
Summary of Contents
Preface .. ix
1. Introduction to XML ... 1
2. XML in Practice ... 33
3. DTDs for Consistency .. 59
4. Displaying XML in a Browser ... 81
5. XSLT in Detail ... 107
6. Manipulating XML with JavaScript/DHTML .. 137
7. Manipulating XML with PHP .. 163
8. RSS and RDF .. 199
9. XML and Web Services .. 221
10. XML and Databases ... 245
A. PHP XML Functions ... 261
B. CMS Administration Tool ... 297
Index ... 339

No Nonsense XML Web
Development With PHP

by Thomas Myer

No Nonsense XML Web Development With PHP
by Thomas Myer

Copyright © 2005 SitePoint Pty. Ltd.

Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Designer: Julian CarrollTechnical Director: Kevin Yank
Cover Illustrator: Lucas LicataTechnical Editor: Joe Marini

Editor: Georgina Laidlaw
Printing History:

First Edition: July 2005

Notice of Rights

All rights reserved. No part of this kit may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this kit is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this kit, or by the
software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this kit uses the names only
in an editorial fashion and to the benefit of the trademark owner with no intention of infringement
of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-0-X
Printed and bound in the United States of America

About The Author

Thomas Myer is the founding principal of Triple Dog Dare Media, an Austin, TX-based
Web consultancy that specializes in building database- and XML-driven dynamic sites.
He first entered the field of Web development in 1996 when he learned Perl. He was in-
troduced to XML shortly thereafter and has worked with it extensively to build document
repositories, search engine indexes, content portal taxonomies, online product catalogs,
and business logic frameworks.

About The Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint
on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps
best known for his book, Build Your Own Database Driven Website Using PHP & MySQL,
also from SitePoint. Kevin now lives in Melbourne, Australia. In his spare time he enjoys
flying light aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content for Web
professionals.

Visit http://www.sitepoint.com/ to access our books, newsletters, articles and community
forums.

http://www.sitepoint.com/

To my wife Hope, for loving me
anyway.

To my three pups: big quiet
Kafka, little rascal Marlowe,
and for regal Vladimir, who
passed away the day after I

finished Chapter 5.

ii

Table of Contents
Preface ... ix

Who Should Read this Book? ... x
What’s in this Book? .. x
The Book’s Website ... xii

The Code Archive ... xii
Updates and Errata ... xiii

The SitePoint Forums .. xiii
The SitePoint Newsletters ... xiii
Your Feedback .. xiii
Acknowledgements .. xiv

1. Introduction to XML .. 1
An Introduction to XML .. 1

What is XML? ... 2
Why Do We Need XML? .. 2
A Closer Look at the XML Example ... 6
Formatting Issues ... 12
Well-Formedness and Validity ... 13

Getting Your Hands Dirty .. 14
Viewing Raw XML in Internet Explorer 15
Viewing Raw XML in Firefox ... 20
Options for Using a Validating Parser ... 20
What if I Can’t Get a Validating Parser? 23

Starting Our CMS Project .. 23
So… What’s a Content Management System? 23
Requirements Gathering ... 24
Defining your Content Types ... 28
Gathering Requirements for Content Display 31
Gathering Requirements for the Administrative Tool 32

Summary ... 32

2. XML in Practice .. 33
Meet the Family ... 33
A Closer Look at XHTML .. 35

A Minimalist XHTML Example .. 38
XML Namespaces .. 39

Declaring Namespaces ... 39
Placing Namespace Declarations in your XML Documents 40
Using Default Namespaces ... 41

Using CSS to Display XML In a Browser .. 42

Getting to Know XSLT .. 44
Your First XSLT Exercise ... 44
Transforming XML into HTML ... 50
Using XSLT to Transform XML into other XML 52

Our CMS Project ... 56
News ... 56

Summary ... 58

3. DTDs for Consistency ... 59
Consistency in XML .. 59

What’s the Big Deal About Consistency? 60
DTDs .. 61

Getting Our Hands Dirty ... 69
Our First Case: A Corporate Memo .. 70
Second Case: Using an External DTD for Memos 76

Our CMS Project ... 77
Reworking the Way we Track Author Information 77
Assign DTDs to our Project Documents? 79

Summary ... 80

4. Displaying XML in a Browser .. 81
A Word on XPath .. 81
A Practical XSLT Application ... 83

A First Attempt at Formatting .. 84
Using XPath to Discern Element Context 87
Matching Attribute Values with XPath 88
Using value-of to Extract Information ... 90

Our CMS Project ... 92
Why Start with the Display Side? .. 93
Creating a Common Include File .. 93
Creating a Search Widget Include File .. 94
Building the Homepage .. 94
Creating an Inner Page ... 102

Summary ... 104

5. XSLT in Detail .. 107
XPath .. 107
Programmatic Aspects of XSLT .. 110

Sorting ... 110
Counting ... 116
Numbering .. 117
Conditional Processing ... 121
Looping Through XML Data .. 125

iv

No Nonsense XML Web Development With PHP

Our CMS Project ... 126
Finishing our Search Engine ... 127
Creating an XSLT-Powered Site Map 130

Summary ... 136

6. Manipulating XML with JavaScript/DHTML ... 137
Why Use Client-Side Scripting? ... 137
Working with the DOM ... 138

Loading Documents into Memory .. 138
Accessing Different parts of the Document 140

XSLT Processing with JavaScript .. 142
Making our Test Script Cross-Browser Compatible 146
Creating Dynamic Navigation .. 151

Our CMS Project ... 157
Assigning Content to Categories ... 158
Retrieving Content by Category ... 158

Summary ... 161

7. Manipulating XML with PHP .. 163
Using SAX ... 164

Creating Handlers .. 166
Creating the Parser and Processing the XML 167

Using DOM ... 169
Creating a DOM Parser .. 169
Retrieving Elements ... 170
Creating Nodes .. 173
Printing XML from DOM .. 174

Using SimpleXML ... 174
Loading XML Documents .. 175
The XML Element Hierarchy ... 176
XML Attribute Values .. 178
XPath Queries .. 179
Using SimpleXML to Update XML .. 179
Fixing SimpleXML Shortcomings with DOM 180

When to Use the Different Methods .. 181
Our CMS Project ... 181

The Login Page .. 182
The Admin Index Page ... 186
Working with Articles .. 187

Summary ... 197

8. RSS and RDF .. 199
What are RSS and RDF? .. 199

v

What’s the Big Deal? ... 200
What Kind of Information Should be Featured in an RSS
Feed? ... 200
Before We Get Started ... 201

Creating Your First Basic RSS Feed .. 202
Telling the World about your Feed ... 204
Going Beyond the Basics .. 206

RDF and RSS 1.0 .. 207
Adding Information with Dublin Core 210
When to use RSS 1.0 ... 211

Parsing RSS Feeds ... 212
Parsing our Feed with SimpleXML ... 213

Our CMS Project ... 215
Creating an RSS Feed .. 215

Summary ... 219

9. XML and Web Services ... 221
What is a Web Service? ... 221

What’s the Big Deal? ... 222
What are Web Services Good At? .. 223

XML-RPC .. 224
The XML-RPC Data Model ... 225
XML-RPC Requests ... 228
XML-RPC Responses ... 230
What do we Use to Process XML-RPC? 231

SOAP .. 231
What we Haven’t Covered ... 233

Our CMS Project ... 233
Building an XML-RPC Server ... 234
Building an XML-RPC Client that Counts Articles 239
Building an XML-RPC Client that Searches Articles 241

Summary ... 243

10. XML and Databases ... 245
XML and Databases ... 245

Why use XML and Databases Together? 246
Relational Database? Native XML Database? Somewhere in
Between? ... 246

Converting Relational Data to XML ... 249
Using phpMyAdmin to Export XML .. 249
Using mysqldump to Export XML .. 251
Hand-Rolling an XML Converter .. 253

vi

No Nonsense XML Web Development With PHP

Our CMS Project ... 256
Building the MySQL Table .. 256
Building the PHP ... 257
Setting up a Cron Schedule to Run Periodically 259

Summary ... 260

A. PHP XML Functions ... 261
SAX Functions ... 261

Error Code Constants ... 261
Function Listing ... 262

DOM Functions ... 272
Object Listing .. 272
Function Listing ... 294

SimpleXML Functions ... 294
Function Listing ... 294
SimpleXMLElement methods ... 295

B. CMS Administration Tool ... 297
Picking Up Where We Left Off .. 297
Managing Web Copy ... 297

Web Copy Index Page .. 299
Web Copy Creation Page ... 301
New Web Copy Processing Script .. 303
Web Copy Editing Page ... 305
Web Copy Update Processing Script .. 307
Web Copy Delete Processing Script .. 308

Managing News Items .. 309
News Item Index Page .. 310
News Item Creation Page ... 311
New News Item Processing Script .. 312
News Item Editing Page ... 314
News Item Update Processing Script .. 316
News Item Delete Processing Script .. 317

Managing Authors, Administrators, and Categories 318
Managing Authors ... 318
Managing Administrators ... 327
Managing Categories .. 331

Updating the Admin Index Page ... 336
Summary ... 337

Index ... 339

vii

viii

Preface
Off an on, I run a workshop called XML for Mere Mortals. The title attracts an
audience that's much wider than your typical Web developer needing to bone
up on the subject. I train technical writers, project managers, database geeks—even
the occasional business owner who's trying to get a handle on the exciting possib-
ilities of XML.

If I had to give this book a subtitle, it would be, “XML for Mere Mortals,” because
every time I sat down to write a chapter, I tried to picture the kind of folks who
show up at my workshops—intelligent and curious, with a wide range of technical
proficiency, but all of them feeling a little overwhelmed by the terminology,
processes, and technologies surrounding XML. With any luck, this approach will
serve you well.

This book has two goals: to introduce readers to a large part of the XML world,
and to walk them, step by step, through the creation of an XML-powered Website.
Let’s talk about each of those goals in more detail.

If we were to take the time to introduce you to the entire spectrum of XML
technologies, it would take a book twice (or thrice) as big as the one you’re cur-
rently holding. There’s a lot to talk about when you start looking at XML, so I
had to pick my battles. For instance, you’ll notice that we discuss DTDs, but not
XML Schemas. We talk a lot about XPath, but we don't cover XQuery or XLink.
The idea of this title is to get your feet (and perhaps your ankles, shins, and
knees) wet in the topic of XML, and to make you feel comfortable to go out and
learn even more.

The second goal involves building your own XML-powered Website. I build both
XML- and database-powered dynamic Websites for a living, and I tried to pour
as much as I know about the process into the limited space available. As we work
to build the project that's developed through the course of this book, I'll take you
through the requirements gathering and analysis phases, then show you how to
convert that information into real XML documents and working code. Yes, we
are building a content management system, but a simplified one without the
heavy workflow or other capabilities you see in other systems. Nevertheless, what
you’ll end up with is a simple, powerful system that can get a Website up and
running quickly.

Every time I teach a class or workshop, I feel that I learn as much from my stu-
dents as they learn from me—that, in fact, I learn more as I continue to teach.

Writing this book was very much like that, because it forced me to organize my
thoughts and approaches into a more coherent fashion.

I hope you find the book a useful introduction to the incredibly fascinating topic
of XML. I know that many experts won’t agree with the approaches I took here,
and I’d like to say that I can understand all your disagreements, but writing a
book for the novice requires that the concepts be presented from a slightly differ-
ent perspective. If you wish to provide me with feedback, or you have any ques-
tions, feel free to drop me a line: tom@tripledogdaremedia.com.

Who Should Read this Book?
This book is intended for the XML beginner. You should have some working
knowledge of the Web, including HTML and some JavaScript skills, and experi-
ence with a server-side programming language.

In this book, we use PHP 5 on the server side, and I'll assume that you have had
some exposure to PHP. However, I always try to explain what’s going on, partic-
ularly as I work with XML concepts with which you may have little or no past
experience.

If you’ve ever fiddled with JavaScript, worked with a database, set up an ecom-
merce system, or programmed in PHP, ASP, or Perl, you’ll likely have no problem
following what we do within these pages.

What’s in this Book?
Here’s what we'll cover:

Chapter 1: Introduction to XML
This chapter introduces XML. We talk about elements, tags, attributes, en-
tities, and we get into semantics. We explore the difference between well-
formedness and validity, then get our hands dirty with some examples. We
also start gathering requirements for our project.

Chapter 2: XML in Practice
It’s time to meet the XML family, namely XHTML, XML Namespaces, and
Extensible Stylesheet Language Transformations (XSLT). In addition to
playing with these technologies, we gather the final requirements for our
project.

x

Preface

Chapter 3: DTDs for Consistency
This chapter is all about consistency. In particular, we look at Document
Type Definitions (DTDs), a language that describes the requirements that
are necessary for an XML document to be valid; that is, suitable for use in a
particular system. We finish the chapter by refining some of the requirements
we've gathered for our project.

Chapter 4: Displaying XML in a Browser
In this chapter, we talk about XSLT and how to use it to transform XML for
display in a browser. We explore some of the basics of XSLT and introduce
XPath. At the end of the chapter, we build many of the public display tem-
plates we'll need for our project.

Chapter 5: XSLT in Detail
This chapter picks up where the last one left off. We delve much deeper into
the programmatic aspects of XSLT, such as foreach loops, conditionals,
sorting, counting, and using XPath. In our project, we use this knowledge to
leverage XPath on the server side, and to create an XSLT-driven site map.

Chapter 6: Manipulating XML with JavaScript/DHTML
Here, we learn how to manipulate XML with client-side tools. We learn about
the Document Object Model (DOM) and the differences between the
handling of XML in Internet Explorer as compared to Firefox and other
Mozilla-based browsers. On the project side of things, we add categories to
our content structure, and use client-side XML processing to allow users to
browse the site's content by category.

Chapter 7: Manipulating XML with PHP
In the previous chapter, our work was mostly on the client side. Now we
tackle the server side, specifically addressing the question of PHP 5 as we
explore the differences between SAX, DOM, and SimpleXML function librar-
ies for working with XML. We further our project work as we start to build
our administrative tool files, including login/verification templates and article
create/update/delete templates.

Chapter 8: RSS and RDF
RSS is a hot topic right now. It provides a means for Website users to mon-
itor sites they don't have time to visit regularly, and for Web applications to
make use of content that's syndicated from third-party Websites and other
information sources. In this chapter, we delve into the specifics of the different
varieties of RSS that are available (including RDF, which forms the basis of
RSS 1.0), and discuss news aggregators, the parsing of feeds with PHP, and

xi

What’s in this Book?

more. We finish the chapter with the addition of an RSS feed to our Web
project.

Chapter 9: XML and Web Services
It’s time to look at Web Services. The emphasis of this chapter is XML-RPC,
an older standard for Web Services that's easy to work with, but we do
mention SOAP, a newer standard in this area. On the project side, we create
an XML-RPC server (and clients) that search for articles on our site.

Chapter 10: XML and Databases
This final chapter considers XML and databases. We talk about the need to
use databases and XML together, explore the differences between relational
and native XML databases, and investigate the task of storing XML inform-
ation in a database. We hand-roll an SQL-to-XML converter, then do the
same thing using a ready-made solution, phpMyAdmin. Lastly, we create a
MySQL backup system for our XML project files.

Appendix A: PHP XML Functions
This appendix contains a complete reference to the SAX, DOM, and Sim-
pleXML functions that PHP 5 supports for working with XML.

Appendix B: CMS Administration Tool
This appendix completes our work on the project's administrative tools. We'll
build forms and scripts to handle news items, Web copy, authors, adminis-
trators, and categories.

The Book’s Website
Located at http://www.sitepoint.com/books/xml1/, the Website supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note that most of the code listings are
labelled with filenames, and a number of references are made to the code archive.
This is a downloadable ZIP archive that contains complete code for all the ex-
amples presented in this book.

xii

Preface

http://www.sitepoint.com/books/xml1/

Updates and Errata
The Errata page on the book’s Website will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about XML. If you have a question about anything in this book,
t h e b e s t p l a c e t o g o f o r a q u i c k a n s w e r i s
http://www.sitepoint.com/forums/—SitePoint’s vibrant and knowledgeable com-
munity.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of Web development. Anything newsworthy
in the worlds of XML or PHP will find its way into the pages of this newsletter.

The long-running SitePoint Tribune is a biweekly digest of the business and
moneymaking aspects of the Web. Whether you’re a freelance developer looking
for tips to score that dream contract, or a marketing major striving to keep abreast
of changes to the major search engines, this is the newsletter for you.

The SitePoint Design View is a monthly compilation of the best in Web design.
From new CSS layout methods to subtle PhotoShop techniques, SitePoint’s chief
designer shares his years of experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or you wish to contact us for any
other reason, the best place to write is books@sitepoint.com. We have a well-

xiii

Updates and Errata

http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/

manned email support system set up to track your inquiries, and if our support
staff are unable to answer your question, they send it straight to me. Suggestions
for improvement as well as notices of any mistakes you may find are especially
welcome.

Acknowledgements
Picture this scene: Simon Mackie (my very talented editor) calls me from Australia,
basically to tell me to buck up, stop whining, and please just finish the darn book.
Without Simon's perseverance none of this would have been possible, especially
when I hit the wall around Chapter 8.

A colleague once told me that without deadlines, nothing would get done; that’s
still true, but I’d like to add that without great editing, no book would ever get
done.

Simon had a team of very smart reviewers who pored over every sentence and
illustration in this book. Without their sharp eyes, this book would have been a
shambling mess; their sound advice and good humor allowed me to stay on track
and keep the book to the highest standards of technical accuracy. Of course, I’m
pretty feisty and put up a good fight, but 90% of the time their logical good sense
prevailed over my natural instinct to bargain my way out of any compromise. To
make a long story short, any errors in this book are my fault, not theirs.

Of course, Simon had help, namely my wife Hope, who is herself one heck of an
editor. She cheerfully put up with my long absences as I plugged away on the
book. She celebrated when I met deadlines and hassled me if she caught me
slacking. She read over drafts and made suggestions, asked questions, and basically
pushed me when I most needed it. She is everything to me.

xiv

Preface

Introduction to XML1
In this chapter, we’ll cover the basics of XML—essentially, most of the information
you'll need to know to get a handle on this exciting technology. After we’re done
exploring some terminology and examples, we’ll jump right in and start working
with XML documents. Then, we’ll spend some time starting the project we'll
develop through the course of this book: building an XML-powered content
management system.

An Introduction to XML
Who here has heard of XML? Okay, just about everybody. If ever there were a
candidate for “Most Hyped Technology” during the late 90s and the current
decade, it's XML (though Java would be a close contender for the title).

Whenever I talk about XML with developers, designers, technical writers, or
other Web professionals, the most common question I'm asked is, “What’s the
big deal?” In this book, I'll explain exactly what the big deal is—how XML can
be used to make your Web applications smarter, more versatile, and more
powerful. I’ll try to stay away from the grandstanding hoopla that has character-
ized much of the discussion of XML; instead, I'll give you the background and
know-how you'll need to make XML a part of your professional skillset.

What is XML?
So, what is XML? Whenever a group of people asks this question, I always look
at the individuals' body language. A significant portion of the group leans forward
eagerly, wanting to learn more. The others either roll their eyes in anticipation
of hype and half-formed theories, or cringe in fear of a long, dry history of markup
languages. As a result, I’ve learned to keep my explanation brief.

The essence of XML is in its name: Extensible Markup Language.

Extensible XML is extensible. It lets you define your own tags, the
order in which they occur, and how they should be pro-
cessed or displayed. Another way to think about extensib-
ility is to consider that XML allows all of us to extend our
notion of what a document is: it can be a file that lives on
a file server, or it can be a transient piece of data that flows
between two computer systems (as in the case of Web
Services).

Markup The most recognizable feature of XML is its tags, or ele-
ments (to be more accurate). In fact, the elements you’ll
create in XML will be very similar to the elements you’ve
already been creating in your HTML documents. However,
XML allows you to define your own set of tags.

Language XML is a language that's very similar to HTML. It’s much
more flexible than HTML because it allows you to create
your own custom tags. However, it’s important to realize
that XML is not just a language. XML is a meta-language:
a language that allows us to create or define other lan-
guages. For example, with XML we can create other lan-
guages, such as RSS, MathML (a mathematical markup
language), and even tools like XSLT. More on this later.

Why Do We Need XML?
Okay, we know what it is, but why do we need XML? We need it because HTML
is specifically designed to describe documents for display in a Web browser, and
not much else. It becomes cumbersome if you want to display documents in a
mobile device or do anything that's even slightly complicated, such as translating
the content from German to English. HTML’s sole purpose is to allow anyone

2

Chapter 1: Introduction to XML

to quickly create Web documents that can be shared with other people. XML,
on the other hand, isn’t just suited to the Web—it can be used in a variety of
different contexts, some of which may not have anything to do with humans in-
teracting with content (for example, Web Services use XML to send requests and
responses back and forth).

HTML rarely (if ever) provides information about how the document is structured
or what it means. In layman’s terms, HTML is a presentation language, whereas
XML is a data-description language.

For example, if you were to go to any ecommerce Website and download a product
listing, you’d probably get something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>ABC Products</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>ABC Products</h1>
<h2>Product One</h2>
<p>Product One is an exciting new widget that will simplify your
 life.</p>
<p>Cost: $19.95</p>
<p>Shipping: $2.95</p>
<h2>Product Two</h2>
…
<h3>Product Three</h3>
<p><i>Cost: $24.95</i></p>
<p>This is such a terrific widget that you will most certainly
 want to buy one for your home and another one for your
 office!</p>
…
</body>
</html>

Take a good look at this—admittedly simple—code sample from a computer’s
perspective. A human can certainly read this document and make the necessary
semantic leaps to understand it, but a computer couldn’t.

3

Why Do We Need XML?

Semantics and Other Jargon

You’re going to be hearing a lot of talk about “semantics” and other linguistics terms in
this chapter. It’s unavoidable, so bear with me. Semantics is the study of meaning in lan-
guage.

Humans are much better at semantics than computers, because humans are really good
at deriving meaning. For example, if I asked you to list as many names for “female animals”
as you could, you’d probably start with “lioness”, “tigress”, “ewe”, “doe” and so on. If you
were presented with a list of these names and asked to provide a category that contained
them all, it’s likely you’d say something like “female animals.” Furthermore, if I asked
you what a lioness was, you’d say, “female lion.”

If I further asked you to list associated words, you might say “pride,” “hunt,” “savannah,”
“Africa,” and the like. From there, you could make the leap to other wild cats, then to
house cats and maybe even dogs (cats and dogs are both pets, after all). With very little
effort, you’d be able to build a stunning semantic landscape, as it were.

Needless to say, computers are really bad at this game, which is a shame, as many comput-
ing tasks require semantic skill. That's why we need to give computers as much help as
we can.

For example, a human can probably deduce that the <h2> tag in the above docu-
ment has been used to tag a product name within a product listing. Furthermore,
a human might be able to guess that the first paragraph after an <h2> holds the
description, and that the next two paragraphs contain price and shipping inform-
ation, in bold.

However, even a cursory glance at the rest of the document reveals some very
human errors. For example, the last product name is encapsulated in <h3> tags,
not <h2> tags. This last product listing also displays a price before the description,
and the price is italicized instead of appearing in bold.

A computer program (and even some humans) that tried to decipher this docu-
ment wouldn’t be able to make the kinds of semantic leaps required to make
sense of it. The computer would be able only to render the document to a browser
with the styles associated with each tag. HTML is chiefly a set of instructions
for rendering documents inside a Web browser; it's not a method of structuring
documents to bring out their meaning.

If the above document were created in XML, it might look a little like this:

<?xml version="1.0"?>
<productListing title="ABC Products">

4

Chapter 1: Introduction to XML

 <product>
 <name>Product One</name>
 <description>Product One is an exciting new widget that will
 simplify your life.</description>
 <cost>$19.95</cost>
 <shipping>$2.95</shipping>
 </product>
 <product>
 <name>Product Two</name>
 …
 </product>
 <product>
 <name>Product Three</name>
 <description>This is such a terrific widget that you will
 most certainly want to buy one for your home and another one
 for your office!</p>
 <cost>$24.95</cost>
 <shipping>$0.00</shipping>
 </product>
 …
</productListing>

Notice that this new document contains absolutely no information about display.
What does a <product> tag look like in a browser? Beats me—we haven’t defined
that yet. Later on, we'll see how you can use technologies like CSS and XSLT to
transform your XML into any format you like. Essentially, XML allows you to
separate information from presentation—just one of its many powerful abilities.

When we concentrate on a document's structure, as we’ve done here, we are
better able to ensure that our information is correct. In theory, we should be able
to look at any XML document and understand instantly what’s going on. In the
example above, we know that a product listing contains products, and that each
product has a name, a description, a price, and a shipping cost. You could say,
rightly, that each XML document is self-describing, and is readable by both humans
and software.

Now, everyone makes mistakes, and XML programmers are no exception. Imagine
that you start to share your XML documents with another developer or company,
and, somewhere along the line, someone places a product's description after its
price. Normally, this wouldn’t be a big deal, but perhaps your Web application
requires that the description appears after the product name every time.

To ensure that everyone plays by the rules, you need a DTD (a document type
definition), or schema. Basically, a DTD provides instructions about the structure

5

Why Do We Need XML?

of your particular XML document. It's a lot like a rule book that states which
tags are legal, and where. Once you have a DTD in place, anyone who creates
product listings for your application will have to follow the rules. We’ll get into
DTDs a little later. For now, though, let’s continue with the basics.

A Closer Look at the XML Example
From the casual observer’s viewpoint, a given XML document, such as the one
we saw in the previous section, appears to be no more than a bunch of tags and
letters. But there’s more to it than that!

A Structural Viewpoint

Let’s consider our XML example from a structural standpoint. No, not the kind
of structure we bring to a document by marking it up with XML tags; let's look
at this example on a more granular level. I want to examine the contents of a
typical XML file, character by character.

The simplest XML elements contain an opening tag, a closing tag, and some
content. The opening tag begins with a left angle bracket (<), followed by an
element name that contains letters and numbers (but no spaces), and finishes
with a right angle bracket (>). In XML, content is usually parsed character data.
It could consist of plain text, other XML elements, and more exotic things like
XML entities, comments, and processing instructions (all of which we'll see later).
Following the content is the closing tag, which exhibits the same spelling and
capitalization as your opening tag, but with one tiny change: a / appears right
before the element name.

Here are a few examples of valid XML elements:

<myElement>some content here</myElement>
<elements>
 <myelement>one</myelement>
 <myelement>two</myelement>
</elements>

6

Chapter 1: Introduction to XML

Elements, Tags, or Nodes?

I'll refer to XML elements, XML tags, and XML nodes at different points in this book.
What’s the deal? Well, for the layman, these terms are interchangeable, but if you want
to get technical (and who’d want to do that in a technical book?) each has a very precise
meaning:

❑ An element consists of an opening tag, its attributes, any content, and a closing tag.

❑ A tag—either opening or closing—is used to mark the start or end of an element.

❑ A node is a part of the hierarchical structure that makes up an XML document. “Node”
is a generic term that applies to any type of XML document object, including elements,
attributes, comments, processing instructions, and plain text.

If you’re used to working with HTML, you’ve probably created many documents
that are missing end tags, use different capitalization in opening and closing tags,
and contain improperly nested tags.

You won’t be able to get away with any of that in XML! In this language, the
<myElement> tag is different from the <MYELEMENT> tag, and both are different
from the <myELEMENT> tag. If your opening tag is <myELEMENT> and your closing
tag is </Myelement>, your document won’t be valid.

If you use attributes on any elements, then attribute values must be single- or
double-quoted. No longer can you get by with bare attribute values like you did
in HTML! Let's see an example. The following is okay in HTML:

<h1 class=topHeader>

In XML, you’d have to put quotes (either single or double) around the attribute
value, like this:

<h1 class='topHeader'>

Also, if you nest your elements improperly (i.e. close an element before closing
another element that is inside it), your document won’t be valid. (I know I keep
mentioning validity—we’ll talk about it in detail soon!) For example, Web
browsers don't generally complain about the following:

Some text that is bolded, some that is <i>italicized</i>.

In XML, this improper nesting of elements would cause the program reading the
document to raise an error.

7

A Structural Viewpoint

As XML allows you to create any language you want, the inventors of XML had
to institute a special rule, which happens to be closely related to the proper
nesting rule. The rule states that each XML document must contain a single root
element in which all the document's other elements are contained. As we’ll see
later, almost every single piece of XML development you’ll do is facilitated by
this one simple rule.

Attributes

Did you notice the <productListing> opening tag in our example? Inside the
tag, following the element name, was the data title="ABC Products". This is
called an attribute.

You can think of attributes as adjectives—they provide additional information
about the element that may not make any sense as content. If you’ve worked
with HTML, you’re familiar with such attributes as the src (file source) on the
 tag.

What information should be contained in an attribute? What should appear
between the tags of an element? This is a subject of much debate, but don’t worry,
there really are no wrong answers here. Remember: you’re the one defining your
own language. Some developers (including me!) apply this rule of thumb: use
attributes to store data that doesn’t necessarily need to be displayed to a user of
the information. Another common rule of thumb is to consider the length of the
data. Potentially large data should be placed inside a tag; shorter data can be
placed in an attribute. Typically, attributes are used to “embellish” the data
contained within the tag.

Let’s examine this issue a little more closely. Let’s say that you wanted to create
an XML document to keep track of your DVD collection. Here’s a short snippet
of the code you might use:

<dvdCollection>
 <dvd>
 <id>1</id>
 <title>Raiders of the Lost Ark</title>
 <release-year>1981</release-year>
 <director>Steven Spielberg</director>
 <actors>
 <actor>Harrison Ford</actor>
 <actor>Karen Allen</actor>
 <actor>John Rhys-Davies</actor>
 </actors>

8

Chapter 1: Introduction to XML

 </dvd>
 ….
</dvdCollection>

It's unlikely that anyone who reads this document would need to know the ID
of any of the DVDs in your collection. So, we could safely store the ID as an at-
tribute of the <dvd> element instead, like this:

 <dvd id='1'>

In other parts of our DVD listing, the information seems a little bare. For instance,
we’re only displaying an actor’s name between the <actor> tags—we could include
much more information here. One way to do so is with the addition of attributes:

 <actor type="superstar" gender="male" age="50">Harrison Ford
 </actor>

In this case, though, I’d probably revert to our rule of thumb—most users would
probably want to know at least some of this information. So, let's convert some
of these attributes to elements:

 <actor type="superstar">
 <name>Harrison Ford</name>
 <gender>male</gender>
 <age>50</age>
 </actor>

Beware of Redundant Data

From a completely different perspective, one could argue that you shouldn’t
have all this repetitive information in your XML file. For example, your col-
lection's bound to include at least one other movie that stars Harrison Ford.
It would be smarter, from an architectural point of view, to have a separate
listing of actors with unique IDs to which you could link. We'll discuss these
questions at length throughout this book.

Empty-Element Tags

Some XML elements are said to be empty—they contain no content whatsoever.
Familiar examples are the img and br elements in HTML. In the case of img, for
example, all the element's information is contained in its tag's attributes. The

 tag, on the other hand, does not normally contain any attributes—it just
signifies a line break.

9

Empty-Element Tags

Remember that in XML all opening tags must be matched by a closing tag. For
empty elements, you can use a single empty-element tag to replace this:

<myEmptyElement></myEmptyElement>

with this:

<myEmptyElement/>

The / at the end of this tag basically tells the parser that the element starts and
ends right here. It’s an efficient shorthand method that you can use to mark up
empty elements quickly.

The XML Declaration

The line right at the top of our example is called the XML declaration:

<?xml version="1.0"?>

It’s not strictly necessary to include this line, but it’s the best way to make sure
that any device that reads the document will know that it's an XML document,
and to which version of XML it conforms.

Entities

I mentioned entities earlier. An entity is a handy construct that, at its simplest,
allows you to define special characters for insertion into your documents. If you’ve
worked with HTML, you know that the < entity inserts a literal < character
into a document. You can't use the actual character because it would be treated
as the start of a tag, so you replace it with the appropriate entity instead.

XML, true to its extensible nature, allows you to create your own entities. Let’s
say that your company’s copyright notice has to go on every single document.
Instead of typing this notice over and over again, you could create an entity ref-
erence called copyright_notice with the proper text, then use it in your XML
documents as ©right_notice;. What a time-saver!

We’ll cover entities in more detail later on.

More than Structure…

XML documents are more then just a sequence of elements. If you take another,
closer look at our product or DVD listing examples, you'll notice two things:

10

Chapter 1: Introduction to XML

❑ The documents are self-describing, as we’ve already discussed.

❑ The documents are really a hierarchy of nested objects.

Let’s elaborate on the first point very quickly. We’ve already said that most (if
not all) XML documents are self-describing. This feature, combined with all that
content encapsulated in opening and closing tags, takes all XML documents far
past the realm of mere data and into the revered halls of information.

Data can comprise a string of characters or numbers, such as 5551238888. This
string can represent anything from a laptop’s serial number, to a pharmacy’s
prescription ID, to a phone number in the United States. But the only way to
turn this data into information (and therefore make it useful) is to add context
to it—once you have context, you can be sure about what the data represents.
In short, <phone country='us'>5551238888</phone> leaves no doubt that this
seemingly arbitrary string of numbers is in fact a U.S. phone number.

When you take into account the second point—that an XML document is really
a hierarchy of objects—all sorts of possibilities open up. Remember what we
discussed before—that, in an XML document, one element contains all the others?
Well, that root element becomes the root of our hierarchical tree. You can think
of that tree as a family tree, with the root element having various children (in
this case, product elements), and each of those having various children (name,
description, and so on). In turn, each product element has various siblings (other
product elements) and a parent (the root), as shown in Figure 1.1.

Figure 1.1. The logical structure of an XML document.

11

More than Structure…

Because what we have is a tree, we should be able to travel up and down it, and
from side to side, with relative ease. From a programmatic stance, most of your
work with XML will focus on properly creating and navigating XML structures.

There's one final point about hierarchical trees that you should note. Before, we
talked about transforming data into information by adding context. Well, when
we start building hierarchies of information that indicate natural relationships
(known as taxonomies), we’ve just taken the first giant leap toward turning in-
formation into knowledge. That statement itself could spawn a whole other book,
so we'll just have to leave it at that and move on!

Formatting Issues
Earlier in this chapter, I made a point about XML allowing you to separate in-
formation from presentation. I also mentioned that you could use other techno-
logies, like CSS (Cascading Style Sheets) and XSLT (Extensible Stylesheet Lan-
guage Transformations), to make the information display in different contexts.

Notice that in XSLT, it’s “stylesheet,” but in CSS it’s “style sheet”! For the
sake of consistency, we'll call them all “style sheets” in this book.

In later chapters, I’ll go into plenty of detail on both CSS and XSLT, but I wanted
to make a brief point here. Because we’ve taken the time to create XML docu-
ments, our information is no longer locked up inside proprietary formats such
as word processors or spreadsheets. Furthermore, it no longer has to be “re-cre-
ated” every time you want to create alternate displays of that information: all
you have to do is create a style sheet or transformation to make your XML
presentable in a given medium.

For example, if you stored your information in a word processing program, it
would contain all kinds of information about the way it should appear on the
printed page—lots of bolding, font sizes, and tables. Unfortunately, if that docu-
ment also had to be posted to the Web as an HTML document, someone would
have to convert it (either manually or via software), clean it up, and test it. Then,
if someone else made changes to the original document, those changes wouldn’t
cascade to the HTML version. If yet another person wanted to take the same
information and use it in a slide presentation, they might run the risk of using
outdated information from the HTML version. Even if they did get the right in-
formation into their presentation, you'd still need to track three locations in
which your information lived. As you can see, it can get pretty messy!

12

Chapter 1: Introduction to XML

Now, if the same information were stored in XML, you could create three different
XSLT files to transform the XML into HTML, a slide presentation, and a printer-
friendly file format such as PostScript. If you made changes to the XML file, the
other files would also change automatically once you passed the XML file through
the process. (This notion, by the way, is an essential component of single-
sourcing—i.e. having a “single source” for any given information that's reused in
another application.)

As you can see, separating information from presentation makes your XML
documents reusable, and can save hassles and headaches in environments in
which a lot of information needs to be stored, processed, handled, and exchanged.

Here's another example. This book will actually be stored as XML (in the DocBook
schema). That means the publisher can generate sample PDFs for its Website,
make print-ready files for the printer, and potentially create ebooks in the future.
All formats will be generated from the same source, and all will be created using
different style sheets to process the base XML files.

Well-Formedness and Validity
We’ve talked a little bit about XML, what it’s used for, how it looks, how to
conceptualize it, and how to transform it. One of the most powerful advantages
of XML, of course, is that it allows you to define your own language.

However, this most powerful feature also exposes a great weakness of XML. If
all of us start defining our own languages, we run the risk of being unable to un-
derstand anything anyone else says. Thus, the creators of XML had to set down
some rules that would describe a “legal” XML document.

There are two levels of “legality” in XML:

❑ Well-formedness

❑ Validity

A well-formed XML document follows these rules (most of which we've already
discussed):

❑ An XML document must contain a single root element that contains all other
elements.

❑ All elements must be properly nested.

13

Well-Formedness and Validity

❑ All elements must be closed either with a closing tag or with a “self-closing”
empty-element tag (i.e. <tag/>).

❑ All attribute values must be quoted.

A valid XML document is both well-formed and follows all the rules set down
in that document’s DTD (document type definition). A valid document, then,
is nothing more then a well-formed document that adheres to its DTD.

The question then becomes, why have two levels of legality? A good question,
indeed!

For the most part, you will only care that your documents are well formed. In
fact, most XML parsers (software that reads your XML documents) are non-val-
idating (i.e. they don't care if your documents are valid)—and that includes those
found in Web browsers like Firefox and Internet Explorer. Well-formedness alone
allows you to create ad hoc XML documents that can be generated, added to an
application, and tested quickly.

For other applications that are more mission-critical, you'll want to use a DTD
within your XML documents, then run those documents through a validating
parser.

The bottom line? Well-formedness is mandatory, but validity is an extra, optional
step.

In the next section, we’ll practice using both validating and non-validating parsers
to get the hang of these tools.

Getting Your Hands Dirty
Okay, we’ve spent some time talking about XML and its potential, and examining
some of the neater aspects of it. Now, it’s time to do what I like best, and get
our hands dirty as we actually work on some documents.

The first thing we want to do is to create an XML document. For our purposes,
any XML document will do, but for the sake of continuity, let’s use the product
listing document we saw earlier in the chapter.

Here it is again, with a few more nodes added to it:

14

Chapter 1: Introduction to XML

File: myFirstXML.xml

<productListing title="ABC Products">
 <product>
 <name>Product One</name>
 <description>Product One is an exciting new widget that will
 simplify your life.</description>
 <cost>$19.95</cost>
 <shipping>$2.95</shipping>
 </product>
 <product>
 <name>Product Two</name>
 <description>Product Two is an exciting new widget that will
 make you jump up and down.</description>
 <cost>$29.95</cost>
 <shipping>$5.95</shipping>
 </product>
 <product>
 <name>Product Three</name>
 <description>Product Three is better than Product One and
 Product Two combined! It really is as good as we say it
is--or your money back. </description>
 <cost>$39.95</cost>
 <shipping>$5.95</shipping>
 </product>
</productListing>

Save this XML markup into a file and name it myFirstXML.xml. In the next few
sections, we’ll be viewing the file in different browsers and experimenting with
parsers.

Viewing Raw XML in Internet Explorer
If you have Internet Explorer 5 or higher installed on your machine, you can view
your newly-created XML file. As Figure 1.2 illustrates, Internet Explorer simply
displays XML files as a series of indented nodes.

15

Viewing Raw XML in Internet Explorer

Figure 1.2. Viewing an XML file in Internet Explorer.

Notice the little minus signs next to some of the XML nodes? A minus sign in
front of a node indicates that the node contains other nodes. If you click the
minus sign, Internet Explorer will collapse all the child nodes belonging to that
node, as shown in Figure 1.3.

16

Chapter 1: Introduction to XML

Figure 1.3. Collapsing nodes displaying in Internet Explorer.

The little plus sign next to the first product node indicates that the node has
children. Clicking on the plus sign will expand any nodes under that particular
node. In this way, you can easily display the parts of the document on which you
want to focus.

Now, open your XML document in any text editing tool and scroll down to the
cost node of the second product. The line we’re interested in should read:

File: myFirstXML.xml (excerpt)

<cost>$29.95</cost>

Capitalize the “c” on the opening tag, so that the line reads like this:

17

Viewing Raw XML in Internet Explorer

<Cost>$29.95</cost>

Save your work and reload Internet Explorer. You should see an error message
that looks like the one pictured in Figure 1.4.

Figure 1.4. Error message displaying in Internet Explorer.

As you can see, Internet Explorer provides a rather verbose explanation of the
error it ran into: the end tag, </cost>, does not match the start tag, <Cost>.

Furthermore, it provides a nice visual of the offending line, a little arrow pointing
to the spot at which the parser thinks the problem arose.

18

Chapter 1: Introduction to XML

<Cost>$29.95</cost>
--------------^

Even though the problem is really with the start tag, the arrow points to the end
tag. Because Internet Explorer uses a non-validating parser by default (remember,
this means it only cares about well-formedness rules), it runs into problems at
the end tag. You now have to backtrack to find out why that particular end tag
caused such a problem. Once you get the hang of this debugging method, you'll
find it a great help in tracking down problems.

Let’s introduce a slightly more complex problem. Open your XML document in
an editor once more, and fix the problem we introduced above. Then, go to the
second-last line of the document (it should read </product>) and add a <product>
tag in front of it. Save your work and reload your browser.

You should see an error message similar to the one shown in Figure 1.5.

Figure 1.5. Debugging a more complex error.

At first glance, this error message seems a bit more obscure than the previous
one. For starters, this message seems to indicate a problem with the </product-
Listing> end tag. However, look closely and what do you see? It says that the
</productListing> end tag does not match the <product> start tag. That’s ex-

19

Viewing Raw XML in Internet Explorer

actly what’s wrong! Someone introduced a <product> start tag and didn’t close
it properly.

I’m including this example because bad nesting is one of the most common errors
introduced to XML documents. This kind of error can be subtle and hard to find,
especially if you’re doing a lot of editing, or if your document is complex or long.

Viewing Raw XML in Firefox
You can also use Firefox (and other Mozilla browsers like Netscape 8) to view
your XML files. Firefox is a popular open-source browser, and at the time this
book went to print the latest version was 1.0.4. You can download a free copy
from the Mozilla website[1].

Viewing raw XML in Firefox is basically the same as viewing it in Internet Ex-
plorer, as you can see from Figure 1.6.

Firefox’s built-in parser is non-validating, so you won’t be able to use it to check
for document validity. However, it's comforting to know that the good folks at
the Mozilla Foundation are planning to add a validating parser in a future release
of the browser.

Options for Using a Validating Parser
Okay, so both Internet Explorer and Firefox will check your XML for well-
formedness, but you need to know for future reference how to check that an
XML file is valid (i.e. conforms to a DTD). How do you do that?

Well, there are a couple of options, listed below.

Using an Online Validating Parser

There are various well-known online validating XML parsers. All you have to do
is visit the appropriate page, upload your document, and the parser will validate
it. Brown University’s Scholarly Technology Group sponsors one of the most
famous parsers:

http://www.stg.brown.edu/service/xmlvalid/

[1] http://www.mozilla.org/

20

Chapter 1: Introduction to XML

http://www.mozilla.org/
http://www.stg.brown.edu/service/xmlvalid/

Figure 1.6. Viewing raw XML in Firefox.

Using a Local Validating Parser

Sometimes, it may be impractical to use a Website to validate your XML because
of issues relating to connectivity, privacy, or security. In any of these cases, it’s
a good idea to download one of the freely available solutions.

❑ If you’re familiar with Perl, you can use any of the outstanding parser modules
written for that language, all of which are available at CPAN.org[3].

❑ If you’re comfortable with C++ or Visual Basic, then give MSXML by Mi-
crosoft[4] a try.

[3] http://www.cpan.org
[4] http://www.microsoft.com/

21

Using a Local Validating Parser

http://www.cpan.org
http://www.microsoft.com/
http://www.microsoft.com/

❑ IBM offers a very good standalone validating parser called XML4J[5]. Just
download the package and install it by following the instructions provided.
Be warned, however, that you will have to know something about working
with Java tools and files before you can get this one installed successfully.

Using Dreamweaver

Dreamweaver isn’t just a tool for creating Web pages; it’s also an integrated de-
velopment environment (IDE) that offers a suite of development tools to the
interested Web developer.

One of Dreamweaver’s more interesting capabilities is its built-in XML validator.
This checks for well-formedness if the document has no DTD, and for well-
formedness and validity if a DTD is specified. If you don’t have a copy of
Dreamweaver, you can get a trial version[6] to play with.

To validate an XML document, choose File > Check Page in Dreamweaver, then
select Validate as XML. Results of the validation will appear under the Results area,
as illustrated in Figure 1.7.

Figure 1.7. Dreamweaver MX's validating XML parser.

[5] http://www.alphaworks.ibm.com/tech/xml4j
[6] http://www.macromedia.com/go/trydreamweaver

22

Chapter 1: Introduction to XML

http://www.alphaworks.ibm.com/tech/xml4j
http://www.macromedia.com/go/trydreamweaver

What if I Can’t Get a Validating Parser?
If you can’t get your hands on a validating parser, don’t panic. For most purposes,
an online resource will do the job nicely. If you work in a company that has an
established software development group, chances are that one of the XML-savvy
developers has already set up a good validating parser.

What about the content management system we'll work on through the course
of this book? Well, we won’t need to validate our XML documents until we get
close to the project's end, when we start to deal with Web Services, and need to
figure out how to accept XML content from (and send content to) organizations
in the world at large.

Starting Our CMS Project
Now that we’ve introduced XML and played around with some documents and
parsers, it’s time to start our project. Throughout this book, we’ll spend time
building an XML-powered Website. Specifically, we’re going to build an XML-
powered content management system. This project will help ground your skills
as you obtain firsthand experience with practical XML development techniques,
issues, and processes.

So… What’s a Content Management System?
A content management system (henceforth referred to as a CMS) is a piece of
server-side software that's used to create, publish, and maintain content easily
and efficiently on a Website. It usually consists of the following components:

❑ A data back-end (comprising XML or database tables) that contains all your
articles, news stories, images, and other content.

❑ A data display component—usually templates or other pages—onto which
your articles, images, etc., are “painted” by the CMS for display to site visitors.

❑ A data administration component. This usually comprises easy-to-use HTML
forms that allow site administrators to create, edit, publish, and delete articles
in some kind of secure workflow. The data administration portion of a CMS
is usually the most complicated, and this is the section on which you’ll likely
spend most of your development time.

23

What if I Can’t Get a Validating Parser?

Over the past decade, CMSs have been created using a range of different scripting
languages including Perl/CGI, ASP, TCL, JSP, Python, and PHP. Each of these
languages has its own pros and cons, but we'll use PHP with XML to build our
CMS.

Requirements Gathering
Before you build any kind of CMS, first you must gather information that defines
the basic requirements for the project.

The goal of the CMS is to make things easier for those who need to develop and
run the site. And making things easier means having to do more homework be-
forehand! Although you may groan at the thought of this kind of exercise, a set
of well-defined requirements can make the project run a lot more smoothly.

What kind of requirements do we need to gather? Essentially, requirements fall
into three major categories:

❑ What kind of content will the CMS handle? How is each type of content
broken down? (The more complete your understanding of this issue, the
easier it’ll be to create and manage your XML files.)

❑ Who will be visiting the site, and what behaviors do these users expect to
find? (For example, will they want to browse a hierarchical list of articles,
search for articles by keyword, see links to related articles, or all three?)

❑ What do the site administrators need to do? (For example, they may need to
log in securely, create content, edit content, publish content, and delete con-
tent. If your CMS will provide different roles for administrative users—such
as site administrators, editors, and writers—your system will become more
complex.)

As you can see, we’ve barely scratched the surface, and already we’ve uncovered
a number of issues that need addressing. Let’s tackle them one at a time.

CMS Content and Metadata

If you’re going to build a content management system, it’s logical to expect that
you’re going to want to put content into it. However, it's not always that easy!

The most common failing I’ve seen on dozens of CMS engagements on which
I’ve worked is that most of the companies that actually take the time to think

24

Chapter 1: Introduction to XML

about content only think about one thing: “articles!” I’m not exactly sure why
that is, but I’d venture to guess that articles are what most folks are exposed to
when they read newspapers, magazines, or Websites, so it's the first—and
only—content type that comes to mind.

But if you’re going to build a workable CMS, you'll have to think beyond “articles”
and define your content types more clearly. There’s a whole range of content
types that need management: PDFs, images, news stories, multimedia presenta-
tions, user reviews of whitepapers/PDFs, and much, much more. In the world of
XML, each of these different types of content is, naturally enough, called a doc-
ument type.

The second most common failing I see is an inability to successfully convince
site owners that content means more than just “articles.” What’s even harder is
to convince them that you have to know as much as you possibly can about each
content type if you’re going to successfully build their CMS.

It’s not good enough to know that you’ll be serving PDF files, news stories, images,
and so on. You also have to know how each of these content types will break out
into its separate components, or metadata. Metadata means “data about data”
and it is immensely useful to the CMS developer. Each article, for instance, will
have various pieces of metadata, such as a headline, author name, and keywords,
each of which the CMS needs to track.

The only way to understand a content type’s metadata is to research it—in other
words, ask yourself and others a whole lot of questions about that piece of content.

The final challenge—to define various types of metadata—can be a blessing in
disguise. In my experience, once people grasp the importance of metadata, they
race off in every direction and collect every single piece of metadata they can
find about a given content type. Usually, we developers end up with random bits
of information that aren’t very useful and will never be used. For example, the
client might start to track the date on which an article is first drafted. In most
cases, this is unimportant information—the reader certainly doesn’t care!

Obviously, it’s important to look for the right kinds of metadata, like these:

Provenance Metadata
Who created the content? When? When was it first published? When should
it automatically be removed from the site, or archived? How is this document
uniquely identified in the system? Who holds the copyright to it?

25

CMS Content and Metadata

Organizational/Administrative Metadata
If you’re using category listings for your content, where will any individual
piece of content live within that category system? What other content is it
related to? Which keywords describe the content for indexing or search pur-
poses (in other words, how do we find the content)? Who should have access
to the content (the entire public, only site subscribers, or company staff)?

Physical/Structural Metadata
Is the content ASCII text, an XML snippet, or a binary file, like a PDF or
image? If it’s a file, where does it reside on the server? What is the file’s
MIME type?

Descriptive Metadata
If it’s an article, what's the headline? Does the CMS view an article body as
being separate from headings and paragraphs, or are all these items seen as
one big lump of XML?

Gathering metadata can be very tricky. Let’s take a look at a seemingly trivial
issue: handling metadata about authors of articles. At first glance, we could say
that all of our articles should contain elements for author name and email address,
and leave it at that. However, we may later decide that we want site visitors to
search or browse articles by author. In this case, it would make more sense to
have a centralized list of authors, each with his or her own unique ID. This would
eliminate the possibility of our having Tom Myer and Thomas Myer as “separate”
authors just because the name was entered differently in individual articles.

Having a separate author listing would also allow us to easily set bylines for each
author, in case someone decided they wanted to publish pieces under a pen name.
It would also allow us to track author information across content types. We’d
know, for instance, if a particular author has penned articles, written reviews, or
uploaded files. Of course, agreeing on this approach means that we need to do
other work later on, such as building administrative interfaces for author listings.

Once you’ve figured out the metadata required for a given content type, you can
move on to the next content type. Eventually, you'll have a clear picture of all
the content types you want your site to support.

What’s the point of all this activity? Well, just think of metadata as one of the
three pillars of your XML-powered CMS. (The other two are site functionality
and site design. In many ways, metadata affect both and, thus, the user's experi-
ence of your site.) Every piece of metadata could potentially drive some kind of site beha-

26

Chapter 1: Introduction to XML

vior, but each piece of metadata also must be managed by the administration tools you set
up.

Site Behavior

Site behavior should always be based on (and driven by) metadata. For example,
if you’re collecting keywords for all of your articles, you should be able to build
a keyword-driven search engine for your site. If you’re not collecting keyword
information and want a keyword-driven search engine, you’d better back up and
figure out how to add that to your content types.

Typical site behavior for a CMS-powered Website includes browsing by content
categories, browsing by author, searching on titles and keywords, dynamic news
sidebars, and more. Additionally, many XML- and database-powered sites feature
homepages that boast dynamically updated content, such as Top Ten Downloads,
latest news headlines, and so on.

CMS Administration

Our CMS will need to have an administrative component for each content type.
It will also have to administer pieces of information that have nothing to do with
content types, such as which users are authorized to log in to the CMS, and the
privileges each of them has.

It goes without saying that your administrative interface has to be secure, other-
wise, anyone could click to your CMS and start deleting content, making unau-
thorized changes to existing content, or adding new content that you may not
want to have on your site.

In cases in which more than one person or department is involved with publishing
content via the CMS, you’ll need to consider workflow. A workflow is simply a
set of rules that allow you to define who does what, when, and how. For example,
your workflow might stipulate that a user with writer privileges may create an
article, but that only a production editor can approve that content for publication
on the site.

In many cases, CMS workflows emulate actual workflows that exist in publication
and marketing departments. Because we’re dealing with XML, we have a great
opportunity to build a workflow system that's modular and flexible enough to
take into account different requirements.

27

Site Behavior

Defining your Content Types
We want to publish articles and news stories on our site. We definitely want to
keep track of authors and site administrators, and we also want to build a search
engine. We will also need to keep a record of all the copy on each of our site’s
pages, as well as binary files such as images and PDFs. That's a lot of work! For
now, let's just step through the process of defining an article.

You may be asking, “Why are we messing around with content types at all?” It
does seem like a silly thing for a developer to be doing, but it’s actually the most
vital task in building an XML-powered site. Whenever I build an XML-powered
application, I try to define the content types first, because I find that all the
other elements cascade from there. Because we’ve already spent some time dis-
cussing the structure of XML documents, and gathering requirements for the
documents that will reside in our system, let’s jump right in and start to define
our article content type.

Articles

The articles in our CMS will be the mainstay of our site. In addition to the article
text, each of our articles will be endowed with the following pieces of metadata:

❑ A unique identifier

❑ A headline

❑ A short description

❑ An author

❑ A keyword listing

❑ A publication date, which records when an article went live

❑ Its status

Our article content type requires a root element that contains all the others; we
can use <article> as that element. This not only makes sense from a “keep it
simple” standpoint, but it is semantically appropriate, too.

Furthermore, because we need to identify each article in our system uniquely
with an ID of some sort, it makes sense to add an id attribute to the root element

28

Chapter 1: Introduction to XML

that will contain this value. A unique identifier will ensure that no mistakes occur
when we try to edit, delete, or view an existing article.

Now, each of our articles will have an author, so we need to reserve a spot for
that information. There are literally dozens of ways to do this, but we'll take the
simplest approach for now:

<article id="123">
 <author>Tom Myer</author>
</article>

Looking for the DTD?

In Chapter 3, we'll discuss document type definitions (DTDs)—the traditional
means to structure the rules for an XML file—in detail. For now, I think it
makes more sense to continue our discussion in the direction we've already
chosen.

Our article will need a headline, a short description, a publication date, and some
keywords. The <headline> is very simple—it can have its own element nested
under the <article> element. Likewise, the <description> and <pubdate> ele-
ments will be nested under <article>.

The keyword listing can be handled in one of two ways. You could create under
<article> a <keywords> element that itself was able to contain numerous
<keyword> items:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>
 <keyword>XML</keyword>
 <keyword>CMS</keyword>
 </keywords>
</article>

This approach will satisfy the structure nuts out there, but it turns out to be too
complicated for the way we will eventually use these keywords. It turns out that
all you really need is to list your keywords in a single <keywords> element, sep-
arated by spaces:

29

Articles

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>XML CMS</keywords>
</article>

Since individual keywords won't really have any importance in our system, this
way of storing them works just fine.

Let's take a look at our growing XML document:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>XML CMS</keywords>
</article>

We also need to track status information on the article. Because we don’t need
very robust workflows in this application, we can keep our status list very short,
to “in progress” and “live.”

Any article that is “in progress” will not be displayed on the live Website. It’s a
piece of content that's being worked on internally. Any article that is “live” will
be displayed.

The easiest way to keep track of this information is to add a <status> element
to our document:

 <status>in progress</status>

However, you probably already see that status is very similar to keyword listings
in that it has the potential to belong to many different content types. As such,
it makes sense to centralize this information. We’ll address this issue later, but
for now, we’ll continue to store status information in each article.

Now, we have to do something about the article’s body. As most of our content
will be displayed in a Web browser, it makes sense to use as many tags as possible
that a browser like IE or Firefox can already understand. So HTML will form the
basis of our article body's code. But for the purposes of our article storage system,

30

Chapter 1: Introduction to XML

we want to treat all of the HTML tags and text that make up the document body
as a simple text string, rather than having to handle every single HTML tag that
could appear in the article body. The best way to do this is to use a CDATA
section within our XML document. XML parsers ignore tags, comments, and
other XML syntax within a CDATA section—it simply passes the code through
as a text string, without trying to interpret it. Here's what this looks like:

 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>Here is all of our paragraph information. . .</p>
]]></body>

Well, we’re done with articles! They now look like this:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>In this article…</p>
]]></body>
</article>

Gathering Requirements for Content Display
We now understand our article content type, which defines most of the content
we’ll display on the site. Now, let’s talk about our requirements for displaying
content.

❑ The display side of our site will only display articles and other content that
have a status of “live.”

❑ The search engine will retrieve content by keywords, titles, and descriptions,
and only display those pieces that have a status of live.

❑ The Website will display a list of author names by which site visitors can
browse content, but it will only display those authors who have live articles
posted on the site.

31

Gathering Requirements for Content Display

Gathering Requirements for the Administrative
Tool

Let’s talk briefly about the administrative tool. Here are some of the project's
administration requirements:

❑ All CMS users must log into the administrative tool. All passwords set for
administrators will be encrypted before they're stored.

❑ Each content type will have its own page through which users may list, add,
edit, and delete individual pieces of content.

❑ The same is true for authors and administrators. If you view an author listing,
the CMS will display all pieces of content authored by that person.

❑ The CMS will provide an easy method to update status, keyword, and other
details for each piece of content on the site. Administrators will be able to
group this information by status or content type.

Great—this is enough detail to get us started!

Summary
In this first chapter, we've discussed basic XML concepts, talked about the im-
portance of the requirements gathering process, and performed an analysis to
come up with content types and application requirements for our XML-powered
CMS.

In the next chapter, we’re going to delve deeper into XML, covering such topics
as basic XSLT and XPath. We’ll get our hands dirty with a little XSLT and start
thinking about how we should display articles on our CMS-powered Website.

32

Chapter 1: Introduction to XML

XML in Practice2
The last chapter introduced some basic concepts in XML and saw us start our
CMS project. In this chapter, we’re going to dig a little deeper into XML as we
talk about namespaces, XHTML, XSLT, and CSS. In the process, we'll have take
a couple of opportunities to make XML do something.

Meet the Family
In Chapter 1, we learned a few things about how XML is structured and what
you can do with it. My goal for that chapter was to show you how flexible XML
really is.

In this chapter, I’d like to zoom out a little and introduce you to some of the
wacky siblings that make up the XML “Family of Technologies.” Although I’m
going to list a number of tools and technologies here, we’ll cover only a few in
this chapter. We'll explore some of the others in later chapters, but some will not
be covered at all (sorry, but this would be a very long and boring book if we gave
equal space to everything).

XSLT
XSLT stands for Extensible Stylesheet Language Transformations. It is both
a style sheet specification and a kind of programming language that allows
you to transform an XML document into the format of your choice: stripped

ASCII text, HTML, RTF, and even other dialects of XML. In this chapter,
you’ll be introduced to XSLT concepts; later in the book, we’ll explore these
in more depth. XSLT uses XPath and several other technologies to do its
work.

XPath
XPath is a language for locating and processing nodes in an XML document.
Because each XML document is, by definition, a hierarchical structure, it
becomes possible to navigate this structure in a logical, formal way (i.e. by
following a path).

DTD and XML Schema
A document type definition (DTD) is a set of rules that governs the order in
which your elements can be used, and the kind of information each can
contain. XML Schema is a newer standard with capabilities that extend far
beyond those of DTDs. While a DTD can provide only general control over
element ordering and containment, schemas are a lot more specific. They
can, for example, allow elements to appear only a certain number of times,
or require that elements contain specific types of data such as dates and
numbers.

Both technologies allow you to set rules for the contents of your XML docu-
ments. If you need to share your XML documents with another group, or
you must rely on receiving well-formed XML from someone else, these tech-
nologies can help ensure that your particular set of rules is properly followed.
We will explore both of these technologies with loving attention in Chapter 3.

XML Namespaces
The ability of XML to allow you to define your own elements provides flex-
ibility and scope. But it also creates the strong possibility that, when combin-
ing XML content from different sources, you’ll experience clashes between
code in which the same element names serve very different purposes. For
example, if you're running a bookstore, your use of <title> tags in XML
may be used to track book titles. A mortgage broker would use <title> in a
different way—perhaps to track the title on a deed. A dentist or doctor might
use <title> to track patients' formal titles (Mr., Ms., Mrs., or Dr.) on their
medical records. Try to combine all three types of information into one system
(or even one document), and you'll quickly see how problems can arise.

XML namespaces attempt to keep different semantic usages of the same XML
elements separate and unambiguous. In our example, each person could define
their own namespace and then prepend the name of their namespace to

34

Chapter 2: XML in Practice

specific tags: <book:title> is different from <broker:title> and
<medrec:title>. Namespaces, by the way, are one of the technologies that
make XSLT and XSD work.

XHTML
XHTML stands for Extensible Hypertext Markup Language. Technically
speaking, it’s a reformulation of HTML 4.01 as an application of XML, and
is not part of the XML family of technologies. To save your brain from
complete meltdown, it might be simplest to think of XHTML as a standard
for HTML markup tags that follow all the well-formedness rules of XML we
covered earlier.

What’s the point of that, you might ask? Well, there are tons and tons and
tons of Websites out there that already use HTML. No one in their right
mind could reasonably expect them all to switch to XML overnight. But we
can expect that some of these pages—and a large percentage of the new pages
that are being coded as you read this—will make the transition thanks to
XHTML.

As you can see, the XML family of technologies is a pretty big group—those XML
family reunions are undoubtedly interesting! It’s also important to note that
these technologies are open standards-based, which means that any new XML
technologies (or proposed changes to existing ones) must follow a public process
set down by the W3C (the World Wide Web Consortium[1]) in order to gain
acceptance in the community.

Although this means that some ideas take quite a while to reach fruition, and
tend to be built by committee, it also means that no single vendor is in total
control of XML. And this, as Martha Stewart might say, is a good thing.

A Closer Look at XHTML
Imagine you're at a cocktail party and somebody asks, “Okay, what's XHTML
really?” You needed to tell them something (besides, “Hey, I’m trying to have a
relaxing cocktail here!”). So, what do you say? Not sure? That’s what I thought.

Because this is a book about XML and not XHTML, and because there are plenty
of terrific books out there on XHTML, I don’t want to get into too much detail
about the technology here. However, I do feel that a basic knowledge of XHTML

[1] http://www.w3.org

35

A Closer Look at XHTML

http://www.w3.org

will serve you well, and will help to reinforce the concepts we’ve already intro-
duced.

So, back to our cocktail party. Here are some answers that you might give in that
situation:

❑ XHTML stands for Extensible HyperText Markup Language.

❑ XHTML is designed to replace HTML.

❑ XHTML uses the HTML 4.01 tag set, but is written using the XML syntax
rules.

❑ XHTML is a stricter, cleaner version of HTML.

Why do we need XHTML? Well, put bluntly, the Web has reached a point at
which just about anything will fly when it comes to HTML documents. Take a
look at the following snippet:

<html><title>My example</title>
<h1>Hello</h1>

Believe it or not, that snippet will render without a problem in most Web
browsers. And so will this:

<p><i>Hello

So will this:

Hello

I don’t want to start some kind of crusade about HTML structure, but hey,
enough is enough! Web pages represent structured information, so please, let’s
at least maintain some semblance of structure! At its most basic, XHTML was
designed to form a kind of bridge between the loosy-goosy world of HTML and
the more rigid structure of XML.

Remember that list of statements about XHTML we saw a moment ago? Well,
here's another way to think about XHTML:

❑ XHTML consists of all HTML 4.01 elements combined with the syntax of
XML.

36

Chapter 2: XML in Practice

Simple! But, exactly what does this mean? Well, if you recall what we said in
Chapter 1 about well-formed XML documents, you can make some very good
guesses:

1. XHTML documents must contain a root element that contains all other
elements. (In most cases, the html element!)

2. XHTML elements must be properly nested.

<p>This is a sentence.</p>

3. All XHTML elements must have closing tags (even empty ones).

<td></td>

Don't Slash Backwards Compatibility

Older browsers, such as Netscape 4, which do not recognize XML syntax,
will become confused by self-closing tags like
. By simply adding
a space before the slash (
), you can ensure that these browsers
will ignore the slash and interpret the tag correctly.

4. All XHTML attribute values must be placed between quotes.

<input type="button" name="submit" value="click to finish" />

5. All XHTML element and attribute names must be written in lowercase.

<tr valign="top">

6. Each XHTML document must have a DOCTYPE declaration at the top.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

There are three XHTML DOCTYPES:

Strict
Use this with CSS to minimize presentational clutter. In fact, the Strict
DOCTYPE expressly prohibits the use of HTML’s presentation tags.

37

A Closer Look at XHTML

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional
Use this to take advantage of HTML’s presentational features and/or when
you're supporting non-CSS browsers.

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Frameset
Use this when you want to use frames to partition the screen.

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

A Minimalist XHTML Example
Here's a very simple document that illustrates the rules above:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>A very simple XHTML document</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>a simple paragraph that contains a properly formatted

break and some <i>properly nested</i> formatting.</p>
<div><img src="myphoto.jpg" alt="notice that all my quotes are in
place for attribute values" /></div>
</body>
</html>

That’s more than enough information about XHTML for the moment. Let’s move
on to discuss namespaces and XSLT.

38

Chapter 2: XML in Practice

XML Namespaces
XML Namespaces were invented to rectify a common problem: the collision of
documents using identical element names for different data.

Let’s revisit our namespace example from this chapter’s introduction. Imagine
you were running a bookstore and had an inventory file (called inventory.xml,
naturally), in which you used a title element to store book titles. Let’s also say
that—unlikely though it sounds—your XML document becomes mixed in with
a mortgage broker’s master record file. In this file, the mortgage broker has used
title to store information about a property’s legal title.

A human being could probably figure out that one title has nothing to do with
the other, but an application that tried to sort it out would go nuts. We need to
have a way to distinguish between the two different semantic universes in which
these identical terms exist.

Let’s get even more ambiguous: imagine you had an inventory.xml file in your
bookstore that used the title element to store book titles, and a separate
sales.xml file that used the title element to store the same information, but
in a completely different context. Your inventory file stores information about
books on the shelf, but the sales file stores information about books that have
been bought by customers.

In either situation, regardless of the chasm that lies between the contexts of these
identical terms, we need a way to properly label each context.

Namespaces to the rescue! XML namespaces allow you to create a unique
namespace based on a URI (Uniform Resource Identifier), give that namespace
a prefix, and apply that prefix to XML document elements.

Declaring Namespaces
To use and declare a namespace, we must first tie the namespace to a URI. Notice
that I didn’t say URL—a specific location that you can reach (although a URI
can be a URL). A URI is simply a unique identifier that distinguishes one thing
(say, an XML document standard) from another. URIs can take the following
forms:

URL Uniform Resource Locator: a specific protocol, machine address, and
file path (e.g. http://www.tripledogdaremedia.com/index.php).

39

XML Namespaces

URN Uniform Resource Name: a persistent name that doesn’t point to an
actual location for the resource, but still identifies it uniquely. For
example, all published books have an ISBN. The ISBN uniquely
identifies the book, but nowhere in the ISBN is there any indication
as to which shelf it sits on in any particular bookstore. However, armed
with the ISBN, you could walk into the store, ask an employee to
search for you, and they could take you right to the book (provided,
of course, that it was in stock).

The following are examples of good URIs:

http://www.tripledogdaremedia.com/XML/Namespaces/1
urn:bookstore-inventory-namespace

We want to use our namespace throughout our XML documents, though, and
the last thing we want to do is type out an entire URI every time we need to
distinguish one context from another. So, we define a prefix to represent our
namespace to ease the strain on our typing fingers:

inv="urn:bookstore-inventory-namespace"

But, wait—we’re not done yet! We need a way to tell the XML parser that we’re
creating a namespace. The agreed way to do that is to prefix the namespace de-
claration with xmlns:, like this:

xmlns:inv="urn:bookstore-inventory-namespace"

At this point, we have something useful. If we needed to, we could add our prefix
to appropriate elements to disambiguate (I love that term!) any potentially am-
biguous usage, like this:

<inv:title>Build Your Own XML-Powered Web Site</inv:title>
<title>Title Deed to the house on 123 Main St., YourTown</title>

Namespaces make it very clear that <inv:title> is very different from <title>.

But, where do we put our namespace declaration?

Placing Namespace Declarations in your XML
Documents

In most cases, placing your namespace declarations will be rather easy. They're
commonly located in the root element of a document, like so:

40

Chapter 2: XML in Practice

<inventory xmlns:inv="urn:bookstore-inventory-namespace">
…
</inventory>

Please note, however, that namespaces have scope. Namespaces affect the element
in which they are declared, as well as all the child elements of that element. In
fact, as you'll see when we discuss XSLT later, we'll use the xsl prefix in the very
element in which we define the XSL namespace:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml"
 version="1.0">

Any namespace declaration that's placed in a document’s root element becomes
available to all elements in that document. However, if you want to limit your
namespace scope to a certain part of a document, feel free to do so—remembering,
of course, that this can get pretty tricky. My advice is to declare your namespaces
in the document’s root element, then use the prefixes when you need them.

Using Default Namespaces
It would become pretty tiresome to have to type a prefix for every single element
in a document. Fortunately, you can declare a default namespace that doesn’t
contain a prefix. This namespace will apply to all elements that don’t contain
prefixes.

Let’s take another look at a typical opening <xsl:stylesheet> tag for an XSLT
file:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml"
 version="1.0">

Notice the non-prefixed namespace: xmlns="http://www.w3.org/1999/xhtml"
In an XSLT file, this namespace governs all elements that aren’t specifically pre-
fixed as XSLT elements, identifying them as XHTML tags. On the other side of
the coin, all XSLT elements must be given the xsl: prefix.

41

Using Default Namespaces

Using CSS to Display XML In a Browser
The most powerful tools available for displaying XML in a browser are XSLT
and Cascading Style Sheets (CSS). Because XSLT can be quite a tricky undertak-
ing for newbies, I’ve decided to let you practice with CSS first!

The first step in working with CSS is to create a basic XML file:

File: letter.xml (excerpt)

<?xml version="1.0"?>
<letter>
 <to>Mom</to>
 <from>Tom</from>
 <message>Happy Mother's Day</message>
</letter>

As XML documents go, this one could be made a lot simpler, but there’s no point
in making things too simple. This document contains a root element (letter)
that contains three other elements (to, from, and message), each of which contains
text.

Now, we need to add a style sheet declaration that will point to the CSS document
we'll create. To associate a CSS style sheet with an XML file, use the <?xml-
stylesheet?>directive:

File: letter-css.xml (excerpt)

<?xml-stylesheet type="text/css" href="letter.css"?>

Finally, we write our CSS file, making sure that we provide a style for each element
in our XML file:

File: letter.css

letter {
 display: block;
 margin: 10px;
 padding: 5px;
 width: 300px;
 height: 100px;
 border: 1px solid #00000;
 overflow: auto;
 background-color: #cccccc;
 font: 12px Arial;
}

42

Chapter 2: XML in Practice

to, from {
 display: block;
 font-weight: bold;
}
message {
 display: block;
 font: 11px Arial;
}

When you display your XML document, you should see something similar to
Figure 2.1.

Figure 2.1. Viewing the CSS results in Internet Explorer.

As you can see, CSS did a marvelous job of rendering a nicely shaded box around
the entire letter, setting fonts, and even displaying things like margins and pad-
ding. What it didn’t allow us to do, however, was add text to the output. For
instance, we could use a “To:” in front of whatever text was in the to element.
If you want to have that kind of power, you’ll need to use XSLT.1

1Strictly speaking, the CSS standard does allow for this sort of thing with the content property,
which can produce generated text before and after document elements. Many browsers do not
support this property, however, and even those that do don't provide anywhere near the flexibility
of XSLT.

43

Using CSS to Display XML In a Browser

Getting to Know XSLT
XSLT, as I mentioned earlier in the chapter, stands for Extensible Stylesheet
Language Transformations. Think of it as a tool that you can use to transform
your XML documents into other documents. Here are some of the possibilities:

❑ Transform XML into HTML or raw ASCII text.

❑ Transform XML into other dialects of XML.

❑ Pull out all the passages tagged as Spanish, or French, or German to create
foreign-language versions of your XML document.

Not bad—and we've barely scratched the surface!

XSLT is a rules-based, or functional language. It's not like other programming
languages (e.g. PHP or JSP) that are procedural or object-oriented. Instead, XSLT
requires that you supply a series of rules (called “templates”) that tell it what to
do when it encounters the various elements of an XML document.

For instance, upon identifying an XML <para> tag in the input document, a rule
could instruct XSLT to convert it into an HTML <p> tag.

Because XSLT can be a little bewildering even for veteran programmers, the best
way to tackle it is to walk through a series of examples. That way, I can give you
the practical information you'll need to get started, and you can learn the key
concepts along the way. As with XHTML, countless books, articles, and Websites
are devoted to XSLT; use these to continue your education.

Your First XSLT Exercise
Let’s get started with XSLT. For our first exercise, we’ll reuse the very simple
Letter to Mother example we saw in the CSS section. We'll also create a very
basic Extensible Stylesheet Language (XSL) file to transform that XML. Keeping
both these elements simple will give us the opportunity to step through the major
concepts involved.

First, let’s create the XSL file. This file will contain all the instructions we'll need
in order to transform the XML elements into raw text.

In what will become a recurring theme in the world of XML, XSL files are in fact
XML files in their own right. They must therefore follow the rules that apply to

44

Chapter 2: XML in Practice

all XML documents: an XSL file must contain a root element, all attribute values
must be quoted, and so on.

All XSL documents begin with a stylesheet element This element contains in-
formation that the XSLT processor needs to do its job:

File: letter2text.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The version attribute is required. In most cases, you'd use 1.0, as this is the
most widely supported version at the time of this writing.

The xmlns:xsl attribute is used to declare an XML namespace with the prefix
xsl. For your stylesheet transformation to work at all, you must declare an XML
namespace for the URI http://www.w3.org/1999/XSL/Transform in your
opening <stylesheet> tag. In our example, we will use an xsl prefix on all the
stylesheet-related tags in our XSL documents to associate them with this
namespace. You'll find this is common practice when working with XSLT.

The next element will be the output element, which is used to define the type
of output you want from the XSL file. For this first example, we’ll use text as
our method:

File: letter2text.xsl (excerpt)

 <xsl:output method="text"/>

Other possible values for the method attribute include html and xml, but we’ll
cover those a little later.

Now we come to the heart of XSLT—the template and apply-templates ele-
ments. Together, these two elements make the transformations happen.

Put simply, the XSLT processor (for our immediate purposes, the browser) starts
reading the input document, looking for elements that match any of the template
elements in our style sheet. When one is found, the contents of the corresponding
template element tells the processor what to output before continuing its search.
Where a template contains an apply-templates element, the XSLT processor
will search for XML elements contained within the current element and apply
templates associated with them.

There are some exceptions and additional complications that we'll see as we move
forward, but for now, that’s really all there is to it.

45

Your First XSLT Exercise

The first thing we want to do is match the letter element that contains the rest
of our document. This is fairly straightforward:

File: letter2text.xsl (excerpt)

 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>

This very simple batch of XSLT simply states: “when you encounter a letter
element at the root of the document, apply any templates associated with the
elements it contains.” Let's break this down.

The <xsl:template> tag is used to create a template, with the match attribute
indicating which element(s) it should match. The value of this attribute is an
XPath expression (we'll learn more about XPath later). In this case, the /letter
value indicates that the template should match the letter elements at the root
of the document. Were the value simply letter, the template would match
letter elements throughout the document.

Now, this <xsl:template> tag contains only an <xsl:apply-templates> tag,
which means that it doesn't actually output anything itself. Rather, the
<xsl:apply-templates> tag sends the processor looking for other elements with
matching templates.

By default, apply-templates will match not only elements, but text and even
whitespace between the elements as well. XSLT processors have a set of default,
or implicit templates, one of which simply outputs any text or whitespace it
encounters. Since we want to ignore any text or whitespace that appears between
the tags inside <letter>, we use the select attribute of apply-templates to
tell the processor to look for child elements only in its search. We do this with
another XPath expression: * means “all child elements of the current element.”

Now, we've got our processor looking for elements inside letter, so we'd better
give it some templates to match them!

File: letter2text.xsl (excerpt)

 <xsl:template match="to">
TO: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="from">

FROM: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="message">

46

Chapter 2: XML in Practice

MESSAGE: <xsl:apply-templates/>
 </xsl:template>

Each of these templates matches one of the elements we expect to find inside the
letter element: to, from, and message. In each case, we output a text label (e.g.
TO:) and then use apply-templates to output the contents of the tag (remember,
in the absence of a select attribute that says otherwise, apply-templates will
output any text contained in the tags automatically).

The last thing we have to do in the XSL file is close off the stylesheet element
that began the file:

</xsl:stylesheet>

Our style sheet now looks like this:

File: letter2text.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>
 <xsl:template match="to">
 TO: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="from">
 FROM: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="message">
 MESSAGE: <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

While the logic of this style sheet is complete and correct, there's a slight
formatting issue left to be tackled. Left this way, the output would look something
like this:

 TO: Mom
 FROM: Tom
 MESSAGE: Happy Mother's Day

There's an extraneous line break at the top of the file, and each of the lines begins
with some unwanted whitespace. The line break and whitespace is actually

47

Your First XSLT Exercise

coming from the way we've formatted the code in the style sheet. Each of our
three main templates begins with a line break and then some whitespace before
the label, which is being carried through to the output.

But wait—what about the line break and whitespace that ends each template?
Why isn't that getting carried through to the output? Well by default, the XSLT
standard[2] mandates that whenever there in only whitespace (including line
breaks) between two tags, the whitespace should be ignored. But when there is
text between two tags (e.g. TO:), then the whitespace in and around that text
should be passed along to the output.

Avoid Whitespace Insanity

The vast majority of XML books and tutorials out there completely ignore
these whitespace treatment issues. And while it's true that whitespace doesn't
matter a lot of the time when you're dealing exclusively with XML documents
(as opposed to formatted text output), it's likely to sneak up on you and bite
you in the butt eventually. Best to get a good grasp of it now, rather than
waiting for insanity to set in when you least expect it.

The <xsl:text> tag is useful for controlling the effects of whitespace in our style
sheets. All it does is output the text it contains, even if it is just whitespace. Here's
the adjusted version of our style sheet, with <xsl:text> tags used to isolate text
we want to output:

File: letter2text.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>
 <xsl:template match="to">

<xsl:text>TO: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>
 </xsl:template>
 <xsl:template match="from">

<xsl:text>FROM: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>

[2] http://www.w3.org/TR/xslt#strip

48

Chapter 2: XML in Practice

http://www.w3.org/TR/xslt#strip
http://www.w3.org/TR/xslt#strip

 </xsl:template>
 <xsl:template match="message">

<xsl:text>MESSAGE: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Notice how each template now outputs its label (e.g. TO:) followed by a single
space, then finishes off with a line break. All the other whitespace in the style
sheet is ignored, since it isn't mixed with text. This gives us the fine control over
formatting that we need when outputting a plain text file.

Are we done yet? Not quite. We have to go back and add to our XML document
a style sheet declaration that will point to our XSL file, just like we did for the
CSS example. Simply open the XML document and insert the following line before
the opening <letter> element:

File: letter-text.xml (excerpt)

<?xml-stylesheet type="text/xsl" href="letter2text.xsl"
 version="1.0"?>

Now, our XML document looks like this:

File: letter-text.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="letter2text.xsl"
 version="1.0"?>
<letter>
 <to>Mom</to>
 <from>Tom</from>
 <message>Happy Mother's Day</message>
</letter>

When you view the XML document in Firefox,2 you should see something similar
to the result pictured in Figure 2.2.

2You can try viewing this in Internet Explorer as well, but you won't see the careful text formatting
we applied in our style sheet. Internet Explorer interprets the result as HTML code, even when the
style sheet clearly specifies that it will output text. As a result, whitespace is collapsed and our whole
document appears on one line.

49

Your First XSLT Exercise

Figure 2.2. Viewing XSL results in Firefox.

If you’re curious, go ahead and view the source of this document. You’ll notice
that you won’t see the output of the transformation (technically referred to as
the result tree), but you can see the XML document source.

What About my Favorite Browser?

If you don't use Firefox on a regular basis, you might be a little miffed that
I've started out with an example that works only in Mozilla-based browsers.

First of all, if you prefer Internet Explorer, the situation will improve with
the next example, which conforms to Internet Explorer's assumption that
the result of a transformation must be HTML, not plain text as it was in this
example.

As for the other browsers in popular use, including Safari and Opera, these
do not yet support XSLT. For this reason, it is not yet practical to rely on
browser support for XSLT in a real-world website. As we'll learn in Chapter 7,
it is far more sensible to use XSLT on the server side, where it is safe from
browser incompatibilities.

For now, however, the solid XSLT capabilities built into Firefox (and to a
lesser degree, Internet Explorer) provide a convenient means to learn what
XSLT is capable of.

Transforming XML into HTML
That wasn’t so bad, was it? You successfully transformed a simple XML document
into flat ASCII text, and even added a few extra tidbits to the output.

50

Chapter 2: XML in Practice

Now, it's time to make things a little more complex. Let’s transform the XML
document into HTML. Here’s the great part—you won’t have to touch the ori-
ginal XML document (aside from pointing it at a new style sheet, that is). All
you'll need to do is create a new XSL file:

File: letter2html.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

 <xsl:template match="/letter">
<html>

 <head><title>Letter</title></head>
 <body><xsl:apply-templates/></body>
 </html>
 </xsl:template>
 <xsl:template match="to">

TO: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="from">

FROM: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="message">

MESSAGE: <xsl:apply-templates/>

 </xsl:template>
</xsl:stylesheet>

Right away, you’ll notice that the style sheet's output element now specifies an
output method of html. Additionally, our first template now outputs the basic
tags to produce the framework of an HTML document, and doesn't bother sup-
pressing the whitespace in the source document with a select attribute.

Other than that, these instructions don’t differ much from our text-only style
sheet. In fact, the only other changes we've made have been to tag the label for
each line to be bold, and end each line with an HTML line break (
). We
no longer need the <xsl:text> tags, since our HTML and
 tags perform
the same function.3

All we have to do now is edit our XML file to make sure that the <?xml-
stylesheet?> instruction references our new style sheet (letter-html.xml in
the code archive), and we’re ready to display the results in a Web browser.

3Note the space following each label, which is inside the tag so that it won't be ignored by the
processor.

51

Transforming XML into HTML

You should see something similar to Figure 2.3.

Figure 2.3. Viewing XSL Results in Internet Explorer.

Using XSLT to Transform XML into other XML
What happens if you need to transform your own XML document into an XML
document that meets the needs of another organization or person? For instance,
what if our letter document, which uses <to>, <from>, and <message> tags inside
a <letter> tag, needed to have different names, say <recipient>, <sender>,
and <body>?

Not to worry—XSLT will save the day! And, as with the two previous examples,
we don’t even need to worry about changing the source XML document. All we
have to do is create a new XSL file, and we’re set.

As before, we’ll open with the standard stylesheet element, but, this time, we’ll
choose xml as our output method. We’re also going to instruct XSLT to indent
the resulting XML:

File: letter2xml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes"/>

52

Chapter 2: XML in Practice

The <template> elements are structured as before, but this time they output the
new XML elements:

File: letter2xml.xsl (excerpt)

 <xsl:template match="/letter">
<letter><xsl:apply-templates/></letter>

 </xsl:template>
 <xsl:template match="to">

<recipient><xsl:apply-templates/></recipient>
 </xsl:template>
 <xsl:template match="from">

<sender><xsl:apply-templates/></sender>
 </xsl:template>
 <xsl:template match="message">

<body><xsl:apply-templates/></body>
 </xsl:template>
</xsl:stylesheet>

Now, all you have to do is edit your XML document to point to the style sheet,
and you’ll be able to view your new XML in any Web browser, right? Wrong!
You see, Web browsers only supply collapsible tree formatting for XML documents
without style sheets. XML documents that result from a style sheet transformation
are displayed without any styling at all, or at best are treated as HTML—not at
all the desired result.

Where the browser can be useful for viewing XML output is when that XML is
an XHTML document—which browsers obviously can display. There are several
things that need to be added to your style sheet to signal to the browser that the
document is more than a plain XML file, though. The first is the XHTML
namespace:

File: letter2xhtml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://www.w3.org/1999/xhtml">

Here we have declared a default namespace for tags without prefixes in the style
sheet. Thus tags like <html> and will be correctly identified as XHTML tags.

Next up, we can flesh out the output element to more fully describe the output
document type:

53

Using XSLT to Transform XML into other XML

File: letter2xhtml.xsl (excerpt)

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

In addition to the method and indent attributes, we have specified a number of
new attributes here:

omit-xml-declaration This tells the processor not to add a <?xml?> de-
claration to the top of the output document. In-
ternet Explorer for Windows displays XHTML
documents in Quirks Mode when this declaration
is present, so by omitting it we can ensure that
this browser will display it in the more desirable
Standards Compliance mode.

media-type Though not required by current browsers, setting
this attribute to application/xhtml+xml offers
another way for the browser to identify the output
as an XHTML document, rather than plain XML.

encoding Sets the character encoding of the output docu-
ment, controlling which characters are escaped as
character references (&xnn;).

doctype-public Together, these two attributes provide the values
needed to generate the DOCTYPE declaration fordoctype-system
the output document. In this example, we've spe-
cified values for an XHTML 1.0 Transitional
document, but you could also specify an XHTML
1.0 Strict document if that's what you need:

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

The rest of the style sheet is as it was for the HTML output example we saw
above. Here's the complete style sheet so you don't have to go searching:

54

Chapter 2: XML in Practice

File: letter2xhtml.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

 <xsl:template match="/letter">
 <html>
 <head><title>Letter</title></head>
 <body><xsl:apply-templates/></body>
 </html>
 </xsl:template>

 <xsl:template match="to">
 TO: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="from">
 FROM: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="message">
 MESSAGE: <xsl:apply-templates/>

 </xsl:template>
</xsl:stylesheet>

Point the <?xml-stylesheet?> processing instruction in your XML document
at this style sheet and then load it in Firefox or Internet Explorer. You should
see the output displayed as an XHTML document.

So yes, if the XML you are generating happens to be XHTML, a browser can
display it just fine. Otherwise, what we need to display XML output is some kind
of standalone XSLT processor that we can run instead of a Web browser… but,
guess what? We’ve run out of space to talk about XSLT in this chapter. We’ll
pick up this discussion in Chapter 4.

55

Using XSLT to Transform XML into other XML

Our CMS Project
In Chapter 1, we did quite a bit of work to analyze the article content type. Now,
we need to identify exactly what we need for our news items, binary files, and
Web copy. We must also manage and track site administrators using XML. By
the time we get to the end of this chapter, we’ll be roughly two-thirds the way
through the requirements-gathering phase. Don’t worry, though—time spent in
this part of the process will pay off in a big way when we start development.

News
Compared to our article content type, news will be fairly straightforward. We
will need to track these pieces of information:

❑ Unique identifier

❑ Headline

❑ Author

❑ Short description

❑ Publication date

❑ Status

❑ Keywords

❑ URL for more information

Everything else should look just like the article content type, except that we won’t
allow HTML tags inside our description. Here's what a typical news item would
look like:

<news id="123">
 <headline>New XML application being built</headline>
 <author>Tom Myer</author>
 <description>A new XML application is now finally being released
 by …</description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML</keywords>

56

Chapter 2: XML in Practice

 <url>http://www.yahoo.com/</url>
</news>

From a programmatic standpoint, we will only display news pieces with a “live”
status.

Web Copy

Many of our site’s Web pages, including the homepage, will display copy of some
form, be it the contact details for our company, or a description of the services
we can provide. If we built a CMS that didn’t allow us to manage this copy, we
wouldn’t have a proper CMS, would we?

The easiest way to keep track of copy is to treat each piece a little like an article.
In fact, Web copy has many of the same characteristics as your standard articles,
except that we generally don’t need to track authors. An XML document that
tracks a piece of Web copy will look like this:

<webcopy id="123">
 <navigationlabel>XML CMS</navigationlabel>
 <headline>XML-powered CMS Solutions</headline>
 <description>Learn about our XML-powered CMS products.
 </description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>Are you tired of waiting around for your "IT Guy" or
 expensive designer to update your web site? Well, those
 days will be long forgotten if you buy our XML-powered CMS!
 With this revolutionary new tool, you can make quick and
 easy updates to your own web site! Forget all the hassles!
 It slices, it dices!</p>
]]></body>
</webcopy>

The <keywords> and <status> elements will work in much the same way as they
do for articles and news pieces.

Administrators

Our final content type isn’t really a content type—it’s more of a supporting type.
We will need to keep track of each administrator on the site, as these are the

57

Web Copy

folks who can log in and make changes to advertisement copy, articles, news
pieces, and binary files.

We will need to record each administrator’s name, username, password (encrypted,
of course), and email address. For the moment, we won’t worry about exactly
how the password is encrypted—we'll talk about that later.

File: admin.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<admins>
 <admin id="1">
 <name>Joe</name>
 <username>joe</username>
 <password>$1$064.HQ..$x912OhlIlHFylTPJmJR/k/</password>
 <email>joe@myerman.com</email>
 </admin>
 <admin id="2">
 <name>Bill</name>
 <username>bill</username>
 <password>1Ep5.7h4.$R6iGqy.Wj2Dz8SAE9WG3l0</password>
 <email>bill@myerman.com</email>
 </admin>
 <admin id="3">
 <name>Tom</name>
 <username>tom</username>
 <password>1Cl/.j3..$QcjxGtxqYx0VNp3QanGnP0</password>
 <email>tom@myerman.com</email>
 </admin>
</admins>

As with each article/news item/binary file/advertisement copy item, each admin-
istrator will need a unique ID—otherwise, the system may not know who's trying
to log in.

Summary
We covered a lot in this chapter—I’m glad you’re still with me! In Chapter 3,
we’re going to dig around inside DTDs and XML Schemas. And, in the CMS
section, we'll take a look at an alternative approach to handling status, keyword,
and author listings—I think you'll really like the way we change things around.
After that, you should have enough of a working knowledge of XML (and its
wacky family) to really start development.

58

Chapter 2: XML in Practice

DTDs for Consistency3
So far, we’ve created some very simple XML documents and learned what they’re
made of. We've also walked through some very simple examples in which we've
transformed XML into something else, be it text, HTML, or different XML. Now,
it’s time to learn how to make your XML documents consistent.

Consistency in XML
Ralph Waldo Emerson, the great American thinker and essayist, once said, “A
foolish consistency is the hobgoblin of little minds.” Well, foolish or not, in the
world of XML, we like consistency. In fact, in many contexts, consistency can be
a very beautiful thing.

Remember that XML allows you to create any kind of language you want. We’ve
already seen some varying examples in this book: from a letter to mom, to articles
and news stories. In many cases, as long as you follow the rules of well-formedness,
just about anything goes in XML.

However, there will come a time when you need your XML document to follow
some rules—to pass a validity test—and those times will require that your XML
data be consistently formatted. For example, our CMS should not allow a piece
of data that’s supposed to be in the admin information file to show up in a content
file. What we need is a way to enforce that kind of rule.

In XML, there are two ways to set up consistency rules: DTDs and XML Schema.
A DTD (document type definition) is a tried and true (if not old-fashioned) way
of achieving consistency. It has a peculiar, non-XML syntax that many XML
newcomers find rather limiting, but which evokes a comfortable, hometown charm
among the old-school XML programmers. XML Schema is newer, faster, better,
and so on; it does a lot more, and is written like any other XML document, but
many find it just as esoteric as DTDs.

Information on DTDs and XML Schema could fill thick volumes if we gave it a
chance. Each of these technologies contains lots of hidden nooks and crannies
crammed with rules, exceptions, notations, and side stories. But, remember why
we’re here: we must learn as much as we need to know, then apply that knowledge
as we build an XML-powered Website.

Fun with Terminology

Speaking of side stories, did you know that DTD actually stands for two
things? It stands not just for document type definition, but also document
type declaration. The declaration consists of the lines of code that make up
the definition. Since the distinction is a tenuous one, we'll just call them both
“DTD” and move on!

This chapter will focus on DTDs, as you’re still a beginner, and providing inform-
ation on XML Schema would be overkill. However, I will take a few minutes to
explain XML Schema at a high level, and provide some comparisons with DTDs.

Just a warning before we start this chapter: consistency in XML is probably the
hardest aspect we’ve covered so far, because DTDs can be pretty esoteric things.
However, I think you’ll find it worth your while, since using a DTD will prevent
many problems down the road.

What’s the Big Deal About Consistency?
Okay, before we get started, let’s ask a very obvious question: “Why, oh why,
are we sitting here on a lovely Saturday afternoon talking about the importance
of consistency in XML documents? Why aren’t we out in the park with our loyal
dog Rover, a picnic basket, and our wonderful significant other?”

Well, you've actually asked two questions there. I can’t answer the second one,
because I really don’t want to get into your personal life right now. As for the
first question, many possible answers spring to mind:

1. There will be a pop quiz later, so you’d better know your stuff.

60

Chapter 3: DTDs for Consistency

2. Your boss told you to learn it.

3. You need to share your XML document with another company/department/or-
ganization, and they expect your information in a certain format.

4. Your application requires that the XML documents given to it pass certain
tests.

Although answers 1 and 2 can loom large in one’s life, answers 3 and 4 are more
solid reasons to understand the importance of consistency in XML documents.
Using a system to ensure consistency allows your XML documents to interact
with all kinds of applications, contexts, and business systems—not just your own.
In layman’s terms, using a DTD with your XML documents makes them easier
to share with the outside world.

DTDs
The way DTDs work is relatively simple. If you supply a DTD along with your
XML file, then the XML parser will compare the content of the document with
the rules that are set out in the DTD. If the document doesn’t conform to the
rules specified by the DTD, the parser raises an error and indicates where the
processing failed.

DTDs are such strange creatures that the best way to describe them is to just
jump right in and start writing them, so that’s exactly what we’re going to do. A
DTD might look something like this:

<!DOCTYPE letter [
 <!ELEMENT letter (to,from,message)>
 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
]>

Those of you who are paying attention should have noticed some remarkable
similarities between this DTD and the Letter to Mother example that we worked
on in Chapter 2. In fact, if you look closely, each line of the DTD provides a clue
as to how our letter should be structured.

The first line of the DTD, which begins with <!DOCTYPE, indicates that our doc-
ument type is letter. Any document we create on the basis of this DTD must
therefore have a letter as its root element, or the document won’t be valid.

61

DTDs

The rest of the DTD is devoted to explaining two things:

1. The proper order of elements in the XML document.

2. The proper content of elements in the XML document.

In the next few sections, I’ll walk you through the most important parts of element
declarations. Then, we’ll work on attribute and entity declarations. Once we have
all that under our belts, we’ll get our hands dirty building some sample XML files
with DTDs.

Element Declarations

Let’s have a look at the next line of the DTD above: the one that comes after the
DOCTYPE.

 <!ELEMENT letter (to,from,message)>

This is called an element declaration. You can declare elements in any order
you want, but they must all be declared in the DTD. To keep things simple,
though, and to mirror the order in which elements appear in the actual XML file,
I'd suggest that you do what we’ve done here: declare your root element first.

A DTD element declaration consists of a tag name and a definition in parentheses.
These parentheses can contain rules for any of:

❑ Plain text

❑ A single child element

❑ A sequence of elements

In this case, we want the letter element to contain, in order, the elements to,
from, and message. As you can see, the sequence of child elements is comma-
delimited.

In fact, to be more precise, the sequence not only specifies the order in which
the elements should appear, but also, how many of each element should appear.
In this case, the element declaration specifies that one of each element must ap-
pear in the sequence. If our file contained two from elements, for example, it
would be as invalid as if it listed the message element before to.

62

Chapter 3: DTDs for Consistency

Naturally, there will come a time when you'll need to specify more than just one
of each element. How will you do that? With a neat little system of notation,
defined in Table 3.1, which may remind you of UNIX regular expressions.

Table 3.1. XML Element Declaration Notation

MeaningSymbol

Element can appear only once, if at all.

<!ELEMENT letter (to,from,message,sig?)>

(one optional sig)

?

Element must appear at least once.

<!ELEMENT letter (to,from,message,sig+)>

(one or more sigs)

+

Element can appear as many times as necessary, or none at all.

<!ELEMENT letter (to,from,message,sig*)>

(zero or more sigs)

*

Defines a choice between elements.

<!ELEMENT letter (to,from,message,sig|ps)>

(end letter with either sig or ps)

|

Defines the grouping of elements.

<!ELEMENT letter ((to,from,message)|#PCDATA)>

(letter has to, from, and message or just text)

()

With this notation as a backdrop, you can get pretty creative:

Require at least two instances of an element.

<!ELEMENT chapter (title,para,para+)>

(at least two paras)

Apply element count modifiers to element groups.

<!ELEMENT chapter ((title,para+)+)>

63

Element Declarations

(one or more titles, each followed by one or more paras)

Allow an element to contain an element or plain text.

<!ELEMENT title (subtitle|#PCDATA)>

(title contains a subtitle or plain text)

Require exactly three instances of an element.

<!ELEMENT instruction (step,step,step)>

(exactly three steps)

Elements that Contain only Text

Let’s keep looking at our original DTD. After the letter declaration, we see
these three declarations:

 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT message (#PCDATA)>

Here, we see #PCDATA used to define the contents of our elements. #PCDATA stands
for parsed character data, and refers to anything other than XML elements. So
whenever you see this notation in a DTD, you know that the element must
contain only text.

Mixed Content

What if you want to have something like this in your XML document?

<paragraph>This is a paragraph in which items are bolded,
 <i>italicized</i>, and even <u>underlined</u>. Some items are
 even deemed <highpriority>high priority</highpriority>.
</paragraph>

You’d probably think that you needed to declare the paragraph element as con-
taining a sequence of #PCDATA and other elements, like this:

<!ELEMENT paragraph (#PCDATA,b,i,u,highpriority)> <!-- wrong! -->

You might think that, but you'd be wrong! The proper way to declare that an
element can contain mixed content is to separate its elements using the | symbol
and add a * at the end of the element declaration:

64

Chapter 3: DTDs for Consistency

<!ELEMENT paragraph (#PCDATA|b|i|u|highpriority)*> <!-- right! -->

This notation allows the paragraph element to contain any combination of plain
text and b, i, u, and highpriority elements. Note that with mixed content like
this, you have no control over the number or order of the elements that are used.

Empty Elements

What about elements such as the hr and br, which in HTML contain no content
at all? These are called empty elements, and are declared in a DTD as follows:

<!ELEMENT hr EMPTY>
<!ELEMENT br EMPTY>

So far, most of this makes good sense. Let’s talk about attribute declarations
next.

Attribute Declarations

Remember attributes? They’re the extra bits of information that hang around
inside the opening tags of XML elements. Fortunately, attributes can be controlled
by DTDs, using what’s called an attribute declaration.

An attribute declaration is structured differently than an element declaration.
For one thing, we define it with !ATTLIST instead of |!ELEMENT. Also, we must
include in the declaration the name of the element that contains the attribute(s),
followed by a list of the attributes and their possible values.

For example, let’s say we had an XML element that contained a number of attrib-
utes:

<actor actorid="HF1234" gender="male" type="superstar">
 Harrison Ford</actor>

The element and attribute declarations for that element might look like this:

<!ELEMENT actor (#PCDATA)>
<!ATTLIST actor
 actorid ID #REQUIRED
 gender (male|female) #REQUIRED
 type CDATA #IMPLIED>

The easiest attribute to understand is type—it contains CDATA, or character
data. Basically, this attribute can contain any string of characters or numbers.

65

Empty Elements

Acceptable values for this attribute might be “superstar”, “leading man”, or even
“dinosaur.” As developers, we can't exert much control over what is placed in an
attribute of type CDATA.

Do you see #IMPLIED right after CDATA? In DTD-speak, this means that the at-
tribute is optional. Don’t ask why they didn’t use #OPTIONAL—this legacy has
been passed down from the days of SGML, XML's more complex predecessor.

Let’s take a look at the gender attribute's definition. This attribute is #REQUIRED,
so a value for it has to be supplied with every actor element. Instead of allowing
any arbitrary text, however, the DTD limits the values to either male or female.

If, in our document, an actor element fails to contain a gender attribute, or
contains a gender attribute with values other than male or female, then our
document would be deemed invalid.

Let’s look at the most complex attribute value in our example, then we’ll stop
talking about attribute and element declarations. The actorid attribute has been
designated an ID. In DTD-speak, an ID attribute must contain a unique value,
which is handy for product codes, database keys, and other identifying factors.

In our example, we want the actorid attribute to uniquely identify each actor
in the list. The ID type set for the actorid attribute ensures that our XML doc-
ument is valid if and only if a unique actorid is assigned to each actor.

Some other rules that you need to follow for IDs include:

❑ ID values must start with a letter or underscore.

❑ There can only be one ID attribute assigned to an element.

Incidentally, if you want to declare an attribute that must contain a reference to
a unique ID that is assigned to an element somewhere in the document, you can
declare it with the IDREF attribute type. We won't have any use for this attribute
type in this book, however.

Entity Declarations

Back in Chapter 1, we talked a little bit about entities. An entity is a piece of
XML code that can be used (and reused) in a document with an entity reference.
For example, the entity reference < is used to represent the < character, an
XML built-in entity.

66

Chapter 3: DTDs for Consistency

XML supports a number of built-in entities (among them <, >, "e;
and &) that don’t ever need to be declared inside a DTD. With entity declar-
ations, you can define your own entities—something that I think you'll find very
useful in your XML career.

There are different types of entities, including general, parameter, and external.
Let's go over each very quickly.

General entities are basically used as substitutes for commonly-used segments
of XML code. For example, here is an entity declaration that holds the copyright
information for a company:

<!ENTITY copyright "© 2004 by Triple Dog Dare Media">

Now that we’ve declared this entity, we could use it in our documents like so:

<footer>©right;</footer>

When the parser sees ©right;, an entity reference, it looks for its entity
declaration and substitutes the text we’ve declared as the entity.

There are a couple of restrictions on entity declarations:

❑ Circular references are not allowed. The following is a no-no:

<!ENTITY entity1 "&entity2; is a real pain to deal with!">
<!ENTITY entity2 "Or so &entity1; would like you to believe!">

❑ We can't reference a general entity anywhere but in the XML document
proper. For entities that you can use in a DTD, you need parameter entities.

Parameter entities are both defined and referenced within DTDs. They're gen-
erally used to keep DTDs organized and to reduce the typing required to write
them. Parameter entity names start with the % sign. Here's an example of a
parameter entity, and its use in a DTD:

<!ENTITY % acceptable "(#PCDATA|b|i|u|citation|dialog)*">
<!ELEMENT paragraph %acceptable;>
<!ELEMENT intro %acceptable;>
<!ELEMENT sidebar %acceptable;>
<!ELEMENT note %acceptable;>

What this says is that each of the elements paragraph, intro, sidebar, and note
can contain regular text as well as b, i,u, citation, and dialog elements. Not

67

Entity Declarations

only does the use of a parameter entity reduce typing, it also simplifies mainten-
ance of the DTD. If, in the future, you wanted to add another element (sidebar)
as an acceptable child of those elements, you’d only have to update the %accept-
able; entity:

<!ENTITY % acceptable "(#PCDATA|b|i|u|citation|dialog|sidebar)">

External entities point to external information that can be copied into your
XML document at runtime. For example, you could include a stock ticker, invent-
ory list, or other file, using an external entity.

<!ENTITY favquotes SYSTEM "http://www.example.com/favstocks.xml">

In this case, we’re using the SYSTEM keyword to indicate that the entity is really
a file that resides on a server. You'd use the entity in your XML documents as
follows:

<section>
 <heading>Current Favorite Stock Picks</heading>
 &favquotes;
</section>

External DTDs

The DTD example we saw at the start of this chapter appeared within the
DOCTYPE declaration at the top of the XML document. This is okay for exper-
imentation purposes, but with many projects, you'll likely have dozens—or even
hundreds—of files that must conform to the same DTD. In these cases, it’s much
smarter to put the DTD in a separate file, then reference it from your XML
documents.

An external DTD is usually a file with a file extension of .dtd—for example,
letter.dtd. This external DTD contains the same notational rules set forth for
an internal DTD.

To reference this external DTD, you need to add two things to your XML docu-
ment. First, you must edit the XML declaration to include the attribute stan-
dalone="no":

<?xml version="1.0" standalone="no"?>

This tells a validating parser to validate the XML document against a separate
DTD file. You must then add a DOCTYPE declaration that points to the external
DTD, like this:

68

Chapter 3: DTDs for Consistency

<!DOCTYPE letter SYSTEM "letter.dtd">

This will search for the letter.dtd file in the same directory as the XML file. If
the DTD lives on a Web server, you might point to that instead:

<!DOCTYPE letter SYSTEM
 "http://www.example.com/xml/dtd/letter.dtd">

A 10,000-Foot View of XML Schema

The XML Schema standard fulfills the same requirements as DTDs: it allows you to control
the structure and content of an XML document. But, if it serves the same purpose as
DTDs, why would we use XML Schema?

Well, DTDs have a few disadvantages:

1. DTD notation has little to do with XML syntax, and therefore cannot be parsed or
validated the way an XML document can.

2. All DTD declarations are global, so you can’t define two different elements with the
same name, even if they appear in different contexts.

3. DTDs cannot strictly control the type of information a given element or attribute
can contain.

XML Schema is written in XML, so it can be parsed by an XML parser. XML Schema allows
you, through the use of XML namespaces, to define different elements with the same
name. Finally, XML Schema provides very fine control over the kinds of data contained
in an element or attribute.

Now, for some major drawbacks: if you thought that DTDs were esoteric, then you won’t
be pleased by the complexity introduced by XML Schema. Most of the criticism aimed
at XML Schema is focused on its complexity and length. In fact, at first glance, a schema’s
verbosity will remind you of your motor-mouth friend who hogs the airspace at any
gathering.

We won’t get much of a chance to work with XML Schema in this book, but there are
many fine books available on the subject.

Getting Our Hands Dirty
Okay, now you know a lot more about DTDs than you did before. If you're
thinking that all this talk of consistency in XML seems fairly esoteric, you're not
alone. But stick with me—we're about to embark on the practical examples that
will illustrate exactly how these concepts fit into the overall XML picture.

69

Getting Our Hands Dirty

Let’s start out by creating a sample document and using a DTD to validate it.
For this exercise, we’ll be working with Macromedia Dreamweaver MX, as it in-
cludes a built-in XML validator.

Our First Case: A Corporate Memo
You work for Amalgamated International, LLC. The big boss comes into your
office because he heard a rumor that you’re an XML wizard. This is really great
news, because he’s just come back from a conference where he learned that XML
is a terrific way to get your internal corporate memos under control.

He instructs you to figure out how to get all the corporate memos into XML, and
yes, they do need to be validated, because they will be used later by an application
that’s capable of searching through the memos.

The first thing you do is you take a look at the dozens of corporate memos you
and your colleagues have received in the past few months. After a day or two of
close examination, a pattern emerges.

Just by looking at them, you can see that all memos have the following elements:

❑ Date

❑ Sender

❑ Recipient list

❑ Priority

❑ Subject line

❑ One or more paragraphs

❑ Signature block

❑ Preparer’s initials

You’re sure that there’s more to it than that, so you decide to gather more inform-
ation. When you talk to your department’s administrative assistant, he fills in
the rest of the picture:

❑ There is almost always some kind of departmental code assigned to the file.
This code is not always printed on the physical memos, but is always used as

70

Chapter 3: DTDs for Consistency

part of the filename. These codes help designate the memo's department of
origin (accounting, finance, marketing, etc.).

❑ There is almost always a blind copy list on each memo—in other words, a list
of recipients who, though they received it, are not listed anywhere on the
memo as having received it.

❑ Many memos also have an expiration date. At Amalgamated, if a given memo
has no expiration date, the information on the memo is deemed good for 180
days. Most memos contain information with lifetimes of less then six months,
so most employees never see this kind of information. Other memos—those
concerning HR policies, for instance—may have expiration dates that are years
away.

With this information in hand, you begin to create a DTD for XML-based memos.

Although your first impulse might be to run out and create a sample XML memo
document, please resist that urge for now. There’s nothing wrong with this ap-
proach—indeed, it does provide useful modeling techniques. However, right now,
we want to work with DTDs, then apply what we know to the building of the
XML document.

So, the first thing you need to do is declare a DOCTYPE. Because these memos
are internal to the company, and there may be a need for a separate external
memo DOCTYPE, you decide to use internalmemo as your root element name:

File: internalmemo-standalone.xml (excerpt)

<?xml version="1.0"?>
<!DOCTYPE internalmemo [

Now, it’s time to define your elements. The first element—the root element—is
internalmemo. This element will contain all the other elements, which hold date,
sender, recipient, subject line, and all other information. Because these represent
a lot of elements, it would be useful to split your document into two logical par-
titions: header and body. The header will contain recipient, subject line, date,
and other information. The body will contain the actual text of the memo.

Here is the element declaration for our root element:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT internalmemo (header,body)>

71

Our First Case: A Corporate Memo

In DTD syntax, the above declaration states that our internalmemo element
must contain one header element and one body element. Next, we will indicate
which elements these will contain.

Here’s what the header will contain:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>

In DTD syntax, the above declaration states that the header element must contain
single date, sender, and recipients elements, an optional blind-recipients
element, and then a subject element.

Here is the body:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT body (para+,sig)>

In DTD syntax, the above declaration states that the body element must contain
one or more para elements, followed by a single sig element.

Most of the other elements will contain plain text, except the para elements, in
which we will allow bold and italic text formatting.

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>

That was simple enough. However, when we glance at the requirements, we can
see that we haven’t even begun to handle priority levels, preparer’s initials, expir-
ation dates, and department of origin.

What’s the best way to handle these pieces of information? We could certainly
add them as elements in the head section of our memos, but that wouldn’t make
much sense. Those pieces of information are hardly ever displayed on a docu-
ment—they are used only for administrative purposes.

72

Chapter 3: DTDs for Consistency

In any case, we want to be able to control the data that document creators put
in for values such as priority. It wouldn’t make much sense for them to enter
“alligator” or “Disney World” when our application is going to be looking for
“low”, “medium” and “high.”

The best way to store these pieces of information is to add them as attributes to
the root element. To do that, we need to add an attribute declaration to our
DTD:

File: internalmemo-standalone.xml (excerpt)

<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>
]>

So, what does a valid internal memo document look like? I’m glad you asked:

File: internalmemo-standalone.xml

<?xml version="1.0"?>
<!DOCTYPE internalmemo [
<!ELEMENT internalmemo (header,body)>
<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>
<!ELEMENT body (para+,sig)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>
]>
<internalmemo priority="high" initials="hjd"
 expiredate="01/01/2008" origin="marketing">
 <header>
 <date>01/05/2004</date>

73

Our First Case: A Corporate Memo

 <sender>Thomas Myer</sender>
 <recipients>Marketing Department</recipients>
 <subject>Sell more stuff</subject>
 </header>
 <body>
 <para>This is a <i>simple</i> memo from the marketing
department: sell more stuff!</para>
 <sig>Thomas Myer</sig>
 </body>
</internalmemo>

Validating Our First Case

Now that we have a DTD and XML document, it’s time to validate. Fortunately,
Macromedia Dreamweaver MX has a built-in validation tool that we can use
during development (in “real life” we would use a built-in validator that’s part
of our application). If you don’t already own Dreamweaver, you can get a trial
copy.[1]

All we have to do is open our XML document (which contains a DTD) in
Dreamweaver, then choose File > Check Page > Validate as XML. The result should
look a lot like Figure 3.1.

Figure 3.1. Validating our first case with Dreamweaver MX.

[1] http://www.macromedia.com/go/trydreamweaver

74

Chapter 3: DTDs for Consistency

http://www.macromedia.com/go/trydreamweaver
http://www.macromedia.com/go/trydreamweaver

Do you see how, under Results, it reads No errors or warnings found.? That’s what
you want to see.1

What happens if some things are out of place? For instance, what if, as a priority,
you wrote “Extremely Urgent”? What would happen then? In that case, you'd
see an error message like the one in Figure 3.2 below.

Figure 3.2. Error resulting from a bad attribute value.

Notice that Dreamweaver MX tells you where the problem lies (with a specific
line number) and provides a description of the problem. In this case, the validator
is saying that the value of the priority attribute in your XML document doesn’t
match any of the possibilities defined in the DTD.

What if you decided to put the <sender> tag before the <date> tag? The validator
catches that too, as you can see in Figure 3.3.

Figure 3.3. Error resulting from a misplaced element.

Again, the validator gives you a line number and a description that can lead you
to resolve the problem. All you need to do is put the sender element back in the
prescribed order, and the document will validate once more.

1In Dreamweaver MX 2004, the results list for a valid document is simply empty, and the status bar
beneath the list reads Complete.

75

Validating Our First Case

Second Case: Using an External DTD for Memos
Our first case was simple enough—an internal memo DTD and XML file. In that
case, we embedded the DTD right into the file. This is a practical thing to do
when you’re only dealing with a small number of files for each DTD, but in
Amalgamated’s case, they’ll be dealing with tens (if not hundreds) of thousands
of memos.

There’s no way that you want to have to maintain all those copies of the DTD
separately. Instead, you want to have a single DTD that is included in all of your
XML files. What you do is copy your DTD code out of your XML document
and save it in a separate file called internalmemo.dtd. Don’t copy the DOCTYPE
line, or the last line that closes off the brackets!

When you're finished, your DTD file should look like this:

File: internalmemo.dtd

<!ELEMENT internalmemo (header,body)>
<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>
<!ELEMENT body (para+,sig)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>

Next, place a link to that external DTD in your XML document, like this:

File: internalmemo.xml (excerpt)

<!DOCTYPE internalmemo SYSTEM "internalmemo.dtd">

You also need to change your XML document declaration (the first line of our
XML document) to look like this:

76

Chapter 3: DTDs for Consistency

File: internalmemo.xml (excerpt)

<?xml version="1.0" standalone="no"?>

If you’ve done everything right, your file should validate when you use Dream-
weaver’s built-in validator. You now have a reusable DTD that you can apply to
other internal memos.

Our CMS Project
In Chapter 2, we added a few more content types to our CMS project. We now
understand articles, news stories, binary files, and Web copy, and are well on our
way to completing the requirements-gathering phase of the project—we can start
coding soon!

However, and this is a big “however,” we’ve also run into something of a problem.
If you recall, we are tracking author, status, keyword, and other vital information
in separate files. That is, each individual article, news story, binary file, and Web
copy file keeps track of its own keywords, status, author, and dates.

For most of this information, which will rarely be used except in connection with
the particular document, this isn't a problem, but author information is something
of a special case. If we wanted to display all documents for a certain author, we
would have to dig through all of our files to find all the matches. This isn’t a big
deal when our site is small, but the task grows more unmanageable with each
passing day.

Never fear—I have a proposal that will solve this problem. In fact, the rest of this
chapter will be devoted to tackling this issue. With any luck, it will also give you
some insights into the ways in which you can analyze requirements and come
up with more architecturally sound XML designs.

Reworking the Way we Track Author Information
Let’s take a quick look at our article. I’ve reprinted what we came up with at the
end of Chapter 1 below for easy reference:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>

77

Our CMS Project

 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>In this article…</p>
]]></body>
</article>

So far, it’s been very convenient to track our author information using the author
element. However, doing it this way presents two problems, one of which we’ve
already mentioned: eventually, we will have hundreds of articles on the site, and
it would put a lot of strain on our application to dig through each one in order
to display a list of articles by author.

The other problem is a little less obvious. What happens if, in one article, my
name is listed as “Tom Myer,” and in another, it's “Thomas Myer”? Or if, in one
article, someone misspells my name as “Tom Meyer” (this happens a lot). To our
application, these three names are different, and articles will thus be listed under
three different authors.

To solve this problem, we should create a separate author listing (authors.xml),
then use an authorid to reference that information in our articles. Once we have
this figured out, we can get rid of the author element in all the other content
types, and replace them with an authorid elements.

Handling our authors this way also allows us to track other information about
authors, such as their email addresses, their bylines (in case they want to publish
under pseudonyms), and other such information.

Here’s a sample of what that code would look like:

File: authors.xml

<authors>
 <author id="1">
 <name>Thomas Myer</name>
 <byline>myerman</byline>
 <email>tom@tripledogdaremedia.com</email>
 </author>
</authors>

Instead of a separate author element, we would add an authorid element to our
articles, like this:

78

Chapter 3: DTDs for Consistency

<article id="123">
 <authorid>1</authorid>
 …

Now we’ve solved the problem of redundancy—in other words, we’ve centralized
our author information instead of having it spread across many different files.
All we need to do is use this author ID in our articles, news stories, and all other
content we add to our CMS; this ID is used to look up the author and retrieve
the information we need.

Assign DTDs to our Project Documents?
The big question remains: do we take the time and effort to create DTDs or
schemas for each of our content types? The answer is, as with most things tech-
nical, “it depends.”

To be completely honest, most articles, news stories, and such will be submitted
to the site through our administrative tool. This tool will have the necessary forms
that will restrict data entry to certain fields. In other words, our administrative
tool will do most of the work of validating our content. You could, therefore,
suggest that a DTD would be completely superfluous, and you’d be right.

However, I think it would be good practice to develop a DTD for our article
content type—after all, this is one of the most important document types we
have in our system, and it has to be done right.

Here’s a first shot at our article DTD:

<!ELEMENT article (authorid,headline,description,pubdate,status,
 keywords,body)>
<!ATTLIST article
 id CDATA #REQUIRED>
<!ELEMENT authorid (#PCDATA)>
<!ELEMENT headline (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pubdate (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>
<!ELEMENT body (#PCDATA)>

Although we have declared our body element to contain character data, our article
bodies will indeed be formatted using HTML tags. Because this HTML content
will be wrapped in a CDATA block, those tags will be ignored by any XML pro-
cessor reading an article file. We can use a CDATA block to hold any kind of

79

Assign DTDs to our Project Documents?

text, as the XML parser will ignore any XML syntax that might appear in it. We
therefore don't need to worry about the intricacies of HTML markup in this
DTD.

If you asked ten XML folks whether they agreed with this approach, you’d get
ten different opinions and alternative approaches. For now, we've created some-
thing that will work—and work quickly.

If you'd like more practice with DTDs, you can go back to Chapter 2 and look
at the XML formats we created for our other content types, like Web copy and
news items. Try writing DTDs for these as well. If you ever need to check the
documents stored in your CMS for validity, you can use these DTDs to do it.

Summary
Wow! In three chapters we’ve covered basic XML, some XSLT and CSS, and,
now, the basics of DTDs. Plus, we’ve nailed down most of the requirements for
our CMS project. I think we’re in pretty good shape to start looking more deeply
at the rest of our project. Along the way, we'll pick up a few more XSLT and XML
tricks.

80

Chapter 3: DTDs for Consistency

Displaying XML in a Browser4
In Chapter 2, we went over some basic XSLT and CSS using a very simple XML
document. In this chapter, we’re going to revisit some of those concepts with a
more complex document. Once we’ve taken care of that, we’ll return to our CMS
project and start building the display pages for our site.

A Word on XPath
We’ve already been exposed to XSLT to a small degree. We used it to transform
an XML letter to mother into something that could be displayed in a browser
window. In this chapter, we’re going to use a much more complex document as
our starting point, and we’ll learn how to use XPath.

Understanding XPath is the key to making effective use of XSLT. XPath is used
in a variety of applications and technologies, however, XSLT is where its power
and versatility really shine.

For all intents and purposes, XPath is a query language. It allows us to declarat-
ively specify a “path” to an element or group of elements in an XML document.
It uses a simple notation that is very similar to directory paths (hence the name
XPath). You’ve already seen XPath in action within XSLT through some of the
earlier examples.

When we put together a template, we normally use XPath to establish a match.
For example, we can always handle the root of an XML document like this:

<xsl:template match="/">

With XPath, you can select all elements that have a particular tag name. For ex-
ample, this template will match all the <title> tags in the document:

<xsl:template match="title">

Or, you could match certain elements depending on their location within an
XML file. To match <title> tags that have a <memo> tag as their parent, you
would use this expression:

<xsl:template match="memo/title">

As you can see, the basic XPath syntax looks a lot like a file path on your com-
puter. That’s because XML documents and your computer’s file system are both
hierarchical in nature. But you can go a step further and set conditions on which
elements are matched within your specified path. These conditions are called
predicates, and appear within square brackets following the element name you
wish to set conditions for.

This example contains a predicate to make sure that it matches only <title>
tags whose priority attribute is set to hot:

<xsl:template match="title[@priority='hot']">

The @ symbol identifies priority in this example as an attribute name, not a tag
name.

XPath also has a number of useful functions built in. For example, if you need
to grab the first or last element of a series, you can use XPath to do so. This
template will match the first <para> tag within each <memo> tag:

<xsl:template match="memo/para[first()]">

This template will match the first <para> tag within the last <memo> tag:

<xsl:template match="memo[last()]/para[first()]">

82

Chapter 4: Displaying XML in a Browser

Although most practical applications are relatively simple, XPath can get quite
twisty when it needs to be. The XPath Recommendation[1] is quite a useful ref-
erence to these areas of complexity.

I’ve been giving you examples within an XSLT context, but XPath is used in a
lot of different places, including PHP 5's new SimpleXML API. We’ll get into
SimpleXML a little later.

A Practical XSLT Application
Instead of using a simple letter to mother, let’s use something a bit more complex:
a book chapter. Book chapters provide an excellent opportunity to understand
the arbitrary complexity of most XML documents.

If you were to look at a typical book chapter (like this one), you'd probably only
think of it as a flow of information. From the perspective of an XML document
designer, however, a book chapter can be intimidatingly complex. Chapters can
have titles and sections, and those sections can have titles. There are paragraphs
throughout—some belong to the chapter (for example, introductory paragraphs),
but others belong to sections. Sections can contain subsections. Paragraphs can
contain text in italics, bold text, and other inline markup. In fact, one could even
have different types of paragraphs, like notes, warnings, and tips. We mustn’t
forget that chapters can also hold non-textual content, in the form of images,
graphs, and other visual materials. There are lots of possibilities for displaying
these kinds of information.

Here’s what a very short chapter might look like:

File: chapter.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="chapter2html.xsl"?>
<chapter id="example">
 <title>XML Example</title>
 <para type="intro">This is an introductory paragraph. It doesn't
 belong to any of the sections.</para>
 <section>
 <title>Main Section</title>
 <para type="intro">This is the first paragraph of the
 first section.</para>
 <para>Second paragraph.</para>
 <para type="note">This is a note!</para>

[1] http://www.w3.org/TR/xpath

83

A Practical XSLT Application

http://www.w3.org/TR/xpath

 <para type="warning">Don't even think about turning the page
 yet!</para>
 <section>
 <title>Subsection</title>
 <para type="intro">Looks like we started another section
 here!</para>
 </section>
 </section>
 <section>
 <title>Another Section</title>
 <para type="intro">And the chapter continues...</para>
 </section>
</chapter>

This sample file could go on and on, but I think you get the idea. Now it’s time
to try to parse this document and make sense of it. We’ll perform some simple
tasks first, then extend our knowledge as we go.

A First Attempt at Formatting
Now, let’s create the corresponding XSL file, chapter2html.xsl. This file will
contain all the instructions we will use to transform the XML elements in the
chapter file we have just seen into XHTML. As we saw in Chapter 2, an XSL file
that generates XHTML should begin as follows:

File: chapter2xhtml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

Now, let’s start matching elements. The first thing we want to do is to match the
root of our document. We can use this template to output the basic tags required
to produce an XHTML document:

File: chapter2xhtml.xsl (excerpt)

 <xsl:template match="/">
 <html>
 <head>

84

Chapter 4: Displaying XML in a Browser

 <title>A Book Chapter</title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

Remember that, in XPath notation, / by itself stands for the root of your docu-
ment, so we can rest assured that this template will only match once for each
document that this style sheet transforms.

The apply-templates element then goes looking for other elements to match,
so let's write some templates for those that it is likely to find. At this stage there's
nothing we really want to output for the chapter element that we haven't already
written out for the document root above, so we'll let the XSLT processor handle
that with its default behavior for now. Let's instead concentrate on the elements
inside the chapter:

File: chapter2html.xsl (excerpt)

 <xsl:template match="title">
<h1><xsl:apply-templates/></h1>

 </xsl:template>

 <xsl:template match="para">
<p><xsl:apply-templates/></p>

 </xsl:template>

 <xsl:template match="b">
<xsl:apply-templates/>

 </xsl:template>

Nothing could be simpler, right? We’ve matched all of our elements and for each
we have output HTML tags as needed. Viewed in a browser, our output will look
something like that shown in Figure 4.1.

85

A First Attempt at Formatting

Figure 4.1. Viewing the chapter example in Firefox.

Looks pretty good, doesn't it? But, isn’t there something missing? Of course there
is. In our XSLT file, we are treating all para and title elements the same, regard-
less of where they appear in the XML document. That ain’t right!

86

Chapter 4: Displaying XML in a Browser

Using XPath to Discern Element Context
The title element near the top of the document is the chapter title, and should
be handled differently from the title elements in the different nested sections.
Likewise, para elements that denote warnings or introductions should be handled
differently from other paragraphs.

Let’s handle the title elements first. Chapter titles should be formatted with
<h1> tags. Other title elements, which serve as nested section titles, should use
incrementally smaller headings (<h2>, <h3>, and so on) in accordance with their
level of nesting.

To distinguish between these different title types, you can use XPath notation.
To pick out title elements that are children of the chapter tag, we can use the
XPath expression chapter/title. To pick out title elements in top-level sec-
tions, we can use chapter/section/title, and so forth.

So here's an effective set of templates to handle the titles in our document:

File: chapter2html.xsl (excerpt)

 <xsl:template match="chapter/title">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="chapter/section/title">
 <h2><xsl:apply-templates/></h2>
 </xsl:template>

 <xsl:template match="chapter/section/section/title">
 <h3><xsl:apply-templates/></h3>
 </xsl:template>

 <xsl:template match="chapter/section/section/section/title">
 <h4><xsl:apply-templates/></h4>
 </xsl:template>

Figure 4.2 shows how this code displays in the browser.

87

Using XPath to Discern Element Context

Figure 4.2. Viewing the chapter example with XPath. (Part 1)

We're getting closer!

Matching Attribute Values with XPath
What about the paragraphs? Unlike the titles, they are not distinguishable by
their placement in the document alone. Instead, the document uses the type at-
tribute to distinguish normal paragraphs from introductions, tips, and warnings.

88

Chapter 4: Displaying XML in a Browser

Luckily, XPath lets us specify matches based on attribute values, too. In XPath,
we use a predicate (a condition in square brackets) to match an attribute value.
To isolate intro paragraphs, for example, we would use the XPath expression
para[@type='intro'].

We should definitely take advantage of this ability and distinguish each of our
paragraph types visually. Let’s italicize all introductory paragraphs, and put gray
boxes around notes and warnings. We can also make sure that warnings are dis-
played in red text.

Now, we've already seen a template that can take care of normal paragraphs,
which have no type attribute:

File: chapter2html.xsl (excerpt)

 <xsl:template match="para">
 <p><xsl:apply-templates/></p>
 </xsl:template>

Our template for introductory paragraphs is quite similar:

File: chapter2html.xsl (excerpt)

 <xsl:template match="para[@type='intro']" priority="1">
 <p><i><xsl:apply-templates/></i></p>
 </xsl:template>

Note the priority attribute on this template. Since an introductory paragraph
would match both XPath expressions, para and para[@type='intro'], we need
to give some indication as to which of the two templates should be used. By de-
fault, XSL templates have a priority between -0.5 and 0.5, depending on the
XPath expression in the match attribute. To make sure our introductory para-
graphs will use this second template, we therefore assign a priority of 1. Normal
paragraphs will continue to use the first template, since they don't match the
higher-priority second template.

With what we've just learned in mind, here are the templates for warnings and
notes. Notice that we’ve added a style attribute to the opening <p> tag in each
template to provide the desired style information for these paragraph types.1

1In a practical application, you should instead put these style properties in a CSS file and <link>
it to the HTML document. These templates would then use class attributes on the <p> tags to
invoke the appropriate formatting.

89

Matching Attribute Values with XPath

File: chapter2html.xsl (excerpt)

 <xsl:template match="para[@type='warning']" priority="1">
 <p style="background-color: #cccccc; border: thin solid;
 width:300px; color:#ff0000;">
 <xsl:apply-templates/>
 </p>
 </xsl:template>

 <xsl:template match="para[@type='note']" priority="1">
 <p style="background-color: #cccccc; border: thin solid;
 width:300px;">
 <xsl:apply-templates/>
 </p>
 </xsl:template>

Figure 4.3 shows the end result displayed in Firefox.

Using value-of to Extract Information
You'll notice the page title is the rather nondescript phrase, “A Book Chapter”.
How can we modify our template to display the actual chapter title in this spot
instead?

When you need to pull a simple piece of information out of the XML document
without messing around with templates to process the element(s) that house it,
you can use a value-of element to grab what you want with an XPath expression:

File: chapter2html.xsl (excerpt)

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/chapter/title"/></title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

As you can see, the select attribute is an XPath expression that searches for the
value of the title within the chapter. With value-of, we can print that value

90

Chapter 4: Displaying XML in a Browser

out. Now our file displays something like the results shown in Figure 4.4. Notice
the title bar of the browser window, which now contains the title of the chapter.

Figure 4.3. Viewing the chapter example with XPath. (Part 2)

91

Using value-of to Extract Information

Figure 4.4. Viewing the chapter example with XPath. (Part 3)

Our CMS Project
In the preceding chapters, we gathered requirements for our XML files, adminis-
tration tool, and display components. In this chapter, I’d like to spend some time

92

Chapter 4: Displaying XML in a Browser

building the display pages for our project—the homepage, other internal pages,
news sidebars, search widgets, and more.

Before we do that, though, let’s recap the list of requirements we gathered for
the display pages:

❑ The display side of our Website will only display articles and other content
that has a status of “live.”

❑ The search engine will retrieve articles by keywords, headlines, and descrip-
tions, and only display those pieces that have a status of “live.”

❑ The Website will display a list of authors by which site visitors can browse,
but it only displays those authors who have live articles posted on the site.

Why Start with the Display Side?
You may be asking yourself, “Why is Tom starting with the display side? We
haven’t even built the admin tool for all the content it will display.”

That’s a good question. I decided to start with the display side because:

❑ It’s much simpler than the admin tool, and gives us a chance to build some
straightforward XML tools with PHP without having to get bogged down in
detail.

❑ It means that we have to work from our requirements. Remember, we took
the time to specify what each file would look like; now, all we have to do is
work from these specs. As long as we continue to work from our specifications,
everything will work together once it's done.

So, let’s get started with our display pages. We’ll begin with an include file that
we can use on all of our pages.

Creating a Common Include File
Because our Website will entail some complex interaction between PHP and
XML, it’s a good idea to store your most needed functions and variables in a
separate file, then include that file in all your other pages.

We’re going to create this include file and start to add some information to it:

93

Why Start with the Display Side?

File: common.inc.php

<?php
session_start();

$fileDir = $_SERVER['DOCUMENT_ROOT'] . '/xml/';
?>

This file will eventually contain many necessary variables that we’ll use later in
the project.

Before we go on to create a rudimentary homepage, let’s create an include file
that contains a search widget.

Creating a Search Widget Include File
All of our public display pages will offer a search widget, so it’s a good idea to
create a file that contains the needed form elements:

File: search.inc.php

<form id="searchWidget" method="post" action="doSearch.php">
 Search site:
 <input name="term" type="text" id="term" />
 <input name="search" type="submit" id="search" value="Search" />
</form>

As with our common include file, we’ll be using the PHP include command to
include this form on all of our pages. In this case, we do so because it lowers
maintenance costs: we only have to edit the form once to affect the whole site.

Notice that the action is set to a file called doSearch.php. We will work on that
file soon—it’s the file that will process XML and return search results to site vis-
itors.

Building the Homepage
The most important page on the site is the homepage. That’s where most of your
visitors will likely begin, so you'll want to display as much information as you
possibly can to interest them in going further.

From a structural point of view, the pages of our site will consist of three <div>
tags: a page header, a navigation menu, and the content area.

94

Chapter 4: Displaying XML in a Browser

The header will hold global navigation elements. Like our search widget file, this
navigation will be an include file—after all, we want to reuse these elements on
other pages of the site.

For the homepage of our site, the navigation menu will contain our search widget
and a list of current news items. In the main content area, we’ll display our
homepage copy along with links to articles and other content on the site.

We’ll go through these sections one at a time. But, before we do, let's take a quick
look at the appearance of our site's homepage—it's shown in Figure 4.5.

Figure 4.5. The appearance of the homepage.

Building the Top Navigation Include File

Our top navigation will be placed in an include file. It will contain an image of
the site's logo (hot-linked to the homepage for easy navigation), and a list of links
that take users to each of the pages on the site.

This include file will make use of PHP 5’s new SimpleXML functions. The great
thing about the SimpleXML API is that it greatly simplifies the way you interact

95

Building the Top Navigation Include File

with, and extract information from, an XML document. Although a detailed look
at SimpleXML will have to wait until Chapter 7, we'll cover the basics here.

Simply put, the simplexml_load_file function loads our entire XML document
into a hierarchy of objects, which allows us to grab elements using PHP’s familiar
arrow notation. Imagine, for example, that you had this very simple XML docu-
ment:

<person>
 <name>Tom</name>
 <age>33</age>
</person>

After loading this XML document into a variable called $person, you would be
able to examine the name element with $person->name. Likewise, you would be
able to examine the age element with $person->age. If you’re familiar with object
oriented programming in PHP, you’ll get the hang of it very quickly.

An even easier way to access XML elements with SimpleXML is to use an XPath
query. You can pass a SimpleXML object just about any XPath statement, and
it will retrieve the elements you need.

We’ll get into a lot more detail later on, but for right now you can rest assured
that at least one part of your job has been made easier!

Let’s take a look at the code that will build the navigation bar at the top of the
page. Then, we’ll walk through it:

File: navtop.inc.php

<div id="navTop">
<img src="images/logo.gif" border="0"
 width="160" height="170" alt="Triple Dog Dare Media" />
<?php
include_once 'common.inc.php';

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^webcopy.*\.xml$", $file)) continue;

 $webcopy = simplexml_load_file($fileDir . $file);
 if (count($webcopy->xpath('/webcopy[status="live"]'))) {
 $id = htmlentities($webcopy['id']);
 $label = htmlentities($webcopy->navigationlabel);
 echo "{$label} ";

96

Chapter 4: Displaying XML in a Browser

 }
}

?>
</div>

Our first task is fairly simple: open the xml directory and find every XML file
whose name begins with webcopy:

File: navtop.inc.php (excerpt)

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^webcopy.*\.xml$", $file)) continue;

Remember, $fileDir is a variable set by common.inc.php to let this and other
scripts on our site know where to find the XML files.

Regular Expressions

This code uses a regular expression to match the required file name pattern.
For the lowdown on regular expressions in PHP, see Kevin Yank's book Build
Your Own Database Driven Website Using PHP & MySQL (SitePoint), or refer
to the PHP Manual.[2]

With our Web copy XML files in hand, we'll load every such file using Sim-
pleXML. Although this may seem like an expensive way to do things, you’ll find
that SimpleXML is extremely fast. We simply use the simplexml_load_file
function to load the contents of each file into memory:

File: navtop.inc.php (excerpt)

 $webcopy = simplexml_load_file($fileDir . $file);

Once we have the desired file loaded into the $webcopy variable, we can start to
look at the XML document it contains. In this case, we're only interested in the
files whose status is “live,” so we use SimpleXML to check that the status element
does indeed contain a text value of live:

File: navtop.inc.php (excerpt)

 if (count($webcopy->xpath('/webcopy[status="live"]'))) {

[2] http://www.php.net/regex

97

Building the Top Navigation Include File

http://www.php.net/regex

Here, we’re using SimpleXML's xpath method to check if the webcopy element
at the root of the document contains a status element with a value of live. The
method returns an array of elements that match the criteria specified; in this case
that array will either contain a reference to the webcopy element in the file (if
the status is live), or it will be empty. We use PHP's count function to check.

If the file passes the test, we pull out the value of the webcopy element's id attrib-
ute and the value contained in the nested navigationlabel element.

File: navtop.inc.php (excerpt)

 $id = htmlentities($webcopy['id']);
 $label = htmlentities($webcopy->navigationlabel);

As you can see, attributes are referenced as elements in an array
($webcopy['id']), while nested elements are referenced as object properties
($webcopy->navigationlabel).

With these values in hand, we can print out appropriate links for our page navig-
ation:

File: navtop.inc.php (excerpt)

 echo "{$label}

Let’s move on to the rest of the homepage.

Building the Bottom Half of the Homepage

Remember when I said that our homepage would be made up of three <div>
tags? Well, we've just taken care of the first—the page header. Let’s now talk
about the remaining two divs that sit beneath the first.

The file for our homepage will be called index.php. This file includes both the
common.inc.php and navtop.inc.php files as needed. It then goes on to produce
the secondary navigation and content divs (navSide and mainContent, respect-
ively).

File: index.php

<?php
include_once 'common.inc.php';
$file = $fileDir . 'homepage.xml';
$homePage = simplexml_load_file($file);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

98

Chapter 4: Displaying XML in a Browser

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title><?php echo htmlentities($homePage->headline); ?></title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <link rel="stylesheet" href="xmlcms.css" type="text/css" />
</head>
<body>
<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>
<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($homePage->headline) . '</h1>';
 echo '<p><small>' . htmlentities($homePage->description) .
 '</small></p>';
 echo $homePage->body;
 ?>
</div>
</body>
</html>

It looks really simple, doesn't it? In this file, we’re using a variety of includes and
PHP functions to do a lot of the dirty work for us. We’ll also use this approach
when we want to build the other display pages for articles, Web copy, and the
like.

The only part that is somewhat complicated is the first few lines:

File: index.php (excerpt)

<?php
include_once 'common.inc.php';
$file = $fileDir . 'homepage.xml';
$homePage = simplexml_load_file($file);
?>
…
<title><?php echo htmlentities((string)$homePage->headline);
 ?></title>

99

Building the Bottom Half of the Homepage

In this code, we open the file called homepage.xml in the xml directory, and then
echo out the contents of the headline element as the page title.

For the left-side navigation div, we will use two includes:

File: index.php (excerpt)

<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>

The first include is the search widget that we built earlier on. The second should
produce a listing of live news items, but we haven't built that yet.

For the most part, our news include file will be very similar in structure to the
code we used in navtop.inc.php. All we’re doing is extracting news items that
have a status of live:

File: news.inc.php (excerpt)

<?php
include_once 'common.inc.php';

$handle = opendir($fileDir);
echo '<p>';
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi('^news.*\.xml$', $file)) continue;

 $news = simplexml_load_file($fileDir . $file);
 if (count($news->xpath('/news[status="live"]'))) {
 $id = htmlentities($news['id']);
 $label = htmlentities($news->headline);
 echo "{$label}
";
 }
}
echo '</p>';

?>

Now that we've completed the left side of the homepage, it’s time to pull together
the right side of the page. This area will display the headline and body copy that's
stored for the homepage in a file called homepage.xml. Since we've already loaded

100

Chapter 4: Displaying XML in a Browser

this file to obtain the page title, we can continue using the $homePage variable
to pull out the values we need:

File: index.php (excerpt)

<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($homePage->headline) . '</h1>';
 echo '<p><small>' . htmlentities($homePage->description) .
 '</small></p>';
 echo $homePage->body;
 ?>
</div>
</body>
</html>

Writing the Style Sheet

This isn't a book about CSS page layout, so I won't dwell on the details of the
site's style sheet. For the sake of completeness, however, here's the code, which
ensures our pages are laid out the way we intended:

File: xmlcms.css

body {
 color: #000;
 background: #fff;
 font-family: Helvetica, Arial, sans-serif;
 margin: 0;
 padding: 0;
}
#navTop {
 margin: 12px 12px 0 12px;
 border: 1px solid #999;
 padding: 2px;
}
#navSide {
 position: absolute;
 width: 250px;
 min-height: 400px;
 left: 12px;
 background-color: #ccc;
 border: 1px solid #999;
 margin-top: -1px;
 padding: 2px;
}
#mainContent {

101

Writing the Style Sheet

 margin: 8px 8px 8px 280px;
}

Creating an Inner Page
We have the homepage all roughed out. Now, we need to build another template
that will handle the display of the rest of the site's content. We’ll get this work
started now, and come back to it later as necessary.

For now, all we have to do is make a copy of index.php and call it inner-
page.php—this will maintain the same includes and layout as our homepage.
We'll make a few minor changes to this new template, in particular, to the code
that is used to extract information from the correct file in the xml directory.

An id variable will be passed in the query string, which will correspond to the
filename of the XML file that contains the associated content. So the ID webcopy3
will correspond to a file named webcopy3.xml in the xml directory.

Since we're using input from the browser (the id variable) as a filename in our
script, we must be sure to check that the value passed is not a security risk.
Otherwise, we could find our script turned against us as a clever hacker submits
a value that points to some sensitive file on the system. For our purposes, a reg-
ular expression that verifies that the variable contains an alphanumeric string
(only numbers and letters) will suffice.

With these considerations in mind, here's the code that loads the XML file asso-
ciated with the supplied ID:

File: innerpage.php (excerpt)

<?php
include_once 'common.inc.php';
if (!isset($_GET['id']) or !eregi('^[a-z0-9]+$', $_GET['id']))
 return;
$file = $fileDir . $_GET['id'] . '.xml';
$inner = simplexml_load_file($file);
?>

With the file loaded, we must pull out the values inside for display in the template.
In this instance, we're using a single template file to display two different types
of content: news items (news123.xml) and Web copy (webcopy123.xml). If you
refer back to Chapter 2, where we defined these XML formats, you'll see that the
Web copy has navigationlabel and body elements that news items do not.
We'll have to detect these to make sure our template displays the right thing.

102

Chapter 4: Displaying XML in a Browser

The best way to do this with the SimpleXML API is to use an XPath query. For
example, we want to use the navigationlabel element for the page title, but if
no such element exists we want to fall back on the headline element. Here's the
code:

File: innerpage.php (excerpt)

<title>
<?php
if (count($inner->xpath('navigationlabel'))) {
 echo htmlentities($inner->navigationlabel);
} elseif (count($inner->xpath('headline'))) {
 echo htmlentities($inner->headline);
}
?>
</title>

With all this in mind, you should be in a position to understand the complete
template at a glance.

File: innerpage.php

<?php
include_once 'common.inc.php';
if (!isset($_GET['id']) or !eregi('^[a-z0-9]+$', $_GET['id']))
 return;
$file = $fileDir . $_GET['id'] . '.xml';
$inner = simplexml_load_file($file);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>
<?php
if (count($inner->xpath('navigationlabel'))) {
 echo htmlentities($inner->navigationlabel);
} elseif (count($inner->xpath('headline'))) {
 echo htmlentities($inner->headline);
}
?>
</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="xmlcms.css" type="text/css" />
</head>
<body>

103

Creating an Inner Page

<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>
<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($inner->headline) . '</h1>';
 echo '<p><small>' . htmlentities($inner->description) .
 '</small></p>';
 if (count($inner->xpath('body'))) {
 echo $inner->body;
 }
 ?>
</div>
</body>
</html>

That’s really all we need at the moment—we have the foundations of a Website
working already! We don’t have much formatting yet, nor a working search engine,
but the display side is coming together quite nicely.

What does our sample site look like so far? Well, since we haven't created any
XML documents yet, yours might not work at all. On my system, however, I’ve
inserted a number of files, which I've supplied for you in the code archive for this
chapter, and the site looks like that shown in Figure 4.6.

Over the next few chapters, we'll create XML documents with an administration
tool, and the project will really start to come together.

Summary
In this chapter, we got a closer look at XSLT as we roughed out the display pages
we’ll need for our project. In Chapter 5, we’ll look even more closely at XSLT,
as we learn some of the more programmatic aspects of the language, such as loops,
variables, and branches. We’ll also fill in the elements we’ll need for the display
side, such as a working search engine, some formatting rules, and other details.

104

Chapter 4: Displaying XML in a Browser

Figure 4.6. Displaying the CMS project so far.

105

Summary

106

XSLT in Detail5
In Chapter 2 and Chapter 4, you got some exposure to XSLT, and learned some
basic tips for displaying XML in a Web browser. Now it’s time to uncover some
of XSLT's more advanced syntax. The goal of this chapter is to help you get a
better understanding of the power of XSLT. Once we’ve taken care of that, we’ll
return to our CMS project and start applying XSLT rules to the display pages
we built in the last chapter. First, though, let's take another look at XPath.

XPath
You've already been exposed to XPath in our work with XSLT so far, but in
keeping with the theme of this chapter, let's stop and take a closer look at it now.

Without XPath, you really can’t control XSLT (or other XML technologies) with
any kind of granularity. To draw an analogy, trying to use XSLT without a
knowledge of XPath is like trying to understand databases without knowing
Structured Query Language (SQL). Just like SQL, XPath is a query language, but
its syntax is more closely related to file paths.

For example, if you were working on a UNIX machine and I told you to open up
the following file, you’d know to look in your current working directory:

File.xml

Imagine I told you to look here:

../File.xml

In this case, you’d know to look in the directory “above” your current working
directory. What if I gave you this location?

/home/File.xml

You’d go all the way to the root of your directory hierarchy, and look in the home
directory for the appropriate file. Experienced users know instinctively that some
of these file path notations could point to the same file, or they could point to
three completely different files, depending on the current working directory.

XPath works in much the same way. You can always grab the root element of a
document using this expression:

/*

As in file paths, the slash (/) represents the root of the document structure, and
the asterisk (*) is a wildcard that will match any XML element that occurs at
that location. Since XML documents must have a single root element, this expres-
sion will match that one element, whatever it may be.

XPath also lets you seek out and find all elements with a particular name in the
document:

//title

The double-slash (//) notation in XPath means “this element or any of its des-
cendants, named…” When it occurs at the start of the XPath expression, “this
element” implicitly refers to the root of the document. The particular expression
shown here will therefore locate any title elements anywhere in the document.

Rather than looking for elements throughout the document, you could match
only certain elements, depending on their context:

memo/title

This expression matches title elements that are children of a memo element that
is a child of the current element. Adding double-slashes in various places can
loosen up the requirements of this expression. For example, memo//title would
match title elements occurring anywhere inside memo, the memo element, not
only its children. //memo/title would match title elements that were children

108

Chapter 5: XSLT in Detail

of a memo element found anywhere in the document, not a child of the current
element. And for the ultimate in flexibility, //memo//title would match title
elements located anywhere inside a memo element found anywhere in the docu-
ment.

As with file paths, you can use the . and .. notation as well. Predictably, . is
shorthand for “the current node” and .. is shorthand for “the parent of the cur-
rent node”.

If XPath were just good at retrieving nodes based on paths, that would be terrific.
As we first saw in Chapter 4, XPath also allows us to be more discriminating with
our searches. For example, we may want to retrieve only those elements for which
a certain attribute value is set:

title[@priority='hot']

This expression grabs title elements that are children of the current element,
but only those that have a priority attribute set to hot. The predicate (the
portion of the expression in square brackets) acts as a filter, restricting the results
to those that satisfy certain criteria. In this case, the @ symbol in front of priority
indicates that we're referring to an attribute, not an element name.

What if you want to retrieve all title nodes for which any priority attribute
value is set? You'd use this expression:

title[@priority]

You can use similar notation to find elements that have a certain value. For ex-
ample, let’s say that in a slightly different schema, we're storing the priority as a
text value within a tag, not as an attribute. If we wanted to retrieve all the title
elements that have a priority element containing a value of hot, here’s how
we’d do it:

title[priority='hot']

Let's continue to mix and match. Here’s how you'd pick out all the date child
elements of title elements anywhere in the document that have a priority
attribute with a value of hot:

//title[@priority='hot']/date

109

XPath

XPath also provides selectors that can operate on logical node positions. For ex-
ample, to retrieve the first and last title elements of any memo elements respect-
ively, you'd use:

memo/title[first()]

memo/title[last()]

You could also select the first title elements of any memo elements using an index
selector:

memo/title[1]

This is actually shorthand for the following:

memo/title[position()=1]

In other cases, you might need to select multiple branches within the same doc-
ument. Here’s an example that shows how you might pick out memo titles and
authors at the same time:

memo/title|memo/author

As you can see, the XPath query language is powerful and flexible—it allows you
to retrieve just about any combination of nodes from an XML document, which
can make all the difference when you’re working with XSLT and other XML
technologies.

Programmatic Aspects of XSLT
In this section, we’re going to cover sorting, counting, numbering, conditional
processing, and looping in XSLT. The goal is to give you a solid background in
some of the more programmatic aspects of XSLT. Yes, there is more to XSLT
than just displaying stuff in a browser!

Sorting
Sometimes, you may want to change the order of the nodes in your XML docu-
ment. In fact, if you're using some kind of software process to create a file (such
as an inventory readout), it’s likely that the nodes will be output in the same
order in which they were written to the file.

110

Chapter 5: XSLT in Detail

XSLT’s sort element can be a big help here. It allows you to sort nodes in alpha-
betical or numerical order, as well as in ascending (a, b, c) or descending (z, y,
x) order.

Let’s take a look at a hypothetical XML file, which contains a list of products in
a catalog. As you can see from the example below, the product listing is not in
any discernible order.

File: productlisting.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<catalog>
 <product sku="212993">Lamp</product>
 <product sku="488839">Folder</product>
 <product sku="198102">Stapler</product>
 <product sku="91882">Notebook</product>
 <product sku="873638">Inbox</product>
 <product sku="192839">Desk</product>
 <product sku="66553">Pen</product>
 <product sku="38289">Calculator</product>
</catalog>

Sorting Alphabetically

You can sort this product list in ascending alphabetical order by adding an
<xsl:sort> tag as a child of the <xsl:apply-templates> tag used to select the
product elements.

File: sort.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Alphabetical List of Products</h1>
 <xsl:apply-templates select="product">

<xsl:sort/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template match="product">
 <p><xsl:apply-templates/></p>
 </xsl:template>

Figure 5.1 shows the file displayed in a Web browser. As you can see, the product
elements have been sorted by their contents before being processed by the corres-
ponding template.

111

Sorting Alphabetically

Figure 5.1. Alphabetical sort of product listing example.

Reversing the Sort

What if you wanted to sort the list in reverse order? Easy! Just add an order at-
tribute to the sort instruction:

File: sort-descending.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Alphabetical List of Products</h1>
 <xsl:apply-templates select="product">
 <xsl:sort order="descending"/>
 </xsl:apply-templates>
 </xsl:template>

112

Chapter 5: XSLT in Detail

The reverse listing is shown in Figure 5.2.

Figure 5.2. Reversing the sort on our product listing.

Sorting by the Numbers

Now that we have a handle on sorting alphabetically, let’s take a look at sorting
numerically. What we want to do is sort the list of products by the value of their
sku attribute.

Here’s the listing again:

File: productlisting.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<catalog>
 <product sku="212993">Lamp</product>
 <product sku="488839">Folder</product>
 <product sku="198102">Stapler</product>

113

Sorting by the Numbers

 <product sku="91882">Notebook</product>
 <product sku="873638">Inbox</product>
 <product sku="192839">Desk</product>
 <product sku="66553">Pen</product>
 <product sku="38289">Calculator</product>
</catalog>

If we want to sort using the sku attribute, we first must add a data-type attribute
to the sort element, so that it knows it's sorting numbers and not text values
(the default). There are three valid values for this attribute: text, number, and
qname. For now, we’ll concentrate on number, because it will allow us to sort the
lists on the numeric SKUs.1

We also have to tell XSLT what to look at when performing the sort. To do this,
we use the select attribute of the sort element.

File: sort-sku.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>
 <xsl:apply-templates select="product">

<xsl:sort select="@sku" data-type="number"/>
 </xsl:apply-templates>
 </xsl:template>

What's happening here is that for each element to be sorted, the select attribute
of the sort element provides an XPath expression that locates the data to be
used in performing the sort. In this case, @sku points to the sku attribute of each
product element.

Figure 5.3 shows the results of this XSLT processing.

What happens if we want to display the SKU as well as the product name? We
can simply modify the template for our product elements to output the value
using a value-of.

File: sort-sku-show.xsl (excerpt)

 <xsl:template match="product">
 <p><xsl:value-of select="@sku"/> - <xsl:apply-templates/></p>
 </xsl:template>

Figure 5.4 shows the new display.

1SKU stands for Stock Keeping Unit, which is simply a unique numeric ID for a product for sale.

114

Chapter 5: XSLT in Detail

Figure 5.3. Sorting by numbers.

Figure 5.4. Sorting by numbers. (Part 2)

115

Sorting by the Numbers

Counting
Sorting the product listing by SKU is good, but it might be nice to provide a total
count of products as well. We can use XPath's count function to print out the
number of elements matched by a particular expression. In the following example,
I’ve added a count of elements to the SKU sort example:

File: sort-count.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>

<p>Total products: <xsl:value-of select="count(product)"/>
 </p>
 <xsl:apply-templates select="product">
 <xsl:sort select="@sku" data-type="number"/>
 </xsl:apply-templates>
 </xsl:template>

Figure 5.5 shows how this appears in a Web browser.

Figure 5.5. Counting products.

116

Chapter 5: XSLT in Detail

Numbering
If you need to add numbered lists to your XSLT output, use the <xsl:number>
tag. In this example, we’ll use it to print a number next to each product in the
list.

Let’s see the example first. Then, we’ll step through it to see how it’s done.

File: number.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>
 <p>Total products: <xsl:value-of select="count(product)"/>
 </p>
 <xsl:apply-templates select="product"/>
 </xsl:template>

 <xsl:template match="product">
 <p><xsl:number format="1. "/><xsl:apply-templates/>
 (<xsl:value-of select="@sku"/>)</p>
 </xsl:template>

Notice that this style sheet is almost the same as our last one, except that, here,
we aren’t sorting the results. Furthermore, in the second template, we’ve added
a number element. This tells XSLT to output a number, based on the format at-
tribute, counting up for each element in a series of nodes matched by this tem-
plate.

The format attribute lets you create numbering schemes using integers, integers
with leading zeros, upper- and lowercase letters, and upper- and lowercase Roman
numerals. Simply supply a value that indicates how you'd like the first number
in the series to look, and XSLT will take it from there. In this example, the value
1. indicates that we want an integer number followed by a period (.) and then
a space. In this context, 1 is a special character that tells XSLT that we want it
to write out integers. Table 5.1 provides a summary of these special characters.

Table 5.1. format Attribute Numbering Codes

ResultsCodeResultsCode

A B C D E F…A1 2 3 4 …1

i ii iii iv v …i01 02 03 04 …01

I II III IV V …Ia b c d e f …a

117

Numbering

By default, the number generated for each element is based on the original position
of the node in the XML file. Thus, if we were to sort our output in any way, the
numbers would be mixed up. Figure 5.6 shows what happens when we use the
number element; Figure 5.7 shows what happens when we sort the data at the
same time.

Figure 5.6. Numbering your output.

118

Chapter 5: XSLT in Detail

File: number-position.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>
 <p>Total products:
 <xsl:value-of select="count(product)"/></p>
 <xsl:apply-templates select="product">

<xsl:sort/>
 </xsl:apply-templates>
 </xsl:template>

Figure 5.7. Numbering with a sort.

119

Numbering

So, how can you perform a sort and have the numbers appear in the right or-
der—based on the resulting sort, not the source XML? This can be done with
the help of the XSLT position function. The number element supports a value
attribute with which you can control the number that is displayed. position
gives the position of the current element within the current (sorted) group of
elements, so it's exactly the number we want:

File: number-position.xsl (excerpt)

 <xsl:template match="product">
 <p><xsl:number format="1. " value="position()"/>
 <xsl:apply-templates/> (<xsl:value-of select="@sku"/>)</p>
 </xsl:template>

The resulting list is shown in Figure 5.8.

A Complex Affair

You may be wondering why numbering and positioning has to be so complicated. You
may ask why you can't just use an HTML ordered list:

 <xsl:template match="catalog">
 <h1>Product Listing</h1>
 <p>Total products: <xsl:value-of select="count(product)"/>
 </p>

 <xsl:apply-templates select="product">
 <xsl:sort/>
 </xsl:apply-templates>

 </xsl:template>

 <xsl:template match="product">
<xsl:apply-templates/> (<xsl:value-of select="@sku"/>)

 </xsl:template>

HTML’s tag is a great way to make numbering work, and works regardless of the
sort, since the numbering is performed by the browser. However, something like that
won’t help if you’re outputting plain text. XSLT numbering provides a more general
solution, which will work even when HTML output isn't an option.

120

Chapter 5: XSLT in Detail

Figure 5.8. The right way to sort and number output.

Conditional Processing
Most programming languages allow us to perform some kind of conditional pro-
cessing. In other words, they let us test if something is true or false, then perform
an appropriate action. Although it's not a fully-fledged programming language,
XSLT does provide basic conditional processing tools.

121

Conditional Processing

<xsl:if>

Continuing with our product listing example, let’s imagine that we only want to
display those products whose SKU is greater than 100,000. How would this work
in a style sheet?

The answer is to use the <xsl:if> tag. This instruction allows you to set a test,
and then do something based on the results. In the following style sheet, we use
this technique to print out those products that have an SKU above 100,000.

File: conditional.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>

 <xsl:apply-templates select="product">
 <xsl:sort/>
 </xsl:apply-templates>

 </xsl:template>

 <xsl:template match="product">
<xsl:if test="@sku > 100000">

 <xsl:apply-templates/>
 (<xsl:value-of select="@sku"/>)

</xsl:if>
 </xsl:template>

Notice first that we wrap the entire output in an HTML ordered list. Second,
notice that we use <xsl:if> to perform our test in the second template block:

File: conditional.xsl (excerpt)

 <xsl:if test="@sku > 100000">

Every if element must have a corresponding test attribute. In this particular
case, we're testing the value of the sku attribute (@sku in XPath notation). If it's
over 100,000, we print the product node. >, as you'll know from HTML, is
the escaped form of >, the greater-than symbol.

Escaping Less-Than and Greater-Than

Since the less-than (<) and greater-than (>) symbols are used to start and
end tags in XML, you must escape these characters when you use them in
some other capacity. This includes using them as operators in XPath expres-
sions.

122

Chapter 5: XSLT in Detail

Thus, if you want to perform a “less than” test, you must escape the < oper-
ator as <:

<xsl:if test="@sku < 100000">

If you forget to escape a special character like this, chances are you'll be facing
an error message when you try to process a file using the style sheet.

Figure 5.9 shows how the output displays in a Web browser.

Figure 5.9. Conditional processing using <xsl:if>.

<xsl:choose>

What’s the difference between <xsl:if> and <xsl:choose>? The if element
only allows you to test one condition at a time, whereas a choose element can
have multiple branches, each of which responds to a different condition.

Let’s keep working on our product example. In the last section, we used an if
element to print out any product that had an SKU over 100,000. This time,
we’re going to use choose to format the different products depending on their
SKU values.

123

xsl:choose

File: conditional2.xsl (excerpt)

 <xsl:template match="product">
<xsl:choose>

 <xsl:when test="@sku > 100000">
 <xsl:apply-templates/>
 (<xsl:value-of select="@sku"/>)

</xsl:when>
 <xsl:when test="@sku > 50000">
 <xsl:apply-templates/>
 (<xsl:value-of select="@sku"/>)

</xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates/>
 (<xsl:value-of select="@sku"/>)

</xsl:otherwise>
 </xsl:choose>
 </xsl:template>

As you can see, the <xsl:when> tag plays host to a number of <xsl:when> tags,
and optionally a <xsl:otherwise> tag. The test attributes of the whens are
checked in order, and the first one that is found to be true determines which
when branch is executed. If none of the tests works out, then the contents of
the optional branch are processed instead.

Our two when branches in this case are fairly straightforward. In the first branch,
we check to see if the SKU is greater than 100,000. If it is, then we print out the
product's name and its SKU in bold (). In the second branch, we test
to see if the value of the SKU is greater than 50,000. If it is, we display the
product's name and SKU in italics (). The otherwise handles any remaining
products, displaying them normally.

Figure 5.10 shows the results.

124

Chapter 5: XSLT in Detail

Figure 5.10. Conditional processing using xsl:choose.

Looping Through XML Data
With <xsl:for-each>, you can loop through a set of XML elements, processing
each element as you specify. This looping construct is very useful when you need
to repeat a process or function multiple times, and it can be a great time-saver
over writing a template to do the job. In the example below, we'll use for-each
instead of apply-templates to print out the products in our catalog.

File: foreach.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>

<xsl:for-each select="product">
 <xsl:apply-templates/>

</xsl:for-each>

 </xsl:template>

125

Looping Through XML Data

As you can see, the for-each loop construct allows us to process XML data
quickly, and in a very concise manner. Although apply-templates provide
greater flexibility and is generally easier to maintain and extend, sometimes the
simplicity of a for-each is exactly what you need.

As with templates, you can even add conditional processing to print only the
product nodes that have certain SKUs:

File: foreach-conditional.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>

 <xsl:for-each select="product">

<xsl:if test="@sku > 100000">
 <xsl:apply-templates/>

</xsl:if>
 </xsl:for-each>

 </xsl:template>

Another way to achieve this would be to use a predicate in the XPath query in
the for-each:

File: foreach-conditional2.xsl (excerpt)

 <xsl:template match="catalog">
 <h1>Product Listing</h1>

 <xsl:for-each select="product[@sku > 100000]">
 <xsl:value-of select="."/>
 </xsl:for-each>

 </xsl:template>

Some might argue that this alternative method is more elegant, pithy, and com-
pact, while others might prefer the programmatic structure of an if nested inside
the for-each loop.

Our CMS Project
In the last chapter, we took a giant leap forward with our CMS, building most
of the public pages we’ll need to make our site work. In this chapter, we’re going
to finish the search engine and start adding some formatting rules to our docu-
ments.

126

Chapter 5: XSLT in Detail

Finishing our Search Engine
In the last chapter, we created a very simple search widget. This widget contained
the following HTML:

File: search.inc.php (excerpt)

<form id="searchWidget" method="post" action="doSearch.php">
 Search Site:
 <input name="term" type="text" id="term" />
 <input name="search" type="submit" id="search" value="Search" />
</form>

What we’ll do now is create the doSearch.php file, which will contain the code
that implements the search. When we originally discussed our requirements for
the Website, we said: “The search engine will retrieve content by keywords, titles,
and descriptions, and only display those pieces that have a status of live.”

So let’s start working on doSearch.php. The structure of the page is quite similar
to the rest of our site's pages. The heart of the page's code, however, loops through
our files looking for the submitted search string in appropriate places:

File: doSearch.php (excerpt)

<?php
include_once 'common.inc.php';
$term = $_POST['term'];
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Search Results</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="xmlcms.css" type="text/css" />
</head>
<body>
<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>

127

Finishing our Search Engine

</div>
<div id="mainContent">
 <?php
 $handle = opendir($fileDir);
 $items = array();
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^(news|article|webcopy).*\.xml$", $file))
 continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((stripos($xmlItem->keywords, $term) !== FALSE or
 stripos($xmlItem->headline, $term) !== FALSE or
 stripos($xmlItem->description, $term) !== FALSE) and
 (string)$xmlItem->status == 'live') {
 $item = array();
 $item['id'] = (string)$xmlItem['id'];
 $item['headline'] = (string)$xmlItem->headline;
 $items[] = $item;
 }
 }

Though this code is imposing, most of it should be familiar. It simply scans
through our xml directory in search of XML files containing news, articles, and
Web copy. It loads every such file using SimpleXML and checks the keywords,
headline, and description elements to see if they contain the search string
($term). Upon finding a match, we dump information about the file into an array
($items).

A few details of note:

File: doSearch.php (excerpt)

 if (!eregi("^(news|article|webcopy).*\.xml$", $file))
 continue;

This regular expression simply checks that the filename begins with news, article,
or webcopy, and ends with .xml.

File: doSearch.php (excerpt)

 if ((stripos($xmlItem->keywords, $term) !== FALSE or
 stripos($xmlItem->headline, $term) !== FALSE or
 stripos($xmlItem->description, $term) !== FALSE) and
 (string)$xmlItem->status == 'live') {

128

Chapter 5: XSLT in Detail

The stripos function used here is new to PHP 5. It performs a case-insensitive
search of its first argument for the second argument, and returns false if the value
was not found. In this case, we're using it to look for the search term in the various
XML element values.

In the last line, we must cast the value of the status element to a string
((string)$xmlItem->status), in order to compare it with the string 'live',
because SimpleXML actually stores the information as an object. You'll notice
we've also cast a couple of other values (such as $xmlItem['id']) before storing
them in variables. Functions like stripos that take only string values perform
this conversion automatically, which is why the values of the keywords, headline,
and description elements are used directly. Casting values is a fact of life in
fully object oriented languages like Java, but in PHP it's a rare necessity.

We run a test to see if the $items array has a length greater than zero, and print
out the appropriate result: a search results list, or a message stating that no content
items were found to match that search term.

File: doSearch.php (excerpt)

 if (count($items) > 0) {
 echo '<h1>Search Results for ' . htmlentities($term) .
 '</h1>';
 echo '<table border="1" cellspacing="0" cellpadding="3"
 width="85%">';
 echo '<tr valign="top"><th>Content Item</th><th>Content Type
 </th></tr>';
 foreach ($items as $item) {
 echo '<tr valign="top"><td><a href="innerpage.php?id=' .
 $item['id'] . '">';
 echo htmlentities($item['headline']) . '</td>';
 echo '<td>';
 echo ereg_replace('[0-9]', '', $item['id']);
 echo '</td></tr>';
 }
 echo '</table>';
 } else {
 echo '<h1>Sorry!</h1>';
 echo '<p>No files found with the search term ' .
 htmlentities($term) . '</p>';
 }
 ?>
</div>
</body>
</html>

129

Finishing our Search Engine

We now have a fast and effective XML-driven search engine for our site, as shown
in Figure 5.11.

Figure 5.11. Our new search engine.

Creating an XSLT-Powered Site Map
A search engine can certainly help our site visitors get around, but a site map will
show them exactly where specific content is located, and how to get to it.

In this section, we’ll build a PHP- and XSLT-powered site map. This will give us
first-hand experience with the creation of XML files from PHP, the processing
of XML with XSLT from PHP, and the use of dynamic sorting options within
XSLT.

Generating a Site Map Dynamically

The first thing we need to do is create a PHP script, which will dynamically
generate a site map in memory. It will then process that site map with an XSLT
file that we’ll create shortly.

Within our PHP file, we’ll use PHP 5's SimpleXML functions to create our XML
file. First we'll create a timestamp (in the format YYYYMMDDHHMMSS) using

130

Chapter 5: XSLT in Detail

PHP's date function, which we use in the <sitemap> tag at the root of the site
map document:

File: sitemap.php (excerpt)

<?php
include_once 'common.inc.php';
$timestamp = date('YmdHis');

$xmlstring = '<?xml version="1.0"?>';
$xmlstring .= '<sitemap created="' . $timestamp . '">';

Our next step involves grabbing content from live XML documents in the xml
directory. As we did previously for the site search engine, we'll use SimpleXML
to open each file and pull out the values we need:

File: sitemap.php (excerpt)

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^(news|article|webcopy).*\.xml$", $file)) continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((string)$xmlItem->status == 'live') {
 $id = (string)$xmlItem['id'];
 $type = ereg_replace('[0-9]', '', $id);
 $created = ereg_replace('[^0-9]', '', $id);
 $xmlstring .= '<content id="' . $id . '">';
 $xmlstring .= '<headline>' .
 htmlspecialchars($xmlItem->headline) . '</headline>';
 $xmlstring .= '<type>' . $type . '</type>';
 $xmlstring .= '<created>' . $date . '</created>';
 $xmlstring .= '</content>';
 }
}
$xmlstring .= '</sitemap>';

You'll note that we have made a new assumption here. The ID of each content
item is assumed to obey a certain format: it will start with the type of content
(e.g. news, article, webcopy)—we assume this in the search engine script as
well—and then the item's creation date/time, in the form YYYYMMDDH-
HMMSS. We'll shortly use this second value, which can be treated as a single
large number, to sort our content items according to their creation date.

Now that we've generated our site map as an XML string, we'll feed it into Sim-
pleXML using simplexml_load_string:

131

Generating a Site Map Dynamically

File: sitemap.php (excerpt)

$xml = simplexml_load_string($xmlstring);

The last thing we'll do in preparation for displaying our site map will be to set a
variable that will determine how the content list will be sorted. For this applica-
tion, we want the user to be able to sort on the basis of the headline, creation
date, or content type of the items on the site. We'll accept the user's choice of
sort mode as a variable in the query string, with a default of headline sorting:

File: sitemap.php (excerpt)

if (isset($_GET['sortby'])) {
 $sortby = $_GET['sortby'];
} else {
 $sortby = 'headline';
}

Now we can apply a style sheet to the information in order to display it in the
Web browser. In PHP 5, the XSLT functionality has been separated from the
XML functions, which allows you to use XSLT regardless of the method used to
generate the XML data in the first place. This does, however, mean that you need
to make sure that your PHP installation has XSLT support enabled.

XSLT support in PHP is provided by the optional XSL extension.[1] This exten-
sion isn't enabled by default; so you'll need to compile it in using --with-xsl on
Unix-style installations. You'll need to install libxslt[2] on your server before you
can do this. On Windows, the process is a bit easier; you simply need to add the
php_xsl.dll file to your php.ini file on Windows.

The first thing we need to do is load our style sheet. In PHP, we use the built-in
DOMDocument class to do this. We'll learn more about DOMDocument in later
chapters, but for now you just need to know how to load an XML file with it:

File: sitemap.php (excerpt)

$xsl = new DOMDocument;
$xsl->load('xslt/sitemap.xsl');

With this loaded, we can use the style sheet with PHP's XSLTProcessor class:

File: sitemap.php (excerpt)

$proc = new XSLTProcessor;
$proc->importStyleSheet($xsl);

[1] http://www.php.net/xsl
[2] http://xmlsoft.org/XSLT/

132

Chapter 5: XSLT in Detail

http://www.php.net/xsl
http://xmlsoft.org/XSLT/

Next, we pass the $sortby variable to the style sheet as a parameter. We do this
with the xsltprocessor's setParameter method. The first argument has to do
with namespaces and is almost always left blank; the second sets the name of the
parameter as it will be used in the style sheet; the third is the parameter's value.
The style sheet will use this parameter to sort the site map according to the user's
preference:

File: sitemap.php (excerpt)

$proc->setParameter('', 'SORTBY', $sortby);

Finally, we transform our XML data using the style sheet and send the output
to the browser:

File: sitemap.php (excerpt)

echo $proc->transformToXML($xml);
?>

With the processing logic in place, all that's left to do is write the style sheet.

Creating the Style Sheet

The style sheet will be very simple. It will transform sitemap.xml into an XHTML
display for the browser, presenting the live content on the site as a list of links.
The user will be able to sort the display by headline, date of creation, and content
type.

In the preamble, we set the output method for XHTML output:

File: sitemap.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

Now we need to declare the SORTBY parameter that our style sheet will accept to
indicate how to sort the headlines in the site map. To do this, we use an XSLT
<xsl:param> tag, like this:

133

Creating the Style Sheet

File: sitemap.xsl (excerpt)

 <xsl:param name="SORTBY">headline</xsl:param>

As you can see, the tag contains the default value of the parameter (to be used
in case our script didn't pass a value for it).

Next, we write a template for the root of the document that generates the static
elements of the page. In particular, it includes a number of links to allow users
to sort the display. These links pass the query string variable, sortby, that the
PHP script expects to receive.

File: sitemap.xsl (excerpt)

 <xsl:template match="/">
 <html>
 <head>
 <title>Site Map</title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <h1>Site Map</h1>
 <p>sort: type |
 headline |
 date</p>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

The next template matches the sitemap element. It uses an XSLT sort element
to arrange the list of content according to the user's preference. As we saw in
sort-sku.xsl earlier in this chapter, this element takes an optional select at-
tribute that specifies what value to sort on using an XPath expression. In this
case, we use the SORTBY parameter's value (referred to in XSLT as $SORTBY),
which will be passed from the PHP script as either type, headline, or date. In
each case, the style sheet will look for the corresponding element within each
content element and use it to sort the list.

File: sitemap.xsl (excerpt)

 <xsl:template match="sitemap">

 <xsl:apply-templates>
 <xsl:sort select="$SORTBY"/>
 </xsl:apply-templates>

134

Chapter 5: XSLT in Detail

 <p><small>sorting by: <u><xsl:value-of select="$SORTBY"/></u>
 </small></p>
 </xsl:template>

The final template, for the content elements, simply prints out a link to inner-
page.php using the headline and type elements from the dynamically generated
XML site map:

File: sitemap.xsl (excerpt)

 <xsl:template match="content">

 <xsl:apply-templates select="headline"/>
 (<xsl:value-of select="type"/>)
 </xsl:template>
</xsl:stylesheet>

Of particular note here is the way we've included the value of the id attribute in
the href attribute of the link. By surrounding it with braces ({}), you can output
the value of any XPath expression in an attribute value, as we've done here.

That’s all there is to it! Now all we have to do is add a link to the sitemap.php
file (preferably in the left navigation area), so your users can view all the live
content on the site. The finished site map should look like Figure 5.12.

Figure 5.12. Our new site map.

135

Creating the Style Sheet

Summary
We learned a great deal more about XSLT in this chapter, and, in the process,
we finished up our search engine and added a site map to the project Website.
In the next chapter, we’ll learn how to manipulate XML with JavaScript and
DHTML.

136

Chapter 5: XSLT in Detail

Manipulating XML with
JavaScript/DHTML6

In this chapter, we’re going to learn how to manipulate XML data within your
visitors' browsers with JavaScript and DHTML. Along the way, you’ll be intro-
duced to the Document Object Model (DOM).

Learning how to work with client-side tools and XML can be a very valuable
bridge to success in future projects. Combined with knowledge of server-side
XML processing, client-side skills can give you quite an edge in a complex project.

Why Use Client-Side Scripting?
At first glance, it seems pretty silly to process XML data on the client side when
such powerful languages as PHP, ASP.NET, Java, and Perl exist to handle pro-
cessing on the back end. But, if you’ve been around the world of Web develop-
ment for any length of time, you'll know that there are circumstances in which
it makes sense to handle things on the server side, and other conditions that suit
processing on the client side.

Processing data on the client side can help relieve server load and give the visitor
a better, more responsive experience of your site. For example, the use of server-
side programming to perform a task as simple as sorting a column in a table, or
formatting some data, is unnecessary; it also forces the user to wait longer than

they should have to for such trivial operations. Client-side processing of XML
data can be a big help in situations like this.

Working with the DOM
What is the DOM? It’s the Document Object Model, a W3C Standard that
allows you, the programmer, to put together a document dynamically, and to
navigate and manipulate its structure and content.

In this chapter, we’re going to spend some time on the DOM. Consider this dis-
cussion a precursor to Chapter 7, where we'll get into more detail with PHP's
SimpleXML library, and discuss DOM and SAX, two alternate approaches to
processing XML documents. There’s a lot to cover, so buckle your seat belts and
get ready!

Loading Documents into Memory
Earlier, we mentioned that most programming languages that interface with XML
use an XML parser to load XML documents into memory. Once they're loaded,
information in the documents can be retrieved and manipulated through the
Document Object Model (DOM).

You can visualize the DOM's structure as a tree of nodes. The root of the tree
is a Document node, which has one or more child nodes that branch off from this
trunk. Each of these child nodes may in turn contain child nodes of their own,
and so on.

Every node in the document offers some standardized functionality, described
by the DOM standard as the Node interface. The DOM standard supports roughly
a dozen node types, each of which contains specialized functionality on top of
the standard Node interface. The Document is one such node type. Element, Attr,
and Text are others.

There are two useful methods by which we can load a DOM representation of
an existing XML document on the client side. The first is to load XML code from
an existing file; the second is to create the code as a JavaScript string and load it
into the parser that way. A third method involves creating what’s called an XML
Data Island directly inline with the HTML content, but, as this method works
only in Internet Explorer, we won’t cover it here.

138

Chapter 6: Manipulating XML with JavaScript/DHTML

We’ll examine both of the common methods in a moment, but first we need to
learn how to instantiate an XML parser.

Using the XML Parser

To manipulate or traverse an XML document in Internet Explorer, we first have
to instantiate the Microsoft XMLDOM parser. In Internet Explorer 5.0 and
above, we can instantiate the parser using JavaScript:

File: clientside-ie.html (excerpt)

<script type="text/javascript">
var xml = new ActiveXObject("Microsoft.XMLDOM");
…
</script>

Internet Explorer only

Although we will eventually implement a cross-browser solution for manipu-
lating XML data on the client side, let's start with an Internet Explorer-only
solution for simplicity.

Once the parser is instantiated, we can load a file into it using a series of com-
mands. In this example, we load a file named menu.xml into the parser.

File: clientside-ie.html (excerpt)

<script language="JavaScript">
var xml = new ActiveXObject("Microsoft.XMLDOM");
xml.async = false;
xml.load("menu.xml");
…
</script>

Why Set xml.async?

Setting the async property of the xml variable to false ensures that the
parser will wait until the document is fully loaded before it does anything
else.

Here's the XML file we'll use for the examples that follow in this section:

File: menu.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<menu>
 <meal>

139

Using the XML Parser

 <title>Buddha's Delight</title>
 <desc>A feast for the senses!</desc>
 <price>$4.95</price>
 </meal>
</menu>

If it's more suitable for your application, you can instead create a string variable
to hold the XML data, then feed it directly to the parser. Notice that to do this,
you must use the loadXML method instead of the load method:

File: clientsidestring-ie.html (excerpt)

<script type="text/javascript">
var xmlcode = '<?xml version="1.0" encoding="iso-8859-1"?>';
xmlcode += '<menu><meal>';
xmlcode += '<title>Buddha\'s Delight</title>';
xmlcode += '<desc>A feast for the senses!</desc>';
xmlcode += '<price>$4.95</price>';
xmlcode += '</meal></menu>';

var xml = new ActiveXObject("Microsoft.XMLDOM");
xml.async = false;
xml.loadXML(xmlcode);
…
</script>

Accessing Different parts of the Document
Now that we've successfully loaded a DOM representation of an XML document,
we can access the information it contains in a variety of ways. In theory, the
properties and methods used to do this are specified by the W3C DOM Recom-
mendations[1], but in practice different browsers (especially Internet Explorer)
have defined their own interfaces, sometimes rather loosely inspired by the
standard.

When the parser loads an XML document, what it gives you in return is a refer-
ence to the document itself. From this, you can get a reference to the root element
in the document (in our example, the menu element) with the property name
documentElement. The children of that element are in turn accessible through
the childNodes property.

File: clientside-ie.html (excerpt)

var nodes = xml.documentElement.childNodes;

[1] http://www.w3.org/DOM/DOMTR

140

Chapter 6: Manipulating XML with JavaScript/DHTML

http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR

The childNodes property, and thus the nodes variable in this example, contains
a NodeList. In accordance with the DOM standard, you can access the elements
of a NodeList by passing a numerical index to the item method, with 0 corres-
ponding to the first node in the list. In this example, therefore, nodes.item(0)
would return a reference to the first child element of the menu element—the meal
element.

The DOM standard calls for nodes to support a textContent property, which
would return all of the text contained by a given element and all of its descendants.
Internet Explorer doesn't support this property, but it does support a nonstandard
text property that does the same thing. We can use this property to print out
all of the text contained in the first meal element in the document:

File: clientside-ie.html (excerpt)

document.write(nodes.item(0).text);

The result should look something like this:

Buddha's Delight A feast for the senses! $4.95

What if we wanted to print out only the text in the title element of the first
meal? To do this, we'd need to modify our JavaScript slightly:

var nodes = xml.documentElement.childNodes.item(0).childNodes;
document.write(nodes.item(0).text);

When we run the code now, the text “Buddha’s Delight” is displayed in the
browser window.

NodeLists as Arrays

Internet Explorer (and indeed many other DOM implementations) lets you
treat NodeLists as arrays to simplify the code you use to work with them.
In this example, you could use array syntax to access nodes instead of the
item method:

var nodes = xml.documentElement.childNodes[0].childNodes;
document.write(nodes[0].text);

This method of accessing text values within an XML file by numerical index is
useful, but it can get a little cumbersome. Fortunately, there is another way to
approach the problem.

141

Accessing Different parts of the Document

Accessing XML Elements by Name

You can use the getElementsByTagName method to retrieve a list of nodes of a
given type from your document. This method retrieves all elements of the specified
name that occur under the node on which the method is called. For example, to
print “Buddha’s Delight” from our sample menu document, you could write the
following code:

File: clientside-bytagname-ie.html (excerpt)

document.write(xml.getElementsByTagName("title").item(0).text);

With a larger menu document, you could pick up all the titles and display each
as an HTML header with this code:

var titles = xml.getElementsByTagName("title");
for (var i = 0; i < titles.length; i++) {
 document.write("<h1>" + titles.item(i).text + "</h1>");
}

XSLT Processing with JavaScript
In this section, we’ll create a simple XML file and a simple XSLT file. Then, we'll
use JavaScript on Internet Explorer to process the two together and print out
some results.

Internet Explorer Only

Again, this first example will work only on Internet Explorer! We'll look at
cross-browser compatible methods later in this chapter.

Ready to go? Here's the very simple XML file:

File: test.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<body>
<header>This is a simple headline</header>
<para>Some random text. Notice that in our XML source, we aren't
 pointing to a specific XSLT file.</para>
</body>

One thing you should notice right away is that we haven't used a <?xml-
stylesheet> processing instruction in this file. But, before we get into all that,
let’s create the style sheet for this XML file.

142

Chapter 6: Manipulating XML with JavaScript/DHTML

File: test.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

 <xsl:template match="body">
 <html>
 <head>
 <title>Processing XML/XSLT with JavaScript</title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="header">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="para">
 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

Now, let’s build a Web page to perform the transformation. This file will contain
mostly JavaScript code that will load the XML and XSLT files into memory,
process them, and display the results. Let’s take a look at what that looks like.
Then, we’ll walk through it line by line:

File: jsTest-ie.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Processing XML/XSLT with JavaScript</title>

143

XSLT Processing with JavaScript

<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<script type="text/javascript">
var xml = new ActiveXObject("Microsoft.XMLDOM");
xml.async = false;
xml.load("test.xml");

var xsl = new ActiveXObject("Microsoft.XMLDOM");
xml.async = false;
xsl.load("test.xsl");

window.onload = function() {
 document.write(xml.transformNode(xsl));
}
</script>
</head>

<body>
</body>
</html>

Inside the <script> tag, the code creates an instance of the Microsoft XML
parser (XMLDOM) and loads our XML file (test.xml) into memory. This part
should be extremely familiar to you—we learned to do this earlier, in our intro-
duction to the DOM.

File: jsTest-ie.html (excerpt)

var xml = new ActiveXObject("Microsoft.XMLDOM");
xml.async = false;
xml.load("test.xml");

The second snippet of code creates another instance of XMLDOM and loads our
XSLT file (test.xsl) into memory. Since XSLT files are formatted as XML, you
can load them just as you would any other XML file:

File: jsTest-ie.html (excerpt)

var xsl = new ActiveXObject("Microsoft.XMLDOM");
xsl.async = false;
xsl.load("test.xsl");

The remainder of the code waits until the document finishes loading, then
transforms the XML document using the XSL style sheet, and replaces the page
with the results of the transformation.

144

Chapter 6: Manipulating XML with JavaScript/DHTML

File: jsTest-ie.html (excerpt)

window.onload = function() {
 document.write(xml.transformNode(xsl));
}

Here, we’ve used Internet Explorer’s transformNode method, which takes as its
argument the object that holds the XSL file. Because we’re wrapping this operation
inside a call to document.write, the entire expression forms a fairly concise
command that says, in effect: “take our XSLT and apply it to our XML document,
then display the resulting document.”

Figure 6.1 shows how our work appears in Internet Explorer.

Figure 6.1. Using JavaScript to transform XML in IE.

Now, try to look at the same file in Firefox. You’ll find that it doesn’t display at
all. If you use the built-in JavaScript Console, you’ll see a message like that shown
in Figure 6.2.

Figure 6.2. Problems arising with Firefox.

This is because Firefox (and other Mozilla-based browsers) cannot identify the
ActiveXObject that we’re attempting to create on line 10. We need to make
some changes to our script so that it works across browsers.

145

XSLT Processing with JavaScript

Making our Test Script Cross-Browser Compatible
Now we know that we have to make our little script work in both IE and Mozilla-
based browsers like Firefox. Each type of browser handles XML loading in a dif-
ferent fashion, so any script that will work on both will have to do some browser
detection and respond accordingly.

The hard way to do this is to learn from scratch how to load XML in Firefox and
Internet Explorer, and do all the necessary browser detection yourself. A better
way is to open your Web browser, and download the latest copy of the Sarissa[2]
JavaScript XML library.1 The package comes with a number of JavaScript (.js)
files, and various documentation files.

Basically, Sarissa make it possible for you to use a single API to make your
JavaScript XML handling work in both types of browser. It’s a huge time-saver!
It works fairly reliably on Internet Explorer 5.5 and above, Firefox 1.0 and above,
Netscape 6 and above, and Mozilla 1.6 and above.2

This example uses Sarissa to achieve what we did in the last section:

File: jsTest-ie2.html (excerpt)

<script type="text/javascript" src="sarissa/sarissa.js"></script>
<script type="text/javascript">
var xml = Sarissa.getDomDocument();
xml.async = false;
xml.load("test.xml");

var xsl = Sarissa.getDomDocument();
xml.async = false;
xsl.load("test.xsl");

window.onload = function() {
var xslt = new XSLTProcessor();

 xslt.importStylesheet(xsl);
 var out = xslt.transformToDocument(xml);
 document.write(Sarissa.serialize(out));
};
</script>

[2] http://sarissa.sourceforge.net/
1This book was written and tested with Sarissa 0.9.6, the latest version as of this writing. As the library
is still under development, some changes may have been made to the API by the time you read this.
2Many of its features also work in Safari browsers, but XSLT transformations, sadly, are not among
them.

146

Chapter 6: Manipulating XML with JavaScript/DHTML

http://sarissa.sourceforge.net/

This code should print the transformed XML to the page for display. Let's look
at the differences between this and the Internet Explorer-specific code of the
previous example.

First, we must use the Sarissa class' getDomDocument method to create XML
documents in memory:

File: jsTest-ie2.html (excerpt)

var xml = Sarissa.getDomDocument();

We must also use a class called XSLTProcessor to perform the style sheet trans-
formation. After creating the object, we load our style sheet's DOM representation
using importStylesheet:

File: jsTest-ie2.html (excerpt)

 var xslt = new XSLTProcessor();
 xslt.importStylesheet(xsl);

Now, whereas Internet Explorer lets us transform our document directly to an
XML string, most other browsers (and therefore Sarissa) only support transforming
to a DOM representation of the output document. We must then use the Sarissa
class' serialize method to convert it to a string for output:

File: jsTest-ie2.html (excerpt)

 var out = xslt.transformToDocument(xml);
 document.write(Sarissa.serialize(out));

Now, if you test this new script in Internet Explorer, you'll see that it produces
the same output as the browser-specific example. Unfortunately, as Figure 6.3
illustrates, we run into a bit of a glitch when we test the script in Firefox and
other Mozilla browsers.

What's going on here? If you use JavaScript's alert function to display the XML
code of the output document, you'll see the code in Figure 6.4. While this is a
perfectly valid XHTML document, a namespace prefix of a0 has been used for
the XHTML tags, instead of allowing XHTML to be the default namespace in
the document. As a result, the built-in CSS style rules that the browser uses to
apply basic styling to HTML documents do not match any of the tags, and you
get unstyled output.

147

Making our Test Script Cross-Browser Compatible

Figure 6.3. Firefox displaying the XHTML without styling due to
a serialization glitch.

Figure 6.4. A namespace prefix added to the document.

This namespace prefix is an annoying product of Firefox's built-in XML serializ-
ation functionality—there is no practical way to get rid of it, short of removing
the namespace declaration at the top of the test.xsl style sheet; unfortunately,
that trips up the XSLT processor in Internet Explorer, causing the transformation
there to fail completely.

The best workaround I can suggest is messy, and requires you to work around a
couple more browser limitations, but it works. Since we have the transformed
document as a DOM representation in memory, we can use DOM methods to

148

Chapter 6: Manipulating XML with JavaScript/DHTML

extract the element(s) we require from the transformed document and insert
them into our existing document. Here's the code:

File: jsTest.html (excerpt)

window.onload = function() {
 var xslt = new XSLTProcessor();
 xslt.importStylesheet(xsl);
 var out = xslt.transformToDocument(xml);
 var docBody = document.getElementsByTagName('body').item(0);
 var outBody = out.documentElement.childNodes.item(1);
 // Clear the current document body
 while (docBody.hasChildNodes()) {
 docBody.removeChild(docBody.firstChild);
 }
 // Refill it with the 'out' document body's children
 for (var i = 0; i < outBody.childNodes.length; i++) {
 var node = outBody.childNodes.item(i);
 node = document.importNode(node, true);
 docBody.appendChild(node);
 }
};

Let's step through this somewhat convoluted solution, as it contains a couple of
method calls with which you are probably not yet familiar.

Once the transformation has occurred, the first thing our script does is obtain
DOM references to the body elements of both the currently-displayed document,
and the document that resulted from the transformation:

File: jsTest.html (excerpt)

 var docBody = document.getElementsByTagName('body').item(0);
 var outBody = out.documentElement.childNodes.item(1);

You'll notice that while the method we've used to get the displayed document's
body is quite straightforward (look for the first body element in the document),
we use a more roundabout way of getting the body of the transformation output
(getting the second child of the document's root element). A bug or limitation
of Internet Explorer's XML support prevents us from accessing tags by name in
the result of an XSLT transformation, so this alternative approach is needed.

Our next task is to empty out the body of our displayed document, by deleting
all of its child nodes (be they text, elements, or anything else):

149

Making our Test Script Cross-Browser Compatible

File: jsTest.html (excerpt)

 // Clear the current document body
 while (docBody.hasChildNodes()) {
 docBody.removeChild(docBody.firstChild);
 }

The methods and properties used here, though new, are part of the DOM
standard and are relatively self-explanatory. hasChildNodes returns true if the
element has any child nodes; removeChild removes a child node from the element;
and the firstChild property is equivalent to childNodes.item(0).

With the body of the displayed document now empty, we can fill it with nodes
from our transformation output document:

File: jsTest.html (excerpt)

 // Refill it with the 'out' document body's children
 for (var i = 0; i < outBody.childNodes.length; i++) {
 var node = outBody.childNodes.item(i);
 node = document.importNode(node, true);
 docBody.appendChild(node);
 }

This code is a little less self-explanatory, but is equally straightforward. The for
loop iterates through each of the child nodes of the body of the transformation
output document, using the length property of the childNodes collection to get
the number of these nodes. We use the importNode method of the currently-
displayed document to create copies of each of these nodes (including their con-
tents, as indicated by the true second argument) for use in that document. Those
nodes are then added to the currently-displayed document's body element using
the appendChild method.

The result of this process is that the contents of the transformed document are
added to and displayed as part of the existing page, as shown in Figure 6.5. This
solution is effective so long as you didn't need to display the document title, or
anything else inside the head element of the transformation output.

150

Chapter 6: Manipulating XML with JavaScript/DHTML

Figure 6.5. The XSLT output is correctly displayed in Firefox (at
last).

Why not just use similar techniques to replace the entire displayed document,
rather than just the contents of the body? A limitation of Internet Explorer's
DOM implementation actually prevents this, once again. Internet Explorer uses
completely different DOM libraries to work with documents displayed in the
browser and to perform XSLT transformations of documents in memory. These
two libraries were not designed to work together. The Sarissa library makes a
valiant attempt at overcoming this limitation, but the importNode method that
is used here to copy nodes from the transformed document to the displayed
document will only work on elements that are allowed within the body of an
HTML document, thus forcing us to approach the problem as we did.

Thankfully, you'll rarely need to perform an XSLT transformation on the client
side to produce a full HTML document for display. More often, you'll use XSLT
to generate a small document fragment, in which case the technique shown here
of inserting the result using the DOM is completely appropriate, not an incon-
venient alternative.

Creating Dynamic Navigation
Now that we understand how to apply style sheets with JavaScript, let’s implement
something a little more complicated. Let’s extract some XML from a file and use
it to build a navigation system with JavaScript.

151

Creating Dynamic Navigation

First, let’s create a simple file that holds our navigation menu in XML format:

File: navmenu.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<menu>
 <item label="home" target="index.html"/>
 <item label="services" target="services.html"/>
 <item label="about us" target="aboutus.html"/>
 <item label="contact us" target="contactus.html"/>
 <item label="kb" target="kb.html"/>
</menu>

Let’s create a very simple JavaScript (using the Sarissa library for cross-browser
functionality), which will load this menu file and display it as a very simple list
of HTML links.

The first thing we need to do is load the Sarissa libraries:

File: navmenu.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XML Based Menu</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<script type="text/javascript" src="sarissa/sarissa.js"></script>

Next, we’ll create a JavaScript function called initMenu. This function loads our
navmenu.xml file, and pulls all the item nodes into the JavaScript nodes variable.

File: navmenu.html (excerpt)

<script type="text/javascript">
function initMenu(xmlFile) {
 var xml = Sarissa.getDomDocument();
 xml.async = false;
 xml.load(xmlFile);

 var nodes = xml.documentElement.childNodes;

Now we'll use a for loop to look at each item in the menu. Since Firefox counts
the whitespace between tags as text nodes, we must ensure each time through
the for loop that we're dealing with an element node. This is accomplished by
checking the nodeType property to see if it equals Node.ELEMENT_NODE.

152

Chapter 6: Manipulating XML with JavaScript/DHTML

File: navmenu.html (excerpt)

 for (var i = 0; i <= nodes.length - 1; i++) {
 if (nodes.item(i).nodeType != Node.ELEMENT_NODE) continue;

With that done, we can use the getAttribute method of the element node to
grab the label and target values as we want:

File: navmenu.html (excerpt)

 var output = '<a href="' +
 nodes.item(i).getAttribute('target') + '">' +
 nodes.item(i).getAttribute('label') + '
';
 document.write(output);
 }
}
</script>
</head>

Finally, let’s make that all-important call to initMenu in the body of the docu-
ment, passing in the name of our menu file.

File: navmenu.html (excerpt)

<body>
<h1>My Menu</h1>
<script type="text/javascript">
initMenu('navmenu.xml');
</script>
</body>
</html>

Figure 6.6 illustrates the results.

An Alternative Approach

If you're already comfortable with JavaScript, you'll know that there’s a much
better way of doing things than to call document.write to print out the items
of our menu.

A more elegant approach is to set aside a container element (typically a div) with
a known ID. We can then write the contents of that element on-the-fly using
our JavaScript code.

153

An Alternative Approach

Figure 6.6. A simple menu.

Here’s our new HTML:

File: navmenu2.html (excerpt)

<body>
<h1>My Menu</h1>
<div id="menudiv"></div>
</body>
</html>

Now, we must go back to our for loop. We use the getElementById method to
select our div, and write our output to that element’s innerHTML property.

File: navmenu2.html (excerpt)

 var output = '';
 for (var i = 0; i <= nodes.length - 1; i++) {
 if (nodes.item(i).nodeType != Node.ELEMENT_NODE) continue;
 output += '<a href="' + nodes.item(i).getAttribute('target') +

154

Chapter 6: Manipulating XML with JavaScript/DHTML

 '">' + nodes.item(i).getAttribute('label') + '
';
 }
document.getElementById('menudiv').innerHTML = output;

}

Finally, we set up our initMenu function to be run when the rest of the document
finishes loading:

File: navmenu2.html (excerpt)

window.onload = function() {
 initMenu('navmenu.xml');
};

Here's our new code in its entirety:

File: navmenu2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XML Based Menu</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<script type="text/javascript" src="sarissa/sarissa.js"></script>
<script type="text/javascript">
function initMenu(xmlFile) {
 var xml = Sarissa.getDomDocument();
 xml.async = false;
 xml.load(xmlFile);

 var nodes = xml.documentElement.childNodes;
 var output = '';
 for (var i = 0; i <= nodes.length - 1; i++) {
 if (nodes.item(i).nodeType != Node.ELEMENT_NODE) continue;
 output += '<a href="' + nodes.item(i).getAttribute('target') +
 '">' + nodes.item(i).getAttribute('label') + '
';
 }
 document.getElementById('menudiv').innerHTML = output;
}

window.onload = function() {
 initMenu('navmenu.xml');
};
</script>
</head>

155

An Alternative Approach

<body>
<h1>My Menu</h1>
<div id="menudiv"></div>
</body>
</html>

Now that we have a function that prints our output to a div element, we can
reuse this code and place our menu wherever we need it to appear on the page.

In the next section, we’ll apply this knowledge to our CMS project by creating
categories of articles, then defining a menu system for those categories.

What’s the Point of Learning all This?

After reading all this, some of you may still be wondering, “Well, this is pretty
silly—I can do all this with PHP on the server side and not have to worry about
how different browsers handle things.”

I have a few answers for that sort of sentiment:

1. You’re exactly right.

2. Don't forget that learning the DOM is a useful tool not only for processing
XML data in general, but for fiddling with the structures of HTML docu-
ments. This is a fundamental component of Dynamic HTML (DHTML)
node collapsing, and the better you understand it, the better you can apply
other DHTML techniques.

3. You need to remember that it’s sometimes very useful to offload certain
kinds of processing to the client. While this particular example showed a
hard-coded navigation menu, it’s not difficult to imagine a more customized
example that uses data stored in cookies on the user's machine to create a
personalized navigation menu. That kind of work can be left to the client
without burdening the server unnecessarily.

Yes, XML can be seen as a linear sequence of characters and tags, but it can also
be seen as a hierarchical tree structure. Having an understanding of the way XML
documents are loaded into the DOM can only enhance your ability to make wise
decisions about which type of server-side parsing you will use.

There’s nothing inherently magical about XML beside the fact that it provides
a standardized representation of data; in fact, with semantically appropriate tags,
it can become information. What is somewhat magical is the fact that XML

156

Chapter 6: Manipulating XML with JavaScript/DHTML

structures can be transformed into other entities, such as DOM object trees,
which can themselves be processed, navigated, and changed.

Our CMS Project
Now that we’ve learned how to use JavaScript to load XML data, and to work
with that data, let’s use these newfound skills to add some capabilities to our
CMS project.

Browser Compatibility Concerns

As I have already mentioned, client-side XML processing is currently not
supported in all browsers. In particular, Safari and Opera browsers do not
yet support even the simplest of XSLT transformations. If you plan to develop
a CMS for public consumption, you should therefore steer clear of such
techniques until wider browser support for these features is available. The
server-side techniques I'll present in Chapter 7 are more powerful and free
of browser incompatibilities.

For the sake of example, I'll implement a couple of minor features of our
CMS using client-side XML processing, but for real-world applications you
should keep browser compatibility issues in mind.

Right now, the site can display Web copy, articles, news items, and the like. At
some point, though, you can imagine that the Website will be full of content
items. There may be hundreds of articles, news items, and so on. So many, in
fact, that the content items may become a little hard to sift through.

What we need to do is add categories to the site. A smart, centralized category
listing, and an easy way to assign content items to categories, can make it easier
for visitors to navigate an otherwise undifferentiated mass of content.

When I start talking about categorization, most of my friends and colleagues
usually roll their eyes and yearn to leave the room. But, I love to talk about cat-
egorization, ontologies, and things like that. I find them utterly fascinating in all
kinds of ways. However, I promise to restrain myself in this chapter—this isn't
a book about categorization, after all.

The easiest way to go about all this is to jump right in and discuss things as we
go along. I’ll try to keep the more esoteric discussions to sidebars, so you can
come back to them later if you're in a hurry right now.

Here is a category listing for a site devoted to Web development topics:

157

Our CMS Project

File: categories.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<categories>
 <category label="xml" status="live" id="1"/>
 <category label="php" status="live" id="2"/>
 <category label="asp" status="live" id="3"/>
 <category label="javascript" status="live" id="4"/>
 <category label="perl" status="live" id="5"/>
</categories>

Each category is described by its label, its ID, and its visibility status. The status
attribute here is very important, because it allows us to remove from view all
articles from any given category as needed. Giving each category item its own
unique ID will also allow us to reference that category easily in other XML files.

Assigning Content to Categories
Okay, now that we have a category listing, how do we tell our XML-powered
Website which content items belong to which categories? With the aid of a
categoryid element that we'll build into news items, articles, and other content
types.

A sample news document might look like this:

File: news101404061004.xml

<?xml version="1.0"?>
<news id="news101404061004">
 <authorid>1</authorid>
 <headline>xml headline 2</headline>
<categoryid>1</categoryid>

 <url>http://www.myerman.com/</url>
 <description>yeah man!</description>
 <keywords>xml</keywords>
 <status>live</status>
 <pubdate>news101404061004</pubdate>
</news>

Our next step is to use this information in a meaningful way.

Retrieving Content by Category
Finally, we come to the most complicated part of the process. What we need to
do is allow the user to browse our content by category. When a user clicks on a

158

Chapter 6: Manipulating XML with JavaScript/DHTML

category, we need to display links to all the content items that fall under that
category.

To this end, we'll add a new page to our site. First of all, we want to include our
all-important header and navigation elements. Initially, the page should show a
list of links—one for each category on our site—generated dynamically with
JavaScript, as we've seen in this chapter. Each of these links will reload the same
page, but with a list of the content items in that category displayed, thanks to
some PHP code.

Let’s do it one piece at a time. First, we initialize our PHP file by including com-
mon.inc.php and loading the Sarissa library:

File: cats.php (excerpt)

<?php
include_once 'common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Browse by Category</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="xmlcms.css" type="text/css" />
<script type="text/javascript" src="sarissa/sarissa.js"></script>

The JavaScript that will build the list of categories follows the exact same pattern
we saw for the navigation menu example earlier in this chapter: a function named
initMenu will be called when the document first loads.

File: cats.php (excerpt)

<script type="text/javascript">
function initMenu(xmlFile) {
 var xml = Sarissa.getDomDocument();
 xml.async = false;
 xml.load(xmlFile);

 var nodes = xml.documentElement.childNodes;
 var output = '';
 for (var i = 0; i <= nodes.length - 1; i++) {
 if (nodes.item(i).nodeType != Node.ELEMENT_NODE) continue;

if (nodes.item(i).getAttribute('status') == 'live') {
 output += '<a href="cats.php?catid=' +
 nodes.item(i).getAttribute('id') + '">' +

159

Retrieving Content by Category

 nodes.item(i).getAttribute('label') + '
';
}

 }
 document.getElementById('menudiv').innerHTML = output;
}

window.onload = function() {
 initMenu('xml/categories.xml');
};
</script>
</head>

The only significant addition (shown in bold here) is an if statement that checks
that the status attribute of each category is live before displaying it in the list.

Next, we continue with our familiar boilerplate code for our basic HTML layout,
making sure to include our top navigation and search sidebar files:

File: cats.php (excerpt)

<body>
<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>

The final part is the hardest: we have to fill in the content area of the page. First
off, we need a div element to house the category menu that will be generated by
the JavaScript code above:

File: cats.php (excerpt)

<div id="mainContent">
 <h1>Browse By Category</h1>
 <div id="menudiv"></div>
 <hr/>

That takes care of letting the user select a category, but once that's done we need
to display the content items in the selected category. That's where the PHP code
comes in. Looking for a $_GET['catid'] value, the script rifles through the xml
directory in search of news, article, or Web copy files, spotting those that have
a matching categoryid element and a status of live.

160

Chapter 6: Manipulating XML with JavaScript/DHTML

File: cats.php (excerpt)

 <?php
 if (isset($_GET['catid'])) {
 $handle = opendir($fileDir);
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^(news|article|webcopy).*\.xml$", $file))
 continue;

 $xml = simplexml_load_file($fileDir . $file);
 if ((string)$xml->categoryid == $_GET['catid'] &&
 (string)$xml->status == "live") {
 $id = htmlentities($xml['id']);
 $label = htmlentities($xml->headline);
 echo "{$label} ";
 }
 }
 }
 ?>
</div>
</body>
</html>

Our last step is to open our search widget file and add the following line to the
bottom of the file:

File: search.inc.php (excerpt)

<p>Browse by Category</p>

Doing this will create a link to cats.php from every page on the site. Figure 6.7
shows what our cats.php page looks like when someone has clicked on a category
listing.

Summary
Now that we’ve learned how to manipulate XML with JavaScript and DHTML,
it’s time to turn our attention to PHP's XML functions. In the next chapter, we’ll
delve deeper into PHP 5’s SimpleXML functions, as well as some other DOM-
related functions. We’ll also round out our CMS tool by creating all the admin-
istrative forms we’ll need to manage the site.

161

Summary

Figure 6.7. Browsing by category.

162

Chapter 6: Manipulating XML with JavaScript/DHTML

Manipulating XML with PHP7
In previous chapters, we processed XML on the client-side, using DOM and
XSLT. Now, we’re going to learn how to process XML on the server side, using
such tools as SAX, DOM, and SimpleXML.

Generally speaking, there are two ways to handle XML processing: the Document
Object Model (DOM), which we have already seen, and the Simple API for
XML (SAX). With the DOM, you build a hierarchical tree structure to which
you can refer repeatedly. With SAX, you treat XML documents as a series of
events—one event per element or attribute—and respond to those events as the
document is parsed.

Each approach has its pros and cons. DOM builds memory-intensive trees, but,
once they're built, the DOM provides plenty of tools to navigate, process, and
manipulate those tree structures. SAX is only really good at handling your XML
documents in a linear fashion, which means less flexibility; however, it is fast and
easy to learn.

PHP 5.0 provides a third approach to handling XML processing—an approach
that we’ve already seen in action. SimpleXML builds a hierarchical object structure
like the DOM. The difference is that this structure is optimized for extracting
and processing information, whereas the DOM provides a more general-purpose,
heavy API for manipulating the structure of the tree.

In this chapter, we'll cover SAX, DOM, and SimpleXML, in that order. By the
end of these discussions, you should have a good understanding of how the dif-
ferent APIs can be used to handle XML documents.

Using SAX
Imagine that you build an XML document, then break it apart and lay it end to
end on an assembly line. You can see processing instructions, start tags, content,
end tags, and so on, all laid out before you in a long line.

You hit a button and your document starts to move down the assembly line, past
a guy with a bullhorn. Every time a tag, comment, entity, processing instruction,
or chunk of text (character data) goes by, the guy with the bullhorn shouts out,
“I see a ______!” That’s pretty much what happens with the SAX parser.

Unfortunately, to do anything interesting with SAX, you have to hand-roll your
own functions to handle start tags, end tags, and character data, by taking imme-
diate action in response to each. If you want to store any information from the
document in a temporary data structure for later use, you have to figure that out
for yourself—SAX won't do it for you. They don’t call it the Simple API for XML
for nothing!

So, why would you use SAX? It might be especially handy in the following situ-
ations:

❑ You’re dealing with a large XML document that would take up too much
memory if it were turned into a DOM tree.

❑ You need to get your parser up and running quickly.

❑ You’re doing a limited amount of processing, or processing that is very
straightforward and linear (i.e. translating particular XML elements into
HTML elements).

❑ You don’t need to modify the original XML document.

Given the right circumstances (a large XML document, for instance), SAX will
run circles around DOM. However, it's important to understand that, in some
cases, it really is more appropriate to use a tree structure—we’ll discuss those
cases a little later.

164

Chapter 7: Manipulating XML with PHP

The default SAX parser for PHP is Expat,[1] a C library that’s durable, tried and
true, and is enabled by default in most PHP installations. You don't need to install
any additional libraries—everything is built into PHP already. How do you use
it? Let’s step through a very quick tutorial.

The first step is to create a simple XML file for processing. Here’s the file we’ll
use in this section:

File: keyword-data.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<keywords>
 <keyword>XML</keyword>
 <keyword>PHP</keyword>
 <keyword>Perl</keyword>
 <keyword>JavaScript</keyword>
 <keyword>ASP</keyword>
</keywords>

Great—now, we’re ready to code some PHP! Before we begin, though, it’s a good
idea to have an idea of the end result we want to achieve. In this case, we want
to transform this list of keyword elements into an HTML bullet list, as illustrated
in Figure 7.1.

Figure 7.1. A SAX-processed list of keywords.

[1] http://expat.sourceforge.net/

165

Using SAX

http://expat.sourceforge.net/

Creating Handlers
Before we can do anything else with SAX in PHP, we have to create the functions
that “handle” the start tags, end tags, and character data. These functions will
be called by the SAX parser as it processes the XML—we don’t call these functions
ourselves.

Our first handler, which we'll call start_element, will be responsible for handling
all the start tags in our XML document. We could name this handler anything
we liked; as you'll see in a moment, we will tell PHP the names of the handlers
we’ve created for it.

The handler function for start tags must accept three arguments: a reference to
the SAX parser (which we'll create shortly), the name of the element whose start
tag has been encountered, and an array of the element's attributes (and their
values).

As you can see below, the handler in this case is nothing more than a switch
statement that looks for an XML tag name, and responds by outputting the ap-
propriate HTML code.

File: saxdemo.php (excerpt)

function start_element($parser, $element_name, $element_attrs) {
 switch ($element_name) {
 case 'KEYWORDS':
 echo '<h1>Keywords</h1>';
 break;
 case 'KEYWORD':
 echo '';
 break;
 }
}

In SAX, all Tag Names are Uppercase

By default, the SAX parser in PHP performs a process called case folding,
in which any lowercase characters in tag or attribute names are replaced with
their uppercase equivalents before they are handed to your handler functions.
This is why the element names 'KEYWORDS' and 'KEYWORD' in this example
are all in uppercase. If it really bugs you, the PHP Manual contains some
information[2] on how to disable case folding, but it's easier just to go with
the flow and write your code to accommodate it.

[2] http://www.php.net/xml#xml.case-folding

166

Chapter 7: Manipulating XML with PHP

http://www.php.net/xml#xml.case-folding

We'll call our next handler function end_element. This handler is called to respond
to end tags in the document, and uses the same switch statement structure we
saw above to output the appropriate HTML code when each end tag is detected.

File: saxdemo.php (excerpt)

function end_element($parser, $element_name) {
 switch ($element_name) {
 case 'KEYWORDS':
 echo '';
 break;
 case 'KEYWORD':
 echo '';
 break;
 }
}

Finally, we need a way to handle character data. Let's create a character_data
function that prints out the value of every node it sees. Remember that in XML,
“character data” is the name given to any text that's not markup; this handler
would print out all the stuff that resides between an element's start and end tags.

File: saxdemo.php (excerpt)

function character_data($parser, $data) {
 echo htmlentities($data);
}

Now that we’ve defined our custom tag and content handling functions, it’s time
to instantiate our parser and get to work.

Creating the Parser and Processing the XML
The next steps are relatively easy—most of the heavy lifting is handled by our
handler functions. All we have to do is create our parser and tell it which functions
we’ve created to handle start tags, end tags, and character data:

File: saxdemo.php (excerpt)

$parser = xml_parser_create();
xml_set_element_handler($parser, 'start_element', 'end_element');
xml_set_character_data_handler($parser, 'character_data');

Once we’ve done that, we can use the standard PHP fopen function to open our
XML document:

167

Creating the Parser and Processing the XML

File: saxdemo.php (excerpt)

$fp = fopen('keyword-data.xml', 'r')
 or die ("Cannot open keyword-data.xml!");

With the XML document in hand, we can use a simple while loop to read in
manageable chunks (4KB is a reasonable size), and run them through the parser
with the xml_parse function. If there’s an error at any point, we use PHP's die
function to print out the error message supplied by xml_error_string based on
the error number given by xml_get_error_code. xml_get_current_line_number
is used to point to the specific line where the error occurred.

File: saxdemo.php (excerpt)

while ($data = fread($fp, 4096)) {
 xml_parse($parser, $data, feof($fp))
 or die(sprintf('XML ERROR: %s at line %d',
 xml_error_string(xml_get_error_code($parser)),
 xml_get_current_line_number($parser)));
}

Once we’re done with our loop, we free the parser with xml_parser_free.

File: saxdemo.php (excerpt)

xml_parser_free($parser);

That was a lot to take in, so let’s step though the tasks again:

1. Create handlers for start tags, end tags, and character data.

2. Initiate your parser.

3. Register your custom handlers with the parser.

4. Open the XML file.

5. Loop through the file, sending each chunk of data through the parser.

6. Use built-in error trapping to detect problems.

7. Free up the parser once you’re done.

As you can see, the SAX approach is very simple and straightforward. However,
it lacks some of the more powerful features of other approaches, like DOM.

168

Chapter 7: Manipulating XML with PHP

Using DOM
Now that you know something about SAX, it’s time to understand how PHP’s
DOM functionality works. The DOM is a robust, complex piece of engineering
designed to handle a raft of contingencies. In fact, being able to handle anything
you throw at it is the major strength of DOM. Its major weakness is that it’s very
complex and can be overwhelming—not to mention that it can really bog down
your resources if you load a large document into memory.

We’ve already discussed the use of DOM on the client side. On the server side,
we’re talking about the same DOM—luckily for us, it's a standardized interface.
The easiest way to talk about DOM on the server is to compare it with what we
already know about SAX. You know from the previous section that you can use
SAX to process XML documents in a linear fashion.

PHP’s DOM functionality takes a different approach. It loads an XML document
into memory and converts it into its own hierarchical object structure, providing
two very important features that SAX does not. The first is that the XML structure
can be manipulated in memory, allowing nodes to be added, removed, changed,
and rearranged. The second is that DOM allows the document to be inspected
again and again, in random-access fashion, instead of just linearly.

Let’s reuse our simple XML file from the SAX section so we can make an apples-
to-apples comparison:

File: keyword-data.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<keywords>
 <keyword>XML</keyword>
 <keyword>PHP</keyword>
 <keyword>Perl</keyword>
 <keyword>JavaScript</keyword>
 <keyword>ASP</keyword>
</keywords>

Now that we have a file, let’s create a DOM parser and load our XML.

Creating a DOM Parser
To create our parser, we create a DOMDocument object. Before we use it, we'll turn
its whitespace handling feature off to prevent spaces, tabs, and line breaks between
tabs from being treated as text nodes:

169

Using DOM

File: domdemo.php (excerpt)

$doc = new DOMDocument();
$doc->preserveWhiteSpace = false;

Next, we load our XML document and grab a reference to our document element:

File: domdemo.php (excerpt)

$doc->load("keyword-data.xml");
$root = $doc->documentElement;

Retrieving Elements
Once we’ve created the parser and loaded our XML file, we can retrieve informa-
tion from the document. One of the easiest ways to work with the DOM is to
retrieve elements using the getElementsByTagName method.

The getElementsByTagName method allows you to grab all elements contained
within another element that have a particular name. We can use this method to
grab all the individual keyword elements in the sample document and store them
in an array:

File: domdemo.php (excerpt)

$keywords = $root->getElementsByTagName('keyword');

Since we called the method on the root element of the document, the $keywords
array now contains every keyword element in the XML document. We can now
iterate through the $keywords array to make sure each element is valid. We can
then perform some processing on that element.

File: domdemo.php (excerpt)

echo '';
foreach ($keywords as $kw) {
 echo '' . htmlentities($kw->nodeValue) . '';
}
echo '';

The result would appear in the Web browser as shown in Figure 7.2.

170

Chapter 7: Manipulating XML with PHP

Figure 7.2. Keyword processing example.

So far, the results are identical to those we achieved with SAX. The main differ-
ence is the approach taken: in SAX, we had to create custom handlers to handle
different tags as they rolled off the assembly line one after the other; with DOM,
we get to access the different levels of a hierarchical node structure in any order
we like.

There's one additional point that can be made about working with XML and
DOM. If you want to change what is output, or the format of your XML changes,
it’s usually easier to keep up with these alterations in DOM than in SAX.

For example, imagine each of our keyword elements had a status attribute, like
this:

File: keyword-data2.xml (excerpt)

<?xml version="1.0" encoding="iso-8859-1"?>
<keywords>
 <keyword status="live">XML</keyword>
 <keyword status="in progress">PHP</keyword>
 <keyword status="live">Perl</keyword>
 <keyword status="live">Javascript</keyword>
 <keyword status="in progress">ASP</keyword>
</keywords>

Now, we want to print out each keyword’s status along with the keyword itself.
To do this, we need only make a simple change:

171

Retrieving Elements

File: domdemo2.php (excerpt)

echo '';
foreach ($keywords as $kw) {
 echo '' . htmlentities($kw->nodeValue) .
 ' (' . htmlentities($kw->getAttribute('status')) . ')';
}
echo '';

This small alteration prints as shown in Figure 7.3.

Figure 7.3. Tweaking the keyword listing.

If we wanted to print out only the live keywords, all we'd have to do would be
to add a simple if test:

File: domdemo3.php (excerpt)

echo '';
foreach ($keywords as $kw) {
 if ($kw->getAttribute('status') == 'live') {
 echo '' . htmlentities($kw->nodeValue) . '';
 }
}
echo '';

This displays as shown in Figure 7.4.

172

Chapter 7: Manipulating XML with PHP

Figure 7.4. Displaying only live keywords.

Creating Nodes
As I mentioned earlier, the DOM allows you to add new nodes, and manipulate
existing ones. Let’s create a new keyword element and add it to our existing DOM
structure.

We can add a new node using the create_element method of the DOMDocument
object. All we have to do is pass in the name of our new node, and optionally its
node value (the text it should contain):

File: domdemo4.php (excerpt)

$newKW = $doc->createElement('keyword', 'XSLT');

Once that’s done, we have to attach the new keyword node to our DOM structure.
We can do so using the appendChild method, but we must be careful to tell the
DOM exactly where we're adding the node.

In our case, the job is very easy. All we have to do is add our new keyword element
to our established $root variable (remember, this variable represents our docu-
ment’s root element—in this case, keywords).

File: domdemo4.php (excerpt)

$root->appendChild($newKW);

173

Creating Nodes

With a modified document in hand, you can now do several things with it. The
most common is to output the XML code of the modified document, either to a
file on the server, or to the Web browser.

Printing XML from DOM
Printing a DOM structure as XML code is fairly straightforward. All we have to
do is use the saveXML method of the DOMDocument. By setting the formatOutput
property of the object to true first, you can produce neatly indented XML code.

File: domdemo4.php (excerpt)

$doc->formatOutput = true;
echo '<p>Updated XML source code:</p>';
echo '<pre>' . htmlentities($doc->saveXML()) . '</pre>';

We’ve barely scratched the surface of DOM functionality with this quick discus-
sion. We’ll get into it a lot more in this and later chapters, though—especially
as we’ll need it to create XML documents on-the-fly.

Using SimpleXML
Before the introduction of SimpleXML in PHP 5, developers could only manip-
ulate and process XML with SAX and DOM. Both of those approaches were
solid, but both required the developer to have a thorough understanding of what
he or she was getting into.

Then, along came SimpleXML. As the name implies, SimpleXML seeks to sim-
plify the way a PHP developer interacts with, processes, and manipulates XML
data. What makes it so wonderful? Basically, SimpleXML loads XML data into
a hierarchy of objects and arrays of objects. It then allows you to access that array
using familiar methods like foreach loops and array indexes.

To put it another way, the developers behind SimpleXML recognized the fact
that a large part of XML usage concerns the extraction and processing of inform-
ation, so they made those types of operations very easy.

As we saw in Chapter 4, SimpleXML assigns each tag in an XML file a property
that matches its element name. Take a look at this very simple XML document:

<document>
 <msg>Hello</msg>
</document>

174

Chapter 7: Manipulating XML with PHP

Here, we'd be able to access the value of the <msg> tag using PHP's object oriented
arrow notation as follows:

echo $xml->msg;

Element Name Changes Affect PHP Code

There’s a huge drawback to this approach! If your XML element names
change for any reason, you’ll have to go back and change your SimpleXML
logic to match the new names. The best way to avoid problems like this is
to make sure your XML documents are already stable and structured the
way you need them. If you do make changes to the XML after you start
coding PHP, be sure to go back and change your code to match.

Let’s go over each of the major features of SimpleXML.

Loading XML Documents
SimpleXML has to work on something, so the first thing you need to do is
identify the XML you want to process. SimpleXML can either load a file into
memory or work on XML code in the form of a PHP string.

To open a file, use the simplexml_load_file function, like this:

File: sxmldemo.php (excerpt)

$keywords = simplexml_load_file('keyword-data2.xml');

You could also provide your XML as a variable, then load that variable into
memory using the simplexml_load_string function:

File: sxmldemo2.php (excerpt)

$xml = <<<XML
<?xml version="1.0" encoding="iso-8859-1"?>
<keywords>
 <keyword status="live">XML</keyword>
 <keyword status="in progress">PHP</keyword>
 <keyword status="live">Perl</keyword>
 <keyword status="live">JavaScript</keyword>
 <keyword status="in progress">ASP</keyword>
</keywords>
XML;
$keywords = simplexml_load_string($xml);

175

Loading XML Documents

Declaring PHP Strings with Heredocs

The PHP string containing the XML code in the above example is declared
using heredoc syntax. If you're unfamiliar with this syntax, you can read
about it in the PHP Manual.[3]

Regardless of the approach you take here, the result will be a hierarchy of objects
and arrays called $keywords. We can now access different parts of that structure
using standard PHP object and array syntax.

The XML Element Hierarchy
When an XML element contains multiple child elements with the same name
(as does our keywords element in this example), those children are stored as an
array in the object hierarchy. We can therefore use array indexes to access the
information we need. For example, we can use this syntax to access the various
keywords stored in our XML document:

echo $keywords->keyword[0]; // prints "XML"
echo $keywords->keyword[1]; // prints "PHP"

Notice that in each case, we use the $keywords object, which represents the root
element of the document, followed by the arrow operator, and the name of the
child node we're interested in (in this case, keyword). As this is an array, we use
keyword[0] to access the first keyword element. To access the second, we use
keyword[1], and so on.

Sometimes, you'll want to obtain all the values in an XML element array created
by SimpleXML. As you might suspect, you can use a simple PHP foreach loop
to do this:

File: sxmldemo.php/sxmldemo2.php (excerpt)

echo '';
foreach ($keywords->keyword as $kw) {
 echo '' . htmlentities($kw) . '';
}
echo '';

When an element contains only one child element of a given type, however, no
array is created. Instead, you can access the element directly. Let’s say that our
XML file wasn’t quite as simple as it is. Let’s suppose that it had another level

[3] http://www.php.net/language.types.string#language.types.string.syntax.heredoc

176

Chapter 7: Manipulating XML with PHP

http://www.php.net/language.types.string#language.types.string.syntax.heredoc

of elements—child nodes of each keyword element. Here’s what that might look
like:

<keywords>
 <keyword status="live">
 <name>XML</name>
 <url>http://www.example.com/xml/</url>
 </keyword>
 <keyword status="in progress">
 <name>PHP</name>
 <url>http://www.example.com/php/</url>
 </keyword>
 …
</keywords>

If we wanted to print out the name and url element values for the first keyword,
here's how we could do it:

echo $keywords->keyword[0]->name; // "XML"
echo $keywords->keyword[0]->url; // "http://www.example.com/xml/"

It doesn’t get any easier than that! SimpleXML is so much easier than working
with a DOM structure or declaring custom SAX handler functions.

As we have just seen, SimpleXML element objects may be used where strings are
required and they will behave as strings, containing the text value that the corres-
ponding XML element contains. It is important to be aware, however, that these
objects are not in fact strings. This distinction comes into effect in cases where
a string is not required, and therefore PHP will not perform the conversion for
you. Here's an example:

if ($keywords->keyword[0] == 'XML') {
 echo 'The first keyword is XML.';
}

Looking at our sample XML document, we would expect this if statement to
execute and display the message, but it won't because $keywords->keyword[0]
is an object, and is therefore not equal to the string 'XML'. In order to make this
code behave as expected, you must perform the conversion yourself by casting
the object to a string:

if ((string)$keywords->keyword[0] == 'XML') {
 echo 'The first keyword is XML.';
}

177

The XML Element Hierarchy

If you're not a PHP guru, it can be a little hard to figure out when you have to
cast to a string and when PHP will do it for you. The examples in this book should
help somewhat, but if in doubt, cast the value to a string yourself—that way you'll
always be sure PHP is treating the value as you intended.

XML Attribute Values
You can access the value of an attribute by treating the element object as an array,
and using the attribute’s name as an array key.

For example, to print out the value of the first keyword element’s status attribute,
we could use the following:

echo $keywords->keyword[0]['status']; // prints "live"

As with element values, however, things become tricky when you try to compare
attribute values to PHP strings, as they are actually objects at heart. For example,
imagine you want to display only 'live' keywords. You might assume that it would
be as easy as this:

foreach ($keywords->keyword as $kw) {
 if ($kw['status'] == 'live') { // wrong!
 echo '' . htmlentities($kw) . '';
 }
}

The above code snippet looks reasonable. However, PHP can’t compare apples
to oranges—in this case, objects to a strings—so none of the keywords will be
displayed.

To make this work, we have to cast our attribute object to a string:

File: sxmldemo3.php (excerpt)

foreach ($keywords->keyword as $kw) {
 if ((string)$kw['status'] == 'live') {
 echo '' . htmlentities($kw) . '';
 }
}

Let’s call this “the hard way.” An easier method of filtering the values you retrieve
from an XML document exists, thanks to XPath.

178

Chapter 7: Manipulating XML with PHP

XPath Queries
There is another way to filter XML elements based on an attribute’s value; it in-
volves using the xpath method we saw in Chapter 4. You'll recall that this
method allows us to pass XPath queries into SimpleXML and receive the results
in the form of an array.

The easiest way to grab all the keyword elements that have their status attribute
set to live is to run the following XPath query from the keyword element in our
document:

keyword[@status="live"]

This query will look at all keyword elements that are children of the current ele-
ment, and extract those that have a status of live. Here’s how to do it with
SimpleXML:

File: sxmldemo4.php (excerpt)

foreach ($keywords->xpath('keyword[@status="live"]') as $kw) {
 echo '' . htmlentities($kw) . '';
}

What does our XPath query buy us? For one thing, we no longer have to perform
a string comparison inside PHP: XPath takes care of that for us. If you're familiar
with database development in PHP, this kind of operation is similar to letting
your SQL statement do the work of filtering database values before returning
them to your script. Furthermore, our code is now a bit simpler to look at, and
hopefully, easier to maintain.

Granted, you may look at the second construction and say to yourself, “That's
so much more complicated then casting an object to a string for comparison
purposes.”

Well, some say tomayto, some say tomahto. And in Texas, some say tuhmayter.

Using SimpleXML to Update XML
If you're already beginning to like SimpleXML, I have some good news! Sim-
pleXML allows you to update values in a straightforward fashion. Let’s say we
wanted to change the third keyword in our example from PHP to JSP. Here’s
how we’d do it:

179

XPath Queries

$keywords->keyword[2] = 'JSP';

To change the value of an attribute, we would simply add the appropriate attribute
name as an array key:

$keywords->keyword[2]['status'] = 'live';

To save or print out the updated XML code, we'd use the asXML method:

echo $keywords->asXML();

Fixing SimpleXML Shortcomings with DOM
As elegant and simple as SimpleXML is, it does have a few shortcomings. For
one thing, it’s not possible (at the time of writing) to add new nodes to an XML
document, just change the values of existing ones. Nor is it possible to delete
nodes. Style sheets cannot easily be attached to your XML for transformational
purposes. And finally, as you’ve seen, the PHP code is highly dependent on the
names of the XML tags—if they change, updating the code can be a real headache.

However, SimpleXML has a very handy feature that allows it to interoperate
with other PHP XML functionality. Namely, this functionality allows you to
import DOM documents and convert them into SimpleXML data structures.

What’s the benefit of that? The functionality allows you to do some of the heavy
lifting using native DOM functionality in PHP; you can then convert it to Sim-
pleXML and do the rest of your work there.

To see this in action, let's start by loading up an XML document with DOM and
making a change to it that we couldn't do with SimpleXML:

File: sxmldemo5.php (excerpt)

$doc = new DOMDocument();
$doc->preserveWhiteSpace = false;
$doc->load("keyword-data2.xml");
$root = $doc->documentElement;

$newKW = $doc->createElement('keyword', 'JSP');
$newKW->setAttribute('status', 'live');
$root->appendChild($newKW);

With a new element added to the DOM structure, we can use the
simplexml_import_dom function to import it into a SimpleXML data structure.

180

Chapter 7: Manipulating XML with PHP

We can then use the SimpleXML API to do whatever's required—for example,
to search for and display nodes with a certain attribute value.

File: sxmldemo5.php (excerpt)

$keywords = simplexml_import_dom($doc);
echo '';
foreach ($keywords->xpath('keyword[@status="live"]') as $kw) {
 echo '' . htmlentities($kw) . '';
}
echo '';

This will display the list of keywords with a status of live, including “JSP”,
which was added using DOM.

When to Use the Different Methods
You might be wondering when it's appropriate to use SAX, DOM, and/or Sim-
pleXML. Here are a few rules of thumb:

❑ If you have a very simple XML document that needs only linear processing,
and you don’t need to modify the document, SAX is a good candidate.

❑ If you need to process a more complex XML document, but only to extract
information, SimpleXML is a good choice.

❑ If you need to create XML documents from scratch, or make heavy modifica-
tions to existing documents, use DOM.

Our CMS Project
It’s now time to create the administrative side of our CMS. Our administrative
tools will allow authorized users to log in to the CMS and administer the different
parts of the Website. In this chapter, I'll walk you through building the following
functionality:

❑ login/verification page

❑ administrative index (from which CMS users gain access to other pages)

❑ article create page

❑ article edit page

181

When to Use the Different Methods

❑ article delete page

Once we’re done with these pages, we’re going to continue our discussion of the
administrative tool in Appendix B, mostly because a lot of it is fairly repetitive
and can be sidelined. That discussion includes:

❑ news create/edit/delete pages

❑ binary file create/edit/delete pages

❑ category create/edit/delete pages

❑ admin create/edit/delete pages

All pages in the administration area reside in the admin directory of the site.

Disable Magic Quotes

All of the PHP scripts in this book assume you have the magic quotes feature
of PHP disabled. This can be done by setting the magic_quotes_gpc option
in your server's php.ini file to Off.

If this feature is left on, you'll find a lot of unwanted backslashes (\) appearing
in your content as you manipulate it using the administration scripts we'll
develop in this section and in Appendix B.

The Login Page
The login page is very simple. It involves a basic HTML form that allows admin-
istrators to enter a username and password. Any complexity comes from structur-
ing the HTML so that it can be styled effectively using CSS.

File: login.php

<?php
session_start();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Please Log In</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />

182

Chapter 7: Manipulating XML with PHP

<link rel="stylesheet" type="text/css" href="login.css" />
</head>
<body>
<form class="login" action="verify.php" method="post">
<h1>Please log in</h1>
<div class="fields">
 <label for="username">User name</label>
 <input type="text" id="username" name="username" class="text" />
 <label for="password">Password</label>
 <input type="password" id="password" name="password"
 class="password" />
</div>
<div class="actions">
 <input type="submit" value="Submit" />
 <input type="reset" value="Reset" />
</div>
<p class="error"><?php echo $_SESSION['error']; ?></p>
</form>
</body>
</html>

In addition to the basic site style sheet (xmlcms.css), this page also uses a style
sheet especially for laying out the login form. Again, this isn't a book on CSS, so
we won't spend time on the details of this file, but here is the code for complete-
ness:

File: login.css

form.login {
 width: 290px;
 margin: 1em auto;
 padding: 4px;
 background: #ccc;
}
form.login h1 {
 text-align: center;
 font-size: medium;
 background: #fff;
 margin: 1px;
}
form.login .fields {
 text-align: right;
}
form.login label {
 float: left;
 width: 130px;
 text-align: right;

183

The Login Page

}
form.login .actions {
 text-align: center;
}
form.login input.text, form.login input.password {
 width: 150px;
 margin-bottom: 1px;
}
form.login .error {
 color: red;
 margin: 0;
 padding: 0;
}

Getting back to the login page itself, notice that the form’s action is set to a
page called verify.php. The PHP logic on this page needs to check the entered
values against a list of administrators that's kept in admin.xml.

Protect Your XML Files

For the purposes of the examples in this book and its code archive, we have
placed the XML files that contain the content, categories, authors, and ad-
ministrative users in a subdirectory of the main site. But, although we have
gone to some length to protect sensitive information in those files (encrypting
the passwords of our administrators, for example), it's still a good idea to
protect those files from direct access over the Web by casual visitors to your
site.

To protect these files, you can either configure your Web server to prevent
browsers from accessing the directory, or you can move the directory out of
your site's Web-accessible directory structure. In the latter case, you'll need
to adjust the common.inc.php file to point to the directory's new location,
so that all of the scripts on the site can still find the XML files.

Encrypted Passwords

As we've seen, the password values stored in admin.xml are encrypted for
added security. To use the sample admin.xml file included in the code
archive for this book, you need to know that the initial password of all three
administrators stored in that file (joe, bill, and tom) is password.

If there’s a match, the PHP code will set a session variable and redirect the user
to the administration index page. If not, PHP sends the user back to the lo-
gin.php page, with a special session variable ($_SESSION['error']) containing
an error message for display.

184

Chapter 7: Manipulating XML with PHP

Here is the code. Notice that we're using SimpleXML in this case, because it's
the fastest way to load the information from admin.xml.

File: verify.php

<?php
include_once '../common.inc.php';

$admins = simplexml_load_file($fileDir . 'admin.xml');
foreach ($admins->admin as $admin) {
 if ($_POST['username'] == (string)$admin->username and
 crypt($_POST['password'], (string)$admin->password) ==
 (string)$admin->password) {
 $_SESSION['login'] = true;
 header('location: index.php');
 exit;
 }
}
$_SESSION['error'] = 'Wrong user name or password. Try again.';
header('location: login.php');
?>

Notice that, since we'll be encrypting our passwords in admin.xml, we have to
take the password provided by the user, encrypt it the same way, and then com-
pare that user input to the password that's stored in the XML file. If you're unfa-
miliar with PHP's crypt function, you can read all about it in the PHP Manual.[4]

As anyone could enter a URL for one of the administration pages, we must add
an extra piece of security to protect those pages' content. At the top of each page,
we need to check to see if the value of the session variable $_SESSION['login']
is set to true. If it isn’t, we'll send the user back to the login.php page. As we’ll
be reusing this functionality, it’s a good idea to place this check inside an include
file:

File: security.inc.php

<?php
include_once '../common.inc.php';

if (@$_SESSION['login'] !== true) {
 header('location: login.php');
 $_SESSION['error'] = 'You must log in before you can access
 administration pages.';
 exit;

[4] http://www.php.net/crypt

185

The Login Page

http://www.php.net/crypt

}
?>

Disable Security for Initial Setup

When you are first setting up your site, you may not yet have any adminis-
trators set up. But then how are you supposed add administrators if you
can't log in? To add your first administrator accounts, you'll want to disable
security by simply commenting out the contents of security.inc.php,
so that the file doesn't do anything. You'll then be able to browse the admin
pages freely, and add an administrator or two. You can then re-enable security
and log in using one of the accounts you created.

The last thing we need is a logout page, which we can link to so that users can
log out of the site before they leave their computer:

File: logout.php

<?php
include_once '../common.inc.php';

$_SESSION['login'] = false;
header('location: index.php');
?>

The Admin Index Page
The first page of our administration tool provides access to all site functionality
and content, including administrative users, articles, news items and other content
types.

The code for this page is very concise. All we want to do is provide links to each
of the major parts of the administration tool.

File: index.php

<?php
include 'security.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Welcome to the Admin Index Page</title>

186

Chapter 7: Manipulating XML with PHP

<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Welcome to the Admin Index Page</h1>
<p>
 Manage Articles

 Manage News Items

 Manage Administrators
</p>
<p>Log out</p>
</body>
</html>

Each of the areas represented by those links will have the same functionality.
Each area will allow CMS users to create, edit, and delete items. Let’s go through
each of these tasks in turn for the first area—articles.

Working with Articles
Our article administration area will allow CMS users to create new articles, edit
existing ones, and delete them as required. Since articles are the most important
part of our site, we'll start with them, then move on to news items and site ad-
ministrators in Appendix B.

For the main page of our article administration area, we'll need a list of all the
articles on the site. You should be relatively familiar with the PHP code required
to do this by now:

File: articletool.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Article Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Article Index</h1>

187

Working with Articles

<p>Create New Article</p>
<p>Cancel</p>

<?php
$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^article.*\.xml$", $file)) continue;

 $articleFile = simplexml_load_file($fileDir . $file);
 echo '' . htmlentities($articleFile->headline);
 echo ' <a href="articletool_edit.php?id=' . $articleFile['id'] .
 '">edit';
 echo ' <a href="doArticleDelete.php?id=' . $articleFile['id'] .
 '">delete';
}
?>

</body>
</html>

Creating New Articles

The article creation page is very important—it allows site administrators to create
new XML articles on the site using a simple Web form interface. Each of the
form fields maps to an element in the XML document structure we first planned
in Chapter 1 and revisited in Chapter 3.

As a refresher, here’s what one of our articles should look like when it’s created:

<?xml version="1.0" encoding="iso-8859-1"?>
<article id="article12499300388912">
 <authorid>1</authorid>
 <categoryid>1</categoryid>
 <headline>Using XML with PHP</headline>
 <description>PHP offers many ways to work with XML</description>
 <pubdate>2004-06-26</pubdate>
 <status>live</status>
 <keywords>XML PHP SAX DOM SimpleXML</keywords>
 <body><![CDATA[
 <h1>Using XML with PHP</h1>
 <p>PHP is very powerful. It offers many ways to work with
 XML.</p>
]]></body>
</article>

188

Chapter 7: Manipulating XML with PHP

In particular, be aware of the need to generate a unique ID, and to fill in all the
various pieces of metadata.

Let’s create a form that contains fields for all of this information. We start out
with the familiar check to make sure that the user is logged in:

File: articletool_create.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>

We follow that with the start of our HTML, including a link to a new style sheet
named forms.css, which will contain the rules to lay out large administration
forms like this one:

File: articletool_create.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Create a New Article</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
<link rel="stylesheet" type="text/css" href="forms.css" />
</head>
<body>

Finally, we create our form. Most of it is made up of plain form fields, but for
selecting an author and category we need dynamic listings, which we extract from
the appropriate files using SimpleXML.

File: articletool_create.php (excerpt)

<h1>Create a New Article</h1>
<p>Cancel</p>
<form action="doArticleCreate.php" method="post">
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline"
 class="text" />
 </p>
 <p>
 <label for="author">Author</label>

189

Creating New Articles

 <select id="authorid" name="authorid">
 <?php
 $authors = simplexml_load_file($fileDir . 'authors.xml');
 foreach ($authors->author as $author) {
 echo '<option value="' . htmlentities($author['id']) .
 '">' . htmlentities($author->name) . '</option>';
 }
 ?>
 </select>
 </p>
 <p>
 <label for="category">Category</label>
 <select id="categoryid" name="categoryid">
 <?php
 $cats = simplexml_load_file($fileDir . 'categories.xml');
 foreach ($cats->category as $cat) {
 echo '<option value="' . htmlentities($cat['id']) . '">' .
 htmlentities($cat['label']) . '</option>';
 }
 ?>
 </select>
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress">In Progress</option>
 <option value="live">Live</option>
 </select>
 </p>
 <p>
 <label for="keywords">Keywords</label>
 <input type="text" id="keywords" name="keywords" class="text"
 />
 </p>
 <p>
 <label for="description">Description</label>
 <textarea id="description" name="description"></textarea>
 </p>
 <p>
 <label for="body">Article Body (HTML)</label>
 <textarea id="body" name="body"></textarea>
 </p>
</div>
<div class="actions">
 <input type="submit" value="Add Article" />
 <input type="reset" value="Reset" />

190

Chapter 7: Manipulating XML with PHP

</div>
</form>
</body>
</html>

Here's the CSS code that performs the layout of this imposing form:

File: forms.css

form .actions {
 text-align: center;
}
form p {
 clear: left;
 margin: 1px 0;
}
form label {
 float: left;
 width: 15%;
 padding-right: 10px;
 text-align: right;
}
input.text, input.password, select {
 width: 300px;
}
textarea {
 width: 70%;
 height: 4em;
}
textarea#body {
 height: 30em;
}

The form’s action is set to the doArticleCreate.php page, which uses DOM
functions to create an XML article from the information in the form. Because
this is a little complex, I’ll go over the code in pieces.

The first part of the file initializes our new XML document, setting the version
and creating the root element, article.

File: doArticleCreate.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument();

191

Creating New Articles

$root = $doc->createElement('article');
$root = $doc->appendChild($root);

Next, we add an id attribute to the article node. The ID will be the word
article followed by a timestamp. On the off-chance that more than one article
is created in the same second, we check for an existing file with the same ID in
its name, and increment the timestamp by one until a non-clashing ID is found.

File: doArticleCreate.php (excerpt)

$timestamp = date('YmdHis');
do {
 $id = 'article' . $timestamp++;
} while (file_exists($fileDir . $id . '.xml'));
$root->setAttribute('id', $id);

Now that we’ve created the root, it’s time to create each of that element's children,
in the correct order. The first is authorid. Notice that the authorid element is
a child of article, and that the ID itself is a child of authorid.

File: doArticleCreate.php (excerpt)

$author = $doc->createElement('authorid');
$root->appendChild($author);
$atext = $doc->createTextNode($_POST['authorid']);
$author->appendChild($atext);

We use the same technique to generate the categoryid, headline, description,
status, and keywords elements. The value of pubdate is generated on-the-fly
by the script, but otherwise it's the same.

File: doArticleCreate.php (excerpt)

$cat = $doc->createElement('categoryid');
$root->appendChild($cat);
$ctext = $doc->createTextNode($_POST['categoryid']);
$cat->appendChild($ctext);

$head = $doc->createElement('headline');
$root->appendChild($head);
$htext = $doc->createTextNode($_POST['headline']);
$head->appendChild($htext);

$desc = $doc->createElement('description');
$root->appendChild($desc);
$dtext = $doc->createTextNode($_POST['description']);
$desc->appendChild($dtext);

192

Chapter 7: Manipulating XML with PHP

$pub = $doc->createElement('pubdate');
$root->appendChild($pub);
$pubtext = $doc->createTextNode(date('Y-m-d'));
$pub->appendChild($pubtext);

$stat = $doc->createElement('status');
$root->appendChild($stat);
$stext = $doc->createTextNode($_POST['status']);
$stat->appendChild($stext);

$key = $doc->createElement('keywords');
$root->appendChild($key);
$ktext = $doc->createTextNode($_POST['keywords']);
$key->appendChild($ktext);

Next, we process the body text. Remember that we are planning to store our
article body information as HTML, which means it will contain a bunch of tags.
If we use DOM, as we have so far, to output this value as text, it'll work just fine,
but the resulting XML file will be difficult to read, with character entities like
< and > scattered throughout.

As mentioned in Chapter 1, to keep the code readable we will instead store the
body text as a CDATA section within our XML file, so that special characters
within do not have to be converted to character entities. Instead of using
createTextNode, we’ll use createCDATASection. We’ll place all the HTML text
from the form inside that command.

File: doArticleCreate.php (excerpt)

$body = $doc->createElement('body');
$root->appendChild($body);
$cdata = $doc->createCDATASection($_POST['body']);
$body->appendChild($cdata);

Next, we write this entire XML tree to a file, using the ID generated earlier as a
filename:

File: doArticleCreate.php (excerpt)

$filename = $fileDir . $id . '.xml';
$doc->save($filename);

Finally, now that we're finished with all of this, we need to send the user back to
articletool.php, where they should see the newly-created file listed in the
master article list.

193

Creating New Articles

File: doArticleCreate.php (excerpt)

header('location: articletool.php');

Editing an XML Article

Generally speaking, editing an XML article is much the same as creating an article,
except that you have to load an existing article’s values into the form, and write
the submitted changes out to the file.

Let's start with the code for the form page. The first part should be pretty famil-
iar to you—it verifies that the user has logged in.

File: articletool_edit.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';

Next, we open the file for the document the user wishes to edit. Because we won’t
be modifying the file just yet, we can use SimpleXML to open the file and pull
out the information we need.

File: articletool_edit.php (excerpt)

if (!isset($_GET['id']) || $_GET['id'] == '' ||
 !file_exists($fileDir . $_GET['id'] . '.xml')) {
 header('location: articletool.php');
 exit;
}
$file = simplexml_load_file($fileDir . $_GET['id'] . '.xml');
?>

Now, we simply have the markup for a form very similar to the one in art-
icletool_create.php, except that this time we pull the existing value for each
field out of the $file variable.

File: articletool_edit.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit Article</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
<link rel="stylesheet" type="text/css" href="forms.css" />

194

Chapter 7: Manipulating XML with PHP

</head>
<body>
<h1>Edit Article</h1>
<p>Cancel</p>
<form action="doArticleUpdate.php" method="post">
<input type="hidden" name="id"

value="<?php echo htmlentities($_GET['id']); ?>" />
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline" class="text"

value="<?php echo htmlentities($file->headline); ?>" />
 </p>
 <p>
 <label for="author">Author</label>
 <select id="authorid" name="authorid">
 <?php
 $authors = simplexml_load_file($fileDir . 'authors.xml');
 foreach ($authors->author as $author) {

if ((string)$author['id'] == (string)$file->authorid) {
 echo '<option value="' . htmlentities($author['id']) .
 '" selected="selected">' .
 htmlentities($author->name) . '</option>';
 } else {
 echo '<option value="' . htmlentities($author['id']) .
 '">' . htmlentities($author->name) . '</option>';
 }
 }
 ?>
 </select>
 </p>
 <p>
 <label for="category">Category</label>
 <select id="categoryid" name="categoryid">
 <?php
 $cats = simplexml_load_file($fileDir . 'categories.xml');
 foreach ($cats->category as $cat) {

if ((string)$cat['id'] == (string)$file->categoryid) {
 echo '<option value="' . htmlentities($cat['id']) .
 '" selected="selected">' .
 htmlentities($cat['label']) . '</option>';
 } else {
 echo '<option value="' . htmlentities($cat['id']) .
 '">' . htmlentities($cat['label']) . '</option>';
 }
 }

195

Editing an XML Article

 ?>
 </select>
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress"

<?php if ((string)$file->status == 'in progress')
 echo 'selected="selected"'?>>In Progress</option>
 <option value="live"

<?php if ((string)$file->status == 'live')
 echo 'selected="selected"'?>>Live</option>
 </select>
 </p>
 <p>
 <label for="keywords">Keywords</label>
 <input type="text" id="keywords" name="keywords" class="text"
value="<?php echo htmlentities($file->keywords); ?>" />
 </p>
 <p>
 <label for="description">Description</label>
 <textarea id="description" name="description">
<?php echo htmlentities($file->description); ?></textarea>
 </p>
 <p>
 <label for="body">Article Body (HTML)</label>
 <textarea id="body" name="body">
<?php echo htmlentities($file->body); ?></textarea>
 </p>
</div>
<div class="actions">
 <input type="submit" value="Update Article" />
 <input type="reset" value="Reset" />
</div>
</form>
</body>
</html>

The doArticleUpdate.php file that processes this form is very similar to the
doArticleCreate.php script:

File: doArticleUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

196

Chapter 7: Manipulating XML with PHP

$doc = new DOMDocument();
$root = $doc->createElement('article');
$root = $doc->appendChild($root);

$id = $_POST['id'];
$root->setAttribute('id', $id);

…

$filename = $fileDir . $id . '.xml';
unlink($filename);
$doc->save($filename);

header('location: articletool.php');
?>

Deleting an XML Article

Deleting an XML file is very simple. When an ID is passed to the
doArticleDelete.php page, it deletes the corresponding file and send the user
back to the articletool.php page:

File: doArticleDelete.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$filename = $fileDir . $_GET['id'] . '.xml';
unlink($filename);

header('location: articletool.php');
?>

At this point, we’ve built a login page, an administrative index, and pages for the
addition, editing, and deletion of articles. We'll discuss the rest of our adminis-
trative pages in Appendix B. Don’t be surprised if we reuse the code from these
initial administrative pages to quickly knock up the rest of the administration
tool!

Summary
We’ve learned a lot about using SAX, DOM, and SimpleXML functionality in
PHP in this chapter. With this, and your knowledge of client-side processing,

197

Deleting an XML Article

you should be well-armed to handle most XML processing tasks. In the second
part of this chapter, we created the administrative forms we'll need to manage
our Website articles.

In the next chapter, we’ll discuss RSS and RDF, two standards that are commonly
used for making headlines and other feeds of information available to third parties
in XML format.

198

Chapter 7: Manipulating XML with PHP

RSS and RDF8
We’ve covered a good deal of information in this book, including XML, XSLT,
XPath, and PHP functions for processing XML. In this chapter, we’re going to
take what we’ve learned and apply it to RSS and RDF, two exciting technologies
that are used to share and disseminate XML data.

What are RSS and RDF?
Depending on where you look and who you ask, RSS stands for Really Simple
Syndication, Rich Site Summary, or RDF Site Summary. Regardless of what
the acronym stands for, RSS is an XML format for distributing or syndicating
content. For example, Weblogs, or “blogs,” are syndicated using this kind of XML
format.

RDF stands for Resource Description Framework, which forms the backbone
of some but not all RSS standards. It’s a metadata standard for describing Web
resources—not only the Web pages themselves, but also their authors, the dates
and times at which they were last updated, their keywords and titles, and so on.
That’s all I’m going to say about this for the moment—we’ll pick up a discussion
of RSS versions after we’ve run through a basic example.

What’s the Big Deal?
Imagine that you're a cartoonist or columnist working in relative obscurity on a
small city's daily newspaper. You create good stuff, but you’re not known very
well outside your local region. The easiest way to make more money and reach
a wider audience is to do what other respected writers and cartoonists have done
for decades—syndicate your material! If you strike the right syndication deal,
your articles or art may start appearing in dozens or hundreds of media outlets,
thereby increasing your pay and your exposure.

Syndication is also a good thing from the reader’s point of view. In this modern
age, you no longer have to send away for the hometown paper in order to keep
up with your favorite columnists or cartoonists. It’s very likely that your favorite
columnist or cartoonist is featured in your local newspaper.

It’s the same idea online. You may or may not get rich by syndicating your con-
tent, but you can certainly increase your exposure. Syndication also represents
a convenient service for your audience members, who don’t have to remember
to search for your content or visit your site and dig through all your other inform-
ation to see if you've published anything new—users simply subscribe and keep
getting updates. If you have RSS up and running, whenever you add an article
or other interesting content item to your site, you can create an RSS entry that
points to this content. This new entry will show up in RSS aggregators and listings
on Website belonging to your subscribers.

What Kind of Information Should be Featured in
an RSS Feed?

When you create an RSS feed, keep these rules of thumb in mind:

1. The content must be list-oriented. List-oriented content includes news
headlines, article summaries, rankings, job listings, bookmarks, search result
listings, event calendars, press release summaries, and other information.

2. The content should cover topics in which your audience has an interest.
Another way to look at this is to ask yourself, is the content useful or instruc-
tional? Does it keep subscribers up-to-date with an industry or its trends?
Is the material newsworthy?

3. To warrant use of the RSS feed format, the content should change frequently.

200

Chapter 8: RSS and RDF

Before We Get Started
I’m going to show you some straightforward ways to get up and running with
RSS. Be aware, though, that some parts of RSS/RDF (especially RDF syntax)
can be obscure and confusing. You might not know which elements of the RDF
syntax are required, for example, because the RDF specification can be pretty
hard to plow through. The goal of this chapter is merely to provide you with a
clear idea of how the world of RSS works.

To begin, let’s take a look at RSS in action. Figure 8.1 shows a program called
SharpReader[1] reading an RSS feed from sitepoint.com. To read an RSS feed,
all you have to do is provide SharpReader with the URL of that feed.

Once you know where a feed is located, you can click the Subscribe button on
SharpReader to keep receiving updates. If sitepoint.com updates its RSS feed,
then subscribers, too, receive updates. In fact, if you have SharpReader running,
little windows will pop up, displaying headlines from your subscribed feeds, on
the side of your screen.

Figure 8.1. Using SharpReader to view the SitePoint RSS feed.

[1] http://www.sharpreader.com/

201

Before We Get Started

http://www.sharpreader.com/

Creating Your First Basic RSS Feed
Let’s create an RSS file (or feed) from scratch. No matter how big, small, simple,
or complicated the feed may be, at the heart of every RSS file lies a list of content
items. Your RSS file can contain one item, 1,000 items, or anything in between
(or beyond), but without at least one item, you really don’t have an RSS file.

What does such an item comprise? Three very important parts:

❑ A title

❑ A link

❑ A description

Let’s say that you maintain a Website that covers the world of Web development.
In particular, your articles explore a particular niche: ecommerce Web develop-
ment. Furthermore, let’s imagine that you’ve just published a new article about
the use of PHP to integrate PayPal into a Website. Now you want to point to
this article and let your subscribers know it's available to them.

It’s likely that you gave your article HTML <title> and <meta name="descrip-
tion"> tags. You don’t have to use this title and description when you create
your RSS item, though it certainly doesn’t hurt. However, you do have to accur-
ately point to the proper URL to allow subscribers to link to the information.

Here’s how your information might look before we start to wrap XML tags around
each piece:

Making PHP work with PayPal
http://www.tripledogdaremedia.com/articles/paypal-php.html
Everything you need to know to create PHP scripts that are PayPal
friendly.

To denote a title, we'll use <title> tags:

<title>Making PHP work with PayPal</title>

For the URL, use <link> tags:

<link>http://www.tripledogdaremedia.com/articles/paypal-php.html
</link>

For the description, use <description> tags:

202

Chapter 8: RSS and RDF

<description>Everything you need to know to create PHP scripts
 that are PayPal friendly.</description>

To make this particular group of tags and content into an RDF item, we need to
place it within an item element:

File: headline.xml (excerpt)

<item>
 <title>Making PHP work with PayPal</title>
 <link>http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP scripts
 that are PayPal friendly.</description>
</item>

Congratulations, you’ve completed your first RSS item! But we’re not done yet.
We need to place our item into a channel element. Channels describe the source
of the information—usually, your Website.

RSS channels have the same elements as RSS items: title, link, and descrip-
tion. For example, here's a channel containing the RSS item we created above:

File: headline.xml (excerpt)

<channel>
 <title>Ecommerce Development</title>
 <link>http://www.tripledogdaremedia.com/articles/</link>
 <description>If it's about ecommerce and Web development, we'll
 write about it!</description>
 <item>
 <title>Making PHP work with PayPal</title>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP
 scripts that are PayPal friendly.</description>
 </item>
</channel>

All you have to do now is wrap the entire file with an <rss> tag, add the XML
declaration, and you have a well-formed RSS feed:

File: headline.xml

<?xml version="1.0"?>
<rss version="0.91">
 <channel>

203

Creating Your First Basic RSS Feed

 <title>Ecommerce Development</title>
 <link>http://www.tripledogdaremedia.com/articles/</link>
 <description>If it's about ecommerce and Web development,
 we'll write about it!</description>
 <item>
 <title>Making PHP work with PayPal</title>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP
 scripts that are PayPal friendly.</description>
 </item>
 </channel>
</rss>

Notice that we’re using version 0.91 of RSS; this means we’re not yet using RDF.
We’ll talk about the differences between the various RSS versions, and how they
relate to RDF, a little later in this chapter.

You can easily add more items to a channel using the syntax rules we saw above.
Simply create your items with the proper title, description, and link elements,
and place them inside the appropriate channel element in your RSS feed.

The last thing you need to do is to save the file. It’s a good idea to give your RSS
file a descriptive name with .xml or .rss as the file extension: ecommercefeed.xml
or ecommercefeed.rss, for example.

Telling the World about your Feed
Now that you have an RSS feed, you need to tell folks about it so they can sub-
scribe. There are two ways to get the word out: add a link from your site to your
RSS feed, and subscribe to RSS aggregators.

Providing a Link on your Site

It’s quite possible that other Website owners might want to syndicate your content
on their sites. This arrangement can be good for both of you—the site owner
doesn’t have to create content, as you’ve provided it, and you get exposure to
their audience. If you provide a link to your RSS feed from your site, other site
owners can easily point their PHP-, ASP.NET-, Perl-, Python-, and JSP-based
RSS tools toward your feed, and add to their own sites pointers to your informa-
tion.

204

Chapter 8: RSS and RDF

A link to our sample RSS feed might look like this:

RSS feed

To further promote your RSS feed, you can also include a <link> tag in your
page header (<head>), so that RSS-enabled browsers and search engines can see
your feed:

<link rel="alternate" type="application/rss+xml" title="RSS Feed"
 href="headline.xml" />

That's really all there is to it!

Subscribing to RSS Aggregators

RSS aggregators, or news aggregators, are services that allow you to add your
RSS feed to an existing catalog of RSS feeds. Other users can search for and
subscribe to your feed, either on the Web or through a standalone, downloadable
RSS feed reader (also called an aggregator). Here are two of the more popular
RSS news aggregators:

❑ News Is Free[2] is a long-standing Web-based news aggregator. Using the free
service, you can create customized "pages" for different topics, then have
headlines from various resources automatically filled into those pages.

❑ Radio UserLand[3], a popular blog-building tool, is also another long-standing
news aggregator. You can subscribe to a feed simply by entering its URL.

Make Sure your RSS is Valid

These services will likely require that you validate your RSS file before you
submit it. You can find numerous RSS validators by Googling for “rss valid-
ator,” but one is available from the W3C:

http://www.w3.org/RDF/Validator/

Now that we’ve covered the basics of RSS, let’s dig into the details a little more.

[2] http://www.newsisfree.com
[3] http://www.radiouserland.com

205

Subscribing to RSS Aggregators

http://www.newsisfree.com
http://www.radiouserland.com
http://www.w3.org/RDF/Validator/

Going Beyond the Basics
Notice in our example that we were using a particular version of RSS.

File: headline.xml (excerpt)

<rss version="0.91">

This RSS is known as Really Simple Syndication, and was jointly developed by
Netscape and Userland Corporation.[5] The idea behind this version of RSS is
to provide a very simple tool for content syndication.

As you already know from the example, with RSS version 0.91, you can have
one or more channel elements, each with at least one item element. Each item
element must contain a title and a link and can also contain a description
element. The same goes for the channels themselves.

Other channel metadata tags that you can include are:

<image> to specify a thumbnail image for the channel

<webMaster> to provide email addresses for those responsible for
the feed<managingEditor>

<lastBuildDate> to indicate when the feed was last updated

For the details on these and other RSS 0.91 elements, you can refer to the RSS
0.91 specification.[6] More recent versions of the specification exist. Both RSS
0.92[7] (December 2000) and RSS 2.0[8] (October 2002) add more tags, and
lift restrictions on certain tags (e.g. in 0.91 the <link> tag had to point to an
HTTP or FTP resource; in 2.0 any valid URI will do). But since 0.91 is forwards-
compatible with these standards (a valid RSS 0.91 document is also a valid RSS
2.0 document), RSS 0.91 continues to be the best starting place for beginners
who don't need the more advanced features of the later standards.

[5] http://www.userland.com/
[6] http://backend.userland.com/rss091
[7] http://backend.userland.com/rss092
[8] http://blogs.law.harvard.edu/tech/rss

206

Chapter 8: RSS and RDF

http://www.userland.com/
http://backend.userland.com/rss091
http://backend.userland.com/rss091
http://backend.userland.com/rss092
http://backend.userland.com/rss092
http://blogs.law.harvard.edu/tech/rss

RDF and RSS 1.0
RSS 1.0 is something of a lone wolf. Although it was designed to do the same
thing as other versions of RSS, it has very little to do with the other standards.
In many ways, it is actually more advanced than RSS 2.0, and it is therefore the
preferred choice of many forward-looking Web developers.

First of all, the “RSS” in RSS 1.0[9] stands for RDF Site Summary. This particular
flavor of RSS, released just prior to RSS 0.92 in December 2000, uses RDF, the
Resource Description Framework, to define what the files look like. In a hand-
wavy sort of way, RDF is a standard for describing anything and what it has to
do with anything else. Vague enough for you?

Without actually getting into the details of RDF,[10] which is quite a powerful
and complex collection of specifications, let me assure you that there is a lot more
to it than an XML document format for describing lists of things; but in the
context of RSS 1.0, that's exactly how it's used. The advantage of using RDF is
that RSS 1.0 documents can take part in larger software systems designed around
RDF. One such system that is still in the planning stages is the Semantic Web,[11]
a reimagination of the World Wide Web that will allow computer programs to
seek out and pull together disparate services and bits of information from across
the Web to accomplish tasks for you, without your having to track down all those
things yourself.

But hey, that's all coming tomorrow (or possibly the day after tomorrow). Right
now, the complexity of RDF just makes syndicating content with RSS 1.0 a little
more difficult than with the other RSS standards. Let's see just how difficult…
Here's the RSS 1.0 version of the simple RSS 0.91 document we saw earlier:

File: headline.rdf

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/">
 <channel
 rdf:about="http://www.tripledogdaremedia.com/articles/">
 <title>Ecommerce Development</title>
 <link>http://www.tripledogdaremedia.com/articles/</link>
 <description>If it's about ecommerce and Web development,

[9] http://web.resource.org/rss/1.0/
[10] http://www.w3.org/RDF/
[11] http://www.w3.org/2001/sw/

207

RDF and RSS 1.0

http://web.resource.org/rss/1.0/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/

 we'll write about it!</description>

 <items>
 <rdf:Seq>
 <rdf:li rdf:resource=
"http://www.tripledogdaremedia.com/articles/paypal-php.html"/>
 </rdf:Seq>
 </items>
 </channel>

 <item rdf:about=
"http://www.tripledogdaremedia.com/articles/paypal-php.html">
 <title>Making PHP work with PayPal</title>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP scripts
 that are PayPal friendly.</description>
 </item>
</rdf:RDF>

The first thing you'll notice about this document is the pair of XML namespace
declarations in the root element of the document:

File: headline.rdf (excerpt)

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/">

As these declarations indicate, RSS 1.0 is actually a mixture of at least two groups
of XML tags and attributes: the RDF standard tags/attributes, which are given
the rdf: namespace prefix, and the RSS-specific tags/attributes, which will use
the default namespace. As required by the RDF standard, the root element of
the document is RDF.

Things become a little more familiar with the channel element:

File: headline.rdf (excerpt)

 <channel
 rdf:about="http://www.tripledogdaremedia.com/articles/">
 <title>Ecommerce Development</title>
 <link>http://www.tripledogdaremedia.com/articles/</link>
 <description>If it's about ecommerce and Web development,
 we'll write about it!</description>

208

Chapter 8: RSS and RDF

So far, the only change from RSS 0.91's channel element is the addition of an
RDF about attribute to the tag. At a glance, you might think that it makes no
sense to put the URL of the site to which this channel refers in this attribute,
since it's already given by the link element inside the channel. This attribute
actually serves as a unique identifier for the channel, as required by RDF. It is
simply a convention of RDF that a URI is used for this purpose, in the same way
that URIs are used to identify XML namespaces.

But if you got upset about the about attribute, you aren't going to like the rest
of the channel element at all…

File: headline.rdf (excerpt)

 <items>
 <rdf:Seq>
 <rdf:li rdf:resource=
"http://www.tripledogdaremedia.com/articles/paypal-php.html"/>
 </rdf:Seq>
 </items>
 </channel>

Instead of embedding a list of item elements right inside the channel, RSS 1.0
follows the RDF requirement that all the things that the document describes (be
they channels, items, or even images) appear as children of the root RDF element.
Instead, the channel contains a single items element, which contains an RDF
table of contents (TOC).

RDF supports at least two types of TOC: bags and sequences. A bag is the RDF
equivalent of an HTML unordered list (), whereas a sequence is like an
ordered list (). Since the order of items in RSS feeds is important, RSS 1.0
uses an RDF sequence (<rdf:Seq>). A sequence contains one or more RDF list
items (<rdf:li>), each with an RDF resource attribute that points to the unique
URI for an item in the feed.

With the channel taken care of, we can now define our items:

File: headline.rdf (excerpt)

 <item rdf:about=
"http://www.tripledogdaremedia.com/articles/paypal-php.html">
 <title>Making PHP work with PayPal</title>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP scripts

209

RDF and RSS 1.0

 that are PayPal friendly.</description>
 </item>

Again, this looks a lot like the RSS 0.91 version, except for the RDF about attrib-
ute, which provides a URI that uniquely identifies the item. This is the URI that
the items element in the channel points to in order to include it in the channel.

Adding Information with Dublin Core
Now, when you saw the namespace declarations that were required at the top of
an RSS 1.0 file, I bet you thought, “Oh man, I have to type all that stuff every
time I create an RSS feed? Nuts to that.” Well, who can blame you? As it turns
out, however, giving the RSS 1.0 the benefit of XML namespaces allows us to
extend the format with tags from other XML namespaces.

The people behind RSS have even provided three additional sets of XML tags,
each with its own namespace (these are called modules), as part of the RSS 1.0
specification. The most popular of these is the Dublin Core[12] set of metadata
elements, which lets you specify additional properties for channels and items in
your RSS feeds.

To use Dublin Core, you need to declare its namespace in your RSS feed, along
with the others:

File: headlinedc.rdf (excerpt)

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://purl.org/rss/1.0/">

You can then add Dublin Core elements to your RSS feed. Here's our example
item element, with a bit of Dublin Core flair:

File: headlinedc.rdf (excerpt)

 <item rdf:about=
"http://www.tripledogdaremedia.com/articles/paypal-php.html">
 <title>Making PHP work with PayPal</title>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 <description>Everything you need to know to create PHP scripts

[12] http://web.resource.org/rss/1.0/modules/dc/

210

Chapter 8: RSS and RDF

http://web.resource.org/rss/1.0/modules/dc/

 that are PayPal friendly.</description>
<dc:subject>Server-Side Scripting</dc:subject>

 <dc:creator>Thomas Myer</dc:creator>
 <dc:date>2005-06-25</dc:date>
 </item>

Dublin Core, as its esoteric name might suggest, actually has a rich and full life
outside of the RSS 1.0 specification. For full details on Dublin Core and the
elements it provides, visit the Dublin Core Metadata Initiative.[13]

When to use RSS 1.0
When you look at the different versions of RSS, you might ask yourself when
you would use which version. That’s a good question.

For most cases, as in most of the examples in this chapter, you would use the
0.91 version of RSS, or possibly version 2.0 if you like its advanced features.
These formats provide the simplest, quickest, and easiest solution for your feeds.
These versions of RSS are not hard to understand, and building systems that
process them isn’t hard to do.

RSS 1.0 provides more robust syntax that allows you to incorporate specialized
tags for additional information. For example, you can use Dublin Core’s set of
tags to track information about authors, publication dates, last-edit dates, and
so on. You can even devise your own sets of tags and mix them in for your own
devious purposes, all within the generalized resource description framework
provided by RDF.

A Brief Note on Atom

The AtomEnabled project[14] is a recently-devised initiative to develop
standard APIs and data formats for publishing content on the Web. It in-
cludes its own XML-based syndication format[15] that presents an alternative
to RSS feeds. Sam Ruby of IBM is most often credited with many of the
core ideas behind Atom, which include common metadata terms to support
the description of author name, publication date, resource identifier and
location, and content.

There isn’t enough space in this book to cover Atom, but you may wish to
look into the format and possibly support it along with the RSS version(s)

[13] http://dublincore.org/
[14] http://www.atomenabled.org/
[15] http://www.atomenabled.org/developers/syndication/atom-format-spec.php

211

When to use RSS 1.0

http://dublincore.org/
http://www.atomenabled.org/
http://www.atomenabled.org/developers/syndication/atom-format-spec.php

of your feeds. Because it is XML, it can be processed with SimpleXML and
XSLT, just like RSS.

Parsing RSS Feeds
Now that we know something about RSS files, let’s walk through how you would
add a script to your site to parse an RSS feed and display the information properly.

To keep things simple, we’ll continue to use our RSS 0.91 example from earlier
in the chapter. The only change we’ll make is to add two more items to the
channel.

File: headlines.xml

<?xml version="1.0"?>
<rss version="0.91">
 <channel>
 <title>Ecommerce Development</title>
 <description>If it's about ecommerce and Web development,
 we'll write about it!</description>
 <link>http://www.tripledogdaremedia.com/articles/</link>
 <item>
 <title>Making PHP work with PayPal</title>
 <description>Everything you need to know to create PHP
 scripts that are PayPal friendly.</description>
 <link>
 http://www.tripledogdaremedia.com/articles/paypal-php.html
 </link>
 </item>
 <item>
 <title>Building a PHP Shopping Cart</title>
 <description>A quick how-to on building a PHP-based shopping
 cart.</description>
 <link>
 http://www.tripledogdaremedia.com/articles/shoppingcart-php.html
 </link>
 </item>
 <item>
 <title>SEO and PHP</title>
 <description>Boosting your ecommerce site's visibility with
 SEO, the PHP way.</description>
 <link>
 http://www.tripledogdaremedia.com/articles/seo-php.html
 </link>
 </item>

212

Chapter 8: RSS and RDF

 </channel>
</rss>

Parsing our Feed with SimpleXML
We’re going to parse this feed with SimpleXML. The first thing we need to do
is load that file into our parser and then do our work. For this example, we'll use
a local file for the RSS feed:

File: parserss.php (excerpt)

<?php
$rssfeed = simplexml_load_file('headlines.xml');

Of course, in the real world, we would more likely be loading the RSS feed from
another site. Thankfully, you can pass SimpleXML a URL just as easily:

$rssfeed = simplexml_load_file(
 'http://www.tripledogdaremedia.com/sample.rss');

Once we have it loaded into SimpleXML, all we have to do is start looping through
each channel in the file with a simple foreach loop. Along the way, we’ll print
out the channel’s title, description, and link:

File: parserss.php (excerpt)

 foreach ($rssfeed->channel as $channel) {
 echo '<h1>' . htmlentities($channel->title) . '</h1>';
 echo '<p>' . htmlentities($channel->description) . '</p>';
 echo '<p>link) . '">' .
 htmlentities($channel->link) . '</p>';

Now that we’ve printed out that information, we can start an inner loop and
print out each item. For this exercise, I’ve decided to use a bullet list, but you
could just as easily format it as a data table:

File: parserss.php (excerpt)

 echo '';
 foreach ($channel->item as $item) {
 echo 'link) . '">';
 echo htmlentities($item->title) . '
';
 echo htmlentities($item->description) . '';
 }
 echo '';
 }
?>

213

Parsing our Feed with SimpleXML

As you can see, this script is very small (fewer than 20 lines) and very easy to
maintain, thanks to SimpleXML’s simplified syntax. The result is illustrated in
Figure 8.2.

Figure 8.2. Parsing RSS with SimpleXML.

If you wanted to, it would be very easy to include this SimpleXML code snippet
into a larger design—for example, a sidebar of article links featured on your site's
homepage.

RSS 1.0, DOM or SAX?

Kevin Yank has an excellent article entitled PHP and XML: Parsing RSS
1.0,[16] which covers the use of both SAX and DOM for parsing RSS 1.0
documents.

[16] http://www.sitepoint.com/article/php-xml-parsing-rss-1-0/1

214

Chapter 8: RSS and RDF

http://www.sitepoint.com/article/php-xml-parsing-rss-1-0/1
http://www.sitepoint.com/article/php-xml-parsing-rss-1-0/1

Our CMS Project
Any self-respecting article-based site nowadays needs an RSS feed. But rather
than simply offering a feed for the latest articles on our site, let's allow each user
to select the categories he or she is interested in and generate a feed of the newest
articles in those categories on-the-fly.

Creating an RSS Feed
To achieve our goal, we need two new PHP scripts: one that presents a form for
the user to select the categories of interest, and another that processes that form
submission to produce a customized RSS feed.

Creating the Form

Here is our form. You will notice that we are using SimpleXML, as we have before,
to produce a list of categories from which to choose.

File: feedselect.php

<?php
include_once 'common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Feed Designer</title>
</head>
<body>
<h1>Feed Designer</h1>
<p>Create your own customized RSS feed to be notified of the
 latest articles published in your areas of interest.</p>
<p>Which categories would you like to monitor?</p>
<form action="feed.php" method="get">
<?php
$cats = simplexml_load_file($fileDir . 'categories.xml');
foreach ($cats->category as $cat) {
 if ((string)$cat['status'] == 'live') {
 echo '<p><label>';
 echo '<input type="checkbox" name="cat[]" value="' .
 htmlentities($cat['id']) . '" checked="checked" />';

215

Our CMS Project

 echo htmlentities($cat['label']) . '</label></p>';
 }
}
?>
<input type="submit" value="Generate Feed" />
</form>
</body>
</html>

Note that the form is set to submit using the get method, which will allow the
user to bookmark the resulting page, and use it in an RSS reader to continually
monitor the custom feed.

Simple enough, right? Now let's get down to the business of generating the RSS
feed.

Processing the Form Post Results

The form is set to post to feed.php. This PHP script is considerably more com-
plicated than our form. It must first build up our RSS feed with the proper
channel information, and then parse the articles on our site, adding the ten most
recent that are live and in the selected categories to the feed.

We’ll go through it a piece at a time. First, we use PHP's DOM functions to start
a new XML document, declaring RSS version 0.91 in our root rss element:

File: feed.php (excerpt)

<?php
include_once 'common.inc.php';

$doc = new DOMDocument();
$root = $doc->createElement('rss');
$doc->appendChild($root);
$root->setAttribute('version', '0.91');

We then add our channel element with its title, description, and link ele-
ments, all of which have fixed values.

File: feed.php (excerpt)

$channel = $doc->createElement('channel');
$root->appendChild($channel);

$title = $doc->createElement('title');
$channel->appendChild($title);

216

Chapter 8: RSS and RDF

$text = $doc->createTextNode('Example.com Articles');
$title->appendChild($text);

$desc = $doc->createElement('description');
$channel->appendChild($desc);
$text = $doc->createTextNode('Articles from example.com');
$desc->appendChild($text);

$link = $doc->createElement('link');
$channel->appendChild($link);
$text = $doc->createTextNode('http://www.example.com/');
$link->appendChild($text);

Now for the hard part: picking out the latest live articles on the site that fall
within the selected categories. Actually, it's not too different from the sort of
processing we've done before:

File: feed.php (excerpt)

$handle = opendir($fileDir);
$articles = array();
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^article.*\.xml$", $file)) continue;
 $articles[] = $file;
}
rsort($articles);

$cats = @$_GET['cat'];
if (!is_array($cats)) $cats = array();
$itemsToGo = 10;
foreach ($articles as $file) {
 $article = simplexml_load_file($fileDir . $file);
 if ((count($cats) == 0 or
 in_array((string)$article->categoryid, $cats)) and
 (string)$article->status == 'live') {

First we use our standard means of looping through the article XML files on our
site, but instead of processing them immediately, we'll store them in an array
variable named $articles. Once we have our full list of article files, we sort them
in reverse order, from latest to oldest (remember, articles have timestamps in
their filenames), using PHP's rsort function.

The categories selected by the user arrive in the $_GET['cat'] variable as an array.
If no such variable was submitted (i.e. if the user didn't select any categories, or
if the feed.php script was loaded directly), then an empty array is created to

217

Processing the Form Post Results

take its place. We then set a variable called $itemsToGo to track the number of
articles we wish to display (ten in this case).

For each article found in the XML files of our site, we check if its categoryid
may be found in the list of acceptable categories (if the list is empty, we accept
all articles), and if its status is set to live. If those conditions are met, we can
go ahead and create an item element for the article in the feed:

File: feed.php (excerpt)

 $item = $doc->createElement('item');
 $channel->appendChild($item);

 $iTitle = $doc->createElement('title');
 $item->appendChild($iTitle);
 $text = $doc->createTextNode($article->headline);
 $iTitle->appendChild($text);

 $iDesc = $doc->createElement('description');
 $item->appendChild($iDesc);
 $text = $doc->createTextNode($article->description);
 $iDesc->appendChild($text);

 $iLink = $doc->createElement('link');
 $item->appendChild($iLink);
 $text = $doc->createTextNode(
 'http://www.example.com/innerpage.php?id=' .
 $article['id']);
 $iLink->appendChild($text);

 if (--$itemsToGo < 1) break;
 }
}

Note the if statement at the end, which bails out of the loop once ten articles
have been selected for display.

Finally, we write out our XML document to the browser, first sending a header
to indicate the appropriate content type for an RSS feed:

header('content-type: application/xml');
echo $doc->saveXML();
?>

As a finishing touch, add a link to the feedselect.php page to the front page
of the site:

218

Chapter 8: RSS and RDF

File: search.inc.php

<form id="searchWidget" method="post" action="doSearch.php">
 Search Site:
 <input name="term" type="text" id="term" />
 <input name="search" type="submit" id="search" value="Search" />
</form>
<p>Browse by Category</p>
<p>Site Map</p>
<p>RSS</p>

Summary
In this chapter, we worked our way around the different RSS standards, and
learned how RDF fits into the picture. In a practical example, we saw how to
consume an RSS feed from another site and display the headlines as part of our
own site. We then used this new-found knowledge to also add a bit of function-
ality to our CMS project: a customizable headline feed.

219

Summary

220

XML and Web Services9
It’s time to talk about Web Services—specialized mini-programs that applications
written in any language can access over the Internet, thanks to XML. For the
most part, we'll look at XML-RPC—an older, but simpler XML standard for Web
Services—but we'll also make time for a glance at the latest protocol, SOAP. After
that, we'll dive in and add a simple Web Service to our CMS, where we’ll use
XML-RPC to provide information about articles in the system. This will provide
yet another means for our content to be distributed across the Web.

What is a Web Service?
A Web Service is, as its name implies, any service made available over the Web.
But what does that mean?

In other words, Web Services take the human-centric Web to the next level. The
Web today is mostly about humans using browsers to search for and download
information. Web Services provide an application-centric vision of the Web, in
which applications provide services and information to each other. Web Services
use XML-based messages to allow applications to interact with each other in an
automated fashion.

Most Web Services are designed in such a way that individual programming
languages don’t really matter—I might build my Web Service with PHP, and

someone else might build a program to interact with it using ASP.NET, but who
cares? The fact is, we’re passing standard XML messages back and forth, and so
that becomes the glue that holds everything together regardless of what program-
ming language originated the messages.

What makes for a good Web Service? Well, for one thing, they should be self-
describing, with easy-to-understand public interfaces. Another thing that makes
for a good Web Service is its discoverability. If you publish a Web Service, it
should be easy to find by those who need to use it. There's a whole cloud of
peripheral technologies surrounding Web Services that address their description
and discovery. We won't cover those technologies in this book; instead, we'll focus
on actually building practical Web Services.

The three most common XML data formats used for building Web Services are:

XML Remote Procedure Call (XML-RPC)
This chapter will demonstrate this method.

Simple Object Access Protocol (SOAP)
We will be taking only a brief glance at SOAP.

Custom XML documents
We won’t be covering this aspect of Web Services in this chapter.

What’s the Big Deal?
To many folks, Web Services don’t seem all that different from CGI scripts or
even the kind of PHP, ASP.NET, and JSP scripts that extract information from
databases. In fact, companies long ago realized they needed software that would
interact with other software—credit card processors being one major example.

So here’s the big deal. Until the age of Web Services (sounds impressive, no?)
most of these efforts were largely ad hoc. They used proprietary methods and
approaches, myriad programming languages, and nonstandard ways of requesting
services and information.

A bank, let’s say, might have a system in place that runs on Java but expects
specially formatted queries to service requests. It might have an arcane set of
commands that must be sent through in just the right way to work… and the
result of a query might come back as fixed-length data records that have to be
parsed just so. Another bank might have a C++ system to do the very same
thing, but it might use colon-delimited data files and command sequences similar

222

Chapter 9: XML and Web Services

to UNIX commands, because most of its clients interact via a UNIX shell. To
work with either of these banks, you would have to write customized software
that understood the needs and quirks of each system.

Web Services strive to do away with this confusion. With a good Web Service
in place, you can standardize the way you get requests for information, standardize
the way you respond to those requests, and publish the interface so that others
can easily request services. In this case, it doesn’t matter if you’re using Java and
the other guy wants to use Perl or PHP.

The other big deal focuses on removing the human user from a number of inter-
actions. Let’s face it: if you could reroute some of the more mundane requests
you receive every day, wouldn’t you do it?

What are Web Services Good At?
Any time you want to share information that is otherwise hard to find, or is fre-
quently accessed, you have a candidate for a Web Service. Let me give you a
couple of examples.

Let’s say that you run a bookstore in a small town. In fact, you run a specialty
bookstore selling detective and crime novels only. You decide to boost your
Website’s offerings by listing select detective novels available on Amazon.com.

Granted, you could enter these items manually into your own inventory listing,
or you could write a PHP script to go scrape Amazon.com pages for information.
Both these approaches leave a lot to be desired.

Instead, you could sign up to use Amazon.com’s Web Service, which allows you
to query an inventory listing based on multiple criteria, and get back a list of
those items. You can then write code to format the list and post it automatically
onto your Website. Stock quotes, weather reports, travel alerts, and auctions are
all good candidates for this sort of approach.

Here’s another example: one involving Web Services as the great integrator. You
work for a Fortune 100 company that has gigabytes of data stored away in ancient,
reliable mainframes. Someone from the Marketing department calls your boss,
wanting access to this data. But you don't have time to teach this person how to
work the mainframe, and, even if you did, it’s not a good idea to give the user
direct access.

223

What are Web Services Good At?

So you build a Web Service that allows data queries to the mainframe, and
transmits any result sets back to the user in XML format. The business user
doesn’t have to understand where the data is, what it looks like, or even how to
get it. All he or she has to do is send in an XML-formatted request; your Web
Service then replies with its own XML response.

All across the corporate world, Web Services are being used to solve these kinds
of “last mile” issues with integration, not to mention their value as a quick way
to keep aging systems viable.

Where to find Web Services

You can find some of the more popular Web Services at these locations:

Amazon.com http://www.amazon.com/gp/aws/landing.html

Google Web APIs http://www.google.com/apis/

XMethods Service
Listing

http://www.xmethods.net/

XML-RPC
XML-RPC is a very simple protocol that uses XML messages to perform remote
procedure calls. A remote procedure call is a fancy way to describe a program on
one computer calling a function stored on another computer.

XML-RPC requests are sent via HTTP POST, and responses are embedded in
the HTTP response. XML-RPC is platform-independent and very easy to learn.
You can find out more about the XML-RPC standard at http://www.xmlrpc.com/.

Here’s a very simple hypothetical example involving a weather service. All a user
has to do is provide a standard method name and pass in a US ZIP code to get
back a temperature reading:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
 <methodName>getCurrentTempByZip</methodName>
 <params>
 <param><value>78701</value></param>
 </params>
</methodCall>

224

Chapter 9: XML and Web Services

http://www.amazon.com/gp/aws/landing.html
http://www.google.com/apis/
http://www.xmethods.net/
http://www.xmlrpc.com/

Let’s suppose further that this is the response that comes back:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>
 <params>
 <param>
 <value><int>98</int></value>
 </param>
 </params>
</methodResponse>

You can easily see that a basic service like this could involve just a very simple
form with a ZIP code field and a submit button. The response could easily be
transformed into HTML using XSLT, SimpleXML, or DOM.

Because XML-RPC is so simple, a lot of Web Services newbies start with it
(though many stay right there and never go on to SOAP). We’ll get into more
detail about the different pieces of requests and responses in a little while.

First, let’s break down the three most important parts of XML-RPC: data structure,
request, and response.

The XML-RPC Data Model
XML-RPC supports eight different data types: six simple types and two compound
ones. The simple types are shown in Table 9.1.

These basic types are always wrapped in a value element, as we saw in our very
simple XML-RPC response example:

 <value><int>98</int></value>

225

The XML-RPC Data Model

Table 9.1. Simple XML-RPC Data Types

ExampleData Type

<int>98</int>
<i4>98</i4>

int or i4

32-bit integers between –2,147,483,648
and 2,147,483,647

<double>98.6</double>double

64-bit floating point numbers

<boolean>1</boolean>boolean

true (1) or false (0)

<string>Hello there</string>string

ASCII text

<dateTime.iso8601>
 20050701T16:31:22
</dateTime.iso8601>

dateTime.iso8601

Dates in ISO8601 format
(YYYYMMDDTHH:MM:SS)

<base64>
 SGVsbG8sIFdvcmxkIQ==
</base64>

base64

Binary information encoded in Base64

So much for simple types; what about complex types? Well, there are two complex
types—arrays and structs—which are made up of combined simple types. For
example, an array may contain numerous double or string values.

An array is indicated by an array element, which is just a list of values contained
in a single data element. The following example could be a list of temperatures
taken at a clinic:

 <value>
 <array>
 <data>
 <value><double>98.7</double></value>
 <value><double>99.3</double></value>
 <value><double>99.5</double></value>
 <value><double>97.9</double></value>
 </data>

226

Chapter 9: XML and Web Services

 </array>
 </value>

There’s no reason why your arrays can’t contain mixed content, as in the following
example, which could constitute a record of an account balance at a certain time
and date:

 <value>
 <array>
 <data>
 <value><double>100.30</double></value>
 <value><string>Thomas Myer</string></value>
 <value><int>34783773993</int></value>
 <value><dateTime.iso8601>20050701T16:31:22
</dateTime.iso8601></value>
 </data>
 </array>
 </value>

An XML-RPC struct is similar to an array, except it uses name-value pairs. These
name-value pairs are contained within member elements. Let’s revisit our previous
example and make clearer the kind of data we’re describing:

 <value>
 <struct>
 <member>
 <name>AccountOwner</name>
 <value><string>Thomas Myer</string></value>
 </member>
 <member>
 <name>AccountBalance</name>
 <value><double>100.30</double></value>
 </member>
 <member>
 <name>AccountNumber</name>
 <value><int>34783773993</int></value>
 </member>
 <member>
 <name>TimeStamp</name>
 <dateTime.iso8601>20050701T16:31:22</dateTime.iso8601>
 </member>
 </struct>
 </value>

Notice that it’s not necessary to identify each of the name elements as a
string—XML-RPC assumes that.

227

The XML-RPC Data Model

XML-RPC Requests
An XML-RPC request is very simple: each request is a combination of HTTP
headers and XML content. The XML content is a single XML file whose root
element is methodCall. This root element contains two other elements, method-
Name and params. The methodName element identifies the function to call, while
the params element contains a list of param elements that represent arguments
or data passed to the function.

Here’s a sample request that calls a getAccountBalance method. We pass in two
parameters: an account ID and a password for that account:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
 <methodName>getAccountBalance</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>accountid</name>
 <value><string>19393002011</string></value>
 </member>
 <member>
 <name>password</name>
 <value><string>fakepassword</string></value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

The HTTP header part of the request equation would look something like this:

POST /targetscript HTTP/1.1
User-Agent: identifier
Host: script.host.name
Content-Type: text/xml
Content-Length: request length in bytes

The sections shown in italics above will change from request to request, and from
client to client. For instance, if the script that listens for requests is located at

228

Chapter 9: XML and Web Services

http://services.example.com/bankAccountRPC, then our headers might look like
this:

POST /bankAccountRPC HTTP/1.1
User-Agent: xmlRPC-Client-1.0
Host: services.example.com
Content-Type: text/xml
Content-Length: 482

When we assemble the header and the XML content inside a standard HTTP
POST, we get an ordinary HTTP request with a standardized payload:

POST /bankAccountRPC HTTP/1.1
User-Agent: xmlRPC-Client-1.0
Host: services.example.com
Content-Type: text/xml
Content-Length: 482

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
 <methodName>getAccountBalance</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>accountid</name>
 <value><string>19393002011</string></value>
 </member>
 <member>
 <name>password</name>
 <value><string>fakepassword</string></value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

Later in this chapter, we'll generate a request like this on-the-fly, so it's important
to be fully aware of the format required.

229

XML-RPC Requests

XML-RPC Responses
There are two kinds of XML-RPC responses: the successful and the unsuccessful.
The unsuccessful responses are called faults. Faults vary from one implementation
to another, but usually a fault returns a struct that tells you where and why your
code went wrong. For example, there might be a problem on line 20 of your re-
quest, because no method exists to handle the request you sent in (a common
error if you happen to spell badly).

Here’s how a fault might appear:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value>
 <int>20</int>
 </value>
 </member>
 <member>
 <name>faultString</name>
 <value>
 <string>No method exists by that name.</string>
 </value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

Successful XML-RPC responses also contain a methodResponse root element,
but this time it contains a params element. In the current version of XML-RPC,
a response can contain only one param child element of params, but that param
can contain an array or struct to pass back multiple values if need be.

Here’s an example response to our example request from the previous section.
Notice that we use a struct to return multiple pieces of information from the
original request:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>

230

Chapter 9: XML and Web Services

 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>AccountOwner</name>
 <value><string>Thomas Myer</string></value>
 </member>
 <member>
 <name>AccountBalance</name>
 <value><double>100.30</double></value>
 </member>
 <member>
 <name>AccountNumber</name>
 <value><int>34783773993</int></value>
 </member>
 <member>
 <name>TimeStamp</name>
 <dateTime.iso8601>20040701T16:31:22</dateTime.iso8601>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodResponse>

What do we Use to Process XML-RPC?
XML-RPC is platform-independent, so you can use ASP.NET, Perl, Python, JSP,
and of course, PHP to handle requests and send back responses. We will be
building an XML-RPC Web Service in the CMS section, and that’s where we’ll
get into the nitty gritty PHP code.

First, though, let’s take a brief walk through SOAP.

SOAP
Like XML-RPC, Simple Object Access Protocol (SOAP) uses a request-response
paradigm to get things done. It also uses HTTP as a transport mechanism. SOAP
is also platform-independent and is therefore ideal for allowing different systems
to communicate.

231

What do we Use to Process XML-RPC?

But I’m afraid that’s where the similarities end. SOAP is a much more robust
environment for handling heavy-duty requests. It is also much more complicated
to use, though it is more extensible than XML-RPC. SOAP allows for user-defined
data types, the ability to specify the message recipient, and some other features.

Since XML-RPC does everything we'll need in this book and more, we'll only
pause for a high-level overview of SOAP. To get a feel for it, let’s revisit our simple
weather service, this time using SOAP:

<?xml version="1.0" encoding="ISO-8859-1"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2001/09/soap-envelope/">
 <env:Body>
 <w:getTempByZip
 xmlns:w="http://www.example.com/weather">
 <w:zip>78701</w:zip>
 </e:getTempByZip>
 </env:Body>
</env:Envelope>

A couple of things need to be addressed right away:

❑ SOAP is structurally and syntactically more complex than XML-RPC. It uses
XML namespaces and can even use XML schemas (a complex successor to
DTDs).

❑ A SOAP request consists of at least two structural elements: an Envelope and
a Body. The Envelope contains the Body, and the Body contains your request.

❑ Apart from that, the request still just identifies a method and provides a list
of parameters that gets passed to the Web Service.

As with XML-RPC, a SOAP request begets a response. Let’s take a look at what
a really simple response to our request looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2001/09/soap-envelope/">
 <env:Body>
 <w:getTemperatureResponse
 xmlns:w="http://www.example.com/weather">
 <w:temp>98</w:temp>
 </w:getTemperatureResponse>
 </env:Body>
</env:Envelope>

232

Chapter 9: XML and Web Services

In our example response, we get back a single integer to indicate the temperature
at the given ZIP code. Again, the syntax is more complicated than XML-RPC,
but the structure is easy to understand: send in a request, get back a response.

What we Haven’t Covered
There’s a lot that we haven’t covered here about SOAP; in fact, the examples
we've just seen barely scratch the surface. Not only is SOAP itself replete with
syntactically obscure ways of identifying data types, handling errors, tracking
multi-request transactions and more, but related standards for locating and de-
scribing SOAP Web Services also exist, each with their own complexities.

Practically speaking, SOAP and it's associated standards were designed for auto-
mated tools to generate and process, with higher-level APIs masking the details
from developers like you and me.

That said, if you want to learn more about SOAP, take a look at some of the
following resources:

❑ SOAP specifications at W3C:

http://www.w3.org/TR/soap/

❑ Web Services Demystified, an article by Kevin Yank:

http://www.sitepoint.com/article/web-services-demystified

❑ SOAP Tutorial at W3Schools.com:

http://www.w3schools.com/soap/default.asp

Our CMS Project
In this section, we’re going to create an XML-RPC server and client for use with
our CMS. Our first XML-RPC script will be very simple indeed—it will only return
a count of live articles on the system. Our other scripts will be more sophisticated,
allowing us to search for and retrieve links to articles in the system.

233

What we Haven’t Covered

http://www.w3.org/TR/soap/
http://www.sitepoint.com/article/web-services-demystified
http://www.w3schools.com/soap/default.asp

Before we get started, I have to warn you that the PHP XML-RPC functions
aren’t necessarily a joy to use, but they provide a solid base from which to create
your own XML-RPC-based Web Services.

Building an XML-RPC Server
PHP comes with an optional extension for writing and consuming XML-RPC
services. This extension isn't enabled by default; you'll need to compile it using
--with-xmlrpc on Unix-style installations, or add the php_xmlrpc.dll file to
your php.ini file on Windows.1

PHP's XML-RPC extension has several functions that deal with servers, the most
important being:

xmlrpc_server_create Tells PHP to create a new server.

xmlrpc_server_register_method Registers a PHP function with the
XML-RPC client, making it available
to requesting clients as a method.

xmlrpc_server_call_method Passes a client request to the server
and sends the server's response back
to the client.

xmlrpc_server_destroy Frees up memory used by an XML-
RPC server.

Let’s get started!

Your First XML-RPC Method

The first thing we need to do is define and register the functions we want to expose
as XML-RPC methods. This will allow XML-RPC clients to make requests and
get back meaningful responses.

For our XML-RPC server, we want to provide functionality around the articles
on our Website. The first method we want to create provides a raw count of live
articles available on the site. Let's start by building the PHP function that will
support this method.

1If reconfiguring PHP isn't an option for you, an alternative is to use the XML-RPC package in PEAR
[http://pear.php.net/package/XML_RPC].

234

Chapter 9: XML and Web Services

http://pear.php.net/package/XML_RPC

Every function that will be registered as an XML-RPC method must take three
arguments, in this order:

1. The name of the XML-RPC method requested (not necessarily the same
name as the function that handles the request).

2. An array containing the arguments passed with the request.

3. Any data sent in the appData parameter of the xmlrpc_server_call_method
(more about this in a moment).

Here’s our first function, called getCountArticles:

File: rpcserver.php (excerpt)

function getCountArticles($methodName, $params, $appData) {
 global $fileDir;
 $count = 0;
 $handle = opendir($fileDir);
 while (($file = readdir($handle) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi('^article.*\.xml$', $file)) continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((string)$xmlItem->status == 'live') {
 $count++;
 }
 }
 return $count;
}

Once we have this basic function created, we have to register it as a method with
XML-RPC to make it available for client requests. To register a method, you
must first create an XML-RPC server using xmlrpc_server_create, and then
call the xmlrpc_server_register_method function with three arguments:

❑ The handle of the server created with xmlrpc_server_create.

❑ The name to register the method under (i.e., what needs to be in the <meth-
odName> of a request for this method).

❑ The name of the PHP function that will handle requests for this method.

235

Your First XML-RPC Method

The following code shows how to register our function as an XML-RPC method.
Notice that, for simplicity’s sake, we’ve made the XML-RPC method's name the
same as the PHP function's name.

File: rpcserver.php (excerpt)

$xmlRpcServer = xmlrpc_server_create();
xmlrpc_server_register_method($xmlRpcServer, 'getCountArticles',
 'getCountArticles');

Creating a Search Method

Now that we have our first, very rudimentary XML-RPC method, let’s create a
second, more complex one that will allow us to search for articles in the system.
This function will be very similar to the search engine we implemented in
Chapter 5. The only real difference is that it will get its search term from the
$params array.

File: rpcserver.php (excerpt)

function searchArticles($methodName, $params, $appData) {
 global $fileDir;
$term = $params[0];

 $handle = opendir($fileDir);
 $items = array();
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^article.*\.xml$", $file)) continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((stripos($xmlItem->keywords, $term) !== FALSE or
 stripos($xmlItem->headline, $term) !== FALSE or
 stripos($xmlItem->description, $term) !== FALSE) and
 (string)$xmlItem->status == 'live') {
 $item = array();
 $item['id'] = (string)$xmlItem['id'];
 $item['headline'] = (string)$xmlItem->headline;
 $items[] = $item;
 }
 }
 return $items;
}

As before, the script uses SimpleXML to grab the information we want and return
a series of headlines and unique document IDs to the client.

236

Chapter 9: XML and Web Services

Of course, we also have to register our new function:

File: rpcserver.php (excerpt)

xmlrpc_server_register_method($xmlRpcServer, 'searchArticles',
 'searchArticles');

Processing a Request

Now that you’ve created a method and registered it with an XML-RPC server,
you have to process an incoming request. To do this, you have first to capture
the incoming HTTP POST data, which contains the request:

File: rpcserver.php (excerpt)

$requestXml = @$HTTP_RAW_POST_DATA;

Now hand the request to the xmlrpc_server_call_method function, which
identifies the method that was called, extracts any arguments, then dispatches it
to the function you registered:

File: rpcserver.php (excerpt)

$response =
 xmlrpc_server_call_method($xmlRpcServer, $requestXml, '');

Finally, let's send the XML response back to the client:

File: rpcserver.php (excerpt)

header('content-type: text/xml');
echo $response;

Once you’ve printed a response for the client, you can free up your resources
using the xmlrpc_server_destroy function:

File: rpcserver.php (excerpt)

xmlrpc_server_destroy($xmlRpcServer);

The Finished XML-RPC Server Script

Here's the finished script:

File: rpcserver.php

<?php
include_once 'common.inc.php';

237

Processing a Request

$xmlRpcServer = xmlrpc_server_create();
xmlrpc_server_register_method($xmlRpcServer, 'getCountArticles',
 'getCountArticles');
xmlrpc_server_register_method($xmlRpcServer, 'searchArticles',
 'searchArticles');

$requestXml = $HTTP_RAW_POST_DATA;
$response = xmlrpc_server_call_method($xmlRpcServer, $requestXml,
 '');
header('content-type: text/xml');
echo $response;
xmlrpc_server_destroy($xmlRpcServer);

function getCountArticles($methodName, $params, $appData) {
 global $fileDir;
 $count = 0;
 $handle = opendir($fileDir);
 while (($file = readdir($handle) !== FALSE)) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi('^article.*\.xml$', $file)) continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((string)$xmlItem->status == 'live') {
 $count++;
 }
 }
 return $count;
}

function searchArticles($methodName, $params, $appData) {
 global $fileDir;
 $term = $params[0];
 $handle = opendir($fileDir);
 $items = array();
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^article.*\.xml$", $file)) continue;

 $xmlItem = simplexml_load_file($fileDir . $file);
 if ((stripos($xmlItem->keywords, $term) !== FALSE or
 stripos($xmlItem->headline, $term) !== FALSE or
 stripos($xmlItem->description, $term) !== FALSE) and
 (string)$xmlItem->status == 'live') {
 $item = array();
 $item['id'] = (string)$xmlItem['id'];
 $item['headline'] = (string)$xmlItem->headline;

238

Chapter 9: XML and Web Services

 $items[] = $item;
 }
 }
 return $items;
}
?>

Building an XML-RPC Client that Counts Articles
Now that we have a server, it’s time to create a client. However, I’ve got some
bad news: the XML-RPC extension for PHP doesn’t make HTTP requests by itself.
However, it does come with some very handy include files that allow you to create
clients very easily.

First, you'll have to download the XML-RPC EPI PHP extension PHP source
package from http://xmlrpc-epi.sourceforge.net/. Click the Downloads link on that
site and grab the latest version of the xmlrpc-epi-php package (0.51 as of this
writing). Extract the file and copy the contents of the /sample/utils directory
(including utils.php) into a directory in your PHP include_path. In the next
couple of examples, I'll assume you’ve placed in your include_path a directory
named xmlrpc_utils containing these files. I've included these files in the code
archive for your convenience.

Once we have the necessary library files installed, we can make short work of the
client. The function that does all the work when we call our methods is
xu_rpc_http_concise. This function is defined in the xmlrpc_utils/utils.php
file that's now located in our PHP include_path.

Let’s get on with the example. The first thing we have to do in our client script
is include the XML-RPC utility library:

File: rpcclient-count.php (excerpt)

<?php
error_reporting(E_ALL ^ E_NOTICE);
include_once 'xmlrpc_utils/utils.php';

Note that I've disabled reporting of notice-level errors at the top of this script,
as the utils.php file produces several of these.

Next, set three variables, $server, $port, and $uri, to point to your server, the
port on which the server is listening, and the location of the XML-RPC server
script you set up, respectively. You’ll be using these variables soon.

239

Building an XML-RPC Client that Counts Articles

http://xmlrpc-epi.sourceforge.net/

File: rpcclient-count.php (excerpt)

$host = 'www.example.com'; // or 'localhost' for local machine
$port = 80;
$uri = '/rpcserver.php'; // or URI of the XML-RPC server

Now it’s time to use the xu_rpc_http_concise function provided by the
utils.php library to send a request and get a response. This method takes one
argument, a PHP associative array that contains the following elements in order:

❑ The name of the method to call

❑ The host

❑ The URI of the XML-RPC server

❑ The port number

The result of the request is returned as an ordinary value that you can then ma-
nipulate or print.

File: rpcclient-count.php (excerpt)

$result = xu_rpc_http_concise(
 array(
 'method' => 'getCountArticles',
 'host' => $host,
 'uri' => $uri,
 'port' => $port
)
);

header('content-type: text/plain');
echo 'The number of articles on server ' . $host . ' is ' .
 $result . '.';
?>

When this is run, it should print something like:

The number of articles on server www.example.com is 12.

Debugging XML-RPC Requests

If you have any trouble getting an XML-RPC request to work, you can ask
xu_rpc_http_concise to display debugging information. To do this,
simply add a 'debug' parameter to the array you pass to the function:

240

Chapter 9: XML and Web Services

$result = xu_rpc_http_concise(
 array(
 'method' => 'getCountArticles',
 'host' => $host,
 'uri' => $uri,
 'port' => $port,

'debug' => TRUE
 }
};

The Entire XML-RPC Client

File: rpcclient-count.php

<?php
include_once 'xmlrpc_utils/utils.php';

$host = 'www.example.com'; // 'localhost' for the local machine
$port = 80;
$uri = '/rpcserver.php'; // or URI of the XML-RPC server

$result = xu_rpc_http_concise(
 array(
 'method' => 'getCountArticles',
 'host' => $host,
 'uri' => $uri,
 'port' => $port
)
);

header('content-type: text/plain');
echo 'The number of articles on server ' . $host . ' is ' .
 $result . '.';
?>

Building an XML-RPC Client that Searches Articles
Okay, we’ve written a script to invoke the simpler of our two XML-RPC methods,
accessing the number of live articles on the site. Now, let’s build a client that will
run a search. As before, we’ll need to include our XML-RPC utility library, and
set variables for host, port, and URI.

We also need to add a variable that will contain our search term, which we’ll
likely get from a request variable:

241

The Entire XML-RPC Client

File: rpcclient-search.php (excerpt)

include 'xmlrpc_utils/utils.php';

$host = 'www.example.com'; // 'localhost' for the local machine
$port = 80;
$uri = '/rpcserver.php'; // or URI of the XML-RPC server

$term = $_REQUEST['searchterm'];

Next, we send over our request with xu_rpc_http_concise. Notice that our
search term becomes the value associated with the args key.

File: rpcclient-search.php (excerpt)

$result = xu_rpc_http_concise(
 array(
 'method' => 'searchArticles',
 'args' => $term,
 'host' => $host,
 'uri' => $uri,
 'port' => $port
)
);

This time, the response will be an array, so we’ll need to do some processing to
display the result of the search:

File: rpcclient-search.php (excerpt)

foreach ($result as $article) {
 echo '<p>' . $article['headline'] . '
';
 echo '<a href="http://' . $host . '/innerpage.php?id=' .
 htmlentities($article['id']) . '">Read content</p>';
}

The Entire XML-RPC Client

Run this code by passing a searchterm variable in the URL (e.g. http://www.ex-
ample.com/rpcclient-search.php?searchterm=xml), and you should receive a list
of results with links to the full articles in return.

File: rpcclient-search.php

<?php
include_once 'xmlrpc_utils/utils.php';

$host = 'www.example.com'; // 'localhost' for the local machine

242

Chapter 9: XML and Web Services

$port = 80;
$uri = '/rpcserver.php'; // or URI of the XML-RPC server

$term = $_REQUEST['searchterm'];

$result = xu_rpc_http_concise(
 array(
 'method' => 'searchArticles',
 'args' => $term,
 'host' => $host,
 'uri' => $uri,
 'port' => $port
)
);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Search Results</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<?php
foreach ($result as $article) {
 echo '<p>' . $article['headline'] . '
';
 echo '<a href="http://' . $host . '/innerpage.php?id=' .
 htmlentities($article['id']) . '">Read content</p>';
}
?>
</body>
</html>

Summary
In this chapter, we took a whirlwind look at the modern phenomena that are
Web Services. Given the amount of hype this technology gets, I'll forgive you if
you were underwhelmed by the reality. From the developer's perspective, XML-
RPC is truly a simple technology.

To be fair, we looked at Web Services only within the context of PHP scripting.
When Web Services get really exciting is when a program or script in one language
can exploit functionality provided by a program or script written in another lan-

243

Summary

guage. If you want to get a feel for this, spend some time browsing around for an
XML-RPC service or two that would be useful on your site, and see how easy it
is to call this service in your own PHP code.

244

Chapter 9: XML and Web Services

XML and Databases10
Welcome to the last chapter of the book! We have only one more thing to cover:
the relationship between XML and databases, which will be the focus of this
chapter. Once we've discussed the theory, we'll get our hands dirty adding to our
CMS a PHP script and database tables that will give us the ability to back up
versions of our XML content.

XML and Databases
If you’ve been around Web application development for any period of time, you
probably know that most PHP, ASP, ColdFusion, and JSP development out there
right now involves a database. In PHP’s case, the database of choice for most
developers is MySQL. You may already be very familiar with the tasks of building
tables, defining fields, extracting data, and adding, updating, and deleting records.

Throughout this book, we’ve mostly talked XML. You could say that XML is a
document-centric technology—the shape or format that XML takes is usually
some kind of document or file. But to focus on XML’s document-centricity ignores
the fact that XML is essentially a self-describing semantic unit that contains
discrete capsules of data. It also belies the fact that an increasing amount of XML
traffic occurs in non-document contexts—think about all those SOAP requests
and responses flying back and forth over HTTP, for example.

Indeed, at times, an XML document looks very much like a database. It’s this
duality—document and database—that makes working with XML so intriguing.

But how does XML work with actual databases, and vice versa? Why would we
use them together? When would we use one and not the other? Is it appropriate
to use both at the same time? Can you store XML in database tables? Is it possible
to convert between SQL and XML data formats? What's the best type of database
to work with: relational, post-relational, or a native XML database?

Let’s take a stroll down the path created by these questions, and see if we can't
shed a little light on the subject.

Why use XML and Databases Together?
This question seems like the most obvious place to start. If you’re using a database,
why use XML? And if you’re using XML, why use a database? Well, the answers
to these questions can take you down many different paths.

For example, you might use your database to store a series of revisions to XML
content. When you create a piece of XML content, you could store this XML-
tagged content in the database with a revision ID. If you made any updates to
that content, each of those updates could also be stored with its own specific re-
vision ID. If you then wanted to retrieve a particular version of your XML content,
you’d have a relatively easy way to do it: you'd retrieve the initial piece of content
along with its revisions, and construct the revised content from those pieces.

Another example might involve using XML primarily in a data-centric way (in
other words, as data parcels for your Web Services). Storing this XML in a
database provides a record of the transactions that occur over time.

Relational Database? Native XML Database?
Somewhere in Between?

The next thing we need to tackle is the type of database we’ll use when working
with XML. As of this writing, the market offers four different approaches:

Relational
Under this approach, we either place entire documents directly into database
fields, or normalize each XML document’s elements into appropriate tables
and fields. Normalizing refers to the process by which we break XML docu-
ments (that are hierarchical in nature) into discrete data values, making them

246

Chapter 10: XML and Databases

suitable for the database (which is table-column-row-oriented) to store. In
the language of database vendors, this process is known as “decomponentizing
XML structures to an atomic level.”

With very simple XML documents, this process is straightforward. However,
with lots of attributes, elements, namespaces, and external entities, we’d need
to be very careful in order to make this approach work. And don't forget that,
depending on your needs, you're also likely to need a means of converting
the values stored in the database back into a self-contained XML docu-
ment—potentially more work to occupy the wee hours in the face of impend-
ing deadlines.

Native XML
A variety of vendors provide both commercial and open source native XML
databases. These products allow you to store XML documents (also called
snippets or node collections) directly into the database without having to
shoehorn those XML structures into conventional database tables. Information
queries, extractions, and merges are handled with tools like XPath, XQuery,
and XSLT, either inside or outside the database application. As such, anyone
who has experience with these XML technologies can, in many cases, use
that knowledge to work with native XML databases.

At the time of this writing, few native XML databases support the full XML
feature set, and insufficient key tests have been run to establish interoperab-
ility and portability between environments. In fact, there’s safety in choosing
a relational (or post-relational) approach, simply because the user community
is larger, and has already done a good job of figuring out best practices.

Following are some links to articles about native XML databases:

❑ Introduction to Native XML Databases
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

❑ Native XML Databases: Bad Idea for Data?
http://www.ibm.com/developerworks/xml/library/x-xdnat.html

❑ Native XML Database Vendors
http://www.service-architecture.com/products/xml_databases.html

247

Relational Database? Native XML Database? Somewhere in Between?

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.ibm.com/developerworks/xml/library/x-xdnat.html
http://www.service-architecture.com/products/xml_databases.html

Post-relational
So-called post-relational databases are relational databases with built-in
support for XML and object-oriented data structures. This gives us the ability
to store hierarchical or recursive information in a single field, run complex
full-text searches, and/or use XPath/XQuery1 to retrieve data.

Flat-file
A flat-file database is a very simple type of database in which each line rep-
resents a record. Each field in a record can be of fixed length or of varying
length with some kind of delimiter (such as a comma). Because a flat-file
database has no relational capabilities, this approach can generate a lot of
redundant information.

One way to store XML in a flat-file database would be to create a lookup file
that contained pointers to XML document files, with a title for each file.

Which of these approaches is best? Again, the answer is, “it depends.” One of
the biggest factors in choosing one approach over another will be your level of
experience with software development in general, and database development in
particular. For example, a lot more support is available for relational databases,
so if you think you'll benefit from a large community of peers to help you through
the sticky spots, that might be the best way to go.

Another big factor to consider is the type of data you intend to store. If the
structure of your XML information is uniform and predictable, then it will fit
nicely into the regimented fields required by a relational database. If your XML
information is diverse or only semi-structured, the native XML database format's
ability to store that data in whatever form it may take will be a huge benefit.

Finally, consider what you intend to do with the XML information once it's in
the database. If you’re just running queries and extracting different elements (or
collections of elements), the native XML format will do nicely—in fact, you’ll be
able to use native XML tools like XPath and XQuery. On the other hand, if you
need to perform calculations (like sum, average, and count) or run relational
lookups on your XML information, you'll want the features of a relational data-
base. For instance, if you want to look up a customer’s unique ID, then figure
out how many outstanding invoices that customer has, it’s not likely that the
native XML database will have any built-in tools to help you. In such circum-
stances, you’ll need to build those tools yourself.

1XQuery is a query language that is analogous to SQL and allows you to formulate searches on XML
nodes and content.

248

Chapter 10: XML and Databases

In our CMS project, we’ll use the database to store backups and versions of our
XML documents. As such, we’ll take the relational database approach.

Converting Relational Data to XML
Before we entrust our precious content to a database, let's make sure we can get
that XML data back out again. Let's try doing exactly that with a MySQL database,
first using the phpMyAdmin tool, then using the mysqldump command, and fi-
nally, with the help of a hand-rolled converter written in PHP.

After we’ve gained some experience converting database data to XML, we’ll move
on to look at our CMS project.

Using phpMyAdmin to Export XML
You’re probably already familiar with phpMyAdmin, the all-purpose MySQL
interface that's built in PHP to allow you to administer your MySQL Web data-
bases. But did you know that you could use phpMyAdmin to export your MySQL
data in XML format? You can—and it can be a definite time-saver!

Figure 10.1. The phpMyAdmin main screen.

Let's use the phpMyAdmin tool, shown in Figure 10.1, to export a table full of
data to XML format. First, click the plus sign that appears next to the name of
the database that contains the table you want. Click that table name, then click
the Export tab located at the top of the display.

In the Export screen, choose the Export to XML Format and Save as File options,
then click Go. Figure 10.2 shows the Export screen in action.

249

Converting Relational Data to XML

Figure 10.2. The phpMyAdmin export screen.

You can control how many records are exported by selecting a number from
the Dump field on the right-hand side of the screen.

The result is an XML file whose filename is the same as the database table you
just exported (for example, members.xml). Here's a sample snippet of an exported
file from a hypothetical database table named survey:

<?xml version="1.0" encoding="iso-8859-1"?>

<!--
-
- phpMyAdmin XML-Dump
- version 2.3.0
- http://phpwizard.net/phpMyAdmin/
- http://www.phpmyadmin.net/ (download page)
-

250

Chapter 10: XML and Databases

- Host: db.yourhosting.com
- Generation Time: Jul 10, 2004 at 07:30 PM
- Server version: 4.00.20
- PHP Version: 4.3.1
- Database : 'mydatabase'
-
-->

<mydatabase>
 <!-- table survey -->
 <survey>
 <surveyID>5</surveyID>
 <name>Carol Smith</name>
 <email>carol@tripledogdaremedia.com</email>
 <phone>555-2685</phone>
 <industry>hightech</industry>
 <orgname>Sample Commerce</orgname>
 <orgsize>501-1000</orgsize>
 <currentwebsite>y</currentwebsite>
 <howlong>more than 2 yrs</howlong>
 <howoften>once a week</howoften>
 <typewebsite>dynamic</typewebsite>
 <typeos>windows</typeos>
 <stamp>2004-06-18 07:06:33</stamp>
 </survey>
</mydatabase>

Notice that phpMyAdmin’s XML output utility uses the database name as the
root element for the XML file it creates.

Using mysqldump to Export XML
You can do essentially the same thing that phpMyAdmin does with a very simple
mysqldump command. This command line utility, which ships with MySQL, allows
you to export database content as XML data.

Here’s the format of the mysqldump command:

mysqldump -u user -ppassword --xml dbname table > outputfile

Here, user is your MySQL username, password is your MySQL password (note
that there is no space between the -p and the password value), dbname is the
MySQL database name, table is the name of the table you want to dump out,
and outputfile identifies the path and filename of your output file.

251

Using mysqldump to Export XML

For instance, if, in your Website's database, you had a database named website
containing a table named survey that you wanted to dump out to an XML file,
you'd run the following command from the command line:

mysqldump -u myuser -pmypass --xml website survey > survey.xml

Running this command with MySQL version 4.1 produces an XML file that has
the following format:

<?xml version="1.0"?>
<mysqldump>
 <database name="dbName">
 <table_structure name="tableName">
 <field Field="field1" Type="int(10) unsigned" … />
 <key Table="fieldkeyword" Non_unique="0" Key_name="PRIMARY"
 … />
 <options Name="tableName" Engine="MyISAM" Version="9" … />
 </table_structure>
 <table_data name="tableName">
 <row>
 <field name="field1">data</field>
 </row>

 <!-- more row tags follow -->

 </table_data>
</database>
</mysqldump>

The XML output is contained within a <mysqldump> tag. In this case, it has one
child tag, <database>, whose name attribute indicates the database whose contents
are being dumped. Inside the <database> tag are two more tags: <table_struc-
ture> and <table_data>. The <table_structure> tag contains information
about the structure of the table that's being dumped, such as the fields it contains,
their formats, the related key information, and the mysqldump options used to
create that dump. The <table_data> tag contains the name of the table being
dumped, and holds a series of <row> tags, which represent the actual rows of
data. Each <row> tag contains one or more <field> tags that hold the data for
the fields in that row.

As you can see, it wouldn’t be that hard to put together a simple shell script that
contained the username, password, database name, table name, and output file
name of a database, then to run it periodically using cron. That shell script would
look something like this:

252

Chapter 10: XML and Databases

#!/bin/sh
user=$1
pw=$2
dbname=$3
dbtable=$4
path=$5
/usr/bin/mysqldump -u $user -p$pw --xml $dbname $dbtable > $path

We use chmod +x on the Linux command line to make it executable. Then, we
create another shell script to call the original shell script multiple times (once for
each table from which we need XML data):

#!/bin/sh
./dump2XML.sh myuser mypw mydb table1 /htdocs/www/xml/table1.xml
./dump2XML.sh myuser mypw mydb table2 /htdocs/www/xml/table2.xml
./dump2XML.sh myuser mypw mydb table3 /htdocs/www/xml/table3.xml

Once this shell script is made executable, we set up a crontab to run it every day
(or at a frequency of our choice) and bingo! We have a simple back-end process
for dumping out MySQL data as XML.

The crontab that would run our script every day at 1:00am might look like this:

0 1 * * * /path/to/MasterShellScript.sh

Hand-Rolling an XML Converter
Converting a complex database structure to XML can be a daunting task, partic-
ularly if the SQL data structure is highly normalized. As a gentle introduction,
we’re going to take on the much simpler task of converting a single table to XML
with a custom script. This PHP 5 script will connect to a MySQL database of
our choosing, and then translate the contents of the table into an XML document:

File: sqldump.php (excerpt)

<?php
// Replace these arguments with your own values
connectDatabase('localhost', 'user', 'password', 'database');

// parameters: table name, where constraints (optional),
// row limit (optional)
printTableContent('table', 'status="active"', 2);

function connectDatabase($server, $user, $pw, $db) {
 $GLOBALS['link'] = mysqli_connect($server, $user, $pw, $db);

253

Hand-Rolling an XML Converter

 if (mysqli_connect_errno()) {
 echo 'Connect failed: ' . mysqli_connect_error();
 exit();
 }
}

As you can see, the real magic happens in the printTableContent function,
which takes the name of the table to be dumped, as well as an optional WHERE
condition and LIMIT clause. It starts out by using these arguments to build an
SQL SELECT query:

File: sqldump.php (excerpt)

function printTableContent($table, $where = FALSE, $limit = FALSE)
{
 $sql = 'SELECT * FROM ' .
 mysqli_escape_string($GLOBALS['link'], $table);
 if ($where !== FALSE) {
 $sql .= ' WHERE ' .
 mysqli_escape_string($GLOBALS['link'], $where);
 }
 if ($limit !== FALSE) {
 $sql .= ' LIMIT ' .
 mysqli_escape_string($GLOBALS['link'], $limit);
 }

It then, of course, executes the query:

File: sqldump.php (excerpt)

 $result = mysqli_query($GLOBALS['link'], $sql);
 if (mysqli_errno($GLOBALS['link'])) {
 echo mysqli_error($GLOBALS['link']);
 exit();
 }

Since the tags we use in the XML will be based on the names of the fields
(columns) in the table, we must capture those in an array:

File: sqldump.php (excerpt)

 $fields = array();
 $fieldCount = mysqli_num_fields($result);
 for ($i = 0; $i < $fieldCount; $i++) {
 $meta = mysqli_fetch_field($result);
 $fields[] = $meta->name;
 }

254

Chapter 10: XML and Databases

Now it's just a matter of looping through the rows of our result set, and for each
row looping through the fields, all the while using the DOM API to build an
XML document containing the values:

File: sqldump.php (excerpt)

 $dom = new DOMDocument();
 $tableEl = $dom->appendChild($dom->createElement($table));
 while ($row = mysqli_fetch_array($result)) {
 $rowEl = $tableEl->appendChild($dom->createElement('record'));
 foreach ($fields as $field) {
 $fieldEl = $rowEl->appendChild($dom->createElement($field));
 $fieldEl->appendChild($dom->createTextNode($row[$field]));
 }
 }

With the document in hand, all we need to do is print it out:

File: sqldump.php (excerpt)

 header('content-type: application/xml');
 echo $dom->saveXML();
}
?>

If we ran this script on the survey table we saw in an earlier example, the output
would appear as follows:

<?xml version="1.0"?>
<survey>
 <record>
 <surveyID>5</surveyID>
 <name>Carol Smith</name>
 <email>carol@tripledogdaremedia.com</email>
 <phone>555-2685</phone>
 <industry>hightech</industry>
 <orgname>Sample Commerce</orgname>
 <orgsize>501-1000</orgsize>
 <currentwebsite>y</currentwebsite>
 <howlong>more than 2 yrs</howlong>
 <howoften>once a week</howoften>
 <typewebsite>dynamic</typewebsite>
 <typeos>windows</typeos>
 <stamp>2004-06-18 07:06:33</stamp>
 </record>

 <record>

255

Hand-Rolling an XML Converter

 <surveyID>4</surveyID>
 <name>Jen Davidson</name>
 <email>jdavidson@tripledogdaremedia.com</email>
 <phone>555-9366</phone>
 <industry>medical</industry>
 <orgsize>1-5</orgsize>
 <currentwebsite>y</currentwebsite>
 <howlong>more than 2 yrs</howlong>
 <howoften>too hard/don't know how</howoften>
 <typeos>windows</typeos>
 <stamp>2002-06-18 06:06:58</stamp>
 </record>
</survey>

This solution's very simple and won’t be able to handle complex data relationships,
but as a quick and dirty extraction and conversion tool for single table data, it
does all right. Add complexity as needed and season to taste.

Our CMS Project
We’ve come a long way with our CMS project, but we still have one last touch
to add: we’re going to perform a nightly backup of all the XML files in the xml
directory. To pull this off, we'll have to open up each XML document in the dir-
ectory, grab all of that file’s content, then update the database with each piece
of content.

Building the MySQL Table
To make administration a little easier, we’re going to back up our data to two
tables. The first table, xmlfile, will contain pointers to our files. The second
table, xmlcontent, will contain daily snapshots of the contents of each file. Here
are the SQL commands we’ll use to create those tables:

File: xmlbackup.sql

CREATE TABLE xmlfile (
 xmlfileid INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 xmlfilename varchar(255) NOT NULL,
 createtime DATETIME NOT NULL
);

CREATE TABLE xmlcontent (
 xmlcontentid INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 xmlfileid INT NOT NULL,

256

Chapter 10: XML and Databases

 xmlcontent TEXT,
 updatetime INT NOT NULL,
 status ENUM('current', 'not current') DEFAULT 'not current' NOT
 NULL
);

Note that the xmlfile table keeps track of date/time that the file is first backed
up. The xmlcontent table keeps track of the date/time of each update and
whether or not it is the current (latest) snapshot of the file.

Building the PHP
Now that we've established our tables in MySQL, we can develop a common-
sense solution using PHP. First, we connect to the database:

File: xmlbackup.php (excerpt)

<?php
include_once 'common.inc.php';

/* replace these values with ones for your database */
$link = mysqli_connect('localhost', 'user', 'password',
 'database');
if (mysqli_connect_errno()) {
 echo 'Connect failed: ' . mysqli_connect_error();
 exit();
}

Now, our script will basically work like this: for each file in the XML file directory,
the script will check if the xmlfile table contains a record for that file. If it
doesn't, it will add a new record for the file. In either case, it will then add a record
of the file's current contents to the xmlcontent table.

First up, here's the by-now-familiar file loop:

File: xmlbackup.php (excerpt)

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi('\.xml$', $file)) continue;

Next, we grab the content of each file:

File: xmlbackup.php (excerpt)

 $content = file_get_contents($fileDir . $file);

257

Building the PHP

With the file in hand, we can now check if it's registered in the xmlfile table,
and get its ID if it is:

File: xmlbackup.php (excerpt)

 $sql = 'SELECT xmlfileid FROM xmlfile WHERE xmlfilename="' .
 mysqli_escape_string($link, $file) . '"';
 $result = mysqli_query($link, $sql);
 if (mysqli_errno($link)) {
 echo mysqli_error($link);
 exit();
 }
 if ($row = mysqli_fetch_array($result)) {
 $xmlfileid = $row['xmlfileid'];

If it's not registered in the table, we must insert a new record for the file, and
obtain its ID:

File: xmlbackup.php (excerpt)

 } else {
 $sql = 'INSERT INTO xmlfile (xmlfilename, createtime) ' .
 'VALUES ("' . mysqli_escape_string($link, $file) . '", ' .
 time() . ')';
 $result = mysqli_query($link, $sql);
 if (mysqli_errno($link)) {
 echo mysqli_error($link);
 exit();
 }
 $xmlfileid = mysqli_insert_id($link);
 }

Whether the file is newly-registered, or if we retrieved its existing record from
the xmlfile table, we now have its ID. We can now insert a new record for it
into the xmlcontent table. But first, we make sure to set any other records that
exist for the file with a status of not current:

File: xmlbackup.php (excerpt)

 $sql = 'UPDATE xmlcontent SET status="not current" ' .
 'WHERE xmlfileid=' . $xmlfileid;
 $result = mysqli_query($link, $sql);
 if (mysqli_errno($link)) {
 echo mysqli_error($link);
 exit();
 }
 $sql = 'INSERT INTO xmlcontent ' .
 '(xmlfileid, xmlcontent, updatetime, status) ' .

258

Chapter 10: XML and Databases

 'VALUES (' . $xmlfileid . ', "' .
 mysqli_escape_string($link, $content) . '", ' . time() .
', "current")';
 $result = mysqli_query($link, $sql);
 if (mysqli_errno($link)) {
 echo mysqli_error($link);
 exit();
 }

The last step is to close our database link and directory handle:

File: xmlbackup.php (excerpt)

}
mysqli_close($link);
closedir($handle);
?>

Setting up a Cron Schedule to Run Periodically
Now that we have the PHP script working with our MySQL database, we need
to set up a cron schedule to run the script at different times—for instance, shortly
after midnight, and in the early afternoon.

We could set up our cron task to run twice a day (at 12:30am and 2:30pm) with
the following crontab entry (assuming that the name of our backup script is xml-
backup.php):

30 0,14 * * * /usr/bin/php /path/to/xmlbackup.php

For full details of setting up cron tasks, run man crontab at the command prompt
of your Linux (or similar) server.

On Windows servers, you can instead set this up using the Task Scheduler and
the command-line interface version of PHP.

The key here is to balance the need to make frequent version updates against
our performance requirements. The result? A quick script that makes a database
backup of all of our files. We can now use the MySQL backup to restore files if
needed, or even to perform database queries of our XML content.

Clean Up Your Database

This script will of course store a complete copy of every XML file on your
site to the database each time it is run. If you don't want your database to

259

Setting up a Cron Schedule to Run Periodically

grow out of control, you should update the script to purge out-of-date backups
as per your requirements. Since this is all about PHP scripting and has
nothing to do with XML, I'll leave that to you as an exercise.

Summary
In this chapter, we learned about XML and databases. We considered the various
options when it comes to storing XML data in a database, and concluded that
there are great benefits to be had from some of the newer technologies in this
area, but that support can be a problem if you don't know what you're doing. We
also looked at how to retrieve relational data out of a database and build an XML
file out of it on-the-fly. Finally, we created a simple backup script for our XML
that stores the previous and current versions of the XML data files at the heart
of our site.

What’s left to cover? Well, you’ll want to look at Appendix A to review a list of
PHP's XML functions. This list will give you a better idea of the extensive support
that's available for XML in PHP 5. And don’t forget that Appendix B finishes up
our CMS project by covering the various PHP scripts that make up the adminis-
trative interface for the site.

260

Chapter 10: XML and Databases

Appendix A: PHP XML Functions
In this appendix, we’ll outline the major PHP XML functions available for SAX,
DOM, and SimpleXML.

SAX Functions
The PHP SAX implementation supports James Clark's expat parser. The SAX
toolkit lets you parse XML documents only—it doesn’t support XML document
validation. It supports the US-ASCII, ISO-8859-1 and UTF-8 character encodings.

Error Code Constants
The SAX implementation uses the following integer constants as error codes:

❑ XML_ERROR_NONE

❑ XML_ERROR_NO_MEMORY

❑ XML_ERROR_SYNTAX

❑ XML_ERROR_NO_ELEMENTS

❑ XML_ERROR_INVALID_TOKEN

❑ XML_ERROR_UNCLOSED_TOKEN

❑ XML_ERROR_PARTIAL_CHAR

❑ XML_ERROR_TAG_MISMATCH

❑ XML_ERROR_DUPLICATE_ATTRIBUTE

❑ XML_ERROR_JUNK_AFTER_DOC_ELEMENT

❑ XML_ERROR_PARAM_ENTITY_REF

❑ XML_ERROR_UNDEFINED_ENTITY

❑ XML_ERROR_RECURSIVE_ENTITY_REF

❑ XML_ERROR_ASYNC_ENTITY

❑ XML_ERROR_BAD_CHAR_REF

❑ XML_ERROR_BINARY_ENTITY_REF

❑ XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

❑ XML_ERROR_MISPLACED_XML_PI

❑ XML_ERROR_UNKNOWN_ENCODING

❑ XML_ERROR_INCORRECT_ENCODING

❑ XML_ERROR_UNCLOSED_CDATA_SECTION

❑ XML_ERROR_EXTERNAL_ENTITY_HANDLING

❑ XML_OPTION_CASE_FOLDING

❑ XML_OPTION_TARGET_ENCODING

❑ XML_OPTION_SKIP_TAGSTART

❑ XML_OPTION_SKIP_WHITE

Function Listing
The following SAX functions, presented in alphabetical order, are supported.

utf8_decode

string utf8_decode(string data)

This function converts a string containing UTF-8 encoded characters into a string
containing single-byte ISO-8859-1 characters.

utf8_encode

string utf8_encode(string data)

This function converts the given string data into UTF-8, and returns the encoded
string, leaving the supplied string intact. UTF-8 is a standard mechanism used

262

Appendix A: PHP XML Functions

by Unicode to encode wide character values into a byte stream. UTF-8 is trans-
parent to plain ASCII characters, and can be used with normal string manipulation
functions when the string contains only these characters.

xml_error_string

string xml_error_string(int code)

This function returns a textual description of a given error code, or FALSE if no
description is found for the given error code. You can retrieve an error code by
calling xml_get_error_code (see below).

xml_get_current_byte_index

int xml_get_current_byte_index(resource parser)

This function returns the number of bytes of the XML document the parser has
processed, or FALSE if the parser is invalid.

xml_get_current_column_number

int xml_get_current_column_number(resource parser)

This function returns the column on the current line (as given by
xml_get_current_line_number) at which the parser is located, or FALSE if the
parser is invalid. So, if it's at the start of a line, it returns 0. If it's ten characters
in, it returns 10.

xml_get_current_line_number

int xml_get_current_line_number(resource parser)

This function returns the line number at which the parser is currently located in
its data buffer, or FALSE if the parser is invalid.

xml_get_error_code

int xml_get_error_code(resource parser)

This function returns one of the error codes listed in the section called “Error
Code Constants” of this appendix (XML_ERROR_NONE if no error has occurred).

263

xml_error_string

xml_parse

bool xml_parse(resource parser, string data[, bool is_final])

Use this function to parse a string of XML. When the XML document is parsed,
the handlers for the configured events are called in accordance with the parsed
document, after which the function returns TRUE for success or FALSE to indicate
an error.

The first parameter, parser, is a reference to the parser that's to be used.

The second parameter, data, contains the XML data to parse.

The last parameter, is_final, indicates whether this is the last chunk of text
that will be passed to the parser. You can use this parameter to perform progressive
parsing, handing the parser a series of small chunks of XML data. Some errors
can only be detected at the end of a document, and this argument lets you tell
the parser that this has been reached.

xml_parse_into_struct

int xml_parse_into_struct(resource parser, string data,
 array &values[, array &index])

This function provides a means of using the lightweight SAX parser without the
bother of event handling. You pass it one or two arrays, which it fills based on
the XML document provided in the data argument.

The first array, values, will be filled with elements corresponding to the tags in
the document, in the order they occur. Each entry in the array will be an array
containing information about:

❑ An opening tag for an element with child elements

array
(
 'tag' => 'tagname',
 'type' => 'open',
 'level' => n
)

where tagname is the name of the tag, and n is the depth of the element in
the document (1 for the root element).

264

Appendix A: PHP XML Functions

❑ A closing tag for an element with child elements

array
(
 'tag' => 'tagname',
 'type' => 'close',
 'level' => n
)

❑ An element with no child elements (i.e., empty or containing only a text value)

array
(
 'tag' => 'tagname',
 'type' => 'complete',
 'level' => n,
 'value' => 'content'
)

where content is the text value contained in the element, if any.

If you supply an array for the index argument, it will be filled with one entry for
each tag name in the document. That entry will contain an array of integer indices,
pointing to the entries in the values array that correspond to that tag name. In
other words, if you pass $index as the index argument, then
$values[$index['tagname'][0]] will contain the first “opening”, “closing”, or
“complete” entry for a tagname element in the document. Using this array, you
can quickly pick out pairs of start/end tag entries in the values array and then
parse the contents of those tags using the values entries between them.

xml_parse_into_struct returns 1 if successful or 0 if it fails.

xml_parser_create

resource xml_parser_create([string encoding])

This function creates a new XML parser and returns a resource handle, which
references the parser, for use by the other XML functions.

The optional encoding specifies the character encoding of the XML input to be
parsed. Supported encodings include ISO-8859-1 (default), UTF-8 and US-ASCII.

265

xml_parser_create

xml_parser_create_ns

resource xml_parser_create_ns([string encoding[,
 string separator]])

This function creates a new XML parser with XML namespace support, and re-
turns a resource handle referencing the parser. This resource handle can then be
used by other XML functions.

When a namespace-aware parser is used, tag parameters passed to the various
handler functions will consist of the namespace prefix and tag name separated
either by the string specified in separator, or :, the default (for example,
ex:message).

The optional encoding specifies the character encoding of the XML input to be
parsed. The supported encodings are ISO-8859-1 (default), UTF-8 and US-ASCII.

xml_parser_free

bool xml_parser_free(resource parser)

This function frees the memory used by the parser. It returns TRUE if successful,
or FALSE if the supplied parser is invalid.

xml_parser_get_option

mixed xml_parser_get_option(resource parser, int option)

This function retrieves the value of an option from a parser, or returns FALSE if
the parser or option is invalid.

The following options are available:

XML_OPTION_CASE_FOLDING
This option controls whether case-folding is enabled for an XML parser, and
is enabled by default.

XML_OPTION_TARGET_ENCODING
This option sets the target encoding that is to be used in an XML parser. By
default, it is set to reflect the source encoding used by xml_parser_create.

266

Appendix A: PHP XML Functions

xml_parser_set_option

bool xml_parser_set_option(resource parser, int option,
 mixed value)

This function sets the value of an option for a parser. The available options are
as listed for xml_parser_get_option. This function returns FALSE if the parser
is invalid, or the option could not be set. Otherwise, the option is set and TRUE
is returned.

xml_set_character_data_handler

bool xml_set_character_data_handler(resource parser,
 callback handler)

This function sets the character data handler function for the XML parser. The
handler argument is a string containing the name of a function that must exist
when xml_parse is called to parse the document.

The function named by handler must accept two arguments: parser and data.

❑ The first argument, parser, is a reference to the XML parser calling the
handler.

❑ The second argument, data, contains the character data as a string.

If you wish to set up a method as a handler function, pass to handler a two-item
array containing a reference to the object as the first item, and the name of the
method as the second item.

If the handler function is set to an empty string, or to FALSE, the handler in
question is disabled. TRUE is returned if the handler is set up; FALSE is returned
if the parser is not valid.

xml_set_default_handler

bool xml_set_default_handler(resource parser, callback handler)

This function sets the default handler function for the XML parser. The handler
comprises a string containing the name of a function that must exist when
xml_parse is called to parse the document.

The function named by handler must accept two arguments: parser and data.

267

xml_parser_set_option

❑ The first argument, parser, is a reference to the XML parser that calls the
handler.

❑ The second argument, data, contains the character data. This can be the XML
declaration, document type declaration, entities or other data for which no
other handler exists.

If you wish to set up a method as a handler function, pass to handler a two-item
array containing a reference to the object as the first item, and the name of the
method as the second item.

If the handler function is set to an empty string, or to FALSE, the handler in
question is disabled. TRUE is returned if the handler is set up; FALSE is returned
if the parser is invalid.

xml_set_element_handler

bool xml_set_element_handler(resource parser,
 callback start_element_handler, callback end_element_handler)

This function sets the element handler functions for the XML parser.
start_element_handler and end_element_handler are strings containing the
names of functions that must exist when xml_parse is called to parse the docu-
ment.

The function named by start_element_handler must accept three arguments:
parser, name, and attributes.

❑ The first argument, parser, is a reference to the XML parser calling the
handler.

❑ The second argument, name, contains the name of the element for which this
handler is called. If case-folding is in effect for this parser, the element name
will appear in uppercase letters.

❑ The third argument, attribs, is an associative array containing the element's
attributes (if any exist). The keys of this array are the attribute names; the
values are the attribute values. Attribute names are case-folded on the same
criteria as element names. Attribute values are not case-folded.

The function named by end_element_handler can accept two parameters:
parser and name.

268

Appendix A: PHP XML Functions

❑ The first argument, parser, is a reference to the XML parser that calls the
handler.

❑ The second argument, name, contains the name of the element for which this
handler is called. If case-folding is in effect for this parser, the element name
will appear in uppercase letters.

For both handlers, if you wish to set up a method as a handler function, pass to
start_element_handler or end_element_handler a two-item array containing
a reference to the object as the first item, and the name of the method as the
second item.

If a handler function is set to an empty string, or FALSE, the handler in question
is disabled. TRUE is returned if the handlers are set up; FALSE is returned if the
parser is invalid.

xml_set_end_namespace_decl_handler

bool xml_set_end_namespace_decl_handler(resource parser,
 callback handler)

In theory, this function should let you set up a handler function that will be
called after the closing tag of an element that contained a namespace declaration.
As of this writing, however, this particular callback is not supported by the XML
library used by PHP, so this function should not be used.

xml_set_external_entity_ref_handler

bool xml_set_external_entity_ref_handler(resource parser,
 callback handler)

This function sets up a handler function that is called when the XML parser en-
counters an external entity reference; that is an entity reference (&entname;)
whose value is declared in the DTD as the content of an external file. The handler
argument is a string containing the name of a function that must exist when
xml_parse is called to parse the document.

The function named by handler must accept five arguments: parser, open_en-
tity_names, base, system_id and public_id.

❑ The first argument, parser, is a reference to the XML parser calling the
handler.

269

xml_set_end_namespace_decl_handler

❑ The second argument, open_entity_names, contains a space-separated list
of the external entities that have been opened to get to the current entity
reference. For example, if the current entity reference &entityC; appears inside
the value of &entityB;, which in turn appears inside &entityA;, then this
argument will be the string entityA entityB entityC.

❑ The third argument, base, should in theory contain an absolute URL to be
used as the base URL for resolving the relative URL in system_id. Because
of the way the XML parser in PHP is implemented, this will always be an
empty string.

❑ The fourth argument, system_id, contains the system identifier of the external
entity—a URL pointing to the location where the entity's content file may be
downloaded.

❑ The fifth argument, public_id, contains the public identifier string for a
standardized external entity within your application. If no such identifier is
declared for the entity in the DTD, this argument will be an empty string.

If you wish to set up a method as a handler function, pass to handler a two-item
array containing a reference to the object as the first item, and the name of the
method as the second item.

If the handler function is set to an empty string, or to FALSE, the handler in
question is disabled. TRUE is returned if the handler is set up; FALSE is returned
if the parser is not valid.

xml_set_notation_decl_handler

bool xml_set_notation_decl_handler(resource parser,
 callback handler)

This function sets up a handler function that is called when the XML parser en-
counters a notation declaration in the DTD of the document. Notation declara-
tions let you assign names and identifiers for types of non-XML data that may
be included in the XML document by means of an external entity reference. Such
entities are called unparsed entities.

The handler argument is a string containing the name of a function that must
exist when xml_parse is called to parse the document. The function named by
handler must accept five arguments: parser, notation_name, base, system_id
and public_id.

270

Appendix A: PHP XML Functions

❑ The first argument, parser, is a reference to the XML parser calling the
handler.

❑ The second argument, notation_name, contains the name assigned to the
notation by the notation declaration.

❑ The third argument, base, should in theory contain an absolute URL to be
used as the base URL for resolving the relative URL in system_id. Because
of the way the XML parser in PHP is implemented, this will always be an
empty string.

❑ The fourth argument, system_id, contains the system identifier of the nota-
tion—a URL often used to point to an application that can process the data
type identified by this notation.

❑ The fifth argument, public_id, contains the public identifier string for a
standardized notation within your application. If no such identifier is declared
for the notation in the DTD, this argument will be an empty string.

If you wish to set up a method as a handler function, pass to handler a two-item
array containing a reference to the object as the first item, and the name of the
method as the second item.

If the handler function is set to an empty string, or to FALSE, the handler in
question is disabled. TRUE is returned if the handler is set up; FALSE is returned
if the parser is not valid.

xml_set_object

void xml_set_object(resource parser, object object)

An alternative means of setting up methods as handler functions, this function
lets you specify an object of which all of the handler functions assigned to the
parser are assumed to be methods. This is especially convenient when using an
XML parser within a PHP class, where you can assign the current object as the
provider of all handler functions:

xml_set_object($this->parser, $this);

xml_set_processing_instruction_handler

bool xml_set_processing_instruction_handler(resource parser,
 callback handler)

271

xml_set_object

This function sets up a handler function that is called when the XML parser en-
counters a processing instruction (<?target data>). The handler argument is
a string containing the name of a function that must exist when xml_parse is
called to parse the document.

The function named by handler must accept three arguments: parser, target
and data.

❑ The first argument, parser, is a reference to the XML parser calling the
handler.

❑ The second argument, target, contains the target portion of the processing
instruction (e.g. for <?php … >, it would contain php).

❑ The third argument, data, contains the data that appears within the processing
instruction.

If you wish to set up a method as a handler function, pass to handler a two-item
array containing a reference to the object as the first item, and the name of the
method as the second item.

If the handler function is set to an empty string, or to FALSE, the handler in
question is disabled. TRUE is returned if the handler is set up; FALSE is returned
if the parser is not valid.

DOM Functions
The DOM is an extensive API, and DOM functions in PHP do a very good job
of taking into consideration most of the supported functionality. As a result, the
supported DOM function list is very large. As this is an object oriented API, it
is largely made up of object classes, each with a series of properties and methods:

Object Listing
The DOM API is implemented in PHP by objects of the following classes:

DOMAttr

Represents an attribute in an XML document. Extends DOMNode, inheriting all
of that class's properties and methods.

272

Appendix A: PHP XML Functions

To create a new DOMAttr object directly, use the class's object constructor:

$attr = new DOMAttr(string name[, string value]);

where name is the attribute's name and value is the attribute's value.

Don't Use the Constructor!

If you directly create a new DOMAttr object, it will be read-only until you
add it to the document (e.g. with appendChild). To create a writable
DOMAttr, use the DOMDocument object's createAttribute method instead.

Methods

bool $attr->isId()

Returns TRUE if the attribute is defined as a unique ID in the DTD for the docu-
ment, or FALSE if not. Since this requires knowledge of the DTD to check, you
must validate the document (e.g. using the DOMDocument's validate method)
before this method will return TRUE.

Properties

name
The name of the attribute. Read-only.

ownerElement
The DOMElement the attribute belongs to. Read-only.

value
The value of the attribute.

DOMCharacterData

Represents a section of character data in an XML document. Extends DOMNode,
inheriting all of that class's properties and methods.

You're probably looking for DOMText

The DOMText class is a subclass of DOMCharacterData, and represents ac-
tual text nodes in the document. For most practical purposes, you'll be
dealing with that class, not this one.

273

DOMCharacterData

Methods

$cdata->appendData(string data)

Appends the string data to the end of the existing data.

$cdata->deleteData(int offset, int count)

Deletes count characters of the current text data beginning at offset.

$cdata->insertData(int offset, string data)

Inserts the string data into the existing data at offset.

$cdata->replaceData(int offset, int count, string data)

Deletes count characters of the current text data beginning at offset, then re-
places it with the string data.

string $cdata->substringData(int offset, int count)

Returns the substring beginning at offset and running for up to count characters.

Properties

data
The complete string of text data.

length
The length in characters of text data. Read-only.

DOMComment

Represents a comment in an XML document. Extends DOMCharacterData, inher-
iting all of that class's properties and methods.

To create a new DOMComment object directly, use the class's object constructor:

$comment = new DOMComment([string value]);

where value is the text content of the comment.

Don't Use the Constructor!

If you directly create a new DOMComment object, it will be read-only until
you add it to the document (e.g. with appendChild). To create a writable

274

Appendix A: PHP XML Functions

DOMComment, use the DOMDocument object's createComment method in-
stead.

DOMDocument

Represents an XML document. Extends DOMNode, inheriting all of that class's
properties and methods.

To create a new DOMDocument object directly, use the class's object constructor:

$dom = new DOMDocument([string version[, string encoding]]);

where version is the XML version number for the document (e.g. 1.0), and en-
coding is the character encoding for the document (US-ASCII, ISO-8859-1 or
UTF-8).

Methods

DOMAttr $dom->createAttribute(string name)

Creates a new DOMAttr object associated with this document for an attribute
name.

DOMAttr $dom->createAttributeNS(string namespaceURI,
 string qualifiedName)

Creates a new DOMAttr object associated with this document within the namespace
specified by the URI namespaceURI and with the prefix specified in the quali-
fiedName (i.e., prefix:name).

DOMCDATASection $dom->createCDATASection(string data)

Creates a new DOMCDATASection object associated with this document with the
text content data.

DOMComment $dom->createComment(string data)

Creates a new DOMComment object associated with this document with the text
content data.

DOMDocumentFragment $dom->createDocumentFragment()

Creates a new DOMDocumentFragment object associated with this document.

DOMElement $dom->createElement(string name[, string value])

275

DOMDocument

Creates a new DOMElement object associated with this document with the specified
tag name and optionally containing a text node with the text value.

DOMElement $dom->createElementNS(string namespaceURI,
 string qualifiedName[, string value])

Creates a new DOMElement object associated with this document within the
namespace specified by the URI namespaceURI and with the prefix specified in
the qualifiedName (i.e. prefix:name), and optionally containing a text node
with the text value.

DOMEntityReference $dom->createEntityReference(string name)

Creates a new DOMEntityReference object associated with this document with
the specified name (not including & and ;).

DOMProcessingInstruction $dom->createProcessingInstruction(
 string target[, string data])

Creates a new DOMProcessingInstruction object associated with this document
with the specified target and optionally containing the specified data string.

DOMText $dom->createTextNode(string content)

Creates a new DOMText object associated with this document with the specified
content string.

DOMElement $dom->getElementById(string elementId)

Fetches the DOMElement object for the document element with the ID elementId,
if it exists. Because the DOM has no way of knowing which attribute to use as
the ID until the document's DTD is parsed, you must first validate the document
with the DOMDocument's validate method.

DOMNodeList $dom->getElementsByTagName(string name)

Fetches a DOMNodeList object containing all of the DOMElement objects with the
specified tag name in the document. A name of * will fetch all elements in the
document.

DOMNodeList $dom->getElementsByTagNameNS(string namespaceURI,
 string localName)

Fetches a DOMNodeList object containing all of the DOMElement objects with the
specified tag localName (without the prefix) in the document, and within the

276

Appendix A: PHP XML Functions

namespace with the specified URI. A localName or namespaceURI of * will fetch
all elements within the specified namespaceURI, or all elements with the specified
localName, respectively.

DOMNode $dom->importNode(DOMNode importedNode[, bool deep])

Copies the supplied importedNode (potentially from another document) into a
new DOMNode object associated with this document. If deep is given and is TRUE,
all child nodes are recursively copied as well.

bool $dom->load(string filename)

Loads the specified XML filename into this DOMDocument object. Can also be
called statically to create a new DOMDocument object from a file using default op-
tions (i.e., $dom = DOMDocument::load(filename);).

bool $dom->loadHTML(string source)

Parses the provided HTML source code, which may or may not be well-formed
(i.e., the parser deals with it as best it can), into this DOMDocument object. Can
also be called statically to create a new DOMDocument object from HTML code
using default options (i.e., $dom = DOMDocument::loadHTML(source);).

bool $dom->loadHTMLFile(string filename)

Loads the specified HTML filename, which may or may not be well-formed (i.e.,
the parser deals with it as best it can), into this DOMDocument object. Can also be
called statically to create a new DOMDocument object from an HTML file using
default options (i.e., $dom = DOMDocument::loadHTMLFile(filename);).

bool $dom->loadXML(string source)

Parses the provided XML source code into this DOMDocument object. Can also
be called statically to create a new DOMDocument object from XML code using
default options (i.e., $dom = DOMDocument::loadXML(source);).

$dom->normalize()

Normalizes this document according to standard XML normalization rules in
preparation for comparison with potentially equivalent documents. Whitespace
is collapsed, adjacent text nodes are combined, etc.

bool $dom->relaxNGValidate(string filename)

277

DOMDocument

Validates the document according to the relaxNG[1] schema in the file specified
by filename. Returns TRUE if valid, FALSE if not.

bool $dom->relaxNGValidateSource(string source)

Validates the document according to the relaxNG[2] schema source code
provided. Returns TRUE if valid, FALSE if not.

mixed $dom->save(string filename)

Stores this document as an XML file with the given filename. Returns the size
of the file in bytes, or FALSE if an error occurs.

string $dom->saveHTML()

Returns the HTML source code for this document.

mixed $dom->saveHTMLFile(string filename)

Stores this document as an HTML file with the given filename. Returns the size
of the file in bytes, or FALSE if an error occurs.

string $dom->saveXML([DOMNode node])

Returns the XML source code for this document, or for the portion of this docu-
ment rooted at node, if specified.

bool $dom->schemaValidate(string filename)

Validates the document according to the XML Schema file specified by filename.
Returns TRUE if valid, FALSE if not.

bool $dom->schemaValidateSource(string source)

Validates the document according to the XML Schema source code provided.
Returns TRUE if valid, FALSE if not.

bool $dom->validate()

Validates the document according to its DTD. Returns TRUE if valid, FALSE if
not, or if no DTD is specified by the document.

int $dom->xinclude([int options])

[1] http://www.relaxng.org/
[2] http://www.relaxng.org/

278

Appendix A: PHP XML Functions

http://www.relaxng.org/
http://www.relaxng.org/

Processes the document for XInclude[3] includes, substituting <xi:include> tags
for the content they point to.

Properties

actualEncoding
The encoding actually being used by this document. Read-only.

config
The DOMConfiguration object that encapsulates the configuration of this
document. Read-only.

doctype
The DOMDocumentType object that encapsulates the Document Type Declar-
ation of this document. Read-only.

documentElement
The root DOMElement of this document. Read-only.

documentURI
The location of the document, or NULL.

encoding
The encoding assigned to this document (e.g., US-ASCII, ISO-8859-1 or UTF-
8).

formatOutput
If TRUE, the document code will be indented on output.

implementation
The DOMImplementation that is responsible for handling this document.
Read-only.

preserveWhiteSpace
Defaults to TRUE, which preserves redundant whitespace. If set to FALSE,
consecutive whitespace characters in the document are collapsed to a single
space.

recover
Set this to TRUE before loading a document you suspect will be not well-
formed. The parser will do its best to recover from missing tags and other
such problems.

[3] http://www.w3.org/TR/xinclude/

279

DOMDocument

http://www.w3.org/TR/xinclude/

resolveExternals
Set this to TRUE before loading a document to include the contents of external
entities declared in the DTD of this document.

standalone
If TRUE, this document will identify itself as being self-contained. No external
entities or DTDs will be required to fully parse it.

strictErrorChecking
Defaults to TRUE, and causes the parser to throw a DOMException whenever
a parsing error occurs.

substituteEntities
If TRUE, the contents of entities declared in the DTD will be substituted into
this document as it is parsed.

validateOnParse
If TRUE, causes the document to be validated automatically as it is parsed,
avoiding the need to call the validate afterwards.

version
The XML version in use by this document (e.g. 1.0).

xmlEncoding
This gives the encoding specified by the XML declaration of the parsed doc-
ument. Documents created in memory, or which do not specify an encoding,
will give a value of NULL for this property. Read-only.

xmlStandalone
This indicates whether the parsed document was declared as standalone in
its XML declaration. If not specified, this defaults to FALSE.

xmlVersion
This gives the encoding specified in the XML declaration of the parsed doc-
ument. If not declared, this defaults to 1.0.

DOMDocumentType

Represents the document type declaration of an XML document. Extends DOMNode,
inheriting all of that class's properties and methods.

280

Appendix A: PHP XML Functions

Properties

entities
A DOMNamedNodeMap object containing the internal and external entities de-
clared in the DTD. Read only.

internalSubset
A string containing the entire internal subset of the DTD, that is, the portion
of the DTD that is contained within the document itself.

name
The name of the DTD—the name of the root element of a valid document.
Read only.

notations
A DOMNamedNodeMap object containing the notations declared in the DTD.
Read only.

publicId
The public identifier string for a well-known or application-standard document
type. Read-only.

systemId
The system identifier for this document type, that is, the URL to the DTD
for this document. Read-only.

DOMElement

Represents an element in an XML document. Extends DOMNode, inheriting all of
that class's properties and methods.

To create a new DOMElement object directly, use the class's object constructor:

$el = new DOMElement(string name[, string value[,
 string namespaceURI]]);

where name is the element's name (with a namespace prefix if namespaceURI is
specified), value is the element's optional text content (which will be created as
a DOMText object), and namespaceURI is the optional namespace identifier for
this element.

281

DOMElement

Don't Use the Constructor!

If you directly create a new DOMElement object, it will be read-only until
you add it to the document (e.g. with appendChild). To create a writable
DOMElement, use the DOMDocument object's createElement or
createElementNS method instead.

Methods

string $el->getAttribute(string name)

Returns the value of this element's attribute with the specified name, or an empty
string if the attribute does not exist.

DOMAttr $el->getAttributeNode(string name)

Returns the DOMAttr object for this element's attribute with the specified name,
or NULL if the attribute does not exist.

DOMAttr $el->getAttributeNodeNS(string namespaceURI,
 string localName)

Returns the DOMAttr object for this element's attribute with the specified local-
Name and namespaceURI, or NULL if the attribute does not exist.

string $el->getAttributeNS(string namespaceURI, string localName)

Returns the value of this element's attribute with the specified localName and
namespaceURI, or an empty string if the attribute does not exist.

DOMNodeList $el->getElementsByTagName(string name)

Returns a DOMNodeList of all descendant elements (that is, all elements contained
in this element) with the specified name, in the order they occur in the document.

DOMNodeList $el->getElementsByTagNameNS(string namespaceURI,
 string localName)

Returns a DOMNodeList of all descendant elements (that is, all elements contained
in this element) with the specified localName and namespaceURL, in the order
they occur in the document.

bool $el->hasAttribute(string name)

Returns TRUE if the attribute name has a value for this element.

282

Appendix A: PHP XML Functions

bool $el->hasAttributeNS(string namespaceURI, string localName)

Returns TRUE if the attribute with namespaceURI and localName has a value for
this element.

bool $el->removeAttribute(string name)

Removes the attribute with name from this element, if it exists. Returns TRUE if
successful, FALSE if the attribute did not exist.

bool $el->removeAttributeNode(DOMAttr node)

Removes the attribute represented by the DOMAttr object node from this element.
Returns TRUE if successful, FALSE on failure.

bool $el->removeAttributeNS(string namespaceURI, string localName)

Removes the attribute with the given namespaceURI and localName from this
element. Returns TRUE if successful, FALSE on failure.

bool $el->setAttribute(string name, string value)

Sets the value of the attribute with the given name on this element. If it already
exists, it is replaced. If it doesn't exist, it is added.

DOMAttr $el->setAttributeNode(DOMAttr attr)

Sets the attribute given by the DOMAttr object attr on this element. If it already
exists, it is replaced and the original DOMAttr is returned. If it doesn't exist, it is
added and NULL is returned.

DOMAttr $el->setAttributeNodeNS(DOMAttr attr)

Sets the attribute given by the DOMAttr object attr on this element. If it already
exists, it is replaced and the original DOMAttr is returned. If it doesn't exist, it is
added and NULL is returned.

$el->setAttributeNS(string namespaceURI, string qualifiedName,
 string value)

Sets the value of the attribute with the given namespaceURI and qualifiedName
(i.e., prefix:name) on this element. If it already exists, it is replaced. If it doesn't
exist, it is added.

283

DOMElement

Properties

tagName
The element name. Read-only.

DOMEntity

Represents an entity declared in an XML document's DTD. Extends DOMNode,
inheriting all of that class's properties and methods.

Properties

actualEncoding
The encoding used to parse this external parsed entity, or NULL if this is an
internal or unparsed entity, or if the encoding is not known.

encoding
The encoding specified in the declaration for this external parsed entity, or
NULL if this is an internal or unparsed entity, or if the encoding is not known.
Read-only.

notationName
The name of the notation assigned to this unparsed entity, or NULL if this is
a parsed entity. Read-only.

publicId
The public identifier associated with a well-known or application-standard
entity, or NULL if not defined. Read-only.

systemId
The system identifier associated with this entity (that is, the URL to the re-
source containing the entity's content), or NULL if not defined. Read-only.

version
The version number given in the declaration for this external parsed entity,
or NULL if this is an internal or unparsed entity, or if the version is not known.
Read-only.

DOMEntityReference

Represents a reference to an entity in an XML document. Extends DOMNode, in-
heriting all of that class's properties and methods.

284

Appendix A: PHP XML Functions

To create a new DOMEntityReference object directly, use the class's object con-
structor:

$el = new DOMEntityReference(string name);

where name is the entity name.

Don't Use the Constructor!

It is standard practice to create DOMEntityReference objects using the
DOMDocument object's createEntityReference method.

DOMException

Represents an error encountered when attempting to perform an illegal operation
on an XML document.

Properties

code
The error code identifying the type of error. See Table A.1 for the possible
values. Read-only.

DOMImplementation

Provides methods for performing general DOM operations not related to any
particular DOM object.

To create a new DOMImplementation object directly, use the class's object con-
structor:

$domimpl = new DOMImplementation();

Don't Use the Constructor!

Most of the time, you will already have a DOMDocument object from which
you can obtain the associated DOMImplementation object by getting the
value of its implementation property. This ensures that PHP can use the
most appropriate implementation of the DOM for the DOMDocument.

Methods

DOMDocument $domimpl->createDocument([string namespaceURI[,
 string qualifiedName[, DOMDocumentType doctype]]])

285

DOMException

Creates a new DOMDocument, optionally with a root element with the specified
namespaceURI and qualifiedName (i.e., prefix:name), and optionally with the
specified document type declaration (doctype).

Table A.1. DOMException Error Code Constants

DescriptionValueConstant

The index given is negative, or greater than the
maximum allowed value.

1DOM_INDEX_SIZE_ERR

The given text string will not fit in a DOMString
object.

2DOM_STRING_SIZE_ERR

A node was inserted in an illegal place in the
document.

3DOM_HIERARCHY_REQUEST_ERR

A node associated with one document is used
with another document.

4DOM_WRONG_DOCUMENT_ERR

The given name or value contains an invalid
or illegal character.

5DOM_INVALID_CHARACTER_ERR

Content was added to a node that does not al-
low content.

6DOM_NO_DATA_ALLOWED_ERR

A read-only object was modified.7DOM_NO_MODIFICATION_ALLOWED_ERR

A node that does not exist was referenced.8DOM_NOT_FOUND_ERR

The DOM support in PHP does not provide
the requested functionality.

9DOM_NOT_SUPPORTED_ERR

An attribute that is already in use elsewhere
was added again.

10DOM_INUSE_ATTRIBUTE_ERR

An object that is no longer usable was used.11DOM_INVALID_STATE_ERR

The given string is invalid, as it does not con-
form to the required format.

12DOM_SYNTAX_ERR

The type of an object was modified illegally.13DOM_INVALID_MODIFICATION_ERR

The specified operation violates namespace
rules.

14DOM_NAMESPACE_ERR

The requested operation is not supported.15DOM_INVALID_ACCESS_ERR

The requested change to the document would
make it invalid.

16DOM_VALIDATION_ERR

286

Appendix A: PHP XML Functions

DOMDocumentType $domimpl->createDocumentType(
 [string qualifiedName[, string publicId[, string systemId]]])

Creates a document type declaration with the specified qualifiedName (i.e.,
prefix:name), the public identifier for a well-known or application-standard
document type publicId, and the system identifier for the DTD (that is, the
URL where an external DTD may be found).

bool $domimpl->hasFeature(string feature, string version)

Returns TRUE if PHP's DOM implementation supports the specified feature of
the specified version. Features include Core, XML, HTML, Views, Stylesheets
and more. For a full list, see the DOM specification.[4]

DOMNode

Due to inheritance, all nodes in the DOM (documents, elements, attributes, etc.)
support the methods and properties in this class.

Methods

DOMNode $node->appendChild(DOMNode newnode)

Adds newnode as the last child of this node. Returns the added node.

DOMNode $node->cloneNode([bool deep])

Creates and returns a copy of this node (and if deep is true, all descendant nodes).

bool $node->hasAttributes()

Returns TRUE if this node is an element that has attributes.

bool $node->hasChildNodes()

Returns TRUE if this node has children.

DOMNode $node->insertBefore(DOMNode newnode[, DOMNode refnode])

Adds newnode as a child of this node, placing it before refnode in the child order
(or adding it as the last child if refnode is not given). Returns the added node,
which must be used if further changes to the node are required.

[4] http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/introduction.html#ID-Conform-
ance

287

DOMNode

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/introduction.html#ID-Conformance

bool $node->isSameNode(DOMNode node)

Returns TRUE if node and this node are one and the same. Two different nodes
can have identical content—this method will still return FALSE.

bool $node->isSupported(string feature, string version)

Checks if the specified feature in the specified version is supported by this
node. See the hasFeature method of DOMImplementation.

string $node->lookupNamespaceURI(string prefix)

Returns the namespace URI associated with the given prefix for this node.

string $node->lookupPrefix(string namespaceURI)

Returns the namespace prefix associated with the given namespaceURI for this
node.

$node->normalize()

Normalizes this node according to standard XML normalization rules in prepar-
ation for comparison with potentially equivalent nodes. Whitespace is collapsed,
adjacent text nodes are collapsed, etc.

DOMNode $node->removeChild(DOMNode oldnode)

Removes the child node oldnode from this node. Returns the removed child, or
NULL if it could not be removed.

DOMNode $node->replaceChild(DOMNode newnode, DOMNode oldnode)

Removes the existing child oldnode and replaces it with newnode. Returns the
removed child.

Properties

attributes
A DOMNamedNodeMap (essentially an associative array) containing the attributes
of this node and their values, or NULL if this node is not an element. Read-
only.

baseURI
The absolute URI of this node, or NULL if it is unknown. Read-only.

288

Appendix A: PHP XML Functions

childNodes
A DOMNodeList of the children of this node. Read-only.

firstChild
The first child of this node, or NULL if there are no children. Read-only.

lastChild
The last child of this node, or NULL if there are no children. Read-only.

localName
The local name of this node in a namespace-aware document, or the full
element name if no namespace is assigned. Read-only.

namespaceURI
The namespace URI of this node in a namespace-aware document, or NULL
if none is specified. Read-only.

nextSibling
The node immediately following this node, or NULL if this node is the last
child of its parent. Read-only.

nodeName
The name of this node (e.g. the element or attribute name). Read-only.

nodeType
The type of the node. See Table A.2 for the list of possible values. Read-only.

nodeValue
The value of this node (e.g. the text content or attribute value).

ownerDocument
The DOMDocument object for the document to which this node belongs. Read-
only.

parentNode
The parent node of this node. Read-only.

prefix
The namespace prefix of this node in a namespace-aware document, or NULL
if none is specified.

previousSibling
The node immediately preceding this node, or NULL if this node is the first
child of its parent. Read-only.

289

DOMNode

textContent
The text content of this node including all descendants. If written to, all
children will be replaced with a text node with the specified content.

Table A.2. DOMNode Type Constants

Object ClassValueConstant

DOMElement1XML_ELEMENT_NODE

DOMAttr2XML_ATTRIBUTE_NODE

DOMText3XML_TEXT_NODE

DOMCharacterData4XML_CDATA_SECTION_NODE

DOMEntityReference5XML_ENTITY_REF_NODE

DOMEntity6XML_ENTITY_NODE

DOMProcessingInstruction7XML_PI_NODE

DOMComment8XML_COMMENT_NODE

DOMDocument9XML_DOCUMENT_NODE

DOMDocumentType10XML_DOCUMENT_TYPE_NODE

DOMDocumentFragment11XML_DOCUMENT_FRAG_NODE

DOMNotation12XML_NOTATION_NODE

DOMDocument13XML_HTML_DOCUMENT_NODE

DTD nodes are not represented in
PHP's DOM representation. These
constants are included as defined in
the DOM standard for completeness.

14XML_DTD_NODE

15XML_ELEMENT_DECL_NODE

16XML_ATTRIBUTE_DECL_NODE

17XML_ENTITY_DECL_NODE

18XML_NAMESPACE_DECL_NODE

DOMNodeList

Essentially an array of DOMNode objects, objects of this class may be iterated
through with a PHP foreach loop.

Methods

DOMNode $nlist->item(int index)

290

Appendix A: PHP XML Functions

Fetches the DOMNode at position index in the list (0 for the first DOMNode).

Properties

length
The number of DOMNodes in the list. Read-only.

DOMNotation

Represents a notation declared in the document's DTD. Extends DOMNode, inher-
iting all of that class's properties and methods.

Properties

publicId
The public ID of a well-known or application-standard notation. Read-only.

systemId
The system ID of a notation, often a URL that enables the processing applic-
ation to read data of the type indicated by the notation. Read-only.

DOMProcessingInstruction

Represents a processing instruction (i.e., <?target data>) in an XML document.
Extends DOMNode, inheriting all of that class's properties and methods.

To create a new DOMProcessingInstruction object directly, use the class's object
constructor:

$pi = new DOMProcessingInstruction(string target[, string data]);

where target is the processing instruction's target and data is the data contained
in the processing instruction.

Don't Use the Constructor!

If you directly create a new DOMProcessingInstruction object, it will
be read-only until you add it to the document (e.g. with appendChild). To
create a writable DOMProcessingInstruction, use the DOMDocument
object's createProcessingInstruction method instead.

291

DOMNotation

Properties

data
The data string contained in the processing instruction.

target
The target of the processing instruction. Read-only.

DOMText

Represents a string of plain text in an XML document. Extends
DOMCharacterData, inheriting all of that class's properties and methods.

To create a new DOMText object directly, use the class's object constructor:

$text = new DOMText([string value]);

where value, if specified, is the text string in the node. If no value is specified,
an empty text node is created.

Don't Use the Constructor!

It is standard practice to create a new text node using the createTextNode
method of the DOMDocument object with which it should be associated.

Methods

bool $text->isWhitespaceInElementContent()

Returns TRUE if this text node contains only whitespace, the document has been
validated, and the DTD requires that the parent element of this text node contains
only child elements (no text nodes). In other words, returns TRUE if this text node
is nonsignificant whitespace for validation purposes (and likely application pur-
poses).

DOMText $text->splitText(int offset)

Splits this text node into two text nodes, where this node will contain text content
up to specified offset and the new node will contain the remaining content (if
any). The new node is inserted as a sibling following this node in the document
(if it has a parent node), and is returned as a DOMText object.

292

Appendix A: PHP XML Functions

Properties

wholeText
Returns the text of this and all adjacent text nodes in the document (including
expanded entities). Read-only.

DOMXPath

An object of this type enables XPath queries to be applied to an XML document.

To create a new DOMXPath object, use the class's object constructor:

$xpath = new DOMXPath(DOMDocument doc]);

where doc is the document to which queries will be applied.

Methods

bool $xpath->registerNamespace(string prefix, string namespaceURI)

Registers a namespace prefix for a namespaceURI with this object, so that XPath
expressions that include a namespace prefix will correctly map that prefix to the
equivalent namespace in the document.

mixed $xpath->evaluate(string expression[, DOMNode contextnode])

Evaluates an XPath expression returning either a single node object (e.g., a
DOMElement) or a DOMNodeList containing all the matching nodes. The expression
is evaluated relative to the specified contextnode, or relative to the root element
if none is specified.

mixed $xpath->query(string expression[, DOMNode contextnode])

Works just like evaluate, except that the result is always returned as a
DOMNodeList, even if only a single node matches the query.

Properties

document
The document that this object will query. Read-only.

293

DOMXPath

Function Listing
In addition to the objects listed above, the DOM API includes the following
standalone function:

DOMElement dom_import_simplexml(SimpleXMLElement node)

Converts a SimpleXML element object into a DOMElement, which may then be
imported into a DOMDocument (using its importNode method) and used with the
DOM API.

SimpleXML Functions
SimpleXML is new to PHP 5. As its name implies, it provides a simplified way
to access the content of XML documents.

Function Listing
The following SimpleXML functions are used to load an XML document or
fragment.

SimpleXMLElement simplexml_import_dom(DOMNode node[,
 string class_name])

This function takes a node object from the DOM API and converts it into a
SimpleXML representation of the document or fragment. If an error occurs, FALSE
is returned instead.

SimpleXMLElement simplexml_load_file(string filename)

This function will convert the XML code in filename into a SimpleXML repres-
entation of the document or fragment. If an error occurs, FALSE is returned in-
stead.

SimpleXMLElement simplexml_load_string(string data)

This function will convert a string of XML code (data) into a SimpleXML repres-
entation of the document or fragment. If an error occurs, FALSE is returned in-
stead.

294

Appendix A: PHP XML Functions

SimpleXMLElement methods
When an XML document or fragment is loaded with SimpleXML, a
SimpleXMLElement object is the result. This object supports the following methods:

string $simplexml->asXML()

Converts this document or fragment into a string of XML code.

SimpleXMLElement $simplexml->attributes()

Returns a SimpleXMLElement object that may be treated as an associative array
of attribute names to attribute values for this element.

SimpleXMLElement $simplexml->children()

Returns a SimpleXMLElement object that may be treated as an array of the children
of this element.

array $simplexml->xpath(string path)

Evaluates the XPath expression given in path relative to this SimpleXML node.
Returns an array of SimpleXMLElement objects that match the query.

295

SimpleXMLElement methods

296

Appendix B: CMS Administration
Tool

In this appendix, we’re going to finish the CMS administration tool. We’re going
to pick up where we left off in Chapter 7, to build administrative forms and
components for our remaining content types. When we’re finished, the adminis-
tration tool will be able to handle Web copy and news items, not just articles; it
will also allow you to manage administrators, authors, and categories.

Picking Up Where We Left Off
In Chapter 7, which was the last point at which we spent significant time on the
CMS administration tool, we built a login and verification page, an administrative
index page, and the forms and logic required to list, add, edit, and delete articles.

In this appendix, we’re going to repeat this process for Web copy, news items,
authors, site administrators, and categories. The first two items, Web copy and
news items, will be very similar in functionality and structure to articles; the last
three will be a good opportunity to examine some alternative ways of handling
XML information.

Every time we add another set of pages to the administration tool, we want to
provide access to those pages on the administrative index page. When we’re done,
our administrative index content will look like Figure B.1.

Let’s get started.

Managing Web Copy
Web copy is very similar to articles in terms of its structure, although it does use
different XML elements. It's also similar to articles in terms of its function;
however, Web copy items are used in the kinds of Web pages that are more
typically likened to “About Us,” “Contact Us,” and other such pages.

Users often want to know who authored an article; with Web copy, this is usually
not the case. Web copy typically has to include a headline and navigation label
that's appropriate to the site’s navigation; not so with articles—usually, they're

retrieved via a search request. These slight variations in structure and function
prompted me to separate Web copy from articles in the design of our CMS.

Figure B.1. The appearance of our administrative index page.

To refresh your memory, here’s the code of a typical Web copy content item:

File: xml/webcopy20040903112345.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<webcopy id="webcopy20040903112345">
 <headline>Creating an XML-powered CMS</headline>
 <navigationlabel>XML CMS 101</navigationlabel>
 <description>Here are some articles that will further your XML
 knowledge.</description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>Are you tired of waiting around for your "IT Guy" or
 expensive designer to update your web site? Well, those days
 will be long forgotten if you buy our XML-powered CMS! With
 this revolutionary new tool, you can make quick and easy
 updates to your own web site! Forget all the hassles! It
 slices, it dices!</p>

298

Appendix B: CMS Administration Tool

]]></body>
</webcopy>

You’ll notice right away that the webcopy element has an id attribute composed
of the string webcopy with a time stamp appended in the format YYYYMMDDHHMMSS.
In this regard, the id uniquely identifies each Web copy document—the article’s
id fulfills the same function.

You’ll also notice that we use a CDATA section inside the body element of Web
copy, as we did with articles. Some may view this as a controversial decision, but
it will save us a lot of time, as we won't have to validate this text. Of course, it
would be to your advantage to make sure that you're using XHTML-compliant
markup in these sections.

Unlike the article content type, we do not have authorid, categoryid, or
keywords elements in the Web copy content type. And we have a navigationla-
bel element to provide a shorter version of the headline for concise titles in
navigation systems.

Web Copy Index Page
Let’s build the first page associated with the Web copy content type: an index
page that will list all Web copy documents, provide us with the opportunity to
create new ones, and allow us to edit and delete existing Web copy documents.

As with our article management page, we must first include our access control
and common include files:

File: webcopytool.php (excerpt)

<?php
 include 'security.inc.php';
 include_once '../common.inc.php';
?>

Next up is some pretty standard HTML boilerplate. Again, this is strikingly
similar to the article management page:

File: webcopytool.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"

299

Web Copy Index Page

 content="text/html; charset=iso-8859-1" />
<title>Web Copy Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Web Copy Index</h1>
<p>Create New Web Copy</p>
<p>Cancel</p>

Next, we use a while loop and SimpleXML to process the xml directory and pull
out all the XML files whose filenames start with webcopy. These candidates are
inspected with SimpleXML, which we use to pull unique IDs and headlines into
a HTML list, with links to edit and delete each Web copy document:

File: webcopytool.php (excerpt)

<?php
$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^webcopy.*\.xml$", $file)) continue;

 $wcFile = simplexml_load_file($fileDir . $file);
 echo '' . htmlentities($wcFile->headline);
 echo ' <a href="webcopytool_edit.php?id=' . $wcFile['id'] .
 '">edit';
 echo ' <a href="doWebcopyDelete.php?id=' . $wcFile['id'] .
 '">delete';
}
?>

</body>
</html>

This page displays as shown in Figure B.2.

300

Appendix B: CMS Administration Tool

Figure B.2. The Web copy index page.

Web Copy Creation Page
The next step is to build the form that allows us to create new Web copy items.
This is essentially a very simple form that posts its contents to a PHP file,
doWebcopyCeate.php, which does all the heavy lifting.

Here is the markup and code for the form:

File: webcopytool_create.php

<?php
include 'security.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Create New Web Copy</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />

301

Web Copy Creation Page

<link rel="stylesheet" type="text/css" href="forms.css" />
</head>
<body>
<h1>Create New Web Copy</h1>
<p>Cancel</p>
<form action="doWebcopyCreate.php" method="post">
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline" class="text"
 />
 </p>
 <p>
 <label for="headline">Navigation Label</label>
 <input type="text" id="navlabel" name="navlabel" class="text"
 />
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress">In Progress</option>
 <option value="live">Live</option>
 </select>
 </p>
 <p>
 <label for="description">Description</label>
 <textarea id="description" name="description"></textarea>
 </p>
 <p>
 <label for="body">Web Copy Body (HTML)</label>
 <textarea id="body" name="body"></textarea>
 </p>
</div>
<div class="actions">
 <input type="submit" value="Add Web Copy" />
 <input type="reset" value="Reset" />
</div>
</form>
</body>
</html>

Because this form is very similar to that generated by the articletool_cre-
ate.php file we wrote in Chapter 7, I won’t spend much time on it. You can see
what it looks like in Figure B.3.

302

Appendix B: CMS Administration Tool

Figure B.3. The Web copy creation form.

New Web Copy Processing Script
The doWebcopyCreate.php file takes the submitted form values from webcopy-
tool_create.php and turns them into a valid XML file. It's modeled very closely
on the doArticleCreate.php file, which is used by the system to create articles.

In the first part of the file, we need to create a new DOMDocument, then create the
file’s root element, webcopy. Note that we’re using the DOM here to create a
new XML document from scratch:

File: doWebcopyCreate.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument();

303

New Web Copy Processing Script

$root = $doc->createElement('webcopy');
$root = $doc->appendChild($root);

Next, we add a unique id attribute to this root element. The way we generate
the unique identifier is to use PHP’s date function, and prepend the string web-
copy to the result. Just in case, we also have to check to ensure that no other
Web copy file has the same unique ID. If we do detect a collision, we add one
second to the timestamp in our id attribute and check again:

File: doWebcopyCreate.php (excerpt)

$timestamp = date('YmdHis');
do {
 $id = 'webcopy' . $timestamp++;
} while (file_exists($fileDir . $id . '.xml'));
$root->setAttribute('id', $id);

Next, we create our headline, navigationlabel, description, pubdate, status,
and body elements:

File: doWebcopyCreate.php (excerpt)

$head = $doc->createElement('headline');
$root->appendChild($head);
$htext = $doc->createTextNode($_POST['headline']);
$head->appendChild($htext);

$navlabel = $doc->createElement('navigationlabel');
$root->appendChild($navlabel);
$navtext = $doc->createTextNode($_POST['navlabel']);
$navlabel->appendChild($navtext);

$desc = $doc->createElement('description');
$root->appendChild($desc);
$dtext = $doc->createTextNode($_POST['description']);
$desc->appendChild($dtext);

$pub = $doc->createElement('pubdate');
$root->appendChild($pub);
$pubtext = $doc->createTextNode(date('Y-m-d'));
$pub->appendChild($pubtext);

$stat = $doc->createElement('status');
$root->appendChild($stat);
$stext = $doc->createTextNode($_POST['status']);
$stat->appendChild($stext);

304

Appendix B: CMS Administration Tool

$body = $doc->createElement('body');
$root->appendChild($body);
$cdata = $doc->createCDATASection($_POST['body']);
$body->appendChild($cdata);

Last, but not least, we write to the file and return the administrative user to the
Web Copy Index page.

File: doWebcopyCreate.php (excerpt)

$filename = $fileDir . $id . '.xml';
$doc->save($filename);

header('location: webcopytool.php');
?>

Web Copy Editing Page
The next step in the process is to create a page from which we can edit Web copy
items. This page is identical to webcopytool_create.php with the exception that
it must open the specified XML file and load the existing values into the appro-
priate fields.

For this purpose, we’ll use SimpleXML. For example, we can open an XML file
with:

File: webcopytool_edit.php (excerpt)

$file = simplexml_load_file($fileDir . $_GET['id'] . '.xml');

We can display a value, such as a headline, in a form field like this:

File: webcopytool_edit.php (excerpt)

 <input type="text" id="headline" name="headline" class="text"
 value="<?php echo htmlentities($file->headline); ?>" />

Here's the entire form. Notice that we do a simple check to ensure that the page
does receive an ID of some kind through HTTP GET.

File: webcopytool_edit.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';

if (!isset($_GET['id']) || $_GET['id'] == '' ||
 !file_exists($fileDir . $_GET['id'] . '.xml')) {

305

Web Copy Editing Page

 header('location: webcopytool.php');
 exit;
}
$file = simplexml_load_file($fileDir . $_GET['id'] . '.xml');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit Web Copy</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
<link rel="stylesheet" type="text/css" href="forms.css" />
</head>
<body>
<h1>Edit Web Copy</h1>
<p>Cancel</p>
<form action="doWebcopyUpdate.php" method="post">
<input type="hidden" name="id" value="<?php
 echo htmlentities($_GET['id']); ?>" />
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline" class="text"
 value="<?php echo htmlentities($file->headline); ?>" />
 </p>
 <p>
 <label for="headline">Navigation Label</label>
 <input type="text" id="navlabel" name="navlabel" class="text"
 value="<?php echo htmlentities($file->navigationlabel);
 ?>" />
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress"
 <?php if ((string)$file->status == 'in progress')
 echo 'selected="selected"'?>>In Progress</option>
 <option value="live"
 <?php if ((string)$file->status == 'live')
 echo 'selected="selected"'?>>Live</option>
 </select>
 </p>
 <p>
 <label for="description">Description</label>

306

Appendix B: CMS Administration Tool

 <textarea id="description" name="description">
<?php echo htmlentities($file->description); ?></textarea>
 </p>
 <p>
 <label for="body">Web Copy Body (HTML)</label>
 <textarea id="body" name="body">
<?php echo htmlentities($file->body); ?></textarea>
 </p>
</div>
<div class="actions">
 <input type="submit" value="Update Web Copy" />
 <input type="reset" value="Reset" />
</div>
</form>
</body>
</html>

As you can see, this form posts to a file named doWebcopyUpdate.php. This file
has much the same functionality as doWebcopyCreate.php, except that it has to
update a piece of Web copy, not create one from scratch.

Web Copy Update Processing Script
This script is almost exactly the same as doWebcopyCreate.php, except that:

1. It deletes the file it's currently working on before writing a new file.

2. It doesn’t have to work quite as hard to come up with a unique ID, as one
has already been assigned to the content item.

Why did I choose to delete the XML file and then create a new file with the same
identifier? Because replacing XML nodes in place can be both complicated and
expensive, so makes more sense just to recreate the file from scratch.

Here’s the code. I’ve highlighted in bold the two lines that differ from doWeb-
copyCreate.php:

File: doWebcopyUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument();
$root = $doc->createElement('webcopy');

307

Web Copy Update Processing Script

$root = $doc->appendChild($root);

$id = $_POST['id'];
$root->setAttribute('id', $id);

$head = $doc->createElement('headline');
$root->appendChild($head);
$htext = $doc->createTextNode($_POST['headline']);
$head->appendChild($htext);

$navlabel = $doc->createElement('navigationlabel');
$root->appendChild($navlabel);
$navtext = $doc->createTextNode($_POST['navlabel']);
$navlabel->appendChild($navtext);

$desc = $doc->createElement('description');
$root->appendChild($desc);
$dtext = $doc->createTextNode($_POST['description']);
$desc->appendChild($dtext);

$pub = $doc->createElement('pubdate');
$root->appendChild($pub);
$pubtext = $doc->createTextNode(date('Y-m-d'));
$pub->appendChild($pubtext);

$stat = $doc->createElement('status');
$root->appendChild($stat);
$stext = $doc->createTextNode($_POST['status']);
$stat->appendChild($stext);

$body = $doc->createElement('body');
$root->appendChild($body);
$cdata = $doc->createCDATASection($_POST['body']);
$body->appendChild($cdata);

$filename = $fileDir . $id . '.xml';
unlink($filename);
$doc->save($filename);

header('location: webcopytool.php');
?>

Web Copy Delete Processing Script
The final thing we have to do is create a script to delete Web copy items.

308

Appendix B: CMS Administration Tool

Here’s the code:

File: doWebcopyDelete.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$filename = $fileDir . $_GET['id'] . '.xml';
unlink($filename);

header('location: webcopytool.php');
?>

Managing News Items
News items are designed to contain those short snippets of information that are
posted on our site’s left-hand side navigation area. Here’s a refresher illustrating
what a news item might look like:

File: news20041014061004.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<news id="news20041014061004">
 <authorid>1</authorid>
 <categoryid>1</categoryid>
 <headline>XML CMS Almost Ready!</headline>
 <url>http://www.myxmlbook.com/</url>
 <description>The XML CMS is finally almost ready for shipping.
 </description>
 <pubdate>2004-10-14</pubdate>
 <status>live</status>
 <keywords>xml</keywords>
</news>

You’ll notice that the news content item has many of the same elements as our
articles, including authorid, categoryid, headline, description, pubdate,
status, and keywords. It doesn’t have a body element, but it contains a unique
element, url.

For the administration system, we’re going to follow the same pattern we used
for Web copy and articles, so I’ll present the code for each of the forms and scripts
with little or no commentary.

309

Managing News Items

News Item Index Page
Here's the main news management page. Notice that it behaves in exactly the
same way as the other content item index pages.

File: newstool.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>News Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>News Index</h1>
<p>Create New News Item</p>
<p>Cancel</p>

<?php
$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^news.*\.xml$", $file)) continue;

 $wcFile = simplexml_load_file($fileDir . $file);
 echo '' . htmlentities($wcFile->headline);
 echo ' <a href="newstool_edit.php?id=' . $wcFile['id'] .
 '">edit';
 echo ' <a href="doNewsDelete.php?id=' . $wcFile['id'] .
 '">delete';
}
?>

</body>
</html>

310

Appendix B: CMS Administration Tool

News Item Creation Page
File: newstool_create.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Create New News Item</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
<link rel="stylesheet" type="text/css" href="forms.css" />
</head>
<body>
<h1>Create New News Item</h1>
<p>Cancel</p>
<form action="doNewsCreate.php" method="post">
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline" class="text"
 />
 </p>
 <p>
 <label for="author">Author</label>
 <select id="authorid" name="authorid">
 <?php
 $authors = simplexml_load_file($fileDir . 'authors.xml');
 foreach ($authors->author as $author) {
 echo '<option value="' . htmlentities($author['id']) .
 '">' . htmlentities($author->name) . '</option>';
 }
 ?>
 </select>
 </p>
 <p>
 <label for="category">Category</label>
 <select id="categoryid" name="categoryid">
 <?php
 $cats = simplexml_load_file($fileDir . 'categories.xml');
 foreach ($cats->category as $cat) {

311

News Item Creation Page

 echo '<option value="' . htmlentities($cat['id']) .
 '">' . htmlentities($cat['label']) . '</option>';
 }
 ?>
 </select>
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress">In Progress</option>
 <option value="live">Live</option>
 </select>
 </p>
 <p>
 <label for="keywords">Keywords</label>
 <input type="text" id="keywords" name="keywords" class="text"
 />
 </p>
 <p>
 <label for="description">Description</label>
 <textarea id="description" name="description"></textarea>
 </p>
 <p>
 <label for="url">URL</label>
 <input type="text" id="url" name="url" class="text" />
 </p>
</div>
<div class="actions">
 <input type="submit" value="Add News Item" />
 <input type="reset" value="Reset" />
</div>
</form>
</body>
</html>

New News Item Processing Script
File: doNewsCreate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument();
$root = $doc->createElement('news');
$root = $doc->appendChild($root);

312

Appendix B: CMS Administration Tool

$timestamp = date('YmdHis');
do {
 $id = 'news' . $timestamp++;
} while (file_exists($fileDir . $id . '.xml'));
$root->setAttribute('id', $id);

$author = $doc->createElement('authorid');
$root->appendChild($author);
$atext = $doc->createTextNode($_POST['authorid']);
$author->appendChild($atext);

$cat = $doc->createElement('categoryid');
$root->appendChild($cat);
$ctext = $doc->createTextNode($_POST['categoryid']);
$cat->appendChild($ctext);

$head = $doc->createElement('headline');
$root->appendChild($head);
$htext = $doc->createTextNode($_POST['headline']);
$head->appendChild($htext);

$url = $doc->createElement('url');
$root->appendChild($url);
$utext = $doc->createTextNode($_POST['url']);
$url->appendChild($utext);

$desc = $doc->createElement('description');
$root->appendChild($desc);
$dtext = $doc->createTextNode($_POST['description']);
$desc->appendChild($dtext);

$pub = $doc->createElement('pubdate');
$root->appendChild($pub);
$pubtext = $doc->createTextNode(date('Y-m-d'));
$pub->appendChild($pubtext);

$stat = $doc->createElement('status');
$root->appendChild($stat);
$stext = $doc->createTextNode($_POST['status']);
$stat->appendChild($stext);

$key = $doc->createElement('keywords');
$root->appendChild($key);
$ktext = $doc->createTextNode($_POST['keywords']);
$key->appendChild($ktext);

313

New News Item Processing Script

$filename = $fileDir . $id . '.xml';
$doc->save($filename);

header('location: newstool.php');
?>

News Item Editing Page
File: newstool_edit.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

if (!isset($_GET['id']) || $_GET['id'] == '' ||
 !file_exists($fileDir . $_GET['id'] . '.xml')) {
 header('location: newstool.php');
 exit;
}
$file = simplexml_load_file($fileDir . $_GET['id'] . '.xml');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit News Item</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
<link rel="stylesheet" type="text/css" href="forms.css" />
</head>
<body>
<h1>Edit News Item</h1>
<p>Cancel</p>
<form action="doNewsUpdate.php" method="post">
<input type="hidden" name="id"
 value="<?php echo htmlentities($_GET['id']); ?>" />
<div class="fields">
 <p>
 <label for="headline">Headline</label>
 <input type="text" id="headline" name="headline" class="text"
 value="<?php echo htmlentities($file->headline); ?>" />
 </p>
 <p>
 <label for="author">Author</label>

314

Appendix B: CMS Administration Tool

 <select id="authorid" name="authorid">
 <?php
 $authors = simplexml_load_file($fileDir . 'authors.xml');
 foreach ($authors->author as $author) {
 if ((string)$author['id'] == (string)$file->authorid) {
 echo '<option value="' . htmlentities($author['id']) .
 '" selected="selected">' .
 htmlentities($author->name) . '</option>';
 } else {
 echo '<option value="' . htmlentities($author['id']) .
 '">' . htmlentities($author->name) . '</option>';
 }
 }
 ?>
 </select>
 </p>
 <p>
 <label for="category">Category</label>
 <select id="categoryid" name="categoryid">
 <?php
 $cats = simplexml_load_file($fileDir . 'categories.xml');
 foreach ($cats->category as $cat) {
 if ((string)$cat['id'] == (string)$file->categoryid) {
 echo '<option value="' . htmlentities($cat['id']) .
 '" selected="selected">' .
 htmlentities($cat['label']) . '</option>';
 } else {
 echo '<option value="' . htmlentities($cat['id']) .
 '">' . htmlentities($cat['label']) . '</option>';
 }
 }
 ?>
 </select>
 </p>
 <p>
 <label for="status">Status</label>
 <select id="status" name="status">
 <option value="in progress"
 <?php if ((string)$file->status == 'in progress')
 echo 'selected="selected"'?>>In Progress</option>
 <option value="live"
 <?php if ((string)$file->status == 'live')
 echo 'selected="selected"'?>>Live</option>
 </select>
 </p>
 <p>

315

News Item Editing Page

 <label for="keywords">Keywords</label>
 <input type="text" id="keywords" name="keywords" class="text"
 value="<?php echo htmlentities($file->keywords); ?>" />
 </p>
 <p>
 <label for="description">Description</label>
 <textarea id="description" name="description">
<?php echo htmlentities($file->description); ?></textarea>
 </p>
 <p>
 <label for="url">URL</label>
 <input type="text" id="url" name="url" class="text"
 value="<?php echo htmlentities($file->url); ?>" />
 </p>
</div>
<div class="actions">
 <input type="submit" value="Update News Item" />
 <input type="reset" value="Reset" />
</div>
</form>
</body>
</html>

News Item Update Processing Script
File: doNewsUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument();
$root = $doc->createElement('news');
$root = $doc->appendChild($root);

$id = $_POST['id'];
$root->setAttribute('id', $id);

$author = $doc->createElement('authorid');
$root->appendChild($author);
$atext = $doc->createTextNode($_POST['authorid']);
$author->appendChild($atext);

$cat = $doc->createElement('categoryid');
$root->appendChild($cat);
$ctext = $doc->createTextNode($_POST['categoryid']);

316

Appendix B: CMS Administration Tool

$cat->appendChild($ctext);

$head = $doc->createElement('headline');
$root->appendChild($head);
$htext = $doc->createTextNode($_POST['headline']);
$head->appendChild($htext);

$url = $doc->createElement('url');
$root->appendChild($url);
$utext = $doc->createTextNode($_POST['url']);
$url->appendChild($utext);

$desc = $doc->createElement('description');
$root->appendChild($desc);
$dtext = $doc->createTextNode($_POST['description']);
$desc->appendChild($dtext);

$pub = $doc->createElement('pubdate');
$root->appendChild($pub);
$pubtext = $doc->createTextNode(date('Y-m-d'));
$pub->appendChild($pubtext);

$stat = $doc->createElement('status');
$root->appendChild($stat);
$stext = $doc->createTextNode($_POST['status']);
$stat->appendChild($stext);

$key = $doc->createElement('keywords');
$root->appendChild($key);
$ktext = $doc->createTextNode($_POST['keywords']);
$key->appendChild($ktext);

$filename = $fileDir . $id . '.xml';
unlink($filename);
$doc->save($filename);

header('location: newstool.php');
?>

News Item Delete Processing Script
File: doNewsDelete.phpdoNewsUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

317

News Item Delete Processing Script

$filename = $fileDir . $_GET['id'] . '.xml';
unlink($filename);

header('location: newstool.php');
?>

Managing Authors, Administrators, and
Categories

I’m going to cover authors, administrators, and categories together because in
terms of function and structure, they are all very similar. Instead of each author,
administrator, or category residing in a separate file (as is the case for articles
and news items), what we’re talking about here are lists of authors, administrators,
and categories. We can take advantage of this fact in the way that we display
and update the listed information.

Let’s go through each of these lists, one at a time, so you can see how we handle
these kinds of structures.

Managing Authors
First, here's a sample author listing. You’ll notice that it’s essentially a list of au-
thors and related information:

File: authors.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<authors>
 <author id="1">
 <name>Tom Myer</name>
 <byline>myerman</byline>
 <email>tom@myerman.com</email>
 </author>
 <author id="2">
 <name>Joe Blow</name>
 <byline>joe</byline>
 <email>joe@myerman.com</email>
 </author>
 <author id="4">
 <name>Bill</name>
 <byline>bill</byline>
 <email>bill@myerman.com</email>

318

Appendix B: CMS Administration Tool

 </author>
</authors>

Because we’re presented with a list, we have an opportunity to update the entire
file with one form, adding, editing, and deleting items through a unified interface.
But first, let's provide an interface to simply view the list of existing authors:

File: authortool.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Author Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Author Index</h1>
<p>Edit Author Listing</p>
<p>Cancel</p>

<?php
$authors = simplexml_load_file($fileDir . 'authors.xml');
foreach ($authors->author as $author) {
 echo '' . htmlentities($author->name) .
 ' (' . htmlentities($author->email) . ')';
}
?>

</body>
</html>

Figure B.4 illustrates how our Author Index Page will display.

319

Managing Authors

Figure B.4. The Author Index page.

When an administrative user clicks on Edit Author Listing he or she sees the Edit
Authors page, the page shown in Figure B.5.

This page essentially consists of a single form that loads the values from the XML
file into the appropriate form fields. On each line that's already populated, the
administrator is given the opportunity to delete existing authors. Furthermore,
the administrator has the chance to add up to three more authors (though this
can easily be modified in the code, or scripted to be made more flexible).

Here's the PHP and HTML code that creates this page. It begins similarly to all
our other administrative pages: by loading our two include files, and then output-
ting the HTML boilerplate:

320

Appendix B: CMS Administration Tool

Figure B.5. The Edit Authors page.

File: authortool_edit.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit Authors</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Edit Authors</h1>

321

Managing Authors

<p>Cancel</p>
<form method="post" action="doAuthorsUpdate.php">
<table border="1" cellspacing="0" cellpadding="3">
 <tr>
 <th>Delete?</th>
 <th>Name</th>
 <th>Byline</th>
 <th>Email</th>
 </tr>

We can then use SimpleXML to load up and loop through the authors one at a
time, in order to create form elements that contain the proper information:

File: authortool_edit.php (excerpt)

 <?php
 $authors = simplexml_load_file($fileDir . 'authors.xml');
 foreach ($authors->author as $author) {
 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td><input type=\"checkbox\" name=\"author[" .
 htmlentities($author['id']) . "][delete]\" " .
 "value=\"true\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"author[" .
 htmlentities($author['id']) . "][name]\" value=\"" .
 htmlentities($author->name) . "\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"author[" .
 htmlentities($author['id']) . "][byline]\" value=\"" .
 htmlentities($author->byline) . "\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"author[" .
 htmlentities($author['id']) . "][email]\" value=\"" .
 htmlentities($author->email) . "\" /></td>\n";
 echo "\t</tr>\n";
 }

Note that the form fields are specifically named to produce a PHP array in the
processing script, from which the various values for each existing author may be
accessed (e.g. $_POST['author'][1]['name']).

Additionally, our form includes three blank rows of fields for new authors to be
added:

File: authortool_edit.php (excerpt)

 for ($i = 0; $i < 3; $i++) {
 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td></td>\n";
 echo "\t\t<td><input type=\"text\"

322

Appendix B: CMS Administration Tool

 name=\"newauthor[name][]\" /></td>\n";
 echo "\t\t<td><input type=\"text\"
 name=\"newauthor[byline][]\" /></td>\n";
 echo "\t\t<td><input type=\"text\"
 name=\"newauthor[email][]\" /></td>\n";
 echo "\t</tr>\n";
 }
 ?>
 <tr><td colspan="4">
 <input type="submit" value="Update" />
 <input type="reset" value="Reset" />
 </td></tr>
</table>
</form>
</body>
</html>

This form posts to doAuthorsUpdate.php, in which we will use DOM functions
to update the existing authors.xml file. Since more than one administrator may
be working with the list of authors at once, we can't simply rebuild a new au-
thors.xml file based on the form submission, because any changes submitted by
another administrator since the form was generated would be lost.

So to start, we load our include files and then load up our existing authors.xml
file1 and grab a reference to the authors element. We also create a couple of
additional variables, $maxId and $deleteFailures, that we'll need later on in
the script.

File: doAuthorsUpdate.php (excerpt)

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = new DOMDocument::load($fileDir . 'authors.xml');
$root = $doc->documentElement;
$maxId = 0;
$deleteFailures = array();

We can then loop through the existing authors in our XML file:

File: doAuthorsUpdate.php (excerpt)

foreach ($root->getElementsByTagName('author') as $xAuthor) {

1The script assumes such a file exists, so to initialize an empty copy of the CMS, you will need an
authors.xml file with no author entries.

323

Managing Authors

First up, we'll get the ID of each author in the XML file. Because we may need
to add new authors to the file, we'll take this opportunity to keep track of the
highest author ID:

File: doAuthorsUpdate.php (excerpt)

 $id = $xAuthor->getAttribute('id');
 if ($maxId < (int)$id) $maxId = (int)$id;

For each author in the file, we'll check for a corresponding submitted set of author
details. This approach neatly avoids attempts to update authors that have just
been deleted by another administrator, and doesn't touch any authors that were
just added:

File: doAuthorsUpdate.php (excerpt)

 if (isset($_POST['author']) and
 isset($_POST['author'][$id])) {
 $author = $_POST['author'][$id];

If the Delete? checkbox was checked for this author, we want to remove the cor-
responding entry from the XML data. But before we can do that, we must first
check if there is any existing site content that is attributable to the author. What
should happen if existing content is found is up to you, really: you could simply
delete the offending content; you could assign the content to a special “anonym-
ous” author ID; or you could prompt the user for a course of action. For this ex-
ample, we'll skip the deletion and collect the author's ID in an array variable,
$deleteFailures, which we'll present to the user at the end of this script.

File: doAuthorsUpdate.php (excerpt)

 if (isset($author['delete']) and $author['delete'] == 'true')
 {
 $okToDelete = TRUE;
 $handle = opendir($fileDir);
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^(article|news).*\.xml$", $file)) continue;
 $contentItem = simplexml_load_file($fileDir . $file);
 if ((string)$contentitem->authorid == (string)$id) {
 $okToDelete = FALSE;
 break;
 }
 }
 if ($okToDelete) $root->removeChild($xAuthor);
 else $deleteFailures[] = $id;

324

Appendix B: CMS Administration Tool

If Delete? wasn't checked, we simply update the entry with the details that were
submitted:

File: doAuthorsUpdate.php (excerpt)

 } else {
 $name = $xAuthor->getElementsByTagName('name');
 $name = $name->item(0);
 $name->nodeValue = $author['name'];

 $byline = $xAuthor->getElementsByTagName('byline');
 $byline = $byline->item(0);
 $byline->nodeValue = $author['byline'];

 $email = $xAuthor->getElementsByTagName('email');
 $email = $email->item(0);
 $email->nodeValue = $author['email'];
 }
 }
}

Next up, we must process any new author entries that have been submitted. For
a new author entry to be valid, we'll require that it at least have a name:

File: doAuthorsUpdate.php (excerpt)

if (isset($_POST['newauthor'])) {
 foreach ($_POST['newauthor'] as $author) {
 if (isset($author['name'] and trim($author['name']) != '')) {
 $xAuthor = $root->appendChild($doc->createElement('author'));

With the element created and appended to the XML data, all that's left is to set
its ID attribute (one greater than the current maximum ID value) and add the
data elements for the submitted name, byline, and email address:

File: doAuthorsUpdate.php (excerpt)

 $xAuthor->setAttribute('id', ++$maxId);
 $xAuthor->appendChild($doc->createElement('name',
 $author['name']));
 $xAuthor->appendChild($doc->createElement('byline',
 $author['byline']));
 $xAuthor->appendChild($doc->createElement('email',
 $author['email']));
 }
 }
}

325

Managing Authors

With all the requested changes to our XML data done, we can overwrite au-
thors.xml with our updated version:

File: doAuthorsUpdate.php (excerpt)

$filename = $fileDir . $id . '.xml';
unlink($fileDir . 'authors.xml');
$doc->save($fileDir . 'authors.xml');

If any requested author deletions were unsuccessful, we'll redirect the browser to
a page that displays a relevant error message, passing it the list of failed author
IDs in the query string:

File: doAuthorsUpdate.php (excerpt)

if (count($deleteFailures) > 0) {
 $qs = '?';
 foreach ($deleteFailures as $id) {
 $qs .= "id[]=$id&";
 }
 header('location: authortool_deletefail.php' . $qs);

But if all goes well, then we'll simply redirect the browser back to the main author
management page:

File: doAuthorsUpdate.php (excerpt)

} else {
 header('location: authortool.php');
}
?>

That's it for the author update processing script. For the sake of completeness,
here's the page that displays failures to delete authors:

File: authortool_deletefail.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Delete(s) Failed</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />

326

Appendix B: CMS Administration Tool

</head>
<body>
<h1>Delete(s) Failed</h1>
<p>Failed to delete the following authors, who still have content
 on the site. Remove or reassign their content items first, then
 try again.</p>

<?php
$authors = simplexml_load_file($fileDir . 'authors.xml');
foreach ($id as $authorId) {
 echo '' . $authors->xpath("author[@id='$authorId']/name") .
 '';
}
?>

<p>Any other requested changes have been made.</p>
<p>Back to Author Listing</p>
</body>
</html>

Managing Administrators
Here's the administrator listing. As you’ll see, its structure is very similar to that
of the authors listing:

File: admin.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<admins>
 <admin id="1">
 <name>Joe</name>
 <username>joe</username>
 <password>$1$064.HQ..$x912OhlIlHFylTPJmJR/k/</password>
 <email>joe@myerman.com</email>
 </admin>
 <admin id="2">
 <name>Bill</name>
 <username>bill</username>
 <password>1Ep5.7h4.$R6iGqy.Wj2Dz8SAE9WG3l0</password>
 <email>bill@myerman.com</email>
 </admin>
 <admin id="3">
 <name>Tom</name>
 <username>tom</username>
 <password>1Cl/.j3..$QcjxGtxqYx0VNp3QanGnP0</password>
 <email>tom@myerman.com</email>

327

Managing Administrators

 </admin>
</admins>

Encrypted Passwords

As you can see, the password values are encrypted for added security. So
that you can use the sample admin.xml file included in the code archive
for this book, you need to know that the initial password of all three admin-
istrators stored in that file is password.

We’re going to process administrators in much the same way we processed authors.

File: admintool.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Admin Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Admin Index</h1>
<p>Edit Admin Listing</p>
<p>Cancel</p>

<?php
$admins = simplexml_load_file($fileDir . 'admin.xml');
foreach ($admins->admin as $admin) {
 echo '' . htmlentities($admin->name) .
 ' (' . htmlentities($admin->email) . ')';
}
?>

</body>
</html>

File: admintool_edit.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

328

Appendix B: CMS Administration Tool

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit Admins</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Edit Admins</h1>
<p>Cancel</p>
<form method="post" action="doAdminsUpdate.php">
<table border="1" cellspacing="0" cellpadding="3">
 <tr>
 <th>Delete?</th>
 <th>Name</th>
 <th>Username</th>
 <th>New Password</th>
 <th>Email</th>
 </tr>
 <?php
 $admins = simplexml_load_file($fileDir . 'admin.xml');
 foreach ($admins->admin as $admin) {
 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td><input type=\"checkbox\" name=\"admin[" .
 htmlentities($admin['id']) . "][delete]\" " .
 "value=\"true\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"admin[" .
 htmlentities($admin['id']) . "][name]\" value=\"" .
 htmlentities($admin->name) . "\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"admin[" .
 htmlentities($admin['id']) . "][username]\" value=\"" .
 htmlentities($admin->username) . "\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"admin[" .
 htmlentities($admin['id']) . "][password]\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"admin[" .
 htmlentities($admin['id']) . "][email]\" value=\"" .
 htmlentities($admin->email) . "\" /></td>\n";
 echo "\t</tr>\n";
 }
 for ($i = 0; $i < 3; $i++) {
 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td></td>\n";
 echo "\t\t<td><input type=\"text\"

329

Managing Administrators

 name=\"newadmin[$i][name]\" /></td>\n";
 echo "\t\t<td><input type=\"text\"
 name=\"newadmin[$i][username]\" /></td>\n";
 echo "\t\t<td><input type=\"text\"
 name=\"newadmin[$i][password]\" /></td>\n";
 echo "\t\t<td><input type=\"text\"
 name=\"newadmin[$i][email]\" /></td>\n";
 echo "\t</tr>\n";
 }
 ?>
 <tr><td colspan="5">
 <input type="submit" value="Update" />
 <input type="reset" value="Reset" />
 </td></tr>
</table>
</form>
</body>
</html>

File: doAdminsUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = DOMDocument::load($fileDir . 'admin.xml');
$root = $doc->documentElement;
$maxId = 0;

foreach ($root->getElementsByTagName('admin') as $xAdmin) {
 $id = $xAdmin->getAttribute('id');
 if ($maxId < (int)$id) $maxId = (int)$id;
 if (isset($_POST['admin']) and
 isset($_POST['admin'][$id])) {
 $admin = $_POST['admin'][$id];
 if (isset($admin['delete']) and $admin['delete'] == 'true') {
 $root->removeChild($xAdmin);
 } else {
 $name = $xAdmin->getElementsByTagName('name');
 $name = $name->item(0);
 $name->nodeValue = $admin['name'];

 $uname = $xAdmin->getElementsByTagName('username');
 $uname = $uname->item(0);
 $uname->nodeValue = $admin['username'];

 if (isset($admin['password']) and

330

Appendix B: CMS Administration Tool

 trim($admin['password']) != '') {
 $pass = $xAdmin->getElementsByTagName('password');
 $pass = $pass->item(0);
 $pass->nodeValue = crypt($admin['password']);
 }

 $email = $xAdmin->getElementsByTagName('email');
 $email = $email->item(0);
 $email->nodeValue = $admin['email'];
 }
 }
}

if (isset($_POST['newadmin'])) {
 foreach ($_POST['newadmin'] as $admin) {
 if (isset($admin['name']) and trim($admin['name']) != '' and
 isset($admin['username']) and
 trim($admin['username']) != '' and
 isset($admin['password']) and
 trim($admin['password']) != '') {
 $xAdmin = $root->appendChild($doc->createElement('admin'));
 $xAdmin->setAttribute('id', ++$maxId);
 $xAdmin->appendChild($doc->createElement('name',
 $admin['name']));
 $xAdmin->appendChild($doc->createElement('username',
 $admin['username']));
 $xAdmin->appendChild($doc->createElement('password',
 crypt($admin['password'])));
 $xAdmin->appendChild($doc->createElement('email',
 $admin['email']));
 }
 }
}

$filename = $fileDir . $id . '.xml';
unlink($fileDir . 'admin.xml');
$doc->save($fileDir . 'admin.xml');

header('location: admintool.php');
?>

Managing Categories
Finally, here's the category listing, which uses attributes instead of elements to
do its job:

331

Managing Categories

File: categories.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<categories>
 <category label="xml" status="live" id="1"/>
 <category label="php" status="live" id="2"/>
 <category label="asp" status="live" id="3"/>
 <category label="javascript" status="live" id="4"/>
 <category label="perl" status="live" id="5"/>
</categories>

Despite this structural difference, we handle the information in much the same
way we handled authors and administrators. Again, because there isn’t much
difference, I’ll present the code without commentary.

File: categorytool.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Category Index</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Category Index</h1>
<p>Edit Category Listing</p>
<p>Cancel</p>

<?php
$cats = simplexml_load_file($fileDir . 'categories.xml');
foreach ($cats->category as $cat) {
 echo '' . htmlentities($cat['label']) .
 ' (' . htmlentities($cat['status']) . ')';
}
?>

</body>
</html>

332

Appendix B: CMS Administration Tool

File: categorytool_edit.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Edit Categories</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Edit Categories</h1>
<p>Cancel</p>
<form method="post" action="doCategoriesUpdate.php">
<table border="1" cellspacing="0" cellpadding="3">
 <tr>
 <th>Delete?</th>
 <th>Label</th>
 <th>Status</th>
 </tr>
 <?php
 $cats = simplexml_load_file($fileDir . 'categories.xml');
 foreach ($cats->category as $cat) {
 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td><input type=\"checkbox\" name=\"cat[" .
 htmlentities($cat['id']) . "][delete]\" " .
 "value=\"true\" /></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"cat[" .
 htmlentities($cat['id']) . "][label]\" value=\"" .
 htmlentities($cat['label']) . "\" /></td>\n";
 echo "\t\t<td><select name=\"cat[" .
 htmlentities($cat['id']) . "][status]\">\n";
 echo "\t\t\t<option value=\"live\"" .
 ((string)$cat['status'] == 'live' ? ' selected="selected"'
 : '') . ">live</option>\n";
 echo "\t\t\t<option value=\"in progress\"" .
 ((string)$cat['status'] == 'in progress' ?
 ' selected="selected"' : '') . ">in progress</option>\n";
 echo "\t\t</select></td>\n";
 echo "\t</tr>\n";
 }
 for ($i = 0; $i < 3; $i++) {

333

Managing Categories

 echo "\t<tr valign=\"top\">\n";
 echo "\t\t<td></td>\n";
 echo "\t\t<td><input type=\"text\" name=\"newcat[$i][label]\"
 /></td>\n";
 echo "\t\t<td><select name=\"newcat[$i][status]\">\n";
 echo "\t\t\t<option value=\"live\">live</option>\n";
 echo "\t\t\t<option value=\"in progress\"
 >in progress</option>\n";
 echo "\t\t</select></td>\n";
 echo "\t</tr>\n";
 }
 ?>
 <tr><td colspan="3">
 <input type="submit" value="Update" />
 <input type="reset" value="Reset" />
 </td></tr>
</table>
</form>
</body>
</html>

File: doCategoriesUpdate.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';

$doc = DOMDocument::load($fileDir . 'categories.xml');
$root = $doc->documentElement;
$maxId = 0;
$deleteFailures = array();

foreach ($root->getElementsByTagName('category') as $xCat) {
 $id = $xCat->getAttribute('id');
 if ($maxId < (int)$id) $maxId = (int)$id;
 if (isset($_POST['cat']) and
 isset($_POST['cat'][$id])) {
 $cat = $_POST['cat'][$id];
 if (isset($cat['delete']) and $cat['delete'] == 'true') {
 $okToDelete = TRUE;
 $handle = opendir($fileDir);
 while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^(article|news).*\.xml$", $file)) continue;
 $contentItem = simplexml_load_file($fileDir . $file);
 if ((string)$contentItem->categoryid == (string)$id) {
 $okToDelete = FALSE;

334

Appendix B: CMS Administration Tool

 break;
 }
 }
 if ($okToDelete) $root->removeChild($xCat);
 else $deleteFailures[] = $id;
 } else {
 $xCat->setAttribute('label', $cat['label']);
 $xCat->setAttribute('status', $cat['status']);
 }
 }
}

if (isset($_POST['newcat'])) {
 foreach ($_POST['newcat'] as $cat) {
 if (isset($cat['label']) and trim($cat['label']) != '') {
 $xCat = $root->appendChild($doc->createElement('category'));
 $xCat->setAttribute('id', ++$maxId);
 $xCat->setAttribute('label', $cat['label']);
 $xCat->setAttribute('status', $cat['status']);
 }
 }
}

$filename = $fileDir . $id . '.xml';
unlink($fileDir . 'categories.xml');
$doc->save($fileDir . 'categories.xml');

if (count($deleteFailures) > 0) {
 $qs = '?';
 foreach ($deleteFailures as $id) {
 $qs .= "id[]=$id&";
 }
 header('location: categorytool_deletefail.php' . $qs);
} else {
 header('location: categorytool.php');
}
?>

File: categorytool_deletefail.php

<?php
include 'security.inc.php';
include_once '../common.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

335

Managing Categories

<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Delete(s) Failed</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Delete(s) Failed</h1>
<p>Failed to delete the following categories, which still contain
 content. Remove or reassign their content items first, then try
 again.</p>

<?php
$cats = simplexml_load_file($fileDir . 'categories.xml');
foreach ($id as $catId) {
 echo '' . $cats->xpath("category[@id='$catId']/@label") .
 '';
}
?>

<p>Any other requested changes have been made.</p>
<p>Back to Category Listing</p>
</body>
</html>

Updating the Admin Index Page
With all our tools in place, we can now update our administrative index page to
link to them:

File: index.php

<?php
include 'security.inc.php';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<title>Welcome to the Admin Index Page</title>
<link rel="stylesheet" type="text/css" href="../xmlcms.css" />
</head>
<body>
<h1>Welcome to the Admin Index Page</h1>

336

Appendix B: CMS Administration Tool

<p>
 Manage Web Copy

 Manage Articles

 Manage News Items

 Manage Administrators

 Manage Categories

 Manage Authors
</p>
<p>Log out</p>
</body>
</html>

Summary
Folks, we’re done with the administrative tool for our CMS. It can now handle
a variety of content types, categories, administrators, and authors. You’ve finished
the project!

337

Summary

338

Index
Symbols
%, parameter entity prefix, 67
&, general entity prefix, 67, 122
<<<, PHP heredoc syntax, 176
@, XPath attribute selector, 82

A
a0 namespace prefix, 147
about attribute, RDF, 209–210
action attribute, <form> element, 94
ActiveXObject class, 145
administration tool, CMS project, 181–

197, 297–337
administration index page, 186,

297, 336
administrative login tool, 32, 182
administrators' login verification,

184
administrative metadata, 26
administrator listings, CMS project,

57, 327–331
alert function, JavaScript, 147
alphabetical sorting, 111–112
appendChild method, 150, 173
applications and Web Services, 221,

223
apply-templates element, XSL, 45

<xsl:for-each> and, 125
<xsl:sort> as child of, 111
book chapter example, 85

arrays
exported database field names, 254
search engine results, 128
SimpleXML attributes within ele-

ments, 178
SimpleXML child element storage,

176

sorting in reverse order, 217
storing retrieved elements in, 170,

322
storing selected categories for head-

line feed, 217
treating NodeLists as, 141
xml_parse_into_struct function, 264
XML-RPC responses, 230, 242
xu_rpc_http_concise function, 240

arrow notation, PHP, 175–176
article content type, CMS project, 28,

187–197
counting live articles, 234, 239
creating articles, 188
deleting articles, 197
design changes, 77
editing articles, 194

ASCII (see plain text)
asXML method, PHP, 180
async property, 139
AtomEnabled project, 211
attribute declarations, 65, 73
attribute values

accessing in SimpleXML, 178
matching, using XPath, 82, 88, 109
quoting requirement, 7, 37
unique attributes, 66
updating with SimpleXML, 180
validator error messages, 75

attributes, 8–9
choice between element storage and,

72
DOM representation of, 272
implied and required, 66
referencing in navtop.inc.php, 98
use by CMS category listing, 331
XPath predicate notation for, 82

author listings, CMS project
allowing for multiple access, 323–

324
deleting authors with existing con-

tent, 324, 326
design issues, 26, 77
index page, 319
managing, 318–327

B
backup scheduling, CMS project, 256–

259
bags, RDF, 209
book chapter example browser view,

85, 87, 91–92
braces, expression values within attrib-

utes, 135
Brown University validating parser, 20
browsers

(see also Firefox; Internet Explorer;
Opera; Safari)

client-side script in, 137–161
cross-browser compatibility example,

146
empty element notation and, 37
non-validating operation of, 14, 20
view of CSS styled XML, 42
view of raw XML, 15
view of XML to XML transforma-

tions, 53
view of XSLT styled XML, 49, 85,

87, 91–92
built-in entities, XML, 67

C
case sensitivity, 7

Expat case folding, 166, 268
IE error messages and, 17
stripos function, 129
XHTML, 37

casting and SimpleXML, 129, 177–178

category listings, CMS project
managing, 331–336
menu generation, 160

CDATA sections, 79
CDATA attribute type, 66
embedding HTML using, 31, 193
use in CMS Web copy, 299

centralizing information with lookup
tables, 78

channel element, RSS, 203, 209
character data

(see also CDATA sections; plain text)
DOM representation of, 273
#PCDATA, 61, 64

character encodings, PHP SAX func-
tions and, 261–262, 265

character entities, 10, 193
character_data function, 167
child elements, 11

selecting, 46, 108
childNodes property, DOM, 140
choose element, XSL, 123
client-side script, 137–161

when to use, 137, 156
CMS (Content Management Systems),

23
CMS project

administration tool, 32, 181–197,
297–337

administrative index page, 297
administrative interface, 27
administrators' login form, 182
administrators' login verification,

184
article counting, 234, 239
article creation form, 188–189, 191
article deletion, 197
article editing, 194
backup scheduling, 256–259
category listing, 157–161
common include file, 93, 299
content and metadata, 24

340

Index

content display requirements, 31
content type definition, 28
customizable headline feed, 215–219
display component, 92
homepage, 94, 98, 105
homepage style sheet, 101
homepage top navigation, 95–96
inner page creation, 102
introduced, 23–32
left-side navigation, 100
logout page, 186
managing articles, 187–197
managing authors, administrators,

and categories, 318–336
managing news items, 309–318
managing Web copy, 297–309
news item creation page, 311
news item editing page, 314
requirements specification, 24, 56,

77
RSS feed example, 215–219
search engine, 126–130
search engine using XML-RPC, 236,

241
site map, 130–136
Web copy creation page, 301
Web copy editing page, 305
Web Services example, 233–243

collapsing nodes (see node collapsing)
conditional logic and the DOM, 172
consistency in XML, 59

(see also validity)
content

CMS content area template, 102
document type categorization, 25

content management systems, 23
(see also CMS project)

content types, CMS project, 56
defining, 28
RSS feed, 218

copyright notice using entities, 10, 67

corporate memo example (see internal
memo example)

count function, PHP, 98
count function, XPath, 116
CREATE TABLE commands, SQL, 256
createAttribute method, DOMDocu-

ment class, 273
createCDATASection method, 193
createComment method, DOMDocu-

ment class, 274
createElement method, DOMDocu-

ment class, 173, 282
createEntityReference method, DOM-

Document class, 285
createProcessingInstruction method,

DOMDocument class, 291
cron command, 252, 259
cross-browser compatibility, jsT-

est.html, 146
crypt function, PHP, 185
CSS (Cascading Style Sheets)

browser display of XML, 42
styling CMS project pages, 101
styling HTML content, 89

custom data formats, 222

D
data formats, Web Services, 222
Data Islands, 138
data types

SOAP and, 232
XML-RPC complex types, 226
XML-RPC simple types, 225

databases, 245–260
backing up the CMS project, 256–

259
converting relational data to XML,

249–256
types suitable for working with XML,

246, 248
data-type attribute, <xsl:sort>, 114

341

date function, PHP, 130, 304
debugging XML in IE, 19
DHTML (Dynamic HTML) and the

DOM, 156
die function, PHP, 168
discoverability of Web Services, 222
display component, CMS project, 31,

92
<div> elements, HTML

CMS category menu, 160
CMS project homepage, 94, 98
use for output, 153

DOCTYPE declarations
example DTD, 61
internal memo example, 71
linking to external DTDs, 68, 76
XHTML DOCTYPEs, 37

doctype-public and doctype-system at-
tributes, <xsl:output>, 54

document examples, HTML
(see also JavaScript files)
clientside-ie.html, 139
clientsidestring-ie.html, 140
navmenu2.html, 155

document examples, XHTML, 38
document examples, XML

authors listing, 318
categories.xml, 158
category listing, 332
chapter.xml, 83
DVD collection, 8
headline.rdf, 207
headline.xml, 203, 212
headlinedc.rdf, 210
internalmemo-standalone.xml, 71
keyword-data.xml, 165, 169
keyword-data2.xml, 171
letter to Mom, 42
menu.xml, 139
myFirstXML.xml, 14
navmenu.xml, 152
news item, 158, 309

product listing, 4, 14
productlisting.xml, 111, 113
test.xml, 142

document root (see root element)
document structure, 11
Document Type Definitions (see DTDs)
document types, XML, 25
document.write method

alternative to, 153
displaying transformed XML, 145

document-centric nature of XML, 245
documents, XML

linking to external DTDs, 76
loading, using SimpleXML, 175
text editor manipulation, 17

DOM (Document Object Model)
client-side processing with, 138–142
compared with SAX, 163, 169, 171
creating a DOM parser, 169
creating nodes, 173
exporting database data as XML, 255
parsing RSS 1.0, 214
PHP functions for, 272–294
PHP functions in doArticleCre-

ate.php, 191
PHP functions in doAuthorsUp-

date.php, 323
PHP functions in feed.php, 216
printing XML from, 174
server-side processing with, 169–174
use with SimpleXML, 180
using conditional logic, 172
when to use, 181
XSLT processing with DOM tools,

142–157
DOM* classes, PHP, full listing, 272–

293
dom_import_simplexml function, 294
DOMDocument class, PHP, 132

adding nodes, 173

342

Index

creating writable DOM* classes,
273, 275, 282, 291

methods tabulated, 275–279
properties tabulated, 279–280

DOMText class, PHP, 273, 292
double-dot notation, XPath, 109
double-slash notation, XPath, 108
Dreamweaver

built-in XML validator, 22, 70, 74
validator error messages, 75

DTDs (document type definitions), 34,
61–69

alternatives to, 79
attribute declarations, 65
compared to XML Schema, 60
disadvantages, 69
DOCTYPE declaration, 61
element declarations, 62
empty element declaration, 65
entity declarations, 66
example application, 69
external DTDs, 68, 76
need for, 5
notation declarations, 270
validity and, 14

Dublin Core Metadata Initiative, 210
dumping table data (see exporting data

as XML)
Dynamic HTML (DHTML) and the

DOM, 156
dynamic navigation with JavaScript,

151
dynamically updated content

CMS-powered Websites, 27
external entity use, 68
PHP site map script, 130

E
element declarations, 62

internal memo example, 71
mixed content in, 64

notation, 63
elements, XHTML, 37
elements, XML

(see also metadata; nesting)
accessing by name with IE, 142, 149
attributes and, 8
checking nodes for, 152
choice between attribute storage and,

72
content discrimination using, 102
discerning context with XPath, 87
distinguished from tags and nodes,

7
DOM representation of, 281
element hierarchy and SimpleXML,

176
empty element notation, 9
hierarchical terminology for, 11
internal memo example, 70–71
naming and namespaces, 34, 39
retrieving using DOM, 170
selecting by name, 82
selecting by value, 109
SimpleXML naming and its implica-

tions, 174
structure of, 6
well-formedness and, 14

Emerson, Ralph Waldo, 59
empty element notation, 9

declaration in DTDs, 65
older browsers and, 37

encoding attribute, <xsl:output>, 54
end_element function, 167
entities

character, 10, 193
external, 68
parameter, 67

entity declarations, 66
unparsed entities, 270

error code constants
DOMException class, 286
PHP SAX functions, 261

343

error messages
internal memo validation by

Dreamweaver, 75
raw XML display in IE, 18

error trapping, SAX parser example,
168

escaping angle brackets, 122
example documents (see document ex-

amples)
example DTD applications, 69, 76
example PHP files

admintool.php, 328
admintool_edit.php, 328
articletool.php, 187
articletool_create.php, 189
articletool_edit.php, 194
authortool.php, 319
authortool_deletefail.php, 326
authortool_edit.php, 321
categorytool.php, 332
categorytool_deletefail.php, 335
categorytool_edit.php, 333
cats.php, 159
doAdminsUpdate.php, 330
doArticleCreate.php, 191
doArticleDelete.php, 197
doArticleUpdate.php, 196
doAuthorsUpdate.php, 323–324
doCategoriesUpdate.php, 334
domdemo.php, 170
domdemo2.php, 172
domdemo3.php, 172
domdemo4.php, 173
doNewsCreate.php, 312
doNewsDelete.php, 317
doNewsUpdate.php, 316
doSearch.php, 127
doWebcopyCreate.php, 303
doWebcopyDelete.php, 309
doWebcopyUpdate.php, 307
feed.php, 216

feedselect.php, 215
index.php, 186, 336
index.php file, 98
innerpage.php, 103
login.php, 182
logout.php, 186
navtop.inc.php, 96
news.inc.php, 100
newstool.php, 310
newstool_create.php, 311
newstool_edit.php, 314
parserss.php, 213
rpcclient-count.php, 239, 241
rpcclient-search.php, 242
rpcserver.php, 235–237
saxdemo.php, 166
search.inc.php, 161, 219
security.inc.php, 185
sitemap.php, 131
sqldump.php, 253
sxmldemo.php, 175–176
sxmldemo2.php, 175
sxmldemo3.php, 178
sxmldemo4.php, 179
sxmldemo5.php, 180
verify.php, 184–185
webcopytool.php, 299
webcopytool_create.php, 301, 303
webcopytool_edit.php, 305
xmlbackup.php, 257

example project (see CMS project)
example style sheets (see style sheet ex-

amples)
Expat parser, 165

case folding, 166
PHP SAX functions and, 261

exporting data as XML
hand-rolling a PHP converter, 253
using mysqldump, 251
using phpMyAdmin, 249

extensibility, 2

344

Index

Extensible Hypertext Markup Language
(see XHTML)

Extensible Stylesheet Language Trans-
formations (see XSLT)

external DTDs, 68
internal memo example, 76
linking to, 76

external entities, 68

F
faults, XML-RPC, 230
file paths and XPath, 107
Firefox

corrected jsTest.html display, 151
display of raw XML, 20
display problem with jsTest.html,

145
serialization bug, 147
treatment of whitespace, 152
validating parsers and, 20

firstChild property, 150
flat-file databases, 248
fopen function, PHP, 167
for-each element, XSL, 125
foreach loops, PHP, 176, 213
format attribute, <xsl:number>, 117
formatting, 12

book chapter example, 84
collapsible tree formatting, 53
XSLT whitespace problem, 47

forms, HTML (see example PHP files)
frameset DOCTYPE, XHTML, 38

G
general entities, 67
generated text, CSS, 43
getAttribute method, 153
getDomDocument method, Sarissa

class, 147
getElementById method, 154

getElementsByTagName method, 142,
170

greater-than symbol, 122

H
handler functions, PHP, 166
hasChildNodes method, 150
headings

book chapter title elements and, 87
CMS project homepage title, 100

heredoc syntax, PHP, 176
hierarchical nature of XML, 11
href attribute, including XPath expres-

sions, 135
HTML

limitations, 2–4
transforming XML into, 50
use in CMS content, 30

HTTP headers for XML-RPC requests,
228

HTTP POST requests, XML-RPC use,
224, 229, 237

I
IBM XML4J parser, 22
ID attributes, 66

categorization and, 158
creating new articles, 189, 192
including in links, 135
Stock Keeping Units, 113
webcopy element, 299, 304

ID elements, tracking author informa-
tion, 78

ID variables, CMS project content area,
102

IDREF attributes, 66
IE (see Internet Explorer)
if element, XSL, 122

<xsl:choose> and, 123
if test, 172
implicit templates, XSLT, 46

345

#IMPLIED attributes, 66
importNode method, 150–151
importStylesheet method, XSLTPro-

cessor class, 147
include command, PHP, 94
include files, CMS project

building an XML-RPC client, 239
category browser, 160
common include file, 93, 299
homepage, 95–96
homepage secondary navigation, 100
news include file, 100
security.inc.php, 185

indent attribute, <xsl:output>, 52
initMenu function, JavaScript, 152–

153, 155
cats.php use, 159

internal memo example, 70
using an external DTD, 76
validation, 74

Internet Explorer
error messages, 18
tag access bug, 149
transformNode method, 145
view of CSS-styled XML, 43
view of XML transformed into

HTML, 52
views of raw XML, 15
W3C DOM Recommendations and,

140
XSLT processing with JavaScript on,

142–145
interoperation of DOM and Sim-

pleXML, 180
item element, RDF, 203
item method, JavaScript, 141

J
JavaScript

CMS category listing using, 159
creating dynamic navigation, 151

jsTest.html display on Firefox, 145
XSLT processing with, 142–157

JavaScript files
jsTest.html, 149
jsTest-ie.html, 143
jsTest-ie2.html, 146

K
keyword information, CMS project, 29

L
languages

(see also JavaScript; PHP language;
XHTML; XPath language;
XQuery language; XSLT)

derived from XML, 2, 33
foreign-language documents using

XSLT, 44
XML contrasted with HTML, 3

legacy systems and Web Services, 224
less-than symbol, 122
link element, RSS, 202
linking to an RSS feed, 204
load and loadXML methods, JavaScript,

140
lookup tables, 78
looping through XML data, 125

parsing RSS feeds, 213
SAX parser example, 168
SimpleXML element arrays, 176

M
Macromedia Corporation products (see

Dreamweaver)
magic quotes, 182
markup (see elements; tags)
match attribute, <xsl:template>, 46

attribute matching example, 88
book chapter example, 84
element context matching example,

87

346

Index

XPath and, 82
media-type attribute, <xsl:output>, 54
<member> element, XML-RPC, 227
memory, loading documents into, 138
menus (see navigation systems)
metadata

CMS project, 25–28, 189
elements, Dublin Core initiative, 210
elements, RSS version 0.91, 206
RDF as a standard for, 199

meta-languages, 2
method attribute, <xsl:output>, 52
Microsoft Corporation products

(see also Internet Explorer)
MSXML parser, 21
XMLDOM parser, 139, 144

modules, RSS version 1.0, 210
Mozilla (see Firefox)
MSXML parser, 21
MySQL (see databases)
mysqldump command, 251

N
namespace declarations

default namespaces, 53
location, 40
RSS version 1.0, 208, 210

namespace prefixes, 40
spurious, in Firefox serialization bug,

147
XSL documents, 45

namespaces, XML, 39
default namespaces, 41, 53
introduced, 34
SOAP use of, 232

naming collisions, 39
native XML databases, 247
navigation systems

CMS project homepage, 95–96, 98
dynamic navigation with JavaScript,

151

nesting
elements, referencing, 98
elements, validator error messages,

75
elements, validity and, 7
errors and IE display, 19
hierarchical nature of XML and, 11
XHTML well-formedness and, 37
XML well-formedness and, 13

Netscape
RSS development and, 206

news aggregators, 205
news include file, CMS project

homepage, 100
News Is Free aggregator, 205
news item content type, CMS project,

56
assigning categories, 158
copy creation page, 311
delete processing script, 317
editing page, 314
index page, 310
managing, 309–318
new item processing script, 312
sample content item, 309
update processing script, 316

node collapsing
collapsible tree formatting, 53
raw XML display in IE, 16–17

NodeLists, DOM, 141
nodes, DOM, 138
nodes, XML

avoiding replacing, 307
creating, using DOM, 173
distinguished from elements and

tags, 7
DOMNode type constants, 290
reordering with <xsl:sort>, 110
XPath node position selectors, 110

nodeType property, checking, 152
normalization, 246
notation declarations, 270

347

number element, XSL, 117
sorted output and, 118, 120
value attribute, 120

numbered lists, 117
numerical sorting, 113

O
object orientation, 175
 elements, HTML, 120
omit-xml-declaration attribute,

<xsl:output>, 54
online validating parsers, 20
Opera, support for XSLT, 50
optional attributes, 66
order attribute, <xsl:sort>, 112
ordered lists, HTML, 120
otherwise element, XSL, 124
output document

displaying with JavaScript alert, 147
using <div> elements, 153

output element, XSL, 45, 51
further attributes, 53
XML to XML transformations, 52

P
parameter entities, 67
parameters, declaring with

<xsl:param>, 133
parent elements, XPath notation, 109
parsers

(see also Expat parser)
CDATA sections and, 31
creating a DOM parser, 169
DTD use, 61
Firefox and validating parsers, 20
instantiating for SAX, 167
local validating parsers, 21
validating and non-validating, 14
XMLDOM, 139, 144

password encryption, 185
#PCDATA, 61, 64

(see also plain text)
PEAR (PHP Extension and Application

Repository), 234
Perl validating parsers, 21
PHP functions

DOM functions, 272–294
registering as XML-RPC methods,

235
SAX functions, 261–272
SimpleXML functions, 294–295

PHP language
(see also example PHP files)
alternative scripting languages, 24
arrow notation and object orienta-

tion, 175
CMS project include files, 93, 160
DOM use, 169–174
exporting data as XML, 253, 257
handler functions for SAX, 166
heredoc syntax, 176
manipulating XML with, 163–181
regular expression use, 97
SAX use, 164–168
SimpleXML in PHP 5, 83, 95
SimpleXML use, 174–181
stripos function in PHP5, 129
XML-RPC extension, 234, 239, 241

php_xmlrpc.dll file, 234
phpMyAdmin interface, 249
plain text

DOM representation of, 273
element declarations for, 63–64
formatting, XSLT, 49

platform-independence, XML-RPC and
SOAP, 231

position function, XSL, 120
positional selectors, XPath, 110
post-relational databases, 248
predicates, XPath, 82, 89, 109

use with <xsl:for-each>, 126

348

Index

prefixes (see namespace prefixes)
presentation of XML documents, 12
printing

DOM structures as XML, 174
using <div> elements, 153

printTableContent function, 254
priority attribute, <xsl:template>, 89
provenance metadata, 25

Q
quoting attribute values, 7, 37

R
Radio UserLand aggregator, 205
RDF (Resource Description Frame-

work)
channel element in RSS feeds, 203
introduced, 199
item element in RSS feeds, 203
RSS 1.0 and, 207
RSS versions and, 204
tables of contents, 209

rdf:about attribute
channel element, 209
item element, 210

rdf:Seq element, 209
read-only DOM* classes, 273–274,

282, 291
redundant data, 9, 79
regular expressions

filename verification, 128
multiple element declarations and,

63
navtop.inc.php use, 97
query string verification, 102

relational databases
converting data to XML, 249–256
storing XML documents in, 246

remote procedure calls (see XML-RPC)
removeChild method, 150
#REQUIRED attributes, 66

result trees, 50
reusability of XML documents, 13
revisions, database storage of, 246
root element

(see also DOCTYPE declarations)
CMS project article content type, 28
database exports, 251
DOCTYPE declarations and, 61
hierarchical nature of XML and, 11
namespace declaration, 40
reference, in DOM parsers, 170
template matching, 82, 84
validity requirement, 8
well-formedness and, 13
XHTML well-formedness and, 37
XPath expression for, 108

RSS, 199–214
Atom alternative, 211
CMS project example, 215–219
creating an example feed, 202
guidelines for feed content, 200
linking to an RSS feed, 204
parsing RSS feeds, 212
SharpReader view of a SitePoint

feed, 201
validation, 205
versions, 206, 211
versions and RDF, 204, 207

RSS aggregators, 205
<rss> elements, 203
runtime (see dynamically updated con-

tent)

S
Safari, support for XSLT, 50
sample documents, style sheets (see

document examples; style sheet
examples)

sample Website (see CMS Project)
Sarissa JavaScript XML library, 146

category retrieval example, 159

349

dynamic navigation example, 152
saveXML method, 174
SAX (Simple API for XML), 164–168

compared with DOM, 163, 169, 171
parsing RSS 1.0, 214
PHP functions for, 261–272
PHP handler functions, 166
when to use, 164, 181

scheduling database exports, 252, 259
scope and namespace declarations, 41
<script> element, HTML, 144
scripting languages and CMSs, 24
search engine functionality

CMS project, 126–130
CMS project, using XML-RPC, 236,

241
stripos function use, 129
XPath expressions in, 109

search widget, CMS project, 94, 127,
161

link to RSS feed selection, 219
security and query string verification,

102
select attribute

<xsl:apply-templates>, 46
<xsl:sort>, 114, 134
<xsl:value-of>, 90

SELECT queries, SQL, 254
self-closing tags (see empty element

notation)
self-describing systems

Web Services as, 222
XML as, 5, 11

Semantic Web, the, 207
semantics, 4
separation of content from presenta-

tion, 5, 12
sequences, RDF, 209
serialization bug in Firefox, 147
serialize method, Sarissa class, 147
server side XML processing, 163–181

setParameter() method, XSLTProcessor
class, 133

SharpReader view of an RSS feed, 201
sibling elements, 11
SimpleXML API, 174–181

accessing attribute values, 178
casting objects to strings, 177–178
CMS homepage use, 95
compared with DOM and SAX, 163
content discrimination using XPath,

103
element hierarchy and, 176
element naming, 174
loading XML documents, 175
parsing an RSS feed, 213
PHP functions for, 294–295
search engine file loading, 128
shortcomings of, and DOM use, 180
site map creation, 130
updating, 179
use in articletool_create.php, 189
use in articletool_edit.php, 194
use in authortool_edit.php, 322
use in feedselect.php, 215
use in login verification page, 185
use in rpcserver.php, 236
use in webcopytool.php, 300
use in webcopytool_edit.php, 305
when to use, 181
xpath method, 98, 179
XPath use in, 83

simplexml_import_dom function, 180,
294

simplexml_load_file function, PHP, 96–
97, 175, 294

simplexml_load_string function, 131,
175, 294

SimpleXMLElement class, 295
single-sourcing, 13
site behavior and metadata, 27
site map, CMS project, 130–136

350

Index

SOAP (Simple Object Access Protocol),
222, 231–233

software independence of Web Services,
222

sort element, XSL, 110
CMS project site map, 134
data-type attribute, 114
order attribute, 112
select attribute, 114

sort mode selection, CMS project site
map, 132

sorted output
<xsl:number> and, 118, 120
ordered lists and, 120

source, viewing for transformed XML,
50

special characters
(see also entities)
escaping angle brackets, 122
XSLT number formats, 117

SQL commands, 254, 256
square brackets (see predicates, XPath)
standalone attribute, 68, 76
start_element function, 166
<status> element, CMS project, 30,

97
(see also read-only status)

strict DOCTYPE, XHTML, 37
stripos function, PHP, 129
structs, XML-RPC

as complex data type, 227
in responses, 230

structural metadata, 26
style attribute, HTML, 89
style sheet declarations, 49
style sheet examples

chapter2html.xsl, 84
chapter2xhtml.xsl, 87–90
conditional.xsl, 122
conditional2.xsl, 124
foreach*.xsl, 125–126

forms.css, 189, 191
letter to Mom, 42
letter2html.xsl, 51
letter2text.xsl, 45–46, 48
letter2xhtml.xsl, 54–55
login.css, 183
number.xsl, 117
number-position.xsl, 120
sitemap.xsl, 133
sort.xsl, 111
sort-count.xsl, 116
sort-descending.xsl, 112
sort-sku.xsl, 114
sort-sku-show.xsl, 114
test.xsl, 143
xmlcms.css, 101

style sheets and XML display, 12, 42
(see also CSS; XSLT)

stylesheet element, XSL, 45
switch statements, PHP, 166–167
syndication, using RSS, 199–200

Atom alternative to, 211
SYSTEM keyword, 68, 76

T
tags, XML, defined, 7
taxonomies, 12
temperature reading example

SOAP, 232
XML-RPC , 224

template element, XSL, 45
book chapter example, 84
template priority, 89
using XPath with, 82
XML to XML transformations, 53

test attribute, <xsl:if>, 122
text element, XSL, 48
textContent property, 141
timestamps

creating ID attributes, 192, 299, 304
site map creation, 130

351

title elements, book chapter example,
87, 100

titles, Web page, modifying, 90
transformNode method, IE, 145
transitional DOCTYPE, XHTML, 38
tree structures, 12, 163

(see also DOM)

U
unique attributes (see ID attributes)
unparsed entities, 270
URIs (Uniform Resource Identifiers)

basis of XML namespaces, 39
as RDF channel IDs, 209

URLs (Uniform Resource Locators)
role in RSS feeds, 202
URIs, URNs and, 39

Userland Corporation and RSS, 206
utf8_encode and uft8_decode functions,

262

V
validating parsers, 20–23
validation

alternatives to DTDs, 79
attributes, using DOMAtt, 273
example, using a DTD, 70
internal memo example, 74
RSS feeds, 205

validity, XML, 7
well-formedness and, 13–14

value attribute, <xsl:number>, 120
<value> element and XML-RPC data

types, 225–226
value-of element, XSL, 90, 114
version attribute, <xsl:stylesheet>, 45
version information, XML declarations,

10

W
W3C (World Wide Web Consortium)

DOM recommendations and, 138,
140

RSS validator from, 205
Semantic Web and, 207
SOAP protocol and, 233
XML family standardization, 35

weather service example
using SOAP, 232
using XML-RPC, 224

Web copy content type, CMS project,
57, 297–309

copy creation page, 301
copy editing page, 305
delete processing script, 308
index page, 299, 301
new copy processing script, 303
sample content item, 298
update processing script, 307

Web Services, 221–244
CMS Project use of, 233–243
database storage of transaction re-

cords, 246
locating Web Services, 224

Website example (see CMS Project)
well-formedness, 13

browser checks restricted to, 20
IE checks for, 18
validity distinguished from, 13
XHTML, 37
XSL files, 44

when element, XSL, 124
whitespace

<xsl:apply-templates> and, 46
<xsl:text> and, 47
handling by DOMDocument, 169
regarded as a node by Firefox, 152
XML to HTML transformation, 51

Windows Task Scheduler, 259
--with-xmlrpc option, 234

352

Index

workflow, CMS project, 27, 30

X
XHTML (Extensible Hypertext Markup

Language), 35–38
DOCTYPEs tabulated, 37
styled XML output as, 53, 84
as an XML family technology, 35

XML declarations, 10
creative element declarations, 63
linking to external DTDs, 68, 76

XML documents (see documents, XML)
XML family of technologies, 33
XML Schema

10,000-foot view, 69
compared to DTDs, 34, 60
SOAP use of, 232

xml.async property, 139
XML4J parser, 22
xml_* PHP functions listing, 263–272
xml_parser_create function, 167, 265
xml_parser_free function, 168, 266
XMLDOM parser, instantiating, 139,

144
XML-RPC, 224–231

building a client with PHP, 239, 241
building a server with PHP, 234
CMS Project use of, 233–243
introduced, 222
platform-independence, 231
requests, 228
responses, 230
simple data types tabulated, 225
SOAP compared to, 231

xmlrpc_server_call_method function,
234–235, 237

xmlrpc_server_create function, 234–235
xmlrpc_server_destroy function, 234,

237
xmlrpc_server_register_method func-

tion, 234–235, 237

xmlrpc-epi-php package, 239
<?xml-stylesheet?> directive, 42, 49
XPath language, 81–83, 107–110

count function, 116
database manipulation with, 247–

248
DOMXPath class and, 293
element context and, 87
escaping < and > operators, 122
including expression values in attrib-

utes, 135
matching attribute values, 82, 88
select attribute, <xsl:value-of>, 90
SimpleXML queries and, 96, 103,

179
template priority, 89
as an XML family technology, 34
<xsl:template> and, 46

xpath method, SimpleXML, 98, 179
XQuery language, 247–248
XSL extension to PHP, installing, 132
XSL files as XML, 44, 111

(see also style sheet examples)
<xsl:* elements (see element name)
XSLT (Extensible Stylesheet Language

Transformations), 44–55, 107–
136

book chapter example introduced,
83

browser support for, 50
conditional processing, 121
counting, 116
database manipulation with, 247
implicit templates, 46
looping, 125
numbered lists, 117
processing using JavaScript, 142–157
programmatic aspects, 110–126
rules-based nature, 44
single-sourcing and, 13
site map, 130–136

353

sorting, 110
transforming XML into HTML, 50
transforming XML into plain text,

44
transforming XML to XHTML, 53
transforming XML to XML, 52
using XPath with, 81
as an XML family technology, 33

XSLTProcessor class, JavaScript, 147
XSLTProcessor class, PHP, 132
xu_rpc_http_concise function, 239–

240, 242

Y
Yank, Kevin, 214, 233

354

Index

	No Nonsense XML Web Development With PHP
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Introduction to XML
	An Introduction to XML
	What is XML?
	Why Do We Need XML?
	A Closer Look at the XML Example
	A Structural Viewpoint
	Attributes
	Empty-Element Tags
	The XML Declaration
	Entities
	More than Structure…

	Formatting Issues
	Well-Formedness and Validity

	Getting Your Hands Dirty
	Viewing Raw XML in Internet Explorer
	Viewing Raw XML in Firefox
	Options for Using a Validating Parser
	Using an Online Validating Parser
	Using a Local Validating Parser
	Using Dreamweaver

	What if I Can’t Get a Validating Parser?

	Starting Our CMS Project
	So… What’s a Content Management System?
	Requirements Gathering
	CMS Content and Metadata
	Site Behavior
	CMS Administration

	Defining your Content Types
	Articles

	Gathering Requirements for Content Display
	Gathering Requirements for the Administrative Tool

	Summary

	XML in Practice
	Meet the Family
	A Closer Look at XHTML
	A Minimalist XHTML Example

	XML Namespaces
	Declaring Namespaces
	Placing Namespace Declarations in your XML Documents
	Using Default Namespaces

	Using CSS to Display XML In a Browser
	Getting to Know XSLT
	Your First XSLT Exercise
	Transforming XML into HTML
	Using XSLT to Transform XML into other XML

	Our CMS Project
	News
	Web Copy
	Administrators

	Summary

	DTDs for Consistency
	Consistency in XML
	What’s the Big Deal About Consistency?
	DTDs
	Element Declarations
	Elements that Contain only Text
	Mixed Content
	Empty Elements
	Attribute Declarations
	Entity Declarations
	External DTDs

	Getting Our Hands Dirty
	Our First Case: A Corporate Memo
	Validating Our First Case

	Second Case: Using an External DTD for Memos

	Our CMS Project
	Reworking the Way we Track Author Information
	Assign DTDs to our Project Documents?

	Summary

	Displaying XML in a Browser
	A Word on XPath
	A Practical XSLT Application
	A First Attempt at Formatting
	Using XPath to Discern Element Context
	Matching Attribute Values with XPath
	Using value-of to Extract Information

	Our CMS Project
	Why Start with the Display Side?
	Creating a Common Include File
	Creating a Search Widget Include File
	Building the Homepage
	Building the Top Navigation Include File
	Building the Bottom Half of the Homepage
	Writing the Style Sheet

	Creating an Inner Page

	Summary

	XSLT in Detail
	XPath
	Programmatic Aspects of XSLT
	Sorting
	Sorting Alphabetically
	Reversing the Sort
	Sorting by the Numbers

	Counting
	Numbering
	Conditional Processing
	xsl:if
	xsl:choose

	Looping Through XML Data

	Our CMS Project
	Finishing our Search Engine
	Creating an XSLT-Powered Site Map
	Generating a Site Map Dynamically
	Creating the Style Sheet

	Summary

	Manipulating XML with JavaScript/DHTML
	Why Use Client-Side Scripting?
	Working with the DOM
	Loading Documents into Memory
	Using the XML Parser

	Accessing Different parts of the Document
	Accessing XML Elements by Name

	XSLT Processing with JavaScript
	Making our Test Script Cross-Browser Compatible
	Creating Dynamic Navigation
	An Alternative Approach
	What’s the Point of Learning all This?

	Our CMS Project
	Assigning Content to Categories
	Retrieving Content by Category

	Summary

	Manipulating XML with PHP
	Using SAX
	Creating Handlers
	Creating the Parser and Processing the XML

	Using DOM
	Creating a DOM Parser
	Retrieving Elements
	Creating Nodes
	Printing XML from DOM

	Using SimpleXML
	Loading XML Documents
	The XML Element Hierarchy
	XML Attribute Values
	XPath Queries
	Using SimpleXML to Update XML
	Fixing SimpleXML Shortcomings with DOM

	When to Use the Different Methods
	Our CMS Project
	The Login Page
	The Admin Index Page
	Working with Articles
	Creating New Articles
	Editing an XML Article
	Deleting an XML Article

	Summary

	RSS and RDF
	What are RSS and RDF?
	What’s the Big Deal?
	What Kind of Information Should be Featured in an RSS Feed?
	Before We Get Started

	Creating Your First Basic RSS Feed
	Telling the World about your Feed
	Providing a Link on your Site
	Subscribing to RSS Aggregators

	Going Beyond the Basics

	RDF and RSS 1.0
	Adding Information with Dublin Core
	When to use RSS 1.0

	Parsing RSS Feeds
	Parsing our Feed with SimpleXML

	Our CMS Project
	Creating an RSS Feed
	Creating the Form
	Processing the Form Post Results

	Summary

	XML and Web Services
	What is a Web Service?
	What’s the Big Deal?
	What are Web Services Good At?

	XML-RPC
	The XML-RPC Data Model
	XML-RPC Requests
	XML-RPC Responses
	What do we Use to Process XML-RPC?

	SOAP
	What we Haven’t Covered

	Our CMS Project
	Building an XML-RPC Server
	Your First XML-RPC Method
	Creating a Search Method
	Processing a Request
	The Finished XML-RPC Server Script

	Building an XML-RPC Client that Counts Articles
	The Entire XML-RPC Client

	Building an XML-RPC Client that Searches Articles
	The Entire XML-RPC Client

	Summary

	XML and Databases
	XML and Databases
	Why use XML and Databases Together?
	Relational Database? Native XML Database? Somewhere in Between?

	Converting Relational Data to XML
	Using phpMyAdmin to Export XML
	Using mysqldump to Export XML
	Hand-Rolling an XML Converter

	Our CMS Project
	Building the MySQL Table
	Building the PHP
	Setting up a Cron Schedule to Run Periodically

	Summary

	Appendix A: PHP XML Functions
	SAX Functions
	Error Code Constants
	Function Listing
	utf8_decode
	utf8_encode
	xml_error_string
	xml_get_current_byte_index
	xml_get_current_column_number
	xml_get_current_line_number
	xml_get_error_code
	xml_parse
	xml_parse_into_struct
	xml_parser_create
	xml_parser_create_ns
	xml_parser_free
	xml_parser_get_option
	xml_parser_set_option
	xml_set_character_data_handler
	xml_set_default_handler
	xml_set_element_handler
	xml_set_end_namespace_decl_handler
	xml_set_external_entity_ref_handler
	xml_set_notation_decl_handler
	xml_set_object
	xml_set_processing_instruction_handler

	DOM Functions
	Object Listing
	DOMAttr
	DOMCharacterData
	DOMComment
	DOMDocument
	DOMDocumentType
	DOMElement
	DOMEntity
	DOMEntityReference
	DOMException
	DOMImplementation
	DOMNode
	DOMNodeList
	DOMNotation
	DOMProcessingInstruction
	DOMText
	DOMXPath

	Function Listing

	SimpleXML Functions
	Function Listing
	SimpleXMLElement methods

	Appendix B: CMS Administration Tool
	Picking Up Where We Left Off
	Managing Web Copy
	Web Copy Index Page
	Web Copy Creation Page
	New Web Copy Processing Script
	Web Copy Editing Page
	Web Copy Update Processing Script
	Web Copy Delete Processing Script

	Managing News Items
	News Item Index Page
	News Item Creation Page
	New News Item Processing Script
	News Item Editing Page
	News Item Update Processing Script
	News Item Delete Processing Script

	Managing Authors, Administrators, and Categories
	Managing Authors
	Managing Administrators
	Managing Categories

	Updating the Admin Index Page
	Summary

	Index

