Rails: Novice to Ninja
by Glenn Goodrich and Patrick Lenz

Copyright © 2016 SitePoint Pty. Ltd.

Product Manager: Simon Mackie Technical Editor: Enrique Gonzalez
English Editor: Kelly Steele Cover Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either
express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or
distributors will be held liable for any damages to be caused either directly or indirectly by
the instructions contained in this book, or by the software or hardware products described
herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no
intention of infringement of the trademark.

> sitepoint
Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066
Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 978-0-9943470-0-8 (print)

ISBN 978-0-9943470-6-0 (ebook)
Printed and bound in the United States of America

ii Rails: Novice to Ninja

About Glenn Goodrich

Glenn Goodrich started programming when he was 12 and hasn’t really stopped
since. He has worked for large enterprises, startups, and everything in between.
Glenn found Ruby in 2006 or so and (like so many other nerds) fell immediately
in love. He can be found on the SitePoint Ruby channel, editing and writing and
such. Glenn enjoys writing almost as much as coding, and he sincerely hopes this
book helps at least one new Rubyist on their path.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content
for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books,
newsletters, articles, and community forums. You’ll find a stack of information on

JavaScript, PHP, Ruby, mobile development, design, and more.

http://www.sitepoint.com/

I would like to dedicate this book my wife, who saw past the nerd and helps me

see the life beyond the code every day.

iii

iv Rails: Novice to Ninja

Table of Contents

Preface ..., xxi
Who Should Read This BOOK ... XXi
CONVENTIONS USEU ..oereeereereereeeesreseeesesseseses s ssesesnas XXil

Tips, Notes, and Warningscoeereeeereeresensesessessensesessensenes XXii
Supplementary Materials.....ournrererereneseseseresesesesesesesesesesesesesesesesenes XXV

Chapter 1 Introducing Ruby on Rails............... 1
[Ty (0] TPV 4
Development PriNCIPIES ... 7

Optimize for Programmer Happiness......ccocvrnrnsneseesesesesssessseaens 7
Convention Over Configurationereecsseeesesnessssesesesesseens 8
The Menu iS OMaKASEeeueeeueureeureresereesresessesesssesessesessesesssessnens 9
NO ONe ParadigM ... sssssssssssnnns 10
Exalt Beautiful COUE ..t 1
Value-integrated SYSTEMScoceeeerereeereesresesesese s 12
Progress OVer Stability....nnnnnssrsessssssssssssssssssssssssssnnns 12
Push Up @ Big TENT et 13

Building the Example Web Applicationoocvreeeecnescerenceeeseneneenae 13

Table of Contents v

Features of the Example Applicationocceeeeeceerererenccereneneenas 14
SUMMAIY .eeutiirertrererereseseeesesesesesesesesesesasesasasssssssssssssessssssssssssssssssssssssssssnsssasns 15
Chapter 2 Getting Started...........ccocovvverrnennncene. 17
What does all this COST? ... 19
INStalling 0N WINAOWS....c.ccieeeccece e 19
INSTAIl RUDY ettt et sa s 20
[Installing 0N Mac OS Xu.ocirrcrreesrsesersseese s 29
[nstalling HOMEDIEW ... 31
Installing on LinuxX (UDUNTU) couceeececeeeeeeeecee e sssssassanens 36
Additional Installation OPLioNS ... 37
And Now the FUn BegINS ... 39
One Directory Structure to Rule Them All ... 39
Creating the Standard Directory Structure.......oocoeeeeeececnenenen. 40
Starting Our ApPliCatioN e 41
Version Control and Gitcceececerecencercsresesesreseessessesesessessesesessesesssens 42
T2 T T 43
WhiCh TeXt EAITOI? e ssesesssseaens 46
Windows and Cross-platform Text Editors......ueeverereresnenenen. 47

Linux and Mac OS X EdITOrS....ccucrerenmerescerecerenesenessseessesesssnens 48

vi Rails: Novice to Ninja

SUMIMATY .ttt bbbt 51
Chapter 3 Introducing Rubycccccovvvieuunnce. 53
Ruby is a SCripting LaNQUAQE ...ccccvueerererererererenesssesesesessssssesesesssssesesesnans 54
Compiled LanQUAQESc.cuvcererecereeereessesess s 54
SCHPLING LAaNQUAGES ..cueereereeeereeereeese e 55

The Great Performance Debate ... 55
Cho0ose What WOIKS ... 56

Ruby is an Object Oriented Languageccceveeerecereeenesessesesereesseseanens 56
Reading and Writing RUDY COdEoreverrrrererererereneresssesesesesssseseseeans 60
The Interactive Ruby Shell (11rD) coeeceeeeeeeceeeeeeeeeeee e 60
Interacting with RUDY ODJeCTS...cueierereceree e 62
Literal ObJECTS..curererererererereesssssesesesssssesesssssssesess s ssesesssssssenensans 62
Variables and Constants ... 63

Basic Punctuation in RUDY ..ot 65
DOt NOTAtiON .ot 66
Chaining Statements TOGether.......ccreecerenccrsesereerreeereenene 66

Use Of Par€ntheses......ov v 67
Method NOTatioN ... 68
Object-oriented Programming in RUDY.......ccociivcrencsenencnscncccecenas 69

C1asS€S aNd ODJECLSvucueeurereaeereeereessesesee e 70

Table of Contents vii

Object-level FUNCIONAIITY e 71
[INSEANCE VaAriabIES ...t 71
[INStANCE METNOMS et 71
ACCESSOr METNOUS ...ttt 73

Class-level FUNCLIONAlITY ..ottt 75
[NNEIITANCE ..ttt 78
Modules and COMPOSITION .eeucereeerererereeereresresesereesseessesesseseaees 79
RETUIN VAIUES et 81

StANAard OQUTPUL .t 82

RUDY COre ClasSS...cuuururereeurererereesareresesesssssesesesssssesesessasssssessssssssssssnsans 84
1) €0 84
INUIMEEICS weeereucueueereseeesseseseessssseseesssssseseesssssesesasssssestassssssssasasas 87
SYMBOIS ettt 88
ATTAYS cteeeeeeeeeseeseessssesesesasas e sesesas s e sesssas e e sssassssesessasssnesssasasasnssens 89
HASNES .ttt 91
NLL VAIUES e 93

RUNNING RUDY FIlES ..ttt se e 93

CONTIOl STrUCTUIES ettt 94
(60T o LR uTo T PV 95
0T 0T 98

viii Rails: Novice to Ninja

SUMMATY .ttt ettt a s 103
Chapter 4 Rails Revealed...............ccceuvvernncee, 105
Three ENVIFONMENTS ..t 105
Application DependenCIes. ... reererecerenessinssr e 107
BUNGAIET e 107
Database Configuration ... ssssssesesessssssesenens 109
The Database Configuration Fil€ ... 110

The Model-View-Controller ArchiteCtureooeeeevcerereserecereceresenene 112
MVC N TREOIY ettt ee e ee s se e sesns e s 12

MVC the Rails WaY ...t snnes 113

The ActiveRecord MOdUI€..... e 115

The ActionPack Library.. e 123
ActionController (the Controller) . eccseeee. 123
ACtIONVIEW (the VIEW) et ese e ssesneas 125
RESTIUI-STYIE oot seees 128
[N TREOTY ettt 128

REST and the WD ... 129

REST iN RailS e sessessssessesseseens 131

(600 [Gy 1T -) 4o 4T 131

The ActionMailer COMPONENt..... e seeaseeaes 133

Table of Contents

Testing and DEbUGQING .. 134
S 4o 134
DEDUGGING .t 136

SUMMATY .ttt ettt 137

Chapter 5 Models, Views, and Controllers..138

Generating @ MOl ... ssssesesenans 138
The Model GENErator ... 139
Modifying the Schema Using Migrations......oececeeeserenserescssescusenenes 145
Creating a Skeleton Migration File........coeevrrreresnnereresesnenens 145
Creating the stories Table ... 147
Running the Migration ... 149
Managing Data Using the Rails Console........cvvrrrrrrrrereresenenennns 151
Creating RECOIUS....cou e 151
Retrieving RECOIAS.....cvuimmreccererereceee e 154
Updating RECOIAS ... 157
Deleting RECOIAScvuecerecrriereseereesseess s 158
Generating @ CoNtroller ... et 159
Running the generate Command......ccoerevererereresessesenenens 159
Understanding the OUTPUL....cccececreecresccresree s 161

Starting Our Application ... AQaineceeeerereneneeseerereseenens 163

ix

x Rails: Novice to Ninja

Creating @ VIEW ..t sesssessnens 165
Generating Views with Scaffolding......ceecerrenenesnseresescssenens 165
Creating Static Pages ... 167
Creating Dynamic Pages......ooueeeereeereerrencsseneseseesseessesesseseaes 168
Passing Data Back and FOrth ... 169
PUlling in @ MOloeieecerecceeereesseee s 170

SUMMATY .ttt ettt a s 172

Chapter 6 Helpers, Forms, and Layouts......174

Calling upon Our Trusty HEIPEIS....oueceererereressrsrereressssssresessssseseneanans 175

Enabling Story SUDMISSION .. 175
Creating @ FOrM s 176
Saving Data to the Database.......ccrereresserenenesesseresesesanees 188
Redirecting with URL helpers ... 189

Creating @ LayOUL ..o 192
Establishing STrUCTUIE ...t 193
Adding SOME STYIE ..t 195

Enabling User Feedback with the Flash ... 197
Adding 10 the FIash . 198
Retrieving Data from the Flash ... 199

Applying Validations ... 201

Table of Contents xi

Tweaking the Redirection LOGIC ..cocverereececrerererecerce e 202
Improving the User EXPEerienCe ... ceeveeesseseeeeeeeeenens 203
TEStiNG the FOIrmM o 206
Testing the MOAEl ... 208
Analyzing the SKeleton Filecerrererersnenerenesssssesesesanenes 208

USING ASSEITIONS cerveurerecrrecsreresesesssess s sesssesseans 209
WrItiNg @ UNit TEST o 209
RUNNINg MOdel TESES...ovirrrrrrrrrrse e 212
Testing the Controller..... s 214
Analyzing the SKeleton File ... 215
Writing @ Controller TEStrrenrsreresesesssesesesssssesesesanenes 215
Running a Controller TESt ... 217
Writing More Controller TESES ... ererereereneeneresereeereeereenene 217
Running the Complete Test SUItevveeeererereressserereseesseneens 221
VISITING the LOGS .. sssssseaes 222
SUMMATY .ttt ettt 223
Chapter 7 Ajax and Turbolinks...................... 225
Generating @ Vote MOdEl......ocecerererereeseseresessssesesesssssssesessssssesesenans 226
Creating the MOdel ... 226

Examining the Vote Migration ... ececrereececsccereseeccnseneens 226

xii Rails: Novice to Ninja

Applying the Migrationcceceeerrereecsceereeeseessee s 228
[Introducing RelatioNSNipS....cveeererererererererinesesesesesesesesesesesesesesesesessssnens 228
Introducing the has_many Clause........couorevcrrencresenserescenens 229
Introducing the belongs_ 10 Clause....eeecererenccerenenene 233
How's our schema 100KING? ... 235
Making @ Home for Each Story ... 236
Determining Where a Story LIVESoocveeereseenenerereseneeeenes 236
Displaying OUr STOFIES .cvueeeerererereesessreressssssesessssssssesessssseneens 237
Improving the Story RandOmizer........ooeeeverevcerencsesesesesenens 238
Implementing Clean URLSccccvereneerenerenesereeseesessesesseseeenenas 240
Converting from SEriNgS....reresessereresesesesesesesssesesesesssses 241
Investigating Link GENErationceererenseressenescesesesesessnnens 242
Ajax, Pjax, and TUIrDOIINKS c.cceeeeeeeeeeeeeeeeeeieereeeee et 244
[INTrOAUCING AJAX curererererrrrr s 244
A QL0 I (LT 247
Controlling Where the VOtes GOc.oecreverereserecereessenessenenes 247
The ASSET PIPEIINE ... sesesesesesesasesasesesesessnsssnens 250
Why do we need an asset pipeline?cvrvcevenencrrescerescnnene 252
MUILIple SOUICE FIlES ... 253
ASSEt PrepPrOCESSOIS..ueieierererererererssssssssssssss s sasanas 257

Asset Compression and Minificationeeeerencrencsesessenens 260

Table of Contents xiii

ASSET DIGESES eueererrccerrre e se e 261
Get QUL The VO .. 261
Styling the Scoreboard ... 263
RESPONSE FOrMAtS .. 266
[INTroduCiNg Partials .. esesesesesssessssssnens 268
Adding VOting HiStOrY ...ccceeecrercrenesrressesesssessssesessesessesessens 269
Creating the Partial ... 270
Styling the Voting HiStory...ennrercesssesesesesssesesesesssenes 271
Tweaking the Voting HiStory ... 274
Testing the Voting Functionalityocceeececcnereecsccceee e 276
Testing the MOdel ... s 276
Preparing the FIXTUIES.....o e 277
Testing a Story's Relationship to a Vote ... 277
Testing the Voting History Orderenesessnenesesssesenenens 279
Running the Unit TESTS ... 280
Testing the CoONtroller.... s 281
Testing Page RENdEring ..oeeeressese e 281
Testing VOte STOrage ... seessesessssesseas 283
Testing AjJaxX VOTiNG ..o 284
Testing Regular HTTP VOting ... 285

Running the Full TEST SUITE ... 286

xiv Rails: Novice to Ninja

SUMMATY .ttt ettt a s 286
Chapter 8 Protective Measures......................... 288
Introducing Sessions and COOKIS.......uuvwrrerereressrerereresssssseresessssseneens 288
[dentifying Individual USErS ... 289
What's @ COOKIE? ...t 289
What's @ SESSIONTcuecereereereerressesssessessees s sessesssessessesnnes 291
SESSIONS 1N RAIIS e 292
MOAENNG the USET .. 293
Generating @ User MOdelccvverereeerererereeseresesesssssesesesesssnenes 293

Has Secure PassWordceensenescesesssssesssessssessssssesssesses 295
Adding Relationships for the User Class......coorrererecerenenen. 297
Creating @ USEr . sssssssssssssssnens 298
Developing Login FUNCtioNality.....cvrenconeresseresceseneseness s 299
Creating the Controller..... s 299
Creating the VIEW .. sesesesessssssssssssssssssssssssssnens 301
Adding Functionality to the Controllerooernccenessenenae 303
INTrOAUCING FIITEIS.omeeee e 307
BefOre FIlTErs...rcsrcrccses s 307

LN i (g 1] TN 308

ATOUNG FITEOIS et e e reeeee s e e eee e e e e emeee e eeneenanen 308

Table of Contents xv

Managing USEr LOGINS. ...cererecerrererecssseseseeessssesesessssssesessssssseseeas 310
Retrieving the Current USer ... rerercssenenesesessssresesessssnenens 310
Displaying the Name of the Current USerccoeverenverencenenes 312
Allowing Users t0 LG OUT ..ccuveererecereesrereeeseesseessesessesesneenas 315

Adding @ Navigation MENU ... ssens 317

Restricting the Application ... 319
Protecting the FOrm e 319
Restricting Access to Story SUDMISSION ..c.cereeereererererereeerenenens 323
Associating Stories With USErs.......c s 325
One Last Thing: Associate Votes t0 USers.....cuveererereresennenes 328

Testing User AUtheNntiCation ...eeeeeeenenenesesesesesesesesesesesesesesesesessssnnns 329
Testing the MOdEl ... 329
Testing the Controllers....... e 336
Fixing VotesController TeStS.....ummrereseneneresesssssresesesssssnenens 347
Running the Full TEST SUITE ... 350

SUMMATY .ttt ettt 351

Chapter 9 Advanced Topicsccccoeuveuneenenneees 353

Promoting Popular StOFIEscerererererriseresessssesesesssssesesessssssseens 353

Using @ Counter Cache ... 354

Introducing the Counter Cacheoooeeeeeerescereserereeeeeeeenes 354

xvi Rails: Novice to Ninja

Making Room for the Cache.......ccererererecerenereseeeseeeeeeeenas 355
Applying the Migration ... 357
Implementing the Front Page ... 358
Modifying the Controller ... 358
MOdifying the VIEW ... 359
Creating the Partial ... 361
Styling the Front Page ... 361
Setting the Default Page.....oovrerecersererenesseseseses e 362
Implementing the Voting Bin ... 363
Adding Custom Actions to RESTful ROUTEScceeeurerereecenerereeeanes 367
Abstracting Presentation LOGIC ..ureeererererererereresesesesesesesesesesesesessssnens 368
Avoiding Presentation Logic Spaghetti.....cceovrevcrencrerescenenas 369
Introducing ActionView Helpers ... rnrrercncceseneens 369
Writing an ACtionView Helper. .. nneneneresesesesenens 370
Expanding the Navigation Menuovevrevcnencsencsenensenenns 372
Requiring a LOgin t0 VOTE.... e 373
AULO-VOTING o se e se e sesasesasasasssasasessssssnsnsnsns 376
Introducing Model Callback........cocreecerenereneseressrrenesseseseseseens 377
Adding @ CallDACKeveueurereeeereesreeserees e sseseseesesneeas 378
Adding a Description t0 STOFIES ..vererereresserereresessssesesesssssesesessanenes 379

Adding a Model ATEFrDULE ...ecerecreecrrec e 379

Table of Contents xvii

Expanding the Submission FOrm.......recrescnenerereeeeeeeenes 381
White-listing the New Attribute....ooeeeeeeerenerererererererererenerenenes 383
Adding USEr PAgEscouererecrreerienrsssesssnesss s sesssesessssesssesssessssseases 384
Introducing the Join Model Relationship.......cccecerereeccererene. 384
Introducing the has_many :through Association............. 385
Adding Another CONtroller ... 387
Creating the VIEW ... seseseeaes 388
Testing the New FuNCtionality .. 391
Testing the MOdEl ... 391
Testing the StoriesController.. e 397
Testing the VOt esCoNtroller. . e 402
Testing the USersCoNtroller. s 403
Running the Complete Test SUIte ... 403
SUMMATY .t ee e ee e se e e e e e e e e e e e e e s 404
Chapter 10 Rails Plugins.........ccccooovevvnenecnennnces 406
What iS @ PIUGINT ettt 406
Adding Tagging t0 Readit......cocverereeccrererercecrereecse s 410
Introducing the acts-as-taggable-on Gem............... 410
Installing the acts-as-taggable-on Gemccoomene. 412

Creating a Migration for the Plugin.......onneeerneneneccnnne 413

xviii Rails: Novice to Ninja

Understanding Polymorphic Associations.......c.coocveeececererenee. 416
Making a Model Taggable ... 417
Enabling Tag SUDMISSION ...t 421
MOdifyiNg the VIEW ... 421
Modifying the Controller ... 422
Enabling Tag Display.....u s 423
MOdifyiNg the VIEW ... 423
Updating the story Partial .. 424
AsSIgNING OUr FIrSt TAgS ...ceeeerecererereresereessssess s seessseaes 424
VIEWING STOMIES ettt eaes 426
Creating the Controller... s 426
Filling in the View Template ... 428
Displaying Tagged STOFI€Socveeeeereeureresreresereesreessesessesessseaas 429
Creating a tag Partial .. 429
Updating the StyleSheet.......ooireecrescireseseseseereeseseenens 430
Testing the Tagging FUNCtioNality ... 432
Testing the MOdel ... s 432
Testing the Controller ... 434
Running the Test Suite ... AQain! ... 437

SUMMATY e se e e e e e e e e e e e e e e s 438

Table of Contents xix

Chapter 11 Debugging, Testing, and

Benchmarking............nnneneneneneeninens 439
Debugging Your AppliCation ... eeeereeesesesesereseresesesesesesesesesesessssssssnens 440
Debugging within TemMpPlates......corvcreressereserneseseseseseseens 440

WED CONSOIC ...t 447
Debugging A Slightly Trickier Bug....cueerrereressssreresesssenenens 452

Using the Rails Logging TOOI......cciurecrinenereseresesesesesess s 463
Overcoming Problems in DEbUQQingccceeucerecerencurenensereeereesseenens 466
Testing Your Application Using Integration Tests......ccceeene.. 466

Using Breakpoints in @ TEST.... v 470
Revisiting the Rails CoNSOIe ... 473

A Brief Introduction t0 Pry .o 476
Benchmarking Your Application........conreecenescnescsesessseessesesseees 481
Taking Benchmarks from Log FIl€secoeererercecererercccneeeee 482
Manual Benchmarking.....ceescsseeeeeeee s 486
SUMMATY .ttt n e e e e 487

Chapter 12 Deployment and Production

xx Rails: Novice to Ninja

Choosing a Production ENVironment.......cecceeecereecereneseseserecssesennens 491
WED SEIVEIS...oieeerecrresreceessesseessessessss e s s sessesssessessassseasesssnes 492
APACNE ot 493
NGINX e ttrrreurrrerereesessereseessse e se e s sse e s e e e s sea e s s ssaseeas 493
APPIICATION SEIVEIS c.veueeerererereressreresesssssesese s ssese s sesssssesessssassnes 493
R T TP 494
TEIMINOIOQY e 495
Application Servers for RailS.....uernnnenenesssssnenesesssssenenens 497
ProXying REQUESTS.....cocuecericeriress e snssssseases 498
SOTEWAIE @S @ SEIVICE ..ueueeecereearereeereessesesse e ssseesens 499
L [499
Alternatives for Session STOrageuvcrrncsrrencsrescssesessresssesessesenes 505
The ActiveRecord Store Session Container.........ccoeeee. 505
FUrther REAdiNg ...t sesssassnens 508
L= T 0 140 T 509
ACTIONCADIC.....eeeereceeee e 509
RAIIS APl 510
PEFfOrMANCE ..o o511

SUMMATY .ttt ettt a st 512

Preface

Preface

When Simon Mackie approached me to update this book from Rails 2 to Rails 5, I
didn’t hesitate. For one, he said “Simon says ‘UPDATE THIS BOOK’!” (groan).
For two, I love writing and I love Rails, so this opportunity was a no-brainer.
Throughout the process, I have remembered why Rails is such a paragon of
productivity, and I've also discovered much I didn’t know about the framework. I
honestly believe there is no better way to be productive writing a web application
than to write about the technology.

I'd be remiss if I didn’t point out the truly excellent work done by Patrick Lenz on
the first two editions of this book. Patrick has a gift for explaining technical
things simply, something I leveraged over and over again in this update. Patrick’s
work shines through, into this version, and I learned much from both his content
and his style.

Finally, I have always enjoyed writing. I have written many blog posts in my
technical life, always with two goals: Firstly, to solidify my own understanding of
the topic, and secondly, to share my knowledge with a community. The thought
of someone getting better as a result of reading something I've penned is
exhilarating. I sincerely hope that this book launches you on a career as
rewarding as mine has been, and that you find the same joy in sharing your
knowledge.

Who Should Read This Book

This book is for web developers who want to learn Ruby on Rails. You don’t need
any prior experience with Ruby, although some experience with another
programming language will probably be useful.

xxi

xxii Rails: Novice to Ninja

Conventions Used

You’ll notice that we’ve used certain typographic and layout styles throughout
this book to signify different types of information. Look out for the following

items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</hi1>

<p>It was a lovely day for a walk in the park. The
> birds were singing and the kids were all back at
> school.</p>

If the code is to be found in the book’s code archive, the name of the file will

appear at the top of the program listing, like this:

0-1. example.css

.footer {
background-color: #CCC;
border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

0-2. example.css (excerpt)

.footer {
background-color: #CCC;
border-top: 1px solid #333;
}

Preface

If additional code is to be inserted into an existing example, the new code will be
displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, : will be
displayed:
function animate() {

new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An > indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real
> -user-testing/?responsivel");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

@ Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

xxiii

xxiv Rails: Novice to Ninja

@ EXTRA CREDIT

EXTRA CREDIT notes contain additional homework exercises that you can do
yourself to further your knowledge of Ruby on Rails. While you don't have to
complete the extra credit exercises in order to follow the book, doing so will greatly
enhance your understanding of Ruby, Rails, and the Rails ecosystem, so they are
recommended.

0 Make Sure You Always ...

... pay attention to these important points.

@ Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials

https://github.com/spbooks/rails3v5 has the downloadable code archive and

example files for the book. Please note that each chapter has its own branch in
the repository. If you're unfamiliar with Git and GitHub, you can simply
download the code for each chapter as a Zip file. Go to https://github.com/
spbooks/rails3v5/branches/all, select the branch that corresponds with the

chapter that you're reading, and the click Clone or download > Download ZIP.
https://www.sitepoint.com/community/ are SitePoint’s forums, for help on

any tricky web problems.
books@sitepoint.com is our email address, should you need to contact us to

report a problem, or for any other reason.

https://github.com/spbooks/rails3v5
https://github.com/spbooks/rails3v5/branches/all
https://github.com/spbooks/rails3v5/branches/all
https://www.sitepoint.com/community/

Introducing Ruby on Rails

Chapter

Introducing Ruby on Rails

Since Ruby on Rails was first released, it has become a household name (well, in
developers' households, anyway). Hundreds of thousands of developers the
world over have adopted—and adored—this framework. I hope that, through the
course of this book, you'll come to understand the reasons why. Before we jump
into writing any code, let's take a stroll down memory lane and explore a little of

the history of Ruby on Rails.
First, what exactly is Ruby on Rails?

The short-and fairly technical—answer is that Ruby on Rails (often abbreviated to
“Rails”) is a full-stack web application framework written in Ruby. That is a
distinction worth emphasizing. Ruby is a language and Rails is a framework. Say
that last sentence out loud a couple of times. Rails is often mentioned as if it is a

1

2 Rails: Novice to Ninja

language, so understanding that Ruby is the language and Rails is the framework

is your first step on this journey of learning.

However, depending on your previous programming experience (and your
mastery of tech-jargon, that answer might make little sense to you. Besides, the
Ruby on Rails movement—the development principles it represents—really
needs to be viewed in the context of web development in general if it is to be
fully appreciated.

So, let's define a few of the terms in the definition above while taking in a brief
history lesson along the way. Then we'll tackle the question of why learning Rails
is one of the smartest moves you can make for your career as a web developer.

A web application is a software application that's accessed using a web browser
over a network. In most cases, that network is the Internet, but it could also be a
corporate intranet. The number of web applications being created has increased
exponentially since Rails came into being, due mostly to the ubiquity of
broadband internet access and the proliferation of mobile devices. We can only
assume that you're interested in writing such a web application, given that you've
bought this book!

A framework can be viewed as the foundation of a web application. It takes care
of many of the low-level details that can become repetitive and boring to code,

allowing the developer to focus on building the application's functionality.

A framework gives the developer classes that implement common functions used

in every web application, including:

database abstraction (ensuring that queries work regardless of whether the
database is MySQL, PostgreSQL, MongoDB, SQLite, or [insert your favorite
database here])

templating (reusing presentational code throughout the application)
management of user sessions

generation of clean, search-engine-friendly URLs

Introducing Ruby on Rails

@ Classes?

The reference to classes above can be taken to mean "collections of code." I'll cover
more about classes later, so hang in there.

A framework also defines the architecture of an application; that is, how the
application is physically laid out. This facility can be useful for those of us who
fret over which file is best stored in which folder.

In a sense, a framework is an application that has been started for you, and a
well-designed application at that. The structure—plus the code that takes care of
the boring stuff—has already been written, and it's up to you to finish it off. You
are truly standing on the shoulders of giants when you start building a Rails app.

Full-stack refers to the extent of the functionality that the Rails framework
provides. You see, there are frameworks and then there are frameworks. Some
provide great functionality on the server, but leave you high and dry on the client
side; others are terrific at enhancing the user experience in the browser, but don't
extend to the business logic and database interactions on the server. Rails, by the
way, gives you both.

If you've ever used a framework before, chances are that you're familiar with the
model-view-controller (MVC) architecture (if not, don't worry—we'll discuss it in
Chapter 4. Rails covers everything in the MVC paradigm, from database
abstraction to template rendering, and everything in between.

Ruby is an open-source object-oriented scripting language invented by Yukihiro
Matsumoto (affectionately known as "Matz") in the early 1990s. We'll be learning
both Ruby and Rails as we progress through the book (remember, Rails is written
in Ruby).

Ruby makes programming flexible and intuitive, and with it we can write code
that's readable by both humans and machines. Matz designed Ruby to make
programmers happy, as you'll see as we move through this book.

4 Rails: Novice to Ninja

@ What does Ruby syntax look like?

If you're experienced in programming with other languages, such as PHP or Java,
you can probably make sense of the following Ruby code, although some parts of it

may look new:

> "What does Ruby syntax look like?".reverse
=> "?ekil kool xatnys ybuR seod tahW"

>8 *5

=> 40

> 3.times { puts "cheer!" }

=> cheer!

=> cheer!

=> cheer!

> %w(one two three).each { |word| puts word.upcase }
=> ONE

=> TWO

=> THREE

Don't worry too much about the details of programming in Ruby for now—we'll
cover all of the Ruby basics in Chapter 3.

History

Ruby on Rails originated as an application named Basecamp, a hosted project-
management solution created by Danish web developer David Heinemeier
Hansson (affectionately known as "DHH" to Rubyists) for former design shop
37signals. Due largely to Basecamp's success, 37signals has since moved into
application development and production, and Heinemeier Hansson has become a

partner in the company.

When I say “originated,” I mean that Rails wasn't initially created as a stand-
alone framework. It was extracted from an application already in use, so that it
could be used to build other applications that 37signals had in mind. Heinemeier
Hansson saw the potential to make his job (and life) easier by extracting common
functionality such as database abstraction and templating into what later became

the first public release of Ruby on Rails.

http://www.basecamphq.com/
http://www.37signals.com/

Introducing Ruby on Rails

He decided to release Rails as open-source software to remake the way web
applications are built. The first beta version of Rails was initially released in July
2004, with the 1.0 and 2.0 releases following in December, 2005 and 2007
respectively. A little over 2 years later, version 3.0 of Rails was released and the
number of contributors had ballooned to approximately 1,600. Rails 4 came out
in 2013, with minor releases continuing through to the end of 2014 with 4.2.
Rails 5.0, which is the focus of this book, was released in mid-2016.

That the Rails framework was extracted from Basecamp (and is still the
foundation of Basecamp today) is considered by the lively Rails community to
represent one of the framework's inherent strengths: it was already solving real
problems when it was released. Rails wasn't built in isolation, so its success
wasn't a result of developers taking the framework, building applications with it,
and then finding—and resolving—its shortcomings. Rails had already proven

itself to be a useful, coherent, and comprehensive framework.

While Heinemeier Hansson pioneered Rails and still leads the Rails-related
programming efforts, the framework has benefited greatly from being released as
open-source software. Over time, many developers working with Rails have
submitted thousands of extensions and bug fixes to the Rails development
repository.! The repository is closely guarded by the Rails core team, which
consists of about twelve highly skilled professional developers seen in figure 1-1,
chosen from the crowd of contributors, and led by Heinemeier Hansson.

1. The Rails repository, located at https://github.com/rails/rails/, is used to track bugs and

enhancement requests.

https://github.com/rails/rails/

6 Rails: Novice to Ninja

David Jeremy Santiago Aaron

Since 2003 Since 2005 Since 2010 Since 2011
USA/Spain USA Uruguay USA
Commits Commits Commits Commits

Xavier Rafael Andrew Guillermo
Since 2011 Since 2012 Since 2012 Since 2012
Spain Brazil UK USA/Colombia
Commits Commits Commits Commits

Carlos Yves Godfrey Matthew
Since 2012 Since 2014 Since 2014 Since 2015

Brazil Switzerland USA/Canada Australia

Commits Commits Commits Commits

1-3. The Rails Core Team

There is also a "committer team" made up of eight or so individuals that can do
everything except set policy and make final releases. On top of that, there is the
community at large, the source of many patches and plugins. At present, Rails
has accepted contributions from over 4,600 programmers!

Finally, a framework as mature as Rails should have some good documentation,

and it does. The Rails Guides are an excellent resource on understanding the

http://guides.rubyonrails.org/

Introducing Ruby on Rails

many pieces of Rails. Bookmark these guides, as you'll likely return to them
throughout your journey as a Rails programmer.

So, now you know what Rails is, how it came about, and who supports it. But

why would you invest your precious time in learning how to use it?

I'm glad you asked.

Development Principles

Rails supports several software principles (a doctrine, if you will) that make it
stand out from other web development frameworks. Those principles are:

optimize for programmer happiness
convention over configuration

the menu is omakase

no one paradigm

exalt beautiful code
value-integrated systems

progress over stability

push up a big tent

This doctrine has grown and changed as Rails has grown and changed in the last
decade or so. The principles are not without controversy, and understanding
them will help you understand how Rails became what it is.

Optimize for Programmer Happiness

I've mentioned that Matz designed Ruby to make programmers happy, and this
tenet of the Rails doctrine is pulled directly from that sentiment. Just as Ruby
replaces complexity with easy language and offers many ways to achieve a
programmer's goal, so does Rails aim to make web application complexity more
mundane. You'll see this immediately when we start coding the example
application in this book. Using just two simple commands in the terminal, Rails
is serving up a functional web application. The amount of complexity that is
abstracted away from the programmer is quite amazing, so that we can focus on
building the desired application and not the niggling details of web development.

http://rubyonrails.org/doctrine/

8 Rails: Novice to Ninja

Still, if hiding complexity was all Rails did, programmer happiness would
quickly cease. Not all web applications have the same requirements, which
means Rails developers often have to get behind the curtain and tweak the magic
of Rails. Do you want to change the database you're using? No problem. What
about how user sessions are stored? Go for it. Rails hides the complex items until
you need to alter them, then it makes changing complexity sensible. This aspect
of Rails probably speeds up development of usable applications faster than
anything else.

I should also mention that creating a Rails application is as good an experience as
you can hope for in your development life. There is a Rails console that opens the
guts of your web application, allowing you to poke around and find where the
bugs are or test out code. Testing is built into Rails better than any other web
development framework in the world, hands down. When I develop web apps in
other languages or with other frameworks, I find myself pining for the tools and
environment that Rails brings to the table.

Convention Over Configuration

The concept of convention over configuration refers to how Rails assumes a

number of defaults for the way one should build a typical web application.

Many other frameworks require you to step through a lengthy configuration
process before you can make a start with even the simplest of applications. The
configuration information is usually stored in a handful of XML or JSON files,
which can become quite large and cumbersome to maintain. In many cases,
you're forced to repeat the entire configuration process whenever you start a new
project.

While Rails was originally extracted from an existing application, extensive
architectural work went into the framework later on. DHH purposely created
Rails in such a way that there's no need for excessive configuration, as long as
some standard conventions are followed. The result is that no lengthy
configuration files are required. In fact, if you have no need to change these
defaults, Rails really only requires a single (and short) configuration file in order

to run your application.

Introducing Ruby on Rails

Other conventions that are prescribed by Rails include the naming of database-
related items and the process by which controllers find their corresponding
models and views.

@ MVC

The model-view-controller (MVC) architecture is a software architecture (also
referred to as a design pattern) that separates an application's data model (model),
user interface (view), and control logic (controller) into three distinct components.

Here's an example: when your browser requests a web page from an MVC-
architected application, it's talking exclusively to the controller. The controller
gathers the required data from one or more models and renders the response to your
request through a view. This separation of components means that any change that's
made to one component has minimal effect on the other two.

We'll talk at length about the MVC architecture and the benefits it yields to Rails
applications in Chapter 4.

Rails is also considered to be opinionated software, a term coined to refer to
software that isn't everything to everyone. DHH and his core team ruthlessly
reject contributions to the framework that fail to comply with their vision of
where Rails is headed, or aren't sufficiently applicable to be useful for the
majority of Rails developers. This is a good way to fight a phenomenon known
among software developers as bloat: the tendency for a software package to
implement extraneous features just for the sake of including them.

The Menu is Omakase

This principle is similar to the goal of optimizing for programmer happiness.
"Omakase" comes from the restaurant industry—sushi restaurants, to be more
specific—and is the concept of letting the chef pick your meal based on his
sophisticated palette. If you are new to ordering sushi, for example, using an
omakase method can help you figure out what is good. As such, the Rails team
will look at the practices and tools that most developers are using and evaluate
whether they deserve inclusion in the core framework. This has resulted in tools
such as CoffeeScript (which we'll discuss in Chapter 7) and Spring being
included in the framework.

10 Rails: Novice to Ninja

It's only fair to point out that this is probably the most controversial part of the
Rails doctrine. While those new to Rails may like being served a stack of tools to
use, experienced developers are different beasts altogether. Often, the selected
tool is unpopular with a part of the community that is highly vocal about it. The
good news is that these tools can be removed or swapped out for other tools

without much ceremony.

No One Paradigm

Rails has been growing and changing for almost a decade. In that decade, the
languages, tools, approaches, and design patterns have exploded. We know much
more as an industry today than we did in 2007. As such, the design concepts and
paradigms behind Rails that have been altered or refined are based on new
understanding. This kind of change and continued learning will never stop, so
Rails has to account for it.

When DHH describes Rails as a quilt, he means it's made up of several paradigms
and ideas, instead of a single idea that permeates the framework. You'll hear
about design patterns, such as Active Record, that is foundational to Rails
models, but can be implemented differently or even completely removed (we’ll
discuss Active Record in Chapter 4). Rails is not pedantic in how it uses design
patterns, always erring on the side of being practical. As you dive deeper into
Rails, you'll be presented with more patterns and languages. Do you need to
refine an SQL query? You can do that by writing the SQL yourself or leveraging
the tools of Arel and Active Record. Does your client-side JavaScript need to
perform some fancier stuff in the browser? You can add front-end libraries or
write the code yourself. Do you think the Datamapper pattern is better than
Active Record? Okay, swap it out.

The point is, not only is Rails a quilt, each Rails application is a different quilt.
The paradigms presented are yours to use, or not. The downside is that you need
to know a lot of design ideas and programming concepts to change these
paradigms. But, don't worry, Rails will take you a long long way before you need
to know about this stuff. Rails gets you excited about doing things fast, then it

revs you up by supporting your education and growth as a programmer.

Introducing Ruby on Rails

Exalt Beautiful Code

In my opinion, this is another concept that Rails has fully adopted from Ruby and
its community. Ruby was designed for humans to read, not computers. As such, it
is quite possible to write "beautiful” code. As with any beauty, it is in the eye of
the beholder, but I'll bet we can agree that this code is beautiful:

class Person

belongs_to :family

has_many :pets

validates :name, presence: true
end

Without telling you anything about the application this code came from, you can
still surmise much about what is happening. Ruby and Rails use the excellent
design of Ruby's core libraries along with some Domain Specific Languages
(DSLs) to allow you, the happy developer, to write code that is expressive and
concise. And that to me is beautiful.

One of the age-old adages that fits into this principle is called Don't Repeat
Yourself, also known as the DRY principle. Being DRY in your code means you
don't copy/paste the same code all over your codebase. Instead, you extract
common code and reuse it where needed. This leads to a more maintainable and
beautiful code base. I'll reference the DRY principle a few times throughout the

book, and you'll see it in the wild.

So what? You might be asking. Well, when you are spending hours in a codebase
that is poorly written or hard to read, it's exhausting. Your poor brain has to
constantly translate the code and its abstractions. If the code is not expressive,
this is a significant mental task. If the code lacks conciseness, it's tiring to read.
Beautiful code is easier to share with your peers, making collaboration enjoyable
and purposeful. As with anything in life, beauty in code is noble and meaningful.

11

https://en.wikipedia.org/wiki/Domain-specific_language

12 Rails: Novice to Ninja

Value-integrated Systems

This particular principle is another of Rails' more controversial tenets. If you've
read anything about web development recently, there's a lot of talk about splitting
applications into many applications, creating microservices. These split-up
applications are a reaction to large web apps, called monoliths. DHH and the
Rails team believe in the value of keeping the application in a single codebase.
They certainly believe that the app should start that way, rather than designing a
suite of applications and services up front. There are benefits to both approaches,
and what you do depends more on a particular use case than a Rails design

principle.

Having said that, Rails is designed to build a complete and full-stack web
application. In this book, that is what we will do.

Progress Over Stability

When talking about the history of Rails, I mentioned that the 3.0 release was a
doozy. It took two years and had many, many breaking changes. This meant that
applications on Rails 2.0 had a painful upgrade path. For a couple of years, it was
impossible to swing a dead cat without hitting someone who had abandoned
Rails rather than continue to try and upgrade. The core team felt that the changes
made from 2.0 to 3.0 were necessary to avoid burdening Rails with the heavy
baggage of the older framework. Rails 2.0 was cracking under its own weight. We
had learned much about better design and new approaches to the problems Rails
solves, and the changes had to be made. Looking back, it's hard to argue with the
decisions made. Rails is better than ever, largely due to the decisions made for
that 3.0 release.

If you stick around and become a Rails developer (and I sincerely hope you do),
you'll hear about additions to Rails that rile parts—or even most—of the
community. Tools such as Spring, Turbolinks, CoffeeScript, and Action Cable
were all brought into the fold in the name of progress. Many breaking changes
have been made to shave off the cruft of "old ways," ensuring that the future of

Rails doesn't suffer as a result of its past.

Introducing Ruby on Rails

Often these additions are the right thing to do, but they need the community to
chime in before they are fully cooked. Hence, they are introduced to the
framework as the approach or tool is honed and made better by the community
and team. This is in the name of progress over stability, and it's likely a reason
why Rails is as active as ever a decade after its birth.

Push Up a Big Tent

In the current programming environment, this tenet may be the most important.
Rails is a big tent, and there are many, many folks under it with us. There's no
entry admission charged; nor will we demand that you produce immediately. We
will, however, expect you to value the community and its tools. We'll expect you
to express your opinions, and be respectful and professional.

These are the member traits that build a strong foundation for the larger
community. The people in the Rails tent are not a cult, they just want to build
great things. They are people that want to learn from others. Rubyists are not all
cut from the same cloth, and that's why this community is among the very best in

the programming world.

DHH writes of his disdain for microservices or certain Ruby libraries that are very
popular. Yet these libraries flourish, even without the endorsement of one of the
most prominent community members. He loves that, and so do I. I want a tent
full of diverse, intelligent, respectful, and fun individuals, and that is what the

Rails community is today.

If your head is spinning from trying to digest these principles, don't
worry—they'll be reinforced continually throughout this book, as we step through

building our very own web application in Ruby on Rails.

Building the Example Web Application

As you read on, I expect you'll be itching to put the techniques we discuss into
practice. For this reason, I've planned a fully functional web application that
we'll build together throughout the ensuing chapters. The key concepts,

approaches, and methodologies we'll discuss will have a role to play in the

13

14 Rails: Novice to Ninja

sample application, and we'll implement them progressively as your skills

improve over the course of this book.

The application we'll build will be a functional clone of part of the popular link-

sharing website, Reddit: namely, the ability to share a link and vote on it. I've

included all necessary files for this application in the book's code archive.

Reddit describes its functionality as follows:

The global Reddit community votes on which stories and discussions
are important by casting upvotes or downvotes. The most interesting,
funniest, impactful, or simply amazing stories rise to the top.

Basically, if you want to tell the world about that interesting article you found on
the Internet—be it a blog post that's right up your street, or a news story from a
major publication—you can submit its URL to Reddit, along with a short
summary of the item. Your link will sit there, waiting for other users to "vote it
up" (give your item a positive vote). As well as voting, users can comment on the
story to create often lively discussions within Reddit.

Reddit was launched in 2005, and is consistently listed in the Alexa traffic
rankings as one of the Internet's top 50 websites.

This isn't the reason why you'll be developing your own Reddit clone, though; its
feature set is not particularly complicated, and is sufficient to allow us to gain
firsthand experience with the most important and useful facets of the Ruby on
Rails framework.

And while your application might be unable to compete with the original site,
reusing this sample project to share links within your family, company, or college
class is perfectly conceivable. With any luck, you'll learn enough along the way to
branch out and build other types of applications as well.

Features of the Example Application

As I mentioned, we want our application to accept user-submitted links to stories

on the Web. We also want to allow other users to vote on the submitted items. In

http://www.reddit.com/
https://github.com/spbooks/rails3v5
https://about.reddit.com/
http://www.alexa.com/data/details/traffic_details/reddit.com

Introducing Ruby on Rails

order to meet these objectives, we'll implement the following features as we work
through this book:

A database back end that permanently stores every story, user, vote, and so on.
This way, nothing is lost when you close your browser and shut the
application down.

A link submission interface, which is a form that's available only to users who

have registered and logged in.

A simplistic, responsive layout as is typical for today's mobile-aware
applications. We'll style it with Cascading Style Sheets (CSS) and enhance it
with visual effects.

Clean URLs for all the pages on our site. Clean URLs (also known as search-
engine-friendly URLs) are usually brief and easily read when they appear in
the browser status bar. An example of a clean URL is http://del.icio.us/
popular/software, which I'm sure you'll agree is a lot nicer than
http://www.amazon.com/gp/homepage.html/103-0615814-1415024/.

A user registration system that allows users to log in with their usernames and

passwords.
The ability to check voting history on a per-user and per-story basis.

It's quite a list, and the result will be one slick web application! Some of the
features rely upon others being in place, and we'll implement each feature as a

practical example when we look at successive aspects of Rails.

Summary

Well, here we are; your first step towards Rails is complete. This chapter walked
us through Rails' beginnings—a framework born as a way to solve real problems.
There were mentions of Ruby, the language foundation of the Rails framework,
along with some code snippets to whet your whistle. You learned that Ruby and
Rails were created to make programmers happy and more productive. We looked
at the founders and many contributors to Rails, along with the development
principles that serve as its base.

15

16 Rails: Novice to Ninja

These ambitious and sensible development principles drive Rails programmers,
and you are about to be amongst their ilk. As we go through this book and build
our application together, try to keep the principles in mind. You'll build habits

that will influence your work for your entire career.

Finally, we created a brief specification for the web application we’re going to
build throughout this book. We described what our app will do, and identified
the list of features that we’re going to implement. We’ll develop a lite clone of the
link-sharing website Reddit iteratively, taking advantage of some of the Agile
development practices that Rails supports.

In the next chapter, we’ll install Ruby, Rails, and the SQLite database server
software in order to set up a development environment for the upcoming
development tasks.

Are you ready to join in the fun? If so, turn the page ...

Getting Started 17

Chapter

Getting Started

To get started with Ruby on Rails, we first must install some development

software on our systems. The packages we'll be installing are:

The Ruby languageThe Ruby interpreter translates any Ruby code, including
interpreter Rails itself, into a form the computer can understand and
execute. At the time of writing, Ruby 2.3.0 is recommended

for use with Rails, so that's what I've used here.

18 Rails: Novice to Ninja

@ Found in Translation
—

There are many Ruby interpreters, but the most often used one is the Matz Ruby

Interpreter, or MRI for short. You may also hear of other interpreters such as JRuby

or Rubinius. Each has its pros and cons, but as it's beyond the scope of this book,

you may want to take an hour or so and do some reading on the other interpreters

and why they exist.

RubyGems
package manager

The Ruby on Rails
framework

The SQLite

database engine

Many languages take advantage of package managers to help
the community manage and install code libraries. Package
managers allow developers to create libraries that can be
shared easily and perform specific tasks. In fact, Rails itself
comprises several RubvGems (or gems, as they are called by
Rubyists). RubyGems is, arguably, the best package manager
for any language out there, and we'll use it to install gems as
needed in the book. The RubyGems Guides are worth
perusing for an idea of how gems work.

Once we've downloaded Ruby, we can install the Rails
framework itself. As I mentioned in Chapter 1, Rails is written
in Ruby. At the time of writing, version 5.0.0.1 was the most
recent stable version of the framework.

The SQLite database engine is a self-contained software
library that provides an SQL database without running a
separate server process. While Rails supports plenty of other
database servers (MySQL, PostgreSQL, Microsoft SQL Server,
and MongoDB, to name a few), SQLite is easy to install,
requires no configuration, and is the default database for
which a new Rails application is configured straight out of the
box. Oh, and it's free! At the time of writing, the most recent
stable release of the SQLite database was version 3.14.1.

Instructions for installing Rails differ ever so slightly between operating systems.

You may have to install some additional tools as part of the process, depending

on the platform you use. Here, I'll provide installation instructions for Windows,
Mac OS X, and Linux.

http://jruby.org/
http://rubinius.com/
https://rubygems.org/
http://guides.rubygems.org/

Getting Started 19

@ New = Tried + Tested

It's possible that by the time you read this, a more recent version of Ruby, SQLite, or
another package mentioned here will have been released. Beware! Just because a
package is newer, doesn't mean it can reliably be used for Rails development.
While, in theory, every version should be compatible and these instructions should
still apply, sometimes the latest is not the greatest. In fact, the Rails framework itself
has a reputation for experiencing large changes between releases, such as specific
methods or attributes being deprecated. While every effort has been made to ensure
the code in this book is future-proof, there's no guarantee that changes included in
forthcoming major releases of Rails won't require this code to be modified in some
way for it to work. Such is the fast-paced world of web development!

Feel free to skip the sections on operating systems other than yours, and focus

only on those that address your specific needs.

What does all this cost?

Everything we need is available for download from the Web, and licensed under
free software licenses. This basically means that everything you install is free for
you to use in both personal and commercial applications. If you're curious about
the differences between each license, check out each package's individual license

file, which is included in its download.

Installing Ruby and Rails can be tricky, which is why there are entire sites
devoted to it; however, it is way better than it used to be, and I don't think you'll

have any issues.

Installing on Windows

Getting Rails up and running on Windows consists of three major steps:

Install Ruby

Install the Ruby Development Kit
Install Rails

Install Git

Install Node]S

QO b W DN

http://installrails.com

20 Rails: Novice to Ninja

Install Ruby

Ruby is a great community (you'll hear me say that a lot) comprised of people
who support free tools to help others get started with the language. One such tool

is the RubyInstaller for Windows.

ece F1 e @11 Qo Qb BsH Dbt DA (Fin' wwi S Db msc Qs ERr &si @r S Me O Dr(O Qe Ok DM OM/ Rx ' Sa Gni . Gemn

& © C ' rubyinstallerorg wOE - RKe 3 v 0@ %4 & D =

“ RUbylnSta"er About Download Help Contribute

for Windows

The easy way to install Ruby on Windows

This is a self-contained Windows-based installer that includes the Ruby == A %
I an execution i important i and more.
Download Add-ons
Latest News Extras
Rubylnstaller 2.1.9, 2.2.5, and 2.3.1 released Online Ruby Programing Course

If you're new to Ruby, check out this online course
from The Pragmatic Studio to learn all the
fundamentals of object-oriented programming with

Sorry it has taken so long to get these releases out. You can find links to download these
versions in the Downloads section of this site or on Bintray.

July 18,2016 @) Read full article Ruby.
Rubylnstaller 2.0.0-p648, 2.1.8 and 2.2.4 released Online Rails Programming Course
I you're looking to create Ruby on Rils web apps,
These new releases of Ruby address a security issue (CVE-2015-7551). 2.1,8 and 2.2.4 also you'l learn how to build a complete Rails 4 app step-
address some bugs and fixes. Upgrading to those versions is recommended. You can find the by-step in this online Gourse also from The Pragmatic
links to those archives in the download section. Studio.
February 04,2016 @9 Read full article
Ruhbvinstaller 2.0.0-n645.2.1.6 and 2.2 2 released
= gy (it | = es03-AwreTextipg - & Fotolia 116775451 S.cipy © showall | x

2-1. Rubylnstaller website

If you head over to the Downloads page, the current latest Ruby version is 2.3.1,
but I would suggest you use Ruby 2.2.5:

http://rubyinstaller.org
http://rubyinstaller.org/downloads/

Getting Started 21

- - IS W PRI VY D

Downloads

Rubylnstallers Archives»

Not sure what version to download? Please read the right column for
recommendations.

Ruby 2.3.1

Ruby 2.3.1 (x64)
Ruby 2.2.5

Ruby 2.2.5 (x64)
Ruby 2.1.9

Ruby 2.1.9 (x64)
Ruby 2.0.0-p548
Ruby 2.0.0-p645 (x64)

G G G R Th G G @

Nthar llcafiil NNwnNnlnadce

2-2. Ruby version

The 2.2 versions of Ruby are stable and gems have been built and tested against
them. The download page itself recommends the 2.2.X versions for the same

reason, and 2.2.5 will be fine for everything we do in this book.

Go ahead and click on the link for Ruby 2.2.5 and download that executable. You
can use either 32 or 64-bit, depending on your needs. Double-click on that

executable to start the installation process.

The install process is pretty normal. You can choose your language, and use the
path the installer suggests (C: \Ruby22, in my case). However, I would recommend
that you check the box that says Add Ruby executables to your PATH, shown

here:

22 Rails: Novice to Ninja

{§% Setup - Ruby 225-p319 o) = S

Installation Destination and Optional Tasks

Setup will install Ruby 2.2.5-p319 into the following folder. Click Install to
I continue or dick Browse to use a different one,

Please avoid any folder name that contains spaces (e.qg. Program Files).

m Browse...

[7] Install Tdl Tk support
[7] Add Ruby executables to your PATH
[7] Assodiate .rb and .rbw files with this Ruby installation

TIP: Mouse over the above options for more detailed information.

Required free disk space: ~43.1MB

< Back][Install J[Cancel

2-3. Add Ruby to Path

Click Install and the installation will complete. RubyInstaller adds an item to the
Start Menu called Start Command Prompt with Ruby which, when clicked, will
open a Windows command prompt with the Ruby environment variables all in

place:

Getting Started 23

B Start Command Prompt with Ruby EI@

ruby 2.2_5p319 (2016-84-26 revision 54774> [i3B6-—mingw32]

C:xUserssIElUser>_

2-4. Ruby command prompt

Great. Ruby is installed. However, in order to install Rails (and other gems), we
need some build tools to be installed. Thankfully, again, we can turn to the folks
at RubylInstaller for help. The Ruby DevKit for Windows installs these build tools

for us.

The download for the DevKit is on the same Downloads page as the
RubyInstaller:

— Y LU UTTU UL IS LT (T IV Ry

DEVELOPMENT KIT
For use with Ruby 1.8.7 and 1.9.3:

DevKit-tdm-32-4.5.2-20111229-1559-sfx.exe

For use with Ruby 2.0 and above (32bits version only):
DevKit-mingw64-32-4.7.2-20130224-1151-sfx.exe

For use with Ruby 2.0 and above (x64 - 64bits only)

DevKit-mingw64-64-4.7.2-20130224-1432-sfx.exe

2-5. Getting the DevKit

http://rubyinstaller.org/add-ons/devkit/

24 Rails: Novice to Ninja

Be sure to download the right one for the RubyInstaller you downloaded above. If
you're like me and you used the 32-bit 2.2.5 installer, you can download
DevKit-mingw64-32-4.7.2-20130224-1151-sfx.exe. Once downloaded, run the
executable and it will ask for a directory to install the DevKit. I choose
C:\RubyDevKit:

-

7-Zip self-extracting archive =3l |

o

Extract to:

C\RubyDevK J

[

Exdract Cancel |

2-6. Installing the DevKit

Now, roll up your sleeves. Remember that new link the RubyInstaller added to
the Start menu? Click it to open a Ruby-savvy command prompt and cd
C:\RubyDevKit. You need to type a couple of commands to make the DevKit
available to our newly installed Ruby. The first one is ruby dk.rb init and the
second is ruby dk.rb install. The output is below:

Getting Started

G:“RubyDevKit >ruby dk.rh init
[INFO1 found Rubylnstaller v2.3.1 at C:-Ruby23

Initjalization complete?! Please review and modify the auto—generated
‘config.yml’ file to ensure it contains the root directories to all
of the installed Rubies you want enhanced by the DevKit.

G:“RubyDeuKit>cat config.yml
‘cat’ is not recognized as an internal or external command.
operable program or batch file.

:»RubyDevKit>more config.yml

This configuration file contains the absolute path locations of all
installed Rubies to be enhanced to work with the DevKit. This config
file iz generated hy the ‘ruby dk.rbh init’ step and may be modified
bhefore vrunning the *ruby dk_rh install’ step. To include any installed
RBubies that were not automagically discovered, simply add a line below
the triple hyphens with the absolute path to the Ruby root directory.

Example :

- C:r/rubyl?trunk
— C:rrubyl?2dev

— C:/Ruby22

G:%RubyDeuvKit>ruby dk.r»h install

[INFO1 Updating convenience notice gem override for ' C:-Ruby23’
[INFO]1 Installing *C:-/Ruby23-/lib vubyssite_rubysdevkit.rbh’

C:\RubyDeuvKit>

B Start Command Prompt with Ruby === @

2-7. Making DevKit available to ruby

OK, now we can install Rails. At that same command prompt, change into our
Ruby directory (cd c:\Ruby22) and type gem install rails. You will see many

gems being built and installed:

25

26 Rails: Novice to Ninja

Bl Start Command Prompt with Ruby | = ” (=] |@

C:%~Ruby22>gem install rails

Fetchiny- i18n-8.7.8.gem (188x)>

Buccessfully installed i18n—A.7.8

Fetching: thread_safe-8.3.5.gem <(188:x>
Buccessfully installed thread_safe-8.3.5
Fetching: tzinfo-1.2.2_gem {188:>

Successfully installed tzinfo-1.2.2

Fetching: concurrent—ruby-1.8.2 . gem (1868x)>
Buccessfully installed concurrent—ruby—1_8_2
Fetching: activesupport-5.8.8.gem <1088:>
Buccessfully installed activesupport-5.0.8
Fetching: rack-2_8_.1_gem (188x)>

Successfully installed rack-2.8.1

Fetching: rack-test-B.6.3.gem <180:x>
Buccessfully installed rack—test-8.6_3
Fetching: mini_portile2-2.1.8.gem <188:>
Buccessfully installed mini_portile2-2.1.8
Fetching: pkg—config—1.1.7.gem {188x)
Successfully installed pkg-config-1.1.7
Fetching: nokogiri-1.6.8—xBb—minguw32._gem <(1608:x>
Hokogiri is built with the packaged libraries: libxml2-2.9.4, libxslt-1.1.29, =1
ih—1.2_.8, lihiconu-1.14.

Successfully installed nokogiri—-1.6.8-x86—minguw3d2
Fetching: loofah—-2.0.3.gem {188x)

Successfully installed loofah-2.8.3

Fetching: rails—-html-sanitizer—1.@.3.gem (188:x)>
Buccessfully installed rails—html-sanitizer—1.8.3
Fetching: rails—dom—testing—2_8.1._gem (108>
fuccessfully installed rails—dom—testing—-2.8.1
Fetching: builder—3.2.2.gem <(188x>

Buccessfully installed builder—3.2.2

Fetching: erubiz—-2.7.0.gem <188:x>

LEam

2-8. Rails being installed

When the install is complete, you should see something like:

37 gems installed
c: \Ruby22>

Yay! Rails is installed. Enjoy this small, but significant, victory.

There are still a couple of things we still need to set up. First, we need to install
Git, which is a version control system. If you're not sure what that is, don't worry
about it right now. We'll cover some git basics later in the chapter. For now, let's

just get it installed.

Open a browser and go to https://git-scm.com/downloads/win. This should kick
off the download of the Git installer. If not, click on the Download for Windows
button:

https://git-scm.com/downloads/win

Getting Started

0
0 glt --fast-version-control Q, Search entire site...

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with

speed and efficiency. l \ 2

Git is easy to learn and has a tiny footprint with lightning fast - \ 2
performance. It outclasses SCM tools like Subversion, CVS, Perforce, ~ —
and ClearCase with features like cheap local branching, convenient \ 2

staging areas, and multiple workflows. '\

9 Learn Git in your browser for free with Try Git.

P About Documentation
a The advantages of Git compared m Command reference pages, Pro st source Release
to other source control systems. Git book content, videos and 2 -9 7
other material o5 (2016-07-15)
Downloads for Windows
Downloads Community
‘ GUI clients and binary releases gj? Get involved! Bug reporting,
far all maior nlatforms. mailing list. chat. develonment

2-9. Downloading Git

Run the installer once the download completes. You can (and should) follow all
the defaults offered by the installer. With the install complete, start a new Ruby

Command Prompt (close and reopen it) and check the git version:

c:\Ruby22> git --version
git version 2.9.2.version.1

Next, we need to install SQLite3, which is the default database that Rails will use
out of the box. Installing SQLite3 is a matter of going to the SQLite3 download
page and scrolling down to Precompiled Binaries for Windows. Select the first
link, which is the SQLite3 DLL. Unzip the downloaded file and copy its contents
to C:\Windows\System32.

Finally, the last thing we need to install is a JavaScript Runtime, as Rails expects
one to exist. This is accomplished easily enough by installing Node]S. So, head
over to the Node]S site, click on Downloads, and choose the Windows installer
that suits your needs (either 32 or 64-bit). Run the installer, accepting all the
defaults:

27

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
https://nodejs.org

28 Rails: Novice to Ninja

’ﬁ Mode.js Setup E' = @
Installing Node.js ﬂ . d c
<)

Ca

(s
Flease wait while the Setup Wizard installs Mode. js.
Status: Copying new files
-— - 00 |

2-10. Installing NodelJS

Once the Node installation completes, restart your Ruby Command Prompt and
type node -v:

$ node -v
v4.4.7

You now have a working Node]JS install.

Congratulations! You have installed Ruby, Rails, and all the supporting
characters! Feel free to take a break and high-five yourself. Oh, and you can skip
the instructions for Mac and Linux.

Getting Started

Installing on Mac OS X

While Mac OS X isn't usually a tricky platform to manage, installing Rails is just
a tad harder than installing a regular Mac application.

Your first task is to install Xcode from the Mac App Store, as shown below.

@ AppStore Edit Store Window Help
| NON |

> | ASRd

e =

Search Results for “xcode”

Xcode
Developer Tools
W XT3 62 Ratings

UPDATE +

2-11. Xcode in the App Store

The good news is Xcode is free. The bad news is it's huge and takes a while to
install. Use this time to thumb through the Rails Guides and get coffee.

Done? Excellent. Now, open a terminal, which can be found in Applications =>
Utilities => Terminal, as shown in Figue 2-12.

29

30 Rails: Novice to Ninja

@ A."_Dro 5’ Slack_a = DUUL Lalllp ASsISLdliLapp
O 2 = Sounde‘:)F\)Ner .) ColorSync Utility.app
/> Applications B8 Console.app

Spectacle.a
* sp PP @ Digital Color Meter.app

(2] Desktop Spotify.a)
& spotify.app 18V Disk Utility.app
[Documents 4 stella.app ¥ Grab.app
=3 Stickies.app Granh
0 Downloads = Sunrise Calendar.app ’x rapher.app
é Svnc.a ’ A Keychain Access.app
g Dropbox yne.app &L Migration Assistant.app
. ® System Preferences.app))
m ggoodrich ' TextEdit.app | Script Editor.app
i ! T @ System Information.app
= projects £ The Unarchiver.app 1 Terminal.app
; Time Machine.a = -
#X Google Drive . PP @ VoiceOver Utility.app
Trio Sync.app @ Wish 8.6.app
= sync sl Tweetbot.app %] X11 o
.a
“ Utilities PP

2-12. Terminal App

This will launch a window that looks a bit like what can be seen below.

Q) @® 5 ggoodrich — ggoodrich@GlennsSo
Last login: Sun Feb 14 10:07:31 on ttys@@3

-» ~o I

2-13. A terminal window

You're now in your home directory.

Getting Started

@ Taking Command

Much of working with Ruby and Rails is done at the command line in a terminal.
Being comfortable with basic terminal commands, such as cd, dir, and 1s is all but
required to be an effective Ruby and Rails developer. If necessary, take some time to
research and practice using the terminal to navigate around your Mac. You'll be

glad you did.

Installing Homebrew

I previously mentioned RubyGems, a package manager for Ruby. Well, there are
package managers for operating systems, too, and Mac OS X has a good one called
(Homebrew. It is open source and has a bit of an odd installation, but it's an
excellent package manager and used by most Mac developers to install the items

they need.
To install Homebrew, go to your terminal and type (or paste) in the following:
/usr/bin/ruby -e "$(curl -fsSL

> https://raw.githubusercontent.com/Homebrew/install/master/
install)"

Homebrew's installation will be confirmed by a brew command becoming

available in the terminal, as depicted in Figure 2-14.

1| @ @® 5 ggoodrich — ggoodrich@GlennsSookumMac — ~ — -zsh — 80x24
Last login: Sun Feb 14 10:07:31 on ttys@@3
+ brew —v

Homebrew ©.9.5 (git revision 295@9c; last commit 2015-10-16)

>

2-14. The brew terminal command

31

http://mally.stanford.edu/~sr/computing/basic-unix.html
http://brew.sh

32 Rails: Novice to Ninja

With Homebrew in place, installing Ruby becomes very, very easy; however, I
need to explain the sate of affairs first. I've noted the somewhat volatile nature of
Ruby and Rails. With several new releases every year for each, when you're
developing using particular versions of Ruby and Rails, it can become
complicated to install new versions without breaking your environment and
applications. Rubyists, being the problem-solving pragmatists that they are,
solved this problem by creating a "version manager" for Ruby. In fact, there are a
couple of version managers out there. The idea behind a version manager is that
you can switch between versions of Ruby without breaking your environment.
Now, it's easy to try a new version with your application and be assured that it
won't break your work. It is an elegant solution to a sticky problem.

Version Managers: Good for Developing Developers!

While it is possible to install Ruby without using package managers and avoid
jumping through these small hoops to set up our environment, it is not
recommended. All of the Ruby developers I know and work with use version
managers, so if you're going to become a real Ruby dev, you need to understand the
how and why of version managers. If I were a parent, I'd say "this builds character"
or "you'll thank me later".

So, we're going to install a package manager called RVM, which stands for Ruby

Version Manager. At your command prompt, type:
\curl -sSL https://get.rvm.io | bash -s stable

When the script completes, close your terminal window and open a new one.
Then type:

rvm | head -n 1

This should respond with =rvm, as shown in figure 2-15.

https://rvm.io

Getting Started

® @®) ggoodrich — ggoodric

= ~ rvm | head -n 1
= rvm

-3 Py I

2-15. RVM is installed

Great! Your Ruby Version Manager is installed and ready to go. Time to install
Ruby.

With RVM, installing a new version of Ruby is a walk in the park. In your
terminal, type:

rvm install 2.3.0

This tells RVM to install Ruby 2.3.0. Oh, and it will take a while, so it's time for
another break. Go for a walk around the block. It's good for you.

Okay, Ruby is now installed, but we're not quite done yet. With version managers,
you have to specify which version of Ruby you want to use. With RVM, that's
done by typing:

rvm use 2.3.0 --default

Figure 2-16 reveals what that should look like.

33

34 Rails: Novice to Ninja

@ @® 5 ggoodrich — ggoodrich@GlennsSookum|

+ ~ rvm use 2.3.0 —--default
Using /Users/ggoodrich/.rvm/gems/ruby-2.3.0

-»]

@ Why default?

The - -default option in the aforementioned command tells RVM to use 2.3.0 as

2-16. Telling RVYM which Ruby to use

the default Ruby for your computer. Every time you open a new terminal window,
Ruby 2.3.0 will be the current version of Ruby. Without the default, you'll have to

type rvm use 2.3.0 every time you open a terminal. It's your choice.

Boom, now we're done with Ruby.

With Ruby in place, installing Rails is just a matter of asking our awesome
package manager, RubyGems, to do the deed:

gem install rails

This will crank out a ton of text in the terminal, a snippet of which is seen below.

Getting Started 35

il ~ gem install rails

Fetching: i18n-0.7.0.gem (100%)

Successfully installed i18n-0.7.0

Fetching: thread_safe-0.3.5.gem (100%)
Successfully installed thread_safe-0.3.5
Fetching: tzinfo-1.2.2.gem (100%)
Successfully installed tzinfo-1.2.2
Fetching: concurrent-ruby-1.0.2.gem (100%)
Successfully installed concurrent-ruby-1.0.2
Fetching: activesupport-5.0.0.1.gem (100%)
Successfully installed activesupport-5.0.0.1
Fetching: rack-2.0.1.gem (100%)

.o resizenis winaow anaretaketo - 1
2-17. Installing Rails

Now, just to make sure Rails is ready, type:

rails --version
=> Rails 5.0.0.1

Excellent. Now we just need to install SQLite3, which can be done with
Homebrew:

brew install sqlite

When that completes, check your SQLite version to make sure it's there:

sqlite3 --version
=> 3.8.10.2 2015-05-20 18:17:19
> 2ef4f3a5b1d1d0c433818243d40a2452cci1f7fed

And now we're ready to go.

36 Rails: Novice to Ninja

Help on Hand

Remember—if you get really stuck, you can always try asking for help on
SitePoint's Ruby forum.

Installing on Linux (Ubuntu)

Thanks to the hard work of people in the incredible Ruby and Rails communities,
installing Ruby and Rails on Linux is as straightforward as can be. I have copied a
script from the Rails Girls guides to a SitePoint Github repository, which enables

you to run a single command line to install Ruby, Rails, Sqlite3, and Git. This is a
far cry from how it used to be, and I am soooo thankful that Rails Girls put this
together.

@ et Fels Bk

Rails Girls is a group whose aim is to "give tools and (create) a community for
women to understand technology and to build their ideas." It is one example of the
groups that have formed to increase diversity and make people feel comfortable
learning Ruby and Rails. There are others with similar aims sprinkled throughout
the community and I think it's great. If you think you'd benefit from being involved
with Rails Girls, check them out.

The script you need to run is located on GitHub. The following command will
pull down that script and run it in your terminal. Open up a terminal and paste

in the following:

bash < <(curl -sL
> https://raw.githubusercontent.com/spbooks/rails3v5/master/
scripts/install linux.sh)

You will be prompted for your password and you'll require an account with sudo
level access. The script will then run through installing Ruby, RVM, Sqlite3, git,

and Rails, as seen in Figure 2-18.

https://www.sitepoint.com/community/c/ruby
http://guides.railsgirls.com/install#setup_for_linux
http://railsgirls.com
https://raw.githubusercontent.com/spbooks/rails3v5/master/scripts/install_linux.sh

Getting Started

ruprict,

#
#
Thank you for using RVM!

We sincerely hope that RVM helps to make your life easier and more enjoyable!!!
#

#

~Wayne, Michal & team.
In
Upgrade Notes:
* No new notes to display.

Installs Ruby

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spen Left Speed
<] 0 e <] 0 H H H H : :
100 23.3M 100 23.3M 4941k
No sum for g

2-18. Installing on Linux

When the script completes, type in the following to validate the install:

source ~/.rvm/scripts/rvm
rails -v
=> Rails 5.0.0

Congratulations! You have successfully installed Ruby and Rails on Linux.

Additional Installation Options

If, for some reason, none of the previous installation options fit your bill, there
are more possible solutions to have you up and running with Rails. I am, of
course, speaking of The Cloud. Some companies offer a full Ruby and Rails
environment that you access solely with your browser. A good example is
Nitrous.IO.

37

http://nitrous.io

38 Rails: Novice to Ninja

NITROUS Features Pricing Community Blog Log In Sign Up

Build apps faster

Professional developers use Nitrous to create, snapshot
and share development environments in the cloud

Get Started for Free

2-19. Nitrous.l0

As the screenshot declares, Nitrous.io allows you to "create, snapshot, and share
development environments in the cloud". When you sign up for Nitrous, you
have options of which kind of application you want to create, one of which is
Rails. Figure 2-20 shows what a Rails application looks like in the browser on
Nitrous.

N Fle Edt Find View Window Preview Git Collaborate Help [;;rupriclv

+

nitrous
code
example
app

public

test

tmp

vendor
config.ru
[
Gemfile.lock
Rakefile
README.rdoc
start-app

+
example rbenv instal 2.2.2
rbenv: no such command ‘instal'
example rbenv install 2.2.2

Installing ruby-2.2.2...
e 1

2-20. Creating a Rails app in Nitrous
A wizard then guides you through the process, and your first application is free.

If you're more advanced and know what a virtual machine is, companies such as
Amazon Web Services or Digital Ocean provide Infrastructure as a Service (IaaS).

http://aws.amazon.com
http://digitalocean.com

Getting Started

With an IaaS, you basically create an entire computer in the cloud and then run

through one of the previous sets of instructions to install Ruby and Rails.

And Now the Fun Begins

Okay, is everyone here? Windows? Check. Mac? Check. Linux? Check. Great! It's
time to set the foundation for the application we're going to build throughout the
remainder of this book.

One Directory Structure to Rule Them All

If you remember from the section on the Rails doctrine, one of the tenets was
"Convention over configuration". One of the conventions of Rails is its directory
structure, where a Rails application always has the same base structure on disc.
By gently forcing this directory structure upon developers, Rails ensures that
your work is organized in the Rails way.

Figure 2-21 shows what the structure looks like. We'll create this directory

structure for our application in just a moment.

Root

)

OO0 O0O0O OO0 O3

app bin config db lib log public test tmp vendor

2-21. The conventional Rails application directory structure

As you can see, this standard directory structure consists of quite a few
subdirectories (and I'm yet to even show their subdirectories!). This wealth of
subdirectories can be overwhelming at first, but we'll explore them one by one. A
lot of thought has gone into establishing the folders and naming them, and the
result is an application with a well-structured file system.

Before you go and manually create all these directories yourself, let me show you
how to set up that pretty directory structure using just one command—I told you
that Rails allows us to do Iess typing!

39

40 Rails: Novice to Ninja

Creating the Standard Directory Structure

It's easy to generate the default directory structure for a new Rails application
using the rails command.

Before we start, I'd like to introduce you to the secret under-the-hood project
name we'll give our Reddit-lite project clone: Readit. It's exactly this kind of
creativity that has companies begging me to run their marketing departments.
Not.

Now, let's go ahead and create the directory structure to hold our application.

The rails command takes various secondary commands, new being one of them.
As you've probably guessed, the rails new command creates the directory where
you'd like to store your application, along with all the files required. You can, and
are encouraged to, execute it from the parent directory in which you want your
new Rails application to live. I'll do this in my home directory. If you're on

Windows, you may want to do this inside C: \Ruby22:

$ rails new readit

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/assets/javascripts/application.js
create app/assets/stylesheets/application.css
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/views/layouts/application.html.erb

Congratulations, your directory structure has been created! You'll need to use cd
readit to ensure the active directory is the root of our new application. We will
run all our Rails commands from inside the application root.

Getting Started

Starting Our Application

Even before we write any code, it's possible to start up our application
environment to check that our setup is working correctly. This exercise should

give us a nice boost of confidence before we progress any further.

Rails wants you to be productive as soon as possible, and if you can't look at your
web application in a web browser, you can't be productive. So, Rails includes a
development web server, called Puma, that you can fire up with the single
command: rails server, as shown in Figure 2-22. Oh, and because Rails is
obsessed with making you efficient, you can also type rails s for the same

result.

readit-railss

2-22. Firing up the Rails server

Choice Gems: A Plethora of Web Servers

It's worth noting that it is very easy to change the development web server, as the
Ruby community has created many web server gems; however, we will stick with
good ol' Puma, as it is well-suited to our needs. We will, however, discuss some
other options in Chapter 12, on deployment.

Well done: you just started up your application for the first time. Okay, so there's
little it can do at this stage—we're yet to write any lines of code, after all—but
you can now connect to your application by entering http://localhost:3000/
into your web browser's address bar. You should see a similar sight to Figure
2-23.

41

42 Rails: Novice to Ninja

® O ® /[ruoyon Rails x \ R | Glenn |
€ & C [localhost:3000 OB /7BARSOTYODYE @MU 0=
ArnLs
Yay! You're on Rails!

Rails version: 5.0.0

Ruby version: 2.3.0 (x86_64-darwinl5)

2-23. Rails' default page

The default page shows the versions of Ruby and Rails, along with providing a
link to http://rubyonrails.org.

So, you're up and running on Rails. Feels good, eh? Before we keep going with
Rails, we need to take a quick tangent.

Version Control and Git

Writing code is a delicate undertaking. No matter how experienced you are as a

programmer, you will make mistakes. Lots of them. And some of these mistakes

may only be discovered after days, weeks, or months. Once discovered, undoing
the mistake can be troublesome, especially if it's been buried by months of

accumulated code. It would be nice if you could store versions of the code as you

http://rubyonrails.org

Getting Started

go, in case you need to return to an old version to fix code, or see what's changed
between versions.

Turns out, you can do this with version control software. Version control has
been around a long time, evolving over decades. In the current software
landscape, the most popular version control software is Git.

Git is an open source, distributed version control software. If you do any
development in open source, you'll need to learn how to use Git. Space only
permits me to cover the basics here, but you should definitely spend some time
getting comfortable with Git. The learning curve is steep at first, but you'll

conquer that soon enough and Git will become one of your most-used tools.

@ EXTRA CREDIT: Get Learning Git

Seriously, jump on the Internet and run through some basic Git tutorials or buy a
book. Here's an article from SitePoint to get you started.

Git Basics

To use Git, you need to create a Git repository for your code. This is done by

typing the following in the directory of the code you wish to manage:

$ git init
Initialized empty Git repository in /current/path/.git/

Once you have a Git repository, add files to it. You can add these one by one, or
add all files in a directory as shown here:

git add .

git add provides no feedback, so to see if it did anything, type:

$ git status
On branch master

43

https://git-scm.com/
http://www.sitepoint.com/git-for-beginners/

44 Rails: Novice to Ninja

Initial commit
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: .gitignore
new file: .ruby-gemset
new file: .ruby-version
new file: Gemfile

. lots more files, maybe...

As you can see, Git has added the files "to be committed". So we need to commit

them:

git commit -m "My first git commit"

[master

(root-commit) 057e21f] My first git commit

92 files changed, 1410 insertions(+)

create
create
create
create

mode 100644 .gitignore
mode 100644 .ruby-gemset
mode 100644 .ruby-version
mode 100644 Gemfile

. lots more creates ...

And there you have it. Our files are now being tracked by Git. Not so bad, eh?

To check the status of your Git managed files, type:

$ git status

nothing

to commit, working directory clean

At this point, you can happily start coding. Git will keep an eye on what's

happening. Here's the output of git status after I change a file:

Getting Started 45

$ git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be
> committed)
(use "git checkout -- <file>..." to discard changes in

> working directory)

modified: app/models/blorgh/article.rb
no changes added to commit (use "git add" and/or "git commit
(G _all)

Git tells me that I have made a change but not committed it. It will also show me

the change:

$ git diff
diff --git a/app/models/blorgh/article.rb
> b/app/models/blorgh/article.rb
index 79a6664..9f936ae 100644
--- a/app/models/blorgh/article.rb
+++ b/app/models/blorgh/article.rb
ee -1,5 +1,6 e@e
module Blorgh
class Article < ActiveRecord::Base
has_many :comments
+ has_many :likes
end
end

The + sign shows the line I added. If I had deleted lines, they would be shown
with a - sign.

I now follow the same process I did with the initial commit: add the files to be

committed and then commit them with a message:

46 Rails: Novice to Ninja

$ git add .

$ git commit -m "Changed article"
[master bf8b89d] Changed article
1 file changed, 1 insertion(+)

The "code, add, commit" sequence is used to commit your changes to Git. Again,
not so bad, eh?

One last point to cover about Git are its "remotes". Git is a distributed version
control system, which means there is no central server to hold the source master.
Every clone of a Git repository is the entire repository, including all history,
branches, and so on. I can add a reference to another user's Git repository and
push or pull code to or from that repository. The other coder's repository is called
a remote.

We will use remotes without creating one explicitly when we deploy the site in

chapter 12.

There is so much more to Git: branching, partial commits, working with other
developers on Github, and so on, but that's all beyond our scope. We need to

move O1l.

So now you're finally ready to write some code. But wait! Which text editor will

you be using?

Which Text Editor?

The question of which text editor is best for web development has spawned
arguments that border on religious fanaticism. While it's certainly possible to
develop Rails applications using the default text editor that comes bundled with
your operating system, I'd stop short of recommending it. The benefits provided
by a specifically designed programmer's editor can prevent typing errors and
increase your productivity immeasurably. In this section, I've suggested a couple
of alternatives for each operating system, enabling you to make a choice that suits
your personal preferences and budget.

Getting Started 47

Windows and Cross-platform Text Editors

The best editors for Windows are all cross-platform, in my opinion. You'll notice
that any editor worth its salt has some kind of plugin-type framework, allowing
the community to write plugins. These plugins are almost always the best
features of an editor, as they're focused on making specific editing tasks simple.

Sublime Text

One of the most popular cross-platform editors is Sublime Text, currently on
version 3, seen in Figure 2-24. It can be downloaded for free, but requires a
license for continued use. The current price for a Sublime Text license is US$70.
Sublime Text comes with a ton of impressive core features, including a Plugin
API resulting in a slew of plugins that make development more efficient and

enjoyable.

® 00 Demonstration e
base64.cc

void base64_encode(uint8_t % data, size_t 1engtﬂ, char % dst)
{
size_t src_idx
size_t dst_idx ‘H
(; (src_idx + 2) < length; src_idx += 3, dst_idx += 4)
{

uint8_t s@ = datalsrc_idx];
uint8_t sl = datalsrc_idx + 1];
uint8_t s2 = datalsrc_idx + 2];

dst[dst_idx + 0]
dst[dst_idx + 1]
2]
1

charset[(s@ & 0xfc) >> 2];

charset[((s@ & 0x03) << 4) | ((s1 & 0xf0) >> 4)];
charset[((s1 & f) << 2) | (s2 & 0xc@) >> 6];
charset[(s2 & 0x3f)];

dst[dst_idx +
dst[dst_idx +

(src_idx < length)

uint8_t s@ = datalsrc_idx];
uint8_t s1 = (src_idx + 1 < length) ? datalsrc_idx + 1] : ©;

dst[dst_idx++] = charset[(s@ & 0xfc) >> 2];
dst[dst_idx++] = charset[((s® & 0x03) << 4) | ((s1 & 0xf@) >> 4)];
(src_idx + 1 < length)
dst[dst_idx++] = charset[((sl & 0x0f) << 2)];
}
Line 31, Column 55 Spaces: 4

2-24. Sublime Text

Atom

Atom, seen in figure 2-25, is another cross-platform editor with a robust plugin

framework. It is built on Electron, a framework for building cross-platform apps

https://atom.io

48 Rails: Novice to Ninja

using web technologies. Atom was developed by the great folks at GitHub and is
open-sourced, meaning it is 100% free of charge. I know many developers that
use Atom and they say nothing but great things about it.

> A build
> A docs
> I dot-atom

atom.coffee

> I exports

> @ keymaps

module.exports =

class Atom extends Model
@version: 1

> @ menus

> M resources
> I script

> I spec

> Il src

> I static

> I vendor

@loadOrCreate: (mode) —
startTime = Date.now()
atom = @deserialize(@loadState(mode)) ? new this({mode, @version})

[-coffeelintignore 32 atom.deserializeTimings.atom = Date.now() - startTime|
B .gitattributes

B .gitignore src/atom.coffee* 31,17 UTF-8 CoffeeScript §# master

2-25. Atom editor

Visual Studio Code

The folk behind Visual Studio have created a very nice cross-platform editor that
supports 30+ languages and is extensible. Before too long, someone will have
built some Rails plugins for this editor. I'm yet to use it, but as you can see in

Figure 2-26, it does look awesome.

00 todo_controller.js - todomvc - Visual Studio Code

* todo_controllerjs
4 WORKING FILES 1 UNSAVED doneEditing:
® todo_controller. . bufferedTitle = .get('buffere

[c CEmber. isEmpty(bufferedTitle)) {
readme.md e

Ember. run . debounce(

1

2-26. Visual Studio Code editor

Linux and Mac OS X Editors

A number of development-centric text editors that run on a variety of platforms
are available to download for free. The following editors have loyal followings,

Getting Started 49

and all run equally well on Linux and Mac OS X. Emacs and Vim are probably
the two editors with the most fervent followings. For the record, I happen to be a

Vim user.

Both of these editors have a steeper learning curve than the Windows/cross-
platform editors, but the long-term benefits are substantial. Mastering an editor
that runs in the terminal is invaluable for a programmer, but it is also something
one grows into. If you choose one of these editors, you'll need to spend time

getting comfortable with them.

Emacs

Emacs is an editor created in the 1970s by the GNU Project, and can be seen in
Figure 2-27. It claims to be an "extensible, customizable text editor" with an
active, robust set of extensions developed by the community. Several prominent
Rubyists use and love Emacs. The Emacs Wiki is the ideal place to start learning

about Emacs.

http://www.emacswiki.org/

50 Rails: Novice to Ninja

File Options Buffers Tools Dir Mark Regexp Multiple Single Help

= TmpE Ab

2-27. By Emacs development team - Ferk (user who took this screenshot), CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=6412319

Vim

Vim-or "VI Improved"—is the evolution of a core Unix editor called "vi". Vim also
has an enormous set of community-developed extensions that allow you to make
Vim do just about anything you can imagine. The best place to start learning

about Vim is on the Vim wiki, or take one of the many online tutorials, such as
OpenVim.

http://www.vim.org/
http://vim.wikia.com/wiki/Tutorial
http://www.openvim.com/

LK]
X dohs:1:.ohsfflash.. @ %1 | X book::.{lbook-ra.. @ %2 | X

1. nvim (Python)
ovim Python) 3 X_ctsfstepoin (zsh) ® %4
1 Blass Appl
2 protect_
3 end

Getting Started 51

controller. rbffi~
ontroller.rb

config/
db.

1o;
public/
scripts/
test/

NERD >> NI \M> final-book-upd.. > <rb < ApplicationController < rub.. <<|jEEVEN

2-28.Vim

IDEs

Some Ruby programmers choose to use an Integrated Development Environment,
or IDE. IDEs, which usually come with a price tag, are complex applications that
try to do it all for the programmer. A good IDE makes your application code easy
to navigate, runs basic tasks with simple keystrokes, automates code refactoring
and tests, and offers up an integrated console. As you might imagine, some
perform these tasks better than others. If you're interested in the IDE approach,

check out the SitePoint Ruby channel for articles on which IDEs are favored by
Rubyists.

Summary

In this chapter, I showed you how to install all the necessary software to develop

a web application in Ruby on Rails.

We installed Ruby, Rails, and SQLite, and set up the standard directory structure
for our application, which we've named “ReadIt.” Then we launched the
application for the first time, enabling us to check which versions we were

https://sitepoint.com/ruby
http://www.sitepoint.com/ides-rubyists-use/
http://www.sitepoint.com/ides-rubyists-use/

52 Rails: Novice to Ninja

running of the components involved. And finally, we looked at some of the text
editors that are available to help you build the application.

All this work has been in preparation for Chapter 4, where we'll start to write our
first lines of application code. But first, there's some theory we have to tackle.
Hold on tight, we'll be coding soon enough!

Introducing Ruby 53

Chapter

Introducing Ruby

While this chapter makes no attempt to constitute a complete guide to the Ruby

language, it will introduce you to some of its basics. We'll power through a crash
course in object-oriented programming that covers the more common features of
the language, leaving the more obscure aspects of Ruby for a dedicated reference

guide. I'll also point out some of the advantages that Ruby has over other
languages when it comes to developing applications for the Web.

There used to be a longstanding axiom (previously known as "The Rails Newbie
Axiom") that one could learn Rails without first learning Ruby. This axiom has
been challenged and, rightly so, proven less true than originally thought. I came
to Ruby through Rails many moons ago, and my lack of Ruby knowledge caught
up with me in a hurry. As I mentioned over and over again in Chapter 1, Rails is a
framework written in Ruby, the language. The more you know about the
language, the better you'll be using the framework.

http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/

54 Rails: Novice to Ninja

However, this is not a book on Ruby, and teaching you all of Ruby and then Rails

is too much. As such, I'm going to modify the Axiom to:
You can learn just enough Ruby to be productive in Rails.

This fits with the Rails aim of making you productive in a hurry. But you have to
promise me that you'll keep learning Ruby as you continue your journey with
Rails, okay? Pinky promise? Done. Learning Ruby will not only make you a better

Rails programmer, it will make you a better overall programmer.

Ruby is a Scripting Language

In general, programming languages fall into one of two categories: they're either
compiled languages, or scripting languages. Let's explore what each of those

terms means, and understand the differences between them.

Compiled Languages

The language in which you write an application is not actually a language
understood by your computer. Your code needs to be translated into bits and
bytes that can be executed by your computer. This process of translation is called
compilation, and any language that requires compilation is referred to as a

compiled language. Examples of compiled languages include C, C#, and Java.

For a compiled language, the actual compilation is the final step in the
development process. You invoke a compiler—the software program that
translates your final handwritten, human-readable code into machine-readable
code—and the compiler creates an executable file. This final product is then able
to execute independently of the original source code.

Thus, if you make changes to your code and you want those changes to be
incorporated into the application, you must stop the running application,
recompile it, then start the application again.

Introducing Ruby 55

Scripting Languages

On the other hand, a scripting language such as Ruby, Javascript, or Python relies
upon an application's source code all the time. Scripting languages have no
compiler or compilation phase per se; instead, they use an interpreter—a
program that runs on the web server—to translate handwritten code into
machine-executable code on the fly. The link between the running application
and your handcrafted code is never severed, because that scripting code is
translated every time it's invoked; in other words, for every web page that your

application renders.

As you might have gathered from the name, the use of an interpreter rather than a
compiler is the major difference between a scripting language and a compiled

language.

The Great Performance Debate

If you've come from a compiled-language background, you might be concerned by
all this talk of translating code on the fly—how does it affect the application's

performance?

These concerns are valid. Translating code on the web server every time it's
needed is certainly more expensive performance-wise than executing
precompiled code, as it requires more effort on the part of your machine's
processor. The good news is that there are ways to speed up scripted languages,
including techniques such as code caching—caching the output of a script for
reuse rather than executing the script every time—and persistent
interpreters—loading the interpreter once and keeping it running instead of
having to load it for every request. However, performance topics are beyond the

scope of this book.

There's also an upside to scripted languages in terms of performance—namely,

your performance while developing an application.

Imagine that you've just compiled a shiny new Java application and launched it
for the first time, and then you notice an embarrassing typo on the welcome
screen. To fix it you have to stop your application, go back to the source code, fix

56 Rails: Novice to Ninja

the typo, wait for the code to recompile, and restart your application to confirm
that it's fixed. And if you find another typo, you'll need to repeat that process
again. Lather, rinse, repeat.

In a scripting language, you can fix the typo and just reload the page in your
browser—no restart, no recompile, no nothing. It's as simple as that.

Choose What Works

The landscape of languages today, both compiled and scripting, is virtually
endless with more coming out every week. In the last decade, being an effective
programmer has become less about completely mastering one language and more
about knowing when to choose the right language. In other words, languages are
tools, each with their own strengths and weaknesses. Your job is to know when to

use and—maybe more importantly—when not to use a language.

But that's all academic for what we're here to do, which is to learn Rails. Rails is
written in Ruby, so let's choose Ruby. See? You're already learning how to choose
the right tool.

Ruby is an Object Oriented Language

Ruby, from its very beginnings, was built as a programming language that adheres
to the principles of object-oriented programming (OOP). Before discussing Ruby
specifics, let's unpack some fundamental concepts of OOP. The theory can be a bit
dry when you're itching to start coding, but we'll cover a lot of ground in this
short section. It will hold you in good stead, so don't skip it.

OOP is a programming paradigm that first surfaced in the 1960s, but didn't gain
traction until the 1980s with C++. Its core idea is that programs should be
composed of individual entities, or objects, each of which has the ability to
communicate with other objects around it by passing messages. Additionally,
each object may have the facility to store data internally (called state), as depicted

in Figure 3-1.

Introducing Ruby 57

Object A Object B
communicates with —»
Storage Storage
Container Container
N—
communicates with communicates with
Object C
Storage
Container
Ne——

3-1. Object interaction in Ruby

Objects in an OOP application are often modeled on real-world objects, so even

non-programmers can usually recognize the basic role that an object plays.

And, just like the real world, OOP defines objects and classes with similar
characteristics belonging to the same classes and objects. A class is a construct for
defining properties for objects that are alike and equipping them with
functionality. For example, a class named Car might define the attributes color
and mileage for its objects, and assign them functionality: actions such as open
the trunk, start the engine, and change gears. These different actions are known
as methods, although you'll often see Rails enthusiasts refer to the methods of a
controller (a kind of object used in Rails with which you'll become very familiar)
as actions; you can safely consider the two terms to be interchangeable.

Understanding the relationship between a class and its objects is integral to
understanding how OOP works. For instance, one object can invoke functionality
on another object, and can do so without affecting other objects of the same class.
So, if one car object was instructed to open its trunk, its trunk would open, but
the trunk of other cars would remain closed—think of KITT, the talking car from

the television show Knight Rider, if it helps with the metaphor.! Similarly, if our

58 Rails: Novice to Ninja

high-tech talking car were instructed to change color to red, it would do so, but
other cars would not.

When we create a new object in OOP, we base it on an existing class. The process
of creating new objects from a class is called instantiation. Figure 3-2 illustrates
this concept.

instantiates instantiates

v

Object sends message Object

“*KITT” “Start engine.” “‘Michael Knight”

3-2. Instantiation in Ruby

As I've mentioned, objects can communicate with each other via messages,
invoking functionality (methods) on other objects. Invoking an object's methods
can be thought of as asking the object a question and getting an answer in return.

Consider the example of our famous talking car again. Let's say we ask the talking
car object to report its current mileage. This question is not ambiguous: the

answer that the object gives is called a return value, and is shown in Figure 3-3.

1. Knight Rider was a popular 1980s series that featured modern-day cowboy Michael
Knight (played by David Hasselhoff) and his opinionated black Pontiac Firebird named
KITT. If you missed it in the '80s, you may be more familiar with the Ford Mustang voiced
by Val Kilmer in the 2008 remake. Don't worry, having seen the show isn't a prerequisite to
understanding object-oriented programming!

http://en.wikipedia.org/wiki/Knight_Rider

Introducing Ruby

Asks question
“What's your mileage?”

Object
“KITT”

Object

“Michael Knight”

Returns answer
“b4,722”

3-3. Asking a simple question in OOP

In some cases, the question-and-answer analogy seems ill-fitting. In these
situations, we might rephrase the analogy to consider the question to be an
instruction, and the answer a status report indicating whether or not the
instruction was executed successfully. This process might look like the diagram
in Figure 3-4.

Sends instruction
“Open your trunk!”

Object
“KITT”

Object

“Michael Knight”

Returns status
“Success.”

3-4. Sending instructions

Sometimes we need more flexibility with our instructions. For example, if we
wanted to tell our car to change gear, we tell it not only to change gear, but also
which gear to change to. The process of asking these kinds of questions is referred

to as passing an argument to the method.

An argument (also called a "parameter”) is an input value that's provided to a
method. An argument can be used to influence:

how a method operates
on which object a method operates

An example is shown in Figure 3-5 below, where the method is “change gear,”
and the number of the gear to which the car must change (two) is the argument.

59

60 Rails: Novice to Ninja

Sends instruction
“Change to 2nd gear!”

Object
“KITT”

Object
“Michael Knight”

Returns status
“Success.”

3-5. Passing arguments

A more general view of all these different types of communication between
objects is this: invoking an object's methods is accomplished by sending messages
to it. As one might expect, the object sending the message is called the sender,

and the object receiving the message is called the receiver.

Armed with this basic knowledge about object-oriented programming, let's look

at some Ruby specifics.

Reading and Writing Ruby Code

Learning the syntax of a new language has the potential to induce the occasional
yawn. So, to make things more interesting, I'll present it to you in a practical way

that lets you play along at home. We'll use the interactive Ruby shell.

The Interactive Ruby Shell (irb)

You can fire up the interactive Ruby shell by entering irb into a terminal

window:

$ irb
irb>

@ Windows Users

Windows users, remember to use the Ruby > Start Command Prompt with Ruby
option from the Ruby 2.3.1 menu to ensure that the environment you're using

contains the right settings.

Introducing Ruby 61

irb allows you to issue Ruby commands interactively, one line at a time. This
ability is great for playing with the language, and it's also handy for debugging, as
we'll see in Chapter 11.

A couple of points about the irb output you'll see in this chapter are that lines

beginning with:

the Ruby shell prompt (irb>) are typed in by the user

the => show the return value of the command that has been entered
We'll start with a really brief example:

irb> 1
=> 1

Here, I've simply thrown the number 1 at the Ruby shell and received back what

appears to be the very same number.

Looks can be deceiving, though. It's actually not the very same number. What has
been handed back is actually a fully-featured Ruby object.

Remember our discussion about object-oriented programming in the previous
section? Well, in Ruby, absolutely everything is treated as an object with which
we can interact; each object belongs to a certain class, therefore each object is able
to store data and functionality in the form of methods.

To find the class to which our number belongs, we call the number's class
method:

irb> 1.class
=> Fixnum

We touched on senders and receivers earlier. In this example, we've sent the
class message to the 1 object, so the 1 object is the receiver (there's no sender, as

we're sending the message from the interactive command line rather than from

62 Rails: Novice to Ninja

another object). The value that's returned by the method we've invoked is Fixnum,

which is the Ruby class that represents integer values.

Since everything in Ruby is an object (including a class), we can actually send the

very same message to the Fixnum class. The result is different, as we'd expect:

irb> Fixnum.class
=> Class

This time, the return value is Class, which is reassuring—we did invoke it on a

class name, after all.

Note that the class method is all lowercase, yet the return value, Class, begins
with a capital letter. A method in Ruby is always written in lowercase, whereas

the first letter of a class is always capitalized.

Constants, Classes, and Capitals

Class names start with a capital letter because they are constants. In programming-
speak, a constant is a value that, once set, does not change throughout the lifetime
of the program. Classes are considered constants, so they are capitalized. You'll see
other constants in ALL_CAPS, which is a Ruby convention that says "this value is a

constant, but it is not a class." I'll talk more about this soon.

Interacting with Ruby Objects

Being accustomed to thinking in terms of objects can take some time. Let's look at

a few types of objects, and see how we can interact with them.

Literal Objects

Literal objects are character strings or numbers that appear directly in the code,
such as the number 1 returned in the previous section. We've seen numbers in

action, so let's now look at a string literal.

Introducing Ruby

A string literal is an object that contains a string of characters, such as a name, an
address, or an especially witty phrase. In the same way that we created the 1
literal object in the previous example, we can easily create a new string literal
object, then send it a message. A string literal is created by enclosing the

characters that make up the string in single or double quotes:

irb> "The quick brown fox"
=> "The quick brown fox"

First, we'll confirm that our string literal indeed belongs to class String:

irb> "The quick brown fox".class
=> String

This String object has a wealth of embedded functionality. For example, we can
ascertain the number of characters that our string literal comprises by sending it
the length message:

irb> "The quick brown fox".length
=> 19

Easy stuff, eh?

Variables and Constants

Every application needs a way to store information. Enter our variables and
constants. As their names imply, these two data containers have unique roles to

play.

A constant (which I mentioned earlier) is an object that's assigned a value once,
and once only—usually when the application starts up. Constants are therefore
used to store information that won't change within a running application. As an
example, a constant might be used to store the version number for an application.

Constants in Ruby are always written using uppercase letters, as shown below:

63

64 Rails: Novice to Ninja

irb> CONSTANT = "The quick brown fox in a constant"
=> "The quick brown fox in a constant"

irb> APP_VERSION = 5.04

=> 5.04

The one exception to the ALL_CAPS convention is class constants, but you

already knew that, didn't you?

Variables, in contrast, are objects that are able to change at any time. They can
even be reset to nothing, freeing up the memory space that they previously

occupied. Variables in Ruby always start with a lowercase character:

irb> variable = "The quick brown fox in a variable"
=> "The quick brown fox in a variable"

There's one more special (and, you might say, evil) side to a variable: scope. The
scope of a variable is the part of the program to which a variable is visible. If you
try to access a variable from outside its scope (for example, from a part of an
application to which that variable is not visible), your attempts will generally fail.

@ Scoping Scope

Scope is a big concept in most programming languages, and understanding it is a
true way to hone your craft. I wish I could spend more time on scope, but since I
can't, check out this article on SitePoint in your spare time.

The notable exception to the rules defining a variable's scope are global variables.
As the name implies, a global variable is accessible from any part of the program.
While this might sound convenient, using global variables is discouraged—that
they can be written to and read from any part of the program introduces security

concerns.

http://www.sitepoint.com/understanding-scope-in-ruby/

Introducing Ruby 65

Watching Your G's and Q's

In programming, there are many things, like globals, whose use are "discouraged."
What this really means is that you should only use them when you really
understand how they work and what they mean. Think of them like swear or curse
words: when you're young in your Ruby life, you aren't supposed to use them, yet
you hear adults using them all the time. As you grow up, you'll misuse them plenty
of times, but eventually you'll know when to drop a G-bomb and when to think
better of it.

Let's return to the string literal example we just saw. Assigning a String to a
variable allows us to invoke on that variable the same methods we invoked on the

string literal earlier:

irb> fox = "The quick brown fox"
=> "The quick brown fox"

irb> fox.class

=> String

irb> fox.length

=> 19

irb> fox.reverse

=> "xof nworb kciuq ehT"

See? Just more messages and return values, but now on our variable. And isn't the
reverse method cool? I love that one.

Basic Punctuation in Ruby

Punctuation in Ruby code differs greatly from other languages such as Perl and
PHP, so it can seem confusing at first if you're used to programming in those
languages; however, once you have a few basics under your belt, punctuation in
Ruby becomes quite intuitive, greatly enhancing the readability of your code.

66 Rails: Novice to Ninja

Dot Notation

One of the most common punctuation characters in Ruby is the period (.). As
we've seen, Ruby uses the period to separate the receiver from the message that's
being sent to it in the form Object.receiver.

@ EXTRA CREDIT: Dot Notation

There are other uses for a period in Ruby, but they are much rarer. One example is
in ranges; for example, (1..10).I'd suggest you Google "Ruby ranges" and figure
out what they do.

You can "comment” a line, either to temporarily take a line of code out of the
program flow or for documentation purposes, by using a hash mark (#).
Comments in a line of code may start at the beginning of a line, or they may
appear further along after some Ruby code:

irb> # This is a comment. It doesn't actually do
> anything.

irb> 1 # So is this, but this one comes after a
> statement.

=> 1

irb> fox = "The quick brown fox" # Assign to a
> variable
=> "The quick brown fox"

irb> fox.class # Display a
> variable's class
=> String

irb> fox.length # Display a
> variable's length
=> 19

Chaining Statements Together

Using characters to separate commands in Ruby is unnecessary, unless we want
to chain multiple statements together on a single line. In this case, a semicolon (;)

Introducing Ruby

is used as the separator. However, if you put every statement on its own line (as

we've been doing until now), the semicolon is completely optional.
If you chain multiple statements together in the interactive shell, only the output

of the last command that was executed will be displayed to the screen:

irb> fox.class; fox.length; fox.upcase
=> “THE QUICK BROWN FOX"

Don't be confused. All the messages were sent and methods executed, but irb
only shows us the last one.

Use of Parentheses

If you ever delved into the source code of one of the many JavaScript libraries out
there, you might have run screaming from your computer when you saw all the
parentheses that are involved in the passing of arguments to methods.

In Ruby, the use of parentheses for method calls is optional in cases where no
arguments are passed to the method. The following statements are therefore

equal:

irb> fox.class()
=> String

irb> fox.class
=> String

It's common practice (and encouraged) to include parentheses for method calls

with multiple arguments, such as the insert method of the String class:

irb> "jumps over the lazy dog".insert (0, 'The quick brown
> fox ')
=> "The quick brown fox jumps over the lazy dog"

67

http://www.sitepoint.com/article/javascript-library/

68 Rails: Novice to Ninja

This call inserts the second argument passed to the insert object ("The quick
brown fox ") at position 0 of the receiving String object (" jumps over the
lazy dog"). Position 0 refers to the very beginning of the string.

Method Notation

Until now, we've looked at cases where Ruby uses less punctuation than its
competitors. Yet, in fact, Ruby makes heavy use of expressive punctuation when
it comes to the naming of methods.

A regular method name, as we've seen, is a simple alphanumeric string of
characters. If a method has a potentially destructive nature (for example, it
directly modifies the receiving object rather than changing a copy of it), it's

commonly suffixed with an exclamation point (!).

The following example uses the upcase method to illustrate this point:

irb> fox.upcase

=> "THE QUICK BROWN FOX"
irb> fox

=> "The quick brown fox"
irb> fox.upcase!

=> "THE QUICK BROWN FOX"
irb> fox

=> "THE QUICK BROWN FOX"

Here, the contents of the fox variable have been modified by the upcase! method.

Punctuation is also used in the names of methods that return Boolean values. A
Boolean value is one that's either true or false; these are commonly used as
return values for methods that ask yes/no questions. Such methods end in a

question mark, which nicely reflects that they have yes/no answers:

irb> fox.empty?
=> false
irb> fox.is_a? String

Introducing Ruby 69

=> true

Predicate Method

A method that returns only true or false is also known as a predicate method.

These naming conventions make it easy to recognize methods that are destructive

and those that return Boolean values, making your Ruby code more readable.

Object-oriented Programming in Ruby

Let's build on the theory covered at the start of this chapter as we take a look at
Ruby's implementation of OOP.

As we already know, the structure of an application based on OOP principles is
focused on interaction with objects. These objects are often representations of
real-world objects; for example, a Car. Interaction with an object occurs when we
send it a message or ask it a question. If we really did have a Car object called

kitt, starting the car might be as simple as doing this:

irb> kitt.start

This short line of Ruby code sends the message start to the object kitt. Using
OOP terminology, we would say that this code statement calls the start method
of the kitt object.

As I've mentioned, in contrast to other object-oriented programming languages
such as Python and PHP, everything is an object in Ruby. Especially when
compared with PHP, Ruby's OOP feels far from being like a tacked-on
afterthought—it was clearly intended to be a core feature of the language from the

beginning, which makes using the OOP features in Ruby a real pleasure.

As we've seen, even the simplest of elements in Ruby (such as literal strings and

numbers) are objects to which you can send messages.

70 Rails: Novice to Ninja

Classes and Objects

As in any other OOP language, each object belongs to a certain class in Ruby (for
example, pontiac_firebird might be an object of class Car). We know that a
class can group objects of a certain kind, and equip those objects with common
functionality. This functionality comes in the form of methods, and in the object's
ability to store information. For example, a pontiac_firebird object might need

to store its mileage, as might any other object of the class Car.

In Ruby, the instantiation of a new object that's based on an existing class is
accomplished by sending that class the new message. The result is a new object
of that class. The following few lines of code show an extremely basic class
definition in Ruby; the third line is where we create an instance of the class that
we just defined:

irb> class Car

irb> end

=> nil

irb> kitt = Car.new
=> #<Car:0x75e54>

Another basic principle in OOP is encapsulation. According to this principle,
objects should be treated as independent entities, each taking care of its own
internal data and functionality. If we need to access an object's information—its
internal variables, for instance—we make use of the object's interface, which is
the subset of the object's methods that are made available for other objects to call.

@ EXTRA CREDIT: Access Levels for Object Methods

Object methods can have different access levels, meaning, some are accessible
publicly, while others are accessible only by the object itself. A method can have
one of three access levels within an object: public, protected, or private. Go and ask
Google what these mean.

Ruby provides objects with functionality at two levels—object level and class
level—and adheres to the principle of encapsulation while it's at it! Let's dig
deeper.

Introducing Ruby

Object-level Functionality

At the object level, data storage (state) is handled by instance variables (a name
that's derived from the instantiation process mentioned). Think of instance
variables as storage containers that are attached to the object, but to which other

objects do not have direct access.

To store or retrieve data from these variables, another object must call an accessor
method defined on the object. An accessor method has the ability to set (and get)
the value of the object's instance variables.

Let's look at how instance variables and accessor methods relate to each other,
and how they're implemented in Ruby.

Instance Variables

Instance variables are bound to an object, and contain values for that object only.

Revisiting our car example, the mileage values for a number of different Car
objects are likely to differ, as each car will have a different mileage. Therefore,
mileage is held in an instance variable.

An instance variable can be recognized by its prefix: a single “at” (@) sign. What's
more, instance variables don't even need to be declared! There's only one issue:
we don't have any way to retrieve or change them from outside the object once
they do exist. This is where instance methods come into play.

@ A Link to Social Media

I like to think of instance variables as the inspiration for mentions on Twitter and
social media. I have no idea if this is true, but Twitter did start life in Ruby.

Instance Methods

Data storage and retrieval is not the only capability that can be bound to a specific
object; functionality can also be bound to objects. We achieve this binding

through the use of instance methods that are specific to an object. Invoking an

71

72 Rails: Novice to Ninja

instance method (in other words, sending a message that contains the method
name to an object) will invoke that functionality on the receiving object only.

Instance methods are defined using the def keyword, and end with the end
keyword. Enter the following example into a new Ruby shell:

$ irb

irb> class Car

irb> def open_trunk

irb> # code to open trunk goes here
irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

What you've done is define a class called Car, which has an instance method with
the name open_trunk. A Car object instantiated from this class will—possibly
using some fancy robotics connected to our Ruby program—open its trunk when
its open_trunk method is called. Ignore that nil return value for the moment;

we'll look at nil values in the next section.

@ Indentation in Ruby

While the indentation of code is a key element of the syntax of languages such as
Python, in Ruby, indentation is purely cosmetic: it aids readability without
affecting the code in any way. In fact, while we're experimenting with the Ruby
shell, don't worry too much about indenting any of the code; however, when we're
saving files that will be edited later, you'll want the readability benefits that come
from indenting nested lines.

The Ruby community has agreed upon two spaces being optimum for indenting
blocks of code such as class or method definitions. We'll adhere to this indentation
scheme throughout this book.

With our class in place, we can make use of this method:

Introducing Ruby

irb> kitt.open_trunk
=> nil

Since we want to avoid having the trunks of all our cars to open at once, we've

made this functionality available as an instance method.

I know, I know—we still haven't modified any data. We'll use accessor methods
for this task.

Accessor Methods

An accessor method is a special type of instance method, used to read or write to
an instance variable. There are two types: readers (sometimes called “getters”)
and writers (or “setters”).

A reader method will look inside the object, fetch the value of an instance
variable, and hand this value back to us. A writer method, on the other hand, will
look inside the object, find an instance variable, and assign the variable the value
that it was passed.

Let's add some methods for getting and setting the @mileage attribute of our Car
objects. Once again, exit from the Ruby shell so that we can create an entirely
new Car class definition. Our class definition is a bit longer now, so enter each
line carefully. If you make a typing mistake, exit the shell, and start over:

$ irb

irb> class Car

irb> def set_mileage(x)
irb> @mileage = Xx
irb> end

irb> def get mileage
irb> @mileage

irb> end

irb> end

=> nil

irb> kitt = Car.new

73

74 Rails: Novice to Ninja

=> #<Car:0x75e54>

Now, we can finally modify and retrieve the mileage of our Car objects:

irb> kitt.set _mileage(5667)
=> 5667

irb> kitt.get_mileage

=> 5667

This is still a bit awkward. Wouldn't it be nice if we could give our accessor
methods the same names as the attributes that read and control? Luckily, Ruby
contains shorthand notation for this very task. We can rewrite our class definition

as follows:

$ irb
irb> class Car
irb> def mileage=(x)

irb> @mileage = X
irb> end

irb> def mileage
irb> @mileage
irb> end

irb> end

=> nil

irb> kitt = Car.new
=> #<Car:0x75e54>

With these accessor methods in place, we can read to and write from our instance

variable as if it were available from outside the object:

irb> kitt.mileage = 6032
=> 6032
irb> kitt.mileage

Introducing Ruby 75

=> 6032

These accessor methods form part of the object's interface. By the way, since Ruby
is all about programmer productivity and happiness, the standard library
supplies shortcut methods to define accessor methods. Check it out:

irb> class Car

irb> attr_accessor :mileage
irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

irb> kitt.mileage = 6032

=> 6032

irb> kitt.mileage

=> 6032

Pretty neat, eh?

Class-level Functionality

At the class level, class variables handle data storage. They're commonly used to
store state information, or as a means of configuring default values for new
objects. Class variables are typically set in the body of a class, and can be
recognized by their prefix: a double “at” sign (@@).

First, enter the following class definition into a new Ruby shell:

$ irb

irb> class Car

irb> @@number_of cars = 0

irb> def initialize

irb> @@number_of_cars = @@number_of_cars + 1
irb> end

irb> end

76 Rails: Novice to Ninja

=> nil

In the code, the class definition for the class Car has an internal counter for the
total number of Car objects that have been created. Using the special instance
method initialize, which is invoked automatically every time an object is

instantiated, this counter is incremented for each new Car object.

By the way, we've already used a class method; I snuck it in there. The new
method is an example of a class method that ships with Ruby and is available to
all classes, whether they're defined by you or form part of the Ruby Standard
Library.?

Custom class methods are commonly used to create objects with special
properties (such as a default color for our Car objects—called factory methods),
or to gather statistics about the class's usage.

Extending the earlier example, we could use a class method called count to
return the value of the @@number_of_cars class variable. Remember that this is a
variable that's incremented for every new Car object created. Class methods are
defined identically to instance methods: using the def and end keywords. The
only difference is that class method names are prefixed with self. Enter this code
into a new Ruby shell:

$ irb

irb> class Car

irb> @@number_of_cars = 0
irb> def self.count

irb> @@number_of_cars
irb> end

irb> def initialize

irb> @@number_of_cars += 1
irb> end

irb> end

2. The Ruby Standard Library is a large collection of classes that's included with every
Ruby installation. The classes facilitate a wide range of common functionality, such as
accessing websites, date calculations, file operations, and more.

Introducing Ruby
=> nil

The following code instantiates some new Car objects, then makes use of our new
class method:

irb> kitt = Car.new # Michael Knight's talking
> car

=> #<0xba8c>

irb> herbie = Car.new # The famous Volkswagen love
> bug!
=> #<0x8cd20>

irb> batmobile = Car.new # Batman's sleek automobile
=> #<0x872e4>
irb> Car.count
=> 3

The method tells us that three instances of the Car class have been created. Note

that we can't call a class method on an object:3

irb> kitt.count
NoMethodError: undefined method 'count' for
> #<Car:0x89da0>

As implied by the name, the count class method is available only to the Car class,
not to any objects instantiated from that class.

@ Avoid the CV Word

Class variables are treated in much the same way as global variables in that they are
discouraged. Think of them as the "CV" word and avoid them.

3. Ruby actually does provide a way to invoke some class methods on an object using the
: 1 operator, but we won't worry about that for now. We'll see the : : operator in use in
Chapter 4.

77

78 Rails: Novice to Ninja

I sneakily introduced another operator in there. In many languages, including
PHP and Java, the ++ and - - operators are used to increment a variable by one,
but Ruby doesn't support this notation; instead, we use the += operator.
Therefore, the shorthand notation for incrementing our counter in the class
definition is:

irb> @@number_of_cars += 1

This code is identical to:

irb> @@number_of_cars = @@number of cars + 1

Both of these lines can be read as “my_variable becomes equal to my_variable
plus one.”

Inheritance

If your application deals with more than the flat hierarchy we've explored so far,
you may want to construct a scenario whereby some classes inherit from other
classes. Inheritance is a tenet of object-oriented programming where one class
can be used as a parent (or super) class of another. This means that the methods
and variables defined on the super class are available on the child class. You use
inheritance when one class is a kind of another class. The example code will
make this more clear.

Continuing with the car analogy, let's suppose that we have a green limousine
named Larry (this assignment of names to cars may seem a little strange, but it's
important for this example, so bear with me). In Ruby, the larry object would
probably descend from a StretchLimo class, which could in turn descend from
the class Car (a StretchLimo is a Car). Let's implement that class relationship to
see how it works:

$ irb
irb> class Car

Introducing Ruby

irb> WHEELS = 4

irb> end

=> nil

irb> class StretchLimo < Car

irb> WHEELS = 6

irb> def turn_on_television

irb> # Invoke code for switching on on-board TV here
irb> end

irb> end

=> nil

Now, if we were to instantiate an object of class StretchLimo, we'd end up with a
different kind of car. Instead of the regular four wheels that standard Car objects
have, this one would have six wheels (stored in the class constant WHEELS). It
would also have extra functionality, made possible by the presence of the extra
method turn_on_television, which could be called by other objects.

However, if we were to instantiate a regular Car object, the car would have only
four wheels, and there would be no instance method for turning on an on-board
television. Think of inheritance as a way for a class's functionality to become

more specialized the further we move down the inheritance path.

Don't worry if you're struggling to wrap your head around all the aspects of OOP.
You'll become accustomed to them as you work through this book. It may be
useful to come back to this section, though, especially if you need a reminder
about a certain term later on.

Modules and Composition

Another foundational concept is composition, which is basically reusing
functionality across objects by including them in the class definition. In other
words, the behavior of a class is composed of defined functional sets. These
functional sets are not a part of the base class definition, but are included in any
class desiring that functionality. I like to think that if inheritance defines "is a",

then composition defines "has a".

79

80 Rails: Novice to Ninja

Ruby allows the definition of sets of functionality in modules. A module looks a
lot like a class except that it has no new method, which means it can't be

instantiated. Here is an example module:

irb> module Nitrous
irb> def push_the_red_button

irb> # Invoke code kicking on the nitrous here! ZOOM!
irb> "ZOooM! "

irb> end

irb> end

Not all cars have nitrous installed, but for cars that are fast and, possibly, furious,
nitrous is a must. Now that we have a module, how do we include it in the class

definition of our race cars? By using include.

Modules are included in a class using the include keyword. Let's look at an

example:

irb> class Racer < Car
irb> include Nitrous
irb> end
=> nil
irb> race_car = Racer.new
irb> race_car.push_the_red_button
=> ZOOM!
irb> limo = StretchLimo.new
irb> limo.push_the_red_button
=> NoMethodError: undefined method “push_the red button'
> for #<StretchLimo:0x007f89760c9188>

As we've included the Nitrous module in our Racer class, the
push_the red_button method is available to instances of Racer. The limo,
however, doesn't have nitrous.

One more quick point. You'll notice that includeing a module in a class creates
instance methods. What if we want to define class methods? I'm glad you asked.

Introducing Ruby 81

There is another keyword, extend, that adds the methods defined in a module as
class methods like so:

irb> module Lemon
irb> def recalls

irb> "The engine explodes if you switch into reverse"
irb> end
irb> end

irb> class Pinto < Car

irb> extend Lemon

irb> end

=> nil

irb> pos = Pinto.new

irb> pos.recalls

=> NoMethodError

irb> Pinto.recalls

=> "The engine explodes if you switch into reverse"

Modules are used extensively in Ruby and Rails, and learning how to use them
effectively can make your code much more maintainable.

@ Support for Methods

What if you wanted to add some methods from a module as instance methods, and
other methods in that module as class methods? Googling "ActiveSupport Concern"
will reward you with the answer you seek.

Much of the core Rails functionality is implemented via modules, so we've

covered enough to ensure there are no surprises.

Return Values

It's always great to receive feedback. Remember our talk about passing arguments
to methods? Well, regardless of whether or not a method accepts arguments,
invoking a method in Ruby always results in feedback. It comes in the form of a

return value, which is returned either explicitly or implicitly.

To return a value explicitly, use the return statement in the body of a method:

82 Rails: Novice to Ninja

irb> def toot_horn
irb> return "toooot!"
irb> end

=> nil

Calling the toot_horn method in this case would produce the following:

irb> toot_horn
=> "toooot!"

However, if no return statement is used, the result of the last statement that was

executed is used as the return value. This behavior is quite unique to Ruby:

irb> def toot loud horn
irb> "toooot!".upcase
irb> end

=> nil

Calling the toot_loud_horn method in this case would produce:

irb> toot_loud_horn
=> "TO00OT!"

Standard Output

When you need to show output to the users of your application, use the print
and puts statements. Both methods will display the arguments passed to them as
a String; puts also inserts a carriage return at the end of its output. Therefore, in
a Ruby program the following lines:

Introducing Ruby 83

print "The quick "
print "brown fox"

... would produce this output:

The quick brown fox

Yet, using puts like so:

puts "jumps over"
puts "the lazy dog"

... results in:

jumps over
the lazy dog

You might be wondering why all of the trial-and-error code snippets that we
typed into the Ruby shell actually produced output, given that there's been no
use of the print or puts methods up to this point. It's because irb automatically
writes the return value of the last statement it executes to the screen before
displaying the irb prompt. This means that using print or puts from within the
Ruby shell might in fact produce two lines of output: the output that you specify
should be displayed, and the return value of the last command that was executed,
as in this example:

irb> puts "The quick brown fox"
"The quick brown fox"
=> nil

84 Rails: Novice to Ninja

Here, nil is actually the return value of the puts statement. Looking back at
previous examples, you will have encountered nil as the return value for class
and method definitions, and you'll have received a hexadecimal address such as
#<Car:0x89da0> as the return value for object definitions. This hexadecimal
value showed the location in memory that the object we instantiated occupied.
Luckily we can forget about bothering with such geeky details any further.

Having met the print and puts statements, you should be aware that a Rails
application has a completely different approach to displaying output, called
templates. We'll look at templates in Chapter 4.

Put It There

For what it's worth, 99.99998% of the times you want to write to standard output,

use puts. It's what all the cool kids do.

Ruby Core Classes

We've already talked briefly about the String and Fixnum classes in the previous

sections, but Ruby has a lot more under its hood. Let's explore!
Strings

The typical Ruby String object—yep, that very same object we've already been
using—holds and manipulates sequences of characters. Most of the time, new
String objects are created using string literals that are enclosed in single or

double quotes. The string literal can then be stored in a variable for later use:

irb> a_phrase = "The quick brown fox"
=> "The quick brown fox"

irb> a_phrase.class

=> String

If the string literal includes the quote character used to enclose the string itself, it

must be escaped with a backslash character (\):

Introducing Ruby 85

irb> 'I\'m a quick brown fox'

=> "I'm a quick brown fox"

irb> "Arnie said, \"I'm back!\""
=> "Arnie said, \"I'm back!\""

An easier way to specify string literals that contain quotes is to use the %Q
shortcut, like this:

irb> %Q(Arnie said, "I'm back!")
=> "Arnie said, \"I'm back!\""

String additionally supports the substitution of Ruby code into a string literal via

the Ruby expression #{}:

irb> "The current time is: #{Time.now}"
=> "The current time is: Wed Aug 02 21:15:19 CEST 2006"

The String class methods also have rich embedded functionality for modifying

String objects. Here are some of the most useful methods:

gsub substitutes a given pattern within a String:

irb> "The quick brown fox".gsub('fox', 'dog')
=> "The quick brown dog"

include? returns true if a String contains another specific String:

irb> "The quick brown fox".include?('fox"')
=> true

length returns the length of a String in characters:

86 Rails: Novice to Ninja

irb> "The quick brown fox".length
=> 19

slice returns a portion of a String:

irb> "The quick brown fox".slice(0, 3)
=> IITheII

The complete list of class methods and instance methods provided by the String
class is available via the Ruby reference documentation, which you can access by
entering the ri command into the terminal window (for your operating system,
not the Ruby shell), followed by the class name you'd like to look up:

$ ri String

Oh, and ri stands for ruby interactive, in case you're wondering. Don't confuse it
with irb.

@ Ruby Interactive Documentation

If ri returns nothing or errors, or says Nothing known about String, you need
to install the ri documentation. If you are using RVM, you can type rvm docs
generate-ri. If you are on Windows, try this:

$ gem install rdoc-data
$ rdoc-data --install

That should do the trick.

Introducing Ruby 87

Numerics

Since there are so many different types of numbers, Ruby has a separate class for
each—the popular Float, Fixnum, and Bignum classes among them. They're
actually all subclasses of Numeric, which provides the basic functionality.

Just like Strings, numbers are usually created from literals:

irb> 123.class
=> Fixnum

irb> 12.5.class
=> Float

Each of the specific Numeric subclasses comes with features that are relevant to
the type of number it's designed to deal with; however, the following

functionality is shared between all Numeric functionality:

integer? returns true if the object is a whole integer:

irb> 123.integer?
=> true

irb> 12.5.integer?
=> false

round rounds a number to the nearest integer:

irb> 12.3.round
=> 12
irb> 38.8.round
=> 39

zero? returns true if the number is equal to zero:

88 Rails: Novice to Ninja

irb> 0.zero?
=> true

irb> 8.zero?
=> false

Additionally, there are ways to convert numbers between the Numeric subclasses.

to_f converts a value to a Float, and to_i converts a value to an Integer:

irb> 12.to_f
=> 12.0

irb> 11.3.to_1i
=> 11
Symbols

In Ruby, a Symbol is a simple textual identifier. Like a String, a Symbol is created
using literals; the difference is that a Symbol is prefixed with a colon (:) like so:

irb> :fox

=> :fox

irb> :fox.class
=> Symbol

The main benefit of using a Symbolover a String is that a Symbol is immutable,
meaning it doesn't change. This is different from Strings, which can be changed.
Immutability is a big subject, so let's focus on the biggest benefit: memory. Each
string you created is different from all other strings, even if the strings have the

same characters. Check it out:

irb> "fox".object_id
=> 70114175443000
irb> "fox".object_id
70114175426920

irb> :fox.object_id

Introducing Ruby

544488
irb> :fox.object_id
544488

In Ruby, every object has an object_id, which is, in essence, where that object
sits in memory. As you can see from the example, every time you type "fox", you
get a new object_id, a new object; however, when you type :fox, it's the same
object every time.

This can be an advantage in certain situations when we want to ensure we have
the same object. For example, when we store values in a Hash (which we'll cover
in a sec), a unique key is important. Otherwise, we could store several values
with the same key value, but that would be confusing.

Objects of class String can be converted to class Symbol, and vice versa:

irb> "fox".to_sym

=> :fox
irb> :fox.to_s
=> IIfOXII

We'll be using Symbol frequently as we deal with Rails functionality in successive
chapters of this book.

Arrays

We use Ruby's Array to store collections of objects. Each individual object that's
stored in an Array has a unique numeric key, which we can use to reference it. As

with many languages, the first element in an Array is stored at position 0 (zero).

To create a new Array, simply instantiate a new object of class Array using the
Array.new construct. You can (and should) also use a shortcut approach, which is

to enclose the objects you want to place inside the Array in square brackets.

For example, an Array containing the mileage at which a car is due for its regular

service might look similar to this:

89

90 Rails: Novice to Ninja

irb> service_mileage = [5000, 15000, 30000, 60000,
> 100000]
=> [5000, 15000, 30000, 60000, 100000]

To retrieve individual elements from an Array, we specify the numeric key in

square brackets:

irb> service _mileage[O0]
=> 5000
irb> service_mileage[2]
=> 30000

Ruby has more shortcuts that allow us to create an Array from a list of Strings:
the %w() and %i() syntaxes. Using these shortcuts saves us from typing a lot of
double-quote characters. The former (%w) creates an array of strings, while the

latter (%1) creates an array of symbols:

irb> string_colors = %w(red green blue black)
=> ["red", "green", "blue", "black"]

irb> string_colors[0]

=> "red"

irb> string_colors[3]

=> "plack"

irb> symbol _colors = %i(red green blue black)
=> [:red, :green, :blue, :black]

irb> symbol_colors[O0]

=> :red

In addition to facilitating simple element retrieval, Array comes with a set of
class methods and instance methods that ease data management tasks

tremendously.

empty? returns true if the receiving Array contains no elements:

Introducing Ruby 91

irb> available colors.empty?
=> false

size returns the number of elements in an Array:

irb> available colors.size
=> 4

The complete list of class methods and instance methods provided by the Array

class is available via the Ruby reference documentation:

$ ri Array

Hashes

A Hash is another kind of data storage container that is similar conceptually to a
dictionary: it maps one object (the key; for example, a word) to another (the
value; a word's definition) in a one-to-one relationship.

A new Hash can be created either by instantiating a new object of class Hash
(using the Hash.new construct) or by using the curly brace shortcut shown in the
code that follows. When defining a Hash, we must specify each entry using one of
two syntaxes: either key: value or key => value. The former is newer and, in

this writer's opinion, preferred but either way works.

In the following example, the Hash maps car names to a color:

irb> car_colors = {

irb> kitt: ‘'black',

irb> herbie: 'white',

irb> batmobile: 'black',

irb> larry: ‘'green'

irb> }

=> {"kitt"=>"black", "herbie"=>"white",

92 Rails: Novice to Ninja

> "batmobile"=>"black", "larry"=>"green"}

To query this newly built Hash, we pass the key of the entry we want to look up
in square brackets as a symbol:

irb> car_colors[:kitt]
=> "plack"

All sorts of useful functionality is built into a Hash, including the following
methods:

empty? returns true if the receiving Hash doesn't contain any elements:

irb> car_colors.empty?
=> false

size returns the number of elements in a Hash:

irb> car_colors.size
=> 4

keys returns all keys of a Hash as an Array:

irb> car_colors.keys
=> ["kitt", "herbie", "batmobile", "larry"]

values returns all values of a Hash as an Array in the order they were added
to the Hash:

Introducing Ruby

irb> car_colors.values
=> ["black", "white", "black", "green"]

There are lots more class methods and instance methods provided by the Hash

class. For a complete list, consult the Ruby reference documentation by typing:

ri Hash

nil Values

I promised earlier that I'd explain nil values—now's the time!

All programming languages have a value they can use when they actually mean
nothing. Some use undef; others use NULL. Ruby uses nil. A nil value, like

everything in Ruby, is also an object. It therefore has its own class: NilClass.

Basically, if a method returns nothing, it is returning the value nil. And if you
assign nil to a variable, you effectively make it empty. nil shows up in a couple

of other places, but we'll cross those bridges when we come to them.

Running Ruby Files

For the simple Ruby basics that we've experimented with so far, the interactive
Ruby shell (irb) has been our tool of choice. I'm sure you'll agree that
experimenting in a shell-like environment where we can see immediate results is

a great way to learn the language.

Now we're going to be talking about control structures, and for tasks of such
complexity you'll want to work in a text editor. This environment will allow you
to run a chunk of code several times without having to retype it.

In general, Ruby scripts are simple text files containing Ruby code and a .rb
extension. These files are passed to the Ruby interpreter, which executes your
code:

93

94 Rails: Novice to Ninja

$ ruby myscript.rb

To work with the examples that follow, I'd recommend that you open a new text
file in your favorite text editor (which might be one of those I recommended back
in Chapter 2) and type the code out as you go—this really is the best way to learn.

As has been demonstrated, to run the files from the command line you simply
need to type ruby, followed by the filename.

Control Structures

Ruby has a rich set of features for controlling the flow of your application.
Conditionals are keywords that are used to decide whether or not certain
statements are executed based on the evaluation of one or more conditions; loops
are constructs that execute statements more than once; and blocks are a means of
encapsulating functionality (for example, so as to be executed in a loop).

To demonstrate these control structures, let's utilize some of the Car classes that
we defined earlier. Type out the following class definition and save the file; we'll

build on it in this section as we explore some control structures:

class Car
WHEELS = 4 # class constant
@@number_of_cars = 0 # class variable

def initialize
@@number_of cars = @@number_of cars + 1

end

def self.count
@@number_of_cars

end

def mileage=(x) # instance variable writer
@mileage = Xx

end

def mileage # instance variable reader
@mileage

end

Introducing Ruby

end

class StretchLimo < Car
WHEELS = 6 # class constant
@@televisions = 1 # class variable
def turn_on_television
Invoke code for switching on on-board TV here
end
end

class PontiacFirebird < Car
end

class VolksWagen < Car
end

Conditionals

There are two basic conditional constructs in Ruby: if and unless. Each can be
used to execute a group of statements on the basis of a given condition.

The if Construct

An if construct wraps statements that are to be executed only if a certain
condition is met. The keyword end defines the end of the if construct. The
statements that are contained between the condition and the end keyword are
executed only if the condition is met:

if Car.count.zero?
puts "No cars have been produced yet."
end

You can provide a second condition by adding an else block. When the
condition is met the first block is executed; otherwise, the else block is executed.

This kind of control flow will probably be familiar to you. Here it is in action:

95

Rails: Novice to Ninja

if Car.count.zero?

puts "No cars have been produced yet."
else

puts "“New cars can still be produced."
end

The most complicated example involves an alternative condition. If the first
condition is not met, a second condition is evaluated. If neither conditions are
met, the else block is executed:

if Car.count.zero?
puts "No cars have been produced yet."
elsif Car.count >= 10
puts "Production capacity has been reached."
else
puts "New cars can still be produced."
end

If the count method returned 5, this code would produce the following output:

New cars can still be produced.

An alternative to the traditional if condition is the if statement modifier. A
statement modifier does just that: it modifies the statement of which it is part.
The if statement modifier works exactly like a regular if condition, but it sits at
the end of the line that's affected, rather than before a block of code:

puts "No cars have been produced yet." if Car.count.zero?

This version of the if condition is often used when the code that's to be executed
conditionally comprises just a single line. Having the ability to create conditions
such as this results in code that's a lot more like English than other programming

languages with more rigid structures.

Introducing Ruby 97

The unless Construct

The unless condition is a negative version of the if condition. It's useful for
situations in which you want to execute a group of statements when a certain
condition is not met.

Let's create a few instances to work with:*

kitt = PontiacFirebird.new
kitt.mileage = 5667

herbie = VolksWagen.new
herbie.mileage = 33014

batmobile = PontiacFirebird.new
batmobile.mileage = 4623

larry = StretchLimo.new
larry.mileage = 20140

Now if we wanted to find out how many Knight Rider fans KITT could take for a
joyride, we could check the class of the kitt object. As with the if expression,
the end keyword defines the end of the statement:

unless kitt.is_a?(StretchLimo)
puts "This car is only licensed to seat two people."
end

Like the if condition, the unless condition may have an optional else block of
statements, which is executed when the condition is met:

4. Aficionados of comics will notice that I've visualized the Batmobile as a Pontiac
Firebird. In fact, the caped crusader's choice of transport has varied over the years, taking
in many of the automobile industry's less common innovations, and including everything
from a 1966 Lincoln Futura to an amphibious tank. But we'll stick with a Pontiac for this
example.

98 Rails: Novice to Ninja

unless kitt.is_a?(StretchLimo)
puts "This car is only licensed to seat two people."
end

Since KITT is definitely not a stretch limousine, this code would return:
This car only has room for two people.

Unlike if conditions, unless conditions do not support a second condition;
however, like the if condition, the unless condition is also available as a
statement modifier. The following code shows an example of this. Here, the

message will not display if KITT's mileage is less than 25,000:

puts "Service due!" unless kitt.mileage < 25000

Loops

Ruby provides the while and for constructs for looping through code (that is,
executing a group of statements a specified number of times, or until a certain
condition is met). A number of instance methods are also available for looping
over the elements of an Array or Hash; we'll cover these in the next section.

while and until Loops

A while loop executes the statements that it encloses repeatedly, as long as the
specified condition is met:

while Car.count < 10

Car.new

puts "A new car instance was created."
end

Introducing Ruby

This simple while loop executes the Car.new statement repeatedly, as long as the
total number of cars is below 10. It exits the loop when the number reaches ten.

Like the relationship between if and unless, the while loop also has a
complement: the until construct. If we use until, the code within the loop is
executed until the condition is met. We could rewrite the prevous loop using
until like so:

until Car.count == 10

Car.new

puts "A new car instance was created."
end

@ Assignment and Equation Operators

It's important to note the difference between the assignment operator (=), a single
equal sign, and the equation operator (==), a double equal sign, when using them
within a condition.

If you're comparing two values, use the equation operator:
if Car.count == 10
end

If you're assigning a value to a variable, use the assignment operator:

my_new_car = Car.new

If you confuse the two, you might modify a value that you were hoping only to
inspect—with potentially disastrous consequences!

for Loops

for loops allow us to iterate over the elements of a collection, such as an Array,

and execute a group of statements once for each element. Here's an example:

99

100 Rails: Novice to Ninja

for car in [kitt, herbie, batmobile, larry]
puts car.mileage
end

This code would produce the following output:

5667
33014
4623
20140

This simple for loop iterates over an Array of Car objects and outputs the
mileage for each car. In each iteration, the car variable is set to the current
element of the Array. The first iteration has car set to the equivalent of kitt; the

second iteration has it set to herbie, and so forth.

In practise, the traditional while and for loops covered here are used rarely.
Instead, most people use the instance methods provided by the Array and Hash

classes, which we'll cover next.

Blocks, Procs, and Lambdas. Oh my!

Blocks are probably the single most attractive feature of Ruby; however, they also

tend to take a while to drop into place for Ruby newcomers. Before we dig deeper
into creating blocks, let's take a look at some of the core features of Ruby that use

blocks.

We looked at some loop constructs in the previous section, which was a useful
way to explore the tools that are available to us. Yet you'll probably only come
across very few of these constructs in your work with other Ruby scripts, simply
because it's almost always easier to use a block to perform the same task. A block,
in conjunction with the each method provided by the Array and Hash classes, is a

very powerful way to loop through your data.

Introducing Ruby 101

Let me illustrate this point with an example. Consider the for loop we used a
moment ago. We could rewrite that code to use the each method, which is an

instance method of the Array, and a block:

[kitt, herbie, batmobile, larry].each do |car_name|
puts car_name.mileage
end

Let's analyze this: the block comprises the code between the do and end
keywords. A block is able to receive parameters, which are placed between
vertical bars (1) after the do keyword. Multiple parameters are separated by
commas. Therefore, this code performs an identical operation to the for loop we

saw before, but in a much more succinct manner.

Let's take another example. To loop through the elements of a Hash, we use the
each method and pass two parameters to the block: the key (car_name) and the

value (color):

car_colors = {
kitt: ‘'black',
herbie: 'white',
batmobile: 'black’,
larry: 'green'
}
car_colors.each do |car_name, color|
puts "#{car_name} is #{color}"
end

This produces the following output:

kitt is black
herbie is white
batmobile is black
larry is green

102 Rails: Novice to Ninja

The Integer class also sports a number of methods that use blocks. The times
method of an Integer object, for example, executes a block exactly n times,
where n is the value of the object:

10.times { Car.new }
puts "#{Car.count} cars have been produced."

Here's the resultant output:

10 cars have been produced.

One final point to note here is the alternative block syntax of curly braces. Instead
of the do..end keywords that we've been using, curly braces are the preferred

syntax for blocks that are very short, as in the previous example.

Here's another method of the Integer class. In the spirit of times, the upto
method of an Integer object counts from the value of the object up to the
argument passed to the method:

5.upto(7) { |i]| puts i }

And here's the output:

In Ruby parlance, the object i is a parameter of the block. Parameters for blocks
are enclosed in vertical bars, and are usually only available from within the
block. If we have more than one parameter we separate them using commas, like
so: |parameter1, parameter2]|.In the previous example, we would no longer
have access to i once the block had finished executing.

Introducing Ruby

It's worth mentioning that there are a couple of other constructs in Ruby that are
very similar to blocks: procs and lambdas. The difference between these three
items is subtle, especially for the needs of this book. For what we'll cover, it's
really only important that you are aware of the syntactical differences. Here are

some examples:

10.times { Car.new } => Makes 10 cars

car_maker = Proc.new { Car.new }

10.times (&car_maker) => Makes 10 cars

competitor = lambda { |i| Car.new }

10.times (&competitor) => Makes 10 cars
another_competitor = ->(i){ Car.new } => Makes 10 cars

The first example is a block. The second example (Proc.new) creates a Proc
object. Procs and blocks are almost identical, except a proc is an object and a
block is not. The last two examples (with lambda and the odd-looking "stabby
lambda" ->() create lambdas which are types of procs with a couple of
behavioral differences. These differences are around arity (the number of
arguments) and how the lambda returns when it completes. Again, it's more than
you need to know right now, so you know what that means, right? It's time for

some ...

(é\ EXTRA CREDIT: Ruby Rites

Y=

Learning the difference between procs, blocks, and lambdas is a Ruby rite of
passage. To help you take yours, go check out this video on SitePoint Premium. It's
a great little video ... I recommend you make popcorn first.

As we work through this book, we'll explore many more uses of blocks, procs,

and lambdas in combination with the Rails core classes.

Summary

Wow, we covered a lot in this chapter! First, we swept through a stack of object-
oriented programming theory—probably the equivalent of an introductory

computer science course! This gave us a good grounding for exploring the basics

103

https://www.sitepoint.com/premium/screencasts/discovering-the-differences-between-blocks-procs-and-lambdas

104 Rails: Novice to Ninja

of the Ruby programming language, and the Interactive Ruby Shell (irb) was a
fun way to conduct this exploration.

We also investigated many of the Ruby core classes from within the Ruby shell,
such as String, Symbol, Array, and Hash. We then moved from the shell to create
and save proper Ruby files, where we experimented with control structures such
as conditionals, loops, and blocks.

In the next chapter, we'll look at the major cornerstones that make up the Rails
framework.

Rails Revealed

Chapter

Rails Revealed

As we've already covered in Chapter 1, quite a bit of thought has been put into
the codebase that makes up the Rails framework. Over time, many of the internals
have been rewritten, items have been added and removed, and conventions have
changed. All of this change has improved speed and efficiency, allowing the
implementation of additional features, but the original architecture remains
largely unchanged. This chapter will shed some light on the inner workings of
Rails.

Three Environments

Rails encourages the use of a different environment for each stage in an
application's life cycle development, testing, and production. If you've been

105

106 Rails: Novice to Ninja

developing web applications for a while, this is probably how you operate

anyway; Rails simply formalizes these environments.

In the development environment, changes to an application's source code are
immediately visible; we just reload the corresponding page in a web browser.
Speed is not a critical factor in this environment. Instead, the focus is on
providing the developer with as much insight as possible into the components
responsible for displaying each page. When an error occurs in the development
environment, we are able to tell at a glance which line of code is responsible for
the error and how that particular line was invoked. This capability is provided by
the stack trace—a comprehensive list of all the method calls leading up to the
error—which is displayed when an unexpected error occurs.

In testing, we usually refresh the database with a baseline of dummy data each
time a test is repeated. This step ensures that the results of the tests are consistent
and behavior is reproducible. Unit and functional testing procedures are fully
automated in Rails. When we test a Rails application, we don't view it using a
traditional web browser. Instead, tests are invoked from the command line, and
can be run as background processes. The testing environment provides a
dedicated space in which these processes can operate.

By the time your application finally goes live, it should be sufficiently tested that
all—or at least most—of the bugs have been eliminated. As a result, updates to
the codebase should be infrequent, enabling the production environments to be
optimized to focus on performance. Tasks such as writing extensive logs for
debugging purposes should be unnecessary at this stage. Besides, if an error does
occur, you want to avoid scaring your visitors away with a cryptic stack trace;
that's best kept for the development environment.

As the requirements for each of the three environments are quite different, Rails
stores the configuration for each environment separately. The dependencies for
each environment will be different; the data for each environment will be
different. You'll likely want to have more detailed logs in development than

production. Rails makes handling the configuration of all these items simple.

Rails Revealed

Application Dependencies

One of the great aspects of Rails is its community and all the gems it has created
that we, as Rails developers, can use in our apps. Each gem you use in your
application becomes a dependency, meaning that your app depends on it. It's
likely that your apps will have a lot of dependencies. In fact, it's such a common
occurrence that Rubyists created a tool to make managing dependencies easy.

Bundler

Rails manages application dependencies using a Ruby gem called Bundler. As its
homepage states, Bundler:

"provides a consistent environment for Ruby projects by tracking and
installing the exact gems and versions that are needed."

These dependencies are listed in the application Gemfile, which is found in the
root of the application structure. Gems are listed by name and version. Here is
part of the Gemfile that Rails created with our application:

source 'https://rubygems.org'

Bundle edge Rails instead: gem ‘'rails', github:
> 'rails/rails'

gem 'rails', '-> 5.0.0'

Use sqlite3 as the database for Active Record
gem 'sqglite3’

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

group :development, :test do
Call 'byebug' anywhere in the code to stop execution and
> get a debugger console
gem 'byebug', platform: mri
end

group :development do

107

http://bundler.io/

108 Rails: Novice to Ninja

Access an IRB console on exception pages or by using
> <%= console %> in views

gem 'web-console';, '~> 2.0'
end

As you can see, everything is a gem, including Rails itself! The first line (source
'https://rubygems.org') tells Bundler to look for gems on the RubyGems
website, where the community happens to publish gems. Did you notice that
Bundler lets you define dependencies in each environment?

group :development do
Access an IRB console on exception pages or by using
> <%= console %> in views
gem 'web-console’
end

The group :development block declaration tells Bundler to only load these gems
in the development environment. Neat, huh?

Once the Gemfile includes all the app dependencies, running bundle install
will make Bundler retrieve all the gems and pull them into the current

environment:

$ bundle install

Fetching gem metadata from https://rubygems.org/.........
Fetching additional metadata from https://rubygems.org/...
Resolving dependencies...

Using rake 10.3.1

Using json 1.8.1

Installing minitest 5.83.3

Installing i18n 0.6.9

Installing thread safe 0.3.3

Rails Revealed

Bundler is smart. Really smart. It checks all the gems, ensuring that their
dependencies are met and there are no version clashes. A version clash is when
two gems require different versions of a third gem, and that can be a nightmare to
handle. Thankfully, Bundler does that for you.

A successful bundle install creates another file called Gemfile.lock, which
lists the exact gems and versions used in the last successful "bundle." When Rails
starts up, it checks this file to load all the gem dependencies so that your app is
ready to go. Any change to the Gemfile (meaning, dependencies added or
removed) requires another bundle install. Don't worry, though; Bundler is
smart and will just load (or remove) the changes, check that everything is okay,
and reuse gems from previous bundles. Bundler is like your Dependency
Compliance Officer ensuring everyone gets along.

Finally, Bundler is not a Rails-only tool. It can be (and is) used in other Ruby
projects, so you'll see it all over the Ruby landscape.

@ EXTRA CREDIT: Bundler's Brass Tacks

There are a lot of details around using Bundler that are outside the scope of this
book. It behooves you, as an aspiring Ruby developer, to read up on all the things
Bundler can do and the ways it can do them on the Bundler site.

Database Configuration

By default, Rails creates a distinct database for each environment. At any given

time, you might have:
live data with which real users are interacting in the production environment

a partial copy of this live data to debug an error or develop new features in the

development environment

a set of testing data that's constantly being reloaded into the testing

environment

Configuring the database for a Rails application is incredibly easy. All the critical
information is contained in just one file: config/database.yml. We'll take a close

109

http://bundler.io

110 Rails: Novice to Ninja

look at this database configuration file, then create some databases for our
application to use.

The Database Configuration File

The separation of environments is reflected in the Rails database configuration
file database.yml. An example of this was created when we used the rails
command to create the application. Go take a look—it lives in the config
subdirectory of our Readit application.

Yo YAML!

The format of many configuration files in Ruby frameworks, such as Rails, is
"YAML Ain't Markup Language" or YAML. YAML defines data structures and object
trees in a very human-readable fashion. The database.yml file that follows is a
YAML file, and you can see that it defines keys and their values using colons (:)
and whitespace (the environment values are indented under the environment
name.) You will see YAML a lot in your Ruby travels.

With the comments removed, the file should look like this:

default: &default
adapter: sqglite3
pool: 5
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

test:
<<: *default
database: db/test.sqlite3

production:
<<: *default
database: db/production.sqglite3

Rails Revealed

This file lists the minimum amount of information required in order to connect to
the database server for each environment (development, test, and production).
With the default setup of SQLite that we installed in Chapter 2, every
environment is allocated its own physically separate database file, which calls
the db subdirectory home. Notice how YAML allows us to define defaults and
pull those into each environment configuration.

The parameter database sets the name of the database that is to be used in each
environment. As the configuration file suggests, Rails can support multiple
databases (and even different types of database engines, such as PostgreSQL for
production and SQLite for development) in parallel. Note that we're talking about
different databases here, not just different tables—each database can host an
arbitrary number of different tables in parallel. Figure 4-1 shows a graphical

representation of this architecture.

Database Server

development test production

Table 1 Table 2 Table 1 Table 2 Table 1 Table 2

4-1. The database architecture we'll use

Yet there's one startling aspect missing from our current configuration: looking at
the db subdirectory, the databases referenced in our configuration file are yet to
exist! Fear not, Rails will magically create them as soon as they're required.

There's nothing we need to do as far as they are concerned.

111

112 Rails: Novice to Ninja

(é\ EXTRA CREDIT: Database Engines

=

There are lots of database engines in the world; for example, SQLite and
PostgreSQL. Rails uses SQLite by default because it's the easiest to set up to get you
going; however, almost no one uses SQLite as their production database. The
reasons for eschewing SQLite in production have to do with the way it stores data
and how it only allows a single writer at a time. Because installing another database
is beyond the scope of this book, however, we will be using it. Your extra credit?

Investigate other database engines, install one, and hook it up to your Rails app.

The Model-View-Controller Architecture

The model-view-controller (MVC) architecture that we first encountered in
Chapter 1 is not unique to Rails. In fact, it predates both Rails and the Ruby
language by many years. Rails, however, really takes the idea of separating an
application's data, user interface, and control logic to a whole new level.

Let's take a look at the concepts behind building an application using the MVC
architecture. Once we have the theory in place, we'll see how it translates to our

Rails code.

MVC in Theory

MVC is a pattern for the architecture of a software application. It separates an

application into the following components:

Models for handling data and business logic
Controllers for handling the user interface and application
Views for handling graphical user interface objects and presentation

This separation results in user requests being processed as follows:

1. The browser (on the client) sends a request for a page to the controller on the
SEerver.

2. The controller retrieves the data it needs from the model in order to respond
to the request.

3. The controller gives the retrieved data to the view.

4. The view is rendered and sent back to the client for the browser to display.

Rails Revealed 113

This process is illustrated in Figure 4-2 below.

Browser
) sends request 4]
gels sent back
Model Controller Wiew
h : athers data L : ;)
- Y |
Business Logic and updates Application Logic rené;rs Presentation Logic

4-2. User requests being processed

Separating a software application into these three distinct components is a good
idea for a number of reasons, including:

improved scalability (the ability for an application to grow)—for example, if
your application begins experiencing performance issues because database
access is slow, you can upgrade the hardware running the database without
other components being affected

ease of maintenance—as the components have a low dependency on each
other, making changes to one (to fix bugs or change functionality) does not
affect another

reusability—a model may be reused by multiple views

If you're struggling to get your head around the concept of MVC, don't worry. For
now, what's important to remember is that your Rails application is separated
into three distinct components. Jump back to the MVC diagram if you need to

refer to it later on.

MVC the Rails Way

Rails promotes the concept that models, views, and controllers should be kept
separate by storing the code for each element as separate files in separate
directories.

114 Rails: Novice to Ninja

This is where the Rails directory structure that we created back in Chapter 2
comes into play. It's time to poke around a bit within that structure. If you take a
look inside the app directory, depicted in Figure 4-3, you'll see some folders
whose names might start to sound familiar.

shannals

— ',

f COMPIErs

rrailies

L]

4-3. The app subdirectory

Rails Revealed

As you can see, each component of the model-view-controller architecture has its
place within the app subdirectory—the models, views, and controllers
subdirectories respectively. (We'll talk about assets in Chapter 7, helpers in
Chapter 6, and mailers later on in this chapter. jobs and channels are beyond
the scope of this book.)

This separation continues within the code that comprises the framework itself.
The classes that form the core functionality of Rails reside within the following
modules:

ActiveRecord ActiveRecord is the module for handling business logic and
database communication. It plays the role of model in our
MVC architecture.’

ActionController ActionController is the component that handles browser
requests and facilitates communication between the model
and the view. Your controllers will inherit from this class. It
forms part of the ActionPack library, a collection of Rails
components that we'll explore in depth in Chapter 5.

ActionView code>ActionView is the component that handles the
presentation of pages returned to the client. Views inherit
from this class, which is also part of the ActionPack library.

Let's take a closer look at each of these components in turn.

The Activerecord Module

ActiveRecord is designed to handle all of an application's tasks that relate to the
database, including:

establishing a connection to the database server
retrieving data from a table

storing new data in the database

1. While it might seem odd that ActiveRecord doesn't have the word “model” in its
name, there is a reason for this: Active Record is also the name of a famous design
pattern—one that this component implements in order to perform its role in the MVC
world. Besides, if it had been called ActionModel, it would have sounded more like an
overpaid Hollywood star than a software component ...

115

116 Rails: Novice to Ninja

ActiveRecord has a few other neat tricks up its sleeve. Let's look at some of them

now.

Database Abstraction

ActiveRecord ships with database adapters to connect to SQLite, MySQL, and
PostgreSQL. A large number of adapters are available for other popular database
server packages, such as Oracle, MongoDB, and Microsoft SQL Server, via
RubyGems.

The ActiveRecord module is based on the concept of database abstraction. As a
refresher from Chapter 1, database abstraction is a way of coding an application
so that it isn't dependent upon any one database. Code that's specific to a
particular database server is hidden safely in ActiveRecord, and invoked as
needed. The result is that a Rails application is not bound to any specific
database server software. Should you need to change the underlying database

server at a later time, no changes to your application code are required.

The Jury's Out on ActiveRecord

As1said, ActiveRecord is an implementation of the Active Record pattern. There
are those that disagree with the approach taken by ActiveRecord, so you'll hear a
lot about that, too. For now, I suggest you learn the way ActiveRecord works, then

form your judgement of the implementation as you learn.

Some examples of code that differ greatly between vendors, and which
ActiveRecord abstracts, include:

the process of logging into the database server
date calculations

handling of Boolean (true/false) data
evolution of your database structure

Before I can show you the magic of ActiveRecord in action, though, a little
housekeeping is necessary.

Rails Revealed

Database Tables

Tables are the containers within a relational database that store our data in a
structured manner, and they're made up of rows and columns. The rows map to
individual objects, and the columns map to the attributes of those objects. The
collection of all the tables in a database, and the relationships between those
tables, is called the database schema. An example of a table is shown in Figure
4-4,

Column Column Column Column
Row — 2 My shiny weblog http://poocs.net/ my-shiny-weblog
Row —p 3 SitePoint Forums http://www.sitepoint.com/forums/ sitepoint-forums

4-4. The app subdirectory

In Rails, the naming of Ruby classes and database tables follows an intuitive
pattern: if we have a table called stories that consists of five rows, this table will
store the data for five Story objects. What's nice about the mapping between
classes and tables is that there's no need to write code to achieve it; the mapping
just happens, because ActiveRecord infers the name of the table from the name
of the class.

Object Relational Mapper

The Active Record pattern is a way of mapping the rows of a database table to the
objects of our object-oriented application. The term for this is "Object Relational
Mapper", or ORM. You'll hear the term "ORM" a lot when discussing
ActiveRecord, so I thought I'd mention it.

Note that the name of our class in Ruby is a singular noun (Story), but the name
of the table is plural (stories). This relationship makes sense if you think about
it: when we refer to a Story object in Ruby, we're dealing with a single story. But
the SQL table holds a multitude of stories, so its name should be plural. While

117

118 Rails: Novice to Ninja

you can override these conventions—as is sometimes necessary when dealing

with legacy databases—it's much easier to adhere to them.

The close relationship between objects and tables extends even further. If our
stories table were to have a 1ink column, as our example in Figure 4-4 does, the
data in this column would automatically be mapped to the link attribute in a
Story object. And adding a new column to a table would cause an attribute of the
same name to become available in all of that table's corresponding objects.

So, let's create some tables to hold the stories we create.

For the time being, we'll create a table using the old-fashioned approach of
entering SQL into the SQLite console. You could type out the following SQL
commands, although typing out SQL is no fun. Instead, I encourage you to
download the following script from the code archive, and copy and paste it
straight into your SQLite console that you invoked via the following command in
the application directory:

$ sglite3 db/development.sqlite3

Once your SQLite console is up, paste in the following:

CREATE TABLE stories (
"id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
"name" varchar(255) DEFAULT NULL,
"link" varchar(255) DEFAULT NULL,
"created at" datetime DEFAULT NULL,
"updated_at" datetime DEFAULT NULL

)

You don't have to worry about remembering these SQL commands to use in your
own projects; instead, take heart in knowing that in Chapter 5 we'll look at
migrations. Migrations are special Ruby classes that we can write to create
database tables for our application without using any SQL at all.

Rails Revealed

\2%\‘ Seek some SQL Smarts

—

Even though Rails abstracts away the SQL required to create tables and database
objects, you'd be doing yourself a favor if you become familiar with SQL and its
syntax. SitePoint has published a book on learning SQL, so check that one out.

Using the Rails Console

Now that we have our stories table in place, let's exit the SQLite console
(simply type .quit) and open up a Rails console. A Rails console is just like the
interactive Ruby console (irb) that we used in Chapter 2, but with one key
difference. In a Rails console, you have access to all the environment variables
and classes that are available to your application while it's running. These are not

available from within a standard irb console.

To enter a Rails console, change to your readit folder, and enter the command
rails console or rails c, as shown in the code that follows. The >> prompt is

ready to accept your commands:

$ cd readit

$ rails console

Loading development environment (Rails 5.0.0)
>>

Saving an Object

To start using ActiveRecord, simply define a class that inherits from the
ActiveRecord: :Base. We touched on the :: operator very briefly in Chapter 3,
where we mentioned that it was a way to invoke class methods on an object. It
can also be used to refer to classes that exist within a module, which is what
we're doing here. Flip back to the section on object-oriented programming (OOP)
in Chapter 3 if you need a refresher on inheritance.

Consider the following code snippet:

119

https://www.sitepoint.com/premium/books/simply-sql

120 Rails: Novice to Ninja

class Story < ActiveRecord: :Base
end

These two lines of code define a seemingly empty class called Story; however,
this class is far from empty, as we'll soon see.

From the Rails console, let's create this Story class and an instance of the class
called story by entering these commands:

>> class Story < ActiveRecord::Base; end
=> nil
>> story = Story.new
=> #<Story id: nil, name: nil, url: nil, created_at:
> nil,
updated_at: nil>
>> story.class
=> Story(id: integer, name: string, link: string,
created at: datetime, updated at: datetime)

As you can see, the syntax for creating a new ActiveRecord object is identical to
the syntax we used to create other Ruby objects in Chapter 3. At this point, we've
created a new Story object; however, this object exists in memory only—we're yet
to store it in our database.

We can confirm that our Story object hasn't been saved by checking the return

value of the new_record? method:

>> story.new_record?
=> true

Since the object is yet to be saved, it will be lost when we exit the Rails console.

To save it to the database, we invoke the object's save method:

Rails Revealed

>> story.save
=> true

Now that we've saved our object (a return value of true indicates that the save
method was successful), our story is no longer a new record. It's even been

assigned a unique ID:

>> story.new_record?
=> false

>> story.id

=> 1

Defining Relationships between Objects

As well as the basic functionality that we've just seen, ActiveRecord makes the
process of defining relationships (or associations) between objects as easy as it
can be. Of course, it's possible with some database servers to define such
relationships entirely within the database schema. In order to put ActiveRecord
through its paces, let's look at the way it defines these relationships within Rails
instead.

Object relationships can be defined in a variety of ways; the main difference
between these relationships is the number of records that are specified in the
relationship. The primary types of database association are:

one-to-one associations
one-to-many associations

many-to-many associations

Let's look at some examples of each of these associations. Feel free to type them
into the Rails console if you like, for the sake of practice. Remember that your
class definitions won't be saved, though—TI'll show you how to define associations
in a file later.

Suppose our application has the following associations:

121

122 Rails: Novice to Ninja

An Author can have one Blog:

class Author < ActiveRecord: :Base
has_one :weblog
end

An Author can submit many Stories:

class Author < ActiveRecord::Base
has_many :stories
end

A Story belongs to an Author:

class Story < ActiveRecord: :Base
belongs_to :author
end

A Story has, and belongs to, many different Topics:

class Story < ActiveRecord: :Base
has_and_belongs_to_many :topics

end

class Topic < ActiveRecord::Base
has_and_belongs_to_many :stories

end

You're no doubt growing tired of typing class definitions into a console, only to
have them disappear the moment you exit the console. For this reason, we won't
go any further with the associations between our objects for now—instead we'll

delve into the Rails ActiveRecord module in more detail in Chapter 5.

Rails Revealed

The Actionpack Libra ry

ActionPack is the name of the library that contains the view and controller parts
of the MVC architecture. Unlike the ActiveRecord module, these modules are
more intuitively named: ActionController and ActionView.

Exploring application logic and presentation logic on the command line makes
little sense; views and controllers are designed to interact with a web browser,
after all! Instead, I'll provide a brief overview of the ActionPack components, and
we'll cover the hands-on stuff in Chapter 5.

Actioncontroller (the Controller)

The controller handles the application logic of your program, acting as glue
between the application's data, the presentation layer, and the web browser. In
this role, a controller performs a number of tasks including:

deciding how to handle a particular request (for example, whether to render a
full page or just one part of it)

retrieving data from the model to be passed to the view

gathering information from a browser request and using it to create or update
data in the model

When we introduced the MVC diagram in Figure 4-2 earlier in this chapter, it
might not have occurred to you that a Rails application can consist of a number of
different controllers. Well, it can! Each controller is responsible for a specific part
of the application.

For our Readit application, we'll create:

one controller for displaying story links, which we'll name
StoriesController

another controller for handling user authentication, called
SessionsController

a controller to display user pages, named UsersController

a controller to display comment pages, named CommentsController
a final controller to handle story voting, called VotesController

123

124 Rails: Novice to Ninja

Every Rails application comes with an ApplicationController (which lives in
app/controllers/application_controller.rb) that inherits from
ActionController: :Base. All our controllers will inherit from the
ApplicationController,? but they'll have different functionality that is
implemented as instance methods. Here's a sample class definition for the
StoriesController class:

class StoriesController < ApplicationController
def index
end

def show
end
end

This simple class definition sets up our StoriesController with two empty
methods: the index method, and the show method. We'll expand upon these
methods in later chapters.

Each controller resides in its own Ruby file (with a . rb extension), which lives
within the app/controllers directory. The StoriesController class that we just
defined, for example, would inhabit the file app/controllers/
stories_controller.rb.

2 There will actually be an intermediate class between this class and the
ActionController: :Base class; however, this doesn't change the fact that
ActionController: :Base is the base class from which every controller inherits. We'll
cover the creation of the StoriesController class in more detail in Chapter 5.

Rails Revealed

0 Naming Conventions for Classes and Files

You'll have noticed by now that the names of classes and files follow different

conventions:

Class names are written in CamelCase (each word beginning with a capital

letter, with no spaces between WOI‘dS).3
Filenames are written in lowercase, with underscores separating each word.

This is an important detail. If this convention is not followed, Rails will have a
hard time locating your files. Luckily, you won't need to name your files manually
very often, if ever, as you'll see when we look at generated code in Chapter 5.

Actionview (the View)

As discussed earlier, one of the principles of MVC is that a view should contain
presentation logic only. This principle holds that the code in a view should only
perform actions that relate to displaying pages in the application; none of the
code in a view should perform any complicated application logic, nor store or
retrieve any data from the database. In Rails, everything that is sent to the web

browser is handled by a view.
Predictably, views are stored in the app/views folder of our application.

A view need not actually contain any Ruby code at all—it may be the case that
one of your views is a simple HTML file; however, it's more likely that your views
will contain a combination of HTML and Ruby code, making the page more
dynamic. The Ruby code is embedded in HTML using embedded Ruby (ERb)
syntax.

ERD allows server-side code to be scattered throughout an HTML file by wrapping

that code in special tags. For example:

3- There are actually two variations of CamelCase: one with an uppercase first letter (also
known as PascalCase), and one with a lowercase first letter. The Ruby convention for class
names requires an uppercase first letter.

125

126 Rails: Novice to Ninja

<%= 'Hello World from Ruby!'
> %>

There are two forms of the ERb tags pair: one that includes the equals sign, and
one without it:

<%= .. %> This tag pair is for regular output. The output of a Ruby
expression between these tags will be displayed in the
browser.

<% . %> This tag pair is for execution. The output of a Ruby

expression between these tags will not be displayed in the
browser.

Here's an example of each ERD tag:

<%= 'This line is displayed in the browser' %>
<% 'This line executes silently, without displaying any
S output' %>

You can place any Ruby code—be it simple or complex—between these tags.

Creating an instance of a view is a little different to that of a model or controller.
While ActionView: :Base (the parent class for all views) is one of the base classes
for views in Rails, the instantiation of a view is handled completely by the
ActionView module. The only file a Rails developer needs to modify is the
template, which is the file that contains the presentation code for the view. As
you might have guessed, these templates are stored in the app/views folder.

As with everything else Rails, a strict convention applies to the naming and
storage of template files:

A template has one-to-one mapping to the action (method) of a controller. The
name of the template file matches the name of the action to which it maps.
The folder that stores the template is named after the controller.

Rails Revealed

The extension of the template file is twofold and varies depending on the
template's type and the actual language in which a template is written. By
default, there are three types of extensions in Rails:

html.erb This is the extension for standard HTML templates that are
sprinkled with ERD tags.
xml.builder This extension is used for templates that output XML (for

example, to generate RSS feeds for your application).
json.builder This extension is used for templates that output JSON,
which is a common data integration for APIs. We'll talk

more about JSON in Chapter 9 on advanced topics.

This convention may sound complicated, but it's actually quite intuitive. For
example, consider the StoriesController class defined earlier. Invoking the
show method for this controller would, by default, attempt to display the
ActionView template that lived in the app/views/stories directory.
Assuming the page was a standard HTML page (containing some ERb code),
the name of this template would be show.html.erb.

Rails also comes with special templates such as layouts and partials. Layouts
are templates that control the global layout of an application, such as
structures that remain unchanged between pages (the primary navigation
menu, for instance). Partials are special subtemplates (the result of a template
being split into separate files, such as a secondary navigation menu or a form)
that can be used multiple times within the application. We'll cover both

layouts and partials in Chapter 7.

Communication between controllers and views occurs via instance variables
that are populated from within the controller's action. Let's expand upon our
sample StoriesController class to illustrate this point (no need to type any
of this out just yet):

class StoriesController < ActionController::Base
def index
@variable = 'Value being passed to a view'
end
end

127

src/docs/html/advanced-topics

128 Rails: Novice to Ninja

As you can see, the instance variable @variable is being assigned a string
value within the controller's action. Through the magic of ActionView, this
variable can now be referenced directly from the corresponding view, as

shown in this code:

<p>The instance variable @variable contains: <%
> @variable %></p>

This approach allows more complex computations to be performed outside
the view—remember, it should only contain presentational logic—and allow

the view to display just the end result of the computation.

Rails also provides access to special containers, such as the params and
session hashes. These contain such information as the current page request
and the user's session. We'll make use of these hashes in the chapters that
follow.

RESTful-style

In Chapter 1, I listed common development principles and best practices that
the Rails team advises you to adopt in your own projects. One that I kept
under my hat until now was RESTful-style development, or resource-centric
development. REST will make much more sense with your fresh knowledge
about models and controllers as the principal building blocks of a Rails

application.

In Theory

REST stands for Representational State Transfer and originates from the
doctoral dissertation of Roy Fielding, a co-founder of the Apache Software
Foundation and one of the authors of the HTTP specification.

REST, according to the theory, is not restricted to the World Wide Web. The
basis of the resource-centric approach is derived from the fact that most of the
time spent using network-based applications can be characterized as a client

or user interacting with distinct resources. For example, in an ecommerce

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Rails Revealed

application, a book and a shopping cart are separate resources with which the
customer interacts.

Every resource in an application needs to be addressed by a unique and
uniform identifier. In the world of web applications, the unique identifier
would be the URL by which a resource can be accessed. In our Readit

application, each submitted link is able to be viewed at a unique URL.

The potential interactions within an application are defined as a set of
operations (or verbs) that can be performed with a given resource. The most
common are create, read, update, and delete, which are often collectively
referred to as "CRUD operations." If you relate this to our Readit application,
you'll see that it covers most of the interactions possible with the Readit links:
a user will create a link; another user will read the link; and the link can also
be updated or deleted.

The client and server have to communicate via the same language (or
protocol) in order to implement the REST architecture style successfully. This
protocol in resource-centric applications is also required to be stateless,
cacheable, and layered.

Here, stateless means that each request for information from the client to the
server needs to be completely independent of prior or future requests. Each
request needs to contain everything necessary for the server to understand the
request and provide an appropriate answer.

Cacheable and layered are architectural attributes that improve the
communication between client and server without affecting the
communication protocol.

REST and the Web

As stated in the previous section, REST as an architecture pattern can be used
in any application domain; however, the Web is probably the domain that
implements REST most often. Since this is a book that deals with building
web applications, we'd better take a look at the implementation details of
RESTful style development for web applications.

129

130 Rails: Novice to Ninja

HTTP (Hypertext Transfer Protocol: the communication protocol used on the
Web), as the astute reader will know, also makes heavy use of verbs in its day-
to-day operations. When your browser requests a web page from any given
web server, it will issue a so-called GET request. If you submit a web page
form, your browser will do so using a POST request (not always, to be honest,
but 99% of the time).

In addition to GET and POST, HTTP defines three additional verbs that are less
commonly used by web browsers. (Many of the browsers in widespread use
actually implement them.) These verbs are PUT, PATCH, and DELETE. If you
compare the list of HTTP verbs with the verbs of CRUD, they line up fairly
nicely, as you can see below.

4.1. HTTP Verbs
versus CRUD Verbs

CRUD HTTP
CREATE POST

READ GET
UPDATE PUT, PATCH
DELETE DELETE

yé\ EXTRA CREDIT: Verbalicious

>

There are even more HTTP verbs that we won't discuss here, such as OPTIONS

and HEAD. Sounds like a good homework assignment, eh?

The language in which client (the browser) and server (the web server) talk to
each other is obviously HTTP. HTTP is, by definition, stateless. This means
that as soon as a browser downloads all the information the server offered as a
reply to the browser's request, the connection is closed and the two might
never ever talk again. Or the browser could send another request just
milliseconds later asking for additional information. Each request contains all
the necessary information for the server to respond appropriately, including
potential cookies, the format, and the language in which the browser expects
the server to reply.

Rails Revealed

HTTP is also layered and cacheable, both of which are attributes the REST
definition expects of the spoken protocol. Routers, proxy servers, and firewalls
are only three (very common) examples of architectural components that
implement layering and caching on top of HTTP.

REST in Rails

REST and Rails not only both start with the letter R, they have a fairly deep
relationship. Rails comes with a generator for resources (see Code Generation

below for a primer on this topic) and provides all sorts of assistance to easily
construct the uniform addresses by which resources can be accessed. In fact,
Rails encourages the RESTful style in much the same way a ski resort
encourages you to use the chairlifts. Sure, you can reach the top of the
mountain without them, but you better bring your own tools and know what

you're doing.

Rails' focus on the MVC architecture (which we'll be getting our hands on
shortly, in Chapter 5) is also a perfect companion for RESTful style
development. Models resemble the resources themselves, while controllers
provide access to the resource and allow interaction based on the interaction

verbs listed earlier.

I've mentioned that some verbs aren't implemented in the majority of browsers
on the market. To support the verbs PUT, PATCH, and DELETE, Rails uses POST
requests with a little tacked-on magic to simulate those verbs transparently for

both the user and the Rails application developer. Nifty, isn't it?

We will gradually start implementing and interacting with resources for our
Readit application over the course of the next chapters, which are more
"hands on", so let's now talk about yet another batch of components that make

up the Rails framework.

Code Generation

Rather than having us create our application code from scratch, Rails gives us
the facility to generate an application's basic structure with considerable ease.

131

132 Rails: Novice to Ninja

In the same way that we created our application's entire directory structure,
we can create new models, controllers, and views using a single command.

To generate code in Rails, we use the rails generate command. Give it a try
now: type rails generate (or rails g) without any command parameters.
Rails displays an overview of the available parameters for the command, and
lists the generators from which we can choose, as shown here:

$ rails generate
Usage: rails generate GENERATOR [args] [options]

General options:

-h, [--help] # Print generator's options and usage
-p, [--pretend] # Run but do not make any changes

-f, [--force] # Overwrite files that already exist
-s, [--skip] # Skip files that already exist

-q, [--quiet] # Suppress status output

Please choose a generator below.

Rails:
assets
controller
generator
helper
integration_test
jbuilder
job
mailer
migration
model
resource
scaffold
scaffold_controller
task
[...content elided...]

There are many core Rails generators, and some gems will add generators, as
well.

Rails Revealed

Rails can generate code of varying complexity. At its simplest, creating a new
controller causes a template file to be placed in the appropriate subdirectory
of your application. The template itself consists of a mainly empty class
definition, similar to the Story and Author classes that we looked at earlier in
this chapter.

Code generation, however, can also be a very powerful tool for automating
complex, repetitive tasks; for instance, you might generate a foundation for
handling user authentication. We'll launch straight into generating code in
Chapter 5, when we begin to generate our models and controllers.

Another example is the generation of a basic web-based interface to a model,
referred to as scaffolding. We'll also look at scaffolding in Chapter 5, as we
make a start on building our views.

The ActionMailer Component

While not strictly part of the Web, email is a big part of our online experience,
and Rails' integrated support for email is worth a mention. Web applications
frequently make use of email for tasks such as sending sign-up confirmations
to new users and resetting a user's password.

ActionMailer is the Rails component that makes it easy to incorporate the
sending and receiving of email into your application. ActionMailer is
structured in a similar way to ActionPack in that it consists of mailers

(instead of controllers) and actions with views.

While the creation of emails and the processing of incoming email are
complex tasks, ActionMailer hides these complexities and handles the tasks
for you. As a result, creating an outgoing email is simply a matter of supplying
the subject, body, and recipients of the email using templates and a little Ruby
code. Likewise, ActionMailer processes incoming email for you, providing
you with a Ruby object that encapsulates the entire message in a way that's

easy to access.

Adding email functionality to a web application is beyond the scope of this
book, but you can read more about ActionMailer in the Ruby on Rails guides.

133

http://wiki.rubyonrails.com/rails/pages/ActionMailer/

134 Rails: Novice to Ninja

Testing and Debugging

As mentioned back in Chapter 1, a unit-testing framework is already built into
Ruby on Rails. It also, rather helpfully, supplies a full stack trace for errors to
assist with debugging.

Testing

A number of different types of testing are supported by Rails, including unit

and integration testing.

Unit Testing

The concept of unit testing isn't new to the world of traditional software
development, and this is certainly the case in web application development.
Having a comprehensive set of unit tests can help you sleep easier in the
knowledge that some simple error won't bring your site down. Additionally,
developing unit tests can help you figure out if your objects are designed well;
however, not everyone sees the value of unit testing. Although performing
unit tests is optional, developers may decide against this option for reasons
ranging from the complexity of the task to time constraints.

We touched on this briefly in Chapter 1, but it's worth stressing again: the fact
that comprehensive unit testing is built into Rails and is dead easy to
implement means there's no longer a question about whether or not you

should test your apps. Just do it!

The rails generate command that we introduced a moment ago will
automatically create testing templates that you can use with your controllers,
views, and models. (Note that Rails just assists you in doing your job; it's not
replacing you—yet!)

The extent to which you want to implement unit testing is up to you. It may
suit your needs to wait until something breaks, then write a test that proves
the problem exists. Once you've fixed the problem and the test no longer fails,

you'll never again receive a bug report for that particular problem.

Rails Revealed 135

If, on the other hand, you'd like to embrace unit testing completely, you can
even write tests to ensure that a specific HTML tag exists at a precise position
within a page's hierarchy.# Yes, automated tests can be that exact.

You've probably heard of test-driven development (TDD) as a way to build an
application. When you build an app using TDD, you actually write the tests

before you write the code. This serves a couple of purposes in that it:

creates tests for your application that can be used for regression so you
know your app works

forces you to think about the design of the classes in your application from
the outside in, which can lead to a better design

The vast majority of Rails developers are TDD fans, but we won't be using

TDD for Readit. However, you should look into it, which means ...

@ EXTRA CREDIT: Test Driving TDD
—

Do some research on TDD and how it works. Learn what "red-green-refactor”
means and how that cadence can help you build an app with a good design and

strong foundation. A great book to investigate is Test Driven Development: By
Example by Kent Beck. TDD is as much art as science, so it requires a

commitment to learning how to do it right.

Integration Testing

Rails' testing capabilities also include integration testing.

Integration testing refers to the testing of several website components in
succession. Typically, the order of components resembles the path that a user
would follow when using the application. You could, for example, construct
an integration test that reconstructs the actions of a user clicking on a link,
registering for a user account, confirming the registration email you send, and

visiting a page that's restricted to registered users.

4. The hierarchy referred to here is the Document Object Model (DOM), a W3C standard
for describing the hierarchy of an (X)HTML page.

http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530
http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530

136 Rails: Novice to Ninja

We'll look at both unit testing and integration testing in more detail as we

progress through the development of our application.
Debugging

When you're fixing problems, the first step is to identify the source of the
problem. Like many languages, Ruby assists this process by providing the
developer (that's you!) with a full stack trace of the code. We mentioned
earlier in Three Environments that a stack trace is a list of all the methods that

were called up to the point at which an exception was raised. The list
includes not only the name of each method but also the classes those methods

belong to, and the names of the files they reside within.

Using the information contained in the stack trace, you can go back to your
code to determine the problem. There are several ways to tackle this,
depending on the nature of the problem itself:

If you have a rough idea of what the problem might be, and are able to
isolate it to your application's model (either a particular class or aspect of
your data), your best bet is to use the Rails console that we looked at earlier
in this chapter. Type rails c to launch the console. Once inside, you can
load the particular model that you're interested in, and poke at it to
reproduce and fix the problem.

If the problem leans more towards being related to the user's browser or
session, you can add a debugger statement around the spot at which the
problem occurs. With this in place, you can reload the browser and step
through your application's code using the ruby-debug tool to explore
variable content or to execute Ruby statements manually.

In the last few years, Rails has added some shiny, new tools to make
debugging even easier. We'll explore them later as problems arise.

We'll be covering all the gory details of debugging in Chapter 11.

Rails Revealed

Summary

In this chapter, we peeled back some of the layers that comprise the Ruby on
Rails framework. By now you should have a good understanding of which
parts of Rails perform particular roles in the context of an MVC architecture.
We also discussed how a request that's made by a web browser is processed by
a Rails application.

We looked at the different environments that Rails provides to address the
different stages in the life cycle of an application, and we configured databases
to support these environments. We also provided Rails with the necessary
details to connect to our database.

We also had our first contact with real code, as we looked at the ActiveRecord
models, ActionController controllers, and ActionView templates for our
Readit application. We explored the REST style of application architecture,
code generation, testing, as well as debugging.

In the next chapter, we'll build on all this knowledge as we use the code-
generation tools to create actual models, controllers, and views for our Readit

application. It's going to be a big one!

137

138 Rails: Novice to Ninja

Chapter

Models, Views, and Controllers

In Chapter 4, we introduced the principles behind the model-view-controller
architectural pattern, and saw how each of the components is implemented
within the Rails framework. Now we'll put this knowledge to good use as we use
Rails' code generation techniques to create these components for our own Readit

application.

Generating a Model

As our application will be used to share links to stories on the Web, a Story is the
fundamental object around which our application will evolve. Here, we'll use the

Rails model generator to create a Story model, then build everything else around

it.

Models, Views, and Controllers

The Model Generator

The model generator is actually driven by a command line script that we
encountered back in Chapter 4: the rails generate command. This makes our

generation of a Story model very simple.

Running the generate Command

rails generate, which can be shortened to rails g, can be called from the
command line and takes several parameters. The first parameter is the type of
component that's to be generated. You can probably guess which value I'm going
to suggest you use for this parameter: we're creating a model, so the parameter to
pass is simply model. Let's take a look at what happens when we pass that to the
script:

$ cd readit
$ rails g model

Figure 5-1 below shows the resulting output.

readit-rails5

5-1. the output from the rails g command

139

140 Rails: Novice to Ninja

We can deduce from this output that using rails g to create a new model for our
application in its simplest form won't actually do very much—some stubs (empty

files) will be created in the appropriate directories, but that's about all.

The various examples in the aforementioned figure show the slightly more
advanced versions. To give our model a jump-start, we'll add everything
necessary to start playing with it right away: we tell rails g the names and types
of attributes the model is going to have. So let's go ahead and create the Story
model with its attributes (and their respective types), then examine each of the

generated files in turn.

From the readit folder, enter the following:

$ rails g model Story name:string link:string

As you can see, the attributes we want our Story model to have are specified
simply as space-separated arguments to the rails g command using the notation
attribute name:attribute type. In this case, we specify that our Story model
receives two attributes of type string (Rails defines the string type as up to 255
alphanumeric characters): one named name, which holds the title of our stories,
and one named link, which holds, as you might have guessed, a link to the story
on the Internet.

The output of this command will list exactly what has been done:

$ rails g model Story name:string link:string
Running via Spring preloader in process 42036
invoke active record
create db/migrate/20160313140034_create_stories.rb

create app/models/story.rb
invoke test_unit

create test/models/story_test.rb
create test/fixtures/stories.yml

Let's take a closer look at what the generate command has done here.

Models, Views, and Controllers

Understanding the Output

generate has created some files (indicated by the word create, followed by the
name of the file that was created) and a folder. Let's look at each of the files:

app/models/story.rb

This file contains the class definition for the Story model. Locate the file in the
app/models folder and examine its contents in your text editor—the class
definition is identical to the one that we typed out in Saving an Object in Chapter
4:

class Story < ApplicationRecord
end

What happened to the attributes we specified? They're nowhere to be found!
Don't panic—Rails has used the information we provided to create the database
table definition. It turns out Rails doesn't require you to declare each attribute of a
model explicitly in the model's class definition. Rails determines a model's
attribute by reading the columns of the database table to which the model is
mapped. This technique is called introspection, which we'll meet again later on.

The ApplicationRecord class can be found in the app/models/
application_record.rb file. ApplicationRecord is an "abstract" class, which
means, in this case, that ApplicationRecord is not to be mapped to a database
table. The ApplicationRecord class allows us to write methods and include code
that will be inherited by all of our models.

If the magic behind these attributes makes you uncomfortable, Rails 5 has added
a new Attributes API that provides the ability to specify attributes and their
types. In this case, if you wanted add an attribute called is_published to Story
and ensure the value in that attribute is a boolean (true or false), then you could

do:

class Story < ApplicationRecord
attribute :is_published, :boolean

141

142 Rails: Novice to Ninja

end

This will handle type conversion, making everything a string that is assigned to
name:

s = Story.new(name: 1023, is_published: "yes")
s.1is_published
=> true

Above, the string value of yes was converted to the boolean true. So, "truthy"
values like yes, 1, and t all are converted to true. If you like specifying types,
this is good stuff.

Better yet, if you had custom types, like a Money type, you could create a class to
handle the type conversion of that type. This, however, is beyond our scope
today, which means:

@ EXTRA CREDIT: The Attributes API
—

Check out the documentation and code behind the new Attributes API.

Okay, being able to generate these two lines of code is far from groundbreaking.
But stay with me here!

test/models/story_test.rb

This file is much more exciting: it's an automatically generated unit test for our
model. We'll look at it in detail in Chapter 6, but, briefly, building up the contents
of this file allows us to ensure that all of the code in our model is covered by a
unit test. As we mentioned back in Chapter 1, once we have all our unit tests in
place, we can automate the process of checking that our code behaves as
intended.

https://github.com/rails/rails/blob/master/activerecord/lib/active_record/attributes.rb

Models, Views, and Controllers

test/fixtures/stories.yml

To help with our unit test, a file called stories.yml is created. This file is
referred to as a fixture. Fixtures are files that contain sample data for uni