
#1

MODERN
JAVASCRIPT

Modern JavaScript

Copyright © 2017 SitePoint Pty. Ltd.

Cover Design: Natalia Balska

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors will be held liable for any damages to be caused either directly or indirectly by

the instructions contained in this book, or by the software or hardware products described

herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the

names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: books@sitepoint.com

i

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content

for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find a stack of information on

JavaScript, PHP, design, and more.

ii Modern JavaScript

http://www.sitepoint.com/

Table of Contents

Preface ...v

Chapter 1 The Anatomy of a Modern

JavaScript Application ...1

Chapter 2 An Introduction to Gulp.js16

Chapter 3 The Basics of DOM Manipulation

in Vanilla JavaScript (No jQuery).......................34

Chapter 4 A Beginner's Guide to Webpack 2

and Module Bundling..49

Chapter 5 React vs Angular: An In-depth

Comparison...72

Table of Contents iii

Chapter 6 Retrofit Your Website as a

Progressive Web App ...86

Chapter 7 10 Tips to Become a Better Node

Developer ...109

Chapter 8 An Introduction to Functional

JavaScript ..119

Chapter 9 An Introduction to Chart.js 2.0 —

Six Simple Examples ...125

Chapter 10 Learning JavaScript Test-Driven

Development by Example......................................143

iv Modern JavaScript

Preface

It's not uncommon these days to see people complaining about just how complex

JavaScript development seems to have become. We can have some sympathy with

that view when it's coming from someone new to the language. If you're learning

JS, it won't take long for you to be exposed to the enormity of the ecosystem and

the sheer number of moving pieces you need to understand (at least conceptually)

to build a modern web application. Package management, linting, transpilation,

module bundling, minification, source maps, frameworks, unit testing, hot

reloading... it can't be denied that this is a lot more complex that just including a

couple of script tags in your page and FTPing it up to the server.

For a long time, JavaScript was looked upon by many as a joke; a toy language

whose only real use was to add non-essential eye-candy, such as mouseover

changes, and was often a source of weird errors and broken pages. The language

is still not taken seriously by some today, despite having made much progress

since those early days. It's not hard to have some sympathy with PHP developers.

For better or for worse, JavaScript was (and still is) the only language supported

natively by the vast majority of web browsers. The community has worked hard

to improve the language itself, and to provide the tooling to help build

production-grade apps.

This anthology is a collection of articles, hand-picked from SitePoint’s JavaScript

channel with the aim of giving you a head start on modern JavaScript

development. Of course, with the fast pace of change of both the language and the

eco-system, it’s important to keep up to date with the latest developments. Don’t

be left behind, head over to the channel after you’ve finished this book to stay

abreast of new trends and techniques!

James Hibbard & Nilson Jacques, SitePoint JavaScript channel editors.

Conventions Used

You’ll notice that we’ve used certain layout styles throughout this book to signify

different types of information. Look out for the following items.

Preface v

https://www.sitepoint.com/javascript/
https://www.sitepoint.com/javascript/

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk.</p>

Some lines of code should be entered on one line, but we've had to wrap them

because of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real

➥ -user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

vi Modern JavaScript

1Chapter

The Anatomy of a Modern JavaScript
Application

by James Kolce

There's no doubt that the JavaScript ecosystem changes fast. Not only are new

tools and frameworks introduced and developed at a rapid rate, the language

itself has undergone big changes with the introduction of ES2015 (aka ES6).

Understandably, many articles have been written complaining about how difficult

it is to learn modern JavaScript development these days.

In this article, I'll introduce you to modern JavaScript. We'll take a look at the

most recent developments in the language and get an overview of the tools and

techniques currently used to write front-end web applications. If you're just

starting out with learning the language, or you've not touched it for a few years

The Anatomy of a Modern JavaScript Application 1

and are wondering what happened to the JavaScript you used to know, this

article is for you.

A Note about Node.js

Node.js is a runtime that allows server-side programs to be written in JavaScript.

It is possible to have full-stack JavaScript applications, where both the front and

back-end of the app is written in the same language. Although this article is

focused on client-side development, Node.js still plays an important role.

The arrival of Node.js had a significant impact on the JavaScript ecosystem,

introducing the npm package manager and popularizing the CommonJS module

format. Developers started to build more innovative tools and develop new

approaches to blur the line between the browser, the server, and native

applications.

JavaScript ES2015+

In 2015, the sixth version of ECMAScript—the specification that defines the

JavaScript language—was released under the name of ES2015 (still often referred

to as ES6). This new version included substantial additions to the language

making easier and more feasible to build ambitious web applications. But

improvements don’t stop with ES2015; each year, a new version is released.

Declaring variables

JavaScript now has two additional ways to declare variables: let and const.

let is the successor to var - although var is still available, let limits the scope of

variables to the block (rather than the function) they're declared within, which

reduces the room for error:

/ ES5

for (var i = 1; i < 5; i++) {

console.log(i);

}

2 Modern JavaScript

https://en.wikipedia.org/wiki/ECMAScript
http://www.ecma-international.org/ecma-262/6.0/
https://www.sitepoint.com/how-to-declare-variables-javascript/

// <-- logs the numbers 1 to 4

console.log(i);

// <-- 5 (variable i still exists outside the loop)

// ES2015

for (let j = 1; j < 5; j++) {

console.log(j);

}

console.log(j);

// <-- 'Uncaught ReferenceError: j is not defined'

Using const allows you to define variables that cannot be rebound to new values.

For primitive values such as strings and numbers, this results in something

similar to a constant, as you cannot change the value once it has been declared.

const name = 'Bill';

name = 'Steve';

// <-- 'Uncaught TypeError: Assignment to constant

➥ variable.'

// Gotcha

const person = { name: 'Bill' };

person.name = 'Steve';

// person.name is now Steve.

// As we're not changing the object that person is bound to,

➥ JavaScript doesn't complain.

Arrow functions

Arrow functions provide a cleaner syntax for declaring anonymous functions

(lambdas), dropping the function keyword and the return keyword when the

body function only has one expression. This can allow you to write functional

style code in a nicer way.

The Anatomy of a Modern JavaScript Application 3

/ ES5

var add = function(a, b) {

return a + b;

}

// ES2015

const add = (a, b) => a + b;

The other important feature of arrow functions is that they inherit the value of

this from the context in which they are defined:

function Person(){

this.age = 0;

// ES5

setInterval(function() {

this.age++; // |this| refers to the global object

}, 1000);

// ES2015

setInterval(() => {

this.age++; // |this| properly refers to the person object

}, 1000);

}

var p = new Person();

Improved Class syntax

If you are a fan of object-oriented programming, you might like the addition of

classes to the language on top of the existent mechanism based on prototypes.

While it is just syntactic sugar, it provides a cleaner syntax for developers trying

to emulate classical object-orientation with prototypes.

class Person {

constructor(name) {

4 Modern JavaScript

this.name = name;

}

greet() {

console.log(`Hello, my name is ${this.name}`);

}

}

Promises / Async functions

The asynchronous nature of JavaScript has long represented a challenge; any non-

trivial application ran the risk of falling into a callback hell when dealing with

things like Ajax request.

Fortunately, ES2015 added native support for promises. Promises represent

values that don’t exist at the moment of the computation but that may be

available later, making the management of asynchronous function calls more

manageable without getting into deeply nested callbacks.

ES2017 (due out this year) introduces async functions (sometimes referred to as

async/await that make improvements in this area, allowing you to treat

asynchronous code as if it were synchronous.

async function doAsyncOp () {

const result = await asynchronousOperation();

console.log(result);

return result;

};

Modules

Another prominent feature added in ES2015 is a native module format, making

the definition and usage of modules a part of the language. Loading modules was

previously only available in the form of third-party libraries. We'll look at

modules in more depth in the next section.

The Anatomy of a Modern JavaScript Application 5

https://www.sitepoint.com/deeper-dive-javascript-promises/
https://www.sitepoint.com/simplifying-asynchronous-coding-async-functions/

There are other features we won't talk about here, but we've covered some of the

major differences you're likely to notice when looking at modern JavaScript. You

can check a complete list with examples on the Learn ES2015 page on the Babel

site, which you might find useful to get up to date with the language. Some of

those features include template strings, iterators, generators, new data structures

such as Map and Set, and more.

Code linting

Linters are tools that parse your code and compare it against a set of rules,

checking for syntax errors, formatting, and good practices. Although the use of a

linter is recommended to everyone, it is especially useful if you are getting

started. When configured correctly for your code editor/IDE you can get instant

feedback to ensure you don’t get stuck with syntax errors as you're learning new

language features.

You can check out ESLint which is one of the most popular and supports

ES2015+.

Modular Code

Modern web applications can have thousands (even hundred of thousands) of

lines of code. Working at that size becomes almost impossible without a

mechanism to organize everything in smaller components, writing specialized

and isolated pieces of code that can be reused as necessary in a controlled way.

This is the job of modules.

CommonJS modules

A handful of module formats have emerged over the years, the most popular of

which is CommonJS. It's the default module format in Node.js, and can be used in

client-side code with the help of module bundlers, which we'll talk about shortly.

More on ES2015

To learn more about ES2015, check out our Premium course: Diving into ES2015

6 Modern JavaScript

https://babeljs.io/learn-es2015/
https://babeljs.io/
https://babeljs.io/
https://www.sitepoint.com/premium/courses/diving-into-es2015-2924
https://www.sitepoint.com/up-and-running-with-eslint-the-pluggable-javascript-linter/
https://en.wikipedia.org/wiki/CommonJS

It makes use of a module object to export functionality from a JavaScript file and a

require() function to import that functionality where you need it.

// lib/math.js

function sum(x, y) {

return x + y;

}

const pi = 3.141593

module.exports = {

sum: sum,

pi: pi

};

// app.js

const math = require("lib/math");

console.log("2π = " + math.sum(math.pi, math.pi));

ES2015 modules

ES2015 introduces a way to define and consume components right into the

language, which was previously possible only with third-party libraries. You can

have separate files with the functionality you want, and export just certain parts

to make them available to your application.

Here's an example:

/ lib/math.js

Broswer Support

Note: Native browser support for ES2015 modules is still under development, so

you currently need some additional tools to be able to use them.

The Anatomy of a Modern JavaScript Application 7

export function sum(x, y) {

return x + y;

}

export let pi = 3.141593;

Here we have a module that exports a function and a variable. We can include

that file in another one and use those exported functions:

/ app.js

import * as math from "lib/math";

console.log("2π = " + math.sum(math.pi, math.pi));

Or we can also be specific and import only what we need:

/ otherApp.js

import {sum, pi} from "lib/math";

console.log("2π = " + sum(pi, pi));

These examples have been extracted from the Babel website. For an in-depth

look, check out Understanding ES6 Modules.

Package Management

Other languages have long had their own package repositories and managers to

make it easier to find and install third-party libraries and components. Node.js

comes with its own package manager and repository, npm. Although there are

other package managers available, npm has become the de facto JavaScript

package manager and is said to be the largest package registry in the world.

8 Modern JavaScript

https://babeljs.io/learn-es2015
https://www.sitepoint.com/understanding-es6-modules/
https://www.sitepoint.com/beginners-guide-node-package-manager/

In the npm repository you can find third-party modules that you can easily

download and use in your projects with a single npm install <package>

command. The packages are downloaded into a local node_modules directory,

which contains all the packages and their dependencies.

The packages that you download can be registered as dependencies of your

project in a package.json file, along with information about your project or

module (which can itself be published as a package on npm).

You can define separate dependencies for both development and production.

While the production dependencies are needed for the package to work, the

development dependencies are only necessary for the developers of the package.

Example package.json file

{

"name": "demo",

"version": "1.0.0",

"description": "Demo package.json",

"main": "main.js",

"dependencies": {

"mkdirp": "^0.5.1",

"underscore": "^1.8.3"

},

"devDependencies": {},

"scripts": {

"test": "echo \"Error: no test specified\" && exit

➥ 1"
},

"author": "Sitepoint",

"license": "ISC"

}

Build Tools

The code that we write when developing modern web applications almost never

is the same code that will go to production. We write code in a modern version of

The Anatomy of a Modern JavaScript Application 9

https://www.npmjs.com/
https://docs.npmjs.com/files/package.json

JavaScript that may not be supported by the browser, we make heavy use of third-

party packages that are in a node_modules folder along with their own

dependencies, we can have processes like static analysis tools or minifiers, etc.

Build tooling exists to help transform all this into something that can be deployed

efficiently and that is understood by most web browsers.

Module bundling

When writing clean, reusable code with ES2015/CommonJS modules, we need

some way to load these modules (at least until browsers support ES2015 module

loading natively). Including a bunch of script tags in your HTML isn't really a

viable option as it would quickly become unwieldy for any serious application,

and all those separate HTTP requests would hurt performance.

We can include all the modules where we need them using the import statement

from ES2015 (or require, for CommonJS) and use a module bundler to combine

everything together into one or more files (bundles). It's this bundled file that we

are going to upload to our server and include in our HTML. It will include all

your imported modules and their necessary dependencies.

There are a currently a couple of popular options for this, the most popular ones

are Webpack, Browserify and Rollup.js. You can choose one or another depending

on your needs.

Transpilation

While support for ES2015 is pretty good among modern browsers, your target

audience may include legacy browsers and devices with partial or no support.

In order to make our modern JavaScript work, we need to translate the code we

write to its equivalent in an earlier version (usually ES5). The standard tool for

this task is Babel; a compiler that translates your code into compatible code for

learning More About Module Bundling

If you want to learn more about module bundling and how it fits into the bigger

picture of app development, I recommend reading Understanding JavaScript

Modules: Bundling & Transpiling.

10 Modern JavaScript

http://webpack.js.org
http://browserify.org
http://rollupjs.org
https://www.sitepoint.com/javascript-modules-bundling-transpiling/
https://www.sitepoint.com/javascript-modules-bundling-transpiling/
http://kangax.github.io/compat-table/es6/
https://babeljs.io

most browsers. In this way you don’t have to wait for vendors to implement

everything, you can just use all the modern JS features.

There are a couple of features that need more than a syntax translation; Babel

includes a Polyfill that emulates some of the machinery required for some

complex features, like promises.

Build systems & task runners

Module bundling and transpilation are just two of the build processes that we

may need in our projects. Others include code minification (to reduce files sizes),

tools for analysis, and perhaps tasks that don’t have anything to do with

JavaScript, like image optimizations or CSS/HTML pre-processing.

The management of tasks can become a laborious thing to do, and we need a way

to handle it in an automated way, being able to execute everything with simpler

commands. The two most popular tools for this are Grunt.js and Gulp.js, they

provide a way to organize your tasks into groups in an ordered way.

For example, you can have a command like gulp build which may run a code

linter, the transpilation process with Babel, and module bundling with

Browserify. Instead of having to remember three commands and their associated

arguments in order, we just execute one that will handle the whole process

automatically.

Wherever you find yourself manually organizing processing steps for your

project, think if it can be automatized with a task runner.

Application Architecture

Web applications have different requirements than websites. For example, while

page reloads may be acceptable for a blog, that is certainly not the case for an

application like Google Docs. Your application should behave as close as possible

to a desktop one, otherwise, the usability would be compromised.

Old-style web applications were usually done by sending multiple pages from a

web server, and when a lot of dynamism was needed, content was loaded via

The Anatomy of a Modern JavaScript Application 11

http://babeljs.io/docs/usage/polyfill/
http://gruntjs.com
http://gulpjs.com

Ajax by replacing chunks of HTML according to user actions. Although it was a

big step forward to a more dynamic web, it certainly had its complications;

sending HTML fragments or even whole pages on each user action represented a

waste of resources, especially time from the user's perspective. The usability still

didn't match the responsiveness of desktop applications.

Looking to improve things, we created to new methods to build web applications,

from the way we present them to the user to the way we communicate the client

with the server. Although the amount of JavaScript required for an application

also increased drastically, the result is now applications that behave very closely

to native ones; without page reloading or extensive waiting periods each time we

click a button.

Single Page Applications (SPAs)

The most common high-level architecture for web applications is called SPA,

which stands for Single Page Application. SPAs are big blobs of JavaScript that

contain everything the application needs to work properly. The UI is rendered

entirely client-side, so no reloading is required. The only thing that changes is the

data inside the application, which is usually handled with a remote API via Ajax

or another asynchronous method of communication.

One downside to this approach is that the application takes longer to load for the

first time. Once it has been loaded, however, transitions between views (pages)

are generally a lot quicker, since it is only pure data being sent between client

and server.

Universal / Isomorphic Applications

Although SPAs provide a great user experience, depending on your needs, they

might not be the optimal solution. Especially if you need quicker initial response

times or optimal indexing by search engines.

There is a fairly recent approach to solving these problems called Isomorphic (or

Universal) JavaScript applications. In this type of architecture, most of the code

can be executed both on the server and the client. You can choose what you want

to render on the server for a faster initial page load, and after that, the client takes

12 Modern JavaScript

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Ajax_(programming)
http://isomorphic.net/javascript

over the rendering while the user is interacting with the app. Because pages are

initially rendered on the server, search engines can index them properly.

Deployment

With modern JavaScript applications, the code that you write is not the same as

the code that you deploy for production; you only deploy the result of your build

process. The workflow to accomplish this can vary depending on the size of your

project, the number of developers working on it, and sometimes the tools/

libraries that you are using.

For example, if you are working alone on a simple project, each time you are

ready for deployment you can just run the build process and upload the resulting

files to a web server. Keep in mind that you only need to upload the resulting files

from the build process (transpilation, module bundling, minification, etc.), which

can be just one .js file containing your entire application and dependencies.

You can have a directory structure like this:

├── dist

│ ├── app.js

│ └── index.html

├── node_modules

├── src

│ ├── lib

│ │ ├── login.js

│ │ └── user.js

│ ├── app.js

│ └── index.html

├── gulpfile.js

├── package.json

└── README

Having all of your application files in an src directory, written in ES2015, and

importing packages installed with npm and your own modules from a lib

directory.

The Anatomy of a Modern JavaScript Application 13

Then you can run Gulp, which will execute the instructions from a

gulpfile.jsto build your project: bundling all modules into one file (including

the ones installed with npm), transpiling ES2015+ to ES5, minifying the resulted

file, etc. Then you can configure it to output the result in a convenient dist

directory.

Now you can just upload the files from the dist directory to a web server,

without having to worry about the rest of the files, which are only useful for

development.

Team development

If you are working with other developers, it is likely that you are also using a

shared code repository, like GitHub, to store the project. In this case, you can run

the building process right before making commits and store the result with the

other files in the Git repository, to later be downloaded onto a production server.

However, storing built files into the repository is prone to errors if several

developers are working together and you might want to keep everything clean

from build artifacts. Fortunately, there is a better way to deal with that problem:

you can put a service like Jenkins, Travis CI, CircleCI, etc. in the middle of the

process, so it can automatically build your project after each commit is pushed to

the repository. Developers only have to worry about pushing code changes

without building the project first each time, also the repository is kept clean of

automatically generated files, and at the end, you still have the built files

available for deployment.

Conclusion

The transition from simple web pages to modern JavaScript applications can

seem daunting if you have been away from web development during recent years,

Files That Don't Need Processing

If you have files that don’t need any processing, you can just copy them from src to

the dist directory. You can configure a task for that in your build system.

14 Modern JavaScript

http://jenkins.io
http://travis-ci.org
http://circleci.com

but I hope this article was useful as a starting point. I've linked to more in-depth

articles on each topic where possible, so you can explore further.

And remember that if at some point, after looking all the options available,

everything seems overwhelming and messy; just keep in mind the KISS principle,

and use only what you think you need and not everything you have available. At

the end of the day, solving problems is what matters, not using the latest of

everything.

The Anatomy of a Modern JavaScript Application 15

https://en.wikipedia.org/wiki/KISS_principle

2Chapter

An Introduction to Gulp.js

by Craig Buckler

Peer reviewed by Giulio Mainardi and Tim Severien.

Developers spend precious little time coding. Even if we ignore irritating

meetings, much of the job involves basic tasks which can sap your working day:

generating HTML from templates and content files

compressing new and modified images

compiling Sass to CSS code

removing console and debugger statements from scripts

transpiling ES6 to cross-browser-compatible ES5 code

code linting and validation

concatenating and minifying CSS and JavaScript files

16 Modern JavaScript

https://www.sitepoint.com/author/gmainardi/
https://www.sitepoint.com/author/tseverien/

deploying files to development, staging and production servers

Tasks must be repeated every time you make a change. You may start with good

intentions but the most infallible developer will forget to compress an image or

two. Over time, pre-production tasks become increasingly arduous and time-

consuming; you'll dread the inevitable content and template changes. It's mind-

numbing, repetitive work. Would it be better to spend your time on more

profitable jobs?

If so, you need a task runner or build process.

That Sounds Scarily Complicated!

Creating a build process will take time. It's more complex than performing each

task manually but, over the long-term, you will save hours of effort, reduce

human error and save your sanity. Adopt a pragmatic approach:

automate the most frustrating tasks first

try not to over-complicate your build process; an hour or two is more than

enough for the initial set-up

choose task runner software and stick with it for a while. Don't switch to

another option on a whim.

Some of the tools and concepts may be new to you but take a deep breath and

concentrate on one thing at a time.

Task Runners: the Options

Build tools such as GNU Make have been available for decades but web-specific

task runners are a relatively new phenomenon. The first to achieve critical mass

was Grunt - a Node.js task runner which used plug-ins controlled (originally) by a

JSON configuration file. Grunt was hugely successful but there were a number of

issues:

1. Grunt required plug-ins for basic functionality such as file watching.

2. Grunt plug-ins often performed multiple tasks which made customisation

more awkward.

An Introduction to Gulp.js 17

https://www.gnu.org/software/make/
http://gruntjs.com/

3. JSON configuration could become unwieldy for all but the most basic tasks.

4. Tasks could run slowly because Grunt saved files between every processing

step.

Many issues were addressed in later editions but Gulp had already arrived and

offered a number of improvements:

1. Features such as file watching were built-in.

2. Gulp plug-ins were (mostly) designed to do a single job.

3. Gulp used JavaScript configuration code which was less verbose, easier to

read, simpler to modify, and provided better flexibility.

4. Gulp was faster because it uses Node.js streams to pass data through a series of

piped plug-ins. Files were only written at the end of the task.

Of course, Gulp itself isn't perfect and new task runners such as Broccoli.js,

Brunch and webpack have also been competing for developer attention. More

recently, npm itself has been touted as a simpler option. All have their pros and

cons, but Gulp remains the favorite and is currently used by more than 40% of

web developers.

Gulp requires Node.js but, while some JavaScript knowledge is beneficial,

developers from all web programming faiths will find it useful.

What About Gulp 4?

This tutorial describes how to use Gulp 3 - the most recent release version at the

time of writing. Gulp 4 has been in development for some time but remains a beta

product. It's possible to use or switch to Gulp 4 but I recommend sticking with

version 3 until the final release.

Step 1: Install Node.js

Node.js can be downloaded for Windows, Mac and Linux from nodejs.org/

download/. There are various options for installing from binaries, package

managers and docker images - full instructions are available.

18 Modern JavaScript

http://gulpjs.com/
https://www.sitepoint.com/basics-node-js-streams/
http://broccolijs.com/
http://brunch.io/
https://webpack.github.io/
https://www.sitepoint.com/guide-to-npm-as-a-build-tool/
https://ashleynolan.co.uk/blog/frontend-tooling-survey-2016-results#js-task-runners
https://ashleynolan.co.uk/blog/frontend-tooling-survey-2016-results#js-task-runners
https://www.joezimjs.com/javascript/complete-guide-upgrading-gulp-4/
https://nodejs.org/download/
https://nodejs.org/download/

Once installed, open a command prompt and enter:

node -v

to reveal the version number. You're about to make heavy use of npm - the Node.js

package manager which is used to install modules. Examine its version number:

npm -v

Note for Linux users: Node.js modules can be installed globally so they are

available throughout your system. However, most users will not have permission

to write to the global directories unless npm commands are prefixed with sudo.

There are a number of options to fix npm permissions and tools such as nvm can

help but I often change the default directory, e.g. on Ubuntu/Debian-based

platforms:

cd ~

mkdir .node_modules_global

npm config set prefix=$HOME/.node_modules_global

npm install npm -g

Then add the following line to the end of ~/.bashrc:

export PATH="$HOME/.node_modules_global/bin:$PATH"

and update with:

Note for Windows Users

Node.js and Gulp run on Windows but some plug-ins may not install or run if they

depend on native Linux binaries such as image compression libraries. One option

for Windows 10 users is the new bash command-line; this solves many issues but is

a beta product and could introduce alternative problems.

An Introduction to Gulp.js 19

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/
https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/

source ~/.bashrc

Step 2: Install Gulp Globally

Install Gulp command-line interface globally so the gulp command can be run

from any project folder:

npm install gulp-cli -g

Verify Gulp has installed with:

gulp -v

Step 3: Configure Your Project

Note for Node.js projects: you can skip this step if you already have a

package.json configuration file.

Presume you have a new or pre-existing project in the folder project1. Navigate

to this folder and initialize it with npm:

cd project1

npm init

You will be asked a series of questions - enter a value or hit Return to accept

defaults. A package.json file will be created on completion which stores your

npm configuration settings.

Note for Git users: Node.js installs modules to a node_modules folder. You should

add this to your .gitignore file to ensure they are not committed to your

20 Modern JavaScript

repository. When deploying the project to another PC, you can run npm install

to restore them.

For the remainder of this article we'll presume your project folder contains the

following sub-folders:

src folder: pre-processed source files

This contains further sub-folders:

html - HTML source files and templates

images — the original uncompressed images

js — multiple pre-processed script files

scss — multiple pre-processed Sass .scss files

build folder: compiled/processed files

Gulp will create files and create sub-folders as necessary:

html - compiled static HTML files

images — compressed images

js — a single concatenated and minified JavaScript file

css — a single compiled and minified CSS file

Your project will almost certainly be different but this structure is used for the

examples below.

Tip: If you're on a Unix-based system and you just want to follow along with the

tutorial, you can recreate the folder structure with the following command:

mkdir -p src/{html,images,js,scss}

➥ build/{html,images,js,css}

Step 4: Install Gulp Locally

You can now install Gulp in your project folder using the command:

An Introduction to Gulp.js 21

npm install gulp --save-dev

This installs Gulp as a development dependency and the "devDependencies"

section of package.json is updated accordingly. We will presume Gulp and all

plug-ins are development dependencies for the remainder of this tutorial.

Alternative Deployment Options

Development dependencies are not installed when the NODE_ENV environment

variable is set to production on your operating system. You would normally do

this on your live server with the Mac/Linux command:

export NODE_ENV=production

Or on Windows:

set NODE_ENV=production

This tutorial presumes your assets will be compiled to the build folder and

committed to your Git repository or uploaded directly to the server. However, it

may be preferable to build assets on the live server if you want to change the way

they are created, e.g. HTML, CSS and JavaScript files are minified on production

but not development environments. In that case, use the --save option for Gulp

and all plug-ins, i.e.

npm install gulp --save

This sets Gulp as an application dependency in the "dependencies" section of

package.json. It will be installed when you enter npm install and can be run

wherever the project is deployed. You can remove the build folder from your

repository since the files can be created on any platform when required.

22 Modern JavaScript

Step 4: Create a Gulp Configuration File

Create a new gulpfile.js configuration file in the root of your project folder.

Add some basic code to get started:

// Gulp.js configuration

var

// modules

gulp = require('gulp'),

// development mode?

devBuild = (process.env.NODE_ENV !== 'production'),

// folders

folder = {

src: 'src/',

build: 'build/'

}

;

This references the Gulp module, sets a devBuild variable to true when running

in development (or non-production mode) and defines the source and build

folder locations.

ES6 note: ES5-compatible JavaScript code is provided in this tutorial. This will

work for all versions of Gulp and Node.js with or without the --harmony flag.

Most ES6 features are supported in Node 6 and above so feel free to use arrow

functions, let, const, etc. if you're using a recent version.

gulpfile.js won't do anything yet because you need to...

Step 5: Create Gulp Tasks

On it's own, Gulp does nothing. You must:

1. install Gulp plug-ins, and

An Introduction to Gulp.js 23

http://node.green/

2. write tasks which utilize those plug-ins to do something useful.

It's possible to write your own plug-ins but, since almost 3,000 are available, it's

unlikely you'll ever need to. You can search using Gulp's own directory at

gulpjs.com/plugins/, on npmjs.com, or search "gulp something" to harness the

mighty power of Google.

Gulp provides three primary task methods:

gulp.task - defines a new task with a name, optional array of dependencies

and a function.

gulp.src - sets the folder where source files are located.

gulp.dest - sets the destination folder where build files will be placed.

Any number of plug-in calls are set with pipe between the .src and .dest.

Image Task

This is best demonstrated with an example so let's create a basic task which

compresses images and copies them to the appropriate build folder. Since this

process could take time, we'll only compress new and modified files. Two plug-

ins can help us: gulp-newer and gulp-imagemin. Install them from the command-

line:

npm install gulp-newer gulp-imagemin --save-dev

We can now reference both modules the top of gulpfile.js:

// Gulp.js configuration

var

// modules

gulp = require('gulp'),

newer = require('gulp-newer'),

imagemin = require('gulp-imagemin'),

24 Modern JavaScript

http://gulpjs.com/plugins/
https://www.npmjs.com/
https://www.npmjs.com/package/gulp-newer
https://www.npmjs.com/package/gulp-imagemin

We can now define the image processing task itself as a function at the end of

gulpfile.js:

// image processing

gulp.task('images', function() {

var out = folder.build + 'images/';

return gulp.src(folder.src + 'images/**/*')

.pipe(newer(out))

.pipe(imagemin({ optimizationLevel: 5 }))

.pipe(gulp.dest(out));

});

All tasks are syntactically similar. This code:

1. Creates a new task named images.

2. Defines a function with a return value which...

3. Defines an out folder where build files will be located.

4. Sets the Gulp src source folder. The /**/* ensures that images in sub-folders

are also processed.

5. Pipes all files to the gulp-newer module. Source files that are newer than

corresponding destination files are passed through. Everything else is

removed.

6. The remaining new or changed files are piped through gulp-imagemin which

sets an optional optimizationLevel argument.

7. The compressed images are output to the Gulp dest folder set by out.

Save gulpfile.js and place a few images in your project's src/images folder

before running the task from the command line:

gulp images

All images are compressed accordingly and you will see output such as:

Using file gulpfile.js

Running 'imagemin'...

An Introduction to Gulp.js 25

Finished 'imagemin' in 5.71 ms

gulp-imagemin: image1.png (saved 48.7 kB)

gulp-imagemin: image2.jpg (saved 36.2 kB)

gulp-imagemin: image3.svg (saved 12.8 kB)

Try running gulp images again and nothing should happen because no newer

images exist.

HTML Task

We can now create a similar task which copies files from the source HTML folder.

We can safely minify our HTML code to remove unnecessary whitespace and

attributes using the gulp-htmlclean plug-in:

npm install gulp-htmlclean --save-dev

which is then referenced at the top of gulpfile.js:

var

// modules

gulp = require('gulp'),

newer = require('gulp-newer'),

imagemin = require('gulp-imagemin'),

htmlclean = require('gulp-htmlclean'),

We can now create an html task at the end of gulpfile.js:

// HTML processing

gulp.task('html', ['images'], function() {

var

out = folder.build + 'html/',

page = gulp.src(folder.src + 'html/**/*')

.pipe(newer(out));

26 Modern JavaScript

https://www.npmjs.com/package/gulp-htmlclean

// minify production code

if (!devBuild) {

page = page.pipe(htmlclean());

}

return page.pipe(gulp.dest(out));

});

This reuses gulp-newer and introduces a couple of concepts:

1. The [images] argument states that our images task must be run before

processing the HTML (the HTML is likely to reference images). Any number of

dependent tasks can be listed in this array and all will complete before the

task function runs.

2. We only pipe the HTML through gulp-htmlclean if NODE_ENV is set to

production. Therefore, the HTML remains uncompressed during

development which may be useful for debugging.

Save gulpfile.js and run gulp html from the command line. Both the html and

images tasks will run.

JavaScript Task

Too easy for you? Let's process all our JavaScript files by building a basic module

bundler. It will:

1. ensure dependencies are loaded first using the gulp-deporder plug-in. This

analyses comments at the top of each script to ensure correct ordering e.g. //

requires: defaults.js lib.js.

2. concatenate all script files into a single main.js file using gulp-concat, and

3. remove all console and debugging statements with gulp-strip-debug and

minimize code with gulp-uglify. This step will only occur when running in

production mode.

Install the plug-ins:

An Introduction to Gulp.js 27

https://www.npmjs.com/package/gulp-deporder
https://www.npmjs.com/package/gulp-concat
https://www.npmjs.com/package/gulp-strip-debug
https://www.npmjs.com/package/gulp-uglify

npm install gulp-deporder gulp-concat gulp-strip-debug

➥ gulp-uglify --save-dev

Reference them at the top of gulpfile.js:

var

...

concat = require('gulp-concat'),

deporder = require('gulp-deporder'),

stripdebug = require('gulp-strip-debug'),

uglify = require('gulp-uglify'),

Then add a new js task:

// JavaScript processing

gulp.task('js', function() {

var jsbuild = gulp.src(folder.src + 'js/**/*')

.pipe(deporder())

.pipe(concat('main.js'));

if (!devBuild) {

jsbuild = jsbuild

.pipe(stripdebug())

.pipe(uglify());

}

return jsbuild.pipe(gulp.dest(folder.build + 'js/'));

});

Save then run gulp js to watch the magic happen!

28 Modern JavaScript

CSS Task

Finally, let’s create a CSS task which compiles Sass .scss files to a single .css

file using gulp-sass. This is a Gulp plug-in for node-sass which binds to the super-

fast LibSass C/C++ port of the Sass engine (you won't need to install Ruby). We'll

presume your primary Sass file scss/main.scss is responsible for loading all

partials.

Our task will also utilize the fabulous PostCSS via the gulp-postcss plug-in.

PostCSS requires its own set of plug-ins and we'll install:

postcss-assets to manage assets. This allows us to use properties such as

background: resolve('image.png'); to resolve file paths or background:

inline('image.png'); to inline data-encoded images.

autoprefixer to automatically add vendor prefixes to CSS properties.

css-mqpacker to pack multiple references to the same CSS media query into a

single rule.

cssnano to minify the CSS code when running in production mode.

First, install all the modules:

npm install gulp-sass gulp-postcss postcss-assets

➥ autoprefixer css-mqpacker cssnano --save-dev

and reference them at the top of gulpfile.js:

var

...

sass = require('gulp-sass'),

postcss = require('gulp-postcss'),

assets = require('postcss-assets'),

autoprefixer = require('autoprefixer'),

mqpacker = require('css-mqpacker'),

cssnano = require('cssnano'),

An Introduction to Gulp.js 29

https://www.npmjs.com/package/gulp-sass
https://www.npmjs.com/package/node-sass
http://sass-lang.com/libsass
http://postcss.org/
https://github.com/postcss/gulp-postcss
https://www.npmjs.com/package/postcss-assets
https://www.npmjs.com/package/autoprefixer
https://www.npmjs.com/package/css-mqpacker
https://www.npmjs.com/package/cssnano

We can now create a new css task at the end of gulpfile.js. Note the images

task is set as a dependency because the postcss-assets plug-in can reference

images during the build process. In addition, most plug-ins can be passed

arguments - refer to their documentation for more information:

// CSS processing

gulp.task('css', ['images'], function() {

var postCssOpts = [

assets({ loadPaths: ['images/'] }),

autoprefixer({ browsers: ['last 2 versions', '> 2%'] }),

mqpacker

];

if (!devBuild) {

postCssOpts.push(cssnano);

}

return gulp.src(folder.src + 'scss/main.scss')

.pipe(sass({

outputStyle: 'nested',

imagePath: 'images/',

precision: 3,

errLogToConsole: true

}))

.pipe(postcss(postCssOpts))

.pipe(gulp.dest(folder.build + 'css/'));

});

Save the file and run the task from the command line:

gulp css

30 Modern JavaScript

Step 6: Automate Tasks

We've been running one task at a time. We can run them all in one command by

adding a new run task to gulpfile.js:

// run all tasks

gulp.task('run', ['html', 'css', 'js']);

Save and enter gulp run at the command line to execute all tasks. Note I omitted

the images task because it's already set as a dependency for the html and css

tasks.

Is this still too much hard work? Gulp offers another method - gulp.watch -

which can monitor your source files and run an appropriate task whenever a file

is changed. The method is passed a folder and a list of tasks to execute when a

change occurs. Let's create a new watch task at the end of gulpfile.js:

// watch for changes

gulp.task('watch', function() {

// image changes

gulp.watch(folder.src + 'images/**/*', ['images']);

// html changes

gulp.watch(folder.src + 'html/**/*', ['html']);

// javascript changes

gulp.watch(folder.src + 'js/**/*', ['js']);

// css changes

gulp.watch(folder.src + 'scss/**/*', ['css']);

});

Rather than running gulp watch immediately, let's add a default task:

An Introduction to Gulp.js 31

// default task

gulp.task('default', ['run', 'watch']);

Save gulpfile.js and enter gulp at the command line. Your images, HTML, CSS

and JavaScript will all be processed then Gulp will remain active watching for

updates and re-running tasks as necessary. Hit Ctrl/Cmd + C to abort monitoring

and return to the command line.

Step 7: Profit!

Other plug-ins you may find useful:

gulp-load-plugins - load all Gulp plug-in modules without require

declarations

gulp-preprocess - a simple HTML and JavaScript preprocessor

gulp-less - the Less CSS pre-processor plug-in

gulp-stylus - the Stylus CSS pre-processor plug-in

gulp-sequence - run a series of gulp tasks in a specific order

gulp-plumber - error handling which prevents Gulp stopping on failures

gulp-size - displays file sizes and savings

gulp-nodemon - uses nodemon to automatically restart Node.js applications

when changes occur.

gulp-util - utility functions including logging and color-coding

One useful method in gulp-util is .noop() which passes data straight through

without performing any action. This could be used for cleaner development/

production processing code, e.g.

var gutil = require('gulp-util');

// HTML processing

gulp.task('html', ['images'], function() {

var out = folder.src + 'html/**/*';

return gulp.src(folder.src + 'html/**/*')

.pipe(newer(out))

32 Modern JavaScript

https://www.npmjs.com/package/gulp-load-plugins
https://www.npmjs.com/package/gulp-preprocess
https://github.com/jsoverson/preprocess
https://www.npmjs.com/package/gulp-less
http://lesscss.org/
https://www.npmjs.com/package/gulp-stylus
http://stylus-lang.com/
https://www.npmjs.com/package/gulp-sequence
https://www.npmjs.com/package/gulp-plumber
https://www.npmjs.com/package/gulp-size
https://www.npmjs.com/package/gulp-nodemon
https://www.npmjs.com/package/nodemon
https://www.npmjs.com/package/gulp-util

.pipe(devBuild ? gutil.noop() : htmlclean())

.pipe(gulp.dest(out));

});

Gulp can also call other Node.js modules - they don't necessarily need to be plug-

ins, e.g.

browser-sync - automatically reload assets or refresh your browser when

changes occur

del - delete files and folders (perhaps clean your build folder at the start of

every run).

Invest a little time and Gulp could save many hours of development frustration.

The advantages:

plug-ins are plentiful

configuration using pipes is readable and easy to follow

gulpfile.js can be adapted and reused in other projects

your total page weight can be reduced to improve performance

you can simplify your deployment.

Useful links:

Gulp home page

Gulp plug-ins

npm home page

Applying the processes above to a simple website reduced the total weight by

more than 50%. You can test your own results using page weight analysis tools or

a service such as New Relic which provides a range of sophisticated application

performance monitoring tools.

An Introduction to Gulp.js 33

https://www.npmjs.com/package/browser-sync
https://www.npmjs.com/package/del
https://npmjs.org/browse/keyword/gulpplugin/
http://gulpjs.com/
https://npmjs.org/browse/keyword/gulpplugin/
https://www.npmjs.com/
http://sitepoint.com/10-best-webpage-weight-analysis-tools/
http://newrelic.com/?r=phpm

3Chapter

The Basics of DOM Manipulation in Vanilla
JavaScript (No jQuery)

by Sebastian Seitz

Peer reviewed by Vildan Softic and Joan Yin.

Whenever we need to perform DOM manipulation, we're all quick to reach for

jQuery. However, the vanilla JavaScrpt DOM API is actually quite capable in its

own right, and since IE < 11 has been officially abandoned, it can now be used

without any worries.

In this article, I'll demonstrate how to accomplish some of the most common

DOM manipulation tasks with plain JavaScript, namely:

querying and modifying the DOM,

34 Modern JavaScript

https://www.sitepoint.com/author/vildansoftic/
https://github.com/newjs
https://www.microsoft.com/en-us/WindowsForBusiness/End-of-IE-support

modifying classes and attributes,

listening to events, and

animation.

I'll finish off by showing you how to create your own super slim DOM-library that

you can drop into any project. Along the way, you'll learn that DOM

manipulation with vanilla JS is not rocket science and that many jQuery methods

in fact have direct equivalents in the native API.

So let's get to it ...

DOM Manipulation: Querying the DOM

The DOM can be queried using the .querySelector() method, which takes an

arbitrary CSS selector as an argument:

const myElement = document.querySelector('#foo >

➥ div.bar')

This will return the first match (depth first). Conversely, we can check if an

element matches a selector:

myElement.matches('div.bar') === true

If we want to get all occurrences, we can use:

const myElements = document.querySelectorAll('.bar')

This Isn't An Exhaustive Guide to the DOM API

I won't explain the Vanilla DOM API in full detail, but only scratch the surface. In

the usage examples, you may encounter methods I haven't introduced explicitly. In

this case just refer to the excellent Mozilla Developer Network for details.

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 35

https://developer.mozilla.org/en-US/

If we already have a reference to a parent element, we can just query that

element's children instead of the whole document. Having narrowed down the

context like this, we can simplify selectors and increase performance.

const myChildElemet =

➥ myElement.querySelector('input[type="submit"]')

// Instead of

// document.querySelector('#foo > div.bar

➥ input[type="submit"]')

Then why use those other, less convenient methods like

.getElementsByTagName() at all? Well, one important difference is that the result

of .querySelector() is not live, so when we dynamically add an element (see

section 3 for details) that matches a selector, the collection won't update.

const elements1 = document.querySelectorAll('div')

const elements2 = document.getElementsByTagName('div')

const newElement = document.createElement('div')

document.body.appendChild(newElement)

elements1.length === elements2.length // false

Another consideration is that such a live collection doesn't need to have all of the

information up front, whereas .querySelectorAll() immediately gathers

everything in a static list, making it less performant.

Working with Nodelists

Now there are two common gotchas regarding .querySelectorAll(). The first

one is that we can't call Node methods on the result and propagate them to its

elements (like you might be used from jQuery objects). Rather we have to

explicitly iterate over those elements. And this is the other gotcha: the return

value is a NodeList, not an Array. This means the usual Array methods are not

available directly. There are a few corresponding NodeList implementations such

36 Modern JavaScript

https://www.nczonline.net/blog/2010/09/28/why-is-getelementsbytagname-faster-that-queryselectorall/

as .forEach, which however are still not supported by any IE. So we have to

convert the list to an array first, or "borrow" those methods from the Array

prototype.

// Using Array.from()

Array.from(myElements).forEach(doSomethingWithEachElement)

// Or prior to ES6

Array.prototype.forEach.call(myElements,

➥ doSomethingWithEachElement)

// Shorthand:

[].forEach.call(myElements, doSomethingWithEachElement)

Each element also has a couple of rather self-explanatory read-only properties

referencing the "family", all of which are live:

myElement.children

myElement.firstElementChild

myElement.lastElementChild

myElement.previousElementSibling

myElement.nextElementSibling

As the Element interface inherits from the Node interface, the following

properties are also available:

myElement.childNodes

myElement.firstChild

myElement.lastChild

myElement.previousSibling

myElement.nextSibling

myElement.parentNode

myElement.parentElement

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 37

https://developer.mozilla.org/en-US/docs/Web/API/element
https://developer.mozilla.org/en-US/docs/Web/API/Node

Where the former only reference elements, the latter (except for .parentElement)

can be any kind of node, e.g. text nodes. We can then check the type of a given

node like e.g.

myElement.firstChild.nodeType === 3 // this would be a text

➥ node

As with any object, we can check a node's prototype chain using the instanceof

operator:

myElement.firstChild.nodeType instanceof Text

Modifying Classes and Attributes

Modifying classes of elements is as easy as:

myElement.classList.add('foo')

myElement.classList.remove('bar')

myElement.classList.toggle('baz')

You can read a more in-depth disussion of how to modify classes in this quick tip

by Yaphi Berhanu. Element properties can be accessed like any other object's

properties

// Get an attribute value

const value = myElement.value

// Set an attribute as an element property

myElement.value = 'foo'

// Set multiple properties using Object.assign()

Object.assign(myElement, {

value: 'foo',

38 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType
https://www.sitepoint.com/add-remove-css-class-vanilla-js/
https://www.sitepoint.com/add-remove-css-class-vanilla-js/

id: 'bar'

})

// Remove an attribute

myElement.value = null

Note that there are also the methods .getAttibute(), .setAttribute() and

.removeAttribute(). These directly modify the HTML attributes (as opposed to

the DOM properties) of an element, thus causing a browser redraw (you can

observe the changes by inspecting the element with your browser's dev tools).

Not only is such a browser redraw more expensive than just setting DOM

properties, but these methods also can have unexpected results.

As a rule of thumb, only use them for attributes that don't have a corresponding

DOM property (such as colspan), or if you really want to "persist" those changes

to the HTML (e.g. to keep them when cloning an element or modifying its

parent's .innerHTML — see section 3).

Adding CSS styles

CSS rules can be applied like any other property; note though that the properties

are camel-cased in JavaScript:

myElement.style.marginLeft = '2em'

If we want certain values, we can obtain these via the .style property. However,

this will only give us styles that have been explicitly applied. To get the

computed values, we can use, .window.getComputedStyle(). It takes the element

and returns a CSSStyleDeclaration containing all styles from the element itself as

well as those inherited from its parents:

window.getComputedStyle(myElement).getPropertyValue('margin-l

➥ eft')

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 39

https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute#Notes
https://developer.mozilla.org/en-US/docs/Web/API/CSSStyleDeclaration

Modifying the DOM

We can move elements around like so:

// Append element1 as the last child of element2

element1.appendChild(element2)

// Insert element2 as child of element 1, right before

➥ element3
element1.insertBefore(element2, element3)

If we don't want to move the element, but insert a copy, we can clone it like so:

// Create a clone

const myElementClone = myElement.cloneNode()

myParentElement.appendChild(myElementClone)

The .cloneNode() method optionally takes a boolean as argument; if set to true, a

deep copy will be created, meaning its children are also cloned.

Of course, we can just as well create entirely new elements or text nodes:

const myNewElement = document.createElement('div')

const myNewTextNode = document.createTextNode('some text')

which we can then insert as shown above. If we want to remove an element, we

can't do so directly, but we can remove children from a parent element, like so:

myParentElement.removeChild(myElement)

This gives us a nice little work around, meaning can actually remove an element

indirectly, by referencing its parent element:

40 Modern JavaScript

myElement.parentNode.removeChild(myElement)

Element properties

Every element also has the properties .innerHTML and .textContent (as well as

.innerText, which is similar to .textContent, but has some important

differences). These hold the HTML and plain text content respectively. They are

writable properties, meaning we can modify elements and their contents directly:

// Replace the inner HTML

myElement.innerHTML = `

<div>

<h2>New content</h2>

<p>beep boop beep boop</p>

</div>

`

// Remove all child nodes

myElement.innerHTML = null

// Append to the inner HTML

myElement.innerHTML += `

continue reading...

<hr/>

`

Appending markup to the HTML as shown above is usually a bad idea though, as

we'd lose any previously made property changes on the affected elements (unless

we persisted those changes as HTML attributes as shown in section 2) and bound

event listeners. Setting the .innerHTML is good for completely throwing away

markup and replacing it with something else, e.g. server-rendered markup. So

appending elements would better be done like so:

const link = document.createElement('a')

const text = document.createTextNode('continue reading...')

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 41

http://perfectionkills.com/the-poor-misunderstood-innerText/
http://perfectionkills.com/the-poor-misunderstood-innerText/

const hr = document.createElement('hr')

link.href = 'foo.html'

link.appendChild(text)

myElement.appendChild(link)

myElement.appendChild(hr)

With this approach however we'd cause two browser redraws — one for each

appended element — whereas changing the .innerHTML only causes one. As a

way around this performance issue we can first assemble all nodes in a

DocumentFragment, and then just append that single fragment:

const fragment = document.createDocumentFragment()

fragment.appendChild(text)

fragment.appendChild(hr)

myElement.appendChild(fragment)

Listening to events

This is possibly the best known way to bind an event listener:

myElement.onclick = function onclick (event) {

console.log(event.type + ' got fired')

}

But this should generally be avoided. Here, .onclick is a property of the element,

meaning that you can change it, but you cannot use it to add additional listeners

— by reassigning a new function you'll overwrite the reference to the old one.

Instead, we can use the much mightier .addEventListener() method to add as

many events of as many types as we like. It takes three arguments: the event type

(such as click), a function that gets called whenever the event occurs on the

42 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/API/DocumentFragment

element (this function gets passed an event object), and an optional config object

which will be explained further below.

myElement.addEventListener('click', function (event) {

console.log(event.type + ' got fired')

})

myElement.addEventListener('click', function (event) {

console.log(event.type + ' got fired again')

})

Within the listener function, event.target refers to the element on which the

event was triggered (as does this, unless of course we're using an arrow

function). Thus you can easily access its properties like so:

// The `forms` property of the document is an array holding

// references to all forms

const myForm = document.forms[0]

const myInputElements = myForm.querySelectorAll('input')

Array.from(myInputElements).forEach(el => {

el.addEventListener('change', function (event) {

console.log(event.target.value)

})

})

Preventing default actions

Note that event is always available within the listener function, but it is good

practive to explitly pass it in anyway when needed (and we can name it as we

like then, of course). Without elaborating on the Event interface itself, one

particularly noteworthy method is .preventDefault(), which will, well, prevent

the browser's default behavior, such as following a link. Another common use-

case would be to conditionally prevent the submission of a form if the client-side

form-validation fails.

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 43

https://www.sitepoint.com/es6-arrow-functions-new-fat-concise-syntax-javascript/
https://www.sitepoint.com/es6-arrow-functions-new-fat-concise-syntax-javascript/
https://developer.mozilla.org/en-US/docs/Web/API/Event

myForm.addEventListener('submit', function (event) {

const name = this.querySelector('#name')

if (name.value === 'Donald Duck') {

alert('You gotta be kidding!')

event.preventDefault()

}

})

Another important event method is .stopPropagation(), which will prevent the

event from bubbling up the DOM. This means that if we have a propagation-

stopping click listener (say) on an element, and another click listener on one of

its parents, a click event that gets triggered on the child element won't get

triggered on the parent — otherwise, it would get triggered on both.

Now .addEventListener() takes an optional config object as a 3rd argument,

which can have any of the following boolean properties (all of which default to

false):

capture: The event will be triggered on the element before any other element

beneath it in the DOM (event capturing and bubbling is an article in its own

right, for more details have a look here)

once: As you might guess, this indicates that the event will get triggered only

once

passive: This means that event.preventDefault() will be ignored (and

usually yield a warning in the console)

The most common option is .capture; in fact, it is so common that there's a

shorthand for this: instead of specifying it in the config object, you can just pass

in a boolean here:

myElement.addEventListener(type, listener, true)

Event listeners can be removed using .removeEventListener(), which takes the

event type and a reference to the callback function to be removed; for example,

the once option could also be implemented like

44 Modern JavaScript

http://javascript.info/tutorial/bubbling-and-capturing

myElement.addEventListener('change', function listener

➥ (event) {
console.log(event.type + ' got triggered on ' + this)

this.removeEventListener('change', listener)

})

Event delegation

Another useful pattern is event delegation: say we have a form and want to add a

change event listener to all of its input children. One way to do so would be

iterating over them using myForm.querySelectorAll('input') as shown above.

However, this is unnecessary when we can just as well add it to the form itself

and check the contents of event.target.

myForm.addEventListener('change', function (event) {

const target = event.target

if (target.matches('input')) {

console.log(target.value)

}

})

Another advantage of this pattern is that it automatically accounts for

dynamically inserted children as well, without having to bind new listeners to

each.

Animation

Usually, the cleanest way to perform animations is to apply CSS classes with a

transition property, or use CSS @keyframes. But if you need more flexibility

(e.g. for a game), this can be done with JavaScript as well.

The naive approach would be to have a window.setTimeout() function call itself

until the desired animation is completed. However, this inefficiently forces rapid

document reflows; and this layout thrashing can quickly lead to stuttering,

expecially on mobile devices. Intead, we can sync the updates using

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 45

window.requestAnimationFrame() to schedule all current changes to the next

browser repaint frame. It takes a callback as argument which receives the current

(high res) timestamp:

const start = window.performance.now()

const duration = 2000

window.requestAnimationFrame(function fadeIn (now)) {

const progress = now - start

myElement.style.opacity = progress / duration

if (progress < duration) {

window.requestAnimationFrame(fadeIn)

}

}

This way we can achieve very smooth animations. For a more detailed

discussion, please have a look at this article by Mark Brown.

Writing your own helper methods

True, always having to iterate over elements to do something with them may be

rather cumbersome compared to jQuery's concise and chainable

$('.foo').css({color: 'red'}) syntax. So why not simply write our own

shorthand methods for things like this?

const $ = function $ (selector, context = document) {

const elements =

➥ Array.from(context.querySelectorAll(selector))

return {

elements,

html (newHtml) {

this.elements.forEach(element => {

element.innerHTML = newHtml

})

46 Modern JavaScript

https://www.sitepoint.com/quick-tip-game-loop-in-javascript/

return this

},

css (newCss) {

this.elements.forEach(element => {

Object.assign(element.style, newCss)

})

return this

},

on (event, handler, options) {

this.elements.forEach(element => {

element.addEventListener(event, handler, options)

})

return this

}

// etc.

}

}

Thus we have a super slim DOM-library with only the methods that we really

need, and without all the backwards-compatibility weight. Usually we'd have

those methods in our collection's prototype though. Here's a (somewhat more

elaborate) gist with some ideas how to implement such helpers. Alternatively, we

might keep it as simple as

const $ = (selector, context = document) =>

➥ context.querySelector(selector)
const $$ = (selector, context = document) =>

➥ context.querySelectorAll(selector)

const html = (nodeList, newHtml) => {

Array.from(nodeList).forEach(element => {

element.innerHTML = newHtml

The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery) 47

https://gist.github.com/SitePointEditors/4f6643d62a87aece860b0784c6eeffd2

})

}

// And so on...

Demo

To round this article off, here's a CodePen which demonstrates many of the

concepts explained above to implement a simple lightbox technique.

Conclusion

I hope I could show that DOM manipulation with plain JavaScript is not rocket

science and that in fact, many jQuery methods have direct equivalents in the

native DOM API. This means that for some everyday use cases (such as a

navigation menu or a modal popup), the additional overhead of a DOM library

may be out of place.

And while it's true that some parts of the native API are verbose or inconvenient

(such as having to iterate over node lists manually all the time), we can quite

easily write our own small helper functions to abstract away such repetitive

tasks.

48 Modern JavaScript

http://codepen.io/SitePoint/pen/aJaggB/
http://codepen.io/SitePoint/pen/aJaggB/

4Chapter

A Beginner's Guide to Webpack 2 and
Module Bundling

by Mark Brown

Webpack has become one of the most important tools for modern web

development. Primarily it's a module bundler for your JavaScript but it can be

taught to transform all of your front-end assets like HTML and CSS, even images.

It can give you more control over the number of HTTP requests your app is

making and allows you to use other flavors of those assets (Jade, Sass & ES6 for

example). Webpack also allows you to easily consume packages from npm.

This article is aimed at those who are new to webpack and will cover initial setup

and configuration, modules, loaders, plugins, code splitting and hot module

replacement. If you find video tutorials helpful I can highly recommend Glen

A Beginner's Guide to Webpack 2 and Module Bundling 49

https://webpack.js.org/

Maddern's Webpack from First Principles as a starting point to understand what

it is that makes webpack special.

To follow along at home you'll need to have Node.js installed. You can also

download the demo app from our Github repo.

Setup

Let's initialize a new project with npm and install webpack:

mkdir webpack-demo

cd webpack-demo

npm init -y

npm install webpack@beta --save-dev

mkdir src

touch index.html src/app.js webpack.config.js

Edit these files:

<!-- index.html -->

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Hello webpack</title>

</head>

<body>

<div id="root"></div>

<script src="dist/bundle.js"></script>

</body>

</html>

// src/app.js

const root = document.querySelector('#root')

root.innerHTML = `<p>Hello webpack.</p>`

50 Modern JavaScript

https://www.youtube.com/watch?v=WQue1AN93YU
https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/
https://github.com/sitepoint-editors/webpack-demo

// webpack.config.js

const webpack = require('webpack')

const path = require('path')

const config = {

context: path.resolve(__dirname, 'src'),

entry: './app.js',

output: {

path: path.resolve(__dirname, 'dist'),

filename: 'bundle.js'

},

module: {

rules: [{

test: /\.js$/,

include: path.resolve(__dirname, 'src'),

use: [{

loader: 'babel-loader',

options: {

presets: [

['es2015', { modules: false }]

]

}

}]

}]

}

}

module.exports = config

The config above is a common starting point, it instructs webpack to compile our

entry point src/app.js into our output /dist/bundle.js and all .js files will be

transpiled from ES2015 to ES5 with Babel.

To get this running we're going to need to install three packages, babel-core, the

webpack loader babel-loader and the preset babel-preset-es2015 for the flavor

of JavaScript we want to write. { modules: false } enables Tree Shaking to

remove unused exports from your bundle to bring down the file size.

A Beginner's Guide to Webpack 2 and Module Bundling 51

http://www.2ality.com/2015/12/webpack-tree-shaking.html

npm install babel-core babel-loader babel-preset-es2015

➥ --save-dev

Lastly, replace the scripts section of package.json with the following:

"scripts": {

"start": "webpack --watch",

"build": "webpack -p"

},

Running npm start from the command line will start webpack in watch mode

which will recompile our bundle whenever a .js file is changed in our src

directory. The output in the console tells us about the bundles being being

created, it's important to keep an eye on the number of bundles and the size.

You should now be able to load index.html in your browser and be greeted with

"Hello webpack.".

open index.html

Open up dist/bundle.js to see what webpack has done, at the top is webpack's

module bootstrapping code and right at the bottom is our module. You may not

be colored impressed just yet but if you've come this far you can now start

authoring ES6 modules and webpack will be able to produce a bundle for

production that will work in all browsers.

52 Modern JavaScript

Stop webpack with Ctrl + C and run npm run build to compile our bundle in

production mode.

Notice that the bundle size has come down from 2.61 kB to 585 bytes. Take

another look at dist/bundle.js and you'll see a big ugly mess of code, our

bundle has been minified with UglifyJS, the code will run exactly the same but

it's done with the fewest characters needed.

Modules

Out of the box webpack knows how to consume JavaScript modules in a variety

of formats, the most notable two are:

ES2015 import statements

CommonJS require() statements

We can test this out by installing lodash and importing it from app.js

npm install lodash --save

// src/app.js

import {groupBy} from 'lodash/collection'

const people = [{

manager: 'Jen',

name: 'Bob'

}, {

manager: 'Jen',

name: 'Sue'

}, {

manager: 'Bob',

name: 'Shirley'

}, {

manager: 'Bob',

name: 'Terrence'

}]

const managerGroups = groupBy(people, 'manager')

A Beginner's Guide to Webpack 2 and Module Bundling 53

https://lodash.com/

const root = document.querySelector('#root')

root.innerHTML = `<pre>${JSON.stringify(managerGroups,

➥ null, 2)}</pre>`

Run npm start to start webpack and refresh index.html, you should see an array

of people grouped by manager.

Let's move the array of people into its own module people.js

// src/people.js

const people = [{

manager: 'Jen',

name: 'Bob'

}, {

manager: 'Jen',

name: 'Sue'

}, {

manager: 'Bob',

name: 'Shirley'

}, {

manager: 'Bob',

name: 'Terrence'

}]

export default people

We can simply import it from app.js with a relative path.

// src/app.js

import {groupBy} from 'lodash/collection'

import people from './people'

const managerGroups = groupBy(people, 'manager')

const root = document.querySelector('#root')

root.innerHTML = `<pre>${JSON.stringify(managerGroups,

54 Modern JavaScript

➥ null, 2)}</pre>`

Note: Imports without a relative path like 'lodash/collection' are modules

from npm installed to /node_modules, your own modules will always need a

relative path like './people', this is how you can tell them apart.

Loaders

We've already been introduced to babel-loader, one of many loaders that you

can configure to tell webpack what to do when it encounters imports for different

file types. You can chain loaders together into a series of transforms, a good way

to see how this works is by importing Sass from our JavaScript.

Sass

This transformation involves three separate loaders and the node-sass library:

npm install css-loader style-loader sass-loader node-sass

➥ --save-dev

Add a new rule to our config file for .scss files.

// webpack.config.js

rules: [{

test: /\.scss$/,

use: [

'style-loader',

'css-loader',

'sass-loader'

]

}, {

// ...

}]

A Beginner's Guide to Webpack 2 and Module Bundling 55

https://webpack.js.org/loaders/

Note: Whenever you change any of loading rules in webpack.config.js you'll

need to restart the build with Ctrl + C and npm start.

The array of loaders are processed in reverse order:

sass-loader transforms Sass into CSS.

css-loader parses the CSS into JavaScript and resolves any dependencies.

style-loader outputs our CSS into a <style> tag in the document.

You can think of these as function calls, the output of one loader feeds as input

into the next.

styleLoader(cssLoader(sassLoader('source')))

Let's add a Sass source file:

/* src/style.scss */

$bluegrey: #2B3A42;

pre {

padding: 20px;

background: $bluegrey;

color: #dedede;

text-shadow: 0 1px 1px rgba(#000, .5);

}

You can now require Sass directly from your JavaScript, import it from the top of

app.js.

// src/app.js

import './style.scss'

// ...

Reload index.html and you should see some styling.

56 Modern JavaScript

CSS in JS

We just imported a Sass file from our JavaScript, as a module.

Open up dist/bundle.js and search for "pre {". Indeed, our Sass has been

compiled to a string of CSS and saved as a module within our bundle. When we

import this module in our JavaScript, style-loader outputs that string into an

embedded <style> tag.

I know what you're thinking. Why?

I won't delve too far into this topic here, but here are a few reasons to consider:

A JavaScript component you may want to include in your project may depend

on other assets to function properly (HTML, CSS, Images, SVG), if these can

all be bundled together it is far easier to import and use.

Dead code elimination: When a JS component is no longer imported by your

code, the CSS will no longer be imported either. The bundle produced will

only ever contain code that does something.

CSS Modules: The global namespace of CSS makes it very difficult to be

confident that a change to your CSS will not have any side effects. CSS

modules change this by making CSS local by default and exposing unique

class names that you can reference in your JavaScript.

Bring down the number of HTTP requests by bundling / splitting code in

clever ways.

Images

The last example of loaders we'll look at is the handling of images with

url-loader.

In a standard HTML document images are fetched when the browser encounters

an tag or an element with a background-image property. With webpack

you can optimize this in the case of small images by storing the source of the

images as strings inside your JavaScript. By doing this you preload them and the

browser won't have to fetch them with separate requests later.

A Beginner's Guide to Webpack 2 and Module Bundling 57

https://github.com/css-modules/css-modules
https://github.com/css-modules/css-modules

npm install file-loader url-loader --save-dev

Add one more rule for loading images:

// webpack.config.js

rules: [{

test: /\.(png|jpg)$/,

use: [{

loader: 'url-loader',

options: { limit: 10000 } // Convert images < 10k to

➥ base64 strings
}]

}, {

// ...

}]

Restart the build with Ctrl + C and npm start.

Download a test image with this command:

curl

➥ https://raw.githubusercontent.com/sitepoint-editors/webpack-demo/
master/src/code.png

➥ --output src/code.png

You can now import the image source from the top of app.js:

// src/app.js

import codeURL from './code.png'

const img = document.createElement('img')

img.src = codeURL

img.style.backgroundColor = "#2B3A42"

img.style.padding = "20px"

img.width = 32

document.body.appendChild(img)

58 Modern JavaScript

https://raw.githubusercontent.com/sitepoint-editors/webpack-demo/master/src/code.png

// ...

This will include an image where the src attribute contains a data URI of the

image itself.

<img src="..."

➥ style="background: #2B3A42; padding: 20px" width="32">

Also, thanks to css-loader images referenced with url() also run through

url-loader to inline them directly in the CSS.

/* src/style.scss */

pre {

background: $bluegrey url('code.png') no-repeat center

➥ center / 32px 32px;
}

Compiles to this

pre {

background: #2b3a42 url("...")

➥ no-repeat scroll center center / 32px 32px;
}

Modules to Static Assets

You should be able to see now how loaders help to build up a tree of

dependencies amongst your assets, this is what the image on the webpack

homepage is demonstrating.

A Beginner's Guide to Webpack 2 and Module Bundling 59

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs

Though JavaScript is the entry point, webpack appreciates that your other asset

types like HTML, CSS, and SVG each have dependencies of their own which

should be considered as part of the build process.

Plugins

We've seen one example of a built in webpack plugin already, webpack -p which

is called from our npm run build script uses the UglifyJsPlugin which ships with

webpack to minify our bundle for production.

While loaders operate transforms on single files plugins operate across larger

chunks of code.

Common code

The commons-chunk-plugin is another core plugin that ships with webpack that

can be used to create a separate module with shared code across multiple entry

points. Until now we've been using a single entry point and single output bundle.

There are many real-world scenarios where you'll benefit from splitting this into

multiple entry and output files.

If you have two distinct areas of your application that both share modules, for

example app.js for a public facing app and admin.js for an administration area

you can create separate entry points for them like so:

60 Modern JavaScript

https://webpack.js.org/api/cli#shortcuts
https://webpack.js.org/plugins/commons-chunk-plugin/
https://webpack.js.org/concepts/entry-points/#scenarios

// webpack.config.js

const webpack = require('webpack')

const path = require('path')

const extractCommons = new

➥ webpack.optimize.CommonsChunkPlugin({
name: 'commons',

filename: 'commons.js'

})

const config = {

context: path.resolve(__dirname, 'src'),

entry: {

app: './app.js',

admin: './admin.js'

},

output: {

path: path.resolve(__dirname, 'dist'),

filename: '[name].bundle.js'

},

module: {

// ...

},

plugins: [

extractCommons

]

}

module.exports = config

Notice the change to the output.filename which now includes [name], this is

replaced with the chunk name so we can expect two output bundles from this

configuration: app.bundle.js and admin.bundle.js for our two entry points.

The commonschunk plugin generates a third file commons.js which includes

shared modules from our entry points.

A Beginner's Guide to Webpack 2 and Module Bundling 61

// src/app.js

import './style.scss'

import {groupBy} from 'lodash/collection'

import people from './people'

const managerGroups = groupBy(people, 'manager')

const root = document.querySelector('#root')

root.innerHTML = `<pre>${JSON.stringify(managerGroups,

➥ null, 2)}</pre>`

// src/admin.js

import people from './people'

const root = document.querySelector('#root')

root.innerHTML = `<p>There are ${people.length}

➥ people.</p>`

These entry points would output the following files:

app.bundle.js includes the style and lodash/collection modules

admin.bundle.js doesn't include extra modules

commons.js includes our people module

We could then include the commons chunk in both areas:

<!-- index.html -->

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Hello webpack</title>

</head>

<body>

<div id="root"></div>

<script src="dist/commons.js"></script>

62 Modern JavaScript

<script src="dist/app.bundle.js"></script>

</body>

</html>

<!-- admin.html -->

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Hello webpack</title>

</head>

<body>

<div id="root"></div>

<script src="dist/commons.js"></script>

<script src="dist/admin.bundle.js"></script>

</body>

</html>

Try loading index.html and admin.html in the browser to see them run with the

automatically created commons chunk.

Extracting CSS

Another popular plugin is the extract-text-webpack-plugin which can be used to

extract modules into their own output files.

Below we'll modify our .scss rule to compile our Sass, load the CSS, then extract

each into its own CSS bundle, thus removing it from our JavaScript bundle.

npm install extract-text-webpack-plugin@2.0.0-beta.4

➥ --save-dev

// webpack.config.js

const ExtractTextPlugin =

A Beginner's Guide to Webpack 2 and Module Bundling 63

https://github.com/webpack-contrib/extract-text-webpack-plugin

➥ require('extract-text-webpack-plugin')
const extractCSS = new

➥ ExtractTextPlugin('[name].bundle.css')

const config = {

// ...

module: {

rules: [{

test: /\.scss$/,

loader: extractCSS.extract(['css-loader','sass-loader'])

}, {

// ...

}]

},

plugins: [

extractCSS,

// ...

]

}

Restart webpack and you should see a new bundle app.bundle.css which you

can link to directly, as usual.

<!-- index.html -->

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Hello webpack</title>

<link rel="stylesheet" href="dist/app.bundle.css">

</head>

<body>

<div id="root"></div>

<script src="dist/commons.js"></script>

<script src="dist/app.bundle.js"></script>

</body>

</html>

64 Modern JavaScript

Refresh the page to confirm our CSS has been compiled and moved from

app.bundle.js to app.bundle.css. Success!

Code Splitting

We've looked at a few ways to split our code already:

Manually creating separate entry points

Automatic splitting of shared code into a commons chunk

Extracting chunks out of our compiled bundle with extract-text-webpack-

plugin

Another way to split our bundle is with System.import or require.ensure. By

wrapping sections of code in these functions you create a chunk to be loaded on

demand at run time. This can significantly improve load time performance by not

sending everything to the client at the start. System.import takes the module

name as an argument and returns a Promise. require.ensure takes a list of

dependencies, a callback and an optional name for the chunk.

If one section of your app has heavy dependencies that the rest of the app doesn't

need, it's a good case for splitting into its own bundle. We can demonstrate this

by adding a new module named dashboard.js that requires d3.

npm install d3 --save

// src/dashboard.js

import * as d3 from 'd3'

console.log('Loaded!', d3)

export const draw = () => {

console.log('Draw!')

}

Import dashboard.js from the bottom of app.js

A Beginner's Guide to Webpack 2 and Module Bundling 65

https://webpack.js.org/guides/migrating/#code-splitting-with-es2015
https://webpack.js.org/guides/code-splitting-require/
https://d3js.org/

// ...

const routes = {

dashboard: () => {

System.import('./dashboard').then((dashboard) => {

dashboard.draw()

}).catch((err) => {

console.log("Chunk loading failed")

})

}

}

// demo async loading with a timeout

setTimeout(routes.dashboard, 1000)

Because we've added asynchronous loading of modules, we need an

output.publicPath property in our config so that webpack knows where to fetch

them.

// webpack.config.js

const config = {

// ...

output: {

path: path.resolve(__dirname, 'dist'),

publicPath: '/dist/',

filename: '[name].bundle.js'

},

// ...

}

Restart the build and you'll see a mysterious new bundle 0.bundle.js

66 Modern JavaScript

Notice how webpack keeps you honest by highlighting the [big] bundles for you

to keep an eye on.

This 0.bundle.js will be fetched on demand with a JSONP request, so loading

the file directly from the file system isn't going to cut it anymore. We'll need to

run a server, any server will do.

python -m SimpleHTTPServer 8001

Open http://localhost:8001/

One second after loading you should see a GET request for our dynamically

generated bundle /dist/0.bundle.js and "Loaded!" logged to the console.

Success!

Webpack Dev Server

Live reloading can really improve the developer experience by refreshing

automatically whenever files are changed. Simply install it and start it with

webpack-dev-server and you're off to the races.

npm install webpack-dev-server@2.2.0-rc.0 --save-dev

Modify the start script in package.json

"start": "webpack-dev-server --inline",

Run npm start to start the server and open http://localhost:8080 in your browser.

A Beginner's Guide to Webpack 2 and Module Bundling 67

http://localhost:8080

Try it out by changing any of the src files, e.g. change a name in people.js or a

style in style.scss to see it transform before your very eyes.

Hot Module Replacement

If you're impressed by live reloading, hot module replacement (HMR) will knock

your socks off.

It's the year 2017, chances are that you've already worked on single-page apps

with global state. During development you'll be making a lot of small changes to

components and you want to see these reflected in a real browser where you see

the output and interact with it. By refreshing the page manually or with live

reload your global state is blown away and you need to start from scratch. Hot

module replacement has forever changed this.

In the developer workflow of your dreams you can make changes to a module and

it is compiled and swapped out at run time without refreshing the browser

(blowing away the local state) or touching other modules. There are still times

when a manual refresh is required, but HMR can still save you a massive amount

of time and it feels like the future.

Make one final edit to the start script in package.json.

"start": "webpack-dev-server --inline --hot",

At the top of app.js tell webpack to accept hot reloading of this module and any

of its dependencies.

if (module.hot) {

module.hot.accept()

}

// ...

68 Modern JavaScript

https://webpack.js.org/concepts/hot-module-replacement

Note: webpack-dev-server --hot sets module.hot to true which includes this

for development only. When building in production mode module.hot is set to

false so these are stripped out of the bundle.

Add NamedModulesPlugin to the list of plugins in webpack.config.js to improve

logging in the console.

plugins: [

new webpack.NamedModulesPlugin(),

// ...

]

Lastly, add an <input> element to the page where we can add some text to

confirm a full page refresh doesn't occur when we make a change to our module.

<body>

<input />

<div id="root"></div>

...

Restart the server with npm start and behold hot reloading!

To try this out, enter "HMR Rules" in the input and then change a name in

people.js to see it swapped out without refreshing the page and losing the state

of the input.

This is a simple example but hopefully you can see how wildly useful this is. It's

especially true with component based development like React where you have a

lot of "dumb" components separated from their state, components can be

swapped out and re-rendered without losing state so you get an instant feedback

loop.

Hot Reloading CSS

Change the background color of the <pre> element in style.scss and you'll

notice that it's not being replaced with HMR.

A Beginner's Guide to Webpack 2 and Module Bundling 69

pre {

background: red;

}

It turns out that HMR of CSS comes for free when you're using style-loader,

you don't need to do anything special. We just broke this link in the chain by

extracting the CSS modules out into external CSS files which can't be replaced.

If we revert our Sass rule to its original state and remove extractCSS from the list

of plugins, you'll be able see hot reloading of your Sass too.

{

test: /\.scss$/,

loader: ['style-loader', 'css-loader','sass-loader']

}

HTTP/2

One of the primary benefits of using a module bundler like webpack is that it can

help you improve performance by giving you control over how the assets are built

and then fetched on the client. It has been considered best practice for years to

concatenate files to reduce the number of requests that need to made on the

client. This is still valid but HTTP/2 now allows multiple files to be delivered in

a single request so concatenation isn't a silver bullet anymore. Your app may

actually benefit from having many small files individually cached, the client

could then fetch a single changed module rather than having to fetch an entire

bundle again with mostly the same contents.

The creator of Webpack Tobias Koppers has written an informative post

explaining why bundling is still important, even in the HTTP/2 era.

Read more about this over at webpack & HTTP/2.

70 Modern JavaScript

https://developer.yahoo.com/performance/rules.html
https://www.sitepoint.com/file-bundling-and-http2/
https://www.sitepoint.com/file-bundling-and-http2/
https://twitter.com/wSokra
https://medium.com/webpack/webpack-http-2-7083ec3f3ce6

Over to You

I sure hope you have found this introduction to webpack 2 helpful and are able to

start using it to great effect. It can take a little time to wrap your head around

webpack's configuration, loaders and plugins but learning how this tool works

will pay off.

The documentation is still being worked on but there's a handy Migrating from v1

to v2 guide if you want to shift an existing Webpack 1 project across to the new

hotness.

A Beginner's Guide to Webpack 2 and Module Bundling 71

https://webpack.js.org/guides/migrating/
https://webpack.js.org/guides/migrating/

5Chapter

React vs Angular: An In-depth Comparison

by Pavels Jelisejevs

Peer reviewed by Jurgen Van de Moere and Joan Yin.

Should I choose Angular, or React? Today's bipolar landscape of JavaScript

frameworks has left many developers struggling to pick a side in this debate.

Whether you're a newcomer trying to figure out where to start, a freelancer

picking a framework for your next project or an enterprise-grade architect

planning a strategic vision for your company, you're likely to benefit from having

an educated view on this topic.

To save you some time, let me tell you something up front: this article won't give

a clear answer on which framework is better. But neither will hundreds of other

articles with similar titles. I can't tell you that because the answer depends on a

72 Modern JavaScript

https://www.sitepoint.com/author/mbrown/
https://www.sitepoint.com/author/jvandemoere/

wide range of factors which make a particular technology more or less suitable for

your environment and use case.

Since we can't answer the question directly, we'll attempt something else. We'll

compare Angular (2+, not the old AngularJS) and React to demonstrate how you

can approach the problem of comparing any two frameworks in a structured

manner on your own and tailor it to your environment. You know, the old "teach

a man to fish" approach. That way, when both are replaced by a

BetterFramework.js in a year's time, you will be able to re-create the same train of

thought once more.

Where to Start?

Before you pick any tool you need to answer two simple questions: "Is this a good

tool per se?" and "Will it work well for my use case?" None of them mean

anything on their own, so you always need to keep both of them in mind. All

right, the questions might not be that simple, so we'll try to break them down into

smaller ones.

Questions on the tool itself:

How mature is it and who's behind it?

What kind of features does it have?

What architecture, development paradigms, and patterns does it employ?

What is the ecosystem around it?

Questions for self-reflection:

Will I and my colleagues be able to learn this tool with ease?

Does is fit well with my project?

What is the developer experience like?

Using this set of questions you can start your assessment of any tool and we'll

base our comparison of React and Angular on them as well.

There's another thing we need to take into account. Strictly speaking, it's not

exactly fair to compare Angular to React, since Angular is a full-blown feature-

React vs Angular: An In-depth Comparison 73

rich framework, and React just a UI component library. To even the odds, we'll

talk about React in conjunction with some of the libraries often used with it.

Maturity

An important part of being a skilled developer is being able to keep the balance

between established, time-proven approaches and evaluating new bleeding-edge

tech. As a general rule, you should be careful when adopting tools which have

not yet matured due to certain risks:

The tool might be buggy and unstable.

It might be unexpectedly abandoned by the vendor.

There might not be a large knowledge base or community available in case

you need help.

Both React and Angular come from good families, so it seems that we can be

confident in this regard.

React

React is developed and maintained by Facebook and used in their own products,

including Instagram and WhatsApp. It has been around for roughly three and a

half years now, so it's not exactly new. It's also one of the most popular projects

on GitHub with about 60,000 stars at the time of writing. Sounds good to me.

Angular

Angular (version 2 and above) has been around less then React, but if you count

in the history of its predecessor, AngularJS, the picture evens out. It's maintained

by Google and used in AdWords and Google Fiber. Since AdWords is one of the

key projects in Google, it is clear they have made a big bet on it and is unlikely to

disappear anytime soon.

74 Modern JavaScript

https://github.com/facebook/react/wiki/sites-using-react
https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
http://angularjs.blogspot.com/2015/11/how-google-uses-angular-2-with-dart.html

Features

Like I mentioned earlier, Angular has more features out of the box than React.

This can be both a good and a bad thing, depending on how you look at it.

Both frameworks share some key features in common: components, data binding,

and platform-agnostic rendering.

Angular

Angular provides a lot of the features required for a modern web application out

of the box. Some of the standard features are:

Dependency injection;

Templates, based on an extended version of HTML;

Routing, provided by @angular/router;

Ajax requests by @angular/http;

@angular/forms for building forms;

Component CSS encapsulation;

XSS protection;

Utilities for unit-testing components.

Having all of these features available out of the box is highly convenient when

you don't want to spend time picking the libraries yourself. However, it also

means that you're stuck with some of them, even if you don't need them. And

replacing them will usually require additional effort. For instance, we believe

that for small projects having a DI system creates more overhead than benefit,

considering it can be effectively replaced by imports.

React

With React, you're starting off with a more minimalistic approach. If we're

looking at just React, here's what we have:

No dependency injection;

Instead of classic templates it has JSX, an XML-like language built on top of

JavaScript;

React vs Angular: An In-depth Comparison 75

XSS protection;

Utilities for unit-testing components.

Not much. And this can be a good thing. It means that you have the freedom to

choose whatever additional libraries to add based on your needs. The bad thing is

that you actually have to make those choices yourself. Some of the popular

libraries that are often used together with React are:

React-router for routing.

Fetch (or axios) for HTTP requests;

A wide variety of techniques for CSS encapsulation;

Enzyme for additional unit-testing utilities.

We've found the freedom of choosing your own libraries liberating. This gives us

the ability to tailor our stack to particular requirements of each project and we

didn't find the cost of learning new libraries that high.

Languages, Paradigms, and Patterns.

Taking a step back from the features of each framework, let's see what kind

higher-level concepts are popular with both frameworks.

React

There are several important things that come to mind when thinking about React:

JSX, Flow, and Redux.

JSX

JSX is a controversial topic for many developers: some enjoy it, and others think

that it's a huge step back. Instead of following a classical approach of separating

markup and logic, React decided to combine them within components using an

XML-like language that allows you to write markup directly in your JavaScript

code.

While the topic of mixing markup with JavaScript might be debatable, it has an

indisputable benefit: static analysis. If you make an error in your JSX markup, the

76 Modern JavaScript

https://reacttraining.com/react-router/
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://github.com/mzabriskie/axios
https://github.com/MicheleBertoli/css-in-js
https://github.com/airbnb/enzyme
https://facebook.github.io/react/docs/introducing-jsx.html

compiler will emit an error instead of continuing in silence. This helps by

instantly catching typos and other silly errors.

Flow

Flow is a type-checking tool for JavaScript also developed by Facebook. It can

parse code and check for common type errors such as implicit casting or null

dereferencing.

Unlike TypeScript, which has a similar purpose, it does not require you to

migrate to a new language and annotate your code for type checking to work. In

Flow, type annotations are optional and can be used to provide additional hints

to the analyzer. This makes Flow a good option if you would like to use static

code analysis, but would like to avoid having to rewrite your existing code.

[Further reading: Writing Better JavaScript with Flow]

Redux

Redux is a library that helps manage state changes in a clear manner. It was

inspired by Flux but with some simplifications. The key idea of Redux is that the

whole state of the application is represented by a single object, which is mutated

by functions called reducers. Reducers themselves are pure functions and are

implemented separately from the components. This enables better separation of

concerns and testability.

If you're working on a simple project, then introducing Redux might be an over

complication, but for medium and large-scale projects, it's a solid choice. The

library has become so popular that there are projects implementing it in Angular

as well.

All three features can greatly improve your developer experience: JSX and Flow

allow you to quickly spot places with potential errors, and Redux will help

achieve a clear structure for your project.

React vs Angular: An In-depth Comparison 77

https://flow.org/
https://www.sitepoint.com/writing-better-javascript-with-flow/
http://redux.js.org/
http://facebook.github.io/flux/
https://github.com/angular-redux/store

Angular

Angular has a few interesting things up its sleeve as well, namely TypeScript and

RxJS.

TypeScript

TypeScript is a new language built on top of JavaScript and developed by

Microsoft. It's a superset of JavaScript ES2015 and includes features from newer

versions of the language. You can use it instead of Babel to write state of the art

JavaScript. It also features an extremely powerful typing system that can statically

analyze your code by using a combination of annotations and type inference.

There's also a more subtle benefit. TypeScript has been heavily influenced by Java

and .NET, so if your developers have a background in one of these languages, they

are likely to find TypeScript easier to learn than plain JavaScript (notice how we

switched from the tool to your personal environment). Although Angular has

been the first major framework to actively adopt TypeScript, it's also possible to

use it together with React.

[Further reading: An Introduction to TypeScript: Static Typing for the Web]

RxJS

RxJS is a reactive programming library which allows for more flexible handling of

asynchronous operations and events. It's a combination of the Observer and

Iterator patterns blended together with functional programming. RxJS allows you

to treat anything as a continuous stream of values and perform various operations

on it such as mapping, filtering, splitting or merging.

The library has been adopted by Angular in their HTTP module as well for some

internal use. When you perform an HTTP request, it returns an Observable

instead of the usual Promise. Although this library is extremely powerful, it's also

quite complex. To master it, you'll need to know your way around different types

of Observables, Subjects, as well as around a hundred methods and operators.

Yikes, that seems to be a bit excessive just to make HTTP requests!

78 Modern JavaScript

https://www.typescriptlang.org/
https://www.sitepoint.com/introduction-to-typescript/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/manual/overview.html#operators

RxJS is useful in cases when you work a lot with continuous data streams such as

web sockets, however, it seems overly complex for anything else. Anyway, when

working with Angular you'll need to learn it at least on a basic level.

[Further reading: Introduction to Functional Reactive Programming with RxJS]

We've found TypeScript to be a great tool for improving the maintainability of our

projects, especially those with a large code base or complex domain/business

logic. Code written in TypeScript is more descriptive and easier to follow. Since

TypeScript has been adopted by Angular, we hope to see even more projects

using it. RxJS, on the other hand, seems only to be beneficial in certain cases and

should be adopted with care. Otherwise, it can bring unwanted complexity to

your project.

Ecosystem

The great thing about open source frameworks is the number of tools created

around them. Sometimes, these tools are even more helpful than the framework

itself. Let's have a look at some of the most popular tools and libraries associated

with each framework.

Angular

Angular CLI

A popular trend with modern frameworks is having a CLI tool that helps you

bootstrap your project without having to configure the build yourself. Angular

has Angular CLI for that. It allows you to generate and run a project with just a

couple of commands. All of the scripts responsible for building the application,

starting a development server and running tests are hidden away from you in

node_modules. You can also use it to generate new code during development.

This makes setting up new projects a breeze.

[Further reading: The Ultimate Angular CLI Reference]

React vs Angular: An In-depth Comparison 79

https://www.sitepoint.com/functional-reactive-programming-rxjs/
https://cli.angular.io/
https://www.sitepoint.com/ultimate-angular-cli-reference/

Ionic 2

Ionic 2 is a new version of the popular framework for developing hybrid mobile

applications. It provides a Cordova container that is nicely integrated with

Angular 2, and a pretty material component library. Using it, you can easily set

up and build a mobile application. If you prefer a hybrid app over a native one,

this is a good choice.

Material design components

If you're a fan of material design, you'll be happy to hear that there's a Material

component library available for Angular. Currently, it's still at an early stage and

slightly raw but it has received lots of contributions recently, so we might hope

for things to improve soon.

Angular universal

Angular universal is a seed project that can be used for creating projects with

support for server-side rendering.

@ngrx/store

@ngrx/store is a state management library for Angular inspired by Redux, being

based on state mutated by pure reducers. Its integration with RxJS allows you to

utilize the push change detection strategy for better performance.

There are plenty of other libraries and tools available in the Awesome

Angular list.

React

Create react app

Create-react-app is a CLI utility for React to quickly set up new projects. Similar

to Angular CLI it allows you to generate a new project, start a development server

and create a bundle. It uses Jest, a relatively new test runner from Facebook, for

unit testing, which has some nice features of its own. It also supports flexible

80 Modern JavaScript

http://ionic.io/2
https://material.angular.io/
https://material.angular.io/
https://github.com/angular/universal
https://github.com/ngrx/store
https://github.com/AngularClass/awesome-angular
https://github.com/AngularClass/awesome-angular
https://github.com/facebookincubator/create-react-app
https://www.sitepoint.com/test-react-components-jest/

application profiling using environment variables, backend proxies for local

development, Flow, and other features. Check out this brief introduction to

create-react-app for more information.

React Native

React Native is a platform developed by Facebook for creating native mobile

applications using React. Unlike Ionic, which produces a hybrid application,

React Native produces a truly native UI. It provides a set of standard React

components which are bound to their native counterparts. It also allows you to

create your own components and bind them to native code written in Objective-

C, Java or Swift.

Material UI

There's a material design component library available for React as well.

Compared to Angular's version, this one is more mature and has a wider range of

components available.

Next.js

Next.js is a framework for the server-side rendering of React applications. It

provides a flexible way to completely or partially render your application on the

server, return the result to the client and continue in the browser. It tries to make

the complex task of creating universal applications as simple as possible so the

set up is designed to be as simple as possible with a minimal amount of new

primitives and requirements for the structure of your project.

MobX

MobX is an alternative library for managing the state of an application. Instead of

keeping the state in a single immutable store, like Redux does, it encourages you

to store only the minimal required state and derive the rest from it. It provides a

set of decorators to define observables and observers and introduce reactive logic

to your state.

[Further reading: How to Manage Your JavaScript Application State with MobX]

React vs Angular: An In-depth Comparison 81

https://www.sitepoint.com/create-react-app/
https://www.sitepoint.com/create-react-app/
https://facebook.github.io/react-native/
http://www.material-ui.com
https://github.com/zeit/next.js/
https://github.com/mobxjs/mobx
https://www.sitepoint.com/manage-javascript-application-state-mobx/

Storybook

Storybook is a component development environment for React. It allows you to

quickly set up a separate application to showcase your components. On top of

that, it provides numerous add-ons to document, develop, test and design your

components. We've found it to be extremely useful to be able to develop

components independently from the rest of the application. You can learn more

about Storybook from a previous article.

There are plenty of other libraries and tools available in the Awesome

React list.

Adoption, Learning Curve and Development
Experience

An important criterion for choosing a new technology is how easy it is to learn.

Of course, the answer depends on a wide range of factors such as your previous

experience and a general familiarity with the related concepts and patterns.

However, we can still try to assess the number of new things you'll need to learn

to get started with a given framework. Now, if we assume that you already know

ES6+, build tools and all of that, let's see what else you'll need to understand.

React

With react the first thing you'll encounter is JSX. It does seem awkward to write

for some developers, however, it doesn't add that much complexity; Just

expressions, which are actually JavaScript, and a special HTML-like syntax.

You'll also need to learn how to write components, use props for configuration

and manage internal state. You don't need to learn any new logical structures or

loops since all of this is plain JavaScript.

The official tutorial is an excellent place to start learning React. Once you're done

with that, get familiar with the router. The react router v4 might be slightly

complex and unconventional, but nothing to worry about. Using Redux will

require a paradigm shift to learn how to accomplish already familiar tasks in a

manner suggested by the library. The free Getting Started with Redux video

course can quickly introduce you to the core concepts. Depending on the size and

82 Modern JavaScript

https://getstorybook.io/
https://www.sitepoint.com/react-storybook-develop-beautiful-user-interfaces-with-ease/
https://www.sitepoint.com/react-storybook-develop-beautiful-user-interfaces-with-ease/
https://github.com/enaqx/awesome-react
https://github.com/enaqx/awesome-react
https://facebook.github.io/react/docs/hello-world.html
https://reacttraining.com/react-router/web/guides/quick-start
https://egghead.io/courses/getting-started-with-redux

the complexity of your project you'll need to find and learn some additional

libraries and this might be the tricky part, but after that everything should be

smooth sailing.

We were genuinely surprised at how easy it was to get started using React. Even

people with a backend development background and limited experience in

frontend development were able to catch up quickly. The error messages you

might encounter along the way are usually clear and provide explanations on

how to resolve the underlying problem. The hardest part may be finding the right

libraries for all of the required capabilities, but structuring and developing an

application is remarkably simple.

Angular

Learning Angular will introduce you to more new concepts than React. First of

all, you'll need to get comfortable with TypeScript. For developers with

experience in statically typed languages such as Java or .NET this might be easier

to understand than JavaScript, but for pure JavaScript developers, this might

require some effort.

The framework itself is rich in topics to learn, starting from basic ones such as

modules, dependency injection, decorators, components, services, pipes,

templates, and directives, to more advanced topics such as change detection,

zones, AoT compilation, and Rx.js. These are all covered in the documentation.

Rx.js is a heavy topic on its own and is described in much detail on the official

website. While relatively easy to use on a basic level it gets more complicated

when moving on to advanced topics.

All in all, we noticed that the entry barrier for Angular is higher than for React.

The sheer number of new concepts is confusing to newcomers. And even after

you've started, the experience might be a bit rough since you need to keep in

mind things like Rx.js subscription management, change detection performance

and bananas in a box (yes, this is an actual advice from the documentation). We

often encountered error messages that are too cryptic to understand, so we had to

google them and pray for an exact match.

It might seem that we favor React here, and we definitely do. We've had

experience onboarding new developers to both Angular and React projects of

React vs Angular: An In-depth Comparison 83

https://angular.io/docs/ts/latest/quickstart.html
http://reactivex.io/
http://reactivex.io/
https://angular.io/docs/ts/latest/guide/template-syntax.html

comparable size and complexity and somehow with React it always went

smoother. But, like I said earlier, this depends on a broad range of factors and

might work differently for you.

Putting it Into Context

You might have already noted that each framework has its own set of capabilities,

both with their good and bad sides. But this analysis has been done outside of

any particular context and thus doesn't provide an answer on which framework

should you choose. To decide on that, you'll need to review it from a perspective

of your project. This is something you'll need to do on your own.

To get started, try answering these questions about your project and when you do,

match the answers against what you've learned about the two frameworks. This

list might not be complete, but should be enough to get you started:

1. How big is the project?

2. How long is it going to be maintained for?

3. Is all of the functionality clearly defined in advance or are you expected to be

flexible?

4. If all of the features are already defined, what capabilities do you need?

5. Are the domain model and business logic complex?

6. What platforms are you targeting? Web, mobile, desktop?

7. Do you need server-side rendering? Is SEO important?

8. Will you be handling a lot of real-time event streams?

9. How big is your team?

10. How experienced are your developers and what is their background?

11. Are there any ready-made component libraries that you would like to use?

If you're starting a big project and you would like to minimize the risk of making

a bad choice, consider creating a proof-of-concept product first. Pick some of the

key features of the projects and try to implement them in a simplistic manner

using one of the frameworks. PoCs usually don't take a lot if time to build but will

give you some valuable personal experience on working with the framework and

allow you to validate the key technical requirements. If you're satisfied with the

results, you can continue with full-blown development. If not, failing fast will

save you lot of headaches in the long run.

84 Modern JavaScript

One Framework to Rule Them All?

Once you've picked a framework for one project, you'll get tempted to use the

exact same tech stack for your upcoming projects. Don't. Even though it's a good

idea to keep your tech stack consistent, don't blindly use the same approach

every time. Before starting each project, take a moment to answer the same

questions once more. Maybe for the next project, the answers will be different or

the landscape will change. Also, if you have the luxury of doing a small project

with a non-familiar tech stack, go for it. Such experiments will provide you with

invaluable experience. Keep your mind open and learn from your mistakes. At

some point, a certain technology will just feel natural and right.

React vs Angular: An In-depth Comparison 85

6Chapter

Retrofit Your Website as a Progressive Web
App

by Craig Buckler

Peer reviewed by AJ Latour, Panayiotis «pvgr» Velisarakos and Dave Maxwell.

There's been a lot of buzz around Progressive Web Apps (PWAs) lately, with

many people questioning whether they represent the future of the (mobile) web.

I'm not going to get into the whole native app vs PWA debate, but one thing is for

sure — they go a long way to enhancing mobile and improving its user

experience. With mobile web access destined to surpass that of all other devices

combined by 2018, can you afford to ignore this trend?

86 Modern JavaScript

https://github.com/ajlatour
https://github.com/pvgr
https://github.com/davemaxwell77

The good news is that making a PWA is not hard. In fact, it's quite possible to take

an existing website and convert it into a PWA. And that's exactly what I'll be

doing in this tutorial — by the time you're finished, you'll have a website that

behaves like a native web app. It will work offline and have its own home screen

icon.

What Are Progressive Web Apps?

Progressive Web Apps (referred to as "PWAs") are an exciting innovation in web

technology. PWAs comprise a mixture of technologies to make a web app

function like a native mobile app. The benefits for developers and users overcome

the constraints imposed by web-only and native-only solutions:

1. You only need one app developed with open, standard W3C web

technologies. There's no need to develop separate native codebases.

2. Users can discover and try your app before installation.

3. There's no need to use an AppStore, abide with arcane rules or pay fees.

Application updates occur automatically without user interaction.

4. Users are prompted to "install" which adds an icon to their home screen.

5. When launched, the PWA displays an attractive splash screen.

6. The browser chrome options can be modified if necessary to provide a full-

screen experience.

7. Essential files are cached locally so PWAs respond faster than standard web

apps (they can even be faster than native apps).

8. Installation is lightweight - perhaps a few hundred KB of cached data.

9. All data exchanges must occur over a secure HTTPS connection.

10. PWAs function offline and can synchronize data when the connection returns.

It's early days, but case studies are positive. Flipkart, India's largest e-commerce

site, experienced a 70% increase in sales conversions and trebled on-site time

when they abandoned their native app for a PWA. Alibaba, the world's largest

business trading platform, experienced a similar conversion rate increase of 76%.

Solid PWA technology support is available in Firefox, Chrome and the other

Blink-based browsers. Microsoft is working on an Edge implementation. Apple

remains silent although there are promising comments in the WebKit five-year

plan. Fortunately, browser support is mostly irrelevant...

Retrofit Your Website as a Progressive Web App 87

https://developers.google.com/web/showcase/
https://developers.google.com/web/showcase/2016/flipkart
https://developers.google.com/web/showcase/2016/alibaba
https://trac.webkit.org/wiki/FiveYearPlanFall2015
https://trac.webkit.org/wiki/FiveYearPlanFall2015

Progressive Web Apps are Progressive Enhancements

Your app will still run in browsers which don't support PWA technology. The

user won't get the benefits of offline functionality but everything will continue to

work as before. Given the cost-to-benefit rewards, there's little reason not to add

PWA technologies to your system.

It's Not Just Apps

Google has led the PWA movement so most tutorials describe how to build a

Chrome-based native-looking mobile app from the ground-up. However, you

don't need a special single-page app or have to follow material interface design

guidelines. Most websites can be PWA-ized within a few hours. That includes

your WordPress or static site. Smashing Magazine announced they were running

as a PWA while this article was being written!

Demonstration Code

Demonstration code is available from https://github.com/sitepoint-editors/pwa-

retrofit

It provides a simple four-page website with a few images, one stylesheet and a

single main JavaScript file. The site works in all modern browsers (IE10+). If the

browser supports PWA technologies the user can read previously-viewed pages

when they're offline.

To run the code, ensure Node.js is installed then start the provided web server in

your terminal with:

node ./server.js [port]

where [port] is optional and defaults to 8888. Open Chrome or another Blink-

based browser such as Opera or Vivaldi then navigate to http://localhost:8888/ (or

whichever port you specified). You can also open the Developer Tools (F12 or

Cmd/Ctrl + Shift + I) to view various console messages.

88 Modern JavaScript

https://developers.google.com/web/progressive-web-apps/
https://www.smashingmagazine.com/
https://twitter.com/smashingmag/status/839379533874806784
https://twitter.com/smashingmag/status/839379533874806784
https://github.com/sitepoint-editors/pwa-retrofit
https://github.com/sitepoint-editors/pwa-retrofit
https://nodejs.org/
http://localhost:8888/

View the home page, and perhaps one other, then go offline by either:

1. Stopping the web server with Cmd/Ctrl + C, or

2. Check the Offline checkbox in the Network or Application - Service Workers

tab of the Developer Tools.

Revisit any of the pages you viewed earlier and they will still load. Visit a page

you've not seen to be presented with a "you're offline" page containing a list of

viewable pages:

Retrofit Your Website as a Progressive Web App 89

Connect a Device

You can also view the demonstration page on an Android smartphone connected

to your PC/Mac via USB. Open the Remote devices panel from More tools in the

top-left three-dot menu.

90 Modern JavaScript

Select Settings on the left and click Add Rule to forward port 8888 to

localhost:8888. You can now open Chrome on the smartphone and navigate to

http://localhost:8888/.

You can use the browser menu to "Add to Home screen". Make a couple of visits

and the browser should prompt you to "install". Both options create a new icon

on your home screen. Browse a few pages then close Chrome and disconnect your

device. You can then launch the PWA Website app - you'll see a splash screen

and be able to view pages you read previously despite having no connection to

the server.

There are three essential steps to transform your website into a Progressive Web

App...

Retrofit Your Website as a Progressive Web App 91

http://localhost:8888/

Step 1: Enable HTTPS

PWAs require an HTTPS connection for reasons which will become apparent

shortly. Prices and processes will differ across hosts but it's worth the cost and

effort, given that Google search is ranking secure sites higher.

HTTPS is not necessary for the demonstration above because Chrome permits the

use of localhost or any 127.x.x.x address for testing. You can also test PWA

technology on HTTP sites if you launch Chrome with the following command

line flags:

--user-data-dir

--unsafety-treat-insecure-origin-as-secure

Step 2: Create a Web App Manifest

The web app manifest provides information about the application such as the

name, description, and images which are used by the OS to configure home

screen icons, splash pages and the viewport. In essence, the manifest is a single

file alternative to the numerous vendor-specific icon and theme meta tags you

may already have in your pages.

The manifest is a JSON text file in the root of your app. It must be served with a

Content-Type: application/manifest+json or Content-Type: application/

json HTTP header. The file can be called anything but has been named

/manifest.json in the demonstration code:

{

"name" : "PWA Website",

"short_name" : "PWA",

"description" : "An example PWA website",

"start_url" : "/",

"display" : "standalone",

"orientation" : "any",

"background_color" : "#ACE",

"theme_color" : "#ACE",

"icons": [

92 Modern JavaScript

{

"src" : "/images/logo/logo072.png",

"sizes" : "72x72",

"type" : "image/png"

},

{

"src" : "/images/logo/logo152.png",

"sizes" : "152x152",

"type" : "image/png"

},

{

"src" : "/images/logo/logo192.png",

"sizes" : "192x192",

"type" : "image/png"

},

{

"src" : "/images/logo/logo256.png",

"sizes" : "256x256",

"type" : "image/png"

},

{

"src" : "/images/logo/logo512.png",

"sizes" : "512x512",

"type" : "image/png"

}

]

}

A link to this file is required in the <head> of all your pages:

<link rel="manifest" href="/manifest.json">

The main manifest properties are:

name - the full name of the application to be displayed to the user

short_name - the short name for situations where there is insufficient space

for the full name

Retrofit Your Website as a Progressive Web App 93

description - a long description of the application

start_url - the relative URL to start the application (typically /)

scope - the navigation scope. For example, a scope of /app/ would restrict the

app to that folder

background-color - the background color used for splash screens and browser

chrome (if required)

theme_color - the application's colour, typically the same as the background,

which can affect how the app is displayed

orientation - the preferred orientation: any, natural, landscape,

landscape-primary, landscape-secondary, portrait, portrait-primary,

and portrait-secondary

display - the preferred view: fullscreen (no chrome), standalone (looks like

a native app), minimal-ui (a small set of UI controls) and browser (a

conventional browser tab)

icons - an array of image objects defining the src URL, sizes and type. A

range of icons should be defined.

MDN provides a full list of Web App Manifest properties.

The Manifest section of Chrome's Development Tools Application tab validates

your manifest JSON and provides an "Add to homescreen" link which functions

on desktop devices:

94 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/Manifest

Step 3: Create a Service Worker

Service Workers are programmable proxies which can intercept and respond to

network requests. They are a single JavaScript file which resides in the

application root.

Your page JavaScript (/js/main.js in the demonstration code) can check for

service worker support and register the file:

if ('serviceWorker' in navigator) {

// register service worker

navigator.serviceWorker.register('/service-worker.js');

}

Retrofit Your Website as a Progressive Web App 95

If you don't need offline capabilities, simply create an empty

/service-worker.js file - users will be prompted to install your app!

Service workers can be bewildering but you should be able to adapt the

demonstration code for your own purposes. It is a standard web worker script

which the browser downloads (when possible) and runs on a separate thread. It

has no access to the DOM or other page APIs but will intercept network requests

triggered by page changes, asset downloads, and Ajax calls.

This is the primary reason your site requires HTTPS. Imagine the chaos if a third-

party script could inject its own service worker from another domain. It would be

able to examine and modify all data exchanges between the client and server!

Service workers react to three primary events: install, activate and fetch.

Install Event

This occurs when the application is installed. It is typically used to cache

essential files using the Cache API.

First, we'll define some configuration variables for:

1. The cache name (CACHE) and version (version). Your application can have

multiple cache stores but we only require one. A version number is applied,

so if we make significant changes a new cache will be used and all previously

cached files are ignored.

2. An offline page URL (offlineURL). This is a page which will be presented

when the user is offline and attempts to load a page they have not visited

before.

3. An array of essential files to install which ensure the site functions offline

(installFilesEssential). This should include assets such as CSS and

JavaScript but I've also included the home page (/) and logo. You should also

include variations such as / and /index.html if URLs can be addressed in

more than one way. Note that offlineURL is added to this array.

4. Optionally, an array of desirable files (installFilesDesirable). These will be

downloaded if possible but will not make the installation abort on failure.

96 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/API/Cache

// configuration

const

version = '1.0.0',

CACHE = version + '::PWAsite',

offlineURL = '/offline/',

installFilesEssential = [

'/',

'/manifest.json',

'/css/styles.css',

'/js/main.js',

'/js/offlinepage.js',

'/images/logo/logo152.png'

].concat(offlineURL),

installFilesDesirable = [

'/favicon.ico',

'/images/logo/logo016.png',

'/images/hero/power-pv.jpg',

'/images/hero/power-lo.jpg',

'/images/hero/power-hi.jpg'

];

The installStaticFiles() function adds files to the cache using the promise-

based Cache API. A return value is only generated when the essential files are

cached:

// install static assets

function installStaticFiles() {

return caches.open(CACHE)

.then(cache => {

// cache desirable files

cache.addAll(installFilesDesirable);

// cache essential files

return cache.addAll(installFilesEssential);

});

Retrofit Your Website as a Progressive Web App 97

https://developer.mozilla.org/en-US/docs/Web/API/Cache

}

Finally, we add an install event listener. The waitUntil method ensures the

service worker will not install until all enclosed code has executed. It runs

installStaticFiles() then self.skipWaiting() to make the service worker

active:

// application installation

self.addEventListener('install', event => {

console.log('service worker: install');

// cache core files

event.waitUntil(

installStaticFiles()

.then(() => self.skipWaiting())

);

});

Activate Event

This occurs when the service worker is activated either immediately after

installation or on return. You may not require this handler but the demonstration

code uses one to delete old caches when they exist:

// clear old caches

function clearOldCaches() {

return caches.keys()

.then(keylist => {

return Promise.all(

keylist

98 Modern JavaScript

.filter(key => key !== CACHE)

.map(key => caches.delete(key))

);

});

}

// application activated

self.addEventListener('activate', event => {

console.log('service worker: activate');

// delete old caches

event.waitUntil(

clearOldCaches()

.then(() => self.clients.claim())

);

});

Note the final self.clients.claim() call sets this service worker as the active

worker for the site.

Fetch Event

This occurs whenever a network request is made. It calls the respondWith()

method to hijack GET requests and return:

1. An asset from the cache.

2. If #1 fails, the asset is loaded from the network using the Fetch API) (unrelated

to the service worker fetch event). That asset is then added to the cache.

3. If #1 and #2 fail, an appropriate response is returned.

// application fetch network data

self.addEventListener('fetch', event => {

Retrofit Your Website as a Progressive Web App 99

https://developer.mozilla.org/en/docs/Web/API/Fetch_API

// abandon non-GET requests

if (event.request.method !== 'GET') return;

let url = event.request.url;

event.respondWith(

caches.open(CACHE)

.then(cache => {

return cache.match(event.request)

.then(response => {

if (response) {

// return cached file

console.log('cache fetch: ' + url);

return response;

}

// make network request

return fetch(event.request)

.then(newreq => {

console.log('network fetch: ' + url);

if (newreq.ok) cache.put(event.request,

newreq.clone());

return newreq;

})

// app is offline

.catch(() => offlineAsset(url));

});

})

);

});

100 Modern JavaScript

The final call to offlineAsset(url) returns an appropriate response using a

couple of helper functions:

// is image URL?

let iExt = ['png', 'jpg', 'jpeg', 'gif', 'webp',

➥ 'bmp'].map(f => '.' + f);
function isImage(url) {

return iExt.reduce((ret, ext) => ret ||

➥ url.endsWith(ext), false);

}

// return offline asset

function offlineAsset(url) {

if (isImage(url)) {

// return image

return new Response(

'<svg role="img" viewBox="0 0 400 300"

➥ xmlns="http://www.w3.org/2000/svg"><title>offline</title><path
➥ d="M0 0h400v300H0z" fill="#eee" /><text x="200" y="150"
➥ text-anchor="middle" dominant-baseline="middle"
➥ font-family="sans-serif" font-size="50"
➥ fill="#ccc">offline</text></svg>',

{ headers: {

'Content-Type': 'image/svg+xml',

'Cache-Control': 'no-store'

}}

);

}

else {

// return page

return caches.match(offlineURL);

}

Retrofit Your Website as a Progressive Web App 101

}

The offlineAsset() function checks whether the request is for an image and

returns an SVG containing the text "offline". All other requests return the

offlineURL page.

The Service Worker section of Chrome's Development Tools Application tab

provides information about your workers, with errors and facilities to force reload

and make the browser go offline:

The Cache Storage section lists all caches within the current scope and the

cached assets they contain. You may need to click the refresh button at the

bottom of the pane if when the cache is updated:

102 Modern JavaScript

Unsurprisingly, the Clear storage section can delete your service worker and

caches:

Retrofit Your Website as a Progressive Web App 103

Bonus Step 4: Create a Useful Offline Page

The offline page can be static HTML informing the user that the page they

requested is not available offline. However, we can also provide a list of page

URLs which are available to read.

The Cache API can be accessed within our main.js script. However, the API uses

promises which fail in unsupported browsers and will cause all JavaScript to halt

execution. To avoid this, we'll add code which checks whether the offline list

element and the Caches API is available before loading another /js/

offlinepage.js JavaScript file (which must be present in the

installFilesEssential array above):

// load script to populate offline page list

if (document.getElementById('cachedpagelist') &&

➥ 'caches' in window) {

104 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/API/Cache

var scr = document.createElement('script');

scr.src = '/js/offlinepage.js';

scr.async = 1;

document.head.appendChild(scr);

}

/js/offlinepage.js locates the most recent cache by version name, gets a list of

all URL keys, removes non-page URLs, sorts the list and appends it to the DOM

node with the ID cachedpagelist:

// cache name

const

CACHE = '::PWAsite',

offlineURL = '/offline/',

list = document.getElementById('cachedpagelist');

// fetch all caches

window.caches.keys()

.then(cacheList => {

// find caches by and order by most recent

cacheList = cacheList

.filter(cName => cName.includes(CACHE))

.sort((a, b) => a - b);

// open first cache

caches.open(cacheList[0])

.then(cache => {

// fetch cached pages

cache.keys()

.then(reqList => {

let frag = document.createDocumentFragment();

reqList

.map(req => req.url)

.filter(req => (req.endsWith('/') ||

Retrofit Your Website as a Progressive Web App 105

➥ req.endsWith('.html')) && !req.endsWith(offlineURL))
.sort()

.forEach(req => {

let

li = document.createElement('li'),

a = li.appendChild(document.createElement('a'));

a.setAttribute('href', req);

a.textContent = a.pathname;

frag.appendChild(li);

});

if (list) list.appendChild(frag);

});

})

});

Development Tools

If you think JavaScript debugging is tough, service workers won't be much fun!

Chrome's Application tab of the Developer Tools provides a solid set of features

and logging statements are also output to the console.

You should consider running your app in an Incognito window during

development since cached files are not retained after you close the tab.

Firefox offers a JavaScript debugger accessed from the Service Workers option of

the tools menu. Better facilities are promised soon.

Finally, the Lighthouse extension for Chrome also provides useful information

about your PWA's implementation.

106 Modern JavaScript

https://chrome.google.com/webstore/detail/lighthouse/blipmdconlkpinefehnmjammfjpmpbjk

PWA Gotchas

Progressive Web Apps require new technologies so some caution is advised. That

said, they are an enhancement of your existing website which should take no

longer than a few hours and have no negative effect on unsupported browsers.

Developer opinions vary but there are several points to consider...

URL Hiding

The demonstration site hides the URL bar which I would not recommend unless

you have a single-URL app such as a game. The manifest options display:

minimal-ui or display: browser are possibly best for most sites.

Cache Overload

You could cache every page and asset on your site. That's fine for small sites but

would it be practical for those with thousands of pages? No one is likely to be

interested in all your content and device storage limits could be exceeded. Even if

you only store visited pages and assets like the demonstration, the cache could

grow excessively.

Perhaps consider:

only caching important pages such as the home, contact, and the most recent

articles

not caching images, videos and other large files

regularly wiping older cached files

providing a "store this page for offline reading" button so the user can choose

what to cache.

Cache Refreshing

The demonstration looks for assets in the cache before loading from the network.

That's great when users are offline but means they could be viewing old pages

even when they're online.

Retrofit Your Website as a Progressive Web App 107

URLs for assets such as images and videos should never change so long-term

caching is rarely a problem. You can ensure they remain cached for at least a year

(31,536,000 seconds) with the Cache-Control HTTP header:

Cache-Control: max-age=31536000

Pages, CSS and script files can change more frequently so you could set a shorter

expiry of 24 hours and ensure it is validated against the server version when

online:

Cache-Control: must-revalidate, max-age=86400

You could also consider cache-busting techniques to ensure older assets cannot

be used, e.g. naming your CSS file styles-abc123.css and changing the hash on

every release.

Caching can become complex so I'd recommend you read Jake Archibold's

Caching best practices & max-age gotchas.

Useful Links

The following resources are useful if you want to know more about Progressive

Web Apps:

PWA.rocks example applications

Progressive Web Apps

Your First PWA

Mozilla Service Worker Cookbook

MDN Using Service Workers

108 Modern JavaScript

https://jakearchibald.com/2016/caching-best-practices/
https://pwa.rocks/
https://developers.google.com/web/progressive-web-apps/
https://codelabs.developers.google.com/codelabs/your-first-pwapp/
https://serviceworke.rs/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers

7Chapter

10 Tips to Become a Better Node Developer

by Azat Mardan

I started working with Node full-time in 2012 when I joined Storify. Since then, I

have never looked back or felt that I missed Python, Ruby, Java or PHP —

languages with which I had worked during my previous decade of web

development.

Storify was an interesting job for me, because unlike many other companies,

Storify ran (and maybe still does) everything on JavaScript. You see, most

companies, especially large ones such as PayPal, Walmart, or Capital One, only

use Node for certain parts of their stack. Usually they use it as an API gateway or

an orchestration layer. That's great. But for a software engineer, nothing compares

with full immersion into a Node environment.

10 Tips to Become a Better Node Developer 109

In this post I'll outline ten tips to help you become a better Node developer in

2017. These tips come from me, who saw and learned them in the trenches, as

well as people who have written the most popular Node and npm modules.

Here's what we'll be covering:

1. Avoid complexity — Organize your code into the smallest chunks possible

until they look too small and then make them even smaller.

2. Use asynchronous code — Avoid synchronous code like the plague.

3. Avoid blocking require — Put ALL your require statements at the top of the

file because they are synchronous and will block the execution.

4. Know that require is cached — This could be a feature or a bug in your code.

5. Always check for errors — Errors are not footballs. Never throw errors and

never skip the error check.

6. Use try...catch only in sync code — try...catch is useless for async code,

plus V8 can't optimize code in try...catch as well as plain code.

7. Return callbacks or use if ... else — Just to be sure, return a callback to prevent

execution from continuing.

8. Listen to the error events — Almost all Node classes/objects extend the event

emitter (observer pattern) and emit the error event. Be sure to listen to that.

9. Know your npm — Install modules with -S or -D instead of --save or

--save-dev

10. Use exact versions in package.json: npm stupidly adds a caret by default when

you use -S, so get rid of them manually to lock the versions. Never trust

semver in your apps, but do so in open-source modules.

11. Bonus — Use different dependencies. Put things your project needs only in

development in devDependencies and then use npm i --production. The

more un-required dependencies you have, the greater the risk of vulnerability.

So let's bisect and take a look at each one of them individually. Shall we?

Avoid Complexity

Take a look at some of the modules written by Isaac Z. Schlueter, the creator of

npm. For example, use-strict enforces JavaScript strict mode for modules, and it's

just three lines of code:

110 Modern JavaScript

https://www.npmjs.com/package/use-strict

var module = require('module')

module.wrapper[0] += '"use strict";'

Object.freeze(module.wrap)

So why avoid complexity? A famous phrase which originated in the US Navy

according to one of the legends proclaims: KEEP IT SIMPLE STUPID (or is it

"Keep it simple, stupid"?). That's for a reason. The human brain can hold only

five to seven items in its working memory at any one time. This is just a fact.

By keeping your code modularized into smaller parts, you and other developers

can understand and reason about it better. You can also test it better. Consider

this example,

app.use(function(req, res, next) {

if (req.session.admin === true) return next()

else return next(new Error('Not authorized'))

}, function(req, res, next) {

req.db = db

next()

})

Or this code:

const auth = require('./middleware/auth.js')

const db = require('./middleware/db.js')(db)

app.use(auth, db)

I'm sure most of you will prefer the second example, especially when the names

are self-explanatory. Of course, when you write the code you might think that you

understand how it works. Maybe you even want to show off how smart you are

by chaining several methods together in one line. Please, code for the dumber

version of you. Code for the you who hasn't looked at this code for six months, or

a tried or drunk version of you. If you write code at the peak of your mental

10 Tips to Become a Better Node Developer 111

capacity, then it will be harder for you to understand it later, not to even mention

your colleagues who are not even familiar with the intricacies of the algorithm.

Keeping things simple is especially true for Node which uses the asynchronous

way.

And yes, there was the left-pad incident but that only affected projects dependent

on the public registry and the replacement was published in 11 minutes. The

benefits of going small far outweigh the downsides. Also, npm has changed its

unpublish policy, and any serious project should be using a caching strategy or a

private registry (as a temporary solution).

Use Asynchronous Code

Synchronous code does have a (small) place in Node. It's mostly for writing CLI

commands or other scripts not related to web apps. Node developers mostly build

web apps, hence they use async code to avoid blocking threads.

For example, this might be okay if we are just building a database script, and not

a system to handle parallel/concurrent tasks:

let data = fs.readFileSync('./acconts.json')

db.collection('accounts').insert(data, (results))=>{

fs.writeFileSync('./accountIDs.json', results,

➥ ()=>{process.exit(1)})
})

But this would be better when building a web app:

app.use('/seed/:name', (req, res) => {

let data = fs.readFile(`./${req.params.name}.json`, ()=>{

db.collection(req.params.name).insert(data, (results))=>{

fs.writeFile(`./${req.params.name}IDs.json`, results,

➥ ()={res.status(201).send()})
})

})

112 Modern JavaScript

http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://blog.npmjs.org/post/141905368000/changes-to-npms-unpublish-policy
http://blog.npmjs.org/post/141905368000/changes-to-npms-unpublish-policy

})

The difference is whether you are writing concurrent (typically long running) or

non-concurrent (short running) systems. As a rule of thumb, always write async

code in Node.

Avoid Blocking require

Node has a simple module loading system which uses the CommonJS module

format. Its built-in require function is an easy way to include modules that exist

in separate files. Unlike AMD/requirejs, the Node/CommonJS way of module

loading is synchronous. The way require works is: you import what was

exported in a module, or a file.

const react = require('react')

What most developers don't know is that require is cached. So, as long as there

are no drastic changes to the resolved filename (and in the case of npm modules

there are none), then the code from the module will be executed and loaded into

the variable just once (for that process). This is a nice optimization. However,

even with caching, you are better off putting your require statements first.

Consider this code which only loads the axios module on the route which

actually uses it. The /connect route will be slower than needed because the

module import is happening when the request is made:

app.post('/connect', (req, res) => {

const axios = require('axios')

axios.post('/api/authorize', req.body.auth)

.then((response)=>res.send(response))

})

A better, more performant way is to load the modules before the server is even

defined, not in the route:

10 Tips to Become a Better Node Developer 113

const axios = require('axios')

const express = require('express')

app = express()

app.post('/connect', (req, res) => {

axios.post('/api/authorize', req.body.auth)

.then((response)=>res.send(response))

})

Know That require Is Cached

I mentioned that require is cached in the previous section, but what's interesting

is that we can have code outside of the module.exports. For example,

console.log('I will not be cached and only run once, the

➥ first time')

module.exports = () => {

console.log('I will be cached and will run every time this

➥ module is invoked')
}

Knowing that some code might run only once, you can use this feature to your

advantage.

Always Check for Errors

Node is not Java. In Java, you throw errors because most of the time if there's an

error you don't want the application to continue. In Java, you can handle multiple

errors at a higher levels with a single try...catch.

Not so with Node. Since Node uses the event loop and executes asynchronously,

any errors are separated from the context of any error handler (such as

try...catch) when they occur. This is useless in Node:

114 Modern JavaScript

https://www.youtube.com/watch?v=8aGhZQkoFbQ

try {

request.get('/accounts', (error, response)=>{

data = JSON.parse(response)

})

} catch(error) {

// Will NOT be called

console.error(error)

}

But try...catch still can be used in synchronous Node code. So this is a better

refactoring of the previous snippet:

request.get('/accounts', (error, response)=>{

try {

data = JSON.parse(response)

} catch(error) {

// Will be called

console.error(error)

}

})

If we cannot wrap the request call in a try...catch block, that leaves us with

errors coming from request unhandled. Node developers solve this by providing

you with error as a callback argument. Thus, you need to always manually

handle the error in each and every callback. You do so by checking for an error

(make sure it's not null) and then either displaying the error message to the user

or a client and logging it, or passing it back up the call stack by calling the

callback with error (if you have the callback and another function up the call

stack).

request.get('/accounts', (error, response)=>{

if (error) return console.error(error)

try {

data = JSON.parse(response)

} catch(error) {

console.error(error)

10 Tips to Become a Better Node Developer 115

}

})

A little trick you can use is the okay library. You can apply it like this to avoid

manual error check on myriads of nested callbacks (Hello, callback hell).

var ok = require('okay')

request.get('/accounts', ok(console.error, (response)=>{

try {

data = JSON.parse(response)

} catch(error) {

console.error(error)

}

}))

Return Callbacks or Use if ... else

Node is concurrent. So it's a feature which can turn into a bug if you are not

careful. To be on the safe side terminate the execution with a return statement:

let error = true

if (error) return callback(error)

console.log('I will never run - good.')

Avoid some unintended concurrency (and failures) due to mishandled control

flow.

let error = true

if (error) callback(error)

console.log('I will run. Not good!')

Just to be sure, return a callback to prevent execution from continuing.

116 Modern JavaScript

https://www.npmjs.com/package/okay
https://www.sitepoint.com/saved-from-callback-hell/

Listen to the error Events

Almost all Node classes/objects extend the event emitter (observer pattern) and

emit the error event. This is an opportunity for developers to catch those pesky

errors and handle them before they wreak havoc.

Make it a good habit to create event listeners for error by using .on():

var req = http.request(options, (res) => {

if (('' + res.statusCode).match(/^2\d\d$/)) {

// Success, process response

} else if (('' + res.statusCode).match(/^5\d\d$/))

// Server error, not the same as req error. Req was ok.

}

})

req.on('error', (error) => {

// Can't even make a request: general error, e.g.

➥ ECONNRESET, ECONNREFUSED, HPE_INVALID_VERSION
console.log(error)

})

Know Your npm

Many Node and event front-end developers know that there is --save (for npm

install) which will not only install a module but create an entry in

package.json with the version of the module. Well, there's also --save-dev, for

devDependencies (stuff you don't need in production). But did you know you can

just use -S and -D instead of --save and --save-dev? Yes, you can.

And while you're in the module installation mode, go ahead and remove those ^

signs which -S and -D will create for you. They are dangerous because they'll

allow npm install (or its shortcut npm i) to pull the latest minor (second digit in

the semantic versioning) version from npm. For example, v6.1.0 to v6.2.0 is a

minor release.

10 Tips to Become a Better Node Developer 117

npm team believes in semver, but you should not. What I mean is that they put

caret ^ because they trust open source developers to not introduce breaking

changes in minor releases. No one sane should trust it. Lock your versions. Even

better, use shrinkwrap: npm shrinkwrap which will create a new file with exact

versions of dependencies of dependencies.

Conclusion

This post was part one of two. We've already covered a lot of ground, from

working with callbacks and asynchronous code, to checking for errors and

locking down dependencies. I hope you've found something new or useful here.

If you liked it, be sure to check out part two: 10 Node.js Best Practices:

Enlightenment from the Node Gurus.

118 Modern JavaScript

http://semver.org/
https://nodejs.org/en/blog/npm/managing-node-js-dependencies-with-shrinkwrap/
https://www.sitepoint.com/node-js-best-practices-from-the-node-gurus/
https://www.sitepoint.com/node-js-best-practices-from-the-node-gurus/

8Chapter

An Introduction to Functional JavaScript

by M. David Green

You’ve heard that JavaScript is a functional language, or at least that it’s capable

of supporting functional programming. But what is functional programming? And

for that matter, if you’re going to start comparing programming paradigms in

general, how is a functional approach different from the JavaScript that you’ve

always written?

Well, the good news is that JavaScript isn’t picky when it comes to paradigms.

You can mix your imperative, object-oriented, prototypal, and functional code as

you see fit, and still get the job done. But the bad news is what that means for

your code. JavaScript can support a wide range of programming styles

An Introduction to Functional JavaScript 119

simultaneously within the same codebase, so it’s up to you to make the right

choices for maintainability, readability, and performance.

Functional JavaScript doesn’t have to take over an entire project in order to add

value. Learning a little about the functional approach can help guide some of the

decisions you make as you build your projects, regardless of the way you prefer

to structure your code. Learning some functional patterns and techniques can put

you well on your way to writing cleaner and more elegant JavaScript regardless of

your preferred approach.

Imperative JavaScript

JavaScript first gained popularity as an in-browser language, used primarily for

adding simple hover and click effects to elements on a web page. For years, that’s

most of what people knew about it, and that contributed to the bad reputation

JavaScript earned early on.

As developers struggled to match the flexibility of JavaScript against the intricacy

of the browser document object model (DOM), actual JavaScript code often

looked something like this in the real world:

var result;

function getText() {

var someText = prompt("Give me something to capitalize");

capWords(someText);

alert(result.join(" "));

};

function capWords(input) {

var counter;

var inputArray = input.split(" ");

var transformed = "";

result = [];

for (counter = 0; counter < inputArray.length; counter++)

➥ {
transformed = [

inputArray[counter].charAt(0).toUpperCase(),

inputArray[counter].substring(1)

].join("");

120 Modern JavaScript

result.push(transformed);

}

};

document.getElementById("main_button").onclick = getText;

So many things are going on in this little snippet of code. Variables are being

defined on the global scope. Values are being passed around and modified by

functions. DOM methods are being mixed with native JavaScript. The function

names are not very descriptive, and that’s due in part to the fact that the whole

thing relies on a context that may or may not exist. But if you happened to run

this in a browser inside an HTML document that defined a <button

id="main_button">, you might get prompted for some text to work with, and

then see the an alert with first letter of each of the words in that text capitalized.

Imperative code like this is written to be read and executed from top to bottom

(give or take a little variable hoisting). But there are some improvements we could

make to clean it up and make it more readable by taking advantage of JavaScript’s

object-oriented nature.

Object-Oriented JavaScript

After a few years, developers started to notice the problems with imperative

coding in a shared environment like the browser. Global variables from one

snippet of JavaScript clobbered global variables set by another. The order in

which the code was called affected the results in ways that could be

unpredictable, especially given the delays introduced by network connections

and rendering times.

Eventually, some better practices emerged to help encapsulate JavaScript code

and make it play better with the DOM. An updated variation of the same code

above, written to an object-oriented standard, might look something like this:

(function() {

"use strict";

var SomeText = function(text) {

An Introduction to Functional JavaScript 121

http://www.sitepoint.com/demystifying-javascript-variable-scope-hoisting/

this.text = text;

};

SomeText.prototype.capify = function(str) {

var firstLetter = str.charAt(0);

var remainder = str.substring(1);

return [firstLetter.toUpperCase(), remainder].join("");

};

SomeText.prototype.capifyWords = function() {

var result = [];

var textArray = this.text.split(" ");

for (var counter = 0; counter < textArray.length;

➥ counter++) {
result.push(this.capify(textArray[counter]));

}

return result.join(" ");

};

➥ document.getElementById("main_button").addEventListener("click",
➥ function(e) {

var something = prompt("Give me something to capitalize");

var newText = new SomeText(something);

alert(newText.capifyWords());

});

}());

In this object-oriented version, the constructor function simulates a class to

model the object we want. Methods live on the new object’s prototype to keep

memory use low. And all of the code is isolated in an anonymous immediately-

invoked function expression so it doesn’t litter the global scope. There’s even a

"use strict" directive to take advantage of the latest JavaScript engine, and the

old-fashioned onclick method has been replaced with a shiny new

addEventListener, because who uses IE8 or earlier anymore? A script like this

would likely be inserted at the end of the <body> element on an HTML document,

to make sure all the DOM had been loaded before it was processed so the

<button> it relies on would be available.

122 Modern JavaScript

But despite all this reconfiguration, there are still many artifacts of the same

imperative style that led us here. The methods in the constructor function rely on

variables that are scoped to the parent object. There’s a looping construct for

iterating across all the members of the array of strings. There’s a counter variable

that serves no purpose other than to increment the progress through the for loop.

And there are methods that produce the side effect of modifying variables that

exist outside of their own definitions. All of this makes the code more brittle, less

portable, and makes it harder to test the methods outside of this narrow context.

Functional JavaScript

The object-oriented approach is much cleaner and more modular than the

imperative approach we started with, but let’s see if we can improve it by

addressing some of the drawbacks we discussed. It would be great if we could

find ways to take advantage of JavaScript’s built-in ability to treat functions as

first-class objects so that our code could be cleaner, more stable, and easier to

repurpose.

(function() {

"use strict";

var capify = function(str) {

return [str.charAt(0).toUpperCase(),

➥ str.substring(1)].join("");
};

var processWords = function(fn, str) {

return str.split(" ").map(fn).join(" ");

};

➥ document.getElementById("main_button").addEventListener("click",
➥ function(e) {

var something = prompt("Give me something to capitalize");

alert(processWords(capify, something));

});

}());

An Introduction to Functional JavaScript 123

Did you notice how much shorter this version is? We’re only defining two

functions: capify and processWords. Each of these functions is pure, meaning

that they don’t rely on the state of the code they’re called from. The functions

don’t create side effects that alter variables outside of themselves. There is one

and only one result a function returns for any given set of arguments. Because of

these improvements, the new functions are very easy to test, and could be

snipped right out of this code and used elsewhere without any modifications.

There might have been one keyword in there that you wouldn’t recognize unless

you’ve peeked at some functional code before. We took advantage of the new map

method on Array to apply a function to each element of the temporary array we

created when we split our string. Map is just one of a handful of convenience

methods we were given when modern browsers and server-side JavaScript

interpreters implemented the ECMAscript 5 standards. Just using map here, in

place of a for loop, eliminated the counter variable and helped make our code

much cleaner and easier to read.

Start Thinking Functionally

You don’t have to abandon everything you know to take advantage of the

functional paradigm. You can get started thinking about your JavaScript in a

functional way by considering a few questions when you write your next

program:

Are my functions dependent on the context in which they are called, or are

they pure and independent?

Can I write these functions in such a way that I could depend on them always

returning the same result for a given input?

Am I sure that my functions don’t modify anything outside of themselves?

If I wanted to use these functions in another program, would I need to make

changes to them?

This introduction barely scratches the surface of functional JavaScript, but I hope

it whets your appetite to learn more.

124 Modern JavaScript

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map

9Chapter

An Introduction to Chart.js 2.0 — Six
Simple Examples

by Jack Rometty

Peer reviewed by Tim Severien and Simon Codrington.

If your website is data-intensive, then you will need to find a way to make that

data easy to visualize. Humans, after all, are not wonderful at understanding long

lists of raw numbers. That's where charts and graphs come in — they can make

complicated statistical relationships obvious and intuitive, as well as more

accessibile to non-English speakers. Everyone understands basic charts at the

same speed, the same can't be said for paragraphs rife with technical jargon.

Using charts when it's beneficial, will make your website easier to understand

and visually more appealing.

An Introduction to Chart.js 2.0 — Six Simple Examples 125

https://www.sitepoint.com/author/tseverien/
https://www.sitepoint.com/author/scodrington/

In this article I'll introduce you to a JavaScript charting library called Chart.js.

Using six stylish examples, I'll demonstrate how you can use Chart.js to visualize

data on your website, as well as configure it to meet your needs.

Why Chart.js?

I chose Chart.js because it can be learned and leveraged quickly. It's designed

with simplicity in mind, yet is extremely customizable. In my experience,

charting libraries fall onto a spectrum of complexity, where more complex

libraries offer deeper customization, but have steeper learning curves. Chart.js is

one of the quickest and easiest libraries to learn that doesn't heavily limit your

options. It comes with eight different chart types that will cover almost all of your

data visualization needs.

Chart.js is actively maintained to a high standard by the open source community.

It recently reached version 2.0, which came with a few fundamental syntax

changes to make code more consistent, as well as offer mobile support. In this

article, I'm going to use Chart.js 2.0 and it's updated syntax. At the end of this

article, after giving you a chance to see how Chart.js 2.0 works, there is a section

covering the 1.0 -> 2.0 transition and what to expect when reading old Chart.js

examples online.

Installing Chart.js

Again, Chart.js is focused on being easy. Easy to learn, easy to leverage, and easy

to install. If you'd like to dive into the actual code, check out the GitHub project.

You only need two things to use Chart.js.

1) The library - for this guide, I recommend using a CDN because it's the easiest

way to get up and running fast.

<script

➥ src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.1.4/
Chart.min.js"></script>

126 Modern JavaScript

http://www.chartjs.org/
https://github.com/modernjsant1/chartjs/Chart.js

2) A <canvas> element, as Chart.js leverages HTML5 canvas.

</canvas><canvas id="myChart"></canvas>

Alternatively, you can use a package manager to download the library. For more

information, see the Getting Started guide.

Simple, eh? Now without further ado, let's look at what Chart.js has to offer.

Line Chart

This is all you need to create a minimum line chart in Chart.js. Just put it inside

of a <script></script> somewhere in your <body> after you declare the HTML5

canvas.

var ctx =

➥ document.getElementById('myChart').getContext('2d');
var myChart = new Chart(ctx, {

type: 'line',

data: {

labels: ['M', 'T', 'W', 'T', 'F', 'S', 'S'],

datasets: [{

label: 'apples',

data: [12, 19, 3, 17, 6, 3, 7],

backgroundColor: "rgba(153,255,51,0.4)"

}, {

label: 'oranges',

data: [2, 29, 5, 5, 2, 3, 10],

backgroundColor: "rgba(255,153,0,0.4)"

}]

}

});

See the Pen 2 - Line chart by SitePoint (@SitePoint) on CodePen.

An Introduction to Chart.js 2.0 — Six Simple Examples 127

http://www.chartjs.org/docs/#getting-started
http://codepen.io/SitePoint/pen/WGZGNE/
http://codepen.io/SitePoint
http://codepen.io

If this code looks intense, don't worry! All Chart.js examples follow the above

format for the most part, so you only have to learn it once. Lets go line by line to

understand what's happening.

var ctx =

➥ document.getElementById("myChart").getContext('2d');

This line gets a reference to the <canvas> element we created earlier, then calls

the getContext method on it. The getContext method returns an object that

provides methods and properties for drawing on the canvas. We store this in a

variable named ctx.

var myChart = new Chart(ctx, {

type: 'line',

data: // array of line data goes here

});

Here we are creating the chart object. I've excluded the data for a moment to focus

on the type property, which determines the type of chart we want. Chart.js' new

Chart() constructor takes two parameters:

128 Modern JavaScript

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

1. Either a reference to a </canvas><canvas> element that the chart will be

rendered on, or a reference to its 2d drawing context (here we are using the 2d

context). Regardless of which you use, the Chart.js convention is to call it ctx.

2. An object literal containing the data and the configuration options that

Chart.js will use to build your chart. The required properties are type and

data. In our example type is 'line' because we want a line chart. data is the

data you used to populate the chart.

Chart.js uses array location to determine graph position, so the first point of

'apples' will have the value '12', the second will have '19', and so on. Adding new

lines is as easy as adding a new object with a label and data.

Finally, I have set an rgba background color for each data set to make it more

visually appealing.

To learn more about line charts with Chart.js, check out the docs

Bar Chart

Bar charts are (mostly) just line charts that look a bit different. By changing one

line of our previous example, we can create a bar chart.

type: 'line'

to:

type: 'bar'

Yes, it's really that easy.

Pro tip

clicking on any of the legends for the charts ("Apples" and "Oranges" here) will

toggle that particular data set. This works for all chart types.

An Introduction to Chart.js 2.0 — Six Simple Examples 129

http://www.chartjs.org/docs/#line-chart

See the Pen 2. Bar Chart by SitePoint (@SitePoint) on CodePen.

The full documentation on bar charts can be found here.

Here's the full code for this example:

var ctx =

➥ document.getElementById("myChart").getContext('2d');
var myChart = new Chart(ctx, {

type: 'bar',

data: {

labels: ["M", "T", "W", "R", "F", "S", "S"],

datasets: [{

label: 'apples',

data: [12, 19, 3, 17, 28, 24, 7]

}, {

label: 'oranges',

data: [30, 29, 5, 5, 20, 3, 10]

}]

}

});

130 Modern JavaScript

http://codepen.io/SitePoint/pen/XjAjaG/
http://codepen.io/SitePoint
http://codepen.io
http://www.chartjs.org/docs/#bar-chart

Radar Charts

Radar charts are my favorite type, and again they are in the same family as line

and bar charts. Radar charts are just line charts with a radial X axis opposed to a

straight line. To get a quick radar chart, change:

type: 'bar'

to:

type: 'radar'

Because that's just how Chart.js rolls.

Unfortunately, the result is a bit ugly and very hard to read. Bar charts don't have

overlap, so solid colors are beneficial. This is not the case with radar charts,

which do leverage overlap. We can accommodate this by updating the opactity

value of our backgroundColor and adding a borderColor.

{

label: 'apples',

backgroundColor: "rgba(179,11,198,.2)",

borderColor: "rgba(179,11,198,1)",

data: [12, 19, 3, 17, 6, 3, 7]

}

This adds a clearish background and lets us visualize the overlap.

3. Radar Charts by SitePoint (@SitePoint) on CodePen.

An Introduction to Chart.js 2.0 — Six Simple Examples 131

http://codepen.io/SitePoint
http://codepen.io

To read more about radar charts, check out the docs.

Here's the full code from this example:

var ctx = document.getElementById("myChart");

var myChart = new Chart(ctx, {

type: 'radar',

data: {

labels: ["M", "T", "W", "T", "F", "S", "S"],

datasets: [{

label: 'apples',

backgroundColor: "rgba(153,255,51,0.4)",

borderColor: "rgba(153,255,51,1)",

data: [12, 19, 3, 17, 28, 24, 7]

}, {

label: 'oranges',

backgroundColor: "rgba(255,153,0,0.4)",

borderColor: "rgba(255,153,0,1)",

data: [30, 29, 5, 5, 20, 3, 10]

}]

}

132 Modern JavaScript

http://www.chartjs.org/docs/#radar-chart

});

Polar Charts

Polar charts give each data point an equal amount of radial space. Segments with

larger values extend further from the center of the graph. Here's the polar chart

for our apples data set.

4. Polar Charts by SitePoint (@SitePoint) on CodePen.

As usual, specifying that this is a polar chart can be done with a single line.

Change:

type: 'radar'

to:

An Introduction to Chart.js 2.0 — Six Simple Examples 133

http://codepen.io/SitePoint
http://codepen.io

type: 'polarArea'

But, the polar area is the first chart I've covered that can't be used to compare two

data sets. The previous examples were different ways of contrasting two arrays of

equal length, whereas the polar chart (and pie chart, which will be covered next)

only visualize a single group of numbers.

Here's the full code for this example:

var ctx =

➥ document.getElementById("myChart").getContext('2d');
var myChart = new Chart(ctx, {

type: 'polarArea',

data: {

labels: ["M", "T", "W", "T", "F", "S", "S"],

datasets: [{

backgroundColor: [

"#2ecc71",

"#3498db",

"#95a5a6",

"#9b59b6",

"#f1c40f",

"#e74c3c",

"#34495e"

],

data: [12, 19, 3, 17, 28, 24, 7]

}]

}

});

The only new code is a backgroundColor array. Each color matches with the data

element of the same index.

To read more about polar area charts, check out the docs.

134 Modern JavaScript

http://www.chartjs.org/docs/#polar-area-chart

Pie & Doughnut Charts

You can probably guess this part by now. Change:

type: 'polarArea'

to:

type: 'pie'

The type property is the key to Chart.js. Remember how easy it was to transition

from a line chart to bar and radar chart? Well, polar, pie, and doughnut charts are

equally interchangeable. With that single change, we can alternate from a polar

chart to a pie chart.

5. Pie Chart by SitePoint (@SitePoint) on CodePen.

And for a Doughnut chart:

An Introduction to Chart.js 2.0 — Six Simple Examples 135

http://codepen.io/SitePoint
http://codepen.io

type: 'pie'

to:

type: 'doughnut'

6. Doughnut Chart by SitePoint (@SitePoint) on CodePen.

To read more about pie and doughnut charts, check out the docs.

Here's the full code for the pie chart:

var ctx =

➥ document.getElementById("myChart").getContext('2d');
var myChart = new Chart(ctx, {

type: 'pie',

data: {

labels: ["M", "T", "W", "T", "F", "S", "S"],

136 Modern JavaScript

http://codepen.io/SitePoint
http://codepen.io
http://www.chartjs.org/docs/#doughnut-pie-chart

datasets: [{

backgroundColor: [

"#2ecc71",

"#3498db",

"#95a5a6",

"#9b59b6",

"#f1c40f",

"#e74c3c",

"#34495e"

],

data: [12, 19, 3, 17, 28, 24, 7]

}]

}

});

Doughnut charts have an interesting property called cutoutPercentage that

dictates how big the center hole is. To dive into that, I first need to show you

something about Chart.js I've ignored to help you speed through the basic chart

types.

Configuring Chart.js

In every example so far, we've used the format:

var myChart = new Chart(ctx, {

type: //chart type,

data: // chart data

});

But there's a third property called options. It fits in right below data.

var myChart = new Chart(ctx, {

type: //chart type,

data: // chart data,

options: // chart options

An Introduction to Chart.js 2.0 — Six Simple Examples 137

});

Now that you're familiar with the fundamentals of Chart.js, it's time to cover some

of the tricks availible with options.

Titles

It's easy to add a title to any Chart.js chart by adding this set of options. Native

titles are awesome, but it's worth noting that they are mostly static and

unchanging. This will matter when we try to add custom events in a minute.

options: {

title: {

display: true,

text: 'Custom Chart Title'

}

}

The doughnut hole

The cutoutPercentage property is a value from 0 to 50. Pie charts are just

doughnut charts with a cutoutPercentage of 0.

options: {

cutoutPercentage: 10,

}

Stacking bar charts

If you would prefer that your bar charts were stacked, just add the following set

of options into your bar chart code:

138 Modern JavaScript

options: {

scales: {

yAxes: [{

stacked: true

}]

}

}

Each chart type has plenty of options for you to dig through. I encourage you to

do so.

Handling Events

As mentioned previously clicking on a legend will toggle the data set associated

with that particular legend. Let's augment that with our own functionality:

var original = Chart.defaults.global.legend.onClick;

Chart.defaults.global.legend.onClick = function(e,

➥ legendItem) {
// Insert your custom functionality here

original.call(this, e, legendItem);

};

This code saves a reference to the legend item's onClick function into a variable

called original . It then overwrites this function with our own customized

version. The e parameter that we are passing to it is a reference to the click event

that caused the function to fire and the legendItem parameter is a reference to the

legend that was clicked on. Once we're done adding our own code, we call the

original function specifying a this value and passing through the parameters it is

expecting. This results in the default action for clicking on a legend (toggling the

data set) being carried out.

In other words, We can now package any functionality we want on top of the

onClick() call as long as we put it above original.call().

An Introduction to Chart.js 2.0 — Six Simple Examples 139

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call

A Concrete Example

Let's augment our previous code so that when a user clicks on a legend, the

caption at the bottom of the chart updates automatically.

We are only changing the caption, but you can add any functionality you want.

For example, a dashboard might have columns of the daily apples and oranges

values. The dashboard could also dynamically update based on the status of your

chart with the power of a custom callback. Creating interactive data is easy with

Chart.js.

Here's the code

var labels = {

"apples": true,

"oranges": true

};

var caption = document.getElementById("caption");

var update_caption = function(legend) {

labels[legend.text] = legend.hidden;

var selected = Object.keys(labels).filter(function(key) {

return labels[key];

});

var text = selected.length ? selected.join(" & ") :

➥ "nothing";

caption.innerHTML = "The above chart displays " + text;

};

As you can see, we're using an object literal to keep track of the status of the

legends. We're also taking advantage of the legend.text and legend.hidden

properties to update its state. The filter function will return any of the object keys

whose value is true which we use to build our caption.

140 Modern JavaScript

7. Bar Chart with Custom onClick() by SitePoint (@SitePoint) on CodePen.

Chart.js 2.0 vs 1.0

This article has used Chart.js 2.0 syntax. Chart.js 2.0 is relatively new. The most

obvious difference between 2.0 and 1.0 being how to declare charts.

1.0

var LineChartDemo = new Chart(ctx).Line(

//data here,

//options here

);

2.0

var myChart = new Chart(ctx, {

type: 'line',

data: //data here,

options: //options here

}

Version 1.0 focuses on using function chaining to create a specific type of chart,

and then passing in data and options. Version 2.0 switches this up by letting the

user create a generic chart object and then pass in type as well as data and

options. The second approach matches up more with the philosophy of Chart.js

by being as modular and individual as possible. It's worth noting Chart.js 2.0 is

backwards compatible and still accepts 1.0 syntax.

Another key feature of Chart.js 2.0 is mobile support. Charts can now scale to fit

mobile screens and handle touch events on mobile browsers. With the current

proliferation of mobile devices, this is a must-have feature for websites in 2016.

Another feature new to 2.0 that we used in this guide is title. Charts now have

integrated titles that will cooperate with the chart they're attached to.

An Introduction to Chart.js 2.0 — Six Simple Examples 141

http://codepen.io/SitePoint
http://codepen.io

The full list of updates can be found in the 2.0.0 release notes.

Conclusion

Chart.js is a perfect match for rapid prototyping of simple charts. There are eight

main chart types, of which we have covered: line, bar, radar, polarArea, pie

and doughnut. These diverse charts cover most common ways to visualize data,

meaning that Chart.js is probably the only graphing library you'll need for your

next project.

If you want to learn more about Chart.js, I highly recommend the docs, which you

can find on the Chart.js website.

142 Modern JavaScript

https://github.com/chartjs/Chart.js/releases/tag/v2.0.0
http://www.chartjs.org/

10Chapter

Learning JavaScript Test-Driven
Development by Example

by James Wright

Peer reviewed by Vildan Softic.

You're probably already familiar with automated testing and its benefits. Having a

set of tests for your application allows you to make changes to your code with

confidence, knowing that the tests have your back should you break anything. It's

possible to take things a step further and write your tests before you write the

code; a practice known as Test-driven development (TDD).

Learning JavaScript Test-Driven Development by Example 143

https://www.sitepoint.com/author/vildansoftic

In this tutorial, we will talk about what TDD is and what benefits it brings to you

as a developer. We'll use TDD to implement a form validator, which ensures that

any values input by the user conform to a specified set of rules.

What is TDD?

Test-driven development is a programming methodology with which one can

tackle the design, implementation, and testing of units of code, and to some

extent the expected functionality of a program.

Complementing the test-first approach of Extreme Programming, in which

developers write tests before implementing a feature or a unit, TDD also

facilitates the refactoring of code; this is commonly referred to as the Red-Green-

Refactor Cycle.

TDD in Node

Note that this article will focus on testing front-end code. If you're looking for

something focused on the backend, be sure to check out our course: Test-Driven

Development in Node.js

144 Modern JavaScript

https://www.sitepoint.com/premium/courses/test-driven-development-in-node-js-2932
https://www.sitepoint.com/premium/courses/test-driven-development-in-node-js-2932
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

/>

Write a failing test - write a test that invokes your logic and assert that the

correct behavior is produced

In a unit test, this would be asserting the return value of a function or

verifying that a mocked dependency was called as expected

In a functional test, this would be ensuring that a UI or an API behaves

predictably across a number of actions

Make the test pass - implement the minimum amount of code that results in

the test passing, and ensure that all other tests continue to pass

Refactor the implementation - update or rewrite the implementation, without

breaking any public contracts, to improve its quality without breaking the new

and existing tests

Learning JavaScript Test-Driven Development by Example 145

I've used TDD to some extent since I was introduced to it at the beginning of my

career, but as I have progressed to working on applications and systems with

more complex requirements, I have personally found the technique to be time-

saving and conducive to the quality and robustness of my work.

Before proceeding, it might be worth familiarizing yourself with some of the

various types of automated tests that can be written. Eric Elliot summarises them

well:

Unit tests - ensure that individual units of the app, such as functions and

classes, work as expected. Assertions test that said units return the expected

output for any given inputs

Integration tests - ensure that unit collaborations work as expected. Assertions

may test an API, UI, or interactions that may result in side-effects (such as

database I/O, logging, etc…)

End-to-end tests - ensure that software works as expected from the user’s

perspective and that every unit behaves correctly in the overall scope of the

system. Assertions primarily test the user interface

Benefits of Test-Driven Development

Immediate test coverage

By writing test cases for a feature before its implementation, code coverage is

immediately guaranteed, plus behavioral bugs can be caught earlier in the

development lifecycle of a project. This, of course, necessitates tests that cover all

behaviors, including error handling, but one should always practice TDD with

this mindset.

Refactor with confidence

Referring to the red-green-refactor cycle above, any changes to an implementation

can be verified by ensuring that the existing tests continue to pass. Writing tests

that run as quickly as possible will shorten this feedback loop; while it's

important to cover all possible scenarios, and execution time can vary slightly

146 Modern JavaScript

https://www.sitepoint.com/javascript-testing-unit-functional-integration/
https://www.sitepoint.com/javascript-testing-unit-functional-integration/

between different computers, authoring lean and well-focused tests will save time

in the long term.

Design by contract

Test-driven development allows developers to consider how an API will be

consumed, and how easy it is to use, without having to worry about the

implementation. Invoking a unit in a test case essentially mirrors a call site in

production, so the external design can be modified before the implementation

stage.

Avoid superfluous code

As long as one is frequently, or even automatically, running tests upon changing

the associated implementation, satisfying existing tests reduces the likelihood of

unnecessary additional code, arguably resulting in a codebase that's easier to

maintain and understand. Consequently, TDD helps one to follow the KISS (Keep

it simple, stupid!) principle.

No dependence upon integration

When writing unit tests, if one is conforming to the required inputs, then units

will behave as expected once integrated into the codebase. However, integration

tests should also be written to ensure that the new code's call site is being

invoked correctly.

For example, let's consider the function below, which determines if a user is an

admin:

'use strict'

function isUserAdmin(id, users) {

const user = users.find(u => u.id === id);

return user.isAdmin;

}

Learning JavaScript Test-Driven Development by Example 147

https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/KISS_principle

Rather than hard code the users data, we expect it as a parameter. This allows us

to pass a prepopulated array in our test:

const testUsers = [

{

id: 1,

isAdmin: true

},

{

id: 2,

isAdmin: false

}

];

const isAdmin = isUserAdmin(1, testUsers);

// TODO: assert isAdmin is true

This approach allows the unit to be implemented and tested in isolation from the

rest of the system. Once there are users in our database, we can integrate the unit

and write integration tests to verify that we are correctly passing the parameters

to the unit.

Test-Driven Development With JavaScript

With the advent of full-stack software written in JavaScript, a plethora of testing

libraries has emerged that allow for the testing of both client-side and server-side

code; an example of such a library is Mocha, which we will be using in the

exercise.

A good use case for TDD, in my opinion, is form validation; it is a somewhat

complex task that typically follows these steps:

1. Read the value from an <input> that should be validated

2. Invoke a rule (e.g. alphabetical, numeric) against said value

3. If it is invalid, provide a meaningful error to the user

4. Repeat for the next validatable input

148 Modern JavaScript

https://mochajs.org/

There is a CodePen for this exercise that contains some boilerplate test code, as

well as an empty validateForm function. Please fork this before we start.

Our form validation API will take an instance of HTMLFormElement (<form>) and

validate each input that has a data-validation attribute, the possible values of

which are:

alphabetical - any case-insensitive combination of the 26 letters of the

English alphabet

numeric - any combination of digits between 0 and 9

We will write an end-to-end test to verify the functionality of validateForm

against real DOM nodes, as well as against the two validation types we'll initially

support. Once our first implementation works, we will gradually refactor it by

writing smaller units, also following TDD.

Here's the form that our tests will use:

<form class="test-form">

<input name="first-name" type="text"

➥ data-validation="alphabetical" />
<input name="age" type="text" data-validation="numeric"

➥ />
</form>

Between each test, we create a new clone of the form to remove the risk of

potential side effects. The true parameter passed to cloneNode ensures that the

form's child nodes are also cloned:

let form = document.querySelector('.test-form');

beforeEach(function () {

form = form.cloneNode(true);

});

Learning JavaScript Test-Driven Development by Example 149

http://codepen.io/SitePoint/pen/NpZLzR

Writing our first test case

The describe('the validateForm function', function () {}) suite will be

used to test our API. Within the inner function, write the first test case, which

will ensure that legal values for both the alphabetical and numeric rules will be

recognized as valid:

it('should validate a form with all of the possible

➥ validation types', function () {
const name = form.querySelector('input[name="first-name"]');

const age = form.querySelector('input[name="age"]');

name.value = 'Bob';

age.value = '42';

const result = validateForm(form);

expect(result.isValid).to.be.true;

expect(result.errors.length).to.equal(0);

});

Upon saving the changes to your fork, you should see the test fail:

Now let's make this test green! Remember that we should endeavor to write the

minimum, reasonable (no return true;!) amount of code to satisfy the test, so

let's not worry about error reporting for now.

150 Modern JavaScript

Here's the initial implementation, which iterates over our form's input elements

and validates the values of each using regular expressions:

function validateForm(form) {

const result = {

errors: []

};

const inputs = Array.from(form.querySelectorAll('input'));

let isValid = true;

for (let input of inputs) {

if (input.dataset.validation === 'alphabetical') {

isValid = isValid && /^[a-z]+$/i.test(input.value);

} else if (input.dataset.validation === 'numeric') {

isValid = isValid && /^[0-9]+$/.test(input.value);

}

}

result.isValid = isValid;

return result;

}

You should now see that our test passes:

Error handling

Below our first test, let's write another which verifies that the return result

object's error array contains an Error instance with the expected message when

an alphabetical field is invalid:

Learning JavaScript Test-Driven Development by Example 151

it('should return an error when a name is invalid', function

➥ () {
const name = form.querySelector('input[name="first-name"]');

const age = form.querySelector('input[name="age"]');

name.value = '!!!';

age.value = '42';

const result = validateForm(form);

expect(result.isValid).to.be.false;

expect(result.errors[0]).to.be.instanceof(Error);

expect(result.errors[0].message).to.equal('!!! is not a

➥ valid first-name value');
});

Upon saving your CodePen fork, you should see the new failing test case in the

output. Let's update our implementation to satisfy both test cases:

function validateForm(form) {

const result = {

get isValid() {

return this.errors.length === 0;

},

errors: []

};

const inputs = Array.from(form.querySelectorAll('input'));

for (let input of inputs) {

if (input.dataset.validation === 'alphabetical') {

let isValid = /^[a-z]+$/i.test(input.value);

if (!isValid) {

result.errors.push(new Error(`${input.value} is not a valid

➥ ${input.name} value`));
}

152 Modern JavaScript

} else if (input.dataset.validation === 'numeric') {

// TODO: we'll consume this in the next test

let isValid = /^[0-9]+$/.test(input.value);

}

}

return result;

}

Now let's add a test that asserts that numeric validation errors are handled

correctly:

it('should return an error when an age is invalid', function

➥ () {
const name = form.querySelector('input[name="first-name"]');

const age = form.querySelector('input[name="age"]');

name.value = 'Greg';

age.value = 'a';

const result = validateForm(form);

expect(result.isValid).to.be.false;

expect(result.errors[0]).to.be.instanceof(Error);

expect(result.errors[0].message).to.equal('a is not a valid

➥ age value');
});

Once you've witnessed the test fail, update the validateForm function:

} else if (input.dataset.validation === 'numeric') {

let isValid = /^[0-9]+$/.test(input.value);

if (!isValid) {

result.errors.push(new Error(`${input.value} is not a valid

➥ ${input.name} value`));

Learning JavaScript Test-Driven Development by Example 153

}

}

Finally, let's add a test to ensure that multiple errors are handled:

it('should return multiple errors if more than one field is

➥ invalid', function () {
const name = form.querySelector('input[name="first-name"]');

const age = form.querySelector('input[name="age"]');

name.value = '!!!';

age.value = 'a';

const result = validateForm(form);

expect(result.isValid).to.be.false;

expect(result.errors[0]).to.be.instanceof(Error);

expect(result.errors[0].message).to.equal('!!! is not a

➥ valid first-name value');
expect(result.errors[1]).to.be.instanceof(Error);

expect(result.errors[1].message).to.equal('a is not a valid

➥ age value');
});

Given our error handling implementation for the second and third test, this new

case should pass immediately. You can confirm that you've followed the steps

correctly by verifying your implementation against mine.

Refactoring Our Validator

Although we have a working function that is covered with tests, it emits a

number of code smells:

Multiple responsibilities

154 Modern JavaScript

http://codepen.io/SitePoint/pen/peXOOw?editors=0010

We're querying the inner DOM nodes of our input, specifying our ruleset,

and computing our overall result in the same function. In terms of the

SOLID principles, this violates the Single responsibility principle

Additionally, a lack of abstraction results in code that is more difficult for

other developers to understand

Tight coupling

Our current implementation interweaves the above responsibilities in a

way that makes updates to each concern brittle; changes to one detail of

our large method will make debugging difficult in the case that we

introduce an issue

Furthermore, we can't add or alter validation rules without updating the if

statements. This violates SOLID's Open/closed principle

Duplication of logic - if we wish to update the format of our error messages, or

push another object to our array, then we must update this in two places

Fortunately, as we've written the functional tests for our validator function, we

can make our code better with the confidence that we won't break it.

Let's use TDD to write separate functions for:

1. Mapping our inputs to validation queries

2. Reading our validation rules from an appropriate data structure

The createValidationQueries function

By mapping our NodeList of HTMLInputElements to objects representing the

name of a form field, the type against which it should be validated, and the value

of said field, not only will we decouple validateForm function from the DOM,

but we'll facilitate validation rule lookup when we replace our hard-coded

regular expressions.

For example, the validation query object for the first-name field would be:

{

name: 'first-name',

Learning JavaScript Test-Driven Development by Example 155

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Open/closed_principle

type: 'alphabetical',

value: 'Bob'

}

Above the validateForm function, create an empty function called

createValidationQueries. Then, outside of the describe suite for

validateForm, create another describe suite named 'the

createValidationQueries function'.

It should include the single test case:

describe('the createValidationQueries function', function ()

➥ {
it(

'should map input elements with a data-validation attribute

➥ to an array of validation objects',

function () {

const name =

form.querySelector('input[name="first-name"]');

const age = form.querySelector('input[name="age"]');

name.value = 'Bob';

age.value = '42';

const validations = createValidationQueries([name,

age]);

expect(validations.length).to.equal(2);

expect(validations[0].name).to.equal('first-name');

expect(validations[0].type).to.equal('alphabetical');

expect(validations[0].value).to.equal('Bob');

expect(validations[1].name).to.equal('age');

expect(validations[1].type).to.equal('numeric');

expect(validations[1].value).to.equal('42');

}

156 Modern JavaScript

);

});

Once you've witnessed this fail, write the code for the implementation:

function createValidationQueries(inputs) {

return Array.from(inputs).map(input => ({

name: input.name,

type: input.dataset.validation,

value: input.value

}));

}

When this passes, update validateForm's for loop to call our new function and

to use the query objects to determine the validity of our form:

for (let validation of

➥ createValidationQueries(form.querySelectorAll('input'))) {
if (validation.type === 'alphabetical') {

let isValid = /^[a-z]+$/i.test(validation.value);

if (!isValid) {

result.errors.push(new Error(`${validation.value} is not a

➥ valid ${validation.name} value`));
}

} else if (validation.type === 'numeric') {

let isValid = /^[0-9]+$/.test(validation.value);

if (!isValid) {

result.errors.push(new Error(`${validation.value} is not a

➥ valid ${validation.name} value`));
}

}

}

Learning JavaScript Test-Driven Development by Example 157

If both our new test and the existing tests pass, as demonstrated in this pen, then

we can make a bigger change; decoupling the validation rules.

The validateItem function

To remove our hard-coded rules, let's write a function that takes our rules as a Map

and asserts the validity of our inputs.

Like createValidationQueries, we'll write a new test suite before our

implementation. Above the implementation of validateForm, write an empty

function called validateItem. Then in our main describe suite, write another

describe suite for our new addition:

describe('the validateItem function', function () {

const validationRules = new Map([

['alphabetical', /^[a-z]+$/i]

]);

it(

'should return true when the passed item is deemed valid

➥ against the supplied validation rules',

function () {

const validation = {

type: 'alphabetical',

value: 'Bob'

};

const isValid = validateItem(validation,

validationRules);

expect(isValid).to.be.true;

}

);

});

We're explicitly passing a Map of rules to our implementation from the test as we

want to verify its behavior independently of our main function; this makes it a

unit test. Here's our first implementation of validateItem():

158 Modern JavaScript

http://codepen.io/SitePoint/pen/EWBeep?editors=0010
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Map

function validateItem(validation, validationRules) {

return

➥ validationRules.get(validation.type).test(validation.value);
}

Once this test has passed, write a second test case to verify that our function

returns false when a validation query is invalid; this should pass due to our

current implementation:

it(

'should return false when the passed item is deemed

➥ invalid',

function () {

const validation = {

type: 'alphabetical',

value: '42'

};

const isValid = validateItem(validation, validationRules);

expect(isValid).to.be.false;

}

);

Finally, write a test case to determine that validateItem returns false when the

validation type is not found:

it(

'should return false when the specified validation type is

➥ not found',

function () {

const validation = {

type: 'foo',

value: '42'

};

Learning JavaScript Test-Driven Development by Example 159

const isValid = validateItem(validation, validationRules);

expect(isValid).to.be.false;

}

);

Our implementation should check if the specified validation type exists in the

validationRules Map before testing any values against their corresponding

regular expressions:

function validateItem(validation, validationRules) {

if (!validationRules.has(validation.type)) {

return false;

}

return

➥ validationRules.get(validation.type).test(validation.value);
}

Once we see this test passing, let's create a new Map above

createValidationQueries, which will contain the actual validation rules used

by our API:

const validationRules = new Map([

['alphabetical', /^[a-z]+$/i],

['numeric', /^[0-9]+$/]

]);

Finally, let's refactor the validateForm function to use the new function and

rules:

function validateForm(form) {

const result = {

get isValid() {

160 Modern JavaScript

return this.errors.length === 0;

},

errors: []

};

for (let validation of

➥ createValidationQueries(form.querySelectorAll('input'))) {
let isValid = validateItem(validation, validationRules);

if (!isValid) {

result.errors.push(

new Error(`${validation.value} is not a valid

➥ ${validation.name} value`)
);

}

}

return result;

}

Hopefully, you'll see that all of the tests pass. Congratulations on using test-

driven development to refactor and improve the quality of our code! Your final

implementation should resemble this Pen.

Learning JavaScript Test-Driven Development by Example 161

http://codepen.io/SitePoint/pen/xqoamQ?editors=0010

Wrapping Up

By following TDD, we have been able to take the initial implementation of our

form validation and separate it into independent and understandable parts. I

hope you've enjoyed this tutorial and take this practice forward with you into

your everyday work.

162 Modern JavaScript

Learning JavaScript Test-Driven Development by Example 163

	Modern JavaScript
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Table of Contents
	Preface
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	The Anatomy of a Modern JavaScript Application
	by James Kolce
	A Note about Node.js
	JavaScript ES2015+
	Declaring variables
	Arrow functions
	Improved Class syntax
	Promises / Async functions
	Modules
	More on ES2015

	Code linting

	Modular Code
	CommonJS modules
	ES2015 modules
	Broswer Support

	Package Management
	Build Tools
	Module bundling
	learning More About Module Bundling

	Transpilation
	Build systems & task runners

	Application Architecture
	Single Page Applications (SPAs)
	Universal / Isomorphic Applications

	Deployment
	Files That Don't Need Processing
	Team development

	Conclusion

	An Introduction to Gulp.js
	by Craig Buckler
	That Sounds Scarily Complicated!
	Task Runners: the Options
	What About Gulp 4?
	Step 1: Install Node.js
	Note for Windows Users

	Step 2: Install Gulp Globally
	Step 3: Configure Your Project
	src folder: pre-processed source files
	build folder: compiled/processed files

	Step 4: Install Gulp Locally
	Alternative Deployment Options

	Step 4: Create a Gulp Configuration File
	Step 5: Create Gulp Tasks
	Image Task
	HTML Task
	JavaScript Task
	CSS Task

	Step 6: Automate Tasks
	Step 7: Profit!

	The Basics of DOM Manipulation in Vanilla JavaScript (No jQuery)
	by Sebastian Seitz
	DOM Manipulation: Querying the DOM
	This Isn't An Exhaustive Guide to the DOM API
	Working with Nodelists

	Modifying Classes and Attributes
	Adding CSS styles

	Modifying the DOM
	Element properties

	Listening to events
	Preventing default actions
	Event delegation

	Animation
	Writing your own helper methods
	Demo
	Conclusion

	A Beginner's Guide to Webpack 2 and Module Bundling
	by Mark Brown
	Setup
	Modules
	Loaders
	Sass
	CSS in JS
	Images
	Modules to Static Assets

	Plugins
	Common code
	Extracting CSS

	Code Splitting
	Webpack Dev Server
	Hot Module Replacement
	Hot Reloading CSS

	HTTP/2
	Over to You

	React vs Angular: An In-depth Comparison
	by Pavels Jelisejevs
	Where to Start?
	Maturity
	React
	Angular

	Features
	Angular
	React

	Languages, Paradigms, and Patterns.
	React
	JSX
	Flow
	Redux

	Angular
	TypeScript
	RxJS

	Ecosystem
	Angular
	Angular CLI
	Ionic 2
	Material design components
	Angular universal
	@ngrx/store

	React
	Create react app
	React Native
	Material UI
	Next.js
	MobX
	Storybook

	Adoption, Learning Curve and Development Experience
	React
	Angular

	Putting it Into Context
	One Framework to Rule Them All?

	Retrofit Your Website as a Progressive Web App
	by Craig Buckler
	What Are Progressive Web Apps?
	Progressive Web Apps are Progressive Enhancements
	It's Not Just Apps

	Demonstration Code
	Connect a Device

	Step 1: Enable HTTPS
	Step 2: Create a Web App Manifest
	Step 3: Create a Service Worker
	Install Event
	Activate Event
	Fetch Event

	Bonus Step 4: Create a Useful Offline Page
	Development Tools
	PWA Gotchas
	URL Hiding
	Cache Overload
	Cache Refreshing

	Useful Links

	10 Tips to Become a Better Node Developer
	by Azat Mardan
	Avoid Complexity
	Use Asynchronous Code
	Avoid Blocking require
	Know That require Is Cached
	Always Check for Errors
	Return Callbacks or Use if ... else
	Listen to the error Events
	Know Your npm
	Conclusion

	An Introduction to Functional JavaScript
	by M. David Green
	Imperative JavaScript
	Object-Oriented JavaScript
	Functional JavaScript
	Start Thinking Functionally

	An Introduction to Chart.js 2.0 — Six Simple Examples
	by Jack Rometty
	Why Chart.js?
	Installing Chart.js
	Line Chart
	Pro tip

	Bar Chart
	Radar Charts
	Polar Charts
	Pie & Doughnut Charts
	Configuring Chart.js
	Titles
	The doughnut hole
	Stacking bar charts

	Handling Events
	A Concrete Example
	Chart.js 2.0 vs 1.0
	Conclusion

	Learning JavaScript Test-Driven Development by Example
	by James Wright
	TDD in Node

	What is TDD?
	Benefits of Test-Driven Development
	Immediate test coverage
	Refactor with confidence
	Design by contract
	Avoid superfluous code
	No dependence upon integration

	Test-Driven Development With JavaScript
	Writing our first test case
	Error handling

	Refactoring Our Validator
	The createValidationQueries function
	The validateItem function

	Wrapping Up

