case you skipped Chapter 6, view state

is a persistence mechanism that’s built into ASP.NET to enable controls on the page

to remember values between postbacks.

View state is both a blessing and a curse. It’s convenient, because it keeps you from

needing to write code to load and restore control values between postbacks. But it

also increases the size of your page—sometimes dramatically.

View state can also interfere with search engine spiders. Most spiders will only re

trieve the first n kilobytes of your page to index, where n is anything from 200 to

around 1100 kilobytes.1 If your ViewState object is 20 kilobytes in size, that’s 20

kilobytes of meaningless, non-indexable binary data that the spider will ignore. You

could have used those 20 kilobytes to present valuable content, boosting your search

rankings in the process.

Solutions
There are three solutions to this problem. You can remove view state, move view

state, or create an HttpModule class.

1 http://www.sitepoint.com/article/indexing-limits-where-bots-stop/

http://www.sitepoint.com/article/indexing-limits-where-bots-stop/
http://www.sitepoint.com/article/indexing-limits-where-bots-stop/
http://www.sitepoint.com/article/indexing-limits-where-bots-stop/

Search Engine Optimization 489

Removing View State
My advice is to disable view state unless you really need it. If you’re not using it,

why not simplify your page? This can be done on a per-page or per-control basis;

just set the ViewState property to false, and you’re done.

No, Really: Try Disabling View State

You may have tried disabling view state in ASP.NET 1.0 or 1.1 and found that

some of your controls ceased to function. The DataGrid was a prime ex

ample—when you disabled view state, all the events stopped firing.

ASP.NET 2.0 improved this situation with the introduction of control state. Control

state holds the essential information that’s required for the control to function,

and it stays there even when you disable view state. So a GridView with view

state disabled will still work—it just doesn’t store all your bound data between

postbacks.

So, give that “view state-free” thing another try. Really.

If you can’t disable view state, the next best thing is to pick it up and move it to a

place where it will do less damage: the bottom of the page.

Moving View State
The easiest way to move view state on a specific page is to override the Render

method on the Page class. Just add the following code to any page in your ASP.NET

project:

MoveViewState.aspx.cs (excerpt)

protected override void Render(HtmlTextWriter writer)
{
 MoveViewState(writer);
}

protected void MoveViewState(HtmlTextWriter writer)
{
 StringWriter sw = new StringWriter();
 HtmlTextWriter hw = new HtmlTextWriter(sw);
 base.Render(hw);
 string html = sw.ToString();
 int ViewStateStart = html.IndexOf(

490 The ASP.NET 2.0 Anthology

"<input type=\"hidden\" name=\"__VIEWSTATE\"");

 if (ViewStateStart <= 0)

 {

 writer.Write(html);

 return;

 }

 // write the section of html before viewstate

 writer.Write(html.Substring(1, ViewStateStart - 1));

 int ViewStateEnd = html.IndexOf("/>", ViewStateStart) + 2;

 int FormEndStart = html.IndexOf("</form>");

 // write the section after the viewstate

// and up to the end of the FORM

 writer.Write(html.Substring(ViewStateEnd, html.Length

ViewStateEnd - (html.Length - FormEndStart)));

 // write the viewstate itself

 writer.Write(html.Substring(ViewStateStart,

ViewStateEnd - ViewStateStart));

 // now write the FORM footer

 writer.Write(html.Substring(FormEndStart));

}

Load the page into a browser, and view the source again. Note how clean your page

looks now—Figure 16.2 shows how it appears.

Search Engine Optimization 491

Figure 16.2. The page source after the view state data has been moved to the bottom of the page

This is a satisfactory solution, but it’s a little tedious. Who wants to go through

every page of their web site, adding this bit of code? This is copy-and-paste program

ming at its worst.

A slightly smarter approach would be to create a new base Page class and inherit

all of our pages from that class. But that approach would still require us to edit

every single page in our project. What are we to do?

Creating an HttpModule
The simplest way to move view state to the bottom of every page in your application,

without editing every single page, is to implement this code as an HttpModule.

First, create a new class file to contain our Filter, and call it MoveViewStateFilter,

as shown in the code below. The Filter inherits from IO.Stream and does the

heavy lifting of moving strings around in the page. It’s almost identical to the

MoveViewState function we saw earlier:

492 The ASP.NET 2.0 Anthology

MoveViewStateFilter.cs (excerpt)

public class MoveViewStateFilter : System.IO.MemoryStream
{
 System.IO.Stream _filter;
 readonly Encoding _encoding = Encoding.UTF8;
 bool _filtered = false;

 public MoveViewStateFilter(System.IO.Stream filter)
 {
 _filter = filter;

 }

 public override void Close()
 {
 if (!_filtered)
 {
 base.Close();
 return;

 }
 if (this.Length == 0)
 {
 _filter.Close();
 base.Close();
 return;

 }
 byte[] bytes;
 string html = _encoding.GetString(this.ToArray());
 int ViewStateStart = html.IndexOf(

 "<input type=\"hidden\" name=\"__VIEWSTATE\"");
 if (ViewStateStart <= 0)
 {
 bytes = this.ToArray();

 }
 else
 {
 System.IO.StringWriter writer =

new System.IO.StringWriter();

 // write the section of html before viewstate
 writer.Write(html.Substring(1, ViewStateStart - 1));
 int ViewStateEnd = html.IndexOf("/>", ViewStateStart) + 2;
 int FormEndStart = html.IndexOf("</form>");

 // write the section after the viewstate

Search Engine Optimization 493

// and up to the end of the FORM

 writer.Write(html.Substring(ViewStateEnd, html.Length

ViewStateEnd - (html.Length - FormEndStart)));

 // write the viewstate itself

 writer.Write(html.Substring(ViewStateStart,

ViewStateEnd - ViewStateStart));I

 // now write the FORM footer

 writer.Write(html.Substring(FormEndStart));

 bytes = _encoding.GetBytes(writer.ToString());

 }

 _filter.Write(bytes, 0, bytes.Length);

 _filter.Close();

 base.Close();

 }

 public override void Write(byte[] buffer, int offset, int count)

 {

 // only do this for text/html responses

 if (HttpContext.Current.Response.ContentType == "text/html")

 {

 base.Write(buffer, offset, count);

 _filtered = true;

 }

 else

 {

 _filter.Write(buffer, offset, count);

 _filtered = false;

 }

 }

}

Now, create a class called MoveViewStateModule, which inherits from IHttpModule.

It hooks up our Filter to the life cycle of the ASP.NET Request:

MoveViewStateModule.cs (excerpt)

public class MoveViewStateModule : System.Web.IHttpModule
{
 public MoveViewStateModule() { }
 void System.Web.IHttpModule.Dispose() { }
 void System.Web.IHttpModule.Init(

 System.Web.HttpApplication context)

494 The ASP.NET 2.0 Anthology

{

 context.BeginRequest +=

new EventHandler(this.BeginRequestHandler);

 }

 void BeginRequestHandler(object sender, EventArgs e)

 {

 System.Web.HttpApplication application =

(System.Web.HttpApplication)sender;

 application.Response.Filter =

new MoveViewStateFilter(application.Response.Filter);

 }

}

Once we’ve added our Filter and HttpModule to the code, all we need to do is add

the MoveViewStateModule to our Web.config’s httpModules section:

Web.config (excerpt)

<?xml version="1.0"?>
<configuration>
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <compilation debug="true" />
 <authentication mode="Windows" />
 <httpModules>
 <add type="MoveViewStateModule, WebApp"

name="MoveViewStateModule" />
 </httpModules>

 </system.web>
</configuration>

The net result is identical to the per-page method shown earlier: the view state is

moved to the bottom of the page.

Using the HttpModule technique, all you have do to is:

■	 Add the precompiled assembly to your web site, or add the source code to your

web site.

■	 Modify Web.config to include the new HttpModule.

Search Engine Optimization 495

The HttpModule approach is far more powerful than the previous solutions because

it allows you to make global changes to the way your pages render without modifying

a single line of code on any of those pages. Great stuff!

How do I rewrite my URLs for human
readability?
If someone sent you an email that contained the URL below, would you click on

it?

http://www.happy.com/view?v=JZCHpacxl4c

Now, would you click on the URL if it was reformatted to look like this?

http://www.happy.com/install/virulent-virus.do

That’s just one example of how human-readable URLs make life easier for everyone.

The text of the URL itself should hint as to the content users might expect to find

at that location.

Human-readable URLs also boost the relevance of your page to the keywords for

which you’re trying to obtain a good ranking. When users perform a web search,

they aren’t just searching the content of the pages. They’re also searching the title

of the page, and the text of the URL itself. The inclusion of keywords in the URL is

a powerful indicator that the user might find relevant content at that URL.

But forget SEO for a moment. If your URLs look like programming gobbledygook

…

http://www.amazon.com/One-Fish-Two-Red-Blue/dp/0007173687/ref=sr_1_10/

102-5693857-5089762?ie=UTF8&s=books&qid=1179896923&sr=1-10

… then you’ve failed the user. We can, and should, do better than this today. Sim

plify your URLs via rewriting and make them human-readable. Take, for example,

this URL:

http://mysite.com/category.aspx?id=refrigerators&subcat=stainless

We can rewrite the URL to express the same thing in a more human-readable way:

http://www.happy.com/view?v=JZCHpacxl4c
http://www.happy.com/install/virulent-virus.do
http://www.amazon.com/One-Fish-Two-Red-Blue/dp/0007173687/ref=sr_1_10/
http://mysite.com/category.aspx?id=refrigerators&subcat=stainless

496 The ASP.NET 2.0 Anthology

http://mysite.com/refrigerators/stainless/

Isn’t that much nicer? For more evidence of the usability benefits of human-readable

URLs, I refer you to a 1999 column by usability guru Jakob Neilsen titled “URL as

UI.”2

Solutions
ASP.NET 2.0 provides some basic tools for us to use to write our own URL rewriting

engine, but before we talk about them, I need to point out that they have one serious

limitation.

If you want to use .NET code to rewrite URLs, you can only do so for pages that end

in .aspx or some other extension that’s handled by the aspnet_isapi.dll ASP.NET

handler in IIS. You can see which file extensions are mapped to each handler in

the Application Configuration dialog in IIS, as shown in Figure 16.3.

Figure 16.3. IIS file extensions and their handlers

2 http://www.useit.com/alertbox/990321.html

http://www.useit.com/alertbox/990321.html
http://www.useit.com/alertbox/990321.html
http://mysite.com/refrigerators/stainless/
http://www.useit.com/alertbox/990321.html

Search Engine Optimization 497

The only available workaround is to remap file extensions in IIS so that every single

file type, not just the ones ending in .a??xx, are handled by aspnet_isapi.dll. This un

dertaking is known as wildcard mapping, and it’s a very invasive change. It means

that every file—including static HTML files, images, CSS files, and so forth—will

be passed through aspnet_isapi.dll. However, it doesn’t work perfectly: wildcard

mapping can’t deal with URLs that refer to directories. In short, it’s a scorched-earth

solution with a lot of problems, which is why I don’t recommend it.

So, what are our options? Well, I have some good news, and some bad news.

The bad news is that it’s difficult to undertake proper URL rewriting using only

.NET code. If you’re serious about URL rewriting, you shouldn’t be doing it in .NET

code at all—you should be doing it at the web server level.

The good news outweighs the bad, though:

■	 In IIS 5.x and 6, you can install third-party ISAPI add-ins to enable proper URL

rewriting.

■	 In IIS 7, .NET code can be hooked into the rendering pipeline, so you can write

a true .NET URL rewriter at last.

URL Rewriting Via IIS
For IIS 6, a number of third-party products enable proper URL rewriting support:

■	 Ionic’s ISAPI Rewrite Filter: http://cheeso.members.winisp.net/IIRF.aspx (free!)

■	 ISAPI_Rewrite: http://www.isapirewrite.com/

■	 IISRewrite: http://www.qwerksoft.com/products/iisrewrite/

These solutions typically support the de-facto standard Apache mod_rewrite rules,

as documented in the Apache URL Rewriting Guide.3 Note that you must be famil

iar with regular expressions to set up rewrite rules, whatever solution you choose.

I have yet to see any URL rewriting tool that didn’t use regular expressions as its

lingua franca.

3 http://httpd.apache.org/docs/2.0/misc/rewriteguide.html

http://httpd.apache.org/docs/2.0/misc/rewriteguide.html
http://cheeso.members.winisp.net/IIRF.aspx
http://www.isapirewrite.com/
http://www.qwerksoft.com/products/iisrewrite/
http://httpd.apache.org/docs/2.0/misc/rewriteguide.html

498 The ASP.NET 2.0 Anthology

Here’s an example of some practical, basic URL rewriting rules that I use on my

own web server.

The first rule prevents image bandwidth theft (you can blame MySpace for this

one!).4 Unless the Referer value of the HTTP request is in the whitelist (in this

abbreviated example, only my own site and google.com are allowed), the users see

a generic, small block.gif instead of the image they requested:

Block external image linking

RewriteCond Referer: (?!http://(?:www\.codinghorror\.com|(?:.+\.)?go

➥ogle\.\w{2,3})).+

RewriteRule .*\.(?:gif|jpg|jpeg|png) /images/block.gif [I,O]

This next rule appends a trailing slash to the ends of folder names, so that, for in

stance, http://www.codinghorror.com/blog becomes

http://www.codinghorror.com/blog/. This approach is slightly more efficient; the

trailing slash prevents an extra HTTP round trip to determine whether or not the

request is for a folder:

fix missing slash on folders

RewriteCond Host: (.*)

RewriteRule ([^.?]+[^.?/]) http\://$1$2/ [I,R]

These rules remove the default files from the URL, so users don’t bookmark the

longer version of the URL (such as http://mywebsite/index.html). Instead, they

bookmark the much simpler version (such as http://mywebsite/):

remove index pages from URLs

RewriteRule (.*)/default.htm $1/ [I,RP,L]

RewriteRule (.*)/default.asp $1/ [I,RP,L]

RewriteRule (.*)/default.aspx $1/ [I,RP,L]

RewriteRule (.*)/index.htm $1/ [I,RP,L]

RewriteRule (.*)/index.html $1/ [I,RP,L]

4 MySpace [http://myspace.com/] is a social networking site that’s wildly popular with teenagers.

MySpace users are often innocently ignorant of the trouble that linking to an image on another site from

their own MySpace pages can cause.

http://myspace.com/
(?!http://(?:www\.codinghorror\.com|(?:.+\.)?go
http://www.codinghorror.com/blog
http://www.codinghorror.com/blog/
http://mywebsite/index.html)
http://mywebsite/)
[http://myspace.com/]

Search Engine Optimization 499

I prefer the canonical URL—the definitive format to which each URL on a site re

solves—for my site to use the www. prefix. The rule below forces requests for

http://mywebsite.com/ to become http://www.mywebsite.com/:

force proper www. prefix on all requests

RewriteCond %HTTP_HOST ^codinghorror\.com

RewriteRule ^/(.*) http://www.codinghorror.com/$1 [RP,L]

URL Rewriting Via .NET Code
If you want to perform URL rewriting in .NET, I strongly advise you not to write

your own URL rewriting code—it’s too easy to get it wrong (and I’m telling you that

from personal experience!). Besides, why bother writing at all when there’s a per

fectly good open source solution like UrlRewritingNet?5 Spending less time solving

problems that have been solved by thousands of people before you enables you to

focus your energies on other, more unique parts of your application.

Implement URL Rewriting only for Extensions Handled by ASP.NET

As we mentioned at the beginning of this discussion, ASP.NET doesn’t process

all requests to your site by default and, for performance reasons, you probably

don’t want it to. For example, static resources like images and HTML files are

served directly by IIS, so they end up on the user’s screen faster than if they had

had to pass through the ASP.NET system. If you want to use .NET code to rewrite

URLs for resources it wouldn’t normally process, you’ll need to map those exten

sions to IIS using the Application Configuration dialog, as I mentioned earlier.

Let’s walk through the task of setting up URL rewriting using the UrlRewritingNet

module. Add to the UrlRewritingNet.UrlRewriter.dll a reference to our web project,

then prepare to edit Web.config in a few places. First, add the rewriting HttpModule:

Web.config (excerpt)

<system.web>
 <compilation debug="true" />
 <authentication mode="Windows" />
 <httpModules>my web pages are visible to search engines?
 <add name="UrlRewriteModule"

5 http://www.urlrewriting.net/

http://www.urlrewriting.net/
http://mywebsite.com/
http://www.mywebsite.com/
http://www.codinghorror.com/$1
http://www.urlrewriting.net/

500 The ASP.NET 2.0 Anthology

type="UrlRewritingNet.Web.UrlRewriteModule,

UrlRewritingNet.UrlRewriter" />

 </httpModules>

</system.web>

Next, add the reference to the custom configuration section where we’ll set up our

URL rewriting preferences:

Web.config (excerpt)

<configSections>
 <section name="urlrewritingnet" restartOnExternalChanges="true"

 requirePermission="false"
 type="UrlRewritingNet.Configuration.UrlRewriteSection,
 UrlRewritingNet.UrlRewriter" />

</configSections>

Now we’ll hook up an actual rewriting rule in the custom configuration section.

We’ll use the example I gave earlier, where a browser request of:

http://mysite.com/refrigerators/stainless/

results in a server request to:

http://mysite.com/category.aspx?id=refrigerators&subcat=stainless

Let’s see what that looks like when it’s expressed as a URL rewriting rule:

Web.config (excerpt)

<urlrewritingnet
 xmlns="http://www.urlrewriting.net/schemas/config/2006/07" >

 <rewrites>
 <add name="RewriteOnDomain"

virtualUrl="/(\w+)/(\w+)$"
 destinationUrl="~/category.aspx?id=$1&subcat=$2" />

 </rewrites>
</urlrewritingnet>

http://mysite.com/refrigerators/stainless/
http://mysite.com/category.aspx?id=refrigerators&subcat=stainless

Search Engine Optimization 501

The namespace attribute (xmlns) is a nice touch, and it really reflects how polished

this open source URL rewriting framework is. It’s a fairly simple rule; any time we

see an URL that ends with this:

(anything)/(word1)/(word2)

we replace it with:

/category.aspx?id=(word1)&subcat=(word2)

This is an intentionally simple rewrite example—there are many more knobs you

can adjust and switches you can flip. For the complete rundown I recommend you

read through the excellent documentation available at the URLRewritingNet site.6

Here’s what our rewrite rule looks like in the browser. Figure 16.4 shows the old,

ugly URL, and Figure 16.5 shows the new, friendlier, rewritten URL.

Figure 16.4. The original, messy URL

Figure 16.5. Our shiny, new, human-readable URL

6 http://www.urlrewriting.net/download/UrlRewritingNet20.English.pdf

http://www.urlrewriting.net/download/UrlRewritingNet20.English.pdf
http://www.urlrewriting.net/download/UrlRewritingNet20.English.pdf

502 The ASP.NET 2.0 Anthology

It’s important to remember that the same category.aspx page is used in both cases,

and behind the scenes, the URL is identical. The same query string parameters are

passed in, but the rewritten form is much more readable by humans. And the best

part is that we barely had to write any code at all!

Don’t Redirect Yourself out of Search Engines!

By default, rewriting your URLs with .NET code does not generate an HTTP status

code of 301 (Permanent Redirect). It is possible to redirect your users if you so

choose, but you should take care with the status code that you send. By default,

.NET returns a status code of 302, which can cause your redirected URLs to drop

out of search indexes, according to Google’s Matt Cutts.7 If you opt to use redirects,

make absolutely sure you set redirectMode to 301 (permanent), or you may

regret it.

URL Rewriting with a Custom 404 Page
There are cases where you’ll need to rewrite URLs that won’t be handled by

ASP.NET, though you can’t install an ISAPI filter. For example, let’s say you wanted

to process requests for JPG files, but your site’s running under a basic shared hosting

plan at a hosting provider.

In such cases, you can use a sleazy hack to rewrite those requests. The technique

requires that you have set a custom 404 page—a page that’s displayed in place of

the standard “missing resource” page when a requested URL can’t be found. While

most shared hosting providers won’t let you monkey with IIS settings, many will

at least allow you to specify a custom 404 page.

This technique takes advantage of the fact that we can actually include code to

perform logic inside that custom 404 page. To perform the rewriting, we can inten

tionally link to a page that we know doesn’t exist, then remap the client’s request

as required—all from within the 404 page. Yes, this is an ugly hack, but it does

work. We don’t recommend this approach if you can use an ISAPI filter-based re

writer, or if you only need to rewrite file extensions that ASP.NET knows about.

However, when you’re out of options, you can give this technique a shot.

7 http://www.mattcutts.com/blog/asp-net-2-and-url-rewriting-sometimes-harmful/

http://www.mattcutts.com/blog/asp-net-2-and-url-rewriting-sometimes-harmful/
http:ASP.NET
http://www.mattcutts.com/blog/asp-net-2-and-url-rewriting-sometimes-harmful/

Search Engine Optimization 503

First, we’ll remap the missing page requests in IIS; then we’ll configure ASP.NET

to rewrite specific extensions. If you don’t have access to the IIS Management

Console, or you’re using a web server other than IIS, ask your system administrator

for assistance in configuring a custom 404 page.

1.	 If you’re using IIS, launch the IIS Management Console. Right-click on your

site, and select Properties. Click on the Custom Errors tab, select 404 from the list

of HTTP errors, and click the Edit Properties… button.

2.	 Select URL for the Message Type, and enter the filename 404.aspx in the URL text

field.

3.	 We need to configure the Web.config file to handle requests that are routed

through ASP.NET. Add the following to the system.web section of your

Web.config file:

Web.config (excerpt)

<configuration>
 <system.web>
 <customErrors mode="On">
 <error statusCode="404" redirect="/404.aspx" />

 </customErrors>
 </system.web>
</configuration>

4.	 The next step is to create the page that will perform the rewriting. Create an

ASP.NET page called 404.aspx and add the following code to the Page_Load

method:

404.aspx (excerpt)

protected virtual void Page_Load(object sender, EventArgs e)
{
 if (Request.QueryString != null

&& Request.QueryString[0] != null)
 {
 string queryString = Request.QueryString[0];

 // Note: The following is true for 404
 // requests that are NOT mapped to ASP.NET

http:ASP.NET

504 The ASP.NET 2.0 Anthology

// IIS will send the string "404;intendedurl"

// in the query string.

 int semiColonIndex = queryString.IndexOf(";");

 // The following line works whether

// there's a semicolon or not.

 string url = queryString.Substring(semiColonIndex + 1);

 Trace.Write("Rewriting","Querystring = " + queryString);

 Trace.Write("Rewriting","Intended URL = " + url);

 // TODO: Add logic to Server. Transfer to correct page

// based on intended URL.

 }

}

That last // TODO: part is up to you to fill in—you’ll need to look at the requested

URL value and map it to the correct destination.

Adding Third-party Logic to your Custom 404 Page

Remember when I said earlier that writing your own custom URL rewriting code

was tough? Well, after leading you through that ugly custom 404 page hack, I have

a confession to make: there is actually an approach by which you can avoid putting

rewriting logic into your 404.aspx page. However, it’s a bit convoluted, so I’ll just

skim the surface of this approach, and let you experiment on your own if you’re

interested in pursuing it.

The basic premise is that it’s possible to use a rewriting engine like URLRewrit

ingNet8 combined with the custom 404 page technique. To do so, we set up a re

writing rule that intercepts requests to 404.aspx and redirects page requests based

on the rewriting rules we discussed earlier. In fact, there needn’t even be a file

called 404.aspx. Here’s an overview of the flow:

■	 The user clicks on a link to a non-existent URL.

■	 IIS notices that there’s no file with that name, and calls the custom 404 page.

■	 ASP.NET steps up to the plate to handle the request to 404.aspx.

■	 The URLRewriting.NET handler intercepts the request to 404.aspx and reroutes

it based on the rewriting rules you’ve configured.

8 http://www.urlrewriting.net/

http://www.urlrewriting.net/
http://www.urlrewriting.net/
http://www.urlrewriting.net/

Search Engine Optimization 505

How do I ensure my web pages are visible
to search engines?
Since you’re using ASP.NET, you’re probably creating a dynamic web site. The web

pages on a dynamic web site aren’t rendered in advance—they’re generated “on the

fly,” usually by a back-end database that holds input from the user.

This means that you probably have a bunch of pages that post back to themselves.

The classic example of this approach is a search page, where users enter some search

criteria in one or more form fields, and the form posts back to itself with the search

results.

However, this is not the way major search engines work. Allow me to demonstrate:

look at the URLs that are produced when performing a search for “lady sovereign”

in each of the three major search engines:

■	 Here’s the Yahoo! search:

http://search.yahoo.com/search;_ylt=A0oGkmTghf9FeuYAawel87UF?&p=lady+sovereign

■	 Here are the search results from Live Search:

http://search.live.com/results.aspx?q=lady+sovereign

■	 And here are the Google results:

http://www.google.com/search?hl=en&q=lady+sovereign

Notice that all of the search terms are passed in directly via the URL. All three major

search engines avoid postbacks in favor of URLs, and you’ll find that most public

web sites work in the same way. Why? Because search engine spiders can’t follow

postbacks. Any web pages behind a postback are therefore completely invisible to

search engines—and thus, to search users.

Solution
Simply put, don’t hide your web pages behind postbacks! It’s okay to use postbacks

in selected areas of your web site, but if you’re interested in attracting public search

traffic, avoid relying on postbacks as the primary method of navigation on your web

site. The fact that postbacks are invisible to search spiders—which is a huge problem

in itself—is not the only reason to avoid them. Postbacks are also problematic for

users:

http:ASP.NET
http://search.yahoo.com/search;_ylt=A0oGkmTghf9FeuYAawel87UF?&p=lady+sovereign
http://search.live.com/results.aspx?q=lady+sovereign
http://www.google.com/search?hl=en&q=lady+sovereign

506 The ASP.NET 2.0 Anthology

■ The browser’s Back button no longer works as expected.

■ Bookmarking no longer works as expected.

■ The browser’s Refresh button no longer works as expected.

With a postback, the page’s URL never changes. The primary method of navigation

for search spiders—and arguably for users as well—is the URL. Therein lies the

disconnect.

Consider, for a moment, a search page created using the default web controls in

Visual Studio 2005:

OldSearch.aspx (excerpt)

<form id="form1" runat="server">
 <div>
 <asp:TextBox id="SearchTextBox" runat="server" />
 <asp:Button id="SearchButton" runat="server"

onclick="Button1_Click" Text="Search" />

 <asp:Label id="SearchResultsLabel" runat="server"

Text="Label" />
 </div>
</form>

This is a typical postback form, so it suffers from all the problems listed above.

One way to retrofit URL query string values into a form is to process them in the

Page_Load event, like so:

NewSearch.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 if (!String.IsNullOrEmpty(Request["q"]))
 {
 SearchTextBox.Text = Request["q"];

 }
}

Now we can prepopulate the search text box at the top of the results page with the

query term. However, this quick fix may not be enough:

Search Engine Optimization 507

■	 The page still does not display a link to the results page produced for the search

term; the link must appear on the page in order for the web search spiders to

find it. That’s okay in this case, as the search form is open ended and doesn’t

need to be indexed, but we should include a link to the results page nonetheless.

■	 The form still posts back by default, so the URL of the results page will never

change. Although you can manually add query terms to the URL for inclusion

in the search, they’re not discoverable by spiders, because the silent postback

takes precedence. Therefore the user has no way to bookmark a query URL res

ulting from the submission of search terms.

To fix these problems, we can add to our search page a piece of code that forces the

button to perform a redirect instead of a postback:

NewSearch.aspx.cs (excerpt)

protected void Button1_Click(object sender, EventArgs e)
{
 if (String.IsNullOrEmpty(Request["q"]))
 {
 Response.Redirect("?q=" + SearchTextBox.Text);

 }
 SearchResultsLabel.Text = SearchResultsLabel.Text;
}

This solution’s not terribly efficient, since we’re now doing a postback and a redirect.

But any deeper changes would mean a departure from the standard ASP.NET page

life cycle model—a rich topic that’s far beyond the scope of this chapter.

Watch Out for Paged Grids

Our example showed that pages can be “hidden” by button controls. Paged grid

controls (the DataGrid and GridView controls) pose another common problem,

since the page links require postbacks. If you have content in paged grids that you

want search engines to find, you’ll either need to implement custom, link-based

paging,9 or make sure that there’s some other way to get to all the content without

a postback (via links on other pages, or an updated sitemap.xml file, for example).

See the tip that follows for more information.

9 http://www.devx.com/dotnet/Article/26823

http://www.devx.com/dotnet/Article/26823
http://www.devx.com/dotnet/Article/26823
http://www.devx.com/dotnet/Article/26823

508 The ASP.NET 2.0 Anthology

Want to Know what Search Spiders See? Just Ask!

You might be surprised to discover that it’s really easy to find out what search

spiders see when they look at your site. The two most popular search en

gines—Google and Yahoo!—both provide webmaster tools portals, which allow

you to see which pages of your site are being spidered, what kinds of errors the

engines encounter when they load your pages, and so on.

Both webmaster tools portals are very easy to use and are completely free. When

you add a new domain to your account, you’ll be required to verify that it’s under

your control by uploading a tiny HTML file to the root of your site. Once you’ve

verified your access, you can look at in-depth information on both the search

spidering process and what search users are doing.

I used this service recently to determine that Google wasn’t able to browse a site

of mine, due to a simple configuration issue that meant the site didn’t show up

on any Google searches. Once that issue was corrected, the site was the top hit

for the target keywords, and of course the traffic picked up immediately. Give

these tools a shot.

Using sitemap.xml

The sitemap.xml protocol allows you to notify search engines of your site catalog

by placing an XML file (named, coincidentally, sitemap.xml) in the root folder of

your web site). This protocol was originally developed by Google, but Yahoo! and

MSN have announced support for it as well.

It’s a good idea to use a sitemap.xml file and keep it up to date. Despite your best

efforts to make your site easy for search engines to spider, the situation is always

slightly beyond site owners’ control: a page could time out or load incorrectly,

causing the spider to miss all of its links. If that happens on a page near the top

of your hierarchy, your entire site (or large sections of it) could drop out of a search

index until the next time the spider returns, which could be weeks into the future.

If you use a sitemap.xml file, the search spider will always try to load every page

in your sitemap, in addition to following links.

Google has documented the sitemap.xml protocol in its Webmaster Tools portal.10

I recommend that you find a system that automates the sitemap.xml generation

process, though, since that will make it easier for you to keep the file up to date.

10 https://www.google.com/webmasters/tools/docs/en/protocol.html

https://www.google.com/webmasters/tools/docs/en/protocol.html
https://www.google.com/webmasters/tools/docs/en/protocol.html

Search Engine Optimization 509

In addition to the list of available third-party systems,11 you can also find

ASP.NET-specific systems, such as handlers and build providers, by performing

a simple search for "google sitemap" ASP.NET. I recommend GSiteCrawler.12

This donation-supported freeware application will spider your site, create your

sitemap.xml, and even FTP it to your web site.

How do I ensure my web pages produce
descriptive search results?
Search engines gather three broad categories of information about your web pages:

1. the contents of the title element

2. the page’s content

3. the text and “weight” of the links that point to your page

There are three main reasons why you should pay particular attention to the title

element:

1. Writing great content is very, very difficult. Getting people to link to your content

is challenging. But writing good titles for your pages is as easy as falling off a

bike.

2. The title element is weighted heavily in search results, which means a given

keyword that appears in the title is more likely to influence a page’s search

engine ranking than a word appearing in the page’s content.

3. The title element is the first thing users will see when they receive a search

result hit on your web pages.

Every page on your site should have a unique, descriptive title—even those that

post back to themselves. Don’t get this small but critically important detail wrong.

Solution
In ASP.NET 1.x, there was no way to access the title element of the page program

matically—a very strange oversight. Fortunately, in ASP.NET 2.0, this oversight

11 http://code.google.com/sm_thirdparty.html
12 http://gsitecrawler.com/

http://code.google.com/sm_thirdparty.html
http://gsitecrawler.com/
http:ASP.NET
http://code.google.com/sm_thirdparty.html
http://gsitecrawler.com/

510 The ASP.NET 2.0 Anthology

was corrected. We can easily set the title dynamically in the Page_Load event via

the Page class:

protected void Page_Load(object sender, EventArgs e)

{

 Page.Title = "Custom Search For " + Request["q"];

}

Titles should be relatively short, so they can reasonably fit in the user’s browser

title bar—a rule of thumb is to keep your title to around 60 characters.

To provide a little more detail about the purpose of the page, we can add the

description HTML meta tag to the page by making use of the HtmlMeta class:

protected void Page_Load(object sender, EventArgs e)

{

 HtmlMeta m = new HtmlMeta();

 m.Name = "description";

 m.Content = "A summary of links related to " + Request["q"]

 + " ordered by relevance";

 this.Header.Controls.Add(m);

}

Search engines universally ignore the information contained in meta elements when

indexing content or categorizing your pages, and the description meta element is

no exception. The text you put into the description won’t be used to weight the

search results, although the description can be displayed within the search results

as the summary text. The actual rules about this are a little hazy, but at least one

source at Google, Vanessa Fox, has confirmed this behavior in a posting to the Google

Webmaster Help group on November 25th, 2006:

Looking at your site in the search results, it appears that your pages

would be well served by meta description tags. For most queries,

the generated snippet is based on where the query terms are found

on the page, and in those cases, your results are fine. But for some

more generic queries, where a logical snippet isn’t found in the text,

the generated snippet seems to be coming from the first bits of text

from the page—in this case, boilerplate navigation that is the same

for every page.

Search Engine Optimization 511

The title element is the most important piece, so focus on getting that right first.

However, if you have time, it’s a good idea to expand the title into a couple of

well-written summary sentences using the meta description element.

Summary
A great site isn’t very useful if no one can find it. In this chapter, we’ve shown you

some practical tips to ensure that search engine users can find your site, while

minimizing the number of changes you have to make to your content.

Chapter17
Advanced Topics
This chapter covers some of the author team’s favorite tips for working with

ASP.NET. These nuggets of wisdom were either too complicated to include in a

previous chapter or didn’t quite fit the category, but were too good to leave out!

How can I tell what’s going on behind the
scenes?
Sometimes, you really need to know what’s going on behind the scenes—especially

if ASP.NET isn’t behaving quite as you expect. For example, you might call

System.Web.DoSomeStuff and find that it’s not doing what you expected. Of course,

your first step should be to perform a web search for System.Web.DoSomeStuff, but

if that comes up empty, fear not—you still have options.

Solution
Use Reflector to look inside the ASP.NET runtime.1

1 http://www.aisto.com/roeder/dotnet/

http://www.aisto.com/roeder/dotnet/
http:ASP.NET
http://www.aisto.com/roeder/dotnet/

514 The ASP.NET 2.0 Anthology

Reflector is a .NET assembly browser. It allows you to look through assembly code

in a variety of languages, including C# and VB. None of the assembly code that

comprises the .NET Framework is obfuscated, so you can look through all of it using

a .NET disassembler. If you haven’t used Reflector before, this might all sound a

little scary. Don’t worry; it’s not.

Many plugins are available for Reflector, allowing you to do all kinds of things with

the decompiled code—for instance, you can analyze it, or even export it to a .NET

project.2 We’re going to concentrate on one of the simplest uses of Reflector in this

solution: determining what System.Web is doing when a page executes. For example,

why do <asp:literal> controls just write exactly what you send them, while

<asp:label> controls seem to have a mind of their own and always wrap your

markup in a span tag?

Let’s take a look. Open Reflector and (if System.Web isn’t already listed), select File

> Open and search for the file System.Web.dll. The default location is C:\WINDOWS\Mi

crosoft.NET\Framework\v2.0.50727, as shown in Figure 17.1.

Figure 17.1. Opening the System.Web.dll file in Reflector

2 http://www.aisto.com/incoming/Reflector/AddIns/

http://www.aisto.com/incoming/Reflector/AddIns/
http://www.aisto.com/incoming/Reflector/AddIns/
http://www.aisto.com/incoming/Reflector/AddIns/

Advanced Topics 515

We can now poke around the framework to gain a better understanding of the classes

that we have, until now, used with blind faith. As demonstrated in Figure 17.2, the

class System.Web.UI.WebControls.Label inherits from

System.Web.UI.WebControls.WebControl.

Figure 17.2. Opening the System.Web.dll file in Reflector

The significance of this hierarchy is that the default constructor for WebControl

uses a span element by default:

protected WebControl() : this(HtmlTextWriterTag.Span)

{ }

The WebControl.Render method always wraps its contents in beginning and ending

tags:

protected override void Render(HtmlTextWriter writer)

{

 this.RenderBeginTag(writer);

 this.RenderContents(writer);

 this.RenderEndTag(writer);

516 The ASP.NET 2.0 Anthology

}

public virtual void RenderBeginTag(HtmlTextWriter writer)

{

 this.AddAttributesToRender(writer);

 HtmlTextWriterTag tag1 = this.TagKey;

 if (tag1 != HtmlTextWriterTag.Unknown)

 {

 writer.RenderBeginTag(tag1);

 }

 else

 {

 writer.RenderBeginTag(this.TagName);

 }

}

After looking through this code, you shouldn’t be surprised that, when the Label

control’s constructor doesn’t override WebControl’s constructor, the Label is wrapped

in a span.

What about Literal, then?

Well, Literal inherits from System.Web.Control, and it supplies its own render

method:

protected override void Render(HtmlTextWriter output)

{

 output.Write(this._text);

}

We can see that the Literal control’s Render method writes exactly what was

supplied in the Literal’s Text property—nothing more.

What was the point of this exercise? Aren’t there other ways to find out how a

Literal and a Label will render—ways that don’t rely on third-party products? Of

course there are! You could test it yourself, or you could read the documentation.

In fact, these approaches are often easier than reading through the .NET Framework

source code. However, it’s always very nice to know that you can dig deep into the

guts of the .NET Framework any time things aren’t working the way you expect

them to.

Advanced Topics 517

One more example—let’s look at the System.Web.Mail.SmtpMail.Send class:

public static void Send(string from, string to, string subject,

 string messageText)

{

 lock (SmtpMail._lockObject)

 {

 if (Environment.OSVersion.Platform != PlatformID.Win32NT)

 {

 throw new PlatformNotSupportedException

 (SR.GetString("RequiresNT"));

 }

 if (Environment.OSVersion.Version.Major <= 4)

 {

 SmtpMail.CdoNtsHelper.Send(from, to, subject,

 messageText);

 }

 else

 {

 SmtpMail.CdoSysHelper.Send(from, to, subject,messageText);

 }

 }

}

So how does System.Web.Mail work? It just calls out to the CDO or CDOSYS built-

in components, depending on which version of Windows you’re running. This detail

is good to know if, for example, your Mail.Send function is failing in Windows

2003 and Vista, but works on your Windows XP box.

How do I build a screen scraper?
Screen scraping—the process of parsing HTML content from another web site in

order to retrieve (and potentially display) specific information for your own

needs—should be a method of last resort when you can’t obtain the same information

via a more conventional and reliable technique.

Ideally, each web site would provide an API to allow us to access its displayed data,

be that through some sort of web service, an RSS feed, or some other easily parsed

format. This would certainly make our lives as developers nice and easy when it

came to gathering information from other web sites!

518 The ASP.NET 2.0 Anthology

Unfortunately, we don’t live in such an altruistic world. Not every web site that

publishes information has taken the time to make that information available in an

easily consumable format. Sometimes screen scraping is the best we can do.

Many developers regard screen scraping as a dirty hack that’s ethically questionable.

However, there are many legitimate uses for the technique, such as consuming mi

croformats or reading public domain information.3 Just be aware that the process

of screen scraping can be a bit unreliable—if the site you’re scraping changes its

layout, the process may fail.

Solution
Quite a lot of logic is required to parse an entire HTML page and process its inform

ation. Fortunately, a gentleman named Simon Mourier created and released the

Html Agility Pack as an open source project hosted on CodePlex (Microsoft’s open

source repository).4 Be sure to download the code and compile it—you’ll need to

reference the HtmlAgilityPack.dll assembly to follow along with this solution.

This class library makes it very easy to consume HTML content and transform it

into XML. The solution for this section is divided into two parts. In the first part,

we’ll look at grabbing the HTML content over the Web and converting it to XML.

In the second part, we’ll render that XML content with a Repeater control bound

to an XmlDataSource.

Scraping the Content
Before we begin, we need some content to scrape. For the purposes of this demon

stration, I’ve created a simple ugly table of stock prices, which I’ve included in the

code archive and displayed in Figure 17.3. I’ve also made the file available at

http://haacked.com/Demos/Screen.html. Our goal will be to scrape this page, and

change the display of the content on a new page.

3 Make sure that you have legal access to the information you’re using. The USA’s Digital Millennium

Copyright Act (DCMA) and the EU’s European Union Copyright Directive, for example, have specific

restrictions against screen scraping as a technical means of circumventing copyright protections.
4 http://www.codeplex.com/htmlagilitypack/

http://www.codeplex.com/htmlagilitypack/
http://www.codeplex.com/htmlagilitypack/
http://haacked.com/Demos/Screen.html
http://www.codeplex.com/htmlagilitypack/

Advanced Topics 519

Figure 17.3. The table of stock quotes that will be screen scraped

First, let’s add a static class named HtmlScraper with a static method GetHtmlAsXml:

HtmlScraper.cs (excerpt)

using System;
using System.IO;
using System.Text;
using System.Xml;
using HtmlAgilityPack;
public sealed class HtmlScraper
{
 public static XmlDocument GetHtmlAsXml()
 {
 // … implementation goes here.

 }
}

The implementation for GetHtmlAsXml is as follows:

HtmlScraper.cs (excerpt)

public static XmlDocument GetHtmlAsXml()
{
 // Set up an in-memory stream to hold the HTML.

520 The ASP.NET 2.0 Anthology

MemoryStream stream = new MemoryStream();
 XmlTextWriter writer =

new XmlTextWriter(stream, Encoding.UTF8);
 // Grab HTML over the web and convert to XML.
 HtmlWeb web = new HtmlWeb();
 web.LoadHtmlAsXml("http://haacked.com/Demos/screen.html", writer);
 // Now read from that in-memory stream
 // into a new XmlDocument class.
 XmlDocument xml = LoadFromStream(stream);
 return xml;
}

The first step that this method takes is to set up an instance of XmlTextWriter

wrapped around a MemoryStream instance, in which we store the XML.

Next, we create an instance of the HtmlWeb class, one of the useful classes from

the Html Agility Pack. Calling LoadHtmlAsXml makes an HTTP request for the

specified URL, and writes the response to the specified XmlTextWriter instance,

which in our case stores the result in a MemoryStream.

Choosing a Stream

In a real-world implementation, you might consider using a FileStream instead

of an in-memory stream. That option would give you the potential to retrieve an

archive of the data as something to fall back on if the site you’re scraping is tem

porarily offline.

The final step in scraping our screen is to create an XmlDocument from the contents

of the MemoryStream. The following method takes care of that for us:

HtmlScraper.cs (excerpt)

private static XmlDocument LoadFromStream(Stream stream)
{
 XmlDocument xml = new XmlDocument();
 stream.Position = 0;
 XmlReader reader = XmlReader.Create(stream);
 xml.Load(reader);
 return xml;
}

Advanced Topics 521

Displaying the Scraped Content
Now that we have a method to grab the HTML content, we need to transform and

display that content. One method of doing so is to use an XSLT style sheet to

transform the XML back into HTML.

XSLT is a powerful transformation language that would suit this task well. However,

tackling XSLT for the first time can be incredibly daunting, so we’ll look at an al

ternative solution here.

First, we create a new ASP.NET page and add an XmlDataSource instance using the

Design view. Unfortunately, there doesn’t appear to be a declarative way to specify

that the XML for an XmlDataSource should come from a method call, so add the

following to the Page_Load method in the code-beside file:

ScreenScraperDemo.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
XmlDataSource1.Data = HtmlScraper.GetHtmlAsXml().OuterXml;

 XmlDataSource1.DataBind();
}

The next step is to configure the XmlDataSource with an XPath expression. XPath

is a language for finding information in an XML document. The expression

html/body/table/tr entered into the appropriate field in Figure 17.4 informs the

XmlDataSource of the nodes to which we want to bind.

522 The ASP.NET 2.0 Anthology

Figure 17.4. Locating the table rows using an XPath query

The expression html/body/table/tr selects every tr node (table row) in the table.

Now we’ll add a Repeater to the page and choose the XmlDataSource1 as its data

source, as shown in Figure 17.5.

Figure 17.5. Setting a data source for our Repeater control

At this point, the repeater will repeat the contents of its ItemTemplate for each table

row. Using this approach gives us a lot of control over how we want to render the

data. Let’s render the content in a horizontal table, just for fun. Here’s the Repeater

markup along with the XmlDataSource markup:

Advanced Topics 523

ScreenScraperDemo.aspx (excerpt)

<asp:Repeater ID="Repeater1" runat="server"
DataSourceID="XmlDataSource1">

 <HeaderTemplate>
 <table class="stocks">
 <tr>
 <td>

 Stock
 Price
 Change

 </td>

 </HeaderTemplate>
 <ItemTemplate>
 <td>

 <%# XPath("td[position() = 1]")%>

 <%# XPath("td[position() = 2]")%>
 <%# XPath("td[position() = 3]")%>

 </td>

 </ItemTemplate>
 <FooterTemplate>
 </tr>

 </table>
 </FooterTemplate>
</asp:Repeater>
<asp:XmlDataSource ID="XmlDataSource1" runat="server"

XPath="html/body/table/tr[position() > 1]" />

Some comments about this code:

Note that instead of generating a new table row for each corresponding row in

the source page, we instead generate a new table cell.

We can use the shorthand syntax <%# XPath(xpath) %> to evaluate the value

of an XPath expression, using the current node as its base.

For example, notice that we use the following code to render the contents of

the first table cell of the current row:

524 The ASP.NET 2.0 Anthology

<%# XPath("td[position() = 2]") %>

This syntax is convenient shorthand for the XPathBinder.Eval method. The

expression above is equivalent to the following:

<%# XPathBinder.Eval(Container.DataItem, "td[position() = 2]") %>

Node Position Niceties

Notice that the position of each node in our XPath expression begins at 1, not 0

(as it would were we dealing with a regular array). Thus the first td node is refer

enced with the expression td[position() = 1].

All that’s left to do is to add a dash of CSS to our page:

ScreenScraperDemo.aspx (excerpt)

<style type="text/css">
ul li {
 list-style-type: none;
margin: 0;
padding: 0;

}
table {
 border-collapse: collapse;
}
td {
 border: solid 1px #999;
padding: 10px;

}
</style>

Figure 17.6 shows the result of our screen scraping.

Advanced Topics 525

Figure 17.6. The final, screen-scraped stock quote content displaying in a new table

Discussion
One weakness about the XmlDataSource class is that it doesn’t support XPath

statements that use XML namespaces.

For example, if the HTML we were attempting to scrape had defined an HTML

namespace (a common scenario with XHTML), the approach we used would not

succeed. For example, the XPath statement we used in our XmlDataSource wouldn’t

work with the following HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>SitePoint : New Articles, Fresh Thinking for Web Developers

and Designers</title>

⋮

There are a couple of workarounds for this issue. One solution requires a deep

knowledge of XPath and is outlined in a blog post by Jason Follas, entitled “Xm

http://jasonf-blog.blogspot.com/2006/08/xmldatasource-xpath-workaround-for.html
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

526 The ASP.NET 2.0 Anthology

lDataSource: XPath Workaround For Default Namespaces.”5 This approach requires

you to specify the namespace by way of the namespace-uri XPath method.

With this solution, the XPath we’d use to select the table rows in our example would

be:

Xml/*[name() = 'tr' and

namespace-uri() = 'http://www.w3.org/1999/xhtml']

As you can imagine, this solution can become quite cumbersome.

A second solution involves using an XSLT style sheet to strip out the namespaces

and prefixes from the XML. This technique is outlined in Bill Evjen’s blog post,

“Namespaces and XmlDataSource Server Control.”6

How do I build a data access layer?
This question might strike you as being slightly different from the others in this

book—surely .NET comes with a data access layer built in? Before I jump into the

solution, let me clarify exactly what it is that this question asks.

Many developers indeed believe that a data access layer is already provided by

Microsoft in the subset of the .NET Framework we know as ADO.NET. When these

(misguided, with all due respect) developers need to access the database, they may

write code similar to this:

Simple.aspx.cs (excerpt)

string connectString =
@"server=.\SQLEXPRESS;database=Orders;Trusted_Connection=yes";

using (SqlConnection connection = new SqlConnection(connectString))
using (SqlCommand sqlCommand = new SqlCommand())
{
 connection.Open();
 sqlCommand.Connection = connection;
 sqlCommand.CommandText = "SELECT * FROM Orders";
 using (SqlDataReader reader = sqlCommand.ExecuteReader())
 {

5 http://jasonf-blog.blogspot.com/2006/08/xmldatasource-xpath-workaround-for.html
6 http://www.geekswithblogs.com/evjen/archive/2005/10/10/56527.aspx

http://jasonf-blog.blogspot.com/2006/08/xmldatasource-xpath-workaround-for.html
http://www.geekswithblogs.com/evjen/archive/2005/10/10/56527.aspx
'http://www.w3.org/1999/xhtml']
http:ADO.NET
http://jasonf-blog.blogspot.com/2006/08/xmldatasource-xpath-workaround-for.html
http://www.geekswithblogs.com/evjen/archive/2005/10/10/56527.aspx

Advanced Topics 527

// Do lots of stuff with the data that is hardcoded and highly

// dependent upon the current schema, leading to maintenance

// nightmares when your successor modifies the database.

 }

}

As an above-average developer who’s nearing the end of this book, you’ve probably

already spotted some of the problems that would result from implementing a “data

access” layer that involves spreading the above code throughout an ASP.NET ap

plication. Let’s identify some of those problems:

■	 Connection string management is difficult when the strings are hard coded and

used in multiple locations.

■	 Database connections are precious resources—a cut-and-paste error that leaves

a connection open could cause the application to exhaust all available connec

tions.

■	 An SQL injection attack arises from a common loophole that malicious users

aim to exploit—the culprits take advantage of poorly implemented validation

to execute their own custom SQL commands. A cut-and-paste error or sloppy

database access code can leave a web application vulnerable to SQL injection

attacks.

■	 The code only supports SQL Server. Although applications that need to work

with multiple databases are rare, they do exist. Regardless, tying one’s application

to a specific database is a bad idea, in case you need to switch or upgrade at a

later date.

Preparing for .NET 3.5

Aside from the obvious benefits of implementing a data access layer—security,

productivity, and maintainability—there’s another good reason to become accus

tomed to accessing your data through a data access layer: preparing yourself for

.NET 3.5. The .NET 3.5 (Visual Studio 2008) release places a major focus on sim

plified data access. Begin working with data access layers now, and the jump to

.NET 3.5 will be a much smoother process.

528 The ASP.NET 2.0 Anthology

Understanding SQL Injection

A web application is vulnerable to SQL injection attacks when it passes unfiltered

user input directly to a database. Here’s an example:

SELECT * FROM Orders WHERE OrderId =" + TextBox1.Text

By using SQL escape characters, attackers may be able to place their own com

mands into TextBox1 and have those commands executed on the database server.

If your site is ever hacked, it’s most likely to occur via an SQL injection vulnerab

ility. The ramifications of such a security breach can be disastrous, and every re

sponsible developer needs to understand how an SQL injection works and how

to defend against one. Paul Litwin’s article on MSDN, “Stop SQL Injection Attacks

Before They Stop You,”7 provides a good run-down of the various types of attacks

and how each can be prevented. The MSDN Security Developer Center article,

“How to Protect from SQL Injection in ASP.NET,”8 also contains numerous tips

on how best to secure your application.

Of course, the example we’ve used in this solution is only a simple query—once

you start to add parameters to queries and check return values, you begin to realize

how mind-numbingly redundant the code becomes. Any time you see redundant

code in an application, your brain should automatically begin to work out how that

repetition can be prevented from occurring. We’ll consider this goal of redundant

code removal to be the first goal of a data access layer.

Solution
Microsoft’s Data Access Application Block (DAAB) is a solid foundation for any

data access layer. Use of this code library reduces the amount of custom code you

need to write, test, and maintain, and follows best practices to avoid leaky connec

tions and SQL injection attacks. This library also allows your application to support

SQL Server, Oracle, and DB2 databases, and provides a configuration layer for the

management of connection strings. The DAAB makes good use of the provider

pattern, which establishes an API through which the business logic of an application

and the database layer can communicate. As the DAAB utilizes this pattern, you

7 http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/
8 http://msdn2.microsoft.com/en-us/library/ms998271.aspx

http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/
http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/
http://msdn2.microsoft.com/en-us/library/ms998271.aspx
http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/
http://msdn2.microsoft.com/en-us/library/ms998271.aspx

Advanced Topics 529

can extend the library (or use extensions that other developers have written) to access

data sources other than relational databases.

The DAAB is part of Microsoft’s Enterprise Library, colloquially referred to as

EntLib. 9 EntLib is a collection of application blocks designed to help developers

with common challenges encountered when developing enterprise web applications.

EntLib: Much More than a Data Access Layer

For the purposes of this solution we’ll only be talking about EntLib’s data access

features, but you should keep in mind that EntLib provides an entire framework

for developing enterprise applications. This framework includes caching, crypto

graphy, data access, exception handling, logging, policy injection, security, and

validation. What’s particularly useful about EntLib is that all of these application

blocks work well together, and all are configured using the same conventions.

Once you’ve downloaded and installed EntLib, you can add to your application a

reference to the DAAB assembly, the location of which will be the library’s install

ation directory. The name of the assembly is Microsoft.Practices.EnterpriseLib

rary.Data.dll, and once you’ve performed this step, other core assemblies will be in

cluded automatically.

EntLib includes a configuration management console that will add the necessary

application configuration information to your application. In Figure 17.7, I’ve right-

clicked connection strings and selected New to create a new connection string.

9 All of the source code needed to build EntLib is available for download from

http://www.codeplex.com/entlib/. The most recent version of EntLib at the time of writing was 3.1.

http://www.codeplex.com/entlib/

530 The ASP.NET 2.0 Anthology

Figure 17.7. Adding a connection string for the DAAB

The connection string name is OrdersDB—we’ll use that name in the code that fol

lows:

Daab.aspx.cs (excerpt)

using System.Data;
using Microsoft.Practices.EnterpriseLibrary.Data;
// ...
string command = "SELECT * FROM Orders";
Database db = DatabaseFactory.CreateDatabase("OrderDB");
using (IDataReader dataReader

= db.ExecuteReader(CommandType.Text, command))
{

 // Do lots of stuff with the data that is hardcoded and highly
// dependent upon the current schema, leading to maintenance
// nightmares when your successor modifies the database.

}

This code is certainly an improvement over our original attempt! We’ve abstracted

both the connection string and the fact that we’re using SQL Server. We still have

to be careful to dispose of our data reader correctly, although EntLib will configure

our database connection so that it automatically closes when we dispose of the data

reader.

Advanced Topics 531

Discussion
EntLib is a good starting point for a data access layer; however, it places only a thin

façade over the ADO.NET components. We still have to be careful not to let SQL

commands become scattered throughout an application. Database schemas change;

when they do, we need to know where to change the queries.

Many applications will require more functionality or flexibility than that provided

by EntLib. Fortunately, there are other tools to use, some of which are free. For ex

ample, you can generate code to access database tables and stored proced

ures—thereby leaving your application free of hard-coded SQL strings—by building

on top of the DAAB with SubSonic.10 We’ll discuss this tool in the next solution.

How do I automatically generate a data
access layer?
When it comes to code, less is more—the more lines of code that you write, the

greater the chance that you might introduce vulnerability.

For instance, the SQL injection issues that we explored in the section called “How

do I build a data access layer?” are neutralized if you use simple ASP.NET declarative

data binding. The reason why queries built using declarative data binding are safe

from SQL injection attacks is that the SqlDataSource class passes parameter values

as ADO.NET parameters rather than as SQL strings, so these parameters are checked

for SQL Injection. Writing less code delivers a more secure application that can also

benefit from other ASP.NET Framework features, such as caching and connection

string management. There are, of course, downsides to declarative data binding

(your code has the potential to become slightly more difficult to read and maintain),

but my experience is that, more often than not, to work with declarative data binding

results in an application that’s far more secure than one written with custom data

access logic.

Programmers are often tempted to judge their productivity and performance by how

much code they write, but the only metric that’s really valid is the quality of the

application. If there is an approach to creating high-quality data-access work that

10 http://www.subsonicproject.com/

http://www.subsonicproject.com/
http://www.subsonicproject.com/

532 The ASP.NET 2.0 Anthology

uses minimal code, you owe it to yourself—and your clients—to investigate that

approach.

Solution
Imagine that the ASP.NET team built you a custom version of the framework, de

signed to work with your database. That’s what using the third-party SubSonic

package feels like.11

Once you add SubSonic to your project (a process that’s extremely easy), you gain

immediate access to classes and controls that understand your data completely.

The structure of these classes reflects properties like foreign keys and many-to-many

mappings. Better still, SubSonic is really lightweight, so you can use it without

feeling like it has taken over your project, as some data toolkits have a way of doing.

Oh, and SubSonic is completely free!

SubSonic is designed help you get your site up and running quickly. The best way

to see what a SubSonic site looks like is to witness it in action, and fortunately,

SubSonic ships with a sample web site designed to let you do just that. In this

solution, we’ll look at that site, SubSonic Central, to gain an idea of what it does.

Then, we’ll see how you can add SubSonic to your web site.

It Might be Called SubSonic, but it Moves Fast

While SubSonic’s basic operation hasn’t changed since its release in August 2006,

the SubSonic team constantly adds new features and improvements. I make that

statement based on my experience with SubSonic 2.0.3 and personal conversations

with Rob Conery, the project’s chief architect.

The AutoScaffold Page
SubSonic ships with a sample web site called SubSonic Central. You can download

the project and run it as long as you have the Northwind database installed on a

default instance of SQL Server. If you don’t, you’ll need to edit your Web.config file

to point it to your Northwind database.

11 http://www.subsonicproject.com/

http://www.subsonicproject.com/
http://www.subsonicproject.com/
http://www.subsonicproject.com/

Advanced Topics 533

Getting the Northwind Database

If you don’t have Northwind installed, you can download it from the project’s

download site.12

Of course, you could use your own database if you wanted to, but SubSonic

Central’s Examples page relies upon queries run against the Northwind database.

Everything else in the SubSonic Central example site will work, though.

Let’s now take a look at the AutoScaffold page. This page is designed to let you

administer your database via a web interface, with absolutely no setup required.

The tables that form part of the scaffolding are all generated on the basis of the

database configured in Web.config; therefore, when you’re evaluating SubSonic for

use on a project, you should picture how the page could be applied to your own

database. Figure 17.8 shows how the AutoScaffold page looks when you first open

it.

Figure 17.8. SubSonic’s AutoScaffold page for the Northwind example database

12 http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EE

BC53A68034/

http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EEBC53A68034/
http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EEBC53A68034/
http://www.microsoft.com/downloads/details.aspx?FamilyId=06616212-0356-46A0-8DA2-EE-

534 The ASP.NET 2.0 Anthology

One nifty feature that you mightn’t immediately notice about this grid is that it’s

not simply data-bound to the table to which you’re referring—it follows foreign

keys and retrieves that data as well. Figure 17.9 shows a closer view of the first five

columns of the Products table.

Figure 17.9. A close-up view of the AutoScaffold table

Table 17.1 shows the actual table data.

Table 17.1. The Data Retrieved

QuantityPerUnit CategoryIDSupplierIDProductName ProductID

10 boxes x 20 bags 11Chai1

24 - 12 oz bottles11Chang2

12 - 550 mL bottles21Aniseed Syrup3

48 - 6 oz jars 22Chef Anton’s Cajun Seasoning4

36 boxes22Chef Anton’s Gumbo Mix5

As you can see, the main difference between the data stored in the table and that

retrieved on the scaffolding page is that SubSonic has filled in actual values for

Supplier and Category.

Another nice feature you mightn’t have noticed is that SubSonic formats your

column names to display in a user-friendly way.

The Edit link in the far-left column of the scaffolding table takes you to a page where

you can edit that particular row. Let’s try it out! We’ll look at the Orders table be

Advanced Topics 535

cause it contains both foreign key and date values. Figure 17.10 shows how it looks

in Edit mode.

Figure 17.10. The edit page generated for one of the sample orders

Notice that the DateTime fields use a popup calendar—in Figure 17.10 I’m using

this feature to edit the Shipped Date. Also notice that all of the values retrieved via

foreign keys are displayed in drop-down menus, which is another nice touch that

makes the page usable and minimizes the chance of invalid data being entered.

The Scaffold Control
The AutoScaffold page is great, but what if you’d like to allow one of your users to

edit a single table within the administration section of your site? No problem—the

Scaffold control does just that. Here’s all the code that’s needed to add a Scaffold

to your page:

ScaffoldSample.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="ScaffoldSample.aspx.cs" Theme="Default"
Inherits="ScaffoldSample" %>

<%@ Register Assembly="SubSonic" Namespace="SubSonic"
 TagPrefix="subsonic" %>

536 The ASP.NET 2.0 Anthology

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Scaffold</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <subsonic:Scaffold runat="server"

 TableName="Products" GridViewSkinID="scaffold" />

 </div>

 </form>

</body>

</html>

We’ve used the scaffold skin that’s included in the SubSonic Central site’s Default

theme, but take heart in knowing that this control has been built to fit into your

site. It fits naturally with the ASP.NET theming system, so you should have no

problem skinning the control to match the theme of your own site. Even better, the

control produces markup that takes CSS-based design into account—all of the top

level controls for both Grid and Edit mode have class attributes that you can use as

hooks to style as you need. Figure 17.11 shows the result of the above code.

Figure 17.11. The default styling of the Scaffold control

Advanced Topics 537

Of course, you could write all of the ASP.NET code that generates this interface

yourself; some of the tips in this book, particularly in Chapter 3, explained how to

do just that. But why would you? Well, why wouldn’t you want to have a fully

functional administration system on the first day of your next project—especially

when you’ve written almost no code?

Not convinced yet? Wait, there’s more!

The Utility Controls
SubSonic ships with a growing list of exciting utility controls. I say “exciting” not

because you couldn’t write them yourself, but because you’ve probably had to write

them yourself over and over, and no doubt you’re heartily sick of it.

To illustrate how these utility controls work, we’re going to set up a DropDownList

bound to the Employees table, a CheckBoxList that allows many-to-many mapping

(in this case, mapping of Employees to Territories), and a RadioButtonList bound

to Suppliers. Figure 17.12 shows the design of our page.

The SubSonic Calendar Control

The Calendar control that I pointed out when we were looking at the AutoScaf

fold control is also included as a separate utility control.

538 The ASP.NET 2.0 Anthology

Figure 17.12. The example page for demonstrating utility controls

Here’s the code:

Utility.aspx (excerpt)

<p>DropDown bound to Employees table</p>
<subsonic:DropDown ID="ddlEmployees" runat="server"

 TableName="Employees" />
<hr/>
<p>ManyManyList showing Territories selected for Employee ID 1</p>
<subsonic:ManyManyList ID="manyEmployeesTerritories" runat="server"

Advanced Topics 539

PrimaryTableName="Employees"

 PrimaryKeyValue="1"

 ForeignTableName="Territories"

 MapTableName="EmployeeTerritories"

 ProviderName="Northwind"

 RepeatColumns="4" />

<hr/>

<p>RadioButton bound to Suppliers</p>

<subsonic:RadioButtons ID="radiobuttons" runat="server"

 TableName="Suppliers"

 TextField="CompanyName"

 ValueField="SupplierID" />

The QuickTable is my favorite tabular control, because it makes it really easy to

write good code when dealing with tables that are populated from the database.

QuickTable looks like a simple GridView, except that its pager controls are prettier.

It also includes one really cool feature: database paging. Unlike a data-bound

GridView, which retrieves all of its rows from the database and then figures out

which rows to show on the web server, the QuickTable uses smart queries so that

it only retrieves the rows for the current page.

In our example, we’re going to show three columns from the Product table. We’ll

filter discontinued items from the view, and configure paging to display a maximum

of 15 rows per page. Figure 17.13 shows the result of this table as implemented using

a QuickTable.

540 The ASP.NET 2.0 Anthology

Figure 17.13. Using QuickTable to display tabular data—complete with paging and smart queries

We achieved all that with the following code:

QuickTable.aspx (excerpt)

<subsonic:QuickTable ID="ProductsTable" runat="server"
TableName="Products"
 PageSize="15"
 ColumnList="ProductName,QuantityPerUnit,UnitPrice"
 WhereExpression="Discontinued=False" />

That’s it! As you can see, a QuickTable requires less code than a GridView, it looks

better, and it handles data access much more efficiently.

QuickTable takes the monotony of writing a custom tabular control out of your

hands, so you can instead spend your time writing your application’s custom

business logic … which, incidentally, is also a task with which SubSonic can help

you.

The SubSonic Data Access Layer
Every example of the SubSonic library that we’ve looked at so far is really just an

application of the SubSonic Data Access Layer (DAL). The SubSonic team is

working hard to make your life easier, but once you’ve got a great automatically

Advanced Topics 541

generated DAL, you might be tempted to think that they’re just showing off how

easy it is to build an application.

SubSonic lets you write your custom business logic with code like this:

Examples.aspx.cs (excerpt)

GridView1.DataSource =
 new ProductCollection().
 Where(Product.Columns.UnitPrice, Comparison.GreaterOrEquals, 30).
 Load();
GridView1.DataBind();

I like this syntax because the components that comprise the query are all strongly

typed. However, the code can be a bit verbose—especially for more complex queries.

Luckily, the SubSonic DAL also supports the following, more concise, syntax:

Examples.aspx.cs (excerpt)

GridView1.DataSource =
Product.Query().
 WHERE("UnitPrice > 20").
 AND("CategoryID = 1").
 OR("UnitPrice > 20").
 AND("CategoryID = 5").
 ExecuteReader();
GridView1.DataBind();

While this syntax may look like inline SQL, it’s definitely not. This style of coding

is just a convenient shorthand—the strings are parsed and processed with the same

scrutiny as they were in the first example. The result is the best of both worlds—you

gain the benefit of simple SQL-like syntax, and the safety and power of a full DAL.

Here’s an example of how you’d open, edit, and save a record:

SubSonic.Product product = new SubSonic.Product(1);

product.ProductName = "New Product Name";

product.Save("My User Name");

As you can see, working with the SubSonic DAL is fairly intuitive.

542 The ASP.NET 2.0 Anthology

You’re not only confined to operating on tables with SubSonic, by the way—you

can also interact with your views and stored procedures. Here’s an example:

Examples.aspx.cs (excerpt)

GridView1.DataSource =
Northwind.SPs.CustOrderHist("ALFKI").GetReader();

GridView1.DataBind();

The ActiveRecord Pattern

SubSonic uses the ActiveRecord pattern, a common approach to mapping data

to objects. ActiveRecord is popular because it’s simple: each table maps to a class,

so each object maps to a single row in the table (the “active” record, hence the

name).

If you’d prefer not to use ActiveRecord (or you’re unable to, because of corporate

standards, for example), fear not! The SubSonic code is generated using a template

engine that uses standard ASP.NET syntax, so it’s possible to customize the code

that’s generated to better suit your needs.

Adding SubSonic to your Project
To add SubSonic to your site, you need to follow three steps:

1. Install SubSonic.

2. Configure Web.config.

3. Generate your DAL.

Let’s work through each of these steps now.

Installing SubSonic

Installing SubSonic is as easy as placing the SubSonic.dll file in your project’s bin

folder. You can download the latest version of this file (along with the SubSonic

Central example application) from the project’s download site.13

13 http://www.subsonicproject.com/view/download-subsonic.aspx

http://www.subsonicproject.com/view/download-subsonic.aspx
http://www.subsonicproject.com/view/download-subsonic.aspx

Advanced Topics 543

Configuring Web.config

Next, we’ll need to configure our Web.config file to specify which databases it should

use. The easiest way to do this is to copy the Web.config file from the SubSonic

Central example site (see the tip at the end of this section). However, if you have a

custom Web.config file in place already, it’s also relatively easy to add SubSonic to

it. Let’s walk through the process now.

SubSonic makes use of the custom configuration section SubSonicService. To add

this section, enter the following code right below the configuration element at the

very top of your Web.config file:

Web.config (excerpt)

<configSections>
 <section name="SubSonicService"

 type="SubSonic.SubSonicSection, SubSonic"
 allowDefinition="MachineToApplication"
 restartOnExternalChanges="true"
 requirePermission="false"/>

</configSections>

With this code in place, we can make use of the many configuration options avail

able, a comprehensive list of which can be found on the SubSonic project site.14

We’ll look at a simple example using the Northwind database running on SQL

Server. Add the following few lines to your Web.config file, right above the

appSettings section:

Web.config (excerpt)

<SubSonicService defaultProvider="Northwind" >
 <providers>
 <clear/>
 <add name="Northwind"

 type="SubSonic.SqlDataProvider, SubSonic"
 connectionStringName="Northwind"/>

 </providers>
</SubSonicService>

14 http://www.subsonicproject.com/view/config-options.aspx

http://www.subsonicproject.com/view/config-options.aspx
http://www.subsonicproject.com/view/config-options.aspx

544 The ASP.NET 2.0 Anthology

Great! Now that SubSonic knows how to find your database, we can go ahead and

generate our DAL.

Getting Set Up Quickly

In this solution we’ve seen how to add SubSonic to an existing project, but if

you’re setting up a new project you can take a shortcut by copying files from one

of the two solutions that ship with the SubSonic distribution: SubSonic Central,

or the SubSonic Starter Site.

■	 The SubSonic Central site includes a preconfigured installation of SubSonic,

an AutoScaffold page, and a few of the control samples that we saw earlier in

this solution.

■	 The SubSonic Starter Site is more comprehensive in that it includes some

common JavaScript libraries, ASP.NET membership, and a simple CMS system.

You can copy either of these projects and remove from them the files that you

don’t need. An even simpler route would be to simply copy the SubSonic.dll and

Web.config files from either of these files, and modify the connectionString

value so that it points to your database.

Generating your DAL

A few tools are available to help you to generate your Data Access Layer:

■	 a custom build provider

■	 a web-based code generator

■	 a command-line code generator

Let’s take a closer look at each of these tools.

The simplest way to use SubSonic is as a build provider in a Visual Studio 2005

Web Site Project. As the name suggests, a build provider is responsible for generating

source code for different file types within an application. If you decide to use the

SubSonic build provider, SubSonic will automatically build your DAL every time

you build your site. Cool, huh?

The build provider is easy to set up. First, add a buildProvider entry to the com

pilation section of the Web.config file:

Advanced Topics 545

Web.config (excerpt)

<system.web>
 <compilation debug="true" defaultLanguage="C#">

<buildProviders>
 <add extension=".abp"

type="SubSonic.BuildProvider, SubSonic"/>
 </buildProviders>

 <compilation debug="true" defaultLanguage="C#">
<system.web>

The above code tells ASP.NET that files with an extension of .abp—short for

application build project—should be built by SubSonic. It’s an efficient way to kick

off SubSonic every time your site is built.

Now we’ll need an .abp file. Don’t worry, it won’t take much to set up this file—just

create a text file called builder.abp in your App_Code folder. The contents of the file

should be a single asterisk, and nothing more. Here’s my entire builder.abp file:

builder.abp (excerpt)

*

This file tells the SubSonic build provider to build classes for all tables, views, and

stored procedures in our database. If you only want to generate classes for certain

tables, just replace the asterisk with a list of tables, like this:

builder.abp (excerpt)

Product
Categories
Orders

546 The ASP.NET 2.0 Anthology

The Web Site Project Trade-off

The Web Site project model has some limitations, as we first saw back in Chapter 1.

However, the SubSonic build provider works so well that I think the trade-off is

often worth it. The SubSonic build provider is a huge productivity booster, espe

cially when you’re just getting started on your project and your database schema

is changing frequently.

You may want to consider working with a Web Site project until your database

design is stable, and converting your site to a Web Application project when the

benefits of SubSonic diminish.

It’s a lot easier to understand all these configuration entries in context. Here’s a

slightly simplified version of the Web.config from the SubSonic Central site, which

uses the build provider method that we’ve just discussed:

Web.config (excerpt)

<?xml version="1.0"?>
<configuration

xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <configSections>
 <section name="SubSonicService"

type="SubSonic.SubSonicSection, SubSonic"
 allowDefinition="MachineToApplication"
restartOnExternalChanges="true"
 requirePermission="false"/>

 </configSections>
 <appSettings/>
 <connectionStrings>
 <clear/>
 <add name="Northwind" connectionString="Data Source=localhost;

Database=Northwind; Integrated Security=true;"/>
 </connectionStrings>
 <SubSonicService defaultProvider="Northwind"

fixPluralClassNames="true" >
 <providers>
 <clear/>
 <add name="Northwind"

type="SubSonic.SqlDataProvider, SubSonic"
 connectionStringName="Northwind"
generatedNamespace="Northwind" />

 </providers>

Advanced Topics 547

</SubSonicService>

 <system.web>

 <compilation debug="true" defaultLanguage="C#">

 <buildProviders>

 <add extension=".abp"

type="SubSonic.BuildProvider, SubSonic"/>

 </buildProviders>

 </compilation>

 <authentication mode="Windows"/>

 <pages styleSheetTheme="Default">

 <controls>

 <add tagPrefix="subsonic" namespace="SubSonic.Controls"

assembly="SubSonic"/>

 </controls>

 </pages>

 </system.web>

</configuration>

SubSonic doesn’t constrain you to the Web Site project model. You can also use a

web-based code generator, which will churn through your database and create the

code for your DAL in a folder you specify (C# and VB are supported).

You’ll find the web-based generator on the SubSonic Central site. It’s a long form,

but you can leave most of the checkboxes blank when filling it out. The top half of

the page, shown in Figure 17.14, generates classes.

548 The ASP.NET 2.0 Anthology

Figure 17.14. The SubSonic Central web-based code generator

I selected All to select all of my database tables, and clicked the Generate button.

Figure 17.15 shows the resulting list of class files.

Figure 17.15. The list of generated code files

Advanced Topics 549

The lower half of the code generator page, shown in Figure 17.16, generates editor

controls.

Figure 17.16. The SubSonic web-based form for generating editor controls

The most flexible way to build your DAL, however, is to use the command-line tool,

SubCommander.

The smoothest way to set up SubCommander is to make the executable file sonic.exe

visible from anywhere. Right-click on My Computer and select Properties. In the Ad

vanced tab, click the Environment Variables button, and add the folder that contains

the sonic.exe file to your path (for example, C:\Projects\SubSonic).

Then bring up a command prompt and change directories to your web site’s direct

ory:

550 The ASP.NET 2.0 Anthology

cd C:\Projects\MyWebSite

There, you can generate the DAL with the following command:

sonic generate /out App_Code\Generated

The benefit of running SubCommander from within your web site’s directory is that

it automatically reads your Web.config file. Because of this, SubCommander inherits

your SubSonic settings, including how to connect to your database.

If you want to specify your configuration separately, you can pass that information

as a parameter on the command line:

sonic generate /out App_Code\Generated /server (local) /db northwind

We can also generate the code for a tabular control for editing data that exists in a

specific table. This approach can be handy if you want to start by customizing an

existing, working control, like this:

sonic editor /Products /out SiteAdmin

SubCommander has a bunch of other cool database utility functions, too. For in

stance, the versiondb command exports your entire database (schema and data) to

a script:

sonic versiondb /out DatabaseScripts

When you factor in the power SubCommander provides us, there’s no reason to

limit your use of SubSonic to ASP.NET projects. This code works just great in other

.NET project types—WinForm, Console, Code Library, and the like— too.

You can find all of the available options by typing sonic.exe at the command line,

with no parameters:

sonic.exe v2.0.3.0 - Command Line Interface to SubSonic v2.0.3.0

Usage: sonic command [options]

Sample: sonic generate /server localhost /db northwind /out

GeneratedFiles

Advanced Topics 551

Help: sonic help

TIP: SubSonic will read your App.Config or Web.Config - just select

the project and run your command.

******************** Commands *********************************

version: Scripts out the schema/data of your db to file

scriptdata: Scripts the data to file for your database

scriptschema: Scripts your Database schema to file

generate: Generates output code for tables, views, and SPs

generatetables: Generates output code for your tables

generateODS: Generates an ObjectDataSource controller for each table

generateviews: Generates output code for your views

generatesps: Generates output code for your SPs

editor: Creates an Editor for a particular table

******************** Argument List ****************************

####### Required For all commands (these can be read from config

files) if you don't have a Web or App.config, these need to be set

/override SubCommander won't try to find a config - instead it will

use what you pass in

/server - the database server - ALWAYS REQUIRED

/db - the database to use

####### Other Commands (some may be required for specific commands)

/userid - the User ID for your database (blank = use SSPI)

/password - the password for your DB (blank = use SSPI)

/out - the output directory for generated items. (default = current)

/lang - generated code language: cs or vb (default = cs)

/provider - the name of the provider to use

/includeTableList - used for generating classes. A comma-delimited

list that defines which tables should be used to generate classes

/config - the path your App/Web.Config - used to instance SubSonic

/excludeTableList the opposite of tablelist. These tables will NOT

be used to generate classes

⋮

Discussion
I asked SubSonic’s chief architect, Rob Conery, to review this solution for me.15 He

pointed out that there are a lot of smarts behind SubSonic’s features that you mightn’t

initially notice—the DropDown and ManyManyList only query the two rows that they

need, and the ManyManyList saves data within the scope of a transaction. These are

simple examples, but they show the kind of detail and thought that has gone into

creating this library.

15 http://blog.wekeroad.com/

http://blog.wekeroad.com/
http://blog.wekeroad.com/

552 The ASP.NET 2.0 Anthology

Rob also pointed out that the above features weren’t just dreamed up by the devel

opment team—they were submitted by the community. The SubSonic community

is very active, constantly submitting feature requests, bug fixes, and suggestions.

More importantly, the development team is very responsive—one suggestion that

I submitted was implemented and available for download less than two hours later!

Summary
This chapter’s been a wild ride through some advanced applications of the ASP.NET

toolkit. I hope you’ve found them helpful in your current projects, or can anticipate

how you might apply them to your work in the future.

This concludes our coverage of the ASP.NET Framework. On this journey we’ve

explored the ins and the outs of ASP.NET, Visual Studio, and a number of third-

party tools—and hopefully along the way given you a new appreciation for the craft

of web application development.

Of course, a good developer never stops learning—in Chapter 1 I listed a number

of resources that can help you get the most out of ASP.NET. Read one of the books

on that list, subscribe to one of the blogs I mentioned (or even start your own!) and

get involved in the SitePoint .NET forums.16

It’s impossible to learn everything there is to know about ASP.NET 2.0, but armed

with the knowledge in this book, you’re certainly well on your way.

16 http://www.sitepoint.com/launch/dotnetforum/

http://www.sitepoint.com/launch/dotnetforum/
http:ASP.NET
http:ASP.NET
http://www.sitepoint.com/launch/dotnetforum/

Index

Symbols
$ function

using, 312

.NET 2.0 core libraries, 29–69

collections, 56–69

generics, 40–50

strings, 29–40

.NET 3.5

preparing for, 527

404 pages

rewriting, 502

__VIEWSTATE

ControlState, 215

A
Abrams, Brad

on the string class, 30

absolute URLs

master pages, 258

access control, 219–242

(see also data access layer; form valid

ation)

displaying content based on roles,

237–242

forgotten passwords, 231–236

login, 229–231

managing users, 226–229

membership, 220–222

registering users, 222–226

accessing

elements via an index, 64

images with a handler, 377–390

view state, 206–209

action delegates

ForEach method, 49

ActiveRecord pattern

SubSonic, 542

adding

membership, 220–222

SubSonic to projects, 542

ADO.NET

data access, 71–73

Ajax, 314–337

ASP.NET controls, 331–334

generated IDs, 326–330

history of, 303–304

partial page rendering, 318–324

refreshing UpdatePanels, 324–326

request, 175, 177

using, 314–318

AJAX Control Toolkit

about, 331

Allen, Scott

blog, 26

anonymous delegates

explained, 46

APIs (see Configuration API)

application states

storing, 201–205

application variables

storing global data, 204

applications (see web applications)

appSettings element

configuration settings, 418

connection strings, 417

external files, 426

Array collection type

about, 62

554

ArrayList collection type, 42–44

about, 63

ASP.NET

blogs, 26

configuring, 199

finding information about, 24–27

inheritance, 426

web site, 25

ASP.NET 1.1

web standards, 291

ASP.NET 2.0

Configuration API location, 416

ASP.NET cache

optimization, 460–462

ASP.NET pages

storage options, 218

ASPX pages

about, 359

asynchronous events

sending email, 351

attachments

email, 344–345

Atwood, Jeff

blog, 26

authentication

about, 219

Auto Format styling

GridView, 96

AutoCompleteExtender control

using, 333

AutoScaffold page

about, 532

B
backups

third-party web hosting, 14

bandwidth

optimization, 446–452

third-party web hosting, 13

bar graphs

creating, 369–374

rendering, 366–369

BaseValidator

form validation, 178

batch operations

large collections, 56–61

BatchIterator class

explained, 58

binary content, 355–390

controlling access to images with a

handler, 377–390

dynamic image quality, 374–377

real bar graph handlers, 369–374

rendering simple bars, 366–369

requesting HttpHandler, 359–363

writing non-text binary data, 363–366

writing raw data to response, 357–359

writing simple, 355–357

binding

IEnumerable, 106

values within configuration files, 418

blog posts

example using BatchIterator class, 58

blogs

ASP.NET, 26

books

ASP.NET, 27

boxing

objects, 44

branching

source control, 18

browsers

interpreting binary data, 357

http:ASP.NET
http:ASP.NET

C

555

build provider

SubSonic, 544

Build Your Own ASP.NET 2.0 Web Site

Using C# & VB, 27

C# programming language

boxing and unboxing, 44

Null Coalescing Operator, 207

cache

(see also ASP.NET cache; reluctant

cache pattern; SQL cache)

parameterized pages, 456

refreshing, 458–460

SQL cache dependencies, 459

storing application state information,

202

cache data reference pattern, 462

Calendar control

SubSonic, 537

Class.create method

using, 312

classes

(see also CSS classes; generic classes;

specific classes)

converting from generic lists, 51–53

clearing

SQL cache when testing in SSMS, 477

ClientID property

generated IDs, 328

ClientIDs

master pages, 248

client-side validation

custom validator controls, 180–184

forms, 174–177

CLR via C#, 27

clustered indexes

about, 473

Code Complete, 27

code generators (see web-based code

generators)

collection types

(see also Array; Array List; Dictionary;

HashTable; List; Queue; Sorted-

Dictionary; SortedList; Stack)

.NET Framework, 61

collections

(see also generic collections)

batch operations, 56–61

choosing, 61–69

column fields

ObjectDataSource, 120

columns

HtmlEncode property, 96

order in data binding, 116

sorting multiple, 133–136

components

(see also web form development)

user controls as, 268–273

compressing

view state, 442

concatenating

delimited strings from object proper

ties, 53–56

conditional formatting

strings, 39

configSource attribute

using, 424

configuration, 415–433

basic settings, 415–416

custom configuration section in

Web.config, 418–423

encrypting Web.config, 429–433

556

managing Web.config values, 427–429

retrieving settings declaratively, 417–

418

simplifying Web.config, 424–427

storing connection strings, 417

Configuration API

location in ASP.NET 2.0, 416

ConfigurationValidatorBase class

validation checks, 420

configuring

ASP.NET, 199

database connections, 73–77

SQL servers, 196

STMP settings for email, 340

connected data access

defined, 72

connection errors

handling, 225

connection strings

(see also named connection strings)

storing, 417

connections (see trusted connections)

connectionStrings section

Web.config file, 75

constructor functions

using, 308

containers

.NET 1.1 and 2.0 compared, 41

content

(see also binary content)

displaying based on roles, 237–242

scraping, 518

submitting via email, 347

content pages

interaction with master pages, 248,

253–256

overriding data on master pages, 248–

253

content types

about, 364

ContentPlaceHolder control

master pages, 244

control state

storing information between post-

backs, 210

ControlPostCount property

using, 212

controls

(see also server controls; user controls;

specific control)

in ASP.NET, 331–334

for validation, 174

ControlState

__VIEWSTATE, 215

inheritance, 213

ControlToValidate property

about, 172

ConvertAll function

converting generic objects into specif

ic types, 51

converting

between value types, 44

cookies

storing state information, 190

cost

third-party web hosting, 12

CreateUserWizard control

using, 222

creating

Web Application projects, 6

Web Site projects, 3

credit card orders

processing, 13

http:ASP.NET
http:ASP.NET

557

CSS

GridView styling, 98

mail client support, 343

using themes in conjunction with,

262–266

web standards, 292–300

CSS classes

sort direction, 139

CSS Friendly Control Adapters Kit

server controls, 289

culture

dates, 39

cursors

eliminating, 481

custom control

with view state off, 209–217

Customer class

code example, 108

CustomValidator

explained, 171

D
data

(see also binary content; email; global

data; images; form letters;

strings)

overriding on master pages, 248–253

data access, 71–121

ADO.NET, 71–73

configuring database connections, 73–

77

data binding, 83–91, 106–120

displaying database tables, 91–98

filling DropDownList from database

tables, 81–83

modifying single records, 99–105

reading data from databases, 77–79

sorting and filtering data, 79–81

Data Access Application Block (DAAB)

about, 528

data access layer

building, 526–531

generating, 531–552

SubSonic, 540

data binding

(see also declarative data-binding;

nested data binding; two-way

data binding)

column order, 116

compared to injection, 284

using DataSource control, 83–91

without SqlDataSource, 106–120

Data Connection

configuring database connections, 73

data hiding

defined, 206

data types

strings as, 30

database paging

Subsonic, 539

database tables

displaying contents, 91–98

filling DropDownLists, 81–83

Database Tuning Advisor

using, 466

databases

adding membership to, 221

configuring connections, 73–77

optimizing queries, 463–476

reading data from, 77–79

third-party web hosting, 13

troubleshooting, 473

versus application code for sorting

and filtering, 56

http:ADO.NET

558

databases, storing session state informa

tion, 199

data-bound drop-downs

adding to a GridView, 124

DataList class

obtaining functionality of without

tables, 285–287

DataReader

code example, 77

data access method, 72

DataSet

data access method, 72

DataSource control

data binding, 83–91

DataTable control

code example, 79

example of, 112

DataTable objects

ObjectDataSource, 120

date

formatting, 37

DateTime values

converting, 52

deadlocks

about, 474

debuggers

CSS, 297

debugging

(see also error handling; internal de

bugging; troubleshooting)

JavaScript, 334–337

log4net, 407–408

declarative data binding

using ObjectDataSource control, 106

defaults

GridView formatting properties, 95

machineKey section of Web.con

fig.comments, 194

SQL server instance, 74

delegates

(see also action delegates; anonymous

delegates)

defined, 46

reusing, 50

delimited strings

concatenating from object properties,

53–56

denying

all users, 230

dependencies (see SQL cache dependen

cies)

deployment (see publishing; Web Deploy

ment Project)

DetailsView control

about, 99

development tools

CSS, 296

dialogs (see download dialogs)

Dictionary collection type

about, 64

disabling

view state, 489

disconnected data access

defined, 72

disk space

third-party web hosting, 13

displaying

content based on roles, 237–242

database tables, 91–98

download dialogs, 365

formatted strings, 34–40

objects as strings, 31

scraped content, 521

559

DotNetNuke open source project, 23

download dialogs

displaying, 365

downloading

tabular data into Excel, 149

DropDownList

filling from database tables, 81–83

DropDownList control

paging, 149

drop-downs

adding to a GridView, 124

DTA

SQL workload script file, 471

dynamic images

quality, 374–377

Dynamic Management Views (DMVs)

about, 472

E
elements

(see also header elements)

accessing via an index, 64

ELMAH (Error Logging Modules And

Handlers)

using, 402

email, 339–353

(see also mail servers)

attaching files to email, 344–345

sending HTML email, 342–344

sending personalized form letters,

345–347

sending plain-text emails, 339–342

sending without waiting for comple

tion, 351–353

submitting content via email, 347–351

embedding

client validation functions, 182

resources in components, 273–278

enabling

internal debugging, 408

paging, 118

session states for web farms, 193–196

encryption

passwords, 236

Web.config sections, 429–433

Enterprise Library

about, 529

error handling, 391–413

(see also debugging; internal debug

ging; troubleshooting)

debugging log4net, 407–408

exceptions, 391–393

pre-built exception handling, 401–404

tracing, 409–412

web sites, 393–401

writing log files, 404–407

Essential ASP.NET with Examples in C#,

27

event handler method

SelectedIndexChanged events, 90

Event object

using, 312

event providers

health monitoring, 395

event validation

GridView, 152

Event.observe method

using, 312

events

(see also asynchronous events; on

readystatechange event handler;

ServerValidate event handler)

handling, 134

560

Excel

downloading tabular data, 149

exception handling

pre-built, 401–404

exceptions

handling, 391–393

trace, 410

EXIF fields

about, 389

exporting

multiple Excel worksheets, 156

extensions (see file extensions)

external files

appSettings, 426

F
FCKeditor open source project, 23

Fiddler

JavaScript debugging, 337

file extensions

handled by ASP.NET, 499

remapping in IIS, 497

files (see attachments; external files; im

ages)

filtering

data, 79–81

databases versus application code, 56

generic collections, 45–48

FindControl method

using, 250

finding

machine.config, 221

Firebug

JavaScript debugging, 336

Firebug Firefox extension

about, 297

First In, First Out (FIFO) collection

queues, 66

flushing

versus batching, 58

ForEach method

action delegates, 49

foreign keys

stored procedures, 103

forgotten passwords

recovering, 231–236

form letters

sending via email, 345–347

form validation, 159–187

building validator controls, 177–179

client-side validation, 174–177, 180–

184

custom validation, 170–174

form input, 160–164

multiple forms, 165–170

formatting

(see also String.Format command)

default GridView properties, 95

forms (see form validation; web form

development)

formulæ

Excel, 152

framework tools

JavaScript debugging, 337

free stuff

third-party web hosting, 16

functions

(see also specific functions)

as objects, 309

client validation, 180

http:ASP.NET

561

G
Galloway, Jon

blog, 26

GDI+ (Graphics Device Interface)

about, 367

generated IDs

Ajax, 326–330

generating

(see also web-based code generators)

data access layer, 531–552

machine keys, 194

generic classes

BatchIterator class as an example of,

59

generic collections

ASP .NET generic collections, 41, 42

filtering, 45–48

generic handlers

using, 362

generic lists

converting to classes, 51–53

generic methods

reusing with collections, 48

generics

.NET 2.0 core libraries, 40–50

GetKey method

about, 379

GetPropertyItem method

using, 389

GIF format

limitations of, 376

global application states

storing, 201

global data

storing, 201, 202, 204

global.asax file

exception handling, 397

GNU GPL (General Public License), 22

Google

page ranking, 486–487

Google Groups

USENET newsgroups, 25

graphics (see dynamic images; images)

grids (see paged grids)

GridView class

SqlDataSource, 91

GridView control, 123–157

custom paging, 143–148

data-bound drop-down, 124–132

downloading tabular data into Excel,

149–157

sort state, 137–143

sorting on multiple columns, 133–136

Guthrie, Scott

blog, 26

H
Haack, Phil

blog, 26

handlers

(see also generic handlers; onreadys

tatechange event handler;

ServerValidate event handler)

images, 377–390

real bar graphs, 369–374

handling

connection errors, 225

events, 134

exceptions, 391–393

file extensions, 499

InvalidCastException, 209

562

Hanselman, Scott

blog, 26

Hashtable collection type

about, 64

header elements

modifying in master pages, 260–262

health monitoring

exception handling, 394

HotlinkProtection class

using, 379

HTML email

sending, 342–344

HTML output

span tags, 281–284

HtmlEncode property

columns, 96

HTTP

states of, 189

HTTP compression support

ASP.NET, 450

IIS 6.0, 448

HttpContext.Items

compared to Page.Items, 192

HttpHandler class

protecting images, 378

requesting, 359–363

writing raw data to response, 358

HttpModule class

error handling, 400

moving ViewState, 491

I

IDs

generated, 326–330

IEnumerable method

binding to objects, 106

paging, 119

IIS

remapping file extensions, 497

wildcard mappings, 360

images

(see also dynamic images)

access to with a handler, 377–390

retrieving in HTML email, 344

indexes

about, 473

accessing elements, 64

inheritance

in ASP.NET, 426

ControlState, 213

CSS, 294

MasterPage class, 246

injection

compared to data binding, 284

input

forms validating, 160–164

internal debugging

enabling, 408

Internet Explorer Developer Toolbar

about, 297

InvalidCastException

handling, 209

IsKeyValid method

about, 380

IsReusable property

about, 358

iterators

BatchIterator class, 58

J
JavaScript, 303–314

(see also Ajax)

debugging, 334–337

history of, 303–304

http:ASP.NET
http:ASP.NET

563

libraries, 310–314

writing, 304–309

JIT compiler

generics, 44

Join method

concatenating Party objects, 54

JPEG format

using, 375

K
keys (see foreign keys)

L
labeling

source control, 18

languages

(see also Ajax; C# programming lan

guage; JavaScript)

prototype-based, 313

Last In, First Out (LIFO) collection

stacks, 68

letters (see form letters)

libraries

(see also .NET 2.0 core libraries)

JavaScript, 310–314

List collection type, 42–44

about, 63

List.FindAll method

match predicates, 45

LoadControlState method

using, 210, 216

log files

writing, 404–407

log4net

debugging, 407–408

log4net framework

using, 404

Log4Net open source project, 23

login

about, 229–231

LoginView control

displaying content based roles, 237

logs

sending emails, 353

M
machine keys

about, 194

machine.config

finding, 221

mail servers

third-party web hosting, 13

MailDefinition class

using, 346

mailSettings element

configuring, 340

managing

users, 226–229

mapping (see wildcard mapping)

master pages

about, 244–248

content pages overriding data on, 248–

253

interactions with content pages, 253–

256

modifying header elements, 260–262

URLs in, 257–260

match predicates

filtering general collections, 45

membership

adding, 220–222

564

MembershipProvider class

user login, 229

menus

CSS, 292–300

using, 287–291

methods (see specific methods)

MIME messages

multi-part, 343

MIME types (see content types)

minutes

mnemonic, 38

monitoring (see health monitoring)

months

mnemonic, 38

moving

view state, 489

N
named connection strings

in Web config files, 75

naming container control

user interfaces, 271

nested data binding

explained, 132

NHibernate open source project, 23

node position, 524

non-clustered index

about, 473

Null Coalescing Operator

ViewState, 207

number formatting specifiers

String.Format command, 36

numeric formatting

Excel, 152

NUnit open source project, 23

O
object properties

concatenating as delimited strings,

53–56

ObjectDataSource control

column fields, 120

DataTable objects, 120

declarative data binding, 106

ObjectDataSource objects

managing users, 227

objects

(see also specific objects)

as strings, 31–33

binding to objects that support IEnu

merable, 106

boxing and unboxing, 44

declarative data binding using Object-

DataSource, 106

functions as, 309

ObjectDataSource in DataTable, 120

Onion, Fritz, 26

onreadystatechange event handler

using, 306

open source code, 21–23

optimization, 435–484

about, 436–440

ASP.NET cache, 460–462

bandwidth, 446–452

database queries, 463–476

query speed, 476–484

refreshing the cache, 458–460

speed of site, 452–457

view state, 209, 441–446

Orcas debugger

CSS, 297

565

overriding

data on master pages, 248–253

P
page ranking

Google, 486

page rendering

partial, 318–324

Page.Items

compared to HttpContext.Items, 192

paged grids

Search Engine Optimization, 507

PageRank system

about, 486

PagerSettings element

about, 144

pages

(see also 404 pages; ASP.NET pages;

AutoScaffold page; content

pages; master pages; parameter

ized pages)

accessing view state, 206–209

rendering, 318–324

size of, 446

paging

(see also database paging)

enabling, 118

GridView control, 143–148

parameterized pages

caching, 456

parsing

email, 350

Party objects

concatenating, 54

passwords

forgotten, 231–236

patterns (see ActiveRecord pattern; cache

data reference pattern; provider

pattern; reluctant cache pattern)

performance (see optimization)

performance dashboard

using, 472

per-request state

web applications, 190–192

PINs

validating, 174

plain-text emails

sending, 339–342

PNG (Portable Network Graphic) format

web images, 375

POP3 protocol

receiving email, 347

storing email on server, 348

postbacks

control state, 210

Search Engine Optimization, 505

post-cache substitution

using, 457

predicates

(see also match predicates)

defined, 45

primitive types

storing state information, 195

procedures (see stored procedures)

ProcessRequest method

using, 358

Professional ASP.NET 2.0, Special Edi

tion, 27

566

properties (see public properties;

strongly typed properties; specific

properties)

protocols (see HTTP)

prototype property

using, 312

prototype-based Languages

about, 313

provider pattern

DAAB, 528

public properties

master pages, 252

publishing

Web Site project, 8–12

Q
quality

dynamic images, 374–377

quantization

GIF format, 376

queries

optimization, 463–476

speed, 476–484

writing, 474

query plan

checking, 478

Queue collection type

about, 66

R
reading

data from databases, 77–79

readyState property

about, 306

rebasing (see URL rebasing)

reboots

maintaining session states, 196–200

records

modifying single, 99–105

recovering

forgotten passwords, 231–236

recursive logic

stacks, 68

redirecting URLs

Search Engine Optimization, 502

reference books (see books)

Reflector

troubleshooting using, 513–517

refreshing

UpdatePanels, 324–326

registering

client validation functions, 184

users, 222–226

reliability

third-party web hosting, 14

reluctant cache pattern, 462

remapping

file extensions in IIS, 497

rendering

(see also binary content)

pages, 318–324

simple bars, 366–369

Repeater control

about, 285

repositories

source control, 17

reserved characters

formatting strings, 39

ResolveClientUrl method

master pages, 258

567

resources

ASP.NET, 24

ConnectionStrings web site, 76

embedding in components, 273–278

open source .NET, 22

open source projects, 23

reference books, 27

restart

on external changes to Web.config,

425

retrieving

basic configuration settings, 415–416

rewriting

(see also writing)

custom 404 pages, 502

URLs, 495–504

roles

displaying content, 237–242

rows

selecting, 101

S
sa SQL Server user accounts

connecting to databases, 75

SaveControlState method

using, 211, 212, 216

scaling (see optimization)

scans (see table scans)

screen scrapers

building, 517–526

scripts (see SQL workload script file)

Search Engine Optimization, 485–511

descriptive search results, 509–511

page ranking in Google, 486–487

rewriting URLs, 495–504

search-relevant content, 487–495

web page visibility, 505–509

SearchTerm property

user controls, 270

security

email input, 351

event validation, 152

images, 378

third-party web hosting, 15

webadmin.axd file, 229

SELECT *

problem with, 482

SELECT * Queries

SqlCacheDependency, 86

SelectedIndexChanged events

event handler methods, 90

selectors

CSS, 298

server controls

CSS Friendly Control Adapters Kit,

289

servers

(see also SQL Server; state servers)

optimization, 476

storing email using POP3, 348

storing view state on, 443

validating on, 163

ServerValidate event handler

form validation, 172

service packs

Visual Studio, 6

Session objects

storing state information, 193

session states

compared to per-request states, 193

enabling for web farms, 193–196

reboots, 196–200

setting

machine keys, 194

http:ASP.NET

568

SkinID attribute

themes, 268

Smith, Steven

on cache data reference patterns, 462

sort state

GridView control, 137–143

SortDirection property

changing, 136

SortedDictionary collection type

about, 65

SortedList collection type

about, 65

sorting

data, 79–81

databases versus application code, 56

source code (see open source code)

source control, 16–20

span tags

HTML output, 281–284

speed

optimization, 452–457

queries, 476–484

SpreadsheetML format, 156

SQL cache

clearing when testing, 477

SQL cache dependencies

older versions of SQL Server, 459

SQL injection

about, 528

SQL Profiler and Database Tuning Ad

visor

using, 464

SQL Server

cache dependencies, 459

configuring, 196

default instance of, 74

sa accounts, 75

SQL workload script file

DTA, 471

SqlCacheDependency

SELECT * Queries, 86

SqlCommand class

defined, 79

SqlConnection class

defined, 78

SqlDataReader class

defined, 79

SqlDataSource

GridView, 91

SqlDataSource control

limitation, 106

SSL certificates

third-party web hosting, 13

Stack collection type

about, 68

standards (see web standards)

starting

state servers, 195

state servers

session states, 193

starting automatically, 195

states, 189–218

accessing view state, 206–209

custom controls with view state off,

209–217

enabling session states for web farms,

193–196

per-request states in web applications,

190–192

session states across reboots, 196–200

storing application states, 201–205

static private members

storing application state information,

201

569

static variables

storing application state information,

201

statistics

reports from third-party web hosting

services, 15

sticky load balancing

defined, 193

stored procedures

foreign keys, 103

storing

basic configuration settings, 415–416

connection strings, 417

ViewState on server, 443

streams

choosing, 520

String.Format command

concatenation, 35

uses of, 35

strings

(see also connection strings; named

connection strings)

about, 29

conversion from objects, 31

strongly typed properties

using, 252

styling

GridView, 96

SubCommander

data access layer, 549

submitting

content via email, 347–351

SubSonic

about, 532

SubSonic Central

web-based code generator, 547

SubSonic open source project, 23

substitution (see post-cache substitution)

synchronizing

machine keys, 194

System.Net.Mail

using, 341

versus System.Web.Mail, 340

System.Web.Mail

warning about, 340

T
table scans

about, 473

tables

CSS inheritance, 295

tabular data

downloading into Excel, 149

tagging (see labeling)

templates

(see also master pages; web form tem

plates)

displaying content based on roles, 239

text (see plain-text emails)

themes

using in conjunction with CSS, 262–

266

third-party web hosting

explained, 12–16

time

(see also DateTime values)

formatting, 37

Titan IVB rocket

source control, 17

title element

Search Engine Optimization, 509

tools

(see also Ajax Control Toolkit; devel

opment tools; framework tools)

570

source control, 20

Top Style Pro debugger

CSS, 297

TortoiseSVN, 20

ToString method

displaying formatted strings, 34

in .NET classes, 31

tracing

error handling, 409–412

optimization, 436

TransmitFile method

versus WriteFile method, 366

troubleshooting

(see also debugging; error handling;

internal debugging)

databases, 473

query speed, 476–484

UpdatePanel, 321

using Reflector, 513–517

trusted connections

session state databases, 199

TrustRank system

about, 487

two-way data binding

support for, 98

type parameter

defined, 42

types (see collection types; value types)

U
unboxing

objects, 44

UpdatePanel

troubleshooting, 321

UpdatePanels

refreshing, 324–326

URL rebasing

master pages, 259

URLs

(see also absolute URLs)

in master pages, 257–260

redirecting, 502

rewriting for human readability, 495–

504

rewriting via .NET code, 499

USENET newsgroups

ASP.NET information, 25

user controls

(see also access control)

as components, 268–273

user interfaces

elements reusable components, 269

master pages, 247

using

making use of, 385

V

validation

checks in ConfigurationValidatorBase,

420

events, 152

ValidationGroup attribute

about, 170

validator controls

building, 177–179

value types

converting between, 44

variables (see application variables; static

variables)

VaryByParam method

caching parameterized pages, 456

view state

accessing, 206–209

571

Search Engine Optimization, 488

size of, 441–446

ViewPostCount property

using, 212

ViewState-backed property, 206

Visual Studio

JavaScript debugging, 335

Orcas debugger, 297

service packs, 6

web standards, 280

W
watermark

code example, 385

Web Application Project

compared to Web Site project, 2

Web Application project

creating, 6

web applications

per-request states, 190–192

web browsers (see browsers)

Web Deployment project, 9

web farms

enabling session states, 193–196

web form development, 243–278

(see also form validation)

content pages overriding data on

master pages, 248–253

embedding resources in components,

273–278

master page interactions with content

pages, 253–256

master pages, 244–248

modifying header elements in master

pages, 260–262

URLs in master pages, 257–260

user controls as components, 268–273

using themes in conjunction with

CSS, 262–266

web form templates

spans, 282

web hosting (see third-party web hosting)

web pages

visibility do search engines, 505–509

Web Site Administration Tool (WSAT)

managing users, 226

Web Site Project, 1–5

compared to Web Application Project,

2

Web Site project

creating, 3

publishing, 8–12

Web Site project model

tradeoff, 546

web sites

error handling, 393–401

web standards, 279–301

CSS, 292–300

DataList-style functionality, 285–287

menus, 287–291

span tags, 281–284

Web.config file

connectionStrings section, 75

custom configuration section, 418–423

encrypting sections, 429–433

exception handling, 397

managing values, 427–429

simplifying, 424–427

webadmin.axd file

security, 228

web-based code generators

SubSonic, 547

WebResource attributes

web form development, 277

572

WebResource.axd file

web form development, 275

wildcard mapping

IIS, 360

using, 497

worksheets

exporting, 156

WriteFile method

versus TransmitFile method, 366

writing

(see also rewriting)

binary content, 355–357

JavaScript, 304–309, 310–314

log files, 404–407

non-text binary data, 363–366

Queries, 474

raw data to response, 357–359

X
XHR (see XMLHttpRequest object)

XML

Excel file format, 156

XML namespaces

XPath statements, 525

XmlDataSource class

XPath statements that use XML

namespaces, 525

XMLHttp object

form validation, 175

XMLHttpRequest

form validation, 175

object, 304–306, 309, 313

XPath statements

XML namespaces, 525

	The ASP.NET 2.0 Anthology
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in this Book
	Code Samples
	Tips, Notes, and Warnings

	Introductory Topics
	Which web project model should I choose?
	Solution
	Web Site Projects Versus Web Application Projects
	Creating Web Projects
	Creating a Web Site Project
	Creating a Web Application Project

	How do I deploy my web site?
	Solution

	How do I choose a third-party web host?
	Solution
	Narrowing the Field
	Backups
	Reliability
	Deployment and Management
	Statistics
	Security

	Special Needs
	Free Stuff

	How do I use source control?
	Solution
	The Elements of Source Control
	The Repository
	Labeling
	Branching

	Who Should Use Source Control?
	Source Control Tools

	How do I go about using open source code?
	Solution
	Open Source Licensing
	Finding Open Source .NET Resources
	Recommended Open Source Projects

	Where can I find more information about ASP.NET?
	Solution
	Searching for Information
	Google Groups
	The ASP.NET Web Site
	ASP.NET-focused Blogs
	Reference Books

	Summary

	.NET 2.0 Core Libraries
	How do I use strings?
	Solution

	How do I display an object as a string?
	Solution
	Discussion

	How do I display formatted strings?
	Solution
	How Powerful is String.Format?

	Discussion

	How do I use generics?
	Solution

	How do I filter items in a generic collection?
	Solution

	How can I get more use out of my custom logic?
	Solutions
	Using Generic Methods
	Using Reusable Delegates

	How do I convert generic lists to specific classes?
	Solution

	How do I concatenate delimited strings from object properties?
	Solution
	Discussion

	How do I batch operations with large collections?
	Solutions
	The Naïve Solution
	The Naïve Solution’s Pitfalls

	The BatchIterator Class Solution

	How do I choose the right collection?
	Solutions
	The Array
	The ArrayList and the List<T>
	The Hashtable and the Dictionary
	SortedList and SortedDictionary
	Queue
	Stack

	Summary

	Data Access
	How can I get started using ADO.NET?
	Solution
	Discussion

	How do I configure my database connection?
	Solution

	How do I read data from my database?
	Solution

	How do I sort and filter data?
	Solution
	Discussion

	How do I fill a DropDownList from a database table?
	Solution

	How can I perform data binding without having to write all that repetitive code?
	Solution

	How do I display the contents of a database table?
	Solution
	Discussion

	How do I allow the modification of a single record?
	Solution

	How can I data bind without using the SqlDataSource?
	Solution

	Summary

	Pushing the Boundaries of the GridView
	How do I add a data-bound drop-down to a GridView?
	Solution
	Discussion

	How do I sort on multiple columns?
	Solution
	Discussion

	How do I display the sort state?
	Solution
	Discussion

	How do I implement custom paging?
	Solution
	Discussion

	How can I allow users to download tabular data as a Microsoft Excel file?
	Solution
	Discussion
	Numeric Formatting and Formulæ

	Summary

	Form Validation
	How do I validate form input?
	Solution
	Discussion

	How do I validate multiple forms?
	Solution

	How do I set up custom validation?
	Solution
	Discussion

	How do I perform custom client-side validation?
	Solution
	Discussion

	How do I build my own validator control?
	Solution

	How do I perform client-side validation with my custom validator control?
	Solution
	Understanding the Client Validation Function
	Embedding the Client Validation Function
	Registering the Client Validation Function

	Summary

	Maintaining State
	How do I maintain per-request state in a web application?
	Solution

	How can I maintain session state in a web farm using a state server?
	Solution

	How can I maintain session state in a web farm using a database?
	Solution
	Configuring SQL Server
	Configuring ASP.NET

	Discussion

	Where should I store application state?
	Solutions
	Storing Data in Static Variables
	Storing Data in the Cache
	Storing Data in Application Variables

	What’s the cleanest way to access a page’s view state?
	Solution
	Discussion

	How can I make sure my custom control works when view state is turned off?
	Solution
	Discussion

	Summary

	Membership and Access Control
	What’s the easiest way to add membership to my site?
	Solution
	Discussion

	How do I allow users to register for my site?
	Solution
	Discussion

	How do I manage users on my site?
	Solution

	How do I require users to log in?
	Solution
	Discussion

	How do I grant access to users who have forgotten their passwords?
	Solution

	How do I display content based on roles?
	Solution

	Summary

	Component-based Development
	How can I use master pages?
	Solution
	Discussion

	How can my content page override data on my master page?
	Solution
	Discussion
	Using a Strongly Typed Property
	Handling Multiple Master Pages

	How can I have my master page interact with my content page?
	Solution
	Discussion

	How do I use URLs in a master page?
	Solutions
	Using Absolute URLs
	Using the ResolveClientUrl Method
	Using URL Rebasing
	The Ideal Approach

	How do I modify header elements in a master page?
	Solution
	Discussion

	How do I use themes effectively in conjunction with CSS?
	Solution
	Discussion

	How do I treat user controls as components?
	Solution

	How do I embed resources into my components?
	Solution

	Summary

	ASP.NET and Web Standards
	What are all these span tags doing in my HTML output?
	Solution
	Discussion

	How do I obtain DataList-style functionality without using a table?
	Solution
	Discussion

	How do I use ASP.NET’s fancy menus without the fancy HTML?
	Solution
	Discussion

	How do I make sense of the CSS maze produced by the CSS Friendly menu?
	Solution
	Discussion
	Simple CSS Inheritance
	CSS Inheritance and Tables
	CSS Development Tools
	Getting Back to that Menu …

	Summary

	Ajax and JavaScript
	How can I write better JavaScript?
	Solution
	Discussion

	How can libraries make writing robust, cross-platform JavaScript easier?
	Solution
	Discussion

	How do I use Microsoft's ASP.NET AJAX?
	Solution

	How do I perform partial page rendering?
	Solution
	Discussion

	How do I show progress during a partial page render?
	Solution
	Discussion

	How do I periodically refresh an UpdatePanel?
	Solution
	Discussion

	How do I work with generated IDs?
	Solution
	Discussion

	Where can I get some fancy ASP.NET controls?
	Solution

	How can I debug JavaScript?
	Solutions
	Using Visual Studio
	Using Firebug
	Using Framework Tools
	Using Fiddler

	Summary

	Working with Email
	How do I send a plain-text email?
	Solution

	How do I send an HTML email?
	Solution
	Discussion

	How do I attach a file to my email?
	Solution
	Discussion

	How do I send personalized form letters?
	Solution
	Discussion

	How do I allow users to submit content via email?
	Solution
	Discussion

	How do I send an email without waiting for it to complete?
	Solution

	Summary

	Rendering Binary Content
	How do I write binary content?
	Solution
	Discussion

	How do I write raw data to the response?
	Solution
	Discussion

	How do I request an HttpHandler?
	Solutions
	Using a Custom HttpHandler
	Using a Generic Handler

	How do I write non-text binary data?
	Solution
	Understanding Content Types
	Writing Binary Content

	How do I render simple bars?
	Solution

	How do I create a real bar graph handler?
	Solution

	How can I improve the quality of my dynamic images?
	Solution
	Discussion

	How can I use a handler to control access to the images on my site?
	Solution

	Summary

	Handling Errors
	How can I handle exceptions in my code?
	Solution

	How can I handle errors in my web site?
	Solutions
	Handling Exceptions Via Health Monitoring
	Specifying Exception Handling in the global.asax and Web.config Files
	Handling Errors Via HttpModule

	How can I use a pre-built exception handling strategy?
	Solution

	What’s the best way to write a log file?
	Solution

	How do I debug log4net?
	Solution

	How do I perform tracing?
	Solution

	Summary

	Configuration
	How do I store and retrieve basic settings?
	Solution

	How do I store connection strings?
	Solution

	How do I retrieve settings declaratively?
	Solution

	How do I create a custom configuration section?
	Solution

	How can I simplify my Web.config file?
	Solution
	Discussion

	How can I manage Web.config values between deployment environments?
	Solution

	How can I encrypt a section of my Web.config file?
	Solution

	Summary

	Performance and Scaling
	How do I determine what to optimize?
	Solution

	How can I decrease the size of the view state?
	Solutions
	Compressing the View State
	Storing View State on the Server

	How can I decrease the bandwidth that my site uses?
	Solutions
	Enabling HTTP Compression Support in IIS 6
	Enabling HTTP Compression Support in an ASP.NET Application

	How can I improve the speed of my site?
	Solution

	How do I refresh my cache when the data changes?
	Solution

	How can I gain more control over the ASP.NET cache?
	Solution
	Discussion

	How do I speed up my database queries?
	Solution
	Discussion
	Lack of Indexes
	Incorrect Indexes
	Poorly Written Queries
	Deadlocks
	Hardware Issues

	How can I troubleshoot a slow query?
	Solution
	Verifying the Problem
	Checking for Large Result Sets
	Checking the Query Plan
	Eliminating Cursors
	The Problem with SELECT *
	Accessing More Information

	Summary

	Search Engine Optimization
	How does Google rank pages?
	Solution

	How do I ensure search engines review only search-relevant content?
	Solutions
	Removing View State
	Moving View State
	Creating an HttpModule

	How do I rewrite my URLs for human readability?
	Solutions
	URL Rewriting Via IIS
	URL Rewriting Via .NET Code
	URL Rewriting with a Custom 404 Page

	How do I ensure my web pages are visible to search engines?
	Solution

	How do I ensure my web pages produce descriptive search results?
	Solution

	Summary

	Advanced Topics
	How can I tell what’s going on behind the scenes?
	Solution

	How do I build a screen scraper?
	Solution
	Scraping the Content
	Displaying the Scraped Content

	Discussion

	How do I build a data access layer?
	Solution
	Discussion

	How do I automatically generate a data access layer?
	Solution
	The AutoScaffold Page
	The Scaffold Control
	The Utility Controls
	The SubSonic Data Access Layer
	Adding SubSonic to your Project
	Installing SubSonic
	Configuring Web.config
	Generating your DAL

	Discussion

	Summary

	Index

