
Safety Area: All Text, Logos & Barcode should remain inside the Pink Dotted Lines

Bleed Area: All Backgrounds should extend to, but not past, the Blue Dotted Lines

LEAN
WEBSITES

BY BARBARA BERMES

BECAUSE WEB PERFORMANCE SIMPLY MATTERS

W
E

B
 P

E
R

FO
R

M
A

N
C

E
LE

A
N

 W
E

B
S

ITE
S

B
E

R
M

E
S

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9922794-6-2

EBOOK ISBN: 978-0-9941826-6-1

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95 CAD $45.95

As websites become much more complex and sophisticated,
they’re also getting heavier and slower. This book, Lean
Websites, will help you to understand what causes websites to
be slow, and how to maximize efficiency while maintaining the
quality and user experience originally envisioned for your site.

This is a practical book on website performance for web
developers, concentrating mainly on front-end performance
improvement. It covers plenty of solid theory, and is also packed
with useful, real world hints and tips that you can use on your
sites today.

You’ll learn:

•	 User experience, design and performance

•	 Measuring and monitoring performance

•	 Setting up a page weight budget

•	 Network and server improvements

•	 Optimizing images and video

•	 Optimizing scripts and third party content

•	 Lean DOM operations

And much more…

IF YOU WISH TO TRAVEL
FAR AND FAST, TRAVEL LIGHT

YOUR AUTHOR

BARBARA
BERMES
Barbara has been an ardent
performance advocate and web
technologist for many years, working
on a variety of web projects, most
recently for the Canadian
Broadcasting Corporation. As an
international speaker, a contributor to
jsmanners, and the organizer of the
Toronto Web Performance Meetup,
Barbara shares her passion and
knowledge of web performance with
the community.

LEAN WEBSITES
BY BARBARA BERMES

Lean Websites
by Barbara Bermes

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Ralph MasonProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Andrew Betts

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9922794-6-2 (print)

ISBN 978-0-9941826-6-1 (ebook)

Printed and bound in the United States of America

ii

About Barbara Bermes

Barbara has been an ardent performance advocate and web technologist for many years,

working on a variety of web projects, most recently for the Canadian Broadcasting Corporation.

As an international speaker, a contributor to jsmanners, and the organizer of the Toronto

Web Performance Meetup, Barbara shares her passion and knowledge of web performance

with the community.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

iii

http://www.sitepoint.com/

To you, who thinks she can't do

it — you absolutely can!

Please trust and follow your heart.

Table of Contents

Preface . xv

Who Should Read This Book . xvii

Conventions Used . xvii

Code Samples . xvii

Tips, Notes, and Warnings . xviii

Supplementary Materials . xix

Acknowledgements . xix

Want to take your learning further? . xx

Chapter 1 Performance Simply Matters 1

A Lean Website . 1

The Psychology of Speed . 2

What Is “Too Slow”, and When Do Websites “Feel” Slow? 2

Maister's First Law of Service . 3

Abandonment Rate: When Your Users Decide to Leave 5

Response Time . 6

Speed Matters: Everybody Cares, Even Google . 7

Cool Down . 8

Chapter 2 User Experience and
Performance . 9

Warm Up . 9

UX Principles . 10

Information Architecture and Wireframes . 10

Design for Performance . 11

Perceived and Preemptive Web Performance . 12

The Performance Point System . 13

Measurable Performance Modules . 14

Case Study: Time Magazine Website . 15

Cool Down . 21

Chapter 3 Measuring & Monitoring
Performance . 23

Warm Up . 23

Measuring Performance . 23

HTTP Archive: Tracking Performance Trends 23

Useful Performance Tools . 26

Dedicated Perceived Performance Metrics . 32

Anatomy of an HTTP Transaction . 34

Unpredictable Side Effects: Connection Speed, Bandwidth and

Latency . 39

Monitoring Performance . 41

Synthetic Measurements . 41

Real User Monitoring . 50

Comparing RUM and Synthetic . 54

Cool Down . 55

Chapter 4 Performance Boot Camp Setup 57

Warm Up . 57

Measure First, Then Optimize Towards a Goal . 58

Your Website's Waterfall . 58

Performance Monitoring: Set up Your Performance Dashboard 60

Create Your Private HTTP Archive . 60

Create Your Private RUM Tests . 64

Set Up Alerts . 72

viii

Set up a Performance Budget . 75

Competitive Comparison . 76

Create Business Hypotheses and Prove Them 78

List and Commit to Your Performance Metrics 79

Cool Down . 81

Chapter 5 Mastering Lean HTTP Requests 83

Warm Up . 83

Understanding How the Browser Works . 83

Critical Rendering Path . 87

Optimizing the Critical Rendering Path . 89

Reducing HTTP Requests . 95

(Smart) Concatenation . 95

Image Spriting . 99

Optimizing HTTP Requests . 103

Minifying . 103

Pre-browsing . 105

Cool Down . 109

Chapter 6 Producing Lean Web Assets: Part
1 . 111

Warm Up . 111

Optimizing HTML . 111

Keeping Things Tidy . 112

Further Tips on Optimizing HTML Files . 159

Optimizing CSS . 113

Lean CSS . 113

CSS Optimization Tools . 115

Optimizing JavaScript . 117

ix

Lean DOM Operations . 117

Third-party Scripts . 124

Types of Third-party Scripts . 125

Content Overload . 126

Preparing for the Worst: SPOF . 126

Tips for Working with Third-party Scripts . 133

Cool Down . 134

Chapter 7 Producing Lean Web Assets: Part
2 . 135

Warm Up . 135

Optimizing Images . 136

Compression and Image Formats . 137

Image Compression and Optimization Tools 140

Data URIs . 142

WebP . 145

Comparison of Image Formats . 146

Optimizing Video . 148

Video Creation and Content . 148

File Size: Frame Rate, Bit Rate, and Resolution 149

Containers, Codecs and Compression . 150

Delivery Method . 152

Video Hosting . 153

Web Fonts . 154

Hosting Fonts on Your Own Server . 155

External Font Hosting . 155

Web Font Loader . 158

Web Font Tips . 159

Cool Down . 159

x

Chapter 8 Automating Optimization
Tasks . 161

Warm Up . 161

Automation Tools . 161

PhantomJS in Collaboration with Other Tools 162

WPT API and PageSpeed Insights API . 165

Task Runners and Build Systems . 168

Grunt . 168

Grunt Alternatives . 173

Cool Down . 174

Chapter 9 Network and Server Performance
Improvements . 175

Warm Up . 175

Content Delivery Networks . 175

PageSpeed Insights for Your Web Server . 177

Canonicalize JavaScript Libraries . 177

Combine CSS . 179

Defer JavaScript . 180

Prioritize Critical CSS . 181

Keep-alive . 182

HTTP/2 . 183

Gzip Compression . 184

Caching . 187

Conditional Requests . 191

Caching in Practice . 194

Caching Tips . 197

Cool Down . 197

xi

Chapter 10 A Multi-device Web World 199

Warm Up . 199

One Web in a Multi-device World . 199

Mobile on the Rise: Current Stats and Internet Usage 200

Mobile Performance Challenges . 201

Speed . 201

Power Consumption and Data Plans . 204

Device Management . 205

WURFL . 206

Other DDRs . 207

Device Detection . 210

Take a Quick Inventory . 210

The Identifier: HTTP Header . 210

Server-side Options . 212

CDN Options . 213

Client-side Options . 214

Client Hints . 214

Disadvantages of User Agent Sniffing . 215

Device Testing . 215

Simulators . 216

Real Device Testing . 217

Cool Down . 217

Chapter 11 Mobile Optimization
Techniques . 219

Warm Up . 219

Mobile Performance Boosters . 219

Offline Storage . 219

Other Mobile-specific Optimization Tips . 221

xii

Content Presentation . 223

Dedicated Mobile Website, or mdot . 223

Responsive Websites . 226

RESS . 230

Comparison of Mobile Site Approaches . 233

Cool Down . 234

Chapter 12 Performance Cheat Sheet 237

Warm Up . 237

Shape a Performance Culture . 237

Team Culture Checklist . 238

Performance Is about Perception and Respect . 238

End User Checklist . 238

Wireframing for Performance . 239

Planning Checklist . 239

Measure First, Then Optimize (and Repeat) . 239

Measuring Checklist . 239

Determine Your Critical Rendering Path . 240

Critical Rendering Checklist . 240

Reduce Bytes . 241

Asset Checklist . 241

Reduce HTTP Requests . 242

Request Checklist . 242

Fight Latency . 243

Latency Checklist . 243

Make Friends with the Server . 244

Server Checklist . 244

Tame the Mobile Beast . 244

Mobile Tips . 244

Automate Your Performance Routines . 245

xiii

Automation Checklist . 245

Stay in Shape and Avoid the Yo-yo Effect . 245

Monitoring Checklist . 246

Cool Down . 246

xiv

Preface
We've grown into a very impatient society—a culture of “survival of the fastest”.

Waiting is not an option any more. Search engines like Google, Bing, and Yahoo

are competing to offer the fastest and best search results. Ecommerce sites like

Amazon, Target and Walmart are competing with innovative delivery methods like

same-day delivery drones1. And our everyday life is increasingly moving towards

an online life, where slowness is not acceptable. We expect to be able to do more

and more online, and to do it quickly—from ordering food to buying goods, or even

finding relationships. If a site feels slow, we'll probably complain to the site owner,

our friends and on social media, and possibly not visit the site again, but move on

to find alternatives.

Although Internet speeds have increased, websites are getting bigger and more

complex by the year, and so they inevitably need to be powered by more powerful

technologies to satisfy the impatient users of today. But why is the overall size of

websites increasing? Are we getting lazy and taking current, high-speed infrastruc-

tures for granted, no longer caring about clean, lean and performant code?

Technology allows us to “go bigger”, but maybe not necessarily be better when it

comes to performance. Servers and Internet connections are getting more sophistic-

ated, and as a result, we feel the need to keep filling them. However, this isn't the

time to become lazy. This is the time to utilize the amazing tools that are available

for making websites faster, and to learn how to improve user experience and satis-

faction. Because nobody likes to wait.

The charts in Figure 1 and Figure 2, sourced from HTTP Archive, show the size and

number of HTTP requests of websites, and how both measurements have increased

over recent years:

1 http://en.wikipedia.org/wiki/Delivery_drone

http://en.wikipedia.org/wiki/Delivery_drone

Figure 1. Increase in average website transfer size, 2011-2014

Figure 2. Increase in average number of HTTP requests per website, 2011-2014

From 2010 to 2014, the average total transfer size—basically the overall weight—of

a website increased by 150%, compared to the total number of requests (all the assets

xvi

of the website that need to be loaded), which only increased by around 16%. We

can clearly see a trend towards more complex web applications. Our code needs to

be performant to handle the rise of sophisticated applications. This book will show

you how to make your websites leaner and faster.

An Exercise Routine for Your Website

Throughout this book, you'll notice that I've used various references to exercise

routines, notably the “Warm Up” and “Cool Down” sections in each chapter. In-

deed, the title of this book, Lean Websites, also implies exercise. The primary

reasoning behind that idea is that you'll want to make your sites slimmer in order

to make them faster. However, additionally, by implementing the techniques

discussed in this book over and over, like an exercise routine, you'll develop a

web performance “muscle memory” that will become ingrained in your web de-

velopment routine—establishing habits that will make building efficient, perform-

ant websites seem like second nature.

Who Should Read This Book
This book assumes experience of web development, and familiarity with HTML,

CSS, and JavaScript. Some back-end experience would be useful.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

xvii

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2015/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

xviii

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/webperf1/

The book’s website, which contains links, updates, resources, and more.

https://github.com/spbooks/webperf1/

The downloadable code archive for this book.

http://community.sitepoint.com/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Acknowledgements
There are no words that can describe how thankful I am towards my family for

supporting my career, and never making me feel guilty for leaving them. Thank you

Papa, Anna, Kathy, Michael, my nephew Jan and nieces Antonia and Lisa, as well

as all the beautiful family members who are not with us any more

My biggest thanks and appreciation goes out to Daniela, who has given me so much

love. She was there when I was happy and ecstatic to be writing the book but also

when I was down and exhausted, not knowing if the book would turn out the way

xix

http://www.learnable.com/books/webperf1/
https://github.com/spbooks/webperf1/
http://community.sitepoint.com/

I (and the editors) wanted. Thank you for all the lost hours and weekends you had

to sacrifice. Your ability to lift me up, and provide supporting and constructive

feedback was invaluable.

Another big thanks goes out to Rebecca for always being available to proofread, and

to comment on my second language adventures. I want to thank my “patchwork

family” and life-long friend Alex for his great comments, love and support for

keeping me going. Their constant support and encouragement was invaluable.

Thanks to SitePoint's Simon Mackie, and the extremely knowledgeable and honest

Andrew Betts, for their constructive feedback, and for pushing me to form and shape

the book as it is now.

Big thanks to my little friend Emilia for helping me focus and learn what matters

in life. Babysitting her, and writing at the same time, was one of the nicest, most

calming and productive activities during this journey. Thanks for the kisses and

bedtime stories before my book writing night shifts began.

Thanks to all the great, smart and fun people in the web performance community

for their knowledge and supportive camaraderie.

While many early mornings and late evenings have been spent on this book, not

only the beautiful stars have always helped me continue but also my dear friends.

I'm nothing without my friends (you know who you are), so the closing thanks goes

out to them for letting me hide to write over several months, and for letting me be

my true self, every day. Thanks to all of you for brightening my life, and for giving

me a heart full of support, love, and laughter—every single day!

Thank you.

Want to take your learning further?
Thanks for choosing to buy a SitePoint book. Do you want to continue learning?

You can now gain unlimited access to courses and ALL SitePoint books at Learnable

for one low price. Enroll now and start learning today! Join Learnable and you’ll

stay ahead of the newest technology trends: http://www.learnable.com.

xx

http://www.learnable.com

Chapter1
Performance Simply Matters

A Lean Website
This book, Lean Websites, examines the causes behind bloated and slow websites,

dissects which assets of your page are necessary, which are nice to have, and which

are not necessary at all and can be removed to shed some weight. It will help you

understand what causes websites to be slow, and how to look for efficiency while

maintaining the quality originally envisioned for your site.

The title of the book includes the word lean. So what does the word mean?

“Lean” is used in this book to describe both the nature of the product we create and

the process of creating it. Keeping a product lean means removing anything that

might impede its performance. In the case of a website, this means keeping a clear

focus on elements that add value to the site, and ensuring that these elements are

optimized to provide the best possible user experience. Likewise, the more we

practice building healthy, lightweight websites, the leaner and more efficient the

process becomes—hopefully becoming part of our DNA when deploying sites.

But let's be clear up front: there's some bad news. From a performance perspective,

there's a lot you can do wrong—and probably are doing wrong—when it comes to

building websites! But hey, there's also good news: there are lots of relatively easy

ways to fix those problems.

“The secret of getting ahead is getting started,” as the saying goes. So let's get started!

The Psychology of Speed
Why do people leave a website? There could be many reasons, such difficulty

finding what they are looking for. But there's a good chance users leave a site because

it feels too slow to load. In this section, I want to draw some attention to psychology,

and how it plays a big role in our perception of speed and performance.

What Is “Too Slow”, and When Do Websites “Feel”
Slow?
As psychologist Jeremy Dean points out, time doesn't fly when we are having fun1.

When do we experience fun? Clearly, it's not when we have to wait. Who likes to

wait, especially in this world of constant news and response? Nowadays, people

desire instant satisfaction and have very little patience. Amazon offers one-day de-

livery; a cab shouldn't take longer than ten minutes to arrive. We've become a society

where waiting is not acceptable anymore—especially when it comes to the online

world. When we visit websites, if we don't get an instant response, a competitor's

site is just a click away.

A watched pot never boils. Minutes drag when we are bored.2

The problem with discussing website speed is that the perception of speed is very

subjective and very context specific. What feels slow to me might not feel slow, say,

to my father or my grandmother. We all have different expectations. For this reason,

Chapter 3 will help us to formulate a definition of “too slow” with real numbers

and data.

1 http://www.spring.org.uk/2011/06/10-ways-our-minds-warp-time.php
2 http://www.theguardian.com/science/2013/jan/01/psychology-time-perception-awareness-research

Lean Websites2

http://www.spring.org.uk/2011/06/10-ways-our-minds-warp-time.php
http://www.theguardian.com/science/2013/jan/01/psychology-time-perception-awareness-research

Maister's First Law of Service
David Maister, a former professor at the Harvard Business School, came up with a

formula for the law of service. The formula—the outcome of several years of re-

search—provides a measurement on how waiting for a specific service affects cus-

tomers' perceptions of both the service provided and the actual product.

Maister's formula states that Satisfaction = Perception - Expectation.3 In the context

of web performance and serving content to site visitors, this formula raises the fol-

lowing questions:

■ What was actually served and presented to the visitor, and did the content satisfy

the user's goal?

■ What was perceived by the visitor?

■ What did the visitor actually expect?

Satisfaction
Imagine a situation where you visit a page and a loading indicator slowly moves

from 5% to 10%. You'll expect it to take a while to hit 100%. If the percentage un-

expectedly begins to rise quickly to 95% and then 100%, you'll be satisfied and

happy, because your perception exceeded your expectation. Conversely, if the

loading indicator goes up slower than you expect, you'll experience an unpleasant

feeling.

In a nutshell, website visitors are satisfied when their perception exceeds their ex-

pectation, and dissatisfied when the opposite occurs.

Perception
We need to acknowledge that the perception of website speed is a feeling—something

that is very subjective.

For example, perception refers to how fast the user thinks your website is, rather

than how fast it actually is. Most of the time, that's almost more important than the

actual speed of your website.

3 http://faculty.haas.berkeley.edu/andy/blockhandouts/Queue%20Psychology.ppt

3Performance Simply Matters

http://faculty.haas.berkeley.edu/andy/blockhandouts/Queue%20Psychology.ppt

Generally, the perception of something being slow4 carries negative associations—un-

pleasantness, boredom, irritation, confusion and so on. Speed, on the other hand,

is associated with success, resulting in less frustration and irritation—especially

where the user is kept informed of progress.

Given that your website's loading time can be perceived as slow, it's important to

ensure that content is delivered as quickly as possible—or at least that, during any

delay, the user is kept busy and distracted, so that the experience doesn't feel slow

to them.

There's a great example5 that illustrates the problem of perception. The Houston

airport received a lot of complaints from passengers that it took too long to get their

luggage. Instead of making the hard working airport personnel work even faster to

get the luggage out, the airport decided to change the way passengers perceived the

waiting time to pick up their luggage. They extended the distance from the arrival

gate to the baggage claim sixfold. While the airport personnel were busy moving all

the luggage to the baggage claim, passengers were kept busy by walking. The time

for the bags to come out hadn't changed. However, as a result of perceived perform-

ance, complaints started dropping dramatically.

Expectations
In the context of performance, when servicing customers, it's important to manage

and care about their expectations. Disney has done a fabulous job in managing ex-

pectations so the customer receives a positive outcome in their amusement parks.

They have lineups that show you the expected waiting times, with a rather pessim-

istic estimate, so that customers get to the front of the line in a much shorter time

than predicted. As a result, the customer feels more positive.

So, how does this translate to servicing website visitors? We should set clear expect-

ations by keeping them informed about the progress of their task. Show them the

content they want to see in the fastest possible way; and, if waiting is required,

show progress bars or other indicators to reassure them the website is still respond-

ing, and that they'll receive the content that they requested.

4 http://www.slideshare.net/stoyan/psychology-of-performance
5 http://www.nytimes.com/2012/08/19/opinion/sunday/why-waiting-in-line-is-torture.html?page-

wanted=all&_r=0

Lean Websites4

http://www.slideshare.net/stoyan/psychology-of-performance
http://www.nytimes.com/2012/08/19/opinion/sunday/why-waiting-in-line-is-torture.html?pagewanted=all&_r=0

Respect

I'd like to mention “respect”, as I believe it's an important factor in customer sat-

isfaction. Ultimately, performance is about respect. Imagine you are made to stand

in line for 20 minutes, only to find the cashier closing just before it's your turn to

be served. Frustrating, right? Couldn't they have told you earlier? That's where

respect comes into play: the greater the respect shown for customers, the more

likely they are to experience satisfaction.

Abandonment Rate: When Your Users Decide to Leave
We've all abandoned a service before. Standing in an unmoving line will make us

impatient, until we give up and quit. We leave the queue and don't finish the task

we actually wanted to accomplish. We experience frustration and disappointment.

The same can happen with websites. If users consider your website helpful and

fast, they'll stay and finish their task. Otherwise, they'll leave your site without

completing their task. Therefore, the abandonment rate is probably the safest and

most honest judgement you can get from your users on how satisfied they are with

your service.

There are many statistics and case studies demonstrating that abandonment behavior

of users is due to poor performance. Ecommerce websites are hit the hardest. Stiff

competition forces site owners to pay close attention to speed and execution. If your

shopping cart doesn't load fast enough, your users might just move to a competitor's

site.

Here are some real-world statistics and numbers6 that prove how important speed

is in a world of invaluable instantness:

■ Amazon calculated that a page load slowdown of just one second could cost

them $1.6 billion in sales each year7

■ Almost 40% of online shoppers abandon a website that takes more than 3 seconds

to load (Gomez8)

6 http://www.webperformancetoday.com/2010/06/15/everything-you-wanted-to-know-about-web-per-

formance/
7 http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
8 http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf

5Performance Simply Matters

http://www.webperformancetoday.com/2010/06/15/everything-you-wanted-to-know-about-web-performance/
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf

■ 79% of online shoppers will not return to a website after a disappointing exper-

ience due to poor performance (KissMetrics9)

■ A 1-second delay in page load time equals 11% fewer page views, a 16% decrease

in customer satisfaction, and 7% loss in conversions (Aberdeen Group10)

Response Time
Perceived web performance involves how we, as humans, experience and respond

to the performance of a system.

The following graph shows how different response times of systems effect our brain,

and how our brain deals with them, resulting in different emotions:

Figure 1.1. Perceived performance in milliseconds, and how our brain reacts11

■ We feel instant perception around a 100ms delay

■ A slight perceptible delay occurs between 100ms and 300ms

■ We definitely feel a perceptible delay under 1000ms (1s)

■ After 1 second, we feel that a mental context switch starts

■ After 10 seconds and more, the abandon rate goes up and the user tends to leave

the site

9 https://blog.kissmetrics.com/loading-time/?wide=1
10 http://www.aberdeen.com/research/5136/ra-performance-web-application/content.aspx
11 Source: Web Performance Today

[http://www.webperformancetoday.com/2014/07/16/eight-tricks-improve-perceived-web-performance/]

and High Performance Browser Networking

[http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION]

Lean Websites6

https://blog.kissmetrics.com/loading-time/?wide=1
http://www.aberdeen.com/research/5136/ra-performance-web-application/content.aspx
http://www.webperformancetoday.com/2014/07/16/eight-tricks-improve-perceived-web-performance/
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#SPEED_PERFORMANCE_HUMAN_PERCEPTION

Mental Context Switch

A mental context switch happens when the user abandons the original purpose

of coming to the site. They most likely are no longer interested in finishing their

initial task.

While each user will have a different tolerance for delay, we can expect a scale of

perception for a typical user based on the data referenced above.

The research really outlines the need to avoid any kind of delay as much as possible.

Ilya Grigorik, a web performance advocate at Google, calls it the 1000ms “time to

glass” challenge12. In order to fully satisfy your user's expectation, you have around

1000ms for your content to travel from your server to the user's glass (screen).

If you want to achieve a fast experience for your users, you need to understand what

aspects could harm such a goal.

Speed Matters: Everybody Cares, Even
Google
Making users happy when your site is responsive and fast, and reducing operational

and server costs by serving fewer bytes over the wire, are not the only benefits of

focusing on performance. Google has made it official13 that their search ranking al-

gorithm takes page speed seriously, organising search results on that basis. This

goes back to a blog entry14 Google posted in 2010, stating that “users place a lot of

value in speed—that's why we've decided to take site speed into account in our

search rankings.”

This is especially important when you have to deal with a lot of competitor products

and websites. Being faster than your competitors definitely puts you ahead of the

curve when somebody is googling for a service that you offer.

The Alexa rank measures the popularity of a website against all the other websites

on the Web. Alexa's metrics are based on page views and visitors to those sites.

12 https://www.igvita.com/slides/2013/io-pagespeed.pdf
13 http://www.thinkwithgoogle.com/articles/the-google-gospel-of-speed-urs-hoelzle.html
14 http://googlewebmastercentral.blogspot.ca/2010/04/using-site-speed-in-web-search-ranking.html

7Performance Simply Matters

https://www.igvita.com/slides/2013/io-pagespeed.pdf
https://www.igvita.com/slides/2013/io-pagespeed.pdf
http://www.thinkwithgoogle.com/articles/the-google-gospel-of-speed-urs-hoelzle.html
http://googlewebmastercentral.blogspot.ca/2010/04/using-site-speed-in-web-search-ranking.html

Some research15 has recently been done on top-ranked pages and their speed, in-

vestigating whether or not the popularity of a website correlates with the Start

Render time. Start Render time will be discussed in more detail in Chapters 3 and

4, but for now, let's say it's a metric that records the time when the browser starts

to “paint” content on the screen. It's a helpful measurement in the context of per-

ceived performance. If users can “see” content, it makes them feel that the website

is ready to be browsed. However, the Start Render time only indicates that the page

content has started to load, so even if users can view content, they may not actually

be able to interact with it yet.

Cool Down
In this introductory chapter, we've looked at the relationship between psychology

and performance, the perception of speed, and what it means to be slow.

We've looked at why it's important to tackle web performance and how this can be

approached. The following chapters will present tools and techniques for improving

the perceived performance of your site, and ultimately for producing lean websites

in the future.

15 http://bigqueri.es/t/are-popular-websites-faster/162

Lean Websites8

http://bigqueri.es/t/are-popular-websites-faster/162

Chapter2
User Experience and Performance

Warm Up
In this chapter, you'll learn about the relationship between user experience and

performance. A website's user experience depends on several different factors:

design, accessibility, information architecture, usability, perception, and perform-

ance.

For the purposes of this book, we'll focus on information architecture, design, and

performance, which should all go hand in hand. Performance should be incorporated

at the early design stage, and not added as an afterthought. It starts with content

organization and architecture. The goal of performant information architecture is

to serve the content that your users are looking for, in the most convenient, easiest

and fastest possible way. Improving performance is an important factor in winning

satisfied customers.

We'll finish the chapter by discussing a practical technique for bridging the gap

between information architecture, design and performance, which I call the “per-

formance point system”. In order to demonstrate the idea behind the performance

point system, I'll apply it to a real-world website.

UX Principles
“User experience encompasses all aspects of the end-user's interac-

tion with the company, its services, and its products.” ― Jakob

Nielsen

There are several principles you can follow to achieve good user experience. First

of all, you want to make sure you know and understand the user's goal. You want

to ask yourself why users are coming to your website. For example, the user goals

of a shopping site such as Amazon, and of a public transit website, are very different.

Whereas Amazon tries to persuade users to hang out for hours on their site, while

making suggestions on similar products, a public transit website has another goal—to

provide users with the train schedule as soon as possible. Once the user has the

schedule information, they will most likely exit the site.

Now it's up to the UX team to make sure the site supports the goal. It's worth coming

up with hypothetical user journeys to measure their completion time. In the case

of Amazon, the UX team needs to figure out how to keep users on the site. Using

cookies and logins to retrieve information from previous visits, Amazon will want

to seduce users into staying on the page by pretending to know them—and, more

importantly, their interests. In the example of the public transit page, you could

measure how many steps it takes to find or download the schedule, or to display

the fares.

All UX user journeys should be created with performance in mind. The team should

lay out the journey so the user will perceive each step of their journey as easily and

fast as possible. That's where information architecture and wireframing come in.

Information Architecture and Wireframes
A big part of user experience is information architecture1 (IA), which defines the

structural design of shared information environments. It's the art and science of

organizing and labeling websites, intranets, online communities and software to

support usability and findability. IA can be illustrated in wireframes. A wireframe2

1 http://iainstitute.org/en/learn/resources/what_is_ia.php
2 http://en.wikipedia.org/wiki/Website_wireframe

Lean Websites10

http://iainstitute.org/en/learn/resources/what_is_ia.php
http://en.wikipedia.org/wiki/Website_wireframe

is a visual guide that represents the skeletal framework of a website. It's basically

your first step in outlining the website.

The goal of this part of the process is to plan out the user's journey and flow while

they explore the website. It's a very important piece in the process of developing

websites, and it sets the tone of the user's journey. Performance should be considered

as part of this journey. Instead of fixing performance issues later, make performance

part of the wireframing process. Making good performance choices during this step

can save you a lot of time later.

Design for Performance
After wireframing, the next step is the design process.

Web designers love to create beautiful and aesthetic web pages, and they have a

perfectly good reason for doing so. Thoughtful design can make a site welcoming,

enjoyable to use and memorable. Design is a big part of user experience, but what

about performance? Every single image or extra font you put on the page will affect

the performance of the site.

Our generation is impatient3, and even if a website is aesthetically appealing, the

user may leave if it's slow.

In her excellent book Designing for Performance4, Lara Hogan states, “It’s imperative

that designers weigh the balance between aesthetics and performance to improve

the end user experience.”

Don't get me wrong, I'm all for design and aesthetics, but they have to be reasonable,

and more importantly context sensitive. There's no need to show everybody the

high-resolution version of an image if it's not needed. Be context sensitive, consid-

erate, and respectful. Don't fill your page with unnecessary, heavy assets like images

just because you don't know what else to put there.

3 http://www.bostonglobe.com/lifestyle/style/2013/02/01/the-growing-culture-impatience-where-instant-

gratification-makes-crave-more-instant-gratification/q8tWDNGeJB2mm45fQxtTQP/story.html
4 http://shop.oreilly.com/product/0636920033578.do

11User Experience and Performance

http://www.bostonglobe.com/lifestyle/style/2013/02/01/the-growing-culture-impatience-where-instant-gratification-makes-crave-more-instant-gratification/q8tWDNGeJB2mm45fQxtTQP/story.html
http://shop.oreilly.com/product/0636920033578.do

Speed as a Design Feature

Instagram is one of the companies that really focuses on the symbiosis of design

and speed. Their motivation5 is to find solutions for how speed can be a design

feature.

Perceived and Preemptive Web Performance
Performance is part of user experience. Even if the actual performance of your site

might be less than ideal, there are ways to trick users into thinking the site has

better performance.

This involves perceived and preemptive web performance. While perceived per-

formance defines how your user perceives, or feels about, the loading of your

website, preemptive web performance deals with predicting what the user might

want to load next, dispatching it in advance to cut down on loading time later. As

we learned in Chapter 1, you don't want users to become bored while waiting for

web content to load. A website feels fast if the user is presented with a responsive

system and is kept informed of progress.

Following the “fake it till you make it” principle can help improve the perceived

speed of a site. Some tricks that can make website visitors believe a website is re-

sponsive and speedy include:

■ Offline caching: with many modern browsers now supporting this, it can be

used to provide an illusion of performance. It has helped Instagram6 create fast-

feeling user experiences. Instead of waiting for the server to respond to a photo

upload, the offline cache presents the photo the user just attempted to upload.

Afterwards, the photo is actually sent to the server. If you pay attention to the

loading spinner in your mobile browser, you can spot this trick yourself.

■ Presenting instant feedback and reporting progress: let the user know how far

along they are in their journey through your site.

■ Placing important functionality at the top of the page: by displaying important

content to users above the fold (ATF)—at the top of the page, so they don't have

5 https://speakerdeck.com/mikeyk/secrets-to-lightning-fast-mobile-design
6 http://www.fastcodesign.com/1669788/the-3-white-lies-behind-instagrams-lightning-speed

Lean Websites12

https://speakerdeck.com/mikeyk/secrets-to-lightning-fast-mobile-design
http://www.fastcodesign.com/1669788/the-3-white-lies-behind-instagrams-lightning-speed

to scroll—increases perceived performance. There's much more on ATF in

Chapter 5.

■ Avoiding too many steps: minimize the number of hoops users have to go through

to achieve their goal.

Preemptive strategies take this a step further, but require a lot more intelligence.

An example7 is Instagram's photo upload functionality. Before a user hits the upload

button, the image is uploaded in the background, purely on the assumption that

this is the user's eventual intention. But this approach is not always recommended.

If users don't have a good data plan on their mobile devices and want to save

bandwidth, for example, this could really annoy them if they didn't actually want

to upload the photo after all.

Implementing Preemptive Performance

Newer browsers have started to adopt the preemptive approach, supporting

techniques such as the prefetch and prerender attributes that make the browser

look ahead for resources that might be needed. Chapter 5 will discuss these attrib-

utes in more detail.

The Performance Point System
Now that we've learned some basic IA, design, and performance approaches, I'd

like to propose a practical technique to bridge IA and design with performance: the

performance point system. This might be a fun and easy way to get started, especially

when you work with a design team. The idea behind this point system is to give

the pre-development, non-technical members of the team a simple way to understand

what components of a website could be considered “heavy”, and which elements

promise better perceived performance.

It's about “divide and conquer”, the process of breaking down problems into sub-

problems of the same type, until the individual sub-problems become simple enough

to be solved directly.

7 http://java.dzone.com/articles/mobile-ux-refining-perceived

13User Experience and Performance

http://java.dzone.com/articles/mobile-ux-refining-perceived

We can break down the visual elements of the wireframe into measurable perform-

ance modules. We can then move them around and arrange them to accomplish not

only an intuitive information architecture, but also a positive user experience.

Each module gets a number assigned, which defines its performance impact. At the

end of the wireframing process, the numbers are summed to reveal a score. The

lower the number, the better the expected performance.

This approach suggests that you don't have to starve your website by following

performance patterns. A lean website in the context of this book does not refer to a

website that is lacking any information or interaction. It only means that the website

has been created with the concept of applying and following web performance

paradigms, which I'll explore in more detail in later chapters.

Measurable Performance Modules
A measurable performance module (MPM) describes a simplified and single per-

formance unit in a wireframe. Its main purpose is to help non-technical members

of the design and content team understand each module's performance impact to

the overall website.

This might not be the most scientific translation of perceived performance, but it's

useful for getting everybody on the same page during the early wireframing and

design stages of a project:

DescriptionPointsModule

Small images, mostly

static content and simple

1Low impact

graphics, interaction

elements like buttons and

text fields.

Medium-sized images and

simple scripts.

2Medium impact

Large images and

third-party scripts loading

6High impact

either heavy JavaScript or

Lean Websites14

DescriptionPointsModule

both JavaScript and

images (such as adverts).

Sit down with your design team, take a pencil, and start marking MPMs in the

wireframe. Based on the table above, try to identify what modules on the wireframe

represent low, medium or high performance impacts. This will be useful for the

designer who creates a design from these wireframes, but also for the developer

who must plan out the critical rendering path. (The critical rendering path—which

we'll discuss in much more detail in Chapter 5—describes the code and resources

required to render the initial view of a page.)

The end goal of this exercise is to have the entire team focused on getting the content

to load and display as efficiently as possible.

Let's try this out on a real-world website.

Case Study: Time Magazine Website
The following case study is used to show you how you can improve the wireframing

process by applying MPMs to the site.

Let's take a look at the Time Magazine website:

Figure 2.1. The Time Magazine website loading

We can see, in the “filmstrip” in Figure 2.5 above, that the main story image only

appears after around six seconds. There is no visible content prior to that. I've broken

this down further into simple wireframes to illustrate how the site, above the fold,

looks at various points in time as the site is being loaded.

Let's have a closer look at the current order:

15User Experience and Performance

Figure 2.2. After 3 seconds, we only see the menu and the magazine image

Figure 2.3. After 5.7 seconds, other important pieces are being loaded

Lean Websites16

Figure 2.4. After 7.5 seconds, most of the visible content above the fold has been loaded

There is room for improvement, especially if our goal is to show the top story element

as soon as possible.

Current Performant Order Based on MDMs
Let's see how we can apply the point and order system to the wireframe.

The wireframe shown in Figure 2.5 was sketched based on one of the most common

screen sizes8 of today: 1366x768px. If you know your visitors' most used screen

size, sketch it out based on that:

8 http://www.w3schools.com/browsers/browsers_display.asp

17User Experience and Performance

http://www.w3schools.com/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers_display.asp

Figure 2.5. The Time.com website sketched out in wireframe

Figure 2.6. Time.com wireframe, including MPMs with order of appearance

I plotted the MPMs onto the wireframe in the image above, indicated by the dotted

boxes. The number in each box describes the order in which each MPM appears on

the screen. For example, the menu box was loaded first.

Lean Websites18

Here's the above the fold count of each MPM, categorized as low impact, medium

impact, and high impact:

ScoreModuleCount

10Low impact10

4Medium impact2

12High impact2

26Total14

By checking the file sizes of each MPM, you can assess each MPM's impact. As

mentioned before, this is mainly intended to bring design and developers together

to quickly sketch out performance impacts of the different content modules. It lets

you easily determine elements that might be too heavy to present above the fold.

Suggested Performant Order based on MDMs
By making some adjustments to the site, we should be able to improve perceived

performance. Although Time.com uses progressive JPEGs for their main story image,

it seems that the image doesn't get the early attention it needs. Something in the

code seems to be blocking its rendering, so that a user only sees it after 5.7 seconds.

Even if the main news image is classified as a high impact module, I would argue

that, in this case, it is important to load this image as early as possible. So my pro-

posed performant wireframe for Time.com could look like Figure 2.7:

19User Experience and Performance

Figure 2.7. A performant wireframe for Time.com

Here is a new ATF count of MPMs, based on my changes:

ScoreModuleCount

12Low impact12

6Medium impact3

6High impact1

24Total16

I decreased the image height and width of the main story image, placing more context

next to the image by aligning the headline and description to the right. I also replaced

the stock data widget with a CTA button that the user has to press. Only when

pressed will the stock data be loaded, which will somewhat reduce the ATF load

time.

I also added some loading number priorities into the wireframe, so the developers

will know where to put their focus when planning out the critical rendering path

(which is a topic we'll discuss later).

If you're not sure which widgets and elements should be either removed or moved

down below the fold, verify if those widgets and elements are actually used by your

Lean Websites20

visitors. And if you decide that a heavy image (high impact MPM) should be placed

above the fold, make sure to balance the performance budget with other low and

medium impact modules.

A performant wireframe is not enough to make your website feel fast, but it's an

excellent start on your journey to a lean website.

Cool Down
In this chapter, we covered the following topics:

■ ways to take performance into consideration and plan it out, early on

■ how to “fake” a fast website

■ the importance of perceived performance

■ the idea of a performance point system and MDMs

One of the most important rules for performance is quantifying whether performance

is good or bad. While perceived performance is an important aspect of web perform-

ance, the actual performance of the site is important too—and that can only be de-

termined by measuring and monitoring. You can't improve something that you

haven't measured first. The next chapter will introduce you to several important

metrics, techniques and tools for measuring and monitoring site performance.

21User Experience and Performance

Chapter3
Measuring & Monitoring Performance

Warm Up
In the effort to improve something—be it a website or other product—it helps to be

able to measure progress. Without effective measurement, it's hard to determine if

something has improved or gotten worse. Fortunately, there are many tools at our

disposal for testing and monitoring your website's performance. That's the focus of

this chapter.

Measuring Performance
In this section, we'll look at several tools for measuring and monitoring web per-

formance.

HTTP Archive: Tracking Performance Trends
HTTP Archive1 is a free, online service that crawls the top 1 million Alexa websites

to collect data on how these websites are built. You can use it to explore trends

such as page sizes, load time, content delivery network (CDN) usage, distribution

1 http://httparchive.org

http://httparchive.org

of different content types (such as images, JavaScript and so on), and many other

stats2.

Here's an example of the interesting data the HTTP Archive presents:

■ Total transfer size and total requests: the overall website page size is consistently

growing. From 2012 to 2014, the page size went up by around 38%:

Increase over previous

year in %

Total transfer size3Year (August 1)

-11242012

2715322013

1618212014

HTTP Archive stats: Average Total Transfer Size and Total Requests from August

2012–14 for a single Top Alexa website

■ JavaScript transfer size: with all the trending JavaScript web applications, it's

no wonder that JavaScript transfer size increased by more than 100%, from

113Kb in 2011 to around 289Kb in 2014.

■ Image formats: the HTTP Archive can help you answer questions like “What's

the most common image type used?” As you can see, the answer is JPEG:

2 http://httparchive.org/interesting.php
3 http://httparchive.org/about.php#bytesTotal

Lean Websites24

http://httparchive.org/interesting.php
http://httparchive.org/interesting.php
http://httparchive.org/about.php#bytesTotal

Figure 3.1. Image requests by format

Data of this kind is useful for understanding how your site compares with current

standards.

The image below shows stats4 from Time.com. If you're a news corporation, you

might want to compare your site's stats with these. You can spot trends here. For

example, Time.com seems to have reduced image file sizes as well as requests,

which might indicate a trend in website optimization:

4 http://httparchive.org/viewsite.php?pageid=17936268*

25Measuring & Monitoring Performance

http://httparchive.org/viewsite.php?pageid=17936268*

Figure 3.2. HTTP Archive's data for Time.com

The HTTP Archive provides a great introduction to the world of performance

trends—answering many of the questions you or others in your company might

have. It can also help your team focus on a specific direction. For example, if you're

thinking of using a specific image format or following a particular trend, the HTTP

Archive can help to back up that decision.

Useful Performance Tools
There are many different tools available for measuring website performance, includ-

ing commercial products like New Relic5, Keynote6 or Neustar7. Before you shell

5 http://newrelic.com/application-monitoring
6 http://www.keynote.com/
7 http://www.neustar.biz/

Lean Websites26

http://newrelic.com/application-monitoring
http://www.keynote.com/
http://www.neustar.biz/

out money for a tool, though, it's worth trying open source tools such as your browser

and WebPagetest8. In this section, we'll look at what you can do with both of these.

Browser-based Developer Tools
The quickest and easiest way to measure the performance of your site is to start

with the developer tools of your preferred browser. Most browsers offer built-in

developer tools that you can use to check your site's code and monitor its perform-

ance. Hit Ctrl + Shift + I on Windows, and Cmd + Opt + I on Mac in your browser

to bring up the developer tools.

Figure 3.3 shows an example of the sitepoint.com website, opened in the Firefox

developer tool's Network tab.

Figure 3.3. sitepoint.com stats shown in Firefox developer tools

At the bottom right of the image, we can see the following information:

1. the browser had to send 59 HTTP requests to render the page

2. the total page size is 1,498.83 kilobytes

3. the page took 4.48 seconds to fully load in the browser

8 http://www.webpagetest.org

27Measuring & Monitoring Performance

http://www.webpagetest.org

Other browsers offer even more functionality. Google's Chrome development team

has been adding useful features to Chrome's developer tools. One of the additions

is the Timeline tab, providing you with the entire overview of where most time is

spent when loading a page (see Figure 3.4).

Figure 3.4. sitepoint.com stats viewed in Chrome's Timeline tab

Using this tool, you can select a range in time that you want to analyze. You can

further drill down into each part of the rendering process. You can find out when

most of the script execution is happening by looking at the yellow colored distribu-

tion.

The Audits tab lets you analyze the page while it loads, shown in Figure 3.5. The

tool also provides you with suggestions on how to improve the performance of the

page.

Lean Websites28

Figure 3.5. sitepoint.com analyzed in Chrome's Audits tab

Resource Waterfall
Optimizing performance is about knowing how and when to load assets and

avoiding any blocking of content: that's where the resource waterfall comes in

handy.

Most of the performance tools I've mentioned so far include a resource waterfall

(accessible via the Network tab in the developer tools of your browser). You got a

glimpse of the resource waterfall when we looked at the basic information about

sitepoint.com in Firefox's Network tab previously. So why is this view so important?

Each web page consists of HTTP transactions (requests and responses). Bundled

together, these make a website appear in your browser. They comprise the assets

and resources of your website. The easiest way to visually represent all these HTTP

requests is to plot them onto a so-called “waterfall”. The reason why the resources

are aligned in a waterfall is because the browser can't download all the resources

at once. The browser follows rules for downloading each component, either in

parallel or sequentially.

29Measuring & Monitoring Performance

The image below shows an example of a resource waterfall, taken from Chrome's

developer tools:

Figure 3.6. sitepoint.com's resource waterfall in Chrome's developer tools

WebPagetest
My favorite performance tool is WebPagetest9 (WPT), a free, online resource created

and maintained by Patrick Meenan. (WPT data forms the backbone of the HTTP

Archive, whose monthly runs analyze and process the WPT results of the top Alexa

websites.)

Below is a screenshot illustrating a WPT test. Type in the URL you want to test, and

you're presented with a performance analysis, including a detailed waterfall:

9 http://www.webpagetest.org/

Lean Websites30

http://www.webpagetest.org/

Figure 3.7. sitepoint.com stats in WPT

In addition to the data available in most browser developer tools (total requests,

total page size, and page load time), WPT provides several other important metrics:

1. Load Time The Load Time is measured as the time from the

start of the initial navigation until the beginning

of the window load event (onload).

2. First Byte The First Byte time is measured as the time from

the start of the initial navigation until the first

byte of the base page is received by the browser

(after following redirects).

3. Start Render The Start Render time is the first point in time

that content starts to appear in the browser. This

could even just be the background color, or the

31Measuring & Monitoring Performance

logo at the top corner of the page. The Start

Render time is also plotted in the waterfall as a

green line, which ideally should appear as early

as possible.

4. Document Complete (or Page

Load Time)

Document Complete (often also referred to as Page

Load Time) records when the initial page loading

process is complete. You can also capture this

moment via JavaScript's window.onload() event.

For heavy websites, page load can take significant

amount of time.

Images and content not pushed via JavaScript will

be fully loaded at this point in time, including

non-visible elements. However, if JavaScript is

being used to trigger the push of content (via Ajax

calls, for example), they may not be included. To

count these events, you should be looking at the

“Fully Loaded” figures.

5. Fully Loaded Fully Loaded time occurs when all assets of the

page have been loaded, including any activity that

is triggered by JavaScript after the main content

has loaded.

We'll look at more features of WPT later in this chapter and throughout the rest of

the book.

Dedicated Perceived Performance Metrics
Let's take a quick look at a few important perceived performance metrics that we'll

refer to frequently in this book.

Above Fold Time
The Above Fold Time (AFT) is an important metric that can be used to quantify the

perceived performance of a website.

AFT is a measure of the time required to fully render just the part of the page users

can initially see on their screen. The browser may still be loading assets further

Lean Websites32

down the page below the fold. AFT can provide a better indication of how the user

experiences performance than page load time (PLT). (In Chapter 4, we'll look at

some examples of how the PLT can misrepresent perceived performance.)

Speed Index
Speed Index was added to WebPagetest in 2012, and describes “the average time

at which visible parts of the page are displayed10”. The results are presented in

milliseconds. The smaller the number, the better the site's performance.

Speed Index data can be used for A/B testing or general competitor comparison.

Here are some examples:

Speed IndexWebsite

3524facebook.com

2604twitter.com

1342sitepoint.com

10784time.com

A/B Testing

A/B testing involves presenting different users with two different versions (A and

B) of your site. This process lets you compare the results between the two versions.

PageSpeed
Google's answer to Speed Index is the PageSpeed score. It goes from 0 to 100 points,

where a higher score is better. Google considers11 a score of 85 to be a page that is

performing well. The PageSpeed score can be obtained by running the PageSpeed

Insights12 tool on your page:

PageSpeedWebsite

99facebook.com

99twitter.com

10 https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
11 https://developers.google.com/speed/docs/insights/about
12 https://developers.google.com/speed/pagespeed/insights/

33Measuring & Monitoring Performance

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://developers.google.com/speed/docs/insights/about
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

PageSpeedWebsite

95sitepoint.com

82time.com

As you can see from the results of both performance tests above, PageSpeed and

Speed Index seem not to match up fully with their judging criteria. While Speed

Index focuses mostly on the ATF visibility and interactivity, Page Speed13 also

factors in the time it takes to load the page fully.

Anatomy of an HTTP Transaction
Let's have a closer look at how each asset of a page is loaded.

Each item in the resource waterfall represents a network transaction, also called an

HTTP transaction. An HTTP transaction describes the process of a client making a

single request for HTTP content. When we talk about HTTP content, we normally

refer to anything that can be received by the browser, in so-called content types.

Content types can be scripts, images, HTML, text, Flash, Excel or Word documents

etc.—basically anything that can be served to, and displayed by, the browser. Any

other content type that is not supported and can't be displayed will be offered as a

download. The various content types are color-coded in the waterfall, as we saw

previously.

In Figure 3.8 you can find a snippet of a WPT waterfall view for Time.com:

13 https://developers.google.com/speed/docs/insights/about

Lean Websites34

https://developers.google.com/speed/docs/insights/about

Figure 3.8. a WPT waterfall view for Time.com

Let's look at a particular asset in the waterfall: the Twitter widget.

Figure 3.9. A Twitter JavaScript file being loaded very early on in the process of loading the page

Overall, it took the browser 334ms to load this file. The transaction shown in this

waterfall consists of five different bars, each color-coded. The third one is the longest.

This bar shows the time that was spent for the SSL negotiation.

35Measuring & Monitoring Performance

So what does that all mean? Why did this event take the longest amount of time?

And what do the other bars represent? Let's take a closer look. The image below

breaks down this HTTP transaction:

Figure 3.10. A closer look at an HTTP transaction in the waterfall

Let's examine these from the left to right.

DNS Lookup DNS stands for Domain Name System. During the DNS

lookup, the browser attempts to look up the domain of

the asset it is trying to load. Each human-friendly URL

has a computer-friendly IP address. You can use both in

your browser. For example, www.sitepoint.com maps to

54.221.218.251.

There are many variables that can cause a delay14 during

this event.

Initial Connection The initial connection occurs when the client and server

perform a “handshake” to start communicating with each

other over Transmission Control Protocol (TCP). The

browser basically says “Hello, I want to request some stuff,

are you available?” and the server says “Yes, I'm here,

send away.”

So what could cause a delay for this event? Each party

needs to wait until the other party “has spoken”. The

14 https://www.igvita.com/posa/high-performance-networking-in-google-chrome/

Lean Websites36

https://www.igvita.com/posa/high-performance-networking-in-google-chrome/

server can't send anything until the browser has received

the “Yes, I'm here, send away.”

The travel time to communicate from sender to receiver

is governed by speed of light limitations: the further they

are apart from each other, the longer it will take to set up

the TCP connection.

SSL Negotiation Secure Socket Layer (SSL) enables secure communication.

It's a protocol for encrypting information over the Internet

(using https:// instead of http://). HTTPS in the scheme

instructs the browser to perform a secure handshake.

SSL or TLS?

SSL15 was developed by Netscape Communications

Corporation in 1994 to secure transactions over the

World Wide Web. You've probably seen SSL in

combination with TLS, sometimes even referred to

as SSL/TLS. TLS stands for Transport Layer Security.

SSL is the predecessor of TLS. The Internet Engineer-

ing Task Force standardized the SSL protocol, and

named it TLS.

The differences16 between TLS and SSL 3.0 are not

dramatic, but they are significant enough to prevent

interoperability between TLS 1.0 and SSL 3.0.

This event is about negotiation between two parties (the

browser and the server). Each SSL negotiation over HTTPS

requires a new TCP connection, including the process of

a secure key exchange17, making it more computationally

expensive. However, modern hardware18 has been able

to absorb this disadvantage. Also, once negotiation has

15 http://technet.microsoft.com/en-ca/library/cc784450.aspx
16 https://www.ietf.org/rfc/rfc2246.txt
17 http://publib.boulder.ibm.com/tividd/td/TRM/GC32-1323-00/en_US/HTML/admin231.htm
18 http://chimera.labs.oreilly.com/books/1230000000545/ch04.html#TLS_COMPUTATIONAL_COSTS

37Measuring & Monitoring Performance

http://technet.microsoft.com/en-ca/library/cc784450.aspx
https://www.ietf.org/rfc/rfc2246.txt
http://publib.boulder.ibm.com/tividd/td/TRM/GC32-1323-00/en_US/HTML/admin231.htm
http://chimera.labs.oreilly.com/books/1230000000545/ch04.html#TLS_COMPUTATIONAL_COSTS

been completed, the same connection can be used for any

request to the same origin.

Time to First Byte Time to First Byte (TTFB) occurs after the TCP handshake

has successfully been executed, and after the browser and

server have started talking to each other—when the first

byte is actually sent to the browser.

This metric also represents latency. The bigger the green

bar, the higher the latency. Depending on your location

and/or the device you're using, you will notice smaller

or bigger latency.

Latency

Latency is the time it takes for the content to be re-

quested by, and sent to, your browser. Latency can

vary. It is affected by the distance the data has to

travel and the medium that conducts it. You experi-

ence higher latency particularly on mobile net-

works19. Why? The radio of your device needs to find

the closest tower to establish a connection. If the

device is idle, it can take even longer.

TTFB comprises two factors: the actual physical distance

from the browser to the server, and the processing time

of the server. It can be summed up in the following for-

mula: TTFB = Round trip network latency + back-end

processing time.

Research20 that tested around 300 uncached websites

showed the largest web page load time component to be

TTFB, followed by DNS lookup, connection time, and

download time. Even for cached websites, TTFB was still

the biggest load time component, followed by connection

19 https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
20 http://www.websiteoptimization.com/speed/tweak/time-to-first-byte/

Lean Websites38

https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.websiteoptimization.com/speed/tweak/time-to-first-byte/

time, download time and DNS lookup. Hence it's worth

focusing on optimizing TTFB.

If the TTFB is slow, other metrics will suffer from this

delay, creating a chain reaction.

Content Download This event occurs when the asset you requested actually

starts to show up in your browser. You sometimes can

guess by looking at the length of the blue bar how big the

asset actually is. Images, for example, tend to have a bigger

blue bar. The bigger the blue bar, the larger the actual as-

set, and hence the more time it takes to be sent over the

wire.

Minimizing the file size of the asset is key to optimizing

the amount of time spent on Content Download. Chapters

6 and 7 will present ways to optimize content such as

images, JavaScript and HTML files.

Unpredictable Side Effects: Connection Speed,
Bandwidth and Latency
While we can influence the performance factors mentioned above, those we'll discus

in this section are mostly beyond our control, but are still important to keep in mind

when developing lean websites.

Bandwidth and Latency
It's important to consider your users' average bandwidth (connection speed)—which

varies a lot between regions—when developing your website. The greater your users'

bandwidth, the faster they're likely to retrieve your website.

Akamai's State of the Internet Report21 contains a lot of great information about

service providers, connection speeds by region, and mobile browser usage data:

Q1 2014 Average MbpsRegion

3.9Global

21 http://www.akamai.com/dl/akamai/akamai-soti-q114.pdf?WT.mc_id=soti_Q114

39Measuring & Monitoring Performance

http://www.akamai.com/dl/akamai/akamai-soti-q114.pdf?WT.mc_id=soti_Q114

Q1 2014 Average MbpsRegion

23.6South Korea

14.6Japan

13.3Hong King

12.7Switzerland

12.4Netherlands

12Latvia

11.6Sweden

11.2Czech

10.7Finland

10.7Ireland

However, while bandwidth will likely improve in years to come, the latency that

comes with it is not an easy problem to solve. Improving latency requires updates

and enhancements—such as shorter cables through the oceans.

Last Mile Latency
Last mile latency refers to the latency between your request and your Internet service

provider (ISP). Although you may think most of the latency comes from the travel

time between the cabling from continent A to B, it's actually on the way from your

browser to your ISP where most of the latency bottleneck resides. This latency de-

pends on the cabling from the end user's house to the provider, the technology being

deployed, and the time of the day. Picking a provider based on these criteria will

help to reduce latency for the end user. However, this is something you can't much

influence as a website owner.

traceroute is a command line tool for measuring latency (for example, between

you and your ISP). Here's an example:

traceroute to bbinto.me (23.229.170.160), 64 hops max, 52 byte
➥packets
1 7.11.164.201 (7.11.164.201) 22.272 ms 8.525 ms 8.197 ms
2 7.11.164.201 (7.11.164.201) 7.846 ms 11.971 ms 33.085 ms
3 209.148.243.105 (209.148.243.105) 24.445 ms 13.891 ms 11.978
➥ms // my ISP

Lean Websites40

...
13 be38.trmc0215-01.ars.mgmt.phx3.gdg (184.168.0.69) 100.097 ms
➥67.337 ms 74.092 ms

Line #3 shows the latency to my ISP, measured three times, ranging from around

12ms to 25ms. The first column describes the hops that the request has to “go

through” to get to bbinto.me. It took 13 hops to get to bbinto.me: line #13 describes

the GoDaddy server, the final destination.

Monitoring Performance
So far, we've looked at some of the tools for measuring site performance. In this

section, we'll focus on two techniques for monitoring site performance. The first,

known as “synthetic testing”, involves devising our own discrete tests. The second,

known as “real user monitoring”, involves studying actual end user behavior.

Synthetic Measurements
Synthetic testing is the most common and controllable measurement tool available

to developers. As opposed to real user monitoring, synthetic testing is done by you

and is in your control. You decide when and how to run a test on your website.

You can choose the specific conditions, such as the browser, network condition

and/or geographical location.

You can use the free tools we've already discussed to make conduct synthetic

tests—tools such as WebPagetest, PageSpeed Insights, or even your browser's de-

veloper tools.

WebPagetest
We briefly discussed WPT earlier in this chapter. Let's look at some of its other

features that enable us to perform synthetic tests on our sites.

Figure 3.11 shows an overview of its main functionality:

41Measuring & Monitoring Performance

Figure 3.11. Basic view of the WPT interface, waiting for your input

The input is split into two sections—the basic information, such as the URL to test,

and the advanced settings, such as defining how many times the test should run.

Let's first look at the basic settings:

■ Test Location: choose the geographical location you want to get performance

results for. This might be where most of your visitors come from, or even where

barely any of your visitors come from. You might also choose a location based

on complaints you've received—say from visitors in a country where the exper-

ience was poor.

■ Browser: you can choose from a wide selection of browsers, including several

mobile versions.

There are many different options you can choose under the Advanced Settings. For

example, Connection lets you define exactly what connection speed should be used

to test the URL, the Repeat View helps you review the site's performance with and

without caching. The Number of Tests to Run helps you find the average of all runs

combined. You can also record the test as a video, labeled as you like. If the site to

be tested needs authentication, you can use the Auth tab to fill in the required cre-

dentials.

Figure 3.12 shows the Advanced Settings:

Lean Websites42

Figure 3.12. WPT's Advanced Settings interface

Result Page

The WebPagetest result page provides a wealth of performance data—such as an

ATF filmstrip, an evaluation of how many bytes are coming from third-party scripts

as opposed to your own domain, and details of when the CPU time of the browser

hit its peak.

As an example, I typed in Time.com with the location of Dulles, VA with Firefox

on a cable connection as my test scenario. The following figure shows the corres-

ponding result:

43Measuring & Monitoring Performance

Figure 3.13. WPT result page for Time.com

Considering each of the numbered items in this screenshot in turn:

1. The grading area (top right) gives you a brief overview of how the site performs.

The more greens and A's there are, the better.

2. There are several views to check out: the Summary tab gives you a brief but suffi-

cient overview of the performance of the tested website.

3. The table has a breakdown of the most important metrics. We discussed most of

them earlier. The two rows contain data collected in the first run (or test)—assum-

ing the site has not been visited before (First View)—and the second test run

(Repeat View). The second run reveals whether or not the site is utilizing caching

(and if so, how it's doing so).

4. The rest of the result page includes waterfalls and screenshots illustrating the

path your website has taken to render itself. The waterfall is color coded to help

you understand where each asset spent most of its time loading.

5. There are some additional tools (not pictured) that you can utilize, such as ex-

porting the test results in HAR or CSV formats for further investigation.

Lean Websites44

What's HAR?

The official format of HTTP Archive files is called HAR. It's a JSON format that

provides an easy way of exchanging network waterfalls (see below), saving you

from having to share screenshots. HAR is a file format that can be exported and

imported into many other useful tools22.

WPT's Waterfall

In my opinion, WPT's waterfall is the best available tool for investigating performance

issues—providing much more information than those included in browser developer

tools.

Domain and Content Breakdown

The domain and content breakdown is very useful for evaluating the impact of third

party scripts, and identifies right away what type of content occupies most of your

bytes and requests.

Get Yourself In Line

If you run many tests on the public WebPagetest instance, and depending on the

time of the day, you will notice it can get really busy. Your test runs might end

up in the queue next to many other tests from other users. If you feel your tests

can't always wait, I would suggest you consider installing your own WPT in-

stance23. It definitely gives you more flexibility and freedom when running tests.

Otherwise, you'll need to wait in line, until your performance test is called by the

WPT engine. Another advantage of having your own instance is that you can test

websites before deployment.

Unique ID

Each WPT run has a unique ID that you can always reference back to and review

in the browser at a later point, such as

http://www.webpagetest.org/result/140721_5F_1KP/.

22 https://gist.github.com/igrigorik/3500508
23 https://sites.google.com/a/webpagetest.org/docs/private-instances

45Measuring & Monitoring Performance

https://gist.github.com/igrigorik/3500508
https://sites.google.com/a/webpagetest.org/docs/private-instances
https://sites.google.com/a/webpagetest.org/docs/private-instances
http://www.webpagetest.org/result/140721_5F_1KP/

I could write a whole book about WPT, but some smart people have already done

so24. Additionally, the WPT forum25 is a great place to share ideas and ask questions.

PageSpeed Insights
PageSpeed Insights (introduced earlier in this chapter) offers an interface for running

synthetic performance tests on a specific site. Following a test, you're presented

with a result page like the one pictured:

Figure 3.14. PageSpeed Insights data for time.com

PageSpeed Insights lacks some of the features of WPT, such as the advanced settings,

the selection of test locations, a very detailed waterfall view, and a unique ID for

each test. PageSpeed Insights only lets you type in the URL of the website. However,

it automatically includes the test results for mobile users (something a WPT user

24 http://shop.oreilly.com/product/0636920033592.do
25 http://www.webpagetest.org/forums/

Lean Websites46

http://shop.oreilly.com/product/0636920033592.do
http://shop.oreilly.com/product/0636920033592.do
http://www.webpagetest.org/forums/

needs to choose explicitly). PageSpeed Insights also focuses more on optimization

than WPT, offering helpful suggestions for optimizing your site.

Browser Extensions and Plugins
There are various browser plugins and extensions offering additional ways to test

your site's performance. Extensions like Firebug, YSlow, and PageSpeed Insights

allow you to analyze your website on the spot via the browser.

Here is a quick summary of some of the tools available and their functionality:

■ Firebug26 helps you to inspect, log, profile, analyze and debug the page you are

viewing in your browser. The Net tab is especially handy for analyzing perform-

ance, as it presents all HTTP requests in a very detailed waterfall view.

■ YSlow27 can be installed as an add-on to the Firebug extension, but can also be

added as a stand-alone plugin for most browsers. YSlow is the browser plugin

answer to PageSpeed Insights and WPT. YSlow analyzes your web page according

to Yahoo's rules for high performance websites28. It includes tools that not only

help you diagnose but also triage on the spot.

■ PageSpeed Insights29 is available as plugin for Chrome and Firefox, providing

suggestions on how to make your page faster. In addition, it rates the page based

on several rules30.

■ ShowSlow31 is an open-source website service as well as browser plugin that

helps you monitor performance patterns. It combines the results of major per-

formance tools including YSlow, Page Speed and WebPageTest.

Advanced Analytical and Programming Tools
In addition to the tools above, there are some advanced analytical and programming

tools you can use for synthetic measurement.

26 http://getfirebug.com/
27 https://developer.yahoo.com/yslow/
28 https://developer.yahoo.com/performance/rules.html
29 https://developers.google.com/speed/pagespeed/insights_extensions
30 https://developers.google.com/speed/docs/insights/rules
31 http://www.showslow.com/

47Measuring & Monitoring Performance

http://getfirebug.com/
https://developer.yahoo.com/yslow/
https://developer.yahoo.com/performance/rules.html
https://developers.google.com/speed/pagespeed/insights_extensions
https://developers.google.com/speed/docs/insights/rules
http://www.showslow.com/

The Power to Query = Big Query + HTTP Archive

The current HTTP Archive SQL dump is around 400Gb of raw data. You probably

don't want to download and import this into your database. How about using a tool

that already has all the data imported, ready for you to query against? The answer

is Big Query32. Big Query is a Google database tool that allows you to query big sets

of databases via the browser. You can easily load the HTTP Archive project into

your Big Query profile, and run any query you like against the HTTP Archive, while

enjoying a blazing fast Google infrastructure.

This tool is very handy if you want to ask questions that haven't been answered by

the HTTP Archive. For example, what are the most common third-party scripts?

Check out BigQueri.es33, a great community resource for finding answers to all sorts

of performance questions.

APIs

If you want to avoid manual monitoring and measuring, I'd suggest you take a look

at some APIs on offer. With APIs, you can easily create helpful tools and integration

checks. They can remove the need for manually opening the browser, going to

WebPagetest or Page Speed, manually typing in the URL of the site you want to test,

and so on. You can operate most of these tools via a command line interface (CLI).

PageSpeed Insights API In order to use the PageSpeed Insights API, you'll

need to acquire an API key34.

The key is required for each API call you make. For

example, you'd issue a cURL command like so:

curl GET "https://www.googleapis.com/page
➥speedonline/v1/runPagespeed?url=http://c
➥ode.google.com/speed/page-speed/&key={yo
➥urAPIKey}"

By default, the result comes back in JSON format:

32 https://cloud.google.com/bigquery/what-is-bigquery
33 http://bigqueri.es/
34 https://developers.google.com/speed/docs/insights/v1/getting_started

Lean Websites48

https://cloud.google.com/bigquery/what-is-bigquery
http://bigqueri.es/
https://developers.google.com/speed/docs/insights/v1/getting_started

{ "kind": "pagespeedonline#result",
➥"id": "http://time.com/",
➥"responseCode": 200,
...
➥"numberCssResources": 4 }

The JSON response35, which I've only shown a nip-

pet of above, returns detailed information, such as

the size of each content type, the number of assets

per content type and the number of hosts contacted.

Can you spot which content type returns the highest

number of ResponseBytes? javascriptResponse-

Bytes represents the highest number of uncom-

pressed response bytes for JavaScript resources on

the page, and returns 2535002 bytes, which is just

over 2.5Mb.

WebPagetest API WebPagetest offers an API as well. It's up to you

which of the services you prefer.

After retrieving your API key from WebPagetest, you

can send a request as follows:

curl http://www.webpagetest.org/runtest.ph
➥p?f=json&url=www.time.com&k=<API KEY>

As I specified the format to be JSON (f=json), a

successful response will come back like this:

{ "statusCode":200, "statusText":"Ok",
➥ "data":{ "testId":"140907_R9_DQP",
...
➥"jsonUrl":"http:\/\/www.webpagetest.org
➥\/jsonResult.php?test=140907_R9_DQP",
...

The jsonUrl value includes the path to the actual

JSON WPT result:

35 https://developers.google.com/speed/docs/insights/v1/reference

49Measuring & Monitoring Performance

https://developers.google.com/speed/docs/insights/v1/reference

{ "data" : { "average" : { "firstView" : {
➥"TTFB" : 366, "adult_site" : 0, "aft" :
➥0, "avgRun" : 1, "bytesIn" : 1772202,
➥"bytesInDoc" : 1760651,
➥... "score_minify" : 100, ... }}}}}

This is just a snapshot and not the complete JSON

response, but hopefully you get a sense of the valu-

able information stored in this response. As an ex-

ample, any score_* value could be used for perform-

ance validation (if below 50, raise a flag, and so on).

There's a rate limit attached to the API key. This is

another good reason to install your own WPT in-

stance, as there'll be no rate limit then.

Real User Monitoring
While synthetic testing focuses on one particular setup and doesn't show the “real”

experience of a user, real user monitoring (RUM) tells you what an actual user is

experiencing. It can't tell you how the user feels about the performance, but it will

give you a good sense of how long it took them to view your page.

RUM can help you collect a lot of information about your users that synthetic testing

can't, such as:

■ Cache: RUM helps to better understand how much of your content is being

cached by users.

■ Hardware: RUM can reveal detailed information about the user's CPU, GPU and

memory performance.

■ Browsers: RUM can identify what kind of browsers load different pages.

■ Connectivity: Internet connections can drop any moment (especially on mobile).

RUM can help figure out where connections are slower.

Load times can vary a lot, based on several outside factors that you can't influence

as a web developer. With RUM, you can get a better sense of what your actual users

Lean Websites50

are experiencing in this regard. My own RUM experiences have revealed surprising

data on how many people have lower or higher bandwidth than I originally expected.

So, how does RUM work? In order to perform real user monitoring, you need access

to the user's browser data. There are two main APIs that help us collect and evaluate

performance data coming right from our user's browser.

Navigation Timing
The Navigation Timing API, introduced by the W3C Web Performance Working

Group in 2012, allows developers to inquire about the page's performance via

JavaScript. It's a great way to understand the end-to-end latency that your user ex-

periences. The good news is that it's supported by most browsers.

The following graphic illustrates all the events that can be measured by JavaScript

through the PerformanceTiming interface:

Figure 3.15. W3C processing model for the Navigation Timing API36

All of the above commands can be accessed via JavaScript to retrieve timing inform-

ation for your page. Measuring the time of the events helps you assess the different

phases of loading a page.

36 http://www.w3.org/TR/navigation-timing/#processing-model

51Measuring & Monitoring Performance

http://www.w3.org/TR/navigation-timing/#processing-model

For example, imagine you want to retrieve the total page load time (PLT) via

JavaScript. The following example does exactly that:

var page = performance.timing,
 plt = page.loadEventStart - page.navigationStart,

console.log(plt); // 34986, PLT output for specific user in ms;

Navigation timing only covers data concerning the entire page. So using this API

might reveal that your page is slow, but what do you do then? To actually identify

and diagnose performance issues with it, you need to look closer at each individual

resource.

That's where the Resource Timing API comes in handy. It makes it possible to ex-

amine performance data for specific resources.

Resource Timing
The Resource Timing API is a bit newer and not as well supported as the Navigation

Timing API. With the Resource Timing API, you can dig deeper into understanding

the behaviour of individual resources. Imagine you put an image on your page but

you aren't sure how it performs in the real world. You want to know the TTFB data

for this image.

As an example, let's pick the sitepoint.com logo37:

var img = window.performance.getEntriesByName("http://www.sitepoint.
➥com/wp-content/themes/sitepoint/assets/svg/sitepoint.svg")[0];
var ttfb = parseInt(img.responseStart - img.startTime),
total = parseInt(img.responseEnd - img.startTime);
console.log(ttfb); // output 85 (in ms)
console.log(total); // output 98 (in ms)

// you could now log this somewhere in a database
//or send an image beacon to your server
logPerformanceData('main logo', ttfb, total);

The logging would reveal how this image performs to users who viewed the image.

37 http://www.sitepoint.com/wp-content/themes/sitepoint/assets/svg/sitepoint.svg

Lean Websites52

http://www.sitepoint.com/wp-content/themes/sitepoint/assets/svg/sitepoint.svg

The following table shows the current browser support for the mentioned APIs:

Resource Timing APINavigation Timing APIBrowser

✔✔Chrome

✔✔Opera

✔✔IE >8

✔Safari >7

✔iOS Safari >7

✔Firefox >30

✔✔Android >4.3

Browser support for Resource Timing API August 2014, source: caniuse.com

Free RUM Tools

Boomerang

Boomerang38 is an open source RUM tool that you are free to use under the GNU

license.

Boomerang is based on the Navigation and Resource Timing APIs, collecting all

information needed for assessing the performance and user experience of your site.

For example, it can do anything that I've mentioned about the timing APIs above.

You can examine such things as how long the DNS lookup took for a particular

user, or what issues arose for a particular user demographic.

You can process and funnel RUM data into a beacon parsed by a script from your

web server log files. This could then be put into a database or any other data storage.

In Chapter 4, I'll show you how to analyze RUM data via boomerang.

Google Analytics

Most performance measurements are recorded in median averages rather than mean.

Google Analytics39 (GA), however, is measured in mean. This approach might not

seem too well suited to your goal, as it could also include outliers that skew your

38 http://yahoo.github.io/boomerang/doc
39 http://www.google.com/analytics/

53Measuring & Monitoring Performance

http://yahoo.github.io/boomerang/doc
http://www.google.com/analytics/

results. In addition, Google's RUM sample rate is low, potentially not providing you

with accurate real measurements.

However, if you already use GA and don't want to pay for a RUM service, or don't

want to build your own RUM tracking tool, it's a great place to start.

Mean, Median or 95th Percentile?

Arithmetic Mean (average): take all values in your data set, and divide it by the

total number of data points you summed up. Outliers are included in the calcula-

tion and this could result in skewing your data by pulling you away from the

centre. Be aware that calculating outliers might change the entire meaning of your

numbers and could cause false interpretations.

Median: the most common measurement used in web performance. Line up each

value in a selected data set in ascending order, and the single value in the middle

of those values is your median. This approach gives you a more accurate repres-

entation of the load time of your website, seen by actual visitors.

95th percentile: In order to measure performance, some also use the high percent-

iles like 80th, 90th or 95th percentile40 instead of the median (50th percentile).

For example, if the 95th percentile of a response time is 1000ms, that means that

5% of the collected data points are slower than 1000ms and 95% are faster than

1000ms.

A/B Testing

For the purposes of RUM, you can use A/B testing to check if an enhancement you

made to your website actually ends up enhancing your users' experience of the site.

With some real data for both versions of the site, you can identify which is more

successful and act accordingly.

Comparing RUM and Synthetic
Now that you've learned about synthetic testing and RUM, you might wonder

whether one technique is better than the other. It really depends on the question

you want to answer.

40 http://blog.catchpoint.com/2010/09/02/web_performance_metrics_best/

Lean Websites54

http://blog.catchpoint.com/2010/09/02/web_performance_metrics_best/

RUMSynthetic

The user runs the testYou run the testWho?

Measures experience of

“actual user” (casts a

Measures the experience

of one selected

What?

wide net, gives peace ofconfiguration (more like

a lab environment) mind), and you get to

know your user better

Get concrete information

about users' latency,

Establishes a baseline

performance level

Why?

bandwidth, page load

time, etc.

Tools: Boomerang.js,

Google Analytics, and

commercial products

Tools: private/public

WebPagetest (API),

PageSpeed Insights (API),

and commercial products

How?

Having a combination of synthetic and real user data will help you cover your entire

measurement spectrum.

Several analogies have been made to compare the approaches of RUM and synthetic

measurement. One that I really like is the following: RUM is the floodlight and

synthetic is the flashlight41. With synthetic testing, the flashlight, you focus on one

specific thing. Anything outside of that, you won't see. The floodlight, corresponding

to RUM, reveals all kinds of different findings.

Cool Down
Let's review some of the takeaways from this chapter:

■ Measurement data is essential for tracking progress.

■ Don't always go by one unit only. Just because a website has a lot of images

doesn't mean it's slower than a page that has no images.

■ A waterfall is a great tool for identifying performance bottlenecks.

41 https://blogs.akamai.com/2012/12/situational-performance-measurement-with-a-splash-of-rum.html

55Measuring & Monitoring Performance

https://blogs.akamai.com/2012/12/situational-performance-measurement-with-a-splash-of-rum.html
https://blogs.akamai.com/2012/12/situational-performance-measurement-with-a-splash-of-rum.html

■ HTTP Archive and WebPagetest are important performance tools for measuring

website performance.

■ PageSpeed and Speed Index capture the overall performance of a page.

■ If you love to code and interact with APIs, it's worth incorporating your perform-

ance budget into your continuous deployment process. It will remove a lot of

manual work.

■ Synthetic testing and RUM are useful processes that work well together.

Congratulations, you've learned a lot in this chapter. We'll now proceed to put it

all into practice as we start our boot camp.

Lean Websites56

Chapter4
Performance Boot Camp Setup

Warm Up
So far in this book, we've identified the fundamental issues of web performance

and how to measure them. In this and the following chapters, we'll begin to take

steps to address these performance issues.

Our aim is to create lean websites, and for that we need to establish an exercise

routine, so to speak—a set of procedures to ensure that our sites are fast, responsive

and enjoyable for our users.

Just as we might sign up for an intensive boot camp course to make our bodies lean,

so let's get started on our web performance boot camp. To prepare ourselves, we'll

take the following steps:

■ set up a monitoring mechanism for recording the performance of our website in

order to understand what to optimize for

■ establish a performance budget as a goal to focus on.

Measure First, Then Optimize Towards a
Goal
Before setting any goals, you first need to audit the performance of your website.

Run your site through WebPagetest (WPT) if you haven't already done so. While

you have a wide range of performance tools at your disposal (as we saw in Chapter 3),

I'll mostly be using WPT and the browser's developer tools for the upcoming ex-

amples.

Your Website's Waterfall
After you run WPT or load the network panel in your browser's developer tools,

you'll have detailed access to the website's waterfall. The next step is to spot any

potential performance problems in the waterfall.

Let's pick an example waterfall and analyze its formation. Check out the waterfall

in Figure 4.1: it's an analysis of a sample page that I created and will be using

throughout the next few chapters. It includes several individual JavaScript and CSS

files, and some images of dogs:

Figure 4.1. Waterfall view for sample page1

1 http://bbinto.me/lean-websites/crp-grunt/without/magic.html

Lean Websites58

http://bbinto.me/lean-websites/crp-grunt/without/magic.html

Let's note three things about the waterfall results pictured above:

1. Line items 3,5,9 show big bodies of CSS assets. Loading too many different and

large CSS files after one another will delay the rendering of the page, and specific-

ally slow down the Start Render time.

2. Several image assets are being requested in line items 16–19, and they all consist

of relatively big bodies. It's best to aim for a “thin” waterfall, as this correlates to

small resources (or small file sizes). Each asset or request should load quickly,

that means the body of the asset should be small.

3. Numerous small JavaScript files are being requested in line items 22, 24, 26 and

27. The fewer requests you make, the smaller and “steeper” the waterfall will be.

A steep waterfall is a great indicator of a lean website, revealing proper sharing

and parallelizing of resources.

Resource Not Found

Figure 4.2. An asset was not found

Avoid red lines in your WPT waterfall, as shown in Figure 4.2. These indicate

that the resource could not be found. The cause for this could be that the asset is

not referenced properly in the markup (the wrong path is given, for example), or

the asset doesn't exist on the server. Please note that the WPT waterfall marks

“not found” assets as red, whereas many other waterfall visualizers—such as your

browser's Network tab—will not highlight them. Performance will suffer from a

“not found” asset in the waterfall, because the browser is wasting precious time

trying to locate the file while still having to parse the rest of the page.

Throughout the next few chapters, we'll discuss how to optimize and fix the issues

we've just discovered, whilst monitoring the improvement of the page's performance.

59Performance Boot Camp Setup

Performance Monitoring: Set up Your
Performance Dashboard
It's important that you frequently monitor your website's performance, as it can

easily be degraded by such things as third party scripts or bloated images. A per-

formance monitoring dashboard is handy for keeping track of your site's perform-

ance, and will provide you with peace of mind as well.

Here are tools and processes that I propose you could consider:

■ Set up a private instance of HTTP Archive to track trends, over time, for a defined

list of domains. This will help you measure current issues and also anticipate

improvements in the future. By auditing trends, you can specifically tackle newly

introduced performance issues that you wouldn't have noticed otherwise.

■ Calibrate your synthetic measurements with some real user results, by creating

a RUM solution to capture and understand your real users' settings. This can be

very helpful in finding out about specific latency bottlenecks, for example, or

bandwidth issues of your users.

■ Create alerts to notify you if your website goes above a certain threshold (such

as page load time, or server response time). You can rely on both free and com-

mercial products to help you with that.

Create Your Private HTTP Archive
The public HTTP Archive collects web trends of the Top Alexa websites2, and if

you're lucky, your website is one of them and is being captured. (If not, you can

add3 your website to the list.)

If your site isn't listed, however, or isn't (yet) accessible via the Internet, then it

won't be possible to monitor and track trends via the public HTTP Archive.

Thankfully, as noted earlier, HTTP Archive is an open-source project that can be

cloned for your own use. For example, if your company has many subdomains, in-

ternal websites, or different micro sites that you want to track, installing your own

2 http://httparchive.org/about.php#listofurls
3 http://httparchive.org/addsite.php

Lean Websites60

http://httparchive.org/about.php#listofurls
http://httparchive.org/addsite.php

HTTP Archive instance will be very beneficial. You could even add your competitors'

websites to compare their pages with yours. All of the data will be stored in a local

database, organized into several data tables of requests, pages, the list of URLs to

check, and more. Hence, you can run ad hoc SQL queries against the data to gather

all kinds of useful information.

In order to set up HTTP Archive, you need a web server with MySQL and PHP.

You'll also need to request an API key so that the HTTP Archive instance can execute

runs on the public WPT. (If you choose to run your own private instance of

WebPagetest instead—in order to skip waiting times when being in a queue to run

your test from the public instance—you don't have to use an API key.) If you need

step-by-step instructions on how to setup your own HTTP Archive data set and

database, please check out my blog post “Set up your own HTTP Archive to track

and query your site trends4”.

Once you have your private HTTP Archive database set up and filled with data,

you can then run queries based on it. In order to provide you with some “real” res-

ults, I decided to use the HTTP Archive instance from one of my previous projects.

Let's start with a couple of questions that can be answered via the captured data.

Please note that the following examples use SQL to query the database. If you aren't

familiar with SQL queries, check out some courses5 or tutorials6, and review some

of the HTTP Archive queries7 by Ilya Grigorik to get you started.

How Big Is the Biggest Image?
Run the following query to reveal the answer to this question:

SELECT req.url, req.respSize, req.mimeType, pages.url FROM requests
➥ as req
JOIN (SELECT url , pageid, rank FROM pages) as pages

4 http://www.bbinto.me/performance/setup-your-own-http-archive-to-track-and-query-your-site-trends/
5 https://www.coursera.org/course/db
6 https://www.udacity.com/course/viewer#!/c-cs253/l-48756013/m-48691560
7 https://gist.github.com/igrigorik/5801492

61Performance Boot Camp Setup

http://www.bbinto.me/performance/setup-your-own-http-archive-to-track-and-query-your-site-trends/
http://www.bbinto.me/performance/setup-your-own-http-archive-to-track-and-query-your-site-trends/
https://www.coursera.org/course/db
https://www.udacity.com/course/viewer#!/c-cs253/l-48756013/m-48691560
https://gist.github.com/igrigorik/5801492

ON pages.pageid = req.pageid
WHERE req.mimeType like 'image%'
ORDER by req.respSize DESC

Figure 4.3. Discovering the biggest image used

What Is the Slowest Page?
You can discover the slowest page by running the following query, shown in Fig-

ure 4.4:

Lean Websites62

SELECT url, renderStart
FROM pages
GROUP BY url
ORDER BY renderStart DESC

Figure 4.4. Analyzing render start times

What Pages Exceed 200 Requests Per Page?
Let's find pages that are making more than 200 requests, shown in Figure 4.5:

63Performance Boot Camp Setup

SELECT url, reqTotal
FROM pages WHERE reqTotal > 200
GROUP BY url
ORDER BY reqTotal DESC

Figure 4.5. Finding pages that exceed 200 requests

Going through the results table of this query will help you identify bottlenecks and

verify if the page really needs to fetch more than 200 assets.

Create Your Private RUM Tests
boomerang.js8 is an open-source tool that can help you track RUM data. The follow-

ing section will outline, in a few simple steps, how you can set up RUM for your

site.

8 http://yahoo.github.io/boomerang/doc/

Lean Websites64

http://yahoo.github.io/boomerang/doc/

Figure 4.6. How the Navigation Timing API is structured9

As a refresher, the Navigation Timing API provides access to different events

throughout the journey of a page being delivered to the user. There are the user's

connectivity events, the server events, as well as the events executed by the browser

(from left to right in Figure 4.6). For example, we can go ahead and measure the

server response time:

var page = performance.timing,
rt = page.responseEnd - page.responseStart,

console.log(rt); // server response time

In order to track any information about your users, JavaScript code needs to be in-

cluded in the page that is to be tested.

You can track your users' performance data by creating a beacon that will send the

RUM results back to your server. A beacon is a request made purely to send perform-

ance data back to your server. Until the W3C Beacon API10 is available, you'll need

to create a beacon yourself. The value is in the request itself, and the response is

actually not important; but to make initiating the request easier, it's normally con-

9 https://www.igvita.com/slides/2012/html5devconf/#8
10 http://www.w3.org/TR/beacon/

65Performance Boot Camp Setup

https://www.igvita.com/slides/2012/html5devconf/#8
http://www.w3.org/TR/beacon/

venient to request a tiny image (such as beacon.gif), including several parameters,

and be logged on your web server.

Let's try this out ourselves. I will show you how to track RUM data on my personal

website.

1. First, place the boomerang script into your page. Ideally, place it at the bottom,

to avoid obstructing any essential page assets.

The script below shows you how I use the beacon to send performance data. I

created a transparent 1x1px GIF, uploaded it to the web server, and set the

beacon_url path to its location:

<script src="http://bbinto.me/lean-websites/chapter-4/rum/
➥boomerang/boomerang.custom.min.js" type="text/javascript">
➥</script>
<script type="text/javascript">
 BOOMR.init({
 beacon_url: "http://bbinto.me/lean-websites/chapter-4/rum
➥/boomerang/images/beacon.gif"
 });
</script>

2. Once the script has been included, reload the page. In the browser's console,

you'll be able to see what kind of data boomerang has started to collect:

Lean Websites66

Figure 4.7. Checking out boomerang data in the console

3. A simple log parser can now scan through the logs to extract the data. Check out

the log file entry below as an example. beacon.gif lists the same boomerang

data that we saw in the console above:

99.231.246.80 - - [02/Dec/2014:05:47:38 -0700]
"GET /lean-websites/chapter-4/rum/boomerang/images/beacon.gif?
rt.start=navigation&
rt.tstart=1417524445852&
rt.bstart=1417524447232&
rt.end=1417524447752&
t_resp=816&

67Performance Boot Camp Setup

t_page=1084&
t_done=1900&
r=http%3A%2F%2Fwww.bbinto.me%2F&
r2=&
t_other=boomerang%7C1%2Cboomr_fb%7C1380%2Ct_domloaded%7C1423&
bw=764973&
bw_err=41596.59&
lat=86&
lat_err=0.92&
bw_time=1417524459&
v=0.9.1361953770&
u=http%3A%2F%2Fwww.bbinto.me%2F HTTP/1.1" 200 35
➥ "http://www.bbinto.me/" "Mozilla/5.0 (Macintosh; Intel Mac OS
➥ X 10_10_1)

From the data above, we can draw the following conclusions about my visit to

bbinto.me:

■ t_done: my perceived load time of the page was 1084ms

■ bw: my measured bandwidth was 764973 bytes per second (or 747KB/s)

■ lat: my measured HTTP latency was 86ms (or 0.08 seconds).

For more information about the remaining parameters, please check out the

boomerang page11.

4. Now that I have extracted the data from the log file, I can export the result to a

spreadsheet or into a database to query it, and use it to create charts for better il-

lustration. I decided to save it as a CSV spreadsheet that can be opened in Excel.

The screenshot below highlights the same set of data that was triggered as soon

as I refreshed the page in step 2.

5. I kept the beacon in place on the site for two days to gather real user data, and

by the end I had approximately 300 data points—real visits from real users that

I could analyze:

11 http://yahoo.github.io/boomerang/doc/howtos/howto-0.html

Lean Websites68

http://yahoo.github.io/boomerang/doc/howtos/howto-0.html

Figure 4.8. A snippet of RUM data collected from beacon, via log files, exported as CSV and stored in a spreadsheet

The screenshot shown in Figure 4.8 displays what I recorded: the exact time the

user accessed the page (Date), bandwidth (bw), latency (lat), page load time (t_done),

and the corresponding user agent (UA). Additionally, with the help of simple

spreadsheet functions, I determined the distribution of RUM load times, user latency

and bandwidth.

The following three metrics are useful in understanding your users’ experiences

when visiting your site:

■ Page load time: the following graph describes the distribution of load times in

milliseconds for bbinto.me, retrieved from all t_done data points. You can see

that most users experience a page load time between 3 and 5 seconds. The page

loads in under 5 seconds for half of the visitors. 95% of visitors experienced a

load time of below 19.1 seconds:

Figure 4.9. Page load time distribution

69Performance Boot Camp Setup

■ Latency: latency was recorded by collecting lat values from the beacon. Half of

the visits have to deal with a latency around 166ms. 95% of visitors had a latency

of under 370ms (95th percentile):

Figure 4.10. Latency distribution

■ Bandwidth: another interesting RUM experiment is to look at the bandwidth,

listed under bw. As shown in the example below, I aggregated all data points for

bw from the spreadsheet and filtered them based on specific ranges. The pie chart

below shows the most common Internet connections. Half of the visitors came

to my site with a connection between 512KB/s and 1.6MB/s:

Lean Websites70

Figure 4.11. Bandwidth distribution

Boomerang's Methodology

Page load time is computed by first recording the time of the onbeforeunload

event, which is then stored in a cookie. This is followed by recording the time of

the onload event and subtracting that from the stored time in the cookie. Sub-

sequently, latency and bandwidth are measured by downloading fixed size images

from a server and measuring the time it took to download them. You can refer to

more details of methodology12 on the boomerang website.

By looking at these results, you'll notice that I'm closer to understanding my actual,

real users. For example, knowing their average connection speed will help me decide

if my audience arrives at my site via high-speed connection or lower-speed connec-

12 http://yahoo.github.io/boomerang/doc/methodology.html

71Performance Boot Camp Setup

http://yahoo.github.io/boomerang/doc/methodology.html

tions. I can then cater for that specific scenario—perhaps by serving fewer or smaller

images, or avoiding specific assets altogether.

Help with Getting Boomerang Set Up

If you need additional help with setting up RUM, I suggest that you read up on

the boomerang how-to docs13 or use Captain Rum14, a simple script that I created.

Rather than creating your own beacon solution, you could use the Beacon API15,

introduced by the World Wide Web Consortium (W3C)—though it's currently in

working draft, and not supported by IE or Safari as yet. Its intent is to make it easier

for web developers to send analytics or diagnostic information back to the server.

RUM and High-traffic Sites

If your website receives a lot of traffic, you'll encounter a huge amount of beacon

data in your log files. Hence, parsing the log files and extracting the data can be

slow. Consider introducing some code to use a lower sample rate, or just enable

the code during specific times of the day.

Set Up Alerts
Monitoring your site with automated alerts—which notify you if something unwanted

happens to your website—is a useful technique for avoiding surprises. There are

several commercial products available, as well as free tools.

Here are some examples of basic alerts you can set up for your website:

■ Get notified if your website is not available to your visitors.

■ Get notified if any issues occur based on geographic or platform-specific events.

■ Get notified if performance measurements reach a specific threshold, such as

page load times exceeding 10 seconds, or server response times exceeding two

seconds.

13 http://www.lognormal.com/boomerang/doc/howtos/
14 https://github.com/bbinto/captain-rum
15 http://www.w3.org/TR/beacon/

Lean Websites72

http://www.lognormal.com/boomerang/doc/howtos/
https://github.com/bbinto/captain-rum
http://www.w3.org/TR/beacon/

Google Analytics
If you already use Google Analytics, you may as well leverage its free custom alerts.

While I mentioned that Analytics only uses sampled data, and relies on the average

measurements instead of the median to calculate performance metrics, it is still a

quick and easy alert tool. Go to Admin -> Custom Alerts to create your custom alert16,

as shown in Figure 4.12:

Figure 4.12. Setting an alert in Google Analytics

Pingdom
Though Pingdom is a commercial monitoring tool, it's also available in a free limited

version17. The free version might be enough if you only want RUM reporting and

alerts of website downtime. A great feature of Pingdom is that it allows you to choose

between “average” or “median” measurement.

The following Figure 4.13 screenshot shows how to set up alerts to notify you when

your website is down:

16 https://www.igvita.com/2012/11/30/web-performance-anomaly-detection-with-google-analytics/
17 https://www.pingdom.com/free/

73Performance Boot Camp Setup

https://www.igvita.com/2012/11/30/web-performance-anomaly-detection-with-google-analytics/
https://www.pingdom.com/free/
https://www.pingdom.com/free/

Figure 4.13. Setting a downtime alert in Pingdom

CopperEgg
CopperEgg18 is one of many commercial tools that provides flexibility in setting up

alerts, RUM, and other measurements. The Figure 4.14 screenshot below shows an

example of how granular you can get when setting up alerts for specific performance

metrics. It's a handy suite of monitoring tools that will give you peace of mind.

18 http://copperegg.com/

Lean Websites74

http://copperegg.com/

Figure 4.14. Setting an alert in CopperEgg

Set up a Performance Budget
By setting a performance budget, you can ensure that a defined baseline in values

for various performance metrics should not be exceeded. For example, this could

mean setting target values for page size or the amount of HTTP requests used on a

page.

Finding a budget that is realistic, measurable, and achievable is a great start for a

leaner website. It provides goals that the whole team can focus on, and will help

you answer questions like “What are we trying to improve?” and “What will the

measurement for success be?”

But where to start? How do you set up a budget for your website?

Here are some pointers to help you set a budget and stick to it:

■ Assess the standards of your competitors: your competitors' metrics can help

you establish a performance baseline.

■ Create performance hypotheses to strengthen business metrics: come up with

assumptions on how to make your website more successful by making it faster.

75Performance Boot Camp Setup

■ List and commit to your performance budget: in order to stick to your budget,

you need to publish it, and commit to your performance metrics and thresholds.

Let's take a look at each of these in more detail.

Competitive Comparison
“The wise learn many things from their enemies.” — Aristophanes

Once you have your current site performance data, it can sometimes be difficult to

determine which results should be improved. One idea is to compare your perform-

ance results with those of your competitors.

WPT is a great resource for running competitive analysis. Click the Visual Comparison

tab when you first land on the WPT website. It lets you add several different websites

for comparison. Comparing your site with a competitor's can give you a useful and

tangible baseline for your website's performance.

For example, let's assume you have a clothing retail website. You'd probably want

to make sure that users could browse your landing page faster than a competing

clothing retail site. That's where you can apply the WPT “Visual Comparison” tool.

For now, let's call your site Website A, and the competitor's site Website B.

1. Go to WPT and click the Visual Comparison tab. Type in your website and your

competitor's website to retrieve the comparative performance data and filmstrips,

as shown in Figure 4.15.

Figure 4.15. Starting a visual comparison on WPT

Lean Websites76

2. Once the comparison test is completed, you'll be presented with filmstrips of

Websites A and B, as shown in Figure 4.16. The first visible content is delivered

immediately by Website B, whereas Website A is only starting to show useful

content above the fold after 6 seconds.

Figure 4.16. WPT filmstrips comparing two clothing store websites

3. Here are some additional measurements:

Website B20Website A19Competitive

Performance

Comparison

44836197SpeedIndex

1,915KB4,761KBBytes (Fully Loaded)

5.700s9.300sVisually Complete

There's definitely room for improvement for website A, as it's clearly not performing

as well as website B. Each category above shows huge differences between the two.

Website A comes out with more than double the total page size of Website B.

Try this out yourself: consider who is your biggest competitor, what website is

similar to yours, or what website do you admire when it comes to speed. Measure

against it, and set your budget.

20 http://www.webpagetest.org/result/141211_NV_NN5/1/details/
19 http://www.webpagetest.org/result/141211_NJ_NN6/3/details/

77Performance Boot Camp Setup

http://www.webpagetest.org/result/141211_NV_NN5/1/details/
http://www.webpagetest.org/result/141211_NJ_NN6/3/details/

Alternative to WPT

Besides using WPT's visual comparison, you can also use SpeedCurve21, a visually

pleasing, cloud-based tool that lets you benchmark sites against competitors and

industry categories.

Create Business Hypotheses and Prove Them
Spend some time understanding how site speed could dictate your business metrics

and vice versa. If you need buy-in from management to speed up your site, the best

way to do so is by aligning your performance goals with real business data. Can

negative performance results directly correlate with bad business performance?

It's important to figure out if there's a correlation between these two phenomena.

You might require the help of a product manager, or a marketing/sales team to in-

vestigate user behaviours on the site. Ask them for data that will provide you with

the biggest “pain” points for your current website. Look for clues suggesting that

performance is your conversion bottleneck.

The goal is to come up with hypotheses related to performance that can be validated

with concrete data and then be improved upon.

Let's talk through a simple example. Imagine you maintain an ecommerce website

selling furniture, and you've conducted performance analyses of your competitors

and defined your #1 competitor. You want to make sure people will purchase fur-

niture through your website instead of your competitor's. Now, let's create some

hypotheses and goals. A good start is to compare what elements are loaded first on

your website vs. the competitor's website. For example, check if your “call to action”

(CTA)22 buttons load faster than those on the competitor's site. Or compare what

content is visible above the fold.

Here are some sample observations that might help in forming hypotheses for a

furniture ecommerce website:

21 http://speedcurve.com
22 CTA buttons could be “Buy”, “Shop” and so on, depending on what you want your visitor to achieve

with their visit.

Lean Websites78

http://speedcurve.com

HypothesisObservation

By ensuring that the special discount

button is more prominent and loads as

“Winter sales were very low this year,

and nobody clicked on our special

discount button” quickly as possible, we'll increase sales

and market share (to compete with the

competitor)

By removing or optimizing an

asset—such as a heavy hero

“Fewer visitors to the site than two

months ago”

image—we'll increase our visitor

numbers

By improving the page load time of the

checkout process, the drop off rate will

reduce

“Visitors drop off during the checkout

process”

Based on these observations, the table above shows how you can put on your per-

formance hat, make assumptions, and then come up with specific budget goals.

You could further use A/B testing, as described in Chapter 3, to test out different

options in order to collect data that shows what changes will have the biggest impact.

The hypotheses above are valid assumptions, and have worked for retail and

shopping sites in the past. For example, boosting AutoAnything.com23's page load

time improved sales by 13%. Another real-world example24 comes from Mozilla:

cutting their page load time by 2 seconds resulted in a 15.4% increase in downloads.

The sooner you get your content to users, the sooner they can interact with it, and

the more you benefit.

Can you think of potential performance bottlenecks for your website that could

negatively influence the business?

List and Commit to Your Performance Metrics
Once you've gathered enough baseline data and created a competitive performance

analysis, it's time to turn them into official goals, and commit to them.

23 http://www.radware.com/PleaseRegister.aspx?returnUrl=6442452828
24 https://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/

79Performance Boot Camp Setup

http://www.radware.com/PleaseRegister.aspx?returnUrl=6442452828
https://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/

1. List your current performance data. I'll continue to use the sample page I intro-

duced at the beginning of the chapter as an example. The following data was

taken from the WPT results25 for the page:

ResultsWPT Metrics

2.58sFully Loaded

2222SpeedIndex

692KBBytes (Fully Loaded)

2. Prioritize results that could be improved. I propose starting with the most obvious

results—the low-hanging fruit. For example, you could tackle the “Fully Loaded”

result first, aiming to reduce it to under 2 seconds—nearly a 30% decrease in

page load time.

Be ambitious, but also stay realistic, making sure these goals are achievable.

There's always room for further improvement. Start with your first goal of 2

seconds, then measure performance and business data again to assess the effect-

iveness your approach.

Budget GoalWPT ResultsMetricPriority

=< 2s2.58sFully Loaded1

will automatically

improve after goal

#1 is achieved

692KBBytes (Fully

Loaded)

3

will automatically

improve after goal

#1 is achieved

2222SpeedIndex2

In addition, if you gather RUM data for your website, as I did it for bbinto.me

earlier, you can also specify a target for the RUM page load time, to ensure that

your real users “really” benefit from the changes. bbinto.me showed a median

of 4.6s for RUM PLT. For this example, we could aim for 3 seconds.

25 http://www.webpagetest.org/result/150123_B7_2RD/

Lean Websites80

http://www.webpagetest.org/result/150123_B7_2RD/

3. Commit to your goals. Don't just talk about them; circulate and publish them

amongst the team so everybody is reminded—even print them out and hang them

up somewhere if that helps. Etsy does a great job in publicly exposing the per-

formance of their website. They publish their performance results26 quarterly.

It's their way of committing to performance, and it's a great idea.

What Speed Index and PageSpeed Score Should You Aim For?

■ Aim for a low Speed Index. As Paul Irish defines it, a site with a Speed Index

under 10000 is considered fast27.

■ Aim for a high PageSpeed value. Google considers websites scored with 85 to

be performing well28.

In the following chapters, I'll show you how to turn these goals into actual results

and success.

Cool Down
■ You've learned how to spot performance problems in a waterfall: aim for short

and steep waterfalls.

■ You've learned how to setup your own performance dashboard, starting with a

private HTTP Archive instance, and collecting RUM data to understand your

users' bandwidth, load times, and more importantly latency. In addition, you've

been introduced to monitoring products and alert systems to help you combat

performance.

■ You've learned how to set realistic performance goals based on the RUM meas-

urements of your site, WPT results, as well as competitive comparison analysis.

■ Overall, you've been guided to spot performance problems for your own website.

Now let's fix them!

26 https://codeascraft.com/2014/08/01/q2-2014-site-performance-report/
27 http://timkadlec.com/2014/01/fast-enough/#comment-1200946500
28 https://developers.google.com/speed/docs/insights/about

81Performance Boot Camp Setup

https://codeascraft.com/2014/08/01/q2-2014-site-performance-report/
http://timkadlec.com/2014/01/fast-enough/#comment-1200946500
https://developers.google.com/speed/docs/insights/about
https://developers.google.com/speed/docs/insights/about

Chapter5
Mastering Lean HTTP Requests

Warm Up
We've learned that latency is one of the biggest bottlenecks when it comes to web

performance. The best way to reduce latency is to cut down the amount of HTTP

requests the browser has to make, and to minimize the size of each individual asset

being requested. In order to understand how to master lean HTTP requests, I will

first explain how the browser processes them. After helping you grasp how the

browser works, I'll discuss several ways to scale down and optimize HTTP requests,

such as image spriting, concatenation, and minification.

Understanding How the Browser Works
By understanding how the browser renders your content, you'll gain a lot of insight

into how to structure and order your page elements. The browser has the task of

loading assets, called HTTP requests. As we've seen from dissecting an HTTP

transaction, each asset has several metrics attached to it to help measure its perform-

ance.

The following process diagram shows what steps the browser goes through to render

a page and its assets. Rendering—the process of displaying the requested content

in the browser window—is the primary function of a browser:

Figure 5.1. How the browser renders

The Rendering Rule

Any ambiguity that the browser encounters when rendering a page will block

rendering until it's resolved. Make sure to provide your browser with clean markup

and instructions on how to render your page.

Let's go through the diagram shown in Figure 5.1:

HTML HTML parsing is a crucial piece in the rendering

puzzle and leads to the construction of the document

object model. Parsing happens incrementally, so that

the browser can discover required and upcoming re-

quests while sending the necessary responses.

Document Object Model The browser parses the HTML document to construct

a document object model (DOM)—a tree structure that

describes the elements on the page.

CSS The CSS is render blocking, which means that the

browser needs to load all CSS files referenced in the

HTML markup prior to rendering the content. Without

styling, a page can be impractical and sometimes even

unusable. An effect called the “flash of unstyled

content” (FOUC) could happen if your CSS is loaded

too far towards the bottom of the page.

Lean Websites84

CSS Object Model In addition to parsing the HTML, the browser also

has to process the style sheets (the CSS) in order to

understand how the elements in the DOM should be

displayed. We refer to this as the CSS Object Model

(CSSOM). Both the DOM and the CSSOM together

allow the browser to paint the page.

JavaScript JavaScript adds the power to manipulate and interact

with the DOM, causing the render tree to change. If

that happens, rendering is blocked until the browser

has parsed and executed the script. JavaScript can be

loaded synchronously, blocking the DOM, or asyn-

chronously, which will not interrupt document pars-

ing. JavaScript won't run until the CSSOM is fully

loaded.

Different browsers run on different JavaScript engines.

Depending on your users' browsers, they might exper-

ience the performance of your website differently,

especially if it's a heavy JavaScript web application.

Render Tree The render tree combines the content and style in-

formation of the entire visible content on the screen.

It is the event where the DOM and CSSOM come to-

gether.

Not all nodes from the DOM will end up in the render

tree. For example, scripts and meta tags are non-vis-

ible elements and won't be seen by the user.

In addition, the visibility: hidden style declaration

won't insert its child(ren) into the render tree, but it

will be rendered and displayed as an empty box.

Elements (nodes) using the display:none style declar-

ation, however, won't be added to the render tree.

Layout While the render tree gets us closer to actually seeing

content on the screen, there is still something import-

ant missing: this process doesn't define the position

85Mastering Lean HTTP Requests

or size of each node on the page. That is what the

layout step takes care of.

Paint The final step is to paint the pixels. The style sheets

define how expensive the paint process will be. If you

have complicated styles, such as drop shadows or

CSS animations, this could add complexity to your

render tree, resulting in a slower load time. The paint

step will reveal if your website, when scrolled, is jank-

free or not. Repainting is expensive for the graphics

processing unit (GPU) and can cause your page to feel

clunky when scrolling.

Jank

Jank refers to anything that feels clunky or

delayed when scrolling through a page. It's basic-

ally the opposite of smooth scrolling. For ex-

ample, jank effects can occur when JavaScript

tries to repaint a lot of content during an on-

scroll handler.

JavaScript Engines

Some popular engines are Nitro, SpiderMonkey, V8 and Chakra:

BrowserEngine

SafariNitro (JavaScriptCore)

FirefoxSpiderMonkey

Google ChromeV8

Internet ExplorerChakra

Douglas Crockford, the “father of JavaScript”, built a representative performance

benchmark tool to compare JavaScript engines:

Lean Websites86

Figure 5.2. Performance comparison of different JavaScript engines (by Douglas Crockford)1

Critical Rendering Path
By going through the page rendering process above, we have actually traversed

through what's known as the critical rendering path (CRP). The CRP describes the

code and resources that are required to render the initial view of a page—or the

visible, above the fold part.

Let’s traverse through the CRP with a basic example:

1. <html>
2. <head>
3. <link rel="stylesheet" href="style.css">
4. </head>
5. <body>
6. <div>Hello Friends!</div>
7.
8. <script src="load_map.js"></script>
9. </body>
10. </html>

There are several steps that happen to render this page:

1 http://javascript.crockford.com/performance.html

87Mastering Lean HTTP Requests

http://javascript.crockford.com/performance.html

1. The browser begins to construct the DOM after it receives the HTML. That’s also

when the browser discovers the link tag and sends the request to retrieve the

CSS.

2. The CSSOM can only be built when CSS has arrived, which is why the CSS is

render blocking. The DOM building can’t be finished yet, because JavaScript has

not been parsed.

3. Once the CSS arrives, the browser can build the CSSOM, which then unblocks

the JavaScript.

4. Now the JavaScript can load, which unblocks the DOM to finish. The browser

will merge DOM and CSSOM into the Render Tree.

5. Finally, the browser can complete the Layout and Paint steps.

Figure 5.3 illustrates what's happening as the browser completes these steps:

Lean Websites88

Figure 5.3. The critical rendering path

Optimizing the Critical Rendering Path
We've just discussed how the browser works, what the CRP is, and what each step

of the rendering process entails. Now let's apply this knowledge by identifying op-

portunities to optimize the CRP. Understanding how the browser constructs the

CRP puts you at a huge advantage when planning how and what to load on your

page. Anything that is not absolutely essential for serving the initial view of a page

should not be on the CRP.

The goal is to improve the time to first render the page by prioritizing the visible

content of the page. To optimize the CRP, first and foremost, you will need to min-

89Mastering Lean HTTP Requests

imize critical resources. In order to do that you will need to identify and remove

render blocking assets as much as possible.

Latency is one of the biggest bottlenecks for serving fast websites. One way of

helping to conquer this issue is to focus on visible (ATF) content first. If we can

identify what is shown to the user above the fold in the browser, we can focus on

that piece first when the page is loaded. Removing styles not needed for the ATF

part of the page can drastically reduce the amount of time it takes to render the

page. Since CSS is render blocking, anything that we can remove from the CSS will

improve our render times.

Follow the 14KB Rule
In the spirit of focusing on the visible content first, that also means focusing on the

code that is at the top of an HTML page. Have you heard of the 14KB rule?

In Chapter 3, we discussed HTTP transactions. The first part of that is the initial

connection. It's the time that the client and browser start to communicate, performing

a “handshake”. Each communication back and forth, before sending data, is defined

as a round trip.

It is better to serve as much valuable content as you can within the first round trip.

Having said that, only 14KB2 of the HTML can be transferred before a new round

trip.

We should therefore send the most critical data to render first—presumably the

ATF content—within the first 14KB. This way we can avoid additional round trips

in order to show the first bits and pieces of the page.

If you follow this 14KB rule, your Start Render time will be improved, as it will

correlate with the first round trip time. Let's look at an example to check how the

Start Render time plays out. I used the wrapper of my blog, and included several

cute dog pictures. The page consists of a hero image (the wide image at the top),

several dog images, and further down more styling, including the footer. The

screenshot in Figure 5.4 displays the page with ATF content highlighted:

2 http://storage.googleapis.com/io-2013/presentations/239-%20Instant%20Mobile%20Websites-

%20Techniques%20and%20Best%20Practices.pdf

Lean Websites90

http://storage.googleapis.com/io-2013/presentations/239-%20Instant%20Mobile%20Websites-%20Techniques%20and%20Best%20Practices.pdf

Figure 5.4. Our sample page, with the ATF area marked, as well as some additional styles outside the ATF

There are several tools available to help you extract styles for your ATF content

from your style sheets, and instead embed (or “inline”) them within the head of

your HTML page. I used a bookmarklet3 that was introduced by Paul Kinlan, a smart

engineer at Google, to help me identify the critical ATF styles. You could also use

the Critical Path CSS Generator4 instead.

1. Load the page in a browser with the bookmarklet installed

3 https://gist.github.com/terrencewood/8876579
4 http://jonassebastianohlsson.com/criticalpathcssgenerator/

91Mastering Lean HTTP Requests

https://gist.github.com/terrencewood/8876579
http://jonassebastianohlsson.com/criticalpathcssgenerator/

2. Click the bookmarklet, and voilà, the critical CSS appears in the console

4. Copy the output into the head of the page, wrapped in a style element

5. Move the rest of the CSS to the bottom of the page

Let's not stop here! Before I show you the result of the improvements thus far, I

want to optimize the CRP even further by cleaning up the head.

You can do this by moving scripts to the bottom of the page and revisiting used

style sheets. If you use different styles for different media (such as print vs. screen),

make sure to use the media attribute to distinguish them. By specifying the media

attribute for a print version of the page, you can be assured that the print.css style

sheet won't be render blocking. However, note that the file will still be downloaded

by the browser.

You could link to your print style sheet like this:

<link rel='stylesheet' href='http://www.bbinto.me/wp-includes/css/
➥print.css' type='text/css'/>

However, it's better to include the media attribute, as shown below:

<!-- print.css stylesheet is not render blocking -->
<link rel='stylesheet' href='http://www.bbinto.me/wp-includes/css/
➥print.css' type='text/css' media='print' />

Here was the head prior to cleanup. Quite messy, don't you think?

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width,
➥ initial-scale=1.0">
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon"/>
<title>bbinto.me</title>
<link rel='stylesheet' id='theme_stylesheet-css' href='http://www.b
➥binto.me/wp-content/themes/matheson/style.css' type='text/css'
➥ media='all' />
<link rel='stylesheet' href='http://www.bbinto.me/wp-includes/css/
➥print.css' type='text/css' media='all' />
<link rel='stylesheet' id='google_fonts-css' href='//fonts.googleap

Lean Websites92

➥is.com/css?family=Raleway|Open+Sans:400,400italic,700,700italic'
➥ type='text/css' media='all' />
<link rel='stylesheet' id='font_awesome-css' href='http://www.bbint
➥o.me/wp-content/themes/matheson/library/css/font-awesome.css' type
➥='text/css' media='all' />
<style>
.boxed #page { max-width: 1172px; }
.container { max-width: 992px; }
</style>
<script type='text/javascript' src='https://ajax.googleapis.com/ajax
➥/libs/jquery/1.11.0/jquery.min.js'></script>
</head>

Moving unnecessary code out of the head to keep it as clean as possible will improve

your loading time. Let's look at the cleaned-up head now:

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width, initial-scale=
➥1.0">
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon"/>
<title>bbinto.me</title>
<link rel="dns-prefetch" href="assets.dogtime.com" />
<link rel="dns-prefetch" href="fonts.googleapis.com" />
<link rel="dns-prefetch" href="google-analytics.com" />
<style> /* critical inline css */
,::after,::before{box-sizing:border-box}{word-wrap:break-word;outl
➥ine:0}html{font-family:sans-serif;font-size:62.5%;-webkit-tap-high
➥light-color:transparent}body{margin:0;font-family:'Helvetica Neue'
➥,Helvetica,Arial,sans-serif;font-size:14px;line-height:
...
</style>
</head>

Here is the footer:

<link rel='stylesheet' id='theme_stylesheet-css' href='http://www.b
➥binto.me/wp-content/themes/matheson/style.css?ver=3.9.2' type='tex
➥t/css' media='all' />
<link rel='stylesheet' href='http://www.bbinto.me/wp-includes/css/
➥print.css' type='text/css' media='print' />
<link rel='stylesheet' id='google_fonts-css' href='//fonts.googleap

93Mastering Lean HTTP Requests

➥is.com/css?family=Raleway|Open+Sans:400,400italic,700,700italic'
➥ type='text/css' media='all' />
<link rel='stylesheet' id='font_awesome-css' href='http://www.bbint
➥o.me/wp-content/themes/matheson/library/css/font-awesome.css' type
➥='text/css' media='all' />
<script type='text/javascript' src='https://ajax.googleapis.com/ajax
➥/libs/jquery/1.11.0/jquery.min.js'></script>

It's show time. Let's check out the WPT video comparison to see the improvement:

Figure 5.5. WPT video comparison5 of our sample page, showing before and after optimization

Visually CompleteStart RenderSpeed IndexTest

3.4s3.4s3400Without optimized

CRP6

2.3s0.7s1608With optimized

CRP7

So to summarize what we've done for the page above:

■ We focused on the order of rendering assets by loading critical assets as early as

possible

■ We kept scripts and styles in the head to a minimum, allowing only critical CSS

in the head

■ We kept the HTML as clean as possible

5 http://www.webpagetest.org/video/compare.php?tests=141222_R6_JNC%2C141222_4C_KDV&thumb-

Size=100&ival=500&end=visual#
6 http://www.webpagetest.org/result/141222_R6_JNC/2/details/
7 http://www.webpagetest.org/result/41222_4C_KDV/1/details/

Lean Websites94

http://www.webpagetest.org/video/compare.php?tests=141222_R6_JNC%2C141222_4C_KDV&thumbSize=100&ival=500&end=visual#
http://www.webpagetest.org/result/141222_R6_JNC/2/details/
http://www.webpagetest.org/result/141222_R6_JNC/2/details/
http://www.webpagetest.org/result/41222_4C_KDV/1/details/
http://www.webpagetest.org/result/41222_4C_KDV/1/details/

■ We moved non-critical scripts to the bottom of the page

Reducing HTTP Requests
The fastest HTTP request is the one not made. (Steve Souders, Chief

Performance Officer at Fastly)

While you don't have a lot of influence over the user's network connection or the

server's processing time, you can optimize the things you do have control over—the

size and number of HTTP requests that are being sent.

The idea is simple: remove requests that you don't need to make, and think before

you include another HTTP request, especially if it's coming from a different domain

with an additional DNS lookup. For the requests you do need to make, you should

consider the following best practices.

(Smart) Concatenation
A useful performance technique is to combine separate files into one, a process

called concatenation. With concatenation, you can reduce the number of HTTP re-

quests and hence serve content faster.

Ideal candidates for concatenation are JavaScript and CSS files, as they make up

the bulk of the non-binary assets for a web page, besides the actual HTML itself.

Although concatenation can reduce the number of HTTP requests required, it doesn't

mean that concatenating absolutely everything into one big file is always the best

way to go. What you need is a smart concatenation strategy, as follows.

CSS
First, create an inventory of all the CSS files used on your website. Go through them

and analyze which files would benefit from concatenation.

For example, assume you have a huge website with many style sheets covering the

styling of different pages. Concatenating numerous CSS files into one big consolid-

ated CSS file might reduce the number of HTTP requests, but there are several edge

cases where this could actually result in overhead and redundancy:

■ If one of these concatenated CSS files changes frequently, the browser would

need to re-download the consolidated big CSS file every time it changes, which

95Mastering Lean HTTP Requests

is not optimal. One solution to this issue is to figure out which CSS files change

infrequently versus the ones that changes frequently, and separate them accord-

ingly.

■ Figure out which styles are required on each page versus less frequently used

styles. Every website should follow a style guide defining which colors and fonts

to use on the site. For consistency, it makes sense to load these styles on each

and every page of your website. However, there may also be styles that are not

used on every single page. For example, it doesn't make sense to include the

styling of a shopping cart page in the style sheet that is loaded on each page.

The more selectors you put in your combined CSS file, the more complex and

bigger it will be, which inevitably results in less performant code. Detach the

uncommonly used styles from the commonly used styles. Before concatenating

CSS files, ask yourself how often and under what circumstances those files are

being used on the site.

JavaScript
The same considerations about concatenation apply to multiple JavaScript files.

■ Before merging one JavaScript file with another, think about the likelihood of

the contents of both files changing. Are they changed equally as often? Evaluate

if the content of these files should be fetched and cached separately by the

browser, or combined into one single file.

■ There might be functionality or widgets that are only used on certain pages of

the site (for example, a photo gallery widget only showing up on one specific

page of your website). There is no need to include them in the consolidated and

concatenated master JavaScript file that is loaded on every page. The overhead

of downloading unused JavaScript might be bigger than keeping files separated,

especially if you know that not all visitors will need the gallery widget.

Make a conscious decision under what circumstances you should concatenate files.

Ask yourself if the functionality executed in the JavaScript file is needed for all

pages, or only for specific sections of the site.

Once you've figured out which files should be concatenated, you can then benefit

from a performance gain. The following example illustrates the performance im-

provement that can be achieved when properly concatenating JavaScript files. The

Lean Websites96

sample page relies on five separate JavaScript files—which should, therefore, be

concatenated.

■ non-concat.html: this file includes five JavaScript files:

Figure 5.6. WPT Waterfall of non-concat.html8

■ concat.html: this file includes the same JavaScript files concatenated into one

JavaScript file, named concat.js:

Figure 5.7. WPT waterfall of concat.html9

I ran both pages through WPT, focusing on Start Render and Fully Loaded values.

Fully LoadedStart RenderURL

0.615s0.547snon-concat.html10

0.554s0.473sconcat.html11

As you can see, there are some performance gains achieved by using concatenation.

Conditional Loading
If you encounter styles and functionality that are not needed on every page, or for

every browser, or even for every device, it's not recommended that their files be

8 http://www.bbinto.me/lean-websites/chapter-5/minified/non-concat.html
9 http://www.bbinto.me/lean-websites/chapter-5/minified/concat.html
10 http://www.webpagetest.org/result/150117_KK_N3V/5/details/
11 http://www.webpagetest.org/result/150117_NG_N3T/4/details/

97Mastering Lean HTTP Requests

http://www.bbinto.me/lean-websites/chapter-5/minified/non-concat.html
http://www.bbinto.me/lean-websites/chapter-5/minified/concat.html
http://www.webpagetest.org/result/150117_KK_N3V/5/details/
http://www.webpagetest.org/result/150117_NG_N3T/4/details/

concatenated. Rather, use conditional loading to load assets based on certain condi-

tions and device features.

Conditional resource loaders, such as yepnope12 and RequireJS13, can help you

load only the assets needed for your specific case. In addition, feature-detection

libraries like Modernizr14 can identify what capabilities and features the user's

browser has, and therefore load or remove specific files. Detectizr15, a library that

sits on top of Modernizr, can trigger conditional loading based on the device.

Tools
Though you can concatenate files by hand, it's preferable to use tools to automate

this process. A quick solution is to use the cat16 Unix command. For example, you

can use the following command to concatenate all CSS files into merge.css, or all

JavaScript files into merge.js:

$ cd css/
$ cat *.css > merge.css

// or JavaScript
$ cd javascript/
$ cat *.js > merge.js

There are also some more sophisticated command line tools available that combine

concatenation and minification. Google's Closure Compiler17 supports concatenation

(only for JavaScript files), and task managers like Grunt18 and Gulp19 offer concat-

enation tasks and plugins as well. We will use Grunt and Gulp in Chapter 8 to show

how to automate performance tasks.

12 http://yepnopejs.com/
13 http://www.requirejs.org/
14 http://modernizr.com/
15 https://github.com/barisaydinoglu/Detectizr
16 http://en.wikipedia.org/wiki/Cat_%28Unix%29
17 https://developers.google.com/closure/compiler/
18 https://github.com/gruntjs/grunt-contrib-concat
19 http://gulpjs.com/

Lean Websites98

http://yepnopejs.com/
http://www.requirejs.org/
http://modernizr.com/
https://github.com/barisaydinoglu/Detectizr
http://en.wikipedia.org/wiki/Cat_%28Unix%29
https://developers.google.com/closure/compiler/
https://github.com/gruntjs/grunt-contrib-concat
http://gulpjs.com/

Let's concatenate the files shown in the earlier example with Google's Closure

Compiler20. Download the Java jar file21 and execute one of the following commands:

java -jar compiler.jar --js_output_file=concat.js 1.js 2.js 3.js ...

Recursively include all js files in subdirs
java -jar compiler.jar --js_output_file=concat.js 'src/**.js'

No Java?

The local version of Closure Compiler requires the installation of Java and running

it via the Java CLI runtime. If you don't want to use Java via a CLI, Closure Compiler

is available online22.

Image Spriting
The main idea of image spriting is to reduce the HTTP requests that are needed to

serve the images on the page. Spriting is done by combining each smaller individual

image into one big image, and then displaying a small section of that image (a sprite)

at defined X and Y coordinates. That way, instead of making multiple HTTP requests

for each image, you'll only need one HTTP request.

Let's run through an example to show how it works. Say I have four flora images

that I want to show on a page—a grass patch in a planter, a tree, a leaf, and a planted

pot.

Instead of displaying each flora image by using separate image tags (and four HTTP

requests) like this:

20 http://closure-compiler.appspot.com/home
21 https://code.google.com/p/closure-compiler/downloads/list
22 http://refresh-sf.com/yui/

99Mastering Lean HTTP Requests

http://closure-compiler.appspot.com/home
http://closure-compiler.appspot.com/home
https://code.google.com/p/closure-compiler/downloads/list
http://refresh-sf.com/yui/

we can create a sprite image using the CSS Sprites Generator23, an online tool that

allows you to upload each image individually, and which creates the required CSS

as well as the sprite image (see below):

Figure 5.8. Using the CSS Sprites Generator to create a sprite image and corresponding CSS

We can now use the generated sprite image and the x/y coordinates to display each

of the flora images in the page:

<style type="text/css">
 div {
 background: url('img/sprite.png');
 }
 .planter {background-position: -0px -0px; width: 107px; height:
➥ 81px}
 .tree {background-position: -0px -91px; width: 46px; height:
➥ 52px}
 .leaf {background-position: -0px -153px; width: 47px; height:

23 http://csssprites.com/

Lean Websites100

http://csssprites.com/

➥ 55px}
 .pot {background-position: -0px -218px; width: 42px; height:
➥ 79px}
 </style>
<!-- planter -->
<div class="planter"></div>
<!-- tree -->
<div class="tree"></div>
<!-- leaf -->
<div class="leaf"></div>
<!-- planted pot -->
<div class="pot"></div>

Let's check out these sample pages in WPT, first without using sprites (Figure 5.9)

and then with sprites (Figure 5.10):

Figure 5.9. Sample page without sprites, using img tags24

24 http://www.webpagetest.org/result/141108_DJ_K4M/

101Mastering Lean HTTP Requests

http://www.webpagetest.org/result/141108_DJ_K4M/

Figure 5.10. Sample page using sprites25

We've reduced the number of HTTP requests by three individual requests, and

dropped the load time26 by around a tenth of a second.

Talk to your design team to help you create a “sprite sheet”. There are many27 tools

available that you or your designers can use for spriting. You can either write

scripts28 for Photoshop to handle this work for you, use online tools such as the

CSS Sprites Generator, or even automate the process by using command line tools

such as Glue29.

Caching

Leveraging the browser's local cache is a technique used for performance optim-

ization. Every browser includes a cache, but needs to get instructions on how and

when to use it. You can set the logic—such as when to request a newer or fresher

25 http://www.webpagetest.org/result/141108_9F_K4F/
26 http://www.webpagetest.org/video/compare.php?tests=141108_9F_K4F,141108_DJ_K4M
27 http://blog.booking.com/automating-css-sprites-for-large-organisations.html
28 http://www.johnwordsworth.com/projects/photoshop-sprite-sheet-generator-script/
29 http://gluecss.com/

Lean Websites102

http://www.webpagetest.org/result/141108_9F_K4F/
http://www.webpagetest.org/video/compare.php?tests=141108_9F_K4F,141108_DJ_K4M
http://blog.booking.com/automating-css-sprites-for-large-organisations.html
http://www.johnwordsworth.com/projects/photoshop-sprite-sheet-generator-script/
http://gluecss.com/

version of an asset, or when not to use the one in the cache at all—by using the

Cache-Control headers.

We will learn more about caching and how to set Cache-Control headers to re-

duce HTTP requests in Chapter 9.

Optimizing HTTP Requests
You can't remove all HTTP requests, as there are requests and assets that are crucial

and required for the rendering your website. Therefore, after looking into how to

avoid unnecessary HTTP requests, let's focus now on optimizing the requests that

are absolutely necessary.

Minifying
Minifying is the process of using a tool to eliminate unnecessary characters from

your code to optimize it, without changing its functionality.

During the process of minifying, the following things are stripped out of your file:

■ White space characters

■ New line characters

■ Comments

■ Block delimiters

In addition to stripping out unnecessary characters, minifiers also typically rewrite

sections of code (such as variable names or identifiers) to optimize it further. By

minifying assets such as CSS, JavaScript or HTML files, you can significantly reduce

the size of data that has to be sent over the wire, and hence improve load time and

performance.

Closure Compiler, a tool we discussed earlier, not only provides concatenation

capabilities, but also parses JavaScript, analyzes it, removes dead code and rewrites

and minifies what's left.

103Mastering Lean HTTP Requests

Minify as a Final Step

Minification obfuscates the code, which thus makes it hard for humans to read.

If your code is not yet production-ready and still needs some debugging, you

might want to minify your code only during the last step of your deployment.

Task runners, which I will introduce in Chapter 8, can add this kind of optimiza-

tion as the last step of a build process.

Tools
There are many online, browser-based tools available that help you minify your

assets, such as JSCompress for JavaScript30, CSS Minifier for CSS31, and HTML

Minifier for HTML32. The PageSpeed Insights plugin33 for Chrome offers links to

minified versions of your content, as shown in Figure 5.11:

Figure 5.11. PageSpeed Insights Chrome plugin, offering minified versions of your assets

30 http://jscompress.com/
31 http://cssminifier.com/
32 http://www.willpeavy.com/minifier/
33 https://developers.google.com/speed/docs/insights/MinifyResources

Lean Websites104

http://jscompress.com/
http://cssminifier.com/
http://www.willpeavy.com/minifier/
http://www.willpeavy.com/minifier/
https://developers.google.com/speed/docs/insights/MinifyResources

In addition to the online tools and plugins, there are various command line tools

that can be integrated into your deployment process—such as YUI Compressor34,

Closure Compiler, or JSMin35—to achieve the same outcome. We'll discuss the

automation of these tools in more detail in Chapter 8.

Let's just take a quick look at YUI Compressor for now. After downloading the Java

jar file36, you can run the following command on CSS or JavaScript files to minify

them. Please note that using this locally requires the installation of Java and running

it via the CLI.

// minify all .css files in current folder, and save as -min.css
java -jar yuicompressor.jar -o '.css$:-min.css' *.css

// or simply
java -jar yuicompressor-1.0.jar -o 1.min.s 1.js

No Java?

If you don't want to use Java via CLI, the YUI Compressor is available online37.

Pre-browsing
Pre-browsing is a performance optimization technique, and refers to an attempt to

anticipate the user's interactions with your page—such as loading assets prior to

the user requesting them. Resource hints38—which are pre-browsing attributes39

added to the link tag—aim to help the browser predict your user's next steps by

proactively telling the browser what to prefetch.

For example, you probably know where your users are headed most often on your

site. You may be able to use some of the following options to preload certain re-

sources that you know the browser will need to fetch for the next visited page.

34 http://developer.yahoo.com/yui/compressor/
35 http://www.crockford.com/javascript/jsmin.html
36 https://github.com/yui/yuicompressor/releases
37 http://refresh-sf.com/yui/
38 http://w3c.github.io/resource-hints/
39 https://docs.google.com/presentation/d/18zlAdKAxnc51y_kj-6sWLmnjl6TLnaru_WH0LJTjP-

o/edit#slide=id.p19

105Mastering Lean HTTP Requests

http://developer.yahoo.com/yui/compressor/
http://www.crockford.com/javascript/jsmin.html
https://github.com/yui/yuicompressor/releases
http://refresh-sf.com/yui/
http://w3c.github.io/resource-hints/
https://docs.google.com/presentation/d/18zlAdKAxnc51y_kj-6sWLmnjl6TLnaru_WH0LJTjP-o/edit#slide=id.p19

Let's check out the resource hint attributes.

rel="dns-prefetch"

As we saw earlier, DNS lookups can take up additional time to load assets. DNS

prefetching reduces the time it takes to look up the domain by resolving it in advance.

DNS prefetching is useful when you have several links on your page referring to

external websites (that is, pointing to different domains). It reduces latency when

the user actually clicks on one of the external links. It's effectively telling the browser

in advance, “Hey buddy, I'm planning to use this domain.”

This tag should be placed in the head of your page, and only be used for critical

resources with different domains. Don't include all the domains of your external

links in the head, as this might only increase the page load time.

The example below adds DNS prefetching for the Flickr domain, as this domain is

being used for images in a photo gallery, later on in the page:

<!DOCTYPE html>
<html lang="en">
<head>
 <link rel="shortcut icon" href="../../favicon.ico"
➥ type="image/x-icon"/>
 <!-- ... -->
 <link rel="dns-prefetch" href="https://farm3.staticflickr.com" />
 <title>My website</title>
</head>
<body>
 <!-- ... -->
 <img src="https://farm3.staticflickr.com/2076/2378396331_f550196
➥025.jpg">
</body>
</html>

rel="subresource"

This resource hint allows pointing of the browser to another resource that you want

to use later on in the current page, and which therefore should be downloaded as

a high priority. Subresource resources are fetched with high priority as soon as they

are encountered by the loader.

Lean Websites106

By using this resource hint, you can optimize the user experience on your site, as

any resource marked as subresource is loaded faster. For example, this technique

is very useful if you want to load resources such as important JSON files, or a logo,

in advance.

Place this tag in the head of your HTML as early as possible. The resources fetched

should just be critical resources for the current page. In the example below, it's a

JSON file and a logo:

<!DOCTYPE html>
<html lang="en">
<head>
 <!-- ... -->
 <link rel="subresource" href="data.json" />
 <link rel="subresource" href="logo.jpg" />
 <title>My website</title>
</head>
<body>

 <!-- ... -->

 <script>
 $.getJSON("data.json", function(data) {
 //
 });
 </script>
</body>
</html>

rel="prefetch"

You can hint to the browser that an individual resource—or an entire site—should

be prefetched, by including the prefetch pre-browsing attribute in the head of your

page. For example, you could use the prefetch hint to load images that are used

throughout your site, and not just on your current page.

<!DOCTYPE html>
<html lang="en">
<head>
 <!-- ... -->
 <link rel="subresource" href="logo.jpg" />

107Mastering Lean HTTP Requests

 <link rel="prefetch" href="footer.jpg" />
 <title>My website</title>
</head>
<body>
 <!-- ... -->

 <!-- ... -->

</body>
</html>

After the browser has dealt with all critical subresources, it will start getting

footer.jpg. Please note that the prefetch hint is considered to be the lowest possible

priority40 hint.

Therefore, subresource and prefetch differ in their priorities as well as their se-

mantics: use subresource to load a resource with high priority within the current

page, whereas the prefetch resource is loaded with lower priority but can refer to

a resource used on a different page of your site.

rel="prerender"

With a use case similar to that of prefetch, prerender kicks off by loading an entire

page in the background (including all of its assets). As I'm sure you can imagine,

this event is quite resource heavy, and should only be used if it's really needed!

You could use this for a checkout process, for example, where you can predict the

subsequent pages the user will hit.

<!DOCTYPE html>
<html lang="en">
<head>
 <!-- ... -->
 <link rel="prerender" href="step-2.html" />
 <title>Check-Out Step 1</title>
</head>
<body>

40 https://medium.com/@luisvieira_gmr/html5-prefetch-1e54f6dda15d

Lean Websites108

https://medium.com/@luisvieira_gmr/html5-prefetch-1e54f6dda15d
https://medium.com/@luisvieira_gmr/html5-prefetch-1e54f6dda15d

 <!-- ... -->
</body>
</html>

Browser Support
Since some of these resource hint attributes are fairly new (at the time of writing),

browser makers are still in the process of implementing them. Here's a table of

current support:

prerenderprefetchsubresourcedns-prefetchBrowser

n/a3.5+n/a3.5+Firefox

1.3+1.0+1.0+1.0+Chrome

n/an/an/a5.01+Safari

11+10+n/a9+IE

As you can tell from the table above, dns-prefetch seems to be supported by most

browsers—and therefore, if used properly, should improve a site's performance.

Some external scripts could potentially have a long DNS lookup, so we could use

this attribute to improve the load time.

Cool Down
■ You've learned how the browser works, so you understand when and how assets

are being rendered.

■ The CRP defines the resources that are needed to render the initial view of the

page (above the fold).

■ You've learned about the 14KB rule, and how to prioritize the visible content of

your page.

■ You've been taken through an exercise on how to optimize the CRP.

■ Reducing and optimizing HTTP requests is the key for efficient web performance.

■ You've learned techniques to reduce and optimize HTTP requests by applying

concatenation and minification.

109Mastering Lean HTTP Requests

■ Don't just concatenate everything. Differentiate between context-based and fre-

quency-based concatenation.

■ You've learned how spriting works, and that it reduces HTTP requests when

serving images.

■ You got a glimpse of how predictive browsing works, and learned about new

tags for preloading assets—pre-fetch, dns-prefetch etc.

Lean Websites110

Chapter6
Producing Lean Web Assets: Part 1

Warm Up
While the previous chapter explored techniques for reducing and optimizing HTTP

requests in general, this chapter will focus on optimizing individual web assets

such as HTML, CSS, and JavaScript.

Optimizing HTML
When writing HTML, make sure it is semantic, valid, and as lean as possible. The

more errors your code contains, and the more nested elements you have, the more

work you are requiring of the browser. (The browser will do its best to correct your

errors as it constructs the DOM, but there's only so much it can do.)

Move any inline styles from HTML elements into your style sheets. For example,

instead of writing <div style="color:red">, use div {color:red} in a separate

style sheet.

Keeping Things Tidy
There are several tools that can help you keep your HTML in good shape, such as

HTML Tidy1, a command line tool that you can download from GitHub2 and install

on your computer. (There is also an older command line version3, which has a

handy online4 equivalent, though these are a little old now and don't include support

for HTML5.)

HTML Tidy not only checks your HTML for errors, but also warns of potential

problems, and even produces an amended version of your file for you.

Another popular, online tool for checking the quality of your HTML code is the

W3C Markup Validation Service5. You can provide it with a link to your page, upload

a file or just paste your code straight into the form provided. The validator will list

warnings and errors for you to address, although it won't rewrite your code for you.

Further Tips on Optimizing HTML Files
Once your HTML code is error free, there are further ways to optimize it, such as

the following:

■ Reduce the file size as much as possible. Minify the HTML by removing

whitespace and comments wherever possible. Instead of doing this manually,

use compressors such as HTML Compressor, which has both a command line6

and an online7 version.

■ Remove unused elements. As they serve no purpose, don't let the browser waste

precious time processing them.

■ Don't forget closing tags for elements that require them. The rendering step could

stumble on this and get confused, potentially causing a delay (and a broken

layout).

1 http://www.html-tidy.org/
2 https://github.com/htacg/tidy-html5
3 http://tidy.sourceforge.net/
4 http://infohound.net/tidy/
5 https://validator.w3.org/
6 https://code.google.com/p/htmlcompressor/
7 https://htmlcompressor.com/compressor/

Lean Websites112

http://www.html-tidy.org/
https://github.com/htacg/tidy-html5
http://tidy.sourceforge.net/
http://infohound.net/tidy/
https://validator.w3.org/
https://code.google.com/p/htmlcompressor/
https://htmlcompressor.com/compressor/

■ Practice smart content layout. Place the most important content higher in the

source order, letting less important content (such as sidebars) load further down

the tree.

■ Keep the head as small and clean as possible to prioritize visible content. The

more links, scripts and other code in the head, the longer it will be before the

browser can download the actual page content.

Optimizing CSS
As we've discussed already, externally linked CSS files are render blocking. Each

additional linked style sheet further degrades page load performance. Your rule of

thumb should always be to send the most important styles down the wire as soon

as possible, and inline styles in the head of the page itself if they apply above the

fold.

Lean CSS
Regardless of whether you use external style sheets or inline styles, aim to keep

your CSS as lean as possible. In particular, avoid unused selectors. They will only

bloat your style sheets and harm the load time of your page.

One of the key things to note when optimizing CSS is that browsers read CSS select-

ors from right to left. The part furthest to the right is the key selector, and is most

responsible for the performance of the overall selector.

The most efficient selector is the ID, followed by class, tag, universal, attribute and

pseudo class selectors. The efficiency is reflected by the order of occurrence of each

selector below.

#content {…} /* ID */
body #title {…} /* ID */
.content {…} /* class */
ol li a.current {…} /* class *
ol {…} /* tag */
* {…} /* universal */
[title='main'] {…} /* attribute */
a:hover {…} /* pseudo */

By following the rules below, you ensure performant CSS:

113Producing Lean Web Assets: Part 1

■ Choose a specific key selector. For example, the following key selector is not

very efficient:

#menu a {…}

Based on the right-to-left principle, the browser must first find all existing links

on the page before applying the style to the links found in the #menu element.

<ul id="menu">
 Home
 Contact
 <!-- more -->

By adding a class to each element, we can make the key selector more effi-

cient:

<ul id="menu">
 Home
 Contact
 <!-- more -->

The selector can now be optimized:

#menu .menu-item {…}

This optimized key selector will now match far fewer elements. The browser is

able to find the elements faster, and can focus on the next styles to be rendered.

■ Remove unused selectors. The older a style sheet is, or the more developers

there are working on it, the more likely the file is to become messy and bloated

due to unused selectors. (This could also happen for a CSS framework like

Bootstrap, or in a CSS reset.)

■ Examine why you chose a selector in the first place. It might not always be

needed. In the case below, the font-family declaration cascades down, and

there might not be a need to apply this to the li a:

Lean Websites114

#top-nav li a {font-family: Arial;}

You could clean this up as follows:

#top-nav {font-family: Arial;}

■ Avoid inline CSS. Styles applied directly to elements via the style attribute are

inefficient. Such styles should be moved to a style sheet instead, where they can

potentially be reused. For example, the style attribute in <header

style="margin:5px; color:red"/>, should be removed, in favor of this:

/* style.css */
header {margin: 5px; color: red;}

■ Consolidate declarations where possible. Instead of duplicating the declaration

color: red; as follows:

h1 {color: red;}
h2 {color: red;}

You can put this into one single rule:

h1, h2 {color: red;}

■ Be sparing with CSS3 selectors. Although selectors such as :nth-child can be

incredibly helpful in defining styles on specific elements of the page, they are

the slowest when it comes to rendering time in the browser.

■ Avoid @import url("style.css"). By using @import, the browser parses the

CSS file and downloads each import file sequentially. To increase performance,

use the HTML element <link rel='stylesheet' href='style.css'> instead

of @import.

CSS Optimization Tools
There are several tools that help with optimizing CSS, by removing unnecessary

selectors, pointing out bad practices, and minifying your code:

115Producing Lean Web Assets: Part 1

■ CSS Shrink8 has an online and CLI version, and is useful for removing unneces-

sary selectors.

■ Unused CSS9 is an online tool for removing unused CSS.

■ UnCSS10 is a CLI tool for removing unused CSS.

■ CSSLint11 is an online tool that will “hurt your CSS feelings”. It's brutally honest

in pointing out any shortcomings of your CSS.

■ CSSO12 is a CLI tool that can minify and also perform structural optimization

of CSS files.

If you want to carry out a quick optimization of some CSS, your best bet is to use

the online tools above, or one of several browser extensions that are also available.

For batched operations and automation, the command line tools are more useful

during deployment. I recommend you take the time to set up these CLIs within your

deployment process so that they are part of your daily workflow. In Chapter 8, we'll

discuss how to set these up.

Let's take a look at CSS Shrink, to illustrate how a CSS optimization tool can help

improve the performance of a site. I pasted the styles from one of my site's CSS files

into the online version of CSS Shrink. As a result, my CSS was shrunk by almost

19%, as shown in Figure 6.1:

8 http://cssshrink.com/
9 https://unused-css.com/
10 https://github.com/giakki/uncss
11 http://csslint.net/
12 https://bem.info/tools/optimizers/csso/

Lean Websites116

http://cssshrink.com/
https://unused-css.com/
https://github.com/giakki/uncss
http://csslint.net/
https://bem.info/tools/optimizers/csso/

Figure 6.1. bbinto.me style sheet file size reduced by almost 19%, thanks to CSS Shrink

Optimizing JavaScript
Inefficient JavaScript can have a big impact on a site's performance. JavaScript is

render blocking if included synchronously, causing delays to page load if a script

is inefficiently coded or simply too big. If the script appears in the head of the page,

it will hold up the rendering of the critical page content. Therefore, put any scripts

at the bottom of the page—just before the closing </body> tag—to avoid render

blocking. Another option is to make the script non-blocking, by waiting until the

window.onload event has fired before loading the rest of the JavaScript files, or by

using the async and defer attributes. Both attributes prevent render blocking.

Another helpful approach is to use script loader libraries like RequireJS13 to manage

JavaScript dependencies.

Lean DOM Operations
Any time you access the DOM with JavaScript, you will have to pay a performance

price—especially when you actually modify the DOM via JavaScript. This is because

the DOM sits outside the JavaScript virtual machine, meaning that changes to layout,

compositing or painting are very expensive.

13 http://requirejs.org/

117Producing Lean Web Assets: Part 1

http://requirejs.org/

In the context of optimizing site performance, there are several things to be careful

of when using JavaScript. Let's examine each of them in turn.

document.write()

It's a fairly common practice to use document.write() to insert scripts dynamically

into a page. However, this creates several performance issues:

■ document.write() blocks parsing, as the browser doesn't know what the docu-

ment.write() will do to the page, and consequently cannot construct the DOM

tree until it has run.

■ Using document.write() messes with the browser's preload scanner14, as it

doesn't know about the code within document.write() yet.

■ The document.write() code can only run during initial page parsing.

Where possible, use DOM manipulations instead of document.write().

Loops
In the context of DOM manipulations, JavaScript loops can have a serious impact

on page performance if not handled with care.

Loops run over and over again, so by improving how they run—and especially by

improving anything in them that modifies the DOM—you can make big performance

gains. See what kind of DOM operations are being executed in your loops, and in-

vestigate if you can move those DOM operations out of the loop. A good rule of

thumb is to do as much work outside the loop as possible.

The following simple example illustrates how you can optimize a for loop and its

content:

14 http://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/

Lean Websites118

http://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/

var vals = [1,2,3,4,5,6,7,8,9,10];

for (var i=0; i < vals.length; i++){
 doStuff(vals[i]);
}

All items in the vals array are being passed into the doStuff() function. Can you

see what's happening here? The length of the array is retrieved and recalculated on

every execution of the loop to compare the iterator variable against the array length.

This is an inefficient and not performance-oriented practice, because the length of

the vals array will not change during the loop's execution.

We can easily fix this by caching the length of the array in a local variable vals.

Let's clean it up:

var vals = [1,2,3,4,5,6,7,8,9,10];

// Optimize by declaring a local variable for array length
var len = vals.length;

for (var i=0; i < len; i++){
 doStuff(vals[i]);
}

Now we have declared len as a variable, cached the length of the array, and thus

don't have to recalculate the array length on every loop iteration. The local variable

is now used for comparison, instead of using an expensive property lookup each

time through the loop.

Declare local variables to store DOM references that you’ll access repeatedly, espe-

cially when dealing with HTMLCollection objects, such as document.images. It's

better not to hide all images in the DOM as follows:

for (var i=0; i < document.images.length; i++){
 document.images[i].style.display = 'none';
}

Every time the loop is executed and the code tries to access the document.images

object, it's actually querying against the DOM for all nodes matching that type, res-

119Producing Lean Web Assets: Part 1

ulting in an expensive property lookup. By keeping document.images in the condi-

tion of the loop, we add significant execution time to the loop.

A much better option is to cache the length in a local variable:

// Optimize by declaring a local variable for array length
var lenImgs = document.images.length;

for (var i=0; i < lenImgs; i++){
 document.images[i].style.display = 'none';

}

A simple change like this significantly reduces the efficiency and execution time

of the loop.

Repaints and Reflows
The render tree takes care of painting pixels onto the page. By repainting anything

on the page, or triggering a reflow, you negatively impact the performance of your

site.

Repaint and Reflow Defined

Before we look at optimizing repaint and reflow, let's clarify what they are.

Repaint Any time you change the style of an element in the DOM, the browser

needs to repaint the page. This can happen, for example, if you change

the background color of the page, or change the visibility of an element

on the page. The browser engine needs to search through all the elements

of the page to figure out what is visible and should be displayed. While

this is expensive, it's not as expensive for performance as the next event:

reflow.

Reflow Reflow happens when the DOM tree is manipulated. This occurs every

time layout and geometry change. For example, if you change the display,

width, or height of an element—such as elements changing positions or

sizes—visible DOM elements are added or removed, and font size or

content changes occur. It's important to understand that a reflow of an

element causes a reflow of all child elements and any elements following

Lean Websites120

it in the DOM. Depending on the number and positions of reflows, this

can result in a complete re-rendering of the page.

Know Your Reflows and Repaints!

Check out CSS Triggers15 for details on what element changes trigger repaint and

reflows.

Combining Repaints and Reflows into Batches

Both repaint and reflow are expensive operations and should be reduced and optim-

ized as much as possible. If you really need to execute changes that could cause a

repaint or reflow, try to combine them into batches, in order to apply them at once.

Let's look at an example where I modify a div's look and feel:

<body>
<style>
 #info {display:none}
</style>
<div id=”info”>
 <h4>My Reflow Test</h4>
 <p>Note: This is just an example</p>
 <h5>Unordered List follows:</h5>

 List 1
 List 2

</div>
</body>

<script>
function triggerReflow() {
 var findMe = document.getElementById('info');
 findMe.style.display = 'block'; // 1st. reflow
 findMe.style.background = 'yellow'; // repaint
 findMe.style.border = '1px solid black'; // repaint

15 http://csstriggers.com

121Producing Lean Web Assets: Part 1

http://csstriggers.com

 findMe.style.fontSize = '10px'; // reflow
}
</script>

All findMe.style definitions trigger reflows on the div element, but also on all

child elements.

Instead of executing reflows one by one, we should rather combine the styles and

assign a class to the div as follows:

/* css */
.showme {
 display:block;
 background-color: yellow;
 border: 1px solid black;
}

// JavaScript
<script>
 function triggerReflow() {
 var findMe = document.getElementById('info');
 findMe.className = 'showme';
 }
</script>

Improving Animations

Movement on the screen necessitates reflows and repaints. Animations in particular

require the browser to do a lot of work, so it's important to make sure they are as

efficient as possible.

Animations and Frames per

Second

Animations are based on reflows, and the faster

you execute the animations, the faster you will

trigger them, and therefore, the faster they are

finished. To create animations in JavaScript, you

normally use the setTimeout or setInterval

functions.

Frame rate is the rate at which a device produces

consecutive images on the screen. The lower the

frame rate, the more likely a user will see a

Lean Websites122

“janky” experience, and conversely, the higher

the rate, the smoother the experience of animation

or scrolling. 60 frames per second (fps) is used as

the standard value for most screens, as it matches

their refresh rate (60Hz).

The smoothness of your animation depends on

its frame rate. In order to accomplish a smooth

experience for your users, make sure to keep the

frame rate at 60fps. Otherwise, your users might

experience your animations as clunky, especially

when quickly scrolling up or down. The higher

the frame rate, the more responsive the website

feels to the user.

requestAnimationFrame() requestAnimationFrame() is a native API that

can execute any kind of animation in the

browser—involving DOM elements, CSS, canvas,

WebGL or anything else. It should be preferred

over using setInterval() or setTimeout().

The difference between requestAnimation-

Frame() and setInterval() or setTimeout() is

that you tell the browser to draw the animation

at the next available opportunity, and not based

on a predefined interval that could take up more

processing time and power. For example, set-

Timeout() only refreshes the screen when it wants

to, not when the computer is able to, and it

doesn’t care what else is happening in the

browser—such as another browser tab being active

instead.

requestAnimationFrame() groups all of the anim-

ations into one single browser repaint, resulting

in fewer CPU cycles. Also, if you switch to a new

tab, the browser will throttle the animation so you

123Producing Lean Web Assets: Part 1

can visit other pages without the animation

slowing down your browser.

So how do you optimize your page to avoid repaints and reflows, and make anima-

tions not feel “clunky” or “janky”?

You can't really remove all repaints and reflows, but you can try to minimize their

occurrence. Here are some tips on how to optimize16 them:

■ Instead of using setInterval() or setTimeout() for animations, use request-

AnimationFrame().

■ Avoid inconsistent frame rates, as this correlates with bad user experience. Either

use 60fps or, if that's not possible, use 30fps consistently. requestAnimation-

Frame() can throttle animations, especially when the system can't handle ren-

dering at the screen's refresh rate. A consistent 30Hz feels better to our eyes than

60Hz with some missing frames per second.

■ Check your onScroll() handlers. This event handler can cause serious issues

when scrolling. In general, adding too much stuff into JavaScript event handlers

imposes challenges on the animation, especially when scrolling.

■ Heavy CSS animations or drop shadows, blurs, linear gradients, also big fixed

background images, can slow down rendering.

■ Use animations on elements with position fixed or absolute. They won't affect

other elements' layout, thus reducing the cascading effect that a reflow might

otherwise trigger.

If you want to dig deeper how to optimize JavaScript, I highly recommend High

Performance JavaScript17, a book by Nicholas C. Zakas.

Third-party Scripts
Recent investigation18 has shown that the distribution of third-party content is

growing. Ever more sites are using code and assets not hosted on their own domain.

16 https://dev.opera.com/articles/efficient-javascript/?page=3#reflow
17 http://shop.oreilly.com/product/9780596802806.do
18 http://bigqueri.es/t/what-is-the-distribution-of-1st-party-vs-3rd-party-resources/100/3

Lean Websites124

https://dev.opera.com/articles/efficient-javascript/?page=3#reflow
http://shop.oreilly.com/product/9780596802806.do
http://shop.oreilly.com/product/9780596802806.do
http://bigqueri.es/t/what-is-the-distribution-of-1st-party-vs-3rd-party-resources/100/3

In 2011, 32% of a site's content was coming from third-party content; by 2013, this

had risen to 38%. While third-party scripts can be useful, when poorly implemented,

their inclusion can have a significant performance impact.

“In the strictest sense, anything served to the client that’s provided

by an organization that’s not the website provider is considered to

be third-party.” ― Ben Vinegar, author of Third-Party Script19.

Types of Third-party Scripts
There are several different categories of third-party content:

■ Advertising: any advertising network or service offering JavaScript to be included

in your page.

■ Tracking and analytics: this includes tracking products such Google Analytics

and Chartbeat.

■ Social media: any social media scripts, such as those offered by Facebook,

LinkedIn, Twitter and Google+.

■ Libraries and frameworks: examples include jQuery, YUI, Twitter Bootstrap,

or any helpers that are included on your page via their external hosts.

If you work for a company with a business intelligence, analytics or marketing de-

partment, the chances are high that you are being asked to include anything that

could help measure the company's success. There is not one social media or tracking

tool out there that marketing wouldn't like to try out. Social media, ads and tracking

scripts are big temptations for marketers and companies wanting to better understand

their customers or find other revenue streams. On the other hand, any foreign content

you add on top of your own content—especially if it's JavaScript—will add weight

and load time to your page.

However, your rule of thumb should be that the value you get from using a third-

party script has to be greater than its performance hit.

19 http://www.manning.com/vinegar/

125Producing Lean Web Assets: Part 1

http://www.manning.com/vinegar/

Content Overload
Check out the pie chart below, analyzing Wired.com20. It's not difficult to see that

a significant amount of the content being provided is not coming from Wired.com:

Figure 6.2. Wired.com content breakdown by domain

Considering that each additional external HTTP request costs another DNS lookup,

this can result in significant latency issues.

Ghostery

Ghostery21 is a browser extension that lists all third-party scripts being used on

a page. It can easily give you a quick idea of how much third-party content is

adding to the page load time.

Preparing for the Worst: SPOF
One of the most damaging things that can happen to your website is if a third-party

provider goes down, and the script from that provider is included in such a way

that it affects the critical rendering path. This worst case has a name: a Single Point

of Failure (SPOF). SPOF describes an event where the entire system fails to execute.

To quote Wikipedia22:

A single point of failure (SPOF) is a part of a system that, if it fails,

will stop the entire system from working. SPOFs are undesirable in

20 http://wired.com
21 https://www.ghostery.com/en/
22 http://en.wikipedia.org/wiki/Single_point_of_failure

Lean Websites126

http://wired.com
https://www.ghostery.com/en/
http://en.wikipedia.org/wiki/Single_point_of_failure

any system with a goal of high availability or reliability, be it a

business practice, software application, or other industrial system.

The Offending Tag
We've discussed the critical rendering path and how JavaScript blocks rendering.

<script src="http://example.com/3rdparty-script.js"></script>

If example.com were to go down, the entire content after this tag would be blocked

from rendering. Imagine this tag sitting in the head of your page, blocking the entire

content of the page below it. That's pretty bad. So what can we do to fix this?

Avoiding SPOF
In this section, I'll describe a few ways to include scripts on a page and avoid the

risk of SPOF events.

The Dynamic Way

Have you heard of the dynamic script tag? It's been heavily promoted by Stoyan

Stefanov—the man behind the performant Facebook Like button—and Philip Tellis,

the creator of boomerang.js.

The idea is to asynchronously include a script, removing it from the critical rendering

path and thus preventing it from blocking the rendering—when, for example, the

host is slow to respond, or even down altogether. The browser downloads the script

in the background, and once downloaded, executes it using the regular JavaScript

thread:

1. <script>
2. (function(d,s,id){
3. var js, 3js = d.getElementsByTagName(s)[0];
4. if (d.getElementById(id)) {return;}
5. js = d.createElement(s); js.id = id;
6. js.src = "http://example.com.com/3rdparty-script.js";
7. 3js.parentNode.insertBefore(js, 3js);
8. }(document, 'script', '3rd-js'));
</script>

Let's look at this script line by line and see how it works:

127Producing Lean Web Assets: Part 1

■ Lines 2 and 8: this is an immediate, self-invoking function. We want to ensure

that any temporary variable remains in the local scope and doesn’t bleed into

the global namespace of the host's page. We pass d, s, and id as arguments,

since this is shorter than defining them in the body of the function.

■ Line 3: this line declares a variable and finds the first available <script> element

on the page. That's the easiest hook for including the script on the page, as op-

posed to randomly appending it.

■ Line 4: this line checks if the script is already on the page, and if so, exits straight

away, as there’s nothing more to do, because we only need the file once. It pre-

vents the script file from being included several times.

■ Line 5: this line creates a script element and assigns an id to it, so we can check

for it later, and also to make sure it's not appended twice by mistake.

■ Line 6: here you point the src attribute of the script element to your third-party

script.

■ Line 7: finally, we append the newly created script element to the DOM of the

host page and we’re done.

There are some drawbacks with this approach, though:

■ The script will still block on window.onload.

■ It also blocks the CSSOM (CSS object model), unless we place it before the CSS

is loaded.

So is there anything better out there that we could use? Yes, there is!

The Newer, Improved Way

Thankfully, more and more browser vendors have acknowledged the issue of loading

scripts synchronously and blocking the rendering, so the W3C23 has recommended

two new attributes for the <script> tag. Without them, the browser runs the script

immediately.

23 http://www.w3.org/TR/html5/scripting-1.html

Lean Websites128

http://www.w3.org/TR/html5/scripting-1.html

■ async: when using this attribute, the browser loads the script when it's available,

and won’t block the DOM or CSSOM. It has an unordered execution, which

means it can be placed anywhere on the page. This can be used for scripts that

tolerate an out-of-order execution.

■ defer: when using this attribute, the browser will run the script when the page

has finished parsing.

With these new attributes, we can solve the following issues that the dynamic tag

can't solve:

■ The async attribute does not block the CSSOM.

■ The preload scanner can only run on src and href, and hence can't preload

anything that is defined as an inline script. Since the dynamic script tag is

presented as an inline script, the scanner can't preload this piece.

Since these attributes are fairly new, only newer browsers support them, while older

browsers won't know what they mean and will just ignore them. If your target

audience uses IE8 and 9, or Android 2.2 or 2.3 devices, you might want to add defer

to the tag, just in case, as defer was introduced prior to async. Use the combination

of both attributes to cover a wider range of browsers24, as suggested by the W3C.

Tools for Fighting SPOF
Let's discuss a few tools and techniques for identifying potential SPOFs by collecting

information about the third-party scripts on the page and how they've been included.

■ The SPOF-O-Matic25 browser extension: Pat Meenan, the creator of WPT, released

SPOF-O-Matic, a useful Chrome extension. It detects potential SPOFs for a given

page, and can simulate them as well. Using this tool to simulate SPOF will reveal

how a website would render in case of a SPOF. It will help you detect if you've

placed the script in your critical rendering path, or if the rendering of your page

is unaffected by the third-party provider's code.

Install the Chrome extension, browse to a site you'd like to “SPOF-check”, and

click the SPOF-O-Matic button as shown below:

24 https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
25 https://chrome.google.com/webstore/detail/spof-o-matic/plikhggfbplemddobondkeogomgoodeg

129Producing Lean Web Assets: Part 1

https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/
https://chrome.google.com/webstore/detail/spof-o-matic/plikhggfbplemddobondkeogomgoodeg

Figure 6.3. Screenshot of the SPOF-O-Matic extension in Chrome

As you can see in Figure 6.3, SPOF-O-Matic offers options to list all possible

SPOF scripts (1), simulate SPOF via the browser (2), and to create a SPOF com-

parison video via WPT (3). I decided to “SPOF-check” wired.com because it relies

on ads. As soon as the page is loaded, the extension indicates that there might

be three scripts that could cause SPOF. Clicking on the badge opens up an addi-

tional window. It lists all scripts in detail. You can either choose to Enable SPOF

via the browser and see the impact by reloading the page immediately, or by

clicking the Generate SPOF Comparison Video link.

By clicking the link, you'll get redirected to WPT, where the scripts are already

populated in a SPOF text box, located under Advanced Settings. When clicking

Start Test, WPT will run the site with and without SPOF simulation, and will

present you with a filmstrip, as shown in Figure 6.4:

Lean Websites130

Figure 6.4. Filmstrip26 of the SPOF simulation, including a link to the video comparison

If you want to record the filmstrip, click Create Video to report the test results as

a handy video that can either be downloaded or embedded for future reference.

■ SPOF simulator via WPT: if you don't want to use the browser extension, you

can use the SPOF functionality provided in WPT to simulate SPOF. WPT comes

with a SPOF tab in its Advanced Settings that allows you to simulate SPOF for any

given script. Just include the third-party script tags, and WPT will simulate what

happens when this provider's site is down:

26 http://www.webpagetest.org/video/compare.php?tests=141221_HG_GVN,141221_MH_GVP

131Producing Lean Web Assets: Part 1

http://www.webpagetest.org/video/compare.php?tests=141221_HG_GVN,141221_MH_GVP

Figure 6.5. Screenshot of WPT and the SPOF tab for including third-party scripts to test SPOF

■ Via blackhole in hosts file: instead of using WPT, you can also simulate SPOF

locally on your machine. Point the third-party domain to a blackhole27. The

address for the blackhole is blackhole.webpagetest.org, with corresponding IP

address 72.66.115.13. It's a host with a firewall rule to drop all incoming

packets, and hence simulates the host being down. Let's try it out:

■ Update the hosts file (please note you need to have administrator access to

the machine to edit these files).

■ For Windows, the file is located under C:\Windows\Sys-

tem32\drivers\etc\hosts.

■ On Mac, you can either use the Finder by clicking on Go -> Go to Folder

in the Finder's menu, and pasting in /private/etc/hosts, or by typing

in vi /private/etc/hosts in your preferred command line interface.

27 http://blog.patrickmeenan.com/2011/10/testing-for-frontend-spof.html

Lean Websites132

http://blog.patrickmeenan.com/2011/10/testing-for-frontend-spof.html

First, use the blackhole IP address, followed by a space, and the third-

party host address you want to simulate SPOF with.

72.66.115.13 www.google-analytics.com
72.66.115.13 connect.facebook.net
72.66.115.13 platform.twitter.com

■ On Mac, make sure to flush your DNS cache to apply the changes, typing

dscacheutil -flushcache in the CLI. Restarting the browser will clear

the browser's DNS cache as well.

■ Refresh the page in the browser and watch how the SPOF is being handled.

Browse your site or others to see how they cope with any of these scripts

being down.

Tips for Working with Third-party Scripts
Let's summarize what we've discussed in this section. Next time you look into in-

cluding any third-party scripts, consider the following tips:

■ In general, don’t just copy and paste scripts. Make sure you know what they do,

where to include them, and most importantly, why are they even being used.

■ Don't blindly use libraries and frameworks because they are convenient. Including

little external helpers and libraries adds more HTTP requests to our page.

Sometimes, we only need a fraction of what the library offers, and some specific

functionality could easily be written by us—with fewer lines of code, and without

an extra JavaScript include.

■ Make sure to allow yourself time to evaluate third-party scripts before including

them. Verify if the provider cares about performance, or if they can even offer

you help with including their scripts properly. Before choosing a provider, check

if their code is concatenated and minified, and if they suggest asynchronous

options for including the script. That should give you a good idea on where

performance sits in their list of priorities. Google has released a list of third-party

providers that offer asynchronous options. Review this list28 to verify what

providers play the proper performance game.

28 https://developers.google.com/speed/docs/insights/UseAsync

133Producing Lean Web Assets: Part 1

https://developers.google.com/speed/docs/insights/UseAsync

■ Put the risk and downtime of the third-party provider in the service level

agreement (SLA). Make sure the agreement covers you for losses when the third-

party provider goes down. This might encourage the provider to help you include

the script in the most performant way.

Choosing Third-party Providers

JS Manners29 is a handy scoring system to help publishers choose the right third-

party provider, based on specific performance characteristics.

Cool Down
■ You've received advice on optimizing HTML markup for performance, with tools

such as HTML Tidy or HTML Compressor.

■ You've been introduced to CSS best practices, and when and how to use different

performance selectors. Remember, the most efficient CSS selector is the ID.

■ Use tools such as CSS Shrink or CSSLint to help you identify non-performant

CSS selectors.

■ Performant JavaScript options have been presented to you. Avoid docu-

ment.write() and expensive loops. Strive for lean DOM operations, and step

back from repaints and reflows.

■ You've learned how third-party content can be evil, and how, if it's not included

properly, it could bring down your site. You've also been provided with options

for including third-party scripts properly, such as circumventing the offending

tag and using asynchronous loading options.

29 http://jsmanners.com/

Lean Websites134

http://jsmanners.com/

Chapter7
Producing Lean Web Assets: Part 2

Warm Up
This chapter continues the theme of producing lean web assets, focusing on images,

videos, audio, and web fonts. We'll cover several techniques for conquering common

performance challenges with these assets, including when to use web fonts, and

how to load them more efficiently.

Webpages have to be designed with speed in mind. In fact, speed

must be the overriding design criterion. To keep page sizes small,

graphics should be kept to a minimum and multimedia effects

should only be used when they truly add to the user's understanding

of the information.

This comment comes from the Nielsen Norman Group1 all the way back in 1997.

But it's actually still a valid suggestion, even almost 20 years later: you should only

include assets if they truly add value to your page.

1 http://www.nngroup.com/articles/the-need-for-speed/

http://www.nngroup.com/articles/the-need-for-speed/

Optimizing Images
Although images remain the main culprit for heavy and slow websites by having a

proven high correlation to load times2, they also offer some of the biggest opportun-

ities for optimization.

First, let's have a look at the most common image formats, the average image sizes

per page, and the median size of an image used on the top Alexa websites.

The most frequently used content type on the Internet is the image/* type. To further

break it down, the most used image format is JPEG, followed by PNG and GIF, as

shown in Figure 7.1:

Figure 7.1. Big Query3 result for most used image formats for top Alexa websites

The median image size used on the top Alexa websites was 30220 bytes, while the

total image size per page averages at around 1206KB4, as shown in the HTTP Archive

pie in Figure 7.2:

2 http://httparchive.org/interesting.php#onLoad
3 http://bbinto.github.io/lean-web-code/chapter-7/queries/
4 http://httparchive.org/trends.php

Lean Websites136

http://httparchive.org/interesting.php#onLoad
http://bbinto.github.io/lean-web-code/chapter-7/queries/
http://httparchive.org/trends.php

Figure 7.2. Average image size5

Compression and Image Formats
The most efficient way to optimize images is to compress them. The idea behind

image compression is to remove redundant image data. By doing so, the image size

is dramatically reduced, and the asset can be served faster to the browser.

Image compression can either be lossy or lossless.

■ Lossy image compression: the “lossy” filter eliminates some pixel data, mostly

applied to photos.

■ Lossless image compression: the “lossless” filter compresses pixel data—ideal

for technical drawings, clip art, or comics.

Further, there are two approaches to encoding image data—raster and vector

graphics, which are covered next.

5 http://httparchive.org/trends.php

137Producing Lean Web Assets: Part 2

http://httparchive.org/trends.php

Raster Graphics
Raster graphics represent an image by encoding the individual values of each pixel

within a rectangular grid. The following image formats fall under the category of

raster graphics:

DescriptionCompressionFormat

Best choice for photos or

screenshots, though not

LossyJPEG6

recommended for logos or

line art.

Its biggest advantage over

JPEG is that it offers lossy

Lossy and LosslessJPEG20007

and lossless compression.

Has the ability to deliver

much smaller files but the

same level of detail as

JPEG.

Loads in a series of scans,

starting with a

LossyProgressive JPEG8

low-resolution version,

with several versions in

between until the full

resolution has been

achieved.

Only supports 256 colors.

Use instead of JPEG if you

LosslessGIF9

only need a few distinct

colors, or need to create

text images. Allows

transparency, but is

mostly known nowadays

6 http://en.wikipedia.org/wiki/JPEG
7 http://en.wikipedia.org/wiki/JPEG_2000
8 http://en.wikipedia.org/wiki/JPEG
9 http://en.wikipedia.org/wiki/Graphics_Interchange_Format

Lean Websites138

http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/JPEG_2000
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Graphics_Interchange_Format

DescriptionCompressionFormat

for its support for

animations.

Can be 5%–25% more

compressed than GIF.

LosslessPNG10

Also supports

transparency. Use over

GIF if you need to

preserve a lot of colors.

Can be much smaller than

JPEG or GIFs, and hence

is a preferred format to

display text images or

logos. PNG-8, similar to

GIF, can support up to

256 colors, whereas

PNG-24 is able to display

millions of colors.

Another web image

format, developed by

Lossy and LosslessWebP11

Google, promising 45%

more compression than

PNG. It's not supported by

all browsers yet. We'll

discuss this later.

Progressive Images

It might seem obvious that progressive image rendering would improve perceived

load time12, because users receive visual feedback faster than with a regular JPEG

image. However, a study13 by Radware suggests that progressive images actually

harm perceived performance by increasing user frustration.

10 http://en.wikipedia.org/wiki/Portable_Network_Graphics
11 http://en.wikipedia.org/wiki/WebP
12 http://calendar.perfplanet.com/2012/progressive-jpegs-a-new-best-practice/
13 http://t.co/uDgtM2fFjv

139Producing Lean Web Assets: Part 2

http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/WebP
http://calendar.perfplanet.com/2012/progressive-jpegs-a-new-best-practice/
http://calendar.perfplanet.com/2012/progressive-jpegs-a-new-best-practice/
http://t.co/uDgtM2fFjv

Vector Graphics
Vector graphics are created from lines, points, and polygons. Vector graphics don't

lose quality when resized, whereas raster images become pixelated when you zoom

in on them.

The standard vector format for the web is Scalable Vector Graphics (SVG). Behind

the scenes, they are written in XML, and you could create them by hand. More

commonly, though, programs such as Adobe Illustrator and Corel Draw are used to

create and export them for the web.

You can even animate SVGs with JavaScript, but as always, consider how much

real value this adds to your pages before weighing them down with extra code.

As with raster images, SVGs can be optimized for fast loading by minimizing the

amount of data they contain. (For example, you may be able to remove lines and

points without reducing the quality of the graphic.) Again, you can optimize an

SVG manually, but it's more commonly done with various tools (some of which are

listed below). For further information on the performance of SVG images, check out

the 2014 Performance Calendar article14 by Sara Soueidan.

When to Use What?
In general, raster graphics should be used for complex scenes with detailed shapes

or forms, such as photorealistic images. Vector graphics are suitable for images that

consist of geometric shapes, such as logos. The advantage of vector graphics is that

they can be zoomed to any size without reducing the quality.

From a performance perspective, it mostly comes down to the file size of each indi-

vidual format. The file size for vector graphics is typically small, making them a

perfect fit for both multi-device and high-resolution screens.

Image Compression and Optimization Tools
Once you've decided on a format for your images, you can optimize them through

compression. The following table lists some useful, open-source tools for this pur-

pose. Most of them can run from the command line.

14 http://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/

Lean Websites140

http://calendar.perfplanet.com/2014/tips-for-optimising-svg-delivery-for-the-web/

Supported FormatsCompressionTool

PNG, GIF, JPEG, SVGOnline service, with a

limited, free online

Kraken.io15

version, plus a paid Pro

version with more

features, including an

API.

PNG, GIF, JPEG, SVGOnline service.Compressor.io16

JPEGCLI for lossless

optimization (including

jpegtan17

the removal of EXIF18

meta data, such as camera

information etc.).

Removing EXIF data can

reduce the file size of

your image.

PNGCLI for lossless

compression of PNG, also

optipng19

for converting other

formats to PNG.

PNGCLI for lossy compression

of PNG images.

pngquant20

GIFCLI for creating and

optimizing (animated)

GIFs.

gifsicle21

PNG and JPEGCLI for lossless

compression, and

Trimage22

15 https://kraken.io/
16 https://compressor.io/
17 http://jpegclub.org/jpegtran/
18 http://en.wikipedia.org/wiki/Exchangeable_image_file_format
19 http://optipng.sourceforge.net/
20 http://pngquant.org/
21 http://www.lcdf.org/gifsicle/
22 http://trimage.org/

141Producing Lean Web Assets: Part 2

https://kraken.io/
https://compressor.io/
http://jpegclub.org/jpegtran/
http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://optipng.sourceforge.net/
http://pngquant.org/
http://www.lcdf.org/gifsicle/
http://trimage.org/

Supported FormatsCompressionTool

removing EXIF and other

metadata.

Over 10024CLI for lossless

optimization.

ImageMagick23

PNG, GIF, JPEGStand-alone app or CLI

for lossless optimization

ImageOptim25

and removing

unnecessary color profiles

and other metadata.

SVGCLI for cleaning and

optimizing SVGs.

Scour26

While online tools and browser extensions are useful for occasional optimization

tasks, the command line tools can be used for batch processing and automation

during deployment. (See Chapter 8 for more on automation).

Data URIs
Data URIs provide another interesting option for including images on your page.

What looks like an image to you just looks like a long string of letters and numbers

to a computer. That long string is called a data URI.

A data URI is a Base6427 string. (Base 64 is an encoding scheme that represents

binary data in an ASCII string format.) Once you've converted your image to a data

URI, you can insert that string straight into your HTML or CSS—thus saving your

browser one HTTP request, which normally also means improving your site's per-

formance.

24 http://www.imagemagick.org/script/formats.php
23 http://www.imagemagick.org
25 https://imageoptim.com
26 http://codedread.com/scour/
27 http://en.wikipedia.org/wiki/Base64

Lean Websites142

http://www.imagemagick.org/script/formats.php
http://www.imagemagick.org
https://imageoptim.com
http://codedread.com/scour/
http://en.wikipedia.org/wiki/Base64

Let's use a leaf.png example image to show how to convert it to a data URI. There

are lots of tools for performing the conversion. I used DATAURL.NET28, as shown

in Figure 7.3:

Figure 7.3. Converting a PNG image to a data URI

Here's a trimmed version of the output:


”AABGdBTUEAALGPC/
 xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3Ccu

 +7Qwdz8SrsdYz2s7ee7rLc2M4qVcD23mRbJpOB3+fDnr17bT+bgBNTHS+y
”oNqFcVw2CzPT0/rQN+/erQ0VRpu9bs3+BwJLmvcQyqFgAAAAAElFTkSuQmCC

You can either put this code inside a style sheet or in an image tag in your HTML.

1. Data URI via the tag:

28 http://dataurl.net/#dataurlmaker

143Producing Lean Web Assets: Part 2

http://dataurl.net/#dataurlmaker

2. Via external or inline CSS:

.mydatauri {
 background:url(data URI output)
}

You can either use online tools to create data URIs as shown above, or use CLI tools.

For example, you could use CSSEmbed29 via the Java CLI runtime. This tool looks

through your CSS file and converts all images to base64 encoded strings within

your CSS. For example, consider this CSS:

/* style.css */
background: url('leaf.png');

By running the jar file, leaf.png will be converted to a data URI image.

java -jar cssembed.jar -o style_optimized.css styles.css

The new styleheet is outputted as follows (trimmed):

/* style_optimized.css
background:url(➥

XCAYAAAALH
+jAAAABGdBTUEAALGPCxhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA
...)

It's worth noting that base64 encoding makes file sizes roughly 33% larger30 than

their original binary representations. Therefore, it's better to use the data URI format

on smaller images rather than on larger ones, as it could worsen the performance

of your page. And of course, optimize your image as much as possible before con-

verting it to a data URI.

29 https://github.com/nzakas/cssembed/downloads/
30 http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/

Lean Websites144

https://github.com/nzakas/cssembed/downloads/
http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/

Also, watch out for caching limitations. Data URI images become part of a larger

HTML or CSS file, so to cache images encoded as data URIs, we need to cache the

pages that contain them. So, for example, if you put data URI images in your HTML,

they can only be cached as defined by the HTTP cache control header (we'll discuss

caching in more detail later). If the HTML is not cacheable, the entire content of the

HTML markup—including the inline data URI—will need to be re-downloaded

every single time a user visits the page. That can worsen performance if the image

is large. Hence, one option is to put the encoded image in your style sheet, as you

can then have a more aggressive cache for the CSS file, while the HTML page can

have no-cache or a very limited cache, as HTML content is more likely to change.

Large images make this more of a problem, so a useful rule of thumb is to not inline

any asset that is bigger than 4KB.

WebP
WebP is a relatively new image format that promises great file size savings over

PNGs and JPEGs.

WebP31 is an open-source image format, only currently supported in Chrome, Opera,

and Android. Some notable websites such as Facebook have started to adopt this

format32 with great success. Most images sent to Facebook and Messenger for Android

use the WebP format, which has resulted in data savings33 of 25–35% compared to

JPG, and 80% compared to PNG.

You can convert your images to WebP using a converter. I used ImageMagick34 to

convert leaf.png to WebP, by installing ImageMagick and running the following

command:

convert leaf.png -quality 50 -define webp:lossless=true leaf.webp

You can tweak the settings by adding additional options35.

31 https://developers.google.com/speed/webp/?csw=1
32 http://highscalability.com/blog/2014/9/22/how-facebook-makes-mobile-work-at-scale-for-all-phones-

on-al.html
33 https://code.facebook.com/posts/485459238254631/improving-facebook-on-android
34 http://imagemagick.org/
35 http://www.imagemagick.org/script/webp.php

145Producing Lean Web Assets: Part 2

https://developers.google.com/speed/webp/?csw=1
http://highscalability.com/blog/2014/9/22/how-facebook-makes-mobile-work-at-scale-for-all-phones-on-al.html
http://highscalability.com/blog/2014/9/22/how-facebook-makes-mobile-work-at-scale-for-all-phones-on-al.html
https://code.facebook.com/posts/485459238254631/improving-facebook-on-android
http://imagemagick.org/
http://www.imagemagick.org/script/webp.php

One of the drawbacks of WebP is that not all browsers support this new format,

notably Firefox, Internet Explorer and Safari. So you'll need to save two versions

of the image, one in WebP and one in the legacy image format, which will take more

storage space on your server.

While it's recommended to experiment with different quality settings, as well as

compression options, to verify which image format is smaller and comes with less

detail loss, WebP will outperform JPEG and PNG files for size most of the time. Even

with comparable quality levels, WebP images are significantly smaller36.

We've gone over several image formats and techniques now. Let's see how they all

compare with each other.

Comparison of Image Formats
I ran a performance test where I compared the following formats for the previously

used leaf image37.

I used a vector-based source file of 180x180px and saved it to PNG, SVG, WebP,

and created a data URI from the PNG.

1. Inline Data URI38: base64 encoded image included inline as an image via :

2. WebP39: PNG converted into WebP with ImageMagick, and referenced as a

background image via external CSS:

/* style.css*/
.leanleaf{
 background-image: url(../img/leaf.webp);
 /* ... */
}

36 https://www.andrewmunsell.com/blog/jpg-vs-webp
37 http://www.vectorvaco.com/grass-and-green-vector-13164/
38 http://www.bbinto.me/lean-websites/chapter-4/data-uri/data-uri-inline/
39 http://www.bbinto.me/lean-websites/chapter-4/data-uri/webp/

Lean Websites146

https://www.andrewmunsell.com/blog/jpg-vs-webp
http://www.vectorvaco.com/grass-and-green-vector-13164/
http://www.bbinto.me/lean-websites/chapter-4/data-uri/data-uri-inline/
http://www.bbinto.me/lean-websites/chapter-4/data-uri/webp/

3. SVG40: exported vector-based source file to SVG, included as a background image

via an external CSS file:

/* style.css*/
.leanleaf{
 background-image: url(../img/leaf.svg);
 /* ... */
}

4. Data URI41: base64 encoded and included as a background image in an external

CSS file:

/* style.css*/
.leanleaf{
 width:156px;height:169px;background:url(data:image/png;base64,
➥iVBORw0KGgoAAAANSUhEUgAAALQAAAC0CAYAAAA9zQYyA...)
➥ no-repeat;margin:auto auto;}

5. PNG42: PNG image, referenced as a background image via external CSS:

/* style.css*/
.leanleaf{
 background-image: url(../img/leaf.png);
 /* ... */
}

After creating the sample pages, I tested the load times and file size of each page.

To get some representative performance data, I used phantomJS43 to record the load

time measurements for each example page (100 data points each).

40 http://www.bbinto.me/lean-websites/chapter-4/data-uri/svg/
41 http://www.bbinto.me/lean-websites/chapter-4/data-uri/data-uri-external
42 http://www.bbinto.me/lean-websites/chapter-7/data-uri/png-css
43 http://phantomjs.org/

147Producing Lean Web Assets: Part 2

http://www.bbinto.me/lean-websites/chapter-4/data-uri/svg/
http://www.bbinto.me/lean-websites/chapter-4/data-uri/data-uri-external
http://www.bbinto.me/lean-websites/chapter-7/data-uri/png-css
http://phantomjs.org/

PNGExternal

Data URI

SVGWebPInline Data

URI

Result

282258216179142.5Median

(ms)

195910085216117699873HTML size

(bytes)

Inline data URI and WebP show the fastest median load times, whereas PNG as a

CSS background image loads the slowest, followed by the data URI in CSS and the

SVG served via CSS.

If you're not sure what format is going to give the best performance for your site,

try collecting some load time data first, to see what format proves to be the most

performant.

Optimizing Video
Like images, video files tend to be bigger than CSS, JavaScript, or HTML files, so

they come with a higher performance price, though they can also add value to your

site.

Your videos should be encoded to play on as many devices as possible, but also

should be no larger than necessary. Many of your users may have slow download

speeds and expensive data plans. Several of the top Alexa websites use auto-playback

for videos on their landing page, leaving a huge performance footprint for visit-

ors—which results in many “F” marks in WPT44.

Video file size is dependant on frame and bit rate, resolution, compression format,

and delivery method. In this section you'll learn how to optimize these factors.

Video Creation and Content
The more complex a video is, the harder it is to compress, which makes it more

difficult to optimize. If you have control over how the video is shot, there are steps

you can take to ensure that the video will be easier to compress:

■ Aim for noise-free content.

44 http://www.webpagetest.org/result/141028_30_CJV/

Lean Websites148

http://www.webpagetest.org/result/141028_30_CJV/

■ Keep the number of zooms to a minimum.

■ Keep the number of background details and movements to a minimum.

Audio

Studies45 have shown that audio quality can affect perceived video quality.

This means that if you have good-sounding audio, people will think your

video looks better. That said, if your video uses mostly spoken words, and no

music, you should be fine46 using mono rather than stereo audio (which will

save some bandwidth that can be allocated to the video instead).

Audio bit rates should be defined47 based on their content, and therefore only

set as high as your content demands. Rates between 64 and 128kbit/s are suf-

ficient for most cases. For recording human speech, a low bit rate of around

64kbit/s is acceptable. For music audio, a higher bit rate of 192kbit/s would

be ideal.

File Size: Frame Rate, Bit Rate, and Resolution
Video settings including frame rate, bit rate and resolution, each of which affects

the file size of a video.

Frame Rate The frame rate is defined as the number of frames that appear every

second. It's measured in frames per second (fps). The higher the

frame rate or resolution, the better the video experience for the user.

However, every tweak to increase the frame rate will increase the

overall file size—so it's important to identify what the intention of

your video is. For example, if you record a PowerPoint presentation

with very little movement but you care about image quality, you

might want to focus more on higher resolution and lessen the frame

rate. For fast-moving recordings, such as sports events, you'll want

to make sure to capture as many frames48 per second as possible,

while giving up a bit of your resolution in return.

45 http://web.media.mit.edu/~vmb/papers/russ_sound.pdf
46 https://ustream.zendesk.com/entries/22962268-Encoding-Specs-and-Stream-Settings#bandwidth
47 http://support.video.limelight.com/support/docs/encoding_guide/
48 https://ustream.zendesk.com/entries/22962268-Encoding-Specs-and-Stream-Settings#recommended

149Producing Lean Web Assets: Part 2

http://web.media.mit.edu/~vmb/papers/russ_sound.pdf
https://ustream.zendesk.com/entries/22962268-Encoding-Specs-and-Stream-Settings#bandwidth
http://support.video.limelight.com/support/docs/encoding_guide/
https://ustream.zendesk.com/entries/22962268-Encoding-Specs-and-Stream-Settings#recommended

Resolution There are two common resolution formats—standard definition (SD)

and high definition (HD). Most common resolutions for SD videos

include 640x480px (4:3 aspect ratio) and 640x360px (16:9 aspect

ratio). HD video is usually formatted at 720p (1280x720px) or 1080p

(1920x1080px).

Obviously, the higher the resolution, the greater the file size of a

video, and the longer it will take to deliver to your online consumers.

Bit Rate The bit rate controls the visual quality of the video and the file size,

measured in kilobits per second (kbit/s). Adobe49 recommends lower

bit rates for videos delivered over the web. Depending on the resol-

ution, the following bit rates could serve as a guideline50: for SD,

use 2,000–5,000kbit/s; for HD, use 5,000–10,000kbit/s for 720p, and

10,000–20,000kbit/s for 1080p.

Containers, Codecs and Compression
Once you've selected the frame rate, resolution and bit rate, you'll need to render

the video to a specific video format. These formats are also called video containers.

Video containers contain codecs, so the video player knows how to read and play

the file.

Containers
The most common video formats are shown below:

DescriptionFormat

Used for YouTube and Vimeo videos.

No default video player on Windows

.mp451 (H.264 encoded)

can play the file format. Tools such as

VLC are required for playback.

49 http://help.adobe.com/en_US/mediaencoder/cs/using/WSb8e30982e628fbecc0e59e6131255b4dd2-

8000.html#WSb8e30982e628fbecc0e59e6131255b4dd2-7ffd
50 https://vimeo.com/help/compression
51 http://en.wikipedia.org/wiki/MPEG-4_Part_14

Lean Websites150

http://help.adobe.com/en_US/mediaencoder/cs/using/WSb8e30982e628fbecc0e59e6131255b4dd2-8000.html#WSb8e30982e628fbecc0e59e6131255b4dd2-7ffd
https://vimeo.com/help/compression
http://en.wikipedia.org/wiki/MPEG-4_Part_14

DescriptionFormat

No default video player on Windows

can play the file format. Tools such as

VLC are required for playback.

.mov52 (H.264 encoded)

No default video player on Mac can play

the file format. Tools such as VLC are

required for playback.

.wmv53

Flash player required, not supported by

all devices (e.g. iOS).

.flv54

Open-source, candidate for HTML5

video format.

.ogg55

Codecs and Compression
The codec determines how the video is compressed and decompressed (hence the

name codec). Part of that process is determining the complex relationship between

bit rate and resulting quality.

Have you ever tried to export a video you created with iMovie? There are many

settings you can choose, because there are lots of video and audio codecs available.

These are some common ones:

■ H.26456: video encoding standard for Blu-ray discs, Vimeo, YouTube and the

iTunes store. The intention of this codec is to provide good video quality with

low bit rates. It's also the most used video codec today for mobile and web,

providing small file sizes but higher quality video than other codecs (e.g. Sorensen

Spark57, Google's On2) while still having the same bit rate.

■ MP3 (MPEG-1 Audio Layer 358): MP3 is the most popular audio codec. For

compatibility reasons, and due to its age, MP3 has been the most commonly

52 http://en.wikipedia.org/wiki/QuickTime
53 http://en.wikipedia.org/wiki/Windows_Media_Video
54 http://en.wikipedia.org/wiki/Flash_Video
55 http://en.wikipedia.org/wiki/Ogg
56 http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
57 http://en.wikipedia.org/wiki/Sorenson_Media#Encoding_Technologies
58 http://en.wikipedia.org/wiki/MP3

151Producing Lean Web Assets: Part 2

http://en.wikipedia.org/wiki/QuickTime
http://en.wikipedia.org/wiki/Windows_Media_Video
http://en.wikipedia.org/wiki/Flash_Video
http://en.wikipedia.org/wiki/Ogg
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/Sorenson_Media#Encoding_Technologies
http://en.wikipedia.org/wiki/Sorenson_Media#Encoding_Technologies
http://en.wikipedia.org/wiki/MP3

supported audio codec. However, if you choose purely by quality and perform-

ance, you'd want to go with AAC+.

■ AAC+ (Advanced Audio Coding59): AAC+ is an audio codec that offers the best

audio quality at low bit rates. It's used by YouTube, iPhone, PlayStation, Android,

Blackberry etc.

Delivery Method
Common delivery methods for videos over the web include streaming, download,

and progressive download. Based on the file size and bandwidth, you'll get different

performance results for different user scenarios.

Streaming
Streaming is achieved using a streaming protocol where the streamed video is

watched from within the browser. Streaming can also be cacheless, allowing the

streaming publisher to make it more secure and not easy to store locally. Two of

the most well-known examples for streaming video services are YouTube and Vimeo.

There are two main protocols for streaming web video content. Both of them focus

on bandwidth optimization, and are delivered by dedicated streaming servers.

■ RTMP (Real Time Messaging Protocol60) is older and runs on port 1335, meaning

that it potentially won't be viewable by visitors who only have port 80 open

(HTTP). It was developed by Macromedia (now Adobe) to stream audio, video

and data over the Internet for Flash players.

■ A more common streaming solution offers HLS (HTTP Live Streaming61)/HDS

(HTTP Dynamic Streaming62). The video stream is split up into timed chunks

(usually 10 seconds). The browser makes a regular HTTP request for each chunk

of data. This means that the same optimization rules apply here as for other assets

such as CSS and HTML. For example, caches can take advantage of the chunked

discrete data and cache video streams for multiple users—something you can't

do with RTMP.

59 http://en.wikipedia.org/wiki/Advanced_Audio_Coding
60 https://www.adobe.com/devnet/rtmp.html
61 http://en.wikipedia.org/wiki/HTTP_Live_Streaming
62 http://www.adobe.com/ca/products/hds-dynamic-streaming.html

Lean Websites152

http://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://www.adobe.com/devnet/rtmp.html
http://en.wikipedia.org/wiki/HTTP_Live_Streaming
http://www.adobe.com/ca/products/hds-dynamic-streaming.html

Download
Downloading means fetching the video file as one single, large file using HTTP.

Normally this means your user has to download the entire video file before playing

it back.

Depending on the size of the file, this might require the user to wait before they can

play the video. Therefore, streaming might be more appropriate for bigger files and

longer videos. If you don't have access to a streaming server, however, having the

file reached via HTTP download might be an easier solution. Additionally, if you

know your users have slow Internet connections, or the video needs to be high

quality, download could be your best option.

Progressive Download
Video formats can be optimized for progressive download, allowing the video to

be playable while the download is in progress. The technical definition of progressive

download63 is that the video is delivered by a regular HTTP web server rather than

a streaming server, stored on the viewer's hard drive, and then played from the hard

drive.

This is the opposite of streaming, where the video usually is not stored or cached

locally, and the viewer can't watch it later. Progressive download is sometimes

called “Fast Start”.

In addition, HTTP/1.1 allows the browser to request a specific piece of the video

resource. You can use the Accept-Range HTTP header to tell the server only to de-

liver a subset of bytes from the total video file, making it more feel like “pseudo

streaming64”. This provides the user with the advantage of not having to wait until

the complete file has been downloaded.

Video Hosting
In order to avoid thinking about what kind of delivery method to use, it might make

the most sense to host your video on YouTube or Vimeo—services that are optimized

for speedy content delivery.

63 http://www.onlinevideo.net/2011/05/streaming-vs-progressive-download-vs-adaptive-streaming/
64 http://1stdev.com/tremendum-transcoder/articles/seeking-videos-beyond-the-buffer-line/

153Producing Lean Web Assets: Part 2

http://www.onlinevideo.net/2011/05/streaming-vs-progressive-download-vs-adaptive-streaming/
http://www.onlinevideo.net/2011/05/streaming-vs-progressive-download-vs-adaptive-streaming/
http://1stdev.com/tremendum-transcoder/articles/seeking-videos-beyond-the-buffer-line/
http://1stdev.com/tremendum-transcoder/articles/seeking-videos-beyond-the-buffer-line/

In addition, they provide sharing options so you can include your video on your

own website. Online video platforms have powerful servers that deliver reliable

video content. They normally offer a Flash and HTML5 version of the source as

well, making it easily accessible and optimized even on a mobile device.

You could also host the video on your own web server, though some hosting pro-

viders limit the amount of bandwidth and data that can be downloaded from your

website.

Web Fonts
You can use custom web fonts to display fonts that are not installed on the visitor's

computer. Using a web font can be especially helpful when a specific font is part

of your corporate identity. In Figure 7.4 you can see that airbnb.com makes use of

several web fonts:

Figure 7.4. airbnb.com uses several custom fonts, shown via developer tools

Web fonts have become very popular in recent years. According to HTTP Archive,

in October 2014 48%65 of the top 1 million Alexa websites were using web fonts.

However, web fonts come with a performance price. So how do you include web

fonts without overly impacting your site's performance?

65 http://httparchive.org/trends.php

Lean Websites154

http://httparchive.org/trends.php

You should decide if you want to store the fonts on your server or include them via

an external font hosting service. Storing font files on your own server does add to

your bandwidth usage, though it saves your browser and extra DNS lookup—which

it has to perform when retrieving fonts from a third-party hosting service. However,

external hosting services can provide you with optimized solutions to deliver a

smooth experience for the user, usually with minimal performance impact.

Hosting Fonts on Your Own Server
If you want to host a web font on your own server and call it via the standard @font-

face CSS selector—and have the font rendered by all browsers and platforms—you'll

need to make it available in WOFF66, TTF67, EOT68 and SVG69 formats. In time, it's

hoped that WOFF will be supported by all browsers. WOFF is special in that is can

be encoded in base64, as a data URI—and as we learned previously, data URI encod-

ing can be beneficial for performance, as it reduces the number of HTTP requests

we need to make.

Before adding web fonts to your site, be sure to optimize them. Web fonts vary

enormously in size, partly depending on the number of characters they contain.

You may only need a few hundred characters, while fonts with comprehensive

Unicode coverage can contain thousands of character forms, or glyphs. You can

actually remove unneeded glyphs from a font file to make it smaller with the help

of tools like Glyphs70 and FontForge71.

External Font Hosting
Instead of hosting web fonts on your own server, you can opt for one of the many

third-party font services, such as Google Fonts72 or TypeKit73. All you need to do

with these services is select a few options to retrieve a simple line of code to include

on your site. You do pay a performance price for this, by accepting another DNS

lookup; but by choosing a popular web font, you might be able to benefit from cross-

66 http://caniuse.com/woff
67 http://caniuse.com/ttf
68 http://caniuse.com/eot
69 http://caniuse.com/svg
70 http://www.glyphsapp.com/
71 http://fontforge.github.io
72 http://www.google.com/fonts
73 https://typekit.com/

155Producing Lean Web Assets: Part 2

http://caniuse.com/woff
http://caniuse.com/ttf
http://caniuse.com/eot
http://caniuse.com/svg
http://www.glyphsapp.com/
http://fontforge.github.io
http://www.google.com/fonts
https://typekit.com/

site caching. Cross-site caching means that by using a popular, hosted font, the

chances are high that your visitor already has the font cached from a previously

visited site. It's worth checking out Google Fonts Analytics74 to find the most pop-

ular of its web fonts.

When selecting a Google font, you have the option of defining your character set

with a parameter in the API call:

<link href="http://fonts.googleapis.com/css?family=Open+Sans&subset=
➥latin" rel="stylesheet">

Google Fonts offers a helpful performance gauge for determining the page-load-time

impact of including its fonts on your site. In Figure 7.5 you can see that including

a relatively simple and limited character set has a small impact, while Figure 7.6

shows that including multiple fonts with multiple sets has a much greater impact:

Figure 7.5. Google Fonts service with performance gauge

74 http://www.google.com/fonts#Analytics:total

Lean Websites156

http://www.google.com/fonts#Analytics:total

Figure 7.6. Google Fonts service with performance gauge, showing a performance alert

With Google fonts, if you know that you only need one word in a particular web

font, you can use the text parameter to specify just the characters you need. By

using character subsetting, you guarantee the best optimization for the font, as you

only request the characters for the specific word:

<link href="http://fonts.googleapis.com/css?family=Inconsolata&
➥text=Welcome%20Readers!" rel="stylesheet">

Once you've settled on one (or more than one) web font, make sure to asynchronously

include it to avoid render blocking.

However, if using asynchronous options, you run into the risk of showing your

users a FOUT (flash of unstyled text). Most browsers75 have adopted FOUT. Chrome

and Firefox share the same behaviour when dealing with loading of custom fonts:

they timeout after 3 seconds and use a fallback font, and only re-render the text

once the font download has completed. IE immediately renders the content with

75 https://www.igvita.com/2014/01/31/optimizing-web-font-rendering-performance

157Producing Lean Web Assets: Part 2

https://www.igvita.com/2014/01/31/optimizing-web-font-rendering-performance

the fallback font, re-rendering once the custom font is loaded. Safari suspends font

rendering until the font has completely downloaded. Google has worked together

with TypeKit to provide a performant Web Font Loader to combat FOUT, which

we'll discuss next.

Web Font Loader
The Web Font Loader76 (WFL) provides added control over linked fonts using the

@font-face attribute. The idea is to help prioritize these assets—for example, by

scheduling when to download the font, or how the font should be rendered (syn-

chronously or asynchronously). It fights the FOUT effect by first wrapping the entire

HTML content77 in a wf-loading class. The content of wf-loading is hidden at

first. Once the fonts have loaded, the content visibility is brought back with the wf-

active class, including a fade-in effect.

The example below shows Open Sans and Satisfy being loaded via WFL:

<script>
 WebFontConfig = {
 google: {
 families: ['Open Sans', 'Satisfy']
 }
 };

 (function() {
 var wf = document.createElement('script');
 wf.src = ('https:' == document.location.protocol ? 'https' :
➥ 'http') +
 '://ajax.googleapis.com/ajax/libs/webfont/1.5.6/
➥webfont.js';
 wf.type = 'text/javascript';
 wf.async = 'true';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(wf, s);
 })();
</script>

More information on configuration, and how to include TypeKit fonts, can be found

in the WFL documentation.

76 https://github.com/typekit/webfontloader
77 https://decadecity.net/talks/using-a-web-font-loader

Lean Websites158

https://github.com/typekit/webfontloader
https://decadecity.net/talks/using-a-web-font-loader
https://decadecity.net/talks/using-a-web-font-loader

Font Load Events API

The new Font Load Events API78—currently in draft mode—will eventually give

full control over managing how and when fonts are loaded and rendered. However,

until this API is fully supported in all browsers, I suggest you use WFL.

Web Font Tips
■ Think twice before adding custom fonts, unless they are essential for your

company's brand. As well as affecting performance, too many different fonts can

clutter your design.

■ Consider loading web fonts only on less connection-sensitive devices.

■ If you decide to host fonts yourself, optimize them with tools like Glyphs79 or

FontForge80.

■ As a general rule, avoid the hassle of doing it all by yourself. Leverage the power

and efforts of Google's font infrastructure, making use of cross-site caching and

Google's optimization techniques, thus presenting the user with the most optim-

ized version for their device.

Now that we've discussed ways to optimize our site assets, we'll next look at rolling

all these techniques into an automated performance optimization workflow.

Cool Down
■ While images remain the biggest cause of poor web performance, there are many

ways to optimize them.

■ Select an image format that best suits your purpose, weighing up the advantages

and disadvantages of each.

■ Use the tools available to you for measuring the performance of each image

format, including data URIs.

78 http://dev.w3.org/csswg/css-font-loading/
79 http://www.glyphsapp.com/
80 http://fontforge.github.io

159Producing Lean Web Assets: Part 2

http://dev.w3.org/csswg/css-font-loading/
http://www.glyphsapp.com/
http://fontforge.github.io

■ Think carefully about the video format and delivery method you choose—be it

streaming, download or progressive download—to help ensure optimal perform-

ance.

■ Use web fonts wisely, weighing up the needs of design and branding against the

performance impact of downloading extra assets. And consider using a web font

loader to help you manage font loading during the rendering process.

Lean Websites160

Chapter8
Automating Optimization Tasks

Warm Up
This chapter is my favourite of the entire book. It covers tools that automate website

performance optimization. There are innumerable tools for automating the whole

gamut of web development tasks, and many of them are well suited to the optimiz-

ation tasks presented in this book.

In this chapter, I'll first introduce some helpful scripts and APIs that you can use

for automation. After explaining how to use these tools, I'll apply them to a concrete

example, using the task runner Grunt.

Automation Tools
This section covers tools for automating performance optimization. Their purpose

is to validate code against the performance guidelines discussed in the previous

chapters, returning results in a structured format such as JSON or XML.

PhantomJS in Collaboration with Other Tools
Up until now, we've done all our performance testing manually, so to speak, using

tools such as WPT, PageSpeed Insights and the YSlow browser extension. Now we

turn instead to PhantomJS1, a headless browser—meaning that you can use it to

open a website and run commands on it via the command line. With PhantomJS,

we can run the same tests—using YSlow, for example—without ever opening a

browser window.

By combining PhantomJS with other tools, you can monitor page and network per-

formance2, and make this a part of your deployment process.

Here's a simple example of how PhantomJS opens a web page:

// open-mypage.js
var page = require('webpage').create();
page.open('http://bbinto.me', function() {
 // do your stuff
 console.log('Just opened bbinto.me');
 phantom.exit();
});

You can execute this code as follows:

$ phantomjs open-mypage.js

Let's look at an actual example of using PhantomJS with YSlow to analyze a simple

demo page3. Firstly, as a comparison, Figure 8.1 shows the YSlow result in the

browser, the site achieving an overall performance score of 87:

1 http://phantomjs.org/
2 http://phantomjs.org/network-monitoring.html
3 http://bbinto.me/lean-websites/crp/index.html

Lean Websites162

http://phantomjs.org/
http://phantomjs.org/network-monitoring.html
http://phantomjs.org/network-monitoring.html
http://bbinto.me/lean-websites/crp/index.html

Figure 8.1. YSlow via the Firefox extension, visual representation within browser window

Now let's look at the performance results produced by YSlow via the headless

browser.

■ Firstly, we retrieve simple JSON output:

$ phantomjs yslow.js --info basic http://bbinto.me/lean-websites/
➥crp/index.html

// result
$ {"v":"3.1.8","w":623435,"o":87,"u":"http%3A%2F%2Fbbinto.me%2Fle
➥an-websites%2Fcrp%2Findex.html","r":19,"i":"ydefault","lt":2191}

The key to the results is as follows:

■ v: version

■ w: weight

■ o: overall score

163Automating Optimization Tasks

■ u: URL

■ r: number of requests

■ i: performance ruleset (from ydefault, yslow1 or yblog)

■ lt: page load time

The overall score “87” matches the one from the YSlow extension running in

the browser.

■ Here's an example of a full test, including predefined conditions that the website

is being tested against. If conditions are not met, the test fails and returns a

warning. The following command defines thresholds to check if the website has

an overall score of B (or better):

$ phantomjs yslow.js --info basic --format tap --threshold B http:
➥//bbinto.me/lean-websites/crp/index.html

The test passed:

$ TAP version 13
1..1
ok 1 B (87) overall score

The threshold value can range from 0 to 100 (with 100 being the strictest), or

can be validated with A–F marks, where A is the best and F the worst.

You can pick the thresholds appropriate for your website. For example, you

could even be more specific and rigorous and set the threshold on HTTP requests

(ynumreq:A) to 95, as follows:

$ phantomjs yslow.js --info grade --format tap --threshold '{"ynum
➥req": "95"}' http://bbinto.me/lean-websites/crp/index.html

The examples above use the ydefault ruleset specified in the yslow.js file. That's

the same ruleset that is being used when you run YSlow via the browser extension.

The ruleset defines how the overall score is calculated, based on the criteria to be

tested.

Lean Websites164

In contrast to using YSlow on its own, using it with PhantomJS allows for more

customization of performance tests and thresholds. To make this an even more op-

timized process, you can add the PhantomJS script to your continuous deployment

process. Continuous integration tools such as Jenkins or Travis offer automated

testing environments, and can alert you when one of the test criteria fails during

website integration or production.

Continuous Delivery, Continuous Integration

Continuous delivery involves building software such that it can go into production

at any time. Continuous integration involves regularly testing and merging changes

into a project. Continuous integration builds can be started by various events,

such as being triggered by a commit in a version control system, scheduling via

a cron-like mechanism, or building when other builds have completed, etc.

Tools such as Jenkins4 or Travis5 help organizations to run these processes.

WPT API and PageSpeed Insights API
Instead of using PhantomJS as your browser to test a website for performance, you

can also query performance APIs in the cloud. As noted in Chapter 3, PageSpeed

Insights and WPT both offer APIs. You can use these APIs to integrate performance

tests into your deployment process.

Let's start with the WPT API, to illustrate how it can be used to detect bad perform-

ance decisions without us needing to analyze anything manually in a browser

window.

Marcel Duran, a Google Engineer, has built a plugin for the WPT API6 to work with

continuous integration tools.

By providing Duran's WPT API wrapper with a specs.json file, you can specify how

to run a performance test, and when the test should pass or fail. Let's check out

some example content for specs.json:

4 http://en.wikipedia.org/wiki/Jenkins_%28software%29
5 https://travis-ci.org/recent
6 https://github.com/marcelduran/webpagetest-api/wiki/Test-Specs

165Automating Optimization Tasks

http://en.wikipedia.org/wiki/Jenkins_%28software%29
https://travis-ci.org/recent
https://github.com/marcelduran/webpagetest-api/wiki/Test-Specs

{
 "median": {
 "firstView": {
 "requests": 20,
 "render": 400,
 "loadTime": 4000
 }
 }
}

The sample above creates the following ruleset: the page to be tested should not

have more than 20 HTTP requests on first view, the render time should be below

400ms, and the total load time should be less than 4000ms. You're not limited to

testing these properties, though. You can use any of the attributes in the WPT API

JSON response to define your thresholds.

Here's the command we issue to start the test:

webpagetest test http://urltotest.com ---specs specs.json

The returning JSON response will be compared with the specs.json file, and outputs

the following test result:

WebPageTest
 ✓ median.firstView.requests: 10 should be less than 20
 1) median.firstView.render: 600 should be less than 400
 ✓ median.firstView.loadTime: 2500 should be less than 4000
 2) median.firstView.score_gzip: 50 should be greater than 90

 2 passing
 2 failing

Similar to YSlow for PhantomJS, you could easily hook into the API from your

continuous build machine to monitor your website's performance for each build,

issuing an alarm when any threshold has been crossed.

Let's now move on to the PageSpeed Insights API. The following request will provide

you with PageSpeed results for bbinto.me:

Lean Websites166

curl GET https://www.googleapis.com/pagespeedonline/v1/runPagespeed?
➥url=http%3A%2F%2Fwww.bbinto.me&key={YOUR_API_KEY}"

By default, the result comes back in JSON format, as follows:

{
 "kind": "pagespeedonline#result",
 "id": "http://www.bbinto.me/",
 "responseCode": 200,
 "title": "bbinto.me",
 "score": 51,
 "pageStats": {
 "numberResources": 79,
 "numberHosts": 13,
 "totalRequestBytes": "7990",
 "numberStaticResources": 44,
 "htmlResponseBytes": "107091",
 "cssResponseBytes": "249769",
 "imageResponseBytes": "1500676",
 "javascriptResponseBytes": "787229",
 "otherResponseBytes": "115450",
 "numberJsResources": 28,
 "numberCssResources": 10
 },
 // ...

Looking at the JSON result above, you could focus on a few criteria, such as the

value of score or numberResources, to trigger an alarm if the defined thresholds

have been exceeded. By reading the results of the performance JSON file, you can

programmatically detect and react to performance issues without ever having to

run the page through the online browser version of PageSpeed Insights.

Note that these validation checks for the PageSpeed API are only possible if your

site is already live. If you need to validate results like this before deploying, you

will need to look at WPT's private instance7 and use its API via the private instance.

That way, you can test internal integration pages as well. This is especially helpful

for newly launching sites.

7 https://sites.google.com/a/webpagetest.org/docs/private-instances

167Automating Optimization Tasks

https://sites.google.com/a/webpagetest.org/docs/private-instances

Task Runners and Build Systems
The goal of task runners is to set up a sequence of tasks that are automatically ex-

ecuted, saving developers from repetitive manual work. There are several popular

task runners available, but for the purposes of this book, I will focus on Grunt.

Grunt
Grunt8 is a JavaScript-based task runner that not only automates website development

and deployment tasks, but also includes handy performance tools. Let's look at a

few of them.

Applicable Exercise RuleDescriptionPerformance Tools

Reduce file size and

HTTP requests

A Grunt task for Closure

Compiler (a tool that

grunt-closure-compiler9

minifies and concatenates

files).

Reduce HTTP requestsA Grunt task to combine

either JavaScript or CSS

files.

grunt-contrib-concat10

Reduce file sizeOnce your CSS files are

all concatenated, use

grunt-contrib-cssmin11

cssmin to shrink several

lines of CSS code into a

single line.

Reduce file sizeA Grunt task to optimize

images used on your

page.

grunt-contrib-imagemin12

Reduce file sizeUglify and concat go

almost hand in hand and

grunt-contrib-uglify13

8 http://gruntjs.com/
9 https://github.com/gmarty/grunt-closure-compiler
10 https://github.com/gruntjs/grunt-contrib-concat
11 https://github.com/gruntjs/grunt-contrib-cssmin
12 https://github.com/gruntjs/grunt-contrib-imagemin
13 https://github.com/gruntjs/grunt-contrib-uglify

Lean Websites168

http://gruntjs.com/
https://github.com/gmarty/grunt-closure-compiler
https://github.com/gruntjs/grunt-contrib-concat
https://github.com/gruntjs/grunt-contrib-cssmin
https://github.com/gruntjs/grunt-contrib-imagemin
https://github.com/gruntjs/grunt-contrib-uglify

Applicable Exercise RuleDescriptionPerformance Tools

should be used together.

Concat first combines all

defined JavaScript files.

Uglify only works on

JavaScript files. It

minifies all code in a one

line block of code. Use

cssmin for CSS files.

14KB head ruleFinds the above the fold

CSS for your page, and

outputs it into a file.

grunt-criticalcss14

Clean markupA Grunt task that runs

HTML Tidy.

grunt-htmltidy15

Reduce file sizeA Grunt task to minify

and compress HTML

files.

grunt-htmlcompressor16

Reduce HTTP requestsThis plugin encodes

images as base64 and

grunt-image-embed17

leverages the technique of

data URIs for images.

Reduce HTTP requestsA Grunt task to sprite

images. ImageMagick is

required.

grunt-montage18

Measure firstA Grunt plugin to run

Google PageSpeed

Insights as part of CI.

grunt-pagespeed19

14 https://github.com/filamentgroup/grunt-criticalCSS
15 https://www.npmjs.org/package/grunt-htmltidy
16 https://github.com/jney/grunt-htmlcompressor
17 https://github.com/ehynds/grunt-image-embed
18 https://github.com/globaldev/grunt-montage
19 https://www.npmjs.org/package/grunt-pagespeed

169Automating Optimization Tasks

https://github.com/filamentgroup/grunt-criticalCSS
https://www.npmjs.org/package/grunt-htmltidy
https://github.com/jney/grunt-htmlcompressor
https://github.com/ehynds/grunt-image-embed
https://github.com/globaldev/grunt-montage
https://www.npmjs.org/package/grunt-pagespeed

Applicable Exercise RuleDescriptionPerformance Tools

Measure first/Setup

baseline

Grunt task for

performance budgeting.

grunt-perfbudget20

Measure firstA Grunt task to produce

PhantomJS-based web

grunt-phantomas21

performance stats

collector and monitoring

tool.

Reducing file sizeA Grunt task for removing

unused CSS from your

projects.

grunt-uncss22

Reduce HTTP requestsA Grunt task that replaces

references to

grunt-usemin23

non-optimized scripts or

style sheets into a set of

HTML files.

Remove third-party

monsters

Can be used via CLI to

detect SPOF-potential

third-party scripts.

SPOFCheck24

Let's take some of the listed tasks above and apply them to an example web page.

The page includes a hero image, a link to the jQuery library hosted on Google's

CDN, a simple jQuery slideshow with previous and next buttons, and some links

to other JavaScript and CSS files. For comparison purposes, I've created two versions

of the page, one prior to running Grunt25 (titled “It's not magic”) and the other after

running Grunt26 (titled “It's magic”).

Prior to running Grunt, the slideshow images are not optimized, and there are sev-

eral individual CSS and JavaScript files that aren't minified or concatenated. After

20 https://github.com/tkadlec/grunt-perfbudget
21 https://www.npmjs.org/package/grunt-phantomas
22 https://github.com/addyosmani/grunt-uncss
23 https://github.com/yeoman/grunt-usemin
24 https://github.com/senthilp/spofcheck
25 http://bbinto.me/lean-websites/crp-grunt/without/magic.html
26 http://bbinto.me/lean-websites/crp-grunt/with/magic.html

Lean Websites170

https://github.com/tkadlec/grunt-perfbudget
https://www.npmjs.org/package/grunt-phantomas
https://github.com/addyosmani/grunt-uncss
https://github.com/yeoman/grunt-usemin
https://github.com/senthilp/spofcheck
http://bbinto.me/lean-websites/crp-grunt/without/magic.html
http://bbinto.me/lean-websites/crp-grunt/with/magic.html
http://bbinto.me/lean-websites/crp-grunt/with/magic.html

running Grunt, the page looks the same, but a lot has happened behind the scenes,

as I'll detail below.

Executing Grunt on the Example Page
Gruntfile.js defines the tasks to be executed. I've included several performance op-

timizing tools, such as a SPOF check that assesses any third-party blocking scripts.

The Gruntfile I am using here is a bit too big to list in this book; you can grab a copy

of this file from the code archive. To run Grunt, we just execute the grunt command

on the command line in the folder that contains the project.

So, what has been tested, changed, and improved?

■ The local CSS and JavaScript files have been minified and concatenated (using

grunt-concat, grunt-uglify, grunt-cssmin).

■ The images have been optimized via ImageMagick (using grunt-imagemin).

■ The “next” and “previous” buttons have been combined into a single sprite file

(using grunt-montage).

■ The title has changed from “It’s not magic” to “It’s magic” (although this isn't

really an optimization, using grunt-processhtml).

■ The HTML has been compressed, with comments removed (using grunt-html-

compressor).

■ A test for potential SPOF scripts has been run (using SPOF-check), warning of

potential problems during output.

Comparison
Let's compare the waterfalls for the two versions of the page. The “not magic” version

(prior to running Grunt) is shown in Figure 8.2. The “magic” version (after running

Grunt) is shown in Figure 8.3. You can see the difference in the number of assets

being downloaded:

171Automating Optimization Tasks

Figure 8.2. Waterfall of the “not magic” page

Figure 8.3. Waterfall of the “magic” page

Let's also have a look at the WPT video comparison of the two pages, specifically

focusing on the “Fully Loaded” metric. As you can see, the magic file wins:

Lean Websites172

Figure 8.4. WPT video comparison27 of our pages

Here is the breakdown by WPT metrics:

With magicWithout magicPerf Results

1.148s1.457sStart Render Time

2.176s2.583sFully Loaded

615KB692KBBytes

17192222Speed Index

8882PageSpeed Score

The optimization tasks we've done here with Grunt could have been done manually,

but it would be quite a chore to keep working this way on a regular basis. Using

task runners to take care of performance optimization can speed up the development

process and make producing lean websites easier.

Grunt Alternatives
Gulp28 is an alternative to Grunt, similarly automating common performance tasks

like minifying JavaScript and compiling preprocessed CSS. While Grunt writes a

lot to the file system, changing files, Gulp executes most operations in memory before

writing it to disk (using streams). Most of the Grunt tasks are also available for Gulp,

such as gulp-concat29, gulp-minify-html30, etc.

27 http://www.webpagetest.org/video/compare.php?tests=150123_B7_2RD%2C150123_61_2RB&thumb-

Size=100&ival=100&end=visual#
28 http://gulpjs.com/
29 https://www.npmjs.com/packages/gulp-concat
30 https://www.npmjs.com/packages/gulp-minify-html

173Automating Optimization Tasks

http://www.webpagetest.org/video/compare.php?tests=150123_B7_2RD%2C150123_61_2RB&thumbSize=100&ival=100&end=visual#
http://gulpjs.com/
https://www.npmjs.com/packages/gulp-concat
https://www.npmjs.com/packages/gulp-minify-html

Other task runners include Maven31 and Ant32, which are mainly used for Java

projects but can also be used for automated web performance optimization. There

are several performance add-ons available, such as Google Closure Compiler33 or

HtmlCompressor34. Maven and Ant both use XML to describe the build process.

Cool Down
■ You've been setup with tools that can automate your performance optimization

tasks.

■ Most existing performance tools such as YSlow and the WPT API wrapper can

be integrated into your continuous deployment process to remove any manual

performance testing.

■ You've been introduced to task runners and build systems, and how they can

help you automate performance.

■ Several specific Grunt performance tools were introduced to demonstrate the

benefits of including performance tasks into a deployment process. The compar-

ison of the “before” and “after” pages revealed how many performance improve-

ments can be made without manual labor.

31 http://maven.apache.org/
32 http://ant.apache.org/
33 https://github.com/google/closure-compiler
34 https://code.google.com/p/htmlcompressor/

Lean Websites174

http://maven.apache.org/
http://ant.apache.org/
https://github.com/google/closure-compiler
https://code.google.com/p/htmlcompressor/

Chapter9
Network and Server Performance
Improvements

Warm Up
The performance techniques we've covered so far have focused on optimizing the

front-end of a website—or everything that is downloaded to the browser. In this

chapter, we'll focus on improving back-end performance, which involves tweaks

to your network and web server.

Content Delivery Networks
A content delivery network (CDN) is a hosting service that's optimized for serving

content quickly, in an attempt to overcome latency. If a user in Berlin requests a

page that is hosted in San Francisco, on a server without a CDN, all the assets of

that page must be retrieved from San Francisco, making its way over the Atlantic

ocean. Pretty cumbersome, don't you think? A CDN alleviates this problem by

caching static content at several locations around the globe, allowing site assets to

be delivered quickly to any browser.

The following example outlines the performance of a website with and without a

CDN:

CDNOriginalvelocityconf.coma

8.34s17.87sLoad Time

2.74s7.01sStart Render

8181Requests

792KB1014KBBytes in
a Source: Sample data for velocityconf.com, taken from Web Performance Today

[http://www.webperformancetoday.com/2012/05/14/cdn-feo-front-end-optimization-web-acceleration/]

The servers available throughout a CDN are called edge servers, and distributing

multiple copies of a site's content across these servers is called content replication.

Most CDN providers maintain lots of edge servers around the world, making CDNs

particularly useful for sites that serve content to many countries.

Figure 9.1 illustrates how a website is accessed within a CDN. As soon as a page is

requested, the optimal server is determined either by the amount of hops needed

for the request to reach the server, or by which has the highest availability:

Figure 9.1. Demonstration of a CDN in action

The benefits of using a CDN include:

Lean Websites176

http://www.webperformancetoday.com/2012/05/14/cdn-feo-front-end-optimization-web-acceleration/

■ Reduced latency: by moving the content closer to the user, latency can be reduced

and load times improved. Due to content replication and caching of static content

at the edge, the user can benefit from cached content and faster delivery times.

■ Reduced packet loss: because packages travel shorter distances, there's less

chance they'll be lost. This is particularly important in latency-sensitive situ-

ations, such as video streaming. A poorly streaming video will certainly decrease

user satisfaction.

■ Improved reliability: having content replicated across a CDN improves a website's

up-time, as the site isn't dependent on a single server.

PageSpeed Insights for Your Web Server
PageSpeed Insights is available as a back-end module1 that can be installed on your

server. The module comes with many useful filters2 that can be installed to optimize

your code. The module optimizes the code without requiring you to modify the

existing content, executing when the HTTP server delivers the assets. It's basically

a performance improvement “on the fly”.

The following sections briefly cover a few of the filters that are worth mentioning

in the context of reducing HTTP requests, and therefore latency3.

Canonicalize JavaScript Libraries
jQuery is one of the most popular JavaScript libraries in use today. Imagine you

navigate from website A—which is using jQuery—to website B—which also uses

jQuery. The browser automatically fetches the jQuery script again from website B,

even though it was just requested from website A.

Something feels inefficient here, doesn’t it? It's a waste of bandwidth. So, great

minds at Google came up with a solution to reduce this inefficiency by introducing

the Canonicalize JavaScript Libraries4 filter. The idea is that you replace your locally

hosted JavaScript libraries (such as jQuery) with the equivalent library hosted on

1 https://developers.google.com/speed/pagespeed/module
2 https://developers.google.com/speed/pagespeed/module/filters
3 http://www.modpagespeed.com/ provides a list with before-after samples of applying the mod_pagespeed

filters.
4 https://developers.google.com/speed/pagespeed/module/filter-canonicalize-js

177Network and Server Performance Improvements

https://developers.google.com/speed/pagespeed/module
https://developers.google.com/speed/pagespeed/module/filters
https://developers.google.com/speed/pagespeed/module/filter-canonicalize-js

Google’s CDN—which means that when browsing, users can utilize a copy of jQuery

that was previously fetched from Google’s CDN (and which was thus cached in the

browser).

Enable the filter as follows (for Apache):

ModPagespeedEnableFilters canonicalize_javascript_libraries

And here is an example of how the module would replace the local jQuery file as

shown below:

<html>
 <head>
 <script src="/local/jquery-1.8.3.js">
 </script>
 <script src="foo.js">
 </script>
 <script src="bar.js">
 </script>
 </head>
 <body>
 <!-- fun stuff -->
 </body>
</html>

will be rewritten to

<html>
 <head>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/
➥jquery.min.js">
 </script>
 <script src="foo.js">
 </script>
 <script src="bar.js">
 </script>
 </head>
 <body>

Lean Websites178

 <!-- fun stuff -->
 </body>
</html>

Watch Out For Potential SPOF

Watch out for synchronous script blockers when using the canonicalize_javas-

cript_libraries filter. The filter will replace your local version with a third-

party version of the script. If you haven't included the script asynchronously, and

the third-party provider goes down unexpectedly, this could potentially cause

SPOF.

Combine CSS
The Combine CSS5 filter looks for all CSS link tags on the page. The module removes

all individual CSS link tags and concatenates the CSS files into one merged file,

which it places wherever the first CSS link originally was. This is similar to the

concatenating technique we saw previously.

You can enable this via your Apache web server as follows:

ModPagespeedEnableFilters combine_css

As an example, imagine this as the original HTML:

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="styles/1.css">
 <link rel="stylesheet" type="text/css" href="styles/2.css">
 <link rel="stylesheet" type="text/css" href="styles/3.css">
 </head>
 <body>
 <!-- fun stuff -->
 </body>
</html>

Combine CSS would turn it into something like this:

5 https://developers.google.com/speed/pagespeed/module/filter-css-combine

179Network and Server Performance Improvements

https://developers.google.com/speed/pagespeed/module/filter-css-combine

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="styles/1.css+2.css+
➥3.css.pagespeed.cc.yu2He3_gBx.css">
 </head>
 <body>
 <!-- fun stuff -->
 </body>
</html>

Defer JavaScript
The Defer JavaScript6 filter follows the defer attribute logic that we discussed in

Chapter 6. The defer attribute delays the JavaScript execution of the script until

after the DOM has finished loading. The script with a defer attribute attached to it

is added to the end of the list of scripts. To ensure that the script can be safely ex-

ecuted at the end of the page load, the attribute should only be used on scripts that

don't modify the DOM. The performance advantage comes from stopping scripts

blocking other processes in the browser.

The Defer JavaScript filter automatically adds the src attribute to any script tag

on the page. A window.onload handler is added to the HTML that then executes all

the deferred scripts.

Include this line in your web server config file (for Apache):

ModPagespeedEnableFilters defer_javascript

If you don't want a script to have the defer attribute added—for example, because

the script alters the DOM—just add the pagespeed_no_defer attribute:

<script pagespeed_no_defer="" src="execute.js"></script>

In order to demonstrate this, it's best to actually view it in the browser. Check out

the before7 and after8 pages to view the impact of this filter.

6 https://developers.google.com/speed/pagespeed/module/filter-js-defer
7 http://www.modpagespeed.com/defer_javascript.html?ModPagespeed=off
8 http://www.modpagespeed.com/defer_javascript.html?ModPagespeed=on&ModPagespeedFilters=de-

fer_javascript

Lean Websites180

https://developers.google.com/speed/pagespeed/module/filter-js-defer
http://www.modpagespeed.com/defer_javascript.html?ModPagespeed=off
http://www.modpagespeed.com/defer_javascript.html?ModPagespeed=on&ModPagespeedFilters=defer_javascript

Prioritize Critical CSS
The Prioritize Critical CSS9 filter parses the CSS file and replaces it with just rules

used on that page. This aligns with the critical rendering path paradigm, which is

to serve the ATF CSS as soon as possible to improve the initial render time.

Include the following line in your web server config file:

ModPagespeedEnableFilters prioritize_critical_css

The following page includes an external style.css file where only the class="red"

is being referenced on that page:

<html>
 <head>
 <link rel="stylesheet" href="style.css">

 <!-- content of style.css
 .red {color: red;}
 .big { font-size: 8em; }
 .gallery {border:1p solid black; }
 -->
 </head>
 <body>
 <div class="red">
 Hello readers!
 </div>
 </body>
</html>

The filter will output as follows, only focusing on the style that is really being used

on this page:

<html>
 <head>
 <style>
 .red{red;}
 </style>
 </head>
 <body>

9 https://developers.google.com/speed/pagespeed/module/filter-prioritize-critical-css

181Network and Server Performance Improvements

https://developers.google.com/speed/pagespeed/module/filter-prioritize-critical-css

 <div class="red">
 Hello readers!
 </div>
 </body>
</html>
<noscript><link rel="stylesheet" href="style.css"></noscript>

Keep-alive
As discussed in Chapter 3, every time an HTTP client—such as a browser—fetches

a website asset, it will create a new TCP session to the server, initiating a handshake

between the client and the server. After the asset has been received, the server will

close the TCP session again to free up resources. If another asset needs to be fetched,

the browser again opens another TCP session to the same server. This is inefficient,

especially for web pages with a large number of elements, or if the user has a slow

network connection—since repeatedly creating and closing TCP connections (one

for each message) is like hanging up and redialing the phone10 between each ex-

change in a conversation.

HTTP keep-alive11 is intended to solve this problem, by keeping the TCP connection

open between the client and the server once the HTTP transaction has completed.

If the browser requests another asset from the server, a new TCP session doesn't

have to be created.

Without keep-alive, each request will incur two roundtrips12 of latency. In HTTP/1.1,

keep-alive is enabled by default. For HTTP/1.0, you'll need to set it via the Connec-

tion: keep-alive header. You can either do this via the .htaccess file, or by updating

your web server configuration file:

<!-- your .htaccess file -->
<ifModule mod_headers.c> Header set Connection keep-alive </ifModule>

You can verify if keep-alive is enabled for a page by checking out the request

header via the developer tools, as shown in Figure 9.2:

10 http://nginx.com/blog/http-keepalives-and-web-performance/
11 http://en.wikipedia.org/wiki/HTTP_persistent_connection
12 http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Lean Websites182

http://nginx.com/blog/http-keepalives-and-web-performance/
http://en.wikipedia.org/wiki/HTTP_persistent_connection
http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Figure 9.2. Verifying keep-alive in Chrome developer tools

HTTP/2
As of February 2015, the HTTP/2 specification has been approved13 by the Internet

Engineering Task Force (IETF)14.

When HTTP/1.1 was introduced a decade ago, latency wasn't something that was

worried about. However, times, technologies, and user expectations have changed.

HTTP/1.1 is not enough to cope with today's challenges. Today's user demands

speedy and instant delivery of content, across different devices, and in different

locations, causing higher delays and requiring better handling of HTTP requests.

These performance issues have finally been addressed with HTTP/2.

In HTTP/1.1, only the client can initiate a request. Even if the server knows the

client needs a resource, it has no mechanism to inform the client and must instead

wait to receive a request for the resource from the client. HTTP/2.0 promises to

make HTTP requests more efficient15, reducing the need for workaround techniques

to minimize HTTP requests, and thus reducing latency.

13 http://www.ietf.org/blog/2015/02/http2-approved/
14 IETF is an open, international community of network designers, operators, vendors, and researchers

concerned with the evolution of the Internet architecture and the smooth operation of the Internet. The

goal of the IETF is to make the Internet work better.
15 https://www.mnot.net/blog/2014/01/30/http2_expectations

183Network and Server Performance Improvements

http://www.ietf.org/blog/2015/02/http2-approved/
https://www.mnot.net/blog/2014/01/30/http2_expectations

One of the main advantages of HTTP/2 over HTTP/1.1 is that it allows many con-

current HTTP requests to run across one single TCP connection. Without a persistent

connection (using keep-alive), the handshake, as discussed in chapter 3, is enforced

by HTTP/1.1, causing latency and delays. While the idea of keep-alive is to keep

the TCP connection open, HTTP/2 delivers even more improvements. It comes with

default HTTP header compression, as opposed to HTTP/1.1, which uses optional

compression. In addition, with HTTP/2, the server can proactively send the client

the resource it will need, known as server push.

Although HTTP/2 is a significant improvement, be aware that using HTTP/2 in the

near future will still require you to do your homework. This protocol won't magically

remove render blocking and synchronous third-party scripts, or minify scripts for

you. These techniques will still have to be employed to make this new protocol

shine.

However, with HTTP/2, many small assets can be multiplexed in parallel, and

techniques such as resource bundling—image spriting and concatenation—aren't

necessary anymore16 to improve performance.

What About SPDY?

SPDY17 (pronounced SPeeDY) was introduced prior to HTTP/2, and was a big

motivation for most of the features for HTTP/2—and is therefore often considered

to be its predecessor. In February 2015, SPDY's inventor, Google, officially said

goodbye to SPDY18 and welcomed HTTP/2 into the world.

Gzip Compression
Gzip is a very efficient compression program that can easily be enabled on your

server to shave off some milliseconds from your page load time. Your server will

use Gzip to compress files before sending them to your users. I highly recommend

you enable Gzip compression on your server, as it's a very quick and easy perform-

ance win.

16 http://chimera.labs.oreilly.com/books/1230000000545/ch13.html#_removing_1_x_optimizations
17 http://www.chromium.org/spdy/spdy-whitepaper
18 http://blog.chromium.org/2015/02/hello-http2-goodbye-spdy-http-is_9.html

Lean Websites184

http://chimera.labs.oreilly.com/books/1230000000545/ch13.html#_removing_1_x_optimizations
http://chimera.labs.oreilly.com/books/1230000000545/ch13.html#_removing_1_x_optimizations
http://www.chromium.org/spdy/spdy-whitepaper
http://blog.chromium.org/2015/02/hello-http2-goodbye-spdy-http-is_9.html
http://blog.chromium.org/2015/02/hello-http2-goodbye-spdy-http-is_9.html

When to Use Gzip

Gzip makes most sense for uncompressed, text-based formats such as HTML,

XML, JSON and CSS files. Content types that have already been compressed (PDF

and images), should not be gzipped, as their file size could actually be increased19.

But how do you know that Gzip is enabled? You can either open the developer tools

of your browser and check the response headers, as shown in Figure 9.3, or use

tools such as the HTTP compression test20, as shown in Figure 9.4:

Figure 9.3. Checking the main HTML page response headers in Firefox's developer tools

19 https://developer.yahoo.com/performance/rules.html#gzip
20 http://checkgzipcompression.com

185Network and Server Performance Improvements

https://developer.yahoo.com/performance/rules.html#gzip
http://checkgzipcompression.com

Figure 9.4. Using HTTP compression test to check Gzip compression status

All modern browsers support Gzip compression, so we just need to make sure that

it's enabled in the web server configuration file. Some web servers already have

Gzip enabled. HTML5 Boilerplate gives detailed instructions21 on how to enable

Gzip for most common web servers.

If you don't own your web server, you can enable Gzip via the .htaccess file for

Apache servers, or other equivalent files for different web servers (such as web.config

for IIS).

Let's look at how to enable it on Apache:

<ifModule mod_gzip.c>
 mod_gzip_on Yes
 mod_gzip_dechunk Yes

21 https://github.com/h5bp/server-configs

Lean Websites186

https://github.com/h5bp/server-configs

 mod_gzip_item_include file .(html?|txt|css|js|php|pl)$
 mod_gzip_item_include handler ^cgi-script$
 mod_gzip_item_include mime ^application/x-javascript.*
 mod_gzip_item_exclude mime ^image/.*
 mod_gzip_item_exclude rspheader ^Content-Encoding:.*gzip.*
</ifModule>

If you want to compare the performance of your site gzipped and not gzipped, you

can set the following line in your Apache .htaccess file to disable Gzip:

SetEnv gzip 1

Figure 9.5 shows WPT results for my website, with and without Gzip enabled:

Figure 9.5. WPT comparison22 of bbinto.me without and with Gzip enabled

You can see a clear difference in performance between the gzipped and non-gzipped

versions. My gzipped site loaded almost one second faster. My speed index improved

from 3140 to 2100, and my start to render time improved from 3.05s to 1.94s. Gzip

can be a simple and quick performance win.

Caching
We briefly talked about caching in Chapter 5, but let's dig deeper into this topic, as

caching can be a real performance enhancer.

Before going into more detail on how caching can improve performance, let's first

take a look at how we can get more information about assets and their current

caching policy.

22 http://www.webpagetest.org/video/compare.php?tests=141011_G7_JD1,141011_7E_K5J

187Network and Server Performance Improvements

http://www.webpagetest.org/video/compare.php?tests=141011_G7_JD1,141011_7E_K5J

In Figure 9.6, you can see that when I visit google.ca, some of the images my browser

is fetching come from the browser cache for Google's search landing page. That's

not a surprise, because I use Google several time throughout the day:

Figure 9.6. Using developer tools to assess caching on google.ca

Looking closer, you can see that nav_logo195.png is a sprite image, as shown in

Figure 9.7. It makes sense for Google to set a very long cache time for this particular

image, as the logo shouldn’t change that often:

Lean Websites188

Figure 9.7. A sprite image on google.ca

Now, let's move on to discuss how we can improve performance through caching.

The basic idea is to avoid as many unnecessary HTTP requests as possible, by

storing certain assets in the browser that can be reused. Every browser includes a

cache, but needs to get instructions on how and when to use it. You can set that

logic, such as when to request a newer, or fresher version of an asset, and when not

to use the version in the cache, by using the Cache-Control header.

To illustrate the use of caching headers, let's take a look at the response headers

from the previous Google sprite image, as outlined in the red box in Figure 9.8. The

response header is sent by the server, while the request header is sent by a browser

to a server:

189Network and Server Performance Improvements

Figure 9.8. Checking out Cache-Control headers for the sprite image

Let's have a look at the Cache-Control header. Its settings are called cache response

directives. The first directive is either public, private, max-age, or no-cache.

■ public: a public, or “shared” cache is leveraged by more than one client. Because

of that, it provides great performance gain, because a user may receive a cached

copy from somebody else without ever having to obtain the original copy from

the origin. Publicly cacheable assets could be logos, navigation items, JavaScript

and CSS files etc.—anything that is requested very frequently by most or every

visitor to your site.

■ private: a private cache is only used by a single client and not shared. It allows

caching of assets that are specific to one user in a browser. No proxy server will

cache the response. This is mostly used when people access assets that need

authorization and are served via HTTPS. The Google image example above uses

a private directive, so the asset can’t be picked up by intermediate caches23 or

CDNs to be used for other users to retrieve.

23 Intermediate caches are caches between the edge and the user, such as corporations and schools that

have a cache in their network.

Lean Websites190

■ max-age=[seconds]: specifies the maximum amount of time in seconds that the

asset is considered fresh. This directive is relative to the time of the request. In

the Google image example, the max-age is set to 31536000 seconds, or 365 days.

These Cache-Control directives leave the asset in the browser cache for 365

days before checking if a newer version is available to fetch.

■ no-cache: every time the asset is requested, the cache needs to submit a request

to the origin for confirmation before releasing a cached copy.

More on the different directives can be found in the W3C Header Field Definitions

document24.

Conditional Requests
Besides the caching directives set in the Cache-Control header, there are additional

headers you can use to check for specific conditions of the asset; and these conditions

can be used to determine if an updated copy of the asset should be fetched. These

conditional requests can be content-based (ETag) or time-based (If-modified-since)

states, or states that improve performance while the updated version of the asset is

being fetched (stale-while-revalidate, stale-if-error).

Content-based
You will notice that some assets also have an ETag in the response header. When

a browser is directed by a Cache-Control setting to refresh an asset, but the asset

hasn't changed, that's where the ETag comes in. The ETag is generated by the server,

and is an arbitrary token (such as an MD5 hash) that acts as a fingerprint of the

contents of the asset. If the hash is still the same as the value of If-None-Match in

the request header, then the browser knows the asset hasn't changed, and so skips

the download. Find more information on how to create ETags from Yahoo’s Best

Practices for Speeding Up Your Web Site25.

Here's an example of an ETag in use. The following snippet is an HTTP request

header if-None-Match, and the corresponding response header with the ETag hash

for a style sheet on my website /css/services.css. The hash is the same, indicating

that the content of the style sheet hasn't changed from the version in the cache, so

the content doesn't need to be downloaded again.

24 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
25 https://developer.yahoo.com/performance/rules.html#etags

191Network and Server Performance Improvements

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
https://developer.yahoo.com/performance/rules.html#etags
https://developer.yahoo.com/performance/rules.html#etags

■ Request header:

GET /css/services.css?ver=2015Febaa HTTP/1.1
...
If-None-Match: "532a0d9b-bd8+gzip"
...

■ Response header:

HTTP/1.1 304 Not Modified
...
Etag: "532a0d9b-bd8+gzip"
...

Time-based
Conditional time-based headers26, such as If-modified-since (in the request

header) and Last-modified (in the response header), can be set to only request a

fresh version of the asset if it actually has been modified since the browser’s copy

was cached. If the cached copy is the most up-to-date, then the server will not serve

any new copy and returns a 304 (not modified) response code.

The following snippet is an HTTP request header of if-modified-since, and its

corresponding response header with the Last-modified response for a style sheet

on my website /css/services.css.

■ Request header:

GET /css/services.css?ver=2015Febaa HTTP/1.1
...
If-Modified-Since: Wed, 19 Mar 2014 21:35:23 GMT
...

■ Response header:

26 https://devcenter.heroku.com/articles/increasing-application-performance-with-http-cache-headers

Lean Websites192

https://devcenter.heroku.com/articles/increasing-application-performance-with-http-cache-headers

HTTP/1.1 304 Not Modified
...
Last-Modified: Wed, 19 Mar 2014 21:35:23 GMT
...

The Last-modified date is not newer than the If-Modified-Since date, and

therefore no new copy has to be requested.

stale-while-revalidate

Stale content27 describes an older version of the asset that the browser keeps using

from the cache. The stale-* extensions allow the browser to continue using stale

content under specific conditions, while it's trying to retrieve a newer copy of the

asset from the server in the background.

The stale-while-revalidate header allows the browser to keep using the current,

possibly stale, version of the asset, until the amount of time you specify in the

header. In the meantime, the newest version of the asset is being re-fetched in the

background. By updating the asset in the background, we achieve optimal utilization

of the cache:

HTTP/1.1 200 OK
Cache-Control: max-age=86400, stale-while-revalidate=43200
Content-Type: text/plain

The asset will be read from the cache for 86400 seconds (1 day). After that time has

passed, the cache will re-fetch the requested asset. If we didn't set stale-while-

revalidate, the page would load more slowly. Instead, we give the cache up to

43200 seconds (half a day) to re-fetch the new version in the background, thus en-

suring fast-loading assets for the end user.

stale-if-error

When the stale-if-error header is set, it allows the user to receive the asset from

the CDN without interruption, even if there is an issue with the asset at the origin

server. Instead of showing a broken asset, it will instead serve the stale content to

improve availability:

27 http://tools.ietf.org/html/rfc5861

193Network and Server Performance Improvements

http://tools.ietf.org/html/rfc5861

HTTP/1.1 200 OK
Cache-Control: max-age=1000, stale-if-error=1200
Content-Type: text/plain

In the example above, the response first indicates that the asset will be fresh for

1000 seconds. In addition, the asset can be used for another 1200 seconds. If an error

occurs after that, it becomes stale.

Not many websites are utilizing these optimization features yet. As of January 201528,

0.2% of the top Alexa websites use stale-while-revalidate for their assets, and

only 0.1% use stale-if-error.

Caching in Practice
In order to benefit from the caching options mentioned above, the caching headers

need to be set in your web server configuration file. We normally refer to this set

up as the caching policy.

It's good practice for every developer to lay out a set of carefully formulated Cache-

Control policies, outlining the website's assets according to their expected lifetimes.

Structuring your website into logical directories can be very beneficial when creating

a caching policy. Review your assets and split them into multiple directories based

on their nature. For example, branding and logo files that rarely change could be

stored in a folder of assets to be cached for a long time, while dynamic content could

be stored in a separate folder with a short cache time.

Let's take a look at an example. My website is a WordPress blog, and I don't intend

to change the design of it that often. So setting a longer time in the cache for my

theme files makes perfect sense. Furthermore, I try to update my website with a

new blog post every two to three months, depending on my schedule. So I want to

make sure that I'm taking this writing schedule into consideration when setting the

cache policy for the HTML files. To be on the safe side, let's set it to one month. I

also decided to set a cache value of one year for all my uploads, such as images,

PDFs, and text files, assuming they rarely change once I've uploaded them.

28 http://bbinto.github.io/lean-web-code/chapter-9/cache-headers-stale-jan2015.xlsx

Lean Websites194

http://bbinto.github.io/lean-web-code/chapter-9/cache-headers-stale-jan2015.xlsx

Since I have different expiration times for each of those folders, I'll need to create

a separate .htaccess file for each folder.

Let's update the .htaccess files according to my proposed caching goals.

■ /var/www/htdocs/bbinto.me/.htaccess:

<ifModule mod_headers.c>
 ExpiresActive On
 # Expires after 1 month
 <filesMatch ".(html)$">
 Header set Cache-Control "max-age=2592000"
 </filesMatch>
</ifModule>

■ /var/www/htdocs/bbinto.me/wp-content/themes/matheson/.htaccess:

<ifModule mod_headers.c>
 ExpiresActive On
 # Expires after 6 months
 Header set Cache-Control "max-age=15552000"
</ifModule>

■ /var/www/htdocs/bbinto.me/wp-content/uploads/.htaccess:

<ifModule mod_headers.c>
 ExpiresActive On
 # Expires after 1 year
 Header set Cache-Control "max-age=31104000"
</ifModule>

If you have direct access to your web server's config file (on Apache, it would be

httpd.conf), you can use <Directory> to define all folders in one config file instead

of putting separate .htaccess files into each directory individually:

Expires after 6 months
<Directory "/var/www/htdocs/bbinto.me/wp-content/themes/matheson">
 Header set Cache-Control "max-age=15552000"
</Directory>

195Network and Server Performance Improvements

Expires after 1 month
<filesMatch ".(html)$">
Header set Cache-Control "max-age=2592000"
</filesMatch>

Expires after 1 year
<Directory "/var/www/htdocs/bbinto.me/wp-content/uploads/">
 Header set Cache-Control "max-age=31104000"
</Directory>

As shown above, I applied some simple rules to files and folders, but you could

also include regular expressions to include or exclude certain content types or dir-

ectories.

After I finished setting up my caching policy, I ran my site through WPT without29

and with30 the cache policy in place. For this example, I only compared the Repeat

view results, as that will reflect use of the cache settings.

SavingsWith cacheWithout cache

62%2.485s6.629sLoad Time

63%1.120s3.108sStart Render

74%11084296Speed Index

As you can see, using the cache can make a significant difference to the performance

of the page. Google has a useful decision tree31 to help you decide how to set up

efficient caching policies.

Using Developer Tools to Check Caching

The developer tools in your browser normally have a check box that you can enable

or disable to see how the website loads with and without the cache set32.

29 http://www.webpagetest.org/result/141019_C0_MWG/1/details/cached/
30 http://www.webpagetest.org/result/141019_TB_MY7/1/details/cached/
31 https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-

caching?hl=en#defining-optimal-cache-control-policy
32 http://devtoolsecrets.com/secret/performance-disable-the-browser-cache.html

Lean Websites196

http://www.webpagetest.org/result/141019_C0_MWG/1/details/cached/
http://www.webpagetest.org/result/141019_TB_MY7/1/details/cached/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en#defining-optimal-cache-control-policy
http://devtoolsecrets.com/secret/performance-disable-the-browser-cache.html

You can either find the option under the Network tab (Chrome), under Settings

(Firefox), or under the Developer tools menu (Safari).

Caching Tips
It's worth noting that there is no caching silver bullet that you can apply to all the

assets of your site. Take your time auditing and defining your resources and their

optimal cache lifetime. Each asset will have different “freshness” requirements.

Here are a few tips33 to get you started thinking:

■ For static assets, or assets that rarely change, Google suggests setting an expiration

policy of one year34, or minimum of one week. For example, there's no need to

re-fetch an asset if it rarely changes, such as a logo.

■ Use consistent URLs―don;t serve the same content through different URLs. ad-

ditionally, pay attention to how they are typed in. As URLs are case sensitive,

the same page could be cached multiple times unnecessarily.

■ Define a cache policy for your assets: differentiate between often changing assets

vs. very static assets that rarely change. Audit and determine the appropriate

max-age for these assets.

■ If you use a CDN, identify the assets that are identical for all your users. These

are good candidates for CDN caching.

■ As mentioned before, think before you concatenate. For example, before merging

all your JavaScript files into one, evaluate if there might be a piece of your web

application that changes more frequently, and consequently the corresponding

JavaScript code that comes with it. Separate this file with a less aggressive cache

policy.

Cool Down
■ You've learned how a CDN works and how it can reduce latency.

33 https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-

caching#caching-checklist
34 https://developers.google.com/speed/docs/insights/LeverageBrowserCaching

197Network and Server Performance Improvements

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching#caching-checklist
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching

■ You've been introduced to the PageSpeed Insights web server module, which

includes several useful performance-enhancing filters, such as canonic-

alize_javascript_libraries and combine_css.

■ You've learned about the challenges for HTTP/1.1 in keeping up with today's

web demands, and that HTTP/2 has been introduced to address these issues—in-

cluding latency, which is one of the biggest challenges for the web.

■ You've learned how you can gain great performance improvements with some

simple adjustments to your web server setup, such as gzipping and using keep-

alive.

■ You've been introduced to caching policies and how to set them up.

Lean Websites198

Chapter10
A Multi-device Web World

Warm Up
We've covered lots of ways to optimize site performance, but we still need to discuss

how to serve the right content to users based on their device and the circumstances

they're in. Getting this right can also result in significant performance improvements.

Detecting devices is a crucial part of this. In this chapter, we'll look at how to

identify if your users are on a laptop, tablet or smartphone, and if they're on a fast

or slow connection. We'll also look at why performance on mobile devices is espe-

cially important.

One Web in a Multi-device World
One Web means making, as far as is reasonable, the same information

and services available to users irrespective of the device they are

using. However, it does not mean that exactly the same information

is available in exactly the same representation across all devices.

The context of mobile use, device capability variations, bandwidth

issues and mobile network capabilities all affect the representation.

(W3C Mobile Web Best Practices1)

This quote, from the W3C Mobile Web Initiative's Best Practices Working Group,

summarizes how we should build websites for multiple devices. Different devices

with different capabilities and screen sizes require us to build websites targeted to

each device if we want to provide the best user experience.

It doesn't always make sense to serve exactly the same content to all users. Imagine

a glossy, image-heavy travel website. That might be a nice experience for a desktop

user on a broadband connection, but terrible for a user on a small mobile device.

The images most likely should be reduced in size for faster download and to save

bandwidth—if they even need to be displayed at all. It may also be that the mobile

user just wants to check itinerary details or departure times, so the layout and

functionality appropriate for the desktop may be quite inappropriate in the mobile

context. Providing users with the best experience to help them accomplish their

goal should be the main focus.

Mobile on the Rise: Current Stats and
Internet Usage
In the early days of the web, we could be pretty certain that our site visitors were

on a wired Internet connection with only a few browsers to choose from. Nowadays,

there's a lot more fragmentation across a multitude of devices, browsers and types

of Internet connections—which makes it more important to consider how best to

serve web content.

StatCounter2 provides useful data on the most commonly used screen sizes, operating

systems and so forth. Based on the StatCounter top lists (at the time of writing),

there are approximately 143 different screen resolutions, 84 operating systems, 95

browsers, many different connection speeds, and around 14,000 different user agent

strings (device types) worldwide.

1 http://www.w3.org/TR/mobile-bp/#OneWeb
2 http://gs.statcounter.com
3 http://gs.statcounter.com/#all-resolution-ww-yearly-2012-2014
4 http://gs.statcounter.com/#all-os-ww-yearly-2012-2014
5 http://gs.statcounter.com/#all-browser-ww-yearly-2012-2014

Lean Websites200

http://www.w3.org/TR/mobile-bp/#OneWeb
http://gs.statcounter.com
http://gs.statcounter.com/#all-resolution-ww-yearly-2012-2014
http://gs.statcounter.com/#all-os-ww-yearly-2012-2014
http://gs.statcounter.com/#all-browser-ww-yearly-2012-2014

The steep rise in mobile usage looks like it will continue. In 2014, there were around

7.2 billion6 people in the world, with around 4.55 billion mobile users7 worldwide.

Based on predictions8 for 2015, the worldwide population is expected to reach 7.4

billion, while the number of mobile phone subscriptions is calculated to be margin-

ally over 7.5 billion.

In addition, there are suggestions9 that mobile browsing will surpass desktop

browsing, and that in some areas it might already have done so. That's reason enough

to ensure our sites are performance bulletproof on mobile devices.

Mobile Performance Challenges
This section looks at current mobile constraints, and why a lean website for mobile

users is especially important.

Speed
First off, how much slower is mobile? Akamai's State of the Internet Report from

Q2, 201410 collected “real” page load times from around the world via RUM. (Note

that this RUM data only includes devices with Navigation Timing API support.)

The results vary greatly from country to country and across continents.

Akamai defines the difference between page load time on mobile vs. non-mobile as

the “mobile penalty”. Here is some of the data collected, with the highest penalty

country at the top and the lowest at the bottom:

Mobile PenaltyAvg. PLT on

Mobile (ms)

Avg. PLT on

Broadband (ms)

Country

3.6x53531508Ireland

1.8x53213014Canada

1.6x52993354United States

6 http://www.worldometers.info/world-population/
7 http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
8 http://www.icinsights.com/news/bulletins/Worldwide-Cellphone-Subscriptions-Forecast-To-Exceed-

Worldwide-Population-In-2015/
9 http://telecoms.com/301771/half-of-worlds-population-on-mobile-web-by-2020-report/
10 http://www.akamai.com/html/about/press/releases/2014/press-093014.html

201A Multi-device Web World

http://www.worldometers.info/world-population/
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.icinsights.com/news/bulletins/Worldwide-Cellphone-Subscriptions-Forecast-To-Exceed-Worldwide-Population-In-2015/
http://telecoms.com/301771/half-of-worlds-population-on-mobile-web-by-2020-report/
http://www.akamai.com/html/about/press/releases/2014/press-093014.html
http://www.akamai.com/html/about/press/releases/2014/press-093014.html

Mobile PenaltyAvg. PLT on

Mobile (ms)

Avg. PLT on

Broadband (ms)

Country

0.7x23353320Turkey

Why is everything so much slower on mobile? There are several performance con-

straints to consider when developing websites for mobile devices. Let's go through

them.

Mobile Network and High Latency
Wireless communication comes with more latency than wired communication.

Wireless connections are based on the radio in the device, and need to travel through

the air, exposed to a lot of congestion and interference. Hence, there's more latency

involved in requesting a website on a mobile connection than from a LAN or even

WiFi connection at home. Let me explain why, by going through high-level, simpli-

fied steps on how a mobile device requests a web page. (Ilya Grigorik has a very

detailed chapter11 on this in his High Performance Browser Networking book.)

1. Initially, the radio is off, and the phone is in an idle state.

2. As soon as you type a URL into the browser, the radio tries to establish a connec-

tion with a nearby radio tower. While traveling over air to the nearest radio tower,

the request is exposed to interference. This is the addition of unwanted signals

to a useful signal, such as electromagnetic interference12, co-channel interfer-

ence13, or inter-carrier interference14. This step of negotiating the radio link can

take up to 1000–2000ms15.

3. Once successfully established, the radio can now start to transmit data.

4. Now packets of data are transferred from the radio to the tower (called the radio

resource controller or RRC). This is called user-plane, one-way latency16. It's the

first wireless hop that each device has to go through. This can take up to 5ms on

a 4G network.

11 http://chimera.labs.oreilly.com/books/1230000000545/ch07.html
12 http://en.wikipedia.org/wiki/Electromagnetic_interference
13 http://en.wikipedia.org/wiki/Co-channel_interference
14 http://en.wikipedia.org/wiki/Interference_(communication)
15 https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
16 http://chimera.labs.oreilly.com/books/1230000000545/ch07.html#_initiating_a_request

Lean Websites202

http://chimera.labs.oreilly.com/books/1230000000545/ch07.html
http://en.wikipedia.org/wiki/Electromagnetic_interference
http://en.wikipedia.org/wiki/Co-channel_interference
http://en.wikipedia.org/wiki/Co-channel_interference
http://en.wikipedia.org/wiki/Interference_(communication)
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://chimera.labs.oreilly.com/books/1230000000545/ch07.html#_initiating_a_request

5. Once arrived at the RRC, the packets of data will be sent to the core network (CN).

The CN connects the tower to the worldwide Web to establish the request for the

website. Part of the CN represents a public gateway that connects the mobile

carrier to the public Internet.

As you can surmise, latency is an unfortunate factor when dealing with wireless

communications. Consequently it is important to keep the number of HTTP requests

as small as possible to avoid any further latency issues. It's better to send fewer

HTTP requests with bigger responses than many HTTP requests with smaller re-

sponses.

The table below17 shows how much latency typically comes with requesting HTTP

assets over mobile networks for active mobile connections:

LatencyData RateMobile Generation

300–1000ms100–400kbit/s2G

100–500ms0.5–5Mbit/s3G

< 100ms1–50Mbit/s4G

Latency variability can be very high on mobile networks and carriers. While 4G

networks will improve latency18, it will be a while before all mobile users have

switched to 4G networks.

CPU/GPU and Less Memory
CPU stands for central processing unit, the brain of all computers including mobile

devices. Today's mobile devices offer processing power roughly equivalent to that

of a desktop computer from five or more years ago.

GPU stands for graphics processing unit. Its main function is to offload graphics

tasks that would otherwise be processed and calculated by the main CPU. The ar-

chitecture of the GPU is designed solely around graphic processing—and, as a result,

it can accomplish this task more efficiently than the CPU.

The more we load on the CPU/GPU—especially on smaller devices such as smart-

phones—the more they have to work, resulting in slower processing and poorer

17 Source: High Performance Browser Networking by Ilya Grigorik
18 https://www.igvita.com/slides/2013/breaking-1s-mobile-barrier.pdf

203A Multi-device Web World

https://www.igvita.com/slides/2013/breaking-1s-mobile-barrier.pdf
https://www.igvita.com/slides/2013/breaking-1s-mobile-barrier.pdf

performance. Developers who've become accustomed to the huge memory available

on desktop and laptop computers should remember that the memory capacity of

mobile devices is drastically less. The less memory available, the more challenging

performance becomes. As mentioned in Chapter 6, certain JavaScript operations

come with a performance price, and any major manipulations of the DOM could

cause memory problems for mobile devices.

Slower JavaScript Execution
Everything feels slower on mobile devices. Their JavaScript engines are a lot slower

than their desktop counterparts. DOM manipulations and other expensive operations

keep the GPU and CPU busy. For example, Flickr encountered a major issue19 on

the mobile version of their site when they implemented their first version of a

slideshow. The iOS browser would constantly crash when displaying more than

20 images. The cause for the crash? Flickr coded too many manipulations of the

DOM, resulting in the CPU and GPU not being able to keep up with it anymore.

Power Consumption and Data Plans
In addition to recognizing the performance constraints of mobile devices, it's im-

portant to consider the power and data consumption of mobile devices when devel-

oping a lean website.

Battery Consumption
Mobile devices run off a battery, which drains faster the more work the device has

to do. A lean website should aim to minimize the battery drain of mobile devices.

The following results came out of some excellent research20 conducted by academics

from Stanford University and Deutsche Telekom Research & Development in Los

Altos. Their research evaluated the energy level of mobile devices based on browsing

the Internet.

■ Images: rendering images takes a significant fraction of the total rendering energy.

Compressing images to JPEG has shown improvements on energy consumption.

19 http://code.flickr.net/2011/07/20/lessons-learned-from-the-flickr-touch-lightbox/
20 http://www2012.wwwconference.org/proceedings/proceedings/p41.pdf

Lean Websites204

http://code.flickr.net/2011/07/20/lessons-learned-from-the-flickr-touch-lightbox/
http://www2012.wwwconference.org/proceedings/proceedings/p41.pdf

■ JavaScript: JavaScript is one of the most energy-consuming components in a

web page. Remove as many unused frameworks or manipulations as possible.

■ CSS: the rendering cost of CSS depends on the number of items styled. Concat-

enating CSS files also helps to reduce energy consumption.

This all sounds a bit familiar, doesn't it? I've already mentioned these things when

we discussed optimizing websites in general. So by following these rules, we can

ensure that our website will also be energy-efficient on mobile.

Data Consumption
Data plans still remain expensive21 in several countries, especially when traveling.

The leaner a site's assets, the less data consumption being forced on users.

There's a sobering example of the effect a poorly optimized site can have on mobile

data usage. Mobiforge22 ran an experiment on cellular data charges. They took a

SIM from a European cellular provider and used it on an Android phone while

roaming in the US. Loading just one web page23 with a size of around 10MB cost

around €369, or approximately US$48024.

Device Management
Various organizations have created repositories of information about the currently

available portable devices. The goal is to help you detect devices based on a variety

of factors, such as their features, screen-size, or operating system. Most organizations

offering such a device description repository (DDR) charge for access to their data,

offering a free version with limited access. Commercial versions normally come

with additional features, such as detection for multiple websites, local solutions,

and unlimited detections per month.

Let's look at several of the DDR products on offer.

21 http://www.wallcom.ca/pdfs/price-comp-report_2013update.pdf
22 http://mobiforge.com/
23 http://www.briefcakes.com/gallery.html
24 http://mobiforge.com/research-analysis/performance-money-part-1-end-users-wallet

205A Multi-device Web World

http://www.wallcom.ca/pdfs/price-comp-report_2013update.pdf
http://mobiforge.com/
http://www.briefcakes.com/gallery.html
http://mobiforge.com/research-analysis/performance-money-part-1-end-users-wallet
http://mobiforge.com/research-analysis/performance-money-part-1-end-users-wallet

WURFL
WURFL25 stands for Wireless Universal Resource File. It's a big XML file listing

details of all of the devices available. The repository used to be free and open-source,

until it was commercialized in 2011.

Based on the HTTP user agent string, you can match and profile a device that ac-

cesses your site using WURFL. It not only lists all devices and specifications, but

also provides grouping and categorization—making it easier for you to “bucket”

certain devices by their capabilities.

Here is a sample snippet of the WURFL device node for an iPhone 4 entry:

<device id="apple_generic" user_agent="Mozilla/5.0 (iPhone; U; CPU
➥ iPhone OS 4_0 like Mac OS X; xx-xx) AppleWebKit/532.9 (KHTML,
➥ like Gecko) Version/4.0.5 Mobile/8A293 Safari/6531.22.7"
➥ fall_back="generic_xhtml">
 <group id="product_info">
 <capability name="mobile_browser" value="Safari"/>
 <capability name="device_os" value="iOS"/>
 <capability name="has_qwerty_keyboard" value="true"/>
 <capability name="pointing_method" value="touchscreen"/>
 <capability name="is_tablet" value="false"/>
 <capability name="model_name" value="iPhone"/>
 <capability name="device_os_version" value="4.0"/>
 <capability name="is_wireless_device" value="true"/>
 </group>
 <!-- ... -->
 <group id="display">
 <capability name="physical_screen_height" value="74"/>
 <capability name="resolution_width" value="320"/>
 <capability name="resolution_height" value="480"/>
 </group>
 <!-- ... -->
</device>

Based on the above criteria, you could target all iPhone users by validating the

model_name to match the incoming user agent string of your users.

25 http://en.wikipedia.org/wiki/WURFL

Lean Websites206

http://en.wikipedia.org/wiki/WURFL

WURFL Explorer

Try out the WURFL explorer26 to examine descriptions of many devices in the

WURFL DDR.

The WURFL DDR file has grown tremendously over the last decade as more devices

have been released. It's currently a 20MB XML file. Parsing this entire file every

time you need to use it is not very efficient. I recommend filtering and shrinking

the file according to your own needs.

If you decide to use WURFL, or its commercial ScientiaMobile27 version, you can

benefit from several server-side28 and client-side29 implementations. But if you

don't want to use WURFL, for whatever reason, there are some other repositories

available.

Other DDRs
While WURFL was one of the first DDR products, there are other solutions that

provide detailed information about your users' devices. There's no real stand-out

winner here. Which you choose basically depends on your preference of program-

ming language and your wallet.

DeviceAtlas (Free and Commercial Versions)
DeviceAtlas30 follows the same idea as WURFL: it gives you access to a huge database

of mobile devices, spitting out any kind of information you need about these devices.

DeviceAtlas comes in several programming languages31, such as Java, PHP, .NET,

Python, Ruby, and JavaScript, and is also accessible directly via a REST API32.

There's a trial version available that comes with an API key, or you can fall back to

the free, cloud-based version of the product that comes with a device detection

client only, offers a limit on detections per month, and is only available for one

26 http://www.tera-wurfl.com/explore/?action=wurfl_id&id=apple_iphone_ver2
27 http://www.scientiamobile.com/
28 http://www.smashingmagazine.com/2014/07/01/server-side-device-detection-with-javascript/
29 http://web.wurfl.io
30 https://deviceatlas.com/
31 https://deviceatlas.com/resources
32 https://deviceatlas.com/resources/rest-api

207A Multi-device Web World

http://www.tera-wurfl.com/explore/?action=wurfl_id&id=apple_iphone_ver2
http://www.scientiamobile.com/
http://www.smashingmagazine.com/2014/07/01/server-side-device-detection-with-javascript/
http://web.wurfl.io
https://deviceatlas.com/
https://deviceatlas.com/resources
https://deviceatlas.com/resources/rest-api

website. The enterprise version (local version available) offers unrestricted access

to carrier identification and a device properties list33 that is otherwise restricted

for the cloud version.

The DeviceAtlas Data Explorer34 gives you a good overview of what kind of data

and device properties you can receive from this service.

The following code snippet shows part of the output after passing in the user agent

string for an iPhone 4 to inquire about its device properties:

$ php device.php
$ ---
 All Properties:
 3gp.aac.lc (boolean) : 1
 displayPpi (integer) :165
 js.supportBasicJavaScript (boolean) :1
 js.geoLocation (boolean) : 1
 flashCapable (boolean) :
 js.json (boolean) : 1
 isTablet (boolean) :
 isMobilePhone (boolean) : 1
 browserVersion (string) : 5.0.2
 osVersion (string) : 4_2_1
 browserName (string) : Safari
 devicePixelRatio (string) : 1
 js.webSqlDatabase (boolean) : 1
 stream.httpLiveStreaming (boolean) : 1
 marketingName (string) : iPhone
 ...

DeviceMap (Free)
DeviceMap35 is an open-source project by Apache. It aims to create a data repository

that includes information on mobile devices. Like WURFL, the data is also stored

in XML, but it's split up into several different files, based on device characteristics,

browser, and vendor data.

33 https://deviceatlas.com/resources/available-properties
34 https://deviceatlas.com/device-data/explorer
35 http://incubator.apache.org/devicemap/

Lean Websites208

https://deviceatlas.com/resources/available-properties
https://deviceatlas.com/device-data/explorer
http://incubator.apache.org/devicemap/

DeviceMap supports Java, C#, VB.Net, and JavaScript. A web demo36 is available,

giving you a quick peak into what kind of information you can gather from the DDR:

<!-- DeviceDataSource.xml Snippet -->
<device id="iPhone" parentId="genericApple">
 <property name="model" value="iPhone"/>
 <property name="displayWidth" value="320"/>
 <property name="displayHeight" value="480"/>
 <property name="device_os_version" value="1.0"/>
 <property name="mobile_browser_version" value="5"/>
 <property name="from" value="open_db_modified"/>
</device>

Create Your Own DDR
If you don't want somebody else to provide you with device information, you can

just create your own list, stored in your own preferred format, such as XML, JSON

and so on.

For example, on one project I was a part of, we categorized devices into various

“buckets”—“dumb”, “smart” and “touch”. Devices with simple WAP browsers were

classed as “dumb”, more advanced devices with HTML browsers were “smart”, and

devices with advanced browsers and touch gestures were “touch” . We used these

buckets to differentiate mobile devices by identifying them based on their user agent

string (see the next section). Depending on which of those buckets the user's device

fell into, we not only served different designs, but also different image sizes.

If your mobile strategy and buckets are easy to manage, and don't require a lot of

detailed drilling, you may well be satisfied with using CSS media queries, and

perhaps a bit of JavaScript.

However, while this all sounds like a great plan—as it's simple to set up and inex-

pensive compared to buying access to a commercial DDR—you need to understand

the challenges that come with this approach. A major issue is that you'll need to

maintain the list of available devices constantly, adding another burden to your

task list that can very easily be overlooked. A possible solution could be to create

a cron job to fetch new devices and user agent strings from either one of the com-

mercial or open-source DDRs to keep your device repository up to date.

36 http://devicemap-vm.apache.org/browsermap/index.html

209A Multi-device Web World

http://devicemap-vm.apache.org/browsermap/index.html

Device Detection
In order to utilize the information gleaned from the device repositories, we'll need

to determine exactly what devices are hitting our website. This can be done by using

several device detection methods.

Take a Quick Inventory
Before you start using device detection on your website, my advice is to do a quick

inventory of your current users and their devices. You can use a tool like Google

Analytics to get this data.

For example, using Analytics on my personal website (bbinto.me) reveals that,

during October, I had 23 different devices accessing my site, with 72 different screen

resolutions.

Let's be realistic: you can't target all devices, screen resolutions, browsers and con-

nection speeds. Yet all of those factors still play an important role in how your user

will experience the performance, and quality, of your site. Instead of optimizing for

every entry that pops up in Analytics, a good start is to pick the top five to ten

entries in the lists you've gathered and focus on these.

Now, let's move on to how you can detect your users' devices.

The Identifier: HTTP Header
HTTP headers—which are sent when the browser requests content—are the basis

for device detection. The most interesting and useful header is the user-agent string.

Using the user agent string to detect devices is called user agent sniffing. You can

use the default Firefox developer tools to show and modify the user agent string,

as shown in Figure 10.1:

Lean Websites210

Figure 10.1. Firefox developer tools' Network Panel view with HTTP headers

With a user agent string, you're able to retrieve the version of the browser, the oper-

ating system, and the device.

Here is a sample of some commonly used devices and their user agent strings:

■ Safari on iPhone 6:

Mozilla/5.0 (iPhone; CPU iPhone OS 6_1_3 like Mac OS X) AppleWeb
➥Kit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10B329 Safari
➥/8536.25

■ Safari on iPad:

Mozilla/5.0 (iPad; CPU OS 7_0 like Mac OS X) AppleWebKit/537.51.1
➥ (KHTML, like Gecko) CriOS/30.0.1599.12 Mobile/11A465 Safari/
➥8536.25 (3B92C18B-D9DE-4CB7-A02A-22FD2AF17C8F)

211A Multi-device Web World

■ Chrome on a Galaxy Nexus:

Mozilla/5.0 (Linux; Android 4.1.1; Galaxy Nexus Build/JRO03O)
➥ AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166
➥ Mobile Safari/535.19

The basic idea behind device detection is to compare the incoming user agent string

of your visitor's browser with a list you maintain. Using your preferred

DDR—whether that's WURFL, DeviceAtlas, DeviceMap or your own filters—you

can then start customizing the user experience based on the device's characteristics.

The biggest advantage of device detection is that content becomes context-sensitive.

We can serve different content to users depending on their device's functionality

and capabilities.

There are various options for executing device detection:

■ Server-side: the detection happens on the server, by deciding what to serve to

the client before it lands in the browser.

■ CDN: the detection is done on the CDN level, without having to go back to the

origin to receive content.

■ Client-side: the detection is executed once the browser receives the content.

Unnecessary content might have been served by that time.

■ Client Hints: this approach is not fully supported yet, but it is the most promising

and efficient way of serving the right content, and functionality, to different

devices. It's a hybrid of client- and server-side solutions.

Server-side Options
There are several discussions in the web community over what approach to use

when building performant (mobile) websites, or web apps. On one hand, there's the

notion of first sending everything needed to the browser, and then letting the client

decide what to display. The advantage of this approach is that, once everything has

arrived at the client's end, browsing the site is faster, as all the necessary assets have

already been sent down the wire. But on the other hand, you could also let the

server decide what content to display before even sending it to the client—serving

only the absolutely necessary assets on first load. This improves the time to first

Lean Websites212

byte and initial load time, with more assets subsequently being fetched as needed.

Server-side programming languages like PHP, Perl, ASP.NET, Java, Python—or even

Edge Side Includes, sitting on the CDN—can be used to detect your users' devices.

My advice is that, if you can do the device detection on the server, choose this over

client-side detection. Anything you tell your browser to do once the page has arrived

only costs power, time, and data.

Here are some useful tools for server-side device detection:

■ Detect Mobile Browsers37 is a great resource for mobile detection, offering many

client-side and server-side solutions.

■ 51 Degrees38 provides a device management system, as well as device detection,

in most common server-side programming languages.

■ Apache Mobile Filter39 is an Apache-based filter for detecting mobile devices.

CDN Options
Edge Side Includes40 (ESI) is an XML-based markup language. ESI support is offered

by CDN vendors like Akamai, F5 and Varnish. If you use any of these vendors, you

have ESI at your disposal. ESI can be used for caching purposes, which will ulti-

mately help you with mobile performance.

If you're familiar with Server Side Includes41 (SSI) and XML/XSLT, you'll have no

problem understanding ESI. It supports access to variables based on HTTP request

attributes. For example, you can easily check for any field in the HTTP_HEADER, and

hence also for the HTTP_USER_AGENT attribute.

ESI can also include snippets of additional content via an include command. To

make this even more powerful, ESI supports conditional processing, which means

logic can be applied to execute specific content via an include, based on specific

conditions like user agent strings. For example, you could include a map just for

GPS capable devices, or only show a big video on desktop devices. All of this is

37 http://detectmobilebrowsers.com/
38 http://51degrees.com/Support/Documentation
39 http://fiftyone.apachemobilefilter.org/
40 http://www.w3.org/TR/esi-lang
41 http://en.wikipedia.org/wiki/Server_Side_Includes

213A Multi-device Web World

http://detectmobilebrowsers.com/
http://51degrees.com/Support/Documentation
http://fiftyone.apachemobilefilter.org/
http://www.w3.org/TR/esi-lang
http://en.wikipedia.org/wiki/Server_Side_Includes

done by the edge server—the server that is closest to the user. Users will never get

content they're not supposed to receive, and no data is sent down the wire that isn't

required. Additionally, when processing ESI, there's no need to go back to the origin

for processing, and thus the load at the origin is cut down.

You can create a device list by assigning a regular expression to an ESI variable,

and use this to detect user agent strings, like this:

<esi:comment text="Regular expression to match tablets' user
➥ agents"/>
<esi:assign name="tablet" value="'(iPad|Nexus 10|PlayBook|Xoom|hp-
➥tablet|Dell Streak)'"/>

You could use WURFL, or any other device catalog, to populate this variable auto-

matically, based on the latest devices and your defined criteria.

Client-side Options
Client-side device detection is executed on the client, thus working with already-

delivered content. If you've decided to use a client-side approach, you can easily

detect the user agent string by requesting the value of navigator.userAgent in

JavaScript.

Detect Mobile Browsers offers client-side options. Device.js42 is another, small (3KB)

and solid JavaScript solution for detecting devices, and targeting the user experience

based on that.

Client Hints
Most solutions discussed so far come with a price: you either have to use your web

server (potentially relying on commercial DDRs), leverage your CDN for device de-

tection features, or (if you can't do either of these), use client-side options to do the

heavy lifting.

Client Hints43 will land some time in the near future, offering a hybrid client/server-

side solution. But how will it work? The user agent information stored in the HTTP

header is used by Client Hints to make decisions about resources to be loaded for

42 https://github.com/matthewhudson/device.js/
43 https://github.com/igrigorik/http-client-hints

Lean Websites214

https://github.com/matthewhudson/device.js/
https://github.com/igrigorik/http-client-hints

this specific client. The user agent gives the server hints on its capabilities, and

hence won't be asked to load resources that it doesn't require—resulting in reduced

overhead, as the logic is executed on the server.

The current implementation status for Client Hints notes that IE is considering44

the implementation, while Mozilla has filed a bug report45 on it. The entire draft46

can be found on the IETF website.

Disadvantages of User Agent Sniffing
All of the approaches mentioned above rely on the user agent; and although the

user agent is today's go-to solution for detecting a visitor's device, pure user agent

sniffing suffers from several disadvantages:

■ The user agent string doesn't include any information about—for example—the

device's screen width or height, and therefore can't reliably identify all static

variables.

■ In order to adapt and optimize content for different devices, the user agent de-

tection requires a device database that can be costly to maintain.

■ User agent detection is not cache friendly, and therefore has to be executed every

time the user visits your page.

■ User agent strings are not structured data and can be modified. (Some devices

even lie about their true identity!)

Device Testing
Nowadays, it's not enough to simply test your website on a range of desktop browsers,

such as Chrome, Safari, Firefox, Opera or Internet Explorer. The multi-device mac-

rocosm has added more challenges for us—different devices with different capabil-

ities, different screen sizes, and many different connection speeds. We now have

to plan for these challenges when building websites. If you work in a bigger company,

you might be lucky enough to have access to a device lab with many different

44 https://status.modern.ie/httpclienthints?term=client%20hints
45 https://bugzilla.mozilla.org/show_bug.cgi?id=935216
46 https://tools.ietf.org/html/draft-grigorik-http-client-hints-02

215A Multi-device Web World

https://status.modern.ie/httpclienthints?term=client%20hints
https://bugzilla.mozilla.org/show_bug.cgi?id=935216
https://tools.ietf.org/html/draft-grigorik-http-client-hints-02

devices. If not, I'll share some tips on how to get your website tested on a range of

devices.

It's virtually impossible to test every single device or screen size out there. You can

use the device inventory you've created, as described earlier, to help you set a

baseline for what you're going to support. If you don't currently use analytics or

tracking, now is the time to do it. The data it provides is extremely helpful in op-

timizing your performance.

Once you've established the device list you want to support, you can start testing.

Simulators
There are various simulators you can use to simulate your web pages on different

devices. Here's a selection:

■ User Agent Switcher47 is a browser extension that can simulate different user

agent strings, thus helping to debug various issues on the spot. Switching the

user agent to a mobile device will help you simulate how your website looks on

a mobile browser. There are other browser extensions for mimicking a different

user agent. And recent versions of Chrome come with a user agent switcher built

in.

■ BrowserStack48 is a commercial, online tool that's really handy if you can't afford

to build a physical device lab. You can test your website on many different

browsers, and debug your HTML, CSS and JavaScript with the handy developer

tools included.

■ WebPagetest49 is the silver bullet for everything performance related. Depending

on the test location you choose, you can select one of several device and browser

options. You can obviously only test one page of your site at a time, but this

might sometimes be enough. The synthetic WPT result will help you understand

how your site is performing on mobile. However, you probably wouldn't use it

for debugging, as it's static and won't allow user interaction.

47 http://chrispederick.com/work/user-agent-switcher/
48 http://www.browserstack.com/
49 http://webpagetest.org

Lean Websites216

http://chrispederick.com/work/user-agent-switcher/
http://www.browserstack.com/
http://webpagetest.org

To simulate different connection speeds, you can use Chrome's developer tools,

Slowy50 or Wireshark51.

Real Device Testing
If you can build a device lab of real devices, like Etsy has52, the following tools can

help you facilitate testing on those devices:

■ Adobe Edge Inspect53 helps you live-test your website on multiple browsers by

pairing your testing devices with your computer.

■ Shim54, running as a Node.js application, is similar to Adobe Edge Inspect, being

able to load a page simultaneously on several devices that are connected to the

same WiFi network.

Simulator vs. Real Device Testing

It's always better to test on real devices than on simulators, especially if you

have made a conscious decision to support specific browsers and device OSs.

Simulators can't provide a proper simulation of battery consumption, for ex-

ample, or of connection speed, or performance, and they can't replicate a touch

screen experience with a mouse. So while they can be handy for simple testing

purposes, don't put too much faith in them. Of course, you have to balance

this consideration with the cost and logistics of testing a range of different

devices.

Cool Down
■ Mobile usage is on the rise, and browsing via mobile devices will soon surpass

desktop browsing.

■ Particular challenges for mobile are speed, battery life and power consumption.

When developing mobile websites, assume the worst connection for your user.

50 http://slowyapp.com/
51 https://www.wireshark.org/
52 https://codeascraft.com/2013/08/09/mobile-device-lab/
53 https://creative.adobe.com/products/inspect
54 https://github.com/dmolsen/shim

217A Multi-device Web World

http://slowyapp.com/
https://www.wireshark.org/
https://codeascraft.com/2013/08/09/mobile-device-lab/
https://creative.adobe.com/products/inspect
https://github.com/dmolsen/shim

■ Device description repositories are regularly updated lists of the many devices

on the market, and can be used to identify the devices being used to connect

with your site.

■ You can detect devices based on the HTTP user agent string header, either via

server-side or client-side solutions.

■ There are some helpful tools for testing (or simulating) your website on mobile

devices.

Lean Websites218

Chapter11
Mobile Optimization Techniques

Warm Up
In the last chapter, we discussed some of the performance challenges posed by the

mobile web. Let's take a look at how to address those challenges, by running through

some performance boosters that can help make a mobile website lean and fast. At

the end of the chapter, I'll present you with some ideas on how to create your own

mobile strategy.

Mobile Performance Boosters
Let's start by examining options for improving mobile web browsing.

Offline Storage
HTML5 introduced offline storage1, which makes it possible for browsers to store

a copy of a web page, thus allowing users to browse the page while offline. Offline

storage can help save unnecessary HTTP requests by removing the need to re-fetch

1 http://www.html5rocks.com/en/features/storage

http://www.html5rocks.com/en/features/storage

assets from the server. Importantly, in the context of this book, offline storage also

helps to improve perceived performance.

While offline storage can be somewhat buggy2, and sometimes tricky to implement

and manage, there are web applications—such as the Financial Times Web App3

or Google's web-based offline email4 version—that have shown how to use it suc-

cessfully for performance enhancements. Imagine yourself on a train, wanting to

finish reading a news article before going underground. If the website supports

offline storage, you can continue reading without interruption.

Offline browsing can be realized by using either the “application cache” (often ab-

breviated to “appcache”) or “local storage”, both of which help in avoiding HTTP

requests, because they cache and save files locally.

Appcache5 allows you to specify which files the browser should cache and make

available to offline users. It's based on a manifest file that tells the browser what to

load from a local cache versus what files to request freshly. However, you need to

think about what files should be saved locally. Since appcache still unreliable in

certain browsers, it's best to follow the advice from the FT Labs6 team and keep the

manifest file as small as possible, and only include fairly small files such as fonts,

favicons, and a few images.

Local storage7 is also referred to as “client-side storage” or “web storage”. It's based

on key–value pairs like any JavaScript object. You can store blocks of JavaScript or

CSS in local storage, and on subsequent page views you can retrieve these blocks

and insert them into the page, resulting in a smaller HTML document download

size, and a faster Start Render time.

The Guardian8 website shows an example of how to use local storage to boost per-

formance. It includes some JavaScript that's executed if the visitor's browser supports

local storage. The CSS file is asynchronously loaded via Ajax. On the first run, the

2 http://alistapart.com/article/application-cache-is-a-douchebag
3 http://apps.ft.com/ftwebapp/
4 http://googlecode.blogspot.com/2009/04/gmail-for-mobile-html5-series-using.html
5 https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
6 http://www.smashingmagazine.com/2013/05/23/building-the-new-financial-times-web-app-a-case-

study/
7 http://diveintohtml5.info/storage.html
8 http://www.theguardian.com/

Lean Websites220

http://alistapart.com/article/application-cache-is-a-douchebag
http://apps.ft.com/ftwebapp/
http://googlecode.blogspot.com/2009/04/gmail-for-mobile-html5-series-using.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
http://www.smashingmagazine.com/2013/05/23/building-the-new-financial-times-web-app-a-case-study/
http://diveintohtml5.info/storage.html
http://www.theguardian.com/

CSS is included inline, but also stored in the browser's local storage. Next time the

user visits the page, or any subsequent pages on the Guardian website, the server

won't load the inline CSS again, but instead will use the local storage version, al-

lowing the page to be served faster to the user. By using this method, the Guardian

was able to drop its Start Render time from 1.113s to 0.759s9.

Storage Limitations

If you're planning to store large amounts of data, be aware that most mobile

browsers can't store more than approximately 5MB in local storage.

Other local storage techniques you could use include Web SQL Database10 (deprec-

ated), IndexedDB11, and the File System API12. You should consider using a struc-

tured database rather than local storage if you want to store a lot of content, because

local storage can become slow when performing multiple operations. Also, local

storage is executed synchronously, whereas the database options are asynchronous,

allowing you to fetch data in parallel, and thus avoid blocking the execution of your

mobile application.

Other Mobile-specific Optimization Tips
All of the performance boosters we discussed in Chapter 5, Chapter 6 and Chapter 7

are helpful for mobile websites. But as we discussed in Chapter 10, the higher

latency on mobile networks, and less powerful CPUs/GPUs of mobile devices (which

leads to slower JavaScript performance), both create special challenges for web

performance on mobile devices. Let's go through some tips on how to optimize your

website with a specific focus on mobile constraints.

Fighting Mobile Latency
Don't allow the mobile device's radio to move in and out of idle mode too often, in

order to avoid unnecessary round trips. When in an idle state, the device isn't able

to send or receive any data. To send and receive data, the radio must synchronize

with a nearby radio tower, which requires several round trips between the mobile

9 https://speakerd.s3.amazonaws.com/presentations/ca037050b8d40131e4494251e58a135f/Break-

ing_news_at_1000ms_-_4-3_-_pdf.pdf
10 http://www.w3.org/TR/webdatabase/
11 http://www.w3.org/TR/IndexedDB/
12 http://www.w3.org/TR/file-system-api/

221Mobile Optimization Techniques

https://speakerd.s3.amazonaws.com/presentations/ca037050b8d40131e4494251e58a135f/Breaking_news_at_1000ms_-_4-3_-_pdf.pdf
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/file-system-api/

device and the tower. As a result, switching between the idle and non-idle states

not only reduces battery life, but also introduces more latency, which in turn affects

performance.

Therefore, try to execute all your requests as quickly as possible, in a single batch,

and then allow the radio to return to idle. Try to use the radio while it's already

fired up—for example, by using pre-fetching techniques we've discussed previously.

In addition, fight latency on mobile by reducing HTTP requests as much as possible,

and compress and cache assets to circumvent any further requests or round trips.

Domain Sharding

The idea behind domain sharding13 is to split assets across multiple domains or

subdomian in order to serve them faster to the user. The browser can open up to

six concurrent connections, allowing your assets to be spread across six different

domains, which can be downloaded in parallel. Don't be fooled by this approach,

however. In particular with regard to mobile websites, with different domains,

there aer additional DNS lookups and additional TCP connections that have to

be opened. If you use more than two domains14, performance suffers, especially

when your mobile user doesn't have enough bandwidth to handle this shower of

assets from the server.

Optimizing Repaints and Reflows
JavaScript execution can be slower on mobile devices, so avoid repaint and reflow

operations as much as possible, and avoid too many DOM manipulations. Chapter 5

has more details on how to enhance repaints and reflows.

Jank-free Scrolling and Animations
Most mobile devices nowadays use touch gestures, where fingers do the scrolling.

Finger gestures make it easy to scroll fast through pages. As discussed in Chapter 5,

animations should ideally run at 60 frames per second for a smooth result. However,

due to the CPU/GPU constraints on mobile, processing animations can take several

hundred milliseconds. During this time, an animation may become hopelessly

“janky”, especially when scrolling fast.

13 http://www.stevesouders.com/blog/2009/05/12/sharding-dominant-domains/
14 http://www.stevesouders.com/blog/2013/09/05/domain-sharding-revisited/

Lean Websites222

http://www.stevesouders.com/blog/2009/05/12/sharding-dominant-domains/
http://www.stevesouders.com/blog/2013/09/05/domain-sharding-revisited/

To produce smooth animations on mobile devices, I recommended using request-

AnimationFrame() (discussed in Chapter 6). You'll save CPU cycles this way, the

animations being better synced with your GPU. This will also help preserve your

user's battery life.

Content Presentation
The following section outlines three different approaches to serving content to

mobile users: the dedicated mobile (“mdot”) site; the single-URL, responsive site;

and the RESS site, a kind of hybrid.

Firstly, I'll explain what they are and how to set them up. Then I'll present a com-

parison of the approaches, to help you decide which will achieve the best perform-

ance results for your site.

Dedicated Mobile Website, or mdot
An mdot website is a separate version of a site geared specifically for mobile devices.

Its name refers to the typical URL scheme used on such websites, such as m.ex-

ample.com.

The main advantage of the mdot approach is content adaptation. Before sending

the user the site content, the server detects the kind of device making the request,

and automatically redirects from the desktop to the mdot site. No heavy desktop-

specific content (such as big images) will be sent to the user. The content is organized

and presented specifically for mobile devices.

However, by including a redirect, you add an additional DNS lookup to process,

which could increase the overall page load time. Also, being a separate website, the

effort to maintain, design, and keep both versions in sync needs to be considered

and planned for.

If you decide to use an mdot site, make sure you properly add code in the page's

head to help search engines like Google understand what version of the site to send

to your visitors. For the desktop version, put this in the head:

223Mobile Optimization Techniques

<link rel="alternate" media="only screen and (max-width: 640px)"
 href="http://m.example.com/hello">

For the corresponding mobile site, put this in the head:

<link rel="canonical" href="http://www.example.com/hello">

Redirects
Before redirecting users to the mobile version of your site, you'll need to detect their

device properly. Redirects are part of the mdot website process, and users only need

to know the main (non-mdot) URL of your site. Once typed into the browser, the

server will direct users to the appropriate site depending on their device. It's import-

ant that you think about URL naming conventions. By having a clean, structured

URL hierarchy, it will be easier for you to map between the corresponding web-

sites—for example, example.com/section1 could either correspond to m.ex-

ample.com/section1 or example.com/m/section1.

Skipping the Redirect

Avoid making the user go through the redirect over and over again when accessing

the site via mobile. You can mitigate the redirect delay by encouraging users to

bookmark the mobile version, either as a regular bookmark, or by adding it to their

home screen.

Before discussing redirect techniques, let's check out some real-world examples of

websites that use an mdot approach, and the delays caused due to the redirects. I

took screenshots of the waterfall for LinkedIn (Figure 11.1) and Facebook (Fig-

ure 11.1) on mobile devices via WPT, and tested the desktop URLs with a WPT

mobile device:

Lean Websites224

Figure 11.1. LinkedIn15 on mobile, redirect from linkedin.com to touch.www.linkedin.com, wasting 1.3s just for the

redirect

Figure 11.2. Facebook16 on mobile, redirect from facebook.com to m.facebook.com, taking around 3.6s just for two

redirects

For the Facebook example, there are two redirect hoops the user has to jump through

before landing on the mdot site:

1. The first redirect of 1.1s is to redirect from http:// to https://

2. Then it takes around 2.5 seconds to redirect to m.facebook.com

3. Only then, after approximately 3.6 seconds, does the user get to the intended

destination.

Redirect Methods
There are three primary methods for directing users to the appropriate location:

■ Server-side redirects: this can be done by simple server rewrite rules. You can

tell Apache, Nginx, IIS or other web servers how to redirect users based on their

user agent. In addition, server-side languages such as PHP can also be utilized

to handle the redirects based on the user agent.

■ ESI redirects: running off the CDN network, ESI redirects are very useful and

can be set up based on user agent strings. All of this is done at the edge; users

will never get content they are not supposed to receive. Additionally, when

15 http://www.webpagetest.org/result/141102_GK_F1K/
16 http://www.webpagetest.org/result/141102_RS_F2Y/

225Mobile Optimization Techniques

http://www.webpagetest.org/result/141102_GK_F1K/
http://www.webpagetest.org/result/141102_RS_F2Y/

processing ESI, there is no need to go back to the origin for processing, and thus

the load at the origin is cut down.

■ Client-side redirects: the redirect is done via client-side scripting, such as

JavaScript. The entire page is sent to the user before any validation, selection or

detection has been executed.

So, which of these methods should you choose?

Normally, server-side redirects are faster than client-side redirects, so if it's choice

between these two, I would suggest focusing on a server-side solution. However, if

you use a CDN and ESI is supported, I'd consider this to be the preferred option,

because the ESI redirect offers an additional advantage over regular server-side re-

directs: it occurs at the edge, and is faster than putting the redirect logic at the origin.

Client-side redirects are the least-preferred solution in my opinion, because anything

that the client has to figure out, such as JavaScript execution, affects the performance,

battery power and CPU consumption of the device.

No matter what redirect method you choose, remember not to limit users to only

viewing the mobile version of the site. Always give them the option to override the

redirect policy and view the full site, because people don't like to be forced into

things!

Responsive Websites
Besides offering a dedicated mdot site, there's another, quite different approach to

optimizing your site for mobile devices. Google's mobile best practices17 suggest

that web developers should create responsive websites. Responsive web design

(RWD), coined by Ethan Marcotte in 2010, centers on the idea of serving the one

same HTML page to all devices. There's only one version of the site, but it's styled

differently for different devices. RWD relies on CSS3 media queries, fluid grids,

and flexible images. A media query serves up specially targeted styles when the

browser window is below (or above) a certain defined width. The transition points

specified by the media queries are known as breakpoints.

17 https://developers.google.com/webmasters/smartphone-sites/

Lean Websites226

https://developers.google.com/webmasters/smartphone-sites/

In order for a website to transition as described, the layout must be flexible. Fluid

grids are designed by using variable measurements, such as percentages, instead of

pixels, so the elements inside the grid container can adjust according to the parent

container's size. Images are also sized in relative units to keep them flexible and

always contained within their parent element.

Here are some examples of how to use media queries. You can either use the media

attribute within a link element, or @media in the style sheet itself.

■ External style sheets loaded via a media query: in the example below, mobile.css

will be used on any device with a width below 321px; portrait.css will be

used instead on any device in portrait mode; and print.css will be used when

the page is being printed:

<link rel="stylesheet" media="(max-width: 320px)" href=
➥"mobile.css">
<link rel="stylesheet" media="(orientation: portrait)" href=
➥"portrait.css">
<link rel="stylesheet" media="print" href="print.css">

Possible Performance Cost

This technique comes with a performance cost. Most browsers will download

all18 CSS files even if the media query returns false, as shown in Figure 11.3:

Figure 11.3. All three CSS files are being downloaded by the browser, no matter what media the user

actually matches with

Instead of wasting these additional HTTP requests, put the styles into one CSS

file, as seen below. If you still want to have structure and separation in your

style sheets, keep separate files during development, but then concatenate

into one at deployment to save additional HTTP requests.

18 http://scottjehl.github.io/CSS-Download-Tests/

227Mobile Optimization Techniques

http://scottjehl.github.io/CSS-Download-Tests/
http://scottjehl.github.io/CSS-Download-Tests/

■ Here's as example of the same @media directives as above, this time included

within the style sheet itself:

@media (max-device-width: 320px) {
 /* mobile styles */
}
@media (orientation: portrait) {
 /* portrait styles */
}
@media print {
 /* print styles */
}

Research by Guy Podjarny19 shows that most responsive websites don’t yet focus

on web performance: 72% of the sites using responsive design don’t optimize for

mobile. While being viewed on small-screen devices, those pages have the same

page weight as the ones being viewed on a large-screen device. Try to avoid sacrifi-

cing performance over convenience, because performance remains key for mobile

websites.

In general, it might seem easier to optimize a mobile website for performance than

a RWD website. Let's compare the advantages and disadvantages of responsive web

design.

RWD Advantages
Advantages of RWD over dedicated mdot sites include:

■ Cross-platform sharing: have you ever gotten a link shared by a friend, and when

you open it on your laptop, it opens up the mobile version? With RWD, you only

share one URL, and don't have to worry what version will be shown to the user.

■ Search engine optimization (SEO): Google indicates20 that responsive web design

is its “recommended design pattern.” A responsive website only has one URL

with (normally) the same content for all devices. Thus, Google will have an

easier job crawling and indexing your content.

19 http://www.guypo.com/real-world-rwd-performance-take-2/
20 https://developers.google.com/webmasters/mobile-sites/mobile-seo/overview/select-config

Lean Websites228

http://www.guypo.com/real-world-rwd-performance-take-2/
https://developers.google.com/webmasters/mobile-sites/mobile-seo/overview/select-config

■ Fewer codebases to maintain: consolidated work into one web property comes

with some maintenance advantages, one codebase serving all device properties.

RWD Disadvantages
Responsive websites can be less efficient that mdot sites, as they sometimes serve

content to mobile devices that's not needed:

Download and display: none For smaller devices, not all the content should be

shown. Consequently, content needs to be re-

moved or, as is the case of most RWD sites, just

not displayed. However, not displaying something

doesn't mean it's not served to the client. As we

learned in Chapter 5, anything on the critical

rendering path with display: none will still be

loaded into the rendering tree. You are basically

only hiding assets visually while still asking the

browser to download them―which isn't cool!

Duplication of DOM Elements When developing a RWD site, a lot of logic is put

into the code to handle and shuffle around boxes

and containers, which results in the DOM inevit-

ably getting bigger and more complex. The more

code, the bigger the download, and the more work

for the browser to construct the page on screen.

Download and Resize Remember how we discussed that we should serve

the appropriate image size to users? Well, this

becomes a challenge for RWD. You want to show

a nice image for a small screen, but you don't want

to give up the quality and size for it to be shown

on a bigger screen. What do you do? Sacrifice size

for beauty and load the bigger image, but scale it

down for the small screen? Considering that im-

ages are one of the big performance challenges,

we shouldn't be doing this at all.

So for now, here are my two cents: based on statistics, I'm not convinced I would

use RWD over a dedicated mdot site if speed and user experience are the things I

229Mobile Optimization Techniques

care about the most. However, if you can't pay for a dedicated mobile site, I can re-

commend RWD, but only by following the best practices.

Responsive Images to the Rescue?

There has been a movement in the performance community to address the problem

of RWD sites being heavier than dedicated mobile sites. As we've discussed

earlier, images are the main culprit for heavy websites. Responsive images aim to

serve optimized images to RWD websites, removing unnecessary, bloated images

for smaller devices.

The idea behind a responsive image is that the browser will display the image

intelligently, choosing from a number of versions of the image based on the cap-

abilities of the device. Conceptually, the image responds to the current device it's

displayed in, and changes its dimensions and file size accordingly.

The Responsive Images Community Group21 lists several approaches to serving

images appropriately to different devices. Guy Podjarny's Responsive & Fast: Im-

plementing High-Performance Responsive Design22 also outlines best practices

on using responsive images.

The good news is that this is a great step towards serving the right image size to

the right device, and downloading only a smaller image if that's all that's required.

The bad news is, not all browsers support responsive images yet.

Both mdot and RWD have their performance advantages and disadvantages. The

next section describes a hybrid approach that combines the best of both methods.

RESS
RESS stands for Responsive Web Design with Server Side Components23, and refers

to the use of responsive design in combination with server-side components. It

solves many of the issues with RWD, utilizing advantages of the mdot approach.

The server-side components enable the offloading of unwanted content before

serving it to the client, while media queries are still used to accomplish responsive

layouts. There are two RESS approaches you can take, which are detailed below.

21 http://responsiveimages.org/
22 http://www.akamai.com/dl/akamai/responsive-and-fast-implementing-high-performance-respons-

ive-design.pdf
23 http://www.lukew.com/ff/entry.asp?1392

Lean Websites230

http://responsiveimages.org/
http://www.akamai.com/dl/akamai/responsive-and-fast-implementing-high-performance-responsive-design.pdf
http://www.akamai.com/dl/akamai/responsive-and-fast-implementing-high-performance-responsive-design.pdf
http://www.lukew.com/ff/entry.asp?1392

Original RESS
RESS is my favorite approach for serving content to different devices. It combines

the best of both worlds, as you can present one single URL for all devices, but create

a situational experience like this:

■ Server-side components take care of any heavy lifting, or complicated calculations

such as JavaScript libraries, page templates, and other functionalities.

■ Client-side components take care of anything more layout-specific, such as

changing and moving boxes—mostly things that can easily be handled by media

queries.

For example, imagine you have a website presenting news with text and images:

the mobile and desktop versions should deliver the same content. Let's assume the

desktop version includes a bigger header and footer, whereas the mobile version's

header and footer are simpler and smaller, so basically just differently designed but

with the same functionality. The images for desktop should be higher resolution

than the mobile versions. A possible RESS approach to this scenario would be as

follows:

Server-side components Detect the device on the server, and deliver a differ-

ent image based on the device. Let's assume we have

a small version of an image stored as s_photo1.jpg,

and the original size photo1.jpg.

The <?=$device_prefix?> is determined on the

server, based on the device, and will be dynamically

included once the page loads on the user's end. The

following code is provided in PHP and shows what

prefix should be served for an iPhone:

<?php
 $ua=$_SERVER['HTTP_USER_AGENT'];
 $device_prefix = '';
 if(preg_match('/iphone/i',$ua)) {

231Mobile Optimization Techniques

 $device_prefix = 's_';
 }
?>

And this is how you would write the corresponding

HTML code:

<img src="<?=$device_prefix?>photo1.jpg"
➥ alt="Example photo"/>

Client-side components The client-side components can take care of the

styling of the header and footer via media queries.

These queries can be stored in a CSS file as follows

(simplified for the sake of this example):

header {
 height:100px;
}

footer {
 height:60px;
}

@media (max-device-width : 560px) {
 header {
 height:50px;
 }
 footer {
 height:20px;
 }

}

RESS with ESI
As mentioned earlier, ESI can be a powerful tool for dealing with device detection

and direction, so why not combine RESS with ESI?

Lean Websites232

With ESI, it's also possible to serve one single URL for your desktop and mobile

site. Based on the device the user is using to connect with your site, you can create

a content and markup switch for the entire page:

<!--esi
<esi:choose>
<esi:when test="$(HTTP_USER_AGENT) matches_i $(mobile_ua)">
 <!-- Mobile head and body -->
 </esi:when>
 <esi:otherwise>
 <!-- Desktop head and body -->
 </esi:otherwise>
</esi:choose>
-->

The code snippet above demonstrates how easy it is to serve completely different

markup and content to a mobile device.

Comparison of Mobile Site Approaches
Each approach to optimizing content for mobile devices has advantages and disad-

vantages, and several factors need to be considered when deciding which to use.

What is my budget? How many resources do I have to support the website moving

forward? How important is it to serve my site's content differently on different

devices and in different contexts?

Let's list each technique and describe its pros and cons:

Watch outConsPros

Constant updating

of device filters.

Multiple URLs

(not easy to share),

Focus on

performance,

mdot

device detectioncontent

repository needed,adaptation,

potentiallydelivering only

what is needed. complicated

redirect logic,

content forking,

redirect with

233Mobile Optimization Techniques

Watch outConsPros

additional loading

time.

Bloated websites

with duplicated

Careful planning

involved, content

One URL for all

content, no

RWD

DOM elements

and so on.

served that is not

required,

redirects, easy to

share, suggested

potentially hurting

performance.

by Google, better

for SEO, no device

repository

required.

Constant updating

of device filters.

Device detection

or feature

If required, one

URL for all

RESS (with ESI)

detection required.content, no

RESS with ESI: noredirects, easy to

share. need to go back to

the origin for

processing, hence

load at the origin

is cut down.

My advice is to use RESS with ESI where access to a CDN with ESI support is

available. This approach provides the most flexibility, and is best able to determine

what to serve to a specific platform or device.

Cool Down
■ Various techniques such as offline storage are useful for improving perceived

performance and reducing latency on mobile devices.

■ The user agent HTTP header can be used to manage and detect devices.

■ Three main options—mdot, RWD and RESS—exist for serving content efficiently

to mobile devices. As always with performance, your choice depends on your

current needs and resources.

Lean Websites234

■ If you choose RWD, don’t just make the website responsive. Also pay attention

to performance.

■ Learn how to use media queries properly. Try to avoid practices like setting

unwanted content to display:none, as the hidden content will still be down-

loaded onto the device.

■ Bypass extensive client-side processing (JavaScript, and non-optimized, third-

party scripts), and try to move the logic from the front-end to the back-end.

■ Strive to create the best user experience based on the user's platform and device.

Know device specific features, and pitfalls, and take advantage of that knowledge.

235Mobile Optimization Techniques

Chapter12
Performance Cheat Sheet

Warm Up
In this final chapter, I've compiled a list of the most important tips and tricks covered

throughout this book. It's designed to be a kind of performance cheat sheet, or, if

you prefer, a set of exercises to guide you in practicing web performance. The more

frequently you apply the tips below, the better you'll get at mastering performance

issues and creating fast, lean websites.

Shape a Performance Culture
This book has highlighted the importance of building a strong performance culture1.

Make sure to bring everybody on board within your team and company. If you don't

create the right culture, there'll be a constant performance battle with cross-func-

tional teams such as product, marketing or design. You need to foster, educate and

stand up for the idea that performance results in success, revenue, customer happi-

ness and satisfaction. So foster web performance as part of your company's culture.

1 http://www.stevesouders.com/blog/2013/05/17/creating-a-performance-culture/

http://www.stevesouders.com/blog/2013/05/17/creating-a-performance-culture/

Team Culture Checklist
■ Make everybody aware that performance is everybody's business, from product

manager to content strategist, from designer to developer.

■ Encourage, and feel encouraged, to say “No”. Evaluate if a new script, or a big,

heavy image, will really improve the customer experience and result in more

revenue, and balance this against the performance hit the page might take because

of this specific choice.

■ Once performance gains have been made and identified, communicate, celebrate,

and share this success frequently with the teams.

Performance Is about Perception and
Respect

Page size or page load time are not the only indicators of performance. Perceived

performance is essential for a happy user. People won't notice when your site is

fast, but they'll notice when it loads slowly. We should show our users respect by

serving the content they requested as fast as possible. Don't make them wait!

End User Checklist
■ Ask the question “How long does it take for the user to interact with my page?”

or “How many steps does it take the user to achieve this task?” Optimize based

on these answers.

■ Show respect to your visitors by avoiding any unnecessary delays in loading

your page.

■ Treat speed as a feature2.

■ Optimize from the user's perspective. Focus on the user's circumstances, and

not your ideal setup. Record RUM data to discover the actual latency and con-

nection speed of your users. Review Chapter 3 for details on synthetic and real

user monitoring.

2 https://www.igvita.com/slides/2013/io-pagespeed.pdf

Lean Websites238

https://www.igvita.com/slides/2013/io-pagespeed.pdf

■ Your site is never fast enough: there's always room for improvement.

Wireframing for Performance
Ensure that everybody in your team—including the designers and UX experts—un-

derstands how performance should be integrated, early on, into the design process.

Chapter 2 covered some ideas on how to do that. Let's briefly summarize some of

the most important tips.

Planning Checklist
■ Define and agree upon what's most important about your site, using the perform-

ance point system introduced in Chapter 2.

■ Define measurable performance modules for each wireframe to illustrate perform-

ance impact.

■ Agree on the above the fold content and prioritize visible content.

■ Make an effort to explain performance implications to the entire team.

■ Create a quick prototype to illustrate the performance impact of a proposed

wireframe.

Measure First, Then Optimize (and Repeat)
Talk numbers, show graphs and pie charts! Quantifying performance bottlenecks

can have a huge impact on the website's decision makers. Use the tools and tech-

niques introduced in Chapter 3 and Chapter 4, and practice the following guidelines.

Measuring Checklist
■ Choose your tools. Build your personal performance measurement arsenal by

making use of powerful, open-source tools such as WebPagetest, PageSpeed In-

sights, RUM tools such as Boomerang, and the waterfall view of your browser.

For tracking trends, check out HTTP Archive.

■ Clean up your waterfall. Keep the overall waterfall as steep, thin and small as

possible. Revisit Chapter 4 for more details.

239Performance Cheat Sheet

■ Set a performance budget to establish a goal to work towards, such as setting a

baseline by comparing your performance results with those of your competitors.

■ Before choosing third-party content (such as scripts), use the Resource Timing

API introduced in Chapter 3 to measure their performance impact.

■ Aim for a low Speed Index and a high PageSpeed value.

■ Consider setting up a free private HTTP Archive, and WPT instance, for more

control over a defined list of web pages and measurement cycles. Chapter 4

covered steps on how to get started.

Determine Your Critical Rendering Path
Get to know and understand the critical rendering path of your page. Condense the

code and resources required to render the initial view of a web page3 as much as

possible. Review the detailed example in Chapter 5 to help you apply some tech-

niques and tools to optimize your critical rendering path.

Critical Rendering Checklist
■ HTML, the page itself, is always a critical resource. Keep it as clean as possible.

■ Clean up your DOM by removing unused elements. They just delay the rendering

process.

■ Order matters: load critical assets as early as possible, and remove any render-

blocking elements from the critical path.

■ Don't put third-party features—such as scripts or web fonts—in your critical

path.

■ Minimize repaint and reflows, and avoid changing the appearance of an element

without changing its layout, or changing the page layout. Revisit Chapter 6 for

the list of CSS elements to avoid.

3 https://developers.google.com/speed/docs/insights/mobile?csw=1#MinimizeDNSLookups

Lean Websites240

https://developers.google.com/speed/docs/insights/mobile?csw=1#MinimizeDNSLookups
https://developers.google.com/speed/docs/insights/mobile?csw=1#MinimizeDNSLookups

■ Aim for 60fps or persistent frames of 30fps and higher for smooth scrolling. For

animations, use requestAnimationFrame() instead of setInterval() or set-

Timeout(), as explained in Chapter 6.

■ Follow the 14KB rule to serve the most important content first.

■ Prioritize visible content: focus on the above the fold content first, and load

other assets afterwards.

■ CSS is critical. Remove render-blocking CSS by using the media attribute (re-

membering, however, that the file will still be downloaded).

■ The most important styles, especially above the fold styles, should go inline, as

described in Chapter 5.

■ Unblock the parser by using attributes such as defer or async for JavaScript

tags.

■ Put scripts at the bottom of the page to avoid render blocking.

■ Make scripts non-blocking: wait until the window.onload event has fired to load

less critical JavaScript files, and load them asynchronously, especially third-

party scripts.

■ Limit the total number of script tags to allow faster rendering. Review Chapter

6 for more JavaScript optimization tips.

Reduce Bytes
A smaller site is a faster site! In general, reducing the size of the assets that need to

be sent to the browser will be beneficial. There are several optimization tips, de-

scribed in Chapter 6 and Chapter 7, that you can follow to slim down the assets of

your page.

Asset Checklist
■ Minify your page assets such as HTML, CSS and JavaScript.

■ Remember that images are your best friend, but also your worst enemy. The

biggest optimization results can be achieved for images. Don't serve any more

241Performance Cheat Sheet

pixels than needed, by choosing the right image compression and format. Review

the compression and format options discussed in Chapter 7.

■ Measure the performance of your image format before settling on it. Use image

formats such as PNG, GIF, JPEG, SVG or even encode the image into a base64

format (data URI) for the web.

■ Avoid custom web fonts, using them only if really necessary. Where they are

used, consider a web font loader, as discussed in Chapter 7.

■ Use Gzip techniques, as introduced in Chapter 9, to reduce the file size sent over

the wire.

Reduce HTTP Requests
One of the important aspects of performance optimization is reducing the number

of HTTP requests you make. Only serve the necessary files to the user. In order to

achieve this, check out the following summarized tips, previously discussed in

Chapter 5.

Request Checklist
■ Concatenate where applicable, to reduce the amount of HTTP requests. Be smart

about it: separate more frequently changed code from less frequently changed

code. Concatenate files based on these criteria, and use a more aggressive cache

policy for the latter.

■ “Less is more”. Load only what matters, especially when using RWD.

■ Don't blindly use JavaScript libraries and frameworks just because they are

convenient.

■ Use image sprites to reduce HTTP requests. Avoid too much white space between

images to reduce memory consumption (see Chapter 5 for more details).

■ For small images, consider using the data URI technique to remove additional

HTTP requests.

Lean Websites242

Fight Latency
Latency is the biggest bottleneck for lean websites, as discussed in Chapter 3,

Chapter 5, Chapter 6, Chapter 7 and Chapter 9. Consider the steps below to lower

latency as much as possible.

Latency Checklist
■ Measure your users' latency by using the Resource Timing API, as introduced

in Chapter 3.

■ Fight latency by reducing HTTP requests as much as possible (see “Reduce HTTP

requests” above).

■ The highest latency occurs on mobile devices. Additional latency is caused by

the radio of the device, as discussed in Chapter 10 and Chapter 11.

■ Reduce the amount of polling on your page. Don't constantly try to fetch new

content in the background, especially if it's not immediately needed.

■ Send the most important styles down the wire as soon as you can.

■ Remove redirects where possible.

■ Use the keep-alive header that keeps TCP connections open to reduce latency,

as explained in Chapter 3 and Chapter 9.

■ Use offline storage techniques such as appcache, local storage, Web SQL database,

or IndexedDB to cut down on latency. Review Chapter 11 for more details.

■ Use content delivery networks to avoid high latency, by moving requested re-

sources closer to the users and thus reducing round trip time. Chapter 9 outlines

further server quick wins.

■ HTTP/2 (and formerly SPDY) provide efficient use of network resources and

reduced latency, by allowing multiple concurrent requests on the same connec-

tion.

243Performance Cheat Sheet

Make Friends with the Server
You wouldn't believe how much a little server love can help your performance efforts.

The examples in Chapter 9 show that with only a little bit of effort in server optim-

ization—such as using Gzip compression—huge performance improvements can

be made. The tips below recap the most important ones.

Server Checklist
■ Gzip uncompressed assets such as HTML, XML, JSON and CSS.

■ Create a solid cache policy, as described in Chapter 9. Use conditional requests

(content-based and time-based) to specify how to retrieve assets from the network.

■ Consider PageSpeed Insights for your web server. It's a great tool for reducing

some of the performance workload by applying mod_pagespeed filters.

Tame the Mobile Beast
One of the biggest challenges of mobile web browsing is the latency that comes with

the radio and wireless connections. Don't fear it, but be aware of it. Chapter 10 and

Chapter 11 covered important aspects of mobile web performance, which are sum-

marized below.

Mobile Tips
■ Be respectful of your visitors' data charges on mobile. Don't make the user pay

for your bad performance.

■ Avoid domain sharding (on mobile). More HTTP requests and DNS lookups will

result in higher latency.

■ Pay attention to RUM or Analytics data to understand your users' connection

speed and latency, then optimize them.

■ Weigh the advantages and disadvantages of different mobile strategies. Choose

between mdot, RWD, RESS or RESS with ESI. Review Chapter 11 for a compar-

ison table.

■ Apply device description repositories to assist you with device detection.

Lean Websites244

■ RESS with ESI redirect offers an additional advantage over regular server-side

redirects: it occurs at the edge, and is faster than putting the redirect logic at the

origin.

■ Remove the need for a mobile direct by encouraging your user to bookmark your

mdot site rather than using the desktop URL.

■ Mobile devices are powered by batteries. Understand what causes the battery to

drain: rendering images takes up most of the total rendering energy, followed

by executing JavaScript code. Also, the more items are styled on a page, the

bigger is the energy consumption for style sheets.

■ Consider offline storage techniques as described in Chapter 11.

■ Test your mobile experience on real devices, as much as possible.

Automate Your Performance Routines
The idea behind automating performance optimization, as discussed in Chapter 8,

is to help you build and maintain lean websites with the least manual labor. Using

APIs and task runners to programmatically produce performant code during deploy-

ment helps greatly in producing lean websites.

Automation Checklist
■ Leverage the power of the PageSpeed Insights API to check for performance

bottlenecks, apply filters and rules, and provide warnings. Review the list of

filters in Chapter 8.

■ Use task runners such as Grunt, Gulp, Maven or Ant—as discussed in Chapter

8—to make performance optimization a component of your deployment process.

■ Even better, include task runners and performance APIs in your continuous in-

tegration system. Check out YSlow's continuous integration plugins, as introduced

in Chapter 8.

Stay in Shape and Avoid the Yo-yo Effect
Maintaining a lean website is a bit like following a weight loss program. It's all too

common, after slimming down, to gain back all the weight lost in no time! As in

245Performance Cheat Sheet

dieting, so in maintaining lean websites, we need to avoid the yo-yo effect4. The

monitoring tools discussed in Chapter 4, and the performance automation tools

described in Chapter 8, help us to keep on top of website optimization.

Monitoring Checklist
■ Measure first, then optimize.

■ Constant measuring and monitoring of your website's performance will help you

identify performance bottlenecks and deal with them.

■ Set up daily performance reports and warnings to keep your performance mind

at ease.

■ Automation can be incredibly helpful in fighting the yo-yo effect by triggering

appropriate warnings. Review Chapter 8 for tools and options for keeping on

top of this.

Cool Down
This is our last cool down before the end of the book. I'd like to close this last chapter

with a quote by Larry Page, the founder of Google:

“Browsing should be as simple and fast as turning a page in a

magazine.”

May that inspire us all to aim for leaner websites!

4 http://en.wikipedia.org/wiki/Yo-yo_effect

Lean Websites246

http://en.wikipedia.org/wiki/Yo-yo_effect

	Lean Websites
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Acknowledgements
	Want to take your learning further?

	Performance Simply Matters
	A Lean Website
	The Psychology of Speed
	What Is “Too Slow”, and When Do Websites “Feel” Slow?
	Maister's First Law of Service
	Satisfaction
	Perception
	Expectations

	Abandonment Rate: When Your Users Decide to Leave
	Response Time

	Speed Matters: Everybody Cares, Even Google
	Cool Down

	User Experience and Performance
	Warm Up
	UX Principles
	Information Architecture and Wireframes
	Design for Performance
	Perceived and Preemptive Web Performance
	The Performance Point System
	Measurable Performance Modules
	Case Study: Time Magazine Website
	Current Performant Order Based on MDMs
	Suggested Performant Order based on MDMs

	Cool Down

	Measuring & Monitoring Performance
	Warm Up
	Measuring Performance
	HTTP Archive: Tracking Performance Trends
	Useful Performance Tools
	Browser-based Developer Tools
	Resource Waterfall
	WebPagetest

	Dedicated Perceived Performance Metrics
	Above Fold Time
	Speed Index
	PageSpeed

	Anatomy of an HTTP Transaction
	Unpredictable Side Effects: Connection Speed, Bandwidth and Latency
	Bandwidth and Latency
	Last Mile Latency

	Monitoring Performance
	Synthetic Measurements
	WebPagetest
	Result Page
	WPT's Waterfall
	Domain and Content Breakdown
	Unique ID

	PageSpeed Insights
	Browser Extensions and Plugins
	Advanced Analytical and Programming Tools
	The Power to Query = Big Query + HTTP Archive
	APIs

	Real User Monitoring
	Navigation Timing
	Resource Timing
	Free RUM Tools
	Boomerang
	Google Analytics
	A/B Testing

	Comparing RUM and Synthetic

	Cool Down

	Performance Boot Camp Setup
	Warm Up
	Measure First, Then Optimize Towards a Goal
	Your Website's Waterfall

	Performance Monitoring: Set up Your Performance Dashboard
	Create Your Private HTTP Archive
	How Big Is the Biggest Image?
	What Is the Slowest Page?
	What Pages Exceed 200 Requests Per Page?

	Create Your Private RUM Tests
	Set Up Alerts
	Google Analytics
	Pingdom
	CopperEgg

	Set up a Performance Budget
	Competitive Comparison
	Create Business Hypotheses and Prove Them
	List and Commit to Your Performance Metrics

	Cool Down

	Mastering Lean HTTP Requests
	Warm Up
	Understanding How the Browser Works
	Critical Rendering Path
	Optimizing the Critical Rendering Path
	Follow the 14KB Rule

	Reducing HTTP Requests
	(Smart) Concatenation
	CSS
	JavaScript
	Conditional Loading
	Tools

	Image Spriting

	Optimizing HTTP Requests
	Minifying
	Tools

	Pre-browsing
	rel="dns-prefetch"
	rel="subresource"
	rel="prefetch"
	rel="prerender"
	Browser Support

	Cool Down

	Producing Lean Web Assets: Part 1
	Warm Up
	Optimizing HTML
	Keeping Things Tidy
	Further Tips on Optimizing HTML Files

	Optimizing CSS
	Lean CSS
	CSS Optimization Tools

	Optimizing JavaScript
	Lean DOM Operations
	document.write()
	Loops
	Repaints and Reflows
	Repaint and Reflow Defined
	Combining Repaints and Reflows into Batches
	Improving Animations

	Third-party Scripts
	Types of Third-party Scripts
	Content Overload
	Preparing for the Worst: SPOF
	The Offending Tag
	Avoiding SPOF
	The Dynamic Way
	The Newer, Improved Way

	Tools for Fighting SPOF

	Tips for Working with Third-party Scripts

	Cool Down

	Producing Lean Web Assets: Part 2
	Warm Up
	Optimizing Images
	Compression and Image Formats
	Raster Graphics
	Vector Graphics
	When to Use What?

	Image Compression and Optimization Tools
	Data URIs
	WebP
	Comparison of Image Formats

	Optimizing Video
	Video Creation and Content
	File Size: Frame Rate, Bit Rate, and Resolution
	Containers, Codecs and Compression
	Containers
	Codecs and Compression

	Delivery Method
	Streaming
	Download
	Progressive Download

	Video Hosting

	Web Fonts
	Hosting Fonts on Your Own Server
	External Font Hosting
	Web Font Loader
	Web Font Tips

	Cool Down

	Automating Optimization Tasks
	Warm Up
	Automation Tools
	PhantomJS in Collaboration with Other Tools
	WPT API and PageSpeed Insights API

	Task Runners and Build Systems
	Grunt
	Executing Grunt on the Example Page
	Comparison

	Grunt Alternatives

	Cool Down

	Network and Server Performance Improvements
	Warm Up
	Content Delivery Networks
	PageSpeed Insights for Your Web Server
	Canonicalize JavaScript Libraries
	Combine CSS
	Defer JavaScript
	Prioritize Critical CSS

	Keep-alive
	HTTP/2
	Gzip Compression
	Caching
	Conditional Requests
	Content-based
	Time-based
	stale-while-revalidate
	stale-if-error

	Caching in Practice
	Caching Tips

	Cool Down

	A Multi-device Web World
	Warm Up
	One Web in a Multi-device World
	Mobile on the Rise: Current Stats and Internet Usage
	Mobile Performance Challenges
	Speed
	Mobile Network and High Latency
	CPU/GPU and Less Memory
	Slower JavaScript Execution

	Power Consumption and Data Plans
	Battery Consumption
	Data Consumption

	Device Management
	WURFL
	Other DDRs
	DeviceAtlas (Free and Commercial Versions)
	DeviceMap (Free)
	Create Your Own DDR

	Device Detection
	Take a Quick Inventory
	The Identifier: HTTP Header
	Server-side Options
	CDN Options
	Client-side Options
	Client Hints
	Disadvantages of User Agent Sniffing

	Device Testing
	Simulators
	Real Device Testing

	Cool Down

	Mobile Optimization Techniques
	Warm Up
	Mobile Performance Boosters
	Offline Storage
	Other Mobile-specific Optimization Tips
	Fighting Mobile Latency
	Optimizing Repaints and Reflows
	Jank-free Scrolling and Animations

	Content Presentation
	Dedicated Mobile Website, or mdot
	Redirects
	Redirect Methods

	Responsive Websites
	RWD Advantages
	RWD Disadvantages

	RESS
	Original RESS
	RESS with ESI

	Comparison of Mobile Site Approaches
	Cool Down

	Performance Cheat Sheet
	Warm Up
	Shape a Performance Culture
	Team Culture Checklist

	Performance Is about Perception and Respect
	End User Checklist

	Wireframing for Performance
	Planning Checklist

	Measure First, Then Optimize (and Repeat)
	Measuring Checklist

	Determine Your Critical Rendering Path
	Critical Rendering Checklist

	Reduce Bytes
	Asset Checklist

	Reduce HTTP Requests
	Request Checklist

	Fight Latency
	Latency Checklist

	Make Friends with the Server
	Server Checklist

	Tame the Mobile Beast
	Mobile Tips

	Automate Your Performance Routines
	Automation Checklist

	Stay in Shape and Avoid the Yo-yo Effect
	Monitoring Checklist

	Cool Down

