

Summary of Contents
Introduction ... vii
1. DHTML Technologies .. 1
2. The Document Object Model ... 13
3. Handling DOM Events .. 43
4. Detecting Browser Features .. 75
5. Animation .. 95
6. Forms and Validation ... 125
7. Advanced Concepts and Menus .. 167
8. Remote Scripting ... 197
9. Communicating With The Server ... 251
10. DOM Alternatives: XPath .. 287
Index ... 305

DHTML Utopia
Modern Web Design Using
JavaScript & DOM

by Stuart Langridge

DHTML Utopia: Modern Web Design Using JavaScript & DOM
by Stuart Langridge

Copyright © 2005 SitePoint Pty. Ltd.

Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Design: Jess MasonTechnical Director: Kevin Yank
Cover Layout: Alex WalkerTechnical Editor: Simon Willison

Technical Editor: Nigel McFarlane
Editor: Georgina Laidlaw

Latest Update: November 2005Printing History:
First Edition: May 2005

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0–9579218–9–6
Printed and bound in the United States of America

About the Author

Stuart Langridge has been playing with the Web since 1994, and is quite possibly the
only person in the world to have a BSc in Computer Science and Philosophy. He invented
the term “unobtrusive DHTML,” and has been a leader in the quest to popularize this
new approach to scripting. When not working on the Web, he’s a keen Linux user and
part of the team at open-source radio show LUGRadio. He likes drinking decent beers,
studying stone circles and other ancient phenomena, and trying to learn the piano. Stuart
contributes to Stylish Scripting: SitePoint’s DHTML and CSS Blog.

About The Technical Editors

Simon Willison is a seasoned Web developer from the UK, with a reputation for pioneering
in the fields of CSS and DHTML. He specializes in both client- and server-side develop-
ment, and recently became a member of the Web Standards project. Visit him at
http://simon.incutio.com/, and at Stylish Scripting: SitePoint’s DHTML and CSS Blog,
to which he contributes.

Nigel McFarlane is the Mozilla community’s regular and irregular technical commentator.
He is the author of Firefox Hacks (O’Reilly Media) and Rapid Application Development with
Mozilla (Prentice Hall PTR). When not working for SitePoint, Nigel writes for a number
of trade publications and for the print media. He also consults to industry and government.
Nigel’s background is in science and technology, and in Web-enabled telecommunications
software. He resides in Melbourne, Australia.

About The Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint
on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps
best known for his book, Build Your Own Database Driven Website Using PHP & MySQL,
also from SitePoint. Kevin now lives in Melbourne, Australia. In his spare time he enjoys
flying light aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://simon.incutio.com/
http://www.sitepoint.com/

For Sam, who doesn’t know
what all this is about, but

listens anyway.

Table of Contents
Introduction ... vii

Who Should Read This Book? ... viii
What’s In This Book? ... viii
Whither XHTML? ... x
The Book’s Website .. xii

The Code Archive ... xii
Updates and Errata .. xii

The SitePoint Forums ... xii
The SitePoint Newsletters .. xii
Your Feedback ... xiii
Acknowledgements .. xiii

1. DHTML Technologies ... 1
HTML Starting Points ... 2

Step up to Valid HTML ... 2
Step up to Semantic HTML ... 4

Adding CSS ... 5
A Simple CSS Example .. 5

Adding JavaScript .. 7
A Simple JavaScript Example .. 8
Get Some Tools! ... 9

Further Reading ... 10
Summary ... 11

2. The Document Object Model ... 13
The Origins of the DOM .. 14
What is the DOM? .. 14

The Importance of Valid HTML ... 16
Walking DOM Trees .. 16

Finding the Top of the Tree .. 17
Getting an Element from the Tree ... 17
Walking from Parents to Children ... 20

What to do with Elements ... 21
Changing Element Attributes ... 21
Changing Text Nodes ... 22
Changing Style Properties .. 23

Bigger DOM Tree Changes ... 24
Moving Elements ... 24
Throwing Away Elements ... 26
Creating Elements .. 27

Copying Elements .. 28
Making an Expanding Form ... 30
Making Modular Image Rollovers ... 33

A Sample HTML Page .. 34
Summary ... 41

3. Handling DOM Events .. 43
About Elements and Events .. 43

Common Events .. 44
Hooking Code to Events .. 46
Making Events Work Cross-Browser ... 53

Smart Uses of Events ... 58
Creating Smarter Links .. 58
Making Tables More Readable .. 64

Summary ... 73

4. Detecting Browser Features ... 75
Old-Fashioned Browser Sniffing .. 76
Modern DOM Feature Sniffing .. 77

Which DOM Features Should We Test? 78
Where Should We Test for DOM Features? 78
Testing Non-DOM Features ... 79

Sniffing at Work: scrollImage .. 80
Setting Up the Page ... 81
Demonstrating the DHTML Effect ... 85
How the Code Works ... 86
clientX and clientY Problems .. 88
Browser Detection You Can’t Avoid .. 89
Calculating Screen Positions ... 90

Summary ... 92

5. Animation ... 95
Tastefulness and Usability .. 95
Animation Basics ... 96

The setTimeout Function .. 96
The setInterval Function .. 102

Handling Errors ... 104
When to use try and catch ... 105
The body onerror Handler .. 106

Scriptless Animation with GIFs .. 106
Movement Example: Rising Tooltips ... 108

Creating Special Tooltip Content .. 108
Designing the DHTML Library .. 111

iv

DHTML Utopia

Animating the Content .. 116
Full Rising Tooltips Example Listing ... 119

Summary ... 123

6. Forms and Validation ... 125
Reasons for Form Validation ... 126

Storing Clean Data .. 126
Defending Against Security Exploits ... 126
Improving User Interactivity .. 127

Simple Client-Side Validation ... 127
Using Regular Expressions .. 128
Connecting Regular Expressions to Fields 129
Preparing Quality Error Messages ... 131
Validation Processing .. 132
Checking on Submission .. 136

Client-Server Coordination .. 149
Dangers of Validating on the Client Only 149
Full Example: Server Fallback Validation 149

Improving Form Usability .. 154
Standing on the Shoulders of Giants .. 155
How to Find Scripts ... 159
Type-Ahead Drop-Down Lists ... 159

Summary ... 166

7. Advanced Concepts and Menus .. 167
Creating Menu Content ... 168

Create Semantic Menu Content ... 168
Styling the Menu’s Layout ... 171
Styling the Menu’s Appearance .. 173
Hiding the Secondary Content ... 174

Making the Menu Work ... 175
Advanced CSS Menu Alternatives .. 176
Making Submenus Appear ... 176
Adding Animation .. 185
The Benefit of Object-Based Programming 192

Summary ... 196

8. Remote Scripting ... 197
Problems with Frames .. 198
Remote Scripting Methods ... 198

Using <iframe> ... 199
Example: Autoforms ... 206
Hidden Cookie Updates ... 219

v

Example: Name Resolution ... 220
XMLHTTP .. 225
Example: Checking Usernames ... 228
Other Client-Server Options .. 237

Drawing Code from Servers .. 238
Example: Learning about Beer .. 238
Planning the DHTML Beer Pages ... 240
Generating the Starting Page from Data 241
Fetching HTML Fragments .. 243
Fetching and Running JavaScript .. 246

Summary ... 250

9. Communicating With The Server .. 251
Example: Managing Files .. 252

Specifying the File Manager ... 252
Planning the Technology .. 253
Listing Files and Folders ... 257
Server Control Commands ... 261
Implementing Drag-and-Drop .. 263
Expanding and Collapsing Lists .. 275

Using XML-RPC .. 277
Calling XML-RPC APIs .. 279
Example: Weblog Post Editor .. 280

Summary ... 286

10. DOM Alternatives: XPath ... 287
Introducing XPath .. 288

Applying XPath to XML ... 290
XPath Learning Resources .. 292

Example: Parsing RSS Feeds ... 292
About RSS 1.0 ... 293
Constructing Simple XPaths ... 295
Adding XML Namespaces .. 296
Designing the Blogroll .. 297
Building the Scripts .. 301

Summary ... 304
Index ... 305

vi

DHTML Utopia

Introduction
In a single decade, the Web has evolved from a simple method of delivering
technical documents to an essential part of daily life, making and breaking rela-
tionships and fortunes along the way. “Looking something up on the Internet,”
by which is almost always meant the Web, is now within reach of almost anyone
living in a first-world country, and the idea of conducting conversations and
business (and probably orchestras) in your Web browser is no longer foreign, but
part of life.

As Joe Average grows more used to the technology, he demands more: more in-
formation, more ease-of-use, more functionality, more interactivity. And here we
are, ready to provide, because he (and we) wants it, and because it’s fun. (One
of those fortunes mentioned earlier wouldn’t go amiss, either.) As the Web be-
comes a major (if not the major) application development platform, there’s a
greater need to give Websites the flexibility and power that client-side applications
can provide. More importantly, even the simplest Website can benefit from a
little interactivity here and there—making it better, more responsive, or easier
to use. HTML, the workhorse, manages some of this; CSS adds a few more tricks
and a breadth of possibility for the designer. For true flexibility and interactivity,
though, we need scripting.

Browser scripting has a long, albeit rather undistinguished, history. From the
earliest popup boxes, through rollover images, and into scrolling status bars, it
has provided the means to add that touch of the dynamic—even if it wasn’t used
for anything very exciting. But, all the while, a quiet movement was building.
The JavaScript language was refined and made more powerful; the very building
blocks of the Website were made available for manipulation; the real communic-
ative strengths of the Web were given form and the potential for use. Modern
scripting—DOM scripting—is a quantum leap away from the way things were.

In this book, I’ll be explaining how you can get your hands dirty with all this
juicy scripting goodness, and make your sites truly come alive. From the first
moment in which you use JavaScript to examine the structure of the page that
contains that JavaScript, a huge vista of potential really does open up before you.
The techniques described in this book will help you make your sites more dynamic
and more usable. They’ll assist you to overcome browser limitations and add new
functions, and occasionally, to do one or two cool things.

Who Should Read This Book?
This book is aimed at people who have built Websites before. Although I’ll briefly
cover HTML and CSS, you should already have experience working with these
technologies. Some experience with JavaScript might also be useful, but it is by
no means critical: modern scripting techniques are sometimes quite different
than “old-style” JavaScript.

By the time you’ve read the whole book, you’ll have a clear understanding of
how to build your sites so that you can easily hook DHTML scripts into them;
you’ll know how to work in a cross-browser and cross-platform way; lastly, you
will understand the power and flexibility that can be brought to your sites through
DOM enhancements.

What’s In This Book?
The book comprises ten chapters. The chapters do build on one another, so if
this is your first time working with DOM techniques, you might want to read
them in order. Once you have some experience with the DOM, hopping around
to refresh your memory on various points may suit you best.

Chapter 1: DHTML Technologies
To successfully write DOM scripts, a few essential basics—which most readers
of this book will already know—are required. In this first chapter, I’ll quickly
run through the essentials of HTML, CSS, and JavaScript. This chapter is
worth reading, because it’s critical for good scripting that your HTML and
CSS are valid and well-structured; this chapter tells you what that means.

Chapter 2: The Document Object Model
DOM scripting requires a deep understanding of the DOM—the Document
Object Model—itself. Everything else builds on this knowledge. In this
chapter, I’ll explain what the DOM is, how it can be manipulated, and what
such manipulations make possible.

Chapter 3: Handling DOM Events
Events occur when the user does something with your HTML document:
clicks a link, loads a page, or moves the mouse. In order to make your sites
interactive—to react to user input—you will need to work with such events.
Here, I explain what events are, show how to attach your code to them, and
reveal some of the complexities inherent in DOM events.

viii

Introduction

Chapter 4: Detecting Browser Features
Not every Web browser supports the features required to use DOM code ef-
fectively; those that do offer various levels of DOM support. Feature sniffing
is the name given to a set of techniques that have been designed to ensure
that your DOM code operates only in browsers that understand it; this
eradicates situations in which your sites work—but not as you expected!—and
avoids the dreaded JavaScript error box.

Chapter 5: Animation
Animation can be a key to improving a site’s usability; letting the user know
when something’s happening, or that something has changed, can enhance
the user experience, and be of great value to your site’s success. In this chapter,
I describe how to add animation to your pages using DOM scripting tech-
niques—and how to ensure that animation works across different browsers.

Chapter 6: Forms and Validation
Any reasonably-sized Website will contain at least a few forms to collect user
input. Scripting can provide some serious improvements to these forms: the
validation of user input, ease-of-use for users, the collection of better feedback,
and so on. Forms are built from HTML, like everything else, but the DOM
can be said to apply to them more than it does to other elements, because
forms have such a wide range of actions that you can manipulate in your
scripts.

Chapter 7: Advanced Concepts and Menus
In this chapter, we look at a more complex script: a multilevel animated drop-
down menu. The chapter describes the code required to build such a script,
pulling the techniques described in previous chapters together into a single,
real-world example that demonstrates how much power the DOM provides,
and how much easier it can be to work with than previous DHTML methods
for achieving the same tasks.

Chapter 8: Remote Scripting
While DOM scripting alone is an extremely useful tool, it can be made more
powerful still with a little assistance from the server. In this chapter, we ex-
plore how your scripts can retrieve dynamic content from the server, and in-
tegrate that content with the site, eliminating the need for constant page re-
freshes.

Chapter 9: Communicating With The Server
Communication with the server doesn’t mean simply that the server hands
out data. Your scripts can also pass data back, and engage in a real dialogue:

ix

What’s In This Book?

sending back a “something interesting has happened!” message can make
your Websites work much more like real dynamic applications. This chapter
enlarges on the previous one, describing the full power that server communic-
ation can create.

Chapter 10: DOM Alternatives: XPath
JavaScript offers opportunities for more advanced work through its integration
with other technologies. In this final chapter, I describe two of those integra-
tions: using XPath to work with XML, and integrating your DOM scripts
with Flash.

Whither XHTML?
Some people may wonder why all the examples in this book are HTML 4.01
Strict. “Why are you using HTML?” they ask. “Why not XHTML? It’s all, y’know,
XML and stuff! It must be better.”

There is a reason: using XHTML can cause a lot of upgrade issues, particularly
with the DHTML that we use in this book.

If you choose XHTML, then you’re placed in a “complete upgrade or do nothing”
position. When XHTML is served to an ordinary browser, that browser will treat
your lovely XML-compliant XHTML as perfectly ordinary HTML, unless you
make a special effort to do things differently. XHTML treated as ordinary HTML
removes all the supposed benefits of XHTML; it’s not checked for well-formedness
by the browser, for example.

The special effort that you need to make is to change the MIME type with which
your Web server serves your XHTML document. By default, Web servers will
serve it as text/html, which means that it will be treated as “tag soup” HTML,
without enjoying any of the XHTML benefits, as mentioned above. Moreover,
Ian “Hixie” Hickson, who’s part of both the Mozilla and Opera teams as well as
the CSS working group, has laid out a set of objections1 which states that XHTML
should not be served as text/html at all.

In order to have a browser treat your XHTML as XHTML (and thence as XML),
rather than as tag soup, it must be served with MIME type applica-
tion/xhtml+xml. Unfortunately, Internet Explorer (for one, and it’s not alone)
does not support XHTML documents served as application/xhtml+xml; it will

1 http://www.hixie.ch/advocacy/xhtml

x

Introduction

http://www.hixie.ch/advocacy/xhtml

give you a “download this document” dialog rather than displaying it in the
browser. That’s a disaster for most Web pages.

It’s possible to have the Web server detect whether the user’s browser can cope
with application/xhtml+xml and serve with an appropriate MIME type:
text/html for those browsers that do not support application/xhtml+xml.
(Remember that serving XHTML as text/html is wrong, according to Hixie’s
objections above.) But, even in those browsers that do support applica-
tion/xhtml+xml, and therefore parse your XHTML document as it should be
parsed, there are still other problems that take some getting around.

Here are a few examples. CSS in properly-parsed XHTML documents works
differently: selectors are case-sensitive, and setting backgrounds and the like on
the body doesn’t propagate those styles up to the document as it does in HTML
(the styles must be set on html instead).

Most importantly for this book, XHTML makes using DOM scripting pretty
awkward. The HTML collections document.images, document.forms,
document.links, and so on, do not exist in many browsers’ implementations of
the XHTML DOM. Arguably, one should avoid using these anyway in preparation
for XHTML later. Instead, you must use document.getElementsByTagName ap-
propriately. The element names in the DOM are also case-sensitive (and always
lowercase, since XML element names are lowercase and XHTML is XML). That
can be a bit of coding style trap. You also can’t use document.write at all, al-
though you probably should avoid it anyway, for reasons I’ll explain in this book.

These are not major problems, and if you’re into standards then most of these
issues won’t affect your code anyway, but a final issue remains: you can’t use
document.createElement to create new elements with the DOM. Instead, because
XHTML is XML, and therefore supports namespaces, you must create each ele-
ment specifically within the XHTML namespace. So, instead of using
document.createElement('a'), to create a new a element, you must use
document.createElementNS('http://www.w3.org/1999/xhtml', 'a').

Of course, you must only use document.createElementNS when your document
is being parsed as XHTML—not when it’s being parsed as HTML (as in Internet
Explorer)—so you’ll need to detect which case you’re dealing with, and change
what the script does appropriately.

In short, using XHTML right now provides very little in the way of benefits, but
brings with it a fair few extra complications. HTML 4.01 Strict is just as “valid”
as XHTML—XHTML did not replace HTML but sits alongside it. It’s just as
easy to validate an HTML 4.01 page as it is to validate an XHTML page. I’ve

xi

Whither XHTML?

used HTML 4.01 Strict for all the examples in this book, and I recommend that
you use it, too.

Mark Pilgrim has written in more detail about using XHTML2 and the problems
that lie therein. For this book, we’re sticking with tried-and-true HTML 4.01.

The Book’s Website
Located at http://www.sitepoint.com/books/dhtml1/, the Website supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note that most of the code listings are
labelled with filenames, and a number of references are made to the code archive.
This is a downloadable ZIP archive that contains complete code for all the ex-
amples presented in this book.

Updates and Errata
The Errata page on the book’s Website will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about DHTML. If you have a question about anything in this
book, the bes t p lace to go for a quick answer i s
http://www.sitepoint.com/forums/—SitePoint’s vibrant and knowledgeable com-
munity.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

2 http://www.xml.com/pub/a/2003/03/19/dive-into-xml.html

xii

Introduction

http://www.xml.com/pub/a/2003/03/19/dive-into-xml.html
http://www.sitepoint.com/books/dhtml1/
http://www.sitepoint.com/forums/

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of Web development. The long-running Site-
Point Tribune is a biweekly digest of the business and moneymaking aspects of
the Web. Whether you’re a freelance developer looking for tips to score that
dream contract, or a marketing major striving to keep abreast of changes to the
major search engines, this is the newsletter for you. The SitePoint Design View is
a monthly compilation of the best in Web design. From new CSS layout methods
to subtle PhotoShop techniques, SitePoint’s chief designer shares his years of
experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact me for
any other reason, the best place to write is books@sitepoint.com. We have a
well-manned email support system set up to track your inquiries, and if our
support staff are unable to answer your question, they send it straight to me.
Suggestions for improvement as well as notices of any mistakes you may find are
especially welcome.

Acknowledgements
The two Simons, Simon Mackie, my editor, and Simon Willison, my expert re-
viewer, deserve quite an enormous vote of thanks. This book would not be any-
where near as good as it is without them.

I’d also like to raise a hand to the Web development community: there are people
everywhere diving into these new technologies with gusto, establishing guidelines,
making discoveries, and revealing hitherto unsuspected truths about how cool
all this stuff is. Keep it up. We’re fixing the world, and I’m proud to be a part of
it.

xiii

Your Feedback

http://www.sitepoint.com/newsletter/

xiv

DHTML Technologies1
The White Rabbit put on his spectacles. ‘Where shall I begin, please your Majesty?’ he
asked. ‘Begin at the beginning,’ the King said gravely, ‘and go on till you come to the end:
then stop.’
—Lewis Carroll, Alice’s Adventures in Wonderland

Dynamic HTML, called DHTML for short, is the name given to a set of Web
development techniques that are mostly used in Web pages that have non-trivial
user-input features. DHTML means manipulating the Document Object Model
of an HTML document, fiddling with CSS directives in style information, and
using client-side JavaScript scripting to tie everything together.

In this introductory chapter, I’ll provide a brief overview of some of the things
you’ll need to know about: the building blocks that make up DHTML Websites.
You’ll find it useful reading if you need to refresh your memory. If you already
know all these details, you might want to flick through the chapter anyway; you
may even be a little surprised by some of it. In the coming pages, we’ll come to
understand that DHTML is actually a combination of proper HTML for your
content, Cascading Style Sheets for your design, and JavaScript for interactivity.
Mixing these technologies together can result in a humble stew or a grandiose
buffet. It’s all in the art of cooking, so let’s start rattling those pots and pans!

HTML Starting Points
Websites are written in HTML. If you’re reading this book, you’ll almost certainly
know what HTML is and will probably be at least somewhat experienced with
it. For a successful DHTML-enhanced Website, it’s critical that your HTML is
two things: valid and semantic. These needs may necessitate a shift away from
your previous experiences writing HTML. They may also require a different ap-
proach than having your preferred tools write HTML for you.

Step up to Valid HTML
A specific set of rules, set out in the HTML recommendation1, dictate how HTML
should be written. HTML that complies with these rules is said to be “valid.”
Your HTML needs to be valid so that it can be used as a foundation on which
you can build DHTML enhancements. While the set of rules is pretty complex,
you can ensure that your HTML is valid by following a few simple guidelines.

Correctly Nest Tags

Don’t let tags “cross over” one another. For example, don’t have HTML that
looks like the snippet shown below:

Here is some bold and italic text.

Here, the and tags cross over one another; they’re incorrectly
nested. Nesting is extremely important for the proper use of DHTML. In later
chapters of this book, we’ll study the DOM tree, and the reasons why incorrect
nesting causes problems will become clear. For now, simply remember that if you
cross your tags, each browser will interpret your code in a different way, according
to different rules (rather than according to the standard). Any hope of your being
able to control the appearance and functionality of your pages across browsers
goes right out the window unless you do this right.

Close Container Tags

Tags such as or <p>, which contain other items, should always be closed
with or </p>, or the appropriate closing tag. It’s important to know
which tags contain things (e.g. text or other tags) and to make sure you close
them. <p>, for example, doesn’t mean “put a paragraph break here,” but “a

1 http://www.w3.org/TR/html4/

2

Chapter 1: DHTML Technologies

http://www.w3.org/TR/html4/

paragraph begins here,” and should be paired with </p>, “this paragraph ends
here.”2 The same logic applies to tags as well.

Always Use a Document Type

A document type (or DOCTYPE) describes the dialect of HTML that’s been
used; there are several different options. In this book, we’ll use the dialect called
HTML 4.01 Strict.3 Your DOCTYPE, which should appear at the very top of
every HTML page, should look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

That information can be typed on a single line, or with a line break after EN”.
Don’t worry, for the moment, about what this means: just be sure to place it at
the top of every page. The article Fix Your Site With the Right DOCTYPE!4, pub-
lished on A List Apart5, lists all the DOCTYPEs you might want to use, and why
you’d need to use them at all. I visit that article all the time to cut and paste the
one I need!

Validate your Page

The most important page creation step is to check that your HTML is valid.
There are numerous tools that you can download and run on your own computer
to test your code’s validity—some HTML editors even have such tools built in—or
you can use one of the many online validators, the most common of which is the
W3C’s own validator6. A validator will tell you how you need to adjust your
HTML in order to make it compatible with DHTML techniques. The ultimate
reference for what constitutes valid HTML is the HTML recommendation7. It’s
complex and detailed, but if you have any questions about how HTML should
be written, or whether a tag really exists, you’ll find the answers there. As men-
tioned above, browsers rely on a standard that describes how validated HTML
should be interpreted. However, there are no standards to describe how invalid

2 Those who know what they’re doing with container tags will be aware that HTML 4.01 does not
actually require that all container tags are closed (though XHTML still does). However, it’s never
invalid to close a container tag, though it is sometimes invalid to not do so. It’s considerably easier
to just close everything than it is to remember which tags you’re allowed to leave open.
3 If you’re thinking, “but I want to use XHTML!” then I bet you already know enough about DOC-
TYPEs to use them properly.
4 http://www.alistapart.com/articles/doctype/
5 http://www.alistapart.com/
6 http://validator.w3.org/
7 http://www.w3.org/TR/html4/

3

Step up to Valid HTML

http://www.alistapart.com/articles/doctype/
http://www.alistapart.com/
http://validator.w3.org/
http://www.w3.org/TR/html4/

HTML should be interpreted; each browser maker has established their own rules
to fill that gap. Trying to understand each of these rules would be difficult and
laborious, and you have better things to do with your time. Sticking to valid
HTML means that any problems you find are deemed to be bugs in that
browser—bugs that you may be able to work around. Thus, using valid HTML
gives you more time to spend with your family, play snooker, etc. which, if you
ask me, is a good reason to do it.

Step up to Semantic HTML
In addition to its validity, your HTML should be semantic, not presentational.
What this means is that you should use HTML tags to describe the nature of an
element in your document, rather than the appearance of that element. So don’t
use a <p> tag if you mean, “put a blank line here.” Use it to mean, “a paragraph
begins here” (and place a </p> at the end of that paragraph). Don’t use <block-
quote> to mean, “indent this next bit of text.” Use it to mean, “this block is a
quotation.” If you mark up your HTML in this way, you’ll find it much easier
to apply DHTML techniques to it further down the line. This approach is called
semantic markup—a fancy way of saying, “uses tags to describe meaning.”

Let’s look at a few example snippets. First, imagine your Website has a list of
links to different sections. That list should be marked up on the basis of what it
is: a list. Don’t make it a set of <a> tags separated by
 tags; it’s a list, so it
should be marked up as such, using and tags. It might look something
like this:

 Home
 About this Website
 Contact details

You’ll find yourself using the tag a lot. Many of the items within a Website
are really lists: a breadcrumb trail is a list of links, a menu structure is a list of
lists of links, and a photo gallery is a list of images.

Similarly, if your list contains items with which comments are associated, maybe
it should be marked up as a definition list:

<dl>
 <dt>Home</dt>
 <dd>Back to the home page</dd>
 <dt>About this Website</dt>

4

Chapter 1: DHTML Technologies

 <dd>Why this site exists, how it was set up, and who did it
 </dd>
 <dt>Contact details</dt>
 <dd>Getting in contact with the Webmaster: email addresses
 and phone numbers</dd>
</dl>

Remember: the way your page looks isn’t really relevant. The important part is
that the information in the page is marked up in a way that describes what it is.
There are lots of tags in HTML; don’t think of them as a way to lay out inform-
ation on your page, but as a means to define what that information means.

If you don’t use HTML to control the presentation of your pages, how can you
make them look the way you want them to? That’s where Cascading Style Sheets
come in.

Adding CSS
Cascading Style Sheets (CSS) is a technique that allows you to describe the
presentation of your HTML. In essence, it allows you to state how you want each
element on your page to look. An element is a piece of HTML that represents
one thing: one paragraph, one heading, one image, one list. Elements usually
correspond to a particular tag and its content. When CSS styles are used, DHTML
pages can work on the appearance and the content of the page independently.
That’s a handy and clean separation. If you want to look good, you need to learn
how to dress up and go to the gym regularly!

A Simple CSS Example
Imagine you want your main page heading (an <h1> tag) to be displayed in big,
red, centered text. You should specify that in your style sheet as follows:

h1 {
 font-size: 300%;
 color: #FF0000;
 text-align: center;
}

See the section called “Further Reading” at the end of this chapter for some links
to introductory tutorials on CSS, which should help if the above lines don’t make
a lot of sense to you.

5

Adding CSS

Here’s a simple HTML page before and after these styles have been applied:

Figure 1.1. That HTML’s stylin’!

The key point here is to remove the presentation aspects from your HTML and
put them into your style sheet. If , for example, you made your page heading
bigger by putting tags in your HTML, then you’d need to paste those
tags into every page on which a header was used. By making your HTML semantic
and moving the page’s presentation into CSS, you can control the look of headings
across the whole site through a single style sheet. This makes your job as Website
developer much easier.

Of course, it’s not quite as easy as that. Although the full definition of CSS allows
you to do some fairly amazing things, and to control the presentation of your
pages to a high degree, not every browser supports everything that CSS has to
offer.

6

Chapter 1: DHTML Technologies

In order to know about the differences in browser support for CSS, you need to
know what CSS can do. There are two sorts of browser incompatibilities: things
that a given browser doesn’t implement, and things that it implements incorrectly.
Occasionally, browsers add their own “special features” as well, but we won’t be
worried about those in this book.

Missing implementations are relatively easy to deal with: don’t rely on such rules
if you want your CSS to work in browsers that have failed to implement them.
This can be a pain, especially since the most commonly used browser in the world,
Internet Explorer for Windows, has some serious holes in its CSS support; how-
ever, this “solution” is often a necessary compromise. Learning which rules you
can and can’t use is one of the steps on the path to CSS guru-hood.

Badly implemented standards are a bigger problem. In such cases, the browser
gets it wrong. Another step to CSS guru-hood is understanding exactly what each
browser does wrong, and how you can work around those failings. You don’t
need that knowledge to start with, though: you’ll pick it up as you go along.
Workarounds for CSS bugs in different browsers are usually achieved using CSS
hacks. These hacks take advantage of the bugs in a browser’s CSS parser to de-
liver it specific style sheet directives that work around its poor implementation
of the standards. A huge variety of these CSS hacks is documented for each
browser in various places around the Web; see the section called “Further Reading”
for more.

Learning to understand and adapt to the vagaries of CSS handling in various
browsers is part of the work that’s required to use CSS effectively. While it can
be a lot of work, many CSS bugs only become apparent with the complex use of
this technology; most CSS is handled perfectly across platforms and browsers
without the need for hacks or complex tests.

While CSS is powerful, it doesn’t quite give us true flexibility in presentation.
The capabilities of CSS increase all the time, and more “interactive” features are
constantly being added to the CSS specification. However, it’s not designed for
building truly interactive Websites. For that, we need the final building block of
DHTML: JavaScript.

Adding JavaScript
JavaScript is a simple but powerful programming language. It’s used to add dy-
namic behavior to your Website—the D in DHTML. HTML defines the page’s
structure, and CSS defines how it looks, but actions, the things that happen when

7

Adding JavaScript

you interact with the page—by clicking a button, dragging an image, or moving
the mouse—are defined in JavaScript. JavaScript works with the Document Object
Model, described in the next chapter, to attach actions to different events
(mouseovers, drags, and clicks). We’re not going to describe all the gory JavaScript
syntax in detail here—the section called “Further Reading” has some links to a
few JavaScript tutorials if you need them.

A Simple JavaScript Example
Here’s a simple piece of JavaScript that converts a text field’s value to uppercase
when the user tabs out of the field. First let’s see the old, bad way of doing it:

File: oldlisteners.html (excerpt)

<input id="street" type="text"
 onchange="this.value = this.value.toUpperCase();">

In this book, we’ll recommend a more modern technique. First, the HTML:

File: newlisteners.html (excerpt)

<input id="street" type="text">

Second, the JavaScript, which is usually located in the <head> part of the page:

File: newlisteners.html (excerpt)

<script type="text/javascript">
function uppercaseListener() {
 this.value = this.value.toUpperCase();
}

function installListeners() {
 var element = document.getElementById('street');
 element.addEventListener('change', uppercaseListener, false);
}

window.addEventListener('load', installListeners, false);
</script>

The first function does the work of converting the text. The second function
makes sure that the first is connected to the right HTML tag. The final line per-
forms this connection once the page has loaded in full. Although this means more
code, notice how it keeps the HTML content clean and simple. In future chapters,
we’ll explore this kind of approach a lot. Don’t worry about the mechanics too
much for now—there’s plenty of time for that!

8

Chapter 1: DHTML Technologies

Get Some Tools!
A good JavaScript development environment makes working with JavaScript far
easier than it would otherwise be. Testing pages in Internet Explorer (IE) can
leave something to be desired; if your page generates JavaScript errors (as it will
do all the time while you’re building it!), IE isn’t likely to be very helpful at dia-
gnosing where, or what, they are. The most useful, yet simple, tool for JavaScript
debugging is the JavaScript Console in Mozilla or Mozilla Firefox. This console
will clearly display where any JavaScript error occurs on your page, and what that
error is. It’s an invaluable tool when building JavaScript scripts. Mozilla Firefox
works on virtually all platforms, and it’s not a big download; it also offers better
support for CSS than Internet Explorer, and should be part of your development
toolkit. Beyond this, there’s also the JavaScript debugger in Mozilla, which is
named Venkman; if you’re the sort of coder who has worked on large projects in
other languages and are used to a debugger, Venkman can be useful, but be aware
that it takes a bit of setting up. In practice, though, when you’re enhancing your
site with DHTML, you don’t need anything as complex as a debugger; the
JavaScript Console and judicious use of alert statements to identify what’s going
on will help you through almost every situation.

Another tool that’s definitely useful is a good code editor in which to write your
Website. Syntax highlighting for JavaScript is a really handy feature; it makes
your code easier to read while you’re writing it, and quickly alerts you when you
leave out a bracket or a quote. Editors are a very personal tool, and you might
have to kiss a fair few frogs before you find your prince in this regard, but a good
editor will seriously speed and simplify your coding work. Plenty of powerful,
customizable editors are available for free, if you don’t already have a preferred
program. But, if you’re currently writing code in Windows Notepad, have a look
at what else is available to see if any other product offers an environment that’s
more to your liking. You’ll want syntax highlighting, as already mentioned; a way
to tie in the external validation of your pages is also useful. Crimson Editor8 and
Textpad9 are free and free-to-try (respectively), Windows-based editors that
cover the basics if you’re developing on a Windows platform; Mac users tend to
swear by BBEdit10; Linux users have gedit or Kate or vim to do the basics, and
there’s always Emacs.

JavaScript is the engine on which DHTML runs. DHTML focuses on manipulating
your HTML and CSS to make your page do what the user wants, and it’s Java-

8 http://www.crimsoneditor.com/
9 http://www.textpad.com/
10 http://www.barebones.com/

9

Get Some Tools!

http://www.crimsoneditor.com/
http://www.textpad.com/
http://www.barebones.com/

Script that effects that manipulation. Through the rest of this book, we’ll explore
that manipulation in more and more detail.

Further Reading
Try these links if you’re hungry for more on CSS itself.

http://www.sitepoint.com/article/css-is-easy
SitePoint’s easy introduction to the world of CSS is a great place to start.

http://www.w3schools.com/css/
W3Schools’ CSS tutorials are helpful whether you’re learning, or simply
brushing up on your knowledge of CSS.

http://www.csszengarden.com/
The CSS Zen Garden is a marvelous demonstration of the power of Cascading
Style Sheets alone. It has a real wow factor!

http://centricle.com/ref/css/filters/
This comprehensive list of CSS hacks shows you which browsers will be af-
fected by a given hack, if you need to hide certain CSS directives (or deliver
certain directives) to a particular browser.

http://www.positioniseverything.net/
This site demonstrates CSS issues in various browsers and explains how to
work around them.

http://www.css-discuss.org/
The CSS-Discuss mailing list is “devoted to talking about CSS and ways to
use it in the real world; in other words, practical uses and applications.” The
associated wiki11 is a repository of useful tips and tricks.

http://www.sitepoint.com/books/
If you’re after something more definitive, SitePoint’s book, HTML Utopia:
Designing Without Tables Using CSS12 is a complete guide and reference for
the CSS beginner. The CSS Anthology: 101 Tips, Tricks & Hacks13 is a perfect
choice if you prefer to learn by doing.

11 http://css-discuss.incutio.com/
12 http://www.sitepoint.com/books/css1/
13 http://www.sitepoint.com/books/cssant1/

10

Chapter 1: DHTML Technologies

http://www.sitepoint.com/article/css-is-easy
http://www.w3schools.com/css/
http://www.csszengarden.com/
http://centricle.com/ref/css/filters/
http://www.positioniseverything.net/
http://www.css-discuss.org/
http://css-discuss.incutio.com/
http://css-discuss.incutio.com/
http://www.sitepoint.com/books/
http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/books/cssant1/

A lot of tutorials on the Web cover JavaScript. Some explore both DHTML and
the DOM, while others do not; you should try to find the former.

http://www.sitepoint.com/article/javascript-101-1
This tutorial provides an introduction to the basics of JavaScript for the total
non-programmer. Some of the techniques presented in this article aren’t as
modern as the alternatives presented in this book, but you’ll get a good feel
for the language itself.

http://www.quirksmode.org/
Peter-Paul Koch’s list of JS techniques and scripts covers a considerable
amount of ground in this area.

Summary
In this chapter, we’ve outlined the very basic building-blocks of DHTML: what
HTML really is, how to arrange and display it in your documents using CSS, and
how to add interactivity using JavaScript. Throughout the rest of this book, we’ll
look at the basic techniques you can use to start making your Websites dynamic,
then move on to discuss certain advanced scripting techniques that cover specific
areas. On with the show!

11

Summary

http://www.sitepoint.com/article/javascript-101-1
http://www.quirksmode.org/

12

The Document Object Model2
One day someone came in and observed, on the paper sticking out of one of the Teletypes,
displayed in magnificent isolation, this ominous phrase:

values of will give rise to dom!

…the phrase itself was just so striking! Utterly meaningless, but it looks like what… a
warning? What is “dom?”
—Dennis M. Richie1

A Web page is a document. To see that document, you can either display it in
the browser window, or you can look at the HTML source. It’s the same document
in both cases. The World Wide Web Consortium’s Document Object Model
(DOM) provides another way to look at that same document. It describes the
document content as a set of objects that a JavaScript program can see. Naturally,
this is very useful for DHTML pages on which a lot of scripting occurs. (The
quote above is a pure coincidence—it’s from the days before the Web!)

According to the World Wide Web Consortium2, “the Document Object Model
is a platform- and language-neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style of documents.

1 http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
2 http://www.w3.org/DOM/#what

http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
http://www.w3.org/DOM/#what

The document can be further processed and the results of that processing can be
incorporated back into the presented page.” This statement basically says that
the DOM is not just a novelty—it is useful for doing things. In the coming pages,
we’ll take a brief look at the history of the DOM before investigating more deeply
what it is and how we can use it. We’ll finish up with some example scripts that
demonstrate the power of this critical aspect of DHTML.

The Origins of the DOM
In Netscape Navigator 2, Netscape Communications introduced JavaScript (briefly
called LiveScript), which gave Web developers scripting access to elements in
their Web pages—first to forms, then, later, to images, links, and other features.
Microsoft implemented JavaScript in Internet Explorer 3 (although they called
it JScript) in order to keep up with Netscape.

By version 4, the two browsers had diverged significantly in terms of their respect-
ive feature sets and the access they provided to page content. Each browser
manufacturer implemented its own proprietary means of providing scripting access
to layers. Scripts that wanted to work in both browsers needed to contain code
for each method. The ill-fated “browser wars” were all about these proprietary
extensions to the Web, as each manufacturer strove to attract more developers
to its platform through the lure of new features. There was little regard for cross-
browser compatibility, although Microsoft copied and supported most of the
early innovations made by Netscape.

While all this was taking place, the W3C developed a specification for the Doc-
ument Object Model Level 1, which outlined a generic and standard method to
access the various parts of an XML document using script. Since HTML can be
thought of as a dialect of XML, the DOM Level 1 spec applied to HTML as well.

Both major browser manufacturers implemented the DOM Level 1 specification:
in Internet Explorer 5 and in Netscape 6. The previously existing proprietary
specifications were retrospectively titled; since the new standard was DOM Level
1, those old and now deprecated methods were called DOM Level 0. (Since then,
the W3C has also released the DOM Level 2 and DOM Level 3 specifications,
which add more features and are broken into separate modules.) There’s no
formal DOM Level 0 standard, though.

What is the DOM?
So, you know what the DOM used to be. Now let’s discuss what it is.

14

Chapter 2: The Document Object Model

Essentially, the DOM provides access to the structure of an HTML page by
mapping the elements in that page to a tree of nodes. Each element becomes an
element node, and each bit of text becomes a text node. Take this HTML snippet,
for example:

<body>
 <p>
 This is a paragraph, containing

 a link

 in the middle.
 </p>

 This item has

 some emphasized text

 in it.

 This is another list item.

</body>

I added lots of extra indenting so that you can compare this snippet with the
matching DOM tree. Don’t do that in real life—I’m just trying to make things
clearer in this case. The matching DOM tree is shown in Figure 2.1.

As you can see, the a element, which is located inside the p element in the HTML,
becomes a child node, or just child, of the p node in the DOM tree. (Symmet-
rically, the p node is the parent of the a node. The two li nodes, children of the
same parent, are called sibling nodes or just siblings.)

Notice that the nesting level of each tag in the HTML markup matches the
number of lines it takes to reach the same item in the DOM tree. For example,
the <a> tag is nested twice inside other tags (the <p> and <body> tags), so the a
node in the tree is located two lines from the top.

15

What is the DOM?

Figure 2.1. An example of a DOM tree.

The Importance of Valid HTML
From this last example, we can see more clearly why valid HTML, including
properly nested elements, is important. If elements are improperly nested, prob-
lems arise. Take the following line:

These elements are badly nested.

The DOM tree that results from this incorrectly nested code won’t be a tree at
all: it would need to be malformed in order to express the invalid element layout
that this HTML requests. Each browser fixes malformed content in a different
way, which can generate such horrors as an element that is its own parent node.
Keeping your HTML valid avoids all these problems.

Walking DOM Trees
Trees of nodes turn up a lot in computing, because, among other things, they
have a very useful property: it’s easy to “walk the tree” (that is, to iterate through

16

Chapter 2: The Document Object Model

every one of the tree’s nodes in order) with very little code. Walking a tree is
easy because any element node can be considered as the top of its own little tree.
Therefore, to walk through a tree, you can use a series of steps, for example:

1. Do something with the node we’re looking at

2. Does this node have children? If so:

3. For each of the child nodes, go to step 1

This process is known as recursion, and is defined as the use of a function that
calls itself. Each child is the same type of thing as the parent and can therefore
be handled in the same way. We don’t do much with recursion ourselves, but we
rely quite heavily on the browser recursing through the page’s tree. It’s especially
useful when it comes time to work with events, as we’ll see in Chapter 3.

Finding the Top of the Tree
In order to walk the DOM tree, you need a reference to the node at its top: the
root node. That “reference” will be a variable that points to the root node. The
root node should be available to JavaScript as document.documentElement. Not
all browsers support this approach, but fortunately it doesn’t matter, because
you’ll rarely need to walk through an entire document’s DOM tree starting from
the root. Instead, the approach taken is to use one of the getElementsByWhatever
methods to grab a particular part of the tree directly. Those methods start from
the window.document object—or document for short.

Getting an Element from the Tree
There are two principal methods that can be used to get a particular element or
set of elements. The first method, which is used all the time in DHTML program-
ming, is getElementById. The second is getElementsByTagName. Another
method, getElementsByName, is rarely used, so we’ll look at the first two only
for now.

getElementById

In HTML, any element can have a unique ID. The ID must be specified with
the HTML id attribute:

<div id="codesection">
 <p id="codepara">

17

Finding the Top of the Tree

 </p>

 <a href="http://www.sitepoint.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Each non-list element in that snippet has been given an ID. You should be able
to spot four of them. IDs must be unique within your document—each element
must have a different ID (or no ID at all)—so you can know that a specific ID
identifies a given element alone. To get a reference to that element in JavaScript
code, use document.getElementById(elementId):

var sitepoint_link = document.getElementById('splink')

Now the variable sitepoint_link contains a reference to the first <a> tag in the
above HTML snippet. We’ll see a little later what you can do with that element
reference. The DOM tree for this snippet of HTML is depicted in Figure 2.2.

Figure 2.2. The snippet’s DOM tree.

18

Chapter 2: The Document Object Model

getElementsByTagName

The document.getElementsByTagName method is used to retrieve all elements
of a particular type. The method returns an array3 that contains all matching
elements:

var all_links = document.getElementsByTagName('a');
var sitepoint_link = all_links[0];

The all_links variable contains an array, which contains two elements: a refer-
ence to the SitePoint link, and a reference to the Yahoo! link. The elements are
returned in the order in which they are found in the HTML, so all_links[0]
is the SitePoint link and all_links[1] is the Yahoo! link.

Note that document.getElementsByTagName always returns an array, even if
only one matching element was found. Imagine we use the method as follows:

var body_list = document.getElementsByTagName('body');

To get a reference to the sole body element in this case, we would need to use
the following:

var body = body_list[0];

We would be very surprised if body_list.length (the array’s size) was anything
other than 1, since there should be only one <body> tag! We could also shorten
the process slightly by replacing the previous two lines with this one:

var body = document.getElementsByTagName('body')[0];

JavaScript allows you to collapse expressions together like this. It can make your
code a lot more compact, and save you from declaring a lot of variables which
aren’t really used for anything.

There is another useful feature; getElementsByTagName is defined on any node
at all, not just the document. So, to find all <a> tags in the body of the document,
we could use the method like this:

var links_in_body = body.getElementsByTagName('a');

3 Technically, it returns a node collection, but this works just like an array.

19

Getting an Element from the Tree

Note that “Element” is plural in this method’s name, but singular for
getElementById. This is a reminder that the former returns an array of elements,
while the latter returns only a single element.

Walking from Parents to Children
Each node has one parent (except the root element) and may have multiple
children. You can obtain a reference to a node’s parent from its parentNode
property; a node’s children are found in the node’s childNodes property, which
is an array. The childNodes array may contain nothing if the node has no children
(such nodes are called leaf nodes).

Suppose the variable node points to the ul element of the DOM tree. We can
get the node’s parent (the div element) like this:

parent = node.parentNode;

We can check if the unordered list has any list items (children) by looking at the
length property of the childNodes array:

if (node.childNodes.length == 0) {
 alert('no list items found!');
}

If there are any children, their numbering starts at zero. We can obtain the second
child in our example HTML (an li element) as follows:

list_item = node.childNodes[1];

For the special case of the first child, located here:

list_item = node.childNodes[0];

we can also use this shorthand:

child = node.firstChild;

Similarly, the last child (in this case, the second li) has its own special property:

child = node.lastChild;

We’ll see all these properties used routinely through the rest of this book.

20

Chapter 2: The Document Object Model

What to do with Elements
Now you know how to get references to elements—the nodes in your HTML
page. The core of DHTML—the D-for-dynamic bit—lies in our ability to change
those elements, to remove them, and to add new ones. Throughout the rest of
this chapter, we’ll work with the following code snippet, which we saw earlier:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.sitepoint.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Changing Element Attributes
Every property of an element, and every CSS style that can be applied to it, can
be set from JavaScript. The attributes that can be applied to an element in
HTML—for example, the href attribute of an <a> tag—can also be set and read
from your scripts, as follows:

// using our sitepoint_link variable from above
sitepoint_link.href = "http://www.google.com/";

Click on that link after the script has run, and you’ll be taken to Google rather
than SitePoint. The new HTML content, as it exists in the browser’s imagination
(the HTML file itself hasn’t changed), looks like this:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.google.com/" id="splink"
 >SitePoint
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

21

What to do with Elements

Each element has a different set of attributes that can be changed: a elements
have the href attribute, elements have the src attribute, and so on. In
general, an attribute that can be applied to a tag in your HTML is also gettable
and settable as a property on a node from JavaScript. So, if our code contains a
reference to an img element, we can change the image that’s displayed by altering
the img_element.src property.4

The two most useful references that document elements and their supported at-
tributes are those provided by the two major browser makers: the Microsoft DOM
reference5, and the Mozilla Foundation’s DOM reference6.

Importantly, though, when we altered our link’s href above, all we changed was
the destination for the link. The text of the link, which read “SitePoint” before,
has not changed; if we need to alter that, we have to do so separately. Changing
the text in a page is slightly more complex than changing an attribute; to alter
text, you need to understand the concept of text nodes.

Changing Text Nodes
In Figure 2.1 above, you can see how the HTML in a document can be represented
as a DOM tree. One of the important things the figure illustrates is that the text
inside an element is not part of that element. In fact, the text is in a different
node: a child of the element node. If you have a reference to that text node, you
can change the text therein using the node’s nodeValue property:

myTextNode.nodeValue = "Some text to go in the text node";

How can we get a reference to that text node? We need to walk the DOM
tree—after all, we have to know where the text node is before we can alter it. If
we consider the sitepoint_link node above, we can see that its childNodes
array should contain one node: a text node with a nodeValue of "SitePoint".
We can change the value of that text node as follows:

sitepoint_link.childNodes[0].nodeValue = 'Google';

4 One notable divergence from this rule is that an element’s class attribute in HTML is available
in JavaScript as node.className, not node.class. This is because “class” is a JavaScript re-
served word.
5 http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
6 http://www.mozilla.org/docs/dom/domref/

22

Chapter 2: The Document Object Model

http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp
http://www.mozilla.org/docs/dom/domref/

Now, the text displayed on-screen for that link will read Google, which matches
the link destination that we changed earlier. We can shorten the code slightly to
the following:

sitepoint_link.firstChild.nodeValue = 'Google';

You may recall that a node’s firstChild property, and childNodes[0], both
refer to the same node; in this case, you can substitute childNodes[0] with
success. After this change, the browser will see the following document code:

<div id="codesection">
 <p id="codepara">
 </p>

 <a href="http://www.google.com/" id="splink"
 >Google
 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Changing Style Properties
As we have seen, the attributes that are set on an HTML tag are available as
properties of the corresponding DOM node. CSS style properties can also be
applied to that node through the DOM, using the node’s style property. Each
CSS property is a property of that style property, with its name slightly trans-
formed: a CSS property in words-and-dashes style becomes a property of style
with dashes removed and all words but the first taking an initial capital letter.
This is called InterCaps format. Here’s an example. A CSS property that was
named:

some-css-property

would appear to a script as the following JavaScript property:

someCssProperty

So, to set the CSS property font-family for our sitepoint_link element node,
we’d use the following code:

sitepoint_link.style.fontFamily = 'sans-serif';

23

Changing Style Properties

CSS values in JavaScript are almost always set as strings; some values, such as
font-size, are strings because they must contain a dimension7, such as “px” or
“%”. Only entirely numeric properties, such as z-index (which is set as
node.style.zIndex, as per the above rule) may be set as a number:

sitepoint_link.style.zIndex = 2;

Many designers alter style properties to make an element appear or disappear.
In CSS, the display property is used for this: if it’s set to none, the element
doesn’t display in the browser. So, to hide an element from display, we can set
its display property to none:

sitepoint_link.style.display = 'none';

To show it again, we give it another valid value:

sitepoint_link.style.display = 'inline';

For a complete reference to the available CSS style properties and what each
does, see SitePoint’s HTML Utopia: Designing Without Tables Using CSS8.

Bigger DOM Tree Changes
The next level of DOM manipulation, above and beyond changing the properties
of elements that are already there, is to add and remove elements dynamically.
Being able to change the display properties of existing elements, and to read and
alter the attributes of those elements, puts a lot of power at your disposal, but
the ability to dynamically create or remove parts of a page requires us to leverage
a whole new set of techniques.

Moving Elements
To add an element, we must use the appendChild method of the node that will
become the added node’s parent. In other words, to add your new element as a
child of an existing node in the document, we use that node’s appendChild
method:

7 Internet Explorer will let you get away without using a dimension, as it assumes that a dimensionless
number is actually a pixel measurement. However, do not try to take advantage of this assumption;
it will break your code in other browsers, and it’s in violation of the specification.
8 http://www.sitepoint.com/books/css1/

24

Chapter 2: The Document Object Model

http://www.sitepoint.com/books/css1/

// We'll add the link to the end of the paragraph
var para = document.getElementById('codepara');
para.appendChild(sitepoint_link);

After this, our page will look a little odd. Here’s the updated HTML code:

<div id="codesection">
 <p id="codepara">
 Google
 </p>

 <a href="http://www.yahoo.com/" id="yalink"
 >Yahoo!

</div>

Another useful thing to know is that, in order to move the node to its new place
in the document, we don’t have to remove it first. If you use appendChild to insert
a node into the document, and that node already exists elsewhere in the document,
the node will not be duplicated; instead, it will move from its previous location
to the new location at which you’ve inserted it. We can do the same thing with
the Yahoo! link:

para.appendChild(document.getElementById('yalink'));

After this, the page will again be rearranged to match the HTML:

<div id="codesection">
 <p id="codepara">
 Google
 Yahoo!
 </p>

</div>

Figure 2.3 shows the new DOM tree so far.

25

Moving Elements

Figure 2.3. The DOM tree after changes.

What if you didn’t want to add your new (or moved) element to the end of that
paragraph? In addition to appendChild, each node has an insertBefore method,
which is called with two arguments: the node to insert, and the node before which
it will be inserted. To move the Yahoo! link to the beginning of the paragraph,
we want to insert it as a child of the paragraph that appears before the Google
link. So, to insert the Yahoo! link (the first argument) as a child of the paragraph
right before the Google link (sitepoint_link, the second argument), we’d use
the following:

para.insertBefore(document.getElementById('yalink'),
 sitepoint_link);

Be sure that the second argument (sitepoint_link) really is an existing child
node of para, or this method will fail.

Throwing Away Elements
Removing an element is very similar to the process of adding one: again, we use
the removeChild method on the element’s parent node. Remembering from
earlier that we can access a given node’s parent as node.parentNode, we can re-
move our sitepoint_link from the document entirely:

// never hurts to be paranoid: check that our node *has* a parent
if (sitepoint_link.parentNode) {
 sitepoint_link.parentNode.removeChild(sitepoint_link);
}

26

Chapter 2: The Document Object Model

That action will change the HTML code to that shown below:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 </p>

</div>

Even after the node’s removal, sitepoint_link still constitutes a reference
to that link. It still exists, it’s just not in the document any more: it’s floating
in limbo. We can add it back to the document somewhere else if we want
to. Set the variable to null to make the deleted element disappear forever.

Creating Elements
Moving existing elements around within the page is a powerful and useful tech-
nique (with which you’re well on the way to implementing Space Invaders or Pac
Man!). But, above and beyond that, we have the ability to create brand new ele-
ments and add them to the page, providing the capacity for truly dynamic content.
The point to remember is that, as before, a page’s text resides in text nodes, so
if we need to create an element that contains text, we must create both the new
element node and a text node to contain its text. To achieve this, we need two
new methods: document.createElement and document.createTextNode.

First, we create the element itself:

var linux_link = document.createElement('a');

Even though we’ve created the element, it’s not yet part of the document. Next,
we set some of its properties in the same way that we’d set properties on an ex-
isting link:

linux_link.href = 'http://www.linux.org/';

We then create the text node for the text that will appear inside the link. We
pass the text for the text node as a parameter:

var linux_tn =
 document.createTextNode('The Linux operating system');

27

Creating Elements

The text node is also floating around, separate from the document. We add the
text node to the element’s list of children, as above:

linux_link.appendChild(linux_tn);

The element and text node now form a mini-tree of two nodes (officially a docu-
ment fragment), but they remain separate from the DOM. Finally, we insert
the element into the page, which is the same as putting it into the DOM tree:

para.appendChild(linux_link);

Here’s the resulting HTML:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 The Linux operating system
 </p>

</div>

As you can see, to create elements, we use the same techniques and know-
ledge—text nodes are children of the element node, we append a child with
node.appendChild—we use to work with nodes that are already part of the
document. To the DOM, a node is a node whether it’s part of the document or
not: it’s just a node object.

Copying Elements
Creating one element is simple, as we’ve seen. But what if you want to add a lot
of dynamic content to a page? Having to create a whole batch of new elements
and text nodes—appending the text nodes to their elements, the elements to each
other, and the top element to the page—is something of a laborious process.
Fortunately, if you’re adding to the page a copy of something that’s already there,
a shortcut is available: the cloneNode method. This returns a copy of the node,
including all its attributes and all its children.9 If you have a moderately complex
piece of HTML that contains many elements, cloneNode is a very quick way to
return a copy of that block of HTML ready for insertion into the document:

9 You can elect to clone the node only—not its children—by passing false to the cloneNode
method.

28

Chapter 2: The Document Object Model

var newpara = para.cloneNode(true);
document.getElementById('codesection').appendChild(newpara);

You can’t rush ahead and just do this, though: it pays to be careful with
cloneNode. This method clones all attributes of the node and all its child nodes,
including IDs, and IDs must be unique within your document. So, if you have
elements with IDs in your cloned HTML block, you need to fix those IDs before
you append the cloned block to the document.

It would be nice to be able to grab the Yahoo! link in our cloned block using the
following code:

var new_yahoo_link = newpara.getElementById('yalink');

But, unfortunately, we can’t. The getElementById method is defined only on a
document, not on any arbitrary node. The easiest way around this is to refrain
from defining IDs on elements in a block that you wish to clone. Here’s a line of
code that will remove the Yahoo! link’s id:

newpara.getElementsByTagName('a')[0].removeAttribute('id');

We still have the ID on the paragraph itself, though, which means that when we
append the new paragraph to the document, we’ll have two paragraphs with the
ID codepara. This is bad—it’s not supposed to happen. We must fix it before
we append the new paragraph, revising the above code as follows:

var newpara = para.cloneNode(true);
newpara.id = 'codepara2';
newpara.getElementsByTagName('a')[0].removeAttribute('id');
document.getElementById('codesection').appendChild(newpara);

This code returns the following results:

<div id="codesection">
 <p id="codepara">
 Yahoo!
 The Linux operating system
 </p>
 <p id="codepara2">
 Yahoo!
 The Linux operating system
 </p>

29

Copying Elements

</div>

As you can see, there’s a little bit of surgery involved if you choose to copy big
chunks of the document. This demonstration concludes our experimentation
with this particular bit of code.

Making an Expanding Form
As our first full example, we’ll use the DOM’s element creation methods to build
a form that can grow as the user fills it. This allows users to add to the form as
many entries as they like.

Let’s imagine an online system through which people can sign up themselves,
and any number of their friends, for free beer.10 The users add their own names,
then the names of all of the friends they wish to invite. Without the DOM, we’d
require the form either to contain a large number of slots for friends’ names (more
than anyone would use), or to submit regularly back to the server to get a fresh
(empty) list of name entry areas.

In our brave new world, we can add the extra name entry fields dynamically.
We’ll place a button on the form that says, Add another friend. Clicking that
button will add a new field to the list, ready for submission to the server. Each
newly-created field will need a different name attribute, so that it can be distin-
guished when the server eventually receives the submitted form.11

Our form will provide a text entry box for the user’s name, a fieldset containing
one text entry box for a friend’s name, and a button to add more friends. When
the button is clicked, we’ll add a new text entry box for another friend’s name.

File: expandingForm.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Free beer signup form</title>

 <script type="text/javascript">

10 Maybe there’s a mad millionaire philanthropist on the loose. No, I can’t give you a URL at which
this system is running for real!
11 Depending on the server-side language used to process the form, this isn’t strictly necessary. Since
our example form won’t actually submit to anything, we’ll implement it as a useful exercise.

30

Chapter 2: The Document Object Model

 var fieldCount = 1;
 function addFriend() {
 fieldCount++;
 var newFriend = document.createElement('input');
 newFriend.type = 'text';
 newFriend.name = 'friend' + fieldCount;
 newFriend.id = 'friend' + fieldCount;
 document.getElementById('fs').appendChild(newFriend);
 }
 </script>

 <style type="text/css">
 input {
 display: block;
 margin-bottom: 2px;
 }
 button {
 float: right;
 }
 fieldset {
 border: 1px solid black;
 }
 </style>

 </head>
 <body>
 <h1>Free beer signup form</h1>
 <form>
 <label for="you">Your name</label>
 <input type="text" name="you" id="you">
 <fieldset id="fs">
 <legend>Friends you wish to invite</legend>
 <button onclick="addFriend(); return false;">
 Add another friend
 </button>
 <input type="text" name="friend1" id="friend1">
 </fieldset>
 <input type="submit" value="Save details">
 </form>
 </body>
</html>

Notice our fieldCount variable; this keeps track of how many friend fields there
are.

31

Making an Expanding Form

File: expandingForm.html (excerpt)

 var fieldCount = 1;

When the button is clicked, we run the addFriend function (we’ll discuss handling
clicks—and various other kinds of events—more in the next chapter):

 <button onclick="addFriend(); return false;">

The addFriend function completes a number of tasks each time it’s run:

1. Increments the fieldCount:

File: expandingForm.html (excerpt)

 fieldCount++;

2. Creates a new input element:

File: expandingForm.html (excerpt)

 var newFriend = document.createElement('input');

3. Sets its type to text—we want a text entry box, an element specified by <input
type="text">:

File: expandingForm.html (excerpt)

 newFriend.type = 'text';

4. Sets a unique id and name (because the ID must be unique, and all the entry
boxes must have different names so they can be distinguished when the form’s
submitted):

File: expandingForm.html (excerpt)

 newFriend.name = 'friend' + fieldCount;
 newFriend.id = 'friend' + fieldCount;

5. Adds this newly-created element to the document:

File: expandingForm.html (excerpt)

 document.getElementById('fs').appendChild(newFriend);

32

Chapter 2: The Document Object Model

Here’s what the page looks like after the “add another friend” button has been
clicked twice, and two friends’ names have been added:

Figure 2.4. Signing up for free beer.

Free beer, thanks to the power of the DOM. We can’t complain about that!

Making Modular Image Rollovers
Image rollover scripts, in which an image is used as a link, and that image changes
when the user mouses over it, are a mainstay of JavaScript programming on the
Web. Traditionally, they’ve required a lot of script, and a lot of customization,
on the part of the developer. The introspective capability of the DOM—the
ability of script to inspect the structure of the page in which it’s running—gives
us the power to detect rollover images automatically and set them up without
any customization. This represents a more systematic approach than the old-
fashioned use of onmouseover and onmouseout attributes, and keeps rollover
code separate from other content.

We’ll build our page so that the links on which we want to display rollover effects
have a class of rollover. They’ll contain one img element—nothing else. We’ll
also provide specially named rollover images: if an image within the page is called
foo.gif, then the matching rollover image will be named foo_over.gif. When
the page loads, we’ll walk the DOM tree, identify all the appropriate links (by
checking their class and whether they contain an img element), and set up the

33

Making Modular Image Rollovers

rollover on each. This specially-named rollover image allows us to deduce the
name of any rollover image without saving that name anywhere. It reduces the
amount of data we have to manage.

An alternative technique involves use of a non-HTML attribute in the image tag:

However, since oversrc isn’t a standard attribute, this approach would cause
your HTML to be invalid.

Some of the following script may seem a little opaque: we will be attaching
listeners to DOM events to ensure that scripts are run at the appropriate times.
If this is confusing, then feel free to revisit this example after you’ve read the
discussion of DOM events in the next chapter.

A Sample HTML Page
First, the HTML: here we have our links, with class rollover, containing the
images.

File: rollovers.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Modular rollovers</title>
 <script type="text/javascript" src="rollovers.js"></script>
 <style type="text/css">
 /* Remove the blue border on the rollover images */
 a.rollover img {
 border-width: 0;
 }
 </style>
 </head>
 <body>
 <h1>Modular rollovers</h1>
 <p>Below we have two links, containing images that we want
 to change on mouseover.</p>

 <a href="" class="rollover" alt="Roll"
 >

34

Chapter 2: The Document Object Model

 <a href="" class="rollover" alt="Roll"
 >

 </body>
</html>

The page also includes the JavaScript file that does all the work:

File: rollovers.js

function setupRollovers() {
 if (!document.getElementsByTagName)
 return;
 var all_links = document.getElementsByTagName('a');
 for (var i = 0; i < all_links.length; i++) {
 var link = all_links[i];
 if (link.className &&
 (' ' + link.className + ' ').indexOf(' rollover ') != -1)
 {
 if (link.childNodes &&
 link.childNodes.length == 1 &&
 link.childNodes[0].nodeName.toLowerCase() == 'img') {
 link.onmouseover = mouseover;
 link.onmouseout = mouseout;
 }
 }
 }
}

function findTarget(e)
{
 /* Begin the DOM events part, which you */
 /* can ignore for now if it's confusing */
 var target;

 if (window.event && window.event.srcElement)
 target = window.event.srcElement;
 else if (e && e.target)
 target = e.target;
 if (!target)
 return null;

 while (target != document.body &&
 target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

35

A Sample HTML Page

 if (target.nodeName.toLowerCase() != 'a')
 return null;

 return target;
}

function mouseover(e) {
 var target = findTarget(e);
 if (!target) return;

 // the only child node of the a-tag in target will be an img-tag
 var img_tag = target.childNodes[0];

 // Take the "src", which names an image called "something.ext",
 // Make it point to "something_over.ext"
 // This is done with a regular expression
 img_tag.src = img_tag.src.replace(/(\.[^.]+)$/, '_over$1');
}

function mouseout(e) {
 var target = findTarget(e);
 if (!target) return;

 // the only child node of the a-tag in target will be an img-tag
 var img_tag = target.childNodes[0];

 // Take the "src", which names an image as "something_over.ext",
 // Make it point to "something.ext"
 // This is done with a regular expression
 img_tag.src = img_tag.src.replace(/_over(\.[^.]+)$/, '$1');
}

// When the page loads, set up the rollovers
window.onload = setupRollovers;

The DOM-walking parts of this code are found in setupRollovers and in
findTarget, which is called from the two mouseover/mouseout functions. Let’s
look at each of these in turn.

The setupRollovers Function

The code for the setupRollovers function starts like this:

36

Chapter 2: The Document Object Model

File: rollovers.js (excerpt)

 if (!document.getElementsByTagName)
 return;

This code confirms that we’re in a DOM-supporting browser. If we’re not (i.e. if
document.getElementsByTagName, the method, doesn’t exist), we exit here and
progress no further. If the method does exist, we continue:

File: rollovers.js (excerpt)

 var all_links = document.getElementsByTagName('a');

Here, we make all_links a reference to a list of all the <a> tags in the document.

File: rollovers.js (excerpt)

 for (var i = 0; i < all_links.length; i++) {
 var link = all_links[i];

The above code iterates through the retrieved list of tags in standard JavaScript
fashion. We assign the link variable to each link, as a way to simplify the follow-
ing code.

File: rollovers.js (excerpt)

 if (link.className &&
 (' ' + link.className + ' ').indexOf(' rollover ') != -1)
 {

We need to know whether each link is of class rollover. However, an element
may have more than one class; if this tag had two classes, rollover and hotlink,
for example, it would have className="rollover hotlink". This would mean
that we could not check for an element having a specific class using the following:

if (element.className == "myclass")

If the element has multiple classes, the above condition will always evaluate to
false. A useful approach here is to look for the string ' myclass ' (the class
name with a space before and after it) in the string ' ' + element.className
+ ' ' (the element’s class attribute with a space before and after it). This will
always find your class, as you’re expecting. It also avoids a problem with a similar
technique, which uses className.indexOf to look for 'myclass'. If the element
in question is of class myclassroom, this technique will give a false positive.12

12 Another option is to use a regular expression to spot the class name. In the interests of simplicity,
however, we’ll stick with the method already presented.

37

A Sample HTML Page

File: rollovers.js (excerpt)

 if (link.childNodes &&
 link.childNodes.length == 1 &&
 link.childNodes[0].nodeName.toLowerCase() == 'img') {

We want to confirm that this link contains nothing but an img element, so we
make use of a very handy property of JavaScript, called short-circuit evaluation.
In an if statement of the form if (a && b && c), if a is false, then b and c are
not evaluated at all. This means that b and c can be things that depend on a’s
trueness: if a is not true, then they are not evaluated, so it’s safe to put them into
the if statement.

Looking at the above code may make this clearer. We need to test if the nodeName
of the link’s first child node is img. We might use the following code:

if (link.childNodes[0].nodeName.toLowerCase() == 'img')

However, if the current link doesn’t have any child nodes, this code will cause
an error because there is no link.childNodes[0]. So, we must first check that
child nodes exist; second, we confirm that there is one and only one child; third,
we check whether that one-and-only first child is an image. We can safely assume
in the image check that link.childNodes[0] exists, because we’ve already con-
firmed that that’s the case: if it didn’t exist, we wouldn’t have got this far.

File: rollovers.js (excerpt)

 link.onmouseover = mouseover;

This code attaches an event handler to the mouseover event on a node.

File: rollovers.js (excerpt)

 link.onmouseout = mouseout;

And this line attaches an event handler to the mouseout event on that node.
That’s all!

The findTarget Function

This little function is called by the mouseover and mouseout functions. As we’ll
see, they pass event objects to findTarget, which, in return, passes back the link
tag surrounding the image that generated the event, if any such tag is to be found.

findTarget starts like this:

38

Chapter 2: The Document Object Model

File: rollovers.js (excerpt)

 var target;

 if (window.event && window.event.srcElement)
 target = window.event.srcElement;
 else if (e && e.target)
 target = e.target;
 if (!target)
 return null;

This first part is related to DOM event handling, which is explained in the next
chapter. We’ll ignore its workings for now, except to say that it caters for the
differences between Internet Explorer and fully DOM-supporting browsers. Once
this code has run, however, we should have in our variable target the element
that the browser deems to be responsible for the mouseover or mouseout
event—ideally the <a> tag.

File: rollovers.js (excerpt)

 while (target != document.body &&
 target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

 if (target.nodeName.toLowerCase() != 'a')
 return null;

The variable target should be a reference to the <a> tag on which the user clicked,
but it may be something inside the <a> tag (as some browsers handle events this
way). In such cases, the above code keeps getting the parent node of that tag
until it gets to an <a> tag (which will be the one we want). If we find the document
body—a <body> tag—instead, we’ve gone too far. We’ll give up, returning null
(nothing) from the function, and going no further.

If we did find an <a> tag, however, we return that:

File: rollovers.js (excerpt)

 return target;
}

The mouseover / mouseout Functions

These functions work in similar ways and do very similar things: mouseover is
called when we move the mouse over one of our rollover links, while mouseout
is called when we move the mouse out again.

39

A Sample HTML Page

The code for mouseover starts like this:

File: rollovers.js (excerpt)

 var target = findTarget(e);
 if (!target) return;

We call the findTarget function, described above, to get a reference to the link
over which the mouse is located. If no element is returned, we give up, degrading
gracefully. Otherwise, we have the moused-over <a> tag in target. Next, we dig
out the image.

File: rollovers.js (excerpt)

 var img_tag = target.childNodes[0];

We also know that the <a> tag has one, and only one, child node, and that’s an
 tag. We know this because we checked that this was the case when we set
up the event handler in setupRollovers.

File: rollovers.js (excerpt)

 img_tag.src = img_tag.src.replace(/(\.[^.]+)$/, '_over$1');

Images have a src attribute, which you can access through the DOM with the
element’s src property. In the code snippet above, we apply a regular expression
substitution to that string.13 Changing the value of an tag’s src attribute
causes it to reload itself with the new image; thus, making this substitution (re-
placing something.gif with something_over.gif) causes the original image to
change to the rollover image. The mouseout function does the exact opposite: it
changes the reference to something_over.gif in the image’s src attribute to
something.gif, causing the original image to reappear.

Something for Nothing (Almost)

If you look at the code for this modular rollover, you’ll see that it’s divided into
parts. The setupRollovers function does nothing but install listeners. The
findTarget function does nothing but find the link tag for a given event. The
mouseover and mouseout functions do little other than the actual image swapping
work. The tasks are neatly divided.

13 Although the full details of regular expressions are beyond the scope of this book, we’ll look at the
basics in Chapter 6. A more detailed resource is Kevin Yank’s article on sitepoint.com, Regular Expres-
sions in JavaScript [http://www.sitepoint.com/article/expressions-javascript].

40

Chapter 2: The Document Object Model

http://www.sitepoint.com/article/expressions-javascript
http://www.sitepoint.com/article/expressions-javascript

That means that this code is good for other applications. We can change the
mouseover and mouseout functions to do something else—for example, to make
popup help content appear—without needing to start from scratch to get it
working. We get to reuse (or at least rip off with minimal change) the other
functions in the script. This is not only convenient; it’s also neat and clean. We’re
on the way to a better kind of scripting!

Summary
In the introduction, we referred to the DOM as a critical part of DHTML. Ex-
ploring the DOM—being able to find, change, add, and remove elements from
your document—is a powerful technique all by itself, and is a fundamental aspect
of modern DHTML. Once you’ve mastered the techniques described in this
chapter, everything else will fall into place. Through the rest of the book, we’ll
be describing techniques and tricks with which you can do wondrous things on
your sites, and in your Web applications, using DHTML. They all build upon
this fundamental approach of manipulating the Document Object Model.

41

Summary

42

Handling DOM Events3
When I can’t handle events, I let them handle themselves.
—Henry Ford

An event is something that happens, be it in real life, or in DHTML programming.
But to those working with DHTML, events have a very specific meaning. An
event is generated, or fired, when something happens to an element: a mouse
clicks on a button, for example, or a change is made to a form. DHTML program-
ming is all about event handling; your code will run in response to the firing of
this or that event.

Learning which events are available, how to hook your code up to them, and how
to make best use of them is a critical part of building dynamic Web applications.1

That’s what we cover in this chapter, along with a couple of real-world examples.

About Elements and Events
We’re using a modern approach to DHTML, so all our DHTML code will be set
to run in response to the firing of an event. If you’ve done any JavaScript Web
programming before, you may already be using this technique without knowing
it. Let’s look at the procedure by which code has traditionally been hooked up

1 It does seem that there are quite a few “critical” bits, I know!

to events, learn how to do it under the DOM (and why the DOM method is
better), and find out exactly what these techniques make possible.

Common Events
Every page element fires a given selection of events. Some events are common
to all elements; others are more specific. For example, all visible elements will
fire a mouseover event when the mouse is moved over them. A change event,
however, will only be fired by elements whose contents can be changed: text
boxes, text areas, and drop-down lists.

You might have noticed above that I used mouseover, rather than onmouseover,
for the event name. Even though the HTML attribute for handling this event is
onmouseover, the modern way to describe the event itself is simply mouseover.
This allows us to talk about the event (mouseover) and the event handler (on-
mouseover) separately. The event target is the location at which an event
handler is placed. In the bad old browser days, these concepts were all mixed up,
but now we can safely think of them as separate entities.

The documents that describe the events fired by a given element are the W3C
DOM specifications and HTML recommendations, which were mentioned in
the last chapter, as well as the W3C DOM 2 Events specification2. There’s also
some extra information on key events in the DOM 3 Events specification3.

A summary of the events that you’re likely to find useful, and that have cross-
browser support, is given in Table 3.1. Note that this isn’t an exhaustive survey:
it’s a listing of events that you’re likely to use often, rather than everything under
the sun.

2 http://www.w3.org/TR/DOM-Level-2-Events/Overview.html
3 http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/events.html

44

Chapter 3: Handling DOM Events

http://www.w3.org/TR/DOM-Level-2-Events/Overview.html
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/events.html

Table 3.1. Useful Events.

Fired whenFired by Element(s)Event(s)

The page finishes loading.windowload

The page is unloaded (i.e. the user closes
the browser, or clicks a link, and a new page
loads).

windowunload

The element loses focus (the user clicks
outside it or tabs away from it), and the
content has been changed (note: the event
does not fire immediately when the change
is made!).

input, select, tex-
tarea

change

The element gets the focus (it is tabbed to,
or clicked upon).

label, input, select,
textarea, button

focus

The element loses the focus.label, input, select,
textarea, button

blur

The user resizes the window.windowresize

The user scrolls the window.windowscroll

The user submits the form by clicking the
submit button or hitting Enter in a text
field.

formsubmit

The user moves the mouse onto an element.any visiblemouseover

The user moves the mouse off an element.any visiblemouseout

The user presses any mouse button while
on the element.

any visiblemousedown

The user releases the mouse button while
on the element.

any visiblemouseup

The user moves the mouse anywhere on the
element.

any visiblemousemove

The user clicks any mouse button while on
the element (this is the same as a mousedown
followed by a mouseup).

anyclick

A key is pressed while the element has fo-
cus.

any element that can
be focused

keypress

45

Common Events

Hooking Code to Events
So, now you know some common events, and when they fire. But how do you
make your code run in response to those events?

Hooking up the Old Way

If you’ve done any JavaScript coding before, you’ll probably have written some-
thing like this:

<a href="somewhere.html"
 onclick="myJavaScriptFunction(); return false;"
 >click me!

That onclick attribute connects some JavaScript code to that link’s click event.
When the link is clicked, it will fire a click event, and that code will run. No
problem! Notice, though, that the code never actually mentions “click,” which
is the actual name of the event.

What if we wanted to detect a keypress? Here’s the equivalent script:

function aKeyWasPressed() {
 // put event handler code here ...
}

And here’s the matching snippet of HTML:

<textarea id="myta" onkeypress="aKeyWasPressed()"></textarea>

In this case, how does our aKeyWasPressed function know which key was pressed?
Well, it doesn’t. That’s a major limitation of the old-fashioned approach. But we
can improve on that!

Hooking up the DOM Way

The DOM specifications enlarge the idea of event handlers by providing event
targets and event listeners. An event target is the thing at which an event is
aimed—an element, essentially. An event listener is the thing that grabs the event
when it appears, and responds to it. Where do events come from in the first
place? They come from the user. The browser software captures the user action
and sends the event to the right event target.

46

Chapter 3: Handling DOM Events

A given event source can be relevant to more than one event listener. Using the
old-fashioned method above, only one piece of code could be run in response to
any event. For example, an element could have only one onclick attribute.4

Using the modern method, you can run as many pieces of code as you want upon
the firing of an event or events. Listeners get to share events, and events get to
share listeners. To facilitate this, we must move our “hookup” code from the
HTML to a separate script section: as noted above, no element can have more
than one onclick attribute.

Event handling works in different ways, depending on the browser. We’ll examine
the W3C-approved way first, before we look at event handling in Internet Ex-
plorer. Here’s the W3C approach.

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 // put event listener code here...
}

var textarea = document.getElementById('myta');
textarea.addEventListener('keyup', aKeyWasPressed, false);

And here’s the matching bit of HTML:

File: keycodedetect.html (excerpt)

<textarea id="myta"></textarea>

HTML Before Script… for Now

If you’re working through this example in your HTML editor of choice, be
sure to place the JavaScript code after the HTML in this and the next few
examples in this chapter. The textarea must exist before the JavaScript
code can assign an event listener to it.

If you’re used to placing JavaScript at the top of your HTML files, don’t
fret. We’ll discuss an elegant way around this restriction at the end of the
section.

Those few lines of code contain a number of complex concepts. Consider this
snippet:

4 Actually, you could have as many as you liked, but each one would overwrite the one before it, so,
effectively, you have only one. Alternatively, you could string JavaScript statements together, using
semicolons in the attribute, but this makes the HTML code even more cluttered.

47

Hooking Code to Events

File: keycodedetect.html (excerpt)

var textarea = document.getElementById('myta');

Here, we see a familiar reference to the <textarea>. Next, there’s something
new:

File: keycodedetect.html (excerpt)

textarea.addEventListener('keyup', aKeyWasPressed, false);

This is the crucial line that sets everything up. Each element has an
addEventListener method, which allows you to hook a function to any event5

that the element receives. The method takes three arguments: the event, the
function that should be called, and a true-or-false value for useCapture. This last
item relates to a rarely-used feature of DOM events called event capture. For
the moment, we’ll just set it to false, to indicate that we don’t want to use event
capture. If you’d like to get the full story, see the DOM Level 3 Events specifica-
tion6 (not for the faint of heart!).

The event is specified as a string, which is the (modern) name of the event (i.e.
without the “on” prefix). The function is specified using only the name of the
function; do not place brackets after it, as in aKeyWasPressed(), as this would
call the function. We don’t want to call it now; we want to call it later, when the
event is fired.7

Now, when a key is pressed in our <textarea>, our aKeyWasPressed function
will be called. Note that JavaScript no longer clutters up our HTML; much like
the separation of design and content facilitated by CSS, we’ve separated our page
content (HTML) from our page behavior (JavaScript). This is an important benefit
of the new technique: we can switch new event listeners in and out without alter-
ing the HTML in our page. It’s the modern way!

We still haven’t addressed the question we posed earlier, though: how does the
aKeyWasPressed function know which key was pressed?

5 We’ve used the keyup event here, rather than the more commonly expected keypress, because,
at the time of writing, Safari on Macintosh does not support the assigning of keypress events using
addEventListener. Perhaps more importantly, the DOM3 recommendation does not mention
a keypress event.
6 http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
7 If you have worked in other languages, you may recognize that this means that functions are first-
class objects in JavaScript; we can pass around references to a function using its name, but without
calling it. This procedure doesn’t work in all languages, but it’s a very useful feature of JavaScript.

48

Chapter 3: Handling DOM Events

http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow
http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-flow

Getting Event Information

A subtle change that we made in the above code was to give the aKeyWasPressed
function an argument, e.

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 ...

When a function is called as an event listener, it is passed, in the case of a W3C
events-compliant browser, to an event object, which holds details of the event.
This object has a number of properties containing useful information, such as
target, and a reference to the element that fired the event. The precise properties
that are available will depend on the type of event in question, but the most
useful properties are listed in Table 3.2.

Table 3.2. Useful Properties.

MeaningEvent object
property

The element that fired the event.target

The event that was fired (e.g. keyup).type

The mouse button that was pressed (if this is a mouse event): 0
for the left button, 1 for middle, 2 for right.

button

The character code of the key that was pressedakeyCode

Whether the Shift key was pressed (true or false).shiftKey
a Don’t use charCode here, even though some Websites tell you to. keyCode has good cross-
browser support, and charCode does not. Key codes in the DOM are a standards mess! There are
three ways to get the code: keyCode (IE), charCode (Mozilla/Netscape) and data (the official
DOM 3 Events way). Fortunately, all major browsers support the nonstandard keyCode. So always
use this, at least until the data property is widespread (in about 2010!).

Code that identifies which key was pressed would look like this:

File: keycodedetect.html (excerpt)

function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
}
var textarea = document.getElementById('myta');
textarea.addEventListener('keyup', aKeyWasPressed, false);

49

Hooking Code to Events

When a key is pressed, our function will pop up a dialog box to tell us so.8

Re-using Listeners Across Targets

The target attribute might not seem very useful; after all, we know that it will be
a reference to the <textarea>. But we can hook up the same function as an event
listener on more than one element. We can, for example, attach one single func-
tion as an event listener for click events to every link in our page. When any link
is clicked, our function will be called; we can then tell which link was clicked by
examining the function’s e.target. We’ll come back to this in later examples in
this chapter.

For now, all we need to know is that we don’t have to write a separate event
listener for every single tag in which we’re interested.

What Happens After an Event Fires?

Events have two further important properties: bubbling and default actions.
Think about an HTML document. It’s hierarchical: elements are contained by
other elements. Consider this HTML snippet:

<div>
 <p>
 a link
 </p>
</div>

Clicking on the link will cause that link to fire a click event. But the link is con-
tained within the paragraph, and the paragraph is contained within the <div>.
So clicking the link will also cause both the paragraph and the <div> to see the
click event. This is called event bubbling; an event “bubbles” up through the
DOM tree, starting with the target element, until it reaches the top. Not all events
bubble; for example, focus and blur events do not. Bubbling can often be ig-
nored,9 but there are times when you’ll want to prevent a specific event from
bubbling.

8 Note that we use the String.fromCharCode method to convert the keyboard code provided
by keyCode to a human-readable string.
9 There are a lot of complex rules about event bubbling and event capturing, the phase of event
propagation that occurs before event bubbling. In practice, we don’t need to know much beyond how
to stop it happening, but a complete write-up is available at
http://www.quirksmode.org/js/events_order.html for those who would like to know more of the theory
underlying this aspect of the DOM.

50

Chapter 3: Handling DOM Events

http://www.quirksmode.org/js/events_order.html

Once you’ve got an event, the DOM Events specification says that you can stop
any further bubbling like this:

function aKeyWasPressed(e) {
 var key = e.keyCode;
 e.stopPropagation();
 ...
}

Once the call to stopPropagation is in place, the event will occur on the <a> tag
only: any listeners on the <p> or <div> tags will miss out. If there are no listeners
on those other tags, there’s no need to stop bubbling. In this case, the event si-
lently passes through the parent tags, having no extra effect.

Some events have a default action. The most obvious example is clicking a link:
the default action for this event is to navigate the current window or frame to
the link’s destination. If we wanted to handle clicks on a link entirely within our
JavaScript code, we might want to prevent that default action from being taken.

In our examples so far, we have handled the keyup event, which is fired when a
key is released. As it turns out, this event has no default action. A closely-related
event that does have a default action is keypress, which occurs whenever a
character is typed using the combination of keydown and keyup. The keypress
event is nonstandard (i.e. it is not described by the W3C DOM standard), which
is why I have avoided mentioning it until now, but it is well supported by the
major browsers.

Let’s say we want to prevent keypress events from inputting text into our tex-
tarea. We could do this by setting up an event listener that cancelled the default
action of that type of event. The DOM standard specifies a method, named
preventDefault, that achieves this, but again, Internet Explorer implements its
own proprietary technique. Here’s the DOM approach:

function aKeyWasPressed(e) {
 e.preventDefault();
}
var textarea = document.getElementById('myta');
textarea.addEventListener('keypress', aKeyWasPressed, false);

Assigning Event Listeners on Page Load

In all of the examples we’ve seen so far in this chapter, the JavaScript code has
had to follow the HTML code to which it assigns event listeners. If the JavaScript

51

Hooking Code to Events

code were to come first, it would be unable to find the HTML elements in ques-
tion, as they would not yet exist.

A solution to this problem is to assign event listeners for specific document ele-
ments in a listener assigned to the window’s load event. As a result, event
listeners will only be assigned once the document has finished loading, and all
elements are available.

Here’s the complete listing for our keystroke detection example, restructured in
this way:

File: keycodedetect.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Detect keystrokes</title>
 <script type="text/javascript">
 function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
 }

 function addListeners(e) {
 var textarea = document.getElementById('myta');
 textarea.addEventListener('keyup', aKeyWasPressed, false);
 }

 window.addEventListener('load', addListeners, false);
 </script>
 </head>
 <body>
 <form>
 <textarea id="myta"></textarea>
 </form>
 </body>
</html>

Our main event listener, aKeyWasPressed, has not been changed. What has
changed is the way in which this listener is assigned. The code that assigns it has
been placed inside a new function, addListeners:

File: keycodedetect.html (excerpt)

 function addListeners(e) {
 var textarea = document.getElementById('myta');

52

Chapter 3: Handling DOM Events

 textarea.addEventListener('keyup', aKeyWasPressed, false);
 }

This function is itself an event listener, which we assign to the window object’s
load event:

File: keycodedetect.html (excerpt)

 window.addEventListener('load', addListeners, false);

This event is fired once the document has finished loading, to signal that all
HTML elements are now available. The addListeners function takes this oppor-
tunity to assign listeners to elements as required.

We’ll continue to use this structure as we move forward through this chapter,
and the rest of the book.

Making Events Work Cross-Browser
Naturally, making events work cross-browser is not as easy as just following the
DOM standard. Internet Explorer doesn’t implement the DOM Events model
very well. Instead, it offers a proprietary and different way to hook up event
listeners and gain access to event data.

Adding Event Listeners Portably

Instead of using an addEventListener method on an element, IE has an
attachEvent method, and instead of passing an event object to each event
listener, it has a global event object in window.event. This is inconvenient but
not catastrophic; it just means that you have to take different actions for different
browsers. In practice, what this means is that you have a small number of
standard functions and techniques that you use to carry out event handling ac-
tions. One of these is the addEvent function, created by Scott Andrew:

File: portabledetect.html (excerpt)

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);

53

Making Events Work Cross-Browser

 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

IE’s attachEvent method is called, with an event name and a function to be the
listener, but the event name should have “on” at the beginning. The addEvent
function above takes care of the cross-browser differences;10 simply include it in
your code, then use it to attach events. As such, the code above becomes:

function aKeyWasPressed(e) {
 var key = e.keyCode;
 alert('You pressed the key: ' + String.fromCharCode(key));
}

function addListeners(e) {
 var textarea = document.getElementById('myta');
 addEvent(textarea, 'keyup', aKeyWasPressed, false);
}

addEvent(window, 'load', addListeners, false);

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

10 Note that if the browser doesn’t support either addEventListener or attachEvent, which
is the case for IE5 for Macintosh, the code assigns the event listener directly to the element as an
event handler using its onevent property. This will overwrite any previous event handler that was
attached to that event, which isn’t good, but it’s an interim solution (and better than it not working
at all). There is a way around this issue, which, though it makes the code significantly more complex,
does avoid this problem; details can be found in Simon Willison’s Stylish Scripting blog post at
http://www.sitepoint.com/blog-post-view.php?id=171578.

54

Chapter 3: Handling DOM Events

http://www.sitepoint.com/blog-post-view.php?id=171578

We’re now using the addEvent function to make aKeyWasPressed listen for keyup
events on the textarea.

Inspecting Event Objects Portably

This is not the only change that’s required; we also have to take into account the
fact that IE doesn’t pass an event object to our event listener, but instead stores
the event object in the window object. Just to make our lives as DHTML developers
a little more complex, it also uses slightly different properties on the event object
that it creates. These are shown in Table 3.3.

Table 3.3. W3C Event Object Properties.

IE window.event PropertyW3C Event Object Property

srcElementtarget

typetype

buttonbbuttona

keyCodedatac

shiftKeyshiftKey
a 0 = left button; 2 = right button; 1 = middle button.
b 1 = left button; 2 = right button; 4 = middle button. For combinations, add numbers: 7 means all
three buttons pressed.
c As previously noted, the standard data property is not well supported.

Taking all this into consideration, our portable code becomes:

File: portabledetect.html (excerpt)

function aKeyWasPressed(e) {
 if (window.event) {
 var key = window.event.keyCode;
 } else {
 var key = e.keyCode;
 }
 alert('You pressed the key: ' + String.fromCharCode(key));
}

function addListeners(e) {
 var textarea = document.getElementById('myta');
 addEvent(textarea, 'keyup', aKeyWasPressed, false);
}

55

Making Events Work Cross-Browser

addEvent(window, 'load', addListeners, false);

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

This updated version of aKeyWasPressed first checks whether a window.event
object exists:

File: portabledetect.html (excerpt)

 if (window.event) {

If it does, then it and its corresponding window.event.keyCode11 property, are
used to obtain the code of the pressed key. If not, the event object passed to the
function (as e), which also has a keyCode property, is used.

Stopping Propagation and Default Actions Portably

Halting bubbling can be done in two ways, as is the case with much event hand-
ling: via the DOM approach and the Internet Explorer approach. In DOM-com-
pliant browsers, we can prevent an event from bubbling by calling the event ob-
ject’s stopPropagation method inside the event listener.

In Internet Explorer (where there is a global window.event object), we set
window.event.cancelBubble to true inside the event listener. In practice, the
usual technique is to use feature sniffing to Do The Right Thing:

if (window.event) {
 window.event.cancelBubble = true;
}
if (e && e.stopPropagation) {

11 This technique for checking that something exists is called feature sniffing, and will be explained
in more detail in the next chapter.

56

Chapter 3: Handling DOM Events

 // e is the event object passed to this listener
 e.stopPropagation();
}

Unfortunately, even this doesn’t cover all the major browsers. Arguably a worse
offender even than Internet Explorer, Apple’s Safari browser provides the
stopPropagation method, but doesn’t actually do anything when it is called.
There is no easy way around this, but since event bubbling will not significantly
affect any of the examples in this book, we’ll just ignore this problem for now.

We also need to feature-sniff to stop default actions. With the DOM, we use the
passed event object’s preventDefault method; with Internet Explorer, we set
the global event object’s returnValue property to false.

if (window.event) {
 window.event.returnValue = false;
}
if (e && e.preventDefault) {
 e.preventDefault();
}

Again, Safari appears to support preventDefault, but doesn’t actually do anything
when it is called. Unfortunately, preventing the default action associated with
an event is a rather vital feature for many of the examples we’ll look at in this
book. The only way to do it in Safari (at least until Apple fixes its DOM standard
event support) is to use an old-style event handler that returns false.

For example, to prevent the click event of a link from navigating to the target
of the link, we would normally just use an event listener that prevented the default
action of the link:

function cancelClick(e) {
 if (window.event && window.event.returnValue) {
 window.event.returnValue = false;
 }
 if (e && e.preventDefault) {
 e.preventDefault();
 }
}
addEvent(myLink, 'click', cancelClick, false);

To make this work in Safari, we need a second function, which will return false
to cancel the event, and which we will assign as the onclick event handler of the
link:

57

Making Events Work Cross-Browser

function cancelClick(e) {
 if (window.event && window.event.returnValue) {
 window.event.returnValue = false;
 }
 if (e && e.preventDefault) {
 e.preventDefault();
 }
}
function cancelClickSafari() {
 return false;
}
addEvent(myLink, 'click', cancelClick, false);
myLink.onclick = cancelClickSafari;

This is actually quite an ugly solution, as it will overwrite any onclick event
handler that another script may have installed. This kind of inter-script conflict
is what modern event listeners are designed to avoid. Unfortunately, there is
simply no better way around the problem in Safari. We’ll see an example of this
solution in practice later in this chapter.

This sort of cross-browser coding is obviated to a large extent by browser manu-
facturers coming together to implement the W3C DOM, but for event handling
it’s still required.

Smart Uses of Events
That’s enough about how events work. Let’s see a couple of practical examples.
You should also know enough now to fully understand the image rollover code
we saw in Chapter 2.

Creating Smarter Links
Some Websites open all clicked links in a new window. Often, they do this with
the intention that the user will return to their site more readily if it’s still open
in another browser window. Some users find this useful; others find it heartily
annoying. It would be possible, given our event-handling techniques above, to
give them the choice.

Imagine we placed a checkbox on the page, which, initially unchecked, was ac-
companied by the label Open links in new window. Clicking any link will open
that link in a new window if the box is checked.

58

Chapter 3: Handling DOM Events

We could implement this functionality using a combination of event listeners:
we attach to each link on the page a click listener, which investigates the checkbox
and opens the corresponding link in a new window if the box is checked. We also
need a listener to run upon page load, to actually attach the listener to each link.

First, here’s the HTML page we’ll work on:

File: smartlinks.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Smart Links</title>
 <script type="text/javascript" src="smartlink.js"></script>
 <style type="text/css">
 form {
 float: right;
 width: 25em;
 height: 5em;
 border: 1px solid blue;
 padding: 1em;
 }
 </style>
 </head>
 <body>
 <h1>Smart Links</h1>
 <form action=""><p>
 <label for="newwin">Open links in new window?
 <input type="checkbox" id="newwin">
 </label>
 </p></form>

 <p>This page contains several links, such as
 SitePoint,
 Yahoo!, and
 Google.
 These links should ordinarily open in the same window when
 clicked, unless the checkbox is checked; this will make them
 open in a new window.
 </p>
 </body>
</html>

As you can see, this page is quite simple, and contains no JavaScript except for
the file that the <script> tag brings in. Figure 3.1 shows how the code displays:

59

Creating Smarter Links

Figure 3.1. The example “smart links” Web page.

Next, let’s look at the content of smartlink.js. This code has been assembled
from our earlier discussions, although it contains some extra code for this partic-
ular page. First, here’s an outline of what the script holds:

File: smartlink.js (excerpt)

function addEvent(elm, evType, fn, useCapture) { ... }
function handleLink(e) { ... }
function cancelClick() { ... }
function addListeners(e) { ... }

addEvent(window, 'load', addListeners, false);

And here are those four items in detail:

60

Chapter 3: Handling DOM Events

File: smartlink.js

function addEvent(elm, evType, fn, useCapture) {
 // cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

function handleLink(e) {
 var el;
 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el)
 return;

 while (el.nodeName.toLowerCase() != 'a' &&
 el.nodeName.toLowerCase() != 'body')
 el = el.parentNode;
 if (el.nodeName.toLowerCase() == 'body')
 return;

 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {
 window.open(el.href);
 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 }
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 }
}

function cancelClick() {
 if (document.getElementById('newwin') &&

61

Creating Smarter Links

 document.getElementById('newwin').checked) {
 return false;
 }
 return true;
}

function addListeners() {
 if (!document.getElementById)
 return;

 var all_links = document.getElementsByTagName('a');
 for (var i = 0; i < all_links.length; i++) {
 addEvent(all_links[i], 'click', handleLink, false);
 all_links[i].onclick = cancelClick;
 }
}

addEvent(window, 'load', addListeners, false);

Our code includes the now-familiar addEvent function to carry out cross-browser
event hookups. We use it to call the addListeners function once the page has
loaded.

The addListeners function uses another familiar technique; it iterates through
all the links on the page and does something to them. In this case, it attaches the
handleLink function as a click event listener for each link, so that when a link
is clicked, that function will be called. It also attaches the cancelClick function
as the old-style click event listener for each link—this will permit us to cancel
the default action of each link in Safari.

When we click a link, that link fires a click event, and handleLink is run. The
function does the following:

File: smartlink.js (excerpt)

 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el)
 return;

This is the cross-browser approach to identifying which link was clicked; we check
for a window.event object and, if it exists, use it to get window.event.srcElement,
the clicked link. Alternatively, if e, the passed-in parameter, exists, and e.target

62

Chapter 3: Handling DOM Events

exists, then we use that as the clicked link. If we’ve checked for both e and
e.target, but neither exists, we give up and exit the function (with return).

Next up, we want to make sure that we have a reference to our link element:

File: smartlink.js (excerpt)

 while (el.nodeName.toLowerCase() != 'a' &&
 el.nodeName.toLowerCase() != 'body')
 el = el.parentNode;
 if (el.nodeName.toLowerCase() == 'body')
 return;

Some browsers may pass the text node inside a link as the clicked-on node, instead
of the link itself. If the clicked element is not an <a> tag, we ascend the DOM
tree, getting its parent (and that node’s parent, and so on) until we get to the a
element. (We also check for body, to prevent an infinite loop; if we get as far up
the tree as the document body, we give up.)

Note that we also use toLowerCase on the nodeName of the element. This is the
easiest way to ensure that a browser that returns a nodeName of A, and one that
returns a nodeName of a, will both be handled correctly by the function.

Next, we check our checkbox:

File: smartlink.js (excerpt)

 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {

We first confirm (for paranoia’s sake) that there is an element with id newwin
(which is the checkbox). Then, if that checkbox is checked, we open the link in
a new window:

File: smartlink.js (excerpt)

 window.open(el.href);

We know that el, the clicked link, is a link object, and that link objects have an
href property. The window.open method creates a new window and navigates it
to the specified URL.

Finally, we take care of what happens afterward:

File: smartlink.js (excerpt)

 if (window.event) {
 window.event.cancelBubble = true;

63

Creating Smarter Links

 window.event.returnValue = false;
 }
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 }

We don’t want the link to have its normal effect of navigating the current window
to the link’s destination. So, in a cross-browser fashion, we stop the link’s normal
action from taking place.

As previously mentioned, Safari doesn’t support the standard method of cancelling
the link’s default action, so we have an old-style event listener, cancelClick,
that will cancel the event in that browser:

File: smartlink.js (excerpt)

function cancelClick() {
 if (document.getElementById('newwin') &&
 document.getElementById('newwin').checked) {
 return false;
 }
 return true;
}

You can see that some of this code is likely to appear in every project we attempt,
particularly those parts that have to do with listener installation.

Making Tables More Readable
A handy trick that many applications use to display tables of data is to highlight
the individual row and column that the viewer is looking at; paper-based tables
often shade table rows and columns alternately to provide a similar (although
non-dynamic12) effect.

Here’s a screenshot of this effect in action. Note the location of the cursor. If we
had another cursor, you could see that the second table is highlighted differently.
But we don’t, so you’ll just have to try the example code for yourself…

12 …until paper technology gets a lot cooler than it is now, at any rate!

64

Chapter 3: Handling DOM Events

Figure 3.2. Example of table highlighting in a Web page.

We can apply this effect to tables in an HTML document using event listeners.
We’ll attach a mouseover listener to each cell in a table, and have that listener
highlight all the other cells located in that cell’s row and column. We’ll also attach
a mouseout listener that turns the highlight off again.

The techniques we have explored in this chapter are at their most powerful when
we combine the dynamic capabilities of DHTML with the page styling of CSS.
Instead of specifically applying a highlight to each cell we wish to illuminate,
we’ll just apply a new class, hi, to those cells; our CSS will define exactly how
table cells with class hi should be displayed. To change the highlight, simply
change the CSS. For a more powerful effect still, use CSS’s selectors to apply
different styles to highlighted cells depending on the table in which they appear.

65

Making Tables More Readable

Here’s an example page that contains tables:

File: tableHighlight.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Highlighted Tables</title>
 <script type="text/javascript" src="tableHighlight.js">
 </script>
 <style type="text/css">
 tr.hi td, td.hi {
 background-color: #ccc;
 }
 table.extra tr.hi td, table.extra td.hi {
 color: red;
 text-decoration: underline overline;
 background-color: transparent;
 }
 </style>
 </head>
 <body>
 <h1>Highlighted Tables</h1>

 <h2>A table with highlighting</h2>
 <table>
 <tr>
 <td></td>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td>Row 1</td>
 <td>1,1</td><td>1,2</td><td>1,3</td><td>1,4</td>
 </tr>
 <tr>
 <td>Row 2</td>
 <td>2,1</td><td>2,2</td><td>2,3</td><td>2,4</td>
 </tr>
 <tr>
 <td>Row 3</td>
 <td>3,1</td><td>3,2</td><td>3,3</td><td>3,4</td>
 </tr>
 <tr>

66

Chapter 3: Handling DOM Events

 <td>Row 4</td>
 <td>4,1</td><td>4,2</td><td>4,3</td><td>4,4</td>
 </tr>
 </table>

 <h2>A table with different highlighting</h2>
 <table class="extra">
 <tr>
 <td></td>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td>Row 1</td>
 <td>1,1</td><td>1,2</td><td>1,3</td><td>1,4</td>
 </tr>
 <tr>
 <td>Row 2</td>
 <td>2,1</td><td>2,2</td><td>2,3</td><td>2,4</td>
 </tr>
 <tr>
 <td>Row 3</td>
 <td>3,1</td><td>3,2</td><td>3,3</td><td>3,4</td>
 </tr>
 <tr>
 <td>Row 4</td>
 <td>4,1</td><td>4,2</td><td>4,3</td><td>4,4</td>
 </tr>
 </table>
 </body>
</html>

That code creates two four-by-four tables, each with column and row headings
(so each table contains five rows and five columns in total). Notice that none of
the styles have any effect because, as yet, there are no elements with class="hi".

Let’s look at the matching tableHighlight.js script. Its structure reflects our
earlier discussions, but it contains some additional code for this particular tech-
nique. Here’s an outline of the script:

File: tableHighlight.js (excerpt)

function addEvent(elm, evType, fn, useCapture) { ... }
function ascendDOM(e, target) { ... }

67

Making Tables More Readable

function hi_cell(e) { ... }
function lo_cell(e) { ... }
function addListeners() { ... }

addEvent(window, 'load', addListeners, false);

Notice how similar the function outline is to the smart links example. Here are
the six items in all their detail.

File: tableHighlight.js

function addEvent(elm, evType, fn, useCapture)
// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
{
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

// climb up the tree to the supplied tag.
function ascendDOM(e, target) {
 while (e.nodeName.toLowerCase() != target &&
 e.nodeName.toLowerCase() != 'html')
 e = e.parentNode;

 return (e.nodeName.toLowerCase() == 'html') ? null : e;
}

// turn on highlighting
function hi_cell(e) {
 var el;
 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el) return;

 el = ascendDOM(el, 'td');
 if (el == null) return;

68

Chapter 3: Handling DOM Events

 var parent_row = ascendDOM(el, 'tr');
 if (parent_row == null) return;

 var parent_table = ascendDOM(parent_row, 'table');
 if (parent_table == null) return;

 // row styling
 parent_row.className += ' hi';

 // column styling
 var ci = -1;
 for (var i = 0; i < parent_row.cells.length; i++) {
 if (el === parent_row.cells[i]) {
 ci = i;
 }
 }
 if (ci == -1) return; // this should never happen

 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className += ' hi';
 }
}

// turn off highlighting
function lo_cell(e) {
 var el;
 if (window.event && window.event.srcElement)
 el = window.event.srcElement;
 if (e && e.target)
 el = e.target;
 if (!el) return;

 el = ascendDOM(el, 'td');
 if (el == null) return;

 var parent_row = ascendDOM(el, 'tr');
 if (parent_row == null) return;

 var parent_table = ascendDOM(parent_row, 'table');
 if (parent_table == null) return;

 // row de-styling
 parent_row.className =
 parent_row.className.replace(/\b ?hi\b/, '');

69

Making Tables More Readable

 // column de-styling
 var ci = -1;
 for (var i = 0; i < parent_row.cells.length; i++) {
 if (el === parent_row.cells[i]) {
 ci = i;
 }
 }
 if (ci == -1) return; // this should never happen
 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className = cell.className.replace(/\b ?hi\b/, '');
 }
}

function addListeners() {
 if (!document.getElementsByTagName) return;

 var all_cells = document.getElementsByTagName('td');
 for (var i = 0; i < all_cells.length; i++) {
 addEvent(all_cells[i], 'mouseover', hi_cell, false);
 addEvent(all_cells[i], 'mouseout', lo_cell, false);
 }
}

addEvent(window, 'load', addListeners, false);

We add our mouseover and mouseout event listeners using the standard approach.
The addListeners function sets up our hi_cell and lo_cell functions as
mouseover and mouseout event listeners, respectively.

To minimize duplicate code, we’ve added a handy little utility function called
ascendDOM. This marches up the tree from the element supplied in the first argu-
ment to find the first enclosing tag whose name matches the second argument.

Processing happens as follows. Mousing over a table cell triggers the hi_cell
function. This finds the moused-over cell, then calculates the row and the table
in which that cell appears. The ascendDOM function is called quite often in the
code, so you can see the benefit of putting that code into a function. In hi_cell,
the lines that actually do the styling work are these:

File: tableHighlight.js (excerpt)

 parent_row.className += ' hi';

File: tableHighlight.js (excerpt)

 cell.className += ' hi';

70

Chapter 3: Handling DOM Events

The rest of the code is simply concerned with picking out the right elements for
these lines to work on.

Our intention here is to apply the class hi to the other cells in the row that con-
tains the moused-over cell, and its column. The first line above executes the first
task. The second line applies the class to a given cell, but our script needs to find
the appropriate cells first.

This is where things get a little complicated. The row is a simple <tr> tag,
whereas the column is a list of cells scattered across all the rows in the table. Ac-
cording to the DOM Level 2 specification, table cell elements have a cellIndex
property, which indicates the cell’s index in the row. To find the other cells in
this column, we could iterate through all the rows in the table and find within
each row the cell that has the same cellIndex.

Sadly, Safari doesn’t properly support cellIndex—it is always set to 0, no matter
what the actual index should be. If Safari supported cellIndex, the process could
have been simple:

 var ci = el.cellIndex;

In fact, this concise snippet must be replaced with the much longer section below:

File: tableHighlight.js (excerpt)

 var ci = -1;
 for (var i = 0; i < parent_row.cells.length; i++) {
 if (el === parent_row.cells[i]) {
 ci = i;
 }
 }
 if (ci == -1) return; // this should never happen

ci is the cellIndex, and can be used to highlight other cells with the same
cellIndex in the other rows in the table:

File: tableHighlight.js (excerpt)

 for (var i = 0; i < parent_table.rows.length; i++) {
 var cell = parent_table.rows[i].cells[ci];
 cell.className += ' hi';
 }

All the table’s rows are held in the table’s rows array. We walk through that array,
applying the hi class to the cell in each row that has the same index as the
moused-over cell.

71

Making Tables More Readable

The upshot of this exercise is that all the cells in the same column as the moused-
over cell will have class hi; the table row containing the cell will also have class
hi.

Our CSS code takes care of the appearance of these cells:

File: tableHighlight.html (excerpt)

 tr.hi td, td.hi {
 background-color: #ccc;
 }

We’ve applied a background color of class hi to both tds, and tds in a tr of class
hi; thus, these cells will be highlighted. The lo_cell function works similarly,
except that it removes the class hi from the row and column rather than applying
it. The removal is done with the following lines:

File: tableHighlight.js (excerpt)

 parent_row.className =
 parent_row.className.replace(/\b ?hi\b/, '');

File: tableHighlight.js (excerpt)

 cell.className = cell.className.replace(/\b ?hi\b/, '');

Since a className is a string, it has all the methods of a string, one of which is
replace; we can call the replace method with a regular expression (first para-
meter) and a substitute string (second parameter). If a match for the regular ex-
pression is found in the string, it is replaced by the substitute string. In our ex-
ample, we look for matches to the expression \b ?hi\b (note that regular expres-
sions are delimited by slashes, not quotes)—that is, a word boundary followed
by an optional space, the word ‘hi’, and another word boundary—and replace it
with a blank string, thus removing it from the className.

An added bonus of using CSS to provide the style information is that we can
apply different highlighting to different tables on the page without changing the
script. For example, the HTML of the page contains two tables, one with a class
of extra. We apply some CSS specifically to tables with class extra:

File: tableHighlight.html (excerpt)

table.extra tr.hi td, table.extra td.hi {
 color: red;
 text-decoration: underline overline;
 background-color: transparent;
}

72

Chapter 3: Handling DOM Events

As a result, the highlighted cells in that particular table will be highlighted differ-
ently. CSS makes achieving this kind of effect very easy.

Summary
Understanding the processes by which events are fired, and by which code is
hooked to those events, is vital to DHTML programming. Almost everything you
do in DHTML will involve attaching code to events, as described in this chapter.
We’ve examined some common events and the two browser models for listening
to them. We have also covered what happens when an event fires, and how you
can interrupt or alter that process. Finally, we looked at a few events in detail,
and saw some simple examples of how code can attach to those events and improve
the user experience on sites that employ these techniques.

73

Summary

74

Detecting Browser Features4
You just listed all my best features.
—The Cat, Red Dwarf, Series 3, Episode DNA

An important design constraint when adding DHTML to your Websites is that
it should be unobtrusive. By “unobtrusive,” I mean that if a given Web browser
doesn’t support the DHTML features you’re using, that absence should affect
the user experience as little as possible. Errors should not be shown to the user:
the site should be perfectly usable without the DHTML enhancements. The
browsers that render your site will fall into the following broad categories:

1. Offer no JavaScript support at all, or have JavaScript turned off.

2. Provide some JavaScript support, but modern features are missing.

3. Have full JavaScript support, but offer no W3C DOM support at all.

4. Provide incomplete DOM support, but some DOM features are missing or
buggy.

5. Offer complete DOM support without bugs.

The first and the last categories hold no concerns for you as a DHTML developer.
A browser that does not run JavaScript at all will simply work without calling
any of your DHTML code, so you can ignore it for the purposes of this discussion.

You just need to make sure that your page displays correctly when JavaScript is
turned off.1 Similarly, a browser that implements the DOM completely and
without bugs would make life very easy. It’s a shame that such browsers do not
exist.

The three categories in the middle of the list are of concern to us in this chapter.
Here, we’ll explore how to identify which DHTML features are supported by a
given browser before we try to utilize those features in running our code.

There are basically two ways2 to working out whether the browser that’s being
used supports a given feature. The first approach is to work out which browser
is being used, then have a list within your code that states which browser supports
which features. The second way is to test for the existence of a required feature
directly. In the following discussion, we’ll see that classifying browsers by type
isn’t as good as detecting features on a case-by-case basis.

Old-Fashioned Browser Sniffing
In the bad old days, before browser manufacturers standardized on the DOM,
JavaScript developers relied on detection of the browser’s brand and version via
a process known as browser sniffing. Each browser provides a window.navigator
object, containing details about the browser, which can be checked from Java-
Script. We can, for example, find the name of the browser (the “user agent string”)
as follows:

var browserName = navigator.userAgent;
var isIE = browserName.match(/MSIE/); // find IE and look-alikes

Don’t do this any more! This technique, like many other relics from the Dark
Ages of JavaScript coding (before the W3C DOM specifications appeared), should
not be used. Browser sniffing is flaky and prone to error, and should be avoided
like the black plague. Really: I’m not kidding here.

Why am I so unenthusiastic about browser sniffing? There are lots of reasons.
Some browsers lie about, or attempt to disguise, their true details; some, such as
Opera, can be configured to deliver a user agent string of the user’s choice. It’s
pretty much impossible to stay up-to-date with every version of every browser,

1 For example, if your DHTML shows and hides some areas of the page, those areas should show
initially, then be hidden with DHTML, so that they are available to non-DHTML browsers.
2 Actually, there’s a third way to identify browser support. The DOM standards specify a
document.implementation.hasFeature method that you can use to detect DOM support.
It’s rarely used, though.

76

Chapter 4: Detecting Browser Features

and it’s definitely impossible to know which features each version supported
upon its release. Moreover, if your site is required to last for any reasonable
period of time, new browser versions will be released after your site, and your
browser-sniffing code will be unable to account for them. Browser sniffing—what
little of it remains—should be confined to the dustbin of history. Put it in the
“we didn’t know any better” category. There is a significantly better method
available: feature sniffing.

Modern DOM Feature Sniffing
Instead of detecting the user’s browser, then working out for yourself whether it
supports a given feature, simply ask the browser directly whether it supports the
feature. For example, a high proportion of DHTML scripts use the DOM method
getElementById. To work out whether a particular visitor’s browser supports
this method, you can use:

if (document.getElementById) {
 // and here you know it is supported
}

If the if statement test passes, we know that the browser supports the feature
in question. It is important to note that getElementById is not followed by
brackets! We do not say:

if (document.getElementById())

If we include the brackets, we call the method getElementById. If we do not in-
clude the brackets, we’re referring to the JavaScript Function object that underlies
the method. This is a very important distinction. Including the brackets would
mean that we were testing the return value of the method call, which we do not
want to do. For a start, this would cause an error in a non-DOM browser, because
we can’t call the getElementById method there at all—it doesn’t exist! When
we test the Function object instead, we’re assessing it for existence. Browsers
that don’t support the method will fail the test. Therefore, they will not run the
code enclosed by the if statement; nor will they display an error.

This feature of JavaScript—the ability to test whether a method exists—has been
part of the language since its inception; thus, it is safe to use it on even the oldest
JavaScript-supporting browsers. You may recall from the previous chapter the
technique of referring to a Function object without calling it. In Chapter 3, we
used it to assign a function as an event listener without actually calling it. In

77

Modern DOM Feature Sniffing

JavaScript, everything can be treated as an object if you try hard enough; methods
are no exception!

Which DOM Features Should We Test?
The easiest approach is to test for every DOM method you intend to use. If your
code uses getElementById and createElement, test for the existence of both
methods. This will cover browsers in the fourth category above: the ones that
implement some—but not all—of the DOM.

It is not reasonable to assume that a browser that supports getElementById also
supports getElementsByTagName. You must explicitly test for each feature.

Where Should We Test for DOM Features?
An easy way to handle these tests is to execute them before your DHTML sets
up any event listeners. A large subset of DHTML scripts work by setting on page
load some event listeners that will be called as various elements in the browser
fire events. If, before setting up the event listeners, you check that the browser
supplies all the DOM features required by the code, event listeners will not be
set up for browsers that do not support those features. You can therefore reason-
ably assume in setting up your event listeners that all the features you require
are available; this assumption can simplify your code immensely. Here’s an ex-
ample:

function myScriptInit() {
 if (!document.getElementById ||
 !document.getElementsByTagName ||
 !document.createElement) {
 return;
 }
 // set up the event listeners here
}

function myScriptEventListener() {
 var foo = document.getElementById('foo'); // safe to use
}

addEvent(window, 'load', myScriptInit, false);

This script contains a myScriptInit function, which sets up
myScriptEventListener as an event listener. But, before we set up that listener,

78

Chapter 4: Detecting Browser Features

we check for the existence of the DOM methods getElementById,
getElementsByTagName, and createElement.

The if statement says: “if the JavaScript Function object
document.getElementById does not exist, or if the Function object
document.getElementsByTagName does not exist, or if the Function object
document.createElement does not exist, exit the myScriptInit function.” This
means that, should any of those objects not be supported, the myScriptInit
function will exit at that point: it will not even get as far as setting up the event
listeners. Our code will set up listeners only on browsers that do support those
methods. Therefore, as above, the listener function myScriptEventListener can
feel safe in using document.getElementById without first checking to ensure
that it is supported. If it wasn’t supported, the listener function would not have
been set up.

All this sniffing relies on JavaScript’s runtime behavior. Even though the scripts
are read by the browser at load time, no checks are done on the objects stated in
the scripts until the code is run. This allows us to put browser objects in all scripts,
and use them only when our detection code gets around to it: an arrangement
called late binding.

Testing Non-DOM Features
Feature sniffing can be used on any JavaScript object: not just methods, and not
just those methods that are part of the DOM. Commonly used examples are the
offset properties (offsetWidth, offsetHeight, offsetLeft and offsetTop) of
an element. These JavaScript properties are an extension to the DOM provided
by all the major browsers. They return information on the size and position of
an element in pixels. We can test whether those properties are defined on a given
element’s object as follows:

var foo = document.getElementById('foo');

if (typeof foo.offsetHeight != 'undefined') {
 var fooHeight = foo.offsetHeight;
}

Here, we set fooHeight if, and only if, offsetHeight is supported on foo. This
is a different type of check from the method we used before, though: isn’t it
possible simply to say, if (foo.offsetHeight)? This isn’t a good approach to
use. If foo.offsetHeight is not defined, if (foo.offsetHeight) will not be
true, just as we expect. However, the if statement will also fail if

79

Testing Non-DOM Features

foo.offsetHeight does exist, but is equal to 0 (zero). This is possible because
JavaScript treats zero as meaning false. Testing whether a given item is defined
just got a little more complex (but only a little!).

If you are testing for the existence of function functionName, or method
methodName (on an object obj), use the function/method name without the
brackets to do so:

if (functionName) { ... }
if (obj.methodName) { ... }

Likewise, if you’re testing for a variable v, or for a DOM property prop of an
object, you can often use the variable or the DOM attribute’s property name
directly:

if (v) { ... }
if (obj.prop) { ... }

But, watch out! If the variable or property contains numbers or strings (as does
offsetHeight, for example) then use typeof, because a number might be 0
(zero), and a string might be the empty string "", both which also evaluate to
false:

if (typeof v != 'undefined') { ... }
if (typeof obj.prop != 'undefined') { ... }

Sniffing at Work: scrollImage
Lots of Websites contain photo galleries: pages listing thumbnails of photographs
that, when clicked on, display the photos at full size. An interesting enhancement
to such a site might be to let the user see the full-size photo without having to
click to load it. When the user mouses over the thumbnail, that thumbnail could
become a “viewing area” in which a snippet of the full-sized image is shown. This
technique is useful if your thumbnails aren’t detailed enough to enable users to
tell the difference between superficially similar images. It’s especially handy if
your thumbnails display something like a document, rather than a photo. Fig-
ure 4.1 shows the final effect:

80

Chapter 4: Detecting Browser Features

Figure 4.1. The thumbnail display implemented by the
scrollImage example.

We’ll describe what’s going on here in a moment. We’ll review the code first,
then see a demonstration before we get to the explanation.

Setting Up the Page
The HTML file for this technique is straightforward:

File: scrollImage.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>ScrollImage demonstration</title>
 <script src="scrollImage.js" type="text/javascript"></script>
 <style type="text/css">
 .scrollimage {
 display: block;
 float: left;
 border: 1px solid black;
 margin: 1em;
 padding: 0;
 }

81

Setting Up the Page

 .scrollimage:hover {
 position: relative;
 }

 .scrollimage img {
 border: none;
 }

 .scrollimage:hover img {
 display: none;
 }
 </style>
 </head>
 <body>

 <h1>Scanned documents</h1>

 <p>
 <a href="1.jpg" class="scrollimage"
 mainx="563" mainy="823" thumbx="82" thumby="120"
 style="background: url(1.jpg); width: 82px;
 height: 120px;"
 >

 <a href="2.jpg" class="scrollimage"
 mainx="563" mainy="777" thumbx="87" thumby="120"
 style="background: url(2.jpg); width: 87px;
 height: 120px;"
 >

 <a href="3.jpg" class="scrollimage"
 mainx="567" mainy="823" thumbx="83" thumby="120"
 style="background: url(3.jpg); width: 83px;
 height: 120px;"
 >

 <a href="4.jpg" class="scrollimage"
 mainx="558" mainy="806" thumbx="83" thumby="120"
 style="background: url(4.jpg); width: 83px;
 height: 120px;"
 >

 <a href="5.jpg" class="scrollimage"
 mainx="434" mainy="467" thumbx="112" thumby="120"
 style="background: url(5.jpg); width: 112px;
 height: 120px;"

82

Chapter 4: Detecting Browser Features

 >
 </p>

 </body>
</html>

The content of this page is fairly obvious. Notice how the image elements are
hidden by CSS styles when the mouse moves over them. This page also in-
cludes—with the <script src="scrollImage.js"
type="text/javascript"></script> line—this JavaScript file:

File: scrollImage.js

// Based on findPos*, by ppk
// (http://www.quirksmode.org/js/findpos.html)
function findPosX(obj) {
 var curLeft = 0;
 if (obj.offsetParent) {
 do {
 curLeft += obj.offsetLeft;
 } while (obj = obj.offsetParent);
 }
 else if (obj.x) {
 curLeft += obj.x;
 }
 return curLeft;
}

function findPosY(obj) {
 var curTop = 0;
 if (obj.offsetParent) {
 do {
 curTop += obj.offsetTop;
 } while (obj = obj.offsetParent);
 }
 else if (obj.y) {
 curTop += obj.y;
 }
 return curTop;
}

// cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
function addEvent(obj, evType, fn, useCapture) {
 if (obj.addEventListener) {
 obj.addEventListener(evType, fn, useCapture);
 return true;

83

Setting Up the Page

 } else if (obj.attachEvent) {
 var r = obj.attachEvent('on' + evType, fn);
 return r;
 } else {
 obj['on' + evType] = fn;
 }
}

addEvent(window, 'load', scrollInit, false);

function scrollInit() {
 if (!document.getElementsByTagName)
 return;
 var allLinks = document.getElementsByTagName('a');
 for (var i = 0; i < allLinks.length; i++) {
 var link = allLinks[i];
 if ((' ' + link . className + ' ').indexOf(' scrollimage ') !=
 -1) {
 addEvent(link, 'mousemove', moveListener, false);
 }
 }
}

function attVal(element, attName) {
 return parseInt(element.getAttribute(attName));
}

function moveListener(ev) {
 var e = window.event ? window.event : ev;
 var t = e.target ? e.target : e.srcElement;

 var xPos = e.clientX - findPosX(t);
 var yPos = e.clientY - findPosY(t);

 if (t.nodeName.toLowerCase() == 'img')
 t = t.parentNode;
 if (t.nodeName.toLowerCase() == 'a') {

 // scaleFactorY = (width(big) - width(small)) / width(small)
 var scaleFactorY =
 (attVal(t, 'mainy') - attVal(t, 'thumby')) / attVal(t,
 'thumby');
 var scaleFactorX =
 (attVal(t, 'mainx') - attVal(t, 'thumbx')) / attVal(t,
 'thumbx');

84

Chapter 4: Detecting Browser Features

 t.style.backgroundPosition =
 (-parseInt(xPos * scaleFactorX)) + 'px ' +
 (-parseInt(yPos * scaleFactorY)) + 'px';
 }
}

We’ll explore (and fix!) this code shortly. Finally, the page also contains images:
five at full-size, and five thumbnails. You can find them in the code archive for
this book.

Demonstrating the DHTML Effect
Let’s see how the page works. The HTML document shows five images as
thumbnails; in this example, they’re thumbnails of individual pages of a scanned-
in document. Figure 4.2 shows the page content under normal circumstances.

Figure 4.2. Thumbnails of a document.

When we mouse-over a thumbnail image, though, the display of that thumbnail
changes to show the actual image to which it’s linked, as shown in Figure 4.3.

The thumbnail becomes a viewing area in which we can see a snippet of the full-
size image. As the cursor moves over the third image, we see the content of the
third image at full size through the viewing area. For a document thumbnail such
as this, we can use the cursor to move around the document within the viewing
area, so that we can read the content and see if it’s the document we want. This
technique can also be useful, as mentioned, in photo galleries containing images
that look similar when displayed at thumbnail size.

85

Demonstrating the DHTML Effect

Figure 4.3. Mousing over a thumbnail.

How the Code Works
Conceptually, the code works as follows: we set up the page so that every “scrol-
lable” image is made up of an <a> tag of class scrollimage, which contains an
 tag displaying the thumbnail. We apply the full-size image as the CSS
background image of the <a> tag. Then, when the user mouses over the a element,
we hide the img element entirely, allowing the a element’s background image to
show through. We then manipulate the position of that background image so
that it moves in accordance with the cursor.3

This is all fairly advanced stuff, so we need to confirm that the running browser
supports all the features we need in order to make it work. We start by making
the script initialize on page load with the line:

File: scrollImage.js (excerpt)

addEvent(window, 'load', scrollInit, false);

We saw the addEvent method in Chapter 3, but, with what we’ve learned about
feature detection, its workings should now be much clearer to you. First, we check
for the existence of an addEventListener method on the passed object, to see
if the user’s browser supports the DOM Events model correctly:

3 We’re storing the dimensions of the larger image in custom attributes on the a element: mainx,
mainy, thumbx, and thumby. This is a slightly suspect technique: it will prevent the HTML from
validating, and should therefore be approached with caution. In this case, however, it is the easiest
way to tie the required values to each of the a elements.

86

Chapter 4: Detecting Browser Features

File: scrollImage.js (excerpt)

function addEvent(obj, evType, fn, useCapture) {
 if (obj.addEventListener) {
 obj.addEventListener(evType, fn, useCapture);
 return true;

Failing that, we look for Internet Explorer’s proprietary attachEvent method on
the object.

File: scrollImage.js (excerpt)

 } else if (obj.attachEvent) {
 var r = obj.attachEvent('on' + evType, fn);
 return r;

Failing that, we attach the event listener directly to the element, as an event
handler; this is required for IE5 on Macintosh.

File: scrollImage.js (excerpt)

 } else {
 obj['on' + evType] = fn;
 }

This procedure caters for all the ways by which we might attach an event listener,
using feature sniffing to see which option is available.

The initialization function that sets up the scrolling effect, scrollInit, uses
document.getElementsByTagName to find all the a elements in the document.
Therefore, scrollInit checks for this method’s existence before proceeding:

File: scrollImage.js (excerpt)

function scrollInit() {
 if (!document.getElementsByTagName)
 return;

If the user’s browser doesn’t support document.getElementsByTagName, then
we return from the scrollInit function and don’t progress any further.

One extra trick in the feature sniffing code, as described in Chapter 3, addresses
the way in which we find the event object when we’re inside the moveListener
event listener. As we know, the DOM Events specification mandates that an
event object is passed to the event listener as an argument, whereas Internet Ex-
plorer makes the event object available as the global window.event. So, our code
checks for the existence of window.event, and uses it as the event object if it

87

How the Code Works

exists; the code falls back to the passed-in argument if window.event is not
present:

File: scrollImage.js (excerpt)

function moveListener(ev) {
 var e = window.event ? window.event : ev;

Next, we need to get the event’s target from that event object; the DOM specifies
e.target, and Internet Explorer provides e.srcElement. Another feature-sniff
gives us the appropriate value:

File: scrollImage.js (excerpt)

 var t = e.target ? e.target : e.srcElement;

This is a compressed, shorthand version of the code we saw in Chapter 3.

The next step is for the code to get the position of the mouse inside the thumbnail
image area. This is the code from the full listing above that is supposed to do
this:

 var xPos = e.clientX - findPosX(t);
 var yPos = e.clientY - findPosY(t);

In theory, e.clientX and e.clientY give the x- and y-coordinates of the mouse
within the browser window, respectively. By subtracting from these the x- and
y-coordinates of the target element, we obtain the mouse’s position within that
element.

Depending on your browser of choice, this might seem to work just fine at first
glance. Peter-Paul Koch’s findPosX and findPosY functions make short work of
getting the target element’s position.4 Unfortunately, the clientX and clientY
properties of the event object are nowhere near as reliable.

clientX and clientY Problems
The code above is flawed: the event listener uses e.clientX and e.clientY to
ascertain the position of the mouse.

But that’s not a flaw, is it? After all, it’s in the DOM specifications!

4 For a complete description of how findPosX and findPosY work, visit Peter-Paul Koch’s page
on the subject at http://www.quirksmode.org/js/findpos.html.

88

Chapter 4: Detecting Browser Features

http://www.quirksmode.org/js/findpos.html

Well, it’s sort of a flaw—a flaw in the way browser manufacturers interpret the
specification. Peter-Paul Koch studies this problem in great detail in his compre-
hensive article, Mission Impossible—Mouse Position5. The problem occurs only when
the page is scrolled (which was not the case with the above page). When a page
is scrolled, the specification is rather vague on whether clientX and clientY are
returned relative to the whole document, or to the window (the part of the doc-
ument that is visible). Internet Explorer returns them relative to the window, as
does Mozilla, but all of Opera, Konqueror, and iCab return them relative to the
document. Netscape also provides pageX and pageY, which are mouse coordinates
relative to the document. (Ironically enough, Internet Explorer may be the only
browser which is fully compliant with the standard; the best reading of the spe-
cification is that clientX and clientY should be relative to the window.)

So, we need to use pageX and pageY if they exist, and clientX and clientY if
they do not; if we’re in Internet Explorer, however, we have to add to clientX
and clientY the amounts by which the page has been scrolled. But how do we
know if we’re in Internet Explorer? We use browser detection.

Browser Detection You Can’t Avoid
That spluttering noise you can hear in the background is the crowd rightly
pointing out that we consigned browser detection to the dustbin of history only
a few pages back, and they’re not wrong. However, there are occasions when
different browsers implement the same properties (in this case, clientX and
clientY) in different ways and when there are no other objects available for
sniffing that can us tell which of the different implementations is in use.

On such occasions, there is no alternative but to use the dreaded browser sniffing
to work out what to do. The mouse position issue described here is almost the
only such situation. The very thought that it might be necessary to use browser
detection should make all right-thinking DHTML developers shudder with guilt,
but, sadly, there’s nothing for it! We add the browser detection script to the code
just before we call addEvent to set up our window load listener:

File: scrollImage.js (excerpt)

var isIE = !window.opera && navigator.userAgent.indexOf('MSIE') !=
 -1;

Note that, first, we check that window.opera is false or non-existent; Opera
sets this variable to make it easy for scripts to detect that it is the browser in use

5 http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/

89

Browser Detection You Can’t Avoid

http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/

(Opera also implements user-agent switching, so that, from a
navigator.userAgent perspective, it can appear to be Internet Explorer). Once
we’ve established that we’re not using Opera, we go on to look for “MSIE” in the
user agent string; if this is present, Internet Explorer is the browser in use.

Our updated moveListener event listener now looks like this:

File: scrollImage.js (excerpt)

function moveListener(ev) {
 var e = window.event ? window.event : ev;
 var t = e.target ? e.target : e.srcElement;

 var mX, mY;
 if (e.pageX && e.pageY) {
 mX = e.pageX;
 mY = e.pageY;
 } else if (e.clientX && e.clientY) {
 mX = e.clientX;
 mY = e.clientY;
 if (isIE) {
 mX += document.body.scrollLeft;
 mY += document.body.scrollTop;
 }
 }

 var xPos = mX - findPosX(t);
 var yPos = mY - findPosY(t);

// ... the rest as before ...

Note that we check first for pageX and pageY (for Mozilla), then fall through to
clientX and clientY. We handle Internet Explorer by checking the isIE variable;
if it’s true, we add the document’s scroll amounts as required. We’re using the
browser detect as little as possible; specifically, Netscape/Mozilla provide the
pageX and pageY properties, and we look for them through feature sniffing, not
by performing browser detection for Mozilla.

Calculating Screen Positions
The last section of our code has little to do with browser detects, but, having
spent all this time to get the right X and Y coordinates, it makes sense to under-
stand how to use them.

90

Chapter 4: Detecting Browser Features

The last part of the moveListener function starts with a couple of ifs, which
ensure that we have in hand a reference to the <a> tag surrounding the thumbnail
 of interest. No surprises there, so we grab the required DOM element:

File: scrollImage.js (excerpt)

 if (t.nodeName.toLowerCase() == 'img')
 t = t.parentNode;
 if (t.nodeName.toLowerCase() == 'a') {

Next, we have the first of two sets of calculations:

File: scrollImage.js (excerpt)

 // scaleFactorY = (width(big) - width(small)) / width(small)
 var scaleFactorY =
 (attVal(t, 'mainy') - attVal(t, 'thumby')) / attVal(t,
 'thumby');
 var scaleFactorX =
 (attVal(t, 'mainx') - attVal(t, 'thumbx')) / attVal(t,
 'thumbx');

Code like this is liable to be specific to each DHTML effect you undertake, but
the mind-bending you have to do to come up with the code is similar in all cases.
Take a deep breath: here we go!

With the large background image showing through the viewing area, what should
appear when the cursor is in the top-left corner of that viewing area? The top-
left corner of the big image should be in the top-left corner of the viewing area:
that’s straightforward. Now, what should appear when the cursor is located at
the bottom-right corner of the viewing area? Should the bottom-right corner of
the full-sized image be in the top-left corner of the viewing area? That’s what
would happen if the big image were moved by its full size across the viewing area
as the cursor was moved the full distance across the viewing area. Think about
it carefully; you might like to try experimenting with two pieces of paper, one of
which has a rectangular hole in it. The big image would eventually disappear off
the top-left corner of the viewing area! If the background image were tiled (the
default), additional copies of the image would be visible at this bottom-right
corner—a very odd result.

We don’t want the image to move that far. If we move the cursor to the extreme
bottom-right of the viewing area, we want the big image to move by almost its
entire size—but not quite! We want the bottom-right corner of the big image to
move only as far as the bottom-right corner of the viewing area, and not move
any further towards the top-left.

91

Calculating Screen Positions

Now, to make the big image move, we have to calculate a distance by which to
move it. Take some example figures: suppose the big image is ten times the size
of the thumbnail. Let’s suppose the image is 500 pixels on each side, and the
thumbnail’s 50 pixels on each side. For every pixel by which the cursor moves,
the big image should move 500/50: ten times as fast. So the “scale factor” is ten.
But, wait a minute! If the cursor moves 50 pixels left, the big image will move
500 pixels left: right off the left edge of the viewing area. That’s too far. We want
it to move at most 500 minus 50 pixels, so that it’s always “inside” the viewing
area. Therefore, the real scale factor is (500 – 50) / 50 = 9. The full-sized image
should move nine times as fast as the cursor. That’s what the first set of calcula-
tions does, except that it calculates scale factors in both dimensions, since most
images are rectangles, not squares.

Next, we want to move the big image. Here’s the second set of calculations:

File: scrollImage.js (excerpt)

 t.style.backgroundPosition =
 (-parseInt(xPos * scaleFactorX)) + 'px ' +
 (-parseInt(yPos * scaleFactorY)) + 'px';

Now, if (for example) we move the mouse from the top-left towards the bottom-
right, we’re scanning diagonally across the viewing area. As we move, we want
new areas of the big image to come into view. So the big image had better slide
in the opposite direction to the mouse: up towards, and beyond, the top left. It’s
like using a negative margin to bleed text to the left and top of a page. And that’s
what we do by calculating negative pixel amounts.

This idea may seem back-to-front initially. Think of it as though you were
shooting a scene for a movie. The camera (the thumbnail viewing area) is fixed
into place, so it must be the scene at which the camera points that moves if there’s
to be any panning effect. Alternately, imagine yourself looking out of the window
of a moving train without turning your head. It’s the same effect again, provided
the train goes backwards!

Summary
In this chapter, we’ve learned that browsers don’t always support all the DOM
features we’d like, and discussed how feature sniffing helps us as DHTML de-
velopers to code defensively around this issue. Browser sniffing allows us to de-
liver dynamic features to browsers that can handle them and, at the same time,
to avoid crashing or throwing errors in browsers that can’t. We looked at the old
method, browser sniffing, and explained why it shouldn’t be used if at all possible.

92

Chapter 4: Detecting Browser Features

We then explored one occasion on which feature sniffing can’t provide everything
we need, leaving us the old method as a last resort.

93

Summary

94

Animation5
Anyone can now enter the lucrative field of animated cartoons with the new Tom and Jerry
Cartoon Kit. This kit contains everything needed for quiet, sophisticated humor—one mean,
stupid cat; one sweet, lovable mouse; and assorted deadly weapons. The coffee and cigarettes
are for the cartoonists.
—The Tom and Jerry Cartoon Kit, 1962

Adding animation to your DHTML pages can really boost usability. Animation
lets the user know that something is happening (think of a progress bar, or an
hourglass), it can provide context for something that’s happening (think of a
drop-down menu; you know that the contents of the menu are related to the
header of the menu), and it does look pretty cool when it’s used correctly. Here,
we’ll consider the principles of the appropriate use of animation, then we’ll see
how to use it smoothly and well. Animation is fun! It’s the cherry on the top of
the Web development pie, so grab the opportunity to use it when an decent excuse
comes along.

Tastefulness and Usability
Animated elements of a page draw the user’s eye like nothing else. This is an
important thing to know; if you want to draw the user’s eye to an element, anim-
ating it is a good way to do so. But it is vital to remember that an animated ele-
ment will draw attention away from everything else on the page. Frivolous anim-

ations will divert your users’ focus from valuable content. When implemented
subtly and tastefully, though, animation can tie the disparate parts of your page
together very neatly. It is therefore very important not to overuse animation
techniques. Apply animation with a light hand.

Animation Basics
Animation in DHTML falls into two categories: causing an element to change
its appearance while remaining still, and causing an element to move. Both of
these approaches rely on having the transition occur in numerous little steps
(small movements, or small changes of appearance), which occur in quick succes-
sion. Each step builds on the previous step until, at the end of the animation,
the item has fully changed or moved to its final position. So, to make a block of
text change color, from black to white, each little step would make the text a
slightly lighter shade of grey than the previous step, until the text reaches white
and the animation stops. This effect is shown in Figure 5.1 below.

Figure 5.1. The text fades in steps.

Each step takes place without any prompting from users; they are not required
to do anything to make the steps execute. Let’s see how we can make these steps
occur one after the other.

I’ll provide a full working example in this chapter, but if you’re impatient, you
can check out the effect in action1. This project management site lets you exper-
iment with its services for free. Enroll, create a test project, go to the project home
page, and click the Messages tab (or click “All Messages”). The first time you
add a message, the effect might occur too quickly for you to spot, but add a
second message, and you’ll see how the fading effect provides an excellent remind-
er of the content that was just added.

The setTimeout Function
Almost all timed activity in JavaScript takes place through the use of the
setTimeout function (this is actually a method, which belongs to the window

1 http://www.basecamphq.com/

96

Chapter 5: Animation

http://www.basecamphq.com/

object). We pass a string containing JavaScript code and a number of milliseconds
(one millisecond being one thousandth of a second), and that code will be run
once the specified number of milliseconds has elapsed. So, to pop up an alert two
seconds from now, we could use the following:

setTimeout('alert("Hello, world!")', 2000);

The first argument is a string that contains code; it’s not the code stated literally.
If we leave out the single quotes in the above, the code will be run immediately
and its return value will be used as the code that’s run in two seconds’ time. Since
executing the JavaScript expression 2 (if that happens to be the return value)
doesn’t do much (it evaluates 2 to mean 2, then throws it away!), this is probably
not what you want. You must be careful to remember to pass the code in correctly
as a string.2 Since it is a string, you must also be careful about quoting: quotes
inside the string might need to be escaped:

setTimeout('alert("Why oh why didn\'t I take the blue pill?")',
 2000);

Note that the apostrophe in “didn’t” is escaped, to prevent it from ending the
entire string early. It’s a good idea use one type of quote mark (say, single quotes)
for the whole string, then use the other kind of quote mark (double quotes)
wherever they’re needed inside the string. The example above does that, but we’re
also stuck with an extra single quote that’s literally required for “didn’t”, so it
needs to be escaped with a backslash.

This extra quoting may be quite a difficult concept to get your head around, but
it’s vital that you understand it: we pass a string containing code, not the code
itself. We put quotes around the whole code, even if it contains quotes already.

Because the timed code is stated outside the normal flow of code, and because
it’s executed later, it’s best to try to keep the timed code simple. Make timed
code short; make it do its job, then finish up quickly. Complex timed code just
leads to a big, tangled mess. Vote against JavaScript spaghetti code by using short
timed code!

Passing in a Function

Using a string that contains JavaScript code does create a fairly serious problem,
though: how do you use an existing object or a variable in that string? For example,
imagine this code:

2 Of course, this can be useful; you could call a function directly, which returns some code to be run.

97

The setTimeout Function

function testSetTimeout() {
 var myVariable = 'A string';
 setTimeout('alert(myVariable)', 1000);
}

testSetTimeout();

What will that do?

What it won’t do is present a dialog box containing the words, “A string.” Instead,
we get a JavaScript error: “myVariable is not defined.” Why is this?

The string passed to setTimeout is evaluated in the context of the window object.
It is not evaluated in the context of the function or method from which it was
called. What this means is that, although our myVariable exists inside the
testSetTimeout function, it doesn’t exist as a global variable, but that’s what
the window object contains: global variables. If you use a variable in code passed
to setTimeout, it has to be a global variable. If it isn’t, when the code runs, it
won’t be able to find the variable.

Fortunately, there is a better solution. Instead of a string, we can pass a function
to setTimeout, and that function will be executed when the timeout occurs (but
beware of really old browsers, in which this won’t work). If this function is defined
within another function, it will be able to access the variables inside that outer
function. In other words, the context (or home) of our timed function is its parent
function, so the parent function’s variables are available in the timed code. That’s
what we want!

As with event listeners, we pass a function to setTimeout by supplying its name:

function testSetTimeout() {
 var privateVar = 'A string';
 function bar() { alert(privateVar); }
 window.setTimeout(bar, 1000);
}
testSetTimeout();

This will display the text “A string” in a dialog box, as expected. Both bar and
privateVar have the same context—the function testSetTimeout. In fact, we
need not even assign the function a name: we can define the function inline as
an anonymous function:

function testSetTimeout() {
 var privateVar = 'A string';

98

Chapter 5: Animation

 window.setTimeout(function() { alert(privateVar); }, 1000);
}
testSetTimeout();

Surrounding the actual code with function() { … } is a quick hack that gives
us access to the variables we need. It also allows us to put our timer setup in a
custom function, which can be called after the page is loaded.

setTimeout Runs Later On

An animation would not be a useful enhancement if the rest of the browser locked
up while the animation was running. To avoid this problem, setTimeout itself
is asynchronous: when you call it, it returns immediately. That means the browser
continues to respond immediately to user input. Nothing is “stopped” while
waiting for the timed event to occur. After the defined period, the browser runs
the timed code as soon as it isn’t busy doing something else. You may call
setTimeout as many times as you wish, and each scheduled piece of code will
run in turn after the allotted time without further prompting.

Some programming languages offer sleep, select or wait functions that pause
everything for the specified amount of time. Such functionality is impossible in
a Web page. All you can do is schedule pieces of code to run at some time in the
future, then finish up what you were doing. The scheduled piece of code will
come back at the right time, like a boomerang. So, learn to duck!

Canceling Timed Code

A call to setTimeout returns a value. If you want the option to cancel the
scheduled code before it runs, you can store this value and pass it to the
clearTimeout function.

Here’s an example of a simple cancelled timing system at work. It provides a
tooltip, otherwise known as flyover help. First, here’s the HTML:

File: cancelTips.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <script type="text/javascript" src="cancelTips.js"></script>
 <style type="text/css">
 #explain {
 float: right;

99

The setTimeout Function

 width: 20em;
 height: 6em;
 border: 3px solid red;
 padding: 0.5em;
 margin: 1em;
 }
 </style>
 </head>
 <body>
 Home
 <p id="explain"> </p>
 </body>
</html>

This page is a single link with a carefully styled paragraph that contains nothing.
Here’s the matching script:

File: cancelTips.js

function addEvent(elm, evType, fn, useCapture) {
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

function init() {
 if (!document.getElementById) return;
 var mylink = document.getElementById('mylink');
 addEvent(mylink, 'mouseover', mover, false);
 addEvent(mylink, 'mouseout', mout, false);
}

function mover() {
 TIMEOUT_ID = setTimeout(
 'document.getElementById("explain").innerHTML' +
 ' = "Return to the homepage"',
 2000);
}

function mout() {
 // put in an placeholder to clear the current content

100

Chapter 5: Animation

 document.getElementById('explain').innerHTML =
 ' ';
 clearTimeout(TIMEOUT_ID);
}

var TIMEOUT_ID;
addEvent(window, 'load', init, false);

We’ve got the now-familiar addEvent code, a listener initialization function, and
some listeners. It’s all stuff we’ve discussed before. Let’s see what’s new.

We want a link that displays descriptive text if we hover over it for a little while.
We’ve chosen 2000 (2 seconds) to exaggerate the effect—normally you’d use a
number like 500 (half a second). However, if we mouse away from the link before
the descriptive text is displayed, we don’t want it to appear later. First, we attach
mouseover and mouseout listeners to the link in the standard way. Here’s the
mouseover listener:

File: cancelTips.js (excerpt)

function mover() {
 TIMEOUT_ID = setTimeout(
 'document.getElementById("explain").innerHTML' +
 ' = "Return to the homepage"',
 2000);
}

The mouseover listener controls the display of the descriptive text; when we
hover over the link, we start a timeout counter by passing a string to setTimeout.
That string is code that will display the descriptive text, and that code will run
2000ms after we hover over the link. In the listing, we’ve chopped the string into
two sections, so that it’s easy to read on the page.

Next, here’s the mouseout listener.

File: cancelTips.js (excerpt)

function mout() {
 // put in an placeholder to clear the current content
 document.getElementById('explain').innerHTML =
 ' ';
 clearTimeout(TIMEOUT_ID);
}

If we move the mouse off the link before the 2000ms is up, we want to cancel
that timeout so that the text doesn’t show. The mouseout listener cancels the

101

The setTimeout Function

timeout by calling clearTimeout with the value returned from the original
setTimeout call. Note that the TIMEOUT_ID variable is a global variable and is
declared (with var TIMEOUT_ID) outside any functions. It’s declared globally like
this because each function (mover and mout) needs access to the variable.

The setInterval Function
An alternative to setTimeout is setInterval. Calling setTimeout runs the code
you supply once and once only; to create animation with setTimeout, the code
you call should, in turn, call setTimeout again, in order to execute the next step
of the animation.

By contrast, setInterval calls the code every given number of milliseconds,
forever. This is useful for a constantly-running animation, but, as I said above,
animation should be used to spruce up or improve the usability of an action; an
animation which really does run all the time is ultimately distracting. However,
as with setTimeout, it is also possible to cancel an interval timer using clearInt-
erval. So an alternative to running code that calls setTimeout repeatedly is to
call setInterval once to execute the same code repeatedly, store the return
value, and then use that return value to cancel the interval timer once the anim-
ation is finished.

Implementing a Clock

Here’s a simple application of a timer: displaying a constantly updating digital
clock on a Web page. The clock displays the time in the format: HH:MM:SS.
Here’s a quick example HTML page for this effect:

File: clock.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <script type="text/javascript" src="clock.js"></script>
 <style type="text/css">
 #clock {
 color: white;
 background-color: black;
 }
 </style>
 </head>
 <body>

102

Chapter 5: Animation

 </body>
</html>

That’s about as simple as a test page can be. Here’s the script:

File: clock.js

function addEvent(elm, evType, fn, useCapture) {
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

function init() {
 if (!document.getElementById)
 return;
 var clock = document.getElementById('clock');
 if (!clock.innerHTML)
 return;
 setInterval(function() { update(clock); }, 1000);
}

function update(clock) {
 var ua = navigator.userAgent.toLowerCase();
 var d = new Date();
 var digits, readout = '';

 digits = d.getHours();
 readout += (digits > 9 ? '' : '0') + digits + ':';

 digits = d.getMinutes();
 readout += (digits > 9 ? '' : '0') + digits + ':';

 digits = d.getSeconds();
 readout += (digits > 9 ? '' : '0') + digits;

 clock.innerHTML = readout;
}

addEvent(window, 'load', init, false);

103

The setInterval Function

As ever, our init function sets up the effect on page load; in this case, it checks
that we have the requisite DOM support (document.getElementById) and also
that this browser implements innerHTML on HTML elements. The bit that sets
the clock going is as follows:

File: clock.js (excerpt)

 setInterval(function() { update(clock); }, 1000);

This code sets the update function to be called every second. Note that this time
we’re using an anonymous function, so that we can pass it clock, the reference
to the span element in which we’ll display the time. Here’s update:

File: clock.js (excerpt)

function update(clock) {
 var d = new Date();
 var digits, readout = '';

 digits = d.getHours();
 readout += (digits > 9 ? '' : '0') + digits + ':';

 digits = d.getMinutes();
 readout += (digits > 9 ? '' : '0') + digits + ':';

 digits = d.getSeconds();
 readout += (digits > 9 ? '' : '0') + digits;

 clock.innerHTML = readout;
}

The update function simply sets the HTML inside the clock element (which is
passed as a parameter) to reflect the current time.

It would have been better not to use innerHTML—not only is it not an official
DOM property, but it can cause the clock to visibly flicker in Mozilla/Firefox if
a position: fixed style is added. Alas, the standards-endorsed alternative isn’t
portable enough: Safari doesn’t handle the proper DOM method of doing this
(i.e. assigning the time value to clock.firstChild.nodeValue) properly. Such
is the nature of cross-browser compromise.

Handling Errors
Handling errors during normal DHTML manipulations is obviously vital in order
to avoid the dreaded “JavaScript Error” dialog box appearing. It is even more vital

104

Chapter 5: Animation

during DHTML-controlled animations, because an error in code that’s called
every second will produce a lot of dialog boxes. It is therefore very important that
your code protects against errors by using object detection to ensure that you’re
not referencing objects that don’t exist in the browser viewing the page.

When to use try and catch
If you happen to know about JavaScript’s try…catch feature, you might be
thinking that it will be useful here. Briefly, browsers provide a try statement that
can be used to wrap JavaScript code; if an error (a JavaScript exception) occurs
when running code in a try block, control is transferred to the try’s matching
catch block. Here’s an example:

File: trycatch.html (excerpt)

try {
 // here goes some JavaScript code
 alert('hello');
 alert(thisVarDoesntExist);
} catch(e) {
 // handle your error here
 alert('An error occurred!');
}

If an error occurs in the try block—in the above code, we have erroneously ref-
erenced a nonexistent variable—control is transferred to the catch block and, in
this example, “An error occurred” is displayed.

This technique would provide a useful way to handle errors in animation code,
but for the fact that the try…catch statement doesn’t exist at all in older browsers.
Therefore, the above code will cause an error in browsers that do not support
try…catch—an error that cannot be trapped. As such, the syntax is not recom-
mended because it is not unobtrusive; DHTML techniques should work in sup-
porting browsers and fail silently and without problems in non-supporting
browsers. Browsers that do not offer support include IE 4.x and Netscape versions
below 4.5.

The good news is that modern DOM-enabled browsers support try…catch rather
well. While you can’t use object detection to test for a browser supporting
try…catch, it is possible to use this (useful) technique in a restricted environment
(such as in an intranet).

105

When to use try and catch

The body onerror Handler
A similar technique to try…catch is to use an onerror handler on the document
body; this can be used to set up an event handler that’s fired whenever an error
occurs:

<script type='text/javascript'>
function init() {
 window.onerror = myErrorHandler;
}
addEvent(window, 'load', init, false);

function myErrorHandler() {
 // here we handle the error, or do nothing
 // Doing nothing will suppress the error message dialog
}
</script>

This technique would run without error in older browsers, because it does not
use an unknown statement like try; however, it is not supported by Safari 1.2
on Mac. It will, however, fail silently on that browser, so this approach is a con-
venient one to take.

Scriptless Animation with GIFs
If you’re looking for an easy way to highlight something as it happens—a
mouseover effect on a link, for example—and you’re thinking of using animation
for this, it’s entirely possible that you may not need DHTML at all. Our old
friend the animated GIF can still have a role to play. Animated GIFs are somewhat
frowned upon because they’ve been over-used for winking yellow smiley faces
and spinning envelopes next to the word “email.” That, however, is not the fault
of the technology; it’s just poor design. An animated GIF can be used to show
that something’s happening without flashing bright yellow text at the user. In
Figure 5.2, we see an HTML page in which external links are highlighted with a
grey globe; when the link is moused over, the globe switches to full-color. The
colored globe is also an animated GIF, so when the link is moused over, the globe
rotates.

106

Chapter 5: Animation

Figure 5.2. Using an animated GIF to highlight a hovered link.

This effect is accomplished with some simple CSS (no JavaScript at all). First,
we give each external link a class of external in the HTML:

File: animated_links.html (excerpt)

<p>
 This paragraph contains some links: some are
 local, others are
 external.
 External links, such as one to
 SitePoint, have a class in the CSS that applies a GIF image to them and
 an animated image when moused over.
</p>

Next, we display the globe on external links via our CSS:

File: animated_links.html (excerpt)

a.external {
 padding-left: 13px;
 background: url(remote.gif) center left no-repeat;
}
a.external:hover {
 background-image: url(remote_a.gif);
}

The padding-left property value provides some space for the globe to display;
the grey globe (remote.gif) is set as a background image on each of these links.
When the link is moused over—the a:hover selector means “links that are being
moused over,” so a.external:hover means “links of class external that are
being moused over”—we change its background image to remote_a.gif, which
is the animated GIF of the spinning, colored globe.

107

Scriptless Animation with GIFs

Movement Example: Rising Tooltips
We’ve considered on-the-spot animation; let’s now look at an example of page
elements that change position. Imagine the header of your site has links to the
different site subject areas. We want to add a “tooltip” to that header, but one
that slides out from under the header, then slides back in again afterwards, as il-
lustrated in Figure 5.3 to Figure 5.5 below.

Figure 5.3. Ready to mouse-over a link.

Figure 5.4. The tooltip starts to emerge on mouseover

Figure 5.5. The tooltip is fully displayed

Creating Special Tooltip Content
Our header is simply built as an unordered list,3 and the rising tooltip text is
contained in tags. Here’s the HTML we’ll use as an example:

3 Obviously, in a real site, the links would point somewhere useful.

108

Chapter 5: Animation

File: risingTooltips.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <script type="text/javascript" src="risingTooltips.js"
 ></script>
 <link type="text/css" rel="stylesheet"
 href="risingTooltips.css">
 </head>
 <body>
 <ul id="nav">
 <li id="home">home
 back to the home page
 <li id="beer">free beer
 we all love beer
 <li id="software">free software
 free as in speech
 <li id="willy">free willy
 the films section

 <div id="extra"></div>
 </body>
</html>

This is a backwards-compatible strategy. If both JavaScript and CSS are absent,
the header will still display well, with some helpful text next to each link. That’s
good for accessibility. Notice also the empty div at the end of the page. We’ll
explain this shortly.

Styling the Tooltips

Our header uses some fairly simple styling to make the list display in a single line
on a colored background:

File: risingTooltips.css (excerpt)

ul {
 display: block;
 background-color: blue;
 position: absolute;
 top: 30px;
 left: 0;
 width: 100%;
 height: 2em;
 padding: 0;

109

Creating Special Tooltip Content

 margin: 0;
}
li {
 display: inline;
 font-weight: bold;
 padding: 0;
 margin: 0;
}
li a {
 color: white;
 background-color: blue;
}
span {
 position: absolute;
 top: 0;
 background: yellow;
 border: 1px solid blue;
 border-width: 1px 1px 0 1px;
 display: none;
}

We want to hide the span elements beneath the ul so that they can scroll into
view from behind it. This is normally handled with the CSS z-index property;
if the display of two elements overlaps in an HTML document, the element with
the higher z-index appears on top. However, we can’t simply set the span ele-
ments to have a lower z-index than the ul element, because no element may
have a lower z-index than an element in which it is contained.4 For now, we’ve
hidden the tooltip text so that we can see that the header displays with the layout
we want.

Stacking the Tooltips

To resolve this z-index problem, we’ve added another element—a div—to our
document.

File: risingTooltips.html (excerpt)

<div id="extra"></div>

We’ll position that div in the same place as the ul, but behind it, then we’ll
move the spans into the div when the page loads. This means that the HTML

4 The CSS2 specification explains this, in a roundabout way, at
http://www.w3.org/TR/REC-CSS2/visuren.html#z-index. Each positioned element creates a “local
stacking context,” and elements inside it have their z-indices resolved relative to that local stacking
context. Thus, an element can’t appear below its container.

110

Chapter 5: Animation

http://www.w3.org/TR/REC-CSS2/visuren.html#z-index

of the page will still be intuitive and easy to work with, but the span elements
will be moved to beneath the ul and can, therefore, scroll up from behind it.

Here’s the modified CSS that will ensure that the div is positioned to appear at
the same coordinates as the ul, but behind it:

File: risingTooltips.css (excerpt)

ul, div#extra {
 display: block;
 background-color: blue;
 position: absolute;
 width: 100%;
 top: 30px;
 left: 0;
 height: 2em;
 padding: 0;
 margin: 0;
 z-index: 20;
}
div#extra {
 z-index: 10;
}

Note that we’ve given the ul a z-index of 20, and the div a z-index of 10, to
ensure that the div displays beneath the ul. We’ll move the spans into this new
div later, using JavaScript. Since this is a more complicated example, we’ll first
do some groundwork to keep our scripts tidy. Once we’ve done that, we’ll come
back to the task of content manipulation.

Designing the DHTML Library
To keep all our DHTML code nicely encapsulated, so that it doesn’t interfere
with any other scripts on the page, we’ll wrap it up in one big JavaScript object.
JavaScript allows us to create new objects with a unique syntax called an object
literal. Such objects may have methods and properties, just like other JavaScript
objects. For example, consider the code below:

var myNewObject = {
 firstProperty: 'a string',
 secondProperty: 6,
 listProperty: [1, 2, 3, 4],
 firstMethod: function() { alert('This is a method'); }
}

111

Designing the DHTML Library

This code creates an object with three properties—one contains a string, one an
integer, and one a list or array—and one method. We can pass this object around
as a single entity. We can use its properties and call its methods wherever we
have a reference to it. Take a look at this example:

alert(myNewObject.secondProperty);
myNewObject.firstMethod();

First, this code will show a dialog containing the numeral 6; then it will display
a second dialog containing the words, “This is a method.”

This technique is a useful way to keep the code that handles the tooltip animation
from clashing with any other code on the page (which will cause problems that
are difficult to debug). We’ll use our own variable and function names as proper-
ties and methods in the object, where they’ll be separate from those on the rest
of the page. You can see why we call it a library object: it stores all the bits and
pieces in one tidy place.

Identifying the Library Object Signature

Since the tooltips rise up from behind the header, we’ll track the library object
with a variable named rH, to denote “riser handler.” That’s not a perfect name
(it’s too cryptic), but you’ll soon see that we use the object a lot, so a shorthand
name is, in this case, too convenient to pass up.

Here’s what the object eventually will look like:

File: risingTooltips.js (excerpt)

var rH = {
 addEvent: function(elm, evType, fn, useCapture) { … },
 init: function() { … },
 mOver: function(e) { … },
 mOut: function(e) { … },
 moveLinks: function() { … },
 links: []
};

First, there’s our handy addEvent method, which we’ve used in previous chapters.
This time, we’ll specify it as a method of the rH object, rather than as a global
function. Then there’s an initialization method, init. After that, we see three
event listener methods. Although they’re specified as part of our object, we’ll at-
tach them to page elements as before. Finally, there’s an array. In that links array,
we’ll store all the header elements (hyperlinks) that should have a rising tooltip.

112

Chapter 5: Animation

We’ll also use this array to mark each of those elements with the current status
of its rising tooltip.

Placing Event Listeners

Our system will, in essence, be quite simple. When we mouse-over a link, that
link’s corresponding tooltip should start to rise up from behind the ul. When
we move the mouse off a link, the tooltip should fall down again behind the ul.
For this, we’ll need to attach two event listeners: one to each link’s mouseover
event, and one to each link’s mouseout event. When we attach these listeners,
we’ll also move the corresponding tooltips into the extra div, so that they may
be displayed behind the list items in which they’re contained. Having done this,
we’ll need to have some way of associating each link with its tooltip: to do so,
we can make use of the handy JavaScript feature that allows us to add arbitrary
properties to any object. So, to each link, we’ll add a tipSpan property that holds
a reference to that link’s tooltip.

All of that work will enhance and reorganize the existing page content in prepar-
ation for our effect. We’ll also have to record in our rH object all of the links, so
that we can keep track of what’s going on. Here’s the init method that does all
the setup:

File: risingTooltips.js (excerpt)

 init: function() {

 // get the header links
 if (!document.getElementsByTagName ||
 !document.getElementById)
 return;
 var navList = document.getElementById('nav');
 rH.links = navList.getElementsByTagName('a');

 var extra = document.getElementById('extra');

 for (var i = 0; i < rH.links.length; i++) {

 // install event listeners
 rH.addEvent(rH.links[i], 'mouseover', rH.mOver, false);
 rH.addEvent(rH.links[i], 'mouseout', rH.mOut, false);

 // move the corresponding span into the extra div
 var theLi = rH.links[i].parentNode;
 var theSpan = theLi.getElementsByTagName('span')[0];
 extra.appendChild(theSpan);

113

Designing the DHTML Library

 theSpan.style.display = 'block';

 // remember where the span is, and what's happening
 rH.links[i].tipSpan = theSpan;
 rH.links[i].tipState = 'none';

 }
 setInterval(rH.moveLinks, 50); // test with 500
 },

Notice the comma at the end of the method! It says: “that’s the end of this
property/method for the surrounding object.” Putting in a semi-colon by accident
is a common mistake and leads directly to error messages in the JavaScript console.
Watch out for that.

As always, we first check for the methods we need, in this case
getElementsByTagName and getElementById, and exit early if they don’t exist.
With the necessary tools in place, we can obtain a list of all the links within our
navigation list:

File: risingTooltips.js (excerpt)

 var navList = document.getElementById('nav');
 rH.links = navList.getElementsByTagName('a');

We then walk through this list of links, and for each link carry out a few tasks.
First, we attach a mouseover listener and a mouseout listener:

File: risingTooltips.js (excerpt)

 rH.addEvent(rH.links[i], 'mouseover', rH.mOver, false);
 rH.addEvent(rH.links[i], 'mouseout', rH.mOut, false);

Next, we identify the link’s corresponding tooltip. The tooltip for a link is the
first (and only) span in the same li as the link itself; that li is the link’s
parentNode. We get to the tooltip span that corresponds to each link like this:

File: risingTooltips.js (excerpt)

 var theLi = rH.links[i].parentNode;
 var theSpan = theLi.getElementsByTagName('span')[0];

The code would be shorter if we used the nextSibling DOM property, but that’s
too fragile an approach. When you’re editing your HTML, it’s easy to introduce
extra whitespace by accident, and this would change the number of sibling nodes
that an element has. It’s better to ask for the element needed by name.

114

Chapter 5: Animation

Having found the tooltip, let’s move it into the special div, ready for use. Remem-
ber that if we use appendChild to add one element to another, and the child
element is already in the document, then the child element is moved to its new
location.

File: risingTooltips.js (excerpt)

 extra.appendChild(theSpan);
 theSpan.style.display = 'block';

We also ensure that the span is displayed with this last line. It is initially hidden
(with display: none in the CSS) and revealed here (once it has been moved to
the extra div and is thus hidden from view behind the ul) to ensure that the user
doesn’t see it in its initial position before the move.

Modeling Animation States

Next, we add to the link a reference to its tooltip, so that we can keep track of
it among the other tooltips that have been moved into the div along with it:

File: risingTooltips.js (excerpt)

 rH.links[i].tipSpan = theSpan;

Finally, we set a special state property on each link. We’ll use this to track what
the tooltip for that link is currently doing. We’ll allow the following possible
states:

none This means the rising tooltip is hidden and doing nothing. This state
can change to rising if the tooltip is made to appear.

rising The rising tooltip is appearing. This state can change to full if it
finishes appearing, or to falling if the user changes his mind and
moves the cursor away.

full The rising tooltip is fully exposed and not moving. This state can
change to falling if the user moves his cursor away.

falling The rising tooltip is being hidden. This state can change to rising
if the user changes his mind and returns to the link, or to none if the
tooltip becomes fully hidden.

The starting state is, of course, none:

115

Designing the DHTML Library

File: risingTooltips.js (excerpt)

 rH.links[i].tipState = 'none';

Finally, we use setInterval to call moveLinks every 50 milliseconds, in order
to update the positions of the tooltips based on their states. Use a bigger number
during testing, like 500, if you want to see the effect occur at a slower pace:

File: risingTooltips.js (excerpt)

 setInterval(rH.moveLinks, 50); // test with 500

Animating the Content
Now that we’ve got the content set up, all that remains is to fill out the library
object with the snippets of code that create the actual animation. We want to
start the animation when the user does something, and we want to keep it going
even when the user does nothing.

Starting Movement

Our two event listeners, rH.mOver and rH.mOut, are what start the tooltips
moving (either up or down). The way we’ll do this is to make everything depend
on the state property. The listeners inspect the current state of the link’s tooltip
and, if it makes sense to do so, alter the state to match the user action. So the
mouseover listener mOver should change the state to rising, unless the rising
tooltip is already fully exposed. The mouseout listener mOut will do the opposite,
changing the state to falling, unless the tooltip is already hidden. Here’s the
mOver listener first:

File: risingTooltips.js (excerpt)

 mOver: function(e) {
 var link;
 if (e && e.target)
 link = e.target;
 if (window.event && window.event.srcElement)
 link = window.event.srcElement;
 if (!link)
 return;

 if (link.nodeType == 3) {
 link = link.parentNode; // Fix for Safari
 }

 if (link.tipState != 'full') {

116

Chapter 5: Animation

 link.tipState = 'rising';
 }
 },

We start by grabbing the moused-over link in the standard way (that’s the first
cluster of lines), but this time there is an extra wrinkle: in Safari, the event object
doesn’t fire on the link itself. Rather, it fires on the text node contained within
the link. So, check to see if link has a nodeType of 3 (meaning that it is a text
node, and thus meaning that we’re running in Safari),5 and, if it does, set link
to be that text node’s parentNode (the link itself).

Now that the correct link has been obtained, check to see what state it’s in. We
want the rising tooltip to rise, so, as long as the state’s not full, set it to rising.
If the rising tooltip is already fully exposed, we don’t want it to rise further.

There’s something unusual going on here! The listener didn’t actually do any
DHTML animation! All it did was record the new state of the rising tooltip in
response to the user event. On the one hand, this seems quite odd (aren’t we
here to do animation?), but on the other hand, it’s a very tidy approach. We
make the listeners concentrate on responding to the events only. That keeps
them simple.

The mOut listener’s code is near-identical to mOver. Only the states under consid-
eration are different:

File: risingTooltips.js (excerpt)

 if (link.tipState != 'none') {
 link.tipState = 'falling';
 }

In this case, we want the rising tooltip to fall in all cases, except when it’s already
fully hidden.

Executing Movement

Finally, after all that preparation, we can think about actually animating the
tooltips. Given the way we’ve built the script, that isn’t too difficult: the
moveLinks method, which does the animation, will be called repeatedly thanks
to setInterval. That method will examine the current state of every link’s

5 The DOM Recommendation defines Node.TEXT_NODE as a constant to be used for this purpose,
but not all browsers define it, so we must use its raw value, 3, instead.

117

Animating the Content

tooltip, perform any animation required, review the results, then update the state
if required. Here’s the code:

File: risingTooltips.js (excerpt)

 moveLinks: function() {
 for (var i = 0; i < rH.links.length; i++) {
 var link = rH.links[i];
 if (link.tipState == 'none' ||
 link.tipState == 'full') {
 continue;
 }
 var theSpan = link.tipSpan;
 var height = parseInt(theSpan.style.top);
 if (isNaN(height)) {
 height = 0;
 }
 if (link.tipState == 'rising') {
 height -= 2;
 if (height <= -theSpan.offsetHeight) {
 link.tipState = 'full';
 }
 } else {
 height += 2;
 if (height >= 0) {
 link.tipState = 'none';
 }
 }
 theSpan.style.top = height + 'px';
 }
 },

We scheduled this moveLinks method, which is just a big for loop, to run every
50 milliseconds in our init function above, using setInterval:

File: risingTooltips.js (excerpt)

 setInterval(rH.moveLinks, 50);

Let’s see how the code works. For each link, we first check the state. If the tooltip
is not moving (none or full), we do nothing. Otherwise, we get the location of
the top edge of the tooltip (which we call height). That’s a measurement relative
to the top of the div that’s directly behind the navigation links, so by adjusting
it, we can make the tooltip stick up.

We adjust the height up or down two pixels, depending on whether the state is
rising or falling, and we write it back to the tooltip’s style.

118

Chapter 5: Animation

After we calculate the new height, we use it to update the state. Since the Y-co-
ordinate goes down the screen, height will be negative when the tooltip is rising.
If it hits zero, it’s time to stop falling. If it hits an offset equal to the element’s
vertical size, it’s time to stop rising.

Activating the DHTML Effect

The only task that remains is to start the process when the page first loads:

File: risingTooltips.js (excerpt)

rH.addEvent(window, 'load', rH.init, false);

Our tooltips are now nicely animated, rising and falling as we move the mouse
into and out of the links in the header. Yay!

Full Rising Tooltips Example Listing
Here’s the complete code, shown as a whole for easy study. First, here’s the
HTML:

File: risingTooltips.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <script type="text/javascript" src="risingTooltips.js"
 ></script>
 <link type="text/css" rel="stylesheet"
 href="risingTooltips.css">
 </head>
 <body>
 <ul id="nav">
 <li id="home">home
 back to the home page
 <li id="beer">free beer
 we all love beer
 <li id="software">free software
 free as in speech
 <li id="willy">free willy
 the films section

 <div id="extra"></div>
 </body>
</html>

119

Full Rising Tooltips Example Listing

Here’s the style sheet:

File: risingTooltips.css

ul, div#extra {
 display: block;
 background-color:blue;
 position: absolute;
 top: 30px;
 left: 0;
 width: 100%;
 height: 2em;
 padding: 0;
 margin: 0;
 z-index: 20;
}

div#extra {
 z-index: 10;
}

li {
 display: inline;
 font-weight: bold;
 padding: 0; margin: 0;
}

li a {
 color: white;
 background-color: blue;
}

span {
 position: absolute;
 top: 0;
 background: yellow;
 border: 1px solid blue;
 border-width: 1px 1px 0 1px;
 display: none;
}

Finally, here’s the script:

File: risingTooltips.js

var rH = {
 addEvent: function(elm, evType, fn, useCapture) {
 // addEvent cross-browser event handling for IE5+ NS6/Mozilla

120

Chapter 5: Animation

 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
 },

 init: function() {

 // get the header links
 if (!document.getElementsByTagName ||
 !document.getElementById)
 return;
 var navList = document.getElementById('nav');
 rH.links = navList.getElementsByTagName('a');

 var extra = document.getElementById('extra');

 for (var i = 0; i < rH.links.length; i++) {

 // install event listeners
 rH.addEvent(rH.links[i], 'mouseover', rH.mOver, false);
 rH.addEvent(rH.links[i], 'mouseout', rH.mOut, false);

 // move the corresponding span into the extra div
 var theLi = rH.links[i].parentNode;
 var theSpan = theLi.getElementsByTagName('span')[0];
 extra.appendChild(theSpan);
 theSpan.style.display = 'block';

 // remember where the span is, and what's happening
 rH.links[i].tipSpan = theSpan;
 rH.links[i].tipState = 'none';

 }
 setInterval(rH.moveLinks, 50); // test with 500
 },

 mOver: function(e) {
 var link;
 if (e && e.target)

121

Full Rising Tooltips Example Listing

 link = e.target;
 if (window.event && window.event.srcElement)
 link = window.event.srcElement;
 if (!link)
 return;

 if (link.nodeType == 3) {
 link = link.parentNode; // Fix for Safari
 }

 if (link.tipState != 'full') {
 link.tipState = 'rising';
 }
 },

 mOut: function(e) {
 var link;
 if (e && e.target)
 link = e.target;
 if (window.event && window.event.srcElement)
 link = window.event.srcElement;
 if (!link)
 return;

 if (link.nodeType == 3) {
 link = link.parentNode; // Fix for Safari
 }

 if (link.tipState != 'none') {
 link.tipState = 'falling';
 }

 },

 moveLinks: function() {

 for (var i = 0; i < rH.links.length; i++) {
 var link = rH.links[i];
 if (link.tipState == 'none' ||
 link.tipState == 'full') {
 continue;
 }
 var theSpan = link.tipSpan;
 var height = parseInt(theSpan.style.top);
 if (isNaN(height)) {
 height = 0;

122

Chapter 5: Animation

 }
 if (link.tipState == 'rising') {
 height -= 2;
 if (height <= -theSpan.offsetHeight) {
 link.tipState = 'full';
 }
 } else {
 height += 2;
 if (height >= 0) {
 link.tipState = 'none';
 }
 }
 theSpan.style.top = height + 'px';
 }
 },

 links: []
}

rH.addEvent(window, 'load', rH.init, false);

That’s it!

Summary
Animation can be a real enhancement to your sites and Web applications,
provided it’s used tastefully. It’s possible to use animated GIFs to add a touch
of eye-candy to your pages, but JavaScript’s setTimeout and setInterval
functions are a handy tool for even basic animation effects. We’ve looked at how
to use these methods, calling them with strings containing JavaScript code or
with other functions, and we’ve seen how they can be used in a longer example
of animated tooltips. We’ve also explored more advanced function usage in
JavaScript, both by specifying anonymous functions and by wrapping a script
inside a larger object to avoid it clashing with other included functionality.

123

Summary

124

Forms and Validation6
Ancient spirits of evil, transform this decayed form … to Mumm-Ra, the Ever Living!
—Mumm-Ra (the Ever Living)

Getting user input into your applications through forms is a major part of any
Web application or reasonably-sized site. That user input, however, needs to be
checked to ensure that it’s correct, both to keep your data clean and to avoid
security breaches. In this chapter, we’ll learn how to build forms that use JavaS-
cript to validate user input before it’s sent to the server, how to tie together
server-side and client-side validation methods, and learn some DHTML techniques
to improve the usability or convenience of your form pages.

Ultimately, the information that’s submitted to your Web server is entirely under
the control of the end user, no matter how many client-side safeguards you put
in place. Any improvement in the user experience must always rest atop a secure
foundation on the server. Client-side validation can only ever be an enhancement
to an already secure system. Your server-side code must always check the user’s
input, no matter how sophisticated the page’s client-side processing is.

With that dire warning out of the way, let’s see how DHTML can bring benefits
to forms.

Reasons for Form Validation
The whole purpose of computer-based data management systems is to store user
data more reliably than a paper-based system. That’s why HTML forms exist.
HTML forms alone are not enough, however. Generally speaking, form elements
need to be wrapped in extra processing. Here are some basic reasons why form
validation is a good idea.

Storing Clean Data
When the back end of your Web application receives user input through a form,
it’s vital to check that the data arrives in a proper format, and reject it if it does
not. For example, if you need to capture an email address from the user, you need
to check that the entered address matches the format:
someone@somewhere.something. Addresses entered incorrectly, whether through
mistyping on the part of the user, or as a deliberate attempt to hide the address,
will pollute your database and are not worth capturing.1 A polluted or corrupt
database is a data administration nightmare, and can ruin the performance of
reports, Web pages, screens and other applications that exist miles away from
your own code. You don’t want that.

Defending Against Security Exploits
Unknown and unchecked data can cause security breaches when its processed
on the server. There are many well-publicized attacks on Websites that involve
techniques such as SQL injection and cross-site scripting.2 You can’t resist all
security attacks just by validating incoming data, but making sure that submitted
data matches expected formats is a big step in the right direction.

In the trivial case, in which data is not submitted to a complex interpreted system
like a database, simple formatting checks might suffice for validation. For example,
a phone number shouldn’t ever contain a left-angle-bracket or an apostrophe.
Usually, though, when data is submitted to a database (or to any interpreted
language, such as SQL, PHP, Perl, or Python), you should make use of any features

1 Note that, if you’re getting a lot of invalid data, it’s important to think about why that’s happening.
If many users don’t want to supply an email address, maybe that field should be optional rather than
compulsory.
2 Descriptions of vulnerabilities and the methods that you can use to avoid them are beyond the
scope of this book: the whitepapers at http://www.spidynamics.com/support/whitepapers/ provide a
useful grounding. Web application developers must be aware of these problems.

126

Chapter 6: Forms and Validation

http://www.spidynamics.com/support/whitepapers/

that language makes available to safely handle unexpected input (e.g. character
escaping). Again, these procedures must be handled on the server, as any measures
that utilize JavaScript on the client side may be disabled with little effort on the
part of an attacker.

Improving User Interactivity
Finally, form validation can improve the user’s data entry experience. If some of
the user’s input errors can be caught using JavaScript validation on the client-
side, then the need for a round trip to the server is avoided, and the user receives
feedback faster. That’s good for the user’s workflow, and good for reducing server
load. If the client-side validation includes useful visual hints, then the user’s life
can be made easier again. With the right hints in place, the user will be led
helpfully through the form and will make fewer data entry mistakes in the first
place.

Simple Client-Side Validation
Let’s look at the building blocks we’ll use to implement DHTML form validation.
These two object signatures should give you a taste of where we’re headed:

var validationSet = {
 'field1': { … },
 'field2': { … },
 …
};

var fV = {
 addEvent: function(elm, evType, fn, useCapture) { … },
 init: function() { … },

 checkValidSubmit: function(e) { … },
 checkSubmit: function() { … },
 checkValid: function(e) { … },
 handleValidity: function(t) { … }
}

The first of these objects will hold validation data for a specific page. The second
object is a library object that holds all the DHTML processing code. It’s always
the same, no matter what form fields are on the page.

127

Improving User Interactivity

Using Regular Expressions
The simplest way to express validation requirements such as “this phone number
field can only contain digits, parentheses, spaces, and hyphens” is to use regular
expressions. Although they’re sometimes difficult to compose, regular expressions
are generally a better choice that trying to construct validation code that analyses
submissions with string operations. The problem with string analysis is that every
case requires different logic, whereas with regular expressions, at least you know
that there will be exactly one per form field. That’s a bit more, well, regular!

A regular expression that matched our phone number requirement above might
be:

^[- ()0-9]+$

This regular expression makes the field compulsory: the [- ()0-9] section means
“match any single character that’s a hyphen, a parenthesis, a space, or a digit.”
The trailing + means “match the longest available string consisting of one or more
of the preceding characters.” Finally, the two anchors ^ (match the start of the
string) and $ (match the end of the string) ensure that the whole typed-in
value—not just some part of it—must match. Put together, these restrictions
mean that not only is a phone number required to match this regular expression,
but an empty string will not match it: the field is compulsory. If the field was
optional, we could use this alternate regular expression:

^[- ()0-9]*$

Here, the * means “match zero or more of the preceding characters.” Since an
empty-string is indeed zero or more characters, it will match, so the field can be
left empty in this case.

We can apply validation checks to fields by specifying a regular expression for
each field we wish to validate. The contents of the field must match the regular
expression, or we will refuse to submit the form. Note, however, that a simple
way around this is to turn JavaScript off in the Web browser and reload the page.
Again: this solution is good for usability, not security.

Regular expressions are powerful, but represent quite a complex subject. Fortu-
nately, there are a lot of resources designed to help the newcomer. SitePoint’s
own guide3 is a good primer.

3 http://www.sitepoint.com/article/expressions-javascript

128

Chapter 6: Forms and Validation

http://www.sitepoint.com/article/expressions-javascript
http://www.sitepoint.com/article/expressions-javascript

You can never be too careful with regular expressions. The expression we saw
above allows these (correct) phone numbers:

(03) 9415 5200
911
(916) 657-9900

However, it also allows this messy possibility:

00034 5(--(1)(4 2-2-(2(

Clearly, in a real application, you need to do your best to craft a regular expression
that’s bulletproof. The simple one we picked earlier is suitable for this discussion,
though.

Connecting Regular Expressions to Fields
The best time to check whether a field’s contents are valid is when the user moves
away from the field, either by pressing Tab, by hitting Enter, or by clicking
elsewhere in the document. Sometimes, you might validate a second time just
before the form is submitted. This is also a good point at which to check that
any dependencies between fields are correct. Finally, if you want, you can validate
on every letter that’s typed; such measures are usually used only for special effects,
since it’s harder to provide non-disruptive feedback. It’s best to wait until each
field has been exited before you perform your checks.

Here’s how you can do just that. Each form element fires a blur event when the
user moves away from it, so that’s where we should attach an event listener. That
listener will examine the content of the field and warn the user if it’s not valid.
We will also need a set of regular expressions—one for each field that needs val-
idating—against which to check the field contents. The easiest way to maintain
this set will be to record the regular expression against the name of the matching
field. On loading the page, we’ll walk through the set of field names and regular
expressions and attach one event listener to each element named in the list.

An example may clarify this slightly: imagine that we have a page with two text
elements, one with the name phone, for entry of a phone number, and one with
the name email, for entry of an email address.

JavaScript has a variable type that’s ideal for storing a set of named items: the
Object type. We saw in Chapter 5 how an object literal can be used to store a
set of methods. It’s just as easy to store plain data. In this case, we’ll use nested

129

Connecting Regular Expressions to Fields

literal objects (objects inside objects). We do that because we might (eventually)
want to store more than one piece of information against each form field. So,
each field name will have its own object. Here’s the result:

var validationSet = {
 'phone': {
 'regexp': /^[- ()0-9]+$/
 },
 'email': {
 'regexp': /^.+?@.+?\..+?$/
 }
};

Notice that the object property names are strings ('foo'), rather than variable
names (foo). JavaScript allows this, provided you’re careful when accessing the
properties. Effectively, the result is a set of fields indexed by strings. In other
languages, this type of set (which associates a key, in this case a string like
'phone', with a value like '^[- ()0-9]+$') is variously called a dictionary, a
hash, an associative array, or a map. One difference between JavaScript and
such other languages is that, in JavaScript, all these things are one: an object.
Only JavaScript arrays (which we’re not using here) have the extra feature of a
length property that makes them stand slightly apart from other objects like the
one we’re using here.

Another new piece of syntactic sugar in this example is the use of slashes (/…/)
to delimit regular expressions, thereby distinguishing them from normal strings,
which use quotes.

When the page loads, we can then iterate through the set, look up the fields that
have names recorded in the set (phone and email), and add a single listener,
checkValid, to each one:

File: genericValidation.js (excerpt)

 for (var i in validationSet) {
 if (document.getElementsByName(i)) {
 var formField = document.getElementsByName(i)[0];
 fV.addEvent(formField, 'blur', fV.checkValid, false);
 }
 }

The idiom for (var i in validationSet) iterates through each key (property
name) in a dictionary (a JavaScript object), and is very useful when using diction-
aries to hold data. For each key in the dictionary, we then check that there is an

130

Chapter 6: Forms and Validation

element with that name,4 and, if so, we attach an event listener (the checkValid
method) to that element’s blur event. We expect every name to match a page
element; if it doesn’t, then we’ve accidentally deleted something from the page.
We don’t bother to enforce that, though.

We’ll see shortly how checkValid connects the validationSet object’s regular
expressions to the form fields. Before we do that, however, we’ll fill out the
validationSet object a little more.

Preparing Quality Error Messages
Sometimes, the user will enter invalid data. Rather than just throw any old error
at them, it’s important to think about how errors should be phrased. No validation
code should display a generic error message (“This field is not valid”) for invalid
input. Generic errors are lazy on the part of the developer and bad (very bad)
for usability. If the users’ input is invalid, they should be told not just that it is
invalid, but why it is invalid, so they can take steps to correct it. Each field should
have its own specific “this is not valid” message, which describes what a correct
input would be.

Since there’s one error message per form field, we can enlarge the object that
holds our set of regular expressions to contain these messages as well:

File: exampleValidation.js

var validationSet = {
 'email': {
 'regexp': /^.+?@.+?\..+$/,
 'error': 'This email address is invalid. ' +
 'It should be of the form someone@example.com.'
 },
 'phone': {
 'regexp': /^[- ()0-9]+$/,
 'error': 'A phone number must be digits only.'
 },
 'country': {
 'regexp': /^[a-zA-Z][a-zA-Z]$/,
 'error': 'Country codes are two letters only. ' +
 'Examples are US, UK or FR.'
 }
};

4 This is an example in which document.getElementsByName can be useful.

131

Preparing Quality Error Messages

Note that the phone error message doesn’t describe the whole truth: a phone
number, according to the regular expression, can actually be composed of digits,
parentheses, hyphens, and spaces. The error message, however, implies that the
field is more restrictive; this keeps the message short and to the point. It also
keeps the user focused on the simplest possible thing that they can type.

You might have noticed that each of these error messages is presented in English.
That won’t do if your site has a variety of non-English-speaking users. Fortunately,
it’s easy to extend this system to contain messages in each of several languages
if you don’t have the luxury of serving separate pages for each language. We
won’t do that extra work here, though.

Validation Processing
When the checkValid method is called, establishing whether the data in the
form field is valid or not is a simple matter of testing it against the appropriate
regular expression. Here’s the first part of the checkValid method, plus the
helper method handleValidity:

File: genericValidation.js (excerpt)

 checkValid: function(e) {
 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;

 var failedE = fV.handleValidity(target);
 if (failedE)

// code to display the error message goes here
 },

 handleValidity: function(field) {
 if (!field.value) {
 return = null;
 }
 var re = validationSet[field.name]['regexp'];
 if (!field.value.match(re)) {
 return field;
 } else {
 return null;
 }
 }

132

Chapter 6: Forms and Validation

Let’s examine this code more closely. The checkValid function first establishes
which element fired the event, using a new shortcut technique. This is a further
reduction of the standard target element detection code from previous chapters:

File: genericValidation.js (excerpt)

 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;

JavaScript’s ternary operator (?:) is at work here. Using ? and : together is
shorthand for an if…then statement, plus a variable assignment. Consider this
example:

x = a ? b : c

This code will set x to b if a is true, and x to c if a is false. Here’s another ex-
ample:

x = (a1 == true && a2 == false) ? b + 1 : c + 2;

This code is equivalent to the following:

if (a1 == true && a2 == false) {
 x = b + 1;
} else {
 x = c + 2;
}

You can see that the ?: operator is a very useful way of compressing this sort of
if statement. In our code we use two ?: operators nested together:

File: genericValidation.js (excerpt)

 var target = window.event ? window.event.srcElement : e ?
 e.target : null;

That code is short for the more familiar, but also more long-winded:

if (window.event) {
 var target = window.event.srcElement;
} else {
 if (e) {
 var target = e.target;
 } else {
 var target = null;
 }
}

133

Validation Processing

After finding and using the event object to identify the target element (the field),
checkValid calls handleValidity to check that field against the supplied regular
expression. It returns the field’s element if validation fails, or null if it succeeds.
The method merely checks the field to see that there’s something in it, extracts
the appropriate regular expression from the supplied set, and compares it against
the contents of the field. Any text field’s contents are kept in field.value. That’s
a string, so we use the string’s match method to perform the regular expression
match.

Back in checkValid, we test the return value of handleValidity; if it is not null
(i.e. the field was returned), we’ll go on to display an error message. That will
need more code.

Displaying an Error

There are two main techniques that we can use to display an error message to
users: we can put the message text inline in the page, or display it in a dialog box.
The inline method is better from a usability perspective, because users can refer
to the error as they correct the field input, but it requires some collusion on the
part of the page designer: a place must be allocated for display of the error mes-
sage.

In this example, we’ll require that if the code finds an error in a field named foo,
it should look for a span element that has id="error_foo". If it finds one, it
should display the error there; if it doesn’t, it should pop up a dialog box. If we
add that code, then checkValid will comprise the following:

File: genericValidation.js (excerpt)

 checkValid: function(e) {
 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;

 var failedE = fV.handleValidity(target);

 var errDisplay = document.getElementById('error_' +
 target.name);

 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 failedE.focus();
 }

134

Chapter 6: Forms and Validation

 if (failedE && !errDisplay) {
 alert(validationSet[failedE.name]['error']);
 }
 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }
 },

Let’s step through this method. After the initial check for the event’s target,
there’s the call to handleValidity, which we discussed earlier. We need to work
with two elements, not one. First, we have the form field element that failed;
second, we have the page element in which an error message might go. Let’s get
that second element next:

File: genericValidation.js (excerpt)

 var errDisplay = document.getElementById('error_' +
 target.name);

For each form field, an inline error span may or may not be present in the docu-
ment. Our code must handle these uncertainties to ensure flexibility. In total,
there are two elements that might or might not be present, so we have four (2x2)
cases to deal with.

File: genericValidation.js (excerpt)

 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 failedE.focus();
 }

In this first test, there’s an invalid field and an in-page element into which we
can write the error. We dig the error text out of the set of validation data, write
it to the page,5 then move the input focus to the offending field so that the user
can correct it.

File: genericValidation.js (excerpt)

 if (failedE && !errDisplay) {
 alert(validationSet[failedE.name]['error']);
 }

5 Once again, we use the nonstandard but widely supported innerHTML property to write to the
page, since Safari doesn’t support the standard method of setting the nodeValue of a text node in
the document.

135

Validation Processing

In this second test, there’s an invalid element, but there’s no in-page location at
which we can put a message. Instead, we use an alert.

File: genericValidation.js (excerpt)

 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }

In this third test, there’s no invalid element, but there is an in-page place for error
messages. We empty that element in case an old error is lingering in it. The fourth
case occurs when validation passes, and there’s no message field. There’s nothing
to do in that case.

An extra usability improvement might involve adding a class to the invalid form
element itself, or, better still, to an element (p or div or similar) containing both
the invalid form element and its associated label. CSS could then be used to add
style to the invalid element—a red border or a “warning” icon are common ap-
proaches here.

Checking on Submission
When the form is submitted, all the validated fields should be checked again.
Required fields, for example, won’t be validated by the blur event listener if the
user never clicks into them. This pre-submit check is especially useful if depend-
encies exist between the fields.

It would be useful if you could display in a dialog a summary of all the errors
detected before submission, as well as updating any error_foo span elements
that exist. There is, however, complexity here: when users are editing only one
field, a dialog box that pops up as they tab out of it is obviously attached to that
field. But, when we display a list of errors on the page, it can be difficult for users
to tell which error applies to which field. Carefully written error messages can
help with this (a message saying “Phone numbers may contain only digits” clearly
applies only to a phone number field). They aren’t, however, the whole answer:
what if there is more than one phone number field on the page?

Label Field Enhancements

An underused HTML element is label: it supplies a label for a form element.
This tag is your friend, and can be used to improve both user interaction and
error processing.

136

Chapter 6: Forms and Validation

Most forms will display form elements alongside descriptive text (e.g. “Phone
number” etc.). Wrapping that descriptive text in <label
for="form_element_id">…</label> makes the text smarter. The <label> tag
builds a semantic relationship between the label and its form field, and usually
means that, if the user clicks the label text, the focus will change to that form
element. This second point is a usability benefit, especially for checkboxes and
radio buttons, because it vastly improves their “active” clickable area.

A form with <label> tags (and error_foo tags) might look like this:

File: exampleValidation.html (excerpt)

<form action="">
 <p><label for="email">Email address</label>
 <input type="text" name="email" id="email">
 </p>

 <p><label for="phone">Phone number</label>
 <input type="text" name="phone" id="phone"></p>

 <p><label for="country">Country code</label>
 <input type="text" name="country" id="country" size="2"
 maxlength="2"></p>

 <p><input type="submit" value="submit"></p>

</form>

This suggests a solution to the problem of displaying multiple errors at once: an
error in a field can be displayed alongside the text of the label for that field. This
approach gives users a clear indication of which field is problematic.

Attaching Validation to Form Submission

The form that contains these elements should have an event listener attached to
its submit event. We can alter the code from above that attaches the blur event
listeners to also attach a submit listener to the form. This new code is shown in
bold below:

File: genericValidation.js (excerpt)

 for (var i in validationSet) {
 if (document.getElementsByName(i)) {
 var formField = document.getElementsByName(i)[0];
 fV.addEvent(formField, 'blur', fV.checkValid, false);

137

Checking on Submission

if (!formField.form.validateSubmit) {
 fV.addEvent(formField.form, 'submit',
 fV.checkValidSubmit, false);
 formField.form.onsubmit = fV.checkSubmit; // Safari
 formField.form.validateSubmit = true;
 }
 }
 }

Each form field element has a form property: a reference to its containing form,
which we use to assign the event listener.

Obviously, we need to be able to cancel the submit event if a validation error is
detected. As I explained in Chapter 3, Safari’s support for cancelling events in
event listeners is broken, so we must also attach an old-style onsubmit event
handler to the form.

We must be careful to set only one event listener on the form’s submit event; if
we set it once for each of the form elements that require validation, our form’s
submit listener will run more than once, which would almost certainly break
something. So, in addition to setting a submit listener on the form, we set the
form’s validateSubmit property to true: we check this variable before setting
the submit listener, to confirm that it has not already been set. In this way, we
can ensure that we set the submit listener only once per form.

Validation Tasks at Submit Time

The checkValidSubmit method, called on form submission, is a little more
complex than checkValid, although it’s similar in essence:

File: genericValidation.js (excerpt)

 checkValidSubmit: function(e) {
 var frm = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!frm) return;
 var errText = [];

 for (var i = 0; i < frm.elements.length; i++) {
 if (frm.elements[i].name &&
 validationSet[frm.elements[i].name]) {

 var failedE = fV.handleValidity(frm.elements[i]);

 var errDisplay = document.getElementById('error_' +

138

Chapter 6: Forms and Validation

 frm.elements[i].name);
 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 }
 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }

 if (failedE) {
 var labels = document.getElementsByTagName('label');
 errText[errText.length] =
 validationSet[failedE.name]['error'];
 for (var j = 0; j < labels.length; j++) {
 if (labels[j].htmlFor == failedE.id) {
 errText[errText.length - 1] +=
 ' (field \'' + labels[j].firstChild.nodeValue +
 '\')';
 }
 }
 }
 } /* end 'if' */
 } /* end 'for' */

 if (errText.length > 0) {
 alert('Please fix the following errors and resubmit:\n' +
 errText.join('\n'));
 frm.submitAllowed = false;
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return false;
 }
 } else {
 frm.submitAllowed = true;
 }
 },

This code contains several small but critical differences from the single field val-
idation case. Let’s look at each of these variances in turn.

We put error messages for all the fields that fail validation into an array:

139

Checking on Submission

File: genericValidation.js (excerpt)

 var errText = [];

We’re going to step through all the form elements and check only the ones our
validation set has regular expressions for:

File: genericValidation.js (excerpt)

 for (var i = 0; i < frm.elements.length; i++) {
 if (frm.elements[i].name &&
 validationSet[frm.elements[i].name]) {

Next, we see some code that prepares the in-page error message elements; it’s the
same as the code we used in checkValid.

Now, let’s start to display the error message(s) to the user.

File: genericValidation.js (excerpt)

 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 }

In this first case, validation failed and a span for the field does exist, so we write
the error message in-page, as before.

File: genericValidation.js (excerpt)

 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }

In this second case, there’s no error but there is a span, so we clean up any
lingering error text that was previously displayed in-page.

Whenever we have an error, we also want to collect up the message for display
in a single summary. That’s what this next piece of code does:

File: genericValidation.js (excerpt)

 if (failedE) {
 var labels = document.getElementsByTagName('label');
 errText[errText.length] =
 validationSet[failedE.name]['error'];
 for (var j = 0; j < labels.length; j++) {
 if (labels[j].htmlFor == failedE.id) {
 errText[errText.length - 1] +=

140

Chapter 6: Forms and Validation

 ' (field \'' + labels[j].firstChild.nodeValue +
 '\')';
 }
 }
 }

If you look at this code closely, you’ll see that we’re not only grabbing the message
associated with the field: we’re also adding the content of the field’s label to the
error message. That will tie what the user sees on the screen with what they see
in the error message.

Sadly, there is no document.getLabelElementsByForValue, so we are forced to
iterate through each label element on the page and compare its htmlFor6

property with the id of the given form element. If we find a match, we extract
the label’s content (the nodeValue of the firstChild, which is the text node),
and use the content to add an extra hint, such as “(field ‘Phone number’)” or
similar, to the end of the error message for that field. If no corresponding label
can be found, we simply do not add the hint, so the script degrades gracefully.

Once the for loop is finished, the script should show any errors that were collec-
ted:

File: genericValidation.js (excerpt)

 if (errorsList.length > 0) {
 alert('Please fix the following errors and resubmit:\n' +
 errText.join('\n'));

The join method of the errText array is used to combine the collected error
messages into a single string, separated by line breaks (\n) for readability.

Of course, if any errors were caught, we don’t want the form to submit. To this
end, we must cancel the event, which we have to do differently for the Internet
Explorer and standards-compliant event models.

File: genericValidation.js (excerpt)

 frm.submitAllowed = false;
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 if (window.event) {

6 Note that this property is labelElement.htmlFor, not labelElement.for. This is because
for is a JavaScript keyword.

141

Checking on Submission

 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return false;
 }
 } else {
 frm.submitAllowed = true;
 }

In addition to cancelling the event, this code sets a submitAllowed property on
the form to indicate whether the submission should go ahead. This is used by
the checkSubmit method, the old-style onsubmit event handler that runs after
our listener and cancels the event in the Safari browser:

File: genericValidation.js (excerpt)

 checkSubmit: function() {
 if (this.attachEvent) return true;
 return this.submitAllowed;
 },

Because Internet Explorer processes event handlers (like checkSubmit) before
event listeners (like checkValidSubmit), this method is written to always return
true in Internet Explorer (by detecting the IE-only attachEvent method). If we
didn't do this, this handler would prevent the form from submitting when the
previous form submission attempt failed due to a validation error.

Note also the use of this to reference the form element in this event handler.
Don’t be fooled into doing the same in a modern DOM event listener—this
usually just points to the window object in an event listener. As we have already
seen, you need to get the target element from the event object.

Notice that the checkValid and checkSubmitValid methods we’ve built contain
no references at all to the page content. Instead, they contain references to the
validationSet object, which will hold all the page-specific information required
by the script.

File: exampleValidation.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Client-side form validation</title>

<script type="text/javascript" src="exampleValidation.js"
 ></script>
 <script type="text/javascript" src="genericValidation.js"

142

Chapter 6: Forms and Validation

 ></script>
 <link type="text/css" rel="stylesheet"
 href="exampleValidation.css">
 </head>
 <body>
 <h1>Client-side form validation</h1>
 <form action="">
 <p><label for="email">Email address</label>
 <input type="text" name="email" id="email">
 </p>

 <p><label for="phone">Phone number</label>
 <input type="text" name="phone" id="phone"></p>

 <p><label for="country">Country code</label>
 <input type="text" name="country" id="country" size="2"
 maxlength="2"></p>

 <p><input type="submit" value="submit"></p>
 </form>
 </body>
</html>

This page makes reference to two external JavaScript files: exampleValidation.js
and genericValidation.js. The first sets up the validationSet object for the
form(s) on this page:

File: exampleValidation.js

var validationSet = {
 'email': {
 'regexp': /^.+?@.+?\..+$/,
 'error': 'This email address is invalid. ' +
 'It should be of the form someone@example.com.'
 },
 'phone': {
 'regexp': /^[-0-9]+$/,
 'error': 'A phone number must be digits only.'
 },
 'country': {
 'regexp': /^[a-zA-Z][a-zA-Z]$/i,
 'error': 'Country codes are two letters only. ' +
 'Examples are US, UK or FR.'
 }
};

143

Checking on Submission

The JavaScript code that generally handles form validation has been put in a
separate JavaScript file, genericValidation.js, so that it can be shared by
multiple pages. It’s wrapped up in an fV object to prevent namespace clashes
with other JavaScript code (as described in the previous chapter). So that you
have it all in one place, here’s the complete listing of this script:

File: genericValidation.js

var fV = {
 addEvent: function(elm, evType, fn, useCapture) {
 // cross-browser event handling for IE5+, NS6 and Mozilla
 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
 },

 init: function() {
 for (var i in validationSet) {
 if (document.getElementsByName(i)) {
 var formField = document.getElementsByName(i)[0];
 fV.addEvent(formField, 'blur', fV.checkValid, false);

 if (!formField.form.validateSubmit) {
 fV.addEvent(formField.form, 'submit',
 fV.checkValidSubmit, false);
 formField.form.onsubmit = fV.checkSubmit; // Safari
 formField.form.validateSubmit = true;
 }
 }
 }
 },

 checkValidSubmit: function(e) {
 var frm = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!frm) return;
 var errText = [];

 for (var i = 0; i < frm.elements.length; i++) {

144

Chapter 6: Forms and Validation

 if (frm.elements[i].name &&
 validationSet[frm.elements[i].name]) {

 var failedE = fV.handleValidity(frm.elements[i]);

 var errDisplay = document.getElementById('error_' +
 frm.elements[i].name);
 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 }
 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }

 if (failedE) {
 var labels = document.getElementsByTagName('label');
 errText[errText.length] =
 validationSet[failedE.name]['error'];
 for (var j = 0; j < labels.length; j++) {
 if (labels[j].htmlFor == failedE.id) {
 errText[errText.length - 1] +=
 ' (field \'' + labels[j].firstChild.nodeValue +
 '\')';
 }
 }
 }
 } /* end 'if' */
 } /* end 'for' */

 if (errText.length > 0) {
 alert('Please fix the following errors and resubmit:\n' +
 errText.join('\n'));
 frm.submitAllowed = false;
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return false;
 }
 } else {
 frm.submitAllowed = false;
 }

145

Checking on Submission

 },

 checkSubmit: function() {
 if (this.attachEvent) return true;
 return this.submitAllowed;
 },

 checkValid: function(e) {
 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;

 var failedE = fV.handleValidity(target);

 var errDisplay = document.getElementById('error_' +
 target.name);
 if (failedE && errDisplay) {
 errDisplay.innerHTML =
 validationSet[failedE.name]['error'];
 failedE.focus();
 }
 if (failedE && !errDisplay) {
 alert(validationSet[failedE.name]['error']);
 }
 if (!failedE && errDisplay) {
 errDisplay.innerHTML = '';
 }
 },

 handleValidity: function(field) {
 if (!field.value) {
 return null;
 }
 var re = validationSet[field.name]['regexp'];
 if (!field.value.match(re)) {
 return field;
 } else {
 return null;
 }
 }
}

fV.addEvent(window, 'load', fV.init, false);

This page also uses a style sheet to provide styling for the form. Here’s that style
sheet:

146

Chapter 6: Forms and Validation

File: exampleValidation.css

input {
 border-width: 1px;
 border-style: solid;
 border-color: #ccc #666 #666 #ccc;
 padding: 3px;
 color: #666;
}

span.errormessage {
 color: red;
}

Figure 6.1 shows how the page displays if the first two fields receive bad data.

Figure 6.1. Field-level validation error messages.

147

Checking on Submission

In Figure 6.1, the “Email address” field has a span element to contain its errors,
and an error is displayed because the field was filled in incorrectly. The “Phone
number” field does not offer space in which an error can display, so the error is
presented in a dialog. Figure 6.2 shows the same form after the user hits the
submit button.

Figure 6.2. Submitting an invalid form.

As Figure 6.2 shows, when the form is submitted, the error messages are collated
together into one dialog; that dialog lists each error and identifies the field to
which each error applies. It’s easy for the reader to work out the fields to which
the error messages apply.

This information could equally be displayed in-page. For example, some sites
display error messages at the top of a form entry page to indicate the fields that

148

Chapter 6: Forms and Validation

need extra attention. In order to do that, you’d need to make both the general-
purpose fV object and the validationSet object a little smarter. The
validationSet object would need to have an extra property to hold the IDs of
the elements alongside which the in-page messages should be added. The general-
purpose object must have its checkValidSubmit method slightly enhanced so it
can retrieve that extra property and use it to write the in-page messages. It’s a
fairly simple enhancement: experiment with it yourself.

Client-Server Coordination
Let’s briefly look at the other half of the validation story: server-side validation.

Dangers of Validating on the Client Only
Client-side validation is very useful, but at the risk of belaboring the point, it’s
extremely important that you don’t rely on it. You must always ensure that the
input to your server-side code (the bit that actually does something with the
data) is valid and as expected. A user may be using a browser that doesn’t support
JavaScript; they may have switched JavaScript off (about 10% of Web users do);
they may be using a browser that doesn’t support the DOM methods required
for this script; worst of all, they may maliciously have submitted information to
your server-side code from a page they created themselves with the intention of
breaching security. Your client-side code provides a better interface for your users,
but the server-side code is the bit that must be right. Of course, it would be good
to integrate the server-side with the client-side, so you didn’t need to write both
separately.

Full Example: Server Fallback Validation
The server-side page that actually generates the form should integrate neatly with
the client-side code. We can store a list of the regular expressions appropriate to
each field in the server code. The server code can write these expressions into the
JavaScript section of the generated page, and use the expressions to check the
fields when the page is submitted. As such, the required regular expressions can
be specified once and used on both the server side and the client side.

If an error occurs upon submission (i.e. a field does not match its regular expres-
sion), the server-side page generator writes the form out again, placing the error
text in the appropriate span element.

149

Client-Server Coordination

The key benefit here is that changing the field validation is as simple as changing
the regular expression list in the server code: this automatically makes the client-
side code work, without any extra effort. If the two are maintained separately,
it’s reasonably easy for them to get out of sync. In that case, either the client-side
code will allow some values that the server code will not (which is a usability
problem), or the client-side code will correctly block some values that the server
does not. The latter case has the potential to cause security problems if someone
circumvents the client code by turning off JavaScript or writing their own form.

Here’s an example implementation of these principles in PHP. First, here’s the
HTML starting point:

File: phpValidation.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Client and Server-side form validation</title>
 <link type="text/css" rel="stylesheet"
 href="exampleValidation.css">
 </head>
 <body>
 <h1>Client and server-side form validation</h1>
 <?php
 include 'serverValidation.php';
 ?>
 </body>
</html>

We could simply put all the code that generates the page in this one file, but
splitting the form generation code into the included serverValidation.php file
makes the code simpler to read, and concentrates all the form technology in one
place. Here’s an outline of this script:

File: serverValidation.php (excerpt)

<?php

 $form_variables = array(…);

 function build_javascript(…) { … }

 function build_form(…) { … }

 if ($_POST) {

150

Chapter 6: Forms and Validation

// validate the data and collect error messages
 if (… any error …) {

// generate the form content with in-page error messages
 } else {

// generate "form submission underway" content
 }
 } else {

// A simple page fetch. Generate the form content normally
 }

?>

The $form_variables variable will contain our regular expressions and error
messages. The functions prefixed with build_ will translate that PHP-based data
into HTML and JavaScript content as required. The last set of ifs perform the
form submission logic, generating one of three separate pages depending on what’s
happening. Here’s the full listing, a piece at a time:

File: serverValidation.php (excerpt)

<?php

 $form_variables = array(
 'email' => array(
 'regexp' => '/^.+?@.+?\..+$/',
 'error' => 'This email address is invalid. ' .
 'It should be of the form someone@example.com.'
),
 'phone' => array(
 'regexp' => '/^[- ()0-9]+$/',
 'error' => 'A phone number must be digits only.'
),
 'country' => array(
 'regexp' => '/^[a-zA-Z][a-zA-Z]$/',
 'error' => 'Country codes are two letters only. ' .
 'Examples are US, UK or FR'
)
);

In the case of JavaScript, we used objects to implement a set of sets. Here in
PHP, we’re using nested arrays to achieve the same effect.

File: serverValidation.php (excerpt)

 function build_javascript($form_variables) {
 $js = "var validationSet = {\n";
 $entries = array();

151

Full Example: Server Fallback Validation

 foreach ($form_variables as $name => $properties) {
 $entry = " '$name': {\n";
 $entry .= " 'regexp': {$properties['regexp']},\n";
 $entry .= " 'error': '" .
 addslashes($properties['error']) . "'\n";
 $entry .= " }";
 $entries[] = $entry;
 }
 $js .= join(",\n", $entries) . "\n";
 $js .= "}\n";
 return $js;
 }

This function scans the PHP data and creates a PHP string containing JavaScript
code that has the same meaning.

File: serverValidation.php (excerpt)

 function build_form($form_variables, $errors=array(),
 $data=array()) {
 // Ensure $errors and $data have empty strings for incorrect
 // fields
 foreach (array_keys($form_variables) as $name) {
 $data[$name] = isset($data[$name]) ?
 htmlspecialchars($data[$name]) : '';
 if (!isset($errors[$name])) {
 $errors[$name] = '';
 } elseif ($errors[$name]) {
 $data[$name] = ''; // Don't redisplay invalid data
 }
 }

The first part of this function initializes a PHP array for form data and errors.
All unused fields are set to empty, and any form values that resulted in an error
are cleared.

File: serverValidation.php (excerpt)

 $javascript = build_javascript($form_variables);

 echo <<<EOD
 <script type="text/javascript">
 $javascript
 </script>
 <script type="text/javascript" src="genericValidation.js"
 ></script>
 <form action="" method="post">

152

Chapter 6: Forms and Validation

 <p>
 <label for="email">Email address</label>
 <input type="text" name="email" id="email"
 value="{$data['email']}">
 <span id="error_email" class="errormessage"
 >{$errors['email']}
 </p>
 <p>
 <label for="phone">Phone number</label>
 <input type="text" name="phone" id="phone"
 value="{$data['phone']}">
 <span id="error_phone" class="errormessage"
 >{$errors['phone']}
 </p>
 <p>
 <label for="country">Country code</label>
 <input type="text" name="country" id="country"
 size="2" maxlength="2" value="{$data['country']}">
 <span id="error_country" class="errormessage"
 >{$errors['country']}
 </p>
 <p><input type="submit" value="submit"></p>
 </form>
EOD;
 }

The rest of the function specifies the HTML’s form content, inserting any retained
form data and any required error messages. Note the <script> tags, which include
a reference to the client-side validation library (genericValidation.js) we built
earlier in this chapter.

Finally, here’s the section that generates the page:

File: serverValidation.php (excerpt)

 // Now generate the form or POST response page
 if ($_POST) {
 $errors = array();
 foreach ($form_variables as $name => $properties) {
 $value = isset($_POST[$name]) ? $_POST[$name] : '';
 if (!preg_match($properties['regexp'], $value)) {
 $errors[$name] = $properties['error'];
 }
 }
 if ($errors) {
 // Redisplay the form
 echo build_form($form_variables, $errors, $_POST);

153

Full Example: Server Fallback Validation

 } else {
 // Process contents
 echo 'Processing...';
 echo '<pre>'; print_r($_POST); echo '</pre>';
 }
 } else {
 echo build_form($form_variables);
 }

?>

Inside the first if, the code loops through the form’s submitted data and tests
each item using the PHP copies of the regular expressions for the form. If any
step in the validation process fails, the matching errors are passed to the
build_form function. Otherwise, the form is processed without complaint.

To see this code at work, first, load the page normally. Enter some bad data, and
the client-side JavaScript will catch the errors, preventing the form from being
submitted. Next, turn JavaScript off in your browser and reload the form. Re-
enter some bad data and press submit. This time, the validation is performed on
the server-side, in PHP. Either way, the regular expressions used originate from
the same place in PHP.

Improving Form Usability
Web applications are increasingly responsible for the user interfaces with which
people work, day in, day out, on their computers. One of the downsides of this
approach is the set of widgets—buttons, drop-down lists, text boxes, and radio
buttons—that make up HTML forms. It’s a limited repertoire when compared
with the richness of today’s desktop applications.7 It’s possible, using DHTML,
to make up for some of these deficiencies. In the coming pages, we’ll review some
form widget enhancements that already exist, and experiment with a new one
that you can add to your toolbox.

7 People are working to improve this. One example is the WHAT Working Group, at
http://whatwg.org/, which is building a set of specifications for extensions to HTML that will improve
Web applications.

154

Chapter 6: Forms and Validation

http://whatwg.org/

Standing on the Shoulders of Giants
The problem of HTML form widgets not being quite as fancy as those in normal
client-side applications is well known, and numerous widget enhancements have
already been developed with DHTML.

Rich-Text Editors

Internet Explorer has had a built-in rich-text editor for some time. This allows
users to edit text in a textarea-like element, but also gives them the ability to
format that text. Mozilla-based browsers have also implemented the same rich-
text editor internally.

Such editors can be built using DHTML, but, while there are many DHTML-
based editors on the market, not all have been revised to work in Mozilla-based
browsers as well as IE. Popular open-source options include HTMLArea8 (the
status of which is a little shaky as this book goes to print), and FCKeditor9. Fig-
ure 6.3 shows HTMLArea at work:

Figure 6.3. A cross-browser rich-text editor at work.

8 http://www.dynarch.com/projects/htmlarea/
9 http://www.fckeditor.net/

155

Standing on the Shoulders of Giants

http://www.dynarch.com/projects/htmlarea/
http://www.fckeditor.net/

Autocomplete Text Boxes

A popular enhancement to text boxes in client-side applications is an entry history:
the text box remembers previous entries, and offers matching entries from that
list as alternatives when the user starts to make a new entry.

Web browsers often provide this enhancement as part of their user interfaces.
You can see it at work on the address or location text box: when you begin to
enter a URL, the box auto-completes the partial entry with a previous entry if
they match, making it easier to get back to a page that has been visited before.

Some browsers also offer this functionality on text boxes in HTML forms on a
page. Nicholas Zakas emulated this autocomplete functionality in DHTML in
his article Make Life Easy with Autocomplete Text Boxes10. You can create a text box
and record possible autocomplete values for it; typing into the text box will
autocomplete those values. In Figure 6.4 below, the user has entered “br” into
the text box, and it has autocompleted to “brown,” which is the sole match in a
list of choices that includes “red,” “orange,” “yellow,” “green,” “blue,” “indigo,”
“violet,” and “brown.”

Figure 6.4. Autocompleting an entry.

Calendar Popups

A common form requirement is a date, for instance, when booking a flight, hotel,
or train journey, or providing birth- or start- dates. A calendar widget, which pops
up a calendar from which the user can choose a date, can be useful in these situ-
ations. Such widgets should be used when the date is not too far from today’s
date, since navigating to a previous time can be awkward. They’re also culture-

10 http://www.sitepoint.com/article/life-autocomplete-textboxes

156

Chapter 6: Forms and Validation

http://www.sitepoint.com/article/life-autocomplete-textboxes

specific: Gregorian, solar calendars with English month-names are only used in
the English-speaking world.

A good example of a cross-browser DHTML calendar widget is available from
mishoo’s site11. Figure 6.5 shows this calendar at work.

Figure 6.5. The DHTML calendar at work.

Text Boxes with Suggestions

A common approach for text boxes in forms on HTML pages has been to pre-
populate the text box with instructions for completion (e.g. “Enter your surname
here”), then to remove those instructions when the user clicks into the box to
enter some text. If the user clicks away from the text box without completing it,
the instructions are restored.

This technique was often executed with suspect JavaScript techniques: using on-
click and onblur listeners on the tags themselves, and hardcoding the instruc-
tions into the JavaScript in the listeners. This approach makes the technique

11 http://www.dynarch.com/projects/calendar/

157

Standing on the Shoulders of Giants

http://www.dynarch.com/projects/calendar/

degrade well, but hides the instructions from browsers that don’t support Java-
Script.

Aaron Boodman built an enhancement12 that automatically uses the content
from the label element related to a given text box to populate that text box. The
instructions are, therefore, available to non-JavaScript-capable browsers (as they’re
located in the label element), but are placed in the text box itself in DOM
browsers, as can be seen in Figure 6.6 and Figure 6.7 below.

Figure 6.6. Text box labels with DHTML.

Figure 6.7. Text box labels without DHTML.

12 http://www.youngpup.net/2001/labels

158

Chapter 6: Forms and Validation

http://www.youngpup.net/2001/labels

While the use of this technique needs to be approached with care (there are us-
ability implications associated with providing users with instructions to fill in a
text box, and having those instructions disappear when users try to do so!), this
technique takes a common, “old-style” DHTML staple and uses unobtrusive
DHTML techniques to rebuild it for the modern age.

How to Find Scripts
Countless JavaScript snippets and scripts are available on the Web, ready to be
used to enhance your Website. Those mentioned in this chapter, in common
with those developed throughout this book, use modern DOM scripting tech-
niques, rather than outdated or browser-specific approaches.

When reviewing scripts yourself, it’s important to know what to look for so that
your sites can stay compliant and cross-browser compatible, giving you the widest
audience and avoiding user dissatisfaction. The easiest way to confirm that a
script uses modern, rather than legacy, techniques is to test it in more than one
modern DOM browser. If it works in Mozilla Firefox and in Internet Explorer,
that’s a start; if it also works in Opera, Safari on OS X, and Konqueror on Linux,
it’s definitely using new techniques.

Be aware that the latter group of browsers may not implement the standards as
completely as Firefox and Internet Explorer (although they may implement the
standards more correctly!). This means that a script may fail to work in Konqueror
(for example) because the browser isn’t as comprehensive as it could be, rather
than because the script is poor. Key features of DOM scripting, as we have seen
time and again, are the document.getElementBy methods; a script using these
functions will almost certainly be a DOM script. Equally, a key feature of legacy
scripting techniques is the use of the document.all and document.layers
properties. Any script using these is likely to be outdated, and may not work in
DOM browsers (at best, it may be attempting to retain backwards compatibility
with old browsers).

Type-Ahead Drop-Down Lists
We conclude this chapter’s discussion on forms with a new widget.

Short drop-down lists in Web pages are reasonably easy to deal with. But what
about long ones? Usability experts tell us that we should avoid select elements
that contain more than a few elements: long lists are bad. Although this is true,
almost every Web user has probably used one of those huge drop-downs contain-

159

How to Find Scripts

ing country names. Some have worked around the problem of locating particular
countries in these long lists by putting the more frequently-selected countries at
the top,13 but this is hardly an ideal solution.

It is possible to press the key that corresponds with the initial letter of an entry
in the list in order to jump to that entry; repeatedly hitting that key will move
between list entries that begin with that letter. This suggests an improvement:
perhaps instead of keypresses triggering initial-letter searches only, they should
accumulate into a string, which is matched as a whole. While typing “k,” “i,” “n”
in a standard drop-down will result in a jump to the first list entry beginning
with “k,” then the first beginning with “i,” then the first beginning with “n,” this
could be changed so that those keypresses jump the selection to the first entry
containing the string “kin.” That would probably be the United Kingdom (or the
Kingdom of Tonga!), in the countries example.

Functionality very similar to this is actually already present in both Safari and
Firefox. Both of those browsers let you type a series of letters to match the start
of an entry in a drop-down list. This example takes this feature a step further by
searching for the string anywhere in the list item. And it works in Internet Explorer
to boot! Unfortunately, Safari does not support handling keyboard events on
drop-down lists with JavaScript. As a result, the enhancement we will undertake
in this section will not apply to that browser.

A number of further enhancements also suggest themselves: the current accumu-
lated string should be displayed somewhere so that the user can see what they’ve
entered, similar to Firefox’s “type-ahead find” feature. It should also be possible,
as with type-ahead find, to press Backspace to remove the most recently-added
letter from the accumulated string. Finally, after a period without typing, the
accumulated string should be reset to blank to allow typing from scratch.

Here’s an example HTML file containing the countries list:

File: typeahead.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Type-ahead drop-down lists</title>
 <script type="text/javascript" src="typeahead.js"></script>

13 Sometimes, developers place just one country at the top—the United States—leaving UK residents
such as myself, and other non-Americans, to scroll through the ridiculously long list. Hmph. (Australi-
ans don’t mind—Ed.)

160

Chapter 6: Forms and Validation

 </head>
 <body>
 <h1>Type-ahead drop-down lists</h1>
 <form action="">
 <p>
 <select name="country">
 <option value="AFG">Afghanistan</option>
 <option value="ALB">Albania</option>
 <option value="DZA">Algeria</option>
 …
 <option value="ZAR">Zaire</option>
 <option value="ZMB">Zambia</option>
 <option value="ZWE">Zimbabwe</option>
 </select>
 </p>
 </form>
 </body>
</html>

The associated JavaScript should attach an event listener to each select element
in the document. Browsers offer three events for handling pressed keys: keyup,
keydown, and keypress. As we saw in Chapter 3, despite being the best-supported
of these properties, keypress is nonstandard, and a little limited. In particular,
in some browsers it does not fire for “control” keys such as Backspace, which is
required by this script. We’ll therefore use keydown for this script.

In summary, we’ll create a library object as follows:

File: typeahead.js

var tADD = {
 addEvent: function(elm, evType, fn, useCapture) { … },
 init: function() { … },
 addKey: function(e) { … }
}
tADD.addEvent(window, 'load', tADD.init, false);

This is mostly standard setup. As only a single listener is required, we’ll put it all
in typeahead.js. There’s nothing else in that file. Here’s the init method:

File: typeahead.js (excerpt)

 init: function() {
 if (!document.getElementsByTagName) return;
 var selects = document.getElementsByTagName('select');
 for (var i = 0; i < selects.length; i++) {
 tADD.addEvent(selects[i], 'keydown', tADD.addKey, false);

161

Type-Ahead Drop-Down Lists

 tADD.addEvent(selects[i], 'keypress',
 function(e) { if (e) e.preventDefault(); }, false);
 }
 },

This decorates all select elements with a keydown event listener and a keypress
event listener. The keydown listener, addKey, will implement the type-ahead be-
havior. The keypress listener is in place for one reason only: the Firefox browser
will navigate to the previous page when the user types Backspace, even if the
keydown event listener calls preventDefault to cancel the event. To prevent this,
the keypress event must be cancelled by its own listener.

Here’s the keydown event listener:

File: typeahead.js (excerpt)

 addKey: function(e) {
 var t = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!t) return;

 if (e && e.which) {
 var code = e.which;
 } else if (e && e.keyCode) {
 var code = e.keyCode;
 } else if (window.event && window.event.keyCode) {
 var code = window.event.keyCode;
 } else {
 return;
 }

 var character = String.fromCharCode(code).toLowerCase();
 if (t.timeout_key)
 clearTimeout(t.timeout_key);

 if (!t.keyword)
 t.keyword = '';

 if (code == 8) {
 if (t.keyword != '')
 t.keyword = t.keyword.substr(0, t.keyword.length - 1);
 } else if (code >= 32) {
 t.keyword += character;
 }

 if (t.keyword == '') {

162

Chapter 6: Forms and Validation

 window.status = t.keyword = '';
 } else {
 window.status = 'Searching: ' + t.keyword;

 t.timeout_key = setTimeout(
 function() { window.status = t.keyword = ''; },
 5000);

 var gotoIndex = t.selectedIndex;
 for (var i = 0; i < t.options.length; i++) {
 if (t.options[i].text.toLowerCase().indexOf(t.keyword)
 != -1) {
 gotoIndex = i;
 break;
 }
 }
 setTimeout(function() { t.selectedIndex = gotoIndex; }, 1);
 }

 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 } else if (e) {
 e.stopPropagation();
 e.preventDefault();
 }
 }

As described in Peter Paul Koch’s Event Properties summary14, the code of the
pressed key is available from the keyCode or which properties of the event object
(we get that object in the normal cross-browser way). Here’s the code that ensures
that we have both an event object and a key at the end:

File: typeahead.js (excerpt)

 var t = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!t) return;

 if (e && e.which) {
 var code = e.which
 } else if (e && e.keyCode) {
 var code = e.keyCode;
 } else if (window.event && window.event.keyCode) {
 var code = window.event.keyCode;

14 http://www.quirksmode.org/

163

Type-Ahead Drop-Down Lists

http://www.quirksmode.org/

 } else {
 return;
 }

Next, we convert the supplied code into a lowercase character: the character is
converted to lowercase because the search through the drop-down will be case-
insensitive. There are also serious browser issues with case-sensitive keystroke
detection.

File: typeahead.js (excerpt)

 var character = String.fromCharCode(code).toLowerCase();

Below, setTimeout is used to implement the five-second string reset timer men-
tioned; if a timer is currently running, we cancel it, because a key has just been
pressed. We don’t want the typed-in string cleared halfway through the user
typing it, even if they are a bit slow.

File: typeahead.js (excerpt)

 if (t.timeout_key)
 clearTimeout(t.timeout_key);

The accumulated string of characters will be stored in a property of the select
element named keyword. This property is created by the code, using (again)
JavaScript’s handy ability to attach arbitrary properties to objects. If the property
does not exist, it is created as an empty string:

File: typeahead.js (excerpt)

 if (!t.keyword)
 t.keyword = '';

The Backspace key has a keyCode of 8. If Backspace has been pressed, and some
letters have accumulated, we remove the last accumulated letter:

File: typeahead.js (excerpt)

 if (code == 8) {
 if (t.keyword != '')
 t.keyword = t.keyword.substr(0, t.keyword.length - 1);

If a key other than Backspace was pressed, then we add the corresponding
character to the accumulated string (as long as the key isn’t a control character;
we don’t want to add a line feed if Enter is pressed).15

15 http://www.js-x.com/syntax/key_codes.php provides a table of keycodes, including those generated
by control characters.

164

Chapter 6: Forms and Validation

http://www.js-x.com/syntax/key_codes.php

File: typeahead.js (excerpt)

 } else if (code >= 32) {
 t.keyword += character;
 }

Next, we set the message in the browser’s status bar to display the accumulated
string, providing visual feedback to the user.16 If the accumulated string is empty
(i.e. if we’ve just backspaced away the last character), we empty the status bar
to match.

File: typeahead.js (excerpt)

 if (t.keyword == '') {
 window.status = '';
 } else {
 window.status = 'Searching: ' + t.keyword;

Set a timeout to blank the accumulated string in five seconds’ time. Note the use
of an anonymous function for simplicity.

File: typeahead.js (excerpt)

 t.timeout_key = setTimeout(
 function() { window.status = t.keyword = ''; },
 5000);

Finally, we’ll iterate through the list entries in the drop-down until one that
contains the accumulated string is found. If one is found, we set it as the selected
entry. If not, we set the selected entry to remain as the currently selected entry.
In either case, we set the selected entry after a tiny delay, because Mozilla browsers
will do their own type ahead navigation immediately after this event listener runs
(there is currently no way to prevent it), so our selection assignment must come
in after that.

File: typeahead.js (excerpt)

 var gotoIndex = t.selectedIndex;
 for (var i = 0; i < t.options.length; i++) {
 if (t.options[i].text.toLowerCase().indexOf(t.keyword)
 != -1) {
 gotoIndex = i;
 break;
 }

16 This may not work in all browsers: the browser status bar has been so misused for hiding URLs or
for scrolling messages that manipulation of its contents from JavaScript is now sometimes disabled
by default.

165

Type-Ahead Drop-Down Lists

 }
 setTimeout(function() { t.selectedIndex = gotoIndex; }, 1);

Like many DHTML enhancements, this is a simple improvement over the existing
in-browser functionality, and degrades neatly to doing nothing in browsers that
do not support it.

The script does have the disadvantage that it’s not necessarily very discoverable;
the only hint that a given drop-down list is using this new, more-usable method
of finding items is that the status bar changes to display the accumulated string,
and, as noted, this may not take effect in some browsers. On public Websites,
therefore, this script won’t cause a problem, but it may not enhance usability as
much as you might have expected. On an intranet, or some other environment
in which users can undergo training that includes a description of how the en-
hanced drop-down works, this feature can seriously improve the usability of long
drop-down lists. It may also be possible to display a tooltip, rather than a status
bar message, when the user scrolls through the list with the keys, which would
make the new behavior more apparent. That’s an exercise for you to try for
yourself!

Summary
In this chapter, we’ve seen the ways that DHTML can enhance form-filling, one
of the most common activities in any Web application. We’ve seen how to im-
plement the regular expression-based validation of form fields through DOM
techniques. We’ve also learned how to make life easier on developers by integrat-
ing that validation with the equivalent validation that must be completed on the
server. There’s no need to write the same code twice in two languages.

We then looked at enhancing individual form widgets to work in more complex
ways, or to emulate more useful widgets from client-side applications. Those en-
hancements help overcome some limitations of Web browsers’ rather basic form
implementations. We also highlighted work that others have already done in this
area. Finally, a new technique was presented for enhancing the use of large drop-
down lists.

166

Chapter 6: Forms and Validation

Advanced Concepts and Menus7
Why didn’t you bring... something more advanced? Show me a piece of future technology.
—Dr Silberman, The Terminator

In this chapter, we’ll explore a DHTML idea that seems quite complex: a multi-
level animated menu. These menus abound on the Web—in fact, some firms do
a roaring trade selling code to generate DHTML menus for use in Website nav-
igation. But, as it turns out, such menus aren’t complex at all.

The principles of unobtrusive DHTML and the power of the DOM mean that
the actual code required to create a multi-level animated navigation system can
be quite short; nevertheless, advanced concepts are at work in such systems.
Understanding these concepts is a key aspect of large-scale DOM programming.

A multi-level animated menu is a big project, so let’s see what we’re aiming for.
Figure 7.1 shows the menu we’re about to develop.

Normally, the menu shows only the two leftmost menu items visible in the figure.
In the figure, the user has moused over the second of those two items (DHTML
Tutorials), causing a submenu to show. The user then moused over the first item
in the submenu (By Simon Willison) to reveal the rightmost submenu. The top of
this final menu is level with that of the middle one because the first item of the
middle menu was chosen.

Without further ado, let’s start development! There’s quite a lot of code involved,
but we’ll step through it one small piece at a time.

Figure 7.1. The goal: a multi-level menu.

Creating Menu Content
The first step is to create the raw HTML content; then, we’ll bash it into shape
with some CSS styling.

Create Semantic Menu Content
As we’ve seen through earlier chapters, laying out HTML so that it’s semantically
correct makes dealing with the code much simpler. We want the menus to appear
as shown in Figure 7.1, which means that, like most other navigation systems,
each level of this menu must contain either links or submenus. The ideal way to
lay out this kind of multi-level menu is to use the unordered list tag, . So,
first, let’s lay out the menu.

File: menu-stage-1.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Client-side form validation</title>
 <base href="http://www.sitepoint.com/">
 </head>
 <body>

168

Chapter 7: Advanced Concepts and Menus

 <ul class="slidingmenu">

 SitePoint articles

 <a href="article/search-engine-spam-techniques"
 >Latest Search Engine Spam Techniques
 <a href="article/free-web-design-apps"
 >Free Web Design Apps You Can't Live Without!

 <a href="article/securing-apache-2-server-ssl"
 >Securing Your Apache 2 Server with SSL

 DHTML Tutorials

 By Simon Willison

 <a href="article/rounded-corners-css-javascript"
 >Rounded Corners with CSS and JavaScript

 <a href="article/bookmarklets"
 >Better Living Through Bookmarklets
 <a href="article/simple-tricks-usable-forms"
 >Simple Tricks for More Usable Forms

 <a href="article/smooth-scrolling-javascript"
 >My tutorial
 <a href="article/behaved-dhtml-case-study"
 >By Aaron Boodman

 <a href="article/behaved-dhtml-case-study"
 >Well-Behaved DHTML: A Case Study

 </body>
</html>

169

Create Semantic Menu Content

Notice that the topmost ul has a special class of slidingmenu. This hook is all
we should need to unobtrusively implement the menu’s behavior: the code can
simply look for a ul with this class. We’ll come back to this later.

Now, if you display this page, there are no surprises, as Figure 7.2 shows:

Figure 7.2. Unstyled content for the animated menu.

As you can see, the menu hierarchy is laid out in nested lists. The key point to
remember about unordered lists is that a ul element can contain only li elements.
Nothing else is allowed. This is especially critical for our complex menus. If you
don’t follow that rule, the animated effects won’t work properly.

It directly follows that to nest one list inside another, the second-level list’s ul
must appear inside an li. Here’s an example code snippet:

<ul class="toplevel">
This is the top level

 <ul class="submenu">
 This is the second level

170

Chapter 7: Advanced Concepts and Menus

 This is also the top level

Note that the submenu ul is entirely contained within the (bold) li element!

Styling the Menu’s Layout
Having created the content, let’s apply CSS styling so that the pieces of the menu
appear as they should (with all parts of the menu expanded). To begin, we add
a line to the head of the document:

File: menu-stage-2.html (excerpt)

 <link type="text/css" rel="stylesheet"
 href="sliding-menu-2.css">

We’ll put pure layout information into the CSS file—just to start with.

File: sliding-menu-2.css

ul.slidingmenu,
ul.slidingmenu ul,
ul.slidingmenu li,
ul.slidingmenu a {
 padding: 0;
 margin: 0;
 display: block;
}

ul.slidingmenu,
ul.slidingmenu ul {
 width: 10em;
}

ul.slidingmenu li {
 list-style-type: none;
 position: relative;
}

ul.slidingmenu a {
 width: 100%;
}

ul.slidingmenu ul {
 position: absolute;
 left: 100%;

171

Styling the Menu’s Layout

 top: 0;
}

Five style rules are at work here, using various features of CSS2. Now, some cooks
don’t like to reveal their recipes, but we’re not holding back here: we’ll go through
every ingredient! Let’s analyze each rule in turn.

The first rule applies to all of the elements in the menu content. The rule is re-
sponsible for stripping off all padding and/or margins that browsers add to lists
and list items in order to make them look like lists.

The second rule sets a fixed width for both the sliding menu list and all of the
lists it contains. If it weren’t for a bug in Internet Explorer that adds an unwanted
margin to the bottom of list items, we could set the width in the first rule and
have it apply to all elements.

The third rule works on individual list (menu) items. It takes away the list item
marker, and prepares the menu item for animation effects by setting it to use
CSS relative positioning.

The fourth rule assigns a width of 100% to links, so that they fill the list items
that contain them, making the entire rectangle of each menu item clickable.
Again, if it weren’t for Internet Explorer’s list item spacing bug, this could be
handled by the first rule.

Figure 7.3. Menus styled with CSS layout rules.

The last rule addresses any list that’s a submenu. Rather than have that submenu
disrupt the stacking of the current menu’s items (the “normal flow”), this rule
positions the element absolutely. Normally, absolute positioning would see the

172

Chapter 7: Advanced Concepts and Menus

element located exactly on top of the current menu, but, as we move it by 100%
of the width of the current menu, it sits to the side. Figure 7.3 shows the results
of these style rules:

You can see that all the menu items appear at once, in their final locations. Some
menus are overlaid on top of others, but that isn’t a problem because, in the
finished application, they won’t be displayed simultaneously.

With these changes in place, we’ve got the content where we want it. It’s still
ugly, though.

Styling the Menu’s Appearance
Adding some style for appearance, rather than layout, makes the menus look at-
tractive and makes it easier for us to see where each one is located. Here are the
CSS additions:

File: sliding-menu-3.css (excerpt)

body {
 font-family: sans-serif;
}

ul.slidingmenu, ul.slidingmenu ul {
 border: 1px solid #666;
 border-width: 4px 1px 1px 1px;
}

ul.slidingmenu li {
 background: #efe;
 text-align: center;
 border-bottom: 1px dotted #999;
}

ul.slidingmenu a {
 color: #666;
 background: #efe;
 text-decoration: none;
}

ul.slidingmenu a:hover {
 background: #cdc;
 color: #333;
}

173

Styling the Menu’s Appearance

There’s nothing magical about these styles: they just apply block coloring and
provide a little feedback when users mouseover a link. The only slightly tricky
bit is that we’ve made sure to set a background color on the links as well as the
list items. If we set the background color on the list items alone, Internet Explorer
would not detect that the mouse was positioned over a link unless it was over
the text of that link. Setting the background color ensures that the entire link
rectangle is active for mouseover purposes (this will be important later).

Figure 7.4 shows the result of this styling; as a bonus, it’s now easier to recognize
the overlapping submenus.

Figure 7.4. The menus styled for appearance.

Hiding the Secondary Content
Finally, we need to tuck away all the menus except for the first one. Here’s the
modified rule as it appears in the style sheet:

File: sliding-menu-4.css (excerpt)

ul.slidingmenu ul {
 position: absolute;
top: -4px; /* the height of the top border */

 left: 100%;
display: none;

}

174

Chapter 7: Advanced Concepts and Menus

We’ve set the display property to none, and made a last-minute positioning
adjustment so that the top border width doesn’t throw the submenu items out
of alignment with their parent menu item. Figure 7.5 shows the result.

Figure 7.5. The final styled sliding menu content.

Okay, but there’s a problem: we can’t see any of the submenu content! We’ll fix
that with JavaScript, and provide a fallback solution for cases in which JavaScript
isn’t available.

Making the Menu Work
The HTML and graphic design sections of the work are over; it’s time to make
the menus actually work like menus. When a menu item that leads to a submenu
is moused over, the submenu should display. Moving the cursor off a menu should
hide it, but not immediately. A delay is needed to avoid the common problem
of users accidentally moving the cursor off a menu and having it disappear imme-
diately.

175

Making the Menu Work

Advanced CSS Menu Alternatives
Before we examine the DOM scripting required to finish the menu, it’s important
to note that dynamic menus can be achieved without any scripting at all, using
pure HTML and CSS. Eric Meyer first popularized this technique, naming it
Pure CSS Menus1. However, the technique isn’t appropriate here, for two reasons:
it doesn’t support menu animation (it unmasks all items in a hidden menu in
one hit), and, more importantly, it requires a decent level of CSS support from
the browser. Specifically, the browser must support the :hover pseudo-class on
any element. Sadly, Internet Explorer only supports :hover on links—not all
elements—so this technique is not as popular as it could be.

Making Submenus Appear
In essence, all submenus should be hidden to start with. When a submenu’s
header li (the li element that contains the submenu) is moused over, the sub-
menu ul should appear. When the cursor leaves that submenu, or the submenu
header, the submenu should disappear. This is a long-winded way of describing
how menus work, but breaking the process down into steps can sometimes reveal
tricky bits that you might not have thought about otherwise.

Simplistic Menu Events

Exposing these menus is trickier than it may seem at first. As our first option,
let’s try some straightforward thinking. The obvious approach is to attach a
listener to each of the li’s mouseover and mouseout events, which show and
hide the submenus. The structure for this approach involves a standard technique:
iterate through all the lis in each ul of class slidingmenu, setting mouseover
and mouseout listeners. Here’s that experimental code:

File: sliding-menu-5.js (excerpt)

function init() {
 var uls = document.getElementsByTagName('ul');
 for (var u = 0; u < uls.length; u++) {
 if (uls[u].className.search(/\bslidingmenu\b/) == -1)
 continue;
 var lis = uls[u].getElementsByTagName('li');
 for (var i = 0; i < lis.length; i++) {
 var node = lis[i];
 if (node.nodeName.toLowerCase() == 'li' &&

1 http://www.meyerweb.com/eric/css/edge/menus/demo.html

176

Chapter 7: Advanced Concepts and Menus

http://www.meyerweb.com/eric/css/edge/menus/demo.html

 node.getElementsByTagName('ul').length > 0) {
 addEvent(node, 'mouseover', mover, false);
 addEvent(node, 'mouseout', mout, false);
 node.getElementsByTagName('a')[0].className +=
 ' subheader';
 }
 }
 }
}

addEvent(window, 'load', init, false);

The outer loop finds all the uls on the page (there may be more than one); the
first if checks whether or not each list has the special slidingmenu class. The
inner loop steps through the menu items looking for those that have submenus,
and lodging listeners on them. The functions mover and mout are the mouseover
and mouseout listeners, respectively; we’ll declare these shortly. The inner loop
also adds a CSS class of subheader to the links inside these elements. We add a
rule in our style sheet for this class to make such links look a little different:

File: sliding-menu-5.css (excerpt)

ul.slidingmenu a.subheader {
 background: #ded;
}

Now, the two listener functions seem trivial. Here’s the mouseover case:

File: sliding-menu-5.js (excerpt)

function mover(e) {
 var el = window.event ? window.event.srcElement : e ? e.target :
 null;
 if (!el) return;
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 node.style.display = 'block';
 }
 }
}

Here’s the corresponding mout mouseout listener, which hides the submenu:

File: sliding-menu-5.js (excerpt)

function mout(e) {
 var el = window.event ? window.event.srcElement : e ? e.target :

177

Making Submenus Appear

 null;
 if (!el) return;
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 node.style.display = 'none';
 }
 }
}

Unfortunately, though, it’s not quite as simple as this. Try it and see for yourself
just how spectacularly it fails. We’ll discuss why it doesn’t work in the next sec-
tion.

Mouse Event Complexities

Imagine we have a simple unordered list styled with chunky padding:

 LI
 <a>This is a link

This arrangement is shown in Figure 7.6.

Now, suppose the user moves the cursor onto the li (the darker area). This will
fire the li element’s mouseover listener, as we’d expect. What happens, though,
when the cursor moves onto the link, as shown in Figure 7.7?

When the cursor moves onto the link, several events occur, but, importantly, the
li’s mouseout listener fires. Even though the link is contained within the li, the
browser sees mousing onto the link as movement off the list item. This poses
something of a problem in our simple model above: since each of our menu items
is a link within a list item, movement of the cursor onto a submenu header causes
the submenu quickly to appear (as the cursor enters the li area) and disappear
(as the cursor enters the link area).

178

Chapter 7: Advanced Concepts and Menus

Figure 7.6. A list with a link.

Figure 7.7. Mousing over the link.

In fact, the situation is even more complicated than I’ve just explained. The
transition described above will fire three(!) separate events:

1. The li’s mouseout listener (with the li as the target).

2. The link’s mouseover listener (with the link as the target).

3. The li’s mouseover listener (with the link as the target).

Odd as it may seem, that’s the way it works. Your code is notified of the cursor
leaving the list item, entering the link, then entering the list item again; the most
deeply-nested element over which the cursor is located is the target of the event
in each case.

Part of the problem is that the listeners assume they’re getting a reference to the
submenu header li as the target of the event. As I’ve just explained, this isn’t
always the case. Depending on the position of the mouse, the target can be any
of the elements contained in the li, including all the elements that make up the
submenu and its contents!

What we need is to ascertain the element to which the event listener was assigned.
According to the W3C DOM event model, this can be found with the
currentTarget property of the event object:

179

Making Submenus Appear

function mover(e) {
 var el = window.event ? window.event.srcElement : e ?

e.currentTarget : null;
 ...

This works fine for browsers that support the standard event model, but remember
that Internet Explorer doesn’t. And although IE uses window.event.srcElement
as equivalent to the standard target property, IE has no equivalent to the
currentTarget property.

In order to get the element to which the event listener was assigned in IE, we’ll
have to be slightly more creative. Instead of using the mover and mout functions
directly as the mouse event listeners for all of the submenu headers, we’ll create
a custom pair of listener functions for each one. Those custom listener functions
will, in turn, call mover and mout, but will pass them the reference to the partic-
ular li that we need.

Let’s look at the code changes. First, in our init function, we alter the addEvent
calls that assign our event listeners:

File: sliding-menu-6.js (excerpt)

 addEvent(node, 'mouseover', getMoverFor(node), false);
 addEvent(node, 'mouseout', getMoutFor(node), false);

Instead of assigning mover and mout as the listeners, we call new functions
getMoverFor and getMoutFor. These functions will create custom listener func-
tions for the submenu header in question (node):

File: sliding-menu-6.js (excerpt)

function getMoverFor(node) {
 return function(e) { mover(e, node); };
}

function getMoutFor(node) {
 return function(e) { mout(e, node); };
}

As you can see, getMoverFor and getMoutFor create and return new event
listener functions that call mover and mout, respectively, passing not only the
event object, but a reference to the submenu header element, node.

Because this listener function is created inside the getMoverFor/getMoutFor
function, it can access any of the local variables that exist in that environment,
including the node argument. The act of taking a function that has access to a

180

Chapter 7: Advanced Concepts and Menus

private environment and making it accessible (as an event listener) from outside
that environment is known in computer science circles as “creating a closure.”
We’ve actually done this once before, in Chapter 5, when we created a function
that had access to a local variable and passed it to setTimeout.

If you’re curious about closures, an excellent (if heavy-going) discussion of them,
written by Richard Cornford, is available online.2 For the purposes of this example,
however, it’s sufficient to understand that creating a custom event listener for
each of the submenu headers allows us to reference that header when the listener
is called.

Speaking of referencing the header, we now need to modify mover and mout to
make use of the reference that’s passed as a second argument by the custom event
listeners:

File: sliding-menu-6.js (excerpt)

function mover(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 ...
}

function mout(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 ...
}

These functions use the currentTarget property on W3C DOM-compliant
browsers; in Internet Explorer, where this property is not available, the second
argument, targetElement, contains the needed value.3

Try this updated script and you’ll find that it works rather well (though not quite
perfectly). The changes we’ve made allow the submenus to appear and stay visible,
but the succession of events still hides the submenu, then shows it again very
quickly, which causes a lot of flicker.

2 http://jibbering.com/faq/faq_notes/closures.html
3 Indeed, you could use targetElement on all browsers and do away completely with the code
that detects and uses the currentTarget property, but I prefer to bow to the DOM standard
where possible, and look forward to the day when all browsers support it.

181

Making Submenus Appear

http://jibbering.com/faq/faq_notes/closures.html

Before we address this flickering, there’s one more Internet Explorer problem
that still needs to be fixed.

Fixing the IE Memory Leak

Just when you thought we’d overcome all the idiosyncrasies Internet Explorer
could throw at us, there’s one last problem we need to solve, and it’s a doozy.

A particularly nasty bug in Internet Explorer (versions 4 through 6) is that the
browser will leak memory when the user navigates away from a page after a script
has set up a circular reference that includes a DOM node. What does this mean,
exactly? Well, we actually have a prime example in the current version of our
menu script.

Each of the submenu header elements has an event listener, and that listener
contains a reference to the header element. This is a circular reference. And, be-
cause the submenu header elements are DOM nodes, Internet Explorer will fail
to clear the memory they utilize when the user navigates to another page.

Now, a few DOM nodes won’t use up much memory, but put this menu on all
the pages of your site and the leaks will start to add up. The next thing you know,
the computers of site visitors who use Internet Explorer will slow to a crawl.

The solution to this problem is to unhook all of the event listeners when the page
is unloaded in Internet Explorer. Web developer Mark Wubben published on
his site an excellent summary of the problem, along with a simple script called
Event Cache4 that implements the solution.

The script is a single file, event-cache.js, which must be loaded by the HTML
document:

File: menu-stage-7.html (excerpt)

 <head>
 <title>Sliding menus</title>
 <link type="text/css" rel="stylesheet"
 href="sliding-menu-7.css">

<script type="text/javascript" src="event-cache.js"></script>
 <script type="text/javascript" src="sliding-menu-7.js">
 </script>

4 http://novemberborn.net/javascript/event-cache

182

Chapter 7: Advanced Concepts and Menus

http://novemberborn.net/javascript/event-cache

Now, in our JavaScript, whenever we add an event listener using Internet Ex-
plorer’s attachEvent method, we register the listener with the EventCache object:

File: sliding-menu-7.js (excerpt)

function addEvent(elm, evType, fn, useCapture) {
 // cross-browser event handling for IE5+, NS6 and Mozilla
 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);

EventCache.add(elm, evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

When the page is unloaded, we call the EventCache’s flush method to unhook
all the event listeners:

File: sliding-menu-7.js (excerpt)

addEvent(window, 'unload', EventCache.flush, false);

And, just like that, Internet Explorer releases memory as it should.

Smarter Menu Events

Although the menus are now effectively working, the sheer number of events that
are flying around cause the submenus to flicker in and out of visibility. In certain
browsers, the order of events can even get mixed up, causing a menu to stay open
when it shouldn’t, or to disappear when it should remain visible.

One way to solve these problems is to ignore some of the events that cause the
listeners to fire. That’s the approach we’ll take here.

To do this, we introduce a delay in the code’s reactions to mouseout events. In-
stead of instantly taking the appropriate action (hiding the submenu), the code
can note that the event occurred, but delay doing anything for a short time. If
the same li fires a mouseover event within that time period, we know that the
mouse is still on the li element. In that case, the mouseover event can cancel
the delayed mouseout processing, leaving the submenu visible.

183

Making Submenus Appear

Delaying particular reactions for a short time is accomplished with setTimeout,
which we looked at in detail in Chapter 5. In the present case, we want the code
to wait for 300 milliseconds (or 300ms) to see if a mouseover event occurs; if it
doesn’t, we want to run the delayed listener that hides the submenu. The simplest
way to accomplish this is to store the return value from setTimeout (recall that
this value can be used to cancel the timeout).

It works like this: on mouseout, the mout listener will set a timeout for 300ms;
this calls another function, mout2, which will hide the submenu. On mouseover,
mover will cancel any existing timeout. If the mouseover event fires inside the
300ms time limit, mout2 will not run, so the submenu will not be hidden.

These kinds of tricks are a great way to get longer lunches, because, though they
sound complex, they take very little code! Here are the tiny modifications required
to get it all working:

File: sliding-menu-8.js (excerpt)

function mover(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 clearTimeout(el.outTimeout);
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childnodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 node.style.display = 'block';
 }
 }
}

function mout(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 el.outTimeout = setTimeout(function() { mout2(el); }, 300);
}

function mout2(el) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 node.style.display = 'none';
 }
 }
}

184

Chapter 7: Advanced Concepts and Menus

The return value from setTimeout is saved as outTimeout, a newly-created
property of the li node itself; the mouseover listener uses this value to cancel
the timeout if it is still pending. In fact, clearTimeout is designed in a handy
way: it will clear a timer if a valid timeout reference is passed to it; otherwise, it
will do nothing. So we don’t have to examine outTimeout in any way before we
pass it to clearTimeout.

The rest of the mout logic has been moved (or delegated) to the mout2 function.

We now have a fully functioning menu.

Adding Animation
We now have the menu working, albeit in a fairly pedestrian way:5 submenus
appear as you mouse toward them and disappear as you mouse away, much as
they should do. To spruce it up a little, the menus could be animated. What
might be appropriate is a “billboard” effect in which the top border of the menu
scrolls into view, then the menu itself appears below the border. We’re calling
this a sliding menu, but the movement is also similar to the way a flag unfurls.
Figure 7.8 shows the progressive display of such a menu:

One of the reasons why you might choose this effect is that it’s easy to produce,
thanks to CSS’s clip property. This property restricts which portion of an element
is shown on-screen. By repeatedly changing the size of the clipping rectangle ap-
plied to an element, that element can be made to appear to “wipe” into view, as
shown above.

A submenu’s animated display is started with a 0x4-pixel clip area. That menu
is 100% clipped, since it’s zero pixels wide. Animation widens the rectangle bit
by bit. When that’s done, it changes tactics, growing the rectangle to the full
height of the submenu, again, bit by bit. At this point, the whole submenu is
visible. You can see the process at work in Figure 7.8.

5 Some people may be thinking “in a usable way” at this point and wondering why animation would
be useful. Those people may stop reading this chapter at this point. We won’t think any less of you.

185

Adding Animation

Figure 7.8. The billboard effect in action.

186

Chapter 7: Advanced Concepts and Menus

Preparing the Library Object

As in previous chapters, we intend to keep our JavaScript organized. We’ll
therefore package our entire script into a library object as we add the animation.
Here’s the object signature that we’ll fill out as we go:

File: sliding-menu.js (excerpt)

sM = {
 init: function() { ... },

 getMoverFor: function(node) { ... },
 getMoutFor: function(node) { ... },
 mover: function(e, targetElement) { ... },
 mout: function(e, targetElement) { ... },
 mout2: function(el) { ... },

 showMenu: function(el) { ... },
 hideMenu: function(el) { ... },

 addEvent: function(elm, evType, fn, useCapture) { ... }
};

sM.addEvent(window, 'load', sM.init, false);
sM.addEvent(window, 'unload', EventCache.flush, false);

The code we’ve already written does most of the work for the first six methods
shown here. So, instead of dwelling on these event-handling methods, let’s plunge
into the animation effect. It’s produced by the showMenu and hideMenu methods.

Implementing the Animation

Animation, as we’ve seen, is a series of small steps, and is thus an ideal use case
for the setInterval function. To make a submenu appear, the mover method
should start an interval timer, which will “wipe” the submenu into existence in-
stead of simply setting its display to block. The mout2 method should do the
reverse: start an interval that will wipe the submenu out of existence. So, in all,
three timers will operate in our script: the wipe-in timer, the wipe-out timer, and
the timer that calls mout2 after a delay, which we’ve already written.

We’ll need to track the animation’s progress so that each time one of the timers
fires, it knows what the next step of the animation should be. We can get some
of that information from the JavaScript object for the element that’s being anim-

187

Adding Animation

ated. We must store other information on the node ourselves. Here’s the extra
information we’re going to need:

node.savedOW = node.offsetWidth;
node.savedOH = node.offsetHeight;
node.clippingRectangle = [0, 0, 4, 0];
node.intervalID = setInterval(...);

The first two properties save the value of the full “opened width” and “opened
height” of the menu in pixels. clippingRectangle is an array of four items (top,
right, bottom, left) representing the current visible size of the element in pixels.
intervalID holds whichever of the menu show or menu hide interval timers is
currently in effect. We’ll put these assignments in place shortly; for now, let’s
look at how the showMenu and hideMenu methods use them to produce the anim-
ation.

Here’s showMenu:

File: sliding-menu.js (excerpt)

 showMenu: function(el) {
 el.clippingRectangle[1] += 20;
 if (el.clippingRectangle[1] >= el.savedOW) {
 el.clippingRectangle[1] = el.savedOW;
 el.clippingRectangle[2] += 20;
 if (el.clippingRectangle[2] >= el.savedOH) {
 el.clippingRectangle[2] = el.savedOH;
 clearInterval(el.intervalID);
 // reset the clip: browser-specific
 if (document.all && !window.opera) {
 el.style.clip = 'rect(auto)';
 } else {
 el.style.clip = '';
 }
 return;
 }
 }
 el.style.clip = 'rect(' + el.clippingRectangle.join('px ') +
 'px)';
 el.style.display = 'block';
 },

This method is called once for each step of the animation. All it does is update
clippingRectangle, then write that rectangle’s values to the CSS clip property
in el.style.clip. If the animation has progressed to the point where the entire

188

Chapter 7: Advanced Concepts and Menus

submenu is visible, the clipping is removed entirely. We’ll discuss the details of
this process in just a moment.

Here’s hideMenu:

File: sliding-menu.js (excerpt)

 hideMenu: function(el) {
 el.clippingRectangle[2] -= 20;
 if (el.clippingRectangle[2] <= 4) {
 el.clippingRectangle[2] = 4;
 el.clippingRectangle[1] -= 20;
 if (el.clippingRectangle[1] <= 0) {
 clearInterval(el.intervalID);
 // reset the clip: browser-specific
 if (document.all && !window.opera) {
 el.style.clip = 'rect(auto)';
 } else {
 el.style.clip = '';
 }
 el.style.display = 'none';
 return;
 }
 }
 el.style.clip = 'rect(' + el.clippingRectangle.join('px ') +
 'px)';
 },

The logic is exactly the same as showMenu, except that the order of clip adjustment
is reversed (height, then width, rather than width, then height).

In both cases, the clippingRectangle is applied to the element with the following
line:

File: sliding-menu.js (excerpt)

 el.style.clip = 'rect(' + el.clippingRectangle.join('px ') +
 'px)';

Here’s a calculation that explains how this works. Suppose clippingRectangle
is the array of four numbers: [20, 30, 40, 50]. JavaScript arrays have a join
method that joins the items in the list into a string. It takes a parameter—the
separator—which is used to join the elements. So [20, 30, 40, 50].join('px
') is '20px 30px 40px 50'.

An element’s clip is set as a string in the form: 'rect(20px 30px 40px 50px)'.
So we join together the numbers in clippingRectangle with a separator of 'px

189

Adding Animation

', then add 'rect(' to the start and 'px)' to the end to give the final string of
'rect(20px 30px 40px 50px)'. Easy. The reason we go to all this trouble is
that it’s easy to do calculations on an array of four numbers, especially when
compared to working directly on a rect() string.

When the menu is fully displayed (or fully hidden), showMenu (or hideMenu)
turns off the clipping6 and cancels the interval, because the animation is finished.

Starting the Animation

As soon as any code starts using long-running, step-wise processes like this, a
very common problem with animation is likely to rear its head: what if the user
mouses back out of the submenu when it’s only half-displayed?

Some close analysis is needed to address this question. We conclude that only
one animation can occur on a menu at any given time. If the menu is in the
process of wiping into view when the user mouses away, then it should stop
wiping into view and start wiping out of view. If the wipe-into-view animation
isn’t cancelled, the menu will simultaneously be wiping in and wiping out. This
could make the menu jitter about on the screen, or freeze completely.

We can handle this problem by tracking the animation in progress on any given
submenu. Like setTimeout, setInterval returns a value that can be used to
cancel the interval timer. We’ll put that value into an intervalID property on
the submenu header element so that the mover and mout2 methods can cancel
any existing animation when they’re invoked. So, if the wipe-into-view animation
is already running when mout2 is called, mout2 will cancel the wipe-into-view
before it starts the wipe-out-of-view animation. No more jitter! Let’s update mout2
and mover now.

The mover method needs to complete these extra tasks:

1. Cancel any existing animation when called, so that if the submenu is currently
wiping out of view, it will stop doing so.

2. Set the clippingRectangle to the starting size for the menu.

6 The code for this is unpleasantly browser-specific, but IE requires clip = 'rect(auto)',
while Mozilla/Opera/Safari require clip='' to mean “apply no clipping at all.” Mozilla and Opera
also support clip='auto', the most standards-compliant method, but we’ve used clip='' instead
to make Safari cooperate.

190

Chapter 7: Advanced Concepts and Menus

3. Save the full offsetHeight and offsetWidth of the fully-expanded menu in
properties savedOH and savedOW for future reference.

4. Start the new wipe-into-view animation, saving its interval timer.

Here’s the updated method:

File: sliding-menu.js (excerpt)

 mover: function(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 clearTimeout(el.outTimeout);

if (!el.isIn) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {

clearInterval(node.intervalID);
 node.clippingRectangle = [0, 0, 4, 0];
 node.style.display = 'block';
 node.savedOW = node.offsetWidth;
 node.savedOH = node.offsetHeight;
 node.style.display = 'none';
 node.intervalID = setInterval(function() {
 sM.showMenu(node); }, 10);
 break;
 }
 }

}
el.isIn = true;

 },

As we’ve seen, this method will be called over and over in response to mouseover
events as the mouse moves around within the submenu; however, we don’t want
to start a new animation in response to every event. Setting the isIn flag at the
end of this method, then checking it before we start any new animation, stops
that from happening.

Notice also that we can calculate the width and height of the menu by setting
its display property to block without the menu ever showing. Because the screen
isn’t updated until the script ends, we can get away with making the menu visible
temporarily, so we can measure its dimensions, then hiding it again. The new

191

Adding Animation

mout2 is a little simpler. It does not need to save offsetHeight/offsetWidth
properties, nor does it need to set a clippingRectangle.7

File: sliding-menu.js (excerpt)

 mout2: function(el) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {

clearInterval(node.intervalID);
 node.intervalID = setInterval(function() {
 sM.hideMenu(node); }, 10);
 break;
 }
 }

el.isIn = false;
 },

This code simply says: find the submenu, stop what it’s doing, and start to hide
it. It also sets the isIn property to false, so that a new wipe-in animation can
begin if need be.

The Benefit of Object-Based Programming
That completes the significant code changes required to produce the animated
effects. Here’s the completed code, for your reference:

File: sliding-menu.js

sM = {
 init: function() {
 var uls = document.getElementsByTagName('ul');
 for (var u = 0; u < uls.length; u++) {
 if (uls[u].className.search(/\bslidingmenu\b/) == -1)
 continue;
 var lis = uls[u].getElementsByTagName('li');
 for (var i = 0; i < lis.length; i++) {
 var node = lis[i];
 if (node.nodeName.toLowerCase() == 'li' &&
 node.getElementsByTagName('ul').length > 0) {
 sM.addEvent(node, 'mouseover', sM.getMoverFor(node),
 false);
 sM.addEvent(node, 'mouseout', sM.getMoutFor(node),

7 It doesn’t need to, because mout2 can only be called on a menu that has already been displayed
and, therefore, the menu will already have a clippingRectangle from the wipe-into-view process.

192

Chapter 7: Advanced Concepts and Menus

 false);
 node.getElementsByTagName('a')[0].className +=
 ' subheader';
 node.isIn = false;
 }
 }
 }
 },

 getMoverFor: function(node) {
 return function(e) { sM.mover(e, node); };
 },

 getMoutFor: function(node) {
 return function(e) { sM.mout(e, node); };
 },

 mover: function(e, targetElement) {
 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 clearTimeout(el.outTimeout);
 if (!el.isIn) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 // Stop current animation
 clearInterval(node.intervalID);
 // Assign initial visible area
 node.clippingRectangle = [0, 0, 4, 0];
 // Save full width and height
 node.style.display = 'block';
 node.savedOW = node.offsetWidth;
 node.savedOH = node.offsetHeight;
 node.style.display = 'none';
 // Start animation
 node.intervalID = setInterval(function() {
 sM.showMenu(node); }, 10);
 break;
 }
 }
 }
 el.isIn = true;
 },

 mout: function(e, targetElement) {

193

The Benefit of Object-Based Programming

 var el = window.event ? targetElement : e ? e.currentTarget :
 null;
 if (!el) return;
 el.outTimeout = setTimeout(function() { sM.mout2(el); }, 300);
 },

 mout2: function(el) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var node = el.childNodes[i];
 if (node.nodeName.toLowerCase() == 'ul') {
 // Stop current animation
 clearInterval(node.intervalID);
 // Start animation
 node.intervalID = setInterval(function() {
 sM.hideMenu(node); }, 10);
 break;
 }
 }
 el.isIn = false;
 },

 showMenu: function(el) {
 el.clippingRectangle[1] += 20;
 if (el.clippingRectangle[1] >= el.savedOW) {
 el.clippingRectangle[1] = el.savedOW;
 el.clippingRectangle[2] += 20;
 if (el.clippingRectangle[2] >= el.savedOH) {
 el.clippingRectangle[2] = el.savedOH;
 clearInterval(el.intervalID);
 // reset the clip: browser-specific
 if (document.all && !window.opera) {
 el.style.clip = 'rect(auto)';
 } else {
 el.style.clip = 'auto';
 }
 return;
 }
 }
 el.style.clip = 'rect(' + el.clippingRectangle.join('px ') +
 'px)';
 el.style.display = 'block';
 },

 hideMenu: function(el) {
 el.clippingRectangle[2] -= 20;
 if (el.clippingRectangle[2] <= 4) {

194

Chapter 7: Advanced Concepts and Menus

 el.clippingRectangle[2] = 4;
 el.clippingRectangle[1] -= 20;
 if (el.clippingRectangle[1] <= 0) {
 clearInterval(el.intervalID);
 // reset the clip: browser-specific
 if (document.all && !window.opera) {
 el.style.clip = 'rect(auto)';
 } else {
 el.style.clip = 'auto';
 }
 el.style.display = 'none';
 return;
 }
 }
 el.style.clip = 'rect(' + el.clippingRectangle.join('px ') +
 'px)';
 },

 addEvent: function(elm, evType, fn, useCapture) {
 // cross-browser event handling for IE5+, NS6 and Mozilla
 // By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 EventCache.add(elm, evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
 }
};

sM.addEvent(window, 'load', sM.init, false);
sM.addEvent(window, 'unload', EventCache.flush, false);

As we saw previously, wrapping the code in an object is a good way to ensure
that it’s isolated from other JavaScript code that may be running on a page.
JavaScript, unlike some more rigorous object-oriented languages, allows properties
to be set arbitrarily on any object. This means that it is easy—and encouraged—to
store a piece of data relating to an element as a property of that element. This
technique can be extremely useful, as with the storage of the savedOW and savedOH
properties on each node, and the similar storage of the interval for a given node
on the node itself.

195

The Benefit of Object-Based Programming

In fact, it is this ability of JavaScript that makes it so easy to manage multiple
animations on a single page. Since each object maintains the data required to
manage its own animation, having more than one object animated at any time
is not a problem.

Summary
Large DHTML projects like cascading menus require a step-by-step developmental
approach. That statement applies to all DHTML effects, but menus require a
little extra care if we are to get the timing details right. The important ideas of
timed listeners and delegation help to make this task easy, if not actually trivial.

Writing successful DHTML applications or Website enhancements involves a
combination of neat tricks and good programming practices. Web scripts have
traditionally been small, simple, and poorly integrated, but as the complexity of
your DHTML grows, more disciplined programming is required to ensure that
your code fits together properly.

A good understanding of the concepts of objects, delegation, and the power of
CSS, combined with a sound background knowledge of JavaScript’s particular
strengths, will create a firm foundations for your DOM scripting—foundations
that will give you the freedom to build the latest and greatest thing. You need
both theory and practice if you want to avoid worrying about it all crashing down
around you!

196

Chapter 7: Advanced Concepts and Menus

Remote Scripting8
I am one of the four Kings of the Dark Kingdom! Out of my pride I will not yell refresh!
—Kunzite, Sailor Moon

HTML is static and unchanging. So far, we’ve looked at ways to make HTML
dynamic through use of the DOM. In this chapter, we’ll explore some more ad-
vanced ways to add dynamism to a Web page, incorporating better coordination
between the Web browser and the server. This chapter investigates a number of
techniques that retrieve content from the server without serving a whole replace-
ment page.

Most Websites rely upon some manner of server-side work to change HTML.
For example, think of data being delivered from a database, or a list of emails in
a Webmail application. The “standard” way to handle this kind of “dynamic”
HTML—data that changes based on something on the server—has been simply
to generate a whole new page on the server-side. While this technique undoubtedly
works, it has a disadvantage: a whole page refresh is a laborious process, especially
if your application only wants to change a small portion of the current display.

Suppose you could have the server send only the specific page data that has
changed. In that case, your pages could alter their own content through the DOM,
rather than requiring the server to build a whole new page from scratch. This
approach would eliminate two key usability issues associated with sites that are
heavily server-reliant: the large amount of time involved in retrieving a new,

complete page from the server, and the amount of time required to update the
display in the browser.

Problems with Frames
In the past, the established way to refresh part of a page was to use a frameset.
The frameset divided the viewing area into frames, each of which contained a
separate HTML document. Only one frame had to be refreshed at a time.

While this approach is still common, and undoubtedly works, frameset pages
have usability problems.

Bookmarking a frameset page is awkward, because browsers only bookmark the
initial state of each frame (rather than the current state). Bookmarking doesn’t
work because the current state of a frameset page can’t be expressed as a URL.
This makes it a lot more difficult to share links with friends by email, or to col-
laborate in other ways.

Framesets are also problematic in lower-specification devices, such as text browsers,
screen readers, PDAs and mobile phones, and they make use of the Back and
Forward buttons difficult. The buttons step back or forward through each frame
change; returning to a page that displayed before the frameset can take a lot of
clicks if the frames have changed repeatedly.

Frameset documents also require the pages they hold to be aware that they’re
displayed within a frameset. Otherwise, external links will appear within the
frameset, rather than replacing it.

While a frameset can be an acceptable approach in some circumstances, the dis-
advantages outweigh any advantages when the goal is simply to grab minor data
changes from the server. There are better ways, so framesets are no longer recom-
mended for use in applications that request only minor changes from the server.

Remote Scripting Methods
There are several major techniques for sending messages to, and obtaining minor
data changes from a server, without resorting to a full page refresh:

❑ an iframe

❑ a hidden image

198

Chapter 8: Remote Scripting

❑ a 204 response

❑ XMLHTTP.

Each of these techniques requires a server-side component as well as client-side
code, although the server-side component is usually very simple. Each has advant-
ages, disadvantages, and varying levels of browser support. Let’s look at these
techniques in detail.

Using <iframe>
An iframe element is a floating frame: it takes up an area of the page, just like
any normal HTML element, but it displays a different URL, as does a frame in
a frameset. iframes can be used to display dynamic content in two ways: we can
use the frameset approach, displaying an entirely different document inside the
iframe, or we can pass pure data back to the main page through the iframe.

Simple iframe Display

Displaying a separate page in an iframe is easy: just set the iframe’s src attribute
to the URL of the page.

<iframe src="http://www.google.com/"></iframe>

This adds to your page a small, scrollable area in which the designated document
is shown.1 Like other elements, an iframe can be sized with CSS; you can specify
its width and height property values, and even apply a border.

File: simple-iframe.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>A simple iframe example</title>
 <style type="text/css">
 #myframe {
 width: 300px;
 height: 100px;
 border: 2px solid red;
 }

1 Note that you can also add HTML between the <iframe> and </iframe>; this content will
display in browsers that don’t support iframes at all.

199

Using <iframe>

 </style>
 </head>
 <body>
 <h1>A simple iframe</h1>
 <p>Below is an iframe, styled in size with CSS and
 displaying a different document.</p>
 <iframe id="myframe" src="simple-iframe-content.html">
 </iframe>
 </body>
</html>

The HTML document displayed by the iframe is trivial and unstyled:

File: simple-iframe-content.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <body>
 <p>This is a document in the iframe.</p>
 </body>
</html>

Figure 8.1 shows the page display.

Figure 8.1. The document with an iframe that displays another
document.

200

Chapter 8: Remote Scripting

There’s no sign that the iframe document is separate from that which surrounds
it.

Replacing iframes

You can change the document that displays inside the iframe using a script loc-
ated in the surrounding document. If the iframe is styled so as not to draw at-
tention to itself, this technique creates the illusion that part of the parent docu-
ment has changed.

The iframe element’s src attribute is, like other attributes on HTML elements,
available as a property of the corresponding DOM object. Here’s a simple script
that can be called from a button press or link click; it merely changes the docu-
ment displayed in the iframe:

<script type="text/javascript">
function changeIFrame() {
 document.getElementById('myframe').src =
 'http://www.google.com/';
}
</script>

This example is so simple it doesn’t even need JavaScript. iframes act like normal
frames and can therefore be the target of any hyperlink. You can display a link’s
destination in an iframe by setting the target attribute on the link to the name
of the iframe.

Retrieving Data with iframes

With further scripting, it’s possible for the iframe’s newly-loaded page to pass
data back to its parent page. Scripts in the iframe content page can call functions
in the parent page by referring to those parent-page functions as
window.parent.functionName. This means that we can put any number of smart
scripts in the parent page, ready for triggering by the iframe content as needed.

Let’s look at a simple example. First, the main page:

File: simple-iframe-2.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>A simple iframe example</title>

201

Using <iframe>

 <link type="text/css" rel="stylesheet"
 href="simple-iframe-2.css">
 <script type="text/javascript">
 function receiveData(data) {
 document.getElementById('response').firstChild.nodeValue =
 data;
 }
 </script>
 </head>
 <body>
 <p>An iframe to which we send requests</p>
 <iframe id="scriptframe" name="scriptframe" src=""></iframe>
 <p><a href="simple-iframe-content-2.html"
 target="scriptframe">Send a request</p>
 <div>
 <h2>Response data received</h2>
 <p id="response">No data yet.</p>
 </div>
 </body>
</html>

There’s a lot going on in this document, so let’s pick through it slowly. First,
there’s a link to a style sheet. It’s trivial stuff:

File: simple-iframe-2.css

div {
 border: 1px solid black;
 padding: 0 0 1em 0;
 width: 20em;
}

h2 {
 background-color: black;
 color: white;
 text-align: center;
 margin: 0;
}

div p {
 padding: 0 1em;
}

#scriptframe {
 width: 300px;
 height: 100px;

202

Chapter 8: Remote Scripting

 border: 2px solid red;
}

Second, there’s a JavaScript function, receiveData. Notice that it’s not called
from anywhere in this page—it’s not even installed as an event listener. It’s just
sitting there, waiting for someone else to use it. After that, there’s content. Fig-
ure 8.2 shows the page as it appears when it first loads.

Figure 8.2. The page ready for data exchanges via iframe.

Let’s look at the page’s content tags closely. First is the iframe. Notice that both
its id (for styling) and name (for links) are set to scriptframe. This iframe will
be the target that receives the HTML document generated by the server in re-
sponse to a request for information made by this page.

Second, there’s a link. It has a target of scriptframe, which matches the iframe.
This link will produce the request for information from the server.

Third, we see a p element with id="response". This paragraph will display the
data that has been retrieved from the server. If you look closely, you’ll see that
the receiveData function declared at the top of the page will do most of the
work:

203

Using <iframe>

File: simple-iframe-2.html (excerpt)

 function receiveData(data) {
 document.getElementById('response').firstChild.nodeValue =
 data;
 }

All that’s missing is something that will call the function, and pass to it the data
to be displayed. The response received from the server—and displayed in the
iframe—will do just that:

File: simple-iframe-content-2.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <body>
 <p>This iframe contains the response from the server.</p>
 <script type="text/javascript">
 if (window.parent.receiveData) {
 window.parent.receiveData(
 'some data sent from the iframe content page!');
 }
 </script>
 </body>
</html>

When this page loads, the script it contains is run automatically; it reaches up
into the parent, delivering the server response in the form of a string of data
('some data…').

Figure 8.3 shows the page after the user has clicked the link.

To summarize, clicking the Send a request link on the main page loads the content
page into the iframe (note the target attribute on the link); that content page
contains JavaScript that calls the receiveData function in the main page. The
end result is that content from the server is put into the current page without
requiring that the whole page be reloaded. If the requested page was a PHP-,
ASP-, or other server-generated page, it could pass back from the server any dy-
namic data required.

204

Chapter 8: Remote Scripting

Figure 8.3. Updated iframe page after the link is clicked.

Overcoming iframe Restrictions

There’s an obvious flaw with this method, though: that big, ugly iframe sitting
in the middle of the page. Although you wouldn’t need to apply the thick border
shown above, it’s still there in the page.

You might think that an easy solution would be to style the iframe to zero size,2

and indeed, that does work. Setting the width and height properties of the
iframe to 0 will effectively hide the iframe from view. Links on the page can
then load other pages into the iframe and receive data from them.

Since a page is loaded into the iframe via a linked URL, it’s even possible to
pass data in the request by adding it to the URL’s query string. So, for example,
a link in the page could look up an item in a database by requesting iframe-
content.php?id=32; the HTML generated by that PHP script would call back
the receiveData function in the main page with details of item number 32 from
the (server-side) database.

2 You might also think of hiding it from view entirely with display: none, until you discovered
that Netscape 6 entirely ignores iframes that are undisplayed and, therefore, that approach, sadly,
doesn’t work.

205

Using <iframe>

The next notable flaw with this iframe approach is that it breaks the Back and
Forward buttons in the user’s browser. The loading of a page into an iframe is
added to the browser history, so, from the user’s perspective, the Back button
(which simply undoes the page load within the invisible iframe) doesn’t appear
to do anything.

A solution is to use JavaScript’s window.location.replace method to load the
new document into the iframe, replacing the current history item rather than
adding to the history list. This means that the browser history is unaffected and
the Back (and Forward) buttons continue to work properly.

This variation is described in great detail on Apple’s Developer Connection site,
in an article called Remote Scripting with IFRAME3. One further, extremely useful
and elegant variation is outlined in that article. It’s possible to dynamically create
the iframe element with the DOM, rather than rely on it already being present
in the HTML document; this approach keeps the document’s HTML clean. We’ll
see this technique in action shortly.

Example: Autoforms
Let’s conclude the discussion of iframes with a more advanced example.

A recent trend in desktop environments has been to move away from dialog boxes
with Apply buttons, and move towards a new type of dialog box: one which applies
changes as soon as they are made by the user. This feature provides a kind of
“real time” awareness of the user interactions, which take effect immediately.
When users finish making changes, they simply close the dialog box.

Nested Form Design

Real-time forms are difficult to duplicate on the Web, because there needs to be
an active Apply Changes button to submit the form—complete with the user’s
changes—to the server. Remote scripting provides a means to implement this
dynamic functionality on the Web.

The core of the problem is this: the page that contains the form for dynamic
submission (which I’ll christen an autoform) needs to be able to submit that
form data to the server without submitting the whole page.

3 http://developer.apple.com/internet/webcontent/iframe.html

206

Chapter 8: Remote Scripting

http://developer.apple.com/internet/webcontent/iframe.html

One way to achieve this is for the page to open a copy of itself in an iframe.
When the user changes a form element, the autoform reflects that change in the
corresponding field in the copy. Once the copy is updated, the page causes the
copy’s autoform to submit, thus saving the data on the server without submitting
the main page.

Since this technique is an alteration to the way in which Web forms normally
work, progress hints should be supplied to the user. At the very least, you should
indicate that the user’s change has been processed. Ideally, when the user changes
a field, that field should indicate that the data is being processed; when the re-
sponse is received, the field should update again to indicate that the processing
is complete. Figure 8.4 shows these steps.

Figure 8.4. Editing, saving, and a saved autoform field.

In Figure 8.4, the first field is untouched. Below it, we see a field from which the
user has clicked away, moving the focus to another field. Note how the field
changes: a floppy disk symbol is displayed, indicating that the field’s value is
being saved (i.e. the duplicate form in the iframe is being submitted). Below
that field we see another field, which was changed earlier. That data has been
saved to the server, so the indicator has changed again to display a check mark.
Choose your own icons if you don’t like these ones.

Avoiding Infinite Forms

Since the page is loaded twice—once in the browser window, and once in the
hidden iframe—it needs special logic. The version that’s loaded into the browser
window (the “parent”) needs to create the iframe and load the second copy (the
“child”) into that iframe. The child, however, mustn’t do the same thing, or else
the browser will descend into an infinitely nested set of pages.4 Our script’s init
method must contain some logic to prevent such nesting:

4 It might be fun to try, just to see what happens, though!

207

Example: Autoforms

File: autoform.js (excerpt)

 if (parent.document.getElementById('autoform_ifr')) {
 aF.init_child();
 } else {
 aF.init_parent();
 }

This code determines whether the current document should be initialized as the
main form, or as a duplicate form loaded in an iframe. It does this by looking
for a containing iframe with ID autoform_ifr in the parent document.

If this iframe is detected, then the page running this code must be the “child”
containing the duplicate form; hence, we call the init_child method to initialize
the page accordingly. Otherwise, we call the method init_parent.

Let’s now take a step back and look at the basic structure of the page. We’ll then
be equipped to write our parent and child initialization methods.

Setting up Content and Scripts

In the finished example, we’ll generate our form page using a server script, for
reasons we’ll see shortly. For the moment, however, let’s work with a static version
of the page:

File: autoform.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>A very simple form</title>
 <link type="text/css" href="autoform.css" rel="stylesheet">
 <script type="text/javascript" src="autoform.js"></script>
 </head>
 <body>
 <h1>A simple form</h1>
 <form method="post" id="f1" class="auto">
 <p>
 <label for="name">Name</label>
 <input type="text" name="name" id="name">
 </p>
 <p>
 <label for="age">Age</label>
 <input type="text" name="age" id="age">
 </p>

208

Chapter 8: Remote Scripting

 <p>
 <label for="shoesize">Shoe size</label>
 <input type="text" name="shoesize" id="shoesize">
 </p>
 <input type="submit">
 </form>
 </body>
</html>

Notice that the form has a Submit button, just like a standard Web form, and
that there’s no iframe tag in the page. Once our script gets to the page, these
things will change.

Here’s the style sheet for the page. It’s quite simple, except that it contains rules
for some classes and elements that are not yet present in the page:

File: autoform.css

input {
 padding-right: 20px;
 display: block;
}

.autoform_pending {
 background: url(autoform_save.png) center right no-repeat;
}
.autoform_saved {
 background: url(autoform_saved.png) center right no-repeat;
}

#autoform_ifr {
 border: none;
 width: 0;
 height: 0;
}

The second and third rules will apply to fields being auto-submitted, and fields
for which auto-submission is complete, respectively. The last rule guarantees that
the iframe will be invisible to the user.

With the basic HTML and CSS in place, we’re ready to consider the JavaScript.
As in all the projects in this book, we’re aiming for neatly stored, reusable code,
and a library object is the way we’ll achieve this. Here’s the object signature for
our autoform library object.

209

Example: Autoforms

File: autoform.js (excerpt)

var aF = {
 addEvent: function(elm, evType, fn, useCapture) { ... },
 init: function() { ... },

 init_parent: function() { ... },
 init_child: function() { ... },

 cancel_submit: function(e) { ... },
 parent_load_child: function() { ... },
 parent_callback: function(elementNames) { ... },
 parent_document_callback: function(docObj) { ... },
 parent_element_change: function(e) { ... }
}

aF.addEvent(window, 'load', aF.init, false);

The addEvent and init methods serve the same purposes as always. Initialization
is a big task for this example, so, as we’ve seen, init gets help from one of two
other methods: init_parent or init_child.

We’ll meet the remaining methods as we progress, but be aware that two of them
are callbacks. Callbacks are methods that are called from outside this script by
code that the script launches. In this example, the callback methods in the parent
document will be called by the child document contained in the hidden iframe.

To kick things off, here’s the full text of the init method; it’s a little more com-
plete than the brief snippet we saw before:

File: autoform.js (excerpt)

 init: function() {
 if (!document.getElementById ||
 !document.createElement ||
 !document.getElementsByTagName ||
 !document.getElementsByName) return;
 if (parent.document.getElementById('autoform_ifr')) {
 aF.init_child();
 } else {
 aF.init_parent();
 }
 },

This code tests for all the DOM facilities that our autoform might need. If there’s
a lack of support, the iframe and scripting will not be used: a plain HTML form
results.

210

Chapter 8: Remote Scripting

Coordinating Parent and Child Pages

The parent page, which displays the form for the user, is initialized by the
method init_parent:

File: autoform.js (excerpt)

 init_parent: function() {
 var load_child = false;
 var frms = document.getElementsByTagName('form');
 for (var i = 0; i < frms.length; i++) {
 if (frms[i].className &&
 frms[i].className.search(/\bauto\b/) != -1) {
 load_child = true;

 aF.addEvent(frms[i], 'submit', aF.cancel_submit, false);
 frms[i].onsubmit = function() { return false; }; // Safari
 for (var j = frms[i].elements.length - 1; j > 0; j--) {
 var el = frms[i].elements[j];
 if (el.nodeName.toLowerCase() == 'input' &&
 el.type.toLowerCase() == 'submit') {
 el.parentNode.removeChild(el);
 }
 }

 // attach an onchange listener to each element
 for (var j = 0; j < frms[i].elements.length; j++) {
 var el = frms[i].elements[j];
 aF.addEvent(el, 'change', aF.parent_element_change,
 false);
 }
 }
 }
 if (load_child) aF.parent_load_child();
 },

The method keeps a flag, load_child, so that the loading of the iframe can be
done, at most, once at the end of the script—even if the page contains several
forms. The body of the method searches for forms with class="auto". If one or
more is found, a submit event listener is attached to the form(s); this will block
submission of the form, as we saw in Chapter 6:

File: autoform.js (excerpt)

 cancel_submit: function(e) {
 if (window.event) {
 window.event.cancelBubble = true;

211

Example: Autoforms

 window.event.returnValue = false;
 return false;
 } else if (e) {
 e.stopPropagation();
 e.preventDefault();
 }
 },

Additionally, init_parent attaches an old-style event handler that will block
the submission in Safari, which does not support doing so with an event listener:

File: autoform.js (excerpt)

 frms[i].onsubmit = function() { return false; }; // Safari

Finally, any Submit buttons in the form are found and removed from the docu-
ment.

As a replacement for normal form submission, each field gains a change event
listener: the parent_element_change method, which we’ll look at shortly.

Finally, the dirty work of loading the child page is handed to parent_load_child.
Here’s that method:

File: autoform.js (excerpt)

 parent_load_child: function() {
 var b = document.getElementsByTagName('body')[0];
 var i = document.createElement('iframe');
 i.id = 'autoform_ifr';
 i.name = 'autoform_ifr';
 b.appendChild(i);
 if (i.contentDocument && i.contentDocument.location) {
 // For DOM2 compliant
 var subdoc = i.contentDocument;
 } else if (i.contentWindow) {
 // For IE5.5 and IE6
 var subdoc = i.contentWindow.document;
 } else if (window.frames) {
 // Safari
 var subdoc = window.frames['autoform_ifr'].document;
 } else {
 return;
 }
 subdoc.location.replace(location.href);
 },

212

Chapter 8: Remote Scripting

Most of the work is done in the five lines, in which we create a new iframe ele-
ment and insert it at the end of the document. Next, we complete some object
detection in order to get a reference to the iframe’s document object, using either
the contentDocument property of the DOM2 standard, the Internet Explorer-
specific contentWindow property, or for Safari, which in some versions has an
incomplete implementation of contentDocument, the corresponding entry in
window.frames. We then use this reference to get the iframe’s location object,
and replace the default blank page with a copy of the current page
(location.href).5

The parent page has now been loaded and prepared for operation as an autoform.
Let’s now turn our attention to the duplicate copy of the page that’s contained
in the iframe.

When loaded into the iframe, the duplicate page will execute the init method
above and, detecting that it is the child, will execute init_child:

File: autoform.js (excerpt)

 init_child: function() {
 parent.aF.parent_document_callback(document);

 if (aF.changedElements && aF.changedElements.length > 0) {
 parent.aF.parent_callback(aF.changedElements);
 }
 },

This method has two purposes. The first is to call the parent, supplying a reference
to the child’s document object (via parent_document_calback); this document
reference will be used by the parent later. Here’s the parent_document_callback
method, which is called in the parent document to store the document reference:

File: autoform.js (excerpt)

 parent_document_callback: function(docObj) {
 aF.childDocument = docObj;
 },

The second task of init_child is to notify the parent of any form fields whose
changes have successfully been submitted to the server. We’re skipping ahead a
little, here, so bear with me.

5 Unfortunately, this causes a new step to be recorded in the navigation history of Mozilla browsers.
As we’ll see, this isn’t that big a deal because navigation history is going to be a problem for this ex-
ample across all browsers.

213

Example: Autoforms

When the child document is loaded into the iframe for the first time, no form
values have been changed or submitted, so there’s nothing to do in this case.
Later, however, when changes made to the parent form cause the child document’s
form to submit, the page will be reloaded, with the names of the submitted fields
listed in an array called aF.changedElements. We want to notify the parent
document when that happens, so that it can update the fields in the main form
to show that they were successfully submitted. To do this, init_child must pass
aF.changedElements to the parent_callback method in the parent document.

In simpler terms, the parent document tells the child document to submit some
values. Once it has done so, the child document notifies the parent document of
its success by calling the parent’s parent_callback method, and passing it a list
of the form fields that were submitted.

Naturally, we need a parent_callback method:

File: autoform.js (excerpt)

 parent_callback: function(elementNames) {
 for (var i = 0; i < elementNames.length; i++) {
 var el = document.getElementsByName(elementNames[i])[0];
 el.className = el.className.replace(/\b ?autoform_[a-z]+\b/,
 '');
 el.className += ' autoform_saved';
 }
 },

This method loops through the supplied array of form element names, and sets
class="autoform_saved" on each of the corresponding elements.

But, as I said, we’re jumping ahead here. Before we start handling stuff that
happens after form submission, we should first implement the logic that actually
submits the form!

Submitting Forms Indirectly

When the user changes a field in the main form, the change event listener,
parent_element_change, is called. It’s the last of the JavaScript methods we
need to implement:

File: autoform.js (excerpt)

 parent_element_change: function(e) {
 var el = window.event ? window.event.srcElement : e ?
 e.target : null;

214

Chapter 8: Remote Scripting

 if (!el) return;
 el.className = el.className.replace(/\b ?autoform_[a-z]+\b/,
 '');
 el.className += ' autoform_pending';
 var child_form = aF.childDocument.getElementById(el.form.id);
 aF.childDocument.getElementsByName(el.name)[0].value =
 el.value;
 child_form.submit();
 }

After removing any autoform_ CSS class that may already be applied to the form
field, the method assigns the class autoform_pending to it. This causes the
“saving” icon to appear in the field, as specified by the style sheet.6 The method
then changes the value of this field in the child document to match the newly-changed
value in the parent. It finds the corresponding element in the child by calling
getElementsByName on the handy aF.childDocument reference that was created
during document setup. The method then submits the form in the child, which
sends the data to the server but does not alter the parent (displaying in the
browser window).

Unfortunately, this is where our attempts to keep the navigation history clean
fall apart. No matter what we do, the form submission in the child document
will add a step to the browser’s navigation history. So if a user makes three changes
to field values, he or she will get three new steps in the browser history while
apparently sitting on a single page. For this reason, if you want to make practical
use of this technique in your application, I recommend displaying the autoform
page in a popup window with no back/forward buttons.

On the server, the form submission is processed just like any form submission,
returning a slightly modified copy of the form page to the browser. This modified
page contains a little extra JavaScript that fills aF.changedElements with the
names of the fields that the server noted as having changed from the previous
values. An example of the JavaScript that the server might write follows:

aF.changedElements = ['name', 'age'];

Next, init_child will execute, passing these values to the parent (specifically,
to the parent_callback method). That method uses the names to set the appro-
priate fields to have the autoform_saved class, which displays the “saved” check
mark icon.

6 Safari, which does not permit styling of form fields, will not display the icon. For maximum usability,
you might want to adjust this example to display the icon outside the field.

215

Example: Autoforms

This whole procedure is complicated somewhat by the fact that the page is loaded
twice (and, therefore, needs to be able to handle two code paths: parent and
child), but the underlying idea of loading a page into an iframe can be put to
many uses.

Serving up the Page

The key complexity here, which may take time to get your head around, is that
the server page that generates the form (repeatedly), and the server page that’s
called by the client-side script to save the data, are in fact the same page.

Here’s the PHP script that does everything we need to produce a working auto-
form with the necessary server-side logic:

File: autoform.php

<?php
 // File containing a serialized key => value array
 $data_file = '/tmp/serialized.dat';

 // If the data file doesn't exist, create it with default values
 if (!file_exists($data_file)) {
 // Initialize file with default array keys
 $fp = fopen($data_file, 'w');
 fwrite($fp,
 serialize(array('name' => '', 'age' => '',
 'shoesize' => '')));
 fclose($fp);
 }

 // Load data from the data file to populate the form
 $from_file = unserialize(file_get_contents($data_file));

 // If the form has been submitted, and there were changes,
 // save the new data back to the file
 $changed_keys = array();
 if ($_POST) {
 foreach (array_keys($from_file) as $key) {
 if (array_key_exists($key, $_POST)
 && $_POST[$key] != $from_file[$key]) {
 $changed_keys[] = $key;
 $from_file[$key] = $_POST[$key];
 }
 }
 if (count($changed_keys) > 0) {
 // Write data back to file

216

Chapter 8: Remote Scripting

 $fp = fopen($data_file, 'w');
 fwrite($fp, serialize($from_file));
 fclose($fp);
 }
 }
?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>A very simple form</title>
 <link href="autoform.css" rel="stylesheet" type="text/css">
 <script type="text/javascript" src="autoform.js"></script>
 <script type="text/javascript">
 aF.changedElements = [<?php
 if (count($changed_keys) > 0) {
 echo "'" . implode("', '", array_map('addslashes',
 $changed_keys)) . "'";
 }
 ?>];
 </script>
 </head>
 <body>
 <h1>A simple form</h1>
 <form method="post" id="f1">
 <p>
 <label for="name">Name</label>
 <input type="text" name="name" id="name"
 value="<?php
 echo htmlspecialchars($from_file['name']); ?>">
 </p>
 <p>
 <label for="age">Age</label>
 <input type="text" name="age" id="age"
 value="<?php echo htmlspecialchars($from_file['age']);
 ?>">
 </p>
 <p>
 <label for="shoesize">Shoe size</label>
 <input type="text" name="shoesize" id="shoesize"
 value="<?php
 echo htmlspecialchars($from_file['shoesize']); ?>">
 </p>
 <input type="submit">
 </form>

217

Example: Autoforms

 </body>
</html>

This relatively simple PHP page loads a batch of data from a file, /tmp/serial-
ized.dat, and writes out an HTML page with a form containing the values loaded
from that file. When the form is submitted, it saves the submitted values (if any
have changed) back into the file, and keeps track of the altered fields in a PHP
array variable named $changed_keys. Essentially, the file acts as a database.7

Most of the work that makes this into an autoform is done by our library script,
so we have included it, along with its complementary style sheet:

File: autoform.php (excerpt)

 <link href="autoform.css" rel="stylesheet" type="text/css">
 <script type="text/javascript" src="autoform.js"></script>

And now for the tricky bit! The PHP script has to generate the
aF.changedElements array, which must contain the names of all the form fields
whose values were changed with the last submission. As such, PHP must write
out some JavaScript of its own.

aF.changedElements is a list of all the values that changed when the form was
last submitted, i.e. every value in the submitted form which differed from the
previously saved value. The PHP code needs to make this list of changed elements
available to JavaScript, so it should write out a JavaScript snippet containing a
JavaScript list of the names of the changed elements. So, if the user had just
submitted the form with new values for name and shoesize, the PHP should
write out the following snippet:

 <script type="text/javascript">
 aF.changedElements = ['name', 'shoesize'];
 </script>

The script builds up a list of the changed fields in $changed_keys, so it uses this
to print out the necessary JavaScript:

File: autoform.php (excerpt)

 <script type="text/javascript">
 aF.changedElements = [<?php

7 PHP’s serialize and unserialize functions do all the work here, converting the data to a
format that’s suitable for storage in a file, and then restoring the data when it’s read from the file.
For more information on how this works, you may refer to the PHP Manual, or you might prefer to
implement it in your own choice of language.

218

Chapter 8: Remote Scripting

 if (count($changed_keys) > 0) {
 echo "'" . implode("', '", array_map('addslashes',
 $changed_keys)) . "'";
 }
 ?>];
 </script>

The rest of the work is carried out by the JavaScript library as described above.
The writing out of the aF.changedElements value is the only thing that’s required
to make the form an autoform; exactly how the data is saved on the server-side
doesn’t affect the autoform nature of the page, and can be done any way you
like—even via a database.

Hidden Cookie Updates
The hidden iframe technique is quite general in that it allows any amount of
content or script to be loaded at the click of a link. If you only need a small
amount of data, there are other techniques on offer—one variation uses cookies
to send data.

Using such techniques, you don’t have to create a separate iframe document to
communicate with the server—the main document will do fine. Let’s look at two
of these techniques now.

Image Swaps

A similar but more restrictive approach to the hidden iframe technique is to use
hidden images. JavaScript can load images into an Image object without those
images being displayed on the page.8 Since the image is being served from an
HTTP server, it can set a cookie when it is loaded; JavaScript can read the
cookies that were set by the server. So the technique creates an Image object and
sets as its src property the server-side page that returns data. This server-side
page sets a cookie that contains the data that’s to be passed back to the client,
and the client page reads the data straight out of that cookie. The Image object
itself is never used; it’s simply requested in order that the cookie can be set by
the server.

This approach has been neatly wrapped up by Brent Ashley into his easy-to-use
RSLite library9. In a moment, we’ll look at an example that illustrates its use.

8 Anyone who has used an old-school JavaScript image rollover will be familiar with the concept of
“preloading” the images to be used for the rollover; this is exactly the same.
9 http://www.ashleyit.com/rs/rslite/

219

Hidden Cookie Updates

http://www.ashleyit.com/rs/rslite/

204 Piggybacks

Even simpler than the image swap technique is to use the HTTP 204 “No Con-
tent” response. Using this technique, instead of changing the src of an image to
a new document, we simply navigate to a special link. That link runs a server
script that returns a 204 response code (and no content at all), along with useful
cookie data. Browsers know to leave the current page in place when a 204 response
is received. This approach is otherwise very similar to the image swap technique.

Example: Name Resolution
Many email clients have an address book with a “nickname” feature; enter the
nickname into the To or Cc boxes, and the email client replaces it with the email
address attached to that nickname. Webmail systems don’t often provide this
functionality, but it’s a clear example of the sort of problem that the RSLite library
is designed to answer.

To create this functionality, we pass a small amount of data (a nickname) to the
server via the RSLite library; the server then does all the work, resolving the
nickname to an email address. RSLite then passes the results of that work (the
email address) back to the client for display.

Here’s a sample Web mail page. It looks just like an ordinary Web application:

File: nameresolution.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Name Resolution</title>
 <link type="text/css" rel="stylesheet"
 href="nameresolution.css">
 <script src="rslite.js" type="text/javascript"></script>
 <script src="nameresolution.js" type="text/javascript">
 </script>
 </head>
 <body>
 <h1>Name resolution</h1>
 <form>
 <p>
 <label for="to">To:</label>
 <input type="text" name="to" id="to">
 </p>

220

Chapter 8: Remote Scripting

 <p>
 <label for="cc">Cc:</label>
 <input type="text" name="cc" id="cc">
 </p>
 <p>
 <label for="Subject">Subject:</label>
 <input type="text" name="subject" id="subject">
 </p>
 <p>
 <textarea id="message" name="message"></textarea>
 </p>
 <p>
 <input type="submit" value="Send">
 </p>
 </form>
 </body>
</html>

The styles in nameresolution.css are decorative only: they have no impact on
the DHTML effect. Figure 8.5 shows this page in action:

Figure 8.5. A Webmail interface.

Any code that we add should watch the To and Cc fields for changes. Whenever
they change, our code will pass the contents back to the server using RSLite.
RSLite will hand us back a resolved email address to go with the passed nickname
(assuming an email address if found); otherwise, it will not hand back anything.
Here’s the very simplified server script:

221

Example: Name Resolution

File: resolver.php

<?php

$names = array(
 'sil' => 'sil@kryogenix.org',
 'simon' => 'simon@incutio.com',
 'simonm' => 'simon@sitepoint.com',
 'nigel' => 'nrm@kingtide.com.au',
 'kev' => 'kevin@sitepoint.com'
);

$p = @$_GET['p'];

if (isset($names[$p]))
 setcookie('RSLite', $names[$p]);
?>

Obviously, in a real application, the $names array would not be hardcoded; instead,
the code might look up the passed nickname ($_GET['p']) in a database.

Here’s our scripting plan. The HTML includes the rslite.js library to make
RSLite calls possible. Our script should then attach a change listener to the To
and Cc fields so that it is notified of changes. Our script must also tell RSLite
about callbacks.

RSLite is an asynchronous library, so when the code calls the server, that call
does not return with the server’s response data. Instead, the call returns immedi-
ately with no data. RSLite then repeatedly checks for a cookie set by the server
(using setInterval) and, when one is set, a nominated callback function is called
with the new cookie value from the server.

Here’s an example of the required processing for just one field change:

1. Initialization code in the page tells RSLite which callback to call if any values
arrive from the server.

2. The change event listener calls RSLite when a change occurs.

3. RSLite uses a JavaScript Image object to make a request to the server, sets
up an interval timer to watch for responses, and finishes.

4. The server returns a cookie with its response to the request.

222

Chapter 8: Remote Scripting

5. The interval timer notices the cookie and calls the callback function specified
in Step 1.

As usual, let’s start with the signature of the library object for which we’re aiming:

File: nameresolution.js (excerpt)

var nR = {
 init: function() { ... },
 addEvent: function(elm, evType, fn, useCapture) { ... },

 resolve: function(e) { ... },
 resolve_callback: function(response) { ... },
 resolve_failure: function() { ... }
}

nR.addEvent(window, 'load', nR.init, false);

init and addEvent have the same roles as always. resolve is the listener that
will kick off the name resolution. The other two methods are callbacks that are
passed to RSLite.

Here’s the init method that sets everything up:

File: nameresolution.js (excerpt)

 init: function() {
 if (!document.getElementById) return;
 if (!RSLiteObject) return;
 window.RSLite = new RSLiteObject();
 // Set the "to" and "cc" fields to have name resolution
 var to_field = document.getElementById('to');
 if (to_field) nR.addEvent(to_field, 'change', nR.resolve,
 false);
 var cc_field = document.getElementById('cc');
 if (cc_field) nR.addEvent(cc_field, 'change', nR.resolve,
 false);
 // Set up the callbacks
 window.RSLite.callback = nR.resolve_callback;
 window.RSLite.failure = nR.resolve_failure;
 }

The resolve method is registered as a listener on every field that supports name
lookup, and RSLite is told about the two callback methods. Have a read of the
RSLite code if you want to see how it stores those methods for later processing.

223

Example: Name Resolution

The resolve method is the event listener for the change event on the To and Cc
fields. Here it is:

File: nameresolution.js (excerpt)

 resolve: function(e) {
 var target = window.event ? window.event.srcElement: e ?
 e.target : null;
 if (!target || !target.value) return;
 nR.currentTarget = target;
 if (target.value.indexOf('@') != -1) return; // email address
 // Try and resolve the entered value to a proper value by
 // calling the server for name resolution
 window.RSLite.call('resolver.php', target.value);
 }

This method retrieves the target element as usual, then saves that target element
in an object property for later use. This is required so that the callback method
can find out which field changed. The method then checks that the value does
not contain an @ symbol; if it does, the code returns on the assumption that if
the value in the field is already an email address, it does not need resolving. Fi-
nally, it uses RSLite to pass the value10 back to the server. nR.RSLite.call takes
two parameters: the name of the server page that’s to be called (resolver.php),
and the value to pass to that page (which, in this case, is the content of the field
for resolution). This method then immediately exits; it does not wait for the value
returned from the server. Instead, when the server returns a value, that value is
passed to the callback method, resolve_callback. Here it is:

File: nameresolution.js (excerpt)

 resolve_callback: function(response) {
 nR.currentTarget.value = response;
 },

This method receives the server response, and sets the value of the field to that
response. This is why resolve, above, saved the field into a variable. The field
automatically changes from an entered nickname (“sil”) to a resolved email address
(“sil@kryogenix.org”) when the user clicks or tabs out of it.

RSLite also allows for a failure callback function, which is called if the server re-
turns nothing. In the server code above, the server will return nothing if the

10 The function assumes, for simplicity, that the user has only entered one nickname into the field.
Extending the function to allow for multiple (comma-separated) addresses or nicknames is an exercise
that I’ve left to you.

224

Chapter 8: Remote Scripting

passed nickname is not in the $names array; the code can use this to flag to the
user that the entered nickname is unknown:

File: nameresolution.js (excerpt)

 resolve_failure: function() {
 var errorSpan = document.createElement('span');
 errorSpan.className = 'error';
 errorSpan.appendChild(document.createTextNode(
 'Address ' + nR.currentTarget.value + ' invalid'));
 nR.currentTarget.errorSpan = errorSpan;
 nR.currentTarget.parentNode.appendChild(errorSpan);
 },

An invalid address is flagged with the addition of a new span to the document
containing the text, “Address foo invalid”. A tiny extra customization to resolve
is also required:

File: nameresolution.js (excerpt)

 resolve: function(e) {
 var target = window.event ? window.event.srcElement: e ?
 e.target : null;
 if (!target || !target.value) return;
 nR.currentTarget = target;

if (nR.currentTarget.errorSpan) {
 nR.currentTarget.errorSpan.parentNode.removeChild(
 nR.currentTarget.errorSpan);
 nR.currentTarget.errorSpan = null;
 }
 if (target.value.indexOf('@') != -1) return; // email address
 // Try and resolve the entered value to a proper value by
 // calling the server for name resolution
 window.RSLite.call('resolver.php', target.value);
 },

The additional lines above remove any existing error message span before
checking for a new address.

XMLHTTP
The methods presented so far have the disadvantage that they’re oriented towards
transferring small amounts of data from server to client: short strings, numbers,
and the like. Transferring a larger quantity of data would be problematic using
these methods; the hidden image technique, for example, is limited to data

225

XMLHTTP

quantities of four kilobytes: the maximum size of a cookie.11 For notifications,
for small amounts of data, for a flag saying merely “yes” or “no”, these methods
are sufficient. When the client wants to retrieve a larger amount of data from
the server, a different technique is called for. The best alternative is XMLHTTP.

Origins of XMLHTTP

XMLHTTP was originally implemented by Microsoft in Internet Explorer. It al-
lows JavaScript to request an arbitrary URL,12 receive the returned content, and
do anything with it that you wish. The data returned from that URL can obviously
be anything: it can be as long as you like, and anything you like. Although the
method is called XMLHTTP, you are not limited to sending or returning XML.
It is, therefore, a technique that’s useful where other methods fall short.

Other methods fall short from time to time because they’re essentially hacks—they
use side-effects of other techniques to perform data transfer. XMLHTTP was
specifically designed to do this transfer, so, if you want to pass a lot of data from
the server back to the client, XMLHTTP is the way to go.

Even though the technique is called XMLHTTP, the class invented by Microsoft
is called XMLHttpRequest. Since HTTP is also an acronym it should really be
called XMLHTTPRequest. It’s not though, so we’re stuck with using XMLHttpRequest
in our code. We’ll continue to use XMLHTTP as the name of the technique,
though.

The XMLHTTP technique relies entirely on HTTP requests and responses, as
does the rest of the Web. There’s no new form of communication between the
Web browser and the Web server, there’s just a new way to make requests from
scripts—that’s all.

Browser Variations

XMLHTTP has some compatibility issues; it’s implemented a little differently
in Gecko-based browsers (Mozilla, Firefox, Camino, and so on) than it is in IE.13

Apple’s Safari implements the Mozilla method, while other browsers may not
support it at all. Opera is introducing support in its latest releases; Opera 7.6 will
also implement the Mozilla approach.

11 It would, of course, be possible to re-engineer the server code and the library to use multiple
cookies to transfer data to get around this limit, but it would be a lot of work for not much benefit.
12 The JavaScript security rules apply here; briefly, you can only request URLs from the server from
which this HTML page was served. You can’t just grab any URL from anywhere on the Web.
13 IE 5.5 and above: IE5.0 does not support the technique.

226

Chapter 8: Remote Scripting

By far the easiest way to work around these issues is to use one of the existing
libraries that “wrap” the XMLHTTP objects provided by each browser. Including
the library and using its objects, instead of the browser objects, to make requests
neatly hides the varying browser implementations.

XMLHTTP, AJAX, and the Future

Since XMLHTTP has become widely supported across the browser market, more
and more applications use it. Jesse James Garrett at Adaptive Path has coined
the term “AJAX”14 for applications using XMLHTTP, as a shorthand for “Asyn-
chronous JavaScript And XML”. Use of AJAX by famous Websites like Google
(on the Google Suggest page) has helped to accelerate its popularity.

XMLHTTP has great potential because it breaks down the page-based model
that most Web-based applications use. Before the Web came along, most applic-
ations used static data entry screens that weren’t page-oriented. XMLHTTP allows
that earlier kind of design to be re-expressed on the Web. If it worked once,
probably it will work again.

XMLHTTP also has its issues. It reduces the accessibility of Web pages somewhat.
That, however, was also said about DHTML when it first came on the scene. In
this book, we’ve explained ways to ensure the accessibility of a site while exploiting
the possibilities of DHTML. The same sorts of techniques are likely to evolve
for XMLHTTP as well.

Sarissa: a Cross-Browser Library

One of the better XMLHTTP libraries is Sarissa15, which wraps up both the
XMLHttpRequest class for making HTTP requests, and the DOM Document class
for interpreting the response as an XML DOM tree.

Making a request for a URL with Sarissa is simple. First, include the Sarissa library
in your code:

<script type="text/javascript" src="sarissa.js"></script>

Next, create a cross-browser XMLHTTP object:

var xmlhttp = new XMLHttpRequest();

14 http://www.adaptivepath.com/publications/essays/archives/000385.php
15 http://sarissa.sourceforge.net/

227

XMLHTTP

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://sarissa.sourceforge.net/

Third, specify the page to request:

xmlhttp.open('GET', 'url-of-page', true);

This call does not actually send the HTTP request; it merely specifies what it
will be when it’s sent. The request can, in theory, use any HTTP request type.
The type is specified in the first parameter to the open call.16 The request should
be made asynchronously, so that the browser doesn’t lock up while it’s being
made. An asynchronous request is performed by making the third parameter in
the open call above true. The callback function, which is called when the request
returns with data, is defined as follows:

 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {

// place your callback code here
 }
 }

That’s an anonymous (nameless) callback function. It uses the number 4 because
the returning response goes through a number of different states; state 4 means
“the response is complete.” Finally, to send the request, we use the following:

 xmlhttp.send(null);

send returns immediately. When the request returns (later on, in its own time),
your callback code is called, and the data from the requested URL is available in
xmlhttp.responseText. Easy!

Example: Checking Usernames
Lots of Websites have signup forms that require a name, address, email address,
username, and so forth. In signing up for a popular site, it’s not uncommon to
find that the username you wanted, or even your second and third choices, have
already been taken. Of course, to find that out, you have to complete the whole
form and then wait while it’s submitted to the server. Then, finally, you’re
presented with the dreaded, “That username is already in use” message. In this
example, we’ll try to improve that user experience.

A nice enhancement to these forms might use remote scripting to check if the
username you entered is already in use while you’re filling in the rest of the form.
That solution saves time and effort. We could achieve it using the above methods;

16 In practice, browser support for request verbs other than GET and POST is lacking. Other verbs,
such as PUT and DELETE, can be used with REST-style APIs, but they’re not very common as yet.

228

Chapter 8: Remote Scripting

RSLite, for example, would be an ideal approach. Simply pass the entered user-
name back to the server asynchronously, and have the server pass back true or
false, meaning already-in-use or available-for-use, respectively.

An extra enhancement could see the server, which knows the names already in
use, suggest some alternatives that are not currently taken. Passing back this
larger quantity of data, as already discussed, is an ideal use case for XMLHTTP.

Imagining the Solution

To make this work, there would first have to be a server-side page. When passed
a name and a possible username, that page would return a simple list of suggested
alternatives. Implementation of this server-side page is left as an exercise for the
reader;17 for now, assume that it is called with username and name parameters
in the query string, and that it returns a list of possible alternative unused user-
names as XML, like so:

<usernames>
 <username>StuartLangridge</username>
 <username>SLangridge</username>
 <username>sil194</username>
</usernames>

For the sake of completeness, here’s a naïve implementation of such a script in
PHP:

File: check-username.php

<?php

// A quick and dirty XMLHTTP response script

header('Content-type: text/xml');
$username = $_GET['username'];
$name = $_GET['name'];
$names = explode(' ', $name);
$initial = substr(trim($name), 0, 1);
$surname = $names[count($names) - 1];
$firstname = $names[0];

?>
<usernames>

17 Obviously it also needs to return an indication that the suggested username is available if, in fact,
it is. This is also left as an exercise for the reader.

229

Example: Checking Usernames

 <username><?php echo htmlspecialchars($firstname) .
 htmlspecialchars($surname); ?></username>
 <username><?php echo htmlspecialchars($initial) .
 htmlspecialchars($surname); ?></username>
 <username><?php echo htmlspecialchars($username);
 ?>194</username>
</usernames>

The signup form itself requires very simple HTML:

File: check-username.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Check a username for uniqueness</title>
 <link type="text/css" rel="stylesheet"
 href="check-username.css">
 <script type="text/javascript" src="sarissa.js"></script>
 <script type="text/javascript" src="check-username.js">
 </script>
 </head>
 <body>
 <form action="">
 <div>
 <label for="name">Your name</label>
 <input type="text" class="text" id="name" name="name">
 </div>
 <div id="usernamecontainer">
 <label for="username">Your chosen username</label>

<input type="text" class="text" id="username"
 name="username">
 </div>
 <div>
 <label for="address">Address</label>
 <textarea id="address" name="address"></textarea>
 </div>
 <div><input type="submit" class="submit"></div>
 </form>
 </body>
</html>

The username field (indicated in bold above) is the key here; when the field’s
value changes, the server should be called to confirm or deny the availability of
the supplied username.

230

Chapter 8: Remote Scripting

Here’s the style sheet that controls the layout of the form:

File: check-username.css

form {
 margin-left: 200px;
}

form div {
 margin: 0 0 0.25em 0;
}

label {
 float: left;
 margin-left: -200px;
}

label.para {
 float: none;
 display: block;
}

label.radio {
 float: none;
 margin-left: 0;
}

ul.radio {
 margin: 0;
 padding: 0;
 list-style-type: none;
}

input.text {
 width: 15em;
}

textarea {
 width: 20em;
 height: 10em;
}

input.submit {
 margin-left: -200px;
}

231

Example: Checking Usernames

This style sheet contains a few rules for elements that the document does not
yet contain, but they will come into play by the time we finish building this ex-
ample. Since this isn’t a book about style sheets, I’ll leave you to examine the
rules in detail if you wish.

Figure 8.6 shows the form before the server has been called.

Figure 8.6. Entering a username.

Building the JavaScript Scripts

We’ll use the standard approach to attach an event listener to the change event
on the username field, and to store some variables for later use. Here’s our library
object signature:

File: check-username.js (excerpt)

var cU = {
 init: function() { ... },
 addEvent: function(elm, evType, fn, useCapture) { ... },
 checkUsername: function() { ... },
 receiveUsernames: function(dom) { ... }
}

cU.addEvent(window, 'load', cU.init, false);

checkUsername will ask the server to perform the check. receiveUsernames is
the callback method that handles the server response. Here’s the init method
that sets this up:

232

Chapter 8: Remote Scripting

File: check-username.js (excerpt)

 init: function() {
 if (!document.getElementById) return;
 if (!Sarissa) return;
 cU.name = document.getElementById('name');
 cU.username = document.getElementById('username');
 cU.usernamecontainer = document.getElementById(
 'usernamecontainer');
 if (!cU.name || !cU.username) return;
 if (!cU.usernamecontainer.innerHTML) return;
 cU.addEvent(cU.username, 'change', cU.checkUsername, false);
 }

All this does is store references to the form fields, and to the div element where
results will be displayed; it also installs a change event listener on the username
field.

Note that init checks for the presence of the Sarissa object before proceed-
ing—it’s very easy to forget to load the library!

The checkUsername method, the event listener, constructs the appropriate URL
for the server-side page (check-username.php?username=A&name=B) and initiates
the XMLHTTP request.

File: check-username.js (excerpt)

 checkUsername: function() {
 var xmlhttp = new XMLHttpRequest();
 var qs = '?username=' + cU.username.value +
 '&name=' + cU.name.value;
 xmlhttp.open('GET', 'check-username.php' + qs, true);
 xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {
 cU.receiveUsernames(xmlhttp.responseXML);
 }
 };
 xmlhttp.send(null);
 },

The callback function shown in bold simply calls receiveUsernames with the
returned XML document structure, responseXML.

The receiveUsernames method can, when called, obtain the suggested usernames
from the returned XML, and then present them to the user in some way. Let’s
break receiveUsernames down.

233

Example: Checking Usernames

The list of usernames can be obtained from the XML DOM in the same way as
it would be obtained from the HTML DOM when parsing a Web page:

File: check-username.js (excerpt)

 receiveUsernames: function(dom) {
 var alternatives = dom.getElementsByTagName('username');

The alternatives variable now holds a set of elements. A suitable way to present
the list of alternative usernames to the user might involve adding a set of labeled
radio buttons to the page. The page must also leave the text box in place (so the
user is not forced to choose one of the presented alternatives), along with a
message to explain that the selected username is unavailable.

This is quite a lot of HTML to add to the page. In theory, the script should use
DOM methods like document.createElement, and document.appendChild to
create each element, build the elements together into a DOM tree, and then insert
that DOM tree into the page. This would be exceedingly tedious.

Instead, let’s make use of the proprietary (but widely supported) property,
innerHTML. While using this property is frowned upon by standards-bearers, it
is a much simpler way of creating a block of HTML on-the-fly than is building
it with DOM methods.18 Since we’re already using XMLHTTP—a nonstandard
browser feature—we might as well use innerHTML as well.

The HTML block that is to be inserted looks like this:

File: check-username.js (excerpt)

 var usernameHTML = '<label for="username" class="para">' +
 'The username \'USERNAME\' is already in use. ' +
 'Please choose one of the alternatives below, or ' +
 'enter another username.</label>' +
 '<ul class="radio">ALTERNATIVESLIST' +
 '<label class="radio"><input type="radio" ' +
 'name="unchoice" checked="checked" value="username"> ' +
 'Another choice:</label> ' +
 '<input type="text" class="text" id="username" ' +
 'name="username">';
 usernameHTML = usernameHTML.replace('USERNAME',
 cU.username.value);

18 The new E4X standard provides an easy, standards-based solution. It’s only available in Mozilla
1.8 and Firefox 1.1 and above, though.

234

Chapter 8: Remote Scripting

As you can see, the HTML code placed in usernameHTML initially contains two
placeholders: USERNAME and ALTERNATIVESLIST. The username is added with the
string’s replace method.

The ALTERNATIVESLIST placeholder is a little more complicated. We must con-
struct the list of alternative usernames by iterating through the elements in
alternatives and building it up:

File: check-username.js (excerpt)

 var alternativeslist = '';
 for (var i = 0; i < alternatives.length; i++) {
 var thisAL = '<label class="radio"><input ' +
 'type="radio" name="unchoice" checked="checked" ' +
 'value="USERNAME"> USERNAME</label>';
 thisAL = thisAL.replace(/USERNAME/g,
 alternatives[i].firstChild.nodeValue);
 alternativeslist += thisAL;
 }
 usernameHTML = usernameHTML.replace('ALTERNATIVESLIST',
 alternativeslist);

Each time through the loop, we create the HTML code for a radio button for one
username in the alternatives array. We collect all that content together in
alternativeslist and stick that set of list items into the HTML content string
we prepared earlier.

Finally, we add the HTML to the page. Note that this replaces the current content
of the usernamecontainer div, removing the previously-contained elements
from the document entirely.

File: check-username.js (excerpt)

 cU.usernamecontainer.innerHTML = usernameHTML;

Since the previous username text box was removed from the document and re-
placed with a new one by the innerHTML assignment, there will no longer be a
change event listener attached to it. We’ll have to put one back in. Instead of
reassigning it directly, we delay that assignment for a short time with setTimeout;
the browser occasionally takes a little time to make DOM nodes available after
adding them to the document with innerHTML, so we give it time to catch up.

File: check-username.js (excerpt)

 // reattach the event, giving browsers time to do the
 // innerHTML work
 setTimeout(function() {

235

Example: Checking Usernames

 cU.username = document.getElementById('username');
 cU.addEvent(cU.username, 'change', cU.checkUsername, false);
 }, 200);
 }

Altogether, the receiveUsernames method looks like this:

File: check-username.js (excerpt)

 receiveUsernames: function(dom) {
 var alternatives = dom.getElementsByTagName('username');
 var usernameHTML = '<label for="username" class="para">' +
 'The username \'USERNAME\' is already in use. ' +
 'Please choose one of the alternatives below, or ' +
 'enter another username.</label>' +
 '<ul class="radio">ALTERNATIVESLIST' +
 '<label class="radio"><input type="radio" ' +
 'name="unchoice" checked="checked" value="username"> ' +
 'Another choice:</label> ' +
 '<input type="text" class="text" id="username" ' +
 'name="username">';
 usernameHTML = usernameHTML.replace('USERNAME',
 cU.username.value);
 var alternativeslist = '';
 for (var i = 0; i < alternatives.length; i++) {
 var thisAL = '<label class="radio"><input ' +
 'type="radio" name="unchoice" checked="checked" ' +
 'value="USERNAME"> USERNAME</label>';
 thisAL = thisAL.replace(/USERNAME/g,
 alternatives[i].firstChild.nodeValue);
 alternativeslist += thisAL;
 }
 usernameHTML = usernameHTML.replace('ALTERNATIVESLIST',
 alternativeslist);
 cU.usernamecontainer.innerHTML = usernameHTML;

 // reattach the event, giving browsers time to do the
 // innerHTML work
 setTimeout(function() {
 cU.username = document.getElementById('username');
 cU.addEvent(cU.username, 'change', cU.checkUsername, false);
 }, 200);
 }

Figure 8.7 shows the result of this manipulation for the example alternatives
presented earlier.

236

Chapter 8: Remote Scripting

Figure 8.7. The username alternatives looked up with XMLHTTP.

Other Client-Server Options
Finally, we should point out that there exists another class of solutions for
drawing data from the server. These all rely on more traditional client-server ar-
chitecture, and have more to do with programming than with Web development.
We’ll just point them out here, and do no more than that.

The first option in this class of solutions is Web services. XML-based messaging
systems like XML-RPC and SOAP provide options for communicating with
servers without replacing the current page.

The second option is in-page components. If Web content is digitally signed,
then alternatives like Microsoft ActiveX controls and Mozilla XPCOM compon-
ents can be used. Even without digital signatures, a Java applet that takes up no
screen space at all can be used to “phone home” to its server in the background.

These are all specialized solutions and are not intended for typical Web pages.
Nevertheless, they are part of the picture of DHTML.

237

Other Client-Server Options

Drawing Code from Servers
The methods described so far are all focused on passing pure data from the
server, then doing something with that data on the client-side. It’s possible to
make your application run faster by passing back from the server something a
bit more structured than pure data. The server might pass back some formatted
HTML; the client can then just drop this HTML directly into the page without
having to do any work—an approach which makes for speed. Similarly, the
server could pass back JavaScript code; the client can then execute that code
directly by passing it to the JavaScript eval function. While these methods are
a bit less “pure” than passing simple data back-and-forth, they can really accelerate
the client work in your application.

Example: Learning about Beer
A simple demonstration is in order. Imagine an online guide to beer, which dis-
plays a number of beers and provides information about each. Figure 8.8 illu-
strates:

Figure 8.8. The beer guide.

If developed in a traditional style, the HTML for the body of the page might
look like this:

File: first-beer.html (excerpt)

<div id="characters">
 <h2>Beer characters</h2>

 <a id="hoppy"

238

Chapter 8: Remote Scripting

 href="character.php?character=hoppy">hoppy

 <a id="malty"
 href="character.php?character=malty">malty

 ...

</div>

<div id="beers">
 <h2>The beers</h2>

 <a id="adnamsbitter"
 href="beer.php?beer=adnamsbitter">Adnams Bitter

 <a id="draughtbass"
 href="beer.php?beer=draughtbass">Draught Bass

 ...

</div>

Each description of a character forms a link to a new page, which describes beers
that exhibit that character (character.php). Each beer is also a link to a page
(beer.php) that describes that beer.19 There’s lots of CSS styling at work, but
the only tricky bit is this:

File: first-beer.css (excerpt)

#characters {
 width: 25%;
 float: left;
 margin-right: 5px;
 overflow: hidden;
}

#beers {
 width: 40%;
 float: left;
 margin-right: 5px;
 overflow: hidden;
}

19 These pages aren’t described; I’m sure you can imagine roughly what they’d be like.

239

Example: Learning about Beer

a {
 width: 100%; /* IE Hack */
 …
}

h2 {
 width: 100%; /* IE Hack */
 …
}

These styles align the two divs left-to-right by floating them against the left side
of the page. To prevent whitespace from appearing underneath each li in Internet
Explorer, we use the trick we saw in Chapter 7: set the li contents to occupy the
full width of the li. That wrecks the layout slightly for standards-compliant
browsers, so we set overflow: hidden to tidy up there.

Planning the DHTML Beer Pages
Let’s update this tiny application so that it doesn’t need to send us off to different
pages for information. We’ll add a new section to the page itself to display data
about a particular beer, and we’ll change it so that clicking a beer character
highlights it, and all the beers that have it.

These are the steps we’ll take:

1. Generate the page dynamically, based on server data.

2. Add a new page element in which beer descriptions will be displayed.

3. Create a script to fetch data on an individual beer from the server.

4. Create a script to display the data from step 3 in the new section on the page.

5. Create a script to fetch data about which beers share a particular character.

6. Create a script to highlight those beers that are indicated by data from step
5.

As usual, we’ll require a set of JavaScript methods, so let’s jump forward for a
second and see what those are going to look like:

240

Chapter 8: Remote Scripting

File: final-beer.js (excerpt)

bG = {
 init: function() { ... },
 addEvent: function(elm, evType, fn, useCapture) { ... },
 geturl: function(u, fn) { ... },

 clickCharacter: function(e) { ... },
 clickBeer: function(e) { ... },

 display: function(beer) { ... },
 display2: function(beerdata) { ... },

 highlight: function(character) { ... },
 highlight2: function(charjs) { ... }

}

bG.addEvent(window, 'load', bG.init, false);

geturl will draw data back from the server. The click… methods are event
listeners. display and display2 drive the beer selection feature, and highlight
and highlight2 drive the character highlighting feature. But one step at a time
is more than enough!

Generating the Starting Page from Data
Step 1, generating the page from server data, requires the same tactics as past
examples. We’ll keep all the data about beer in a separate PHP data structure.
We imagine that $beers is an array populated as follows, perhaps from a database:

File: beers.php (excerpt)

$beers = array(
 'beerid1' => array(
 'beername',
 'beerdescription',
 'beercharacter'),
 'beerid2' => array(…
)

Here’s an example of a single beer:

 'guinness' => array(
 'Guinness',

241

Generating the Starting Page from Data

 'An evil but habit-forming stout, best drunk near the Irish',
 'malty')

We also have a set of beer characters, which match those mentioned within the
various beers’ records:

File: beers.php (excerpt)

$beercharacters = array('hoppy', 'malty', 'fruity');

These arrays provide the data with which we’ll generate the HTML for the page.
The script will start like this:

File: second-beer.php (excerpt)

<?php
 include 'beers.php';
?>

We can now generate the lists for the beers’ characters, and for the beers them-
selves, dynamically. Here’s the code for the beers themselves:

File: second-beer.php (excerpt)

 <div id="beers">
 <h2>The beers</h2>

 <?php foreach (array_keys($beers) as $beer) { ?>

 <a id="<?php echo htmlspecialchars($beer); ?>"
 href="beer.php?beer=<?php
 echo htmlspecialchars($beer); ?>"><?php
 echo htmlspecialchars($beers[$beer][0]); ?>

 <?php } ?>

 </div>

This is no more than a simple loop that drags the beers out of the data structure.

Step 2—somewhere to put extra beer data—is trivial. We’ll add a new HTML
block at the end of the page, though we won’t do much with it yet:

File: second-beer.php (excerpt)

 <div id="beerdata">
 <h2>Beer data</h2>
 <p id="beerdef"></p>
 </div>

242

Chapter 8: Remote Scripting

This extra content requires an extra style rule:

File: second-beer.css (excerpt)

#beerdata {
 width: 25%;
 float: left;
 margin-right: 5px;
 overflow: hidden;
 border-left: solid 5px #f0f;
}

With those changes, we now have a dynamically generated page: one based on
server data that we can share with other server scripts. That shared server data
will make our lives much easier.

Fetching HTML Fragments
For step 3, the code needs to be able to fetch data about a specific beer. This is
simply done. We need a server page that can print the data for a specific beer:

File: beerserver1.php

<?php
 include 'beers.php';

 if ($_GET['action'] == 'beer') {
 $beer = $_GET['beer'];
 // Write out the beer definition
 echo $beers[$beer][1];
 }
?>

Our JavaScript can now request beerserver1.php?action=beer&beer=beerid
with Sarissa, and get back the beer description. Although the beer descriptions
are plain text in this example, they could actually comprise formatted HTML if
you so desired. Either way, to display a beer description, the JavaScript code is
as follows, assuming the returned data is stored in the variable beerdata:

document.getElementById('beerdef').innerHTML = beerdata;

And indeed that’s exactly what happens for step 4 of our requirements, in which
we have to display the server data. Here’s the relevant JavaScript:

243

Fetching HTML Fragments

File: third-beer.js (excerpt)

 clickBeer: function(e) {
 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;
 if (target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

 bG.display(target.id);

 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return;
 }
 if (e) {
 e.stopPropagation();
 e.preventDefault();
 }
 },

 display: function(beer) {
 bG.geturl('beerserver1.php?action=beer&beer=' +
 escape(beer), bG.display2);
 },

 geturl: function(u, fn) {
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.open('GET', u, true);
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 fn(xmlhttp.responseText);
 }
 };
 xmlhttp.send(null);
 },

 display2: function(beerdata) {
 document.getElementById('beerdef').innerHTML = beerdata;
 }

Processing starts with the clickBeer method, which we’ll install as an event
listener later. It simply calls display with the ID of the clicked link, which we
set to be a beer ID when generating the page.

244

Chapter 8: Remote Scripting

display, in turn, calls geturl, a utility method that takes a URL and a function
object, makes a request to the URL, and passes the result to the function. In this
case, the display2 method is the function that will be called.

display2 simply takes the beer description returned by the server and inserts it
into the beerdef element by setting its innerHTML property.

In summary, our event listener passes a beer ID to display; the description of
that beer, as returned from beerserver1.php, is inserted into the beerdef element
by display2. display and display2 work as a pair.

The complexity of this example may obscure an otherwise useful piece of design:
the geturl method, while complicated, contains no code specific to the current
page. That’s fantastic, because it means that geturl is written in a general-purpose
way. We can use it over and over again in other applications, just as we do
addEvent.

Finally, we need an init method that sets up the event listener:

File: third-beer.js (excerpt)

 init: function() {
 if (!Sarissa || !document.getElementsByTagName) return;

 var beerlinks = document.getElementById('beers').
 getElementsByTagName('a');
 for (var i = 0; i < beerlinks.length; i++) {
 bG.addEvent(beerlinks[i], 'click', bG.clickBeer, false);
 // Safari
 beerlinks[i].onclick = function() { return false; };
 }
 },

By now, this code should be self-explanatory.

Figure 8.9 shows what we have so far in terms of functionality.

245

Fetching HTML Fragments

Figure 8.9. Displaying beer data with the DOM.

Fetching and Running JavaScript
The remaining part of the beer project involves highlighting beers that have a
particular character. This addresses steps 5 and 6 in our list, and they’re a little
more complicated than what we’ve done so far. Instead of retrieving some new
data and adding it to the page, clicking a beer character needs to alter some of
the data that’s already in the page.

One way to do this is with an extension of the above technique; instead of
fetching HTML from the server and dropping it directly into the page, the script
could fetch JavaScript code from the server and run it. JavaScript provides the
function eval for exactly this purpose; it takes a string and executes that string
as JavaScript code. If a URL can return just JavaScript code, then that URL can
be fetched with Sarissa, and the code executed with eval.

For this example, the server page should take a beer character as a parameter,
and return JavaScript code like the following:

document.getElementById('beerid').className = 'highlight';

There should be one line for each beer with the character in question. This code
will set the class highlight on each matching beer; we’ll use this class in the
style sheet to highlight them. Here’s the new style:

File: fourth-beer.css (excerpt)

a.highlight {
 background-color: #0dd;
 border-left: 5px solid #0ff;
}

246

Chapter 8: Remote Scripting

And here’s the PHP code that will generate the necessary JavaScript to set the
highlight class on the appropriate elements. Again, this script works from the
$beers array that contains the test data:

File: beerserver2.php

<?php
 include 'beers.php';

 if ($_GET['action'] == 'character') {

 $character = $_GET['character'];

 // highlight one character
 foreach ($beercharacters as $bc) { ?>
 document.getElementById('<?php
 echo addslashes($bc); ?>').className = '';
 <?php } ?>
 document.getElementById('<?php echo addslashes($character);
 ?>').className = 'highlight';
 <?php

 // highlight beers of that character
 foreach (array_keys($beers) as $beer) { ?>
 document.getElementById('<?php echo addslashes($beer);
 ?>').className = '';
 <?php if ($beers[$beer][2] == $character) { ?>
 document.getElementById('<?php echo addslashes($beer);
 ?>').className = 'highlight';
 <?php }
 }
 }
?>

First, the code loops through all of the available characters, generating JavaScript
that unsets any CSS classes that may have been applied to the character elements.
It then sets the highlight class on the selected character element.

Next, it loops through the array of beers, removing highlighting from all of them.
But when a beer is found that has the selected character, it is highlighted.

That takes care of step 5—generating code from the server. Step 6 involves ap-
plication of the retrieved lines of script.

Fetching and executing this JavaScript is very similar to fetching and displaying
the HTML in the beer description case above. Just as we had clickBeer, display

247

Fetching and Running JavaScript

and display2 methods to do that, we have clickCharacter, highlight and
highlight2 methods for this task. Here’s the code:

File: fourth-beer.js (excerpt)

 clickCharacter: function(e) {
 var target = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!target) return;
 if (target.nodeName.toLowerCase() != 'a')
 target = target.parentNode;

 bG.highlight(target.id);

 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return;
 }
 if (e) {
 e.stopPropagation();
 e.preventDefault();
 }
 },

 highlight: function(character) {
 bG.geturl('beerserver2.php?action=character&character=' +
 escape(character), bG.highlight2);
 },

 highlight2: function(charjs) {
 eval(charjs);
 }

Just like clickBeer, clickCharacter passes an ID (this time for a beer character)
to a method, highlight. highlight calls geturl, geturl calls Sarissa, and Sarissa
passes the results to highlight2. The content of the fetched URL is then passed
directly to eval to be executed as JavaScript code.

Notice how we’ve managed to reuse geturl, even though the URL, the callback
handler, the data returned, and in fact everything else, is different from the
clickBeer case. That’s very handy.

All that’s left is to adjust init to set up our new event listener:

248

Chapter 8: Remote Scripting

File: fourth-beer.js (excerpt)

 init: function() {
 if (!Sarissa || !document.getElementsByTagName) return;
 var beerlinks = document.getElementById('beers').
 getElementsByTagName('a');
 for (var i = 0; i < beerlinks.length; i++) {
 bG.addEvent(beerlinks[i], 'click', bG.clickBeer, false);
 // Safari
 beerlinks[i].onclick = function() { return false; };
 }

var charlinks = document.getElementById('characters').
 getElementsByTagName('a');
 for (var i = 0; i < charlinks.length; i++) {
 bG.addEvent(charlinks[i], 'click', bG.clickCharacter, false);
 // Safari
 charlinks[i].onclick = function() { return false; };
 }
 },

Figure 8.10 shows the updated script at work.

Figure 8.10. Matching beers highlighted.

This small application is now more user-friendly and quicker to run, because the
user doesn’t need to wait for a page refresh after clicking a link. Most importantly,
though, it will still work in exactly the same way when visited by a user whose
browser doesn’t support DOM techniques.

To see the final code in action, try the fourth-beer.php script provided in the
code archive.

249

Fetching and Running JavaScript

Summary
Remote scripting is potentially one of the most powerful tools in the DOM de-
veloper’s toolbox. It’s important to remember that, except in limited environments,
it can only be an enhancement to Web applications and sites. It may not be
supported by all visiting browsers. Nevertheless, the ability to query the server
for data without a time-consuming page refresh makes serious usability improve-
ments available to Web applications.

250

Chapter 8: Remote Scripting

Communicating With The Server9
Your wish, Captain, my Captain, is my keystroke, colon, double backslash, execute, com-
mand.
—Sparks, Enter The Matrix

The previous chapter explained how to dynamically retrieve data from the server
through your pages, then use that data to alter sections of the page without a full
page refresh. An extra level of interactivity can be brought into your Websites
beyond this technique. In addition to using the server as a source of data, we can
call back to say, “something interesting has happened here on the client.” This
makes it possible to take a dynamic Website right into the realms of a client-side
application.

The distinction between the two modes of operation is subtle, but becomes
clearer if we consider who’s giving the orders. The traditional, non-interactive
model has the server giving out data, and the client receiving it passively. In
Chapter 8, the client sometimes asked for new orders. Here, we’ll discuss the
process by which the client gives orders back to the server—do this, do that—and
the server responds with an indicator of success or failure.

Example: Managing Files
In addition to FTP access to a Website’s directories, Web hosting companies
often provide a “file manager” that allows users to add, manipulate, and delete
files through their browsers. While this can be convenient, it’s an awkward and
fiddly way to work with files; a “real” file manager, such as Windows Explorer,
doesn’t require its users to check a checkbox next to a file, then click a Move
button, in order to move a file around. Instead it allows users to move files by
dragging them between folders. This functionality could be adapted for Web-
based file managers: display a list of files and folders on-screen, allow the user to
drag a file to a folder and, when they do so, send a message to the server saying,
“move the dragged file to the dragged-to folder.”

Specifying the File Manager
Critical to project planning is a clear specification of what the desired piece of
software should do. While this file manager script is not a particularly big project,
specifying its details up-front can help clarify exactly what the script should do,
and what it shouldn’t.

Such a script should display a list of folders on the left-hand side of the page.
This list should be expandable and collapsible; clicking on a folder should show
(or hide) the folders it contains. Clicking on a folder should also display, to the
right of the page, a list of the files in that folder. Filenames should be draggable.
Dragging a file onto a folder should highlight that folder; dropping a file on a
folder should remove that filename from the page (because it should have been
moved to a different folder), and send a command to the server to move the file
to that folder. Dropping a file somewhere other than on a folder should make
the filename return to its place in the right-hand-side file list.1

This specification can help us to break the script into components, each of which
does just one thing. Let’s break the above description into separate points:

The script should display a list of folders on the left-hand side of the page.
We need a way to obtain a list of folders from the server.

1 At first glance, it might seem that it would be easier to put the folder list and the file list into sep-
arate frames; that way, each can be scrolled separately. However, you can’t drag-and-drop a JavaScript
object between one frame and another, so that solution won’t work.

252

Chapter 9: Communicating With The Server

This list should be expandable and collapsible.
A component to expand and collapse lists is required.

Clicking on a folder should also display a list of the files in that folder.
We need a way to get a list of the files in any folder from the server.

Filenames should be draggable.
A component that facilitates the dragging of HTML elements is required.

Dropping a file on a folder…
The drag component needs to recognize when one element is dragged over
another, and when one is dropped on another.

…should send a command to the server to move the file to that folder.
We must be able to send a move-file command to the server.

Planning the Technology
Figure 9.1 shows a view of the file manager: on the left is a folder tree, showing
an expanded list of nested folders. On the right appears the list of files in the
currently selected folder, ready to be dragged and dropped. Normally, drag-and-
drop operates on icons. In this case, we’ll be dragging and dropping pieces of text.
We could add icons using CSS if we really wanted to.

Figure 9.1. A two-pane window layout showing folder hierarchy.

Here’s the HTML code for our example, which includes a simpler set of just three
folders:

253

Planning the Technology

File: fileman.html (excerpt)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>File Manager</title>
 <link rel="stylesheet" href="fileman.css">
 </head>
 <body>
 <h1>Drag a file to a folder</h1>

 <div id="folders">

 /

 <a href="spike" path="/spike"
 class="target">spike

 sync

 zfs

 </div>

 <div id="files">
 </div>

 </body>
</html>

As you can see, for the purposes of this example I’ve included a static list of
folders in the HTML file itself. In a practical application, you would likely generate
this list on the fly to reflect the folder structure that existed on the server at that
time, but for this discussion, our focus will be on client-side functionality. In the
code archive, I’ve provided a collection of sample files (test_data.zip) that
match this static directory structure; use these as you try out this script.

254

Chapter 9: Communicating With The Server

You might have noticed the nonstandard path attribute on the folder links. This
attribute contains the full path relative to the root directory of each folder, and
will make our script’s job a lot easier. If you object to such attributes, feel free
to modify the script to use a JavaScript array, or some other construct to hold
these values.

The CSS code we’ll use to lay out this page is nothing special, but I’ll include it
here for completeness:

File: fileman.css (excerpt)

body {
 padding: 0;
 margin: 0;
}

li {
 width: 10em;
}

div#folders {
 float: left;
 width: 35%;
 border-right: 2px solid black;
 padding-left: 1em;
}

div#folders ul {
 padding: 0 0 0 10px;
 margin: 0;
}

div#folders li {
 padding: 0;
 margin: 0;
}

div#files {
 float: left;
 width: 60%;
 padding-left: 5px;
}

div#files ul {
 padding: 0;
 margin: 0;

255

Planning the Technology

}

div#files li {
 float: left;
 width: 7em;
 list-style: none;
 font-size: small;
 padding: 3px;
 margin: 0;
}

Let’s turn our attention to the JavaScript. This is a complicated example, but
there’s no need to write all the code ourselves. As we go along, we’ll see that there
are at least three JavaScript libraries that we can reuse. Still, our own library will
be sizeable:

File: fileman.js (excerpt)

var fM = {
 init: function() { ... },

 setUpDraggables: function() { ... },
 createProxyTargets: function() { ... },
 removeProxyTargets: function() { ... },
 targetOver: function(e) { ... },
 targetOut: function(e) { ... },
 elementDropped: function(draggedObj, x, y) { ... },

 moveFileHere: function (dragged) { ... },
 receiveMoveDetails: function(data, dragged) { ... },

 openFolder: function (e) { ... },
 loadFiles: function(path) { ... },
 receiveFilenames: function(xml, path) { ... },

 addEvent: function(elm, evType, fn, useCapture) { ... },
 findPosX: function(obj) { ... },
 findPosY: function(obj) { ... }
}

fM.addEvent(window, 'load', fM.init, false);

In the above object signature, the first nine methods look after the in-page drag-
and-drop operations; the next three methods coordinate file operations between
the browser and Web server, and update the page with new data. The methods
whose names start with receive are callback methods. The last three methods

256

Chapter 9: Communicating With The Server

are familiar: there’s our old standby, addEvent, as well as findPosX and findPosY,
which were last seen in Chapter 5.

Listing Files and Folders
We’ll start the project with an easy task: the simple retrieval of the directory list.
To retrieve a list of the files in a directory, or a list of folders, we send a request
to the server and get back a stream of data. It’s exactly the same process we used
in Chapter 8.

The server script will be called like this:

http://www.example.com/getFiles.php?path=path

Here, path is the path of the chosen directory, relative to some predefined root
path. The predefined root path is there to ensure that the file manager can only
manage files within a certain directory; for security reasons, it should not be able
to manage every file on the system. This root path is hard-coded into the script.2

When called, the script should return a list of all the files in the supplied directory
path, as in this XML fragment:

<files>
 <file>FILENAME1</file>
 <file>FILENAME2</file>
 ...
</files>

A simple PHP script that lists all the files in a directory, and returns their names
in XML, might look like this:

File: getFiles.php

<?php
header('Content-Type: text/xml');

$ROOT = realpath($_SERVER['DOCUMENT_ROOT'] . '/test');

echo "<files>\n";
$pth = isset($_GET['path']) ? $_GET['path'] : '/';
$rp = realpath($ROOT . $pth);

2 It’s hardcoded for simplicity in this example, at least. In the context of a larger Website (if we were
to offer file management capabilities to many users on an ISP-hosted Web server, for example), it
would need to be smarter.

257

Listing Files and Folders

// Be paranoid; check that this is a subdir of ROOT
if (strpos($rp, $ROOT) === 0) {
 $dir = dir($rp);
 while ($entry = $dir->read()) {
 if (!is_dir($dir->path . '/' . $entry)) {
 echo '<file>' . htmlspecialchars($entry) . "</file>\n";
 }
 }
}
echo "</files>\n";
?>

We’ll use this script to populate the right half of the file manager page.

The defined $ROOT variable is the root directory for the file manager. A useful
application might make this the user’s home directory. In any case, the file
manager should not permit the user to see files outside this directory. Note that
although the script is short and simple, it ensures that users can’t exploit it to
get file listings from outside the $ROOT directory. We don’t want clever users
gaining more access than they should have by typing something like this:

getFiles.php?path=../../../etc

Calling this script and parsing the returned data is another application of the
techniques outlined in Chapter 8. To start, we’ll take a look at the openFolder
method. This will be set up by the init method as the click event listener for
our folder links:

File: fileman.js (excerpt)

 openFolder: function(e) {
 var t = window.event ? window.event.srcElement : e ? e.target
 : null;
 if (!t) return;
 fM.loadFiles(t.getAttribute('path'));
 if (window.event) {
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 }
 if (e && e.stopPropagation && e.preventDefault) {
 e.stopPropagation();
 e.preventDefault();
 }
 },

258

Chapter 9: Communicating With The Server

This method gets a reference to the folder link, and passes the value of its path
attribute to the loadFiles method.

Here’s the loadFiles method that calls getFiles.php:

File: fileman.js (excerpt)

 loadFiles: function(path) {
 var files = document.getElementById('files');
 files.innerHTML = 'loading files...';
 var xmlhttp = new XMLHttpRequest();
 var url = 'getFiles.php?rnd=' +
 (new Date()).getTime() + '&path=' + escape(path);
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 fM.receiveFilenames(xmlhttp.responseXML, path);
 }
 };
 xmlhttp.send(null);
 },

The loadFiles method is another example of the use of XMLHTTP to call a
remote script. It uses Sarissa to do so; thus, we need to make sure Sarissa is loaded
first by the HTML file:

File: fileman.html (excerpt)

 <script type="text/javascript" src="sarissa.js"></script>
 <script type="text/javascript" src="fileman.js"></script>

Sarissa is called with a path, constructs the URL getFiles.php?rnd=ran-
dom&path=path, where random is a number based on the current time, to prevent
the browser from caching the response, and path is the path for which a file listing
is needed. The script then fetches the output of that URL. When the anonymous
callback function reads the server output, it passes that output to the
receiveFilenames method shown below.

File: fileman.js (excerpt)

 receiveFilenames: function(dom, path) {
 var files = document.getElementById('files');
 files.innerHTML = '';

 var ul = document.createElement('ul');
 var fileNodes = dom.getElementsByTagName('file');
 for (var i = 0; i < fileNodes.length; i++) {
 var li = document.createElement('li');

259

Listing Files and Folders

 li.className = 'draggable';
 var s = '';
 for (var j = 0;
 j < fileNodes[i].firstChild.nodeValue.length; j += 5) {
 s += fileNodes[i].firstChild.nodeValue.substr(j, 5);
 s += '<wbr>';
 }
 li.setAttribute('path', path + '/' +
 fileNodes[i].firstChild.nodeValue);
 li.innerHTML = s;
 ul.appendChild(li);
 }
 files.appendChild(ul);
 setTimeout(fM.setUpDraggables, 100);
 },

receiveFilenames receives the XML returned by the server in the form of a
Sarissa DomDocument object (xmlhttp.responseXML in loadFiles), and constructs
from it a slice of HTML—a document fragment. Here’s an example of that frag-
ment, based on two retrieved files: file1.html and longfilename.html:

 <li class="draggable"
 path="www.example.com/html/file1.html">file1<wbr>.html
 <li class="draggable"
 path="www.example.com/html/file1.html"
 >longf<wbr>ilena<wbr>me.htm<wbr>l

Essentially, receiveFilenames creates an unordered list of filenames, and adds
to each list item a class of draggable (ensuring that our drag script, later, will
know that this is a draggable item). It also adds a custom path attribute with the
full path of the file (to make life easier on the drag script). Finally, it breaks the
filename into five-character chunks and inserts a <wbr> tag after each chunk. The
<wbr> tag indicates a point at which a word may be broken for wrapping at the
end of a line. This is used to ensure that the filename can be word-wrapped, so
that it doesn’t break the layout.3

3 <wbr> is a nonstandard tag, the use of which may well engender some guilty feelings. However,
there is no cross-browser way to say, “break up this word wherever you need to in order to get it to
fit into a box properly.” The other possibilities are ­, the soft hyphen, which is unsupported
by Mozilla, and the official solution: zero-width space ​, which has patchy support. MSIE
also has the nonstandard CSS word-wrap property, but there is no cross-browser equivalent.

260

Chapter 9: Communicating With The Server

If you work through the method slowly, you’ll see that three document hierarchies
are at work: the page itself, the XML document fragment returned from the
server, and the document fragment being built up for insertion into the page.

The method clears the contents of the document element that has the ID files
(which is a container div that will be used to display the file list), and puts the
newly-created list structure into it.

Finally, it calls fM.setUpDraggables, which we’ll look at later, to make the new
filename elements draggable.

Server Control Commands
Now that we’ve got a list of server files to work with, we’ll need to be able to
manipulate them: to tell the server what to do with the files. Control instructions
will pass from browser to server. In this application, we have only one control
instruction: “move file A to directory B.”

Sending a command to the server can be achieved using XMLHttpRequest in ex-
actly the same way as we’d use it to retrieve data. The mechanics of sending a
communication to the server are the same, it’s just that the focus has changed.
Before, we were conceptually sending a request for data, and getting back some
data; now, we send a command and retrieve a success or failure message. Here,
the browser tells the server what to do, rather than asking the server for inform-
ation.

The server code should achieve the following:

1. It should accept two query string parameters: path and file. The file para-
meter is the full path of the file that we want to move (again, relative to the
root); the path parameter is the relative path to the directory to which the file
should be moved.

2. It should be paranoid, and check that:

❑ the directory is under the root path

❑ the file is under the root path

❑ the directory is a directory and the file is a file.

3. It should move the file into the directory.

261

Server Control Commands

Here’s the PHP server-side code:

File: moveFiles.php

<?php
$ROOT = realpath($_SERVER['DOCUMENT_ROOT'] . '/test');

$path = isset($_GET['path']) ? $_GET['path'] : '/';
$rp = realpath($ROOT . $path);
// Be paranoid; check that this is a subdir of ROOT
if (strpos($rp, $ROOT) === 0) {
 $fname = isset($_GET['file']) ? $_GET['file'] : '';
 $fn = realpath($ROOT . $fname);
 if (strpos($fn, $ROOT) === 0) {
 if (is_dir($rp) && file_exists($fn)) {
 $fileonly = basename($fn);
 rename($fn, $rp . '/' . $fileonly)
 or die('Moving file failed');
 echo 'OK';
 } else {
 echo 'File or directory bad';
 }
 } else {
 echo 'Bad filename';
 }
} else {
 echo 'Bad directory';
}
?>

As with getFiles.php, this script is paranoid: it does not allow the user to exploit
it in order to move files around outside the $ROOT directory. Since we know that
our designed client-side code will only pass legitimate parameters to the server
code, any non-legitimate parameters that are detected must have been sent by
someone who’s trying to exploit the script. Therefore, the error messages are in-
tentionally not particularly helpful (but at least there are error messages; the
script itself does not throw an error).

The client code that uses this server move script is the moveFileHere method.
It is passed the element that was dragged (which will be an element describing a
file, with a path attribute). It also has access to the folder that’s the drag-n-drop
target in the variable this (the current object).

File: fileman.js (excerpt)

 moveFileHere: function(dragged) {
 var file = dragged.getAttribute('path');

262

Chapter 9: Communicating With The Server

 var path = this.getAttribute('path');
 var xmlhttp = new XMLHttpRequest();
 var qs = '?path=' + escape(path) + '&file=' + escape(file);
 var url = 'moveFiles.php' + qs;
 xmlhttp.open('POST', url, true);
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 fM.receiveMoveDetails(xmlhttp.responseText, dragged);
 }
 };
 xmlhttp.send(null);
 },

This code extracts the source and destination locations in its first two lines, then
tells the server what to do. Although we still use the URL query string to pass
instructions to the server, we use a POST request, rather than a GET request, to
indicate that we wish to perform some kind of action on the server—not just re-
trieve information. Again, the server response is sent to an anonymous callback
function, which calls receiveMoveDetails:

File: fileman.js (excerpt)

 receiveMoveDetails: function(data, dragged) {
 if (data == 'OK') {
 dragged.parentNode.removeChild(dragged);
 } else {
 alert('There was an error moving the file:\n' + data);
 }
 },

This method deletes the dragged element from the HTML, so that it appears
that the drag target beneath the dragged item has “swallowed” the dragged item.
Now, let’s see how the dragging is achieved.

Implementing Drag-and-Drop
We’ve now done all the required client-server interaction, but this time, unlike
Chapter 8, the server requests are hidden under a thick layer of user interface:
the collapsible menu, and the drag-n-drop system. Let’s look at the latter of those
two interface elements. Figure 9.2 shows the user interface halfway through a
drag action.

263

Implementing Drag-and-Drop

Figure 9.2. Dragging a file to a folder.

The user has left-clicked and held the mouse button down on the index1.html
item; the user then dragged the mouse to the left, carrying the item with it. Since
the item’s not on top of any of the listed directories, none of them is highlighted
as the current drag target.

Basic Drag-and-Drop with DOM-Drag

Making elements draggable is, in concept, a pretty simple thing to implement
via DHTML. It works like this:

1. When the user holds the mouse button down over a draggable element, set
variable dragMode to true and record which element fired the mousedown
event.

2. When the user releases the mouse button, set dragMode to false.

3. If the mouse moves, and dragMode is true, change the position of the recor-
ded element to the position of the mouse.

That’s it, in concept. However, it can be a fiddly thing to get right. Fortunately,
other people have already done the heavy lifting on this; unobtrusive JavaScript
libraries are available that make the implementation of draggable elements easy.
One of the best is Aaron Boodman’s DOM-Drag4.5

Usage of DOM-Drag is pretty simple, First, we include the library:

4 http://www.youngpup.net/2001/domdrag
5 Aaron says “DOM-Drag was written for you. Because I care about you.” That’s the spirit!

264

Chapter 9: Communicating With The Server

http://www.youngpup.net/2001/domdrag

File: fileman.html (excerpt)

 <script type="text/javascript" src="dom-drag.js"></script>
 <script type="text/javascript" src="sarissa.js"></script>
 <script type="text/javascript" src="fileman.js"></script>

Then, add initialization calls for each draggable element:

Drag.init(element);

Additionally, any element that you want to drag must use absolute or relative
positioning in the style sheet:

File: fileman.css (excerpt)

.draggable {
 position: relative;
}

Once you’ve loaded the DOM-Drag library, you’ve succeeded in added basic
dragging functionality to an element. We’ll use this method in our script to make
elements draggable.

That explains how we’ll do the dragging, but what about the dropping?

Simple Drag Target Tactics

DOM-Drag provides no facility for knowing whether the user is currently dragging
one element over another, so we’ll need to build this ourselves. At first examina-
tion, it sounds simple:

1. Attach mouseover and mouseout listeners to all potential drop target elements.
A drop target is an element on which the user can drop a dragged element.
If a dragged element is dropped anywhere other than a drop target, it should
“snap back” to its original position.

2. The mouseover listener on a drop target element must check if dragMode is
true (i.e. if a dragging operation is in progress). If it is, then set a class hover
on this target element (so that it can be highlighted with CSS).

3. The mouseout listener on a drop target element should remove the hover
class.

4. When a dragged element is dropped (step 2 in the simple description of
dragging above), check if any target has class hover. If one has, then the

265

Implementing Drag-and-Drop

dragged element must have been dropped on that target element, so call
moveFileHere, from above, for that target.

This approach is fine in theory, but sadly, it’s not quite as simple as that.

Smarter Drag Target Tactics

When an element is being dragged, mouseovers on any dragged-over drop target
elements will not fire in Mozilla-based browsers. The reason for this is that the
cursor isn’t over the target element; it’s over the dragged element. Figure 9.3 il-
lustrates this point.

As shown in Figure 9.3, the cursor is on a plane of its own, on top of the dragged
element. The cursor and the dragged element move together on top of the drop
target element. The cursor is never over the drop target element itself, because
the dragged element is in between the two. This means that the target’s mouseover
event never fires.

Figure 9.3. Mouse, element, and target layers.

266

Chapter 9: Communicating With The Server

One way to solve this problem is with a proxy element. Imagine that every drop
target element is actually two elements: the drop target itself, and an invisible a
element that’s the same size and position as the drop target, and exactly on top
of it. This structural alteration would have no effect on the page’s appearance.

With careful manipulation of the z-index of each element, we can create a situ-
ation where the invisible proxy element lies on top of the dragged element. To
do this, leave the drop target’s z-index unset (so it defaults to zero), set the
dragged element’s z-index to 999, and set the invisible proxy’s z-index to 1000.
The elements will then stack up as shown in Figure 9.4.

Now, the cursor is immediately on top of the invisible proxy element. That means
the proxy element will receive mouse events. The dragged element, when moved,
slides underneath the proxy (but you can’t tell, because the proxy is invisible) and,
hence, does not receive events. The proxy never moves. This use of proxy elements
isn’t restricted to DHTML; elsewhere in user interface development it’s sometimes
called a hotspot.

Figure 9.4. The transparent proxy element layer.

A better procedure for dragging an element, including the new proxy elements,
might be:

267

Implementing Drag-and-Drop

1. When the user holds the mouse button down over a draggable element:

❑ Set a variable dragMode to true.

❑ Record which element fired the mousedown event.

❑ Create invisible proxy elements for each target element in the document
(note that this is done every time a drag starts, not just once at document
creation).

❑ Each proxy element should have a mouseover and mouseout event
listener; the mouseover listener must apply the hover class to the real
element corresponding to this proxy (not the proxy itself).

❑ The mouseout listener should remove the hover class from the real element
corresponding to this proxy.

2. When the user releases the mouse button, set dragMode to false. Remove
the transparent proxy targets. If a target is of class hover, call the
moveFileHere method for that element.

3. If the cursor moves, and dragMode is true, change the position of the recorded
element to reflect the position of the cursor.

That’s the right recipe for highlighting drag targets.

Creating Proxy Drag Targets

The creation of proxy targets will be triggered whenever the user starts to drag a
draggable element. We’ll see how this is set up in a moment, but for now, let’s
look at the process itself, which is completed by the createProxyTargets
method:

File: fileman.js (excerpt)

 createProxyTargets: function() {
 fM.PROXY_TARGETS = [];
 var targets = document.getElementsByTagName('*');
 for (var i = 0; i < targets.length; i++) {
 var t = targets[i];
 if (t.className.search(/\btarget\b/) != -1) {
 var proxyTarget = document.createElement('a');
 proxyTarget.className = 'proxyTarget';
 proxyTarget.style.left = fM.findPosX(t) + 'px';

268

Chapter 9: Communicating With The Server

 proxyTarget.style.top = fM.findPosY(t) + 'px';
 proxyTarget.style.width = t.offsetWidth + 'px';
 proxyTarget.style.height = t.offsetHeight + 'px';
 proxyTarget.href = '#';
 proxyTarget.realElement = t;

 fM.PROXY_TARGETS[fM.PROXY_TARGETS.length] = proxyTarget;
 document.body.appendChild(proxyTarget);

 fM.addEvent(proxyTarget, 'mouseover', fM.targetOver,
 false);
 fM.addEvent(proxyTarget, 'mouseout', fM.targetOut, false);
 }
 }
 },

This method iterates through each drop target element t, and dynamically creates
a new a element with a CSS class of proxyTarget. We use this in our style sheet
to style the proxy element as required:

File: fileman.css (excerpt)

.proxyTarget {
 cursor: crosshair;
 position: absolute;
 background-color: white;
 z-index: 1000;
 opacity: 0;
 filter: alpha(opacity=0);
}

In addition to changing the mouse cursor, our proxy objects are given a back-
ground color so that they occupy the entire rectangular area of the drop target.
The z-index of 1000 ensures that they will float over the draggable elements.
Finally, we render the proxy objects invisible by setting an opacity of zero (the
filter property is required to do this in Internet Explorer).

The createProxyTargets method calculates the drop targets’ sizes and positions,
and copies them to this proxy element. A reference to the proxy’s associated real
target element is stored in proxyTarget.realElement, so that it can be retrieved
later if the proxy is moused over. The proxy element is then added to
fM.PROXY_TARGETS (a list of all proxy elements), as well as the document. Finally,
the proxy gets its own listeners that will respond to the mouseover and mouseout
events. They’re discussed in the next section.

269

Implementing Drag-and-Drop

Once dragging is finished, the proxy elements need to be removed from the doc-
ument. Again, we’ll get around to discussing how this is triggered shortly, but
here’s the method that will do the job:

File: fileman.js (excerpt)

 removeProxyTargets: function() {
 for (var i = 0; i < fM.PROXY_TARGETS.length; i++) {
 var tt = fM.PROXY_TARGETS[i].realElement;
 tt.className = tt.className.replace(/\bhover\b/, '');
 document.body.removeChild(fM.PROXY_TARGETS[i]);
 }
 fM.PROXY_TARGETS = [];
 },

In addition to removing from the document all of the proxy elements that were
stored in the fM.PROXY_TARGETS array, and emptying this array, this method also
performs a little cleanup for the mouseover event listener. The method removes
the hover CSS class (discussed in the previous section) if the event listener has
set it on any of the drop target elements.

Highlighting a Drag Target

The specification says that dragging a file onto a folder should highlight the folder
while the cursor is over it. In our planning, we decided that a moused-over target
should have the hover CSS class applied to produce this effect. The
createProxyTargets method above sets targetOver and targetOut as the
mouseover and mouseout listeners for a proxy element. It’s these proxy methods,
combined with a little CSS, that do the highlighting work.

File: fileman.js (excerpt)

 targetOver: function(e) {
 var t = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!t) return;
 var tt = t.realElement;
 tt.className += ' hover';
 },

 targetOut: function(e) {
 var t = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!t) return;
 var tt = t.realElement;

270

Chapter 9: Communicating With The Server

 tt.className = tt.className.replace(/\b ?hover\b/, '');
 },

Remember that the mouseover event is fired by the proxy element, but the hover
class should be applied to the corresponding drop target element. So targetOver
obtains the element that fired the event, which is the proxy, gets the proxy’s
corresponding real drop target element, and applies the hover class to that ele-
ment. targetOut, similarly, removes the hover class from the drop target element.

Highlighting the target element is then a trivial application of CSS, since all targets
have a class of target, and currently-hovered targets also have a class of hover:

File: fileman.css (excerpt)

.target.hover {
 background-color: #999;
 color: red;
}

Note the combined class CSS selector: there is no space between .target and
.hover, meaning that it selects any element that has both classes.

Dropping onto the Drag Target

Lovely highlighting effects aside, the primary reason why the proxy elements exist
is so that when the user releases a draggable element over a drop target, that drop
target will be tagged with the hover CSS class. We can now use that class to
identify and process completed drag-and-drop operations.

Our library’s elementDropped method will be called whenever the user releases
a draggable element. As with createProxyTargets and removeProxyTargets,
we won’t worry about how this method is called just yet. Let’s just look at the
code:

File: fileman.js (excerpt)

 elementDropped: function(draggedObj, x, y) {
 var elements = document.getElementsByTagName('*');
 for (var i = 0; i < elements.length; i++) {
 var t = elements[i];
 if (t.className.search(/\btarget\b/) != -1 &&
 t.className.search(/\bhover\b/) != -1 && t.onDroppedOn)
 {
 t.onDroppedOn(draggedObj);
 }

271

Implementing Drag-and-Drop

 }
 },

This method receives a reference to the draggable element (as well as the mouse
coordinates, which we won’t use).

In our application, the action that is taken as a result of a drag-and-drop operation
will be controlled by the drop target. Each drop target will store its action as a
handler function stored in an onDroppedOn property. The elementDropped
method, therefore, searches through all the elements in the document, looking
for an element with both the target and hover CSS classes. That element will
be the drop target over which the cursor was positioned when the draggable ele-
ment was released, so elementDropped calls its onDroppedOn handler function,
passing to it the reference to the draggable element.

It’s up to the init method of our script to set up the onDroppedOn handlers for
each of the drop targets in the document. Now’s a good time to take a look at
that method:

File: fileman.js (excerpt)

 init: function() {
 if (!document.getElementById ||
 !document.getElementsByTagName || !Drag || !Drag.init)
 return;

 // Make the targets remove the element when dropped upon
 var elements = document.getElementsByTagName('*');
 for (var i = 0; i < elements.length; i++) {
 var t = elements[i];
 if (t.className.search(/\btarget\b/) != -1) {
 t.onDroppedOn = fM.moveFileHere;
 }
 }

 // Make folders clickable to list that folder's files
 var fs = document.getElementById('folders').
 getElementsByTagName('a');
 for (var i = 0; i < fs.length; i++) {
 fM.addEvent(fs[i], 'click', fM.openFolder, false);
 // Safari
 fs[i].onclick = function() { return false; };
 }

 // Load the initial fileset

272

Chapter 9: Communicating With The Server

 fM.loadFiles('/');
 },

After checking for the features required by the script, init loops through all
elements in the document, looking for those with the CSS class target—the
drop targets. To each of those, it assigns the moveFileHere method as its
onDroppedOn handler function. Remember, this is not a standard DHTML
property; it’s just a convenient property name we’ve chosen for use by the
elementDropped method.

The rest of the init method has to do with setting up the file listing. It adds the
openFolder method as a click event listener to each of the folder names on the
page; this will cause a click on a folder name to load the contents of the associated
folder into the file list. Since this listener can’t cancel the click event in Safari,
we also assign an old-style event handler to do that.

Finally, the root directory ('/') is loaded by calling loadFiles directly to create
the initial file listing on the page.

Handling Drag-and-Drop Events

We’ve now written a slab of code that hinges on the dragging functionality
provided by the DOM-Drag library. To make it all work, we need to hook that
library into our script. We need to tell the library which elements should be
draggable; we need it to do things when a drag operation begins
(createProxyTargets), and we need it to do things when a drag operation ends
(elementDropped, removeProxyTargets). We’ll implement all of this with the
last method in our script, setUpDraggables.

setUpDraggables is called by the receiveFilenames method after it has received
the list of filenames from the server and added them to the document as li ele-
ments of class draggable:

File: fileman.js (excerpt)

 receiveFilenames: function(xml, path) {
 ...
 files.appendChild(ul);
 setTimeout(fM.setUpDraggables, 100);
 },

setUpDraggables starts by finding all such elements, and making them draggable
using the DOM-Drag library:

273

Implementing Drag-and-Drop

File: fileman.js (excerpt)

 setUpDraggables: function() {
 var elements = document.getElementsByTagName('*');
 for (var i = 0; i < elements.length; i++) {
 var draggable = elements[i];
 if (draggable.className.search(/\bdraggable\b/) != -1) {
 Drag.init(draggable);

Once an element has been made draggable using DOM-Drag, you can provide
handler functions to be called whenever a drag operation starts or finishes. Do
this simply by assigning functions to the draggable elements’ onDragStart and
onDragEnd properties. Again, these are special property names used by the DOM-
Drag library, not standard DOM events.

Here’s the onDragStart handler for this application:

File: fileman.js (excerpt)

 draggable.onDragStart = function(x, y) {
 document.body.className += ' dragging';
 fM.createProxyTargets();
 this.ZINDEX = this.style.zIndex;
 this.style.zIndex = 999;
 this.SAVED_POSITION = [x, y];
 };

First of all, this handler adds a CSS class of dragging to the body element. Our
style sheet will use this to change the cursor while a drag-and-drop operation is
in progress:

File: fileman.css (excerpt)

body.dragging {
 cursor: move;
}

Next, it calls createProxyTargets, which creates proxy objects for all of the drop
targets on the page.

The draggable element’s original z-index is stored into a ZINDEX property on
the object, before a new value of 999 is applied, so that it floats just below the
proxy objects. Finally, the draggable object’s starting position—as provided by
the x and y arguments to the handler function—is stored in a SAVED_POSITION
property.

274

Chapter 9: Communicating With The Server

When the user releases the mouse button, completing the drag operation, DOM-
Drag calls the onDragEnd handler:

File: fileman.js (excerpt)

 draggable.onDragEnd = function(x, y) {
 this.style.left = this.SAVED_POSITION[0];
 this.style.top = this.SAVED_POSITION[1];
 this.style.zIndex = this.ZINDEX;
 fM.elementDropped(this, x, y);
 fM.removeProxyTargets();
 document.body.className =
 document.body.className.replace(/\b ?dragging\b/,
 '');
 };
 }
 }
 },

This function starts by moving the draggable element back to its starting position
and z-index, which were stored in the SAVED_POSITION and ZINDEX properties,
respectively. This causes dragged filenames to “snap” back if they aren’t dropped
on a valid target.

Next, the function calls our elementDropped method, which checks if the element
was dropped on a valid target, and, if so, triggers the file move operation.

It then cleans up the proxy elements by calling removeProxyTargets, and finally
removes the dragging CSS class from the document body.

Expanding and Collapsing Lists
At this point, we have a working file manager, which allows the user to drag files
to folders; the element showing the filename is removed from the HTML and a
command is sent to the server to move the file on the server’s file system. The
remaining requirement is to allow the folder list to be expanded and collapsed.

Fortunately, this can be implemented with very little extra work, using my own
aqtree3 script6. To make a set of nested, unordered lists expand and collapse,
simply load the aqtree3 JavaScript and CSS files in the HTML:

6 http://www.kryogenix.org/code/browser/aqlists/

275

Expanding and Collapsing Lists

http://www.kryogenix.org/code/browser/aqlists/

File: fileman.html (excerpt)

 <script type="text/javascript" src="aqtree3clickable.js">
 </script>
 <script type="text/javascript" src="dom-drag.js"></script>
 <script type="text/javascript" src="sarissa.js"></script>
 <script type="text/javascript" src="fileman.js"></script>
 <link rel="stylesheet" href="aqtree3clickable.css">
 <link rel="stylesheet" href="fileman.css">

Then, change the folder list tag to have class aqtree3clickable:

File: fileman.html (excerpt)

 <ul class="aqtree3clickable">

As it turns out, this doesn’t quite work. If you loaded the page at this stage, you’d
find yourself unable to expand the folder list to view the subfolders. Can you
guess why?

To ensure compatibility with Safari, I wrote the aqtree3 script using old-style
event handlers instead of event listeners. In particular, the onclick event handler
of each of the folder links is used to expand and collapse the folder tree. Our file
manager script overwrites this event handler with its own onclick handler, de-
signed to cancel the click event in Safari:

File: fileman.js (excerpt)

 // Safari
 fs[i].onclick = function() { return false; };

This is an example of clashing event handlers, which is the reason modern DOM
event listeners were created. You can assign as many listeners as you want to an
event, but only one event handler. In a more sophisticated script, we might detect
the existing event handler and call it from our own event handler, but since the
aqtree3 script does a fine job of cancelling the click event with its own event
handler, we can simply not assign our event handler when an existing one is
found:

File: fileman.js (excerpt)

if (!fs[i].onclick) {
 // Safari
 fs[i].onclick = function() { return false; };

}

The number of free, unobtrusive DHTML scripts designed to drop into place in
your pages grows daily. Scripts like this file manager application are precisely the

276

Chapter 9: Communicating With The Server

purpose for which they’re designed. These scripts enhance functionality and are
easy to implement, so save yourself sweat and toil and enjoy the convenience.
Just be sure to watch out for clashes—until such time as all browsers fully imple-
ment the DOM standard for events, scripts written for maximum compatibility
may not be strictly unobtrusive.

With all that code in place, the file manager is finished. Looking back on the
specification, everything in it is complete. This is another good reason to have a
clear specification up front: it lets you know when to stop coding!

Using XML-RPC
Some Web applications—front and back ends—are built as one unit, like the file
manager example. In such cases, the developer can choose to implement the set
of methods that are called in the back end, and the way in which those methods
are called, using any approach that seems appropriate. This list of methods,
combined with the ways in which they’re called, forms the back end’s API, or
application programming interface.

Sometimes, instead of implementing both the front and back ends together, you
may want to write an API for other developers to call via HTTP requests from
their own applications. One way to write such an API is to use XML-RPC—a
simple standard for Web-accessible APIs, commonly called Web services.

A service that provides (exports) an XML-RPC API, when used with an XML-
RPC client library, can be called as if it were a local set of methods, even though
it is not. The complexity of sending requests and receiving responses over HTTP
is completely hidden.

For example, the Blogger7 API is an XML-RPC API presented by the Blogger
weblogging application, which provides the functionality to maintain a journal,
or Weblog. It offers methods such as editPost, newPost, and getUserBlogs.

The data that you pass to a given method (such as editPost) is passed over
HTTP to a remote server on which the method is executed. The return value is
passed back by HTTP to your code. Your code does not have to concern itself
with details of network connectivity; those and similar details are all taken care
of by the XML-RPC client library. This gives the technology the second part of
its name: RPC stands for Remote Procedure Call, the idea being that one can
call a method that takes effect on a remote server as if it were a local method. Pro-

7 http://www.blogger.com

277

Using XML-RPC

http://www.blogger.com

cedure is an old name for function or subroutine. Figure 9.5 illustrates this ar-
rangement.

Figure 9.5. Local methods vs. XML-RPC remote methods.

In Figure 9.5, the user code (in the boxes on the left) calls
document.getElementById and blogger.getUsersBlogs in identical ways, as
if both were local methods. The blogger.getUsersBlogs method, however, is
actually provided by the JavaScript XML-RPC client library, because it is acting
as a proxy for the blogger.getUsersBlogs method on a remote server. The two
methods are called identically from user code.

The first part of XML-RPC’s name comes from the method it uses to pass your
function call over HTTP; it converts the method call and the passed parameters
to XML. You do not need to know the detail of how this works in order to use
it; in fact, the whole point of XML-RPC is that you can call remote methods
without having to worry about how that call happens. Those who are curious, or

278

Chapter 9: Communicating With The Server

don’t have enough to do, can find more detail than they will ever need in the
XML-RPC specification8.

Calling XML-RPC APIs
Let’s continue with the Blogger example. The Blogger API, as mentioned above,
is an API that allows the editing and creation of posts on a Weblog, and it’s a
fully documented XML-RPC API9. This means that any program that can act as
an XML-RPC client can use the API to edit posts on a Weblog. The relevant
methods in the API are blogger.getRecentPosts, which returns a list of recent
posts, blogger.newPost, which adds a new post to the Weblog, and
blogger.editPost, which supplies new content for an existing post.

To use the API from JavaScript, a JavaScript XML-RPC client is needed. There
are a few around; one of the best is the xmlrpc module of jsolait10. Using the
client is simple. First, include the library in your code with a <script> tag:

File: editblog.html (excerpt)

 <script type="text/javascript" src="jsolait/init.js"></script>

Everything else occurs in custom JavaScript that you must write for each page.
Start by loading the xmlrpc module using jsolait’s importModule function:

var xmlrpc = importModule('xmlrpc');

Next, create an object to represent the particular XML-RPC API you wish to call.
You can either get jsolait to create the object for you, and auto-detect all the
methods it makes available using the ServerProxy class:

var remoteAPI = new xmlrpc.ServerProxy(URL);

or you can create the object yourself and use the XMLRPCMethod class to create
methods that call the XML-RPC API. The advantage here is that you can name
your local methods whatever you like:

var remoteAPI = {
 getRecentPosts: new xmlrpc.XMLRPCMethod(URL,
 'blogger.getRecentPosts'),
 editPost: new xmlrpc.XMLRPCMethod(URL, 'blogger.editPost')
};

8 http://www.xmlrpc.com/spec
9 http://plant.blogger.com/api/1_docs
10 http://www.jsolait.net/

279

Calling XML-RPC APIs

http://www.xmlrpc.com/spec
http://plant.blogger.com/api/1_docs
http://www.jsolait.net/

In the above example, the XML-RPC API’s method names contain a dot (.), so
they won’t work as JavaScript method names. We’ve therefore used the second
technique to assign simpler method names.

In either case, we must specify the location of the XML-RPC API (this is some-
times called the endpoint, and is the URL of the script to which you pass the
XML-RPC commands). The remote method becomes accessible as a method of
the API object. What that actually means in plain English is that code can now
call the remote blogger.getRecentPosts method transparently, by calling the
following (for example):

var result = remoteAPI.getRecentPosts(arguments);

Pages that make these calls are normally retrieved from the same server that
processes the calls. Security restrictions prevent you from loading a page from
one server and making XML-RPC calls to a server that’s located elsewhere. So,
in JavaScript, the client and server form a consistent pair. This is not true of Web
services in general.

Example: Weblog Post Editor
Armed with this knowledge of the Blogger API, and a trusty XML-RPC client
library, we can very easily build a simple post editor for a Weblog. Only three
actions are required:

1. Get a list of posts from the server.

2. Display the content of one of the fetched posts for editing.

3. Save the edited post back to the server.

Before we design our page, it makes sense to confirm that the Blogger API can
do what we want it to. All APIs are different; there’s no point committing to a
big design project if the XML-RPC system won’t support it.

Exploring the Blogger API

For all three of the required actions, start by turning to the Blogger API specific-
ation. That document states that the method signature for
blogger.getRecentPosts requires five arguments: appkey, blog name, username,
password, and number of posts. The first four are specific to the Weblog in use
(appkey may be blank for non-Blogger Weblogs that support the Blogger API).

280

Chapter 9: Communicating With The Server

Retrieving the five most recent posts, then, given that getRecentPosts was
“wrapped” above with a call to add, is this simple:

var posts = remoteAPI.getRecentPosts(appkey, blogname, username,
password, 5);

The posts variable now contains a list of post objects that have content and
postid properties (along with a few others). We can use that data to display one
of the posts for editing.

Saving an edited post back to the server is similarly easy. According to the Blogger
API specification, it’s done this way:

remoteAPI.editPost(appkey, postid, username, password, content);

These arguments are quite self-explanatory.

Armed with those two methods, we have all we need to access the back end.

Setting up the Page Content

For this simple example, all we need is a little event handling to tie everything
together, as well as some HTML to define the editing controls. We’ll use a tex-
tarea and a couple of buttons, which give us this starting point:

File: editblog.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>editblog</title>
 <script type="text/javascript" src="jsolait/init.js"></script>
 <script type="text/javascript" src="editblog.js></script>
 </head>
 <body>
 <button id="get">Get posts</button>
 <ul id="posts">
 <textarea id="post" cols="80" rows="16"></textarea>
 <button id="save" disabled="disabled">Save</button>
 </body>
</html>

The first script loaded by this page is the jsolait library; the second is our own
code. The ul element will display the received posts. The buttons will, eventually,
call the XML-RPC methods of the Blogger API.

281

Example: Weblog Post Editor

We’re not using styles for this simple example, but as usual, we’ll build ourselves
a JavaScript library object. Here’s the object signature that we’ll end up with:

File: editblog.js (excerpt)

var eB = {
 /* Change these bits */
 USERNAME: 'sil',
 PASSWORD: 'nowayjose!',
 API_URL: 'example_blogger.php',
 BLOG_NAME: '/main',

 /* Don't change anything below here */
 posts: null,

 init: function() { ... },
 addEvent: function(elm, evType, fn, useCapture) { ... },

 getPosts: function() { ... },
 addItem: function(para, post) { ... },
 clickLink: function() { ... },
 sendPost: function() { ... }
}

eB.addEvent(window, 'load', eB.init, false);

init and addEvent have their usual roles. clickLink is an event listener;
getPosts and sendPosts wrap up the two required XML-RPC calls; addItem is
a utility method that updates the page.

We’ve also declared a property named posts, which holds no initial value, but
which is used later to store the posts retrieved from the server. While handy, this
approach does mean that we can only have one blog editor per page.

The init method that sets up the necessary event listeners, as well as the XML-
RPC service, looks like this:

File: editblog.js (excerpt)

 init: function() {
 if (!jsolait) return;
 if (!document.getElementById) return;

 var xmlrpc = importModule('xmlrpc');
 eB.api = {
 getRecentPosts: new xmlrpc.XMLRPCMethod(eB.API_URL,
 'blogger.getRecentPosts'),

282

Chapter 9: Communicating With The Server

 editPost: new xmlrpc.XMLRPCMethod(eB.API_URL,
 'blogger.editPost')
 };

 var element;
 element = document.getElementById('get');
 eB.addEvent(element, 'click', eB.getPosts, false);
 element = document.getElementById('save');
 eB.addEvent(element, 'click', eB.sendPost, false);
 },

XMLRPCMethod is a method of the jsolait library’s xmlrpc module; it takes the
URL of the XML-RPC service as a parameter, as well as the method name you
wish to be able to call, and creates a method that will call that remote method.
Since it is creating a JavaScript object, it must be called as a constructor using
JavaScript’s new operator. In this case, we create XMLRPCMethod objects for the
blogger.getRecentPosts and blogger.editPost methods of the Blogger API.

As you’ve come to expect by now, the init method finishes off by setting up the
event listeners required by our application. A click on the get button will call
getPosts, while a click on the save button will call sendPost.

Coordinating Page and Server

The Blogger API describes the exact data that moves back and forth between
client and server. The jsolait library wraps that API up in a JavaScript library,
and allows us, via init, to expose the XML-RPC calls to direct use. As such,
there’s no server side work to do, except for installing a server-side script that
supports the Blogger API. Once that’s done, all we have to do is hook up the API
to the page by filling in our library object. Let’s go through the required methods
one at a time.

The getPosts method fetches the posts from the server (using
eB.api.getRecentPosts, as above):

File: editblog.js (excerpt)

 getPosts: function() {
 try {
 eB.posts = eB.api.getRecentPosts(
 '', eB.BLOG_NAME, eB.USERNAME, eB.PASSWORD, 5);
 } catch(e) {
 alert('There was an error fetching posts.');
 return;
 }

283

Example: Weblog Post Editor

 var p = document.getElementById('posts');
 p.innerHTML = '';
 for (var i = 0; i < eB.posts.length; i++) {
 eB.addItem(p, eB.posts[i]);
 }
 },

This is the first practical example we’ve seen of JavaScript exception handling
(not event handling or error handling) since introducing the technique in
Chapter 5. There are two parts to exception handling: the so-called try block
(the keyword try and its following curly brackets) and the catch block (the
keyword catch and its curly brackets). Adding a try block to a piece of ordinary
JavaScript does absolutely nothing, unless that code creates an exception. An excep-
tion is a special kind of object that interrupts the code immediately it’s created.
If an exception occurs, then the try block prevents the exception from turning
into an error message. Instead, the code in the catch block is executed. In our
case, that means showing an alert that contains some user-readable text.

getPosts uses try and catch because the jsolait library sometimes throws excep-
tions. When the getRecentsPosts method is called, it might send back an excep-
tion if something goes wrong. Our code has to be ready for that possibility, so
we wrap the call in a try block. If nothing goes wrong, getPosts will get back an
array of posts. It then creates a clickable link for each post in the returned array
by calling addItem repeatedly. Here’s addItem:

File: editblog.js (excerpt)

 addItem: function(para, post) {
 var text = document.createTextNode(post.postid);

 var a = document.createElement('a');
 a.href = '#';
 a.postID = post.postid;
 eB.addEvent(a, 'click', eB.clickLink, false);
 a.appendChild(text);

 var li = document.createElement('li');
 li.appendChild(a);

 para.appendChild(li);
 },

This method takes a container element (para) and the post information, and
creates extra HTML content. First, it creates a plain text node. Next, it creates
a link, which it decorates with an event listener and a property containing the

284

Chapter 9: Communicating With The Server

post ID. Then, it puts the text node inside the link. It then creates a list item,
and puts the link inside it. Finally, it places the whole list item—link, text, and
listener—inside the container element. That’s when it appears on the page.

Here’s the clickLink listener that’s dynamically added to the links created by
addItem:

File: editblog.js (excerpt)

 clickLink: function(e) {
 var t = window.event ? window.event.srcElement : e ?
 e.target : null;
 if (!t) return;
 while (t.nodeName.toLowerCase() != 'a' &&
 t.nodeName.toLowerCase() != 'body')
 t = t.parentNode;
 var postid = t.postID;
 for (var i = 0; i < eB.posts.length; i++) {
 if (eB.posts[i].postid == postid) {
 eB.CURRENT_POST = postid;
 document.getElementById('post').value =
 eB.posts[i].content;
 document.getElementById('save').disabled = '';
 return;
 }
 }
 },

All this does is copy the post ID from the property on the current link, scan all
the posts for a match, make this post the current one, and place the post’s content
in the visible text box, where the user can edit it. Here’s the final step, sendPosts,
which submits the edited post:

File: editblog.js (excerpt)

 sendPost: function() {
 try {
 eB.api.editPost(
 '', eB.CURRENT_POST, eB.USERNAME, eB.PASSWORD,
 document.getElementById('post').value, true);
 alert('Post saved OK!');
 document.getElementById('post').value = '';
 eB.CURRENT_POST = null;
 document.getElementById('save').disabled = 'disabled';
 } catch(e) {
 alert('There was an error saving your post.\n(' +
 e.message + ')');

285

Example: Weblog Post Editor

 return;
 }
 },

This is very similar to getPosts: again we have to be sure to catch any exceptions
that might occur. Otherwise, it’s quite straightforward: send the data to the
server, and tell the user what happened.

Summary
Any sufficiently complex Web application will involve a great deal of back-and-
forth data exchange with the server. As we saw in Chapter 8, the nature of the
DOM and the XMLHttpRequest class lets the browser perform these data exchanges
without interruptions or page refreshes. You can go further than just reading data
from a server; you can control the server from the client.

Techniques used in larger applications can also be put to good use when adding
extra functionality to Websites. There’s no need to write everything yourself
when many standard libraries are available for free.

Dynamically requesting extra data, or running commands on the server based on
user actions, makes it possible to add an extra degree of interactivity to your sites.
Running commands remotely is made even easier with the advent of XML-RPC,
which makes the remote methods available as local methods and removes the
complexity of passing the commands across the network yourself. These techniques
help DOM scripting take a step towards a whole new world of application richness

286

Chapter 9: Communicating With The Server

DOM Alternatives: XPath10
The path of precept is long, that of example short and effectual.
—Seneca

So far, this book has concentrated on manipulating HTML documents using
DOM interfaces and scripts. In this final chapter, we’ll examine an alternative:
XPath syntax. XPath is a handy tool for extracting elements from documents. It
is also a vital starting point for XSLT, which we won’t have time to cover here.

Previously, we looked at the HTML DOM in detail. Most of the DOM features
we have explored also apply to pure XML documents. For example, an XML
DOM object provided by the Sarissa library offers the same methods as the
window.document object: getElementById, and getElementsByTagName. Similarly,
if you load an XHTML or plain XML document into a modern browser, these
methods appear on the document object there as well.

These DOM methods are simple and obvious to use, but they’re also quite wordy.
When complex manipulation is required, it can take a lot of JavaScript code to
string these methods together in the right order. That’s less than ideal.

XPath is a significantly more powerful method than the DOM for accessing the
parts of an XML document. In simple cases, it’s also more compact. Let’s see
how it’s done.

Introducing XPath
XPath is a W3C standard, like HTML, but it contains no elements or tags. In-
stead, it provides syntax for special strings.

An XPath string identifies nodes in an XML document, similar to the way in
which file paths identify files in a file system. Just as file paths can have wildcards
(patterns) that match more than one file, so too can XPath strings match more
than one node.

Imagine we have this simple XML document:

<day>
 <activity type="fun" time="1300" duration="1h">
 Drink beer
 <activity type="fun work">
 <purchase type="book">Modern DOM Scripting</purchase>
 </activity>
 </activity>
 <activity type="work" time="0900" duration="9h">
 Write code
 </activity>
 <activity type="fun" time="2200" duration="2h">
 Write code
 </activity>
 <activity>
 sleep
 </activity>
</day>

Suppose also that we have a DOM document object, dom, which contains this
XML. To select the day element using the standard DOM methods, we would
use:

var day = dom.getElementsByTagName('day')[0];

By comparison, an XPath string (henceforth, simply an XPath) that identifies
this node1 is as follows:

/day

1 Technically, it actually identifies a list of matching nodes, and that list has only one item in it.

288

Chapter 10: DOM Alternatives: XPath

As for a file system path, an XPath string starting with a slash represents an ab-
solute path, from the root of the document. Selecting all the top-level activity
nodes (of which there are four) is achieved with the following string:

/day/activity

This path identifies a list of nodes in the same way that
dom.getElementsByTagName will return a list. But this particular XPath does not
select every single activity element! It selects only those four activity elements
that are immediate children of the day element.

There’s no equivalent for that selective behavior in the DOM. To get the same
list, you’d have to look at all the childNodes of the day element, and loop through
them, tossing out any that aren’t activity elements. Here’s how it would be
done in JavaScript:

function get_some_activities(dom) {
 var result = [];
 var kids = dom.getElementById('day').childNodes;
 for (var i = 0; i < kids.length; i++) {
 if (kids[i].tagName == 'activity')
 result.push(kids[i]);
 }
 return result;
}

That’s a lot of code, compared to the XPath alternative.

The additional, nested activity element (type="fun work") can be identified
by this path:

/day/activity/activity

Here’s another example. An XPath that begins with a double slash will select all
nodes in the document that have the specified name. Here’s an example:

//activity

This identifies all activity elements, including the nested element. This is
nothing like a file path, because it looks all the way through the DOM tree. Nor
is it anything like a Windows network share (e.g. \\server\docs). Instead, it is
exactly equivalent to this DOM call, which also looks throughout the DOM tree
for elements with the specified name:

289

Introducing XPath

dom.getElementsByTagName('activity');

An XPath path can also select nodes based on attribute values.

//activity[@time="0900"]

The above path would select all activity elements with a time attribute of
“0900” (in this example, one element only). We can also specify an index to select
one node from a group of nodes.

/day/activity[2]

The above XPath selects the second activity that is a child of the day (in this
case, writing code at work from 0900). Notice how XPath numbering starts at 1
(one) not 0 (zero)—another difference between XPath and JavaScript arrays.

Applying XPath to XML
The two major browsers provide access to XPath searches on XML documents
in different ways. Mozilla-based browsers implement the W3C DOM Level 3
specification for XPath2, while Internet Explorer implements a proprietary set of
methods. Fortunately, the Sarissa library comes to the rescue, providing a cross-
browser set of methods. Unfortunately, there is no solution that also works on
Opera or Safari. Nevertheless, we recommend using Sarissa if you can get away
with it.

To enable Sarissa’s cross-browser XPath support, you need to load the
sarissa_ieemu_xpath.js file in addition to the usual sarissa.js file:

File: xpath-example.html (excerpt)

 <script type="text/javascript" src="sarissa.js"></script>
 <script type="text/javascript" src="sarissa_ieemu_xpath.js">
 </script>
 <script type="text/javascript" src="xpath-example.js">
 </script>

Here’s an example of XPath use with Sarissa:

File: xpath-example.js

var xml = '<?xml version="1.0" encoding="UTF-8"?>' +
 '<day>' +

2 http://www.w3.org/TR/DOM-Level-3-XPath/

290

Chapter 10: DOM Alternatives: XPath

http://www.w3.org/TR/DOM-Level-3-XPath/
http://www.w3.org/TR/DOM-Level-3-XPath/

 ' <activity type="fun" time="1300" duration="1h">' +
 ' Drink beer' +
 ' <activity type="fun work">' +
 ' <purchase type="book">Modern DOM Scripting</purchase>'+
 ' </activity>' +
 ' </activity>' +
 ' <activity type="work" time="0900" duration="9h">' +
 ' Write code' +
 ' </activity>' +
 ' <activity type="fun" time="2200" duration="2h">' +
 ' Write code' +
 ' </activity>' +
 ' <activity>sleep</activity>' +
 '</day>';

var dom = Sarissa.getDomDocument();
dom.loadXML(xml);

/* Commands to make the XPath selections work in IE */
dom.setProperty('SelectionNamespaces',
 'xmlns:xsl="http://www.w3.org/1999/XSL/Transform"');
dom.setProperty('SelectionLanguage', 'Xpath');

var xpaths = [
 '//day',
 '/day',
 '/day/activity',
 '/day/activity/activity',
 '//activity',
 '//activity[@time="0900"]',
 '/day/activity[2]'];

function queries() {
 for (var i = 0; i < xpaths.length; i++) {
 var nodes = dom.selectNodes(xpaths[i]);
 var results = xpaths[i] + '\n';
 for (var j = 0; j < nodes.length; j++) {
 results += nodes[j].nodeName + '\n';
 }
 alert(results);
 }
}

window.onload = queries;

291

Applying XPath to XML

We set up a Sarissa DOM document object (in production code, this would be
retrieved from the server), then use the document object’s selectNodes method
to return nodes. dom.selectNodes(xpath) returns the list of nodes that are
identified by the XPath string xpath.

Document objects also have a selectSingleNode method; this should be used
when only one node will be identified by the XPath. Be careful with this: if the
XPath actually identifies more than one node, the results are unpredictable (in
Mozilla, it returns only the first matched node; in IE it may throw an error). The
best approach is to always use selectNodes and extract the first node out of the
results in cases in which there is any doubt at all.

The returned nodes are still part of the document from which they came. If you
change them once they’ve been retrieved, the document from which they came
will also be changed. You must copy them, or detach them from the document
if you want to work on them in isolation.

XPath Learning Resources
The methods described here are part of the DOM specification for XPath; you
should be aware, however, that there is a lot more to explore.

The full XPath specification3 is an outstandingly long and complex document,
though it contains a lot of power. A better introductory guide is the XPath tutorial
at zvon.org4, which walks through increasingly complex XPath expressions. It’s
worth your time if you are likely to work with XML in any depth. The W3Schools
Website also has an introductory guide to XPath5 that compliments the Zvon
guide.

Example: Parsing RSS Feeds
A good proportion of Weblogs have a blogroll: a list of other recommended
Weblogs that the discriminating user might like to read. Most Weblogs also offer
RSS feeds: an alternative version of the Weblog’s content in XML. That being
the case, a useful enhancement might be to display alongside a link to another
Weblog, links to specific posts in that Weblog.

3 http://www.w3.org/TR/xpath
4 http://www.zvon.org/xxl/XPathTutorial/General/examples.html
5 http://www.w3schools.com/xpath/default.asp

292

Chapter 10: DOM Alternatives: XPath

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.w3schools.com/xpath/default.asp

Getting the names of, and links to, the posts from the XML of the RSS feed is a
task that’s well-suited to XPath.

About RSS 1.0
RSS is complicated, and offers many different and mutually incompatible ver-
sions.6 For the sake of simplicity during this example, it will be assumed (a vast
and horrible oversimplification!) that all RSS feeds are actually RSS 1.0. An RSS
1.0 feed looks something like this:

File: rss-example.rdf

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet href="/rss.xsl" type="text/xsl"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel
 rdf:about="http://www.sitepoint.com/blog-view.php?blogid=5">
 <title>SitePoint's DHTML & CSS Blog: Stylish
 Scripting</title>
 <link>http://www.sitepoint.com/blog-view.php?blogid=5</link>
 <description>The latest posts in SitePoint's DHTML & CSS
 blog, 'Stylish Scripting'.</description>
 <image rdf:resource=
 "http://www.sitepoint.com/images/sitepoint-logo.gif"/>
 <items>
 <rdf:Seq>
 <rdf:li rdf:resource=
 "http://www.sitepoint.com/blog-post-view.php?id=197199"
 />
 <rdf:li rdf:resource=
 "http://www.sitepoint.com/blog-post-view.php?id=196678"
 />
 </rdf:Seq>
 </items>
 </channel>

 <image rdf:about=
 "http://www.sitepoint.com/images/sitepoint-logo.gif">
 <title>SitePoint's DHTML & CSS Blog: Stylish
 Scripting</title>
 <link>http://www.sitepoint.com/blog-view.php?blogid=5</link>

6 Those readers who already know about this will be nodding ruefully at this point:
http://diveintomark.org/archives/2004/02/04/incompatible-rss has more details.

293

About RSS 1.0

http://diveintomark.org/archives/2004/02/04/incompatible-rss

 <url>http://www.sitepoint.com/images/sitepoint-logo.gif</url>
 </image>

 <item rdf:about=
 "http://www.sitepoint.com/blog-post-view.php?id=197199">
 <title>CSS tricks in both dimensions</title>
 <link>
 http://www.sitepoint.com/blog-post-view.php?id=197199</link>
 <description>Cameron Adams and Dave Shea both came through
 recently with some smart new CSS techniques. Cameron's
 trick, entitled Resolution dependent layout, provides a
 welcome new angle to the long running debate over liquid vs.
 fixed width designs. The standard dilemma is that fixed...
 </description>
 <dc:date>2004-09-22T06:10:41Z</dc:date>
 </item>

 <item rdf:about=
 "http://www.sitepoint.com/blog-post-view.php?id=196678">
 <title>A9 and Google Local</title>
 <link>
 http://www.sitepoint.com/blog-post-view.php?id=196678</link>
 <description>If you want proof that remote scripting has hit
 the mainstream, look no further than the recent launches of
 both Amazon's A9.com search engine and Google's new Google
 Local service. Both make extensive use of remote scripting,
 a technique whereby JavaScript is used to refresh...
 </description>
 <dc:date>2004-09-20T05:41:45Z</dc:date>
 </item>
</rdf:RDF>

This listing is an abridged snapshot from the RSS 1.0 feed for SitePoint’s DHTML
and CSS Weblog7.

There are three sections to this document: channel, image, and item elements.
Each <rdf:li> tag in the channel section points to a single <item> tag—that’s
how the items are collected together. Don’t be confused by the use of RDF syntax
(RDF is another W3C XML standard); though complex, this file is still just plain
XML.

7 http://www.sitepoint.com/blog.rdf?blogid=5

294

Chapter 10: DOM Alternatives: XPath

http://www.sitepoint.com/blog.rdf?blogid=5
http://www.sitepoint.com/blog.rdf?blogid=5

Constructing Simple XPaths
The interesting parts of this feed, for our purposes, are the item elements that
describe Weblog posts, and the title, link, and description elements inside
them, which contain actual details. These elements are shown in bold above. You
can see that there is more than one item on the Weblog. In this case, there are
two posts. A list of these items can be obtained by applying the following XPath
expression to the document:

/rdf:RDF/item

Similarly, we can retrieve the title for an item by applying the following XPath
to the item’s node:

title

Without a leading forward-slash, this XPath is relative to the thing it’s applied
to—in this case, it’s relative to the item element. XPath has an idea of the current
node just as file system shells have an idea of the current directory.

Given all this, parsing the item elements and their associated data out of the
RSS 1.0 feed with XPath appears to be easy. Let’s parse the RSS into a JavaScript
object first. That can be done as follows, assuming that xml_content contains
the full text of the feed:

var dom = Sarissa.getDomDocument();
dom.loadXML(xml_content);

Having turned the document text into a DOM document fragment, we can apply
XPath expressions to it. Here’s some simple code to do just that:

var items = dom.documentElement.selectNodes('/rdf:RDF/item');
if (items.length > 0) {
 for (var j = 0; j < items.length; j++) {
 var i = items[j];
 var link =
 i.selectSingleNode('link').firstChild.nodeValue;
 var title =
 i.selectSingleNode('title').firstChild.nodeValue;
 var desc =
 i.selectSingleNode('description').firstChild.nodeValue;
 alert(link + ' ' + title + ' ' + desc);
 }
}

295

Constructing Simple XPaths

This code should produce an alert for every feed post. While it’s good in principle,
in practice, it doesn’t work, because the feed document isn’t a simple example
of XML. Our code is not sophisticated enough to handle complex XML. Let’s
address that shortcoming.

Adding XML Namespaces
In order to understand why this simple code doesn’t work, you’ll need to under-
stand the concept of XML namespaces. This is another wide-ranging and horribly
confused topic, but fortunately, we don’t need to know it all—just select sections.
8 In fact, if people were to stop shouting about it, you’d see in a second that
namespaces are really quite trivial.

A namespace in XML is a way of categorizing the elements in an XML document.
An element name may be a word, like item, or may include a namespace before
a colon, such as example:item, or rdf:RDF. In the second example, rdf is the
namespace, and RDF is an element name that occurs in that namespace.9

If an element has a namespace, that namespace has to be specified in the XPath,
and Sarissa has to be told about the namespace. The namespace for our RSS
document is described in the <rdf:RDF> tag in the XML. The xmlns attribute
holds the namespace declaration:

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

This means, “the XML namespace rdf is associated with the URL ht-
tp://www.w3.org/1999/02/22-rdf-syntax-ns#.” Actually, namespaces need
only be assigned a plain string, but developers nearly always use a URL in accord-
ance to convention, regardless of whether it points to an actual Website or not.

Our code teaches Sarissa about this namespace with the following line:

Sarissa.setXpathNamespaces(dom,
 'xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"');

This fix is not sufficient to solve the problem, because the RSS feed content also
has a default namespace on the <rdf:RDF> tag. That default namespace is de-
clared with this attribute:

8 The formal specification is at http://www.w3.org/TR/REC-xml-names/, and a useful FAQ and summary
document is available at http://www.rpbourret.com/xml/NamespacesFAQ.htm if you’d like to know
more.
9 Think of the namespace as qualifying the element. For example, a title element in HTML has a dif-
ferent meaning from title in RSS. The namespace indicates which sort of title this is.

296

Chapter 10: DOM Alternatives: XPath

http://www.w3.org/TR/REC-xml-names/
http://www.rpbourret.com/xml/NamespacesFAQ.htm

xmlns="http://purl.org/rss/1.0/"

Notice there’s no colon or name to the left of the equals sign. There’s no
namespace name (unlike the earlier case, where xmlns:rdf specified the
namespace name rdf). So in this example, as in most RSS 1.0 feeds, the default
namespace is associated with the URL http://purl.org/rss/1.0/.

The default namespace is assigned to every element for which a namespace is not
specified explicitly. In particular, the item elements in which we’re interested
don’t have specified namespaces, so they’re in the default namespace.

Sarissa doesn’t deal well with default namespaces, so we have to pretend that it’s
an explicit namespace, and use it as such. As such, we tell Sarissa that the default
namespace URL is actually associated with a real namespace, my, then use that
namespace in the XPaths.

Sarissa.setXpathNamespaces(dom,
 'xmlns:my="http://purl.org/rss/1.0/" ' +
 'xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"');
var items = dom.documentElement.selectNodes('/rdf:RDF/my:item');
if (items.length > 0) {
 for (var j = 0; j < items.length; j++) {
 var i = items[j];
 var link =
 i.selectSingleNode('my:link').firstChild.nodeValue;
 var title =
 i.selectSingleNode('my:title').firstChild.nodeValue;
 var desc =
 i.selectSingleNode('my:description').firstChild.nodeValue;
 alert(link + ' ' + title + ' ' + desc);
 }
}

The XPath is now /rdf:RDF/my:item, rather than /rdf:RDF/item. We’re expli-
citly specifying the default namespace instead of leaving it out.

Designing the Blogroll
Having determined what works on the XPath side, let’s now develop the content
of the blogroll page.

Designing the HTML

A simple blogroll might look like this:

297

Designing the Blogroll

<h1>Weblogs</h1>
<ul id="blogs">

 <a href=http://www.sitepoint.com/blog-view.php?blogid=5
 >SitePoint: DHTML & CSS Blog: Stylish Scripting

 <a href=http://www.sitepoint.com/blog-view.php?blogid=6
 >SitePoint: Open Source Blog: Open Sourcery

With a little CSS, this fragment will display as shown in Figure 10.1.

Figure 10.1. A simple blogroll with styles.

To make the associated RSS feeds accessible to our script, we’ll add a new attribute
to each blogroll link. This new attribute,10 rss, will point to a locally cached
copy11 of the appropriate RSS feed for each Weblog.

File: read-rss.html (excerpt)

<h1>Weblogs</h1>
<ul id="blogs">

 <a href="http://www.sitepoint.com/blog-view.php?blogid=5"

rss="sitepoint-dhtmlcss.rdf"
 >SitePoint: DHTML & CSS Blog: Stylish Scripting

10 Note that this new attribute will cause the pages to not validate as HTML.
11 Remember that Sarissa, and all JavaScript, can retrieve data only from the server from which the
page was served. It would be possible to have a server-side program that grabbed the remote RSS
feed when requested, but this would mean that the blogroll wouldn’t work properly if the remote
site was down; it would also generate one hit to the remote RSS feed for every hit on your site—a
bad abuse of other people’s bandwidth. So, we assume that the RSS feeds are fetched on a regular
basis by some process on the server, which is left as an exercise for the reader; thus our client-side
JavaScript can simply access them.

298

Chapter 10: DOM Alternatives: XPath

 <a href="http://www.sitepoint.com/blog-view.php?blogid=6"

rss="sitepoint-opensource.rdf"
 >SitePoint: Open Source Blog: Open Sourcery

Specifying Script Actions

Now we can implement a JavaScript library that unobtrusively finds all blogroll
links with RSS feeds attached, fetches the appropriate RSS feed, parses it, and
alters the DOM of the page to contain links to each item in the feed. One way
of doing all that is as follows:

1. On page load, find all a elements with an rss attribute inside a ul that has
the ID blogs.

2. For each link, fetch the RSS feed identified by rss. Make sure the fetch is
asynchronous, so that it happens in the background and doesn’t hold up page
rendering.

3. If a list of item elements can be parsed out of it, then do so. Add to the page
a new ul containing those items, so that the HTML is altered like so:

<h1>Weblogs</h1>
<ul id="blogs">

 <a href=http://www.sitepoint.com/blog-view.php?blogid=5
 >SitePoint: DHTML & CSS Blog: Stylish
 Scripting

 Title of item
 <p>Summary of item</p>

 Title of item
 <p>Summary of item</p>

 <a
 href="http://www.sitepoint.com/blog-view.php?blogid=6"
 >SitePoint: Open Source Blog: Open Sourcery

299

Designing the Blogroll

 ...

These new ul elements should be hidden by default.

4. Finally, alter the main link to the remote Weblog, so that instead of navigating
to that Weblog, it shows and hides the nested ul.

Figure 10.2. The blogroll, showing retrieved items for the first
blog.

300

Chapter 10: DOM Alternatives: XPath

Once all this has happened, clicking a link to a Weblog should not take you there;
instead, it will show the retrieved items, as in Figure 10.2.

Building the Scripts
Like most good DOM page scripting enhancements, there isn’t anything revolu-
tionary here; in fact, it’s all glued together from bits of scripts that we’ve used
before. It’s a familiar process: start up on page load; walk through the DOM of
the page to find particular elements; load some content from a URL and parse
it into an XML DOM; manipulate the DOM of the page to add new content;
later on, show and hide an element on click.

Here’s the library object’s signature:

File: read-rss.js (excerpt)

var rR = {
 init: function() { ... },
 loadRssData: function(rssURL, liTag, aTag) { ... },
 showAndHide: function(e) { ... },
 addEvent: function(elm, evType, fn, useCapture) { ... }
}

rR.addEvent(window, 'load', rR.init, false);

We have three methods to create: init to complete initialization, loadRssData
to pull in the feed content via Sarissa, and showAndHide to expand and collapse
the blogroll. Firstly, here’s the init method:

File: read-rss.js (excerpt)

 init: function() {
 if (!document.getElementById || !document.createElement ||
 !document.getElementsByTagName || !Sarissa) return;
 // Find all <a> elements with an "rss" attribute that are
 // inside elements with id "blogs"
 var blogs = document.getElementById('blogs');
 var as = blogs.getElementsByTagName('a');
 for (var i = 0; i < as.length; i++) {
 var rssURL = as[i].getAttribute('rss');
 if (rssURL) {
 rR.loadRssData(rssURL, as[i].parentNode, as[i]);
 }
 }
 },

301

Building the Scripts

All this does is scan through the content and load matching RSS feeds wherever
one is specified.

Here’s that loadRSSData method, with the XPath processing shown in bold:

File: read-rss.js (excerpt)

 loadRssData: function(rssURL, liTag, aTag) {
 // Asynchronously request the data from the appropriate RSS
 // file, and insert it into the document
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.open('GET', rssURL, true);

 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 var dom = Sarissa.getDomDocument();

dom.loadXML(xmlhttp.responseText);
 dom.setProperty('SelectionLanguage', 'XPath');
 dom.setProperty('SelectionNamespaces',
 'xmlns:xhtml="http://www.w3.org/1999/xhtml"');
 Sarissa.setXpathNamespaces(dom,
 'xmlns:my="http://purl.org/rss/1.0/" ' +
 'xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"'
);
 var items =
 dom.documentElement.selectNodes('/rdf:RDF/my:item');
 if (items.length > 0) {
 var ul = document.createElement('ul');
 for (var j = 0; j < items.length && j < 5; j++) {
 var i = items[j];
 var li, a, p, tn, dn; // new elements
 var title, desc; // existing elements

 li = document.createElement('li');
 a = document.createElement('a');
 p = document.createElement('p');

 a.href = i.selectSingleNode('my:link').firstChild.
 nodeValue;
 title = i.selectSingleNode('my:title').firstChild.
 nodeValue;
 desc = i.selectSingleNode('my:description').
 firstChild.nodeValue;
 tn = document.createTextNode(title);
 dn = document.createTextNode(desc);

 a.appendChild(tn);

302

Chapter 10: DOM Alternatives: XPath

 p.appendChild(dn);
 li.appendChild(a);
 li.appendChild(p);
 ul.appendChild(li);
 }
 liTag.appendChild(ul);

 // and since there are some items to show, change the
 // link in the main list to show and hide these items
 rR.addEvent(aTag, 'click', rR.showAndHide, false);
 }
 }
 }
 xmlhttp.send(null);
 },

Nearly all of this method comprises the anonymous callback used to receive the
RSS content. Once the document is retrieved, we use XPath to put all the items
we want into the array named items. Four steps are required to prepare the XPath
processor inside the browser, yet just one line (that which calls selectNodes)
actually does the work. The rest of the code simply inserts the retrieved content
into the page. It’s standard DOM manipulation stuff.

Finally, the event listener is added to the blogroll item that makes the item ex-
pandable and collapsible:

File: read-rss.js (excerpt)

 showAndHide: function(e) {
 var el = window.event ? window.event.srcElement :
 e ? e.target : null;
 if (!el) return;

 // ascend the DOM tree until we get to our parent LI
 while (el.nodeName.toLowerCase() != 'li' &&
 el.nodeName.toLowerCase() != 'html') {
 el = el.parentNode;
 }
 if (el.nodeName.toLowerCase() == 'html') return;

 if (el.className.search(/\bshow\b/) == -1) {
 el.className += ' show';
 } else {
 el.className = el.className.replace(/\b ?show\b/, '');
 }
 if (e && e.stopPropagation && e.preventDefault) {

303

Building the Scripts

 e.stopPropagation();
 e.preventDefault();
 } else {
 e.returnValue = false;
 e.cancelBubble = true;
 }
 },

The logic merely steps up through the DOM from the node on which the event
fired, and flips on or off a CSS class called show on the first li element it finds.
This also requires some appropriate style rules to facilitate the show and hide
functionality:

File: read-rss.html (excerpt)

#blogs li ul {
 display: none;
}
#blogs li.show ul {
 display: block;
}

That’s all that’s required to turn the page’s blogroll from a simple list of links
into a dynamic and up-to-date directory of what’s being published on your favorite
sites.

Summary
If you need to perform advanced processing on the DOM of a document, or a
DOM document fragment, there are alternatives to coding long scripts that ma-
nipulate DOM nodes directly. XPath is one such alternative. It provides a
powerful query system for extracting complex sets of elements into a JavaScript
array, and from there, the world’s your oyster!

This quick look at XPath also brings this DHTML book to a close. DHTML
techniques are both interesting and useful additions to Web pages, especially
with the increasing use of modern browsers. Professional Web developers should
never be scared of using quality DHTML techniques. Furthermore, skill with
DHTML prepares you well for a host of other XML-based scripting activities—but
that’s another book! Good luck with your DHTML.

304

Chapter 10: DOM Alternatives: XPath

Index
A
absolute paths, XPath, 289
absolute positioning of submenus, 172
accessibility of XMLHTTP and

DHTML, 227
ActiveX controls, 237
addEvent function, 53

highlighting table rows, 68
scrollImage example, 86
smartlink.js example, 61

addEventListener method, 48
IE equivalent, 53
scrollImage example, 86

addFriend function, “free beer” form,
32

addListeners function, 52, 62, 70
AJAX applications, 227
Andrew, Scott, 53

(see also addEvent function)
animated GIFs, 106
animation, 95–123

animation involving movement,
108–123

appearance change animation, 96–
104

clock example, 102
JavaScript suitability for multiple

animations, 196
modeling animation states, 115
multi-level animated menu project,

167–196
response to mouseouts after starting,

190
rising tooltips example, 108–123
scriptless animation, 106
text fading example, 96

anonymous functions, 98, 104
anonymous callbacks, 228, 259, 303

type-ahead drop-down list example,
165

APIs (application programming inter-
faces), calling with XML-RPC,
277, 279

apostrophe escaping, 97
appendChild method, 24, 28

“free beer” example form, 32
innerHTML alternative, 234

aqtree3 script, 275
arrays

beer guide example, 241
clippingRectangle array, 188–189
getElementsByTagName method, 19
listing username alternatives, 235
submitted fields in autoform ex-

ample, 214
zero-based indexing, 290

ascendDOM function, 70
Ashley, Brent, 219

(see also RSLite library)
associative arrays, 130
asynchronous operation

fetching RSS feeds, 299
RSLite library, 222
Sarissa library requests, 228

attachEvent method, 53, 87, 183
attributes

(see also properties)
changing with JavaScript, 21
event names and, 44
non-HTML, 34, 298
XPath node selection by values, 290

autocompletion widget, 156
autoforms example, 206–219

indirect submission, 214
JavaScript listing, 209
serving the page, 216
style sheet, 209

B
background color and mouseover ef-

fects, 174, 269
backspace key, 161, 164
bandwidth abuse, 298
beer guide example, 238–249

(see also “free beer” example form)
display, 238, 245, 249
fetching and running JavaScript, 246
fetching HTML from the server, 243
JavaScript code, 243, 248
JavaScript method sequence, 240,

244
PHP script, 247
planning the DHTML pages, 240
style sheet, 239, 243, 246
traditional HTML approach, 238

billboard effect, animated menu, 185
Blogger API, 279

as example of XML-RPC, 277
specification, 280
weblog post editor, 283

blogroll example, 292–304
display, 298, 301
expandable and collapsible lists, 303
HTML content, 297
RSS feeds and, 292
specifying script actions, 299

blur events and validation, 129, 136
<body> element, onerror handler, 106
Boodman, Aaron, 158, 264

(see also DOM-Drag library)
bracket notation

assessing support without calling
methods, 77

passing references without calling
functions, 48

browser detection, 76
(see also feature sniffing)
mouse position problem and, 89

browser support
assessing DHTML feature support,

76
assessing DOM method support, 77
for the cellIndex property, 71
for character codes, 49
for clientX and clientY, 88
for CSS, 6, 10
for the CSS clip property, 190
for the DOM, 37, 39, 75
for framesets, 198
for hidden <iframe>s, 205
for JavaScript, 75
for the keypress event, 51
for XMLHTTP, 226
for XPath, 290

“browser wars”, 14
browsers

(see also Internet Explorer; Mozilla
browsers; Netscape browsers;
Safari browser)

clock animation example portability,
104

cross-browser events tabulated, 44
cross-browser identification of

clicked links, 62
cross-browser Sarissa library, 227,

290
detecting features of, 75
evaluating script downloads, 159
Opera browser, 89
portable event listeners, 53
rich-text editors, 155

bubbling (see event bubbling)
bugs

CSS parsers, 7, 10
IE list item bug, 172, 240
IE memory leaks, 182

C
calendar popups, 156

306

Index

callback methods, 210
(see also anonymous functions)
autoform example, 214
drag-and-drop file manager, 256, 263
name resolution example, 222–224
RSLite failure callbacks, 224
Sarissa library requests, 228
username checking example, 232–

233
Camel Casing (see InterCaps format)
Camino browser (see Mozilla browsers)
cancelBubble property, 56, 141
case sensitivity, 8, 63, 164
cellIndex property, 71
change event listeners

autoforms example, 212
name resolution example, 222
username checking example, 232

character code support, 49
checkValid method, validation example,

130, 132
checkValidSubmit method, validation

example, 138
childNodes property, 20, 23
circular references, 182
class attribute, HTML, JavaScript

equivalent, 22
className property

indexOf method, 37
replace method, 72

clearInterval function, 102
clearTimeout function, 99, 185
client-side validation, 127–149

error messages, 131
example JavaScript listing, 144
example screenshot, 147–148
example style sheet, 146
limitations, 125
on form submission, 136
submit event listeners, 137
when to apply, 129

clientX and clientY properties, 88
clip property, CSS, 185, 190
clippingRectangle array, 188–189
clock animation example, 102
cloneNode method, 28
closures, creating, 181
code editors, 9
comma terminators, library object

methods, 114
container tags, HTML, 2
contentDocument property, 213
contentWindow property, 213
control characters, 164
cookies

hidden cookie updates, 219
size limits, 226

country name drop-down lists, 160
createElement method, 27

innerHTML alternative, 234
testing browser support for, 79

createTextNode method, 27
cross-site scripting, 126
CSS (Cascading Style Sheets), 5–7

bugs and hacks, 7
changing style properties, 23
dynamic menus using, 176
further reading, 10
globe animation example, 107
highlighting table rows, 65, 72, 246
multi-level animated menu project,

171, 173–174, 177
rising tooltips animation example,

111
z-index stacking problem, CSS2, 110

currentTarget property, 179, 181
cursor location

(see also mouseover effects)
highlighting table rows, 64
Mozilla browser drop targets, 266

cursor movement and image scrolling,
91

custom listener functions, 180–181

307

D
date entry, calendar popups, 156
debugging tools, JavaScript, 9
default actions, 50–51

(see also preventDefault method)
delegation, 185
dialog box error message display, 134,

148
dictionaries, 130
dimensionless numbers, 24
dimensions, temporarily visible objects,

191
directories

(see also blogroll example)
expandable and collapsible folder

lists, 252, 275, 303
display property, CSS, 24
<div> tags, rising tooltips animation,

109–110
DOCTYPE declarations, 3
document fragments, 28
document.all and document.layers

properties, 159
document.getElement* methods (see

getElement* methods)
DOM (Document Object Model), 13

adding and removing elements, 24–
30

applicability to XML, 287
degrees of browser support, 75
event handling, 46
history, 14
Microsoft and Mozilla references, 22
mouse position specification, 88
superiority of XPath for XML access,

287, 289
testing for the existence of features,

78, 210
XPath alternative, 287–304

DOM-Drag library, 264, 273
drag-and-drop file manager, 252–277

dropping elements onto targets, 271
expanding and collapsing lists, 275
handling drag-and-drop events, 273
highlighting drop targets, 270
HTML, 253
identifying drop targets, 265
implementing drag-and-drop, 263
library objects, 256
PHP script, 257, 262
Sarissa library use, 259
screenshot, 253
server control commands, 261
specifying, 252
style sheet, 255

drop-down lists, type-ahead, 159

E
e parameter, 49
E4X standard, 234
editors

code, 9
rich-text, 155

elements, HTML
adding and removing, 24–30
changing attributes, 21
copying, 28
creating, 27
draggable, 264
manipulating with JavaScript/DOM,

21
possible events tabulated, 43
sharing event listeners between, 47,

50
elements, XML, selecting, 288
email nicknames (see name resolution

example)
empty <div> elements, 110
empty strings, 80
encapsulation (see library objects)
error handling, 104

308

Index

error messages
client-side validation and, 131
display techniques, 134
displaying multiple, 137
drag-and-drop file manager, 262
hiding from users, 75
name resolution example, 225
pre-submission checks, 136
summary error messages, 148

escaping quotes and apostrophes, 97
eval function, JavaScript, 238, 246
event bubbling, 50

(see also stopPropagation method)
Event Cache script, 182
event capture, 48
event handlers, 44

(see also event listeners)
rollover script example, 38

event handling
DOM specification, 46
event bubbling and default actions,

50–51
event targets, 44
smarter uses, 58
W3C approach, 47

event listeners, 46
assigning on page load, 51
change event listeners, 212, 222, 232
client-side validation and, 129
cross-browser operation, 53
custom listener functions, 180–181
highlighting table rows, 65
opening links in a new window, 59
portable detection code, 53, 55
reusing across targets, 50
submit events, 137
testing browser support for, 78
tooltips animation example, 113,

116
event model, W3C, 44, 179

event objects
IE storage, 55
methods of passing, 87
properties tabulated, 49, 55

event targets, 44, 46
methods of obtaining, 88

events
linking code to, 46
modern naming of, 44, 48

exception handling, 284
expanding form example, 30–33

F
feature sniffing, 77

portabledetect.html example, 56
scrollImage example, 80, 86
testing for non-DOM features, 79

file manager example (see drag-and-drop
file manager)

filter property, 269
findPosX and findPosY functions, 88
Firefox (see Mozilla browsers)
firstChild property, 20, 23
flicker, 181, 183
flyover help (see tooltip animation ex-

ample)
folders, expandable and collapsible lists,

252, 275, 303
form validation, 125–154

cancelling submission on failure, 141
forms design

example expanding form, 30–33
real-time forms, 206
usability improvement, 154–166

frames, 198, 252
“free beer” example form, 30–33
function outlines

beer guide example, 240
highlighting table rows, 67
smartlink event listener example, 60

309

functions
assessing support without calling, 77
passing by name, 98
passing references without calling,

48

G
Gecko-based browsers (see Mozilla

browsers)
getElementBy* methods in script

downloads, 159
getElementById method, 17

assessing support for, 77
limitations, 29
testing browser support for, 79

getElementsBy* methods for walking
DOM trees, 17

getElementsByName method, 17, 215
getElementsByTagName method, 17,

19
scrollImage example, 87
testing browser support for, 37, 79
XPath alternative, 288

global variables, 98, 102
globe animation example, 106

H
hacks

accessing variables within passed
functions, 99

CSS parser workarounds, 7, 10
XMLHTTP distinguished from, 226

handleLink function, smartlink ex-
ample, 62

handleValidity method, validation ex-
ample, 132

hasFeature method, 76
hashes, 130
<head> element, as script location, 8
headings, styling, 5

hidden objects
hidden <iframe> elements, 205,

209
hidden cookie updates, 219
hidden <iframe> elements, 205,

209
hidden image updates, 219
hidden list items, 304
hidden proxy elements, 267, 269

hideMenu method, sliding-menu.js, 189
highlighting

beer guide example, 246
drop targets, 265, 270
table rows, 64, 66–67

history lists and replace methods, 206
hotspots, 267
HTML

(see also elements, HTML)
dynamic generation with inner-

HTML, 234
dynamic generation, beer guide ex-

ample, 242
dynamic generation, drag-and-drop

file manager , 260
semantic HTML, 4, 168
validity, 2–3, 16, 298

HTMLArea editor, 155
htmlFor property, 141
HTTP 204 piggybacks, 220
HTTP requests, Sarissa support, 228
hyperlinks (see links)

I
icons, 207, 253
id attribute, HTML, 17
IE (see Internet Explorer)
<iframe> elements, 199–216

autoforms example, 206–219
data exchange example display, 203,

205
hidden <iframe>s, 205, 209

310

Index

overcoming the shortcomings of, 205
replacing, using script, 201

image rollovers (see rollover script ex-
ample)

images
calculating screen positions, 90
hidden image updates, 219
replacing, using the src attribute, 40
scrollImage preview example, 80

index numbering, XPath and JavaScript
arrays, 290

indexOf method, className property,
37

infinitely nested forms, 207
inline error messages, 134
innerHTML property, 104, 234
insertBefore method, 26
InterCaps format, 23
Internet Explorer

attaching event listeners, 53
CSS support, 7
DOM-supporting browsers and, 39
list item bug, 172, 240
memory leak problem, 182
origins of XMLHTTP in, 226
rich-text editor, 155
support for :hover pseudo-class, 176
support for DOM event model, 180
support for XPath, 290

invisible objects (see hidden objects)
iterating through link elements, 37

J
Java applets, 237
JavaScript

adding arbitrary properties, 113, 195
changing attributes with, 21
code positioning, 47–48
debugging tools, 9
degrees of browser support, 75
DHTML encapsulation, 111

evaluating script downloads, 159
exception handling, 284
further reading, 11
<iframe> use with, 201
passing code as a string, 97
PHP generation of, 218
remote scripting, 197–250
role in DHTML, 7, 9
running from the server, 246
sharing between multiple pages, 144
testing for non-DOM features, 80
URL requests using XMLHTTP, 226
Web services restrictions, 280
XML-RPC clients, 279

JavaScript Console (Mozilla), 9
JavaScript libraries, 256

(see also Sarissa library)
aqtree3, 275
DOM-Drag, 264, 273

jitter, 190
join method, errText array, 141
jsolait XML-RPC client, 284

K
keyCode property, 49, 163–164
keypress events

default actions and, 51
status of keyup and, 48, 161

Koch, Peter-Paul, 88–89, 163

L
<label> element, HTML, uses, 136,

158
lastChild property, 20
late binding, 79
leaf nodes, 20
legacy scripting techniques, 159
length property, childNodes array, 20
 tags, HTML

(see also <rdf:li> tags; nested lists)
drag-and-drop file manager, 260

311

IE list item bug, 172, 240
nested lists, 170
semantic markup, 4

library objects, 111
autoforms example, 209
benefits of object-based program-

ming, 195
blogroll example, 301
client-side validation example, 127
drag-and-drop file manager, 256
form validation example, 144
multi-level animated menu project,

187
name resolution example, 223
nesting, for validation, 129
regular expression sets in, 129
type-ahead drop-down list example,

161
username checking example, 232
weblog post editor, 282

links
background color and activity, 174
globe animation example, 106
identifying clicked links, 62
to <iframe> targets, 203–204
iterating through, 37
layout, 4
opening in a new window, 58

list items (see tags, HTML)
load event, assigning listeners, 51
lowercase conversion, 63, 164

M
Macintosh, IE5 event handling prob-

lems, 54
managing files (see drag-and-drop file

manager)
maps, 130
match method for regular expressions,

134
memory leaks, 182

menus
(see also multi-level animated menu

project; submenus)
scriptless, 176

methods
(see also callback methods; functions)
termination in library objects, 114
testing for the existence of, 77

Meyer, Eric, pure CSS menus, 176
Microsoft Corporation

(see also Internet Explorer)
DOM element reference, 22

modular code, 33, 40
mouse position, scrolling and the DOM

specification, 88
mouseout event listeners, 177

introducing a delay, 183
proxy elements, 268, 270
rollover script example, 39
tooltip animation example, 101, 114

mouseout events
running animation response to, 190

mouseover effects
(see also rollover scripts)
multi-level animated menu project,

174–175
scrollImage example, 85
tooltips animation example, 113
using a:hover, 107, 174

mouseover event listeners, 177
proxy elements, 268, 270
rising tootips animation, 116
rollover script example, 39
tooltip animation example, 101, 114

mouseover events
drop targets in Mozilla browsers, 266

moveLinks method, rising tooltips an-
imation, 116–117

Mozilla browsers
clock animation example portability,

104

312

Index

DOM element reference, 22
drop target mouseover problem, 266
E4X standard, 234
JavaScript debugging, 9
support for XMLHTTP, 226
support for XPath, 290

multi-level animated menu project,
167–196

adding animation, 185
avoiding flicker, 183
creating the HTML, 168
CSS styled menus screenshot, 173–

175
JavaScript code, 176, 192–195
unstyled content screenshot, 170

N
name resolution example, 220–225

(see also username checking example)
PHP script, 221
resolve method, 223, 225
resolve_callback method, 224

namespace clashes (see library objects)
namespaces, XML, 296
naming conventions

events, 44, 48, 54
JavaScript properties, 23
library objects, 112

navigation (see links; multi-level anim-
ated menu project)

nesting
arrays, PHP, 151
expandable and collapsible lists,

252, 275, 303
HTML elements and DOM repres-

entations, 15
HTML elements and validity, 2
infinitely nested forms, 207
lists, multi-level animated menu, 170
literal objects, 130
nested forms design, 206

selecting nested elements with
XPath, 289

Netscape browsers
history of the DOM and, 14
Netscape 6 and hidden <iframe>s,

205
nextSibling property, 114
nodes

(see also elements)
DOM representation of HTML, 15
parent and child, 20
XPath view of XML documents, 288

nodeType property and Safari, 117
nodeValue property, 22

O
object detection

animation error handling and, 105
DOM methods, 37, 77–79, 210
Sarissa library, 233, 259
window.event object, 56

object literals (see library objects)
object-based programming, 195
offset properties, 79
offsetParent property, 88
on prefix, event naming, 44, 48, 54
onclick attribute, DOM alternative, 46
onDrag* properties, DOM-Drag library,

274–275
onerror event handler, 106
online validators, 3
onmouseout and onmouseover attrib-

utes, alternatives to, 33
opacity property, 269
Opera browser, 89
oversrc attribute, 34

P
padding, CSS, and unexpected mouse

effects, 178
pageX and pageY properties, 89

313

‘paranoid’ code, 261–262
parentNode property, 20
path attribute, drag-and-drop file man-

ager, 255
phone number validation, 128
photo galleries, 85
PHP

beer guide example, 241–242
checking for unused usernames, 229
drag-and-drop file manager, 257, 262
JavaScript written by, 218
server-side validation, 150
serving the autoform page, 216
use with <iframe>s, 205

piggybacks, HTTP 204, 220
positioning

absolute, of submenus, 172
draggable elements, 265

POST requests, drag-and-drop file
manager, 263

presentation with CSS, not HTML, 5–
6

preventDefault method, 51, 57, 141
progress hints, 207
properties

adding arbitrary properties, 113, 195
event objects, tabulated, 55

proxy elements and drop targets, 267–
270

highlighting and tagging targets,
270–273

Q
query strings with embedded PHP, 205
quotes, escaping inside strings, 97

R
radio buttons, 235
RDF syntax, 293–294
<rdf:li> tags, 294
<rdf:RDF> tags, 296

readability of tables, 64
receiveData function, 203–204
recursion, 17
references to elements, 18, 20
references to functions, 48
refreshing pages, alternatives to, 197–

198
regular expressions

alternative to className.indexOf,
37

client-side validation and, 128
resource on, 40
rollover script example, 40
server-side validation, 149
slash delimiters, 72, 130
storing in library objects, 129
use with replace methods, 72

relative paths, XPath, 295
Remote Procedure Call (see XML-RPC)
remote scripting, 197–250

drawing code from servers, 238–249
hidden image updates, 219
HTTP 204 piggybacks, 220
methods enumerated, 198
obtaining data from servers, 198–

237
other client-server options, 237
using <iframe>s, 199–216
XMLHTTP, 225–228

remote site links and bandwidth abuse,
298

removeAttribute method, 29
removeChild method, 26
replace methods, 72, 206
returnValue property, 57, 141
rich-text editors, 155
rising tooltips animation, 108–123

content animation, 116
content creation, 108
DHTML library object, 111
full code listing, 119–123

rollover script example, 33–41

314

Index

findTarget function, 38
HTML, 34
JavaScript, 35
as modular code, 40
setupRollovers function, 36, 40

root nodes, 17
RSLite library, 219

name resolution example, 220–225
potential for username checking, 229

RSS feeds
blogroll parsing example, 292–304
RSS versions and sample feed, 293

S
Safari browser

cellIndex property, 71
clock animation example portability,

104
link event handling, 117

Sarissa library, 227
(see also XMLHTTP)
checking for presence of, 233, 259
cross-browser XPath support, 290
drag-and-drop file manager use, 259
namespace declarations, 296–297
use in beer guide example, 243, 248

screen positions, calculating, 90
script (see JavaScript)
<script> tags, server-side validation,

153
scrollImage example, 80–92

calculating screen positions, 90
discussion, 86
HTML, 81
JavaScript, 83

security and input validation, 126
selectNodes and selectSingleNode

methods, 292
semantic HTML, 4, 168
serialize function, PHP, 218
servers, drawing code from, 238–249

beer guide example, 243–246
servers, obtaining data from, 198–237

hidden image updates, 219
HTTP 204 piggybacks, 220
other client-server options, 237
using <iframe>s, 199–216
XMLHTTP, 225–228

servers, sending instructions to, 251–
286

drag-and-drop file manager, 252–277
weblog post editor, 280–286
XMLHttpRequest and, 261

server-side validation, 149–154
security and, 125, 127

setInterval function, 102
multi-level animated menu project,

187, 190
name resolution example, 222
rising tooltips animation, 116

setTimeout function, 96
asynchronous operation, 99
evaluation context, 98
multi-level animated menu project,

184
type-ahead drop-down lists example,

164
username checking example, 235

short-circuit evaluation, 38
showMenu method, sliding-menu.js,

188
slashes

regular expression delimiters, 72, 130
XPath significance of, 289, 295

sliding menus (see multi-level animated
menu project)

smartlink event listener example, 59–
64

soft hyphens, 260
 tags

inline error messages, 134–135

315

rising tooltips animation, 108, 110,
114

SQL injection, 126
src attribute, <iframe> tag, 199
src attribute, <image> tag, 40
src property, image object, 219
state property, rising tooltips anima-

tion, 115
stopPropagation method, 51, 56, 141
string manipulation

fromCharCode method, 50
match method, 134
replace method, 72

strings, empty, 80
style properties, changing, 23

(see also CSS)
submenus

animating, 185
hiding, 174
positioning, 172
revealing, 176

submit event
attaching validation, 137
blocking, in autoform example, 211

submitting forms indirectly, 214
Syntax code editor, 9

T
tables, highlighting rows, 64, 66–67
target attribute, 50
target elements

drop targets, 265
mouse position and ambiguity, 179
shortcut detection code, 133

targetElement, IE, 181
ternary operator, 133
text

changing text nodes, 22
fading animation example, 96

text boxes
autocompletion widget, 156

“free beer” example form, 30, 32
with instructions, 157
word wrapping within, 260

thumbnails, scrollImage example, 80
timed activity

(see also animation; setTimeout
function)

cancelling timed code, 99
delayed reactions to mouseouts, 183
wiping submenus, 187

toLowerCase method, 63, 164
tooltip animation example, 108–123

HTML, 99
JavaScript, 100

toUpperCase method, 8
tree structures

ascendDOM function, 70
DOM representation of HTML, 15
searching using XPath, 289
walking DOM trees, 16

try...catch commands, 105, 284
“type-ahead find” feature, 160
typeof property, 80

U
 tags, HTML

menu layouts using, 168
nesting lists, 170

‘unobtrusive’ DHTML, 75, 105
update function, clock animation ex-

ample, 104
uppercasing example, 8
usability

animation and, 95
HTML widget enhancements, 154–

166
<label> elements and, 137
remote scripting and, 197
supplying progress hints, 207

useCapture parameter, 48

316

Index

user interface, drag-and-drop functions,
263

user-agent switching, 90
username checking example, 228–237

building the JavaScript, 232
screenshots, 232, 236
style sheet, 231

V
valid HTML, 2

adding new attributes and, 298
DOM representations and, 16
validators, 3

validation of user input, 125–154
client-side validation, 127–149
integration of client- and server-side,

149–154
on form submission, 136
reasons to undertake, 126

variables
accessing within passed functions,

99
element references, 18

Venkman debugger, 9

W
W3C (World Wide Web Consortium)

DOM definition, 13
event handling approach, 47
event model, 44, 179
event object properties, 55
RDF syntax and, 294
XPath and, 288

<wbr> tags, 260
Web services

drawing data from servers, 237
exposure with XML-RPC, 277
JavaScript restrictions, 280

weblog post editor, 280–286
coordinating page and server, 283
HTML page content, 281

Weblogs
(see also Blogger API)
blogroll XPath example, 292–304

Webmail (see name resolution example)
widget enhancements, 154–166

autocomplete text boxes, 156
calendar popups, 156
text boxes with instructions, 157
type-ahead drop-down lists, 159

window object
(see also setTimeout function)
open method, 63
opera property, 89

window.document object (see getEle-
mentsBy* methods)

window.event object
cancelBubble property, 56
checking for existence of, 56
IE event handling and, 53
properties compared with W3C, 55
returnValue property, 57

window.location object, replace meth-
od, 206

window.navigator object, browser
sniffing, 76

window.parent object and <iframe>s,
201

wiping effects, multi-level menu project,
185

wrapper objects
(see also library objects)
XHMHTTP implementations, 227

wrapping words within boxes, 260
Wubben. Mark, 182

X
XML document access, 287, 289
XML namespaces, 296
XMLHTTP, 225–228

browser support, 226
drag-and-drop file manager use, 259

317

Sarissa library, 227
username checking example, 228–

237
XMLHttpRequest class, 226–227, 261
XML-RPC, 277–280

calling APIs, 279
weblog post editor, 280–286

XPath, 287–304
adding XML namespaces, 296
applying to XML documents, 290
blogroll example using, 292–304
constructing simple expressions, 295
learning resources on, 292

XPCOM components, 237

Z
Zakas, Nicholas, 156
zero values, JavaScript interpretation,

80
zero-width spaces, 260
z-index property

CSS2 stacking problem, 110–111
draggable elements, 275
proxy elements for drop targets,

267, 269
Zvon XPath tutorial, 292

318

Index

	DHTML Utopia
	Table of Contents
	Introduction
	Who Should Read This Book?
	What’s In This Book?
	Whither XHTML?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	DHTML Technologies
	HTML Starting Points
	Step up to Valid HTML
	Correctly Nest Tags
	Close Container Tags
	Always Use a Document Type
	Validate your Page

	Step up to Semantic HTML

	Adding CSS
	A Simple CSS Example

	Adding JavaScript
	A Simple JavaScript Example
	Get Some Tools!

	Further Reading
	Summary

	The Document Object Model
	The Origins of the DOM
	What is the DOM?
	The Importance of Valid HTML

	Walking DOM Trees
	Finding the Top of the Tree
	Getting an Element from the Tree
	getElementById
	getElementsByTagName

	Walking from Parents to Children

	What to do with Elements
	Changing Element Attributes
	Changing Text Nodes
	Changing Style Properties

	Bigger DOM Tree Changes
	Moving Elements
	Throwing Away Elements
	Creating Elements
	Copying Elements

	Making an Expanding Form
	Making Modular Image Rollovers
	A Sample HTML Page
	The setupRollovers Function
	The findTarget Function
	The mouseover / mouseout Functions
	Something for Nothing (Almost)

	Summary

	Handling DOM Events
	About Elements and Events
	Common Events
	Hooking Code to Events
	Hooking up the Old Way
	Hooking up the DOM Way
	Getting Event Information
	Re-using Listeners Across Targets
	What Happens After an Event Fires?
	Assigning Event Listeners on Page Load

	Making Events Work Cross-Browser
	Adding Event Listeners Portably
	Inspecting Event Objects Portably
	Stopping Propagation and Default Actions Portably

	Smart Uses of Events
	Creating Smarter Links
	Making Tables More Readable

	Summary

	Detecting Browser Features
	Old-Fashioned Browser Sniffing
	Modern DOM Feature Sniffing
	Which DOM Features Should We Test?
	Where Should We Test for DOM Features?
	Testing Non-DOM Features

	Sniffing at Work: scrollImage
	Setting Up the Page
	Demonstrating the DHTML Effect
	How the Code Works
	clientX and clientY Problems
	Browser Detection You Can’t Avoid
	Calculating Screen Positions

	Summary

	Animation
	Tastefulness and Usability
	Animation Basics
	The setTimeout Function
	Passing in a Function
	setTimeout Runs Later On
	Canceling Timed Code

	The setInterval Function
	Implementing a Clock

	Handling Errors
	When to use try and catch
	The body onerror Handler

	Scriptless Animation with GIFs
	Movement Example: Rising Tooltips
	Creating Special Tooltip Content
	Styling the Tooltips
	Stacking the Tooltips

	Designing the DHTML Library
	Identifying the Library Object Signature
	Placing Event Listeners
	Modeling Animation States

	Animating the Content
	Starting Movement
	Executing Movement
	Activating the DHTML Effect

	Full Rising Tooltips Example Listing

	Summary

	Forms and Validation
	Reasons for Form Validation
	Storing Clean Data
	Defending Against Security Exploits
	Improving User Interactivity

	Simple Client-Side Validation
	Using Regular Expressions
	Connecting Regular Expressions to Fields
	Preparing Quality Error Messages
	Validation Processing
	Displaying an Error

	Checking on Submission
	Label Field Enhancements
	Attaching Validation to Form Submission
	Validation Tasks at Submit Time

	Client-Server Coordination
	Dangers of Validating on the Client Only
	Full Example: Server Fallback Validation

	Improving Form Usability
	Standing on the Shoulders of Giants
	Rich-Text Editors
	Autocomplete Text Boxes
	Calendar Popups
	Text Boxes with Suggestions

	How to Find Scripts
	Type-Ahead Drop-Down Lists

	Summary

	Advanced Concepts and Menus
	Creating Menu Content
	Create Semantic Menu Content
	Styling the Menu’s Layout
	Styling the Menu’s Appearance
	Hiding the Secondary Content

	Making the Menu Work
	Advanced CSS Menu Alternatives
	Making Submenus Appear
	Simplistic Menu Events
	Mouse Event Complexities
	Fixing the IE Memory Leak
	Smarter Menu Events

	Adding Animation
	Preparing the Library Object
	Implementing the Animation
	Starting the Animation

	The Benefit of Object-Based Programming

	Summary

	Remote Scripting
	Problems with Frames
	Remote Scripting Methods
	Using <iframe>
	Simple iframe Display
	Replacing iframes
	Retrieving Data with iframes
	Overcoming iframe Restrictions

	Example: Autoforms
	Nested Form Design
	Avoiding Infinite Forms
	Setting up Content and Scripts
	Coordinating Parent and Child Pages
	Submitting Forms Indirectly
	Serving up the Page

	Hidden Cookie Updates
	Image Swaps
	204 Piggybacks

	Example: Name Resolution
	XMLHTTP
	Origins of XMLHTTP
	Browser Variations
	XMLHTTP, AJAX, and the Future
	Sarissa: a Cross-Browser Library

	Example: Checking Usernames
	Imagining the Solution
	Building the JavaScript Scripts

	Other Client-Server Options

	Drawing Code from Servers
	Example: Learning about Beer
	Planning the DHTML Beer Pages
	Generating the Starting Page from Data
	Fetching HTML Fragments
	Fetching and Running JavaScript

	Summary

	Communicating With The Server
	Example: Managing Files
	Specifying the File Manager
	Planning the Technology
	Listing Files and Folders
	Server Control Commands
	Implementing Drag-and-Drop
	Basic Drag-and-Drop with DOM-Drag
	Simple Drag Target Tactics
	Smarter Drag Target Tactics
	Creating Proxy Drag Targets
	Highlighting a Drag Target
	Dropping onto the Drag Target
	Handling Drag-and-Drop Events

	Expanding and Collapsing Lists

	Using XML-RPC
	Calling XML-RPC APIs
	Example: Weblog Post Editor
	Exploring the Blogger API
	Setting up the Page Content
	Coordinating Page and Server

	Summary

	DOM Alternatives: XPath
	Introducing XPath
	Applying XPath to XML
	XPath Learning Resources

	Example: Parsing RSS Feeds
	About RSS 1.0
	Constructing Simple XPaths
	Adding XML Namespaces
	Designing the Blogroll
	Designing the HTML
	Specifying Script Actions

	Building the Scripts

	Summary

	Index

