
Rails: Novice to Ninja
by Glenn Goodrich and Patrick Lenz

Copyright © 2016 SitePoint Pty. Ltd.

Product Manager: Simon Mackie

English Editor: Kelly Steele

Technical Editor: Enrique Gonzalez

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors will be held liable for any damages to be caused either directly or indirectly by

the instructions contained in this book, or by the software or hardware products described

herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the

names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9943470-0-8 (print)

ISBN 978-0-9943470-6-0 (ebook)

Printed and bound in the United States of America

i

About Glenn Goodrich
Glenn Goodrich started programming when he was 12 and hasn’t really stopped

since. He has worked for large enterprises, startups, and everything in between.

Glenn found Ruby in 2006 or so and (like so many other nerds) fell immediately

in love. He can be found on the SitePoint Ruby channel, editing and writing and

such. Glenn enjoys writing almost as much as coding, and he sincerely hopes this

book helps at least one new Rubyist on their path.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content

for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find a stack of information on

JavaScript, PHP, Ruby, mobile development, design, and more.

ii Rails: Novice to Ninja

http://www.sitepoint.com/

I would like to dedicate this book my wife, who saw past the nerd and helps me

see the life beyond the code every day.

iii

Table of Contents

Preface ... xxi

Who Should Read This Book ..xxi

Conventions Used ...xxii

Tips, Notes, and Warnings .. xxiii

Supplementary Materials..xxiv

Chapter 1 Introducing Ruby on Rails1

History...4

Development Principles ...7

Optimize for Programmer Happiness ...7

Convention Over Configuration ..8

The Menu is Omakase ...9

No One Paradigm ...10

Exalt Beautiful Code ... 11

Value-integrated Systems ..12

Progress Over Stability..12

Push Up a Big Tent ..13

Building the Example Web Application ..13

iv Rails: Novice to Ninja

Features of the Example Application ...14

Summary...15

Chapter 2 Getting Started17

What does all this cost? ...19

Installing on Windows..19

Install Ruby ...20

Installing on Mac OS X...29

Installing Homebrew ...31

Installing on Linux (Ubuntu) ...36

Additional Installation Options ..37

And Now the Fun Begins ...39

One Directory Structure to Rule Them All39

Creating the Standard Directory Structure.................................40

Starting Our Application ...41

Version Control and Git ...42

Git Basics ...43

Which Text Editor?..46

Windows and Cross-platform Text Editors47

Linux and Mac OS X Editors...48

IDEs...51

Table of Contents v

Summary...51

Chapter 3 Introducing Ruby53

Ruby is a Scripting Language ...54

Compiled Languages ...54

Scripting Languages ..55

The Great Performance Debate ...55

Choose What Works ..56

Ruby is an Object Oriented Language ...56

Reading and Writing Ruby Code ..60

The Interactive Ruby Shell (irb) ..60

Interacting with Ruby Objects..62

Literal Objects...62

Variables and Constants ...63

Basic Punctuation in Ruby ..65

Dot Notation...66

Chaining Statements Together..66

Use of Parentheses...67

Method Notation ...68

Object-oriented Programming in Ruby...69

Classes and Objects ...70

vi Rails: Novice to Ninja

Object-level Functionality ...71

Instance Variables ..71

Instance Methods ..71

Accessor Methods ..73

Class-level Functionality..75

Inheritance..78

Modules and Composition ...79

Return Values ...81

Standard Output ...82

Ruby Core Classes..84

Strings..84

Numerics ...87

Symbols ...88

Arrays ...89

Hashes..91

nil Values ..93

Running Ruby Files ...93

Control Structures ..94

Conditionals..95

Loops ..98

Blocks, Procs, and Lambdas. Oh my!.. 100

Table of Contents vii

Summary.. 103

Chapter 4 Rails Revealed......................................105

Three Environments ... 105

Application Dependencies ...107

Bundler..107

Database Configuration .. 109

The Database Configuration File ...110

The Model-View-Controller Architecture ...112

MVC in Theory ..112

MVC the Rails Way ..113

The ActiveRecord Module...115

The ActionPack Library .. 123

ActionController (the Controller) 123

ActionView (the View) ... 125

RESTful-style ... 128

In Theory .. 128

REST and the Web... 129

REST in Rails... 131

Code Generation .. 131

The ActionMailer Component.. 133

viii Rails: Novice to Ninja

Testing and Debugging ... 134

Testing... 134

Debugging.. 136

Summary.. 137

Chapter 5 Models, Views, and Controllers..138

Generating a Model ... 138

The Model Generator ... 139

Modifying the Schema Using Migrations .. 145

Creating a Skeleton Migration File.. 145

Creating the stories Table .. 147

Running the Migration .. 149

Managing Data Using the Rails Console.. 151

Creating Records ... 151

Retrieving Records.. 154

Updating Records ... 157

Deleting Records ... 158

Generating a Controller .. 159

Running the generate Command... 159

Understanding the Output.. 161

Starting Our Application … Again ... 163

Table of Contents ix

Creating a View .. 165

Generating Views with Scaffolding ... 165

Creating Static Pages ... 167

Creating Dynamic Pages .. 168

Passing Data Back and Forth .. 169

Pulling in a Model .. 170

Summary.. 172

Chapter 6 Helpers, Forms, and Layouts174

Calling upon Our Trusty Helpers.. 175

Enabling Story Submission ... 175

Creating a Form .. 176

Saving Data to the Database .. 188

Redirecting with URL helpers ... 189

Creating a Layout... 192

Establishing Structure.. 193

Adding Some Style ... 195

Enabling User Feedback with the Flash ... 197

Adding to the Flash .. 198

Retrieving Data from the Flash .. 199

Applying Validations .. 201

x Rails: Novice to Ninja

Tweaking the Redirection Logic ... 202

Improving the User Experience .. 203

Testing the Form .. 206

Testing the Model .. 208

Analyzing the Skeleton File .. 208

Using Assertions.. 209

Writing a Unit Test ... 209

Running Model Tests .. 212

Testing the Controller.. 214

Analyzing the Skeleton File .. 215

Writing a Controller Test ... 215

Running a Controller Test ... 217

Writing More Controller Tests .. 217

Running the Complete Test Suite .. 221

Visiting the Logs ... 222

Summary.. 223

Chapter 7 Ajax and Turbolinks225

Generating a Vote Model.. 226

Creating the Model .. 226

Examining the Vote Migration ... 226

Table of Contents xi

Applying the Migration ... 228

Introducing Relationships... 228

Introducing the has_many Clause.. 229

Introducing the belongs_to Clause....................................... 233

How's our schema looking? .. 235

Making a Home for Each Story ... 236

Determining Where a Story Lives .. 236

Displaying Our Stories ... 237

Improving the Story Randomizer... 238

Implementing Clean URLs ... 240

Converting from Strings.. 241

Investigating Link Generation .. 242

Ajax, Pjax, and Turbolinks ... 244

Introducing Ajax ... 244

Making Stories.. 247

Controlling Where the Votes Go .. 247

The Asset Pipeline .. 250

Why do we need an asset pipeline? .. 252

Multiple Source Files .. 253

Asset Preprocessors... 257

Asset Compression and Minification ... 260

xii Rails: Novice to Ninja

Asset Digests .. 261

Get Out the Vote .. 261

Styling the Scoreboard .. 263

Response Formats ... 266

Introducing Partials ... 268

Adding Voting History ... 269

Creating the Partial .. 270

Styling the Voting History... 271

Tweaking the Voting History .. 274

Testing the Voting Functionality ... 276

Testing the Model ... 276

Preparing the Fixtures.. 277

Testing a Story's Relationship to a Vote............................... 277

Testing the Voting History Order ... 279

Running the Unit Tests .. 280

Testing the Controller.. 281

Testing Page Rendering ... 281

Testing Vote Storage .. 283

Testing Ajax Voting... 284

Testing Regular HTTP Voting... 285

Running the Full Test Suite .. 286

Table of Contents xiii

Summary.. 286

Chapter 8 Protective Measures288

Introducing Sessions and Cookies ... 288

Identifying Individual Users .. 289

What's a cookie? ... 289

What's a session? .. 291

Sessions in Rails .. 292

Modeling the User ... 293

Generating a User Model .. 293

Has Secure Password .. 295

Adding Relationships for the User Class 297

Creating a User.. 298

Developing Login Functionality... 299

Creating the Controller.. 299

Creating the View ... 301

Adding Functionality to the Controller 303

Introducing Filters.. 307

Before Filters.. 307

After Filter.. 308

Around Filters .. 308

xiv Rails: Novice to Ninja

Managing User Logins... 310

Retrieving the Current User .. 310

Displaying the Name of the Current User 312

Allowing Users to Log Out .. 315

Adding a Navigation Menu .. 317

Restricting the Application .. 319

Protecting the Form ... 319

Restricting Access to Story Submission 323

Associating Stories with Users.. 325

One Last Thing: Associate Votes to Users 328

Testing User Authentication .. 329

Testing the Model ... 329

Testing the Controllers... 336

Fixing VotesController Tests .. 347

Running the Full Test Suite... 350

Summary.. 351

Chapter 9 Advanced Topics353

Promoting Popular Stories ... 353

Using a Counter Cache .. 354

Introducing the Counter Cache ... 354

Table of Contents xv

Making Room for the Cache... 355

Applying the Migration ... 357

Implementing the Front Page .. 358

Modifying the Controller .. 358

Modifying the View .. 359

Creating the Partial .. 361

Styling the Front Page ... 361

Setting the Default Page ... 362

Implementing the Voting Bin .. 363

Adding Custom Actions to RESTful Routes ... 367

Abstracting Presentation Logic ... 368

Avoiding Presentation Logic Spaghetti 369

Introducing ActionView Helpers .. 369

Writing an ActionView Helper.. 370

Expanding the Navigation Menu ... 372

Requiring a Login to Vote... 373

Auto-voting .. 376

Introducing Model Callback.. 377

Adding a Callback ... 378

Adding a Description to Stories .. 379

Adding a Model Attribute ... 379

xvi Rails: Novice to Ninja

Expanding the Submission Form.. 381

White-listing the New Attribute.. 383

Adding User Pages ... 384

Introducing the Join Model Relationship................................. 384

Introducing the has_many :through Association............. 385

Adding Another Controller ... 387

Creating the View ... 388

Testing the New Functionality... 391

Testing the Model ... 391

Testing the StoriesController... 397

Testing the VotesController.. 402

Testing the UsersController.. 403

Running the Complete Test Suite .. 403

Summary.. 404

Chapter 10 Rails Plugins406

What is a plugin? ... 406

Adding Tagging to Readit... 410

Introducing the acts-as-taggable-on Gem 410

Installing the acts-as-taggable-on Gem 412

Creating a Migration for the Plugin.. 413

Table of Contents xvii

Understanding Polymorphic Associations 416

Making a Model Taggable ... 417

Enabling Tag Submission .. 421

Modifying the View .. 421

Modifying the Controller .. 422

Enabling Tag Display.. 423

Modifying the View .. 423

Updating the story Partial ... 424

Assigning Our First Tags .. 424

Viewing Stories ... 426

Creating the Controller.. 426

Filling in the View Template ... 428

Displaying Tagged Stories ... 429

Creating a tag Partial ... 429

Updating the Stylesheet .. 430

Testing the Tagging Functionality... 432

Testing the Model ... 432

Testing the Controller .. 434

Running the Test Suite ... Again! ... 437

Summary.. 438

xviii Rails: Novice to Ninja

Chapter 11 Debugging, Testing, and

Benchmarking ...439

Debugging Your Application.. 440

Debugging within Templates .. 440

Web Console .. 447

Debugging A Slightly Trickier Bug... 452

Using the Rails Logging Tool.. 463

Overcoming Problems in Debugging .. 466

Testing Your Application Using Integration Tests 466

Using Breakpoints in a Test ... 470

Revisiting the Rails Console .. 473

A Brief Introduction to Pry ... 476

Benchmarking Your Application.. 481

Taking Benchmarks from Log Files .. 482

Manual Benchmarking... 486

Summary.. 487

Chapter 12 Deployment and Production

Use ...489

The Implications of “Production” .. 489

Table of Contents xix

Choosing a Production Environment.. 491

Web Servers... 492

Apache .. 493

Nginx... 493

Application Servers .. 493

Rack... 494

Terminology ... 495

Application Servers for Rails... 497

Proxying Requests.. 498

Software as a Service .. 499

Heroku .. 499

Alternatives for Session Storage ... 505

The ActiveRecord Store Session Container..................... 505

Further Reading.. 508

Caching... 509

ActionCable.. 509

Rails API.. 510

Performance ...511

Summary.. 512

xx Rails: Novice to Ninja

Preface

When Simon Mackie approached me to update this book from Rails 2 to Rails 5, I

didn’t hesitate. For one, he said “Simon says ‘UPDATE THIS BOOK’!” (groan).

For two, I love writing and I love Rails, so this opportunity was a no-brainer.

Throughout the process, I have remembered why Rails is such a paragon of

productivity, and I've also discovered much I didn’t know about the framework. I

honestly believe there is no better way to be productive writing a web application

than to write about the technology.

I’d be remiss if I didn’t point out the truly excellent work done by Patrick Lenz on

the first two editions of this book. Patrick has a gift for explaining technical

things simply, something I leveraged over and over again in this update. Patrick’s

work shines through, into this version, and I learned much from both his content

and his style.

Finally, I have always enjoyed writing. I have written many blog posts in my

technical life, always with two goals: Firstly, to solidify my own understanding of

the topic, and secondly, to share my knowledge with a community. The thought

of someone getting better as a result of reading something I’ve penned is

exhilarating. I sincerely hope that this book launches you on a career as

rewarding as mine has been, and that you find the same joy in sharing your

knowledge.

Who Should Read This Book

This book is for web developers who want to learn Ruby on Rails. You don’t need

any prior experience with Ruby, although some experience with another

programming language will probably be useful.

Preface xxi

Conventions Used

You’ll notice that we’ve used certain typographic and layout styles throughout

this book to signify different types of information. Look out for the following

items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park. The

➥ birds were singing and the kids were all back at
➥ school.</p>

If the code is to be found in the book’s code archive, the name of the file will

appear at the top of the program listing, like this:

0-1. example.css

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

0-2. example.css (excerpt)(excerpt)

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

xxii Rails: Novice to Ninja

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {

⋮
new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real

➥ -user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Preface xxiii

Supplementary Materials

https://github.com/spbooks/rails3v5 has the downloadable code archive and

example files for the book. Please note that each chapter has its own branch in

the repository. If you're unfamiliar with Git and GitHub, you can simply

download the code for each chapter as a Zip file. Go to https://github.com/

spbooks/rails3v5/branches/all, select the branch that corresponds with the

chapter that you're reading, and the click Clone or download > Download ZIP.

https://www.sitepoint.com/community/ are SitePoint’s forums, for help on

any tricky web problems.

books@sitepoint.com is our email address, should you need to contact us to

report a problem, or for any other reason.

EXTRA CREDIT

EXTRA CREDIT notes contain additional homework exercises that you can do

yourself to further your knowledge of Ruby on Rails. While you don't have to

complete the extra credit exercises in order to follow the book, doing so will greatly

enhance your understanding of Ruby, Rails, and the Rails ecosystem, so they are

recommended.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

xxiv Rails: Novice to Ninja

https://github.com/spbooks/rails3v5
https://github.com/spbooks/rails3v5/branches/all
https://github.com/spbooks/rails3v5/branches/all
https://www.sitepoint.com/community/

1Chapter

Introducing Ruby on Rails

Since Ruby on Rails was first released, it has become a household name (well, in

developers' households, anyway). Hundreds of thousands of developers the

world over have adopted—and adored—this framework. I hope that, through the

course of this book, you'll come to understand the reasons why. Before we jump

into writing any code, let's take a stroll down memory lane and explore a little of

the history of Ruby on Rails.

First, what exactly is Ruby on Rails?

The short-and fairly technical—answer is that Ruby on Rails (often abbreviated to

“Rails”) is a full-stack web application framework written in Ruby. That is a

distinction worth emphasizing. Ruby is a language and Rails is a framework. Say

that last sentence out loud a couple of times. Rails is often mentioned as if it is a

Introducing Ruby on Rails 1

language, so understanding that Ruby is the language and Rails is the framework

is your first step on this journey of learning.

However, depending on your previous programming experience (and your

mastery of tech-jargon, that answer might make little sense to you. Besides, the

Ruby on Rails movement—the development principles it represents—really

needs to be viewed in the context of web development in general if it is to be

fully appreciated.

So, let's define a few of the terms in the definition above while taking in a brief

history lesson along the way. Then we'll tackle the question of why learning Rails

is one of the smartest moves you can make for your career as a web developer.

A web application is a software application that's accessed using a web browser

over a network. In most cases, that network is the Internet, but it could also be a

corporate intranet. The number of web applications being created has increased

exponentially since Rails came into being, due mostly to the ubiquity of

broadband internet access and the proliferation of mobile devices. We can only

assume that you're interested in writing such a web application, given that you've

bought this book!

A framework can be viewed as the foundation of a web application. It takes care

of many of the low-level details that can become repetitive and boring to code,

allowing the developer to focus on building the application's functionality.

A framework gives the developer classes that implement common functions used

in every web application, including:

database abstraction (ensuring that queries work regardless of whether the

database is MySQL, PostgreSQL, MongoDB, SQLite, or [insert your favorite

database here])

templating (reusing presentational code throughout the application)

management of user sessions

generation of clean, search-engine-friendly URLs

2 Rails: Novice to Ninja

A framework also defines the architecture of an application; that is, how the

application is physically laid out. This facility can be useful for those of us who

fret over which file is best stored in which folder.

In a sense, a framework is an application that has been started for you, and a

well-designed application at that. The structure—plus the code that takes care of

the boring stuff—has already been written, and it's up to you to finish it off. You

are truly standing on the shoulders of giants when you start building a Rails app.

Full-stack refers to the extent of the functionality that the Rails framework

provides. You see, there are frameworks and then there are frameworks. Some

provide great functionality on the server, but leave you high and dry on the client

side; others are terrific at enhancing the user experience in the browser, but don't

extend to the business logic and database interactions on the server. Rails, by the

way, gives you both.

If you've ever used a framework before, chances are that you're familiar with the

model-view-controller (MVC) architecture (if not, don't worry—we'll discuss it in

Chapter 4. Rails covers everything in the MVC paradigm, from database

abstraction to template rendering, and everything in between.

Ruby is an open-source object-oriented scripting language invented by Yukihiro

Matsumoto (affectionately known as "Matz") in the early 1990s. We'll be learning

both Ruby and Rails as we progress through the book (remember, Rails is written

in Ruby).

Ruby makes programming flexible and intuitive, and with it we can write code

that's readable by both humans and machines. Matz designed Ruby to make

programmers happy, as you'll see as we move through this book.

Classes?

The reference to classes above can be taken to mean "collections of code." I'll cover

more about classes later, so hang in there.

Introducing Ruby on Rails 3

History

Ruby on Rails originated as an application named Basecamp, a hosted project-

management solution created by Danish web developer David Heinemeier

Hansson (affectionately known as "DHH" to Rubyists) for former design shop

37signals. Due largely to Basecamp's success, 37signals has since moved into

application development and production, and Heinemeier Hansson has become a

partner in the company.

When I say “originated,” I mean that Rails wasn't initially created as a stand-

alone framework. It was extracted from an application already in use, so that it

could be used to build other applications that 37signals had in mind. Heinemeier

Hansson saw the potential to make his job (and life) easier by extracting common

functionality such as database abstraction and templating into what later became

the first public release of Ruby on Rails.

What does Ruby syntax look like?

If you're experienced in programming with other languages, such as PHP or Java,

you can probably make sense of the following Ruby code, although some parts of it

may look new:

> "What does Ruby syntax look like?".reverse

=> "?ekil kool xatnys ybuR seod tahW"

> 8 * 5

=> 40

> 3.times { puts "cheer!" }

=> cheer!

=> cheer!

=> cheer!

> %w(one two three).each { |word| puts word.upcase }

=> ONE

=> TWO

=> THREE

Don't worry too much about the details of programming in Ruby for now—we'll

cover all of the Ruby basics in Chapter 3.

4 Rails: Novice to Ninja

http://www.basecamphq.com/
http://www.37signals.com/

He decided to release Rails as open-source software to remake the way web

applications are built. The first beta version of Rails was initially released in July

2004, with the 1.0 and 2.0 releases following in December, 2005 and 2007

respectively. A little over 2 years later, version 3.0 of Rails was released and the

number of contributors had ballooned to approximately 1,600. Rails 4 came out

in 2013, with minor releases continuing through to the end of 2014 with 4.2.

Rails 5.0, which is the focus of this book, was released in mid-2016.

That the Rails framework was extracted from Basecamp (and is still the

foundation of Basecamp today) is considered by the lively Rails community to

represent one of the framework's inherent strengths: it was already solving real

problems when it was released. Rails wasn't built in isolation, so its success

wasn't a result of developers taking the framework, building applications with it,

and then finding—and resolving—its shortcomings. Rails had already proven

itself to be a useful, coherent, and comprehensive framework.

While Heinemeier Hansson pioneered Rails and still leads the Rails-related

programming efforts, the framework has benefited greatly from being released as

open-source software. Over time, many developers working with Rails have

submitted thousands of extensions and bug fixes to the Rails development

repository.1 The repository is closely guarded by the Rails core team, which

consists of about twelve highly skilled professional developers seen in figure 1-1,

chosen from the crowd of contributors, and led by Heinemeier Hansson.

1. The Rails repository, located at https://github.com/rails/rails/, is used to track bugs and

enhancement requests.

Introducing Ruby on Rails 5

https://github.com/rails/rails/

1-3. The Rails Core Team

There is also a "committer team" made up of eight or so individuals that can do

everything except set policy and make final releases. On top of that, there is the

community at large, the source of many patches and plugins. At present, Rails

has accepted contributions from over 4,600 programmers!

Finally, a framework as mature as Rails should have some good documentation,

and it does. The Rails Guides are an excellent resource on understanding the

6 Rails: Novice to Ninja

http://guides.rubyonrails.org/

many pieces of Rails. Bookmark these guides, as you'll likely return to them

throughout your journey as a Rails programmer.

So, now you know what Rails is, how it came about, and who supports it. But

why would you invest your precious time in learning how to use it?

I'm glad you asked.

Development Principles

Rails supports several software principles (a doctrine, if you will) that make it

stand out from other web development frameworks. Those principles are:

optimize for programmer happiness

convention over configuration

the menu is omakase

no one paradigm

exalt beautiful code

value-integrated systems

progress over stability

push up a big tent

This doctrine has grown and changed as Rails has grown and changed in the last

decade or so. The principles are not without controversy, and understanding

them will help you understand how Rails became what it is.

Optimize for Programmer Happiness

I've mentioned that Matz designed Ruby to make programmers happy, and this

tenet of the Rails doctrine is pulled directly from that sentiment. Just as Ruby

replaces complexity with easy language and offers many ways to achieve a

programmer's goal, so does Rails aim to make web application complexity more

mundane. You'll see this immediately when we start coding the example

application in this book. Using just two simple commands in the terminal, Rails

is serving up a functional web application. The amount of complexity that is

abstracted away from the programmer is quite amazing, so that we can focus on

building the desired application and not the niggling details of web development.

Introducing Ruby on Rails 7

http://rubyonrails.org/doctrine/

Still, if hiding complexity was all Rails did, programmer happiness would

quickly cease. Not all web applications have the same requirements, which

means Rails developers often have to get behind the curtain and tweak the magic

of Rails. Do you want to change the database you're using? No problem. What

about how user sessions are stored? Go for it. Rails hides the complex items until

you need to alter them, then it makes changing complexity sensible. This aspect

of Rails probably speeds up development of usable applications faster than

anything else.

I should also mention that creating a Rails application is as good an experience as

you can hope for in your development life. There is a Rails console that opens the

guts of your web application, allowing you to poke around and find where the

bugs are or test out code. Testing is built into Rails better than any other web

development framework in the world, hands down. When I develop web apps in

other languages or with other frameworks, I find myself pining for the tools and

environment that Rails brings to the table.

Convention Over Configuration

The concept of convention over configuration refers to how Rails assumes a

number of defaults for the way one should build a typical web application.

Many other frameworks require you to step through a lengthy configuration

process before you can make a start with even the simplest of applications. The

configuration information is usually stored in a handful of XML or JSON files,

which can become quite large and cumbersome to maintain. In many cases,

you're forced to repeat the entire configuration process whenever you start a new

project.

While Rails was originally extracted from an existing application, extensive

architectural work went into the framework later on. DHH purposely created

Rails in such a way that there's no need for excessive configuration, as long as

some standard conventions are followed. The result is that no lengthy

configuration files are required. In fact, if you have no need to change these

defaults, Rails really only requires a single (and short) configuration file in order

to run your application.

8 Rails: Novice to Ninja

Other conventions that are prescribed by Rails include the naming of database-

related items and the process by which controllers find their corresponding

models and views.

Rails is also considered to be opinionated software, a term coined to refer to

software that isn't everything to everyone. DHH and his core team ruthlessly

reject contributions to the framework that fail to comply with their vision of

where Rails is headed, or aren't sufficiently applicable to be useful for the

majority of Rails developers. This is a good way to fight a phenomenon known

among software developers as bloat: the tendency for a software package to

implement extraneous features just for the sake of including them.

The Menu is Omakase

This principle is similar to the goal of optimizing for programmer happiness.

"Omakase" comes from the restaurant industry–sushi restaurants, to be more

specific–and is the concept of letting the chef pick your meal based on his

sophisticated palette. If you are new to ordering sushi, for example, using an

omakase method can help you figure out what is good. As such, the Rails team

will look at the practices and tools that most developers are using and evaluate

whether they deserve inclusion in the core framework. This has resulted in tools

such as CoffeeScript (which we'll discuss in Chapter 7) and Spring being

included in the framework.

MVC

The model-view-controller (MVC) architecture is a software architecture (also

referred to as a design pattern) that separates an application's data model (model),

user interface (view), and control logic (controller) into three distinct components.

Here's an example: when your browser requests a web page from an MVC-

architected application, it's talking exclusively to the controller. The controller

gathers the required data from one or more models and renders the response to your

request through a view. This separation of components means that any change that's

made to one component has minimal effect on the other two.

We'll talk at length about the MVC architecture and the benefits it yields to Rails

applications in Chapter 4.

Introducing Ruby on Rails 9

It's only fair to point out that this is probably the most controversial part of the

Rails doctrine. While those new to Rails may like being served a stack of tools to

use, experienced developers are different beasts altogether. Often, the selected

tool is unpopular with a part of the community that is highly vocal about it. The

good news is that these tools can be removed or swapped out for other tools

without much ceremony.

No One Paradigm

Rails has been growing and changing for almost a decade. In that decade, the

languages, tools, approaches, and design patterns have exploded. We know much

more as an industry today than we did in 2007. As such, the design concepts and

paradigms behind Rails that have been altered or refined are based on new

understanding. This kind of change and continued learning will never stop, so

Rails has to account for it.

When DHH describes Rails as a quilt, he means it's made up of several paradigms

and ideas, instead of a single idea that permeates the framework. You'll hear

about design patterns, such as Active Record, that is foundational to Rails

models, but can be implemented differently or even completely removed (we’ll

discuss Active Record in Chapter 4). Rails is not pedantic in how it uses design

patterns, always erring on the side of being practical. As you dive deeper into

Rails, you'll be presented with more patterns and languages. Do you need to

refine an SQL query? You can do that by writing the SQL yourself or leveraging

the tools of Arel and Active Record. Does your client-side JavaScript need to

perform some fancier stuff in the browser? You can add front-end libraries or

write the code yourself. Do you think the Datamapper pattern is better than

Active Record? Okay, swap it out.

The point is, not only is Rails a quilt, each Rails application is a different quilt.

The paradigms presented are yours to use, or not. The downside is that you need

to know a lot of design ideas and programming concepts to change these

paradigms. But, don't worry, Rails will take you a long long way before you need

to know about this stuff. Rails gets you excited about doing things fast, then it

revs you up by supporting your education and growth as a programmer.

10 Rails: Novice to Ninja

Exalt Beautiful Code

In my opinion, this is another concept that Rails has fully adopted from Ruby and

its community. Ruby was designed for humans to read, not computers. As such, it

is quite possible to write "beautiful" code. As with any beauty, it is in the eye of

the beholder, but I'll bet we can agree that this code is beautiful:

class Person

belongs_to :family

has_many :pets

validates :name, presence: true

end

Without telling you anything about the application this code came from, you can

still surmise much about what is happening. Ruby and Rails use the excellent

design of Ruby's core libraries along with some Domain Specific Languages

(DSLs) to allow you, the happy developer, to write code that is expressive and

concise. And that to me is beautiful.

One of the age-old adages that fits into this principle is called Don't Repeat

Yourself, also known as the DRY principle. Being DRY in your code means you

don't copy/paste the same code all over your codebase. Instead, you extract

common code and reuse it where needed. This leads to a more maintainable and

beautiful code base. I'll reference the DRY principle a few times throughout the

book, and you'll see it in the wild.

So what? You might be asking. Well, when you are spending hours in a codebase

that is poorly written or hard to read, it's exhausting. Your poor brain has to

constantly translate the code and its abstractions. If the code is not expressive,

this is a significant mental task. If the code lacks conciseness, it's tiring to read.

Beautiful code is easier to share with your peers, making collaboration enjoyable

and purposeful. As with anything in life, beauty in code is noble and meaningful.

Introducing Ruby on Rails 11

https://en.wikipedia.org/wiki/Domain-specific_language

Value-integrated Systems

This particular principle is another of Rails' more controversial tenets. If you've

read anything about web development recently, there's a lot of talk about splitting

applications into many applications, creating microservices. These split-up

applications are a reaction to large web apps, called monoliths. DHH and the

Rails team believe in the value of keeping the application in a single codebase.

They certainly believe that the app should start that way, rather than designing a

suite of applications and services up front. There are benefits to both approaches,

and what you do depends more on a particular use case than a Rails design

principle.

Having said that, Rails is designed to build a complete and full-stack web

application. In this book, that is what we will do.

Progress Over Stability

When talking about the history of Rails, I mentioned that the 3.0 release was a

doozy. It took two years and had many, many breaking changes. This meant that

applications on Rails 2.0 had a painful upgrade path. For a couple of years, it was

impossible to swing a dead cat without hitting someone who had abandoned

Rails rather than continue to try and upgrade. The core team felt that the changes

made from 2.0 to 3.0 were necessary to avoid burdening Rails with the heavy

baggage of the older framework. Rails 2.0 was cracking under its own weight. We

had learned much about better design and new approaches to the problems Rails

solves, and the changes had to be made. Looking back, it's hard to argue with the

decisions made. Rails is better than ever, largely due to the decisions made for

that 3.0 release.

If you stick around and become a Rails developer (and I sincerely hope you do),

you'll hear about additions to Rails that rile parts—or even most—of the

community. Tools such as Spring, Turbolinks, CoffeeScript, and Action Cable

were all brought into the fold in the name of progress. Many breaking changes

have been made to shave off the cruft of "old ways," ensuring that the future of

Rails doesn't suffer as a result of its past.

12 Rails: Novice to Ninja

Often these additions are the right thing to do, but they need the community to

chime in before they are fully cooked. Hence, they are introduced to the

framework as the approach or tool is honed and made better by the community

and team. This is in the name of progress over stability, and it's likely a reason

why Rails is as active as ever a decade after its birth.

Push Up a Big Tent

In the current programming environment, this tenet may be the most important.

Rails is a big tent, and there are many, many folks under it with us. There's no

entry admission charged; nor will we demand that you produce immediately. We

will, however, expect you to value the community and its tools. We'll expect you

to express your opinions, and be respectful and professional.

These are the member traits that build a strong foundation for the larger

community. The people in the Rails tent are not a cult, they just want to build

great things. They are people that want to learn from others. Rubyists are not all

cut from the same cloth, and that's why this community is among the very best in

the programming world.

DHH writes of his disdain for microservices or certain Ruby libraries that are very

popular. Yet these libraries flourish, even without the endorsement of one of the

most prominent community members. He loves that, and so do I. I want a tent

full of diverse, intelligent, respectful, and fun individuals, and that is what the

Rails community is today.

If your head is spinning from trying to digest these principles, don't

worry—they'll be reinforced continually throughout this book, as we step through

building our very own web application in Ruby on Rails.

Building the Example Web Application

As you read on, I expect you'll be itching to put the techniques we discuss into

practice. For this reason, I've planned a fully functional web application that

we'll build together throughout the ensuing chapters. The key concepts,

approaches, and methodologies we'll discuss will have a role to play in the

Introducing Ruby on Rails 13

sample application, and we'll implement them progressively as your skills

improve over the course of this book.

The application we'll build will be a functional clone of part of the popular link-

sharing website, Reddit: namely, the ability to share a link and vote on it. I've

included all necessary files for this application in the book's code archive.

Reddit describes its functionality as follows:

The global Reddit community votes on which stories and discussions

are important by casting upvotes or downvotes. The most interesting,

funniest, impactful, or simply amazing stories rise to the top.

Basically, if you want to tell the world about that interesting article you found on

the Internet—be it a blog post that's right up your street, or a news story from a

major publication—you can submit its URL to Reddit, along with a short

summary of the item. Your link will sit there, waiting for other users to "vote it

up" (give your item a positive vote). As well as voting, users can comment on the

story to create often lively discussions within Reddit.

Reddit was launched in 2005, and is consistently listed in the Alexa traffic

rankings as one of the Internet's top 50 websites.

This isn't the reason why you'll be developing your own Reddit clone, though; its

feature set is not particularly complicated, and is sufficient to allow us to gain

firsthand experience with the most important and useful facets of the Ruby on

Rails framework.

And while your application might be unable to compete with the original site,

reusing this sample project to share links within your family, company, or college

class is perfectly conceivable. With any luck, you'll learn enough along the way to

branch out and build other types of applications as well.

Features of the Example Application

As I mentioned, we want our application to accept user-submitted links to stories

on the Web. We also want to allow other users to vote on the submitted items. In

14 Rails: Novice to Ninja

http://www.reddit.com/
https://github.com/spbooks/rails3v5
https://about.reddit.com/
http://www.alexa.com/data/details/traffic_details/reddit.com

order to meet these objectives, we'll implement the following features as we work

through this book:

A database back end that permanently stores every story, user, vote, and so on.

This way, nothing is lost when you close your browser and shut the

application down.

A link submission interface, which is a form that's available only to users who

have registered and logged in.

A simplistic, responsive layout as is typical for today's mobile-aware

applications. We'll style it with Cascading Style Sheets (CSS) and enhance it

with visual effects.

Clean URLs for all the pages on our site. Clean URLs (also known as search-

engine-friendly URLs) are usually brief and easily read when they appear in

the browser status bar. An example of a clean URL is http://del.icio.us/

popular/software, which I'm sure you'll agree is a lot nicer than

http://www.amazon.com/gp/homepage.html/103-0615814-1415024/.

A user registration system that allows users to log in with their usernames and

passwords.

The ability to check voting history on a per-user and per-story basis.

It's quite a list, and the result will be one slick web application! Some of the

features rely upon others being in place, and we'll implement each feature as a

practical example when we look at successive aspects of Rails.

Summary

Well, here we are; your first step towards Rails is complete. This chapter walked

us through Rails' beginnings—a framework born as a way to solve real problems.

There were mentions of Ruby, the language foundation of the Rails framework,

along with some code snippets to whet your whistle. You learned that Ruby and

Rails were created to make programmers happy and more productive. We looked

at the founders and many contributors to Rails, along with the development

principles that serve as its base.

Introducing Ruby on Rails 15

These ambitious and sensible development principles drive Rails programmers,

and you are about to be amongst their ilk. As we go through this book and build

our application together, try to keep the principles in mind. You'll build habits

that will influence your work for your entire career.

Finally, we created a brief specification for the web application we’re going to

build throughout this book. We described what our app will do, and identified

the list of features that we’re going to implement. We’ll develop a lite clone of the

link-sharing website Reddit iteratively, taking advantage of some of the Agile

development practices that Rails supports.

In the next chapter, we’ll install Ruby, Rails, and the SQLite database server

software in order to set up a development environment for the upcoming

development tasks.

Are you ready to join in the fun? If so, turn the page …

16 Rails: Novice to Ninja

The Ruby language

interpreter

2Chapter

Getting Started

To get started with Ruby on Rails, we first must install some development

software on our systems. The packages we'll be installing are:

The Ruby interpreter translates any Ruby code, including

Rails itself, into a form the computer can understand and

execute. At the time of writing, Ruby 2.3.0 is recommended

for use with Rails, so that's what I've used here.

Getting Started 17

RubyGems

package manager

The Ruby on Rails

framework

The SQLite

database engine

Many languages take advantage of package managers to help

the community manage and install code libraries. Package

managers allow developers to create libraries that can be

shared easily and perform specific tasks. In fact, Rails itself

comprises several RubyGems (or gems, as they are called by

Rubyists). RubyGems is, arguably, the best package manager

for any language out there, and we'll use it to install gems as

needed in the book. The RubyGems Guides are worth

perusing for an idea of how gems work.

Once we've downloaded Ruby, we can install the Rails

framework itself. As I mentioned in Chapter 1, Rails is written

in Ruby. At the time of writing, version 5.0.0.1 was the most

recent stable version of the framework.

The SQLite database engine is a self-contained software

library that provides an SQL database without running a

separate server process. While Rails supports plenty of other

database servers (MySQL, PostgreSQL, Microsoft SQL Server,

and MongoDB, to name a few), SQLite is easy to install,

requires no configuration, and is the default database for

which a new Rails application is configured straight out of the

box. Oh, and it's free! At the time of writing, the most recent

stable release of the SQLite database was version 3.14.1.

Instructions for installing Rails differ ever so slightly between operating systems.

You may have to install some additional tools as part of the process, depending

on the platform you use. Here, I'll provide installation instructions for Windows,

Mac OS X, and Linux.

Found in Translation

There are many Ruby interpreters, but the most often used one is the Matz Ruby

Interpreter, or MRI for short. You may also hear of other interpreters such as JRuby

or Rubinius. Each has its pros and cons, but as it's beyond the scope of this book,

you may want to take an hour or so and do some reading on the other interpreters

and why they exist.

18 Rails: Novice to Ninja

http://jruby.org/
http://rubinius.com/
https://rubygems.org/
http://guides.rubygems.org/

Feel free to skip the sections on operating systems other than yours, and focus

only on those that address your specific needs.

What does all this cost?

Everything we need is available for download from the Web, and licensed under

free software licenses. This basically means that everything you install is free for

you to use in both personal and commercial applications. If you're curious about

the differences between each license, check out each package's individual license

file, which is included in its download.

Installing Ruby and Rails can be tricky, which is why there are entire sites

devoted to it; however, it is way better than it used to be, and I don't think you'll

have any issues.

Installing on Windows

Getting Rails up and running on Windows consists of three major steps:

1. Install Ruby

2. Install the Ruby Development Kit

3. Install Rails

4. Install Git

5. Install NodeJS

New ≠ Tried + Tested

It's possible that by the time you read this, a more recent version of Ruby, SQLite, or

another package mentioned here will have been released. Beware! Just because a

package is newer, doesn't mean it can reliably be used for Rails development.

While, in theory, every version should be compatible and these instructions should

still apply, sometimes the latest is not the greatest. In fact, the Rails framework itself

has a reputation for experiencing large changes between releases, such as specific

methods or attributes being deprecated. While every effort has been made to ensure

the code in this book is future-proof, there's no guarantee that changes included in

forthcoming major releases of Rails won't require this code to be modified in some

way for it to work. Such is the fast-paced world of web development!

Getting Started 19

http://installrails.com

Install Ruby

Ruby is a great community (you'll hear me say that a lot) comprised of people

who support free tools to help others get started with the language. One such tool

is the RubyInstaller for Windows.

2-1. RubyInstaller website

If you head over to the Downloads page, the current latest Ruby version is 2.3.1,

but I would suggest you use Ruby 2.2.5:

20 Rails: Novice to Ninja

http://rubyinstaller.org
http://rubyinstaller.org/downloads/

2-2. Ruby version

The 2.2 versions of Ruby are stable and gems have been built and tested against

them. The download page itself recommends the 2.2.X versions for the same

reason, and 2.2.5 will be fine for everything we do in this book.

Go ahead and click on the link for Ruby 2.2.5 and download that executable. You

can use either 32 or 64-bit, depending on your needs. Double-click on that

executable to start the installation process.

The install process is pretty normal. You can choose your language, and use the

path the installer suggests (C:\Ruby22, in my case). However, I would recommend

that you check the box that says Add Ruby executables to your PATH, shown

here:

Getting Started 21

2-3. Add Ruby to Path

Click Install and the installation will complete. RubyInstaller adds an item to the

Start Menu called Start Command Prompt with Ruby which, when clicked, will

open a Windows command prompt with the Ruby environment variables all in

place:

22 Rails: Novice to Ninja

2-4. Ruby command prompt

Great. Ruby is installed. However, in order to install Rails (and other gems), we

need some build tools to be installed. Thankfully, again, we can turn to the folks

at RubyInstaller for help. The Ruby DevKit for Windows installs these build tools

for us.

The download for the DevKit is on the same Downloads page as the

RubyInstaller:

2-5. Getting the DevKit

Getting Started 23

http://rubyinstaller.org/add-ons/devkit/

Be sure to download the right one for the RubyInstaller you downloaded above. If

you're like me and you used the 32-bit 2.2.5 installer, you can download

DevKit-mingw64-32-4.7.2-20130224-1151-sfx.exe. Once downloaded, run the

executable and it will ask for a directory to install the DevKit. I choose

C:\RubyDevKit:

2-6. Installing the DevKit

Now, roll up your sleeves. Remember that new link the RubyInstaller added to

the Start menu? Click it to open a Ruby-savvy command prompt and cd

C:\RubyDevKit. You need to type a couple of commands to make the DevKit

available to our newly installed Ruby. The first one is ruby dk.rb init and the

second is ruby dk.rb install. The output is below:

24 Rails: Novice to Ninja

2-7. Making DevKit available to ruby

OK, now we can install Rails. At that same command prompt, change into our

Ruby directory (cd c:\Ruby22) and type gem install rails. You will see many

gems being built and installed:

Getting Started 25

2-8. Rails being installed

When the install is complete, you should see something like:

37 gems installed

c:\Ruby22>

Yay! Rails is installed. Enjoy this small, but significant, victory.

There are still a couple of things we still need to set up. First, we need to install

Git, which is a version control system. If you're not sure what that is, don't worry

about it right now. We'll cover some git basics later in the chapter. For now, let's

just get it installed.

Open a browser and go to https://git-scm.com/downloads/win. This should kick

off the download of the Git installer. If not, click on the Download for Windows

button:

26 Rails: Novice to Ninja

https://git-scm.com/downloads/win

2-9. Downloading Git

Run the installer once the download completes. You can (and should) follow all

the defaults offered by the installer. With the install complete, start a new Ruby

Command Prompt (close and reopen it) and check the git version:

c:\Ruby22> git --version

git version 2.9.2.version.1

Next, we need to install SQLite3, which is the default database that Rails will use

out of the box. Installing SQLite3 is a matter of going to the SQLite3 download

page and scrolling down to Precompiled Binaries for Windows. Select the first

link, which is the SQLite3 DLL. Unzip the downloaded file and copy its contents

to C:\Windows\System32.

Finally, the last thing we need to install is a JavaScript Runtime, as Rails expects

one to exist. This is accomplished easily enough by installing NodeJS. So, head

over to the NodeJS site, click on Downloads, and choose the Windows installer

that suits your needs (either 32 or 64-bit). Run the installer, accepting all the

defaults:

Getting Started 27

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
https://nodejs.org

2-10. Installing NodeJS

Once the Node installation completes, restart your Ruby Command Prompt and

type node -v:

$ node -v

v4.4.7

You now have a working NodeJS install.

Congratulations! You have installed Ruby, Rails, and all the supporting

characters! Feel free to take a break and high-five yourself. Oh, and you can skip

the instructions for Mac and Linux.

28 Rails: Novice to Ninja

Installing on Mac OS X

While Mac OS X isn't usually a tricky platform to manage, installing Rails is just

a tad harder than installing a regular Mac application.

Your first task is to install Xcode from the Mac App Store, as shown below.

2-11. Xcode in the App Store

The good news is Xcode is free. The bad news is it's huge and takes a while to

install. Use this time to thumb through the Rails Guides and get coffee.

Done? Excellent. Now, open a terminal, which can be found in Applications =>

Utilities => Terminal, as shown in Figue 2-12.

Getting Started 29

2-12. Terminal App

This will launch a window that looks a bit like what can be seen below.

2-13. A terminal window

You're now in your home directory.

30 Rails: Novice to Ninja

Installing Homebrew

I previously mentioned RubyGems, a package manager for Ruby. Well, there are

package managers for operating systems, too, and Mac OS X has a good one called

(Homebrew. It is open source and has a bit of an odd installation, but it's an

excellent package manager and used by most Mac developers to install the items

they need.

To install Homebrew, go to your terminal and type (or paste) in the following:

/usr/bin/ruby -e "$(curl -fsSL

➥ https://raw.githubusercontent.com/Homebrew/install/master/
install)"

Homebrew's installation will be confirmed by a brew command becoming

available in the terminal, as depicted in Figure 2-14.

2-14. The brew terminal command

Taking Command

Much of working with Ruby and Rails is done at the command line in a terminal.

Being comfortable with basic terminal commands, such as cd, dir, and ls is all but

required to be an effective Ruby and Rails developer. If necessary, take some time to

research and practice using the terminal to navigate around your Mac. You'll be

glad you did.

Getting Started 31

http://mally.stanford.edu/~sr/computing/basic-unix.html
http://brew.sh

With Homebrew in place, installing Ruby becomes very, very easy; however, I

need to explain the sate of affairs first. I've noted the somewhat volatile nature of

Ruby and Rails. With several new releases every year for each, when you're

developing using particular versions of Ruby and Rails, it can become

complicated to install new versions without breaking your environment and

applications. Rubyists, being the problem-solving pragmatists that they are,

solved this problem by creating a "version manager" for Ruby. In fact, there are a

couple of version managers out there. The idea behind a version manager is that

you can switch between versions of Ruby without breaking your environment.

Now, it's easy to try a new version with your application and be assured that it

won't break your work. It is an elegant solution to a sticky problem.

So, we're going to install a package manager called RVM, which stands for Ruby

Version Manager. At your command prompt, type:

\curl -sSL https://get.rvm.io | bash -s stable

When the script completes, close your terminal window and open a new one.

Then type:

rvm | head -n 1

This should respond with =rvm, as shown in figure 2-15.

Version Managers: Good for Developing Developers!

While it is possible to install Ruby without using package managers and avoid

jumping through these small hoops to set up our environment, it is not

recommended. All of the Ruby developers I know and work with use version

managers, so if you're going to become a real Ruby dev, you need to understand the

how and why of version managers. If I were a parent, I'd say "this builds character"

or "you'll thank me later".

32 Rails: Novice to Ninja

https://rvm.io

2-15. RVM is installed

Great! Your Ruby Version Manager is installed and ready to go. Time to install

Ruby.

With RVM, installing a new version of Ruby is a walk in the park. In your

terminal, type:

rvm install 2.3.0

This tells RVM to install Ruby 2.3.0. Oh, and it will take a while, so it's time for

another break. Go for a walk around the block. It's good for you.

Okay, Ruby is now installed, but we're not quite done yet. With version managers,

you have to specify which version of Ruby you want to use. With RVM, that's

done by typing:

rvm use 2.3.0 --default

Figure 2-16 reveals what that should look like.

Getting Started 33

2-16. Telling RVM which Ruby to use

Boom, now we're done with Ruby.

With Ruby in place, installing Rails is just a matter of asking our awesome

package manager, RubyGems, to do the deed:

gem install rails

This will crank out a ton of text in the terminal, a snippet of which is seen below.

Why default?

The --default option in the aforementioned command tells RVM to use 2.3.0 as

the default Ruby for your computer. Every time you open a new terminal window,

Ruby 2.3.0 will be the current version of Ruby. Without the default, you'll have to

type rvm use 2.3.0 every time you open a terminal. It's your choice.

34 Rails: Novice to Ninja

2-17. Installing Rails

Now, just to make sure Rails is ready, type:

rails --version

=> Rails 5.0.0.1

Excellent. Now we just need to install SQLite3, which can be done with

Homebrew:

brew install sqlite

When that completes, check your SQLite version to make sure it's there:

sqlite3 --version

=> 3.8.10.2 2015-05-20 18:17:19

➥ 2ef4f3a5b1d1d0c4338f8243d40a2452cc1f7fe4

And now we're ready to go.

Getting Started 35

Installing on Linux (Ubuntu)

Thanks to the hard work of people in the incredible Ruby and Rails communities,

installing Ruby and Rails on Linux is as straightforward as can be. I have copied a

script from the Rails Girls guides to a SitePoint Github repository, which enables

you to run a single command line to install Ruby, Rails, Sqlite3, and Git. This is a

far cry from how it used to be, and I am soooo thankful that Rails Girls put this

together.

The script you need to run is located on GitHub. The following command will

pull down that script and run it in your terminal. Open up a terminal and paste

in the following:

bash < <(curl -sL

➥ https://raw.githubusercontent.com/spbooks/rails3v5/master/
scripts/install_linux.sh)

You will be prompted for your password and you'll require an account with sudo

level access. The script will then run through installing Ruby, RVM, Sqlite3, git,

and Rails, as seen in Figure 2-18.

Help on Hand

Remember—if you get really stuck, you can always try asking for help on

SitePoint's Ruby forum.

About Rais Girls

Rails Girls is a group whose aim is to "give tools and (create) a community for

women to understand technology and to build their ideas." It is one example of the

groups that have formed to increase diversity and make people feel comfortable

learning Ruby and Rails. There are others with similar aims sprinkled throughout

the community and I think it's great. If you think you'd benefit from being involved

with Rails Girls, check them out.

36 Rails: Novice to Ninja

https://www.sitepoint.com/community/c/ruby
http://guides.railsgirls.com/install#setup_for_linux
http://railsgirls.com
https://raw.githubusercontent.com/spbooks/rails3v5/master/scripts/install_linux.sh

2-18. Installing on Linux

When the script completes, type in the following to validate the install:

source ~/.rvm/scripts/rvm

rails -v

=> Rails 5.0.0

Congratulations! You have successfully installed Ruby and Rails on Linux.

Additional Installation Options

If, for some reason, none of the previous installation options fit your bill, there

are more possible solutions to have you up and running with Rails. I am, of

course, speaking of The Cloud. Some companies offer a full Ruby and Rails

environment that you access solely with your browser. A good example is

Nitrous.IO.

Getting Started 37

http://nitrous.io

2-19. Nitrous.IO

As the screenshot declares, Nitrous.io allows you to "create, snapshot, and share

development environments in the cloud". When you sign up for Nitrous, you

have options of which kind of application you want to create, one of which is

Rails. Figure 2-20 shows what a Rails application looks like in the browser on

Nitrous.

2-20. Creating a Rails app in Nitrous

A wizard then guides you through the process, and your first application is free.

If you're more advanced and know what a virtual machine is, companies such as

Amazon Web Services or Digital Ocean provide Infrastructure as a Service (IaaS).

38 Rails: Novice to Ninja

http://aws.amazon.com
http://digitalocean.com

With an IaaS, you basically create an entire computer in the cloud and then run

through one of the previous sets of instructions to install Ruby and Rails.

And Now the Fun Begins

Okay, is everyone here? Windows? Check. Mac? Check. Linux? Check. Great! It's

time to set the foundation for the application we're going to build throughout the

remainder of this book.

One Directory Structure to Rule Them All

If you remember from the section on the Rails doctrine, one of the tenets was

"Convention over configuration". One of the conventions of Rails is its directory

structure, where a Rails application always has the same base structure on disc.

By gently forcing this directory structure upon developers, Rails ensures that

your work is organized in the Rails way.

Figure 2-21 shows what the structure looks like. We'll create this directory

structure for our application in just a moment.

2-21. The conventional Rails application directory structure

As you can see, this standard directory structure consists of quite a few

subdirectories (and I'm yet to even show their subdirectories!). This wealth of

subdirectories can be overwhelming at first, but we'll explore them one by one. A

lot of thought has gone into establishing the folders and naming them, and the

result is an application with a well-structured file system.

Before you go and manually create all these directories yourself, let me show you

how to set up that pretty directory structure using just one command—I told you

that Rails allows us to do less typing!

Getting Started 39

Creating the Standard Directory Structure

It's easy to generate the default directory structure for a new Rails application

using the rails command.

Before we start, I'd like to introduce you to the secret under-the-hood project

name we'll give our Reddit-lite project clone: Readit. It's exactly this kind of

creativity that has companies begging me to run their marketing departments.

Not.

Now, let's go ahead and create the directory structure to hold our application.

The rails command takes various secondary commands, new being one of them.

As you've probably guessed, the rails new command creates the directory where

you'd like to store your application, along with all the files required. You can, and

are encouraged to, execute it from the parent directory in which you want your

new Rails application to live. I'll do this in my home directory. If you're on

Windows, you may want to do this inside C:\Ruby22:

$ rails new readit

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/assets/javascripts/application.js

create app/assets/stylesheets/application.css

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

create app/views/layouts/application.html.erb

...

Congratulations, your directory structure has been created! You'll need to use cd

readit to ensure the active directory is the root of our new application. We will

run all our Rails commands from inside the application root.

40 Rails: Novice to Ninja

Starting Our Application

Even before we write any code, it's possible to start up our application

environment to check that our setup is working correctly. This exercise should

give us a nice boost of confidence before we progress any further.

Rails wants you to be productive as soon as possible, and if you can't look at your

web application in a web browser, you can't be productive. So, Rails includes a

development web server, called Puma, that you can fire up with the single

command: rails server, as shown in Figure 2-22. Oh, and because Rails is

obsessed with making you efficient, you can also type rails s for the same

result.

2-22. Firing up the Rails server

Well done: you just started up your application for the first time. Okay, so there's

little it can do at this stage—we're yet to write any lines of code, after all—but

you can now connect to your application by entering http://localhost:3000/

into your web browser's address bar. You should see a similar sight to Figure

2-23.

Choice Gems: A Plethora of Web Servers

It's worth noting that it is very easy to change the development web server, as the

Ruby community has created many web server gems; however, we will stick with

good ol' Puma, as it is well-suited to our needs. We will, however, discuss some

other options in Chapter 12, on deployment.

Getting Started 41

2-23. Rails' default page

The default page shows the versions of Ruby and Rails, along with providing a

link to http://rubyonrails.org.

So, you're up and running on Rails. Feels good, eh? Before we keep going with

Rails, we need to take a quick tangent.

Version Control and Git

Writing code is a delicate undertaking. No matter how experienced you are as a

programmer, you will make mistakes. Lots of them. And some of these mistakes

may only be discovered after days, weeks, or months. Once discovered, undoing

the mistake can be troublesome, especially if it's been buried by months of

accumulated code. It would be nice if you could store versions of the code as you

42 Rails: Novice to Ninja

http://rubyonrails.org

go, in case you need to return to an old version to fix code, or see what's changed

between versions.

Turns out, you can do this with version control software. Version control has

been around a long time, evolving over decades. In the current software

landscape, the most popular version control software is Git.

Git is an open source, distributed version control software. If you do any

development in open source, you'll need to learn how to use Git. Space only

permits me to cover the basics here, but you should definitely spend some time

getting comfortable with Git. The learning curve is steep at first, but you'll

conquer that soon enough and Git will become one of your most-used tools.

Git Basics

To use Git, you need to create a Git repository for your code. This is done by

typing the following in the directory of the code you wish to manage:

$ git init .

Initialized empty Git repository in /current/path/.git/

Once you have a Git repository, add files to it. You can add these one by one, or

add all files in a directory as shown here:

git add .

git add provides no feedback, so to see if it did anything, type:

$ git status

On branch master

EXTRA CREDIT: Get Learning Git

Seriously, jump on the Internet and run through some basic Git tutorials or buy a

book. Here's an article from SitePoint to get you started.

Getting Started 43

https://git-scm.com/
http://www.sitepoint.com/git-for-beginners/

Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: .gitignore

new file: .ruby-gemset

new file: .ruby-version

new file: Gemfile

... lots more files, maybe...

As you can see, Git has added the files "to be committed". So we need to commit

them:

git commit -m "My first git commit"

[master (root-commit) 057e21f] My first git commit

92 files changed, 1410 insertions(+)

create mode 100644 .gitignore

create mode 100644 .ruby-gemset

create mode 100644 .ruby-version

create mode 100644 Gemfile

... lots more creates ...

And there you have it. Our files are now being tracked by Git. Not so bad, eh?

To check the status of your Git managed files, type:

$ git status

nothing to commit, working directory clean

At this point, you can happily start coding. Git will keep an eye on what's

happening. Here's the output of git status after I change a file:

44 Rails: Novice to Ninja

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be

➥ committed)
(use "git checkout -- <file>..." to discard changes in

➥ working directory)

modified: app/models/blorgh/article.rb

no changes added to commit (use "git add" and/or "git commit

➥ -a")

Git tells me that I have made a change but not committed it. It will also show me

the change:

$ git diff

diff --git a/app/models/blorgh/article.rb

➥ b/app/models/blorgh/article.rb
index 79a6664..9f936ae 100644

--- a/app/models/blorgh/article.rb

+++ b/app/models/blorgh/article.rb

@@ -1,5 +1,6 @@

module Blorgh

class Article < ActiveRecord::Base

has_many :comments

+ has_many :likes

end

end

The + sign shows the line I added. If I had deleted lines, they would be shown

with a - sign.

I now follow the same process I did with the initial commit: add the files to be

committed and then commit them with a message:

Getting Started 45

$ git add .

$ git commit -m "Changed article"

[master bf8b89d] Changed article

1 file changed, 1 insertion(+)

The "code, add, commit" sequence is used to commit your changes to Git. Again,

not so bad, eh?

One last point to cover about Git are its "remotes". Git is a distributed version

control system, which means there is no central server to hold the source master.

Every clone of a Git repository is the entire repository, including all history,

branches, and so on. I can add a reference to another user's Git repository and

push or pull code to or from that repository. The other coder's repository is called

a remote.

We will use remotes without creating one explicitly when we deploy the site in

chapter 12.

There is so much more to Git: branching, partial commits, working with other

developers on Github, and so on, but that's all beyond our scope. We need to

move on.

So now you're finally ready to write some code. But wait! Which text editor will

you be using?

Which Text Editor?

The question of which text editor is best for web development has spawned

arguments that border on religious fanaticism. While it's certainly possible to

develop Rails applications using the default text editor that comes bundled with

your operating system, I'd stop short of recommending it. The benefits provided

by a specifically designed programmer's editor can prevent typing errors and

increase your productivity immeasurably. In this section, I've suggested a couple

of alternatives for each operating system, enabling you to make a choice that suits

your personal preferences and budget.

46 Rails: Novice to Ninja

Windows and Cross-platform Text Editors

The best editors for Windows are all cross-platform, in my opinion. You'll notice

that any editor worth its salt has some kind of plugin-type framework, allowing

the community to write plugins. These plugins are almost always the best

features of an editor, as they're focused on making specific editing tasks simple.

Sublime Text

One of the most popular cross-platform editors is Sublime Text, currently on

version 3, seen in Figure 2-24. It can be downloaded for free, but requires a

license for continued use. The current price for a Sublime Text license is US$70.

Sublime Text comes with a ton of impressive core features, including a Plugin

API resulting in a slew of plugins that make development more efficient and

enjoyable.

2-24. Sublime Text

Atom

Atom, seen in figure 2-25, is another cross-platform editor with a robust plugin

framework. It is built on Electron, a framework for building cross-platform apps

Getting Started 47

https://atom.io

using web technologies. Atom was developed by the great folks at GitHub and is

open-sourced, meaning it is 100% free of charge. I know many developers that

use Atom and they say nothing but great things about it.

2-25. Atom editor

Visual Studio Code

The folk behind Visual Studio have created a very nice cross-platform editor that

supports 30+ languages and is extensible. Before too long, someone will have

built some Rails plugins for this editor. I'm yet to use it, but as you can see in

Figure 2-26, it does look awesome.

2-26. Visual Studio Code editor

Linux and Mac OS X Editors

A number of development-centric text editors that run on a variety of platforms

are available to download for free. The following editors have loyal followings,

48 Rails: Novice to Ninja

and all run equally well on Linux and Mac OS X. Emacs and Vim are probably

the two editors with the most fervent followings. For the record, I happen to be a

Vim user.

Both of these editors have a steeper learning curve than the Windows/cross-

platform editors, but the long-term benefits are substantial. Mastering an editor

that runs in the terminal is invaluable for a programmer, but it is also something

one grows into. If you choose one of these editors, you'll need to spend time

getting comfortable with them.

Emacs

Emacs is an editor created in the 1970s by the GNU Project, and can be seen in

Figure 2-27. It claims to be an "extensible, customizable text editor" with an

active, robust set of extensions developed by the community. Several prominent

Rubyists use and love Emacs. The Emacs Wiki is the ideal place to start learning

about Emacs.

Getting Started 49

http://www.emacswiki.org/

2-27. By Emacs development team - Ferk (user who took this screenshot), CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=6412319

Vim

Vim–or "VI Improved"–is the evolution of a core Unix editor called "vi". Vim also

has an enormous set of community-developed extensions that allow you to make

Vim do just about anything you can imagine. The best place to start learning

about Vim is on the Vim wiki, or take one of the many online tutorials, such as

OpenVim.

50 Rails: Novice to Ninja

http://www.vim.org/
http://vim.wikia.com/wiki/Tutorial
http://www.openvim.com/

2-28. Vim

IDEs

Some Ruby programmers choose to use an Integrated Development Environment,

or IDE. IDEs, which usually come with a price tag, are complex applications that

try to do it all for the programmer. A good IDE makes your application code easy

to navigate, runs basic tasks with simple keystrokes, automates code refactoring

and tests, and offers up an integrated console. As you might imagine, some

perform these tasks better than others. If you're interested in the IDE approach,

check out the SitePoint Ruby channel for articles on which IDEs are favored by

Rubyists.

Summary

In this chapter, I showed you how to install all the necessary software to develop

a web application in Ruby on Rails.

We installed Ruby, Rails, and SQLite, and set up the standard directory structure

for our application, which we've named “ReadIt.” Then we launched the

application for the first time, enabling us to check which versions we were

Getting Started 51

https://sitepoint.com/ruby
http://www.sitepoint.com/ides-rubyists-use/
http://www.sitepoint.com/ides-rubyists-use/

running of the components involved. And finally, we looked at some of the text

editors that are available to help you build the application.

All this work has been in preparation for Chapter 4, where we'll start to write our

first lines of application code. But first, there's some theory we have to tackle.

Hold on tight, we'll be coding soon enough!

52 Rails: Novice to Ninja

3Chapter

Introducing Ruby

While this chapter makes no attempt to constitute a complete guide to the Ruby

language, it will introduce you to some of its basics. We'll power through a crash

course in object-oriented programming that covers the more common features of

the language, leaving the more obscure aspects of Ruby for a dedicated reference

guide. I'll also point out some of the advantages that Ruby has over other

languages when it comes to developing applications for the Web.

There used to be a longstanding axiom (previously known as "The Rails Newbie

Axiom") that one could learn Rails without first learning Ruby. This axiom has

been challenged and, rightly so, proven less true than originally thought. I came

to Ruby through Rails many moons ago, and my lack of Ruby knowledge caught

up with me in a hurry. As I mentioned over and over again in Chapter 1, Rails is a

framework written in Ruby, the language. The more you know about the

language, the better you'll be using the framework.

Introducing Ruby 53

http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/

However, this is not a book on Ruby, and teaching you all of Ruby and then Rails

is too much. As such, I'm going to modify the Axiom to:

You can learn just enough Ruby to be productive in Rails.

This fits with the Rails aim of making you productive in a hurry. But you have to

promise me that you'll keep learning Ruby as you continue your journey with

Rails, okay? Pinky promise? Done. Learning Ruby will not only make you a better

Rails programmer, it will make you a better overall programmer.

Ruby is a Scripting Language

In general, programming languages fall into one of two categories: they're either

compiled languages, or scripting languages. Let's explore what each of those

terms means, and understand the differences between them.

Compiled Languages

The language in which you write an application is not actually a language

understood by your computer. Your code needs to be translated into bits and

bytes that can be executed by your computer. This process of translation is called

compilation, and any language that requires compilation is referred to as a

compiled language. Examples of compiled languages include C, C#, and Java.

For a compiled language, the actual compilation is the final step in the

development process. You invoke a compiler—the software program that

translates your final handwritten, human-readable code into machine-readable

code—and the compiler creates an executable file. This final product is then able

to execute independently of the original source code.

Thus, if you make changes to your code and you want those changes to be

incorporated into the application, you must stop the running application,

recompile it, then start the application again.

54 Rails: Novice to Ninja

Scripting Languages

On the other hand, a scripting language such as Ruby, Javascript, or Python relies

upon an application's source code all the time. Scripting languages have no

compiler or compilation phase per se; instead, they use an interpreter—a

program that runs on the web server—to translate handwritten code into

machine-executable code on the fly. The link between the running application

and your handcrafted code is never severed, because that scripting code is

translated every time it's invoked; in other words, for every web page that your

application renders.

As you might have gathered from the name, the use of an interpreter rather than a

compiler is the major difference between a scripting language and a compiled

language.

The Great Performance Debate

If you've come from a compiled-language background, you might be concerned by

all this talk of translating code on the fly—how does it affect the application's

performance?

These concerns are valid. Translating code on the web server every time it's

needed is certainly more expensive performance-wise than executing

precompiled code, as it requires more effort on the part of your machine's

processor. The good news is that there are ways to speed up scripted languages,

including techniques such as code caching—caching the output of a script for

reuse rather than executing the script every time—and persistent

interpreters—loading the interpreter once and keeping it running instead of

having to load it for every request. However, performance topics are beyond the

scope of this book.

There's also an upside to scripted languages in terms of performance—namely,

your performance while developing an application.

Imagine that you've just compiled a shiny new Java application and launched it

for the first time, and then you notice an embarrassing typo on the welcome

screen. To fix it you have to stop your application, go back to the source code, fix

Introducing Ruby 55

the typo, wait for the code to recompile, and restart your application to confirm

that it's fixed. And if you find another typo, you'll need to repeat that process

again. Lather, rinse, repeat.

In a scripting language, you can fix the typo and just reload the page in your

browser—no restart, no recompile, no nothing. It's as simple as that.

Choose What Works

The landscape of languages today, both compiled and scripting, is virtually

endless with more coming out every week. In the last decade, being an effective

programmer has become less about completely mastering one language and more

about knowing when to choose the right language. In other words, languages are

tools, each with their own strengths and weaknesses. Your job is to know when to

use and—maybe more importantly—when not to use a language.

But that's all academic for what we're here to do, which is to learn Rails. Rails is

written in Ruby, so let's choose Ruby. See? You're already learning how to choose

the right tool.

Ruby is an Object Oriented Language

Ruby, from its very beginnings, was built as a programming language that adheres

to the principles of object-oriented programming (OOP). Before discussing Ruby

specifics, let's unpack some fundamental concepts of OOP. The theory can be a bit

dry when you're itching to start coding, but we'll cover a lot of ground in this

short section. It will hold you in good stead, so don't skip it.

OOP is a programming paradigm that first surfaced in the 1960s, but didn't gain

traction until the 1980s with C++. Its core idea is that programs should be

composed of individual entities, or objects, each of which has the ability to

communicate with other objects around it by passing messages. Additionally,

each object may have the facility to store data internally (called state), as depicted

in Figure 3-1.

56 Rails: Novice to Ninja

3-1. Object interaction in Ruby

Objects in an OOP application are often modeled on real-world objects, so even

non-programmers can usually recognize the basic role that an object plays.

And, just like the real world, OOP defines objects and classes with similar

characteristics belonging to the same classes and objects. A class is a construct for

defining properties for objects that are alike and equipping them with

functionality. For example, a class named Car might define the attributes color

and mileage for its objects, and assign them functionality: actions such as open

the trunk, start the engine, and change gears. These different actions are known

as methods, although you'll often see Rails enthusiasts refer to the methods of a

controller (a kind of object used in Rails with which you'll become very familiar)

as actions; you can safely consider the two terms to be interchangeable.

Understanding the relationship between a class and its objects is integral to

understanding how OOP works. For instance, one object can invoke functionality

on another object, and can do so without affecting other objects of the same class.

So, if one car object was instructed to open its trunk, its trunk would open, but

the trunk of other cars would remain closed—think of KITT, the talking car from

the television show Knight Rider, if it helps with the metaphor.1 Similarly, if our

Introducing Ruby 57

high-tech talking car were instructed to change color to red, it would do so, but

other cars would not.

When we create a new object in OOP, we base it on an existing class. The process

of creating new objects from a class is called instantiation. Figure 3-2 illustrates

this concept.

3-2. Instantiation in Ruby

As I've mentioned, objects can communicate with each other via messages,

invoking functionality (methods) on other objects. Invoking an object's methods

can be thought of as asking the object a question and getting an answer in return.

Consider the example of our famous talking car again. Let's say we ask the talking

car object to report its current mileage. This question is not ambiguous: the

answer that the object gives is called a return value, and is shown in Figure 3-3.

1. Knight Rider was a popular 1980s series that featured modern-day cowboy Michael

Knight (played by David Hasselhoff) and his opinionated black Pontiac Firebird named

KITT. If you missed it in the '80s, you may be more familiar with the Ford Mustang voiced

by Val Kilmer in the 2008 remake. Don't worry, having seen the show isn't a prerequisite to

understanding object-oriented programming!

58 Rails: Novice to Ninja

http://en.wikipedia.org/wiki/Knight_Rider

3-3. Asking a simple question in OOP

In some cases, the question-and-answer analogy seems ill-fitting. In these

situations, we might rephrase the analogy to consider the question to be an

instruction, and the answer a status report indicating whether or not the

instruction was executed successfully. This process might look like the diagram

in Figure 3-4.

3-4. Sending instructions

Sometimes we need more flexibility with our instructions. For example, if we

wanted to tell our car to change gear, we tell it not only to change gear, but also

which gear to change to. The process of asking these kinds of questions is referred

to as passing an argument to the method.

An argument (also called a "parameter") is an input value that's provided to a

method. An argument can be used to influence:

how a method operates

on which object a method operates

An example is shown in Figure 3-5 below, where the method is “change gear,”

and the number of the gear to which the car must change (two) is the argument.

Introducing Ruby 59

3-5. Passing arguments

A more general view of all these different types of communication between

objects is this: invoking an object's methods is accomplished by sending messages

to it. As one might expect, the object sending the message is called the sender,

and the object receiving the message is called the receiver.

Armed with this basic knowledge about object-oriented programming, let's look

at some Ruby specifics.

Reading and Writing Ruby Code

Learning the syntax of a new language has the potential to induce the occasional

yawn. So, to make things more interesting, I'll present it to you in a practical way

that lets you play along at home. We'll use the interactive Ruby shell.

The Interactive Ruby Shell (irb)

You can fire up the interactive Ruby shell by entering irb into a terminal

window:

$ irb

irb>

Windows Users

Windows users, remember to use the Ruby > Start Command Prompt with Ruby

option from the Ruby 2.3.1 menu to ensure that the environment you're using

contains the right settings.

60 Rails: Novice to Ninja

irb allows you to issue Ruby commands interactively, one line at a time. This

ability is great for playing with the language, and it's also handy for debugging, as

we'll see in Chapter 11.

A couple of points about the irb output you'll see in this chapter are that lines

beginning with:

the Ruby shell prompt (irb>) are typed in by the user

the => show the return value of the command that has been entered

We'll start with a really brief example:

irb> 1

=> 1

Here, I've simply thrown the number 1 at the Ruby shell and received back what

appears to be the very same number.

Looks can be deceiving, though. It's actually not the very same number. What has

been handed back is actually a fully-featured Ruby object.

Remember our discussion about object-oriented programming in the previous

section? Well, in Ruby, absolutely everything is treated as an object with which

we can interact; each object belongs to a certain class, therefore each object is able

to store data and functionality in the form of methods.

To find the class to which our number belongs, we call the number's class

method:

irb> 1.class

=> Fixnum

We touched on senders and receivers earlier. In this example, we've sent the

class message to the 1 object, so the 1 object is the receiver (there's no sender, as

we're sending the message from the interactive command line rather than from

Introducing Ruby 61

another object). The value that's returned by the method we've invoked is Fixnum,

which is the Ruby class that represents integer values.

Since everything in Ruby is an object (including a class), we can actually send the

very same message to the Fixnum class. The result is different, as we'd expect:

irb> Fixnum.class

=> Class

This time, the return value is Class, which is reassuring—we did invoke it on a

class name, after all.

Note that the class method is all lowercase, yet the return value, Class, begins

with a capital letter. A method in Ruby is always written in lowercase, whereas

the first letter of a class is always capitalized.

Interacting with Ruby Objects

Being accustomed to thinking in terms of objects can take some time. Let's look at

a few types of objects, and see how we can interact with them.

Literal Objects

Literal objects are character strings or numbers that appear directly in the code,

such as the number 1 returned in the previous section. We've seen numbers in

action, so let's now look at a string literal.

Constants, Classes, and Capitals

Class names start with a capital letter because they are constants. In programming-

speak, a constant is a value that, once set, does not change throughout the lifetime

of the program. Classes are considered constants, so they are capitalized. You'll see

other constants in ALL_CAPS, which is a Ruby convention that says "this value is a

constant, but it is not a class." I'll talk more about this soon.

62 Rails: Novice to Ninja

A string literal is an object that contains a string of characters, such as a name, an

address, or an especially witty phrase. In the same way that we created the 1

literal object in the previous example, we can easily create a new string literal

object, then send it a message. A string literal is created by enclosing the

characters that make up the string in single or double quotes:

irb> "The quick brown fox"

=> "The quick brown fox"

First, we'll confirm that our string literal indeed belongs to class String:

irb> "The quick brown fox".class

=> String

This String object has a wealth of embedded functionality. For example, we can

ascertain the number of characters that our string literal comprises by sending it

the length message:

irb> "The quick brown fox".length

=> 19

Easy stuff, eh?

Variables and Constants

Every application needs a way to store information. Enter our variables and

constants. As their names imply, these two data containers have unique roles to

play.

A constant (which I mentioned earlier) is an object that's assigned a value once,

and once only—usually when the application starts up. Constants are therefore

used to store information that won't change within a running application. As an

example, a constant might be used to store the version number for an application.

Constants in Ruby are always written using uppercase letters, as shown below:

Introducing Ruby 63

irb> CONSTANT = "The quick brown fox in a constant"

=> "The quick brown fox in a constant"

irb> APP_VERSION = 5.04

=> 5.04

The one exception to the ALL_CAPS convention is class constants, but you

already knew that, didn't you?

Variables, in contrast, are objects that are able to change at any time. They can

even be reset to nothing, freeing up the memory space that they previously

occupied. Variables in Ruby always start with a lowercase character:

irb> variable = "The quick brown fox in a variable"

=> "The quick brown fox in a variable"

There's one more special (and, you might say, evil) side to a variable: scope. The

scope of a variable is the part of the program to which a variable is visible. If you

try to access a variable from outside its scope (for example, from a part of an

application to which that variable is not visible), your attempts will generally fail.

The notable exception to the rules defining a variable's scope are global variables.

As the name implies, a global variable is accessible from any part of the program.

While this might sound convenient, using global variables is discouraged—that

they can be written to and read from any part of the program introduces security

concerns.

Scoping Scope

Scope is a big concept in most programming languages, and understanding it is a

true way to hone your craft. I wish I could spend more time on scope, but since I

can't, check out this article on SitePoint in your spare time.

64 Rails: Novice to Ninja

http://www.sitepoint.com/understanding-scope-in-ruby/

Let's return to the string literal example we just saw. Assigning a String to a

variable allows us to invoke on that variable the same methods we invoked on the

string literal earlier:

irb> fox = "The quick brown fox"

=> "The quick brown fox"

irb> fox.class

=> String

irb> fox.length

=> 19

irb> fox.reverse

=> "xof nworb kciuq ehT"

See? Just more messages and return values, but now on our variable. And isn't the

reverse method cool? I love that one.

Basic Punctuation in Ruby

Punctuation in Ruby code differs greatly from other languages such as Perl and

PHP, so it can seem confusing at first if you're used to programming in those

languages; however, once you have a few basics under your belt, punctuation in

Ruby becomes quite intuitive, greatly enhancing the readability of your code.

Watching Your G's and Q's

In programming, there are many things, like globals, whose use are "discouraged."

What this really means is that you should only use them when you really

understand how they work and what they mean. Think of them like swear or curse

words: when you're young in your Ruby life, you aren't supposed to use them, yet

you hear adults using them all the time. As you grow up, you'll misuse them plenty

of times, but eventually you'll know when to drop a G-bomb and when to think

better of it.

Introducing Ruby 65

Dot Notation

One of the most common punctuation characters in Ruby is the period (.). As

we've seen, Ruby uses the period to separate the receiver from the message that's

being sent to it in the form Object.receiver.

You can "comment" a line, either to temporarily take a line of code out of the

program flow or for documentation purposes, by using a hash mark (#).

Comments in a line of code may start at the beginning of a line, or they may

appear further along after some Ruby code:

irb> # This is a comment. It doesn't actually do

➥ anything.
irb> 1 # So is this, but this one comes after a

➥ statement.
=> 1

irb> fox = "The quick brown fox" # Assign to a

➥ variable
=> "The quick brown fox"

irb> fox.class # Display a

➥ variable's class
=> String

irb> fox.length # Display a

➥ variable's length
=> 19

Chaining Statements Together

Using characters to separate commands in Ruby is unnecessary, unless we want

to chain multiple statements together on a single line. In this case, a semicolon (;)

EXTRA CREDIT: Dot Notation

There are other uses for a period in Ruby, but they are much rarer. One example is

in ranges; for example, (1..10). I'd suggest you Google "Ruby ranges" and figure

out what they do.

66 Rails: Novice to Ninja

is used as the separator. However, if you put every statement on its own line (as

we've been doing until now), the semicolon is completely optional.

If you chain multiple statements together in the interactive shell, only the output

of the last command that was executed will be displayed to the screen:

irb> fox.class; fox.length; fox.upcase

=> "THE QUICK BROWN FOX"

Don't be confused. All the messages were sent and methods executed, but irb

only shows us the last one.

Use of Parentheses

If you ever delved into the source code of one of the many JavaScript libraries out

there, you might have run screaming from your computer when you saw all the

parentheses that are involved in the passing of arguments to methods.

In Ruby, the use of parentheses for method calls is optional in cases where no

arguments are passed to the method. The following statements are therefore

equal:

irb> fox.class()

=> String

irb> fox.class

=> String

It's common practice (and encouraged) to include parentheses for method calls

with multiple arguments, such as the insert method of the String class:

irb> "jumps over the lazy dog".insert(0, 'The quick brown

➥ fox ')
=> "The quick brown fox jumps over the lazy dog"

Introducing Ruby 67

http://www.sitepoint.com/article/javascript-library/

This call inserts the second argument passed to the insert object ("The quick

brown fox ") at position 0 of the receiving String object ("jumps over the

lazy dog"). Position 0 refers to the very beginning of the string.

Method Notation

Until now, we've looked at cases where Ruby uses less punctuation than its

competitors. Yet, in fact, Ruby makes heavy use of expressive punctuation when

it comes to the naming of methods.

A regular method name, as we've seen, is a simple alphanumeric string of

characters. If a method has a potentially destructive nature (for example, it

directly modifies the receiving object rather than changing a copy of it), it's

commonly suffixed with an exclamation point (!).

The following example uses the upcase method to illustrate this point:

irb> fox.upcase

=> "THE QUICK BROWN FOX"

irb> fox

=> "The quick brown fox"

irb> fox.upcase!

=> "THE QUICK BROWN FOX"

irb> fox

=> "THE QUICK BROWN FOX"

Here, the contents of the fox variable have been modified by the upcase! method.

Punctuation is also used in the names of methods that return Boolean values. A

Boolean value is one that's either true or false; these are commonly used as

return values for methods that ask yes/no questions. Such methods end in a

question mark, which nicely reflects that they have yes/no answers:

irb> fox.empty?

=> false

irb> fox.is_a? String

68 Rails: Novice to Ninja

=> true

These naming conventions make it easy to recognize methods that are destructive

and those that return Boolean values, making your Ruby code more readable.

Object-oriented Programming in Ruby

Let's build on the theory covered at the start of this chapter as we take a look at

Ruby's implementation of OOP.

As we already know, the structure of an application based on OOP principles is

focused on interaction with objects. These objects are often representations of

real-world objects; for example, a Car. Interaction with an object occurs when we

send it a message or ask it a question. If we really did have a Car object called

kitt, starting the car might be as simple as doing this:

irb> kitt.start

This short line of Ruby code sends the message start to the object kitt. Using

OOP terminology, we would say that this code statement calls the start method

of the kitt object.

As I've mentioned, in contrast to other object-oriented programming languages

such as Python and PHP, everything is an object in Ruby. Especially when

compared with PHP, Ruby's OOP feels far from being like a tacked-on

afterthought—it was clearly intended to be a core feature of the language from the

beginning, which makes using the OOP features in Ruby a real pleasure.

As we've seen, even the simplest of elements in Ruby (such as literal strings and

numbers) are objects to which you can send messages.

Predicate Method

A method that returns only true or false is also known as a predicate method.

Introducing Ruby 69

Classes and Objects

As in any other OOP language, each object belongs to a certain class in Ruby (for

example, pontiac_firebird might be an object of class Car). We know that a

class can group objects of a certain kind, and equip those objects with common

functionality. This functionality comes in the form of methods, and in the object's

ability to store information. For example, a pontiac_firebird object might need

to store its mileage, as might any other object of the class Car.

In Ruby, the instantiation of a new object that's based on an existing class is

accomplished by sending that class the new message. The result is a new object

of that class. The following few lines of code show an extremely basic class

definition in Ruby; the third line is where we create an instance of the class that

we just defined:

irb> class Car

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

Another basic principle in OOP is encapsulation. According to this principle,

objects should be treated as independent entities, each taking care of its own

internal data and functionality. If we need to access an object's information—its

internal variables, for instance—we make use of the object's interface, which is

the subset of the object's methods that are made available for other objects to call.

Ruby provides objects with functionality at two levels—object level and class

level—and adheres to the principle of encapsulation while it's at it! Let's dig

deeper.

EXTRA CREDIT: Access Levels for Object Methods

Object methods can have different access levels, meaning, some are accessible

publicly, while others are accessible only by the object itself. A method can have

one of three access levels within an object: public, protected, or private. Go and ask

Google what these mean.

70 Rails: Novice to Ninja

Object-level Functionality

At the object level, data storage (state) is handled by instance variables (a name

that's derived from the instantiation process mentioned). Think of instance

variables as storage containers that are attached to the object, but to which other

objects do not have direct access.

To store or retrieve data from these variables, another object must call an accessor

method defined on the object. An accessor method has the ability to set (and get)

the value of the object's instance variables.

Let's look at how instance variables and accessor methods relate to each other,

and how they're implemented in Ruby.

Instance Variables

Instance variables are bound to an object, and contain values for that object only.

Revisiting our car example, the mileage values for a number of different Car

objects are likely to differ, as each car will have a different mileage. Therefore,

mileage is held in an instance variable.

An instance variable can be recognized by its prefix: a single “at” (@) sign. What's

more, instance variables don't even need to be declared! There's only one issue:

we don't have any way to retrieve or change them from outside the object once

they do exist. This is where instance methods come into play.

Instance Methods

Data storage and retrieval is not the only capability that can be bound to a specific

object; functionality can also be bound to objects. We achieve this binding

through the use of instance methods that are specific to an object. Invoking an

A Link to Social Media

I like to think of instance variables as the inspiration for mentions on Twitter and

social media. I have no idea if this is true, but Twitter did start life in Ruby.

Introducing Ruby 71

instance method (in other words, sending a message that contains the method

name to an object) will invoke that functionality on the receiving object only.

Instance methods are defined using the def keyword, and end with the end

keyword. Enter the following example into a new Ruby shell:

$ irb

irb> class Car

irb> def open_trunk

irb> # code to open trunk goes here

irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

What you've done is define a class called Car, which has an instance method with

the name open_trunk. A Car object instantiated from this class will—possibly

using some fancy robotics connected to our Ruby program—open its trunk when

its open_trunk method is called. Ignore that nil return value for the moment;

we'll look at nil values in the next section.

With our class in place, we can make use of this method:

Indentation in Ruby

While the indentation of code is a key element of the syntax of languages such as

Python, in Ruby, indentation is purely cosmetic: it aids readability without

affecting the code in any way. In fact, while we're experimenting with the Ruby

shell, don't worry too much about indenting any of the code; however, when we're

saving files that will be edited later, you'll want the readability benefits that come

from indenting nested lines.

The Ruby community has agreed upon two spaces being optimum for indenting

blocks of code such as class or method definitions. We'll adhere to this indentation

scheme throughout this book.

72 Rails: Novice to Ninja

irb> kitt.open_trunk

=> nil

Since we want to avoid having the trunks of all our cars to open at once, we've

made this functionality available as an instance method.

I know, I know—we still haven't modified any data. We'll use accessor methods

for this task.

Accessor Methods

An accessor method is a special type of instance method, used to read or write to

an instance variable. There are two types: readers (sometimes called “getters”)

and writers (or “setters”).

A reader method will look inside the object, fetch the value of an instance

variable, and hand this value back to us. A writer method, on the other hand, will

look inside the object, find an instance variable, and assign the variable the value

that it was passed.

Let's add some methods for getting and setting the @mileage attribute of our Car

objects. Once again, exit from the Ruby shell so that we can create an entirely

new Car class definition. Our class definition is a bit longer now, so enter each

line carefully. If you make a typing mistake, exit the shell, and start over:

$ irb

irb> class Car

irb> def set_mileage(x)

irb> @mileage = x

irb> end

irb> def get_mileage

irb> @mileage

irb> end

irb> end

=> nil

irb> kitt = Car.new

Introducing Ruby 73

=> #<Car:0x75e54>

Now, we can finally modify and retrieve the mileage of our Car objects:

irb> kitt.set_mileage(5667)

=> 5667

irb> kitt.get_mileage

=> 5667

This is still a bit awkward. Wouldn't it be nice if we could give our accessor

methods the same names as the attributes that read and control? Luckily, Ruby

contains shorthand notation for this very task. We can rewrite our class definition

as follows:

$ irb

irb> class Car

irb> def mileage=(x)

irb> @mileage = x

irb> end

irb> def mileage

irb> @mileage

irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

With these accessor methods in place, we can read to and write from our instance

variable as if it were available from outside the object:

irb> kitt.mileage = 6032

=> 6032

irb> kitt.mileage

74 Rails: Novice to Ninja

=> 6032

These accessor methods form part of the object's interface. By the way, since Ruby

is all about programmer productivity and happiness, the standard library

supplies shortcut methods to define accessor methods. Check it out:

irb> class Car

irb> attr_accessor :mileage

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

irb> kitt.mileage = 6032

=> 6032

irb> kitt.mileage

=> 6032

Pretty neat, eh?

Class-level Functionality

At the class level, class variables handle data storage. They're commonly used to

store state information, or as a means of configuring default values for new

objects. Class variables are typically set in the body of a class, and can be

recognized by their prefix: a double “at” sign (@@).

First, enter the following class definition into a new Ruby shell:

$ irb

irb> class Car

irb> @@number_of_cars = 0

irb> def initialize

irb> @@number_of_cars = @@number_of_cars + 1

irb> end

irb> end

Introducing Ruby 75

=> nil

In the code, the class definition for the class Car has an internal counter for the

total number of Car objects that have been created. Using the special instance

method initialize, which is invoked automatically every time an object is

instantiated, this counter is incremented for each new Car object.

By the way, we've already used a class method; I snuck it in there. The new

method is an example of a class method that ships with Ruby and is available to

all classes, whether they're defined by you or form part of the Ruby Standard

Library.2

Custom class methods are commonly used to create objects with special

properties (such as a default color for our Car objects—called factory methods),

or to gather statistics about the class's usage.

Extending the earlier example, we could use a class method called count to

return the value of the @@number_of_cars class variable. Remember that this is a

variable that's incremented for every new Car object created. Class methods are

defined identically to instance methods: using the def and end keywords. The

only difference is that class method names are prefixed with self. Enter this code

into a new Ruby shell:

$ irb

irb> class Car

irb> @@number_of_cars = 0

irb> def self.count

irb> @@number_of_cars

irb> end

irb> def initialize

irb> @@number_of_cars += 1

irb> end

irb> end

2. The Ruby Standard Library is a large collection of classes that's included with every

Ruby installation. The classes facilitate a wide range of common functionality, such as

accessing websites, date calculations, file operations, and more.

76 Rails: Novice to Ninja

=> nil

The following code instantiates some new Car objects, then makes use of our new

class method:

irb> kitt = Car.new # Michael Knight's talking

➥ car
=> #<0xba8c>

irb> herbie = Car.new # The famous Volkswagen love

➥ bug!
=> #<0x8cd20>

irb> batmobile = Car.new # Batman's sleek automobile

=> #<0x872e4>

irb> Car.count

=> 3

The method tells us that three instances of the Car class have been created. Note

that we can't call a class method on an object:3

irb> kitt.count

NoMethodError: undefined method 'count' for

➥ #<Car:0x89da0>

As implied by the name, the count class method is available only to the Car class,

not to any objects instantiated from that class.

Avoid the CV Word

Class variables are treated in much the same way as global variables in that they are

discouraged. Think of them as the "CV" word and avoid them.

3. Ruby actually does provide a way to invoke some class methods on an object using the

:: operator, but we won't worry about that for now. We'll see the :: operator in use in

Chapter 4.

Introducing Ruby 77

I sneakily introduced another operator in there. In many languages, including

PHP and Java, the ++ and -- operators are used to increment a variable by one,

but Ruby doesn't support this notation; instead, we use the += operator.

Therefore, the shorthand notation for incrementing our counter in the class

definition is:

irb> @@number_of_cars += 1

This code is identical to:

irb> @@number_of_cars = @@number of cars + 1

Both of these lines can be read as “my_variable becomes equal to my_variable

plus one.”

Inheritance

If your application deals with more than the flat hierarchy we've explored so far,

you may want to construct a scenario whereby some classes inherit from other

classes. Inheritance is a tenet of object-oriented programming where one class

can be used as a parent (or super) class of another. This means that the methods

and variables defined on the super class are available on the child class. You use

inheritance when one class is a kind of another class. The example code will

make this more clear.

Continuing with the car analogy, let's suppose that we have a green limousine

named Larry (this assignment of names to cars may seem a little strange, but it's

important for this example, so bear with me). In Ruby, the larry object would

probably descend from a StretchLimo class, which could in turn descend from

the class Car (a StretchLimo is a Car). Let's implement that class relationship to

see how it works:

$ irb

irb> class Car

78 Rails: Novice to Ninja

irb> WHEELS = 4

irb> end

=> nil

irb> class StretchLimo < Car

irb> WHEELS = 6

irb> def turn_on_television

irb> # Invoke code for switching on on-board TV here

irb> end

irb> end

=> nil

Now, if we were to instantiate an object of class StretchLimo, we'd end up with a

different kind of car. Instead of the regular four wheels that standard Car objects

have, this one would have six wheels (stored in the class constant WHEELS). It

would also have extra functionality, made possible by the presence of the extra

method turn_on_television, which could be called by other objects.

However, if we were to instantiate a regular Car object, the car would have only

four wheels, and there would be no instance method for turning on an on-board

television. Think of inheritance as a way for a class's functionality to become

more specialized the further we move down the inheritance path.

Don't worry if you're struggling to wrap your head around all the aspects of OOP.

You'll become accustomed to them as you work through this book. It may be

useful to come back to this section, though, especially if you need a reminder

about a certain term later on.

Modules and Composition

Another foundational concept is composition, which is basically reusing

functionality across objects by including them in the class definition. In other

words, the behavior of a class is composed of defined functional sets. These

functional sets are not a part of the base class definition, but are included in any

class desiring that functionality. I like to think that if inheritance defines "is a",

then composition defines "has a".

Introducing Ruby 79

Ruby allows the definition of sets of functionality in modules. A module looks a

lot like a class except that it has no new method, which means it can't be

instantiated. Here is an example module:

irb> module Nitrous

irb> def push_the_red_button

irb> # Invoke code kicking on the nitrous here! ZOOM!

irb> "ZOOM!"

irb> end

irb> end

Not all cars have nitrous installed, but for cars that are fast and, possibly, furious,

nitrous is a must. Now that we have a module, how do we include it in the class

definition of our race cars? By using include.

Modules are included in a class using the include keyword. Let's look at an

example:

irb> class Racer < Car

irb> include Nitrous

irb> end

=> nil

irb> race_car = Racer.new

irb> race_car.push_the_red_button

=> ZOOM!

irb> limo = StretchLimo.new

irb> limo.push_the_red_button

=> NoMethodError: undefined method `push_the_red_button'

➥ for #<StretchLimo:0x007f89760c9188>

As we've included the Nitrous module in our Racer class, the

push_the_red_button method is available to instances of Racer. The limo,

however, doesn't have nitrous.

One more quick point. You'll notice that includeing a module in a class creates

instance methods. What if we want to define class methods? I'm glad you asked.

80 Rails: Novice to Ninja

There is another keyword, extend, that adds the methods defined in a module as

class methods like so:

irb> module Lemon

irb> def recalls

irb> "The engine explodes if you switch into reverse"

irb> end

irb> end

irb> class Pinto < Car

irb> extend Lemon

irb> end

=> nil

irb> pos = Pinto.new

irb> pos.recalls

=> NoMethodError

irb> Pinto.recalls

=> "The engine explodes if you switch into reverse"

Modules are used extensively in Ruby and Rails, and learning how to use them

effectively can make your code much more maintainable.

Much of the core Rails functionality is implemented via modules, so we've

covered enough to ensure there are no surprises.

Return Values

It's always great to receive feedback. Remember our talk about passing arguments

to methods? Well, regardless of whether or not a method accepts arguments,

invoking a method in Ruby always results in feedback. It comes in the form of a

return value, which is returned either explicitly or implicitly.

To return a value explicitly, use the return statement in the body of a method:

Support for Methods

What if you wanted to add some methods from a module as instance methods, and

other methods in that module as class methods? Googling "ActiveSupport Concern"

will reward you with the answer you seek.

Introducing Ruby 81

irb> def toot_horn

irb> return "toooot!"

irb> end

=> nil

Calling the toot_horn method in this case would produce the following:

irb> toot_horn

=> "toooot!"

However, if no return statement is used, the result of the last statement that was

executed is used as the return value. This behavior is quite unique to Ruby:

irb> def toot_loud_horn

irb> "toooot!".upcase

irb> end

=> nil

Calling the toot_loud_horn method in this case would produce:

irb> toot_loud_horn

=> "TOOOOT!"

Standard Output

When you need to show output to the users of your application, use the print

and puts statements. Both methods will display the arguments passed to them as

a String; puts also inserts a carriage return at the end of its output. Therefore, in

a Ruby program the following lines:

82 Rails: Novice to Ninja

print "The quick "

print "brown fox"

… would produce this output:

The quick brown fox

Yet, using puts like so:

puts "jumps over"

puts "the lazy dog"

… results in:

jumps over

the lazy dog

You might be wondering why all of the trial-and-error code snippets that we

typed into the Ruby shell actually produced output, given that there's been no

use of the print or puts methods up to this point. It's because irb automatically

writes the return value of the last statement it executes to the screen before

displaying the irb prompt. This means that using print or puts from within the

Ruby shell might in fact produce two lines of output: the output that you specify

should be displayed, and the return value of the last command that was executed,

as in this example:

irb> puts "The quick brown fox"

"The quick brown fox"

=> nil

Introducing Ruby 83

Here, nil is actually the return value of the puts statement. Looking back at

previous examples, you will have encountered nil as the return value for class

and method definitions, and you'll have received a hexadecimal address such as

#<Car:0x89da0> as the return value for object definitions. This hexadecimal

value showed the location in memory that the object we instantiated occupied.

Luckily we can forget about bothering with such geeky details any further.

Having met the print and puts statements, you should be aware that a Rails

application has a completely different approach to displaying output, called

templates. We'll look at templates in Chapter 4.

Ruby Core Classes

We've already talked briefly about the String and Fixnum classes in the previous

sections, but Ruby has a lot more under its hood. Let's explore!

Strings

The typical Ruby String object—yep, that very same object we've already been

using—holds and manipulates sequences of characters. Most of the time, new

String objects are created using string literals that are enclosed in single or

double quotes. The string literal can then be stored in a variable for later use:

irb> a_phrase = "The quick brown fox"

=> "The quick brown fox"

irb> a_phrase.class

=> String

If the string literal includes the quote character used to enclose the string itself, it

must be escaped with a backslash character (\):

Put It There

For what it's worth, 99.99998% of the times you want to write to standard output,

use puts. It's what all the cool kids do.

84 Rails: Novice to Ninja

irb> 'I\'m a quick brown fox'

=> "I'm a quick brown fox"

irb> "Arnie said, \"I'm back!\""

=> "Arnie said, \"I'm back!\""

An easier way to specify string literals that contain quotes is to use the %Q

shortcut, like this:

irb> %Q(Arnie said, "I'm back!")

=> "Arnie said, \"I'm back!\""

String additionally supports the substitution of Ruby code into a string literal via

the Ruby expression #{}:

irb> "The current time is: #{Time.now}"

=> "The current time is: Wed Aug 02 21:15:19 CEST 2006"

The String class methods also have rich embedded functionality for modifying

String objects. Here are some of the most useful methods:

gsub substitutes a given pattern within a String:

irb> "The quick brown fox".gsub('fox', 'dog')

=> "The quick brown dog"

include? returns true if a String contains another specific String:

irb> "The quick brown fox".include?('fox')

=> true

length returns the length of a String in characters:

Introducing Ruby 85

irb> "The quick brown fox".length

=> 19

slice returns a portion of a String:

irb> "The quick brown fox".slice(0, 3)

=> "The"

The complete list of class methods and instance methods provided by the String

class is available via the Ruby reference documentation, which you can access by

entering the ri command into the terminal window (for your operating system,

not the Ruby shell), followed by the class name you'd like to look up:

$ ri String

Oh, and ri stands for ruby interactive, in case you're wondering. Don't confuse it

with irb.

Ruby Interactive Documentation

If ri returns nothing or errors, or says Nothing known about String, you need

to install the ri documentation. If you are using RVM, you can type rvm docs

generate-ri. If you are on Windows, try this:

$ gem install rdoc-data

$ rdoc-data --install

That should do the trick.

86 Rails: Novice to Ninja

Numerics

Since there are so many different types of numbers, Ruby has a separate class for

each—the popular Float, Fixnum, and Bignum classes among them. They're

actually all subclasses of Numeric, which provides the basic functionality.

Just like Strings, numbers are usually created from literals:

irb> 123.class

=> Fixnum

irb> 12.5.class

=> Float

Each of the specific Numeric subclasses comes with features that are relevant to

the type of number it's designed to deal with; however, the following

functionality is shared between all Numeric functionality:

integer? returns true if the object is a whole integer:

irb> 123.integer?

=> true

irb> 12.5.integer?

=> false

round rounds a number to the nearest integer:

irb> 12.3.round

=> 12

irb> 38.8.round

=> 39

zero? returns true if the number is equal to zero:

Introducing Ruby 87

irb> 0.zero?

=> true

irb> 8.zero?

=> false

Additionally, there are ways to convert numbers between the Numeric subclasses.

to_f converts a value to a Float, and to_i converts a value to an Integer:

irb> 12.to_f

=> 12.0

irb> 11.3.to_i

=> 11

Symbols

In Ruby, a Symbol is a simple textual identifier. Like a String, a Symbol is created

using literals; the difference is that a Symbol is prefixed with a colon (:) like so:

irb> :fox

=> :fox

irb> :fox.class

=> Symbol

The main benefit of using a Symbolover a String is that a Symbol is immutable,

meaning it doesn't change. This is different from Strings, which can be changed.

Immutability is a big subject, so let's focus on the biggest benefit: memory. Each

string you created is different from all other strings, even if the strings have the

same characters. Check it out:

irb> "fox".object_id

=> 70114175443000

irb> "fox".object_id

70114175426920

irb> :fox.object_id

88 Rails: Novice to Ninja

544488

irb> :fox.object_id

544488

In Ruby, every object has an object_id, which is, in essence, where that object

sits in memory. As you can see from the example, every time you type "fox", you

get a new object_id, a new object; however, when you type :fox, it's the same

object every time.

This can be an advantage in certain situations when we want to ensure we have

the same object. For example, when we store values in a Hash (which we'll cover

in a sec), a unique key is important. Otherwise, we could store several values

with the same key value, but that would be confusing.

Objects of class String can be converted to class Symbol, and vice versa:

irb> "fox".to_sym

=> :fox

irb> :fox.to_s

=> "fox"

We'll be using Symbol frequently as we deal with Rails functionality in successive

chapters of this book.

Arrays

We use Ruby's Array to store collections of objects. Each individual object that's

stored in an Array has a unique numeric key, which we can use to reference it. As

with many languages, the first element in an Array is stored at position 0 (zero).

To create a new Array, simply instantiate a new object of class Array using the

Array.new construct. You can (and should) also use a shortcut approach, which is

to enclose the objects you want to place inside the Array in square brackets.

For example, an Array containing the mileage at which a car is due for its regular

service might look similar to this:

Introducing Ruby 89

irb> service_mileage = [5000, 15000, 30000, 60000,

➥ 100000]
=> [5000, 15000, 30000, 60000, 100000]

To retrieve individual elements from an Array, we specify the numeric key in

square brackets:

irb> service_mileage[0]

=> 5000

irb> service_mileage[2]

=> 30000

Ruby has more shortcuts that allow us to create an Array from a list of Strings:

the %w() and %i() syntaxes. Using these shortcuts saves us from typing a lot of

double-quote characters. The former (%w) creates an array of strings, while the

latter (%i) creates an array of symbols:

irb> string_colors = %w(red green blue black)

=> ["red", "green", "blue", "black"]

irb> string_colors[0]

=> "red"

irb> string_colors[3]

=> "black"

irb> symbol_colors = %i(red green blue black)

=> [:red, :green, :blue, :black]

irb> symbol_colors[0]

=> :red

In addition to facilitating simple element retrieval, Array comes with a set of

class methods and instance methods that ease data management tasks

tremendously.

empty? returns true if the receiving Array contains no elements:

90 Rails: Novice to Ninja

irb> available_colors.empty?

=> false

size returns the number of elements in an Array:

irb> available_colors.size

=> 4

The complete list of class methods and instance methods provided by the Array

class is available via the Ruby reference documentation:

$ ri Array

Hashes

A Hash is another kind of data storage container that is similar conceptually to a

dictionary: it maps one object (the key; for example, a word) to another (the

value; a word's definition) in a one-to-one relationship.

A new Hash can be created either by instantiating a new object of class Hash

(using the Hash.new construct) or by using the curly brace shortcut shown in the

code that follows. When defining a Hash, we must specify each entry using one of

two syntaxes: either key: value or key => value. The former is newer and, in

this writer's opinion, preferred but either way works.

In the following example, the Hash maps car names to a color:

irb> car_colors = {

irb> kitt: 'black',

irb> herbie: 'white',

irb> batmobile: 'black',

irb> larry: 'green'

irb> }

=> {"kitt"=>"black", "herbie"=>"white",

Introducing Ruby 91

➥ "batmobile"=>"black", "larry"=>"green"}

To query this newly built Hash, we pass the key of the entry we want to look up

in square brackets as a symbol:

irb> car_colors[:kitt]

=> "black"

All sorts of useful functionality is built into a Hash, including the following

methods:

empty? returns true if the receiving Hash doesn't contain any elements:

irb> car_colors.empty?

=> false

size returns the number of elements in a Hash:

irb> car_colors.size

=> 4

keys returns all keys of a Hash as an Array:

irb> car_colors.keys

=> ["kitt", "herbie", "batmobile", "larry"]

values returns all values of a Hash as an Array in the order they were added

to the Hash:

92 Rails: Novice to Ninja

irb> car_colors.values

=> ["black", "white", "black", "green"]

There are lots more class methods and instance methods provided by the Hash

class. For a complete list, consult the Ruby reference documentation by typing:

ri Hash

nil Values

I promised earlier that I'd explain nil values—now's the time!

All programming languages have a value they can use when they actually mean

nothing. Some use undef; others use NULL. Ruby uses nil. A nil value, like

everything in Ruby, is also an object. It therefore has its own class: NilClass.

Basically, if a method returns nothing, it is returning the value nil. And if you

assign nil to a variable, you effectively make it empty. nil shows up in a couple

of other places, but we'll cross those bridges when we come to them.

Running Ruby Files

For the simple Ruby basics that we've experimented with so far, the interactive

Ruby shell (irb) has been our tool of choice. I'm sure you'll agree that

experimenting in a shell-like environment where we can see immediate results is

a great way to learn the language.

Now we're going to be talking about control structures, and for tasks of such

complexity you'll want to work in a text editor. This environment will allow you

to run a chunk of code several times without having to retype it.

In general, Ruby scripts are simple text files containing Ruby code and a .rb

extension. These files are passed to the Ruby interpreter, which executes your

code:

Introducing Ruby 93

$ ruby myscript.rb

To work with the examples that follow, I'd recommend that you open a new text

file in your favorite text editor (which might be one of those I recommended back

in Chapter 2) and type the code out as you go—this really is the best way to learn.

As has been demonstrated, to run the files from the command line you simply

need to type ruby, followed by the filename.

Control Structures

Ruby has a rich set of features for controlling the flow of your application.

Conditionals are keywords that are used to decide whether or not certain

statements are executed based on the evaluation of one or more conditions; loops

are constructs that execute statements more than once; and blocks are a means of

encapsulating functionality (for example, so as to be executed in a loop).

To demonstrate these control structures, let's utilize some of the Car classes that

we defined earlier. Type out the following class definition and save the file; we'll

build on it in this section as we explore some control structures:

class Car

WHEELS = 4 # class constant

@@number_of_cars = 0 # class variable

def initialize

@@number_of_cars = @@number_of_cars + 1

end

def self.count

@@number_of_cars

end

def mileage=(x) # instance variable writer

@mileage = x

end

def mileage # instance variable reader

@mileage

end

94 Rails: Novice to Ninja

end

class StretchLimo < Car

WHEELS = 6 # class constant

@@televisions = 1 # class variable

def turn_on_television

Invoke code for switching on on-board TV here

end

end

class PontiacFirebird < Car

end

class VolksWagen < Car

end

Conditionals

There are two basic conditional constructs in Ruby: if and unless. Each can be

used to execute a group of statements on the basis of a given condition.

The if Construct

An if construct wraps statements that are to be executed only if a certain

condition is met. The keyword end defines the end of the if construct. The

statements that are contained between the condition and the end keyword are

executed only if the condition is met:

if Car.count.zero?

puts "No cars have been produced yet."

end

You can provide a second condition by adding an else block. When the

condition is met the first block is executed; otherwise, the else block is executed.

This kind of control flow will probably be familiar to you. Here it is in action:

Introducing Ruby 95

if Car.count.zero?

puts "No cars have been produced yet."

else

puts "New cars can still be produced."

end

The most complicated example involves an alternative condition. If the first

condition is not met, a second condition is evaluated. If neither conditions are

met, the else block is executed:

if Car.count.zero?

puts "No cars have been produced yet."

elsif Car.count >= 10

puts "Production capacity has been reached."

else

puts "New cars can still be produced."

end

If the count method returned 5, this code would produce the following output:

New cars can still be produced.

An alternative to the traditional if condition is the if statement modifier. A

statement modifier does just that: it modifies the statement of which it is part.

The if statement modifier works exactly like a regular if condition, but it sits at

the end of the line that's affected, rather than before a block of code:

puts "No cars have been produced yet." if Car.count.zero?

This version of the if condition is often used when the code that's to be executed

conditionally comprises just a single line. Having the ability to create conditions

such as this results in code that's a lot more like English than other programming

languages with more rigid structures.

96 Rails: Novice to Ninja

The unless Construct

The unless condition is a negative version of the if condition. It's useful for

situations in which you want to execute a group of statements when a certain

condition is not met.

Let's create a few instances to work with:4

kitt = PontiacFirebird.new

kitt.mileage = 5667

herbie = VolksWagen.new

herbie.mileage = 33014

batmobile = PontiacFirebird.new

batmobile.mileage = 4623

larry = StretchLimo.new

larry.mileage = 20140

Now if we wanted to find out how many Knight Rider fans KITT could take for a

joyride, we could check the class of the kitt object. As with the if expression,

the end keyword defines the end of the statement:

unless kitt.is_a?(StretchLimo)

puts "This car is only licensed to seat two people."

end

Like the if condition, the unless condition may have an optional else block of

statements, which is executed when the condition is met:

4. Aficionados of comics will notice that I've visualized the Batmobile as a Pontiac

Firebird. In fact, the caped crusader's choice of transport has varied over the years, taking

in many of the automobile industry's less common innovations, and including everything

from a 1966 Lincoln Futura to an amphibious tank. But we'll stick with a Pontiac for this

example.

Introducing Ruby 97

unless kitt.is_a?(StretchLimo)

puts "This car is only licensed to seat two people."

end

Since KITT is definitely not a stretch limousine, this code would return:

This car only has room for two people.

Unlike if conditions, unless conditions do not support a second condition;

however, like the if condition, the unless condition is also available as a

statement modifier. The following code shows an example of this. Here, the

message will not display if KITT's mileage is less than 25,000:

puts "Service due!" unless kitt.mileage < 25000

Loops

Ruby provides the while and for constructs for looping through code (that is,

executing a group of statements a specified number of times, or until a certain

condition is met). A number of instance methods are also available for looping

over the elements of an Array or Hash; we'll cover these in the next section.

while and until Loops

A while loop executes the statements that it encloses repeatedly, as long as the

specified condition is met:

while Car.count < 10

Car.new

puts "A new car instance was created."

end

98 Rails: Novice to Ninja

This simple while loop executes the Car.new statement repeatedly, as long as the

total number of cars is below 10. It exits the loop when the number reaches ten.

Like the relationship between if and unless, the while loop also has a

complement: the until construct. If we use until, the code within the loop is

executed until the condition is met. We could rewrite the prevous loop using

until like so:

until Car.count == 10

Car.new

puts "A new car instance was created."

end

for Loops

for loops allow us to iterate over the elements of a collection, such as an Array,

and execute a group of statements once for each element. Here's an example:

Assignment and Equation Operators

It's important to note the difference between the assignment operator (=), a single

equal sign, and the equation operator (==), a double equal sign, when using them

within a condition.

If you're comparing two values, use the equation operator:

if Car.count == 10

⋮
end

If you're assigning a value to a variable, use the assignment operator:

my_new_car = Car.new

If you confuse the two, you might modify a value that you were hoping only to

inspect—with potentially disastrous consequences!

Introducing Ruby 99

for car in [kitt, herbie, batmobile, larry]

puts car.mileage

end

This code would produce the following output:

5667

33014

4623

20140

This simple for loop iterates over an Array of Car objects and outputs the

mileage for each car. In each iteration, the car variable is set to the current

element of the Array. The first iteration has car set to the equivalent of kitt; the

second iteration has it set to herbie, and so forth.

In practise, the traditional while and for loops covered here are used rarely.

Instead, most people use the instance methods provided by the Array and Hash

classes, which we'll cover next.

Blocks, Procs, and Lambdas. Oh my!

Blocks are probably the single most attractive feature of Ruby; however, they also

tend to take a while to drop into place for Ruby newcomers. Before we dig deeper

into creating blocks, let's take a look at some of the core features of Ruby that use

blocks.

We looked at some loop constructs in the previous section, which was a useful

way to explore the tools that are available to us. Yet you'll probably only come

across very few of these constructs in your work with other Ruby scripts, simply

because it's almost always easier to use a block to perform the same task. A block,

in conjunction with the each method provided by the Array and Hash classes, is a

very powerful way to loop through your data.

100 Rails: Novice to Ninja

Let me illustrate this point with an example. Consider the for loop we used a

moment ago. We could rewrite that code to use the each method, which is an

instance method of the Array, and a block:

[kitt, herbie, batmobile, larry].each do |car_name|

puts car_name.mileage

end

Let's analyze this: the block comprises the code between the do and end

keywords. A block is able to receive parameters, which are placed between

vertical bars (|) after the do keyword. Multiple parameters are separated by

commas. Therefore, this code performs an identical operation to the for loop we

saw before, but in a much more succinct manner.

Let's take another example. To loop through the elements of a Hash, we use the

each method and pass two parameters to the block: the key (car_name) and the

value (color):

car_colors = {

kitt: 'black',

herbie: 'white',

batmobile: 'black',

larry: 'green'

}

car_colors.each do |car_name, color|

puts "#{car_name} is #{color}"

end

This produces the following output:

kitt is black

herbie is white

batmobile is black

larry is green

Introducing Ruby 101

The Integer class also sports a number of methods that use blocks. The times

method of an Integer object, for example, executes a block exactly n times,

where n is the value of the object:

10.times { Car.new }

puts "#{Car.count} cars have been produced."

Here's the resultant output:

10 cars have been produced.

One final point to note here is the alternative block syntax of curly braces. Instead

of the do…end keywords that we've been using, curly braces are the preferred

syntax for blocks that are very short, as in the previous example.

Here's another method of the Integer class. In the spirit of times, the upto

method of an Integer object counts from the value of the object up to the

argument passed to the method:

5.upto(7) { |i| puts i }

And here's the output:

5

6

7

In Ruby parlance, the object i is a parameter of the block. Parameters for blocks

are enclosed in vertical bars, and are usually only available from within the

block. If we have more than one parameter we separate them using commas, like

so: |parameter1, parameter2|. In the previous example, we would no longer

have access to i once the block had finished executing.

102 Rails: Novice to Ninja

It's worth mentioning that there are a couple of other constructs in Ruby that are

very similar to blocks: procs and lambdas. The difference between these three

items is subtle, especially for the needs of this book. For what we'll cover, it's

really only important that you are aware of the syntactical differences. Here are

some examples:

10.times { Car.new } => Makes 10 cars

car_maker = Proc.new { Car.new }

10.times(&car_maker) => Makes 10 cars

competitor = lambda { |i| Car.new }

10.times(&competitor) => Makes 10 cars

another_competitor = ->(i){ Car.new } => Makes 10 cars

The first example is a block. The second example (Proc.new) creates a Proc

object. Procs and blocks are almost identical, except a proc is an object and a

block is not. The last two examples (with lambda and the odd-looking "stabby

lambda" ->() create lambdas which are types of procs with a couple of

behavioral differences. These differences are around arity (the number of

arguments) and how the lambda returns when it completes. Again, it's more than

you need to know right now, so you know what that means, right? It's time for

some ...

As we work through this book, we'll explore many more uses of blocks, procs,

and lambdas in combination with the Rails core classes.

Summary

Wow, we covered a lot in this chapter! First, we swept through a stack of object-

oriented programming theory—probably the equivalent of an introductory

computer science course! This gave us a good grounding for exploring the basics

EXTRA CREDIT: Ruby Rites

Learning the difference between procs, blocks, and lambdas is a Ruby rite of

passage. To help you take yours, go check out this video on SitePoint Premium. It's

a great little video ... I recommend you make popcorn first.

Introducing Ruby 103

https://www.sitepoint.com/premium/screencasts/discovering-the-differences-between-blocks-procs-and-lambdas

of the Ruby programming language, and the Interactive Ruby Shell (irb) was a

fun way to conduct this exploration.

We also investigated many of the Ruby core classes from within the Ruby shell,

such as String, Symbol, Array, and Hash. We then moved from the shell to create

and save proper Ruby files, where we experimented with control structures such

as conditionals, loops, and blocks.

In the next chapter, we'll look at the major cornerstones that make up the Rails

framework.

104 Rails: Novice to Ninja

4Chapter

Rails Revealed

As we've already covered in Chapter 1, quite a bit of thought has been put into

the codebase that makes up the Rails framework. Over time, many of the internals

have been rewritten, items have been added and removed, and conventions have

changed. All of this change has improved speed and efficiency, allowing the

implementation of additional features, but the original architecture remains

largely unchanged. This chapter will shed some light on the inner workings of

Rails.

Three Environments

Rails encourages the use of a different environment for each stage in an

application's life cycle development, testing, and production. If you've been

Rails Revealed 105

developing web applications for a while, this is probably how you operate

anyway; Rails simply formalizes these environments.

In the development environment, changes to an application's source code are

immediately visible; we just reload the corresponding page in a web browser.

Speed is not a critical factor in this environment. Instead, the focus is on

providing the developer with as much insight as possible into the components

responsible for displaying each page. When an error occurs in the development

environment, we are able to tell at a glance which line of code is responsible for

the error and how that particular line was invoked. This capability is provided by

the stack trace—a comprehensive list of all the method calls leading up to the

error—which is displayed when an unexpected error occurs.

In testing, we usually refresh the database with a baseline of dummy data each

time a test is repeated. This step ensures that the results of the tests are consistent

and behavior is reproducible. Unit and functional testing procedures are fully

automated in Rails. When we test a Rails application, we don't view it using a

traditional web browser. Instead, tests are invoked from the command line, and

can be run as background processes. The testing environment provides a

dedicated space in which these processes can operate.

By the time your application finally goes live, it should be sufficiently tested that

all—or at least most—of the bugs have been eliminated. As a result, updates to

the codebase should be infrequent, enabling the production environments to be

optimized to focus on performance. Tasks such as writing extensive logs for

debugging purposes should be unnecessary at this stage. Besides, if an error does

occur, you want to avoid scaring your visitors away with a cryptic stack trace;

that's best kept for the development environment.

As the requirements for each of the three environments are quite different, Rails

stores the configuration for each environment separately. The dependencies for

each environment will be different; the data for each environment will be

different. You'll likely want to have more detailed logs in development than

production. Rails makes handling the configuration of all these items simple.

106 Rails: Novice to Ninja

Application Dependencies

One of the great aspects of Rails is its community and all the gems it has created

that we, as Rails developers, can use in our apps. Each gem you use in your

application becomes a dependency, meaning that your app depends on it. It's

likely that your apps will have a lot of dependencies. In fact, it's such a common

occurrence that Rubyists created a tool to make managing dependencies easy.

Bundler

Rails manages application dependencies using a Ruby gem called Bundler. As its

homepage states, Bundler:

"provides a consistent environment for Ruby projects by tracking and

installing the exact gems and versions that are needed."

These dependencies are listed in the application Gemfile, which is found in the

root of the application structure. Gems are listed by name and version. Here is

part of the Gemfile that Rails created with our application:

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github:

➥ 'rails/rails'
gem 'rails', '~> 5.0.0'

Use sqlite3 as the database for Active Record

gem 'sqlite3'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

...

group :development, :test do

Call 'byebug' anywhere in the code to stop execution and

➥ get a debugger console
gem 'byebug', platform: mri

end

group :development do

Rails Revealed 107

http://bundler.io/

Access an IRB console on exception pages or by using

➥ <%= console %> in views
gem 'web-console', '~> 2.0'

end

As you can see, everything is a gem, including Rails itself! The first line (source

'https://rubygems.org') tells Bundler to look for gems on the RubyGems

website, where the community happens to publish gems. Did you notice that

Bundler lets you define dependencies in each environment?

group :development do

Access an IRB console on exception pages or by using

➥ <%= console %> in views
gem 'web-console'

end

The group :development block declaration tells Bundler to only load these gems

in the development environment. Neat, huh?

Once the Gemfile includes all the app dependencies, running bundle install

will make Bundler retrieve all the gems and pull them into the current

environment:

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Fetching additional metadata from https://rubygems.org/...

Resolving dependencies...

Using rake 10.3.1

Using json 1.8.1

Installing minitest 5.3.3

Installing i18n 0.6.9

Installing thread_safe 0.3.3

...

108 Rails: Novice to Ninja

Bundler is smart. Really smart. It checks all the gems, ensuring that their

dependencies are met and there are no version clashes. A version clash is when

two gems require different versions of a third gem, and that can be a nightmare to

handle. Thankfully, Bundler does that for you.

A successful bundle install creates another file called Gemfile.lock, which

lists the exact gems and versions used in the last successful "bundle." When Rails

starts up, it checks this file to load all the gem dependencies so that your app is

ready to go. Any change to the Gemfile (meaning, dependencies added or

removed) requires another bundle install. Don't worry, though; Bundler is

smart and will just load (or remove) the changes, check that everything is okay,

and reuse gems from previous bundles. Bundler is like your Dependency

Compliance Officer ensuring everyone gets along.

Finally, Bundler is not a Rails-only tool. It can be (and is) used in other Ruby

projects, so you'll see it all over the Ruby landscape.

Database Configuration

By default, Rails creates a distinct database for each environment. At any given

time, you might have:

live data with which real users are interacting in the production environment

a partial copy of this live data to debug an error or develop new features in the

development environment

a set of testing data that's constantly being reloaded into the testing

environment

Configuring the database for a Rails application is incredibly easy. All the critical

information is contained in just one file: config/database.yml. We'll take a close

EXTRA CREDIT: Bundler's Brass Tacks

There are a lot of details around using Bundler that are outside the scope of this

book. It behooves you, as an aspiring Ruby developer, to read up on all the things

Bundler can do and the ways it can do them on the Bundler site.

Rails Revealed 109

http://bundler.io

look at this database configuration file, then create some databases for our

application to use.

The Database Configuration File

The separation of environments is reflected in the Rails database configuration

file database.yml. An example of this was created when we used the rails

command to create the application. Go take a look—it lives in the config

subdirectory of our Readit application.

With the comments removed, the file should look like this:

default: &default

adapter: sqlite3

pool: 5

timeout: 5000

development:

<<: *default

database: db/development.sqlite3

test:

<<: *default

database: db/test.sqlite3

production:

<<: *default

database: db/production.sqlite3

Yo YAML!

The format of many configuration files in Ruby frameworks, such as Rails, is

"YAML Ain't Markup Language" or YAML. YAML defines data structures and object

trees in a very human-readable fashion. The database.yml file that follows is a

YAML file, and you can see that it defines keys and their values using colons (:)

and whitespace (the environment values are indented under the environment

name.) You will see YAML a lot in your Ruby travels.

110 Rails: Novice to Ninja

This file lists the minimum amount of information required in order to connect to

the database server for each environment (development, test, and production).

With the default setup of SQLite that we installed in Chapter 2, every

environment is allocated its own physically separate database file, which calls

the db subdirectory home. Notice how YAML allows us to define defaults and

pull those into each environment configuration.

The parameter database sets the name of the database that is to be used in each

environment. As the configuration file suggests, Rails can support multiple

databases (and even different types of database engines, such as PostgreSQL for

production and SQLite for development) in parallel. Note that we're talking about

different databases here, not just different tables—each database can host an

arbitrary number of different tables in parallel. Figure 4-1 shows a graphical

representation of this architecture.

4-1. The database architecture we'll use

Yet there's one startling aspect missing from our current configuration: looking at

the db subdirectory, the databases referenced in our configuration file are yet to

exist! Fear not, Rails will magically create them as soon as they're required.

There's nothing we need to do as far as they are concerned.

Rails Revealed 111

The Model-View-Controller Architecture

The model-view-controller (MVC) architecture that we first encountered in

Chapter 1 is not unique to Rails. In fact, it predates both Rails and the Ruby

language by many years. Rails, however, really takes the idea of separating an

application's data, user interface, and control logic to a whole new level.

Let's take a look at the concepts behind building an application using the MVC

architecture. Once we have the theory in place, we'll see how it translates to our

Rails code.

MVC in Theory

MVC is a pattern for the architecture of a software application. It separates an

application into the following components:

Models for handling data and business logic

Controllers for handling the user interface and application

Views for handling graphical user interface objects and presentation

This separation results in user requests being processed as follows:

1. The browser (on the client) sends a request for a page to the controller on the

server.

2. The controller retrieves the data it needs from the model in order to respond

to the request.

3. The controller gives the retrieved data to the view.

4. The view is rendered and sent back to the client for the browser to display.

EXTRA CREDIT: Database Engines

There are lots of database engines in the world; for example, SQLite and

PostgreSQL. Rails uses SQLite by default because it's the easiest to set up to get you

going; however, almost no one uses SQLite as their production database. The

reasons for eschewing SQLite in production have to do with the way it stores data

and how it only allows a single writer at a time. Because installing another database

is beyond the scope of this book, however, we will be using it. Your extra credit?

Investigate other database engines, install one, and hook it up to your Rails app.

112 Rails: Novice to Ninja

This process is illustrated in Figure 4-2 below.

4-2. User requests being processed

Separating a software application into these three distinct components is a good

idea for a number of reasons, including:

improved scalability (the ability for an application to grow)–for example, if

your application begins experiencing performance issues because database

access is slow, you can upgrade the hardware running the database without

other components being affected

ease of maintenance—as the components have a low dependency on each

other, making changes to one (to fix bugs or change functionality) does not

affect another

reusability—a model may be reused by multiple views

If you're struggling to get your head around the concept of MVC, don't worry. For

now, what's important to remember is that your Rails application is separated

into three distinct components. Jump back to the MVC diagram if you need to

refer to it later on.

MVC the Rails Way

Rails promotes the concept that models, views, and controllers should be kept

separate by storing the code for each element as separate files in separate

directories.

Rails Revealed 113

This is where the Rails directory structure that we created back in Chapter 2

comes into play. It's time to poke around a bit within that structure. If you take a

look inside the app directory, depicted in Figure 4-3, you'll see some folders

whose names might start to sound familiar.

4-3. The app subdirectory

114 Rails: Novice to Ninja

ActiveRecord

ActionController

ActionView

As you can see, each component of the model-view-controller architecture has its

place within the app subdirectory—the models, views, and controllers

subdirectories respectively. (We'll talk about assets in Chapter 7, helpers in

Chapter 6, and mailers later on in this chapter. jobs and channels are beyond

the scope of this book.)

This separation continues within the code that comprises the framework itself.

The classes that form the core functionality of Rails reside within the following

modules:

ActiveRecord is the module for handling business logic and

database communication. It plays the role of model in our

MVC architecture.1

ActionController is the component that handles browser

requests and facilitates communication between the model

and the view. Your controllers will inherit from this class. It

forms part of the ActionPack library, a collection of Rails

components that we'll explore in depth in Chapter 5.

code>ActionView is the component that handles the

presentation of pages returned to the client. Views inherit

from this class, which is also part of the ActionPack library.

Let's take a closer look at each of these components in turn.

The ActiveRecord Module

ActiveRecord is designed to handle all of an application's tasks that relate to the

database, including:

establishing a connection to the database server

retrieving data from a table

storing new data in the database

1. While it might seem odd that ActiveRecord doesn't have the word “model” in its

name, there is a reason for this: Active Record is also the name of a famous design

pattern—one that this component implements in order to perform its role in the MVC

world. Besides, if it had been called ActionModel, it would have sounded more like an

overpaid Hollywood star than a software component …

Rails Revealed 115

ActiveRecord has a few other neat tricks up its sleeve. Let's look at some of them

now.

Database Abstraction

ActiveRecord ships with database adapters to connect to SQLite, MySQL, and

PostgreSQL. A large number of adapters are available for other popular database

server packages, such as Oracle, MongoDB, and Microsoft SQL Server, via

RubyGems.

The ActiveRecord module is based on the concept of database abstraction. As a

refresher from Chapter 1, database abstraction is a way of coding an application

so that it isn't dependent upon any one database. Code that's specific to a

particular database server is hidden safely in ActiveRecord, and invoked as

needed. The result is that a Rails application is not bound to any specific

database server software. Should you need to change the underlying database

server at a later time, no changes to your application code are required.

Some examples of code that differ greatly between vendors, and which

ActiveRecord abstracts, include:

the process of logging into the database server

date calculations

handling of Boolean (true/false) data

evolution of your database structure

Before I can show you the magic of ActiveRecord in action, though, a little

housekeeping is necessary.

The Jury's Out on ActiveRecord

As I said, ActiveRecord is an implementation of the Active Record pattern. There

are those that disagree with the approach taken by ActiveRecord, so you'll hear a

lot about that, too. For now, I suggest you learn the way ActiveRecord works, then

form your judgement of the implementation as you learn.

116 Rails: Novice to Ninja

Database Tables

Tables are the containers within a relational database that store our data in a

structured manner, and they're made up of rows and columns. The rows map to

individual objects, and the columns map to the attributes of those objects. The

collection of all the tables in a database, and the relationships between those

tables, is called the database schema. An example of a table is shown in Figure

4-4.

4-4. The app subdirectory

In Rails, the naming of Ruby classes and database tables follows an intuitive

pattern: if we have a table called stories that consists of five rows, this table will

store the data for five Story objects. What's nice about the mapping between

classes and tables is that there's no need to write code to achieve it; the mapping

just happens, because ActiveRecord infers the name of the table from the name

of the class.

Note that the name of our class in Ruby is a singular noun (Story), but the name

of the table is plural (stories). This relationship makes sense if you think about

it: when we refer to a Story object in Ruby, we're dealing with a single story. But

the SQL table holds a multitude of stories, so its name should be plural. While

Object Relational Mapper

The Active Record pattern is a way of mapping the rows of a database table to the

objects of our object-oriented application. The term for this is "Object Relational

Mapper", or ORM. You'll hear the term "ORM" a lot when discussing

ActiveRecord, so I thought I'd mention it.

Rails Revealed 117

you can override these conventions—as is sometimes necessary when dealing

with legacy databases—it's much easier to adhere to them.

The close relationship between objects and tables extends even further. If our

stories table were to have a link column, as our example in Figure 4-4 does, the

data in this column would automatically be mapped to the link attribute in a

Story object. And adding a new column to a table would cause an attribute of the

same name to become available in all of that table's corresponding objects.

So, let's create some tables to hold the stories we create.

For the time being, we'll create a table using the old-fashioned approach of

entering SQL into the SQLite console. You could type out the following SQL

commands, although typing out SQL is no fun. Instead, I encourage you to

download the following script from the code archive, and copy and paste it

straight into your SQLite console that you invoked via the following command in

the application directory:

$ sqlite3 db/development.sqlite3

Once your SQLite console is up, paste in the following:

CREATE TABLE stories (

"id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

"name" varchar(255) DEFAULT NULL,

"link" varchar(255) DEFAULT NULL,

"created_at" datetime DEFAULT NULL,

"updated_at" datetime DEFAULT NULL

);

You don't have to worry about remembering these SQL commands to use in your

own projects; instead, take heart in knowing that in Chapter 5 we'll look at

migrations. Migrations are special Ruby classes that we can write to create

database tables for our application without using any SQL at all.

118 Rails: Novice to Ninja

Using the Rails Console

Now that we have our stories table in place, let's exit the SQLite console

(simply type .quit) and open up a Rails console. A Rails console is just like the

interactive Ruby console (irb) that we used in Chapter 2, but with one key

difference. In a Rails console, you have access to all the environment variables

and classes that are available to your application while it's running. These are not

available from within a standard irb console.

To enter a Rails console, change to your readit folder, and enter the command

rails console or rails c, as shown in the code that follows. The >> prompt is

ready to accept your commands:

$ cd readit

$ rails console

Loading development environment (Rails 5.0.0)

>>

Saving an Object

To start using ActiveRecord, simply define a class that inherits from the

ActiveRecord::Base. We touched on the :: operator very briefly in Chapter 3,

where we mentioned that it was a way to invoke class methods on an object. It

can also be used to refer to classes that exist within a module, which is what

we're doing here. Flip back to the section on object-oriented programming (OOP)

in Chapter 3 if you need a refresher on inheritance.

Consider the following code snippet:

Seek some SQL Smarts

Even though Rails abstracts away the SQL required to create tables and database

objects, you'd be doing yourself a favor if you become familiar with SQL and its

syntax. SitePoint has published a book on learning SQL, so check that one out.

Rails Revealed 119

https://www.sitepoint.com/premium/books/simply-sql

class Story < ActiveRecord::Base

end

These two lines of code define a seemingly empty class called Story; however,

this class is far from empty, as we'll soon see.

From the Rails console, let's create this Story class and an instance of the class

called story by entering these commands:

>> class Story < ActiveRecord::Base; end

=> nil

>> story = Story.new

=> #<Story id: nil, name: nil, url: nil, created_at:

➥ nil,
updated_at: nil>

>> story.class

=> Story(id: integer, name: string, link: string,

created_at: datetime, updated_at: datetime)

As you can see, the syntax for creating a new ActiveRecord object is identical to

the syntax we used to create other Ruby objects in Chapter 3. At this point, we've

created a new Story object; however, this object exists in memory only—we're yet

to store it in our database.

We can confirm that our Story object hasn't been saved by checking the return

value of the new_record? method:

>> story.new_record?

=> true

Since the object is yet to be saved, it will be lost when we exit the Rails console.

To save it to the database, we invoke the object's save method:

120 Rails: Novice to Ninja

>> story.save

=> true

Now that we've saved our object (a return value of true indicates that the save

method was successful), our story is no longer a new record. It's even been

assigned a unique ID:

>> story.new_record?

=> false

>> story.id

=> 1

Defining Relationships between Objects

As well as the basic functionality that we've just seen, ActiveRecord makes the

process of defining relationships (or associations) between objects as easy as it

can be. Of course, it's possible with some database servers to define such

relationships entirely within the database schema. In order to put ActiveRecord

through its paces, let's look at the way it defines these relationships within Rails

instead.

Object relationships can be defined in a variety of ways; the main difference

between these relationships is the number of records that are specified in the

relationship. The primary types of database association are:

one-to-one associations

one-to-many associations

many-to-many associations

Let's look at some examples of each of these associations. Feel free to type them

into the Rails console if you like, for the sake of practice. Remember that your

class definitions won't be saved, though—I'll show you how to define associations

in a file later.

Suppose our application has the following associations:

Rails Revealed 121

An Author can have one Blog:

class Author < ActiveRecord::Base

has_one :weblog

end

An Author can submit many Stories:

class Author < ActiveRecord::Base

has_many :stories

end

A Story belongs to an Author:

class Story < ActiveRecord::Base

belongs_to :author

end

A Story has, and belongs to, many different Topics:

class Story < ActiveRecord::Base

has_and_belongs_to_many :topics

end

class Topic < ActiveRecord::Base

has_and_belongs_to_many :stories

end

You're no doubt growing tired of typing class definitions into a console, only to

have them disappear the moment you exit the console. For this reason, we won't

go any further with the associations between our objects for now—instead we'll

delve into the Rails ActiveRecord module in more detail in Chapter 5.

122 Rails: Novice to Ninja

The ActionPack Library

ActionPack is the name of the library that contains the view and controller parts

of the MVC architecture. Unlike the ActiveRecord module, these modules are

more intuitively named: ActionController and ActionView.

Exploring application logic and presentation logic on the command line makes

little sense; views and controllers are designed to interact with a web browser,

after all! Instead, I'll provide a brief overview of the ActionPack components, and

we'll cover the hands-on stuff in Chapter 5.

ActionController (the Controller)

The controller handles the application logic of your program, acting as glue

between the application's data, the presentation layer, and the web browser. In

this role, a controller performs a number of tasks including:

deciding how to handle a particular request (for example, whether to render a

full page or just one part of it)

retrieving data from the model to be passed to the view

gathering information from a browser request and using it to create or update

data in the model

When we introduced the MVC diagram in Figure 4-2 earlier in this chapter, it

might not have occurred to you that a Rails application can consist of a number of

different controllers. Well, it can! Each controller is responsible for a specific part

of the application.

For our Readit application, we'll create:

one controller for displaying story links, which we'll name

StoriesController

another controller for handling user authentication, called

SessionsController

a controller to display user pages, named UsersController

a controller to display comment pages, named CommentsController

a final controller to handle story voting, called VotesController

Rails Revealed 123

Every Rails application comes with an ApplicationController (which lives in

app/controllers/application_controller.rb) that inherits from

ActionController::Base. All our controllers will inherit from the

ApplicationController,2 but they'll have different functionality that is

implemented as instance methods. Here's a sample class definition for the

StoriesController class:

class StoriesController < ApplicationController

def index

end

def show

end

end

This simple class definition sets up our StoriesController with two empty

methods: the index method, and the show method. We'll expand upon these

methods in later chapters.

Each controller resides in its own Ruby file (with a .rb extension), which lives

within the app/controllers directory. The StoriesController class that we just

defined, for example, would inhabit the file app/controllers/

stories_controller.rb.

2. There will actually be an intermediate class between this class and the

ActionController::Base class; however, this doesn't change the fact that

ActionController::Base is the base class from which every controller inherits. We'll

cover the creation of the StoriesController class in more detail in Chapter 5.

124 Rails: Novice to Ninja

ActionView (the View)

As discussed earlier, one of the principles of MVC is that a view should contain

presentation logic only. This principle holds that the code in a view should only

perform actions that relate to displaying pages in the application; none of the

code in a view should perform any complicated application logic, nor store or

retrieve any data from the database. In Rails, everything that is sent to the web

browser is handled by a view.

Predictably, views are stored in the app/views folder of our application.

A view need not actually contain any Ruby code at all—it may be the case that

one of your views is a simple HTML file; however, it's more likely that your views

will contain a combination of HTML and Ruby code, making the page more

dynamic. The Ruby code is embedded in HTML using embedded Ruby (ERb)

syntax.

ERb allows server-side code to be scattered throughout an HTML file by wrapping

that code in special tags. For example:

Naming Conventions for Classes and Files

You'll have noticed by now that the names of classes and files follow different

conventions:

Class names are written in CamelCase (each word beginning with a capital

letter, with no spaces between words).3

Filenames are written in lowercase, with underscores separating each word.

This is an important detail. If this convention is not followed, Rails will have a

hard time locating your files. Luckily, you won't need to name your files manually

very often, if ever, as you'll see when we look at generated code in Chapter 5.

3. There are actually two variations of CamelCase: one with an uppercase first letter (also

known as PascalCase), and one with a lowercase first letter. The Ruby convention for class

names requires an uppercase first letter.

Rails Revealed 125

<%= … %>

<% … %>

<%= 'Hello World from Ruby!'

➥ %>

There are two forms of the ERb tags pair: one that includes the equals sign, and

one without it:

This tag pair is for regular output. The output of a Ruby

expression between these tags will be displayed in the

browser.

This tag pair is for execution. The output of a Ruby

expression between these tags will not be displayed in the

browser.

Here's an example of each ERb tag:

<%= 'This line is displayed in the browser' %>

<% 'This line executes silently, without displaying any

➥ output' %>

You can place any Ruby code—be it simple or complex—between these tags.

Creating an instance of a view is a little different to that of a model or controller.

While ActionView::Base (the parent class for all views) is one of the base classes

for views in Rails, the instantiation of a view is handled completely by the

ActionView module. The only file a Rails developer needs to modify is the

template, which is the file that contains the presentation code for the view. As

you might have guessed, these templates are stored in the app/views folder.

As with everything else Rails, a strict convention applies to the naming and

storage of template files:

A template has one-to-one mapping to the action (method) of a controller. The

name of the template file matches the name of the action to which it maps.

The folder that stores the template is named after the controller.

126 Rails: Novice to Ninja

html.erb

xml.builder

json.builder

The extension of the template file is twofold and varies depending on the

template's type and the actual language in which a template is written. By

default, there are three types of extensions in Rails:

This is the extension for standard HTML templates that are

sprinkled with ERb tags.

This extension is used for templates that output XML (for

example, to generate RSS feeds for your application).

This extension is used for templates that output JSON,

which is a common data integration for APIs. We'll talk

more about JSON in Chapter 9 on advanced topics.

This convention may sound complicated, but it's actually quite intuitive. For

example, consider the StoriesController class defined earlier. Invoking the

show method for this controller would, by default, attempt to display the

ActionView template that lived in the app/views/stories directory.

Assuming the page was a standard HTML page (containing some ERb code),

the name of this template would be show.html.erb.

Rails also comes with special templates such as layouts and partials. Layouts

are templates that control the global layout of an application, such as

structures that remain unchanged between pages (the primary navigation

menu, for instance). Partials are special subtemplates (the result of a template

being split into separate files, such as a secondary navigation menu or a form)

that can be used multiple times within the application. We'll cover both

layouts and partials in Chapter 7.

Communication between controllers and views occurs via instance variables

that are populated from within the controller's action. Let's expand upon our

sample StoriesController class to illustrate this point (no need to type any

of this out just yet):

class StoriesController < ActionController::Base

def index

@variable = 'Value being passed to a view'

end

end

Rails Revealed 127

src/docs/html/advanced-topics

As you can see, the instance variable @variable is being assigned a string

value within the controller's action. Through the magic of ActionView, this

variable can now be referenced directly from the corresponding view, as

shown in this code:

<p>The instance variable @variable contains: <%=

➥ @variable %></p>

This approach allows more complex computations to be performed outside

the view—remember, it should only contain presentational logic—and allow

the view to display just the end result of the computation.

Rails also provides access to special containers, such as the params and

session hashes. These contain such information as the current page request

and the user's session. We'll make use of these hashes in the chapters that

follow.

RESTful-style

In Chapter 1, I listed common development principles and best practices that

the Rails team advises you to adopt in your own projects. One that I kept

under my hat until now was RESTful-style development, or resource-centric

development. REST will make much more sense with your fresh knowledge

about models and controllers as the principal building blocks of a Rails

application.

In Theory

REST stands for Representational State Transfer and originates from the

doctoral dissertation of Roy Fielding, a co-founder of the Apache Software

Foundation and one of the authors of the HTTP specification.

REST, according to the theory, is not restricted to the World Wide Web. The

basis of the resource-centric approach is derived from the fact that most of the

time spent using network-based applications can be characterized as a client

or user interacting with distinct resources. For example, in an ecommerce

128 Rails: Novice to Ninja

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

application, a book and a shopping cart are separate resources with which the

customer interacts.

Every resource in an application needs to be addressed by a unique and

uniform identifier. In the world of web applications, the unique identifier

would be the URL by which a resource can be accessed. In our Readit

application, each submitted link is able to be viewed at a unique URL.

The potential interactions within an application are defined as a set of

operations (or verbs) that can be performed with a given resource. The most

common are create, read, update, and delete, which are often collectively

referred to as "CRUD operations." If you relate this to our Readit application,

you'll see that it covers most of the interactions possible with the Readit links:

a user will create a link; another user will read the link; and the link can also

be updated or deleted.

The client and server have to communicate via the same language (or

protocol) in order to implement the REST architecture style successfully. This

protocol in resource-centric applications is also required to be stateless,

cacheable, and layered.

Here, stateless means that each request for information from the client to the

server needs to be completely independent of prior or future requests. Each

request needs to contain everything necessary for the server to understand the

request and provide an appropriate answer.

Cacheable and layered are architectural attributes that improve the

communication between client and server without affecting the

communication protocol.

REST and the Web

As stated in the previous section, REST as an architecture pattern can be used

in any application domain; however, the Web is probably the domain that

implements REST most often. Since this is a book that deals with building

web applications, we'd better take a look at the implementation details of

RESTful style development for web applications.

Rails Revealed 129

HTTP (Hypertext Transfer Protocol: the communication protocol used on the

Web), as the astute reader will know, also makes heavy use of verbs in its day-

to-day operations. When your browser requests a web page from any given

web server, it will issue a so-called GET request. If you submit a web page

form, your browser will do so using a POST request (not always, to be honest,

but 99% of the time).

In addition to GET and POST, HTTP defines three additional verbs that are less

commonly used by web browsers. (Many of the browsers in widespread use

actually implement them.) These verbs are PUT, PATCH, and DELETE. If you

compare the list of HTTP verbs with the verbs of CRUD, they line up fairly

nicely, as you can see below.

4.1. HTTP Verbs

versus CRUD Verbs

CRUD HTTP

CREATE POST

READ GET

UPDATE PUT, PATCH

DELETE DELETE

The language in which client (the browser) and server (the web server) talk to

each other is obviously HTTP. HTTP is, by definition, stateless. This means

that as soon as a browser downloads all the information the server offered as a

reply to the browser's request, the connection is closed and the two might

never ever talk again. Or the browser could send another request just

milliseconds later asking for additional information. Each request contains all

the necessary information for the server to respond appropriately, including

potential cookies, the format, and the language in which the browser expects

the server to reply.

EXTRA CREDIT: Verbalicious

There are even more HTTP verbs that we won't discuss here, such as OPTIONS

and HEAD. Sounds like a good homework assignment, eh?

130 Rails: Novice to Ninja

HTTP is also layered and cacheable, both of which are attributes the REST

definition expects of the spoken protocol. Routers, proxy servers, and firewalls

are only three (very common) examples of architectural components that

implement layering and caching on top of HTTP.

REST in Rails

REST and Rails not only both start with the letter R, they have a fairly deep

relationship. Rails comes with a generator for resources (see Code Generation

below for a primer on this topic) and provides all sorts of assistance to easily

construct the uniform addresses by which resources can be accessed. In fact,

Rails encourages the RESTful style in much the same way a ski resort

encourages you to use the chairlifts. Sure, you can reach the top of the

mountain without them, but you better bring your own tools and know what

you're doing.

Rails' focus on the MVC architecture (which we'll be getting our hands on

shortly, in Chapter 5) is also a perfect companion for RESTful style

development. Models resemble the resources themselves, while controllers

provide access to the resource and allow interaction based on the interaction

verbs listed earlier.

I've mentioned that some verbs aren't implemented in the majority of browsers

on the market. To support the verbs PUT, PATCH, and DELETE, Rails uses POST

requests with a little tacked-on magic to simulate those verbs transparently for

both the user and the Rails application developer. Nifty, isn't it?

We will gradually start implementing and interacting with resources for our

Readit application over the course of the next chapters, which are more

"hands on", so let's now talk about yet another batch of components that make

up the Rails framework.

Code Generation

Rather than having us create our application code from scratch, Rails gives us

the facility to generate an application's basic structure with considerable ease.

Rails Revealed 131

In the same way that we created our application's entire directory structure,

we can create new models, controllers, and views using a single command.

To generate code in Rails, we use the rails generate command. Give it a try

now: type rails generate (or rails g) without any command parameters.

Rails displays an overview of the available parameters for the command, and

lists the generators from which we can choose, as shown here:

$ rails generate

Usage: rails generate GENERATOR [args] [options]

General options:

-h, [--help] # Print generator's options and usage

-p, [--pretend] # Run but do not make any changes

-f, [--force] # Overwrite files that already exist

-s, [--skip] # Skip files that already exist

-q, [--quiet] # Suppress status output

Please choose a generator below.

Rails:

assets

controller

generator

helper

integration_test

jbuilder

job

mailer

migration

model

resource

scaffold

scaffold_controller

task

[...content elided...]

There are many core Rails generators, and some gems will add generators, as

well.

132 Rails: Novice to Ninja

Rails can generate code of varying complexity. At its simplest, creating a new

controller causes a template file to be placed in the appropriate subdirectory

of your application. The template itself consists of a mainly empty class

definition, similar to the Story and Author classes that we looked at earlier in

this chapter.

Code generation, however, can also be a very powerful tool for automating

complex, repetitive tasks; for instance, you might generate a foundation for

handling user authentication. We'll launch straight into generating code in

Chapter 5, when we begin to generate our models and controllers.

Another example is the generation of a basic web-based interface to a model,

referred to as scaffolding. We'll also look at scaffolding in Chapter 5, as we

make a start on building our views.

The ActionMailer Component

While not strictly part of the Web, email is a big part of our online experience,

and Rails' integrated support for email is worth a mention. Web applications

frequently make use of email for tasks such as sending sign-up confirmations

to new users and resetting a user's password.

ActionMailer is the Rails component that makes it easy to incorporate the

sending and receiving of email into your application. ActionMailer is

structured in a similar way to ActionPack in that it consists of mailers

(instead of controllers) and actions with views.

While the creation of emails and the processing of incoming email are

complex tasks, ActionMailer hides these complexities and handles the tasks

for you. As a result, creating an outgoing email is simply a matter of supplying

the subject, body, and recipients of the email using templates and a little Ruby

code. Likewise, ActionMailer processes incoming email for you, providing

you with a Ruby object that encapsulates the entire message in a way that's

easy to access.

Adding email functionality to a web application is beyond the scope of this

book, but you can read more about ActionMailer in the Ruby on Rails guides.

Rails Revealed 133

http://wiki.rubyonrails.com/rails/pages/ActionMailer/

Testing and Debugging

As mentioned back in Chapter 1, a unit-testing framework is already built into

Ruby on Rails. It also, rather helpfully, supplies a full stack trace for errors to

assist with debugging.

Testing

A number of different types of testing are supported by Rails, including unit

and integration testing.

Unit Testing

The concept of unit testing isn't new to the world of traditional software

development, and this is certainly the case in web application development.

Having a comprehensive set of unit tests can help you sleep easier in the

knowledge that some simple error won't bring your site down. Additionally,

developing unit tests can help you figure out if your objects are designed well;

however, not everyone sees the value of unit testing. Although performing

unit tests is optional, developers may decide against this option for reasons

ranging from the complexity of the task to time constraints.

We touched on this briefly in Chapter 1, but it's worth stressing again: the fact

that comprehensive unit testing is built into Rails and is dead easy to

implement means there's no longer a question about whether or not you

should test your apps. Just do it!

The rails generate command that we introduced a moment ago will

automatically create testing templates that you can use with your controllers,

views, and models. (Note that Rails just assists you in doing your job; it's not

replacing you—yet!)

The extent to which you want to implement unit testing is up to you. It may

suit your needs to wait until something breaks, then write a test that proves

the problem exists. Once you've fixed the problem and the test no longer fails,

you'll never again receive a bug report for that particular problem.

134 Rails: Novice to Ninja

If, on the other hand, you'd like to embrace unit testing completely, you can

even write tests to ensure that a specific HTML tag exists at a precise position

within a page's hierarchy.4 Yes, automated tests can be that exact.

You've probably heard of test-driven development (TDD) as a way to build an

application. When you build an app using TDD, you actually write the tests

before you write the code. This serves a couple of purposes in that it:

creates tests for your application that can be used for regression so you

know your app works

forces you to think about the design of the classes in your application from

the outside in, which can lead to a better design

The vast majority of Rails developers are TDD fans, but we won't be using

TDD for Readit. However, you should look into it, which means ...

Integration Testing

Rails' testing capabilities also include integration testing.

Integration testing refers to the testing of several website components in

succession. Typically, the order of components resembles the path that a user

would follow when using the application. You could, for example, construct

an integration test that reconstructs the actions of a user clicking on a link,

registering for a user account, confirming the registration email you send, and

visiting a page that's restricted to registered users.

EXTRA CREDIT: Test Driving TDD

Do some research on TDD and how it works. Learn what "red-green-refactor"

means and how that cadence can help you build an app with a good design and

strong foundation. A great book to investigate is Test Driven Development: By

Example by Kent Beck. TDD is as much art as science, so it requires a

commitment to learning how to do it right.

4. The hierarchy referred to here is the Document Object Model (DOM), a W3C standard

for describing the hierarchy of an (X)HTML page.

Rails Revealed 135

http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530
http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530

We'll look at both unit testing and integration testing in more detail as we

progress through the development of our application.

Debugging

When you're fixing problems, the first step is to identify the source of the

problem. Like many languages, Ruby assists this process by providing the

developer (that's you!) with a full stack trace of the code. We mentioned

earlier in Three Environments that a stack trace is a list of all the methods that

were called up to the point at which an exception was raised. The list

includes not only the name of each method but also the classes those methods

belong to, and the names of the files they reside within.

Using the information contained in the stack trace, you can go back to your

code to determine the problem. There are several ways to tackle this,

depending on the nature of the problem itself:

If you have a rough idea of what the problem might be, and are able to

isolate it to your application's model (either a particular class or aspect of

your data), your best bet is to use the Rails console that we looked at earlier

in this chapter. Type rails c to launch the console. Once inside, you can

load the particular model that you're interested in, and poke at it to

reproduce and fix the problem.

If the problem leans more towards being related to the user's browser or

session, you can add a debugger statement around the spot at which the

problem occurs. With this in place, you can reload the browser and step

through your application's code using the ruby-debug tool to explore

variable content or to execute Ruby statements manually.

In the last few years, Rails has added some shiny, new tools to make

debugging even easier. We'll explore them later as problems arise.

We'll be covering all the gory details of debugging in Chapter 11.

136 Rails: Novice to Ninja

Summary

In this chapter, we peeled back some of the layers that comprise the Ruby on

Rails framework. By now you should have a good understanding of which

parts of Rails perform particular roles in the context of an MVC architecture.

We also discussed how a request that's made by a web browser is processed by

a Rails application.

We looked at the different environments that Rails provides to address the

different stages in the life cycle of an application, and we configured databases

to support these environments. We also provided Rails with the necessary

details to connect to our database.

We also had our first contact with real code, as we looked at the ActiveRecord

models, ActionController controllers, and ActionView templates for our

Readit application. We explored the REST style of application architecture,

code generation, testing, as well as debugging.

In the next chapter, we'll build on all this knowledge as we use the code-

generation tools to create actual models, controllers, and views for our Readit

application. It's going to be a big one!

Rails Revealed 137

5Chapter

Models, Views, and Controllers

In Chapter 4, we introduced the principles behind the model-view-controller

architectural pattern, and saw how each of the components is implemented

within the Rails framework. Now we'll put this knowledge to good use as we use

Rails' code generation techniques to create these components for our own Readit

application.

Generating a Model

As our application will be used to share links to stories on the Web, a Story is the

fundamental object around which our application will evolve. Here, we'll use the

Rails model generator to create a Story model, then build everything else around

it.

138 Rails: Novice to Ninja

The Model Generator

The model generator is actually driven by a command line script that we

encountered back in Chapter 4: the rails generate command. This makes our

generation of a Story model very simple.

Running the generate Command

rails generate, which can be shortened to rails g, can be called from the

command line and takes several parameters. The first parameter is the type of

component that's to be generated. You can probably guess which value I'm going

to suggest you use for this parameter: we're creating a model, so the parameter to

pass is simply model. Let's take a look at what happens when we pass that to the

script:

$ cd readit

$ rails g model

Figure 5-1 below shows the resulting output.

5-1. the output from the rails g command

Models, Views, and Controllers 139

We can deduce from this output that using rails g to create a new model for our

application in its simplest form won't actually do very much—some stubs (empty

files) will be created in the appropriate directories, but that's about all.

The various examples in the aforementioned figure show the slightly more

advanced versions. To give our model a jump-start, we'll add everything

necessary to start playing with it right away: we tell rails g the names and types

of attributes the model is going to have. So let's go ahead and create the Story

model with its attributes (and their respective types), then examine each of the

generated files in turn.

From the readit folder, enter the following:

$ rails g model Story name:string link:string

As you can see, the attributes we want our Story model to have are specified

simply as space-separated arguments to the rails g command using the notation

attribute name:attribute type. In this case, we specify that our Story model

receives two attributes of type string (Rails defines the string type as up to 255

alphanumeric characters): one named name, which holds the title of our stories,

and one named link, which holds, as you might have guessed, a link to the story

on the Internet.

The output of this command will list exactly what has been done:

$ rails g model Story name:string link:string

Running via Spring preloader in process 42036

invoke active_record

create db/migrate/20160313140034_create_stories.rb

create app/models/story.rb

invoke test_unit

create test/models/story_test.rb

create test/fixtures/stories.yml

Let's take a closer look at what the generate command has done here.

140 Rails: Novice to Ninja

Understanding the Output

generate has created some files (indicated by the word create, followed by the

name of the file that was created) and a folder. Let's look at each of the files:

app/models/story.rb

This file contains the class definition for the Story model. Locate the file in the

app/models folder and examine its contents in your text editor—the class

definition is identical to the one that we typed out in Saving an Object in Chapter

4:

class Story < ApplicationRecord

end

What happened to the attributes we specified? They're nowhere to be found!

Don't panic—Rails has used the information we provided to create the database

table definition. It turns out Rails doesn't require you to declare each attribute of a

model explicitly in the model's class definition. Rails determines a model's

attribute by reading the columns of the database table to which the model is

mapped. This technique is called introspection, which we'll meet again later on.

The ApplicationRecord class can be found in the app/models/

application_record.rb file. ApplicationRecord is an "abstract" class, which

means, in this case, that ApplicationRecord is not to be mapped to a database

table. The ApplicationRecord class allows us to write methods and include code

that will be inherited by all of our models.

If the magic behind these attributes makes you uncomfortable, Rails 5 has added

a new Attributes API that provides the ability to specify attributes and their

types. In this case, if you wanted add an attribute called is_published to Story

and ensure the value in that attribute is a boolean (true or false), then you could

do:

class Story < ApplicationRecord

attribute :is_published, :boolean

Models, Views, and Controllers 141

end

This will handle type conversion, making everything a string that is assigned to

name:

s = Story.new(name: 1023, is_published: "yes")

s.is_published

=> true

Above, the string value of yes was converted to the boolean true. So, "truthy"

values like yes, 1, and t all are converted to true. If you like specifying types,

this is good stuff.

Better yet, if you had custom types, like a Money type, you could create a class to

handle the type conversion of that type. This, however, is beyond our scope

today, which means:

Okay, being able to generate these two lines of code is far from groundbreaking.

But stay with me here!

test/models/story_test.rb

This file is much more exciting: it's an automatically generated unit test for our

model. We'll look at it in detail in Chapter 6, but, briefly, building up the contents

of this file allows us to ensure that all of the code in our model is covered by a

unit test. As we mentioned back in Chapter 1, once we have all our unit tests in

place, we can automate the process of checking that our code behaves as

intended.

EXTRA CREDIT: The Attributes API

Check out the documentation and code behind the new Attributes API.

142 Rails: Novice to Ninja

https://github.com/rails/rails/blob/master/activerecord/lib/active_record/attributes.rb

test/fixtures/stories.yml

To help with our unit test, a file called stories.yml is created. This file is

referred to as a fixture. Fixtures are files that contain sample data for unit testing

purposes: when we run the test suite, Rails will wipe the database belonging to

the testing environment and populate our tables using the fixtures. In this way,

fixtures allow us to ensure that every unit test of a given application is run

against a consistent baseline.

The stories.yml fixture file will come prepared with two sample story records

for our stories table, prepopulated with values for each of the attributes we

defined. You can see that it is another YAML file. I told you we'd see them again.

db/migrate/xxxxx_create_stories.rb

This file is what's known as a migration file; we'll be exploring migrations shortly.

It's worth noting that the name of the migration file is based on the time the

rails g command was run. As a result, your migration filename will be different.

If it's the same, it means we're in the Twilight Zone.

Understanding YAML

YAML (a tongue-in-cheek recursive acronym that stands for YAML Ain't a

Markup Language) is a lightweight format for representing data. YAML files have

the extension .yml. As they employ none of the confusing tags that XML uses,

YAML files are much easier for humans to read, and are just as efficiently read by

computers.

Rails uses YAML files extensively to specify fixtures. We've seen a couple of

examples of YAML files so far: the database.yml file that we used to configure

our database connection was one; the stories.yml file that we just created with

the rails generate command is another.

Let's dissect the stories.yml file. Open it up in a text editor (you'll find it in the

test/fixtures directory), and you'll see the following code:

Models, Views, and Controllers 143

one:

name: MyString

link: MyString

two:

name: MyString

link: MyString

This YAML file represents two separate records (one and two). Each record

contains values for the two attributes we defined. These values are obviously

made up and not exactly descriptive.

Let's expand on each of these records by filling in meaningful values for the name

and link fields. Edit the file so that it looks like this:

one:

name: My old weblog

link: http://ruprict.net/

two:

name: SitePoint Forums

link: http://community.sitepoint.com

As you can see, each record in a YAML file begins with a unique name that is not

indented. This name is not the name of the record, nor any of the fields in the

database; it's simply used to identify the record within the file. (It's also utilized

in testing, as we'll see in Chapter 11.) In our expanded stories.yml file, one and

two are these identifying names.

After the unique name, we see a series of key/value pairs, each of which is

indented by one or more spaces (we'll be using two spaces, to keep consistent

with our convention for Rails code). In each case, the key is separated from its

value by a colon.

Now, let's take a look at the last file that was generated: the migration file. If your

experience with modifying databases has been limited to writing SQL, this next

144 Rails: Novice to Ninja

section is sure to be an eye-opener, so buckle up! This is going to be an exciting

ride.

Modifying the Schema Using Migrations

As we mentioned earlier, the last of the four files that our generate command

created—20160313140034_create_stories.rb—is a migration file. A migration

file is a special file that can be used to adjust the database schema in a variety of

ways (each change that's defined in the file is referred to as a migration. Perhaps

think of your database schema as flying south for production).

Migrations can be a handy way to make alterations to your database as your

application evolves. Not only do they provide you with a means to change your

database schema in an iterative manner, they let you do so using Ruby code

rather than SQL. As you may have gathered by now, many folk are far from

excited about writing lots of SQL, and migrations are a great way to avoid it.

Migration file names are based on the date they were created, as I've mentioned,

so that they can be executed sequentially. In our case, the file for creating stories

was created on March 13, 2016 at around 10.00 a.m. NAEST (North American

Eastern Standard Time), so our migration file has the number 20160313140034 in

its name.

Like SQL scripts, migrations can be built on top of each other, which reinforces

the need for these files to be executed in order. Sequential execution removes the

possibility of, for example, any attempt to add a new column to a table that is yet

to exist.

Let's examine the migration file that was generated for us.

Creating a Skeleton Migration File

Open the file 20160313140034_create_stories.rb in your text editor (again,

remember that the number in at the start of your filename will be different). It

lives in db/migrate and should look like this:

Models, Views, and Controllers 145

5-2. /db/migrate/20160701145643_create_stories.rb

class CreateStories < ActiveRecord::Migration[5.0]

def change

create_table :stories do |t|

t.string :name

t.string :link

t.timestamps null: false

end

end

end

As you can see, a migration file contains a class definition that inherits from the

ActiveRecord::Migration[5.0] class. The class that's defined in the migration

file is assigned a name by the generate command, based on the parameters that

are passed to it. In this case, our migration has been given the name

CreateStories, which is a fairly accurate description of the task that it will

perform: we're generating a new model (a Story), so the code in the migration file

creates a stories table in which to store our stories.

The class contains a single method: change. This method creates the table when

the migration is run, and drops the table when the migration is, well, undone.

That's right, a migration can be "run", which is called "migrate," and can be

"undone", which is called "rollback". This is nifty, because if we want to add a

column to a table, it's a simple matter of rolling back the migration, adding the

column to the change method, and then running the migration again. Before

migrations, changing existing database tables drove many a programmer to

insanity and middle management.

Migrations, Compatibility, and 5.0

You may be wondering what the [5.0] signifies in

ActiveRecord::Migration[5.0]. Rails 5.0 introduced versioning to the

Migration API due to some breaking changes between versions 4 and 5 of the

platform. The [5.0] tells Rails to use a compatibility layer with the migrations,

allowing users of Rails 4 to upgrade more easily.

146 Rails: Novice to Ninja

What may come as a surprise is that the change method already does what we

need it to do. Since we took the time to tell the generate command which

columns the generated model should have, the generator auto-filled the migration

with instructions to create a table including (but not limited to, as we'll see

shortly) the two attributes to hold the name and the link of a story. But let's take a

few minutes to walk through the generated code line by line.

Creating the stories Table

In the generated migration code in the change method, the first line includes a

call to the create_table method, into which we pass the name of the table we'd

like to create (stories) as a symbol (:stories). The method is also being passed

a block (jump back to Blocks, Procs, and Lambdas in Chapter 3 if you need a

refresher), used to define the individual columns in the table:

create_table :stories do |t|

⋮ block body…
end

Within the block, we have two lines to define the attributes we specified on the

generate command line as columns in our SQL table. Like an SQL script, each

column in our migration file should have a name and a type of data storage (such

as a string, number, or date):

create_table :stories do |t|

t.string :name

t.string :link

⋮ block body…
end

Here, the first line defines the column name as type string, and the second line

defines the column link also of type string. This could even be rewritten in

shorthand syntax, as you see here:

Models, Views, and Controllers 147

create_table :stories do |t|

t.string :name, :link

⋮ block body…
end

The third line in the block is a little special. Instead of creating a single

timestamps column of questionable value, the timestamps method automatically

creates two “magic” columns in the stories table named created_at and

updated_at:

create_table :stories do |t|

⋮ block body…
t.timestamps

end

We'll take an in-depth look at this magic functionality in Chapter 9.

In addition to creating completely new tables, migrations can be used to alter

existing tables. If you were to decide tomorrow that your stories table needed to

store a description for each story, it would be a painful having to recreate the

whole table just to add the extra column. Once again, good old SQL can be used

to perform this job efficiently, but to use it, you'd have to learn yet another

awkward SQL command. The migrations option, on the other hand, allows you to

add this column to an existing table without losing any of the data that the table

contains.

We'll use migrations to alter the stories table when we get to Chapter 9. For

now, let's just add one minor parameter to the change method:

def change

create_table :stories, force: true do |t|

t.string :name

t.string :link

t.timestamps

148 Rails: Novice to Ninja

end

end

The force: true at the beginning of the block isn't usually required; we've

included it in this case because we already created a table for this model back in

Chapter 4 using raw SQL. Without it, our create_table call would fail, because

the table already exists; however, leaving force: true in this migration will

mean that Story records will be wiped with each future migration, so set it back

to false after you've performed the migration to prevent this from happening.

In addition to the explicitly named columns we've talked about in this section,

this code will also create a column named id, which will serve as the primary

identifier for each row in the table.

This approach to schema definitions reflects the pure Rails method of creating

and altering database tables that we talked about earlier in this section.

Now that we have a migration file complete with methods for setting up and

tearing down our schema, we just need to make the migration happen. Yet again,

we use the rails command to achieve this task.

Running the Migration

To apply the migrations in the migration file that we created earlier, we'd type the

following:

$ rails db:migrate

When executed without any other arguments, this command achieves the

following tasks:

1. checks the database for the unique number of the migration that was most

recently applied

2. steps through the migrations that are yet to be applied, one by one

Models, Views, and Controllers 149

3. for each migration, executes the up method for that migration class to bring the

database in line with the structure specified in the migration files

Go ahead and execute our database migration task from the readit folder. Here's

the output you should receive:

$ rails db:migrate

== 20160313140034 CreateStories: migrating

➥ ====================================
-- create_table(:stories, {:force=>true})

-> 0.0025s

== 20160313140034 CreateStories: migrated (0.0026s)

➥ ===========================

As the output indicates, running this task has caused the CreateStories

migration we created to be applied to our database. Assuming it was applied

successfully, you should now (once again) have a stories table within your

database.

With this table in place, we can create data about stories!

150 Rails: Novice to Ninja

Managing Data Using the Rails Console

While we've developed a solid architecture for our application and created a table

to store data, we're yet to have a nice front-end interface for managing that data.

We'll start to build that interface in Chapter 6, but in the meantime we need to

find a way to add stories to our table.

That's right—it's the Rails console to the rescue once again!

Creating Records

We can use two approaches to create records from the console. Let's look at the

long-winded approach first. We create the object, then populate each of its

attributes one by one, as follows:

Rollbacks up Close

As our database schema evolves, so do the migration files that represent it. Rolling

back to a previous version of the schema is easy with migrations. Simply type the

following to revert to a previous version of the database (where n represents the

version number that you want to restore):

$ rails db:migrate VERSION=n

The following command would undo the stories table that we just created,

resulting in the blank database with which we began:

$ rails db:migrate VERSION=0

If you simply wish to roll back the most recent migration, it's even easier:

$ rails db:rollback

And the last migration is undone.

Models, Views, and Controllers 151

$ rails c

Running via Spring preloader in process 63637

Loading development environment (Rails 5.0.0)

2.3.0 :001 > s = Story.new

=> #<Story id: nil, name: nil, link: nil, created_at:

➥ nil, updated_at: nil>
2.3.0 :002 > s.name = "SitePoint"

=> "SitePoint"

2.3.0 :003 > s.link = "https://sitepoint.com"

=> "https://sitepoint.com"

2.3.0 :004 > s.save

(0.2ms) begin transaction

SQL (1.1ms) INSERT INTO "stories" ("name", "link",

➥ "created_at", "updated_at") VALUES (?, ?, ?, ?) [["name",
➥ "SitePoint"], ["link", "https://sitepoint.com"],
➥ ["created_at", "2016-03-13 14:43:29.351489"], ["updated_at",
➥ "2016-03-13 14:43:29.351489"]]

(0.7ms) commit transaction

=> true

2.3.0 :005 >

Let's step through what we've done here. After loading the Rails console, we

created a new Story object. We assigned this object to a variable named s (the s is

for Story—no awards for creativity, I know). We then assigned values to each of

the columns that exist on a Story object. Finally, we called the save method, and

our Story was stored in the database.

By default, Rails displays the SQL that was run in order to save the story. Aren't

you glad you don't have to type that in every time? It's a constant reminder of

how much time and typing Rails is saving you.

How can we be sure that the data was written successfully? We could look at the

raw data using a trusty SQL database console, but we're trying to keep our

distance from SQL. Instead, we can confirm that our story saved correctly by

checking its id (the unique identifier that the database generates automatically

when an object is saved). We can do this from within the Rails console:

152 Rails: Novice to Ninja

>> s.id

=> 1

Our object's id is not nil, so we know that the save was successful. Of course,

there's another way to ensure that the data was written successfully, and that is to

use the new_record? method, which you may remember from the Saving an

Object section in Chapter 4:

>> s.new_record?

=> false

Hooray! As this method returns false, we know for certain that the object was

written to the database. Just in case you need even more reassurance, there's one

more check that we can use: the count class method of the Story class. This

method allows us to query the database for the number of stories it currently

contains:

2.3.0 :007 > Story.count

(0.1ms) SELECT COUNT(*) FROM "stories"

=> 1

2.3.0 :008 >

Okay, that makes sense.

Let's create another Story now, this time using the second technique: this one's a

shortcut! Oh, and from now on, I am not going to include the SQL in the text:

2.3.0 :008 > Story.create(

2.3.0 :009 > name: 'SitePoint Forums',

2.3.0 :010 > link: 'http://community.sitepoint.com')

=> #<Story id: 2, name: "SitePoint Forums", link:

➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">

Models, Views, and Controllers 153

src/docs/html/saving-an-object
src/docs/html/saving-an-object

The create class method achieves the same task as the long-winded approach we

just saw, but it only uses one line (not counting word wrapping). This method

also—very conveniently—saves the record to the database once the object has

been created. And it allows us to assign values to the columns of the record (in

this case, in the columns name and link) at the same time as the record is created.

Hang on—we forgot to assign the object to a variable! How can we query it for

additional information?

Retrieving Records

It's all very well to be able to create and save new information, but what good is

that information if we're unable to retrieve it? One approach to retrieving a story

from our database would be to guess its id; the ids are auto-incremented, so we

could anticipate the number of the record that we're after. We could then use the

find class method to retrieve a row based on its id:

2.3.0 :012 > Story.find(2)

=> #<Story id: 2, name: "SitePoint Forums", link:

➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">

This approach might be fine for our testing setup, but once our application has

deleted and created more than a handful of records, it will fail to work.

Another approach is to retrieve every row in the table. We can do this by using

the all class method:

2.3.0 :014 > Story.all

=> #<ActiveRecord::Relation [#<Story id: 1, name:

➥ "SitePoint", link: "https://sitepoint.com", created_at:
➥ "2016-03-13 14:43:29", updated_at: "2016-03-13 14:43:29">,
➥ #<Story id: 2, name: "SitePoint Forums", link:
➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">]>

154 Rails: Novice to Ninja

This process returns an object of class ActiveRecord::Relation. I bet you're

wondering what this is, as you're probably expecting it to return a list (or Array)

of all the stories. Well, back in the olden days it did just that, which was good

when we had two records, but bad the rest of the time. Consider in the future

when Readit is crazy popular, the site to share all things web. There are

thousands, nay, millions of stories in our database. We then call Story.all and

everything grinds to a halt while millions of records are copied into application

memory. This is a bad situation, and an example of what inspired the creation of

ActiveRecord::Relation.

ActiveRecord::Relation is an implementation of lazy loading, which is exactly

what it sounds like. When records are lazily loaded, they are only placed into

memory the moment they're needed. So, Story.all doesn't hit the database or

load any records into memory. It waits until you tell it that you need the records

first. You tell an ActiveRecord::Relation the records are needed, basically, by

telling it to become that Array we were expecting before:

2.3.0 :014 > Story.all.to_a

=> [#<Story id: 1, name: "SitePoint", link:

➥ "https://sitepoint.com", created_at: "2016-03-13 14:43:29",
➥ updated_at: "2016-03-13 14:43:29">, #<Story id: 2,
➥ name: "SitePoint Forums", link:
➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">]

to_a tells ActiveRecord::Relation to become an Array. In the process of doing

so it hits the database, selects the records, and loads them into memory. Perhaps

the best way to show what's happening is to look at the SQL that's being executed

again:

2.3.0 :019 > Story.all

Story Load (0.2ms) SELECT "stories".* FROM "stories"

=> #<ActiveRecord::Relation [#<Story id: 1, name:

➥ "SitePoint", link: "https://sitepoint.com", created_at:
➥ "2016-03-13 14:43:29", updated_at: "2016-03-13 14:43:29">,
➥ #<Story id: 2, name: "SitePoint Forums", link:

Models, Views, and Controllers 155

➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">]>
2.3.0 :020 > Story.all.first

Story Load (0.2ms) SELECT "stories".* FROM "stories"

➥ ORDER BY "stories"."id" ASC LIMIT 1
=> #<Story id: 1, name: "SitePoint", link:

➥ "https://sitepoint.com", created_at: "2016-03-13 14:43:29",
➥ updated_at: "2016-03-13 14:43:29">

In the first case, the SQL selects stories.*, or, all the stories. But when we chain

the first method onto the call, it adds ASC LIMIT 1 to the SQL, which tells the

database to sort the records by id and load the first one. As you can imagine,

reducing the amount of data that the database retrieves is good for performance as

well as your application as a whole. Oh, and there is a corresponding last

method we could use in place of the first call here. Can you guess what it does?

In short, ActiveRecord::Relation allows the record selection process to be

handled by the database itself. There are many other methods that you can chain

onto the find and find_by (which we'll see soon) methods that tell the database

to do your bidding, such as :order and :limit.

The :order argument allows us to specify the sort order of the returned objects.

The order method should contain a tiny bit of SQL that tells the database how

the records should be ordered. To retrieve the last element, for example, we

would call order with a value of id DESC, which specifies that the records should

be sorted by the id column in descending order:

>> Story.all.order('id DESC').first

=> #<Story id: 2, name: "SitePoint Forums", …>

The object that's returned is identical to the one we retrieved if we'd used last.

The :limit argument allows us to specify the number of objects to return.

156 Rails: Novice to Ninja

The :limit method takes a number indicating how many records to return. To

obtain the first two stories, for example, we would call limit(2):

2.3.0 :029 > Story.all.limit(2)

=> #<ActiveRecord::Relation [#<Story id: 1, name:

➥ "SitePoint", link: "https://sitepoint.com", created_at:
➥ "2016-03-13 14:43:29", updated_at: "2016-03-13 14:43:29">,
➥ #<Story id: 2, name: "SitePoint Forums", link:
➥ "http://community.sitepoint.com", created_at: "2016-03-13
➥ 14:47:48", updated_at: "2016-03-13 14:47:48">]>

Now, while all of these retrieval techniques have worked for us so far, any

approach that retrieves an object on the basis of its id is fundamentally flawed. It

assumes that no one else is using the database, which certainly won't be a valid

assumption when our social news application goes live!

What we need is a more reliable method of retrieving records—one that retrieves

objects based on a column other than the id. What if we were to retrieve a Story

by its name? Easy:

>> Story.find_by(name: 'SitePoint')

=> #<Story id: 1, name: "SitePoint", …>

We can even query the database using the link column, or any other column in

our stories table! Cool, huh?

Updating Records

We know how to add stories to our database, but what happens when someone

submits a story riddled with typos or (gasp!) factual errors to our Readit

application? We have to be able to update existing stories, to ensure the integrity

and quality of the information on Readit, and the continuation of our site's

glowing reputation.

Models, Views, and Controllers 157

Before we can update an object, we must retrieve it. Any of the techniques

outlined in the previous section would suffice, but for this example, we'll retrieve

a Story from the database using its name:

>> s = Story.find_by(name: 'SitePoint')

=> #<Story id: 1, name: "SitePoint", …>

>> s.name

=> "SitePoint"

>> s.name = 'SitePoint.com'

=> "SitePoint.com"

As you can see, the task of changing the value of an attribute (name, in this case)

is as straightforward as assigning a new value to it. Of course, this change is not

yet permanent—we've simply changed the attribute of an object in memory. To

save the change to the database, we call the save method, just as we did when we

learned how to create new objects earlier in this chapter:

>> s.save

=> true

Once again, there's a shortcut—update_attribute—which allows us to update

the attribute and save the object to the database in one fell swoop:

>> s.update_attribute(name: 'A weblog about Ruby on

➥ Rails')
=> true

This is straightforward stuff. Just one more command, then we'll leave the

console for good. (Well, for this chapter, anyway!)

Deleting Records

To destroy a database record, simply call the destroy method of the

ActiveRecord object:

158 Rails: Novice to Ninja

>> s.destroy

=> #<Story id: 1, name: "SitePoint.com", …>

This will remove the record from the database immediately.

If you try to use the find method to locate an object that has been destroyed (or

never existed in the first place), Rails will throw an error:

>> Story.find(1)

=> ActiveRecord::RecordNotFound: Couldn't find Story with

➥ 'id'=1

As you can see, deleting records is a cinch—at least, for Rails developers! In fact,

SQL happens to be doing a good deal of work behind the scenes. Let's now exit

the Rails console and pull back the curtain for a closer look at the SQL statements

resulting from our commands.

Generating a Controller

Now that our model is in place, let's build a controller. In the same way that we

generated a model, we generate a controller by running the rails generate

command from our application's root folder.

Running the generate Command

Run the rails g command from the command line again, but this time pass

controller as the first parameter:

$ rails g controller

The output of this command is depicted below

Models, Views, and Controllers 159

5-3. The output of the rails g controller command

As you may have deduced from the output, calling the rails generate

command to create a controller requires us to pass the desired name of the

controller as a parameter. Other parameters that we could pass include any

actions that we'd like to generate.

Let's try it out. Type in the following:

$ rails g controller Stories index

Running via Spring preloader in process 93557

create app/controllers/stories_controller.rb

route get 'stories/index'

invoke erb

create app/views/stories

create app/views/stories/index.html.erb

invoke test_unit

create test/controllers/stories_controller_test.rb

invoke helper

create app/helpers/stories_helper.rb

invoke test_unit

invoke assets

invoke coffee

create app/assets/javascripts/stories.coffee

invoke scss

create app/assets/stylesheets/stories.scss

160 Rails: Novice to Ninja

The output of the generate command tells us exactly what it's doing. Let's

analyze each of these lines of output.

Understanding the Output

The meaning of the messages output by the controller generator should be quite

familiar by now.

The generate command created the file for our controller and a route. I'll

cover routes in more details in Chapter 7.

The app/views/stories folder was created. As mentioned when we first

looked at ActionView in Chapter 4, the templates for our newly created

StoriesController will be stored in this folder.

Controllers have tests, as well, and the generator created a test file and folder

for that purpose.

Rails creates a helper file for each controller with the aim of reusing code in

the controller and the views. We'll cover helpers in Chapter 6.

Finally, each controller can have a set of assets. Here a CoffeeScript and Sass

file are created. CoffeeScript and Sass are language abstractions of JavaScript

and CSS respectively. We'll cover these later, so don't worry about those files

right now.

Let's talk about the items created by generating our controller.

app/controllers/stories_controller.rb

This file houses the actual class definition for our StoriesController. It's mostly

empty, though; all it comes with is a method definition for the index action,

which is empty as well. We'll expand on it shortly!

class StoriesController < ApplicationController

def index

end

end

Models, Views, and Controllers 161

Astute readers will notice that our StoriesController doesn't inherit from the

ActionController::Base in the way we'd expect. The ApplicationController

class that we see here is actually an empty class that inherits directly from

ActionController::Base. The class is defined in the

application_controller.rb file, which lives in the app/controllers folder, if

you're curious. The resulting StoriesController has exactly the same attributes

and methods as if it had inherited directly from ActionController::Base. Using

an intermediary class such as this provides a location for storing variables and

pieces of functionality that are common to all controllers, just as we saw with our

models and ApplicationRecord.

route get 'stories/index'

Remember, from our whirlwind tour of Rails, a controller handles the browser

requests to your application. In other words, when a user goes to

http://readit.com/stories, for example, Rails routes that request to the index

method on StoriesController. When you generate a controller with methods,

each method receives a route in config/routes.rb (known as the "routes" file.) If

you open up config/routes.rb, you'll see:

5-4. config/routes.rb (excerpt)(excerpt)

Rails.application.routes.draw do

get 'stories/index'

...lots of comments..

end

The get 'stories/index' line tells Rails to create an HTTP GET route for

/stories to the index method on the StoriesController. This is another Rails

convention. Like I said, routing is kind of a big deal, and I'll talk much more

about it later.

app/helpers/stories_helper.rb

This is the empty helper class for the controller (helpers are chunks of code that

can be reused throughout your application). We'll look at helpers in more detail

in Chapter 6.

162 Rails: Novice to Ninja

app/views/stories/index.html.erb

This file is the template that corresponds to the index action that we passed as a

parameter to the generate command. For the moment, it's the only one in the

app/views/stories directory, but as we create others, they'll be stored alongside

index.html.erb and given names that match their actions; for example, the show

action will eventually have a template named show.html.erb.

test/controller/stories_controller_test.rb

This file contains the tests for our controller. We'll skip over it for now, but

expand the test cases that this file contains in Chapter 6.

With this knowledge, we're finally in a position to breathe life into our little Rails

monster in the true spirit of Frankenstein.

Starting Our Application … Again

It's time to fire up our application again. While our previous experience with

Puma was somewhat uneventful, our application should do a little more this

time.

Start up the web server with the following command:

$ rails s

Take Care When It Comes to Naming Parameters

You'll notice the controller class that was created by the generate command is

called StoriesController, even though the first parameter we specified on the

command line was simply Stories. If our parameter had been

StoriesController, we'd have ended up with a class name of

StoriesControllerController!

Models, Views, and Controllers 163

Once the server has completed its startup sequence, type the following address

into your web browser: http://localhost:3000/stories/index. If everything

goes to plan, you should be looking at a page similar to the one in Figure 5-5.

5-5. Accessing our `StoriesController` from a browser

What does this display tell us? Well, this simple (and not especially pretty) page

confirms that:

The routing between controllers and views is working correctly—Rails has

found and instantiated our StoriesController based on the URL that we

asked it to retrieve.

Our controller is able to locate its views—the HTML for the page we see

rendered in the browser is contained in the file that's mentioned onscreen

(app/views/stories/index.html.erb).

If you think about it, this is actually quite an accomplishment, given that we've

really only executed two commands for generating code from the command line.

So that we can complete the picture, let's pull some data from our model into our

index action.

164 Rails: Novice to Ninja

Creating a View

We can use two approaches to build views for our Rails application. One

approach is to make use of scaffolding; the other is to “go it alone.”

We'll only look at scaffolding briefly as we won't be using it much in the

development of our Readit application. It'll be just enough to give you a taste of

the topic–then it's up to you to decide whether or not you use it in your own

projects.

After that, we'll roll up our sleeves and build some views from scratch.

Generating Views with Scaffolding

In the early days of Rails, scaffolding was one of the features that the Rails

community used as a selling point when promoting the framework. This feature

also received a considerable amount of criticism, though this was largely due to

critics failing to fully understand its intended uses.

So what is scaffolding, anyway?

Scaffolding is a tool that quickly creates a web interface for interacting with your

model data. The interface lists the existing data in a table, providing an easy way

to add new records, as well as manipulate or delete existing ones.

While there used to be a way to use scaffolding in a temporary fashion (as a one-

line addition to one of your controllers, which would then perform all sorts of

behind-the-scenes magic), these days scaffolding is Yet Another Generator

invoked through the rails generate command.

When a scaffold is generated, you end up with a model, a controller with several

actions, and numerous view templates for these actions. The generated code can

then be built upon and extended over time as you progress with your application.

Features provided by the template code can be tweaked or implemented in a

different manner, and code that's unsuited to your project can be removed.

We won't be generating any permanent scaffolding in this project, but I do

encourage you to experiment with this approach in your own projects, as there

Models, Views, and Controllers 165

may be cases in which you'll find it useful. The syntax to generate a model with

scaffolding code is as follows:

$ rails g scaffold Story name:string link:string

The inline help is available as shown below.

5-6. The inline help for script/generate scaffold

An example screen from a generated scaffold for our Story model is shown in

Figure 5-7.

When You Go Off the Rails ...

If you ever mess up a call to rails generate, you may find its alter ego rails

destroy (alias rails d) very helpful. This takes exactly the same arguments as

rails generate but attempts to reverse what it did, removing newly generated

files and modifications to existing files. To undo the scaffold we created above, you

would use rails d scaffold Story. Pretty cool, eh?

166 Rails: Novice to Ninja

5-7. Example screen from a generated scaffold

Scaffolding is certainly a powerful feature of Rails, and it's rewarding to gain

instant visual feedback with the views created for us; however, it's now time to

create some views of our own, which will give us a much better insight into what

each part of the MVC stack does.

Creating Static Pages

Back in Chapter 4, we looked briefly at the ActionView module, but only in

theory. Let's create some custom views that we can use a web browser to view.

As a quick refresher, ActionView represents the view part of the model-view-

controller architecture. Files that are used to render views are called templates,

A Great Tool–but with Limitations

Scaffolding is a tool designed for quick interaction with models, and should only be

used as such. It is by no means intended to be a fully automated tool for generating

web applications (or even administration interfaces).

Scaffolding also has its limits in providing automated access. For example, it's

unable to cope with ActiveRecord associations such as “a Story belongs to a

User,” which we'll see later. Additionally, since most applications do require a

fully fledged administrative interface, you're advised to just create the real thing

rather than fiddle around with a dummy interface.

Models, Views, and Controllers 167

src/docs/html/rails-revealed

and they usually consist of HTML code interspersed with Ruby code. These files

are referred to as ERb templates.

One of these templates (albeit, a not so interesting one) has already been created

for us—it's the index.html.erb file that's located in app/views/stories:

<h1>Stories#index</h1>

<p>Find me in

➥ app/views/stories/index.html.erb</p>

Does it look familiar? This is the HTML code that we viewed in our web browser

earlier in the chapter. As you can see, it's a static page (so it's without any Ruby

code). Dynamic pages (which pull in data from a database or an alternative

source) are much more interesting! We'll have a closer look at dynamic pages

now.

Creating Dynamic Pages

Let's begin our adventure in building dynamic pages. We'll add a value—the

current date and time—to the HTML output of our view. Although simple, this

value is considered to be dynamic.

Open the template file in your text editor and delete everything that's there. In its

place, add the following line:

<%= Time.now %>

Here we call the class method that lives on the Time class, which is part of the

Ruby Standard Library. This method call is wrapped in ERb tags (beginning with

<%= and ending with %>).

You may remember from Chapter 4 that the equal sign attached to the opening

ERb tag will cause the return value of Time.now to be output to the web page,

instead of executing silently.

168 Rails: Novice to Ninja

If you refresh your browser now, the page should display the current time, as

shown in Figure 5-8. To confirm that this value is dynamic, reload your page a

few times—you'll notice that the value does indeed change.

5-8. Our first dynamic page: displaying the current time

Passing Data Back and Forth

There's one fundamental problem with what we've done here. Can you spot it?

In order to adhere to the model-view-controller architecture, we should avoid

performing any hefty calculations from within any of our views—that's the job of

the controller. Strictly speaking, our call to Time.now is one such calculation, so it

should really occur within the controller. But what good is the result of a

calculation if we can't display it?

We introduced the concept of passing variables between controllers and views

briefly in Chapter 4, but at that point, we had no views that we could use to

demonstrate it in action. Now's our chance to do just that!

We learned that any instance variable that's declared in the controller

automatically becomes available to the view as an instance variable. Let's take

advantage of that now. Edit /app/controllers/stories_controller.rb so that it

contains the following code:

class StoriesController < ApplicationController

def index

@current_time = Time.now

Models, Views, and Controllers 169

end

end

Next, replace the contents of app/views/stories/index.html.erb with the

following:

<%= @current_time %>

I'm sure you can see what's happened here:

1. We've moved the “calculation” of the current time from the view to the

controller.

2. The result of the calculation is stored in the instance variable @current_time.

3. The contents of this instance variable are then automatically made available to

the view.

The result is that the job of the view has been reduced to simply displaying the

contents of this instance variable, rather than executing the calculation itself.

Voilà! Our application logic and our presentation logic are kept neatly separate.

Pulling in a Model

All we do now is pull some data into our view, and we'll have the entire MVC

stack covered.

In case you deleted all of your model records when we experimented with

scaffolding earlier, make sure you create at least one story. Type the following

into a Rails console:

>> Story.create(name: 'SitePoint Forums', link:

➥ 'http://community.sitepoint.com')

170 Rails: Novice to Ninja

To display this model data within a view, we retrieve it from within the

controller, like so:

class StoriesController < ApplicationController

def index

@story = Story.find_by(name: 'SitePoint Forums')

end

end

We'll also change our view accordingly:

A random link:

<a href="<%= @story.link %>"><%= @story.name

➥ %>

Reload the page to see the result. It should look like Figure 5-9.

5-9. MVC in action: a view displaying model data via the controller

Of course, Rails would be failing in its job of saving you effort if it required you to

manually create links the way we just did. Instead of typing out the HTML for a

link, you can use the link_to function, which is much easier to remember and

achieves the same result. Try it for yourself:

A random link:

<%= link_to @story.name, @story.link %>

Models, Views, and Controllers 171

One other point: I'll be the first to admit that the text on the page is a little

misleading. Our link is hardly random—it simply retrieves the same link from the

database over and over again.

It's actually quite easy to make our application retrieve random stories, though.

Simply modify the part of the controller that fetches the story to this:

@story = Story.order('RANDOM()').first

This modification selects a single story, just like before (using the :first

parameter). This time, however, the database is being instructed to shuffle its

records before picking one. When you reload your page, random stories should

now appear—assuming you have more than one story in your database, that is!

You might like to save a few more stories (using Story.create in a Rails console)

and see the random link feature of our Readit application in action.

There we have it: the beginnings of our story-sharing application. Admittedly,

displaying a random story from our database is only a small achievement, but

hey—it's a start!

Summary

This chapter saw us create some real code for each component of an MVC

application. We generated a model with a corresponding migration to handle the

storage of our stories; we generated a controller to handle communication

between the models and the views; and we created a view that dynamically

renders content supplied by our controller.

With the functionality provided by ActiveRecord, we've been creating, updating,

and deleting data from our SQL database without resorting to any SQL.

I also introduced you to the rails commands that can be used to run migrations

and other tasks. And we learned about the YAML data representation language

that's used to store test fixture data for our application.

172 Rails: Novice to Ninja

In the next chapter, we'll add a layout to our application using HTML and CSS;

talk about associations between models; and extend the functionality of our

application.

Let's get into it!

Models, Views, and Controllers 173

6Chapter

Helpers, Forms, and Layouts

In the last chapter, we put in place some basic architecture for our application—a

model, a view, and a controller—and were able to display a link to a random

story in the database. The foundation of our application is sound, but users are

unable to really interact with it yet.

In this chapter, we'll use helpers to implement the basic functionality for our

application: the capability that allows users to submit stories to the site.

We'll also start to build our test suite, and create some functional tests to confirm

that the submission form is working as intended. We'll expand on this suite of

tests in the coming chapters.

174 Rails: Novice to Ninja

Calling upon Our Trusty Helpers

And I'm not talking about Santa's little helpers. Let me explain.

In Chapter 5, we discussed the importance of keeping application logic in a

controller, so that our views contain only presentational code. Although not

apparent in the basic examples we've used, extracting code from a view and

moving it into a controller often causes clumsy code to be added to an

application's controllers.

To address this problem, another structural component exists: the helper. A

helper is a module–a Ruby module–that can be reused throughout an application,

and is stored in a helper file. A helper usually includes methods that contain

relatively complicated or reusable presentation logic. Since any views that

include the helper are spared this complexity, the code in the view is kept simple

and easy to read, reflecting our adherence to DRY principles. Dozens of helpers

are built into Rails, but you can create your own to use throughout your

application.

Code that renders a screen element on a page, for example, is a good candidate for

a helper. Repeating this type of code from one view to another violates the DRY

principle, but sticking it all into a controller makes no sense either.

As we saw in Generating a Controller in Chapter 5, when we generate a controller

(using the generate command that we've come to know and love), one of the files

that's created is a new helper file called controllername_helper.rb. In the case

of our StoriesController, the helper file associated with this controller is

stories_helper.rb, and lives in app/helpers.

We'll be relying on a few of Rails' built-in helpers for much of the story

submission interface we'll be building in this chapter.

Enabling Story Submission

In our brief foray into the world of scaffolding in Chapter 5, we saw that it's

possible in Rails to create a quick (and dirty) front end for our data; however, this

approach doesn't necessarily constitute best practice.

Helpers, Forms, and Layouts 175

src/docs/html/models-views-and-controllers

In this section, we'll build a web interface for submitting stories to our Readit

website without relying on scaffolding. First, we'll create a view template that

contains the actual submission form; then we'll add a new method to our

StoriesController to handle the task of saving submitted stories to the database.

We'll also implement a global layout for our application, and create feedback to

present to our users, both when they're filling out the form and after they've

submitted a story.

Creating a Form

HTML forms is an area that even seasoned front-end developers have

traditionally found intimidating. While it's possible to create form elements

manually, it's unnecessary: Rails offers plenty of helpers and shortcuts that make

creating forms a breeze. One of those is the form_for helper.

Introducing the form_for Helper

Rails offers a few helper functions for writing forms. form_for is the most

common among these and is recommended when generating a form that's bound

to one type of object. “Bound” here means that each field in the form maps to the

corresponding attribute of a single object, rather than to corresponding attributes

of multiple objects. In other words, it creates a form for an object. Clever naming,

eh? At its most basic, using the form_for helper to bind a simple form to a Story

object looks like this:

<%= form_for @story do |f| %>

<%= f.text_field :name %>

<%= f.text_field :link %>

<% end %>

This form_for helper syntax boasts a few points that are worth highlighting:

The last line uses the ERb tags for silent output (<% … %>), while the other

lines of the helper use ERb tags that display output to the browser (<%= … %>).

176 Rails: Novice to Ninja

The parameter that immediately follows form_for is the object to which the

form will be bound (@story). Can you guess where this will come from?

The fields that make up the form live inside a block. As you'll no doubt

remember, a Ruby block is a statement of Ruby code that appears between the

keywords do and end, or between curly braces. This is the first time we've

encountered a block within an ERb file, but the principle is the same.

A new object–which I've named f as shorthand for “form” in this case–must

be passed as a parameter to the block. This object is of type FormBuilder,

which is a class that contains instance methods designed to work with forms.

Using these methods, we can easily create the HTML form input elements

such as text_field, password_field, check_box, and text_area.

We receive a number of benefits in exchange for following this syntax:

The HTML form tags that signify the start and end of our HTML form will be

generated for us.

We gain access to a number of instance methods via the FormBuilder object

that we can use to create fields in our form. In the example, we've used the

text_field method to create two text fields; these fields will be mapped to

our @story object automatically.

Appropriate name and id attributes will be applied to each of these fields;

these attributes can then be used as hooks for CSS and JavaScript, as we'll see

later in the chapter.

Rails automatically figures out to which URI this form should be posted when

submitted by the web browser if our model has been defined as a resource (a

term that you will recall from REST-ful Style in Chapter 4). More on this in a

moment.

As you can see, using form_for and the FormBuilder object that comes with it is

a powerful way to create comprehensive forms with minimal effort.

Helpers, Forms, and Layouts 177

Creating the Template

Now that we have a handle on form_for, let's use it to create the form that site

visitors will use to submit stories to Readit.

A form is a presentational concept, which means it should be stored as a view.

Our form will allow users to submit new stories to Readit, so we'll give this view

the name new. Let's make a template for it: create a new file called new.html.erb

in the app/views/stories folder. It should contain the following:

<%= form_for @story do |f| %>

<div>

<p><%= f.label :name %></p>

<%= f.text_field :name %>

</div>

<div>

<p><%= f.label :link %></p>

<%= f.text_field :link %>

</div>

<%= submit_tag %>

<% end %>

Let's break down the ERb code here:

<%= form_for @story do |f| %>

As we discussed, the form_for helper creates a form that's bound to a specific

object—in this case, it's bound to the @story instance variable.

Help on Helpers

As I mentioned, helpers are modules, so the form_for method (as well as the rest

of the form helper methods) are all defined in the

ActionView::Helpers::FormHelper module, which you can read all about on

the Ruby on Rails documentation.

178 Rails: Novice to Ninja

http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html

<%= f.label :name %>

<%= f.text_field :name %>

These lines create a label and text field called "name," which is mapped to the

name attribute on our @story object. It will display a text field in which the user

can enter the name of the story being submitted.

<%= f.label :link %>

<%= f.text_field :link %>

Here we have another label and text field combination, this time named link,

which is also mapped to our @story object. It will display a text field in which

the user can enter the URL of the story being submitted.

<%= submit_tag %>

This helper generates the HTML code to display a submit button in our form.

This is a stand-alone helper and not part of the form_for helper, which means we

don't need the FormBuilder (f) to call it.

Next, make sure that your web server is running (refer to Chapter 2 if you need a

refresher on starting the server). Open your web browser and type the following

URL into the address bar: http://localhost:3000/stories/new. You should

see—yikes!—an error similar to the below.

Helpers, Forms, and Layouts 179

6-1. Error resulting from having no route

Now, what happened here? Well, there's no route for /stories/new, so Rails

cannot know which controller and method to invoke. I'll talk a bit more about

routing in a minute. For now, let's add the route to config/routes.rb:

The Console Is Key

If you see a different error message when you try to open this URL, I recommend

that you monitor the console window from which you launched your web server.

This process is the heart of our application; if it's not beating, you'll be unable to

access any of the functionality added in this chapter. Errors that appear in the

console should give you an idea of what went wrong.

180 Rails: Novice to Ninja

Rails.application.routes.draw do

get 'stories/index'

get 'stories/new'

....

Now refresh the page ... and as seen in Figure 6-2 we have another error!

6-2. For argument's sake! Another error

So, what's up? Well, we handed the form_for helper the instance variable called

@story, but we never actually assigned an object to that variable, so it ended up

being nil. Adhering to the MVC principles, we must turn to the controller as

being responsible for putting a value into @story, which we'll do in the next

section.

Helpers, Forms, and Layouts 181

Modifying the Controller

To create an action that will populate the @story instance variable, edit the file

app/controllers/stories_controller.rb so that it looks as follows (the

method to be added is in bold):

6-3. app/controllers/stories_controller.rb (excerpt)(excerpt)

class StoriesController < ApplicationController

def index

@story = Story.order("RANDOM()").first

end

def new

@story = Story.new

end

end

It doesn't matter whether you place this new method above or below the existing

index method. Some people prefer to sort their methods alphabetically, while

others group their methods by purpose; the decision is entirely up to you and has

no impact on your application's functionality.

The code that we've added to our new method simply instantiates a new Story

object and places it in the @story instance variable. As it's an instance variable,

@story will now be available to our view and thus to the form_for helper.

Reloading the page in your browser should now yield ... yet another error!

182 Rails: Novice to Ninja

6-4. Even after implementing the “new” action, we still receive an error on our submission form

As I mentioned earlier in the chapter, a benefit of using the form_for helper to set

up our form is that it automatically figures out where to submit the form. Now it's

showing that something's missing from our equation: we're yet to declare Story

as a resource anywhere. Let's do that now.

RESTful Resources in Rails

As covered in Chapter 4, Rails encourages a RESTful architectural approach to

development, especially for sites that create, retrieve, update, and delete

resources. In our case, a Story is a perfect candidate for a RESTful resource.

Although the Rails creators would prefer that every model generated is

automatically declared a RESTful resource, we're yet to reach that stage—and,

admittedly, it makes no sense to make it so in every case.

Helpers, Forms, and Layouts 183

Resources in Rails are declared in the file responsible for the routing

configuration: config/routes.rb. In Rails, the routing module is responsible for

mapping URLs to controllers and actions. Take the following URL, for example:

/stories/new

The routing module maps this URL to the new action of StoriesController. But

you already knew that. Here are the contents of the routes.rb file with its

comments removed:

Rails.application.routes.draw do

get 'stories/index'

get 'stories/new'

end

As outlined previously, the first part of the URL is mapped to the controller and

the second part is mapped to the action.

This being the default configuration, mapping RESTful resources is a little

different. Resources always consume the second spot in the URL—we're talking

about resource-centric development, after all. So for any given resource, the paths

along with their respective HTTP verbs outlined in Table 6.1 are recognized.

184 Rails: Novice to Ninja

6.1. The Mapping of

RESTful URLs to

Controller Actions

URL Action

GET /stories index

GET /stories/new new

POST /stories create

GET /stories/1 show

GET /stories/1/edit edit

PUT /stories/1 update

PATCH /stories/1 update

DELETE /stories/1 destroy

When you're looking at the table, the actions can be divided into two groups:

actions that operate on a single, existing story (show, edit, update, and destroy)

and those that don't (index, new, and create). The actions that do operate on a

single story use the second part of the URL to identify the resource they're

operating on with its numeric id.

That leaves us with seven distinct ways to interact with stories. But are we

supposed to define all those by hand for every resource our application is going

to have? Rails wouldn't be Rails if we had to jump through all those hoops. So

let's take a look at the magic that's behind resources, Rails' method for

automatically mapping RESTful routes.

Mapping a New Resource

We can discuss the theory of resources in Rails until we're blue in the face, but

nothing stimulates the brain like actually doing it for yourself. In the config/

routes.rb file, add the following line:

Helpers, Forms, and Layouts 185

6-5. config/routes.rb (excerpt)(excerpt)

Rails.application.routes.draw do

resources :stories

end

This one line of code will give us all sorts of exciting features. Among them is a

working—albeit unstyled—story submission form we can see upon reloading the

page in the browser. The result is shown in Figure 6-6. We'll explore the

remainder of those features in the upcoming chapters.

6-6. Our unstyled story submission form

Analyzing the HTML

The time has come to find out what kind of HTML the Rails helpers have

generated. Using your browser's View Source option, check the HTML in forms

for this page and you should see the following:

<form class="new_story" id="new_story" action="/stories"

➥ accept-charset="UTF-8" method="post">
<input name="utf8" type="hidden" value="✓">
<input type="hidden" name="authenticity_token"

➥ value="J7MBWtcQCU9UJMPb2AiDiOelUt7sTNDS91SeyMj4TaGlvIyesHI4kh
➥QBF4ExmwmKI5x6Q6iuzwVS7+jWASgCIw==">

186 Rails: Novice to Ninja

<div>

<p><label

➥ for="story_name">Name</label></p>
<input type="text" name="story[name]" id="story_name">

</div>

<div>

<p><label

➥ for="story_link">Link</label></p>
<input type="text" name="story[link]" id="story_link">

<p></p>

</div>

<input type="submit" name="commit" value="Save changes"

➥ data-disable-with="Save changes">
</form>

This markup is basically what we would expect: two text fields, a couple of

labels, and a submit button have been created for us, and everything has been

wrapped up in a form element. Rails has also figured out the correct target URL

(the action attribute of the form element) to create a new Story object according

to the RESTful URL mapping outlined in the last section. Submission of the form

will lead us to the create action of StoriesController, which we've yet to

implement.

Of note is that strange hidden <input> element named authenticity_token

inside it. This is one aspect of Rails' attempt to counteract so-called Cross-Site-

Request-Forgery (CSRF) attacks, ensuring that submitted forms originate at the

current web application as opposed to a third party. The content of

authenticity_token is based on the user's session and is verified against a token

set for the application (in config/secrets.yml, if you're curious). If there is a

mismatch, an error is raised and the form submission is discarded.

So our markup looks fine. But if you were to submit the form in its current state,

you would be less than thrilled with the results: we'd receive another error,

because the create method in StoriesController is yet to exist. Let's add some

code to save the story data to the database.

Helpers, Forms, and Layouts 187

Saving Data to the Database

Remembering when we made Story a resource, submitting the form will POST the

form data to the create action of the StoriesController. We'll create (heh) that

now by adding a method to the app/controllers/stories_controller.rb file:

def create

@story = Story.new(params[:story])

@story.save

end

The params object in the first line of our method is a Hash that contains all of the

content that the user submitted; you can revisit Hashes in Chapter 3 if you'd like

a refresher.

All of the form data passed to Rails will be added to the params Hash. If you look

again at the HTML source of the submission form, you'll notice that the input

element name attributes all have a story[] prefix. This prefix groups all the

submitted form fields for the story we're creating in params[:story].

We can then reference individual elements within the Hash by passing the name

of the attribute (as a symbol) to the Hash. For example, the value of the name

attribute could be accessed as params[:story][:name]. You get the idea.

The point of all this is that user data submitted via the form can be assigned to an

object very easily. We just pass the params[:story] Hash to the Story.new

method, and we have ourselves a populated @story object.

Not coincidentally, this is exactly what we've done in the first line of our method:

@story = Story.new(params[:story])

The newly created @story object is then sent the save method to store it

permanently into our database.

188 Rails: Novice to Ninja

Now, before you go ahead and enter some data into your form and click Save, let's

pause for a second and think about what Rails would do if you submitted the

form. Can you hazard a guess? We'd end up with yet another error screen stating

that Rails was unable to locate the create.html.erb template.

After Rails has finished processing the code in the controller action, (unless

instructed otherwise) it will try to render a template named after the controller

and action. In this case, it would be app/views/stories/create.html.erb.

But we don't actually want to do any rendering. We have saved the object to the

database and can return to the random story selector that we created in Chapter 5,

located within the index action.

Redirecting with URL helpers

If we don't want to render a template after an action has finished, preferring to go

elsewhere instead, we need to use the redirect_to method. This method takes a

single argument, namely, the destination of the redirection. What is the

destination of the redirection? Well, we know we've accessed the story

randomizer at http://localhost:3000/stories, so could we simply redirect

there with the following command?

redirect_to 'http://localhost:3000/stories'

We certainly could. But since it's likely that we'll be using these kinds of URLs in

many places, it seems a little tedious to go down that path. And, after all,

form_for was able to figure out paths on its own, why wouldn't redirect_to,

too?

Albeit a lot of magic and mind-reading on the part of Rails, it turns out in this

case that we do need to tell Rails what we want it to do. But to ease our pain,

there are quite a few methods provided by the resources call in the config/

routes.rb file that we use to define our stories as resources. These are known as

URL helpers.

Helpers, Forms, and Layouts 189

Table 6.2 shows a list of URL helpers that are being defined for every Story

resource.

6.2. URL Helpers for the Story

Resource

Helper URL

stories_path /stories

new_story_path /stories/new

story_path(@story) /stories/1

edit_story_path(@story) /stories/1/edit

URL helpers use singular or plural naming conventions depending on whether

they're dealing with a specific story (singular) or no specific story (plural).

You may wonder why there's no such thing as a destroy_story_path(@story) or

create_stories_path. It's because the actual URL generated from these wouldn't

differ from story_path(@story) and stories_path respectively. Remember that

the only difference is the actual HTTP verb used to access the resource. We'll

learn in the forthcoming chapters how to specify a different HTTP verb. This

HTTP verb/URL combination is the very heart of Mr. Fielding's RESTful vision.

Now that we know about the URL helpers available to us, it's easy to spot the

helper to use for our redirect_to call to redirect the browser back to the story

index: stories_path. The new create method should now look as follows:

def create

@story = Story.new(params[:story])

@story.save

redirect_to stories_path

end

As we can see in Figure 6-7, submitting the form now—after filling in a proper

name and story link, of course!—should ... result in yet another error. Wait, what?

190 Rails: Novice to Ninja

6-7. Error prone!

What the what? Forbidden attributes? But, we only submitted the name and link.

What's going on?

Well, we've hit another example of a Rails convention that's put in to protect our

site from basic security problems. The security issue here is called Mass

Assignment Protection. If we simply let all the keys of the params[:story] Hash

be passed to Story.new, an inscrutable person could pass all kinds of attributes.

For example, if the model has an attribute that, say, affects administrative

privileges, a user could manual set that attribute to true and compromise our

site.

To save us from having to handle this every time we want to create (or update) a

model, the superheroes that make Rails created automatic Mass Assignment

protection, which is affectionately known as "strong parameters" in the

community. To make this error go away, we whitelist (or permit) the attributes

Helpers, Forms, and Layouts 191

that are on the safe list. The conventional way this is done is by creating the

following private method on StoriesController:

def story_params

params.require(:story).permit(:name, :link)

end

Then, change the create action to this:

def create

@story = Story.new(story_params)

@story.save

redirect_to stories_path

end

Now, we have whitelisted our parameters, so submitting the new Story form will

create the story and redirect you back to the random story selector. This is a good

thing; however, our application does look a little sparse. Let's make it pretty.

Creating a Layout

In Rails, a layout is a specialized form of a view template. Layouts allow page

elements that are repeated globally across a site to be applied to every view.

Examples of such elements are HTML headers and footers, CSS files, and

Javascript includes.

EXTRA CREDIT: Going Private

How would you make story_params private? If you did your extra credit in

Chapter 3, you would know ...

Simply add the keyword private above the method and all methods defined after

that keyword will be private.

192 Rails: Novice to Ninja

Layouts can also be applied at the controller level. This ability can be useful if,

for example, you want to apply different layouts to a page depending on whether

it's being viewed by an administrator or a regular user.

We'll begin our foray into layouts by creating a global layout for the entire

application.

Establishing Structure

Layouts should be stored in the app/views/layouts folder. A layout template can

have any name, as long as the file ends in .html.erb. Rails, by convention,

creates a "global" application layout called—wait for it—application.html.erb.

Let's take advantage of that convention. Open the file named

application.html.erb in the app/views/layouts folder and add the content

where indicated:

<!DOCTYPE html>

<html>

<head>

<title>Readit</title>

<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',

➥ 'data-turbolinks-track': 'reload' %>
<%= javascript_include_tag 'application',

➥ 'data-turbolinks-track': 'reload' %>
</head>

<body>

<div id="content">

<h1>Readit</h1>

<%= yield %>

</div>

</body>

</html>

Helpers, Forms, and Layouts 193

There's nothing too radical going on here—it's a regular HTML5 document with a

proper DOCTYPE declaration; however, a couple of ERb calls here warrant an

explanation.

The following code generates the HTML that includes the default external CSS

stylesheet called application.css in the app/assets/stylesheets folder:

<%= stylesheet_link_tag 'application', media: 'all',

➥ 'data-turbolinks-track': 'reload' %>

Rails (and the asset pipeline, which we'll talk about soon) will create a URL for

this stylesheet that looks like /assets/application.css.

<%= javascript_include_tag 'application',

➥ 'data-turbolinks-track': 'reload' %>

I bet you can guess what this does. Just as we have stylesheet_link_tag for

CSS, javascript_include_tag generates the <script> element for the default

application JavaScript file. This file is, as you've no doubt guessed, located at

app/assets/javascripts/application.js.

The data-turbolinks-track attribute on each of those tags tells Rails to reload

the files only when they change, otherwise they will be cached. Rails is so smart!

I mentioned Cross-Site-Request-Forgery earlier, and how Rails takes measures to

protect our site from basic attacks. csrf_meta_tags is one of those measures, as it

creates a couple of meta tags that hold the parameter name and value for the

authenticity token in our forms:

Built-in Abettors

Rails ships with a number of helpers similar to stylesheet_link_tag and

javascript_include_tag, in that they make generating HTML pages easy. They

mostly save tedious typing and thus potential errors.

194 Rails: Novice to Ninja

<%= csrf_meta_tags %>

This line is the point at which the content for our specific view is displayed:

<%= yield %>

Telling our layout to "yield" might not seem intuitive here, but it does actually

make sense. Let me explain.

Remember that our layout will be used by many different view templates, each of

which is responsible for displaying the output of a specific action. When the

layout receives the command yield, control is handed to the actual view

template being rendered—that is, the layout yields to the view template. Once

that template has been rendered, control returns to the layout, and rendering is

resumed for the rest of the page.

Since we've linked a stylesheet, we'd better make use of it.

Adding Some Style

Let's use CSS to pretty up our page.

To apply a stylesheet to your application, open the file called application.css

in the app/assets/stylesheets folder and drop in the following code after the

comments in the file:

CSS Mastery Not Required

Fear not if CSS isn't your forte. All that's required for this project is to type out the

CSS rules exactly as you see them—or, even better, copy and paste them from the

code archive. If you're interested in improving your CSS skills, a good place to start

is with Louis Lazaris' book, Jump Start CSS.

Helpers, Forms, and Layouts 195

https://www.sitepoint.com/premium/books/jump-start-css

6-8. app/assets/stylesheets/application.css (excerpt)(excerpt)

body {

background-color: #666;

margin: 15px 25px;

font-family: Helvetica, Arial, sans-serif;

}

p { margin: 0 }

input {

margin-bottom: 1em;

}

#content {

background-color: #fff;

border: 10px solid #ccc;

padding: 10px 10px 20px 10px;

}

Reload the page in your browser. You should see a slightly prettier version of the

form, as shown below.

196 Rails: Novice to Ninja

6-9. Fully functioning form styled with CSS

Excellent! We now have a form that functions correctly, is well structured under

the hood, and looks good on the outside; however, our app is yet to deliver any

feedback to the user to confirm whether a story submission was successful. Enter:

the flash!

Enabling User Feedback with the Flash

Yes, you read that correctly: flash.

And no, we're not going to be switching to Adobe's Flash technology to provide

submission feedback. The flash also happens to be the name for the internal

storage container (actually a kind of hash) that Rails uses for temporary data. In

this section, we'll use the flash to pass temporary objects between actions. We'll

then apply some validation to the data that's entered.

Helpers, Forms, and Layouts 197

Adding to the Flash

When I say that the flash is used to store temporary items, I'm not referring to

items that exist in memory only without being saved to the database. Items stored

in the flash exist for the duration of one sole request, and then they're gone.

What good is that? Well, using the flash allows us the convenience of

communicating information between successive actions without having to save

information in the user's browser or database. The flash is well positioned to store

short status messages, such as notifications that inform the user whether a form

submission or login attempt was successful.

Flash content is usually populated from within a controller action. Using the

flash is very easy; to place a message in the flash, simply pass it an identifying

symbol and a corresponding message. Here's an example:

flash[:error] = 'Login unsuccessful.'

In our story-sharing application, we want to place a message into the flash

immediately after the story is saved to confirm to the user that the submission

was successful. Add the following line to the create action of your

StoriesController:

def create

@story = Story.new(story_params)

@story.save

flash[:notice] = 'Story submission

➥➥ succeeded'
redirect_to stories_path

end

198 Rails: Novice to Ninja

Retrieving Data from the Flash

To retrieve contents from the flash (usually done in the successive action), access

the flash from a view in the same way that you would access any other hash in

Rails. There's no need to explicitly populate it in the controller, nor purge the

Flash once the view has been rendered—Rails takes care of this for you.

Since flash content is universally applicable, we'll change our layout file (located

at app/views/layouts/application.html.erb) so that it renders a notification

box as long as there's content to render. Modify your layout file as follows:

6-10. app/views/layouts/application.html.erb (excerpt)(excerpt)

<div id="content">

<h1>Readit</h1>

<% unless flash[:notice].blank? %>

<div id="notification"><%= flash[:notice]

➥ %></div>
<% end %>

<%= yield %>

</div>

The condition that we've added here checks whether the flash[:notice]

variable is blank; if not, the code renders a simple HTML div element to which an

id is attached. Rails considers an object to be blank if it's either nil or an empty

string.

Before we switch to the browser to test this addition, let's add a few rules to our

stylesheet to display our notification:

Flash Naming Conventions

In general, Rails applications use conventions named after common UNIX logging

levels to indicate a message's level of severity. The common area names are

:notice, :warning, and :error.

As the message is not critical in this case, we'll use :notice; however, the name of

the flash area is entirely up to you.

Helpers, Forms, and Layouts 199

6-11. app/assets/stylesheets/application.css (excerpt)(excerpt)

#notification {

border: 5px solid #9c9;

background-color: #cfc;

padding: 5px;

margin: 10px 0;

}

If you submit another story now, you should see a nice green box on the

subsequent page informing you that the submission succeeded as shown here.

6-12. Green signals success with flash

If you're curious, reload the landing page to make sure the contents of the flash

disappear.

200 Rails: Novice to Ninja

Our form submission process, however, is still flawed; it's possible for a user to

submit stories without entering a name, or a link, or both!

Applying Validations

To ensure that all the stories submitted to Readit contain both a name and a link

before they're saved, we'll make use of the ActiveRecord functionality called

validations.

Validations come in a variety of flavors: the simplest flavor says “Check that this

attribute (or form input) is not empty.” A more complex validation, for example,

might be “Make sure this attribute (or form input) matches the following regular

expression.”1 There are varying degrees of complexity in between. A more

involved validation might be used, for example, to validate an email address.

Validations are defined in the model. This ensures that the validation is always

applied, and that an object is always valid before its data is saved to the database.

Let's look at a simple validation. To add validations to our Story model, edit the

model class in app/models/story.rb so that it looks like this:

6-13. app/models/story.rb

class Story < ApplicationRecord

validates :name, :link, presence: true

end

You'll note that the line we've added here is fairly verbose, so it's quite readable

by humans. This line ensures that the name and link attributes have a value

before the model is saved.

1. A regular expression is a string of characters that can be used to match another string of

characters. The syntax of regular expressions can be confusing, with particularly long

expressions looking much like random characters to a newcomer to the syntax. One of the

most common uses of regular expressions is validating whether or not an email address is

in the correct format.

Helpers, Forms, and Layouts 201

Tweaking the Redirection Logic

We want to ensure that the user will only be redirected to the story list if the

model passes its validation checks. To do so, we must modify the create action

in our controller as follows:

6-14. app/controllers/votes_controller.rb (excerpt)(excerpt)

def create

@story = Story.new(story_params)

if @story.save

flash[:notice] = "Story submission succeeded"

redirect_to stories_path

else

render action:'new'

end

end

As you can see, we've added an if clause so that it checks to see whether

@story.save returns true.

The validations we defined will be called before the save method writes the

object to the database. If the validations fail, this method will return false—the

object will not be saved, and the user will not be redirected.

It's quite common to use Ruby statements directly within conditions, as we've

done with the save method here. In general, many of the methods provided by

the Rails core classes return true or false, making them an excellent choice for

use in conditions.

In the else part we instruct the controller to re-render the template associated

with the new action, which is our story submission form. This enables the user to

correct his or her submission and resubmit without reentering the form values.

Please note that the render call does not execute any of the controller code

associated with the new action.

Fantastic! Our logic for processing the form is sound. If you were to try to submit

a blank name or link now, our app would not allow the object to be saved nor the

202 Rails: Novice to Ninja

redirect to occur, and the form would be re-rendered; however, the user still

requires some guidance for correcting any errors that result from a failed

validation.

Improving the User Experience

The generated HTML of the re-rendered form provides a hint as to how we might

implement additional feedback for the user when a validation error occurs:

<div class="field_with_errors">

<label for="story_link">Link</label>

</div>

<div class="field_with_errors">

<input type="text" value="" name="story[link]"

➥ id="story_link">
</div>

As you can see, using the Rails form_for helper has paid off. It has wrapped our

label and text field in div elements, and assigned them a class called

field_with_errors. It has also given them a custom style, making the

background red to indicate an error. We could override this if we wanted to, so

let's do that. Add the following rule to the application.css file:

6-15. app.assets/stylesheets/application.css (excerpt)(excerpt)

.field_with_errors {

color: red;

background: transparent;

}

.field_with_errors input {

border: thin solid red;

}

The helper's other neat trick is that it populates each field with values that the

user entered in the previous submission, as shown below.

Helpers, Forms, and Layouts 203

6-16. Showing errors to the user

It's also good practice to tell our users what exactly is wrong with a particular

field. Further along, we may want to add a validation to our model to ensure that

each URL is submitted only once.

Add the following line to the top of the new.html.erb template (above the

form_for call):

204 Rails: Novice to Ninja

6-17. apps/views/stories/new.html.erb (excerpt)(excerpt)

<% if @story.errors.any? %>

<div class="form_errors">

<h3>Errors</h3>

<% @story.errors.full_messages.each do |message| %>

<%= message %>

<% end %>

</div>

<% end %>

Then add a CSS rule for our form_errors into app/assets/stylesheets/

application.css:

.form_errors { color: red }

Now if a user submits the form without entering content into every field, the

browser will display:

a useful error message that indicates how many fields are blank

some textual hints as to the nature of the error for each field

a red border that clearly highlights which fields need attention

See Figure 6-18 for an example.

Helpers, Forms, and Layouts 205

6-18. Story submission form with validation

A fairly functional form submission process, no? And it doesn't look too shabby,

either.

Before we begin loading our application with additional features, we should add

some unit and functional test coverage. This will ensure that future modifications

don't break any of our existing functionality.

Testing the Form

Making a habit of writing tests for newly added code is more than just a good

idea—it may save your hide in the future!

206 Rails: Novice to Ninja

As I've mentioned before, by writing tests for all of your code, you can evolve a

suite of automated testing facilities as your application evolves. This suite can

then be run periodically or on demand to reveal any errors in your application.

A Rails test suite can be split into three fundamental parts:

Unit tests-also called model tests-cover model-level functionality, which for

simple apps can encompass an application's core business logic. Unit tests can

test validations, associations (which we'll cover in Chapter 7), and generic

methods that are attached to models.

Functional tests-also called controller tests-cover controller-level functionality

and the accompanying views. A functional test can be quite specific; ensuring,

for example, that a certain HTML element is present in a view, that a variable

is populated properly, or that the proper redirection takes place after a form

has been submitted. Functional testing of controllers has fallen out of favor

and given way to integration testing.

Integration tests go beyond the relatively isolated approaches of functional

and unit testing. An integration test allows you to test complete stages of user

interaction with your application. The registration of a new user, and the story

submission process as a whole, are good candidates for integration testing.

We'll look at functional and unit testing in this chapter and cover integration

testing in Chapter 11.

Generally speaking, test cases in Rails exist as classes that descend from

ActiveSupport::TestCase; however, when we generated our models and

controllers in Chapter 5, the generate command created some skeleton files for

us. These are located in the test folder, which is where all the files that make up

our testing suite reside.

EXTRA CREDIT: Minitest versus RSpec

While our test cases do inherit from ActiveSupport::TestCase, they are really

subclasses of Minitest::Test. Minitest is the default testing framework for Rails,

but many people use other frameworks, such as RSpec. Your extra credit? Do a bit

of searching around the web on Minitest and RSpec.

Helpers, Forms, and Layouts 207

Testing the Model

While our Story model is still yet to have a great deal of functionality, it does

have some validations, and we should definitely make sure that they operate as

expected. We'll add them to the skeleton test file, then run the test to confirm that

our validations are behaving themselves!

Analyzing the Skeleton File

The skeleton test file for our Story model is located at test/models/

story_test.rb. Upon opening it, you should see the following code:

require 'test_helper'

class StoryTest < ActiveSupport::TestCase

test "the truth" do

assert true

end

end

That first line aside, what we have here is a basic class definition by the name of

StoryTest. The name of this class, which was created when the file was

generated, suggests that its purpose is for testing our Story model—and so it is.

The require command at the top of the file is a simple example of one file

gaining access to the functionality of another file; the external file in such

arrangements is known as an include file. By including this file, we gain access to

a large amount of testing-related functionality.

Of course, Rails includes other files all the time, but we don't see dozens of

require commands littered throughout our code. Why not? The Rails

conventions allow it to autoload many files by deducing what is needed, when

it's needed, and where it can be found. This is another reason why following

Rails conventions is so important.

208 Rails: Novice to Ninja

Using Assertions

Code is tested in Rails using assertions. Assertions are tiny functions that confirm

that an item is in a certain state. A simple assertion may just compare two values

to check that they're identical. A more complex assertion may match a value

against a regular expression, or scan an HTML template for the presence of a

certain HTML element. We'll look at various types of assertions in this section.

Once written, assertions are grouped into tests (of assertions). A test is an

instance method that is prefixed with test_. An example of a test is the

test_truth method in the previous code listing. These tests are executed one by

one via the rails test command. If one of the assertions in a test fails, the test is

immediately aborted and the test suite moves on to the next test.

Now that we know what assertions are and how they work, let's write one!

Writing a Unit Test

The test "the truth" test in our unit test file is just a stub that was created by

the generate command. Let's replace it with a real test:

6-19. test/models/story_test.rb (excerpt)(excerpt)

test "is not valid without a name" do

s = Story.create(

name: nil,

link: 'http://www.testsubmission.com/'

)

assert s.errors[:name].any?

refute s.valid?

end

Helpers, Forms, and Layouts 209

The test method allows us to use a descriptive string to specify what we are

testing here. As you may have guessed, this method will test the validation of the

name. Let's examine each line within the method:

s = Story.create(

name: nil,

link: 'http://www.testsubmission.com/'

)

This line creates a new Story object—a task that we might perform in a regular

controller action. Note, however, that this time we've purposely left the required

name attribute blank (nil). As the create method will attempt to save the new

object immediately, the validations that we defined in the model will be checked

at the same time. At this point, we can check the result of the validation by

reading the errors attribute of our newly created object.

A Choice of Syntaxes for Testing

It's worth noting that you can write Minitest tests using a couple of different

syntaxes. The first one uses the test method and a block that runs your tests and

assertions. This is the syntax I prefer and am using. The other syntax involves using

a method with a test_ prefixed name, such as

test_is_not_valid_without_a_name. So, the second syntax for the

aforementioned test is:

def test_is_not_valid_without_a_name

s = Story.create(

name: nil,

link: 'http://www.testsubmission.com/'

)

assert s.errors[:name].any?

refute s.valid?

end

Pick whichever you like, or use both. The test world is your oyster.

210 Rails: Novice to Ninja

assert s.errors[:name].any?

Every model object in Rails has an errors attribute, which acts like a Hash. This

attribute contains the results of any validations that have been applied to it. If the

validation failed, the errors attribute will have a key for that attribute. In this

case, we deliberately left the name attribute empty; passing the symbol :name to

errors[] to test for any? error entries on the name attribute should therefore

return true, and our assert statement confirms it.

refute s.valid?

Simply put, refute is the opposite of assert. Calling valid? on a model will run

the validations and return true if they all pass or false if they don't.

The name attribute is not the only required attribute for our Story model,

though—the link attribute must be assigned a value before a story can be saved.

We've already added one test, so adding a second should be straightforward. Let's

add a test that covers the validation of the link attribute:

6-20. test/models/story_test.rb (excerpt)(excerpt)

test "is not valid without a link" do

s = Story.create(name: 'My test submission', link: nil)

assert s.errors[:link].any?

refute s.valid?

end

Easy, huh?

Errors and ActiveModel Errors

I said that the errors attribute acts like a hash, which implies that it's not a hash.

That's because it isn't. It's an ActiveModel::Errors. Feel free to do some more

research on what that is.

Helpers, Forms, and Layouts 211

Lastly, to complete our first batch of tests, we'll add a test that checks whether a

new Story object can be successfully created and saved when being instantiated

with all the required attributes, thereby passing all of our validations:

6-21. test/models/story_test.rb (excerpt)(excerpt)

test "is valid with required attributes" do

s = Story.create(

name: 'My test submission',

link: 'http://www.testsubmission.com/')

assert s.valid?

end

In this test, a new Story object is created, and all mandatory attributes are

assigned a value. The assertion then confirms that the created object has indeed

passed all validations by calling its valid? method.

Running Model Tests

With the testing code in place, let's run our small unit test suite. From the

applications root folder, execute the following command:

$ rails test:models

This command will execute all the test cases located in the test/models folder

one by one, and alert us to any assertions that fail. The output of a successful test

execution should look a little like:

Ensure the Test Database is Set Up

If you get an error that says "Migrations are pending", be sure to set up your test

database by running

rails db:migrate RAILS_ENV=test

before running the tests.

212 Rails: Novice to Ninja

$ rails test:models

Run options: --seed 5658

Running:

...

Finished in 0.026414s, 113.5773 runs/s, 189.2955

➥ assertions/s.

3 runs, 5 assertions, 0 failures, 0 errors, 0 skips

As you can see, rails gives us a nice summary of our test execution. The results

suggest that a total of three test cases and five assertions were executed, which is

exactly what our test suite contains at the moment.

You'll notice some dots between the "Running" and the "Finished" lines of the test

suite output: one dot for each test passed. Whenever an assertion fails, an

uppercase F will be displayed, and if one of your tests contains an error, an

uppercase E will be displayed, followed by details of the error that occurred.

Instead of boldly assuming that our tests work correctly, let's change one so that

we know it's going to fail. In our test "is required with valid attributes"

test, modify the last line so that its output is reversed:

assert !s.valid?

Save the file and run the unit testing suite again:

$ rails test:models

Run options: --seed 53603

Running:

F..

Helpers, Forms, and Layouts 213

Finished in 0.022360s, 134.1698 runs/s, 223.6163

➥ assertions/s.

1) Failure:

StoryTest#test_is_valid_with_required_attributes

➥ [/Users/ggoodrich/projects/sitepoint/readit/test/models/
story_test.rb:23]:

Failed assertion, no message given.

3 runs, 5 assertions, 1 failures, 0 errors, 0 skips

The output now displays an F, indicating a test failure, along with a description

of the assertions that may have caused the test to fail.

Armed with this information, locating and fixing an error unit test is easy. We're

provided with the name of the test that failed

(test_is_valid_with_required_attributes), the test case to which it belongs

(StoryTest), and the line on which it failed (line 23). Thus, the (admittedly

forged) culprit is easily located and fixed.

For now, undo the change you made to the last line of test "is required with

valid attributes", so that the test will again pass:

assert s.valid?

That's it—we've tested the model. We'll add more tests in later chapters as we add

more functionality to the model.

Testing the Controller

The testing of controllers is, at first glance, fairly similar to testing models—it's

just a different part of the MVC stack; however, there is some extra housekeeping

involved in setting up the environment properly.

214 Rails: Novice to Ninja

Analyzing the Skeleton File

Once again, a skeleton integration test was created as a result of our generating

the StoriesController. This skeleton file resides in test/controllers/

stories_controller_test.rb:

require 'test_helper'

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
test "should get index" do

get stories_index_url

assert_response :success

end

end

On first inspection, this looks similar to the StoryTest class from the previous

section. Here, however, the example test is being useful: it's actually running the

action and ensuring that it returns a :success.

Writing a Controller Test

Let's modify that first test for our StoriesController by adding the following

code:

test "should get index" do

get stories_url

assert_response :success

end

We'll now look at each line in this test:

test "should get index" do

Helpers, Forms, and Layouts 215

As you may have deduced from the name of the test, we're checking that the

index action is correctly displayed in the user's browser when the /index path is

requested.

The next line simulates a user requesting the index action of the

StoriesController class:

get stories_url

It uses the HTTP request method GET; similarly, the methods post, put, patch,

and delete exist for testing actions requiring that respective HTTP verb. Also, we

use Rails route helpers (stories_url) to grab the correct URL when running the

test.

The assert_response assertion checks that the HTTP response code we receive

is the code we expect:2

assert_response :success

We also need fixtures for this test. Fixtures in controller tests are dummy model

objects that provide a consistent data set against which our tests can run. Fixtures

are model based, so there's a fixture file for every model class in our application.

By default, Rails makes all YAML files stored in test/fixtures/ available to our

HTTP Code Aliases

As HTTP codes are numeric, they're sometimes hard to remember. As a result, Rails

has implemented a few aliases for the more common codes. In this example we've

used the :success symbol, which maps internally to the 200 OK response code

that's returned when a page request is successful. Other mappings that can be used

with the assert_response function include :redirect for HTTP redirect

headers and :missing for the all-too-common 404 Not Found error when there's

a request for a file that doesn't exist. Oh, and here they are correlated to cats.

2. A complete list of HTTP response codes can be found at http://en.wikipedia.org/wiki/

List_of_HTTP_status_codes

216 Rails: Novice to Ninja

https://http.cat/

tests, so there's no requirement to specify explicitly which fixtures we want to

load for each test.

Running a Controller Test

Now that we've created our test case, we can invoke the controller test suite.

Once again, we turn to the trusty rails tool to execute controller tests:

$ rails test:controllers

Here's the output that results from the successful execution of our test suite:

$ rails test:controllers

Run options: --seed 30514

Running:

.

Finished in 0.254726s, 3.9258 runs/s, 11.7774 assertions/s.

1 runs, 3 assertions, 0 failures, 0 errors, 0 skips

Writing More Controller Tests

There are two actions for which we are yet to write a test: the new and create

actions. We should create a few different tests for these actions. Let's do that now.

For the purpose of testing the inner workings of our new action in GET mode,

we'll use a test case that we'll name test "should get new". Add the following

method below the index test that we created previously:

test "should get new" do

get :new

assert_response :success

assert_template 'new'

assert_not_nil assigns(:story)

Helpers, Forms, and Layouts 217

end

Apart from a few textual differences, this test is almost identical to what we did

for test "should get index"; however, our work isn't done yet!

There's a form element in the new template, so we should certainly test that it

appears correctly. Here's another test to do just that:

6-22. test/controllers/stories_controler_test.rb (excerpt)(excerpt)

test "new shows new form" do

get new_story_path

assert_select 'form div', count: 2

end

This test starts with another get request, but this time to the new_story_path.

This merits a brief sidenote on the Rails route helpers.

The route helpers come in two flavors: _url and _path. The former (_url) is an

absolute path, meaning it includes the protocol (like http://) and the domain

(like example.com). The _path helpers are relative, meaning, it includes just the

path, which is the bit after the domain, like /stories/new. I prefer the _path

helpers for these tests, but it's only a preference.

The assert_select helper assertion used here is a very flexible and powerful

tool for verifying that a certain HTML element is present in a document returned

from a request. assert_select can even verify the hierarchy of the HTML

element, regardless of how deeply it's nested. It can also test the element's

attributes: for example, the value of its class or id. In fact, it's so flexible that we

could potentially devote an entire chapter to its features alone.

But now we're getting sidetracked. Back to this line! assert_select checks for

the existence of one form element in which two div elements are nested; the

count is supplied using the :count argument. These three paragraphs contain the

fields that comprise our story submission form.

218 Rails: Novice to Ninja

How do we specify an element in this hierarchy? Easy: by following the simple

rules of CSS selectors.

In this example, we want to reference a div element that resides within a form

element. Now, if we were writing a CSS rule to style these elements in bold, it

would look like this:

form div {

font-weight: bold;

}

In the same way that we reference paragraphs in CSS, the parameter that we use

with assert_select assertion is simply 'form div'. We'll look at a few more of

the CSS selector features of assert_select in the tests we write in later chapters.

Lastly, to test the posting of a new story, we'll write a few more short tests for the

create action:

6-23. test/controllers/stories_controler_test.rb (excerpt)(excerpt)

test "adds a story" do

assert_difference "Story.count" do

post stories_path, params: {

story: {

name: 'test story',

link: 'http://www.test.com/'

}

}

end

assert_redirected_to stories_path

assert_not_nil flash[:notice]

end

Let's break this test down line by line.

The test uses the assert_difference before-and-after check to confirm that this

action, which is supposed to modify data, is indeed doing its job. The first line

sets up the count we want to check for the test block:

Helpers, Forms, and Layouts 219

assert_difference "Story.count" do

assert_difference will confirm that the story we submitted was created

successfully, by counting the number of stories before and after the code in the

block is run, and subtracting the difference. It defaults to checking for a

difference of 1.

As I mentioned earlier in the chapter, post is another way to invoke an HTTP

request programmatically from a test:

post stories_path, params: {

story: {

name: 'test story',

link: 'http://www.test.com/'

}

}

post takes a few parameters—in this case, we're simulating the submission of a

story. To do this, we pass a hash of params that contains values for the required

attributes of a story: symbols representing the name and link attributes.

When a story submission has been successful, our application issues a

redirection. We can test that this redirection occurs using

assert_redirected_to:

assert_redirected_to stories_path

Lastly, we assert that the contents of the notice flash area is not nil:

assert_not_nil flash[:notice]

Whew! Our rapidly expanding test suite is evolving to the point where we can be

confident the story submission process is functioning correctly.

220 Rails: Novice to Ninja

The final test case we'll add covers the scenario in which posting a new story

fails. We'll cause the submission to fail by omitting one of the required fields:

6-24. test/controllers/stories_controler_test.rb (excerpt)(excerpt)

test "rejects when missing story attribute" do

assert_no_difference "Story.count" do

post stories_path, params: {

story: { name: 'story without a link' }

}

end

end

In the first line of this code, we attempt to post a story without a link:

post stories_path, params: {

story: { name: 'story without a link' }

}

That's it! We've written all the tests we need for the time being. Now, let's run the

suite.

Running the Complete Test Suite

Now that we have these additional tests in place, we have to run all our tests

again. This time, we'll use a slightly different approach: instead of invoking our

model and controller tests separately, we'll use a rails task to run these test

suites in succession:

$ rails test

The output of a successful test run should look like:

$ rails test

Run options: --seed 26531

Helpers, Forms, and Layouts 221

Running:

........

Finished in 0.310305s, 25.7811 runs/s, 54.7848 assertions/s.

7 runs, 13 assertions, 0 failures, 0 errors, 0 skips

Congratulations! Not only have you created a full test suite, but you've found

upon running it that your application is error-free—a discovery that should earn

even the most seasoned developer a self-pat on the back. To finish up, let's turn

our thoughts to the application's performance as we inspect the log files

generated by ActionPack.

Visiting the Logs

We talked briefly about logs when we looked at the structure of a Rails

application. You'll be glad to learn that ActionPack is a prolific logger, with a full

record of user activities within the application, complete with SQL statements,

page redirections, page requests, templates rendered, time taken, and more.

The level of detail in Rails' log files is of real benefit when you're hunting down a

problem with your code—the logs provide insight into what's actually happening

as a page is requested. The same level of detail is captured for unit and controller

tests in the test log file, which is located in log/test.log.

The timing values that are written to the log file are particularly interesting.

Consider the following snippet:

(0.2ms) begin transaction

SQL (0.6ms) INSERT INTO "stories" ("name", "link",

➥ "created_at", "updated_at") VALUES (?, ?, ?, ?) [["name",
➥ "Goodrichs.NET"], ["link", "http://goodrichs.net"],
➥ ["created_at", "2016-03-20 16:54:50.285226"], ["updated_at",
➥ "2016-03-20 16:54:50.285226"]]

222 Rails: Novice to Ninja

(0.6ms) commit transaction

Redirected to http://example.com/stories

From this log entry, we can conclude that:

0.6ms (milliseconds) were burned by Rails talking to the database

the whole exercise took 1ms

While this information might seem useless (after all, it only took 1 millisecond),

there will definitely come a time when performance is hurting and you need help

in figuring out why. Starting with the logs is recommended.

We'll skip digging any deeper into the logs here, but be aware that it's worth

keeping an eye on your log files. Incidentally, this is the same information that

has been flying past in the terminal window you launched your web server from,

too. This is another way that you can check your application's log entries in real

time, although you'll probably find using a text editor more practical.

We'll revisit the log files once more when we reach Chapter 11.

Summary

We certainly increased the functionality of our application in this chapter; we

even made it look a little prettier. We used the Rails form helpers to create a fully

functional web interface for submitting stories in a RESTful way, and we added a

global layout to our application, complete with stylesheets.

Along the way, we looked briefly at the flash, Rails's short-term memory container

that can be used to pass messages between successive actions. Some of the many

ways that Rails' conventions protect our site were explored, including strong

parameters and CSRF protection. We also added some validations to our Story

model, to ensure that our story submissions adhere to our own high

standards—or that, at the very least, each story has a title and a URL!

Finally, we wrote our first unit and controller test cases, which we used to

automate the testing of our models, controllers, and views. We also took a scroll

Helpers, Forms, and Layouts 223

through the Rails log files to see what kind of logging the ActionPack module

performs, and how those log entries are useful when we debug our application.

In the next chapter, we'll add the much anticipated voting feature to our story-

sharing application—and we'll do it using cutting-edge XHR (XMLHttpRequest)

technology, spiced up with some visual effects. Yes, it's going to be one good-

looking chapter! On with the show!

224 Rails: Novice to Ninja

7Chapter

Ajax and Turbolinks

The success of a social bookmarking or content-sharing application doesn't rest

solely on the submission of users' stories; there must also be a way for site

visitors to know the value of each content item.

Now, in the world of social bookmarking, popular opinion rules. That's why the

value of each story on our Readit site will be gauged by its popularity–indicated

by votes the story receives from Readit users.

In this chapter, we'll expand the feature set of our story-sharing application to

include this crucial voting functionality. And, as you might expect, Rails comes

with some client-side technology to make this a good user experience. We'll also

cover what's known as "Turbolinks," as well as the JavaScript library that comes

with Rails–jQuery–in the coming pages.

Ajax and Turbolinks 225

Generating a Vote Model

At the core of our app's voting functionality lies a data model—a Vote—which

we'll now create. Once that's in place, we'll make the necessary changes to our

database schema. We learned how to do this using migrations in Chapter 6, so

there's no reason to return to the old ways now!

Creating the Model

Using the rails generate command (you should be reasonably at home with

this by now), let's add a new model to our application:

$ rails generate model Vote story_id:integer

Running via Spring preloader in process 65396

invoke active_record

create db/migrate/20160403175119_create_votes.rb

create app/models/vote.rb

invoke test_unit

create test/models/vote_test.rb

create test/fixtures/votes.yml

Just like the last time we generated a new model, we gave the generate command

some insight into the attributes the new model will have, which we'll explore in a

moment. As you might expect, this command generates, among others, a new

migration file: db/migrate/20160403175119_create_votes.rb (remember, your

file will have a slightly different name). Let's look at it right now.

Examining the Vote Migration

The migration file that was generated for us contains the basic code to create a

votes table in our database. Currently, the change method should look like this:

226 Rails: Novice to Ninja

7-1. db/vote/migrate/xxx_create_votes.rb

class CreateVotes < ActiveRecord::Migration[5.0]

def change

create_table :votes do |t|

t.integer :story_id

t.timestamps

end

end

end

As you can see, we're following the format we used in Chapter 5 to create the

schema, but this time the column types are different. Let's look at them briefly:

t.integer :story_id

This line creates a story_id column of type integer. It will be used to store the

numerical ID of a story that has received a vote from a user. The column will be

populated using associations, which we'll talk about in the next section.

Rails has a handful of magical column names; two of the most handy are

created_at and updated_at, each of type datetime. Since they're so useful, Rails

has a shortcut for creating those two columns in a migration. It even includes that

shortcut by default every time we create a new migration:

t.timestamps

Whenever a new model is saved to the database using the save method, Rails will

automatically populate the column called created_at with the current date and

time.

Its companion, updated_at, operates in a similar manner. It automatically

populates the column with the current date and time of any successive call to the

Ajax and Turbolinks 227

save method, although we won't be using this column for the Vote model. (A

vote, once cast, is a vote, right?)

As with the last migration we created, the change method is also able to reverse

this migration by simply getting rid of the whole table.

Applying the Migration

Our migration is in place, so let's apply it using the rails tool once more:

$ rails db:migrate

Running via Spring preloader in process 67380

== 20160403175119 CreateVotes: migrating

➥ ======================================
-- create_table(:votes)

-> 0.0013s

== 20160403175119 CreateVotes: migrated (0.0015s)

➥ =============================

Excellent! Now, I suggest you sit down before we begin the next topic, because

matters could get a little heavy. It's time for you and me to have an in-depth talk

about relationships.

Introducing Relationships

Contrary to received wisdom, relationships don't have to be hard work.

I'm not talking about human relationships—I'm referring to the relationships (also

commonly referred to as associations) between objects in our model. We touched

on some of this back in Chapter 4 when we discussed the features of

ActiveRecord. Now we have a practical use for all that theory.

The Vote model that we created needs to be associated with our Story model.

After all, what good is a vote if it's unclear which story it's for?

228 Rails: Novice to Ninja

As we saw in Chapter 4, Rails can cater to a variety of associations between

models. One of the more popular associations is the one-to-many relationship,

which we'll add to our model now.

Introducing the has_many Clause

A one-to-many relationship exists when a single record of type A is associated

with many records of type B.

In our application, a single story is likely to be associated with many votes. This

relationship is shown in Figure 7-2.

7-2. Illustrating a one-to-many relationship

Relationships are usually declared bidirectionally, so that the relationship can be

utilized from both sides. Let's begin by examining the Story model's relationship

to a Vote; we'll look at the reverse relationship later in the chapter.

To define the first aspect of the relationship, edit the Story class (located in app/

models/story.rb) by adding the line in bold:

Ajax and Turbolinks 229

7-3. app/models/story.rb (excerpt)(excerpt)

class Story < ApplicationRecord

validates :name, :link, presence: true

has_many :votes

end

The addition of this one line has ignited a flurry of activity behind the

scenes—fire up a Rails console, and I'll show you what I mean. First, retrieve an

existing Story record from the database:

$ rails console

>> s = Story.first

=> #<Story id: 2, name: "SitePoint Forums", …>

Next, invoke this object's newly acquired votes method:

>> s.votes

=> #<ActiveRecord::Associations::CollectionProxy

➥ []>

The name of this method is derived directly from the has_many :votes

relationship that we defined in our class definition (we'll discuss declaring

associations in Chapter 9). Invoking the method grabs all votes for the Story and

returns them in a CollectionProxy.

230 Rails: Novice to Ninja

So, how do we go about adding votes to this story? The easiest way is to call the

create method of the object returned by story.votes, like so:

>> s.votes.create

=> #<Vote id: 1, story_id: 2, …>

This approach instantiates a new Vote object, and saves the object to the database

immediately. It works because we have yet to specify any validations for the Vote

model, so there's nothing to prevent empty fields from being saved; however, if

you assume that the record we just saved to the database is completely empty,

you'd be completely off the mark.

Let's look at the number of votes that have been created. Call the size method for

our Story's associated votes:

>> s.votes.size

=> 1

This is another method to which we gained access by defining the has_many

relationship and our good friend, the CollectionProxy. It instructs Rails to

calculate the number of records associated with the current model object. A result

of 1 indicates that the Vote object we just created does indeed contain some

information, since one Vote is associated with the Story we retrieved.

Collection Proxy Helps Efficiency

If you remember from Chapter 5, ActiveRecord does all it can to not execute SQL

before it's needed. The CollectionProxy exists for much of the same reason.

Rather than querying the database to see if our story has any votes, ActiveRecord

returns a proxy object. A proxy is like a middleman between the story and its votes,

waiting to see what we want to do with the votes. Do we want an array of all the

votes? Then call s.votes.to_a. Do we want to know how many votes have been

cast? Call s.votes.count. These two options require sending different SQL to the

database, and the proxy ensures that the most efficient SQL query is used.

Ajax and Turbolinks 231

To find out more, let's retrieve the same Vote object independently from the

Story with which it's been associated and inspect its attributes:

>> v = Vote.first

=> #<Vote id: 1, story_id: 2, …>

>> v.attributes

=> {"id"=>1, "story_id"=>2, "created_at"=>Sun,

➥ 03 Apr 2016 18:33:08 UTC +00:00, "updated_at"=>Sun, 03 Apr
➥ 2016 18:33:08 UTC +00:00}

As you can see, not only has our Vote object automatically been populated with a

creation and update date (the two start out being the same value), but a value has

been assigned in its story_id field. This value was obtained from the id attribute

of the Story object that was used to create the vote. (In this case, the value is

equal to 2, as that's the id of the first Story in the database.) Figure 7-4 shows this

relationship.

7-4. A one-to-many relationship

232 Rails: Novice to Ninja

To complete our relationship definition, we'll add its counterpart—the

belongs_to clause—to the Vote model.

Introducing the belongs_to Clause

As in life, there are usually two sides to the story when it comes to relationships.

We'll now add the second part of our one-to-many relationship. First, edit the

Vote model class (in app/models/vote.rb) as follows:

class Vote < ApplicationRecord

belongs_to :story

end

Now that we've defined the relationship within both models that are affected by

it, not only can we access the votes of a Story, we can also access the story of a

Vote. And I'm sure you can guess how we accomplish the latter—back to the

Rails console!

>> v = Vote.first

=> #<Vote id: 1, story_id: 2, …>

>> v.story

=> #<Story id: 2, name: "SitePoint Forums", …>

Ajax and Turbolinks 233

By adding just one line to our Vote class definition, we've gained access to the

associated Story object. As the code listing shows, access to this object is

possible via a new instance method (story) on the model. This method is

available as a direct result of the relationship clause that we put in place, and

obtains its name from the first parameter of the association call: belongs_to

:story.

Figure 7-5 shows how this relationship works.

Revise, Reload, Revise, Reload

If you make a change to your models or controllers while you have a running Rails

console, you'll be unable to call any of your new code; your console has to reload

your models and controllers. Doing this is as simple as issuing the reload!

console command, where you'll then see the following:

>> reload!

Reloading...

=> true

You'll also have to recreate any existing instances of your models, because they'll

still be using the old class.

234 Rails: Novice to Ninja

7-5. Depiction of a has many, belongs to relationship

How's our schema looking?

Now that we've established both sides of our one-to-many relationship, let's look

at how the information representing this relationship is stored in the database.

If you recall each of the migrations that we've created and applied so far, you'll

notice that although the Vote model contains a story_id column, the Story

model has no corresponding vote_id column.

In fact, this column is unnecessary. There's no need to store association

information in both models when defining a one-to-many relationship; the

information is always stored on the “many” side of the relationship. With this

information in place, Rails is intelligent enough to query the correct table when

we instruct it to find objects with an association.

Notice also how the terminology used to define the relationship accurately

reflects what's going on: the Votes belong to the Story, hence the belongs_to

Ajax and Turbolinks 235

call. And the Vote model represents the "many" side of the relationship, so each

Vote stores its own reference to its associated Story.

Now that we understand the data structures that underlie our voting

functionality, let's jump into building some user interactivity.

Making a Home for Each Story

In terms of viewing stories that have been submitted to Readit, our users

currently only have access to a page displaying a random story. To address this

issue, we'll add a new action that displays a single story, along with all of its

details, before we implement the voting actions themselves. The story page will

serve as a reference point for any given story on the Readit site, as it will contain

a range of information—voting actions, voting history, and so on—about the story.

Determining Where a Story Lives

The first step in displaying our stories is to find out what the URLs to access a

single Story should look like, and then which action we need to teach

StoriesController to handle these requests.

If you flip back to the section about resources in Rails, which we talked about in

Chapter 6, and take another look at the table with the mappings of URLs to

controller actions, you'll find the promising mention of a show action to handle

URLs such as /stories/2. This is the action we'll implement over the next few

pages.

Before we implement said show method in StoriesController, let's think for a

moment about what it will do. Our controller action has to retrieve a story with a

specific ID from the database. This ID is contained in the URL; Rails routing

extracts it from there and makes it available to us as params[:id]. The controller

then needs to hand the object it finds to the view, which is in turn responsible for

displaying it.

We'll start by adding the following method to our StoriesController class. Once

again, the order of the method definitions within the class definition is of no

importance:

236 Rails: Novice to Ninja

7-6. app/controllers/stories_controller.rb (excerpt)(excerpt)

def show

@story = Story.find(params[:id])

end

The single line of code in our show method executes a find by passing the value

of params[:id] to it. We're instructing ActiveRecord to retrieve from the

database all rows with an ID that's equal to the value in the URL requested by the

user; there should only ever be a single row returned.

The result of the find operation is then assigned to the instance variable @story,

which is automatically made available by Rails to the corresponding view

internally. Speaking of which, let's create that view now.

Displaying Our Stories

We need a template with which to display a story. Create a new template file at

app/views/stories/show.html.erb, and fill it with the following simple HTML

and ERb code:

<h2><%= @story.name %></h2>

<p><%= link_to @story.link, @story.link

➥ %></p>

This displays the name of the Story, wrapped in h2 tags, and adds a link to the

URL that's stored as part of the story.

Let's check that this functionality works as expected. Open the following URL in

your browser (if you've deleted some of your stories, substitute a higher number

at the end to see a story): http://localhost:3000/stories/2.

As you can see below, our story now has its own page that displays its name and

a link to the story content.

Ajax and Turbolinks 237

7-7. The Readit story page

Improving the Story Randomizer

While we're at it, let's change our front page so that the random link displayed no

longer uses the story's external URL. Instead, we'll direct users to the story's

internal page, to which we'll soon add some voting functionality.

Open up the template responsible for the index action of StoriesController

(located at app/views/stories/index.html.erb) and change the link_to call so

that it reads as follows:

Recap on Making Sure the Server Is Up

As with all of our examples, connecting to your application requires the Rails web

server to be running. If you need a refresher on how to launch it, flip back to

Starting Our Application in Chapter 2.

238 Rails: Novice to Ninja

<%= link_to @story.name, story_path(@story) %>

That a story_path function exists for our use is a direct result of the resources

:stories call in the route configuration—this is another benefit of using Rails

resources and following their conventions, which include using the action show

to display a single resource. The story_path function accepts a Story object

that's used dynamically to generate the URL we're looking for.

Reload the index page at http://localhost:3000/stories. It should now link to

the internal story page, as demonstrated below.

7-8. The index page is now linking to the story page

If you thought that was a simple and straightforward way to generate a link to a

story, it gets even better! The aforementioned link_to call can be shortened to

just the following:

Ajax and Turbolinks 239

7-9. app/views/stories/index.html.erb (excerpt)(excerpt)

<%= link_to @story.name, @story %>

Rails's link_to helper will automatically invoke the story_path helper behind

the scenes, all because of that simple one-line declaration that made Story into a

resource in the first place.

Well, this is already functional, but I think we can still improve in terms of

readability within the URLs we're exposing to our users. Let's look at the concept

of a clean URL.

Implementing Clean URLs

The URLs we put to use in the last section are simple enough– and definitely

simpler than some we're plagued by on our daily travels through some niches of

the Internet. But we can do better!

To recap, we've employed the following URL to refer to a single story:

/stories/1

This is all well and good, but an ID of 1 is hardly meaningful to our users; they're

more likely to remember the title of a story. Even if the title was slightly

modified–with special characters removed, escaped, or replaced–it would still

make for a more usable URL, and be much friendlier to our search engine friends

as well!

So, to refer to a story titled “My Shiny Weblog,” the following URL would be

perfect:

/stories/my-shiny-weblog

The implementation we're about to commence comes close to this ideal. Soon

enough, we'll have our stories found at URLs such as this one:

240 Rails: Novice to Ninja

/stories/1-my-shiny-weblog

As you can see, the URL still has the ID of the Story, but in addition it contains a

simplified version of the story name. To implement this URL, we'll pull a little

Ruby trick that's worth exploring in the console first.

Converting from Strings

We've talked about different object classes that are available in Ruby, and more or

less any other programming language on the planet. There are ways to convert

between them, and there are some conversions that make sense and others that

don't. We'll now look at the conversion of a String object into an Integer object,

and a neat side effect of that.

First off, why would you want to convert an object to a different class? Well,

everything our web application receives from a user's browser is treated as a

string, because the HTTP protocol doesn't specify values with a class. It's better to

be safe than sorry, given that String is the most universal choice and able to

represent almost everything.

With that established, it's fairly clear that the value 1 we receive in params[:id]

from a URL such as /stories/1 is actually not a number, but a string. The

difference is illustrated by the following Rails console output:

>> 1.class

=> Fixnum

>> "1".class

=> String

But how do we make a number out of a string representation of a number? To

convert a string into an integer (that is, whole numbers without a decimal

component, such as the number 1), every String object ships with a to_i

method:

Ajax and Turbolinks 241

>> "1".to_i

=> 1

The flipside of this is the to_s method provided by the Fixnum class:

>> 1.to_s

=> "1"

Armed with that knowledge, here's the little trick that will make our permalinks

work with minimal effort:

>> "1-my-shiny-weblog".to_i

=> 1

So how does this work? Strings to_i method simply discards anything after the

first numeric content it encounters, leaving us just with the ID of the story nicely

extracted. Now we just have to put that simplified title into our story URLs, the

topic of the next section.

Investigating Link Generation

When Rails' URL generation helpers need to create URLs that point to specific

objects such as Story, they ask the model being passed in how it wants to be

represented.

The view template we created for the show action originally included a call to the

story_path helper. This is like a shortcut that Rails gives us for declaring Story a

resource. I know you've come across this point a number of times now, but it's

really important and well worth repeating.

If we weren't to use resources and had to do without story_path, we'd use the

following code to achieve the same result:

242 Rails: Novice to Ninja

url_for controller: 'stories', action: 'show', id: @story

But even that snippet of code carries a bit of Rails magic. If you pass an

ActiveRecord model to url_for, it will automatically call the to_param method

of the model (@story in the previous example). This method, by default, returns

the value of the id attribute.

So the url_for call is actually equivalent to:

url_for controller: 'stories', action: 'show', id:

➥ @story.to_param

And it's this to_param method that we can use to our advantage in getting our

simplified title into the URL.

I know you're champing at the bit to make a start with the nifty Ajax stuff, so

quickly throw this method into the Story class definition (stored in app/models/

story.rb):

7-10. app/models/story.rb (excerpt)(excerpt)

class Story < ApplicationRecord

...

def to_param

"#{id}-#{name.gsub(/\W/, '-').downcase}"

end

end

This rather cryptic snippet of code overrides the to_param method defined by the

ActiveRecord::Base class. Now it no longer returns just the ID, but includes a

simplified version of the story's name. It's this new return value that we'll use in

URLs that point to stories.

In the new to_param method, I'm using regular expressions to turn non-

alphanumeric characters (anything that's not a number or alphabetical character)

Ajax and Turbolinks 243

in the story name into a dash, and everything else to lowercase. This string is

then appended to the original ID of the story to generate the new, more

representative URL. Of course, like a lot of methods in Rails, you're free to play

with it in the console as well:

>> s = Story.first

=> #<Story id: 2, name: "SitePoint Forums", …>

>> s.name

=> "SitePoint Forums"

>> s.to_param

=> "2-sitepoint-forums"

At this point we can let Rails go and do its magic. There's no other tasks required

to make our clean URLs work. Give it a try—reload the story index in your

browser (http://localhost:3000/stories) and marvel at your sparkling clean

URLs!

Now we're ready to start implementing the app's voting functionality; however, as

we're going to be using Ajax techniques, we'll take another slight detour to learn a

bit about Ajax and see how it's implemented in Rails.

Ajax, Pjax, and Turbolinks

We mentioned back in Chapter 1 that Rails is a full-stack framework,

encompassing code on the client, the server, and everything in between. Ajax is a

technique for communicating between client and server, so the Rails

implementation of Ajax is therefore one of the key parts making up this full stack.

Introducing Ajax

Ajax stands for Asynchronous JavaScript and XML, but represents a technique

that encompasses more than just these specific technologies. You may have heard

of the term, or perhaps you've heard of Single-page Applications where there is a

single HTML file and all interactions between the browser client and the server

are done using asynchronous technology, such as Ajax. Strictly speaking, Ajax is

not a new invention—it's actually existed for quite some time.

244 Rails: Novice to Ninja

Ajax enables a web browser to continue to communicate with a web server

without having to completely reload the page it's showing—a technique also

known as remote scripting. This communication may include the exchange of

form data, or the request of incorporating additional data into a page that has

already been displayed. The end result is that a web application using Ajax has

the potential to compete with more traditional desktop applications by providing

the user with a more dynamic and responsive experience.

At the heart of Ajax is the XmlHttpRequest object. XmlHttpRequest was originally

invented by Microsoft in the late 1990s for Internet Explorer 5 to improve and

enhance the user experience of Microsoft's web-based email interface. It has since

been implemented in all modern browsers. In 2005, a user-experience designer

named Jesse James Garrett invented the term Ajax to describe the approach of

using the XmlHttpRequest object–along with HTML, CSS, and the Document

Object Model (DOM)–to create interactive websites that feel like desktop

applications. While compatibility with certain web browsers was lacking when

the first applications using Ajax hit the Web, this is no longer an issue; all

popular web browsers support the XmlHttpRequest object, including Internet

Explorer, Firefox, Safari, and Chrome.

The term Ajax itself is a bit dated, and there's been other similarly named

approaches, such as Pjax. Pjax is, in some folk's opinion, an evolution of Ajax:

when the user clicks on a navigational link, the browser performs the request in

the background and replaces all or part of the HTML content. This avoids

reloading other assets, such as JavaScript, CSS, and images files. Additionally,

Pjax handles well-known user experience items, such as the browser history,

ensuring that going back and forth with browser buttons still works. Before Pjax,

the developer handled the history manually: adding URLs to the browser history

included some rather clunky solutions involving iframes and third-party

libraries. The development of some new APIs in HTML5 (namely, the History

API), led to Pjax and easier development. Again, behind the scenes, Pjax is just

doing what Ajax already did: asynchronously requesting content from the server

and replacing it in the browser, avoiding a full page load. What's different is that

Pjax uses some APIs and conventions to help programmers avoid writing

boilerplate code to do the same task over and over.

Ajax and Turbolinks 245

As you know by now, Rails is all about reducing boilerplate code with

convention. As such, Rails ships with Turbolinks, which (some may say) is an

evolution of Pjax. Turbolinks automatically takes all requests to the same domain

and asynchronously performs the request, just like Pjax. The browser history is

maintained and updated as needed, and any JavaScript or CSS assets are merged.

And guess what you, as the Rails developer, have to do in order to use

Turbolinks?

Nothing. It just works.

As you define links to parts of the app, such as the link to the current story on the

stories page, Turbolinks takes care of A/Pjaxing them up. If you go to

http://localhost:3000/stories for a random story, then click on the link to

that story, Turbolinks will request the page for that story and load it in the

background. If you look at the browser, you'll notice the loading/reload icon

never changes, meaning a full page load was avoided! Superb!

In fact, the excellent Rails team has enabled a cool little progress bar that loads

along the top of the page so that the user knows things are going down, as seen

below.

7-11. The progress bar in action

Pretty cool, eh? Now your users won't be left wondering if anything is happening.

It's great to have all these built-in tools in our Rails toolbox.

246 Rails: Novice to Ninja

An additional benefit of using Rails' built-in helpers to enable Ajax functionality

in your application (compared with writing all the code from scratch) is that they

make it easy to provide a fallback option for browsers not supporting Ajax—a

concept known as graceful degradation. The browsers that fall into this category

include older versions of web browsers not supporting Ajax, some browsers on

newer platforms such as mobile phones, and browsers for which the user has

deliberately disabled JavaScript. Visitors using these browsers will still be able to

use your web application. It won't be as dynamic as it is for other users, but at

least they won't be faced with an application that fails to work at all—a scenario

that's almost guaranteed to drive them away from your site.

Armed with this knowledge, we'll make use of the Rails Ajax helpers to

implement functionality that allows users to vote on stories in our Readit

application without waiting for page reloads. We'll also provide those users with

a nice visual effect to highlight the altered element after their vote actions are

successful.

Making Stories

Okay, we've walked through the ins and outs of Ajax/Pjax/Turbolinks. We've

discussed some of the capabilities of Turbolinks and explored one of the tools it

provides. We're now in a good position to add voting functionality to our

application while indicating to users that their votes have been recorded. We'll

also provide a fallback option for users whose browsers are without Ajax support.

Controlling Where the Votes Go

Before we can tackle the design details of the vote button, we need to lay down

the foundation of where the votes go as soon as they're cast. We need another

controller!

Here's the rails generate call for generating a new controller

(VotesController) with a single action (create):

$ rails g controller Votes create

Ajax and Turbolinks 247

The output of that command is shown:

$ rails g controller Votes create

Running via Spring preloader in process 59403

create app/controllers/votes_controller.rb

route get 'votes/create'

invoke erb

create app/views/votes

create app/views/votes/create.html.erb

invoke test_unit

create test/controllers/votes_controller_test.rb

invoke helper

create app/helpers/votes_helper.rb

invoke test_unit

invoke assets

invoke coffee

create app/assets/javascripts/votes.coffee

invoke scss

create app/assets/stylesheets/votes.scss

Additionally, being RESTful citizens, we're going to declare a new set of

resources in config/routes.rb. You might be tempted to declare Vote as a stand-

alone resource. But what good is a vote without a story? It turns out that Rails has

something in store to adapt our use of a one-to-many relationship between a story

and its votes to the resource declarations. Change the routing configuration as

follows:

7-12. config/routes.rb

Rails.application.routes.draw do

resources :stories do

resources :votes do

end

⋮ routes…
end

248 Rails: Novice to Ninja

Now, what do we have here? At this point, it makes sense to introduce a task that

provides a list of all the RESTful routes and their helper names that Rails

generates for you, based on the configuration in config/routes.rb:

$ rails routes

Go ahead and run the command for yourself. See if you can spot what the

declaration of has_many: :votes in the routing configuration achieved in terms

of URL helpers. The result of the command run locally on my machine is as

follows:

7-13. Checking out the routes

You've guessed right if you've pointed at all the routes with a declaration of

votes#<method> in them. What's interesting to see here is that the URLs look like

this:

/stories/:story_id/votes

What we've created is a so-called nested route. A vote object is nested below the

story object and cannot be accessed by simply going to a URL like /votes or

Ajax and Turbolinks 249

/votes/1, but must be accessed with a prefix naming the associated story first,

such as /stories/1/votes.

Of note is the naming of the URL helpers. Instead of employing the standard

votes_path method to refer to the votes index, our nested route has provided us

with the story_votes_path method. Similarly, the helper to access a single vote

would not be vote_path but story_vote_path. We'd receive an error if we tried

to use incorrectly named helpers. In addition, we must specify the parent story of

the vote when generating vote URLs. Confused yet? Let's see it in practice!

The Asset Pipeline

First, however, we have to perform a quick side step to discuss how JavaScript

and CSS assets are included in our pages.

In a standard HTML page, JavaScript and CSS assets are included via tags and

elements in the head of the HTML page. This is Web Development 101 and it's no

different for pages in a Rails application. By default, the generated application

layout (app/views/layouts/application.html.erb) has helpers for including

CSS and JavaScript files. If you open up that layout and look in the head section,

you'll see:

7-14. app/views/layouts/application.html.erb (excerpt)(excerpt)

<%= stylesheet_link_tag 'application', media: 'all',

➥ 'data-turbolinks-track': 'reload' %>
<%= javascript_include_tag 'application',

➥ 'data-turbolinks-track': 'reload' %>

These are the two helpers I was talking about. Let's break down the attributes of

each helper.

stylesheet_link_tag:

application tells it to look for an application.css file. By default, Rails will

look for CSS files in app/assets/stylesheets and vendor/assets/

stylesheets.

250 Rails: Novice to Ninja

media: 'all' adds an attribute to the link tag to include this file for all

media. This is a CSS setting.

'data-turbolinks-track': 'reload' means that Turbolinks will track this

asset and reload it if it changes.

javascript_include_tag:

application tells it to look for an application.js file. By default, Rails will

look for JavaScript files in app/assets/javascripts and vendor/assets/

javascripts.

'data-turbolinks-track': 'reload' indicates that Turbolinks will track

this asset and reload it if it changes, just as with the previous tag.

To confirm that the helpers are indeed doing their jobs, take a look at the source

of any of the pages that exist in our application. Remember, since we added these

files to the application's layout template, this change will be visible on every

page. In the header of the page source, you should find script tags that closely

resemble the following:

<link rel="stylesheet" media="all"

➥ href="/assets/scaffolds.self-d2f648f...786.css?body=1"
➥ data-turbolinks-track="reload" />
<link rel="stylesheet" media="all"

➥ href="/assets/stories.self-e3b0c...855.css?body=1"
➥ data-turbolinks-track="reload" />
<link rel="stylesheet" media="all"

➥ href="/assets/votes.self-e3b0c...855.css?body=1"
➥ data-turbolinks-track="reload" />
<link rel="stylesheet" media="all"

➥ href="/assets/application.self-1165b...b34.css?body=1"
➥ data-turbolinks-track="reload" />
<script src="/assets/jquery.self-c64a7...da4.js?body=1"

➥ data-turbolinks-track="reload"></script>
<script

➥ src="/assets/jquery_ujs.self-d602b...b09.js?body=1"
➥ data-turbolinks-track="reload"></script>
<script

➥ src="/assets/turbolinks.self-c377...fff.js?body=1"
➥ data-turbolinks-track="reload"></script>

Ajax and Turbolinks 251

<script src="/assets/stories.self-877ae...c05.js?body=1"

➥ data-turbolinks-track="reload"></script>
<script src="/assets/votes.self-877ae...c05.js?body=1"

➥ data-turbolinks-track="reload"></script>
<script

➥ src="/assets/application.self-0c76c...75e.js?body=1"
➥ data-turbolinks-track="reload"></script>

Whoa! What the what? So, each helper put out multiple tags with multiple scripts

and stylesheets. What's going on? And why does each file look like it was named

to win a Scrabble game?

Relax. Take a deep breath. You're just seeing the output of one of Rails' tools: the

asset pipeline.

Why do we need an asset pipeline?

The asset pipeline was created to solve a few problems that websites can have

with external static assets, such as JavaScript, CSS, and image files. These issues

comprise:

most sites using more than one JavaScript or CSS file, where each one

involves a call to the server from the browser

there being many languages that make CSS and JavaScript more developer-

friendly, but requiring a preprocessor, which can be tedious to use

most JavaScript and CSS files containing comments or whitespace that are

unnecessary for the production site

browsers wanting to cache static assets to save on bandwidth and improve

performance, so there needs to be an easy indicator that a static asset is

different, or changes will never make it to the browser

Geek Etymology

The asset pipeline comes from a Ruby gem called "sprockets", which is why you'll

often hear "asset pipeline" and "sprockets" used interchangeably.

252 Rails: Novice to Ninja

http://guides.rubyonrails.org/asset_pipeline.html

These are fairly difficult issues to solve, or used to be. The Rails core team set out

to solve them with the asset pipeline, and they have done well. Let's talk about

each issue and how it's solved.

Multiple Source Files

Going back to the previously generated HTML, there are six JavaScript files: two

from jQuery, one for Turbolinks, and three from our application. How'd they get

there?

The asset pipeline uses a file called a manifest to let the developer list the files to

be included in the application. There is a manifest file for both JavaScript and

CSS. The JavaScript manifest file is located in app/assets/javascripts/

application.js and looks like this:

Ajax and Turbolinks 253

7-15. app/assets/javascripts/application.js

// This is a manifest file that'll be compiled into

➥ application.js, which will include all the files
// listed below.

//

// Any JavaScript/Coffee file within this directory,

➥ lib/assets/javascripts, vendor/assets/javascripts,
// or any plugin's vendor/assets/javascripts directory can

➥ be referenced here using a relative path.
//

// It's not advisable to add code directly here, but if you

➥ do, it'll appear at the bottom of the
// compiled file.

//

// Read Sprockets README

➥ (https://github.com/rails/sprockets#sprockets-directives) for
➥ details
// about supported directives.

//

//= require jquery

//= require jquery_ujs

//= require turbolinks

//= require_tree .

The manifest file lists all the JavaScript files we want to use in our application,

like so:

//= require jquery

This requires the jQuery source. jQuery is a popular JavaScript framework that

ships, by default, with Rails. You can see the jquery_ujs and turbolinks lines,

as well. That last line, //= require_tree . tells the asset pipeline to look in the

default directories (app/assets/javascripts and vendor/assets/javascripts)

and include all the JavaScript (and CoffeeScript) files it finds. The Rails

generators we used to create our controllers also automatically create a

254 Rails: Novice to Ninja

CoffeeScript. Finally, the app/assets/javascripts/application.js file is

created as a part of every Rails application. That accounts for the six files.

I know what you're thinking: what in the wide wide world of programming is

CoffeeScript? Don't worry, we'll address that soon. First, though, let's quickly

cover the CSS manifest.

The CSS manifest is located in app/assets/stylesheets/application.css and

looks like:

Ajax and Turbolinks 255

7-16. app/assets/stylesheets/application.css

/*

* This is a manifest file that'll be compiled into

➥ application.css, which will include all the files
* listed below.

*

* Any CSS and SCSS file within this directory,

➥ lib/assets/stylesheets, vendor/assets/stylesheets,
* or any plugin's vendor/assets/stylesheets directory can be

➥ referenced here using a relative path.
*

* You're free to add application-wide styles to this file

➥ and they'll appear at the bottom of the
* compiled file so the styles you add here take precedence

➥ over styles defined in any styles
* defined in the other CSS/SCSS files in this directory. It

➥ is generally better to create a new
* file per style scope.

*

*= require_tree .

*= require_self

*/

body {

background-color: #666;

margin: 15px 25px;

font-family: Helvetica, Arial, sans-serif;

}

p { margin: 0 }

input {

margin-bottom: 1em;

}

#content {

background-color: #fff;

border: 10px solid #ccc;

padding: 10px 10px 20px 10px;

}

256 Rails: Novice to Ninja

#notification {

border: 5px solid #9c9;

background-color: #cfc;

padding: 5px;

margin: 10px 0;

}

.field_with_errors {

color: red;

background: transparent;

}

.field_with_errors input {

border: thin solid red;

}

.form_errors {

color: red;

}

This file plays the same role for CSS that application.js does for JavaScript.

The major difference is the comment syntax between JavaScript (//) and CSS

(/*...*/). Going back to the link tags created by the stylesheet_link_tag

helper, there are four files: scaffolds.css, stories.scss, votes.scss, and

application.css. scaffolds and application are Rails defaults, whereas the

stories and votes files are SCSS files created by the controller generator. The

CSS styles in the manifest are added by Rails.

Now I know what you're asking: what in the wide wide world of programming is

SCSS? Let's find out.

Asset Preprocessors

Not everyone knows or likes JavaScript and CSS. Both of these languages can

have a steep learning curve and their syntax, to some, leaves much to be desired.

As such, pragmatic programmers have created language abstractions for both

JavaScript and CSS. The Rails core team has included a couple of these language

abstractions in the framework, which we'll discuss now.

Ajax and Turbolinks 257

CoffeeScript

CoffeeScript is a "little language that compiles into JavaScript." It attempts to

make JavaScript easier to write by removing some syntax and adding other

language features. Figure 7-17 shows a side-by-side comparison of CoffeeScript

(left) to JavaScript (right) from the CoffeeScript website.

7-17. CoffeeScript and JavaScript

As you can see, CoffeeScript removes semicolons and the need for keywords such

as var to declare a variable. It has shortcut syntax for creating a function (square

= (x) -> x * x) and uses whitespace to delineate blocks. It's less code for the

same functionality. We'll be using CoffeeScript in this book, as needed, so you

might want to spend some time looking at its syntax.

258 Rails: Novice to Ninja

http://coffeescript.org

Sass

Sass stands for "Syntactically Awesome Style Sheets" and is an extension to CSS.

It allows you to nest CSS selectors, create variables, and create functions in your

CSS. For example, if you use a color such as #333 throughout your CSS files, you

can define a variable called $main_color and use that where you'd use the value.

This allows you to change the value of that color in one spot. Here's an example

of Sass:

$main_color: #333

nav {

ul {

margin: 0;

padding: 0;

list-style: none;

}

li { display: inline-block; }

a {

display: block;

padding: 6px 12px;

text-decoration: none;

color: $main_color;

}

}

CoffeeScript or JavaScript?

While Rails encourages the use of CoffeeScript, it does not mandate it; you’re free to

write plain JavaScript for your site as well. The asset pipeline will run any file with

the .coffee extension through the CoffeeScript preprocessor, and leave .js files

alone. If you want to know more about CoffeeScript, check out Jump Start

CoffeeScript by Earle Castledine.

Ajax and Turbolinks 259

https://www.sitepoint.com/premium/books/jump-start-coffeescript
https://www.sitepoint.com/premium/books/jump-start-coffeescript
http://sass-lang.com/

You can see the nested CSS selectors: instead of nav ul, the ul tag is nested

inside the nav brackets. Sass has some excellent time-saving techniques, so it's

worth becoming familiar with it. (Did someone say "EXTRA CREDIT"?)

Asset Compression and Minification

On the Internet, every ounce of bandwidth is sacred. The performance of your

site can be improved greatly by reducing the size of the assets that the browser

retrieves. As a result, best practice for any website is to compress and minify the

static assets–the JavaScript and CSS. The asset pipeline does that for you in the

right environment.

Just so that we understand each other, minifying and compressing an asset means

removing all of its whitespace and combining it with other assets of the same

type. All JavaScript files are given a whitespace-ectomy and combined into a

single file so that the browser receives all the JavaScript for the site with a single

request. It's the same for the CSS.

The JavaScript files undergo more complex minification where the code is

changed to be as small as possible. For example, the development version of a

JavaScript file may have the following line:

var orderAmount = 0;

When minified, this looks like:

var o=0;

Syntactically Awesome, or Simply Cascading?

As with JavaScript, you can write .scss files or .css files, of which the former

will be run through the Sass preprocessor by the asset pipeline. Sass has a couple of

flavors, so be sure to use the .scss extension. A great book on Sass I'd recommend

is Jump Start Sass by Hugo Giraudel and Miriam Suzanne.

260 Rails: Novice to Ninja

https://www.sitepoint.com/premium/books/jump-start-sass

The asset pipeline will replace all references to orderAmount with o when it

compresses the file, so you end up with the smallest file possible. I mentioned

that this compression happens in the "right environment," meaning the

"production environment." Remember back in Chapter 1 that Rails has a

development, test, and production environment? The assets are not compressed

in the development environment. A task has to be run for the compression to

happen, which we'll discuss when we deploy our app in Chapter 12.

Asset Digests

The last aspect we'll cover on the asset pipeline is asset digests. As I've

mentioned, browsers love to cache static assets; this is great, because caching

assets that seldom change is a good thing. But, how does the browser know when

a cached asset has changed? This can be especially dire if you are using a Content

Delivery Network (CDN) for your asset, which expects it to be a long-lasting asset.

Let's look at one of the tags from the generated HTML:

<script

➥ src="/assets/application.self-0c76c...75e.js?body=1"
➥ data-turbolinks-track="reload"></script>

In this filename, the .self-0c76c1... is the digest of the asset. A digest is a

hashed value that is created based on the contents of the file. That means that the

value of the digest will change when the contents of the file changes. So, the

easiest way to invalidate a cached file is to stop using it. By making the name of

the file dependent on its content, we always know when the file has changed.

The asset pipeline is an incredibly useful tool that does a lot for the Rails

developer. Arguably, an entire book could be written on just the asset pipeline

and what it provides. Alas, we have votes to count and must move on ...

Get Out the Vote

The next step is to change our existing show view (located at app/views/

stories/show.html.erb) to display the current number of votes that the story

Ajax and Turbolinks 261

has received. Then we'll add a link that allows users to vote on stories. Modify

your view so that it looks like this:

<h2>

Score: <%= @story.votes.size %>

<%= @story.name %>

</h2>

<p>

<%= link_to @story.link, @story.link %>

</p>

<div id="vote_form">

<%= form_tag story_votes_path(@story), remote: true do

➥ %>
<%= submit_tag 'Vote for it' %>

<% end %>

</div>

Let's take a look at what's new here:

<h2>

Score: <%= @story.votes.size %>

<%= @story.name %>

</h2>

The heading that previously displayed just the name of the story now also

contains a span tag that holds its vote score. To calculate this number, we use the

size method on the votes association that we looked at earlier to add up the

number of votes submitted for that story. We've also given the span element a

unique ID, which we'll use later as a hook to update the score when a user casts a

vote. We'll add some CSS to float this span to the right of the page, too.

We've also added the following:

262 Rails: Novice to Ninja

<div id="vote_form">

<%= form_tag story_votes_path(@story), remote: true do

➥ %>
<%= submit_tag 'Vote for it' %>

<% end %>

</div>

This is where the magic happens! The extra div houses a form created by the

form_tag helper, complete with a remote: true option. This generates the bits of

HTML and Javascript that are necessary to invoke the form submission using

Ajax, rather than as a regular page-loading form.

What we handed to form_remote_tag is a call to one of the nested resource

helpers we talked about earlier (the ones that might have made you feel a little

dizzy, remember?), specifically to the story_votes_path helper. This helper takes

@story as its argument to specify that we're dealing with votes associated with

that given story.

In particular, we'd like to create a new vote for this story, which means we need

to send a POST request to /stories/1/votes. Rails then routes to the create action

of VotesController.

Styling the Scoreboard

Next, let's expand our CSS (it lives in the file located at app/assets/

stylesheets/stories.scss) to style and position our new elements:

Ajax and Turbolinks 263

7-18. app/assets/stylesheets/stories.scss (excerpt)(excerpt)

$vote_color: #393;

#vote_score {

float: right;

color: #9c9;

}

#vote_form {

margin: 10px 0;

}

#vote_form input {

padding: 3px 5px;

border: 3px solid $vote_color;

background-color: #cfc;

text-decoration: none;

color: $vote_color;

}

#vote_form input:hover {

background-color: #aea;

}

There's nothing too mysterious happening here—it's all cosmetic. But who said

cosmetics weren't important?

If you access one of your stories through your browser (using the link to a random

story on http://localhost:3000/stories, for example), you should see a page

similar to the one in Figure 7-19; however, clicking the Vote for it link will do

very little right now (except that your application may spit out some weird

warnings and error messages).

264 Rails: Novice to Ninja

7-19. The story page

To store the votes that have been submitted, we'll implement the create method

of our VotesController that we generated earlier in the chapter. Here it is:

7-20. app/controllers/votes_controller.rb (excerpt, incomplete)(excerpt, incomplete)

class VotesController < ApplicationController

def create

@story = Story.find(params[:story_id])

@story.votes.create

end

end

This new method contains nothing we haven't seen before. In the first line, we

find the appropriate story record using the unique ID of Story for which a vote

has been cast. This ID is given to us by Rails in the form of params[:story_id],

since params[:id] is in this case reserved for a potential ID of a Vote object. You

can also see this pattern displayed in the routes list we looked at earlier (the route

syntax looked like: /stories/:story_id/votes).

Ajax and Turbolinks 265

The second line creates and saves a new Vote. It only contains auto-generated

values, such as the creation date and the IDs that receive a value because of the

Votes association with a Story.

If you were to try clicking the Vote for it link on your story page now, it would

store your vote. But nothing on the page would change yet—we can only perform

so much magic at once, even in Rails land.

To update the voting score that's displayed on the page and highlight it with a

visual effect, we’ll use a different (prepare yourself for another new term)

response format.

Response Formats

One of the tenets of REST is the ability to request a resource in multiple formats.

By default, requests that are made for dynamic content (and are not static assets)

are expected to be in HTML format. When you visit http://localhost:3000/

stories, the format is presumed to be HTML. This is driven by the Accept

header on a request, which has the value of text/html for that request; however,

when we involve technologies such as Ajax, we want a different format. In this

case, when we cast a vote using the form_tag, remote: true, we are using Ajax

to submit the form via JavaScript, so it'd be great if we could get a JavaScript

response. For the vote request, the Accept header has a value of application/

javascript or text/javascript, which tells Rails to respond using JavaScript.

But what does that mean?

Since the VotesController is receiving the request and needs to formulate a

response from the create method, we can use a method on

ActionController::Base (VotesController's grandparent) called respond_to

and tell it to handle HTML and JavaScript. Modify the VotesController#create

method to look like:

266 Rails: Novice to Ninja

7-21. app/controllers/votes_controller.rb

class VotesController < ApplicationController

def create

@story = Story.find(params[:story_id])

@story.votes.create

respond_to do |format|

format.html { redirect_to @story, notice: 'Vote was

➥ successfully created.' }
format.js {}

end

end

end

You can see that I've added a respond_to method call and passed in a block with

a format argument. We can tell format which formats we are interested in by

calling the appropriate method and passing in a block to handle it:

html is handled by redirecting to the Story (story_path(vote.story)) and

putting a message in the flash. The redirect_to function will be familiar to

you from Chapter 6. It also uses the same shorthand syntax we've used for

link_to earlier in this chapter.

js is handled by ... doing nothing. Just render the view for this format which,

by convention, is app/views/votes/create.js.erb.

Just like an html.erb file has HTML to render, a js.erb file has JavaScript to

execute. Let's look at create.js.erb:

7-22. app/views/stories/create.js.erb

$("#vote_score").html("Score: " + <%= @story.votes.size

➥ %>)
$("#vote_score").css({backgroundColor: "#ffffcc"});

setTimeout(function(){

$("#vote_score").css({backgroundColor: "#ffffff"});

}, 2000);

Ajax and Turbolinks 267

As I've said, this view is all JavaScript, specifically jQuery. The view grabs the

#vote_score element, changes its content, then highlights it for two seconds. We

won't win any awards for it, but this shows how easy it is to call JavaScript and

manipulate the page based on the results of an action.

Furthermore, our respond_to block will handle HTML, so this approach degrades

gracefully–so if their browser isn't using JavaScript, they can still vote! Isn't it

amazing how much you can do with as little code as this?

Introducing Partials

I've mentioned before that templates ending in .html.erb can be used to display

certain pieces of the page independent from the rest of the page. When used in

this way, these files are called partials. Partials can be helpful for dealing with

parts of a page that are constantly being reused (such as a navigation menu), or

for retrieving and formatting the items in a collection (such as a list).

Shorthand Awesomeness

Speaking of shorthand syntax, I have an even shorter version of our gracefully

degraded form. This is just in case you were wondering why you suddenly needed

to type in all these characters to have such a, well, simple thing as a form that

simultaneously caters to both traditional and Ajax-enabled browsers, submits to a

nested route, and looks pretty. Turns out you don't!

<div id="vote_form">

<%= form_for [@story, Vote.new], remote: true do |f|

➥ %>
<%= f.submit 'Vote for it' %>

<% end %>

</div>

Now we're using form_for, a slightly more specialized cousin of form_tag. If we

hand that helper an array containing the parent story and a new Vote object, we get

exactly the same result as before, only with a little less typing. You've got to love

that!

268 Rails: Novice to Ninja

In this section, we'll use partials to implement a voting history box for our story

page. The history box will show the dates and times at which each vote for a

story was submitted.

Adding Voting History

We'll implement the voting history as a list, using the HTML elements for an

unordered list (ul). Each vote will be represented as a list item (li) that shows

the voting timestamp. The list items themselves will be rendered as partials, so a

single template that contains a single list item will be rendered as often as there

are votes for a given story.

To begin with, we'll modify the show template located at app/views/stories/

show.html.erb to render an unordered list of the votes a story has received. To

accomplish this, we'll add to the template code right above the paragraph

container that houses the story link, like so:

7-23. app/views/stories/show.html.erb

<ul id="vote_history">

<% if @story.votes.empty? %>

No votes yet!

<% else %>

<%= render partial:'votes/vote',

collection: @story.votes %>

<% end %>

<p>

<%= link_to @story.link, @story.link %>

</p>

In this code, we've started out with a straightforward ul element that has a

unique ID, and we've added a condition using an if … else … end construct.

This causes the message "No votes yet!" to be displayed whenever a story without

any votes is rendered:

Ajax and Turbolinks 269

<% if @story.votes.empty? %>

⋮ template code…
<% else %>

⋮ template code…
<% end %>

While the if construct is familiar to us from Chapter 3, the votes.empty? part is

new. The empty? method brought to us by declaring the association between

votes and stories will return false if a story has associated votes, and true if not.

It's in this call to render that we add the partial to our page:

<%= render partial: 'votes/vote',

collection: @story.votes %>

We instruct Rails to render a template for every Vote added to a story. The

render partial syntax can be used to render a partial once or many times (as in

this case). It's the addition of the collection argument that indicates we'll be

rendering the partial multiple times.

The value votes/vote of the :partial option actually asks Rails to look for a

vote partial in the votes/ subdirectory of app/views/, since this is the place

where we'll store the new partial.

Creating the Partial

Partials, like regular full-page templates, have a .html.erb extension and are

stored right alongside their full-page cousins in an application's directory

structure. A partial is identified by an underscore (_) prefix in its filename. Let's

create the new partial at app/views/votes/_vote.html.erb, and populate it with

the following line of code:

270 Rails: Novice to Ninja

7-24. app/views/votes/_vote.html.erb

><%= vote.created_at.to_formatted_s(:short)

➥ %>

That's all there is to it! This line simply wraps the date on which a vote was

made–the value of which is stored in the created_at attribute–in a pair of li

tags.

Note that we have access to an object named vote. Rails has created this object

for us—it does so for every partial—and the object takes the name of the partial

(vote, in this case). This object is automatically set to the current element of the

collection that's being rendered.

The upshot of all this is that a partial doesn't concern itself with determining

which Vote it's currently processing, or where that Vote sits within the larger

collection of votes. The partial simply operates on a single vote object and lets

Rails take care of the rest.

Styling the Voting History

If we printed the date and time exactly as they appear in the database, we'd

produce this regimental-looking style:

2016-02-01 11:47:55

To address this issue, we've made use of Rails' date-formatting helper. This

helper, appropriately named to_formatted_s, is available as an instance method

for objects of the classes Date and Time. The helper takes a single argument, one

of several pre-defined symbols representing the format that should be applied to

the output. Some of the formats include :short and :long; for a Time object,

these render as 01 Feb 11:47 and February 01, 2016 11:47 respectively.

Again, to make this a little more pleasing to the eye, we'll add a few CSS rules to

our stylesheet to define how our voting history box should look. These rules

arrange our voting history nicely, but they also introduce some minor CSS quirks

Ajax and Turbolinks 271

that relate to floated elements. Thankfully, we can rectify these problems easily

by adding a few more lines to our stylesheet. The additions are marked in bold:1

7-25. app/assets/stylesheets/application.css

#content {

background-color: #fff;

border: 10px solid #ccc;

padding: 10px;

overflow: hidden; /* added */

}

* html #content { /* added */

height: 1%; /* added */

} /* added */

7-26. app/assets/stylesheets/stories.scss

#vote_history {

padding: 5px;

margin: 0;

list-style: none;

border: 3px solid #ccc;

background-color: #eee;

float: right;

color: #999;

font-size: smaller;

}

With all this code in place, go ahead and reload a story page in your browser—the

result should look similar to Figure 7-27 (depending on how much fun you had

clicking the vote link earlier).

1. The explanation of what's happening here—and why these cryptic CSS rules are

necessary—is well beyond the scope of this book. If you're interested in learning more, this

topic (amongst myriad others) is explained in Rachel Andrew's The CSS3 Anthology

(https://www.sitepoint.com/premium/books/the-css3-anthology-4th-edition).

272 Rails: Novice to Ninja

7-27. A history of voting

While the page is looking good, there are a few more details to add: update the

list of votes with a new vote, sort the votes by descending ID (so that the newest

is displayed at the top), and limit the number of votes that are displayed.

We can achieve the first task easily by adding a single line of code to our

JavaScript template, located at app/views/votes/create.js.ejb. These

additions will deal with the voting actions:

7-28. app/views/votes/create.js.ejb

$("#vote_history").html('<%= j(render partial:

➥ "votes/vote",
collection: @story.votes) %>')

This is the same approach: use jQuery to grab the vote_history list, then replace

its content with the output of our partial that includes the new vote. That's right,

we reuse the same partial inside our JavaScript. Because our ERb partial emits

HTML, we have to escape it so that the JavaScript file can handle it. That's what

Ajax and Turbolinks 273

the j function does. j is an alias for escape_javascript, which allows us to

handle the output of the partial and append it to the list.

Tweaking the Voting History

Lastly, we'll add an instance method to the association between the Vote and the

Story model to return a limited number of votes sorted by descending ID. Why

would we write this as a separate method, and not just retrieve the data from

within the view? Well, for a couple of reasons. For one, MVC principles state that

we shouldn't be retrieving any data from our view. But as we'll be calling this

method from a couple of separate places, moving it to the model makes more

sense.

Let's create the method first, then add the references to it. Edit the Story class so

that it looks like this:

7-29. app/models/story.rb (excerpt)(excerpt)

class Story < ApplicationRecord

validates :name, :link, presence: true

has_many :votes do

def latest

order('id DESC').limit(3)

end

end

This latest method will take advantage of the story's association with the Vote

model, and will use a scope of the records we want, up to a total of three records

(as specified by the limit(3) method). The order(‘id DESC') method will

ensure that they're ordered so that the newest vote is located at the top.

274 Rails: Novice to Ninja

Having added this new method to the Story class, you can go ahead and replace

the two occurrences of @story.votes that are present in our views with

@story.votes.latest. The first occurrence is the render call in show.html.erb:

<%= render partial: 'votes/vote',

collection: @story.votes.latest %>

The second occurrence is the last line of the JavaScript template create.js.erb:

$("#vote_history").html('<%= j(render partial:

➥ "votes/vote",
collection: @story.votes.latest) %>')

Excellent. Reloading the story page should produce the expected results, with the

number of votes being limited to three, and the votes ordered by descending ID.

Hitting the vote button will update the voting history and place the new vote at

the top of the list. Have a look at Figure 7-30 to see how the updated page looks.

A Methods of Sorts

In case you're curious, the argument passed to the order method is actually a tiny

piece of SQL. DESC, quite obviously, stands for descending; there's also ASC for

ascending, which is often left off as it's the default for ordering records in Rails.

The rest of the argument constitutes a column name by which the records will be

ordered (or multiple column names separated by commas—if you want to order by

multiple columns—like so: order(‘id, created_at')).

Ajax and Turbolinks 275

7-30. An evolved history of voting

Testing the Voting Functionality

In Chapter 6, we mentioned that our plan is to provide test coverage for all of the

functionality in our application. Let's expand our growing test suite by adding

some unit and functional tests.

Testing the Model

While most of the work in this chapter has been on the controller side, we still

made some changes to the model: modifying our Story model, adding a Vote

model, and defining an association between the two. We also added an instance

method called latest to retrieve the most recent votes of a given Story. All of

these features can be tested programmatically, so let's write some unit tests to

cover them.

Before we begin, can you think of something we need to do? Maybe to prepare the

test environment? No? We added migrations in this chapter, so we have to be sure

to run them against the test database:

276 Rails: Novice to Ninja

rails db:migrate RAILS_ENV=test

Preparing the Fixtures

Before we write any tests, we'll add some test data to the fixtures for our Vote

model, which resides in test/fixtures/votes.yml. Actually, Rails has already

done this for you:

7-31. test/fixtures/votes.yml

one:

story: one

two:

story: one

We generated the original contents of this file using the rails generate

command earlier in this chapter, but I've made some small changes. Both story

attributes point to the first Story, named one, in the stories.yml fixture file,

illustrating the point that one Story can have multiple Votes.

Testing a Story's Relationship to a Vote

At this stage, we're ready to add a test that covers the Story's relationship to the

Vote model. To do this, open the file test/models/vote_test.rb and change the

VoteTest class to read as follows:

class VoteTest < ActiveSupport::TestCase

test "votes have a story" do

assert_equal stories(:one), votes(:one).story

Check One Two

Make sure that your votes.yml fixture file looks like this one. I've seen Rails

generate faulty fixture files that break the tests.

Ajax and Turbolinks 277

end

end

The new votes have a story test undertakes the testing of the relationship

between the Story and the Vote model. While the underlying Rails association

has very good internal test coverage, it's good practice to test all associations that

you create as you test your application's behavior.

The assert_equal assertion, as the name implies, confirms that two expressions

are absolutely equal. In this case, we're simply comparing the return values of

two methods:

assert_equal stories(:one), votes(:one).story

What's new on this line is the stories(:one) and votes(:one) syntax, which

references our fixture data by name. Making use of a fixture file in a test does

more than just load the contents of the file into the database, it also gives us a

convenient way to access each record in the fixture file without having to resort

to manual retrieval methods (for example, using Vote.find(1) to retrieve the first

vote). The records we defined in the votes.yml fixture file are named one and

two. Simply passing these identifiers as symbols to the votes method returns the

corresponding record.

To give an example, take a look at these two calls. They are equal, given the

votes.yml fixture we created earlier:

Vote.find(1)

votes(:one)

Incidentally, a method with a name identical to the name of the fixture file

(minus the .yml extension) is made available for every fixture we include in a test

case. As we've created two fixtures so far, we have access to both the votes and

stories methods.

278 Rails: Novice to Ninja

In our assertion line, we compare the Story named one with the Story object

that's associated with the Vote named one. We know that this assertion should be

true, because we associated both votes in the fixture file with the first story.

Testing the Voting History Order

To test the functionality provided by the latest method we added, we'll add two

more tests to the story_test.rb file below the others:

7-32. test/models/story_test.rb (excerpt)(excerpt)

test "returns highest vote first" do

highest_id = stories(:one).votes.map(&:id).max

assert_equal highest_id, stories(:one).votes.latest.first.id

end

test "return 3 latest votes" do

10.times { stories(:one).votes.create }

assert_equal 3, stories(:one).votes.latest.size

end

Let's look at these tests line by line.

The returns highest vote first test confirms that the :order part of the

latest method is indeed operating correctly. We have to grab the highest vote ID

for our story votes first, because we have no control over when or in what order

the fixtures are created:

highest_id = stories(:one).votes.map(&:id).max

assert_equal highest_id, stories(:one).votes.latest.first.id

The assertion compares the first element of the array returned by the latest

method with the highest vote ID, to which we expect it to be equal.

To test whether the limit part of our latest method does indeed do its job, we

need to add a few more votes to the database, as our fixture file currently contains

only two votes. Because it's unlikely that we'll be using a large number of votes in

Ajax and Turbolinks 279

any other test, we'll create the additional votes right there in the test, using a

simple block of Ruby code:

10.times { stories(:one).votes.create }

This line programmatically creates ten votes on the fly by calling the create

method on the votes association of the first Story.

These dynamically created votes will be wiped from the database automatically

before the next test starts, so they won't affect any other tests.

The assertion then goes ahead and compares the size of the array returned by

latest method with the expected number of 3, which is the maximum number of

votes that latest` should return.

Running the Unit Tests

At this point, we're ready to run our model tests with all the newly added

coverage. You remember how to do that, right?

The output should look similar to this:

$ rails test:models

Running via Spring preloader in process 52828

Run options: --seed 16833

Running:

......

Finished in 0.083235s, 72.0847 runs/s, 96.1130 assertions/s.

6 runs, 8 assertions, 0 failures, 0 errors, 0 skips

280 Rails: Novice to Ninja

Testing the Controller

Now that we've created tests that cover all the extra functionality we added to our

model in this chapter, we'll do the same for the new controller actions: show in

StoriesController and create in VotesController, as well as their

accompanying views.

Testing Page Rendering

We'll add two tests for the show action to test/controllers/

stories_controller_test.rb; the first will be a test that deals with the basics of

displaying a story. The code for the first test is as follows:

7-33. test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "show story" do

get story_path(stories(:one))

assert_response :success

assert response.body.include?(stories(:one).name)

end

This code does nothing we haven't seen before. We request a page (the “show

story” page) using HTTP GET, and make sure that the page returns a code

indicating that it displayed successfully. We then check that the story name is

included in the response, indicating we've rendered it correctly.

The next test we'll create will cover the new HTML elements that we added to the

story page, specifically those relating to the voting functionality. Here's the test:

Ajax and Turbolinks 281

7-34. test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "show story vote elements" do

get story_path(stories(:one))

assert_select 'h2 span#vote_score'

assert_select 'ul#vote_history li', count: 2

assert_select 'div#vote_form form'

end

This is quite a comprehensive test. It checks for the presence of correctly nested

HTML tags on the rendered page, as well as proper element attributes. Let's

examine it one line at a time:

assert_select 'h2 span#vote_score'

This assertion introduces more of the CSS selector syntax that can be used with

assert_select, which we first encountered in Chapter 6. Just as you would

regularly style an element on a page by referring to its ID, assert_select allows

us to test for the presence of an element with a given ID using the same syntax

we'd apply to style an element on the page.

Here, we're checking for a span tag with an ID of vote_score nested within an h2

element. This test confirms that we have a proper story header in place, and that

the current voting score appears beneath it.

The next assertion also uses assert_select:

assert_select 'ul#vote_history li', count: 2

Here, we check for the presence of a ul element that has a unique ID of

vote_history and a specific number of li elements nested within it (reflecting

the entries of the voting history for this particular story).

Our final check confirms the presence of a div element with a unique ID of

vote_form with a nested form inside it:

282 Rails: Novice to Ninja

assert_select 'div#vote_form form'

We now have a high level of confidence that our pages are displaying everything

expected of them! Now, let's add some tests for our voting functionality.

Testing Vote Storage

To test the basics of the vote-casting functionality, add the following test to test/

controllers/votes_controller_test.rb (and while you're in there, delete the

test that Rails generated.) It simply confirms that new votes are stored correctly:

7-35. test/controllers/votes_controller_test.rb (excerpt)(excerpt)

class VotesControllerTest < ActionController::TestCase

test "creates vote" do

assert_difference 'stories(:two).votes.count' do

post story_votes_path(stories(:two))

end

end

end

The test uses the assert_difference before-and-after check to confirm that this

action, which is supposed to modify data, is indeed doing its job. Let's look at

each line in turn.

The first line sets up the count we want to check for the test block:

assert_difference 'stories(:two).votes.count' do

We then submit the vote using HTTP POST:

post story_votes_path(stories(:two))

Ajax and Turbolinks 283

assert_difference will confirm that the vote we submitted was stored

successfully, and is associated with our story.

Okay, we now have a test in place for the application's basic voting functionality.

But our voting pages are far from being basic—they use that fancy Ajax stuff,

remember? Can we test that, too? You bet we can!

Testing Ajax Voting

Let's test an Ajax voting action. Add the following test to your rapidly expanding

collection of functional tests:

7-36. test/controllers/votes_controller_test.rb (excerpt)(excerpt)

test "create vote with ajax" do

post story_votes_path(stories(:two)), xhr: true

assert_response :success

end

>

Again, let's walk through each line of this test.

The first line is our test's way of pretending to perform an actual Ajax request:

post story_votes_path(stories(:two)), xhr: true

Obviously, this isn't really an Ajax request. It makes no use of a browser, and

there's no XmlHttpRequest object in sight. But, by adding the xhr: true

parameter to the POST call, our request receives a header that fools the application

into thinking that this is a real Ajax request.

The next block of statements check for a proper response, and confirms that the

correct template was rendered:

284 Rails: Novice to Ninja

assert_response :success

There's nothing here that we haven't seen before, so let's move on to our last test.

Testing Regular HTTP Voting

We still must test the process of vote submission using regular HTTP POST (that

is, without Ajax). To do so, we'll add one more test to the

votes_controller_test.rb file:

7-37. test/controllers/votes_controller_test.rb (excerpt)(excerpt)

test "redirect after vote with http post" do

post story_votes_path(stories(:two))

assert_redirected_to story_path(stories(:two))

end

Let's examine each line in this test. The first line casts the vote with a simple

HTTP POST:

post story_votes_path(stories(:two))

After the vote has been submitted, we check whether the user is properly

redirected to the story page. This is accomplished with an

assert_redirected_to assertion:

assert_redirected_to story_path(stories(:two))

Excellent! All of our new functionality is covered. Time to run the tests.

EXTRA CREDIT: Make a Difference

Change the Ajax test to use assert_difference.

Ajax and Turbolinks 285

Running the Full Test Suite

Invoking the full test suite (using the rails test command) will run through a

total of 26 assertions contained in ten tests. The results of a successful test suite

execution should look like this:

$ rails test

Running via Spring preloader in process 56718

Run options: --seed 3298

Running:

................

Finished in 0.385701s, 41.4829 runs/s, 82.9658 assertions/s.

15 runs, 25 assertions, 0 failures, 0 errors, 0 skips

Summary

In this chapter, we've equipped Readit with some fully fledged voting

functionality, and we've done it using cool technologies such as Ajax combined

with some good-looking user-interface effects.

Along the way, we covered the principles of Rails routing helpers, and added to

our application a page that shows the details of a story that has already been

submitted.

We took a long look at the asset pipeline and how it compresses and minifies our

assets, generates asset digests, and handles preprocessors such as CoffeeScript

and Sass.

Turbolinks supplied us with some great tools out of the box, such as

asynchronous page requests and a progress bar.

286 Rails: Novice to Ninja

We also looked at using JavaScript templates to modify the contents of pages that

have already been rendered, and discussed how we can use visual effects to

enhance the usability of our application. We even covered partials: mini page

templates that help reduce the amount of template code required to get the job

done.

Finally, we established test coverage for all the functionality we added to our

Readit application in this chapter, so that we'll know immediately if any future

change to the application code breaks our existing functionality.

Whew! We covered a ton in this chapter. Take a break and get some coffee. You

deserve it.

In the next chapter, we'll implement some protective measures in Readit with

user authentication—with some additional benefits!

Ajax and Turbolinks 287

8Chapter

Protective Measures

Over the last few chapters, we've spent a good deal of time implementing new

features for our link-sharing application; however, we've yet to put any effort into

preventing those features from being misused.

In this chapter, we'll implement some user authentication techniques that will

allow us to protect certain actions from being used by individuals failing to

register with or log into the site.

Introducing Sessions and Cookies

Before we write any code, let's learn a bit more about the technology behind user

logins, including sessions and cookies.

288 Rails: Novice to Ninja

If you already have some experience with sessions and cookies, you may prefer to

skim through this section.

Identifying Individual Users

Generally speaking, HTTP—the protocol that a web browser uses to talk to an

application—is stateless. This means it makes no assumptions about, nor relies

upon, previous requests between the client and the server.

This is the crucial difference between stateless protocols and other protocols,

including instant messaging systems such as Skype or Internet Relay Chat (IRC).

When you start up an instant messenger client, it logs in to the instant messaging

server and remains connected for the time that you use the service. Stateless

protocols, such as HTTP, request only a single item—a web page, an image, or a

stylesheet, for example—during each connection. Once the item has been

requested, the connection is closed. If the requested item is a web page, it's

impossible for the application to tell what the users are doing; they may be still

reading the page, following a link to another site, or shutting down the machine

altogether.

In the world of HTTP, it's also impossible to tell whether two pages requested in

succession were actually done so by the same user. We cannot rely on the IP

address of the user's computer,1 as that computer might sit behind a proxy server

or firewall, in which case it's entirely possible that thousands of other users share

the IP address displayed by that machine.

Obviously, we need another technique to identify individual visitors. Without it,

we'd have to force every user to log in to each and every page of our Readit

application, and that's just not cool. This is where sessions and cookies come into

play.

What's a cookie?

A cookie is a tiny snippet of information that a website places on a user's

computer. The cookie is bound to the website that placed it there; no other site is

1. An IP address is a number that uniquely identifies a computer connected to the Internet.

You've no doubt encountered them before–here's an example: 123.45.67.123.

Protective Measures 289

able to access the cookie. You've probably encountered cookies when using the

Web in the past, possibly without even knowing it.

A cookie consists of a name/value pair. For example, a cookie with the name

color might have the value green. Additionally, the cookie's name must be

unique. If a cookie is set with the same name as one that already exists, the older

cookie will be overwritten.

All web browsers give users control over the cookies that websites set on their

machines, although some make cookie management easier than others. Firefox,

for example, provides a handy tool for inspecting—and removing—the cookies

that have been set on a machine. To display the Firefox Storage Inspector shown

in Figure 8-1, select Tools > Web Developer, click Storage Inspector. The top item

in the list is called "Cookies." Select the address of the current site under

"Cookies" (www.google.com in the figure) to show you the cookies for that site. Go

take a look—chances are that many of the sites you've visited have left a cookie

without even telling you about it.

8-1. The Storage Inspector

Cookies usually have an expiration date, with the browser deleting a cookie

automatically once this has passed. It makes sense for sites to set expiration dates

290 Rails: Novice to Ninja

on cookies, as they occupy space on the user's computer. Additionally, once a

cookie is set, it cannot be modified by the application that set it, so a cookie

without an expiration date could wind up sitting on the user's hard disk forever.

A site can set the expiration date of a cookie in two ways:

using an explicit date (for example, December 31, 2016)

making the cookie expire when the user closes the browser

The latter is the default behavior for Rails' session cookies … which brings us to

the next topic.

What's a session?

Sessions are what's needed to identify returning visitors. A session is like a small

container that's stored on the server for each user; it can be used as a temporary

storage location for everything that needs to be remembered between successive

page views made by the user. Though a session is a less permanent storage

solution, the data stored in the session shouldn't be treated any differently from

data in the application's database.

As an added bonus, the processes of creating sessions and retrieving information

from them occurs without us having to write any code or provide specific

instructions.

For our Readit application, we'll use a session to store information about where

users are from; we'll use that information when users attempt to access pages or

functionality to determine whether we should allow them access, or redirect

them to the login form. Sessions can also be used to store shopping cart content,

custom user preferences, and other information that allows us to enhance and

customize users' experiences of a site.

Rails uses a session cookie to identify the session of a returning visitor. A session

cookie, by default, will contain the actual session content in a safely encrypted

fashion, although it's possible to store the session content on the server or in the

database if you so desire later on.

Protective Measures 291

In fact, if you've been following the code in this book, you may notice that a

session cookie has been set by our application already: check your browser's

cookie manager for a cookie set by localhost or localhost.local, with the

name _readit_session. This is a cookie that Rails sets for us automatically,

providing us with a session to use within our application.

Sessions in Rails

As I've previously noted, a session in Rails is automatically created for each of

your application's users, and can be used to store and retrieve data without

requiring any special code.

The session container for a user is accessed just like any other hash. To add a new

value to the session, simply assign the value that you wish to store to a hash key

that's yet to exist in the session, like so:

session[:page] = 'Index page'

The result of this assignment is that a cookie will be written to the user's

machine. The cookie contains an encrypted representation of what was stored in

the session previously. With the cookie in place, any data stored in the session

becomes available for all successive pages that this user visits.

The retrieval of session values is equally simple. To access the value we stored in

the previous code snippet and display it in a view, we'd use the following syntax:

<%= session[:page] %>

It's possible to store data other than strings in a session container—you can

actually use a session to store any type of data you like. The only prerequisite for

such storage is that your application has access to the class definition of the

stored object; however, in practice, sessions should only be used to store simple

objects, such as String and Fixnum. And since anything you store in the session

will be stored in the user's browser, the objects you store had better be small.

292 Rails: Novice to Ninja

Modeling the User

Now that we've stepped through the theory, let's return to the topic at hand:

protective measures. In this section, we'll lay an architectural foundation for

providing user authentication in Readit.

The first step is to generate a new model named User. Since we've covered model

generation, I'll avoid dwelling on this step for long. Let's do it.

Generating a User Model

From the readit folder, run the rails generate command to generate the base

class of the User model, along with its migration files, unit tests, and fixtures:

$ rails generate model User password_digest:string

➥ name:string email:string
Running via Spring preloader in process 61211

invoke active_record

create db/migrate/20160412173358_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

To create the database table for this model, modify the generated migration file

located at db/migrate/xxx_create_users.rb to this:

Session Storage Solutions

As mentioned, we can store the contents of a session on the server or in different

types of databases, as well as the default location of the session cookie itself.

While the default option is fine for local development, it may not work so well in a

production environment. It lacks some control, not least by its inability to purge

data from the user's session and thus prevent data from becoming stale (that is, out

of sync with data in our database).

An in-depth discussion on the different session storage options is beyond the scope

of this book, but we'll briefly explore some of the alternatives in Chapter 12.

Protective Measures 293

8-2. db/migrate/xxx_create_users.rb

class CreateUsers < ActiveRecord::Migration[5.0]

def change

create_table :users do |t|

t.string :password_digest

t.string :name

t.string :email

t.timestamps

end

add_column :stories, :user_id, :integer

add_column :votes, :user_id, :integer

end

end

We'll use this migration to create a brand new users table. The three columns

we've just defined will hold users' personal information: password digests (I'll get

to this), names, and email addresses. Actually, the table has six columns if you

include the automatically created id column as well as the created_at and

updated_at columns that are a result from the t.timestamps call.

As you've probably figured out, we're going to store our users and their

credentials in this table. The credentials consist of the email and password

attributes. But, you must be shouting, there is no password attribute in the table.

That's correct, and it's another example of Rails doing right by you. It is bad, bad,

BAD practice to store a password in clear text (that is, not encrypted.) So, Rails

has a shortcut that allows a developer to configure a model (the User model, in

our case) to accept email and passwords in a secure, best practices kind of way.

It's called has_secure_password and I'll walk you through it once we finish with

this migration.

In addition to creating this table, we'll insert a new column into each of the

existing stories and votes tables, which will store the ID of the user who

created a particular story or vote respectively.

294 Rails: Novice to Ninja

While we would normally split migrations into the components that handle small

isolated changes, in this case it makes sense to group the creation of the users

table with the modification of the two other tables. We'll keep our schema

changes together as one migration, as they're so closely related. We use the good

old rails tool to apply the migration we've just written:

$ rails db:migrate

Running via Spring preloader in process 63227

== 20160412173358 CreateUsers: migrating

➥ ======================================
-- create_table(:users)

-> 0.0028s

-- add_column(:stories, :user_id, :integer)

-> 0.0003s

-- add_column(:votes, :user_id, :integer)

-> 0.0004s

== 20160412173358 CreateUsers: migrated (0.0037s)

➥ =============================

This snippet shows the result of a successful migration. We now have in place the

database structure necessary to begin writing code for our User model.

Has Secure Password

As we've covered, Rails comes with a method called has_secure_password that

can be applied to our User model to give us a solid, practical authentication

solution. To configure it, open up the User model (app/models/user.rb) and

change it to:

class User < ApplicationRecord

has_secure_password

end

That one line does quite a bit. First, it adds two methods on the User model:

password and password_confirmation. has_secure_password also adds

validations to ensure that the password and password_confirmation attributes

Protective Measures 295

match when creating a user. Additionally, the password value is encrypted and

stored in the password_digest field in the users table that we discussed earlier.

Finally, has_secure_password adds an authenticate instance method to the

User, model which we'll use to authenticate our users.

There is one small chore to perform to get all this working. has_secure_password

encrypts the password value using a RubyGem called bcrypt. In order to use

has_secure_password, we add the bcrypt gem to our Gemfile and update our

bundle via bundle install.

Open up the Gemfile and search for bcrypt (a gem I'll explain in a bit). It should

be in there, but commented out:

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Change it to:

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Then go to your command line in the root directory of readit and run bundle

install:

$ bundle install

Fetching gem metadata from https://rubygems.org/...........

Fetching version metadata from https://rubygems.org/...

Fetching dependency metadata from https://rubygems.org/..

Resolving dependencies...

Using rake 10.5.0

Using i18n 0.7.0

Using json 1.8.3

Using minitest 5.8.4

Using thread_safe 0.3.5

Using builder 3.2.2

Using erubis 2.7.0

296 Rails: Novice to Ninja

Using mini_portile2 2.0.0

Using rack 1.6.4

Using mime-types 2.99

Using arel 6.0.3

Installing bcrypt 3.1.11 with native extensions

...

Bundle complete! 13 Gemfile dependencies, 55 gems now

➥ installed.
Use `bundle show [gemname]` to see where a bundled gem is

➥ installed.

Now, we can encrypt passwords and feel good about how they are stored.

Adding Relationships for the User Class

Our users will create votes and stories, so we need a way to track which user

created or voted for what stories. As you've probably gathered from our past

endeavors with ActiveRecord, a model requires little code in order to track

relationships.

Open the User class definition and modify it as follows:

8-3. app/model/user.rb

class User < ActiveRecord::Base

has_secure_password

has_many :stories

has_many :votes

end

This code sets up a one-to-many relationship between the User class and each of

the Story and Vote classes.

Server Reboot Required

If your web server running, you'll need to kill it (CTRL+C) after a bundle install

and restart it to see the changes.

Protective Measures 297

As you already know, relationships can (and should) be defined for both

participating models. Our next step is to add complementary relationship

definitions to the Story and Vote classes (located at app/models/story.rb and

app/models/vote.rb respectively):

class Story < ActiveRecord::Base

belongs_to :user

⋮ class definition…
end

class Vote < ActiveRecord::Base

belongs_to :user

⋮ class definition…
end

These bidirectional relationship definitions allow us to retrieve not only the Vote

and Story objects associated with a particular User, but also the User object

associated with a particular Story or Vote.

All right, enough of the architectural building blocks—let's create a user. Then we

can start to protect some of our actions from users not logged in.

Creating a User

Creating a User object is no different from creating any other ActiveRecord

object. It's easily accomplished from the Rails console–feel free to create an

account for yourself, rather than using my name.

>> u = User.new

=> #<User id:nil, …>

>> u.name = 'Glenn Goodrich'

=> "Glenn Goodrich"

>> u.password = 'sekrit' # You should choose a better

➥ password
=> "sekrit"

298 Rails: Novice to Ninja

>> u.password_confirmation = 'sekrit'

=> "sekrit"

>> u.email = 'glenn.goodrich@sitepoint.com'

=> "glenn.goodrich@sitepoint.com"

>> u.save

=> true

Excellent. The first user of millions (I am sure) has been added to Readit.

Developing Login Functionality

In order to handle login and logout actions (and cater for new user registrations

down the track), we'll need another controller to complement our existing

controllers StoriesController and VotesController. Once that's in place, we

can create some functionality to let users log in and out. It's exciting stuff.

Creating the Controller

We'll name this new controller SessionsController (since it's dealing with the

creation and deletion of sessions, rather than users), and generate it using the

rails generate command:

$ rails generate controller Sessions new create destroy

Running via Spring preloader in process 78423

create app/controllers/sessions_controller.rb

route get 'sessions/destroy'

route get 'sessions/create'

route get 'sessions/new'

invoke erb

create app/views/sessions

create app/views/sessions/new.html.erb

create app/views/sessions/create.html.erb

create app/views/sessions/destroy.html.erb

invoke test_unit

create test/controllers/sessions_controller_test.rb

invoke helper

Protective Measures 299

create app/helpers/sessions_helper.rb

invoke test_unit

invoke assets

invoke coffee

create app/assets/javascripts/sessions.coffee

invoke scss

create app/assets/stylesheets/sessions.scss

Passing the additional new, create, and destroy parameters as arguments to the

generate command will automatically produce blank new, create, and destroy

actions in our new SessionsController, which saves us a few lines of typing. It

will also form empty ActionView templates in the app/views/sessions/ folder,

with the names new.html.erb, create.html.erb, and destroy.html.erb. Since

no template is required for the create action (this action is destined to redirect

elsewhere after it performs its job), you're free to remove create.html.erb.

Before closing off this section, we'll revisit our routing configuration (stored in

config/routes.rb), since we want to build our SessionsController in a

RESTful way. Add the following line to make sure Rails knows our intentions

and provides the appropriate helpers to generate RESTful URLs for the session

that's about to begin:

8-4. config/routes.rb

Rails.application.routes.draw do

⋮ more routes…
resource :session

end

Now delete all the get lines that the generate command added for sessions in

that file.

Please note that we've used the singular form of resource instead of the plural

form (resources), as well as the singular form of session, unlike what we did for

stories. When using the singular form, Rails knows we're talking about a

singleton resource, which means only one of it ever exists at a time. This is true

here in the context of a User object, which will only ever have a single session at

300 Rails: Novice to Ninja

a time. As such, all the RESTful URLs for sessions will take the singular rather

than plural form of the model name we've seen so far. For example, the URL that

creates a new session will be: session/new.

All right, let's go ahead and create some forms.

Creating the View

To better understand what happens when we use extra parameters to generate

ActionView templates, type http://localhost:3000/session/new into your web

browser.

The result you see should be similar to Figure 8-5. It's basically a friendly

message to inform us where we can find the template that's displayed in the

browser.

8-5. The generated login template

Protective Measures 301

Let's modify this template and turn it into an actual login form. As Rails indicates

in the browser, the template is located at app/views/sessions/new.html.erb:

8-6. app/views/sessions/new.html.erb

<%= form_tag session_path do %>

<p>Please log in.</p>

<p>

<label>Email:</label>

<%= email_field_tag 'email' %>

</p>

<p>

<label>Password:</label>

<%= password_field_tag 'password' %>

</p>

<p><%= submit_tag 'login' %></p>

<% end %>

Once again, we've created a form using simple HTML markup and a few of the

Rails form helpers. This time, our form doesn't deal with a specific model object,

so we're unable to use the form_for helper that we employed back in Chapter 6.

Instead, we use the standard form_tag helper that defines the surrounding form

with a do and end block:

<% form_tag session_path do %>

⋮ login form…
<% end %>

This generates the all-important form and its form HTML tags. It uses the

session_path URL helper that we got by telling the Rails routing configuration in

the last section that we want RESTful handling of the session's URLs. To check

Start Your Engines...

As always, to use our Readit application, you must have the web server running.

Flip back to Starting Our Application in Chapter 2 if you need a refresher on this.

302 Rails: Novice to Ninja

that they're being created correctly, reload the modified page in your browser and

view the source of the page.

The email_field_tag and password_field_tag helpers generate HTML input

elements with the type attribute set to email and password respectively:

<p>

<label>Email:</label>

<%= email_field_tag 'email' %>

</p>

<p>

<label>Password:</label>

<%= password_field_tag 'password' %>

</p>

These elements will render the text fields into which our visitors will enter their

email and password. The email and password parameters that we're passing to

each of these helpers assigns a name to the HTML tag that's generated; it also

causes this value to show up in the params hash, which will prove to be very

useful as we'll see later on.

Now that we've put our form in place, we can establish some functionality

behind it.

Adding Functionality to the Controller

We're ready to implement the actual login functionality within the create

controller action. You'll find the controller class in the file app/controllers/

sessions_controller.rb. Add the following code to the create method of this

class:

Protective Measures 303

8-7. app/controllers/sessions_controller.rb (excerpt)(excerpt)

class SessionsController < ApplicationController

⋮ controller code…

def create

@current_user = User.find_by(email: params[:email])

if @current_user &&

➥ @current_user.authenticate(params[:password])
session[:user_id] = @current_user.id

redirect_to stories_path

else

render action: 'new'

end

end

⋮ controller code…
end

As Figure 8-8 shows, we've expanded the previously empty create action to

handle the submission of the login form. We attempt to fetch a user using the

email and password values that the visitor provided. Notice that we use one of

the ActiveRecord dynamic finder methods to do this:

@current_user = User.find_by(email: params[:email)

if @current_user &&

➥ @current_user.authenticate(params[:password])

304 Rails: Novice to Ninja

8-8. The completed login form

If we're able to locate a user whose record matches the visitor-entered email (so

@current_user is not nil), we then use the authenticate method provided by

has_secure_password to compare the supplied password value with the

encrypted password_digest value. If everything is successful, store the ID of the

User object retrieved within the current visitor's session. The user is then

redirected to the story index, for which Rails gave us the shorthand

stories_path:

if @current_user &&

➥ @current_user.authenticate(params[:password])
session[:user_id] = @current_user.id

redirect_to stories_path

else

⋮
end

Protective Measures 305

If we don't find a corresponding user in the database, it's best to rerender the

login form. Maybe the user mistyped the password or forgot the email, in which

case we'd like to enable him or her to try again:

if @current_user &&

➥ @current_user.authenticate(params[:password])
⋮

else

render action: 'new'

end

This is all well and good, and if you were to try logging in at

http://localhost:3000/session/new using the initial user that we created a

few pages back, you would indeed be redirected to the story page. Go on, try it

out—it works! However, something is still amiss.

Be Careful When Storing ActiveRecord Objects in a Session

Be careful when you're storing ActiveRecord objects in the session.

ActiveRecord objects may change at any time, but the session container won't

necessarily be updated to reflect the changes. For example, in our Readit

application, a story object might be viewed by one user and modified by a second

user immediately afterwards. If the entire story was stored in the session container,

the first user's session would contain a version of the story that was out of date (and

out of sync with the database).

To ensure that this scenario doesn't eventuate, it's best to store only the primary key

of the record in question—the value of the id column—in the session container.

Here's an example:

session[:user_id] = @current_user.id

On successive page loads, we retrieve the ActiveRecord object using the regular

Model.find method, and pass in the key that was stored in the session container:

current_user = User.find session[:user_id]

306 Rails: Novice to Ninja

Since we've stored only the user's ID in the session container, we need to ensure

that we fetch the User object for that user before we hand execution control to

another controller action. If we failed to fetch the rest of the user's details, we'd be

unable to display the name of the currently logged-in user, which we aim to do

on every page in our application.

So, before we proceed too much further, let's look at the theory behind one of the

features of Rails that allows us to execute code from any controller action: filters.

Introducing Filters

A filter is a function that defines code to be run either before or after a controller's

action is executed. Using a filter, we can ensure that a specific chunk of code is

run regardless of which page the user is looking at. An example might be

authenticating the current user before the action is run.

Once we've discussed how filters work, I'll show you how to use one to fetch a

User object from the database when a user logs in. We'll use another filter to

redirect to the login page any anonymous visitors who attempt to access a

protected page.

Before Filters

The first type of filter we'll look at is the before filter. As you might expect, a

before filter executes before the code in the controller action is executed. The

method used for a before filter is before_action, meaning, it runs before the

action runs.

Like all filters, a before filter is defined in the head of the controller class that

calls it. Calling a before filter is as simple as invoking the before_action method

and passing it a symbol that represents the method to be executed. The filter can

also accept a snippet of Ruby code as a parameter, which is used as the filter

code; however, this practice is discouraged, as it makes for code that's difficult to

maintain.

Here's a hypothetical example in which a controller method is called using a

symbol:

Protective Measures 307

class FoosController < ApplicationController

before_action :fetch_password

def fetch_password

⋮ method body…
end

end

In this example, the fetch_password method will be run before the actions of

FoosController.

After Filter

Like a before filter, an after filter is defined in the controller class from which it is

called. The method to use is appropriately named the after_filter method and,

not surprisingly, these filters are executed after the controller's action code has

been executed. Here's an example:

class FoosController < ApplicationController

after_action :gzip_compression

def gzip_compression

⋮ method body…
end

end

Here, gzip_compression runs after the actions of FoosController.

Around Filters

A combination of before and after filters, the around filter executes both before

and after the controller's action code.

In a nutshell, around filters are separate objects with before and after methods.

These methods are automatically called by the filter framework. Despite being a

combination of its simpler siblings, the around filter is significantly more

advanced and, as such, won't be covered in this book.

308 Rails: Novice to Ninja

EXTRA CREDIT: A Filter Field Trip

Do a bit of research about around filters to see how they operate. Can you think of

how the code of an around filter might have to be different from a before or after

filter?

A Word on Filter Methods

As we've learned, filters take a symbol as a parameter that represents the controller

method to be executed. Consider the hypothetical example of our

FoosController once more:

class FoosController < ApplicationController

before_action :fetch_password

def fetch_password

⋮ method body…
end

end

It is best practice to make filter methods private or protected. This practice has

its roots in good object oriented programming practices, specifically: don't expose

more methods than necessary to your callers. Following this practice, the

aforementioned code becomes:

class FoosController < ApplicationController

before_action :fetch_password

private

def fetch_password

⋮ method body…
end

end

Protective Measures 309

Managing User Logins

Now that we've covered filter theory, let's modify our application to fetch the

currently logged-in User from our database. Once we've done that, we'll display

the user's name on the page and provide the ability for the user to log out again.

Retrieving the Current User

We're going to use filters to fetch the current user for each and every page of the

Readit site. The phrase “each and every page” should give you a hint as to where

we'll apply the filter. Filters can be inherited from parent classes and, as we want

to avoid writing numerous filter declarations, we'll stick our filter in the parent

class for all our controllers: ApplicationController.

Methods and filters that are defined in this class are available to all classes that

inherit from ApplicationController (located at app/controllers/

application_controller.rb), which is what we want:

8-9. app/controllers/application_controller.rb (excerpt)(excerpt)

class ApplicationController < ActionController::Base

⋮ controller code…
before_action :current_user

protected

def current_user

return unless session[:user_id]

@current_user = User.where(id: session[:user_id]).first

end

end

Let's take a look at each of the lines that make up the current_user method:

return unless session[:user_id]

310 Rails: Novice to Ninja

This line is fairly straightforward. There's no point retrieving a User object if the

user is yet to log in (as there's no user_id stored in the session). We can simply

exit the filter method without executing the rest of the code.

The next line tries to fetch from the database a User object with an ID that's equal

to the id stored in the visitor's session container:

@current_user = User.find(session[:user_id])

The fetched object will be assigned to the instance variable @current_user,

which will then become available to actions in our controller, as well as our

views.

We've purposely used the where method here, rather than find, even though on

the surface it appears that the two would produce the same results. In fact, find

displays an error if it can't retrieve a record that matches the id that's passed to it,

while where exits more gracefully. It's conceivable that a user may revisit our site

after his or her account has been deleted (perhaps because the user submitted the

same boring stories over and over again), so we need to make sure the application

will handle these cases in a user-friendly manner. Spitting out a bunch of

technical-looking errors is best avoided, hence our use of where. where also

returns all the records that satisfy the query; that is, an Array. We have to grab the

first one, as we know there's only one for an ID query. If the id is not found,

first will return nil.

Protective Measures 311

Our next task will be to display the name of the current user in the global

application layout.

Displaying the Name of the Current User

Since we require our users to log in just once to access the entire application, let's

add code that will display the name of the currently logged-in user to our global

application layout. The file is located at app/views/layouts/

application.html.erb. Make the following changes to this file:

Session Security

As we saw earlier, the value of session[:user_id] is stored in an encrypted

fashion. This means that a user can't, for example, impersonate another user by

simply changing the contents of a session.

The only way that a user could circumvent the security measures that we've put in

place so far would be either to guess the session ID, or to identify it using a brute

force attack.2 Oh, apart from grabbing another user's laptop while they’re in the

bathroom.

As Rails uses a 128-bit hash for the session ID. as well as a secret key set in the

Rails application itself (that is never exposed to the site's users) to verify the data

integrity of the session container contents, it's highly unlikely that a malicious user

could gain another user's ID using any of these approaches.

2. A brute force attack involves looping through a list of every possible combination of

alphanumeric characters (or sometimes a list of dictionary-based passwords) until a

matching phrase is found.

312 Rails: Novice to Ninja

8-10. app/views/layouts/application.html.er (excerpt)(excerpt)

<div id="content">

<div id="login_logout">

<% if @current_user %>

Logged in as:

<%= @current_user.name %>

<%= link_to "(Logout)", session_path,

method: :delete %>

<% else %>

Not logged in.

<%= link_to 'Login', new_session_path %>

<% end %>

</div>

<h1>Readit</h1>

⋮ page body…
<div>

Let's step through these changes. Using a simple if condition, we display a link

to the action that's most appropriate, based on the user's login status:

<% if @current_user %>

The condition checks whether the instance variable @current_user evaluates to

nil.

Once we've ensured that the user is actually logged in, we display the user's name

along with a link to log out again, which we'll implement in the

SessionsController in a moment. We indicate that we want the link to use the

HTTP DELETE request type by passing the method: :delete argument to the

link_to method. We wrap the link in an em tag to make it stand out:

Logged in as:

<%= @current_user.login %>

<%= link_to "(Logout)", session_path,

method: :delete %>

Protective Measures 313

If a visitor is not logged in, we display a link that the user can follow to the login

form:

<%= link_to 'Login', new_session_path %>

As you can see, our sessions are RESTful. We've been using the bare

session_path to handle both the login action (at POST /session) and the logout

action (the code of which is still missing, but it will live at DELETE /session), as

well as the new_session_path for the actual login form (living at GET /session/

new).

To make the page look a little nicer, let's add a snippet of CSS to the global

stylesheet that's located at app/assets/stylesheets/application.css:

8-11. app/assets/stylesheets/application.css (excerpt)(excerpt)

#login_logout {

float: right;

color: #999;

font-size: smaller;

}

This code dims the text colors a little, floats the container to the right, and makes

the font size smaller. If you reload the page after logging in, you should see the

results shown in Figure 8-12. That's much better.

314 Rails: Novice to Ninja

8-12. Prettying up our page

Next, we'll implement the logout functionality.

Allowing Users to Log Out

Providing our users with a manual logout function is much more user-friendly

than forcing them to close their browsers to log out. We'll implement this method

in our SessionsController class, located in app/controllers/

sessions_controller.rb:

8-13. app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

⋮ controller code…
def destroy

session[:user_id] = @current_user = nil

end

end

Protective Measures 315

Logging a user out of the application is a matter of setting two variables to nil:

the user_id that's stored in the user's session

the instance variable that holds the current user

Both of those tasks are completed with one line of code:

session[:user_id] = @current_user = nil

This line of code prevents our before filter (the current_user method) from

retrieving anything from the database. As we're setting both the current user and

the user id stored in the session to nil, no more User objects for this user remain

in memory. The user has therefore been logged out of the system.

I've taken this opportunity to introduce another piece of shorthand syntax used

often in Ruby code: we've assigned nil to two variables at once. Strictly speaking,

we're assigning the result of the statement @current_user = nil (which happens

to be nil) to session[:user_id].

With that code in place, adding a simple message to app/views/sessions/

destroy.html.erb will confirm for the user that the logout was successful:

<h2>Logout successful</h2>

<%= link_to 'Back to the story index', stories_path %>

Let's check that this all works as we expect. Click that "Logout" link in the top

right-hand corner of the page. If everything goes to plan, you should be logged out

of the application and presented with a page similar to the one shown in Figure

8-14. Additionally, the name that was previously displayed in the upper right-

hand corner should not be present on any successive page that you visit; you

should see a Login link instead.

316 Rails: Novice to Ninja

8-14. Links for logging in and logging out

Now that users are able to log in and out of the application, we're in a position to

make certain actions available only to logged-in users; however, before we do

this, let's add to our site an element that has been sorely lacking so far:

navigation.

Adding a Navigation Menu

You're probably growing a little tired of typing http://localhost:3000/

stories/new over and over again. Let's create a diminutive navigation menu at

the bottom of every page so we can move easily between the different pages we've

built.

To do so, modify the file app/views/layouts/application.html.erb. Above the

closing body tag at the bottom of the file, place the following unordered list

containing our navigation menu:

Protective Measures 317

8-15. app/views/layouts/application.html.erb (excerpt)(excerpt)

<body>

⋮ page body…
<ul id="navigation">

<%= link_to 'Front page stories', stories_path

➥ %>
<%= link_to 'Submit a new story!',

➥ new_story_path %>

</body>

We have two links in our menu at this point:

one to the story index (which currently displays a random story from the pool)

one to the story submission form

As usual, we'll also expand our stylesheet to make the menu look attractive. The

result is shown in Figure 8-17:

8-16. app/assets/stylesheets/application.css (excerpt)(excerpt)

#navigation {

list-style: none;

padding: 5px 0;

margin: 0;

text-align: center;

}

#navigation li {

display: inline;

padding: 0 5px;

}

#navigation li a {

color: #fff;

}

318 Rails: Novice to Ninja

8-17. Story index with navigation

That's much better. With the navigation in place, moving around within our

application becomes a lot easier.

Restricting the Application

All this login functionality would be wasted if a guest to our site had access to

the same feature set enjoyed by our registered users. What would be the point of

logging in?

Now that our login functionality is working, we can restrict the use of certain

parts of the application by anonymous guests and users who have not logged in.

Protecting the Form

The first action to protect is the submission of stories. While we're adding this

protection, we'll also check that when a new story is submitted, the application

correctly saves the reference to the User who submitted it (as we defined in the

relationship between a User and a Story).

Protective Measures 319

The first step is to figure out how to intercept a request that comes from a user

who's not currently logged in to our application. Once we've achieved this, we

can direct the visitor to a login form instead of the story submission form. This

sounds like a perfect job for a before filter, doesn't it?

We'll add our new filter code to the global ApplicationController class so that

all of our controllers can benefit from this addition, since the filter is available to

any of the controllers in our application.

The filter will be called ensure_login, which is suitably descriptive. As we're

going to check from a few different places in our application whether or not a

user is logged in, we'll extract this code into a separate controller method before

we create our new filter. (Writing @current_user is not the most declarative thing

in the world, anyway.)

Abstracting Code Using helper_method

The reason we're placing this functionality into a controller method (rather than

creating a regular helper for it) is because it provides useful functionality to both

controllers and views; however, regular helpers are available only to views, and

controller methods are available only to controllers. We need some sort of magic

bridge to make this controller method available to our views.

This magic bridge happens to be the helper_method statement, which makes

regular controller methods available to views as if they were regular helper

methods. We'll add this snippet to the protected area of our

ApplicationController (in app/controllers/application.rb):

320 Rails: Novice to Ninja

8-18. app/controllers/application.rb/

class ApplicationController < ActionController::Base

⋮ controller code…
protected

def current_user

⋮ method body…
end

def logged_in?

!@current_user.nil?

end

helper_method :logged_in?

end

Here, we've pulled our check of the current user's login status into a new method

called logged_in?. Let's pause to examine an interesting aspect of the single-line

method body:

!@current_user.nil?

The exclamation mark reverses the actual result of the nil? statement. If the

@current_user variable is nil (nil? returns true), our visitor is not logged in, so

logged_in? needs to return false. With the additional call to helper_method, we

can now use logged_in? throughout our application to replace any usage of if

@current_user.

Requiring Users to Log In

While we're looking at our ApplicationController, let's add the ensure_login

filter to it. This will mark the first use of our new logged_in? helper method:

Protective Measures 321

8-19. app/controllers/application.rb

def ensure_login

return true if logged_in?

session[:return_to] = request.fullpath

redirect_to new_session_path and return false

end

Let's break this code down. The first line of the filter exits the method with the

value true if the user is already logged in:

return true if logged_in?

If the logged_in? helper method returns false, we need to:

1. prepare to redirect users to a location at which they can log in

2. remember where the user came from, so we can send them back to that page

once the login is complete

To store the current URL, we grab it from the request object and add it to the

user's session, so that we can retrieve it later:

session[:return_to] = request.fullpath

Next, we redirect the user to the new_session_path, which is the new action of

SessionsController, and return false:

redirect_to new_session_path and return false

322 Rails: Novice to Ninja

A return value of false is crucial here, because a filter that returns false halts

the processing of any subsequent filters and exits the current controller method.

Right! Now we're armed with the protection facility, it's time to restrict access to

the application's story submission capabilities to users who are logged in.

Restricting Access to Story Submission

While we want to halt anonymous visitors from submitting new stories to our

site, we do want them to be able to view stories. Restricting user access to certain

specific actions presents the perfect opportunity to use a filter condition.

Introducing Filter Conditions

A filter condition is simply a parameter that's passed to a filter to specify how the

it is applied. The parameter can control whether the filter is applied to either:

every method except those listed

only the actions listed

In this case, the :only parameter is the best way for us to limit the filter to a pair

of actions, new and create. Both of these actions are needed to log in a user; new

to display the actual form, and create being the action to which the form is

submitted.

Let's apply the ensure_login filter to the top of our StoriesController class,

which is located at app/controllers/stories_controller.rb. The :only

parameter accepts a symbol (or array of symbols) that represents the methods to

which it should be applied:

Good Coding Grammar

The and keyword that's used here is optional: the logic of this method would be

identical if the return was placed on its own line; however, using and in this case

adds to the readability of our code—and code that is more readable is more

maintainable.

Protective Measures 323

8-20. eapp/controllers/stories_controller.rb (excerpt)(excerpt)

class StoriesController < ApplicationController

before_action :ensure_login, only: [:new, :create]

⋮ controller code…
end

class StoriesController < ApplicationController

before_action :ensure_login, only: [:new, :create]

⋮ controller code…
end

There, that was easy. But we've yet to make use of that :return_to URL that we

stored in the user's session previously. Let's put it to work next.

Redirecting the User

The part of our application that redirects users after they've successfully logged

in is the create method of the SessionsController class. This is located in app/

controllers/sessions_controller.rb.

Let's modify the redirection code to specify the location to which a user is

redirected based on whether or not the user's session actually contains a

:return_to URL:

8-21. app/controllers/sessions_controller.rb (excerpt)(excerpt)

def create

session[:user_id] = @current_user.id

if session[:return_to]

redirect_to session[:return_to]

session[:return_to] = nil

else

redirect_to stories_path

end

end

324 Rails: Novice to Ninja

What's really worth a mention about this code is that we reset the :return_to

URL to nil after a successful redirect. After all, there's no point in carrying

around old baggage.

Now, fire up your web browser and execute the following steps to test out this

new feature:

1. Log out of the application, if you're currently logged in.

2. Click the "Submit a new story!" link, and confirm in your browser's address

bar that you're redirected to /session/new.

3. Log in using the login form, and verify that you're redirected back to the story

submission form.

All good? Great!

Associating Stories with Users

The last enhancement that we'll add in this chapter is to associate a story with

the ID of the user who submitted it. This will give us a record of who submitted

what to Readit.

Storing the Submitter

As we established the association between stories and user ids at the beginning of

the chapter, we simply need to tell Rails what we want to store. Change the first

line of the create action of the StoriesController, located at app/controllers/

stories_controller.rb:

def create

@story = @current_user.stories.build story_params

⋮
end

Storing the submitter is as simple as that. We know that the currently logged-in

user is stored in @current_user, because we set it using the current_user

method before filter. We're using the declared stories association (or, more

Protective Measures 325

specifically, its build method) to get us a Story object that comes preset with the

ID of the current user.

To illustrate, here's another example of this in action, performed straight in the

Rails console (rails c):

$ rails c

>> u = User.first

=> #<User id: 1, …>

>> s = u.stories.build

=> #<Story id: nil, …>

>> s.user_id

=> 1

As you can see, the story that is built using the build method is completely

unsaved. Yet it has a value set for its user_id attribute that is identical to the ID

of the User object we created.

But of what use is storing information without it being displayed? You guessed

it—displaying the submitter's details is our final task here.

Displaying the Submitter

We're going to modify each story's display page to show the name of the user who

submitted it. This page corresponds to the show action of our StoriesController

class displaying the submitter, the template for which is located at app/views/

stories/show.html.erb:

326 Rails: Novice to Ninja

8-22. app/views/stories/show.html.erb (excerpt)(excerpt)

<ul id="vote_history">

⋮ vote history list items…

<p class="submitted_by">

Submitted by:

<%= @story.user.name %>

</p>

<p>

<%= link_to @story.link, @story.link %>

</p>

Here we're using @story.user to fetch the user object that's associated with the

currently displayed story. We then display the value of the user's name attribute

to produce the result shown in Figure 8-23.

8-23. The name of a story's submitter displays with the story

Protective Measures 327

One Last Thing: Associate Votes to Users

Just like we did with the stories, the votes need to be associated with the current

user as well. This is a simple change to the create method in VotesController,

as shown here:

8-24. app/controllers/vote_controller.rb (excerpt)(excerpt)

def create

@story = Story.find(params[:story_id])

@story.votes.create(user: @current_user)

respond_to do |format|

format.html { redirect_to @story, notice: 'Vote was

➥ successfully created.' }
format.js {}

end

end

There, now the vote will be attributed to the user.

Complete Data

One of the downsides of using an iterative approach to development is that our data

is not necessarily complete at each stage of the development process. For example,

unless you've specifically added user_id values to every Story object in your

database, you're probably seeing the odd page error. You could use either of these

approaches to rectify this issue:

Manually add the missing values to your objects from the Rails console,

remembering to use the save method so that the value is stored permanently.

Delete all data in your database (via the Rails console), and begin to add your

data from scratch via the application.

We need only two or three objects at this stage of development, so neither of these

options should be too onerous for you.

328 Rails: Novice to Ninja

We've accomplished quite a lot in this chapter, both in theory and in code. Being

professional Rails coders, our next step is to add tests for all of these cool

features.

Testing User Authentication

To develop our testing suite, we'll create unit tests to cover changes to the

application's model, followed by functional tests for each of our controllers.

Testing the Model

We've extended our models very little in this chapter, so our unit tests will be

straightforward. Basically, we have:

created a new model (User)

added a relationship between the User and Story model

added a relationship between the User and Vote model

Before we can write any tests, though, we need to make sure that our test data is

up to date.

Preparing the Fixtures

The User model didn't come with very meaningful fixture data, so let's address

that now. Replace the contents of the model's fixture file (located at test/

fixtures/users.yml) with the following data:

Protective Measures 329

8-25. test/fixtures/users.yml

glenn:

password_digest: <%= BCrypt::Password.create("sekrit",

➥ cost: 4) %>
name: Glenn Goodrich

email: glenn.goodrich@sitepoint.com

john:

password_digest: <%= BCrypt::Password.create("passwrd",

➥ cost: 4) %>
name: John Doe

email: john@doe.com

Whoa, that's different. Remember when I went on about not storing plain-text

passwords in the database? As a result, the users table has a field called

password_digest that stores an encrypted version of the password. Our user

fixtures, therefore, have to store the encrypted version of the password that we'll

use in our tests, or authentication will fail. has_secure_password uses the

BCrypt library to create the secure hash. BCrypt has a Password class that creates

the hash using the password value and a cost, which simply tells BCrypt how

long to take to generate the hash. BCrypt defaults cost to 10, which is fine for

web authentication. Encryption is well beyond the scope of this book, but you

know what that means ...

To test the associations between the three models properly, we'll need to modify

the fixtures for both our Story and Vote models. Only a small change is required:

the addition of some data for the user_id attribute that we inserted at the start of

this chapter.

Make the following changes in test/fixtures/stories.yml:

EXTRA CREDIT: Break the Code on Encryption

Doing some basic research on encryption and how Rails uses it to keep your data

and users secure is a good idea. There are many articles out there, including a great

series by Engine Yard on password security.

330 Rails: Novice to Ninja

https://blog.engineyard.com/2014/password-security-part-1
https://blog.engineyard.com/2014/password-security-part-1

8-26. test/fixtures/stories.yml (excerpt)(excerpt)

one:

⋮ YAML data…
user: glenn

two:

⋮ YAML data…
user: glenn

And make these alterations in test/fixtures/votes.yml:

8-27. test/fixtures/votes.yml (excerpt)(excerpt)

one:

⋮ YAML data…
user: glenn

two:

⋮ YAML data…
user: john

Now that our fixtures contain appropriate data, we can start writing some unit

tests.

Testing a User's Relationship to a Story

The unit tests for our User belong in test/models/user_test.rb. First, we'll test

the relationship between a User and a Story. Make the following changes to this

file:

8-28. test/models/user_test.rb (excerpt)(excerpt)

class UserTest < ActiveSupport::TestCase

test "has a story association" do

assert_equal 2, users(:glenn).stories.size

assert users(:glenn).stories.includes stories(:one)

end

end

Protective Measures 331

We use two assertions to test the association between the Story and User models.

The first assertion confirms that the total number of Story objects associated with

the user glenn is indeed 2:

assert_equal 2, users(:glenn).stories.size

The second assertion identifies whether or not the :one Story is associated with

glenn:

assert users(:glenn).stories.includes stories(:one)

With this in place, let's add a test for the inverse of this relationship.

Testing a Story's Relationship to a User

By now, you're no doubt very familiar with the directory and filenaming

conventions we're using. The complementary unit test for the relationship

between a User and a Story tests the Story's relationship to a User, and belongs

in test/models/story_test.rb. Make the following changes to this file:

8-29. test/models/story_test.rb (excerpt)(excerpt)

class StoryTest < ActiveSupport::TestCase

⋮ test methods…
test "is associated with a user" do

assert_equal users(:glenn), stories(:one).user

end

end

The assertion we've written here simply confirms that the user associated with

the first story is the user we expect, based on our fixture data (that is, glenn):

assert_equal users(:glenn), stories(:one).user

332 Rails: Novice to Ninja

Let's add some similar tests for the other relationship that our User model has: its

relationship with a Vote.

Fixing Broken Story Tests

Now that a story must be related to a user, the following test will fail:

test "is valid with required attributes" do

s = Story.create(

name: 'My test submission',

link: 'http://www.testsubmission.com/')

assert s.valid?

end

This is because we haven't given the story a user and belongs_to associations are

required by default. Thus, s.valid? is false. To fix it, change it as follows:

8-30. test/models/story_test.rb (excerpt)(excerpt)

test "is valid with required attributes" do

s = users(:glenn).stories.create(

name: 'My test submission',

link: 'http://www.testsubmission.com/')

assert s.valid?

end

Here's another story test that now fails for the same reason:

test "return 3 latest votes" do

10.times { stories(:one).votes.create }

assert_equal 3, stories(:one).votes.latest.size

end

The change is easy (can you figure it out before I show you?):

Protective Measures 333

8-31. test/models/story_test.rb (excerpt)(excerpt)

test "return 3 latest votes" do

10.times { stories(:one).votes.create(user: users(:glenn)) }

assert_equal 3, stories(:one).votes.latest.size

end

All better now.

Testing a User's Relationship to a Vote

While we've yet to add anything to our application's user interface to store or

display the details of users associated with votes, we've put the infrastructure in

place to do so. For this reason, we can test the relationship between a User and a

Vote with a similar approach to what we took with the unit tests created for the

relationship between a Story and a User.

To test a User's relationship to a Vote, add the following test to test/models/

user_test.rb:

8-32. test/models/user_test.rb (excerpt)(excerpt)

test "has a votes association" do

assert_equal 1, users(:glenn).votes.size

assert users(:john).votes.includes votes(:two)

end

On the first line, the assert_equal assertion compares the number of Vote

objects associated with a test user with the number of votes that the same user

was assigned in our fixture data:

assert_equal 1, users(:glenn).votes.size

The second assertion makes sure that the second Vote object is associated with

the user john:

334 Rails: Novice to Ninja

assert users(:john).votes.includes votes(:two)

Now there's only one more unit test to write: a test for the inverse of this

relationship.

Testing a Vote's Relationship to a User

The test that confirms a Vote's relationship to a User belongs in test/models/

vote_test.rb. Add the following test to this file:

8-33. test/models/vote_test.rb (excerpt)(excerpt)

class VoteTest < ActiveSupport::TestCase

⋮ test methods…
test "is associated with a user" do

assert_equal users(:john), votes(:two).user

end

end

This last test confirms that the user associated with the second vote of a story is

indeed the second user who voted for the story, as defined by our fixture data.

Running the Unit Tests

We can now run our updated suite of unit tests using the following code, the

results of which are also shown:

Clever Cloning by Rails

You may be wondering how migrations are applied to the test database on which

we're running our tests. As you'll recall, this database is quite separate from the

development database to which our migrations are applied.

Rails is smart enough to figure out that testing should occur on a database with a

structure that's identical to the one used for development. So Rails clones the

structure of your development database, and applies it to the test database every

time you execute your unit or functional tests.

Protective Measures 335

$ rails test:models

Running via Spring preloader in process 49271

Run options: --seed 64460

Running:

..........

Finished in 0.097536s, 102.5260 runs/s, 143.5364

➥ assertions/s.

10 runs, 14 assertions, 0 failures, 0 errors, 0 skips

Testing the Controllers

The majority of the functional code that we wrote in this chapter was in the

SessionsController, although we also made a few changes to the

StoriesController. Consequently, we have quite a few tests to write to ensure

that all of this new functionality is covered.

Testing the Display of the Login Form

The first test we'll add to our functional test file (test/controllers/

sessions_controller_test.rb) is a simple HTTP GET operation that looks for

the display of our login form:

8-34. test/controllers/sessions_controller_test.rb (excerpt)(excerpt)

class SessionsControllerTest <

➥ ActionDispatch::IntegrationTest
test "new shows a login form" do

get new_session_path

assert_response :success

assert_select 'form p', 4

end

end

336 Rails: Novice to Ninja

We've encountered before most of what we can see here. The test asserts that:

the page request was successful

a form tag is contained in the result, with four <p> tags nested below it

Testing a Successful Login

The following test, to be added to the same file, will attempt an actual login:

8-35. test/controllers/sessions_controller_test.rb (excerpt)(excerpt)

test "perform user login" do

post session_path, params: {email:

➥ 'glenn.goodrich@sitepoint.com', password: 'sekrit'}
assert_redirected_to stories_path

assert_equal users(:glenn).id, session[:user_id]

end

Let's look at each line of this test in more detail.

As was the case when we tested the submission of stories, here we need to pass

additional arguments to the create action—values for the email and password

parameters:

post session_path, params: {email:

➥ 'glenn.goodrich@sitepoint.com', password: 'sekrit'}

The values we've used here match the values in our users.yml fixture file. If you

added your own user to that file, you'll need to change this test accordingly.

If you think about how our create method works, you'll recall that we redirect

the user after they've logged in successfully; however, the URL to which a user is

redirected varies depending on whether or not the user's session contains a URL.

In this test, the user's session is empty, so we expect the user to be sent to the

/stories page. The assert_redirected_to method comes in handy here:

Protective Measures 337

assert_redirected_to stories_path

Lastly, a successful login means that:

the id of the user will be stored in the user's session

the instance variable @current_user will be set

Within the test, we have access to the session of the hypothetical user who just

logged in, so we can compare both the session value and the instance variable

with the corresponding details that we set for the user in our fixture data:

assert_equal users(:glenn).id, session[:user_id]

In a perfect world, this would be the last of the tests that we need to write. But in

the real world, not every login attempt is successful.

Testing a Failed Login

Login attempts fail for various reasons: users may type their passwords

incorrectly, or try to guess another person's login details. When a login attempt

fails, the application should not reveal any content that's intended for users who

have logged in. As such, login failures need to be tested too.

Here's the test:

8-36. test/controllers/sessions_controller_test.rb (excerpt)(excerpt)

test "bad login fails" do

post session_path, params: {email: 'noone@nowhere.com',

➥ password: 'user'}
assert_response :success

assert_nil session[:user_id]

end

338 Rails: Novice to Ninja

If a user tries to log in to our application using a non-existent username, the login

form should redisplay. Our first assertion confirms that the page loads correctly:

assert_response :success

The last assertion checks the user_id value that's stored in the user's session to

make sure it's nil:

assert_nil session[:user_id]

Okay, we've tested all our code that relates to our login procedures. But what

happens after a user logs in?

Testing Redirection After Login

To trial the redirection of users who log in to their original destination, we'll add

a test that ensures users are redirected to the protected path once they login:

8-37. test/controllers/sessions_controller_test.rb (excerpt)(excerpt)

test "redirects after login with return url" do

get new_story_path

assert_redirected_to new_session_path

post session_path,

params: {

email: 'glenn.goodrich@sitepoint.com',

password: 'sekrit'

}

assert_redirected_to new_story_path

end

This is an ideal time to point out that these controller tests are integration tests.

This means that code is "behind the curtain" and we don't manipulate it. We

simply do what the user does and test outcomes–the purpose of this test. The

user tries to access the new_story_path, which is the New Story form:

Protective Measures 339

get new_story_path

If it goes the desired way, this unauthenticated user will be redirected to the

new_session_path, which is just the login form:

assert_redirected_to new_session_path

Now, the user logs in:

post session_path,

params: {

email: 'glenn.goodrich@sitepoint.com',

password: 'sekrit'

}

And we test that the user is redirected to their original, preferred destination:

assert_redirected_to new_story_path

You, as the developer, understand that we are putting the original URL into

session[:return_to] and then checking that value on login; however, an

integration test is for behavior, not internal details. If, for some reason, you

change how the redirection occurs in the future behind the scenes, you still want

the same behavior. This test accomplishes this.

Integration testing can sometimes feel like an art–it is certainly the next level up

for a new Rails developer. Pat yourself on the back, you've done well.

Testing a Logout

The last part of the SessionsController that we test is the destroy action. To

emulate a user logging out, we actually need to create what resembles an

integration test. Why? Because before we can log out, we must log in:

340 Rails: Novice to Ninja

8-38. test/controllers/sessions_controller_test.rb (excerpt)(excerpt)

test "logout and clear session" do

post(

session_path,

params: { email: 'glenn.goodrich@sitepoint.com', password:

➥ 'sekrit' }
)

assert_not_nil session[:user_id]

delete session_path

assert_response :success

assert_select 'h2', 'Logout successful'

assert_nil session[:user_id]

end

This test is longer than most of our previous tests, but with the number of tests

you have under your belt at this stage, you should be able to comprehend each

line without much trouble.

First, we ensure that the user_id stored in the session is populated before the

user logs out:

assert_not_nil session[:user_id]

Without this step, we can't guarantee that the destroy action is really doing its

job.

The crux of this test lies in its last line:

assert_nil session[:user_id]

Here we're confirming that the all-important variable that we populated when the

user logged in is set to nil once the user has logged out.

Protective Measures 341

Phew, that was quite a number of tests. We're not done with functional testing

just yet, though. You may like to fortify yourself with a strong coffee before

tackling the rest of the functional tests–we'll be testing the changes we've made to

our StoriesController and ApplicationController classes.

Testing the Display of the Story Submitter

The following test checks that the name of the user who submitted a story is

displayed correctly on a story's page. Add it to test/controllers/

stories_controller_test.rb:

8-39. test/controllers/stories_controller_test.rb (excerpt)(excerpt)

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ test methods…
test "show story submitter" do

get story_path(stories(:one))

assert_select 'p.submitted_by span', 'Glenn Goodrich'

end

end

We've seen all this before: confirming that an element containing our submitter's

name is present is simply a matter of scanning the HTML code for a p element of

class submitted_by, which contains the name of the submitter inside a span.

Testing the Display of Global Elements

To test the global elements that we added to the application.html.erb layout

file, we'll add two tests. For the sake of convenience, both tests will utilize the

index action of our StoriesController:

342 Rails: Novice to Ninja

8-40. test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "indicates not logged in" do

get stories_path

assert_select 'div#login_logout em', 'Not logged in.'

end

test "show navigation menu" do

get stories_path

assert_select 'ul#navigation li', 2

end

We've covered these assert_select statements several times already, so we'll

skip going over old ground. Instead, let's move on to test that our Readit

application displays the name of the logged-in user at the top of every page.

Testing the Display of the User's Name

The div element in the top-right corner of the browser window displays the name

of the user who's currently logged in. We've checked the contents of this element

when a user hasn't logged in; we still need to add a test to check whether the

login has been successful.

Before we do so, though, let's add two methods that will make the authoring of

this test (and others related to it) a whole lot easier. Since it's likely that we'll

access this functionality in more than one place, we'll put these new methods

inside the file test/test_helper.rb. This file is to tests what

ApplicationController is to our controllers: every method added to that file is

available to all of our test cases.

Protective Measures 343

8-41. test/test_helper.rb (excerpt)(excerpt)

class ActiveSupport::TestCase

⋮ class body…
def login_user

post session_path, params: { email: users(:glenn).email,

➥ password: 'sekrit'}
end

def logout_user

delete session_path

end

end

As you can see, the utility methods handle logging the user in and out of the

application. Using this approach, we can test an action that was previously only

available to users who were logged in, just by calling login_user before we call

the authenticated action and logout_user when done. This is inline with the

integration test approach I mentioned earlier. We are simply logging in just like

the user would, then calling the action we want to test with the logged in user.

Let's see them in action. Before that little detour, we were on the way to writing a

test that confirms the contents of the login_logout div. These contents should

include a (Logout) link as well as the user's name, which is set by our before

filter in the current_user method:

test "indicates logged in user" do

login_user

get stories_path

assert_select 'div#login_logout em a', '(Logout)'

end

By employing our new utility method login_user to login, requesting the

stories_path route of our StoriesController class is the same as it ever was:

344 Rails: Novice to Ninja

get stories_path

Once we've gained access to the index page, it's easy to use some assertions (in

which we're now absolutely proficient) to confirm that the contents of the div are

as we expect.

Testing Redirection After Logout

Our next few tests will cover the changes we made to the new action of our

StoriesController.

First, we'll check that users who aren't logged in are correctly redirected to the

login page if they try to access our story submission form:

test "redirects if not logged in" do

get new_story_path

assert_response :redirect

assert_redirected_to new_session_path

end

This is a fairly straightforward test: the get statement tries to request the story

submission form without first logging in:

get new_story_path

The remainder of the test confirms that the request results in the user being

redirected to the new action of our SessionsController:

assert_response :redirect

assert_redirected_to new_session_path

Our test suite is certainly expanding. We have just two more tests to write in this

chapter.

Protective Measures 345

Testing Story Submission

If you've been particularly eager and tried executing your functional test suite

prematurely, you'll have noticed that a few tests that worked previously now fail.

These failures occur because we modified our story submission form; it now

requires that a user_id is present in the session before a page request can be

successful. Our old tests didn't account for this change, so they now fail.

We need to modify the four tests that are affected so that each of them includes a

user id in the session. At this point, it should become obvious that it was well

worth the effort for us to create the login_user and logout_user utility methods:

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ class methods…
test "gets stories" do

login_user

get stories_path

⋮ method body…
end

test "gets new story form" do

login_user

get new_story_path

⋮ method body…
end

test "adds a story" do

login_user

assert_difference 'Story.count' do

post stories_path, params: {

⋮ story attributes…
}

⋮ method body…
end

test "rejects when missing story attribute" do

login_user

assert_no_difference 'Story.count' do

346 Rails: Novice to Ninja

post stories_path, params: {

⋮ story attributes…
}

⋮ method body…
end

⋮ class methods…
end

As you can see, the changes are very small. The login_user method is added

before each action that performs the request. Easy.

Testing Storage of the Submitter

The last test we'll add checks that users who are currently logged in are correctly

associated with any stories that they submit:

test "stores user with story" do

login_user

post stories_path, params: {

story: {

name: 'story with user',

link: 'http://www.story-with-user.com/'

}

}

assert_equal users(:glenn), Story.last.user

end

If you've made it this far, you're probably itching to see the results of executing

our rapidly expanding test suite.

Fixing VotesController Tests

Just like stories, votes belong to a user. So, it's very likely your votes controller

tests are failing now because we are authenticating before we submit the votes.

Time to fix that. Before we do, however, I want to briefly introduce a common

convention of unit tests.

Protective Measures 347

Programmers have been writing tests for a long time, so some patterns and

conventions have cropped up and are used to make test writing a bit more

concise. A couple of these conventions deal with setup and teardown methods.

Let's start with the setup methods first. A setup method is run before every test in

it's context. The context, in our case, is the current test class. As such. The same

is true of teardown methods, except they are run after each test. An example will

clear this up.

We need to authenticate a user for every test in the VotesControllerTest class.

Minitest provides setup and teardown methods that allow us to prepare for and

cleanup after our tests, respectively. This is perfect for logging in and logging out.

Check it out:

348 Rails: Novice to Ninja

8-42. test/controllers.votes_controller_test.rb (excerpt)(excerpt)

class VotesControllerTest <

➥ ActionDispatch::IntegrationTest
setup do

login_user

end

teardown do

logout_user

end

test "creates vote" do

assert_difference 'stories(:two).votes.count' do

post story_votes_path(stories(:two))

end

end

test "create vote with ajax" do

post story_votes_path(stories(:two)), xhr: true

assert_response :success

end

test "redirect after vote with http post" do

post story_votes_path(stories(:two))

assert_redirected_to story_path(stories(:two))

end

end

Neat, eh? The tests are exactly the same, but we've added setup and teardown

blocks to handle logging in and logging out. I know what you're thinking: Why

didn't we log out of the StoryControllerTests? Why didn't we use setup and

teardown for them, too? Well, we didn't want to run the login for every test in that

file. As for not logging out, Rails will clean up the session for you, so it isn't

strictly required. However, it is a good practice, so you know what's coming...

Protective Measures 349

Running the Full Test Suite

Run the full test suite with our trusty rails command. If everything has gone

well, you should see results similar to the following:

$ rails test

Running via Spring preloader in process 34312

Run options: --seed 60092

Running:

..............................

Finished in 1.062286s, 28.2410 runs/s, 49.8924 assertions/s.

29 runs, 53 assertions, 0 failures, 0 errors, 0 skips

If any of your tests failed, the error message that's displayed should help you

determine where it went wrong. The error will direct you to the location of the

erroneous class and method, and the exact line number within that method. And

before you start pulling your hair out, remember that you can double-check your

code against the code archive for this book. It went through considerable testing

before release, so you can count on the code in it to work.

Even more rewarding than seeing the number of tests and assertions that our test

suite now covers is looking at the output of the stats task. This command

displays a number of statistics relating to the architecture of our application,

EXTRA CREDIT: Exploring Other Ways to Run Tests

There are other ways to run tests that allow for creating nested contexts in a test

class, but I won't cover them here. I advise you to lookup Minitest::Spec to start

or checkout RSpec, a very popular Ruby gem for test specifications. Each of these

items have their own language and idioms for defining contexts and other items.

Exploring them will raise your test game to the next level. Oh, and go back and

logout of each StoriesControllerTest that needs it. It'll build character.

350 Rails: Novice to Ninja

including the ratio of lines of application code to lines of test code. We've been

extremely busy writing tests in this chapter, so let's see the results:

$ rails stats

My application reports a code-to-test ratio of 1:1.6, as the screenshot below

indicates.

8-43. My code-to-test ratio

This means we've written one-and-a-half times the amount of code to test our

application than we've written for Readit itself. This is a good thing: it means that

we can be confident that our application is of high quality.

Summary

In this chapter, we explored an approach for sectioning off the parts of a Rails

application. This was so that some features are available to everyone, while

others are available only to users who have logged in.

Protective Measures 351

First, we discussed some theory about sessions and cookies. We then created a

new model—the User—and built a login form that allows users to log in to

Readit. We stored the login functionality in a new SessionsController class,

which made extensive use of the session container. The end result was that we

were able to restrict access to the story submission form to users who were logged

in, and direct other visitors to the login form. And to top it all off, we verified that

the changes to our code are free of bugs by writing a number of tests.

The next chapter, in which we'll add the last of the features to our Readit

application, will cover more complex ActiveRecord associations. Though we're

moving into more advanced territory, we'll keep moving through each task step

by step, so don't be nervous. Let's go add the finishing touches to Readit.

352 Rails: Novice to Ninja

9Chapter

Advanced Topics

As we enter the final quarter of this book, we'll implement the last of the features

that we listed back in Chapter 1, in preparation for Readit's much anticipated first

release.

Along the way, we'll cover some of the more advanced topics that are involved in

developing web applications with Ruby on Rails, such as writing your own

helpers, using callbacks, and creating complex associations.

Promoting Popular Stories

To start, we'll make a change to the way our users view our application. We'll

separate the display of our stories into two pages: one for stories with a score

above a certain threshold, and one for stories with a score below that threshold.

Advanced Topics 353

This will encourage readers to push stories to the front page by voting for them.

This functionality will replace the story randomizer that currently appears on the

index page of our StoriesController—it's becoming boring and falling short of

meeting the needs of our application.

Before we can start hacking away at these new pages, we should refine our

existing models. In particular, we need an easy way to select stories on the basis

of their voting scores.

Using a Counter Cache

We've already seen how we can count the number of votes associated with a

given story by calling the size method on the associated Vote object:

>> Story.first.votes.size

=> 3

Behind the scenes, this snippet performs two separate SQL queries. The first

query fetches the first story from the stories table; the second query counts the

number of Votes whose story_id attributes are equal to the id of the Story object

in question.

This approach to counting records isn't usually a problem in small applications

that deal with only a handful of records; however, when an application needs to

deal with several thousand or more, these double queries can significantly

impede the application's performance.

One option for tackling this issue is to use more advanced SQL commands, such

as JOIN and GROUP BY; however, like you, I don't really enjoy writing SQL

queries. Instead, I'll introduce you to another funky Rails feature: the counter

cache.

Introducing the Counter Cache

The counter cache is an optional feature of ActiveRecord, and makes counting

records fast and easy. The use of the word “counter” here is as in “bean counter,”

354 Rails: Novice to Ninja

not as in “counter-terrorism.” The name “counter cache” is intended to reflect the

caching of a value that counts records. You can enable the counter cache by

including the parameter counter_cache: true when defining a belongs_to

association.

From a performance point of view, the counter cache is superior to an SQL-based

solution. When we're using SQL, the number of records for an object associated

with the current object needs to be computed by the database every time that

object is requested. The counter cache, on the other hand, stores the number of

records of each associated object in its own column in the database. This value

can be retrieved as often as is needed, without requiring potentially expensive

computation to take place.

As the counter cache needs to be stored somewhere, we'll create room for it in

our Story model with the help of a migration.

Making Room for the Cache

We'll make a new migration template using the rails generate migration to

generate the counter cache:

$ rails generate migration AddCounterCacheToStories

➥ votes_count:integer
Running via Spring preloader in process 10833

invoke active_record

create

➥ db/migrate/20160420164312_add_counter_cache_to_stories.rb

When It Almost Doesn't Count

The counter cache doesn't actually go through the database to calculate the number

of associated records every time an object is added or removed, effective from the

point at which it was turned on. Instead, it increases the counter for every object

that's added to the association, and decreases it for every object that's removed from

the association, from the point at which it's enabled.

Advanced Topics 355

As expected, our new migration template is stored in the file db/migrate/

xxx_add_counter_cache_to_stories.rb. This migration will be used to add a

new column to the stories table, where the column will store a value that

represents the number of Vote objects associated with each Story. The name of

the column should match the method that we would normally call to retrieve the

object count, so we'll call it votes_count. Modify the migration file so that it

looks like this:

class AddCounterCacheToStories <

➥ ActiveRecord::Migration[5.0]
def change

add_column :stories, :votes_count, :integer, default: 0

Story.find_each do |s|

Story.reset_counters s.id, :votes

end

end

end

Let me explain what's going on here. Columns that store the counter cache need a

default value of 0 in order to operate properly. This default value can be provided

to add_column using the :default argument, as we've done in the first line of our

change method:

add_column :stories, :votes_count, :integer, default: 0

In the past, we've used migrations to make schema changes, but migrations can

also be used to migrate data. As mentioned before, the number of objects

associated with the model using the counter cache is never actually calculated by

Rails—values are just incremented and decremented as records are modified.

Consequently, the next line in our migration loops through the Story objects in

the database, and manually resets each Story's initial voting score:

Story.find_each do |s|

Story.reset_counters s.id, :votes

356 Rails: Novice to Ninja

end

Story.find_each loops over of all stories in the database in batches of 1000. The

block resets the voting score for the current story (which is held in the variable s)

by calling the class method Story.reset_counters and passing in the story ID

and the association name. In effect, this is the same as counting all of the Vote

objects associated with the current Story. We have to update the counter this way

because, by default, votes_count is read-only. ActiveRecord supplies

reset_counters for just this purpose.

Right, let's make use of this migration.

Applying the Migration

Go ahead and apply this migration using the rails command:

$ rails db:migrate

Once that's completed, there's just one more small change to make to ensure that

our association between a Vote and a Story uses the counter cache we've just set

up. Change the belongs_to association in app/models/vote.rb to the following:

belongs_to :story, counter_cache: true

It should be noted that Rails will, from this point forward, automatically refer to

the value stored in the votes_count column, even if we actually call votes.size.

Because of this behavior, none of the existing code in our project needs to change.

Let's now make that new front page happen!

Advanced Topics 357

Implementing the Front Page

Let's implement a simple algorithm for Readit: stories with a voting score above a

certain threshold will appear on the front page, while stories with a score below

that threshold will display on a voting page.

First, we'll make all the changes required to get our front page running smoothly,

utilizing standard templates and partials. We can then make use of these

templates to implement our voting bin.

Modifying the Controller

The first change we'll make is to our StoriesController. We need to replace the

current index action (which displays a random story) with one that retrieves the

list of stories that have received enough votes to appear on the front page. Modify

the index method of the StoriesController class located in app/controllers/

stories_controller.rb so that it looks like the following:

def index

@stories = Story.where('votes_count >= 5').order('id

➥ DESC')
end

Let's examine the code.

Story.where, as you already know, fetches from the database all stories that

match a specified criterion. To implement the voting threshold, we've specified a

condition that the total votes_count must be greater than or equal to five, using

the counter cache that we've jsut created. The result of the where operation will

then be stored in the @stories instance variable.

In addition, we're specifying that our records be ordered by descending id here,

which will ensure that the newest stories appear at the top of the results, and the

older ones at the bottom.

358 Rails: Novice to Ninja

Modifying the View

Now that we've retired the story randomizer, we also have to rip apart the

index.html.erb template, which was formerly responsible for rendering a single

story link. Our new template will render a collection of stories, each displaying

its current voting score and the name of the user who submitted it.

Modify the corresponding index template (located at app/views/stories/

index.html.erb) so that it resembles this:

<h2>

<%= "Showing #{ pluralize(@stories.size, 'story') }"

➥ %>
</h2>

<%= render partial: 'story', collection: @stories %>

The first line of ERb code outputs the number of stories being displayed:

<%= "Showing #{ pluralize(@stories.size, 'story') }"

➥ %>

To display this value, we're making use of the pluralize helper provided by

Rails. pluralize displays the noun that is passed in as an argument, either in

singular or in plural form. If there's only one story to show, the header will read

"Showing 1 story"; in all other cases it will read "Showing x stories", where x is

the number of stories available.

Ordering by id

We could also use created_at DESC, which might be better in the long run.

Ordering by id means we're dependent on the id field being of type integer, or

something that's ordered sequentially. This is not always the case, especially as you

start doing more complicated work. For now, though, using id works for us.

Advanced Topics 359

Most of the time, Rails is smart enough to correctly pluralize the most common

English nouns automatically. If this fails to work for some reason, you have the

option of passing both singular and plural forms, like so:1

<%= "Showing #{ pluralize(@stories.size, 'story',

➥ 'stories') } %>

To render each story in the collection that we retrieved, we're using a partial. We

first encountered these when displaying voting history back in Chapter 7:

<%= render partial: 'story', collection: @stories %>

As this is the advanced topics chapter, here's another tip. The above line can be

abbreviated as follows:

<%= render partial: @stories %>

How would this work? Given a call like this, Rails looks at the type of object you

pass in by checking the class of the first object in the array, which happens to be a

Story object. It then assumes a straight mapping between models and controllers,

and looks for a partial template in app/views/stories/_story.html.erb. Had

we passed in a collection of votes, as we did back in Adding Voting History in

Chapter 7, Rails would look for a template in app/views/votes/_vote.html.erb.

See the pattern?

The next item on our list is the creation of the partial.

1. If you need to “train” Rails to correctly pluralize a noun in more than one spot, it may

be worth adding your own pluralization rules to the Rails Inflector. See the config/

initializers/inflections.rb file for an example.

360 Rails: Novice to Ninja

Creating the Partial

Create the file app/views/stories/_story.html.erb, and edit it to appear as

follows:

9-1. app/views/stories/_story.html.erb

<div class='story'>

<h3><%= link_to story.name, story %></h3>

<p>

Submitted by: <%= story.user.name %> |

Score: <%= story.votes_count %>

</p>

</div>

This partial is responsible for displaying the core facts of a story in the listings on

the application's front page (and, as you'll see later, in the voting bin). It's a fairly

straightforward template that you should have no trouble understanding. We

wrap our story in div tags and automatically assign a class of "story".

Apart from the div tag, the title of the story is displayed in an h3 element, which

links directly to the story page using the link_to helper; the original submitter of

the story and current voting score are displayed underneath.

We'll now use the assigned element class of "story" to apply some CSS styling.

Styling the Front Page

Now that we have some new elements on the front page, let's add style rules for

those elements to our stylesheet, which is located at app/assets/stylesheets/

stories.scss:

Advanced Topics 361

9-2. app/assets/stylesheets/stories.scss (excerpt)(excerpt)

.story {

float: left;

width: 50%;

}

.story h3 { margin-bottom: 0; }

.story p { color: #666; }

While we're giving our front page an overhaul, let's also remove the default Rails

welcome page that's displayed when a user accesses http://localhost:3000/,

and make our new front page the default page instead.

Setting the Default Page

To set the default page, we once again need to alter Rails' routing configuration,

which is located in the file config/routes.rb. If you look closely, you'll notice a

commented line (if you deleted it earlier, don't worry—you can just type out the

line you need in a moment):

root 'welcome#index'

By removing the first # character (which uncomments the line) and making a

slight change to the route, we can set the destination for requests for the address

http://localhost:3000/ to be the index action for our StoriesController:

9-3. config/routes.rb (excerpt)(excerpt)

root "stories#index"

Before you jump into your browser to test this new route, you should be aware of

one small caveat: the default Rails welcome page is a simple HTML page (it

contains no ERb code at all). It will be displayed if the root route is not defined

in the config/routes.rb configuration file. So in order to display our story index

as the default page, this route has to be defined.

362 Rails: Novice to Ninja

Let's take a peek at our new front page (after making sure our web server is

running); mine is shown in Figure 9-4. How many stories you have listed will

depend on how many votes you've given your stories.

9-4. Scoring stories

If, like mine, your front page is looking rather empty, you're probably keen to start

voting! Right now, none of our stories have five votes, so they're sitting in the bin

(as in "container of refuse”). Let's briefly cover the implementation of the voting

bin, so that you can use it to start voting on stories in the queue.

Implementing the Voting Bin

To create a voting bin, create a new method called bin in the file /app/

controllers/stories_controller.rb:

class StoriesController < ApplicationController

⋮ controller code…
def bin

@stories = Story.where("votes_count < 5").order("id

Advanced Topics 363

➥ DESC")
render action: "index"

end

end

Most of this code looks straightforward enough—but what about that render call

hiding in there?

Before I explain this, let me point something out, in case you haven't spotted it

already: this code is almost identical to what we wrote for our index action—it

just applies a different condition to the collection of stories.

This fact should trigger the realization that this is a good opportunity to reuse

some code. Let's extract most of the code used in these two controller methods

(index and bin) and place it in a protected controller method called

fetch_stories method, which we'll then use from both locations within our

code.

As we discussed earlier, protected methods are only accessible from within a

class and its subclasses; they're not accessible from anywhere outside the class.

Here's that extracted method:

def fetch_stories(conditions)

@stories = Story.where(conditions).order('id DESC')

end

As the only part that differs between the index and bin actions is the condition,

we'll allow the condition to be passed to the new protected method as an

argument.

Our StoriesController should now look as follows (only the code relevant to

this section is shown):

class StoriesController < ApplicationController

⋮ controller code…

364 Rails: Novice to Ninja

def index

@stories = fetch_stories "votes_count >= 5"

end

def bin

@stories = fetch_stories "votes_count < 5"

render action: "index"

end

⋮ controller code…
protected

def fetch_stories(conditions)

@stories = Story.where(conditions).order("id DESC")

end

end

This is one way to approach this scenario. A second and quite common way is to

use ActiveRecord scopes. Scopes are a means to define common queries for a

model that can be called in the same way as methods. As with anything, an

example will make it clear.

In this controller code, we have two scopes: let's call them "upcoming" and

"popular". Now, open up app/models/story.rb and add the following:

class Story < ApplicationRecord

...associations...

scope :upcoming, -> { where("votes_count <

➥ 5").order("id DESC") }
scope :popular, -> { where("votes_count >=

➥ 5").order("id DESC") }
...methods...

end

With our scopes in place, return to the controller and change the index and bin

actions:

Advanced Topics 365

http://guides.rubyonrails.org/active_record_querying.html#scopes

class StoriesController < ApplicationController

⋮ controller code…
def index

@stories = Story.popular

end

def bin

@stories = Story.upcoming

render action: "index"

end

⋮ controller code…
protected

...removed fetch_stories...

end

Refresh the page, and the app looks just the same. Except that now we're using

scopes. So, you're probably wondering which approach you should use, right?

Well, at the end of the day, it's a matter of preference. If you think you'll use the

upcoming and popular scopes in future development, scopes probably make

sense. If the controller is the only place we'll ever fetch stories in this way, a

small controller method is no big sin. I prefer my controllers to just route requests

to models (and other objects). However, I've done it both ways in my Rails life.

Now, back to that peculiar render call in the bin action:

render action: "index"

I mentioned earlier that the two actions we have for listing stories (index and

bin) are almost identical; well, they also have in common the template they use.

The aforementioned line of code makes sure of that. It specifies that the view

template for the index action should also be used by the bin action. As such,

we're rendering the same template for a slightly different set of stories.

Before we go ahead and give our two pages sufficient visual distinction—such as

headings that tell our users where they are in the application—let's digress to add

yet another piece to our routing configuration.

366 Rails: Novice to Ninja

Adding Custom Actions to RESTful Routes

RESTful routes, as you may remember from Mapping a New Resource in Chapter

6, give us a defined set of routes and route generation helpers to refer to routes (or

URLs). We've just implemented a new controller action not contained in that set

of default routes, so we have to tell Rails what we'd like to do with this new

action, how users will reach it, and how we want to refer to it.

Back in config/routes.rb, here's the line that gives us all the RESTful goodness

for performing regular operations on stories, as well as votes:

resources :stories do

resources :votes

end

You may be able to tell from our use of helpers such as stories_path and

story_path in the past couple of chapters that there are routes operating on the

stories in general (without referring to a specific one by id, such as

stories_path, for instance) and those that operate specifically on a story (for

example, story_path). These latter ones need an actual story object to be passed

in to operate properly.

We need to discuss this distinction in order to add a custom action to our set of

defined routes at the right spot. Since our index and bin actions are so similar in

function, we can safely presume that bin would be another action that will

operate on the entire collection of stories, since it displays an arbitrary set of

stories based on their vote count.

To include a new custom route that operates on a collection of objects, add the

following to the routing configuration file:

Advanced Topics 367

9-5. config/routes.rb (excerpt)(excerpt)

resources :stories do

collection do

get "bin"

end

resources :votes

end

In addition to the name of the custom action, Rails wants us to tell it the actual

HTTP method used to talk to this action, which in this case is GET. By changing

our routing configuration in this way, we obtain a newly defined helper method:

bin_stories_path, which refers to the stories in our submission bin. We'll use

this helper in a moment, when we modify the site navigation menu to include a

link to the bin.

Next up, though, we'll deal with the missing distinction between our two story-

listing pages by adding headings to the index.html.erb template, all with a little

assistance from some ActionView helpers.

Abstracting Presentation Logic

In this section, we'll look at a way to abstract any presentation logic that you

happen to add to your view templates. First, let's discuss why we need to bother

extracting Ruby code from our views, even though view templates may appear to

be the easiest place to implement presentation logic.

Breaking the RESTful Rules

The RESTful interface that our Rails app exposes is now non-standard. REST is an

architectural style and it evokes many, many opinions–some pedantic, some

pragmatic. There are those who argue that adding a non-standard operation, such as

bin, breaks the RESTful nature of the application. In my view, it gives us what we

need when we need it. If you feel differently (many do), another great approach is

described in this post about how DHH himself organizes his controllers.

368 Rails: Novice to Ninja

http://jeromedalbert.com/how-dhh-organizes-his-rails-controllers/

Avoiding Presentation Logic Spaghetti

Recall that our intention is to display a heading that's appropriate in the index

template, depending on whether the list of stories being displayed contains front-

page stories or upcoming stories.

Of course, we could implement this functionality by adding the logic directly to

the app/views/stories/index.html.erb template as shown in this code (we're

only looking at this stage–avoid doing anything just yet):

<h2>

<% if controller.action_name == 'index' %>

<%= "Showing #{ pluralize(@stories.size,

'front page story') }"%>

<% else %>

<%= "Showing #{ pluralize(@stories.size, 'upcoming

➥ story') }" %>
<% end %>

</h2>

You'll notice that this solution entails a fair amount of duplication; all we're

changing in the else block is a single word. Additionally, that Ruby code is

always wrapped in ERb tags (<% %> and <%= %>) in view templates means that

these templates can begin to look like a dish of spaghetti containing chained

method calls, nested levels of parentheses, if clauses, and other complexities.

When your own code starts to look like spaghetti, it may be time to consider

extracting some of that code into an ActionView helper.

Introducing ActionView Helpers

As you've heard countless times now, a view should contain presentational code

only. In order to adhere to the MVC paradigm as strictly as possible, you should

aim to place all logic outside the views: in a controller (for application logic) or a

model (for business logic). A third option for presentation-related logic not quite

belonging in a controller or a model is the ActionView helper.

Advanced Topics 369

We talked about making helper methods available to views in Protecting the Form

in Chapter 8, when we implemented the logged_in? helper method; however,

back then we implemented this functionality as a protected controller method,

then made available to our views using the helper_method statement.

Native ActionView helpers differ from protected helper methods in that they're

not available to controllers, hence the name. An ActionView helper is a function

that helps to reduce the clutter in your view templates.

Writing an ActionView Helper

ActionView helpers are available in two basic forms.

The first is the global helper, which is stored in the file app/helpers/

application_helper.rb. You can think of a global ActionView helper as being

the “view” equivalent to the ApplicationController class in the “controller”

world. Any helper that you add to this file will be available from every view of

every controller.

The second form of ActionView helper is specific to the views of a particular

controller. We'll use this approach for our ActionView helper, where we'll create a

new helper method for our StoriesController in the file app/helpers/

stories_helper.rb. That way, it will be clear that it's related to

StoriesController.

Here's the helper method to add:

9-6. app/helpers/stories_helper.rb

module StoriesHelper

def story_list_heading

story_type = case controller.action_name

when "index" then "front-page story"

when "bin" then "upcoming story"

end

"Showing #{ pluralize(@stories.size, story_type) }"

end

end

370 Rails: Novice to Ninja

Let's step through this code. Its first task is populate a variable story_type using

a Ruby case statement:

story_type = case controller.action_name

when "index" then "front-page story"

when "bin" then "upcoming story"

end

This statement compares the value of controller.action_name (which contains

the text value of the controller action being executed, exactly as it appears in the

URL) with a couple of predefined values–namely, the values 'index' and 'bin'.

Next, we display the same "Showing …" string with the pluralize helper that we

used in our previous attempt at writing this view:

"Showing #{ pluralize(@stories.size, story_type) }"

This time, however, we're passing story_type as the part of the string that's being

pluralized. This string is either set to front-page story or upcoming story.2

While this isn't necessarily a shorter solution than the previous one, it certainly

removes a lot of clutter from our view, which we now reduce to a single line!

<h2><%= story_list_heading %></h2>

<%= render partial: @stories %>

Now we just add our voting bin page to the navigation menu in the footer of each

page, and we're done with abstracting presentation logic.

2. If we wanted to be pedantic about reducing code duplication, we could even extract the

word “story” from that string, and simply set the story_type variable to “front page” or

“upcoming.” But you have to draw the line somewhere!

Advanced Topics 371

Expanding the Navigation Menu

To add a link to our navigation menu, we simply add another list item to the

unordered list at the bottom of the application layout. The layout is stored in

app/views/layouts/application.html.erb:

9-7. app/views/layouts/application.html.erb

<ul id="navigation">

<%= link_to 'Front page stories', stories_path

➥ %>
<%= link_to 'Upcoming stories',

➥ bin_stories_path %>
<%= link_to 'Submit a new story!',

➥ new_story_path %>

Now we can finally give our changes a whirl. Point your browser to

http://localhost:3000/ and click the Upcoming stories link at the bottom of

the page.

The resulting page, an example of which is depicted in Figure 9-8, should contain

all the stories in your database that have a voting score below five.

372 Rails: Novice to Ninja

9-8. The story voting bin

Before you use this unique opportunity to promote the first story to Readit's front

page, we'll require that users be logged in before they can vote. This will give us

the ability to check a user's voting history later on.

Our application is looking much more like a story-sharing site. Onto the next

feature!

Requiring a Login to Vote

The next enhancement we'll make will ensure that users log in before they're able

to vote. First, we modify VotesController so that the create method responds

only to users who are logged in. We then store the id of the current user as part of

the new vote.

The first step is to add a new before_action method in app/controllers/

votes_controller.rb, like so:

Advanced Topics 373

class VotesController < ApplicationController

before_action :ensure_login

⋮ controller code…
end

Since the VotesController only contains a single action at this stage, there's no

need to limit the before_action by using the :except or :only options.

Now, it only makes sense to display a feature to visitors if they can make use of it.

Let's add a little login teaser to the story page, to suggest visitors log in if they

want to vote for stories. Make the following changes to app/views/stories/

show.html.erb:

9-9. app/views/stories/show.html.erb (excerpt)(excerpt)

><% if logged_in? %>

<div id="vote_form">

<%= form_for [@story, Vote.new], remote: true do %>

<%= submit_tag 'vote' %>

<% end %>

</div>

<% else %>

<p>

You would be able to vote for this story if you were

<%= link_to 'logged in', new_session_path %>!

</p>

<% end %>

This if clause decides whether or not to display the vote link to visitors,

depending on their login status. If the user isn't logged in, that person is

presented with a teaser and a link to log in, as shown below.

374 Rails: Novice to Ninja

9-10. The front page with a teaser

To complete this feature addition, we'll modify the create action of our

VotesController so that it stores the current user with each vote. By the way, if

you fixed the tests in the last chapter as recommended, you've already done this:

class VotesController < ApplicationController

⋮ controller code…
def create

@story = Story.find(params[:story_id])

if @vote = @story.votes.create(user: @current_user)

respond_to do |format|

format.html { redirect_to @story, notice: 'Vote was

➥ successfully created.' }
format.js {}

end

end

end

end

This new line saves the reference to the current user with each vote.

Advanced Topics 375

It's now time to create some additional stories and start submitting votes, if you're

yet to do so already.

Visit the voting bin by selecting the Upcoming stories link from the navigation

menu, and click on a story's title to visit the story page. From there, click the vote

link a few times until the story has five or more votes. Visit the front page, and

you should see your story appear. The result of my serial voting is shown below.

9-11. The front page with some upvoted stories

That's another feature crossed off the list. Next!

Auto-voting

Our next task is to hop into the Story model and remedy a piece of functionality

that will indisputably aid in the promotion of stories to the front page. New

stories will be automatically voted for by yourself as soon as you submit them. To

implement this feature, I'll introduce you to a feature of Rails models that we've

376 Rails: Novice to Ninja

yet to touch on: callbacks. Callbacks are little snippets of code that are triggered

by model events—for example, when a model is created, updated, or destroyed.

Introducing Model Callback

Callbacks in models can be called before or after certain actions, such as the

creating, updating, or destroying of a model. The concept of a callback may sound

similar to the filters we applied to our controllers in Introducing Filters

earlier—that's because they are similar.

We've already encountered a callback in our application. It was used to apply the

validation we implemented in Applying Validations in Chapter 6. Internally,

ActiveRecord prefixes validation methods before calling the save method that

writes a model to the database. If the callback result allows the request to

continue—meaning the request has passed the defined validations—the save

operation is executed.

The names of the available callback methods are fairly intuitive: before_create,

before_save, and before_destroy are called before the model in question is

created, saved, and deleted respectively. There are also a number of after_

callbacks that, as expected, are called after the operation.

As with filters in controllers, callbacks in models are usually defined as protected

methods. The callback resides in a model class, and is referred to by the class

method via a symbol. Here's an example:

class Story < ApplicationRecord

after_create :create_initial_vote

⋮ model code…
protected

def create_initial_vote

⋮ callback method…
end

A Combo of Callbacks

There are also around_ callbacks and before/after_validation callbacks. For

all the available callbacks, check out the Rails Guides.

Advanced Topics 377

http://guides.rubyonrails.org/active_record_callbacks.html

end

We'll use after_create, because we'd like to create votes for newly submitted

stories only, and not for every update of an existing story (which would require

the use of the after_save callback).

The reason we're using after_create instead of before_create should be

obvious: if we were to create the vote before the model itself had been saved to

the database, we'd risk the model's failure to pass the validation checks–hence,

we'd have created a vote for an invalid record!

Adding a Callback

Let's add a callback to our Story model. Add the following code to the file app/

models/story.rb:

Defining Callbacks

In your experimentation with Rails, you may come across the following syntax for

model callbacks. Here the code that's to be executed when an event occurs is

defined as an instance method named after the callback:

class MyModel < ApplicationRecord

after_save do

⋮ callback method…
end

end

While this approach is technically correct, I prefer to define my callbacks using

descriptive method names, and to refer to them using the after_save

:my_method syntax instead. This is because it's much easier to see what's going on:

you can glance at the header of the model class in which the callbacks are declared,

then look at each of the callback methods separately.

378 Rails: Novice to Ninja

9-12. app/models/story.rb (excerpt)(excerpt)

class Story < ApplicationRecord

after_create :create_initial_vote

⋮ model code…
protected

def create_initial_vote

votes.create user: user

end

end

Once again, just one line of Ruby code is sufficient to accomplish the task at

hand. Let's dissect what this line actually does.

First, you'll notice that we're able to directly use two of the attributes of the story:

the votes association and the user attribute. As long as a method doesn't carry

variables of the same name, executing votes or user will refer to the methods of

the story object. We know the submitter of the story is stored in user, so we can

refer to that attribute in order to create the initial vote:

votes.create user: user

Before we try out our newly implemented callback that creates the initial vote,

let's add an item that's been missing from our stories.

Adding a Description to Stories

In the next enhancement to our application, we'll add an extra attribute to our

Story model: a description column that allows users to write a few paragraphs

about their submissions.

Adding a Model Attribute

Since we're talking about adding an attribute, you've probably assumed there's a

new migration ahead, and indeed there is. Let's generate the migration file that

will store the code we'll use to add the description column:

Advanced Topics 379

$ rails generate migration AddDescriptionToStories

➥ description:text

The contents of this migration (stored in db/migrate/

xxx_add_description_to_stories.rb) are straightforward, so only a limited

explanation is needed:

9-13. db/migrate/xxx_add_description_to_stories.rb

class AddDescriptionToStories <

➥ ActiveRecord::Migration[5.0]
def change

add_column :stories, :description, :text

end

end

As you can see, we're adding a single column to the stories table. We've

specified that the new description column must be of type text, because a

column of type string can only store up to 255 characters, and it's possible that

story descriptions will exceed this limit.

The final step is to apply this migration using the rails command:

$ rails db:migrate

Running via Spring preloader in process 48184

== 20160422175022 AddDescriptionToStories: migrating

➥ ==========================
-- add_column(:stories, :description, :text)

-> 0.0010s

== 20160422175022 AddDescriptionToStories: migrated

➥ (0.0010s) =================

380 Rails: Novice to Ninja

Expanding the Submission Form

Another change we'll make before we test our initial vote creation code is to add

another field to the story submission form (in the file /app/views/stories/

new.html.erb). This field will accept the description column that we just created:

9-14. /app/views/stories/new.html.erb (excerpt)(excerpt)

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

<%= form_for @story do |f| %>

⋮ form HTML…
<div>

<p><%= f.label :description %></p>

<%= f.text_area :description %>

</div>

<div>

<p><%= submit_tag %></p>

</div>

<% end %>

Figure 9-15 shows the form after we apply this change.

Advanced Topics 381

9-15. Enabling users to add a story description

We've given our users plenty of room by making the description column of type

text. To accommodate this larger story description, we're using a textarea

element instead of a one-line input field:

<%= f.text_area :description %>

We'll also display the description on the story's page, just above the

submitted_by paragraph in the file /app/views/stories/show.html.erb:

382 Rails: Novice to Ninja

9-16. /app/views/stories/show.html.erb (excerpt)(excerpt)

<ul id="vote_history">

⋮ vote history…

<p>

<%= @story.description %>

</p>

<p class="submitted_by">

⋮ submitted by…
</p>

White-listing the New Attribute

There's one final item on the to-do list before we can test our new form: white-

listing the description attribute. If you remember from Chapter 6, Rails uses

Mass Assignment Protection as a security measure, so we have to add our new

attribute to the list of permitted attributes in StoriesController (found in /app/

controllers/stories_controller.rb). Change the story_params method to

this:

9-17. /app/controllers/stories_controller.rb (excerpt)(excerpt)

def story_params

params.require(:story).permit(:name, :link, :description)

end

Okay, now we should be in business. Let's hop over to our browser and submit a

new story to see whether the automated submission of the first vote works as

expected. And sure enough, it does—as Figure 9-18 shows!

Advanced Topics 383

9-18. Automated submission working as expected

Adding User Pages

To track the history of our site's usage on a per-user basis, we'll create a place

where this information can be displayed.

We're going to add a user page, which will list the six stories most recently

submitted by the logged-in user, and the six stories for which that person most

recently voted. To select the most recently voted-for stories, we'll make use of

another type of relationship: the join model.

Introducing the Join Model Relationship

A join model relationship is a relationship between two models that relies upon a

third. Without the third model, there's no direct relationship between the two

models that are being linked.

384 Rails: Novice to Ninja

In our Readit application, an association only exists between our Story and User

models when we talk of who submitted each story. Currently, we lack the ability

to find out who voted for each story. This is where the join model comes into

play: the Vote model is already associated with both the User and the Story

models; with the addition of the has_many :through statement, the Vote can

serve as the connecting element in this new relationship. This relationship is

illustrated in Figure 9-19.

9-19. The name of a story's submitter displays with the story

The Vote model is the join model because it joins the User and the Story models.

Introducing the has_many :through Association

The code that implements a join model relationship is the line has_many

:through. Let's use it to add a join model relationship to our User model. Open

the file /app/models/user.rb and make the changes in bold:

Advanced Topics 385

9-20. /app/models/user.rb (excerpt)(excerpt)

class User < ApplicationRecord

has_secure_password

has_many :stories

has_many :votes

has_many :stories_voted_on,

through: :votes,

source: :story

end

Normally, Rails is smart enough to figure out associated class names on its own,

so long as the association class names are given a name that matches the plural

form of the class name (for instance, :stories); however, because our User model

already has a has_many relationship (has_many :stories), we must assign this

new association a different name (:stories_voted_on). We also need to specify

the model with which we're associating the users, which is exactly what the

source: :story argument does.

The code that defines this relationship as a join model relationship is the

through: :votes argument, which can be read as: “a User has many Stories

through the Vote model.”

With this association in place, we find that several new instance methods are

available to every User object:

>> u = User.first

=> #<User id: 1, …>

>> u.stories_voted_on.size

=> 1

>> u.stories_voted_on.first

=> #<Story id: …>

As you can see, this association behaves like a regular has_many association, and

if you were none the wiser, you'd never actually know that three models were

involved in retrieving the associated data.

386 Rails: Novice to Ninja

Adding Another Controller

Before we implement our user page, we need to generate another controller, since

we're yet to deal with User objects to date.

By now, you should be ever so familiar with the procedure to generate a

controller with the rails generate command, so I'll spare you the details. Enter

the following command to create a new UsersController:

$ rails generate controller Users show

Additionally, we'll add a resource declaration to the routing configuration stored

in config/routes.rb, like so:

resources :users

Here, we use the plural for both resources and :user. Can you remember why?

(Hint: The answer is in Chapter 8 where we added sessions.)

The actual implementation of the show action in UsersController is as follows:

9-21. /app/controllers/user_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

@stories_submitted = @user.stories.

limit(6).order("stories.id DESC")

@stories_voted_on = @user.stories_voted_on.

limit(6).order("votes.id DESC")

end

end

Let's look at this code. Remember that the params hash stores the various parts of

the current URL, as defined in the application's routing configuration. To retrieve

the requested user from the database, we employ the find method:

Advanced Topics 387

@user = User.find(params[:id])

The data we'll display on the user page is fetched by the associations that are

available via the User object. We then populate a couple of instance variables,

calling methods to sort the items in the desired order and limit the number of

items retrieved:

@stories_submitted = @user.stories.

limit(6).order("stories.id DESC")

@stories_voted_on = @user.stories_voted_on.

limit(6).order("votes.id DESC")

Since multiple tables are involved in retrieving the data in which we're

interested, we have to be more explicit with our ordering instructions. Here we're

using stories.id and votes.id in the order clause respectively. The part before

the period actually specifies the table that contains the id column by which to

sort. Since most (if not all) of our tables have an id column, this is a necessary

evil.

The next task on our list is to create the view template for this page.

Creating the View

The view template for our user page has been generated (with fairly non-

spectacular content) in /app/views/users/show.html.erb. This template will

use the instance variables that we created in our controller to display the recently

submitted stories and votes. It does so by rendering a collection of partials:

388 Rails: Novice to Ninja

9-22. /app/views/users/show.html.erb

<h2>Stories submitted by <%= @user.name

➥ %></h2>
<div id="stories_submitted">

<%= render partial: @stories_submitted %>

</div>

<h2>Stories voted for by <%= @user.name

➥ %></h2>
<div id="stories_voted_on">

<%= render partial: @stories_voted_on %>

</div>

The partial we're rendering with this code already exists. We're reusing the story

partial from StoriesController, which Rails will know to use because we're

passing in a collection of Story objects using the shorthand notation of the render

call:

<%= render partial: @stories_submitted) %>

Next, we'll add a link to the user page by linking the name of the submitter as it's

displayed on the story page (/app/views/stories/show.html.erb):

<p class="submitted_by">

Submitted by:

<%= link_to @story.user.name, @story.user

➥ %>
</p>

Now we'll make a small addition to our stylesheet (stories.scss) for the sake of

some visually pleasing cosmetic treatment:

Advanced Topics 389

9-23. /app/assets/stylesheets/stories.scss (excerpt)(excerpt)

.story p {

color: #666;

font-size: 0.8em;

}

h2 {

clear: both;

margin: 0;

padding: 10px 0;

}

Lastly, we'll add the login of the user in question to the links generated for the

user page by overriding the to_param method of User, just as we did with the

Story class:

9-24. /app/models/user.rb (excerpt)(excerpt)

class User < ApplicationRecord

⋮ model code…
def to_param

"#{id}-#{name}"

end

end

In practice, you should probably ensure that the name attribute contains only

alphanumeric characters. You can accomplish this little exercise with some help

from the format option of the validates method.

There we go! As Figure 9-25 shows, we now have a user page that makes use of

our newly added has_many :through association, listing both the stories that

were submitted by a given user and the stories for which that person recently

voted.

390 Rails: Novice to Ninja

9-25. Telling stories

Testing the New Functionality

As is standard practice, we'll add test coverage by writing unit tests and then

adding functional tests for all the enhancements we've made.

Testing the Model

We made a number of changes to our model in this chapter, including utilizing

the counter cache and introducing the join model relationship. Let's write some

unit tests for those changes now.

Advanced Topics 391

Testing Additions to the Counter Cache

The first change we made in this chapter was to modify the Story model so that it

uses the counter cache to track the number of votes associated with any given

Story. To test this feature, we'll have to pull a few tricks out of the box, as there

are numerous conditions to take into account.

To begin with, let's add a test to the test case for a scenario in which a vote is cast.

The test case is located in /test/models/story_test.rb:

9-26. /test/models/story_test.rb (excerpt)(excerpt)

class StoryTest < ActiveSupport::TestCase

⋮ test methods…
test "increments vote counter cache" do

stories(:two).votes.create(user: users(:glenn))

stories(:two).reload

assert_equal 1, stories(:two).attributes['votes_count']

end

end

This contains a method we've yet to encounter (reload), so let's dissect the code.

The purpose of this test is to verify that the cached votes count is properly

incremented hen a new vote is added; however, there's a gotcha when using

counter caches and fixtures. The fixtures counter cache attributes will be

incorrect when you first grab the fixture. This is due to fixtures being created

without going through ActiveRecord, instead being thrown straight into the

database with SQL. So we need to set the counters for the records we want to use

in the fixtures file. Change the stories fixtures (in /test/fixtures/stories.yml)

to:

392 Rails: Novice to Ninja

9-27. /test/fixtures/stories.yml (excerpt)(excerpt)

one:

name: My old weblog

link: http://ruprict.net/

user: glenn

votes_count: 2

two:

name: SitePoint Forums

link: http://community.sitepoint.com

user: glenn

votes_count: 0

Now we can explain what is happening in the test. The first step we take is to

create a new vote:

stories(:two).votes.create(user: users(:glenn))

The second line is where it becomes interesting. We're forcibly reloading the

model from the database:

stories(:two).reload

We do this because once a new vote has been added, the number of stories that

are cached in each model's attributes is suddenly out of sync with the database.

If we were to check the log file when we come to run our tests later, we'd find

lines such as the following:

UPDATE stories SET votes_count = votes_count + 1 WHERE (id =

➥ 2)

Advanced Topics 393

This is the SQL statement that Rails generates to update the counter cache. You'll

notice that the statement doesn't bother to check the current value of

votes_count—it just tells the database to increment votes_count by one. And

with good reason.

You see, in a live application many users may be using the site at the same time,

and some of them might even be casting votes in parallel. The value of

votes_count would be negated if the SQL for each vote submission relied upon

its own copy of votes_count at the time the statement was executed.

As such, you have to reload the model if you ever require access to the current

number of votes after a new vote is added. This situation is unlikely to occur

often; normally you'd redirect your user to a new page anyway. But when we're

writing tests that simulate user behavior, it's important to be mindful of this

issue.

There's also something special about the assertion in this test: instead of

comparing the return value of the votes_count instance method, we access the

“raw” attribute as it comes out of the database:

assert_equal 1, stories(:two).attributes['votes_count']

If we had used the instance method, there'd have been no need to enable counter

caching in order for our test to pass;votes_count would simply have issued a

second database query to count the votes. By using the attribute itself, we're

asserting that the counter cache is doing its job.

Testing Deletions from the Counter Cache

With that first test out of the way, this second test covering the deletion of votes

should be straightforward. Our application is yet to allow users to delete votes,

but we'll include this test for the sake of completeness:

394 Rails: Novice to Ninja

9-28. /test/models/story_test.rb (excerpt)(excerpt)

class StoryTest < ActiveSupport::TestCase

⋮ test methods…
test "decrements votes counter cache" do

stories(:one).votes.first.destroy

stories(:one).reload

assert_equal 1, stories(:one).attributes['votes_count']

end

end

This test is basically the opposite of the previous one. Again, we need to reset the

counters for our record. Then we destroy the first vote from the first story and

then reload the model to reflect this change:

stories(:one).votes.first.destroy

stories(:one).reload

Finally, we compare the cached votes_count value to the value we expect it to

have:

assert_equal 1, stories(:one).attributes['votes_count']

Testing the Creation of the Initial Vote

The next test covers the new functionality that we added to our model for the

automatic creation of a vote when submitting a story:

Advanced Topics 395

9-29. /test/models/story_test.rb (excerpt)(excerpt)

class StoryTest < ActiveSupport::TestCase

⋮ test methods…
test "casts vote after creating story" do

s = Story.create(

name: "Vote SmartThe 2008 Elections",

link: "http://votesmart.org/",

user: users(:glenn)

)

assert_equal users(:glenn), s.votes.first.user

end

end

You should be able to follow the twists and turns of this test quite easily. To test

the creation of a vote after a story has been saved to the database, a new story is

created (don't forget to pass in a user):

s = Story.create(

name: "Vote SmartThe 2008 Elections",

link: "http://votesmart.org/",

user: users(:glenn)

)

The assertion confirms that the user of the first vote attached to the newly created

story is indeed the user we passed in when we created the story in the first place:

assert_equal users(:glenn), s.votes.first.user

This establishes that there's at least a single vote, and that the user has been

properly inherited from the story.

396 Rails: Novice to Ninja

Testing the Join Model Relationship

Lastly, we need to add a test to deal with the new has_many :through association

that we added to our User model. Expand the test cases (located in /test/

models/user_test.rb) as follows:

9-30. /test/models/user_test.rb (excerpt)(excerpt)

class UserTest < ActiveSupport::TestCase

⋮ test methods…
test "voted on association" do

assert_equal [stories(:one)],

users(:glenn).stories_voted_on

end

end

<

This test relies on fixture data, so we can assert immediately that the list of stories

for which our test user voted is equal to the list that we expect:

assert_equal [stories(:one)],

➥ users(:glenn).stories_voted_on

Now we've got some controller tests to write.

Testing the StoriesController

In this chapter, we've added quite a bit of functionality to StoriesController

that needs testing. This is a little more complicated than in previous chapters, so

the corresponding tests will be more complex. Additionally, we've added a new

UsersContoller with a relatively simple action, which also needs testing.

Advanced Topics 397

Testing the Story Index Pages

As a next step, we're confirming that each of the story-listing actions (index and

bin) picks the proper records from the database. To do this, let's add another story

to the fixtures in /test/fixtures/stories.yml:

9-31. /test/fixtures/stories.yml (excerpt)(excerpt)

promoted:

name: What is a Debugger?

link: http://en.wikipedia.org/wiki/Debugger/

user: john

votes_count: 5

As you can see, we're cheating a bit and hardcoding the votes_count to five.

We'll start by changing an existing test (test "gets index") and adding one

more basic test to cover correct template rendering:

9-32. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ test methods…
test "gets stories" do

get stories_path

assert_response :success

assert response.body.include?(stories(:promoted).name)

end

test "gets bin" do

get bin_stories_path

assert_response :success

assert response.body.include?(stories(:two).name)

end

⋮ test methods…
end

398 Rails: Novice to Ninja

Both tests are similar in nature and neither exposes any new functionality. Each

calls its respective action, checks that the request was responded to successfully,

and confirms that an appropriate story is rendered (remember, we're using exactly

the same template for both the index and bin actions). It also ensures the

@stories instance variable doesn't wind up being nil.

Testing the Routing Configuration

We also altered the routing configuration in this chapter, so let's add a test to

confirm that our changes are working properly:

test "story index is default" do

assert_recognizes({ controller: "stories",

action: "index" }, "/")

end

The assert_recognizes assertion confirms that a given request is translated into

an expected set of parameters, mostly consisting of a controller and an action

name:

assert_recognizes({ controller: "stories", action: "index"

➥ }, "/")

Our assertion here confirms that a request for “/” (the front page of our domain) is

indeed routed to the index action of StoriesController.

Testing Page Headings

The next pair of tests deals with the view side of the index action, and confirms

that the header tag contains a proper heading, complete with the expected

number of stories:

Advanced Topics 399

9-33. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "shows story on index" do

get stories_path

assert_select 'h2', 'Showing 1 front-page story'

assert_select 'div#content div.story', count: 1

end

test "show stories in bin" do

get bin_stories_path

assert_select 'h2', 'Showing 2 upcoming stories'

assert_select 'div#content div.story', count: 2

end

The second assert_select assertion tests for an appropriate number of div

elements with a class attribute of story. These divs come out of the

_story.html.erb partial and, as such, we're looking for one div per story. Each

story div is contained in the all-encompassing div that has an id of content.

Testing the Story Submission Form

We added to the story submission form a new field that allows users to submit

story descriptions. To test this functionality, change the existing test "new

shows new form" test to match the following:

test "new shows new form" do

login_user

get :new

assert_select 'form p', count: 3

end

In this test, the assert_select call counts the number of p elements below the

form tag, and checks the total against our expected number of 3—three form fields

plus a Submit button.

400 Rails: Novice to Ninja

Testing the Story Display Page

Since users who are not logged in no longer see the vote button, we need to revise

an existing test and add a new one. (Again, if you worked ahead last chapter as

recommended, these are likely to be fixed):

9-34. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "show story vote elements" do

login_user

get story_path(stories(:one))

⋮ method body…
end

test "does not show vote button if not logged in" do

get story_path(stories(:one))

assert_select 'div#vote_link', false

end

We pass false to assert_select to confirm that there are no elements on the

page that match the given CSS selector.

Testing the Navigation Menu

We added an item to our navigation menu, so we should increase the number of

list items that we check for in the following test from two to three:

9-35. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "show navigation menu" do

get stories_path

assert_select 'ul#navigation li', 3

end

Advanced Topics 401

Testing the Story Submitter Link Text

Lastly, let's change our existing test for the story submitter on the story page

(test "shows_story_submitter") ensuring that it now links to the story

submitter's user page:

9-36. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

test "show story submitter" do

get story_path(stories(:one))

assert_select 'p.submitted_by span a', 'Glenn Goodrich'

end

Phew! That was quite a litany of tests. Let's now turn our attention to the tests of

the other controllers affected by the goings-on in this chapter.

Testing the VotesController

Since we've modified the voting procedure to be available for logged-in users

only, we have to modify some existing tests, as well as add a new one to cover

storage of the user for every vote cast.

Testing User Voting History

Additionally, we'll add a test to confirm that the vote action indeed stores the

current user with the submitted vote:

9-37. /test/controllers/votes_controller_test.rb (excerpt)(excerpt)

test "stores user with vote" do

post story_votes_path(stories(:two))

stories(:two).reload

assert_equal users(:glenn), stories(:two).votes.last.user

end

402 Rails: Novice to Ninja

Testing the UsersController

Without further ado, we'll add three tests to cover the functionality encapsulated

within the user page we added to UsersController:

9-38. /test/controllers/users_controller_test.rb (excerpt)(excerpt)

class UsersControllerTest < ActionController::TestCase

test "show user" do

get user_path(users(:glenn))

assert_response :success

assert response.body.include?(users(:glenn).name)

end

test "show submitted stories" do

get user_path(users(:glenn))

assert_select 'div#stories_submitted div.story', count: 2

end

test "show stories voted on" do

get user_path(users(:glenn))

assert_select 'div#stories_voted_on div.story', count: 1

end

end

All three tests use basic assertions to confirm that the proper user is found by the

show action, and that the user's story submissions and votes are displayed

properly on the page.

Running the Complete Test Suite

We've made a massive number of additions to our suite of tests in this chapter, so

it should be especially rewarding to run the full suite now using:

$ rails test

Running via Spring preloader in process 44037

Run options: --seed 14835

Advanced Topics 403

Running:

..

Finished in 0.675667s, 65.1209 runs/s, 125.8017

➥ assertions/s.

40 runs, 67 assertions, 0 failures, 0 errors, 0 skips

Summary

Wow, what a journey! In this chapter, we've added a stack of features to Readit,

such as the display of popular story listings on the front page, and the

implementation of a voting bin containing stories on which people can vote.

Along the way, we learned that the counter cache offers an easy way to store the

number of records associated with any given model, and we used ActiveRecord

callbacks as a means to hook into certain events occurring on our models. We

used a after_create callback to cast an initial vote for submitted stories, and we

also tackled ActionView helpers to reduce clutter in our shared view.

Lastly, we covered an additional type of association: the join model relationship.

It was used to implement a user page showing the story submissions and voting

history of each registered user.

After numerous tests and assertions, we can attest that Readit is in very good

shape indeed. Of course, there are countless enhancements that we could make to

our little application; some of the functionality that comes to mind includes:

creating a form that enables new users to register

sending an email to new users to notify them of their passwords

allowing users to comment on stories

restricting users to vote for each story once only

I'm sure your mind is racing with ideas for a number of spectacular features that

could set your application apart from the pack! While the addition of all these

features is more than we could possibly cover in this book, you now have a solid

404 Rails: Novice to Ninja

grounding—both in theory and in practice—on which you can build to further

develop Readit on your own. Remember to keep expanding your test suite to

include all the cool new features that you add.

In the next chapter, we'll take a quick look at the Rails plugin architecture, and

use one of the existing plugins to expand Readit's feature set: implementing

tagging functionality for our story submissions.

Advanced Topics 405

10Chapter

Rails Plugins

While this book is unable to cover all of the built-in functionality that ships with

Rails—and there's plenty of functionality for you to discover and experiment

with once you're beyond the last chapter—the plugins architecture of Rails

warrants our attention.

What is a plugin?

A plugin is a component that you can add to your application to extend its

functionality. While you can certainly write your own plugins, we'll limit our

discussion here to using existing plugins. Plugins have been developed for

various parts of the Rails framework, adding functionality such as:

extensions to ActiveRecord functionality

406 Rails: Novice to Ninja

http://guides.rubyonrails.org/plugins.html

helper methods

new template engines (for coding a view using an alternate templating

language)

The number of existing Rails plugins is enormous and grows every day.

Programmers in the Ruby and Rails communities are excellent about sharing code

and creating useful plugins based on extensions they need. A good resource of

existing Rails plugins can be found by searching for "Rails" on the Rubygems site

or on the Ruby Toolbox site.

Plugins are distributed as gems, which we covered in Chapter 2. Plugins can be

pulled into an existing Rails application by adding them to the Gemfile and

running bundle install. You probably remember our discussion about Bundler

from Chapter 4, where its job is to manage application dependencies. Bundler

makes including existing plugins into our app a breeze.

Finding a plugin that does what you require is usually just a Google or RubyGems

search away. As seen in Figure 10-1, searching for "rails tagging" brings up a few

gems that have been created, including one called acts-as-taggable-on.

10-1. Searching for a plugin on "rails tagging"

Rails Plugins 407

https://rubygems.org/search?utf8=%E2%9C%93&query=Rails
https://www.ruby-toolbox.com/
https://github.com/mbleigh/acts-as-taggable-on
https://github.com/mbleigh/acts-as-taggable-on

The overwhelming majority of gems keep their source on GitHub, including

acts-as-taggable-on from the first link in our search above. Following that link

leads to the source on GitHub, as shown in Figure 10-2.

10-2. The GitHub repository for 'acts-as-taggable-on'

Most GitHub source repositories have a README or README.md file that explains

what the gem does, how to install and use it, and so on. acts-as-taggable-on

follows this convention, which can be seen in Figure 10-3. It explains the object

of the gem, the supported versions of Rails, as well as how to install and

configure the gem.

408 Rails: Novice to Ninja

https://github.com

10-3. A standard README file

After reading through the README.md, we now know how to pull the gem into our

application and use its functionality. You may feel that walking through the topic

of "how to find and learn about gems" is a bit tedious, but you will find yourself

spending loads of time doing just that–so I figured it was tedium well spent.

No Time for Name-calling

There are many ways to extend Rails; for example, by using a "plugin", "engine",

and "railtie", to name a few. While there are technical differences between these

items, they are often (incorrectly) used interchangeably. Defining these terms and

their differences is beyond the scope of this book, so I'm going to stick to the word

"plugin" for now. As you grow in your Rails-fu, you'll no doubt want to do some

research around Rails extensibility. Boom–I just turned this note into an EXTRA

CREDIT!

Rails Plugins 409

Okay, enough theory! Let's go ahead and install our first plugin.

Adding Tagging to Readit

Tagging is the process by which content creators attach simple textual labels to

their data, be it a photo, a link, or a restaurant review. These tags vary widely in

their nature; they may be related to location or content, for instance. This results

in everyone seeming to have a unique system for tagging data. Currently, the

hashtag (#) is probably the most popular form of tagging content with metadata,

thanks to Twitter!

Tags are definitely more flexible than a category tree, as they allow you to assign

as many or as few tags as you like to any item of data. The convention that has

evolved is for the user to enter tags for a content item into a text field. Multiple

tags should be separated by a space or a comma.

Introducing the acts-as-taggable-on Gem

Instead of reinventing the wheel and implementing our own tagging system for

Readit, we'll use one of the available Rails plugins for this job, the

aforementioned acts-as-taggable-on. You may be wondering what kind of

name the developer originally chose for his plugin. At some point, David

Heinemeier Hansson himself actually developed a plugin named

acts_as_taggable as a proof of concept for some then-new features for Rails. It

wasn't intended for production use, and has since been deprecated, but was

picked up again because tagging is such an essential component of today's

websites with user-generated content. Jonathan Viney, a Rails core contributor

and all-round guru, took up where Heinemeier Hansson left off and created his

work under the name of acts_as_taggable_on_steroids. Yet development

waned, so another developer name Michael Bleigh formed

acts-as-taggable-on, and has been developing it ever since. With that bit of

family history out of the way, let's have a look at what this plugin can do for us.

410 Rails: Novice to Ninja

A History of acts_as_*

As this is far being from an obvious name for a plugin, allow me to explain the

background of the acts_as_* naming convention.

In Rails' own plugin repository can be found a number of acts, which are

functional extensions to an ActiveRecord model. These acts equip models with

certain functionality that usually can be enabled using a single line of code.

As this functionality enables models to “act as something else,” the convention of

calling these functional additions “acts” arose, and the code that enables the

functionality acts_as_something shortly followed.

At the time of writing, many "acts as" gems are available on Rubygems.org:

acts_as_list, acts_as_tree, and acts_as_paranoid, to name a few. While

some are more complex than others, each of these acts apply a hierarchy to a set

of model objects. In the case of acts_as_list, objects are positioned in a flat list;

with acts_as_tree, the resulting hierarchy is a sophisticated tree system, such as

that used in a threaded forum, for example.

But what about acts-as-taggable-on? As the name suggests, this plugin

provides a simple yet effective means by which you can make your models

taggable. It ships with its own ActiveRecord model class called

ActsAsTaggableOn::Tag, as well as functionality for parsing a list of tags divided

by spaces into separate model objects of class ActsAsTaggableOn::Tag.

Of course, before we can play with this plugin, we'll need to install it.

Namespacing Safety Measures

You probably noticed that the Tag class is namespaced under ActsAsTaggableOn.

Namespacing classes inside a gem is a Ruby community best practice based on

years of class names stomping all over each other from different gems and libraries.

Tag is a fairly common name, so putting it in the ActsAsTaggableOn namespace

ensures we avoid loading another gem that clobbers the class.

Rails Plugins 411

Installing the acts-as-taggable-on Gem

To install the gem, change directory to the application root folder and add the

following line to the Gemfile:

gem "acts-as-taggable-on", "~> 4.0"

The ~> tells Bundler that we want any version in the 4.x series. If 4.2 is the latest,

that's what we'll get; however, if the versions went 4.2, then 5.0, we'd still end up

with 4.2. Make sense?

Now run the following:

$ bundle install

Fetching gem metadata from https://rubygems.org/...........

Fetching version metadata from https://rubygems.org/...

Fetching dependency metadata from https://rubygems.org/..

Resolving dependencies...

Using rake 10.5.0

Using i18n 0.7.0

Using json 1.8.3

Using minitest 5.8.4

...

Installing acts-as-taggable-on 4.0.0.pre

...

Bundle complete! 14 Gemfile dependencies, 56 gems now

➥ installed.
Use `bundle show [gemname]` to see where a bundled gem is

➥ installed.
Post-install message from acts-as-taggable-on:

When upgrading

As you can see, Bundler runs through all the dependencies of our app, including

installing the acts-as-taggable-on into the application "bundle". There's even a

post-install message from the acts-as-taggable-on gem telling us what to do

next.

412 Rails: Novice to Ninja

Creating a Migration for the Plugin

Our plan is to allow users of our application to add tags to stories submitted to

Readit, so our Story model needs to be taggable. Both the tags themselves and the

relationships between tags and stories need to be stored somewhere, so we'll use

a migration to create new tables. And while this plugin makes use of a new model

(the ActsAsTaggableOn::Tag model provided by the acts-as-taggable-on

plugin), the model wasn't created by the rails generate command, so we're yet

to have a migration to go with it. Luckily, the plugin does come with a convenient

generator method to create a fitting migration:

$ rails acts_as_taggable_on_engine:install:migrations

Running via Spring preloader in process 64781

Copied migration

➥
201...7_acts_as_taggable_on_migration.acts_as_taggable_on_engine.rb

➥ from acts_as_taggable_on_engine
Copied migration

➥ 201...8_add_missing_unique_indices.acts_as_taggable_on_engine.rb
➥ from acts_as_taggable_on_engine
Copied migration

➥
2_add_taggings_counter_cache_to_tags.acts_as_taggable_on_engine.rb

➥ from acts_as_taggable_on_engine
Copied migration

➥ 201...0_add_missing_taggable_index.acts_as_taggable_on_engine.rb
➥ from acts_as_taggable_on_engine
Copied migration

➥
201...1_change_collation_for_tag_names.acts_as_taggable_on_engine.rb

➥ from acts_as_taggable_on_engine
Copied migration

➥ 201...2_add_missing_indexes.acts_as_taggable_on_engine.rb
➥ from acts_as_taggable_on_engine

Rails Plugins 413

This task copied five migrations into our db/migrate directory. These files

produce the tables used by acts-as-taggable-on, along with creating some

database indexes and other database artifacts. The acts-as-taggable-on plugin

uses two tables:

The tags table stores the ActsAsTaggableOn::Tag model, which is just a

regular ActiveRecord model. This table contains one entry for each tag. So,

for example, if you tagged two or more Story models with the tag ruby, only

one ActsAsTaggableOn::Tag object (ruby) would be stored in the database.

This approach makes it easy for our application's users to find content; if users

were interested in finding stories about Ruby, they could browse through all

the stories to which the ruby tag was applied.

The taggings table stores the actual mappings between the

ActsAsTaggableOn::Tag model and those models that make use of the

acts-as-taggable-on functionality.

Following is the migration code that was generated for us. It is ready to use as is,

and is stored in the db/migrate/xxxx_acts_as_taggable_on_migration.rb file:

class ActsAsTaggableOnMigration < ActiveRecord::Migration

def self.up

create_table :tags do |t|

t.string :name

end

create_table :taggings do |t|

t.references :tag

You should make sure that the column created is

long enough to store the required class names.

t.references :taggable, polymorphic: true

Rake'n'rails

The message received after we bundled instructed you to use rake instead of

rails. Welcome to the bleeding edge. In previous versions of Rails, rake was used

to run tasks like this, but Rails 5 added rails as an alias. This was to allow devs to

use rails for all generators and tasks.

414 Rails: Novice to Ninja

t.references :tagger, polymorphic: true

Limit is created to prevent MySQL error on index

length for MyISAM table type: http://bit.ly/vgW2Ql

t.string :context, limit: 128

t.datetime :created_at

end

add_index :taggings, :tag_id

add_index :taggings, [:taggable_id, :taggable_type,

➥ :context]
end

def self.down

drop_table :taggings

drop_table :tags

end

end

This migration starts out simply enough. It creates the tags table that contains

just one column: name (in addition to the id column belonging to every table).

While it may appear straightforward on the surface, the taggings table is a little

more complex than a mere list of objects and their tags. As mentioned, it's

possible to make more than one model in your application taggable; however, the

mappings between the ActsAsTaggableOn::Tag model and those models to

which tagging functionality has been added use a single table.

acts-as-taggable-on uses each of the columns created in the taggings table as

follows:

tag_id is created by t.references :tag and stores the id of the

ActsAsTaggableOn::Tag

taggable_id is created by t.references :taggable, polymorphic: true

and stores the id of the object that is being tagged (for example, the ID of a

Story)

Rails Plugins 415

taggable_type is created by t.references :taggable, polymorphic: true

and stores the class of the object that is being tagged (for example, Story)

tagger_id is created by t.references :tagger and stores the id of the user

that created the tag (for example, the ID of a User)

tagger_type is created by t.references :tagger and stores the class of the

object that is doing the tagging (for example, User)

You may be asking what "polymorphic" means in our migration. Hold tight, I'll

cover that soon enough.

Before we can give our Story model a little acts-as-taggable-on goodness, we

need to apply the migration just generated, as shown below.

10-4. Applying the generated migration

Great! Now we can make our Story model taggable. Let's chat about polymorphic

associations.

Understanding Polymorphic Associations

We've looked at the underlying tables utilized by the acts-as-taggable-on

plugin, and we know what's stored in which columns. But what kind of

association is this?

It's not a one-to-many relationship, because one tag may be applied to many items

and one item may have many tags. It's a kind of bidirectional, one-to-many

relationship. In fact, it's often called a "many-to-many" relationship. Rails features

a type of relationship that's just for this type of situation. It's called a polymorphic

association.

416 Rails: Novice to Ninja

In a polymorphic association, a model is associated with objects of more than one

model class, as Figure 10-5 illustrates. In order to store this relationship in the

database accurately, the object's class name (or "type") and ID must be stored.

Check out the migration that we just created, and you'll see this is exactly what's

achieved by the schema created.

10-5. Two models are assigned the same tag

If the schema didn't save both the class name and ID of the object, we potentially

face a situation in which a tag is applied to both a User object with an ID of 1 and

a Story object also with an ID of 1. The chaos that would result!

Fortunately, Rails automatically and transparently handles most of the details

that implement this relationship for you.

Making a Model Taggable

To use acts-as-taggable-on, modify the Story class definition located in /app/

models/story.rb as follows:

Rails Plugins 417

10-6. /app/models/story.rb (excerpt)(excerpt)

class Story < ApplicationRecord

acts_as_taggable

⋮ Story model…
end

Yes, that is it! With the plugin in place, it takes just 16 characters to make a

model taggable. Please note that the function name is still acts_as_taggable as

opposed to the plugin name, which is acts-as-taggable-on.

Next, we'll hop into the Rails console to play with our Story model's new

functionality. The acts-as-taggable-on plugin has added various extra methods

to our model. Let's take a look at some of them.

First, retrieve a story from the database:

>> s = Story.first

=> #<Story id: 2, name: "SitePoint Forums", …>

We can look at the tags already assigned to this story by using the tag_list

instance method:

>> s.tag_list

=> []

By simply assigning a new value to the tag_list attribute, we have the ability to

tag an object. In its simplest form, this value can be a comma-separated list of tags

to apply:

>> s.tag_list = 'sitepoint, forum, community'

=> "sitepoint, forum, community"

418 Rails: Novice to Ninja

When the model is then saved to the database, we can use the tag_list method

again to fetch an array of tags assigned to the model:

>> s.save

=> true

>> s.tag_list

=> ["sitepoint", "forum", "community"]

The tag_list method is in fact a shortcut to the association data, which is

available through the tags instance method. This method provides access to an

array of the ActsAsTaggableOn::Tag objects with which this particular story is

associated:

>> s.tags.size

=> 3

As mentioned earlier in the chapter, we can also use methods of the

ActsAsTaggableOn::Tag class to retrieve a list of stories tagged with a particular

word. We load up an existing tag (which we've just created through the

assignment of a comma-separated list of tags to the tag_list attribute of the

Story model) using a standard ActiveRecord method:

>> t = ActsAsTaggableOn::Tag.find_by(name:

➥ "sitepoint")
=> #<ActsAsTaggableOn::Tag id: 1, name:

➥ "sitepoint">

Each ActsAsTaggableOn::Tag instance collects a list of all the objects to which it

has been assigned—information that's available through the taggings instance

method. Let's request the size of the array:

>> t.taggings.size

=> 1

Rails Plugins 419

Based on the value returned by the size method, we can hazard a guess that the

object available in this array is the Story object we tagged earlier. Let's use the

first method to be sure:

>> t.taggings.first

=> #<ActsAsTaggableOn::Tagging id: 1, tag_id: 1,

➥ taggable_id: 2,
taggable_type: "Story", …>

Yes, we were right!

The objects contained in this taggings array are the fully functional model

objects of class ActsAsTaggableOn::Tagging. This is like an intermediate model

between the Tag and the object being tagged, such as a Story object. If we want to

access the actual tagged model, we have to go through yet another association

that the acts-as-taggable-on plugin defined for us: taggable.

>> t.taggings.first.taggable

=> #<Story id: 2, name: "SitePoint Forums", …>

This property retrieved for us the actual story object to which we applied the

tag. We're now free to invoke the same methods and access the same attributes

that we would when dealing straight with a Story object. Let's request the name

of the story that we've tagged with the sitepoint tag:

>> t.taggings.first.taggable.name

=> "SitePoint Forums"

Straightforward stuff, no? I have to admit, there are a lot of chained method calls

there. Didn't we learn about a new type of association that connects a model

through another model in the previous chapter. Feel free to implement that on

your own.

420 Rails: Novice to Ninja

One last point: because it's conceivable that a tag may be applied to more than

one type of model, each model is equipped with a new dynamic finder that

fetches only objects of that object's class assigned a certain tag. That dynamic

finder is tagged_with:

>> s = Story.tagged_with("sitepoint")

=> #<ActiveRecord::Relation [#<Story id: 2, name:

➥ "SitePoint Forums", ...>
>> s.size

=> 1

>> s.first.name

=> "SitePoint Forums"

Okay, enough with the console. Let's now give users the ability to tag stories

through our application's web interface.

Enabling Tag Submission

Before we get all fancy displaying tags all over our site, we need a way for users

to submit tags with a new story. Let's add a new form field to the story submission

form.

Modifying the View

To add the form field, modify the submission form located in the file app/views/

stories/new.html.erb:

Rails Plugins 421

10-7. app/views/stories/new.html.erb (excerpt)(excerpt)

<% form_for @story do |f| %>

⋮ form HTML…
<p>

Tags (comma separated):

<%= f.text_field :tag_list %>

</p>

<%= submit_tag %>

<% end %>

Users will be separating each tag with a comma, so a simple text field for tag

entry will do the job nicely:

<%= f.text_field :tag_list %>

The only mind-bending aspect about this line is the use of a regular text_field

method. This would have us believe that our Story object somehow gained a

database column for tag_list, which it most certainly did not. In fact, this is

exactly why the acts-as-taggable-on uses a pragmatic approach for the

implementation of tagging for specific objects. It provides the tag_list and

tag_list= methods for objects of classes that have been tag-enabled with

acts_as_taggable, thus closely resembling what ActiveRecord provides us with

for regular database-backed attributes. Behind the scenes, the plugin intercepts

what's being set for this attribute and transparently handles creating new Tag

objects and Taggings relationships. Cool, huh?

Modifying the Controller

To assign the submitted tags to the new story, you probably expected to modify

the story_params method of the StoriesController class to allow tag_list to

be passed to the model. Well, you're right! Open up app/controllers/

stories_controller.rb and change the story_params method like so:

422 Rails: Novice to Ninja

10-8. app/controllers/stories_controller.rb (excerpt)(excerpt)

def story_params

params.require(:story).permit(:name, :link, :description,

➥ :tag_list)
end

Now our users can submit tags with their stories. Let's display them, shall we?

Enabling Tag Display

We want our tags to appear in a few places. First of all, they should be visible on

the story page itself. It would also be nice to see them in the story listings on the

front page, as well as on the page showing stories in the voting bin.

Modifying the View

To display the assigned tags on the story page, modify the show template located

at app/views/stories/show.html.erb. Add the following code between the

containers of the story link and the voting form (vote_form):

<% unless @story.tag_list.empty? %>

<p class="tags">

Tags:

<%= @story.tag_list %>

</p>

<% end %>

Once again, if a story has an empty list of tags, we don't bother listing them; so

we’ll wrap the logic in an unless clause:

<% unless @story.tag_list.empty? %>

⋮ tag HTML…
<% end %>

Rails Plugins 423

If tags are associated with a story, we go ahead and render the list of tags for now:

<%= @story.tag_list %>

Updating the story Partial

Now we'll display tags for each story that appears in the story listings on the front

page and in the voting bin. To add this information to the display, we modify the

app/views/stories/_story.html.erb partial:

10-9. app/views/stories/_story.html.erb (excerpt)(excerpt)

<% div_for(story) do %>

<h3><%= link_to story.name, story %></h3>

<p>

Submitted by: <%= story.user.name %> |

Score: <%= story.votes_count %>

Tags: <%= story.tag_list %>

</p>

<% end %>

This code also prints a comma-separated list of the tags assigned to a story using

the tag_list instance method.

Assigning Our First Tags

With a solid foundation in place for the assignment and display of tags in the

application, you can now start experimenting with this exciting new piece of

functionality. Submit a new story from your browser using the story submission

form, this time including a few tags as I've done in Figure 10-10. If your web

server is still running from the previous chapter, you may need to restart it before

it will recognize the new plugin.

424 Rails: Novice to Ninja

10-10. Submitting a story with tags

When you view the front page, upcoming page, or individual story listings, you

should see the tags display nicely below your story, as in Figure 10-11.

Rails Plugins 425

10-11. Tags on display

(Remember, you won't have any tags yet for the existing stories.)

Everything looks good; however, we'd like to link those tags to a page showing all

stories with this tag in common. That's our next task.

Viewing Stories

At this stage, it may seem we're taxing ourselves by having to create a separate

controller to implement the view-by-tag feature; however, as you've made it to the

final third of the book, creating a new controller shouldn't impose too much on

your Rails development skills. Besides, this will work nicely with the RESTful

approach we're applying to Readit's development.

Creating the Controller

Our new controller is supposed to deal with objects of class Tag, so

TagsController will be an excellent fit. You can create it as follows:

426 Rails: Novice to Ninja

$ rails generate controller Tags show

Running via Spring preloader in process 67691

create app/controllers/tags_controller.rb

route get 'tags/show'

invoke erb

create app/views/tags

create app/views/tags/show.html.erb

invoke test_unit

create test/controllers/tags_controller_test.rb

invoke helper

create app/helpers/tags_helper.rb

invoke test_unit

invoke assets

invoke coffee

create app/assets/javascripts/tags.coffee

invoke scss

create app/assets/stylesheets/tags.scss

To make our new controller adhere to RESTful principles, we require another

entry in config/routes.rb:

10-12. config/routes.rb (excerpt)(excerpt)

Rails.application.routes.draw do

resources :tags

⋮ other routes…
end

Now go ahead and open app/controllers/tags_controller.rb, and adjust the

show action to this:

Rails Plugins 427

10-13. app/controllers/tags_controller.rb

class TagsController < ApplicationController

def show

@stories = Story.tagged_with(params[:id])

end

end

There's nothing too fancy here; we simply retrieve all the stories tagged with a

particular tag using a method we played with in the console earlier in this

chapter—tagged_with:

@stories = Story.tagged_with(params[:id])

The last task required by this page is the creation of an appropriate heading to

distinguish it from our other story lists.

Filling in the View Template

The view template for the show action is really very simple. We could almost

reuse the app/views/stories/index.html.erb template, but it's a little awkward

to reuse action templates between two separate controllers, so we won't do that.

What we will do, however, is reuse the partial to render a list of stories.

To do so, open app/views/tags/show.html.erb and adjust it as follows:

<h2>Stories tagged with <%= params[:id]

➥ %></h2>
<%= render partial: @stories %>

This ends up being similar to the aforementioned index template, but retains the

flexibility of dragging in additional models we can equip with tagging

functionality in the future.

428 Rails: Novice to Ninja

Displaying Tagged Stories

We could now simply construct a URL to a tag page of our own, seeing we know

what kind of tag we've used in our story submissions; however, we want our

users to be able to click on tags displayed in the story listings, so as to reach the

respective page listing all stories with that tag.

To do this, we'll change the app/views/stories/show.html.erb template slightly

to render a partial instead:

10-14. app/views/stories/show.html.erb (excerpt)(excerpt)

<% unless @story.tag_list.empty? %>

<p class="tags">

Tags:

<%= render partial: "tags/tag", collection: @story.tags

➥ %>
</p>

<% end %>

We can't use here the shorthand syntax we first met a couple of chapters ago

because of the namespacing of the Tag class. So we explicitly tell Rails to render

the tag partial in the tags view directory. This render call will search for a

partial in app/views/tags/_tag.html.erb, so let's create that partial now.

Creating a tag Partial

To render a collection of tags assigned to a story, we need a tag partial. Create the

file app/views/tags/_tag.html.erb, and edit the contents to contain this single

line:

10-15. app/views/tags/_tag.html.erb

<%= link_to tag, tag_path(id: tag.name) %>

Rails Plugins 429

This link_to call departs slightly from the oh-so-comfortable convention-laden

form that we've grown to love. It's because we actually want the URL for our tag

pages to look like this:

http://localhost:3000/tags/sitepoint

While we could certainly go ahead and modify the to_param method of the Tag

class, this would require changing the contents of the acts-as-taggable-on

plugin. Although this is certainly possible, it's best discouraged, as a future

update to the plugin could break our changes. This is the reason why I opted to

construct the URL by explicitly assigning the name value of the tag to the id part

of the URL.

Updating the Stylesheet

To give our tag links a little room to breathe on the page, we'll add the following

snippet of CSS to our stylesheet, located at app/assets/stylesheets/tags.scss:

10-16. app/assest/stylesheets/tags.scss (excerpt)(excerpt)

.tags a { padding: 0 3px; }

Excellent. Let's see how it's all looking now, shall we? Loading up a page of a

story with tags assigned should look similar to Figure 10-17.

430 Rails: Novice to Ninja

10-17. Story page with tags

Clicking on any of the provided tags should reveal a list of stories that share this

tag, an example of which can be found in Figure 10-18. Lovely!

Rails Plugins 431

10-18. Testing the Tagging Functionality

Testing the Tagging Functionality

Some plugins come bundled with complete test coverage, while others do not.

The original acts_as_taggable was quite bare-bones in that regard. The

makeover, however, is extensive in its test coverage. Still, it's good practice to add

to your test suite to ensure that you're testing your usage of the plugin, which

definitely isn't covered by the standard test suite for the plugin.

Testing the Model

To test the tagging functionality that our Story model has inherited, we're going

to add two more unit tests to the StoryTest test case.

Before we commence, we need to ensure that Rails has applied all our new

migrations to the test database. This is done with the same db:migrate command,

but we set the RAILS_ENV variable to test, which tells Rails to use the test

environment:

432 Rails: Novice to Ninja

rails db:migrate RAILS_ENV=test

Testing the Assignment of Tags

The first test we'll add to the /test/models/story_test.rb file is as follows:

10-19. /test/models/story_test.rb (excerpt)(excerpt)

class StoryTest < ActiveSupport::TestCase

⋮ test methods…
test "is taggable" do

stories(:one).tag_list = 'blog, ruby'

stories(:one).save

assert_equal 2, stories(:one).tags.size

assert_equal ['blog', 'ruby'], stories(:one).tag_list

end

end

This test uses the tag_list attribute accessor to apply two tags to one of the

stories in our fixture data:

stories(:one).tag_list = 'blog, ruby'

To reflect the newly added tags, we save the object in question:

stories(:one).save

A Conventional Environment

There are a few environment variables that Rails will use by convention (you

should be used to the idea of convention by now). RAILS_ENV is one of them, and

it determines which environment is current. You'll recall that by default, there are

three possible environments: development, test, and production.

Rails Plugins 433

The two assertions in this test confirm that the number of tags assigned to the

story meets expectations, and that the list of tags returned by the tag_list

method contains the correct tags in the form of an array:

assert_equal 2, stories(:one).tags.size

assert_equal ['blog', 'ruby'], stories(:one).tag_list

Testing the Finding of a Story by Tag

The next unit test we add for our Story model is this:

10-20. /test/models/story_test.rb (excerpt)(excerpt)

test "finds tagged with" do

stories(:one).tag_list = 'blog, ruby'

stories(:one).save

assert_equal [stories(:one)],

Story.tagged_with('blog')

end

This test confirms that the functionality for finding stories by tag works as

expected. After tagging a story, the test uses the tagged_with class method to

retrieve a list of stories with the blog tag, comparing it with the list of stories that

we expect to be returned.

Great, we're done! Let's go do some functional testing.

Testing the Controller

We're now going to add a few tests to our StoriesControllerTest to confirm that

our tagging feature works correctly from a controller perspective.

Testing the Submission of a New Story with Tags

The first test confirms that the process of adding a new story with tags works:

434 Rails: Novice to Ninja

10-21. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ test methods…
test "add story with tags" do

login_user

post :create, story: {

name: "story with tags",

link: "http://www.story-with-tags.com/",

tag_list: "rails, blog"

}

assert_equal ['rails', 'blog'], assigns(:story).tag_list

end

end

In this test, we specify the tags as part of the :story hash. Remember, tags are

submitted just like any other attribute in the story submission form:

post stories_path, story: {

name: "story with tags",

link: "http://www.story-with-tags.com/",

tag_list: "rails, blog"

}

The assertion then ensures the tag_list method of the newly added Story

returns the tags that we submitted:

assert_equal ['rails', 'blog'], assigns(:story).tag_list

Testing the Display of Tags on a Story Page

The next test checks whether a story's individual page displays its tags properly:

Rails Plugins 435

10-22. /test/controllers/stories_controller_test.rb (excerpt)(excerpt)

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ test methods…
test "show story with tags" do

stories(:promoted).tag_list = 'apple, music'

stories(:promoted).save

get story_path(stories(:promoted))

assert_select 'p.tags a', 2

end

end

In this test, we confirm that the container element on the story page contains an

appropriate number of elements. We do this by counting the number of links

within the p element that have a class of tags:

assert_select 'p.tags a', 2

Testing the Display of the Story Submission Forms

Because we added a new field to the story submission form, we have to edit our

StoriesControllerTest class so that the "shows new form" test counts an

additional paragraph element:

class StoriesControllerTest <

➥ ActionDispatch::IntegrationTest
⋮ test methods…
test "shows new form" do

login_user

get new_story_path

assert_select 'form p', count: 4

end

end

436 Rails: Novice to Ninja

Let's now move on and write some tests for our TagsController.

Testing the show Action of TagsController

To test our newly created TagsController, add the following to the

TagsControllerTest test case stored in test/controllers/

tags_controller_test.rb:

10-23. test/controllers/tags_controller_test.rb

test "renders tagged stories" do

stories(:one).tag_list = 'blog, ruby'

stories(:one).save

get tag_path("ruby")

assert_response :success

assert_select 'div#content div.story', count: 1

end

In this test, we put the template code through its paces. The assert_select

assertion call confirms that the resulting page contains the expected number of

div elements with a class of story:

assert_select 'div#content div.story', count: 1

And that, dear reader, is the last test I'll make you write! Well, for this chapter,

anyway.

Running the Test Suite ... Again!

To assure ourselves that all of these new tests pass (as well as our existing ones),

we'll run the whole suite again using rake.

$ rails test

Running via Spring preloader in process 60620

Run options: --seed 20795

Rails Plugins 437

Running:

..

Finished in 1.056509s, 49.2187 runs/s, 90.8653 assertions/s.

45 runs, 73 assertions, 0 failures, 0 errors, 0 skips

If all of your tests passed, give yourself a congratulatory pat on the back. And if

there are any errors or failures, double-check your code against the code in the

book and the book's code archive to see where you might have gone wrong. The

error messages displayed in your console will help, of course. And if you get

truly stuck, you could jump ahead to the next chapter to read about debugging

your Rails application.

Summary

In this chapter, we looked at using an existing Rails plugin to extend our

application's functionality without reinventing the wheel. After installing the

plugin and applying the necessary migrations, we only had to add a single line of

code to make use of the rich functionality provided by the plugin. When we'd

ascertained how the plugin worked, we expanded the story submission form to

take a comma-separated list of tags, and expanded several views to display the tag

data.

Our work is not done yet, though—we still have a bit to learn about debugging

our application, running integration tests, and configuring our environment for

production. These topics will be the focus of the remaining chapters.

438 Rails: Novice to Ninja

11Chapter

Debugging, Testing, and Benchmarking

Welcome to a chapter devoted to the very topics nobody likes to talk about:

errors, bugs, flaws, and exceptions. These topics, however dismaying, are de

rigeur for any comprehensive hands-on technical guide—let's not pretend that

development is perennially easy and always results in perfect, error-free code!

Once you begin developing applications on your own, the first lesson you'll

learn—probably the hard way—is that bugs arise all the time, regardless of how

proficient you are as a developer. It's your job to find and fix them, so you'd better

be good at it!

Of course, the fun doesn't stop at bugs and errors. It may be that your finished

application is not as speedy as you'd like. If this is the case, you'll need tools on

hand to profile your application, so that you can locate the bottlenecks

responsible for slowing things down.

Debugging, Testing, and Benchmarking 439

In this chapter, we'll explore all of these issues.

Debugging Your Application

When you're building a web application, there are times when you immediately

know the exact cause of a problem and how to fix it. For example, a broken image

on your website instantly indicates that you've forgotten to upload it, or that the

path to the image is incorrect. With other bugs, however, you may fail to have the

merest ghost of an idea what's happened. It's at times like these that knowing how

to debug your code comes in very handy.

There are various approaches to debugging. The simplest involves printing out

the values of some of the variables that your application uses while it runs, to

gain a better idea of what's going on at each step in your code. A more complex

approach involves complicated but powerful techniques: setting breakpoints,

hooking into the running application, and executing code in the context in which

you suspect it's misbehaving.

We'll begin our discussion with something simple: we'll look at the debug

statement that's available within ActionView templates. Over the course of the

next two sections, we'll work to squash a real live bug in our Readit application;

I've gone against the developer grain and deliberately introduced problems into

our existing, perfectly working application code so that we can get our hands

dirty with a practical application. As you follow along, try to think of the

potential causes for problems we encounter.

Are you ready? Let's try our hand at a little debugging.

Debugging within Templates

I've deliberately broken our application by changing a specific line of code

(obviously, I'll avoid telling you which—that's the whole point of this exercise!).

The result of this code change is that the story page for a newly submitted story

throws an exception and no longer displays the story. Figure 11-1 shows how this

bug appears in the browser.

440 Rails: Novice to Ninja

11-1. A mystery bug causing an error to display when we view a story

To complete this exercise, you'll first need to follow these steps to set up the

purposefully buggy version of Readit:

1. Copy the folder named readit-debug-01 from the code archive, and place it

alongside your existing readit application folder.

2. Move into the readit-debug-01 folder and run rails db:migrate to run the

migrations.

3. Start up your broken version of the Readit application using the now familiar

rails s command.

4. Open up a Rails console (rails c) and add a new user as follows:

User.create(name: "Glenn Goodrich", email:

"glenn.goodrich@sitepoint.com", password: "password",

password_confirmation: "password")

5. Log in and add a new story to Readit. I've given my story the name "All About

Debuggers."

Debugging, Testing, and Benchmarking 441

6. Once you've submitted your new story, point your browser to

http://localhost:3000/stories/1-all-about-debuggers.

When your browser has finished loading the page, you should see a similar sight

to Figure 11-1. The line number may not match exactly, but as long as the error is

the same, everything's working as expected.

How should we approach such an error? Let's begin by taking a closer look at the

error message:

Showing

➥ /Users/ggoodrich/projects/sitepoint/readit/app/views/stories/
show.html.erb

➥ where line #20 raised:

undefined method `name` for nil:NilClass

The obvious deduction is that our application tried to call the name method on a

nil object in our show.html.erb template. Understandably, Rails could not

perform such an action, as the object nil is without a name method.

The error message also includes an excerpt of the code that Rails believes was

responsible for the exception:

Extracted source (around line #20):

18: <p class="submitted_by">

19: Submitted by:

20: <%= link_to @story.user.name,

➥ @story.user %>
21: </p>

22: <p>

23: <%= link_to @story.link, @story.link %>

The error message directs us to line 20 of the template, which is where the

link_to helper tries to assemble a link to the user page associated with the user

442 Rails: Novice to Ninja

who originally submitted the story. This line also contains the call to the name

method that raised the exception. We're calling the name method on the user

object associated with the story that's currently being viewed:

20: <%= link_to @story.user.name,

➥ @story.user %>

Rereading the error message, we're under the impression that @story.user must

actually be nil. But what good are impressions in web application programming?

No good at all. We require cold, hard facts!

Let's put two tasks on our to-do list:

Confirm that @story.user is indeed nil.

Find out why it is nil.

To tackle the first item on our list, let's alter the parts of the template that raised

the exception, in order to inspect the contents of @story.user. To do so, open the

app/views/stories/show.html.erb template and change the following sections:

<p class="submitted_by">

Submitted by:

<%= @story.user.class %>

<%# link_to @story.user.name, @story.user

➥ %>
</p>

I made two changes to the template. First, I added a statement to print the class of

the @story.user variable to our browser. Then, I used the <%# %> syntax to

comment out the link_to statement. If we fail to do this, the application will

continue to raise an exception when we reload the page, and we won't receive the

output of the line we added. This line is now considered a comment rather than

part of the working code, and as such it won't be executed.

Debugging, Testing, and Benchmarking 443

When we reload the page, we see that @story.user is indeed NilClass, which is

the class of nil and explains the exception we're seeing. Figure 11-2 shows the

results of our work. The first item on our to-do list is done.

11-2. Confirmation of our nil user

To find out why @story.user is nil, we'll have to follow the steps that led to the

user assignment when submitting new stories. Before we proceed, though, we

should revert the changes that we just made to the show.html.erb template.

Remove the statement that prints the class name, and make the link_to

statement active again:

<p class="submitted_by">

Submitted by:

<%= link_to @story.user.name, @story.user

➥ %>

444 Rails: Novice to Ninja

</p>

When we implemented user authentication in Chapter 8, we populated this

variable with the currently logged-in user available in the @current_user

instance variable. Let's check the contents of this variable using the debug helper.

Add the following statement to the template that's being rendered for the new

action—it's located in app/views/stories/new.html.erb:

<% if @story.errors.any? %>

⋮ error HTML…
<% end %>

<%= debug @current_user %>

<%= form_for @story do |f| %>

⋮ form HTML…
<% end %>

The code I added between the @story.errors.any? block and the form_for

statements is the debug helper provided by Rails:

<%= debug @current_user %>

The debug statement instructs Rails to output a YAML representation of the object

that we pass as a parameter. In this case, because we're working from a view

template, this output will be sent directly to the browser. Load the story

submission form (http://localhost:3000/stories/new) with this debugging

code in place, and you should see a resemblance to Figure 11-3.

Debugging, Testing, and Benchmarking 445

11-3. Looking at a YAML representation of @story

The output should remind you of our test fixtures—it's formatted in YAML, after

all. The debugging content that's shown in addition to our regular template

output is a representation of @current_user, which contains the currently

logged-in user.

The debug helper automatically wraps its output in a pre element. By default, the

contents of a pre element are displayed by the browser as preformatted text in a

monospace font.

Within the YAML representation, you can tell that what we're being shown is

indeed a fully fledged user object appropriately stored in the referenced instance

variable. This indicates the part of our code that fetches the user from the

database via the ID stored in the session is indeed working fine.

446 Rails: Novice to Ninja

Web Console

Another debugging option that ships with Rails is web console. The web_console

gem, included in the development group of our application's bundle, enables us

to create a Rails console in some really interesting places. In this example,

instead of using debug to print out the value of the @current_user, we can use

web_console to create a Rails console right on the page and execute arbitrary

Ruby in the context of the page.

In order to use web_console, we'll add a call to console to our new controller

action:

def new

console

@story = Story.new

end

Now refresh the page and you'll see a >> prompt in the area at the bottom, which

resembles a terminal, as shown in Figure 11-4.

Debugging, Testing, and Benchmarking 447

11-4. A web console–right on the page

As I mentioned, you can execute Ruby commands in this console in the context

of the page. So we can check the value of @current_user by simply typing

@current_user as seen in Figure 11-5.

448 Rails: Novice to Ninja

11-5. Checking the value of @current_user

The value of @current_user is clearly printed in our web console. We can check

the value of anything that's in the current scope, such as session[:user_id] or

@story (which is set to a new, empty Story). Pretty cool, eh? Incidentally, the

console is also available, by default, on any error pages in development.

Using web_console can be a lifesaver–it's a very quick way to figure out what is

happening without having to add debug statements and refresh the page several

times.

The last place to check is where it actually makes use of @current_user and the

association between the User and Story classes to instantiate Story object with a

prepopulated user_id: the create action of our StoriesController.

Debugging, Testing, and Benchmarking 449

At this point, it's time to come clean about what causes our application bug.

Here's what the aforementioned controller action looks like:

def create

@story = Story.new story_params

@story = @current_user.stories.build story_params

⋮ method body…
end

As you can see, the line that instantiates the new Story object has been replaced

by one that uses the Story class directly, instead of going through the association

available via the @current_user object. As a result, no user will be assigned to

the newly submitted story.

A slight change to the Story model was also necessary to make this work. I set

the belongs_to :user association to optional in /app/models/story.rb:

belongs_to :user, optional: true

It's an ideal time to point out that, by default, belongs_to associations are

mandatory. This is a change in Rails 5 from previous versions to protect us from

unknowingly creating a bunch of orphaned objects.

“But wait!” you might be thinking. “Wouldn't a test have caught this problem?”

Of course it would have.

Running the functional tests (using rails test:controllers) with the modified

controller action in place, as just seen, would reveal a test failure::

$ rails test:controllers

Run options: --seed 38543

Running:

...............F

450 Rails: Novice to Ninja

Failure:

StoriesControllerTest#test_stores_user_with_story

➥ [/Users/ggoodrich/projects/sitepoint/readit-debug-01/test/
controllers/stories_controller_test.rb:106]:

--- expected

+++ actual

@@ -1 +1 @@

-#<User id: 61347656, password_digest:

➥ "$2a$04$YF6ypVtUFIzFiJCgZNkCI.4GIn/OuDBus410lcqN.IW...",
➥ name: "Glenn Goodrich", email:
➥ "glenn.goodrich@sitepoint.com", created_at: "2016-07-29
➥ 12:54:34", updated_at: "2016-07-29 12:54:34">
+nil

bin/rails test

➥ test/controllers/stories_controller_test.rb:99

................

Finished in 1.915820s, 16.7030 runs/s, 29.2303 assertions/s.

32 runs, 56 assertions, 1 failures, 0 errors, 0 skips

The test that fails verifies that the submission of a new story stores the current

user; obviously, it doesn't. The error messages from the test even tell us that it

expected a User object with a name of Glenn Goodrich; instead, it received a nil

object.

What lesson can we take from this exercise? Well, if you equip your code with

proper test coverage from the beginning, you'll have an easy and efficient way to

spot an error in your code later on.

If you've been following along (you have been following along, right?), you'll

need to either remove the story with the broken user association, or fix the user

association through the console by changing its user_id to 1.

Debugging, Testing, and Benchmarking 451

Debugging A Slightly Trickier Bug

In the next example, we'll look at another problem that I've secretly introduced to

our existing code. If you take a look at Figure 11-6, you'll notice that although

we've provided a description for the new story we submitted, it's missing from

the final story page.

11-6. Story description missing from a newly submitted story

If you'd like to follow along with this example, copy the readit-debug-02 from

the code archive, and set it up using the steps for setting up readit-debug-01 (I'll

even wait for you!).

“Ha!” I hear you laugh. “I learned in the last section that I just need to run the test

suite and it'll tell me what's wrong!”

452 Rails: Novice to Ninja

While that's a great idea, the reality is that when we run the full test suite with

rails test from the application root, every single test passes, as if nothing were

wrong. Here are the results of running the test suite:

$ rails test

Running via Spring preloader in process 3965

Run options: --seed 63168

Running:

...

Finished in 1.021801s, 49.9119 runs/s, 92.9731 assertions/s.

48 runs, 77 assertions, 0 failures, 0 errors, 0 skips

What happened here? We'll need to find out. While we used statements to

investigate specific objects and attributes in the previous example, in this case,

it's unclear where to begin.

Meeting byebug

When the first edition of this book was published, this section talked about a gem

called ruby-debug and walked through how to set up it up in Rails. ruby-debug is

still a viable option, but the Rails guides now talk about a new gem called

byebug. Rails includes byebug in the development group of every Gemfile, so it's

already in our bundle, so no installation is required.

While it would be beyond the scope of this chapter to explain how byebug works

its magic, suffice to say that byebug uses a natively compiled Ruby extension

that's written in C. The result is that it performs amazingly well, even with very

large Ruby scripts. For further reading on byebug and many helpful articles and

links to Ruby resources, I thoroughly recommend reading the Rails Guides on

debugging along with byebug's markdown guide. There are also writings about

byebug on the SitePoint Ruby channel, which is worth checking out.

Debugging, Testing, and Benchmarking 453

http://guides.rubyonrails.org/debugging_rails_applications.html
http://guides.rubyonrails.org/debugging_rails_applications.html
https://github.com/deivid-rodriguez/byebug/blob/master/GUIDE.md
https://www.sitepoint.com/the-ins-and-outs-of-debugging-ruby-with-byebug/
https://www.sitepoint.com/the-ins-and-outs-of-debugging-ruby-with-byebug/

byebug provides you with a more advanced shell, similar to that provided by

GDB, the GNU debugger for the C programming language..

In this shell you can:

step forward and backward in your code

execute and skip lines of code without copying and pasting them from your

code editor window

list the actual source context at which you've stopped your application

edit the current code while it's running

step into irb mode and make use of the same shell used by byebug (if you find

old habits difficult to shake)

Debugging an Application with byebug

Let's crack the byebug whip at this problem. First, add the byebug keyword to the

new action in app/controllers/stories_controller.rb:

def create

@story = @current_user.stories.build story_params

if @story.save

byebug

flash[:notice] = 'Story submission succeeded'

redirect_to stories_path

else

render action: 'new'

end

end

If you try to submit a new story now, you'll experience “hanging browser

syndrome,” indicating that your byebug statement has kicked in and you're ready

to debug.

454 Rails: Novice to Ninja

http://sourceware.org/gdb/

Instead of firing up a separate client to connect to the inner workings of your

application, byebug has opened this debugger shell right inside the terminal

window with your application server, as Figure 11-7 indicates.

11-7. The ruby-debug interactive prompt appears within the server console

Bundler byebug Boo-boo

For you Windows users out there, you may see an error stating "undefined local

variable byebug", which means that byebug has not been installed properly by

Bundler. It seems that in the Rails 5 default Gemfile, the line that pulls in byebug

looks like:

gem "byebug", platform: "mri"

This is unfortunate, because the Windows platform is "mingw32", so byebug is not

loaded by Bundler. To fix this, remove the , platform: "mri" from the Gemfile,

stop your Rails server, and bundle install again. That should clear it right up.

Debugging, Testing, and Benchmarking 455

where

info breakpoints

break

delete

continue

irb

list

methods

next/step

From this prompt, you can use a variety of commands to explore your application

while it's paused mid-execution. Throughout this example, I'll indicate the

byebug shell prompt using the characters (bb), while commands typed at this

prompt will appear in bold, as follows:

(bb) list

The byebug Commands

What follows is a quick rundown of the most important byebug commands, along

with a brief description of what they do. Don't worry too much about

remembering every last detail—the built-in help command will list all the

available commands for you. You can also type help <commandname> for help

with a specific command.

Displays a trace of the execution stack, similar to that

displayed when your application raises an exception.

Displays a trace of the execution stack, similar to that

displayed when your application raises an exception.

Sets new breakpoints in the source code from within the

byebug shell.

Deletes existing breakpoints from within the byebug shell.

Leaves the current debugger shell and resumes execution of

the application until the next breakpoint is encountered.

Invokes an interactive Ruby interpreter—similar to the shell

used by the breakpoint library—at the current point of

execution.

Displays the code fragments surrounding the current point of

execution. (We'll make use of this command in a moment.)

Explores the available class methods and instance methods

respectively.

Continues execution one step at a time. next will step over

the next line of execution, while step will step into the next

line of execution.

456 Rails: Novice to Ninja

var

all/global/const

quit

all will show all variables and their values within the current

context. global will show the global variables, and const will

show the constants.

Exits the debugger. Note that this command will also exit the

application server if it was invoked from the command line,

as has been demonstrated. To exit just the current debugging

session, use finish.

For a list of all available commands and options, use the help command.

Moving Around in the Shell

Now that we've been dropped into a shell, it's time to make use of some of these

commands to zero in on the root of our problem—that is, our stories displaying

without descriptions.

First of all, let's find out exactly what point we're at in the execution of our story

submission. This is the job of the list command, as shown below.

11-8. The list command displaying the current location in a paused application

As you can see, the list command displays a source code listing showing the

current location in a paused application.

At this point, we can examine parts of the working environment, such as the

@story instance variable or the params hash, from the shell. Let's investigate the

description attribute of the Story object stored in our @story variable:

(bb) @story.description

=> nil

Debugging, Testing, and Benchmarking 457

Hmph. I wonder if we're passing description in the params hash. Let's check:

(bb) params[:story][:description]

=> nil

As you can see, this also returns nil: an empty object. So as a last resort, let's take

a peek at the full params hash, which contains the values of all the form fields

that have been submitted, no matter which scope they reside in.

The section highlighted in Figure 11-9 is the root of the problem. As you can see,

the description is indeed present in the params hash, but it's not part of our

story. While the Story's name and link attributes are sitting nicely together in the

params[:story] hash, description sits separately in params[:description].

11-9. Description is present, but apart

How did that happen? If we look at our form template (located at app/views/

stories/new.html.erb), you'll see that I've "accidentally" used the wrong form

field helper:

Wrong:

<p>

description:

<%= text_area_tag :description %>

</p>

Instead of going through the FormBuilder object that the form_for helper

provides and using the text_area helper, my code was calling text_area_tag.

This resulted in the description becoming a separate entry in the params hash,

and our story never received its value. This is what it should look like:

458 Rails: Novice to Ninja

Right:

<p>

description:

<%= f.text_area :description %>

</p>

Discovering All the Fancy Tools in byebug

Admittedly, we haven't had to use any of byebug's more advanced features to

debug this example problem. But when we're forced to debug more complicated

code, byebug's fancy features become really handy.

Let's first take a look at the stepping methods, which allow us to step through the

code, one line at a time. To do so, we'll move our byebug statement into a method

that contains more code than the previous example, so we can actually step

through each line. The best candidate for this task is the create action of our

VotesController found in readit-debug-02/app/controllers/

votes_controller.rb. Here's a version of this method to which I've added the

byebug statement (remember to remove it from our StoriesController):

def create

byebug

@story = Story.find(params[:story_id])

@story.votes.create(user: @current_user)

respond_to do |format|

format.html { redirect_to @story, notice: 'Vote was

➥ successfully created.' }
format.js

end

end

To invoke the debugger in this new location, exit your current debugging session

using the cont command. This will resurrect your stalled browser and enable you

to continue browsing the Readit application. Select a story from the Upcoming

Stories queue and click the Vote for it button to engage the debugger once more.

Debugging, Testing, and Benchmarking 459

Previously, we saw that the list command could give us an indication of where

in the source code our application was currently paused. When it's paused, we

can use the next command to advance to the next line of code. Typing next will

display the regular Rails log output for the following line, then return you to the

byebug prompt. From here, you can once again use list to check your new

location in the application, as I've done in Figure 11-10.

11-10. Using next to advance one line of code

To explore the methods provided by an object that you're curious about, you can

use the methods method, just as you would in irb. When executed with the

optional i argument, it will produce a list of the instance methods provided by

the object you pass to it, sorted alphabetically:

(bb) @story.methods

An example using the @story object is shown below.

460 Rails: Novice to Ninja

11-11. Using the method command to display an object's instance methods

Setting Breakpoints Mid-execution

While the next command can be useful if you know exactly where to go poking

around in your application, it can be less practical in a Rails application. The

level at which the stepping occurs can in some circumstances be far too granular,

resulting in stepping through multiple lines of core library files instead of your

own code.

To gain a little more control over where the debugger halts execution, you can

manually set breakpoints without having to edit any files or stop the server.

Breakpoints can be set by specifying either:

a combination of filename and line number

a class name and the name of an instance method or class method

As an example, we're going to set a manual breakpoint a few lines from the

current location (inside the create action of VotesController). We'll do all of this

without having to open a text editor, or step over every line between the current

point of execution.

Typing list at our current position (you may need to "vote" again to retrieve a

byebug prompt) shows:

1: class VotesController < ApplicationController

2: before_action :login_required

Debugging, Testing, and Benchmarking 461

3: def create

4: byebug

=> 5: @story = Story.find(params[:story_id])

6: respond_to do |format|

7: if @vote = @story.votes.create(user: @current_user)

➥ then
8: format.html { redirect_to @story, notice: 'Vote

➥ was successfully created.' }
9: format.js {}

10: end

(byebug)

We can manually set a breakpoint using the break command:

(byebug) break app/controllers/votes_controller.rb:7

Successfully created breakpoint with id 1

(byebug)

By specifying the file and line number, byebug creates a breakpoint. It's worth

noting that in this case, specifying the file is superfluous because we are in the

same file; however, I included it for completeness.

You can now let go of the current breakpoint by typing the continue command in

the byebug shell. Execution will resume until line 7 is reached, at which point

the application will pause again, as shown below.

11-12. Stopping at a breakpoint that was set by specifying class and method name

A list of active breakpoints can always be obtained via the info breakpoints

command.

462 Rails: Novice to Ninja

Using the Rails Logging Tool

Rails comes with an internal logging tool for writing custom event-triggered

entries to your application's log file.

While logging events can be useful for debugging purposes—especially in a

production environment, where you want to avoid scaring your users with the

output of debugging code—event logging can also be of general interest. For

instance, log entries can reveal usage patterns for your application such as the

times at which maintenance jobs start and end, or the frequency with which

external services are accessed.

We'll use the Rails logging tool to implement an access log for our application: a

log of the pages requested by users who are logged in. While web server logs

allow for comprehensive analysis, they lack any details of the specific user

requesting the page; such information can come in handy, either to the marketing

department (for their mysterious purposes), or for when you're trying to diagnose

a problem reported by a particular user.

To implement the access log, we need to:

1. Create a call to the Rails internal logging system.

2. Place this call in an appropriate location in our application code so that it's

executed for every page. This location must allow the code to determine

whether or not a user is logged in.

We have a location that meets both of these requirements: the current_user

before filter, which lives in the ApplicationController class.

To document the page requests of our users, we use the Rails.logger object,

which is available at any point in a Rails application. Rails.logger is used to

write a new entry to the environment-specific log file. By default, we operate in

the development environment, so the Rails.logger object will write new entries

to the bottom of the log file log/development.log.

As with logging functionality in Java or other platforms, Rails logging can deal

with a variety of severity levels. When you log an entry, it's up to you to decide

Debugging, Testing, and Benchmarking 463

how severe is the event you're logging. The most common severity levels are

debug, info, warn, and error. It's really up to you how you use each level.

Each of the Rails environments has different default settings for the severity

levels written to the log file. In the production environment, which we'll cover in

depth in the final chapter, the default is the debug level.

Here's the current_user action in app/controllers/

application_controller.rb with an added Rails.logger statement:

def current_user

return unless session[:user_id]

@current_user = User.where(session[:user_id]).first

Rails.logger.info "#{@current_user.name} requested

➥ #{request.fullpath} on #{Time.now}"
end

As you can see in the Rails.logger call, we're using the info severity level to

log these statements in all environments, including production. Specifying the

severity level is simply a matter of calling the appropriately named instance

method of the logger object.

The string written to the log file is actually a composite of three Ruby statements.

First, we log the value of the name attribute for the current user:

Rails.logger.info "#{@current_user.name} requested

➥ #{request.fullpath} on #{Time.now}"

EXTRA CREDIT: Six Degrees of Severity

There are six severity levels: unknown, fatal, error, warn, info, and debug. We won't

dig too far into the logger, but you can use the Internet to learn more. This post by

Adam Hawkins is a great start.

464 Rails: Novice to Ninja

http://hawkins.io/2013/08/using-the-ruby-logger/
http://hawkins.io/2013/08/using-the-ruby-logger/

Then we add the URL that the user requested (without the host and port; you'll

see an example in a second), which is available from the request object that Rails

provides:

Rails.logger.info "#{@current_user.name} requested

➥ #{request.fullpath} on #{Time.now}"

Lastly, the current date and time are added to the string:

Rails.logger.info "#{@current_user.name} requested

➥ #{request.fullpath} on #{Time.now}"

With these details in place, every page in our application will make an entry to

the application log file. Here's a sample session, with all the clutter from the

development log removed:

Started GET "/stories" for 127.0.0.1 at 2016-05-05 13:10:16

➥ -0400
Processing by StoriesController#index as HTML

User Load (0.1ms) SELECT "users".* FROM "users" WHERE

➥ "users"."id" = ? ORDER BY "users"."id" ASC LIMIT ? [["id",
➥ 1], ["LIMIT", 1]]
Glenn Goodrich requested /stories on 2016-07-31 14:04:38

➥ -0400
Rendering stories/index.html.erb within layouts/application

The current_user method exits immediately if the current user hasn't logged in;

as a result, our log file displays only log entries from pages requested by users

who were logged in when they used Readit. Of course, you can customize log

output to your heart's content if this format fails to suit your needs. For example,

you could modify it to be more readable for humans, or more easily parsed by a

Ruby script.

Debugging, Testing, and Benchmarking 465

Overcoming Problems in Debugging

While we've added a considerable number of tests to our application code so far,

we certainly have yet to cover every aspect of the application.

Whenever you fix a problem during the development of your application, take a

moment to add a test to your test suite verifying that the problem has been

fixed—just as we did in the last section. Following this approach will ensure that

you never receive another bug report for the same problem.

Another approach is to write a test to verify the problem before you attempt to fix

it. This way, you can be sure that as long as your test fails, the problem still

exists. It's up to you to determine your own approach to the task of debugging,

but aim to not move on from any problem without having added a new test for it

to your test suite.

Testing Your Application Using Integration Tests

The test code that we've written so far for Readit has dealt mostly with the

isolated testing of controller actions and model functionality. To test scenarios

that involve multiple controllers and models, Rails also comes with a more

thorough testing feature called integration testing.

An integration test verifies the behavior of a number of controllers and models as

a user interacts with the application. Integration tests tell a story about a fictitious

user of our application: the user's login process, the links that person follows, and

the actions taken by that user. I briefly mentioned integration tests in Chapter 8.

As of Rails 5, all controller tests are integration tests by default.

Integration tests are aimed at testing behavior of a use case. In some cases, a use

case may be more than just one controller action (again, we did this for one of our

chapter eight tests). Consider these examples:

A visitor wants to submit a story, and tries to access the story submission

form. As he is yet to log in, he is redirected to the login form. Once logged in,

he's presented with the submission form and submits a story.

466 Rails: Novice to Ninja

A given user is the fifth user to vote for a particular story. She knows that the

threshold for stories to appear on the front page is five votes, so once she's

voted, she visits the front page to check that the story just voted for appears

there.

A user submits a new story with a number of tags. After sending in her

submission, she proceeds to the tag page for a particular tag used on her

submission, checking that the story does indeed appear in the list.

As you can see, integration tests can be quite specific and detailed; writing Ruby

test code to match the level of detail specified by the aforementioned scenarios is

perfectly achievable.

Let's write a slightly more involved integration test from scratch, shall we?

Creating an Integration Test

Returning to our rocking Readit application (meaning, stop using the

readit-debug-0x versions we've been playing with in this chapter), the first step

we'll take is to generate a new integration test. Then, we'll set up a test case to

implement the first of the scenarios that we just discussed: a user who is not

logged in tries to submit a story. This scenario will be translated into Ruby code.

Every integration test class is stored in the readit/test/integration/ directory.

Generate a new integration test called StoriesTest using the Rails generator. Can

you guess the syntax?

$ rails g integration_test stories

Running via Spring preloader in process 74846

invoke test_unit

create test/integration/stories_test.rb

As you can see, the generator created a file for our test at test/integration/

stories_test.rb. Let's create a test for our scenario:

require "test_helper"

Debugging, Testing, and Benchmarking 467

class StoriesTest < ActionController::IntegrationTest

test "story submission with login" do

get new_story_path

assert_response :redirect

follow_redirect!

assert_response :success

post session_path, params: {

email: 'glenn.goodrich@sitepoint.com', password: 'sekrit'

}

follow_redirect!

assert_response :success

post stories_path, params: {

story: {

name: 'Submission from Integration Test',

link: 'http://test.com/'

}

}

assert_response :redirect

follow_redirect!

assert_response :success

end

end

On the surface, this resembles a regular functional test: the test performs an

action, then asserts that the results of that action are as expected. In this case, the

first action is to request a page; the test then verifies that the response code and

the template used to render the page are as expected, then continues with the rest

of its actions.

However, instead of the get and post calls being based on specific controllers

and their respective actions, page requests in an integration test take standard

URLs (we use the path helpers that come with Rails routes). Why? Well, an

integration test such as this doesn't test a controller in complete isolation from its

environment. Instead, it views the application as a whole, so other elements of

the application–such as routing and the handover of control from one controller

to another–are tested as well. The first step of our test is to request the new Story

form by using the appropriate URL and testing the response:

468 Rails: Novice to Ninja

get new_story_path

assert_response :redirect

follow_redirect!

At this point, the test assumes that a redirect was issued after the last get call,

which we're asserting using assert_response. It also assumes that the URL to

which a user is redirected—the story submission page—is followed in the test.

This introduces another new tidbit in this test code: the follow_redirect!

statement.

Other than that, the test consists of plain old functional test code.

Running an Integration Test

Let's run this test to make sure it passes as expected. As with model and

controller tests, integration tests are run with a rails command:

$ rails test:integration

Integration tests are executed along with your unit and functional tests when

running the rails test command. Here's the outcome of our test:

$ rails test:integration

Running via Spring preloader in process 84542

Run options: --seed 59044

Running:

.

Finished in 0.395582s, 2.5279 runs/s, 20.2234 assertions/s.

1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

Debugging, Testing, and Benchmarking 469

As you can see from this basic example, an integration test gives you the

assurance that your application behaves independently of your functional and

unit tests, and that all of your application's components are put through their

paces in an automated manner.

Using Breakpoints in a Test

Just as we used byebug to jump into the running application at a predefined

point, we can also jump into the application from within a test. This technique

can be useful for determining why a test is failing, or for gaining insight into the

resources available when we're writing tests.

Using breakpoints in tests is equally as straightforward as using them in regular

development mode: place the byebug statement at the point at which you want

execution to halt. Just as it did in development, when you're using breakpoints in

tests, byebug presents you with the byebug console as soon as a byebug statement

is encountered.

Here's an example of a breakpoint in action. I added a breakpoint to the

integration test that we built in the previous section (stored in test/

integration/stories_test.rb):

class StoriesTest < ActionController::IntegrationTest

test "story submission with login"

get new_story_path

byebug

⋮ test method body…
end

end

Fixing the Gemfile

Don't forget the Gemfile platform: "mri" issue that we ran into earlier in this

chapter. Remember, that was in a different folder and so you may have to do it

again.

470 Rails: Novice to Ninja

Let's run our suite of integration tests using the command rails

test:integration. We're presented with the byebug console immediately after

the new session has been created—just after the test requests the submission form

for the first time. At this point, we're free to explore the environment; below are

examples of the characteristics of our code that can be revealed using the console.

First, let's look at the cookies that have been set for the user that the test is

impersonating:

(byebug) cookies

=> #<Rack::Test::CookieJar:0x007fb6b2cfa880

➥ @default_host="www.example.com",
➥ @cookies=[#<Rack::Test::Cookie:0x007fb6b1fdd210
➥ @default_host="www.example.com",
➥ @name_value_raw="_readit_session=TWtE...9ba",
➥ @name="_readit_session", @value="TWtE...9ba",
➥ @options={"path"=>"/", "HttpOnly"=>nil,
➥ "domain"=>"www.example.com"}>]>

At the point at which the debugger appears, the user has yet to log in, so no

user_id value has been stored in the user's session:

(byebug) session[:user_id]

=> nil

We can log in with the same statement used by our test a few lines down; the

return value shown here is the numeric HTTP response code for a redirect (which

happens to be 302). Enter this all on one line:

(byebug) post session_path, params: { email:

➥ 'glenn.goodrich@sitepoint.com', password: 'sekrit' }
=> 302

The user's session now contains a user_id value, as this code and Figure 11-13

show:

Debugging, Testing, and Benchmarking 471

irb> session[:user_id]

=> 885306178

11-13. A breakpoint used in a test

Once again, byebug can be a great time saver if you need to explore the

environment surrounding an action in order to write better and more

comprehensive tests. Without using breakpoints, exploring the environment

would only be possible in a limited fashion; for example, by placing lots of puts

statements in your tests to output debugging messages and rerunning them

countless times for the information you need. Yes, it is every bit as laborious as it

sounds.

With the breakpoints provided by byebug, however, you can interact with your

models as your application is being run without modifying huge chunks of code.

This process couldn't be easier, which means the barriers to writing tests are

reduced even further.

472 Rails: Novice to Ninja

Revisiting the Rails Console

We've used the rails console command frequently in previous chapters, mainly

to explore features as they were being introduced.

The console can also be used to play with your application in headless mode.

"Headless", in this context, means you can interact with your application from the

console just as a browser would interact with it. Using headless mode, you can

issue requests like a browser and see the response, including status codes (200,

404,and so on) and the rendered view. In conjunction with breakpoints in tests

(covered in the last section), this technique can be a good way to explore your

application, in the anticipation of creating a new integration test once you've

worked out what you want to do.

When the integration test was introduced to Rails, it came with a new object

available by default in the console: the app object. This object can be thought of

as providing you with access to an empty integration test. You're able to GET and

POSTto URLs, and you have access to the session and cookies containers, routing

helpers, and so on—just like a regular integration test.

Let's try using the app object from the console. You should recognize a lot of the

methods we're using here from the integration test that we built earlier in this

chapter.

Go ahead and open the Rails console (rails c). Initially, we're interested to know

what kind of object app really is:

>> app.class

=> ActionDispatch::Integration::Session

Next, let's fetch the front page of our application using the get action:

>> app.get '/'

...Lots of output...

=> 200

Debugging, Testing, and Benchmarking 473

The return value is the HTTP response code that indicates a successful page

request. We've been using the :success symbol in its place in most of our tests

until now.

Now we'll check to see what the current controller is:

>> app.controller

=> StoriesController

Cool! That's what we'd expect. So can we dig around and see if the controller

assigned our stories to the view? We can! Granted, I had to dig around to find the

right method, but here it is:

>> app.controller.view_assigns["stories"].size

=> 2

If we try to fetch the story submission form, we receive a redirect (HTTP code

302), as we're yet to be logged in:

>> app.get '/stories/new'

=> 302

When we receive the redirect, we can look at the URL that the redirect is pointing

to by using the following construct:

>> app.response.redirect_url

=> "http://www.example.com/session/new"

It's easy to follow the redirect that was just issued using the follow_redirect!

method:

474 Rails: Novice to Ninja

>> app.follow_redirect!

=> 200

We can also use the post method to log in with an email and password, and

follow the resulting redirect; however, Rails imposes security-related restrictions

on who can talk to your application, even in the development environment. For

that reason, we need to explicitly switch off a feature called “request forgery

protection,” in order to allow the following statement to succeed:1

>> ApplicationController.allow_forgery_protection =

➥ false
=> false

Now it's time to log ourselves in:

>> app.post '/session', params: { email:

➥ 'glenn.goodrich@sitepoint.com',
➥ password: => 'sekrit'}
=> 302

>> app.follow_redirect!

=> 200

Note that we didn't look at the app.response.redirect_url before we accepted

the redirection. Here's how you can check the last URL you requested:

>> app.request.original_fullpath

=> "/stories/new"

As it's an integration test, after all, headless mode also provides you with access

to the session and cookies variables:

1. See https://en.wikipedia.org/wiki/Cross-site_request_forgery for more information about

this security issue.

Debugging, Testing, and Benchmarking 475

>> app.cookies

=> #<Rack::Test::CookieJar:0x007ff5680f2548

➥ @default_host="www.example.com",
➥ @cookies=[#<Rack::Test::Cookie:0x007ff56187fb50
➥ @default_host="www.example.com",
➥ @name_value_raw="_readit_session=WmJIV...707",
➥ @name="_readit_session", @value="WmJIV...707",
➥ @options={"path"=>"/", "HttpOnly"=>nil,
➥ "domain"=>"www.example.com"}>,
➥ #<Rack::Test::Cookie:0x007ff56183d020
➥ @default_host="www.example.com",
➥ @name_value_raw="request_method=", @name="request_method",
➥ @value="", @options={"path"=>"/", "max-age"=>"0",
➥ "expires"=>"Thu, 01 Jan 1970 00:00:00 -0000",
➥ "domain"=>"www.example.com"}>]>
>> app.session[:user_id]

=> 1

As you can see, headless mode is a great tool for checking out the possible ways

in which you might develop an integration test. Once you're satisfied with your

findings, open up your text editor and transform your console results into an

automated test. Easy!

A Brief Introduction to Pry

The debugging and introspection tools that come "out of the box" with Rails are

great. I remember when I was first using Rails and realized I could open up the

Rails console and execute my application code–it was a game changer. The Rails

console is incredible, and I can't imagine writing an application without it;

however, there is always room for improvement. Enter Pry.

Pry is "a powerful alternative to the standard IRB shell". It takes introspection to

the next level, and then keeps going. When using Pry, you can:

change the current context as if you are changing a directory at a command

prompt

search your command history

476 Rails: Novice to Ninja

http://pryrepl.org/

edit Ruby files in place, and have those changes loaded automatically

list the methods and constants for a given object or class very easily

That's just the very beginning of what Pry can do. Furthermore, it has a robust

plugin architecture resulting in numerous plugins that make Pry even better. One

of those plugins, pry-rails, replaces the current Rails console with a Pry REPL.

Let's add pry-rails to Readit and play around with some of the basic features of

Pry. Add gem 'pry-rails' to the block in the Gemfile that also contains byebug:

group :development, :test do

gem 'byebug'

gem 'pry-rails'

end

Run bundle install to add pry-rails to the bundle. That's it–now we're cooking

with Pry.

The pry-rails gem replaces the Rails console with a Pry console. If you fire up a

Rails console using rails c, you'll see a new prompt:

$ rails c

[1] pry(main)>

All of the commands that work in the standard Rails console still work in Pry.

But now we have even more awesome toys! Grab the first story, and we'll use

some of Pry's tools to navigate around and through the object:

[1] pry(main)> s = Story.first

=> #<Story:0x007fd72a3df6e0

id: 2,

Nerd Words

REPL stands for read–eval–print loop, which is the nerd name for items such as irb,

the Rails console, and Pry.

Debugging, Testing, and Benchmarking 477

name: "SitePoint Forums",

link: "http://community.sitepoint.com",

created_at: Sun, 13 Mar 2016 14:47:48 UTC +00:00,

updated_at: Wed, 27 Apr 2016 16:48:55 UTC +00:00,

user_id: 1,

votes_count: 8,

description: nil>

Right off the bat, we see Pry making life a bit better. Our story is formatted much

more cleanly than in the Rails console and it includes some nice color-formatted

text. Let's change the current scope to that story:

[2] pry(main)> cd s

[3] pry(#<Story>):1>

So what just happened? Well, the prompt changed to indicate that our current

scope is a Story object. The cd command went into the story. I can prove it by

typing the name of a Story attribute:

[3] pry(#<Story>):1> link

=> "http://community.sitepoint.com"

See, I didn't have to type s.link, just link. That's because the current scope is s,

the variable holding our story. Watch this:

[4] pry(#<Story>):1> ls

ActiveRecord::Core#methods:

<=> == connection_handler encode_with eql? freeze

➥ frozen? hash init_with inspect pretty_print readonly!
➥ readonly? slice

ActiveRecord::Persistence#methods:

becomes decrement delete destroyed? increment!

➥ persisted? toggle! update! update_attributes
➥ update_column

478 Rails: Novice to Ninja

becomes! decrement! destroy! increment new_record?

➥ toggle update update_attribute update_attributes!
➥ update_columns
ActiveRecord::Scoping#methods: initialize_internals_callback

➥ populate_with_current_scope_attributes
ActiveRecord::Sanitization#methods: quoted_id

ActiveRecord::AttributeAssignment#methods: assign_attributes

➥ attributes=
ActiveModel::Conversion#methods: to_model to_partial_path

ActiveRecord::Integration#methods: cache_key

ActiveModel::Validations#methods: errors invalid?

➥ read_attribute_for_validation validates_with
ActiveSupport::Callbacks#methods: run_callbacks

ActiveModel::Validations::HelperMethods#methods:

validates_absence_of validates_confirmation_of

➥ validates_format_of validates_length_of
➥ validates_presence_of
validates_acceptance_of validates_exclusion_of

➥ validates_inclusion_of validates_numericality_of
➥ validates_size_of

...

Whoa! That was a ton of stuff for such a little command. As you may have

guessed, ls lists the methods and variables for the current scope that is our story.

I bet you had no idea that our little story had so many methods. Obviously, most

of these methods are inherited from ActiveRecord. The ls command takes flags

to help pare down the output. For example, if you just want the instance and

class variables for the current object, use ls -i:

[5] pry(#<Story>):1> ls -i

instance variables:

@_start_transaction_state @association_cache @destroyed

➥ @marked_for_destruction @readonly
➥ @txn
@aggregation_cache @attributes

➥ @destroyed_by_association @new_record
➥ @transaction_state

Debugging, Testing, and Benchmarking 479

class variables:

@@configurations @@logger

➥ @@raise_in_transactional_callbacks @@timestamped_migrations
@@default_timezone @@maintain_test_schema

➥ @@schema_format
@@dump_schema_after_migration @@primary_key_prefix_type

➥ @@time_zone_aware_attributes

If you want to learn about an object and its methods and variables, using Pry in

this way is invaluable. We can even see the source of the methods. Remember

how we changed the to_param method to make our URLs more friendlier? Type

show-method to_param to see exactly what we did:

[6] pry(#<Story>):1> show-method to_param

From:

➥ /Users/ggoodrich/projects/sitepoint/readit/app/models/story.rb
➥ @ line 13:
Owner: Story

Visibility: public

Number of lines: 3

def to_param

"#{id}-#{name.gsub(/\W/, '-').downcase}"

end

To return to the main context, simply type cd ... If you've ever used a command

prompt, cd should make perfect sense to you.

I could spend all day going through the features of Pry but, alas, we must move

on. I will show you one more trick. You can easily access the ri documentation

from Pry:

[6] pry(main):1> ri Array

Array < Object

480 Rails: Novice to Ninja

➥ -----------------Includes:
Enumerable (from ruby site)

(from ruby site)

➥ ----------------- Arrays are ordered, integer-indexed
collections of any

➥ object.
...

If you've loaded the ri documentation, it's super easy to read it from Pry.

That's some of what Pry offers, but there's so much more. You know what that

means ...

If you want to go back to the standard Rails console (but I'd have to ask: why

would you?), simply remove pry-rails from the Gemfile and run bundle

install.

Benchmarking Your Application

As software developers, it's our job to know which part of our application is

doing what. That way, when an error arises, we can jump right in and fix it. On

the other hand, knowing how long each part of our application is taking to

perform its job is a completely different scenario.

Benchmarking in software terms is the process of measuring an application's

performance, and taking steps to improve it based on that initial measurement.

The benchmarking process usually involves profiling the

application—monitoring it to determine where bottlenecks are occurring—before

any changes are made to improve the application's performance.

Exploring Pry

There are some great screencasts on the Pry website, as well as articles on using Pry

with Ruby and Pry with Rails at SitePoint. Check them out, and you'll be very glad

you did.

Debugging, Testing, and Benchmarking 481

http://pryrepl.org
http://www.sitepoint.com/rubyists-time-pry-irb/
http://www.sitepoint.com/rubyists-time-pry-irb/
http://www.sitepoint.com/pry-friends-rails/

While I won't cover the profiling and benchmarking of a Rails application in

every gory detail (it's a topic to which an entire book could easily be devoted), I'll

give you an introduction to the tools that are available for the job. Keep in mind

that your first Rails application is unlikely to have performance problems in its

early stages. The objective with your first application (or at least the first version

of your application) should be to get the functionality right the first time; then

you can worry about making it fast.

Taking Benchmarks from Log Files

When it's running in development and testing modes, Rails provides a variety of

benchmarking information in its log files, as we saw briefly in Chapter 6. For each

request that's served by the application, Rails notes all of the templates rendered,

database queries performed, and total time taken to serve the request.

Let's examine a sample request to understand what each of the log entries mean.

This example deals with a request for the Readit home page:

Started GET "/stories" for 127.0.0.1 at 2016-05-06 08:11:11

➥ -0400
Processing by StoriesController#index as HTML

These lines represent the start of the block of logging for a single page request. It

includes the:

names of the controller and action

IP address of the client requesting the page (127.0.0.1 being the equivalent of

localhost)

time of the request

request method used (GET in this case)

format requested (HTML)

The next entries in our sample log file correspond to database queries issued by

the application. Each entry lists the time (in seconds) that the application took to

execute the query, as well as the SQL used. Here's a snippet

482 Rails: Novice to Ninja

User Load (0.3ms) SELECT "users".* FROM "users" WHERE (1)

➥ ORDER BY "users"."id" ASC LIMIT 1
(0.3ms) SELECT COUNT(*) FROM "stories" WHERE (votes_count

➥ >= 5)
Story Load (0.1ms) SELECT "stories".* FROM "stories" WHERE

➥ (votes_count >= 5) ORDER BY id ASC
User Load (0.2ms) SELECT "users".* FROM "users" WHERE

➥ "users"."id" = ? LIMIT 1 [["id", 1]]
ActsAsTaggableOn::Tag Load (1.2ms) SELECT "tags".* FROM

➥ "tags" INNER JOIN "taggings" ON "tags"."id" =
➥ "taggings"."tag_id" WHERE "taggings"."taggable_id" = ? AND
➥ "taggings"."taggable_type" = ? AND (taggings.context = 'tags'
➥ AND taggings.tagger_id IS NULL) [["taggable_id", 2],
➥ ["taggable_type", "Story"]]
CACHE (0.0ms) SELECT "users".* FROM "users" WHERE

➥ "users"."id" = ? LIMIT 1 [["id", 1]]
ActsAsTaggableOn::Tag Load (0.1ms) SELECT "tags".* FROM

➥ "tags" INNER JOIN "taggings" ON "tags"."id" =
➥ "taggings"."tag_id" WHERE "taggings"."taggable_id" = ? AND
➥ "taggings"."taggable_type" = ? AND (taggings.context = 'tags'
➥ AND taggings.tagger_id IS NULL) [["taggable_id", 3],
➥ ["taggable_type", "Story"]]

In the first of these log entries, Rails has asked the database for stories (and their

users) to display on the front page. The last few queries represent requests made

by the acts_as_taggable_on plugin to retrieve all tags for a particular story.

Each of the following lines correspond to a rendered template; when Rails

renders a layout template, it explicitly says so by logging within:

Rendered stories/_story.html.erb (52.8ms)

Rendered stories/index.html.erb within layouts/application

➥ (63.4ms)

A summary entry appears at the end of each page request:

Debugging, Testing, and Benchmarking 483

Completed 200 OK in 325ms (Views: 278.9ms | ActiveRecord:

➥ 3.1ms)

This summary contains totals for the time spent by each of the areas of the

application responsible for serving the request. Rails tells us the amount of time

that was spent rendering templates and talking to the database (both listed in

milliseconds).

You don't need to be a mathematician to figure out that a whopping 43

milliseconds is missing from these numbers. One reason for this difference is that

serving the request took only a couple of milliseconds. These numbers come from

my version of Readit, which is quite a small application, and the benchmark

calculation struggles when calculating time information using such small

numbers. In the meantime, Figure 11-14 shows the log file from a complete page

request.

For all the comfort and speed that Rails provides developers, it does have its

drawbacks. The framework certainly requires a large amount of CPU time in order

to make your life easy, which is another explanation for the missing milliseconds

in the previous timing calculation; however, the good news is that your

framework's overhead won't necessarily increase as your code becomes more

complicated. With larger applications, these numbers do become more accurate.

484 Rails: Novice to Ninja

11-14. Benchmarking information in the log file

In any case, it's important to look at your log files every now and then to assess

how your application is performing. As I cautioned, take these numbers with a

grain of salt—learn to interpret them by changing your code and comparing the

new numbers with previous incarnations of the code. This will help you develop

a feel for how your changes affect the speed of your application. You should not,

however, use them as absolute measures.

Debugging, Testing, and Benchmarking 485

Manual Benchmarking

While the default information presented by the Rails log files is great for an

overview of how long a certain action takes, the log files cannot provide timing

information for a specific group of code statements. For this purpose, Ruby

provides the Benchmark module, which can be wrapped around any block of code

that you'd like to benchmark.

As an example, let's add benchmarking information for the story fetcher

implemented in the fetch_stories method of our StoriesController class. It's

located in app/controllers/stories_controller.rb:

class StoriesController < ApplicationController

⋮ class methods…
def fetch_stories(conditions)

results = Benchmark.measure do

@stories = Story.where(conditions).order("id ASC")

end

Rails.logger.info results

end

end

As you can see, the Benchmark class includes a class method called measure that

simply wraps around the Story.where statement:

results = Benchmark.measure do

⋮ code being benchmarked…
end

The result of the measure method is saved in a results variable that we then

write to the log file:

Rails.logger.info results

486 Rails: Novice to Ninja

When you request Readit's front page or upcoming stories queue now (both pages

make use of the fetch_stories method we just modified), you should find that

the corresponding benchmark entries are added to the log file at log/

development.log:

Started GET "/stories" for 127.0.0.1 at 2016-05-06 08:39:05

➥ -0400
Processing by StoriesController#index as HTML

User Load (0.1ms) SELECT "users".* FROM "users" WHERE (1)

➥ ORDER BY "users"."id" ASC LIMIT 1
0.010000 0.000000 0.010000 (0.005202)

...

Using manual benchmarks in this way gives you an idea of the amount of time

required to execute certain parts of your code. Additionally, Benchmark has

several methods for measuring blocks of code, which leads to ...

Summary

In this chapter, we've dealt with some of the less glamorous—but very

helpful—aspects of software development. We used debug statements to inspect

certain objects in our views, created a web console on the page to execute Ruby

commands in the application, utilized the log files written by Rails to document

certain occurrences in Readit, and looked at how the byebug tool can be

employed to set breakpoints and explore our application at runtime.

We also covered the topic of integration tests—broad scenario-based tests that

have the ability to go beyond the isolated testing of models and controllers.

Finally, we talked briefly about the benchmarks that Rails provides by default,

and explored a manual approach to benchmarking a specific group of statements.

EXTRA CREDIT: Master the Art of Benchmarking

Take a look at the Benchmark module in the Ruby documentation. Use one of its

other methods to measure code in Readit. Become a benchmarking wizard.

Debugging, Testing, and Benchmarking 487

http://ruby-doc.org/stdlib-2.2.0/libdoc/benchmark/rdoc/Benchmark.html

In the next and final chapter, we'll take Readit into production mode and discuss

the options available for deploying a Rails application for the whole world to use!

488 Rails: Novice to Ninja

12Chapter

Deployment and Production Use

When Rails applications start to fledge, as their guardian you have to take extra

care to make sure they can fly. Admittedly, though, the term “roll” would be more

appropriate in the Rails context!

In this final chapter, we'll review the variety of components involved in the

process of deploying a Rails application to a production system. Following that,

we'll look at fine-tuning an application's deployment so that it's able to cope with

a moderate amount of traffic.

The Implications of “Production”

Back in Chapter 4, we discussed the different environments Rails provides for

each stage of an application's life cycle. Yet we barely scratched the surface of

Deployment and Production Use 489

what it means to flip the switch between the development and production

environments.

In a nutshell, moving to the production environment results in four major

changes to the way in which our application is run:

The Ruby classes that make up your application are no longer reloaded on

each request. This means that Ruby's reloading of each class on each request

is a nice feature of the development environment because it allows you to

make rapid changes to your application code and see the effects immediately;

however, when your application's in production mode, the primary

requirement is that it is fast, which is impossible to accomplish when

reloading Ruby classes over and over again. To gain the effects of any changes

you make to code while the application's in production mode, you need to

restart the application.

Your application's users receive short, helpful error messages; they're not

presented with the stack trace. Obviously, the beautifully detailed stack trace

that you investigate when you find an error in your code is not what you want

users of your application to see. Fear not! Rails never throws stack traces at

users while it's in production mode. Instead, you can use the Exception

Notification gem to dispatch an email to the system's administrators, notifying

them of a potential problem in the code. The email includes the same detailed

stack trace you'd see in your browser if you were still in development. In fact,

the Exception Notification gem has many notifiers, including HipChat, Slack,

and Webhooks in addition to email. With the error notification dealt with, you

can simply use a generic error page within your application informing users

that an error has occurred and the administrators have been notified.

Caching is available for pages, actions, and page fragments. To improve the

performance of your application, you can cache its pages, actions, and even

fragments of pages. This means that the fully rendered page (or fragment) is

written to the file system, as well as being displayed in the user's browser. The

next request that's responded to by this page, action, or fragment is served

EXTRA CREDIT: Utilizing External Gems

Using the procedure to pull in an external gem–as we did in Chapter 10–add the

Exception Notification gem to Readit and configure it for your needs

490 Rails: Novice to Ninja

https://github.com/smartinez87/exception_notification

without the data that it contains needing to be recalculated. Rails' caching

features are especially useful in situations in which your pages have no user-

specific content, and everyone sees the same pages.

Rails expects your static assets to be "precompiled". Rails expects you to be

smart about your static assets (JavaScript, CSS files, and so on) and compile

them into single files per resource type. For example, all of the JavaScript files

referenced in the app/assets/javascripts/application.js manifest file

should be available as a single file in production. Otherwise, the browser will

make a call per file, which is expensive. It's the same for the CSS files and

applicaion.css. Additionally, Rails wants you to digest the single JavaScript

and CSS files, which makes them much more cachable. We'll cover more on

this process later in the chapter, but remember it's all about performance and

best practices.

In the following sections, we'll talk about the server software components that are

well-suited for production use, and look at what we can do to make Readit happy

and healthy in a production environment.

Choosing a Production Environment

In simple terms, a production deployment of Rails (or any server-side framework

or language) boils down to two major components: the web server and the

application server. Web servers have always been very good at delivering static

content, such as HTML pages, images, JavaScript and CSS files, and so on;

however, they are ill-equipped to handle dynamic content, such as that generated

by a Rails application. As such, we also need an application server that can

accept requests, forward them to our Rails application, and return a response that

web servers and browsers will understand.

To put it differently, you want these items to do what they're good at: a web

server to serve static files and an application server to talk to Rails. The web

server will be on the front lines of our production application, which means it

will forward any request for non-static content to the application server. The

following figure displays this procedure.

Deployment and Production Use 491

12-1. The Production Environment

For years, setting up a production environment was a difficult, frustrating task.

Quite often, developers would have to turn to an army of system administrators

for help. But as the software that powers a production website became

standardized and the environments more reproducible, smart people

commoditized the offering. You've heard of the term "Software-as-a-Service"

(SaaS), no doubt. The Internet is rife with companies offering various packaged

services and, luckily for us, a production environment for Rails applications is

one of them. These offerings use terms such as "Platform-as-a-Service" (PaaS) or

"Infrastructure-as-a-Service" (IaaS), riding the SaaS wave and making our lives

much easier.

So, while it's important for you as a Rails developer to understand the high-level

components involved in serving a Rails application, we'll be opting for the easy

road. I'll explain the major components that are used, but we'll use a SaaS

offering to deploy the site.

With that said, let's look at two web server software packages that are available to

use with Rails applications under the terms of various free software licenses.

Several commercial web servers that support Rails applications are also available,

but for the sake of simplicity and relevance, we'll only look at open-source

options.

Web Servers

492 Rails: Novice to Ninja

Apache

With more than 30% market share, the free Apache web server written and

maintained by the Apache Software Foundation is certainly the de facto standard

on the web server software market. Apache is a good all-purpose cross-platform

web server. It's used by many web hosting providers.

Apache has many strengths, one of which is the huge number of extensions that

are available to expand its feature set. It also has a robust interface for back-end

services, a useful URL rewriter, and extensive logging capabilities. It's available as

free software under the Apache license.

Nginx

Another player in this market is nginx (pronounced “engine x”), a high-

performance HTTP and proxy server that was originally developed by Igor Sysoev

to power several high-traffic sites in Russia.

Many performance evaluations have revealed that nginx is the leader of the pack

in terms of raw speed, with Apache scoring second. Apart from outstanding

performance, nginx also offers excellent proxy and caching capabilities, SSL

support, and flexible configuration options. Nginx is available under the BSD

license.

Application Servers

We've briefly covered web servers, so it's time to move on to the next player in

our production game: application servers. As mentioned, application servers take

in requests and transform them into something Rails can handle. Rails ships with

an application server called Puma, by default. You may have noticed it whenever

you fire up Readit with rails s; for example:

$ rails s

> Booting Puma

=> Rails 5.0.0 application starting in development on

➥ http://localhost:3000

Deployment and Production Use 493

http://httpd.apache.org/
http://www.apache.org/licenses/
http://nginx.net/

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 3.4.0 (ruby 2.3.0-p0), codename: Owl Bowl Brawl

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://localhost:3000

Use Ctrl-C to stop

Puma starts up Readit on port 3000, and we're in business. Obviously, Puma is

capable of taking a standard HTTP request and providing it to our Rails

application, since we haven't used a web server in development. In fact, most

Rails developers feel there's no need to use a classic web server in development,

as Puma (or another app server) is good enough. To drive this point home, all the

application servers we'll discuss in this book are also web servers.

As you might imagine, there are many application server options out there today,

each with their own strengths and weaknesses. Because Rails is awesome, it's

very easy to switch between them. Puma is a perfectly reasonable–if not

preferred–option for a production application server, so we'll use it; however,

before we do that, let's talk about why we can switch app servers so easily.

Rack

The need to easily switch out application servers for Rails applications has been

around as long as Rails itself. In the days of yore, switching to a new application

server could be tedious and only for the technically experienced. As a result, a

gentleman named Christian Neukirchen decided to make a universal handler for

connecting web servers to web frameworks (such as Rails) and called it Rack.

Rack is now the standard way that web frameworks expose themselves to web

servers in Ruby.

By complying with the Rack interface, web/application servers can now presume

they are communicating with a Rack-based application. Rails is Rack-based, as

are most of the other Ruby-based web frameworks. Thanks to Rack, developers

can write application servers galore without worrying if it will work with Rails.

The Ruby community is incredible.

494 Rails: Novice to Ninja

http://rack.github.io/

So, Puma talks to Rack and Rails is a Rack-compliant web framework. This means

that all the application servers we discuss also talk to Rack. But Rack integration

is just one part of what application servers do. Each application server takes a

different approach to how it handles web requests. Let's talk about a couple of

pieces of terminology that will help you understand the how of each application

server before we discuss the servers themselves.

Terminology

Concurrency

When you start to read about web application servers, you'll see a lot about

concurrency. Concurrency is the ability to manage many tasks simultaneously.

Think of cooking a big meal. If you had the chicken, the rice and the green beans

all going on the stove, you are cooking them concurrently, even if you aren't

actively interacting with each all the time. Concurrency, as you can surmise, is a

boon for a web server. Handling multiple requests allows a web server to be more

performant, and better performance is what we want of our applications.

Threads

If you've been around computing for a bit, you're bound to know (at least, at a

high level) what threads are. A thread is an execution context with a set of

instructions. In other words, when you ask Ruby to perform a task, those

EXTRA CREDIT: Racking Up Your Know-how

It is very much worth your while to read up on Rack. As well as being everywhere

in the Ruby web landscape, its design is dead simple. You can learn a lot about

HTTP by looking at how Rack works.

Note: Concurrency ≠ Parallelism

void confusing concurrency with parallelism. Parallelism is doing multiple tasks at

exactly the same time. In the meal analogy, it means there's another chef making a

salad while you cook the rest of the meal. It's a subtle but important difference.

Deployment and Production Use 495

instructions are executed on a thread. A process can own multiple threads, which

affects concurrency and parallelism.

If an application server is multi-threaded, it spawns a thread for each request (or

has a pool of threads from which it draws.) Threads are very light, so a single

instance of the Rails application can handle many requests.

When you start dealing with threads, it can become complicated. There are

fearsome-sounding terms such as deadlocks and race conditions, which mean

your application is either frozen, or has corrupted the data. When an application

is thread-safe, it can work in a multi-threaded environment without any of those

haunting side effects. Unfortunately, since Ruby has never had real threading,

many Ruby gems fall short of being thread-safe, which means running a Rails app

in a truly multi-threaded environment can be challenging.

Threading in Ruby is a massive topic and well beyond the scope of this book.

MRI, which stands for Matz's Ruby Interpreter–Ruby's default interpreter, has a

global interpreter lock (GIL) that ensures only one thread is executing at any

given moment. Ruby switches between threads as needed, but only one is being

executed. This avoids a lot of the issues with multi-threading, but has its

limitations when it comes to scalability. Again, this is a big topic, so I'm going to

suggest you do some ...

Multi-process

Concurrent programming and threading are hard. Really hard. In fact, the first

rule of concurrent programming is "Don't." If that's the case, what is another

option? Well, one is to run multiple processes, each with its own copy of the

application. Web servers that run in this manner are called multi-process, and

they run an instance of the Rails application in each process they spawn. As you

EXTRA CREDIT: Avoid Losing the Thread

While MRI Ruby has the GIL, there are Ruby interpreters with "true" threads, such

as JRuby and Rubinius. Needless to say, there's a lot to know about threads. Jesse

Storimer has written a wonderful book on it called Working with Ruby Threads,

which I can't recommend highly enough.

496 Rails: Novice to Ninja

http://www.jstorimer.com/products/working-with-ruby-threads

can imagine, this requires a much larger footprint than a multi-threaded server,

but it avoids the issues of concurrent programming.

Evented Programming

Yet another way to approach concurrency is with evented programming. In

evented programming, the server fires an event for each request, supplying a

callback function to the event that will be executed when the request completes.

This is how Node.js works. The main process can then handle other requests

while the events are doing work. If your mom told you to go to the store to get

eggs, and to call her when you are back home, she has fired off a "GET EGGS"

event and the phone call is the callback function. This, in essence, is how

evented programming works.

Application Servers for Rails

Now that you have a basic idea of some of the terminology, let's cover one

application server per concurrency approach.

Puma

Puma is "A Modern, Concurrent Web Server for Ruby." It is classified as multi-

threaded, which means Puma uses a pool of threads to handle web requests.

Puma supports true concurrency due to the way it uses threads. This translates as

Puma having a small footprint but still being able to handle a true multi-threaded

environment. In essence, Puma has the potential to be the most efficient server of

the bunch, especially if you employ a Ruby interpreter that uses real threads,

such as JRuby.

Puma can also be run as a multi-process server, so you don't have to have a

thread-safe Rails app to use it. Even in its multi-process form, Puma is still the

favorite of many a Rails developer.

Thin

Thin is an evented web server, meaning that it fires events for HTTP requests that

are handled by a pool of application instances. The main process then handles

Deployment and Production Use 497

http://puma.io/
http://code.macournoyer.com/thin/

the callbacks from the applications and responds to the client. It does this with

the "event loop", which accepts requests, fires events, and responds to callbacks.

In actuality, thin can handle requests in chunks, enabling efficient handling of

streaming requests.

Because of its evented nature, thi excels at handling slow clients and large file

uploads without blocking the Rails app. When a user wants to upload a 1080i HD

cat video, thin will hand that request off to a worker and return to accept more

requests in the meantime.

Unicorn

Unicorn is a multi-process server, so thread safety is not an issue. Unicorn has a

master process that monitors "workers", which are essentially instances of your

Rails application. Unicorn is designed to handle "fast clients" on high bandwidth

connections and it will only work on operating systems that support fork()

(which excludes Windows, sorry.)

Unicorn was once the belle of the application server ball, but the Internet is not

always full of high-bandwidth fast clients. Still, if your use case matches

Unicorn's strengths, it's a great piece of software.

Proxying Requests

In the vanilla production environment that consists of a web server and an

application server, requests must be proxied from the former to the latter. This is

often accomplished in the web server configuration files. Each web server,

obviously, has a different way to configure itself as a proxy server. What's

important to understand is that the proxying must happen, and it's usually a

simple configuration step.

We'll be skipping that configuration in this book, as we're going to leverage a SaaS

provider for our production needs instead. If you are curious about how, for

example, Nginx is configured to proxy requests, then you have some more ...

EXTRA CREDIT.

498 Rails: Novice to Ninja

http://unicorn.bogomips.org/

Software as a Service

As has been mentioned, the creation of a production environment has evolved to

the point that companies can offer it as a service. As a result, we can use the tools

offered by these companies to easily get Readit on the Internet.

Furthermore, these companies package the production environments with other

bells and whistles, such as add-ons for various databases, analytics services, and

more. Obviously, there is a cost associated with these services; however, there is

also a free plan that allows you to get started without burning a hole in your

wallet.

Let's take a look at one of the most popular IaaS services on the Internet: Heroku.

Heroku

Heroku is an Infrastructure-as-a-Service offering that enables developers to create

sophisticated deployments for their applications. Apps are deployed using Git,

which we discussed in Chapter 2. Revisiting the Git basics we discussed then,

when you install Heroku's tools and use them to create a Heroku application for

Readit, a Git remote called "heroku" is created. Pushing code to this remote will

deploy the application. Here, let me show you ...

Sign Up for a Heroku Account

Visit Heroku's sign-up page and create a free account. You can choose "Ruby" as

your primary language.

Once you've confirmed your account, sign in to Heroku.

Install the Heroku Toolbelt

In order to deploy to Heroku, we need the Heroku toolbelt. Visit the download

page and install the Heroku tools, which is a simple download and executable.

Once installed, you should have a heroku command available on the command

line:

Deployment and Production Use 499

https://www.heroku.com/
https://signup.heroku.com/?c=70130000001x9jFAAQ
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/

$ heroku --version

heroku-toolbelt/3.43.2 (x86_64-darwin10.8.0) ruby/1.9.3

heroku-cli/5.1.7-0de2607 (darwin-amd64) go1.6.2

Log in to Heroku using the heroku login command:

$ heroku login

Enter your Heroku credentials.

Email: glenn.goodrich@sitepoint.com

Password (typing will be hidden):

Logged in as glenn.goodrich@sitepoint.com

Awesome.

Prepare Readit for Heroku

We have to make some small changes to our application so that it can be

deployed to Heroku. Heroku requires us to use some gems and change the

database we use in production. Heroku does not support SQLite and requires that

we use PostgreSQL, a very popular open-source database.

Open up the Gemfile in our Readit application and add the following:

12-2. Gemfile (excerpt)(excerpt)

... rest of gems ...

gem 'rails_12factor'

group :production do

gem 'pg'

end

We also need to move our gem "sqlite3" line into the group :test,

:development block:

500 Rails: Novice to Ninja

http://www.postgresql.org/

12-3. Gemfile (excerpt)(excerpt)

group :development, :test do

gem 'byebug'

gem 'pry-rails'

gem 'sqlite3'

end

The database configuration for production has to reflect our need to use

PostgreSQL. Open up config/database.yml and change the production key to:

12-4. config/database.yml (excerpt)(excerpt)

production:

adapter: postgresql

database: readit_production

encoding: unicode

Finally, we add all of our changes to our local Git repository:

$ git add .

$ git commit -m "Changes for Heroku"

[chapter12 469d64f] Changes for Heroku

3 files changed, 17 insertions(+), 6 deletions(-)

Okay, now we're ready to create our application on Heroku.

Create and Deploy the Heroku Application

Using the Heroku tools, create an application on Heroku:

$ heroku create

Creating app... done, safe-temple-15085

https://safe-temple-15085.herokuapp.com/ |

➥ https://git.heroku.com/safe-temple-15085.git

Deployment and Production Use 501

Here, Heroku just created an application called "safe-temple-15085" on the

Heroku platform for my Readit application. You can see that Heroku tells me

where the app will live on the Internet

(https://safe-temple-15085.herokuapp.com/), as well as the address of the Git

remote on Heroku (https://git.heroku.com/safe-temple-15085.git).

And now, the moment of truth. Let's push Readit to Heroku:

$ git push heroku master

Total 0 (delta 0), reused 0 (delta 0)

remote: Compressing source files... done.

... lots of output ...

remote: -----> Launching...

remote: Released v5

remote: https://safe-temple-15085.herokuapp.com/

➥ deployed to Heroku
remote:

remote: Verifying deploy.... done.

To https://git.heroku.com/safe-temple-15085.git

Boom! Readit is now on the Internet. If you look through all the output, you can

see that Heroku installed our bundle, ran the assets precompile task, and

launched our site; however, our database still needs to be migrated, so run the

following:

$ heroku run rails db:migrate

Running rails db:migrate on safe-temple-15085... up,

➥ run.8163
(10.7ms) CREATE TABLE "schema_migrations" ("version"

➥ character varying NOT NULL)
(4.5ms) CREATE UNIQUE INDEX "unique_schema_migrations" ON

➥ "schema_migrations" ("version")

Heroku Naming

The name of your Heroku app will be different, as it's randomly generated for each

heroku create.

502 Rails: Novice to Ninja

ActiveRecord::SchemaMigration Load (1.5ms) SELECT

➥ "schema_migrations".* FROM "schema_migrations"
... the rest of the migrations ...

Heroku opens up a session on the platform and runs our migrations. Now we're

ready:

$ heroku open

This command will open your Heroku application in a web browser.

12-5. Readit on the Internet

How cool is that? The answer is: really darn cool!

Deployment and Production Use 503

I know. You're sitting there wondering how you can use it without having a login.

We never implemented a sign-up page, did we? (I smell EXTRA CREDIT!) Well,

we can create a user the same way we did locally–by using a Rails console:

$ heroku run rails console

Running rails console on safe-temple-15085... up, run.6215

Loading production environment (Rails 4.2.5.1)

irb(main):001:0> User.create(email:

➥ "glenn.goodrich@sitepoint.com", name: "Glenn Goodrich",
➥ password: "password", password_confirmation: "password")
=> #<User id: 1, password_digest:

➥ "$2a$10$FOuQ8.0H/Tm9tZ7NWS09KuWJvyqQ7PEe25NqF9cq/er...", na

Now you can log in as that user and submit stories to your heart's content.

Services such as Heroku are invaluable to programmers such as us. We can work

the way we work ("code, add, commit, push") and our applications are deployed

to the Internet without fuss.

Obviously, there is much more that Heroku offers, as well as which there are

many other considerations around deploying an app to the world. This chapter

was to get you started and give you a quick win. Now it's up to you to take the

world by storm.

Free Plan Limitations

The free plan on Heroku, which is what we're using, constrains your application in

a few ways. It only allows you to have a single application process, and it requires

your application to "sleep" for six out of every 24 hours. So, if your app is

unresponsive, or you are receiving messages about upgrading your plan, that's why.

EXTRA CREDIT: Explore More of Heroku

Heroku has a massive offering. You can append logging or analytics add-ons to your

app with just a few mouse clicks. Explore the Heroku Dashboard and the various

add-ons that Heroku offers. You'll be amazed.

504 Rails: Novice to Ninja

https://dashboard.heroku.com/

Alternatives for Session Storage

Once your application is deployed, you'll probably start thinking about ways to

improve performance and security. Some low-hanging fruit here are how Rails

stores sessions.

As we discussed in Chapter 9, Rails creates a new session for every visitor–logged

in or not–by default. Each session is stored in a cookie by default, which is

contained in the user's browser. Cookies are not the best way to store session

data, as they have size limits (4KB), are insecure, and bloat the requests to and

responses from your server.

As a result, when you either want to store additional information in the session

(or the flash) or when you need to create more advanced features such as user

online statistics or server-side session expiration, the situation becomes a bit

dicey with cookie-based sessions.

For this reason, Rails supports alternative session storage containers,one of which

we'll look at in this section.

The ActiveRecord Store Session Container

One of the most popular options after the cookie-based default is the

ActiveRecord Store session container, which stores all session data within a

table in your database. While this is not as fast as other options, using

ActiveRecord Store allows sessions to be accessed from multiple machines—an

essential feature for applications large enough to require multiple servers. It's also

straightforward to configure. These abilities make ActiveRecord Store the

preferred option for applications that attract low-to-medium levels of traffic, so

let's configure Readit to use it now.

The Nitty Gritty on Rails Sessions

Justin Weiss, a well-known Rubyist and blogger, wrote a fantastic post on how

sessions in Rails work. I recommend you read it.

Deployment and Production Use 505

http://www.justinweiss.com/articles/how-rails-sessions-work/

The ActiveRecord Store used to be a part of core Rails, but it's been moved to a

separate gem, so we'll need to add it to our app. Adding gems to your Rails app

should be second nature by now, so add the following to the Gemfile and run

bundle install:

gem 'activerecord-session_store'

Now we need to make room in our database for the session data. The

activerecord-session_store gem provides a shortcut for this job in the form of

a generator to create a sessions table migration:

$ rails generate active_record:session_migration

Running via Spring preloader in process 10919

create db/migrate/20160515161105_add_sessions_table.rb

This command will create a new migration file that contains the Ruby code

necessary to create an appropriate sessions table to hold our session data. The

migration can then be applied using the regular migration task db:migrate:

$ rails db:migrate

506 Rails: Novice to Ninja

12-6. Migrational output

The figure above shows the output of these migrations being applied.

Next, we tell Rails that we want to use the ActiveRecord Store instead of the

default file-based session container. We can relay the good news via the config/

initializers/session_store.rb file; simply change the cookie_store value to

active_record_store:

Change

Rails.application.config.session_store :cookie_store, key:

➥ '_readit_session'
#to

Rails.application.config.session_store :active_record_store,

➥ key: '_readit_session'

As soon as you restart the application (using rails s), sessions will be stored in

the SQL database.

We'll need to push that change to our Heroku application so that it's picked up in

production. In the root of your Readit source, commit the changes:

$ git add .

$ git commit -m "Use ActiveRecord Session Store"

Deployment and Production Use 507

$ git push heroku master

... redeploys site ...

Once the site is deployed, run the migration on our Heroku database to create the

new sessions table:

$ heroku run rails db:migrate

The result is shown below.

12-7. Creating the new sessions table

Now we're using the ActiveRecord Session Store in production. It's worth noting

that there are other session storage options (such as the Cache Store), as well as

many authored by the community.

Further Reading

We've done it! Our application is ready for initial public consumption, and the

hands-on parts of this book have come to an end. I would still, however, like to

alert you to a few additional Rails features and extensions that may come in

handy in your future encounters with Rails applications. Think of this as an

entire section of EXTRA CREDIT.

508 Rails: Novice to Ninja

Caching

Depending on the project budget and the availability of hardware, every Rails

application can only serve so many dynamic pages at any given time. If your app

happens to receive traffic numbers that exceed these limits, you'll have to

consider options for tackling this problem. One such option is to add caching.

Caching is a way to store previously generated content that remains unchanged

so it can quickly be served again. If you are looking at the list of upcoming

stories, and it's the same as it was when you last looked, it's better to see the same

rendered view than to re-render the view again. Caching allows this to happen.

Rails' built-in caching options vary in their levels of granularity. The simplest of

all possibilities is to cache whole pages in the form of HTML files. What Rails

does in such cases is to take the output that's sent to the browser, and store it in a

file on the server's hard disk. This file can then be served directly by the web

server without even bothering Puma, provided your setup is configured

appropriately. This saves Rails from regenerating page content over and over

again, even though the content may not have changed between successive

requests for the same page. Another option allows you to cache the outputs of

single actions and even fragments of views (a sidebar, for example).

Caching can do wonders to improve your application's performance; however,

take care to ensure that the relevant sections of the cache are flushed when pages

change, otherwise your users will receive outdated content. Additionally, using

cached pages may not be feasible if your application depends on a lot of user-

specific content—for instance, in an application whose page content changes

depending on who's using it.

The Rails documentation for the caching feature is available online.

ActionCable

One of the more exciting changes to the latest version of Rails (version 5) is the

addition of ActionCable. ActionCable brings WebSockets into your Rails

application. What are WebSockets, you ask? WebSockets, effectively, open a two-

way communication channel between the browser and the server. Traditionally,

the only way the client and server interact in a web application is when the

Deployment and Production Use 509

http://api.rubyonrails.org/classes/ActionController/Caching.html

browser posts data to or requests data from the server. With the advent of AJAX

(which we discussed in Chapter 7), a one-way, asynchronous channel from the

browser to the server is possible. Using AJAX, if the browser wanted to know

when events happen on the server, it can poll in the background and it feels like

it's real time. By "poll" I mean that the browser has an infinite loop that runs at a

certain interval (maybe, every 10 seconds) and makes a request to the server.

Polling for server-side changes is expensive, error-prone, and ties up resources. It

would be nice if the server could simply send events to the browser when they

happen, without the browser having to poll.

WebSockets does just that. A two-way communications channel is opened

between the server and client, and data can be sent in both directions. This opens

up the realm of real-time applications. A good example is a chat application,

where you have a browser-based client that subscribes to a WebSocket-based

channel and the server sends new chat data on the channel as your fellow

chatters chat. It feels like a "real" (meaning, not web-based) application.

ActionCable takes the convention-based approach of Rails to incorporate

WebSockets into your application. The use cases are endless.

When you're ready to look into WebSockets and ActionCable, check out these two

articles on SitePoint:

ActionCable and WebSockets

Creating a Chat Application in Rails 5

Those posts will get you well on your way to real-time application fun.

Rails API

Another trend in current web application development is the proliferation of the

Application Programming Interface, or API. An API is an application that exposes

its data and functionality for other applications, as opposed to users. An API is

meant to be a building block for a larger application, providing functionality to

make up the whole. Almost all the services you use on the internet today expose

an API, including Twitter, Facebook, Google Maps, and the list goes on and on

(and on.)

510 Rails: Novice to Ninja

https://www.sitepoint.com/action-cable-and-websockets-an-in-depth-tutorial/
https://www.sitepoint.com/create-a-chat-app-with-rails-5-actioncable-and-devise/

Before Rails 5, in order to build an API with Rails you had to include some

external gems, remove all the view libraries, and go through some custom

configuration to get your Rails app into an API-friendly state. Since the Rails Core

team is always looking to make Rails useful for today's developers solving today's

problems with today's approaches, they made creating an Rails-based API

application much easier.

You'll be happy to know that an API application uses many of the things we've

already discussed in this book (RESTful routes, JSON) so when you're ready for

Shovell to expose an API-only set of endpoints, you won't have much new to

learn. Basically, you just start a new Rails app with rails new readit-api

--api and you're cooking with gas.

We've talked briefly about how Rails will never annoy your users with extensive

stack traces if an error occurs in your application. Instead, it will display a polite

message to the user that the request couldn't be processed successfully. The

default templates for these messages can be found in public/404.html and

public/500.html.

But what if you want to fix such errors instead of silently ignoring them? You

could certainly comb through your log files every day, checking for unusual

activity. Better yet, you could install the exception_notification gem, which

hooks into your application and sends you an email whenever some unusual

activity happens.

The gem can be installed using Bundler; that is, by adding it to the Gemfile and

running bundle install. Documentation that explains how to customize its

behavior is available online.

Performance

Inevitably as a developer, you will need to optimize your application for

performance. Most of the time, performance optimizations focus on single bits in

the larger framework of your application. Sometimes it's about making a SQL

query run faster, other times it's about caching, and still other times it might be a

change in the Javascript. I'll give you a nudge on one potential, and very

common, optimization. Back in Chapter 10, we added stories to the User model,

and in the Story show view, we called:

Deployment and Production Use 511

https://github.com/smartinez87/exception_notification

Submitted by: <%= story.user.name %>

Since story.user walks down an association, it must access a second table (the

users table.) This requires a second SQL query. In technical terms, this is what's

known as an "N+1 Query" and it's a very, very common source of performances

issues. Ideally, since we know that we want to display the user, we'd include the

Story's user in the first call to the database, along with the stories. That saves us

one round trip/story, which can be significant when Readit is huge and has

millions of stories.

That is just one example of a performance optimization. There are many, many

others, so you know what's coming. But, before we get to that, here are a couple

of rules of thumb for performance work:

1. Never optimize too early. Or, more commonly: Performance Optimization is

the Root of All Evil. This means that you should not optimize unless you

know it's going to have an effect. This leads us to...

2. Never optimize something you can't measure. If you can't take before and after

measurements around an optimization, then you're probably wasting your

time. Refer back to our section on Benchmarking for how to get these

numbers.

Summary

In this final chapter, we've plowed through the variety of options available for

deploying Rails applications to production systems.

We opted to use Heroku and its service offering to deploy Readit. We took the

Readit application code to the production system, initialized the production

database, and started serving requests. It doesn't get much easier than that!

EXTRA CREDIT: Getting Rid of the Query

Use Google to figure out how to get rid of our N+1 query in the story show view.

512 Rails: Novice to Ninja

Once Readit was running happily in its new environment, we looked at some

alternative session storage containers. We found that the ActiveRecord Store

suited our needs by storing session data in our SQL database.

Finally, I provided a few pointers to more advanced information on some relevant

aspects of Rails application development and deployment.

I hope you've found value in the time you've spent with this book, and that you're

now able to go forth and build upon what you've learned. Now's the time to get

out there and use your knowledge to build an application that changes the

Internet! Well, once you finish all your EXTRA CREDIT, that is ...

Deployment and Production Use 513

	Rails: Novice to Ninja
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Glenn Goodrich
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	EXTRA CREDIT
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Introducing Ruby on Rails
	Classes?
	What does Ruby syntax look like?
	History
	Development Principles
	Optimize for Programmer Happiness
	Convention Over Configuration
	MVC

	The Menu is Omakase
	No One Paradigm
	Exalt Beautiful Code
	Value-integrated Systems
	Progress Over Stability
	Push Up a Big Tent

	Building the Example Web Application
	Features of the Example Application

	Summary

	Getting Started
	Found in Translation
	New ≠ Tried + Tested
	What does all this cost?
	Installing on Windows
	Install Ruby

	Installing on Mac OS X
	Taking Command
	Installing Homebrew
	Version Managers: Good for Developing Developers!
	Why default?
	Help on Hand

	Installing on Linux (Ubuntu)
	About Rais Girls

	Additional Installation Options
	And Now the Fun Begins
	One Directory Structure to Rule Them All
	Creating the Standard Directory Structure

	Starting Our Application
	Choice Gems: A Plethora of Web Servers

	Version Control and Git
	EXTRA CREDIT: Get Learning Git
	Git Basics

	Which Text Editor?
	Windows and Cross-platform Text Editors
	Sublime Text
	Atom
	Visual Studio Code

	Linux and Mac OS X Editors
	Emacs
	Vim

	IDEs

	Summary

	Introducing Ruby
	Ruby is a Scripting Language
	Compiled Languages
	Scripting Languages
	The Great Performance Debate
	Choose What Works

	Ruby is an Object Oriented Language
	Reading and Writing Ruby Code
	The Interactive Ruby Shell (irb)
	Windows Users
	Constants, Classes, and Capitals

	Interacting with Ruby Objects
	Literal Objects
	Variables and Constants
	Scoping Scope
	Watching Your G's and Q's

	Basic Punctuation in Ruby
	Dot Notation
	EXTRA CREDIT: Dot Notation

	Chaining Statements Together
	Use of Parentheses
	Method Notation
	Predicate Method

	Object-oriented Programming in Ruby
	Classes and Objects
	EXTRA CREDIT: Access Levels for Object Methods

	Object-level Functionality
	Instance Variables
	A Link to Social Media

	Instance Methods
	Indentation in Ruby

	Accessor Methods

	Class-level Functionality
	Avoid the CV Word
	Inheritance
	Modules and Composition
	Support for Methods

	Return Values

	Standard Output
	Put It There

	Ruby Core Classes
	Strings
	Ruby Interactive Documentation

	Numerics
	Symbols
	Arrays
	Hashes
	nil Values

	Running Ruby Files
	Control Structures
	Conditionals
	The if Construct
	The unless Construct

	Loops
	while and until Loops
	Assignment and Equation Operators
	for Loops

	Blocks, Procs, and Lambdas. Oh my!
	EXTRA CREDIT: Ruby Rites

	Summary

	Rails Revealed
	Three Environments
	Application Dependencies
	Bundler
	EXTRA CREDIT: Bundler's Brass Tacks

	Database Configuration
	The Database Configuration File
	Yo YAML!
	EXTRA CREDIT: Database Engines

	The Model-View-Controller Architecture
	MVC in Theory
	MVC the Rails Way
	The ActiveRecord Module
	Database Abstraction
	The Jury's Out on ActiveRecord
	Database Tables
	Object Relational Mapper
	Seek some SQL Smarts
	Using the Rails Console
	Saving an Object
	Defining Relationships between Objects

	The ActionPack Library
	ActionController (the Controller)
	Naming Conventions for Classes and Files

	ActionView (the View)

	RESTful-style
	In Theory
	REST and the Web
	EXTRA CREDIT: Verbalicious

	REST in Rails

	Code Generation
	The ActionMailer Component
	Testing and Debugging
	Testing
	Unit Testing
	EXTRA CREDIT: Test Driving TDD
	Integration Testing

	Debugging

	Summary

	Models, Views, and Controllers
	Generating a Model
	The Model Generator
	Running the generate Command
	Understanding the Output
	app/models/story.rb

	EXTRA CREDIT: The Attributes API
	test/models/story_test.rb
	test/fixtures/stories.yml
	db/migrate/xxxxx_create_stories.rb

	Understanding YAML

	Modifying the Schema Using Migrations
	Creating a Skeleton Migration File
	Migrations, Compatibility, and 5.0

	Creating the stories Table
	Running the Migration
	Rollbacks up Close

	Managing Data Using the Rails Console
	Creating Records
	Retrieving Records
	Updating Records
	Deleting Records

	Generating a Controller
	Running the generate Command
	Understanding the Output
	app/controllers/stories_controller.rb
	route get 'stories/index'
	app/helpers/stories_helper.rb
	app/views/stories/index.html.erb
	test/controller/stories_controller_test.rb
	Take Care When It Comes to Naming Parameters

	Starting Our Application … Again

	Creating a View
	Generating Views with Scaffolding
	When You Go Off the Rails ...
	A Great Tool–but with Limitations

	Creating Static Pages
	Creating Dynamic Pages
	Passing Data Back and Forth
	Pulling in a Model

	Summary

	Helpers, Forms, and Layouts
	Calling upon Our Trusty Helpers
	Enabling Story Submission
	Creating a Form
	Introducing the form_for Helper
	Help on Helpers
	Creating the Template
	The Console Is Key
	Modifying the Controller
	RESTful Resources in Rails
	Mapping a New Resource
	Analyzing the HTML

	Saving Data to the Database
	Redirecting with URL helpers
	EXTRA CREDIT: Going Private

	Creating a Layout
	Establishing Structure
	Built-in Abettors

	Adding Some Style
	CSS Mastery Not Required

	Enabling User Feedback with the Flash
	Adding to the Flash
	Flash Naming Conventions

	Retrieving Data from the Flash
	Applying Validations
	Tweaking the Redirection Logic
	Improving the User Experience

	Testing the Form
	EXTRA CREDIT: Minitest versus RSpec

	Testing the Model
	Analyzing the Skeleton File
	Using Assertions
	Writing a Unit Test
	A Choice of Syntaxes for Testing
	Errors and ActiveModel Errors

	Running Model Tests
	Ensure the Test Database is Set Up

	Testing the Controller
	Analyzing the Skeleton File
	Writing a Controller Test
	HTTP Code Aliases

	Running a Controller Test
	Writing More Controller Tests
	Running the Complete Test Suite

	Visiting the Logs
	Summary

	Ajax and Turbolinks
	Generating a Vote Model
	Creating the Model
	Examining the Vote Migration
	Applying the Migration

	Introducing Relationships
	Introducing the has_many Clause
	Collection Proxy Helps Efficiency

	Introducing the belongs_to Clause
	Revise, Reload, Revise, Reload

	How's our schema looking?

	Making a Home for Each Story
	Determining Where a Story Lives
	Displaying Our Stories
	Recap on Making Sure the Server Is Up

	Improving the Story Randomizer
	Implementing Clean URLs
	Converting from Strings
	Investigating Link Generation

	Ajax, Pjax, and Turbolinks
	Introducing Ajax

	Making Stories
	Controlling Where the Votes Go

	The Asset Pipeline
	Geek Etymology
	Why do we need an asset pipeline?
	Multiple Source Files
	Asset Preprocessors
	CoffeeScript
	CoffeeScript or JavaScript?
	Sass
	Syntactically Awesome, or Simply Cascading?

	Asset Compression and Minification
	Asset Digests

	Get Out the Vote
	Styling the Scoreboard
	Response Formats
	Shorthand Awesomeness

	Introducing Partials
	Adding Voting History
	Creating the Partial
	Styling the Voting History
	Tweaking the Voting History
	A Methods of Sorts

	Testing the Voting Functionality
	Testing the Model
	Preparing the Fixtures
	Check One Two

	Testing a Story's Relationship to a Vote
	Testing the Voting History Order
	Running the Unit Tests

	Testing the Controller
	Testing Page Rendering
	Testing Vote Storage
	Testing Ajax Voting
	EXTRA CREDIT: Make a Difference

	Testing Regular HTTP Voting

	Running the Full Test Suite
	Summary

	Protective Measures
	Introducing Sessions and Cookies
	Identifying Individual Users
	What's a cookie?
	What's a session?
	Sessions in Rails
	Session Storage Solutions

	Modeling the User
	Generating a User Model
	Has Secure Password
	Server Reboot Required

	Adding Relationships for the User Class
	Creating a User

	Developing Login Functionality
	Creating the Controller
	Creating the View
	Start Your Engines...

	Adding Functionality to the Controller
	Be Careful When Storing ActiveRecord Objects in a Session

	Introducing Filters
	Before Filters
	After Filter
	Around Filters
	EXTRA CREDIT: A Filter Field Trip
	A Word on Filter Methods

	Managing User Logins
	Retrieving the Current User
	Session Security

	Displaying the Name of the Current User
	Allowing Users to Log Out

	Adding a Navigation Menu
	Restricting the Application
	Protecting the Form
	Abstracting Code Using helper_method
	Requiring Users to Log In
	Good Coding Grammar

	Restricting Access to Story Submission
	Introducing Filter Conditions
	Redirecting the User

	Associating Stories with Users
	Storing the Submitter
	Displaying the Submitter
	Complete Data

	One Last Thing: Associate Votes to Users

	Testing User Authentication
	Testing the Model
	Preparing the Fixtures
	EXTRA CREDIT: Break the Code on Encryption
	Testing a User's Relationship to a Story
	Testing a Story's Relationship to a User
	Fixing Broken Story Tests
	Testing a User's Relationship to a Vote
	Testing a Vote's Relationship to a User
	Clever Cloning by Rails
	Running the Unit Tests

	Testing the Controllers
	Testing the Display of the Login Form
	Testing a Successful Login
	Testing a Failed Login
	Testing Redirection After Login
	Testing a Logout
	Testing the Display of the Story Submitter
	Testing the Display of Global Elements
	Testing the Display of the User's Name
	Testing Redirection After Logout
	Testing Story Submission
	Testing Storage of the Submitter

	Fixing VotesController Tests
	EXTRA CREDIT: Exploring Other Ways to Run Tests

	Running the Full Test Suite

	Summary

	Advanced Topics
	Promoting Popular Stories
	Using a Counter Cache
	Introducing the Counter Cache
	When It Almost Doesn't Count

	Making Room for the Cache
	Applying the Migration

	Implementing the Front Page
	Modifying the Controller
	Ordering by id

	Modifying the View
	Creating the Partial
	Styling the Front Page
	Setting the Default Page

	Implementing the Voting Bin
	Adding Custom Actions to RESTful Routes
	Breaking the RESTful Rules

	Abstracting Presentation Logic
	Avoiding Presentation Logic Spaghetti
	Introducing ActionView Helpers
	Writing an ActionView Helper
	Expanding the Navigation Menu

	Requiring a Login to Vote
	Auto-voting
	Introducing Model Callback
	A Combo of Callbacks
	Defining Callbacks

	Adding a Callback

	Adding a Description to Stories
	Adding a Model Attribute
	Expanding the Submission Form
	White-listing the New Attribute

	Adding User Pages
	Introducing the Join Model Relationship
	Introducing the has_many :through Association
	Adding Another Controller
	Creating the View

	Testing the New Functionality
	Testing the Model
	Testing Additions to the Counter Cache
	Testing Deletions from the Counter Cache
	Testing the Creation of the Initial Vote
	Testing the Join Model Relationship

	Testing the StoriesController
	Testing the Story Index Pages
	Testing the Routing Configuration
	Testing Page Headings
	Testing the Story Submission Form
	Testing the Story Display Page
	Testing the Navigation Menu
	Testing the Story Submitter Link Text

	Testing the VotesController
	Testing User Voting History

	Testing the UsersController
	Running the Complete Test Suite

	Summary

	Rails Plugins
	What is a plugin?
	No Time for Name-calling

	Adding Tagging to Readit
	Introducing the acts-as-taggable-on Gem
	A History of acts_as_*
	Namespacing Safety Measures

	Installing the acts-as-taggable-on Gem
	Creating a Migration for the Plugin
	Rake'n'rails

	Understanding Polymorphic Associations
	Making a Model Taggable

	Enabling Tag Submission
	Modifying the View
	Modifying the Controller

	Enabling Tag Display
	Modifying the View
	Updating the story Partial

	Assigning Our First Tags
	Viewing Stories
	Creating the Controller
	Filling in the View Template
	Displaying Tagged Stories
	Creating a tag Partial
	Updating the Stylesheet

	Testing the Tagging Functionality
	Testing the Model
	A Conventional Environment
	Testing the Assignment of Tags
	Testing the Finding of a Story by Tag

	Testing the Controller
	Testing the Submission of a New Story with Tags
	Testing the Display of Tags on a Story Page
	Testing the Display of the Story Submission Forms
	Testing the show Action of TagsController

	Running the Test Suite ... Again!
	Summary

	Debugging, Testing, and Benchmarking
	Debugging Your Application
	Debugging within Templates
	Web Console
	Debugging A Slightly Trickier Bug
	Meeting byebug
	Debugging an Application with byebug
	Bundler byebug Boo-boo
	The byebug Commands
	Moving Around in the Shell
	Discovering All the Fancy Tools in byebug
	Setting Breakpoints Mid-execution

	Using the Rails Logging Tool
	EXTRA CREDIT: Six Degrees of Severity

	Overcoming Problems in Debugging
	Testing Your Application Using Integration Tests
	Creating an Integration Test
	Running an Integration Test

	Using Breakpoints in a Test
	Fixing the Gemfile

	Revisiting the Rails Console
	A Brief Introduction to Pry
	Nerd Words
	Exploring Pry

	Benchmarking Your Application
	Taking Benchmarks from Log Files
	Manual Benchmarking
	EXTRA CREDIT: Master the Art of Benchmarking

	Summary

	Deployment and Production Use
	The Implications of “Production”
	EXTRA CREDIT: Utilizing External Gems

	Choosing a Production Environment
	Web Servers
	Apache
	Nginx

	Application Servers
	Rack
	EXTRA CREDIT: Racking Up Your Know-how

	Terminology
	Concurrency
	Note: Concurrency ≠ Parallelism
	Threads
	EXTRA CREDIT: Avoid Losing the Thread
	Multi-process
	Evented Programming

	Application Servers for Rails
	Puma
	Thin
	Unicorn

	Proxying Requests
	Software as a Service
	Heroku
	Sign Up for a Heroku Account
	Install the Heroku Toolbelt
	Prepare Readit for Heroku
	Create and Deploy the Heroku Application
	Heroku Naming
	Free Plan Limitations
	EXTRA CREDIT: Explore More of Heroku

	Alternatives for Session Storage
	The Nitty Gritty on Rails Sessions
	The ActiveRecord Store Session Container

	Further Reading
	Caching
	ActionCable
	Rails API
	Performance
	EXTRA CREDIT: Getting Rid of the Query

	Summary

