
by Darren Jones

get up to speed with sinatra in a weekend

JUMP START
SINATRA
BY DARREN JONES

Jump Start Sinatra
by Darren Jones

Copyright © 2013 SitePoint Pty. Ltd.

Expert Reviewer: Konstantin HaaseProduct Manager: Simon Mackie

English Editor: Kelly SteeleTechnical Editor: Diana MacDonald

Cover Designer: Alex WalkerIndexer: Glenda Browne

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9873321-4-1 (print)

ISBN 978-0-9873321-5-8 (ebook)

Printed and bound in the United States of America

ii

Dedication

To Mum and Dad ... thanks for being awesome!

About the Author

Darren Jones has been playing around with programming and building websites for over a

decade. In 2007, he discovered Ruby and Rails; they were both great, but then he found

Sinatra and fell in love with its classy approach to web development. At the start of 2010,

Darren started the “I Did It My Way” blog, detailing his quest to master Sinatra, and at the

end of that year he used Sinatra to build the Cards in the Cloud website.1

Darren writes Sinatra tutorials for RubySource,2 and lives in the city of Manchester, where

he enjoys playing water polo and teaching mathematics.

About the Expert Reviewer

As maintainer of Sinatra, Konstantin Haase is an Open Source developer by heart. Ruby has

become his language of choice since 2005. He regularly contributes to widespread projects,

including Rubinius, Rack, Rails, and MRI. In 2012, he received the Ruby Hero Award for his

outstanding contributions to the community. He now works on Open Source projects at

Travis CI in Berlin, Germany.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

1 http://cardsinthecloud.com/
2 http://rubysource.com/

iii

http://cardsinthecloud.com/
http://rubysource.com/
http://www.sitepoint.com/

Table of Contents

Preface . ix

Who Should Read This Book . x

Conventions Used . x

Code Samples . x

Tips, Notes, and Warnings . xi

Supplementary Materials . xii

Challenge Yourself . xii

Friends of SitePoint . xii

Acknowledgments . xii

Chapter 1 Sinatra Takes to the Stage 1

What is Sinatra? . 1

Why should you use Sinatra? . 4

Installing Sinatra . 4

Windows . 4

GNU/Linux . 5

Mac . 5

Your First Sinatra App . 6

Variables and Named Parameters . 8

Creating a Betting Game . 11

Sinatra: The Safe Bet . 12

Chapter 2 Building a Basic Website 13

Example Website: Songs By Sinatra . 13

ERB and Views . 15

Becoming Dynamic . 16

DRYing Out with Layouts . 17

External Views . 20

Folder Structure . 22

Adding Some Style . 24

Missing Pages . 26

Instance Variables . 28

Start Your Engines . 30

Partials . 33

Getting Sassy . 34

Take the Long View . 38

Chapter 3 Collecting Records . 39

Databases . 39

Installing SQLite . 40

Windows . 40

GNU/Linux . 40

Mac OS X . 41

Object Relational Mappers . 41

DataMapper . 42

Song Class . 42

Interacting with the Song Class in IRB . 44

Migrations . 45

CRUD Operations . 45

Creating Songs . 45

Reading Songs . 47

Updating Songs . 48

Deleting Songs . 49

Putting It on the Web . 49

HTTP Verbs . 50

RESTful URLs . 51

vi

Listing Songs . 53

Showing Songs . 54

Creating New Songs . 57

Editing Songs . 60

Deleting Songs . 62

Finishing Touches . 63

For the Record . 63

Chapter 4 Setting up to Go Live 65

Configuration . 65

Environments . 66

Settings . 68

Custom Settings . 69

Sessions . 71

Implementing a Simple Login Mechanism . 72

Deploying the Site . 75

Creating a Heroku App . 76

Bundler . 76

Rack It Up! . 77

Git . 77

Deploying to Heroku . 79

Setting up the Database on Heroku . 79

Time to Shine . 81

Chapter 5 Helpers and Finders . 83

Helper Methods . 83

Helpers Block . 84

Song Helpers Module . 89

External Gems . 91

Sinatra::Flash . 91

vii

Pony Mail . 94

Sinatra::Contrib . 99

Admin Extension . 100

A Little Help from My Friends . 104

Chapter 6 Jazzing up with JavaScript 105

CoffeeScript . 105

CoffeeScript in Sinatra . 106

jQuery . 108

Date Picker . 110

Adding a Like Button . 111

Pushing the Changes Live . 118

All That Jazz . 120

Chapter 7 The Final Act . 121

Modular Sinatra Applications . 122

Developing Modular Applications . 123

Modularizing Songs By Sinatra . 123

Song Controller Module . 127

Rack Routing . 131

Subclassing Modules . 132

Middleware . 133

Asset Middleware . 134

Rolling Your Own Framework . 140

Padrino . 142

In a Class of Its Own . 143

Start Spreading the News … . 143

Index . 145

viii

Preface
Jump Start Sinatra is a short book, but I see it as being like Sinatra itself—packing

a punch despite its size. The book you hold in your hands will take you on a roller-

coaster tour of Sinatra, demonstrating various tasks by example. We jump straight

into using Sinatra in Chapter One, before going on to build a fully modular, database-

driven dynamic website that even has some Ajax thrown in for good measure!

I first started using Sinatra about three years ago, and very quickly fell for its classy

approach to web development. I was a complete beginner, and despite there being

few tutorials around, I quickly picked up the basics to enjoy the flexibility that using

Sinatra gave me.

This book is everything I’ve learned about Sinatra collected together in one place.

In my opinion, Sinatra is as close to perfect as a piece of software can be. It does

everything it needs to and nothing more; there isn’t a single line of bloat anywhere

in its source code, which weighs in at fewer than 2,000 lines!

Sinatra applications often have a certain finesse, with code that’s easy to read and

follow. Sinatra puts you in the driver’s seat, allowing you to make the application

as simple or as complicated as it needs to be; all the decisions are down to you.

Sinatra’s direct simplicity makes it easy for you to implement those decisions with

minimal fuss.

Opinions abound that Sinatra can only be used for small applications or simple

APIs, but this simply isn’t true. While it is a perfect fit for these tasks, Sinatra also

scales impressively, demonstrated by the fact that it’s been used to power some big

production sites.

Sinatra is only small, but it is powerful and flexible. You’re really only limited by

what Ruby can do … and Ruby can do pretty much anything you can imagine! It is

my hope that by the time you finish reading this book, you’ll have learned enough

to go forward with Sinatra and start building exciting web applications, big or small.

Whatever you do, I’d love to hear how you get along.

Who Should Read This Book
Jump Start Sinatra is aimed at all levels of Ruby programmers, particularly those

who have used Ruby on Rails. While learning Ruby falls outside the scope of this

book, a beginner should be able to follow along with the examples. It should also

be of interest to anyone who has used other web development languages or frame-

works such as PHP or Django. The book assumes no familiarity with Sinatra, and

so begins with installing it and creating a very basic application.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

x

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://rubysource.com/rails-or-sinatra-the-best-of-both-w
➥orlds/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xi

Supplementary Materials
http://www.sitepoint.com/books/sinatra1/

The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/sinatra1/code.php

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?227-Ruby-amp-Rails

SitePoint’s Ruby and Rails forum, for help on any tricky Ruby problems. If you

have Sinatra problems, try http://www.sinatrarb.com/.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Challenge Yourself
Once you’ve mastered Sinatra, test yourself with our online quiz. With questions

based on the book’s content, only true Sinatra virtuosos can achieve a perfect score.

Head on over to http://quizpoint.com/#categories/SINATRA.

Friends of SitePoint
Thanks for buying this book. We really appreciate your support! We now think of

you as a “Friend of SitePoint,” and so would like to invite you to our special page:

http://sitepoint.com/friends. Here you can SAVE up to 43% on a range of other

super-cool SitePoint products, just by using the password: friends.

Acknowledgments
Thanks to Aaron Osteraas for getting the process started. Thanks to Simon for

making it happen. Thanks to Di and Kelly for spotting all the gaffes I made. Thanks

to Glenn for all his support at RubySource. Big thanks to Konstantin for making

Sinatra what it is today and for all his great help and advice. Thanks to Baily for

getting me into this web development thing. And a special thank you to Helen for

always being there for me.

xii

http://www.sitepoint.com/books/sinatra1/
http://www.sitepoint.com/books/sinatra1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?227-Ruby-amp-Rails
http://www.sinatrarb.com/
http://quizpoint.com/#categories/SINATRA
http://sitepoint.com/friends

Chapter1
Sinatra Takes to the Stage
Congratulations for picking up and reading this little book about Sinatra. Since its

release in 2007, Sinatra has quickly gained in popularity in the Ruby web community

due to its elegant simplicity and classy syntax. Everybody who uses it falls in love

with its elegant simplicity and classy syntax. This book will introduce you to Sinatra

from installation right through to building your own web application and hosting

it on the Internet. So, without further ado, let’s get on with the show!

What is Sinatra?
You might be wondering what Sinatra is. Here’s what the Sinatra website has to

say: “Sinatra is a DSL for quickly creating web applications in Ruby with minimal

effort.”1

What does that mean? Well, a DSL (domain-specific language) is a language that’s

designed to be implemented in a particular domain; that’s in contrast to general-

purpose languages that are created to solve problems in several domains. Sinatra

is a lightweight Ruby library that makes access to HTTP much easier. Ruby is a

1 http://www.sinatrarb.com/intro

http://www.sinatrarb.com/intro
http://www.sinatrarb.com/intro

simple but powerful object-oriented programming language; its elegant syntax makes

it both expressive and powerful. HTTP is the protocol that powers the Web.

Hypertext Transfer Protocol

HTTP is the Hypertext Transfer Protocol, and it’s what makes the Web go round.

This network protocol allows communication over the Internet between clients

and servers. A client (such as a web browser) will request a resource (usually a

web page) from a server, which processes the request and sends back a response

to the client. This response contains a status code (usually 200, which indicates

that everything is okay), and the requested resource that’s usually in the form of

a web page. The requests and responses are messages sent via HTTP. Figure 1.1

shows how that works.

Figure 1.1. Traditional client–server model

Sinatra makes it easy—trivial almost—to build sites, services, and web apps using

Ruby. A Sinatra application is basically made up of one or more Ruby files. You

don’t need to be an expert Rubyist to use Sinatra, but the more Ruby you know, the

better you’ll be at building Sinatra apps. And besides, Ruby is such a brilliantly

expressive language that it would be a shame not to learn it! On the flip side,

learning Sinatra and studying other people’s code will definitely help to improve

Jump Start Sinatra2

your Ruby skills. I mentioned earlier that Sinatra is a lightweight library, with under

2,000 lines of Ruby code. This is well worth knowing, as it will help you understand

how Sinatra works—and you’ll also see lots of examples of great Ruby code!

Sinatra was written in 2007 by Blake Mizerany, and has steadily gained in popularity.

At the time of writing, there have been over 3.5 million downloads of Sinatra on

the RubyGems website2 since it was hosted there in 2010. It has simplicity at its

heart, but is capable of creating large database-driven websites and is used by sites

such as the BBC, GitHub, LinkedIn, and even Apple to power its Podcast Library.3

It has also spawned numerous clones for different languages, including Express

(Node) https://github.com/visionmedia/express, Slim (PHP)

https://github.com/codeguy/Slim, Flask (Python) http://flask.pocoo.org/, Spark

(Java) http://www.sparkjava.com/, and Nancy (.NET) http://nancyfx.org/.

Unlike Ruby on Rails, Sinatra is definitely not a framework. It’s without conventions

and imposes no file structure on you whatsoever. Sinatra apps are basically just

Ruby programs; what Sinatra does is connect them to the Web. Rather than hide

behind lots of magic, it exposes the way the Web works by making the key concepts

of HTTP verbs and URLs an explicit part of it. This means that you can build big

and powerful database-driven sites with Sinatra, doing it your way without being

constrained by any enforced conventions. Having said that, we know that with great

power comes great responsibility, so having free rein to do anything you like can

also be a pitfall. Sinatra won’t stop you from writing bad code!

Sinatra is built on top of Rack,4 which is a low-level interface that communicates

between an HTTP server and a Ruby object. Most Ruby web frameworks such as

Rails, Ramaze, Rango, Camping, and Halcyon also sit on top of Rack. This makes

Sinatra easy to extend using its own extension API, RubyGems (libraries written in

Ruby—Sinatra is one!), and Rack Middleware. This opens up a world of possibilities

for extending your application and avoids you having to reinvent the wheel.

Oh … and in case you were wondering, it is named after Frank Sinatra, apparently

because he had “so much class he deserves a web-framework named after him.”5

2 http://rubygems.org/
3 http://www.sinatrarb.com/wild.html
4 http://rack.github.com/
5 http://www.sinatrarb.com/about

3Sinatra Takes to the Stage

http://rubygems.org/
http://www.sinatrarb.com/wild.html
https://github.com/visionmedia/express
https://github.com/codeguy/Slim
http://flask.pocoo.org/
http://www.sparkjava.com/
http://nancyfx.org/
http://rack.github.com/
http://www.sinatrarb.com/about

Why should you use Sinatra?
Sinatra lets you write simple yet elegant code that produces amazing results. Its

simplicity means that you can create a fully functional web app in just one file.

There are no complicated setup procedures or configuration to worry about. You

can just open up a text editor and get started with minimal effort, leaving you to

focus on the needs of your application. There’s also little waste, with code restricted

to just what is needed to kick off.

Developing in Sinatra is perfect for prototyping ideas and sites. Its syntax is basic

enough to pick up, yet very powerful. Sinatra is extremely flexible—it gets out of

your way and lets you do things how you want. If you can build it in Ruby, you can

make it into a Sinatra app. For anything from the smallest of microsites to a full-

scale web application, it’s the perfect choice for API implementations, Middleware,

widgets, Facebook apps, and more.

And last but by no means least, you’ll find an amazingly supportive community

around Sinatra. The online documentation6 is first rate and there are always helpful

people on the Google Groups page7 willing to pass on their knowledge. There’s also

the #sinatra channel on the Freenode IRC network, and numerous articles that appear

on the RubySource website8 (some of them written by yours truly!) that can help

develop your Sinatra skills.

Installing Sinatra
Before installing Sinatra, make sure you have Ruby and RubyGems installed on

your system. This is fairly straightforward, but differs depending on which operating

system you use. Below are instructions for Windows, Linux, and Mac OS X.

Windows
The easiest way to install Ruby and RubyGems if you use Windows is to use the

Ruby Installer.9 Once you have installed Ruby using the installer, it’s simply a case

of installing Sinatra with the following line:

6 http://www.sinatrarb.com/intro.html
7 https://groups.google.com/forum/?fromgroups#!forum/sinatrarb
8 http://rubysource.com/
9 http://rubyinstaller.org/

Jump Start Sinatra4

http://www.sinatrarb.com/intro.html
https://groups.google.com/forum/?fromgroups#!forum/sinatrarb
http://rubysource.com/
http://rubyinstaller.org/

$ gem install sinatra

GNU/Linux
You can use your favorite package manager to install Ruby in most flavors of

GNU/Linux. For example, in recent versions of Ubuntu (and other Debian-based

distros), you can use the following command:

$ sudo apt-get install ruby1.9.1

After you have installed Ruby, you’ll need to download and install the most recent

version of the RubyGems package manager.10

Alternatively, if you want a more up-to-date version, you can use the Ruby Version

Manager.11 This will also install RubyGems.

Now you can install Sinatra with the following line:

$ sudo gem install sinatra

Mac
Most Mac systems will already have Ruby installed, although it’s usually the older

1.8 version of Ruby. I’d recommend updating to a more recent version of Ruby

(currently 1.9 at the time of writing). This can be done using Homebrew12 and the

following command:

$ brew install ruby

This also installs RubyGems. Now you can install Sinatra with the following line:

$ gem install sinatra

10 http://rubygems.org/pages/download
11 https://rvm.io/rvm/install/
12 http://mxcl.github.com/homebrew/

5Sinatra Takes to the Stage

http://rubygems.org/pages/download
https://rvm.io/rvm/install/
https://rvm.io/rvm/install/
http://mxcl.github.com/homebrew/

Your First Sinatra App
I’m sure that by now you’re itching to write some code, so let’s get to it. We’re going

to start out with the most basic of Sinatra apps (four lines, no less!), and then show

off some of the fundamentals before writing a mini-casino app by the end of the

chapter.

Open a text editor (such as Notepad, gedit, or TextEdit) and write the following

code. Save it as hello.rb:

chapter01/hello.rb (excerpt)

require 'sinatra'

get '/hello' do
 "Hello Sinatra!"
end

And that’s all you need for a Sinatra app. The first line is a Ruby require statement

that pulls in all the code from the Sinatra library; it’s needed in all Sinatra apps.

The next block of code is what’s known as a route handler. It starts with the HTTP

verb get, and says that the client should get the page with the URL of /hello. The

last line of the handler is always evaluated and sent to the browser; in this case it

was the string Hello Sinatra!.

Sinatra apps run on a server, so we’ll need to spin one up. Open up a terminal and

navigate to the folder where the hello.rb file is saved. Enter the following command:

$ ruby hello.rb

Up to Old Tricks

If you are running Ruby version 1.8, you’ll have to run it using ruby --rubygems

hello.rb.

You should see a similar output to this:

Jump Start Sinatra6

== Sinatra/1.3.3 has taken the stage on 4567 for development with
backup from WEBrick
>> INFO WEBrick::HTTPServer#start: pid=2206 port=4567

To stop the server running, hold down Ctrl and press C.

Getting Comfy with the Terminal

When developing with Sinatra, you’ll often find yourself using the terminal or

command prompt. This can be scary at first, but it really isn’t anything to worry

about and will soon seem like second nature.

Now open up your browser and navigate to http://localhost:4567/hello (localhost

is your own computer and 4567 is the port that Sinatra runs on by default). You

should see a similar sight to the screenshot in Figure 1.2.

Figure 1.2. Your first Sinatra app!

That’s it, your first Sinatra app. It really is that simple. Let’s add another route

handler to the bottom of hello.rb:

chapter01/hello.rb (excerpt)

get '/frank' do
 name = "Frank"
 "Hello #{name}"
end

This handler contains a bit of Ruby code. We set a variable called name to be Frank

and then insert into the string saying “Hello.” As much Ruby as you like can go

before the last line (before the word end), but it’s only that last line that’s evaluated

and sent to the browser. The last line is an example of an interpolated variable inside

a string, where anything inside #{ … } will be evaluated and placed inside the

7Sinatra Takes to the Stage

http://localhost:4567/hello

string; in this case, the variable name evaluates to “Frank,” so this is placed within

the string.

As we’ve made a change to the code, we have to restart the server. Go back to the

terminal and hold down Ctrl-C. Type in ruby hello.rb again and navigate to

http://localhost:4567/frank in your browser, where you should now see “Hello

Frank.”

Sinatra::Reloader

Restarting the server after every change to your existing files can become tiresome,

so it’s worth using Sinatra::Reloader, which is part of the Sinatra::Contrib library

(more on this later). To use Sinatra::Reloader, install the sinatra-contrib gem:

$ gem install sinatra-contrib

Then add the following line to your files (underneath the require 'sinatra'

line):

chapter01/hello.rb (excerpt)

require 'sinatra'
require 'sinatra/reloader' if development?

Now all you need to do is reload the page for any changes to your existing code

to take place!

Variables and Named Parameters
This is all well and good, but what if we don’t know the user’s name in advance—can

we make a more generalized URL that will say hello to anybody? Of course we can!

Add the following route handler to the bottom of hello.rb:

chapter01/hello.rb (excerpt)

get '/:name' do
 name = params[:name]
 "Hi there #{name}!"
end

Jump Start Sinatra8

http://localhost:4567/frank

This route contains what is known as a named parameter, called :name, signified

by the leading colon. Named parameters can go anywhere in a URL, and are available

in the handler as part of the params hash. A hash is like a storage box that uses a

key/value pair system of storing data; for example, you could have this hash:

ages = {bart: 10, lisa: 8, maggie: 1}

Here, bart is a key and 10 is its value. You would reference an item in the hash

using the key; for example, if you wanted to know Lisa’s age, you’d use ages[:lisa].

The params hash is automatically created to hold any information that is entered

as named parameters in the URL, or as a parameter submitted via an HTML form

(more on that in the section called “Creating New Songs” in Chapter 3!). In our ex-

ample, the key is :name and the value will be whatever is entered in the URL. This

is a great way of grabbing information from a URL. You should see the message

displayed in Figure 1.3 if you go to http://localhost:4567/daz in your browser.

Figure 1.3. Introducing daz

Sinatra processes the route handlers from top to bottom; as soon as it finds a match

to the URL entered, it will process that handler. You can see this by going to

http://localhost:4567/frank. Technically, this is covered in our general route and

you might expect to see the message “Hi there frank!”; however, as there is another

route that matches this URL earlier in the code, that’s what is processed, so the

message shown is “Hello Frank.”

For more of an idea of how the params hash works, add the following route handler

to the bottom of hello.rb:

9Sinatra Takes to the Stage

http://localhost:4567/daz
http://localhost:4567/frank

chapter01/hello.rb (excerpt)

get '/:one/:two/:three' do
 "first: #{params[:one]}, second: #{params[:two]}, third: #{params[
➥:three]}"
end

Now if you navigate to http://localhost:4567/bolt/blake/gatlin, you should see as

per Figure 1.4.

Figure 1.4. A result of Olympic proportions

Here’s another example that shows how we can fetch data entered in the URL and

process it using some of Ruby’s methods; in this case, we’re using the Time class:

chapter01/hello.rb (excerpt)

get '/what/time/is/it/in/:number/hours' do
 number = params[:number].to_i
 time = Time.now + number * 3600
 "The time in #{number} hours will be #{time.strftime('%I:%M %p')}"
end

Now, if you go to http://localhost:4567/what/time/is/it/in/3/hours (Figure 1.5),

you’ll gain a glimpse of the future.

Figure 1.5. In the future, the time will be …

Jump Start Sinatra10

http://localhost:4567/bolt/blake/gatlin
http://localhost:4567/what/time/is/it/in/3/hours

Exercise for the Ruby Newbs

There was a lot of Ruby in that last example, mainly used to manipulate the date

and time. I’ll avoid going into explaining it all here, but recommend you have a

look online at what some of the code is doing. This is what my old school textbooks

used to call “an exercise for the interested reader.”

Creating a Betting Game
Let’s finish off the chapter with a fun and quick example of what you can do with

Sinatra. We’re going to create a little dice-betting game. You place a bet on a number

from one to six (you can actually enter any values, but you’re not going to win that

way, are you?) via the URL, and then see if your number comes up.

Create a new file called bet.rb and enter the following code:

chapter01/bet.rb

require 'sinatra'

get '/bet/:stake/on/:number' do
 stake = params[:stake].to_i
 number = params[:number].to_i
 roll = rand(6) + 1
 if number == roll
 "It landed on #{roll}. Well done, you win #{6*stake} chips"
 else
 "It landed on #{roll}. You lose your stake of #{stake} chips"
 end
end

Save the file and then start the server by entering this command in a terminal:

$ ruby bet.rb

Now open your browser and try to predict what number has come up; for example,

if 5 is your lucky number and you have lots of fake money to fritter away, you could

try betting using the URL http://localhost:4567/bet/1000000/on/5. The result is

shown in Figure 1.6.

11Sinatra Takes to the Stage

http://localhost:4567/bet/1000000/on/5

Figure 1.6. Not your lucky day

This example shows that you can put quite a bit of Ruby logic into the route handler

before you send anything back to the server. In this case, we grab the amount the

user bets and the number they bet on from the URL, and then save them as variables.

We then generate a random number between one and six using Ruby’s rand method

to mimic the rolling of dice. To finish, we use a bit of conditional logic to determine

which message to send back to the browser depending on the outcome.

What’s all this to_i business?

You might be wondering why we had to put to_i on the end of the params hashes

in the last couple of examples. Ruby is an object-orientated language, which means

everything is an object with methods. Methods are accessed using dot notation.

to_i is a method that converts strings into integers so that we can perform

mathematical tasks with them (to_i stands for “to integer”). Any values that are

obtained from URLs in the params hash are always given as strings, so if you

want the numerical form, remember to use the to_i method!

Sinatra: The Safe Bet
In this chapter, we looked at what Sinatra is and isn’t, and why you should be using

it for developing web applications. We installed Ruby, RubyGems, and Sinatra, and

then got our hands dirty with some code, creating some simple route handlers to

show off how Sinatra works. We finished by creating a little betting game web app.

We’re now ready to roll out some web pages using HTML in the next chapter, so

what are you waiting for?

Jump Start Sinatra12

Chapter2
Building a Basic Website
In the last chapter, we installed Sinatra and played around with routes and handlers;

however, we only ever sent plain strings back to the client, which, let’s face it, has

its limits. In most cases, we’ll want to send HTML pages for the browser to show.

As usual, Sinatra makes this really easy to achieve.

In this chapter, we’ll look at using views to send HTML to the browser, and start to

build a basic website comprising navigable pages. We’ll use templating languages

such as ERB (embedded Ruby) and Slim to produce the HTML, and utilize the CSS

preprocessor, Sass, to create a stylesheet to make the site look prettier.

Example Website: Songs By Sinatra
The website we’ll be building is called “Songs By Sinatra,” and will showcase Frank

Sinatra songs. We’ll build some basic pages in this chapter and then develop it over

the course of the book. We will start with the typical pages that many websites use:

■ Home
■ About
■ Contact

Initially, we’ll create some static HTML pages with navigation to each page. Create

a new file called main.rb and enter the following code:

chapter02/main.rb (excerpt)

require 'sinatra'

get '/' do
 erb :home
end

This is just like the route handlers we saw in the section called “Your First Sinatra

App” in Chapter 1, except that instead of finishing with a string that’s sent back to

the browser, we finish with the statement erb :home. It’s a reference to what is

known as a view, which is a representation of data, such as markup that is sent to

the browser. It is usually written in a templating language that’s translated into

HTML before being sent back to the browser. We’ll start by using ERB to create our

views. This can be seen in the route handler; the erb method is used with the argu-

ment :home to indicate that erb should be used to render the view called “home.”

The name of the view needs to be a symbol. The server then finds the relevant view

and sends the HTML back to the browser.

Symbols

Symbols in Ruby are similar to string objects. They always start with a colon, and

may or may not be inside quotes. If it contains spaces, it must be in quotes. Here

are some examples:

■ :name
■ :first_name
■ :'last name'

So how do these differ from strings? Well, it’s subtle, but two identical symbols

are represented by the same object, whereas two identical strings are represented

by two distinct objects. For example, if you use the :name symbol in different

parts of your code, the symbol is referring to the same object as far as Ruby is

concerned. If, however, you use the string "name", Ruby will create a new object

every time you reference the string "name" in the code. This might seem like a

minor detail, but using symbols saves a lot of memory by only using one object.

It’s particularly useful when they’re employed repeatedly; in keys used in a hash,

Jump Start Sinatra14

for example. In fact, we’ve already seen symbols used in the params hash:

params[:name].

ERB and Views
ERB is short for Embedded Ruby and is a templating language that comes bundled

with Ruby. It can be used to create HTML views that also contain Ruby code.

ERB is a superset of HTML, so plain old vanilla HTML is perfectly legal ERB code.

To start with, create a simple HTML view. Where do we put this? Right in the same

file! Just add the following to the bottom of main.rb:

chapter02/main.rb (excerpt)

__END__
@@home
<!doctype html>
<html lang="en">
<head>
 <title>Songs By Sinatra</title>
 <meta charset="utf-8">
</head>
<body>
 <header>
 <h1>Songs By Sinatra</h1>
 <nav>

 Home
 About
 Contact

 </nav>
 </header>
 <section>
 <p>Welcome to this website all about the songs of the great
 Frank Sinatra</p>
 </section>
</body>
</html>

This is an example of one of Sinatra’s coolest features: inline views. You can place

any views that you want to use in your app at the bottom of the file after the __END__

declaration. Each view starts with @@, followed by its name (home in this case).

15Building a Basic Website

If you start the server by typing ruby main.rb into a terminal and then go to

http://localhost:4567/ in your browser, you should see a similar sight to Figure 2.1.

Figure 2.1. Your first inline view: bare-bones Sinatra

It’s very basic and the links are currently broken, but at least we have a page of

HTML!

Becoming Dynamic
Since we’re using ERB to create our views, we don’t have to restrict ourselves to

just using HTML. ERB lets you embed Ruby statements in the HTML, as it is basically

a superset of HTML that adds two new tags:

<% … %>

These tags contain any Ruby code that is meant to be invisible to the user (such as

variable assignments and logic statements):

<%= … %>

These tags are used for output; any Ruby code inside these tags will be evaluated

and the output is then displayed in the browser.

To demonstrate how these tags work, let’s add a variable called title to our view.

To set a variable, we need to use <% title = "Songs By Sinatra" %>. We can

Jump Start Sinatra16

http://localhost:4567/

then reference this variable anywhere else in the view. To display the title, we can

use <%= title %>. This will evaluate the value of the variable and display the string

Songs By Sinatra. To see this approach in action, change the home view so that it

looks like the following:

chapter02/main.rb (excerpt)

@@home
<% title="Songs By Sinatra" %>
<!doctype html>
<html lang="en">
<head>
 <title><%= title %></title>
 <meta charset="utf-8">
</head>
<body>
 <header>
 <h1><%= title %></h1>

If you restart the server (or just refresh the page if you’re using Sinatra::Reloader),

you won’t see any difference; this is just what we expected, only now we’re using

variables for outputting the title.

DRYing Out with Layouts
We can add as many views as we like using inline views, but we’d end up repeating

a lot of the view code since most pages will have the same HTML at the start and

end (the head section, for example). As well as being tedious, such repetition is

considered bad practice. The principle of Don’t Repeat Yourself (DRY for short) is

almost gospel in the Ruby world. In essence, it means that you should avoid repeating

lots of the same view code. And how do we do that? With layouts!

A layout is a special view because it’s included in every other view, so it will be

displayed on every page. This makes them perfect for storing any code that will be

shown on every page like HTML headers and footers, CSS files, and any global

JavaScript.

By default, Sinatra will automatically use any file called layout as the layout. Here’s

an example of how we could move a lot of the previous example into a layout view:

17Building a Basic Website

chapter02/main.rb (excerpt)

require 'sinatra'

get '/' do
erb :home

end

__END__
@@layout
<% title="Songs By Sinatra" %>
<!doctype html>
<html lang="en">
<head>
 <title><%= title %></title>
 <meta charset="utf-8">
</head>
<body>
 <header>
 <h1><%= title %></h1>
 <nav>

 Home
 About
 Contact

 </nav>
 </header>
 <section>

<%= yield %>
 </section>
</body>
</html>
@@home
<p>Welcome to this website that's all about the songs of the great
 Frank Sinatra.</p>

All that we’ve done here is move some of the code that will appear on all the pages

into the view called layout. The important part of this view is the yield method

in the middle. This is the point where the actual view called is displayed. So in

this example, when we ask for the home view, the layout will be displayed with the

content of the home view presented inside the section tags. Again, restarting the

server (or refreshing the page in Sinatra::Reloader) will reveal no difference visually,

as expected.

Jump Start Sinatra18

To show how the layout can save us time by avoiding repetition, we’re now going

to create the About and Contact pages. Now that we have our layout, we only have

to create the HTML code that’s relevant to each page.

Below is the code that adds the routes and views for the About page and Contact

page. To keep it short, we’ll just write a short paragraph for each page at this stage.

Here’s the full code for main.rb with the new routes and views added:

chapter02/main.rb (excerpt)

require 'sinatra'

get '/' do
 erb :home
end

get '/about' do
 erb :about
end

get '/contact' do
 erb :contact
end

__END__
@@layout
<% title="Songs By Sinatra" %>
<!doctype html>
<html lang="en">
<head>
 <title><%= title %></title>
 <meta charset="utf-8">
</head>
<body>
 <header>
 <h1><%= title %></h1>
 <nav>

 Home
 About
 Contact

 </nav>
 </header>

19Building a Basic Website

 <section>
 <%= yield %>
 </section>
</body>
</html>
@@home
<p>Welcome to this website that's all about the songs of the great
 Frank Sinatra.</p>

@@about
<p>This site is a demonstration of how to build a website using
 Sinatra.</p>

@@contact
<p>You can contact me by sending an email to daz at gmail.com</p>

As you can see, without the layout code we’d have to repeat a large part of the HTML

in each view!

We now have a basic site up and running—not bad for one file and roughly 40 lines

of code! If you restart the server, you should now be able to see the site in action

and navigate from page to page.

Before we move on from layouts, I should point out that you can have several layouts

that can be called whatever you like. If you want to use a different layout for a par-

ticular view, just add it as an option when you call the erb method. For example,

if we wanted to use a special layout for the /contact route, we’d add the following

option to the route handler:

get '/contact' do
 erb :contact, :layout => :special
end

Then we’d add a @@special layout to be used on the contact page.

External Views
Now that we’re starting to have a few views, it’s become a bit crowded in our main.rb

file. Inline views are great if you want to get a project built really quickly and the

views are brief. But as soon as your site uses a number of more complex views, it

can grow unwieldy, so it makes sense to separate the views into their own files.

Jump Start Sinatra20

This is very easy to do. All you need to do is save each view in a folder called views.

Then save all your views as individual files inside this folder. This now means that

inline views are unnecessary and we can remove them from main.rb. As you can

see, it looks a lot leaner:

chapter02/main.rb (excerpt)

require 'sinatra'

get '/' do
 erb :home
end

get '/about' do
 erb :about
end

get '/contact' do
 erb :contact
end

Now we have to save each view in its own file with the extension of .erb:

chapter02/views/layout.erb (excerpt)

<% title="Songs By Sinatra" %>
<!doctype html>
<html lang="en">
<head>
 <title><%= title %></title>
 <meta charset="utf-8">
</head>
<body>
 <header>
 <h1><%= title %></h1>
 <nav>

 Home
 About
 Contact

 </nav>
 </header>
 <section>

21Building a Basic Website

 <%= yield %>
 </section>
</body>
</html>

chapter02/views/home.erb (excerpt)

<p>Welcome to this website that's all about the songs of the
 great Frank Sinatra.</p>

chapter02/views/about.erb

<p>This site is a demonstration of how to build a website using
 Sinatra.</p>

chapter02/views/contact.erb

<p>You can contact me by sending an email to daz at gmail.com</p>

Folder Structure
Now that we’ve created a views folder, we can also add a public folder. This is

where all public-facing assets are kept, such as images, CSS files, JavaScript files,

and even static HTML pages. By default, this folder is named public, but this can be

changed to anything you like by placing the following code in your main.rb file:

set :public_folder, 'assets'

Similarly, you can also change the name and path to the folder where Sinatra looks

for the views:

set :views, 'templates'

Both of these examples use the set method, which is used by Sinatra to configure

different settings. We’ll be covering this in more detail in the section called “Settings”

in Chapter 4.

This gives us a basic folder structure, as seen in Figure 2.2.

Jump Start Sinatra22

Figure 2.2. Our basic folder structure

Enhancing with Images
Now that we have a public folder, we can use it to add images to our website. I

created a logo using the cover art for this book and found a copyright-free picture

of Frank Sinatra on Wikimedia Commons.1 These can be placed inside a folder

called images within the public folder and then used on the site. I also created a

favicon based on the logo. This is the little icon that shows in the browser address

bar when visiting the site. It should be saved in the root of the public directory and

is usually requested automatically by the browser. If you’d like to use the same

images, here are the links:

■ Frank Sinatra picture: http://songs-by-sinatra.herokuapp.com/images/sinatra.jpg
■ Website logo: http://songs-by-sinatra.herokuapp.com/images/logo.png
■ Favicon: http://songs-by-sinatra.herokuapp.com/favicon.ico

To use the picture of Frank Sinatra on our Home page, we change home.erb to this:

chapter02/views/home.erb

<p>Welcome to this website that's all about the songs of the great
 Frank Sinatra.</p>

Now, if you restart the server and reload the Home page, you should see a picture

of Ol’ Blue Eyes, as in Figure 2.3.

1 http://commons.wikimedia.org

23Building a Basic Website

http://commons.wikimedia.org
http://songs-by-sinatra.herokuapp.com/images/sinatra.jpg
http://songs-by-sinatra.herokuapp.com/images/logo.png
http://songs-by-sinatra.herokuapp.com/favicon.ico

Figure 2.3. Ol’ Blue Eyes

Adding Some Style
Now that we have a public folder, let’s add some CSS to make the site a bit prettier.

To do this, we first need to create a global stylesheet that will apply styles to all the

pages. Save this page in the public folder.

Here’s some basic styling of headings and paragraphs, which includes our logo as

a background image to the heading. Feel free to add more of your own styles (I

named it simply styles.css):2

2 If your CSS is limited and you’d like to expand on it, you could check out the amazing CSS3 Anthology

by Rachel Andrew: http://www.sitepoint.com/books/cssant4/.

Jump Start Sinatra24

http://www.sitepoint.com/books/cssant4/

chapter02/views/styles.css

h1 {
 color: #903;
 font: 32px/1 Helvetica, Arial, sans-serif;
}

header h1 {
 font-size: 40px;
 line-height: 80px;
 background: transparent url(/images/logo.png) 0 0 no-repeat;
 padding-left: 84px;
}

p {
 font: 13px/1.4 Helvetica, Arial, sans-serif;
}

Now we’ll add a link to this file. It needs to be added to all the pages, so the best

place to put it is in the layout. Open up layout.erb and edit the file to include a link

to styles.css:

chapter02/views/layout.erb (excerpt)

<% title="Songs By Sinatra" %>
<!doctype html>
<html lang="en">
<head>
 <title><%= title %></title>
 <meta charset="utf-8">
<link rel="stylesheet" href="styles.css">

</head>

Upon reloading the page, it should look more appealing, perhaps like Figure 2.4.

25Building a Basic Website

Figure 2.4. Sinatra with style

Missing Pages
We now have three routes that users can navigate to on our site where they’ll see

the associated view. But what if they type a URL directly into the browser that’s

without a route handler?

If you try this now by going to http://localhost:4567/missing in your browser, you’ll

see Sinatra’s standard “page missing” page. I have to say it’s just as classy as the

framework itself, as presented in Figure 2.5.

Jump Start Sinatra26

http://localhost:4567/missing

Figure 2.5. Sinatra’s standard “page missing” page

The page also provides a helpful hint on how to create a route handler for that

missing route—neat, huh? It’s really just for development, though; the page looks

different when in production mode. Still, it’s good practice to have our own bespoke

404 error page for the site. Once again, this couldn’t be simpler—Sinatra has a special

method for that, called not_found. It’s used just like the route handler blocks:

chapter02/main.rb (excerpt)

not_found do
 erb :not_found
end

27Building a Basic Website

This block refers to a view called not_found (I chose this name because it made

sense, but you can call it whatever you like). We now need to create a file called

not_found.erb and save it in the views folder. Let’s keep the content simple for now:

chapter02/views/not_found.erb

<h2>4 Oh 4!</h2>
<p> The page you are looking for is missing. Why not go back to the
 home page and start over?</p>

HTTP Status Codes

404 is perhaps the most well known of all the HTTP status codes, but there are

plenty of others. In fact, the server sends a status code with every response to a

request; for example, 200 indicates that everything is okay, 301 means a resource

has moved permanently, 404 means the resource is missing, and 500 signifies that

there’s been an error.3 By default, Sinatra will send a status code of 200, but you

can set it manually using the status method in a route handler; for example:

get '/fake-error' do
 status 500
 "There’s nothing wrong, really :P"
end

Instance Variables
We’ve already seen how we can place logic in the views, but we can also place it

inside the route handlers. How do we share values from the handler with the view?

The answer is instance variables!

Instance variables are always preceded by the @ symbol, as in the following examples:

@name = "DAZ"
@title = "Jump Start Sinatra"

3 See http://en.wikipedia.org/wiki/List_of_HTTP_status_codes for a more comprehensive list.

Jump Start Sinatra28

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

These work in a similar way to normal variables, but are also accessible in the view;

so if an instance variable is set in the handler, it can be referred to in the associated

view.

Here’s a basic example to illustrate the point:

require 'sinatra'
get '/instance' do
 @name = "DAZ"
 erb :show
end
__END__
@@show
<h1>Hello <%= @name %>!</h1>

The instance variable @name is set in the route handler and then used to display the

name as a heading in the view. If a standard variable of name is used, it is only

available in the route handler itself and would show an error if we tried to refer to

it in the view.

We’re going to use instance variables to set a title for each page. To do this, we’ll

edit the layout file:

chapter02/views/layout.erb (excerpt)

<!doctype html>
<html lang="en">
<head>
 <title><%= @title || "Songs By Sinatra" %></title>
 ⋮
 <header>
 <h1>Songs By Sinatra</h1>

This line is the important one, where we use an instance variable in the title,

as well as ERB to display the content from the @title instance variable. If this

variable is nil (because it hasn’t been set in the route handler), the “Songs By

Sinatra” string will be displayed as a default title.

We remove the title variable that we were previously using.

To use this approach, let’s add a @title instance variable to the /about route in

main.rb:

29Building a Basic Website

chapter02/main.rb (excerpt)

get '/about' do
 @title = "All About This Website"
 erb :about
end

Now if you navigate to http://localhost:4567/about, you should see that the title has

been set to “All About This Website.” Have a go at setting the @title in the other

route handlers, too!

Start Your Engines
So far, we’ve been using ERB to produce our views, but there are actually a large

number of engines that can render HTML in Sinatra using the Tilt interface. At the

time of writing, Sinatra supports the following rendering engines:

Haml http://haml.info/

ERB http://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html

Liquid http://liquidmarkup.org/

Markdown http://daringfireball.net/projects/markdown/

Textile http://www.textism.com/tools/textile/

Radius http://radius.rubyforge.org/

Markaby (Markup as Ruby) http://markaby.rubyforge.org/

Slim http://slim-lang.com/

I’m a big fan of Slim as it reads just like HTML, but without any of the angle

brackets and closing tags. Slim uses indentation to avoid closing brackets. Take, for

example, the following HTML:

<!doctype html>
<html lang="en">
 <head>
 <title><%= @title || "Songs By Sinatra" %></title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <header>
 <h1>Songs By Sinatra</h1>

Jump Start Sinatra30

http://localhost:4567/about
http://haml.info/
http://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html
http://liquidmarkup.org/
http://daringfireball.net/projects/markdown/
http://www.textism.com/tools/textile/
http://radius.rubyforge.org/
http://markaby.rubyforge.org/
http://slim-lang.com/

In Slim, this would be written as:

doctype html
html lang="en"
 head
 title= @title || "Songs By Sinatra"
 meta charset="utf-8"
 link rel="stylesheet" href="/styles.css"
 body
 header
 h1 Songs By Sinatra

Notice how it looks a lot tidier and easier to read without all those angle brackets?

Ruby can also be embedded in Slim files in much the same way as ERB. A hyphen

[-] is used to start blocks of logic that are not to be displayed:

- name = '<h1>DAZ</h1>'

An equals sign, [=], is used for Ruby that’s to be evaluated and sent to the browser:

= name

This will be sent back as escaped HTML, so for this snippet the browser would

display the full string “<h1>DAZ</h1>”. This can be useful if you want to show

the HTML code, or if you lack control over the code that’s being displayed and want

to safeguard against any nasty HTML being injected into a page.

If you don’t want the HTML to be escaped, use the double equals ==:

== name

This would display the string “DAZ” as a level-one heading in the browser. Slim

has a number of other handy features that you can find in the online documentation.4

For the rest of the book, I’ll be using Slim rather than ERB for the views. Before we

do that, we need to make sure that the slim gem is installed:

$ gem install slim

4 http://rdoc.info/github/stonean/slim

31Building a Basic Website

http://rdoc.info/github/stonean/slim

Next, we need to change the method calls from erb to slim in main.rb:

chapter02/main.rb (excerpt)

require 'sinatra'
require 'slim'

get '/' do
 slim :home
end

get '/about' do
 @title = "All About This Website"
 slim :about
end

get '/contact' do
 slim :contact
end

not_found do
 slim :not_found
end

Now all the views need their file extension changed to .slim and the content changed

to Slim from the original ERB:

chapter02/views/layout.slim (excerpt)

doctype html
html lang="en"
 head
 title== @title || "Songs By Sinatra"
 meta charset="utf-8"
 link rel="stylesheet" href="/styles.css"
 body
 header
 h1 Songs By Sinatra
 nav
 ul
 li Home
 li About
 li Contact
 section
 == yield

Jump Start Sinatra32

chapter02/views/home.slim (excerpt)

p Welcome to this website that's all about the songs of the great F
➥rank Sinatra.
img src="/images/sinatra.jpg" alt="Frank Sinatra"

chapter02/views/about.slim (excerpt)

p This site is a demonstration of how to build a website using Sina
➥tra.

chapter02/views/contact.slim (excerpt)

p You can contact me by sending an email to daz at gmail.com

chapter02/views/not_found.slim (excerpt)

h2 4 Oh 4!
p The page you are looking for is missing. Why not go back to the
➥ home page and start over?

Partials
One last point to note about views is that they can be nested inside one another.

You might like to take a large part of the view logic out into a separate view, perhaps

to tidy it up or reuse it. These parts are often known as partials. To use a partial,

you simply call the name of it from within a view. For example, if we wanted to

place the navigation view in a separate partial, we could change layout.slim to:

chapter02/views/layout.slim (excerpt)

doctype html
html lang="en"
 head
 title== @title || "Songs By Sinatra"
 meta charset="utf-8"
 link rel="stylesheet" href="/styles.css"
 body
 header
 h1 Songs By Sinatra

33Building a Basic Website

 == slim :nav
 section
 == yield

We’d then have to create another view file called nav.slim containing this code:

chapter02/views/nav.slim (excerpt)

nav
 ul
 li Home
 li About
 li Contact

Getting Sassy
CSS preprocessors have become very popular recently as they add a lot of powerful

features to the usual CSS hallmarks, such as variables and mixins. The preprocessor

variables allow you to assign CSS declarations to variables that can then be reused

and finally evaluated in your CSS. For example, you may reuse a color keyword or

hexadecimal value assigned to a variable. A mixin reuses fragments of CSS containing

properties or selectors that can be included in other declarations. This helps to keep

your CSS DRY, as you only need to write the code once in the mixin.

Two of the most popular CSS preprocessors around at the moment are Sass5 and

LESS.6 Sass comes in two flavors: original Sass and the more recent SCSS, which

is even closer to CSS. As usual, Sinatra makes it incredibly easy to use either of

these. We’re going to focus on using the SCSS flavor of Sass in this book, but if

you’re more familiar with one of the others, you should have no problem with those

alternatives. To start using Sass, we first have to install the sass gem:

$ gem install sass

We should also ensure that we require this gem at the top of main.rb:

5 http://sass-lang.com/
6 http://lesscss.org/

Jump Start Sinatra34

http://sass-lang.com/
http://lesscss.org/

chapter02/main.rb (excerpt)

require 'sass'

We’ll be creating a styles.scss file in the views folder shortly, so let’s create a route

handler for it. Place the following bit of code before your other route handlers in

main.rb (I prefer to keep it at the top of the file):

chapter02/main.rb (excerpt)

get('/styles.css'){ scss :styles }

This is a simple route handler that uses the scss to process the styles view when

the styles.css file is requested (there are similar Sass and LESS methods if you prefer

to use a different CSS preprocessor). You may have noticed that this route handler

looks a bit different from those that we’ve used previously. This is just a slightly

different way of defining a block in Ruby. Usually, they start with do and finish

with end, with all the logic in-between; however, if they fit on one line, it is idio-

matic to place the logic inside curly braces, { … }. Hence, this type of route handler

is often used for one liners.

Finally, to make this work, we also have to delete the styles.css file from the public

folder; otherwise, it will take precedence over the scss view (all public folder files

are displayed before any route handlers with the same URL).

Then we create an SCSS file, which is saved in the views folder, rather than the

public folder. Save the following as styles.scss in the views folder:

chapter02/views/styles.scss

$red: #903;
$black: #444;
$white: #fff;
$main-font: Helvetica, Arial, sans-serif;

body {
 font-family: $main-font;
}

h1 {
 color: $red;

35Building a Basic Website

 font: 32px/1 $main-font;
}

header h1 {
 font-size: 40px;
 line-height: 80px;
 background: transparent url(/images/logo.png) 0 0 no-repeat;
 padding-left: 84px;
}

@mixin tabs ($background: blue, $color: yellow) {
 ul {
 list-style: none;
 margin: 0;
 padding: 0;
 background: $background;
 overflow: hidden;
 }
 li {
 float: left;
 }
 a {
 text-decoration: none;
 display: block;
 padding: 8px;
 background: $background;
 color: $color;
 &:hover {
 background: darken($background, 20%);
 }
 }
}

nav {
 @include tabs ($background: $black, $color: $white);
 font-weight: bold;
}

p {
 font: 13px/1.4 $main-font;
}

This example uses variables to store the colors and names of fonts as a variable at

the top of the file:

Jump Start Sinatra36

$red: #903;
$black: #444;
$white: #fff;
$main-font: Helvetica, Arial, sans-serif;

This is really useful because if we decide later that we want a different shade of

red, we only need to change the color code in one place.

After the variables is a mixin for making an unordered list of links look like tabs:

@mixin tabs ($background: blue, $color: yellow) {
 ul {
 list-style: none;
 margin: 0;
 padding: 0;
 background: $background;
 overflow: hidden;
 }
 li {
 float: left;
 }
 a {
 text-decoration: none;
 display: block;
 padding: 8px;
 background: $background;
 color: $color;
 &:hover {
 background: darken($background, 20%);
 }
 }
}

This mixin has two arguments: the background of the tabs and the color we use for

the font, which default to blue and yellow respectively. These defaults can be

changed when the mixin is used, as we’ll see soon (let’s face it, who wants blue and

yellow tabs?).

The mixin is applied to the nav element, so that any of the elements mentioned in

the mixin appearing as children of the nav will have those styles applied to them:

37Building a Basic Website

nav {
 @include tabs ($background: $black, $color: $white);
 font-weight: bold;
}

And that’s it! If you restart the server and take a look in your browser, it should

look like Figure 2.6.

Figure 2.6. Adding some Sass

Take the Long View
We have covered a lot of ground in this chapter, learning how views work in Sinatra.

We’ve managed to create a simple site with routes, error pages, and styles. The

amount of code used to get this site up and running was fairly minimal, so I trust

you’re starting to see how Sinatra and Slim make a lean combination.

Jump Start Sinatra38

Chapter3
Collecting Records
In the last chapter, we built a fully functioning website. We covered external views,

used the Slim templating engine, and created styles with Sass.

In this chapter, we’ll look at storing some of our data in a database. We will create

a Song class and use it to populate a database of songs. We’ll learn how to create,

read, update, and delete songs in the database, and then develop a web front end

to accomplish this.

Databases
If we are going to build a dynamic website, we need a place to store the page inform-

ation. A database is for keeping data organized. In a traditional relational database,

the data is organized into rows that form tables. Each row represents an item in the

database, and each column represents a property. Typically, each item in the database

is given an ID value that uniquely identifies it; this is usually an integer that increases

by one for each subsequent item added to the database. An example of some rows

in a typical relational database can be seen in Table 3.1.

Table 3.1. Example Database

agesurnameforenameid

10"Simpson""Bart"1

8"Simpson""Lisa"2

1"Simpson""Maggie"3

There are a number of popular databases that can be used for web development.

These include MySQL, SQL Server, PostgreSQL, SQLite, and Oracle. They all use

slightly different interpretations of Structured Query Language (SQL) to interact

with the database. One of the easiest to use on a local machine is SQLite.

Installing SQLite
SQLite is an open-source project that stores data in a single file. This means that

there’s no complicated setup procedure and no need to start a database server.

Windows
Go to the SQLite download page1 and download the following packages:

■ sqlite-shell
■ sqlite-dll

Save these into the folder C:\WINDOWS\system32.

After you’ve done this, install the SQLite Ruby driver gem:

$ gem install sqlite

GNU/Linux
On Debian-based systems, you need to install the following packages:

■ sqlite3
■ libsqlite3-dev

Alternatively, you can install by compiling it directly from the source.

1 http://www.sqlite.org/download.html#win32

Jump Start Sinatra40

http://www.sqlite.org/download.html#win32

Once complete, install the SQLite Ruby driver gem:

$ gem install sqlite

Mac OS X
The easiest way to grab the latest version of SQLite is to use Homebrew:

$ brew install sqlite

You’ll then have to install the SQLite Ruby driver gem:

$ gem install sqlite

Nonrelational Databases

There has been a recent explosion of interest in nonrelational databases that use

a different data structure to model information such as graphs, objects, documents,

and key-value stores, instead of tables. They also tend not to use SQL to interact

with the data. They attempt to solve some of the problems that arise when using

traditional relational databases, particularly with storing large amounts of data.

Some of the most popular at the moment are Redis,2 CouchDB,3 DynamoDB,4

MongoDB,5 and Neo4j.6 The good news is that Sinatra supports all of them. It’s

an exciting time in database development and these are well worth checking out.

Object Relational Mappers
As we’ve established, SQL databases store data in tables and rows, whereas Ruby

has objects with properties. Ruby objects, however, don’t map exactly to database

tables, although the two are similar. Object Relational Mappers (ORMs) perform

this mapping for you by ironing out any small differences in the background. This

has many advantages: normally you write less code as all the common requirements

are taken care of transparently. It also makes your code database-agnostic; so, for

2 http://redis.io/
3 http://couchdb.apache.org/
4 http://aws.amazon.com/dynamodb/
5 http://www.mongodb.org/
6 http://neo4j.org/

41Collecting Records

http://redis.io/
http://couchdb.apache.org/
http://aws.amazon.com/dynamodb/
http://www.mongodb.org/
http://neo4j.org/

instance, you could change from using SQLite to PostgreSQL without having to

change any of your code. This is a good separation between the business logic of

your app and the persistence of its data.

Roughly speaking, each Ruby class will be represented by a table in the database,

and every instance of that class will be represented by a row in the table. The object’s

properties will be the columns.

There are a number of popular ORM options in Sinatra, including Active Record,7

DataMapper,8 and Sequel.9

DataMapper
DataMapper is a relatively new entrant into the ORM stable, but is already a popular

option and fits well with Sinatra. It’s written in Ruby and has a really simple syntax

that’s easy to come to grips with while allowing you to manipulate the data in your

database with ease.

All the data interactions are written in Ruby and don’t require you to get your hands

dirty writing any SQL statements (a definite plus—believe me!).

Installing DataMapper is easy; being a Ruby gem, all that’s required is to type the

following line into a command prompt:

$ gem install data_mapper

Since we’ll be using SQLite, we also need to install the adapter for it:

$ gem install dm-sqlite-adapter

Song Class
We’re going to devise a Song class that will allow us to create and save information

about songs by Frank Sinatra to a database. Start a new file called song.rb with the

following require statements:

7 http://rubygems.org/gems/activerecord
8 http://datamapper.org/
9 http://sequel.rubyforge.org/

Jump Start Sinatra42

http://rubygems.org/gems/activerecord
http://datamapper.org/
http://sequel.rubyforge.org/

chapter03/song.rb (excerpt)

require 'dm-core'
require 'dm-migrations'

The first gem, dm-core, is the main DataMapper gem. dm-migrations is an extension

that we’ll use later to give us extra functionality. Next, we need to connect to the

database using the following line of code:

chapter03/song.rb (excerpt)

DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")

This will create a file called development.db (if it doesn’t already exist), which will

store all the database information. All we do now is create our Song class in Ruby:

chapter03/song.rb (excerpt)

class Song
 include DataMapper::Resource
 property :id, Serial
 property :title, String
 property :lyrics, Text
 property :length, Integer
 property :released_on, Date
end

DataMapper.finalize

The line include DataMapper::Resource links the Song class to DataMapper,

which includes the Resource module from the DataMapper gem as a mixin.

This is how you make any Ruby class a DataMapper resource.

DataMapper Properties

After this line, we list the properties of the Song class. DataMapper properties all

have a type, which normally correspond to Ruby core classes. Here are some

common examples:

String is used for short text strings (up to a maximum of 256 characters)

Text is used for longer pieces of text

Integer is used for whole numbers

43Collecting Records

Float is used for floating point numbers

Boolean is used for true or false values

DateTime is used for dates and times

Our :id uses a special type called Serial, which gives each song an identifier

that auto-increments.

The :title is used to store short song titles, which means a string is fine.

As the lyrics could end up being longer than 256 characters for some songs,

we’ll use the text type for :lyrics.

:length stores the length of the song in seconds, so we can store this as an

integer (we can convert it into minutes and seconds manually if we wish).

:released_on keeps a record of the date of release. The most convenient way

to store such information is by using Ruby’s built-in Date class.

The DataMapper.finalize method is required after all classes using

DataMapper to check their integrity. It needs to be called before the app starts

interacting with any classes. We only have one Song class at the moment, so

it can just go at the end of this class definition.

Interacting with the Song Class in IRB
Interactive Ruby (IRB) allows you to enter Ruby code one line at a time and receive

real-time feedback. It’s great for experimenting with Ruby, which is why we’re going

to use it to interact with the Song class that we just created. We’ll concoct some

song objects and then save them to the database.

To launch IRB, open up a terminal and navigate to the folder that contains the file

song.rb. Now enter the following command:

$ irb

You should see a prompt similar to the following:

irb(main):001:0>

Jump Start Sinatra44

IRB Prompt

In the interests of economy, from here on when we refer to the IRB prompt, we’ll

state it as follows:

irb>

Next, we need to require the file song.rb, so that the Song class is available to IRB:

irb> require './song'
=> true

Migrations
DataMapper has a brilliant plugin called automigrations. This basically takes the

properties listed in the Ruby class and creates the relevant table and columns for

you. This is the first task before we can start interacting with the database:

irb> Song.auto_migrate!
=> true

The first time we run this command, it should bring up a new file called

development.db in the same directory as song.rb. It will have also created a table

called song in the database with the relevant columns for each property.

CRUD Operations
Now we are able to interact with the Song class. There are four standard operations

that you can apply to database tables: Create, Read, Update, and Delete. These are

commonly known as the CRUD operations. DataMapper makes it easy to carry out

these operations using its simple Ruby syntax. We’ll do this in IRB initially, as it

offers a convenient way of applying the four CRUD operations using the methods

that DataMapper makes available to us.

Creating Songs
Let’s start by adding a new song:

45Collecting Records

irb> song = Song.new
=> #<Song @id=nil @title=nil @lyrics=nil @length=nil @released_on=ni
➥l>

You can see that a Song object has been created, but all the properties are nil because

they’re yet to be set. At the moment, this object is only stored in memory; it hasn’t

been saved to the database. That’s easy to do:

irb> song.save
=> true

If we take a look at what the Song object looks like now, we’ll see that the id property

has been set to 1:

irb> song
=> #<Song @id=1 @title=nil @lyrics=nil @length=nil @released_on=nil>

This is the auto-increment feature of the Serial type taking effect—every new object

saved to the database will have an id that’s one more than the previous entry. The

other properties are still nil, so let’s change that:

irb> song.title = "My Way"

irb> song.lyrics = "And now the end is near ... "

irb> song.length = 435

irb> song.released_on = Date.new(1969)

irb> song.save

We’ve now saved all the relevant information about our first song to the database.

However, there’s actually a more convenient way of creating a resource in one line

by using the create method:

Jump Start Sinatra46

irb> Song.create(title: "Come Fly With Me", lyrics: "Come fly with m
➥e, let's fly, let's fly away", length: 199, released_on: Dat
➥e.new(1958,1,6))

This will create and save the song all in one go. We should now have two songs

saved in the database. We can see check this by using the count method:

irb> Song.count
=> 2

Reading Songs
If we want to read the properties of a particular song, or group of songs, we need to

be able to find them in the database. The easiest way to retrieve them is all at once:

irb> Song.all
=> [#<Song @id=1 @title="My Way" @lyrics=<not loaded> @length=435 @
➥released_on=#<Date: 1969-1-1>>, #<Song @id=2 @title="Come Fly With
➥Me" @lyrics=<not loaded> @length=199 @released_on =#<Date: 1958-1-
➥6>>]

This returns all the songs created so far and stores them in an array. You can then

perform any array operations on it, such as reversing the order:

irb> Song.all.reverse
=> [#<Song @id=2 @title="Come Fly With Me" @lyrics=<not loaded> @le
➥ngth=199 @released_on=#<Date: 1958-1-6>>,#<Song @id=1 @title="My W
➥ay" @lyrics=<not loaded> @length=435 @released_on =#<Date: 1969-1-
➥1>>]

If we only want the first song in the database, there are a few ways of doing this:

irb> Song.get(1)
=> #<Song @id=1 @title="My Way" @lyrics=<not loaded> @length=435 @r
➥eleased_on=#<Date: 1969-1-1>>

This will get the song with an id of 1, which is useful if we know the specific ID

of an object (1 in this case). If we just want to find the first entry, we can use the

first method:

47Collecting Records

irb> Song.first
=> #<Song @id=1 @title="My Way" @lyrics=<not loaded> @length=435 @r
➥eleased_on=#<Date: 1969-1-1>>

In a similar way, we can find the last song:

irb> Song.last
=> #<Song @id=2 @title="Come Fly With Me" @lyrics=<not loaded> @len
➥gth=199 @released_on=#<Date: 1958-1-6>>

We can also narrow down our search by adding some attributes by which to query.

For example, we might want to find the song that has the title of “My Way.” This

is easily done using the following query:

irb> myway = Song.first(title: "My Way")
=> #<Song @id=1 @title="My Way" @lyrics=<not loaded> @length=435 @re
➥leased_on=#<Date: 1969-1-1>>

Updating Songs
In the previous code example, we found the first song with a title of “My Way” and

stored it in the variable myway. We can find out the length of the song in seconds

by querying its length method:

irb> myway.length
=> 435

This is actually incorrect. The length of the song is 4 minutes and 35 seconds. Our

length property is stored in seconds, so it should say 275. We can correct it by using

the update method:

irb> myway.update(length: 275)
=> true

Using the update method will change the length property to 275 and then save it

to the database. We can verify that it has in fact been updated by querying the length

value again:

Jump Start Sinatra48

irb> myway.length
=> 275

Now everything is correct!

Deleting Songs
Deleting songs is easy to do using the destroy method. To demonstrate this, I’m

going to create a sacrificial song:

irb> Song.create(title: "One Less Lonely Girl")
=> #<Song @id=3 @title="One Less Lonely Girl" @lyrics=nil @length=ni
➥l @released_on=nil>

Clearly this song is not what Ol’ Blue Eyes would sing, so we’ll delete it:

irb> Song.last.destroy
=> true

This example shows how we can chain some of DataMapper’s methods together.

First of all, we used the last method to find the last song in the list (the one we

just added); then we immediately called the destroy method on that song. Let’s

just check that it has been deleted by ensuring that the last song in our database is

“Come Fly With Me” rather than “One Less Lonely Girl”:

irb> Song.last
=> #<Song @id=2 @title="Come Fly With Me" @lyrics=<not loaded> @len
➥gth=199 @released_on=#<Date: 1958-1-6>>

Perfect!

Putting It on the Web
We now have a fully functioning Song class, and our song objects are being saved

as rows in our database table. We now have to create a web front end to perform

these operations. This is where Sinatra comes in. In fact, this is what Sinatra is all

about—connecting Ruby to the Web!

49Collecting Records

If you were yet to notice, our current song.rb file doesn’t use Sinatra at all. This is

to emphasize that it’s just a plain old Ruby program. As I mentioned in the section

called “What is Sinatra?” in Chapter 1, Sinatra is simply used to connect Ruby

programs to the Web using HTTP requests and responses. For Sinatra to be involved,

we need to require the song.rb file in our main.rb file from Chapter 2. Make sure

that song.rb is saved in the same directory as main.rb, and add this line to the top

of main.rb:

chapter03/main.rb (excerpt)

require './song'

Now we just need to create some route handlers and views to deal with our songs.

HTTP Verbs
We saw in the section called “What is Sinatra?” in Chapter 1 that the Web is built

around the HyperText Transfer Protocol, or HTTP. When a client (usually a browser)

makes a request to the server, it contains information about which HTTP verb to

use. An HTTP verb tells the server what type of request is being made, which de-

termines how the server deals with the request.

There are a number of HTTP verbs, but in practice we tend to only use five when

dealing with resources on the Web:

■ GET requests are used to retrieve resources.

■ POST requests are usually employed to create a resource but can actually perform

any task.

■ PUT requests are used to “upsert,” which means it can insert a resource or update

it in its entirety.

■ PATCH requests make partial updates to a resource.

■ DELETE requests are used to delete resources.

Jump Start Sinatra50

Idempotence

When a function is applied multiple times to something, but without changing

the result after the first application, it is said to be idempotent. In terms of HTTP

methods, this means that a request could be made numerous times, but the result

will remain the same after the first successful request. GET, PUT, and DELETE

are all expected to be idempotent methods. This means that a browser could the-

oretically repeat a request if it suspected the first had failed and could expect the

same results, even if it ends up that both requests are processed. POST requests,

on the other hand, are not idempotent and can change a resource (or several) by

sending the same request repeatedly.

This is the language of HTTP and the vocabulary that Sinatra uses to process routes.

You may have noticed that these match almost exactly to the CRUD operations used

by databases (with PUT and PATCH covering slightly different implementations of

Update). This means that we can use these HTTP verbs to issue particular requests

depending on which operation we want to do.

A link always performs a GET request. Forms can be used to perform a GET or POST

request. There is a slight problem in that most browsers only support GET and POST

out of the box. This can be overcome by sending a POST request, and using hidden

form fields or JavaScript to send extra information about what the actual request

should be to the server, as we’ll see later.

Sinatra excels at making these verbs easily accessible through route handlers. In

fact, the HTTP verbs are at the start of every route handler, making them central to

the way in which Sinatra handles requests. We’ve already used the GET verb in our

previous examples; now it’s time to make use of the others.

RESTful URLs
We’re now going to create some route handlers and views to allow us to perform

the CRUD operations via a web interface. We’ll do this following the REpresenta-

tional State Transfer (REST for short) pattern that was first proposed by Roy Fielding

in 2000, and is now a popular way of creating URLs on the Web. This basically

states that the URL should represent a resource (in this case, the songs in our data-

base). When the URL is requested, a representation of that resource is returned in

the response. This representation is typically a web page containing information

about that resource.

51Collecting Records

RESTful URLs are characteristically short and descriptive; because they describe a

specific resource, they should contain nouns. What you want to do with the resource

(“get” it or “delete” it, for example) is described by the verbs you use, or, more

precisely, the HTTP verbs we saw before! If you want to know more about REST,

this article by Ryan Tomayko is very informative.10

A common pattern, popularized by the Ruby on Rails framework, is that each re-

source should have the following URLs:

■ a list URL that displays all the resources; for example, /songs

■ a show URL that shows an individual resource; for example, /songs/2

■ a new URL where you can enter the information for a new resource; for example,

/songs/new

■ a create URL that will actually create new resource; for example, /songs

■ an edit view where you can update the information about a resource; for example,

/songs/2/edit

■ an update URL that will actually update the resource; for example, /songs/2

■ a delete URL that will remove a resource; for example, /songs/2

One aspect to notice with this approach is that a number of view, update, and delete

operations all have the same URL (/songs/2 in the examples just shown). The oper-

ation that’s carried out is purely determined by the HTTP verb used. For example,

the URL /song/2 will show the song if it’s a GET request, but update the song if it’s

a PUT request. I hope this demonstrates how HTTP verbs and RESTful URLs work

together in tandem, as shown in Figure 3.1.

10 http://tomayko.com/writings/rest-to-my-wife

Jump Start Sinatra52

http://tomayko.com/writings/rest-to-my-wife

Figure 3.1. The Request and Response Cycle in action

We’re going to follow this RESTful pattern for our Song resource. This means that

we will have to create a route handler for each URL in the pattern. You will notice

that we’ll just use all the same DataMapper methods in the route handlers as we

used when performing the CRUD operations in IRB; the only difference is that we’ll

also show a view so that you can see the outcome of any actions.

Listing Songs
Our first route will simply list all the songs. Add the following route handler to the

bottom of song.rb:

chapter03/song.rb (excerpt)

get '/songs' do
 @songs = Song.all
 slim :songs
end

The route handler will need to find all the song records in the database. We’ll store

this in an instance variable called @songs, as it will allow us to access it in the view.

After we’ve done this, we finish by displaying the relevant view, called :songs.

Next, we need to create that view, which will be saved in the views folder:

chapter03/views/songs.slim

h1 Songs
a href="/songs/new" Create a new song
- if @songs.any?

53Collecting Records

 ul#songs
 -@songs.each do |song|
 li #{song.title}
- else
 p No songs have been created yet!

We start with a heading and a link to create a new song, which we’ll use later. Then

we check to see if there are any songs stored in the instance variable @songs. If there

are, we iterate through them all and display a link to the page that shows the song

information, which is what we’ll sort out next! Run ruby main.rb to see the page

shown in Figure 3.2.

Figure 3.2. Listing the songs

Showing Songs
If we have created all these songs, we’re going to want to see them! For this, we will

need to find the song and display the relevant information in a view. Here’s a route

handler to achieve it:

Jump Start Sinatra54

chapter03/song.rb (excerpt)

get '/songs/:id' do
 @song = Song.get(params[:id])
 slim :show_song
end

First of all, we find the relevant song from the :id variable that’s in the URL and

stored in the params hash. This is stored in an instance variable, @song, so we can

access it in the view show_song.slim:

chapter03/views/show_song.slim

h1= @song.title
p Release Date: #{@song.released_on.strftime("%e %B %Y") if @song.re
➥leased_on}
p Length: #{@song.length/60} minutes #{@song.length%60} seconds
pre= @song.lyrics
p back to songs index
p edit this song
form action="/songs/#{@song.id}" method="POST"
 input type="hidden" name="_method" value="DELETE"
 input type="submit" value="delete this song"

This view shows the title of the song as a level-one heading.

For the release date, we use the strftime method to format the date object

that’s returned from the database into a more readable format of day, month,

and year.

The strftime Method

strftime is an unusually named Ruby method that can be used on dates to format

them. It uses directives that begin with a percent [%] character to show different

parts of the date. For example, if you want the name of the month in full (that is,

“January”) you would use the directive %B. If you only wanted the abbreviated

month (that is, “Jan”), you would use the directive %b. You can also insert any

plain text into the string and it will be displayed with the date information. Here’s

an example that you can try in IRB:

55Collecting Records

Time.now.strftime("Today is day %e of the month of %B in th
➥e year of %Y")
=> "Today is day 9 of the month of October in the year of
2012"

For more information about the unusual notation of the strftime method, see

http://foragoodstrftime.com/.

The song length is stored in the database as an integer that represents the

number of seconds the song lasts. To find the number of minutes, we divide

it by 60 (integer division in Ruby ignores any remainders); to find the number

of seconds remaining, we use the modulo operator %.

The lyrics are displayed inside <pre> tags to preserve any formatting.

After the lyrics, there is a link back to the list of songs that we created in the

last section.

This is a link to edit the song, which we’ll deal with later.

The last part of this view is a form that contains a button to delete the song

from the database.

We need a form so that we can use a DELETE request, which is achieved by

adding the hidden input field with the attributes of name="_method" and

value="DELETE". Deleting songs will be covered later.

The view should look like Figure 3.3.

Jump Start Sinatra56

http://foragoodstrftime.com/

Figure 3.3. Showing a song

Creating New Songs
Now we’ll develop a route that will allow us to create a new song. This uses two

routes; one shows the form for creating the song while the other actually creates

the song. The first is the page where we enter the information:

chapter03/song.rb (excerpt)

get '/songs/new' do
 @song = Song.new
 slim :new_song
end

get '/songs/:id' do
 @song = Song.get(params[:id])
 slim :show_song
end

This route handler simply creates an empty Song object and then displays the

new_song view, which we now need to create and save in the views folder:

57Collecting Records

chapter03/views/new_song.slim

h1 Add A New Song
form method="POST" action="/songs"
 == slim :song_form

This is a simple view that starts with a form tag, but then uses a nested view called

song_form. Because we’ll be using the same form for creating a new song as for

editing a song, it makes sense to keep the form fields in a separate, reusable file.

The start of the form is slightly different in both cases as the action attribute contains

a different URL, so this needs to be in the new_song view. Here’s the code for the

form fields:

chapter03/views/song_form.slim

label for="title" Title:
input#title type="text" name="song[title]" value="#{@song.title}"
label for="length" Length:
input#length type="number" name="song[length]" value="#{@song.lengt
➥h}"
label for="released_on" Date(mm/dd/yyyy):
input#released_on type="text" name="so
➥ng[released_on]" value="#{@song.released_on.strftime("%m/%d/%Y") i
➥f @song.released_on}"
label for="lyrics" Lyrics:
textarea#lyrics name="song[lyrics]" == @song.lyrics
input type="submit" value="Save Song"

Notice that the name attribute of the input fields all specify the name of the class

(song), followed by the property in square brackets (song[title], for example). It

specifies what property that field relates to, and a hash will be created called

params[:song] that contains all the values entered in the form. This means that we

can create a new song by just using the line Song.create(params[:song]), rather

than having to mention each property individually. The value of each field is also

set to the value of the @song object. As this is a new Song object, all the values are

nil, as seen in Figure 3.4; however, when we reuse this form later for editing songs,

the current values are displayed in the relevant fields.

Jump Start Sinatra58

Figure 3.4. Adding a new song

There is a slight catch, though, because the released_on property is a date. The

value entered in the form is just a string in the format mm/dd/yyyy. DataMapper

expects it to be a Ruby Date object. There isn’t a way to enter a date in this format

via a form, so we need to add a little method to the Song class that will perform the

conversion for us.

Edit the Song class so it looks like the code below:

chapter03/song.rb (excerpt)

class Song
 include DataMapper::Resource
 property :id, Serial
 property :title, String
 property :lyrics, Text
 property :length, Integer
 property :released_on, Date

 def released_on=date
 super Date.strptime(date, '%m/%d/%Y')
 end
end

59Collecting Records

The released_on= method at the end will use the values entered in the released_on

field and convert them into a Date object. This can then be used by the database.

When the form is submitted, the action attribute specifies that it should be sent

using a POST request to the URL /create/song, so let’s create a route handler:

chapter03/song.rb (excerpt)

post '/songs' do
 song = Song.create(params[:song])
 redirect to("/songs/#{song.id}")
end

Once the new song has been created, we redirect to the new song’s URL, which

references its id; for example, if we had just created a song with an id of 2, its URL

would be /song/2.

The Redirect Helper
redirect is a helper method that can be used to … well, redirect to another page.

It is often used after an action has been carried out, as witnessed with creating new

songs. to is another helper method that is actually an alias for the url method. This

is used to generate the correct URL if reverse proxies or namespaces are being used

(probably not worth worrying too much about it at the moment, but it’s a good idea

to become familiar with using the helper anyway, just in case). Because of the

clever naming of these helpers, they read very nicely together (“redirect to”). Sinatra

has lots more useful helper methods like these that we’ll come across in later

chapters.

Editing Songs
Editing songs is similar to creating them. The only difference is that we need to

specify the id of the song that we wish to edit in the URL. This will then be added

to the params hash with the key of :id. We can use this to query the database and

find the relevant song, which is then stored in an instance variable called @song so

that it can be used in the view:

Jump Start Sinatra60

chapter03/song.rb (excerpt)

get '/songs/:id/edit' do
 @song = Song.get(params[:id])
 slim :edit_song
end

The associated view is called edit_song and needs to be saved in the views folder:

chapter03/views/edit_song.slim

h1 Edit Song
form method="POST" action="/songs/#{@song.id}"
 input type="hidden" name="_method" value="PUT"
 == slim :song_form

Here we make use of the song_form view by reusing it, as it has all the same fields

as the form we used in the new_song view. The only difference is that here we’re

using a PUT request, although it is actually sent as a POST request, as shown in the

form’s method. Ideally, we’d like to use method="PUT", but this is not supported by

most browsers. To overcome this, we can use a hidden input field with the name

and value attributes set to _method and PUT respectively. This tells the server that

we want to use a PUT request rather than a POST request; it’s also how Sinatra

manages to use any HTTP verbs beyond those natively supported by the browser.

When the form is submitted, it goes to the update URL. Here’s its route handler:

chapter03/song.rb (excerpt)

put '/songs/:id' do
 song = Song.get(params[:id])
 song.update(params[:song])
 redirect to("/songs/#{song.id}")
end

We’re using a PUT request here because we’re updating the whole song object (even

if we only changed one of the properties, the whole row in the database is updated

and saved again). The route handler finds the relevant song using the id attribute

in the URL that’s stored in the params hash. We update the song object using the

values stored in the params[:song] hash using DataMapper’s update method. We

then redirect to the song’s URL so that the edits can be seen, as in Figure 3.5.

61Collecting Records

Figure 3.5. Editing a song

Deleting Songs
Last of all, we want to be able to delete any songs that are no longer required in the

database. The actual button to delete the song can be found on the song’s show page

in this bit of code:

chapter03/views/show_song.slim (excerpt)

form action="/songs/#{@song.id}" method="POST"
 input type="hidden" name="_method" value="DELETE"
 input type="submit" value="delete this song"

This code uses a form to create a button so that a hidden input field can tell the

server that we’re actually making a DELETE request, rather than a POST request.

To delete the song, we locate the relevant song and use DataMapper’s destroy

method to remove it:

chapter03/song.rb (excerpt)

delete '/songs/:id' do
 Song.get(params[:id]).destroy
 redirect to('/songs')
end

Jump Start Sinatra62

This handler uses a DELETE request, so we know that its function is to remove a

resource. We find the song and call the destroy method all in one line. Then we

redirect to the list of songs page to reveal the new list without the deleted song.

Finishing Touches
Now we’ll edit the nav.slim file to add a link to the songs section of our website. Edit

the navigation list in nav.slim to look like the following:

chapter03/views/nav.slim (excerpt)

li Home
li About
li Contact
li Songs

And finally, a small change that will help improve the look of the form is to make

the labels block-level elements, which forces them to start on a new line. This is

easily achieved by adding the following line to the bottom of styles.scss:

chapter03/views/styles.scss (excerpt)

label { display: block; }

Now we have a fully functioning web front end for our songs! We can see a list of

all our songs, view them individually, edit them, create new ones, and delete them.

Start your server and have a go at performing each of the CRUD operations.

For the Record
This chapter has seen us introduce databases into our web application. We installed

SQLite and created a Song class. We then used DataMapper to perform the CRUD

operations to create, read, update, and destroy song records.

We then built a web front end to allow the database to be updated using an online

form. We used RESTful URLs to present a list of all songs, show an individual song,

create a new song, edit an existing song, and delete a song.

In the next chapter, we’ll look at different configuration settings that Sinatra offers

us, and deploy our site to the Internet.

63Collecting Records

Chapter4
Setting up to Go Live
In the last chapter, we created a Song model and database table to store the songs

in. We also created a web front end for creating, reading, editing, and deleting them.

In this chapter, we’ll look at the different settings that are available in Sinatra and

learn how to configure an application. We’ll also address using sessions and discover

how they can be employed to create a simple login system. Later, we’ll cover deploy-

ing our application live on the Internet using the Heroku service.

Configuration
Any configuration options for a Sinatra application can be set in a configure block:

configure do
 #configuration options go here
end

Code inside this block is run only once at startup. You can have as many configure

blocks as you like in a Sinatra app and they can be placed at any point in the code,

but the accepted convention is to use one block and place it near the start of a file.

An example of configuration being used in our application is with the database

settings. Find the following line in song.rb:

chapter04/song.rb (excerpt)

DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")

This should really go in a configure block, so let’s change it to look like this:

chapter04/song.rb (excerpt)

configure do
 DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")
end

Don’t worry about where this block goes—configure blocks can go anywhere in

the application file. You can even have more than one configure block in different

places across the application! The convention is to have just the one configure

block that comes near the top of the file.

Environments
All Rack applications, including Sinatra, use the concept of environments to signify

the stage of development an application is in. There are three predefined environ-

ments: development, production (when your app is live on the server), and test.

Development is the default environment in Sinatra. Template files are automatically

reloaded on each request, and there are special “not found” and “error” pages that

show a stack trace to help with debugging when there’s a problem. You can change

the environment when you start the server using the -e flag. For example, if we

wanted to start the app using the production environment, we’d launch the server

by typing:

$ ruby main.rb -e production

To check what environment the app is running in, the helper methods production?,

development?, and test? will return true or false as appropriate. For example,

the following route handler will indicate the environment the app is running in:

Jump Start Sinatra66

get '/environment' do
 if development?
 "development"
 elsif production?
 "production"
 elsif test?
 "test"
 else
 "Who knows what environment you're in!"
end

In fact, we used one of these methods back in the section called “Your First Sinatra

App” in Chapter 1 using the following code snippet:

require 'sinatra/reloader' if development?

This ensures that the code will be reloaded on a page refresh only in development

mode (the application would be way too slow if this happened in production).

Environmental Configuration
Sinatra makes it possible to set different configuration options depending on the

environment. This is done by adding an argument to the configure block that

specifies the required environment. For example, you could have a separate configure

block for each environment, as shown in this code sample:

configure :production do
 #production configuration here
end

configure :development do
 #development configuration here
end

configure :test do
 #test configuration here
End

This can be very useful when distinct configuration options are needed for different

environments. For example, let’s update our database settings configuration for

development only:

67Setting up to Go Live

chapter04/song.rb (excerpt)

configure :development do
 DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")
end

Settings
Settings are application-wide variables that are stored in the settings object, which

is accessible throughout the application. There are a number of built-in settings that

can be changed, of which some of the more useful ones are presented here:

:public_folder

This allows you to set the folder that will contain static files. By default, it is

called “public,” but it can be changed, for example, to “static”:

set :public_folder, '/static'

:views

This enables you to set which folder contains all the external view files. By

default, it is called “views,” but it can be changed, for example, to “templates”:

set :views, '/templates'

:static

This can be used to set whether Sinatra checks in the public directory for static

files before examining route handlers for a matching route. The default option

is set to true, but it can be turned off with the following line of code:

disable :static

:root

This changes the folder that is used as the base of the application. By default,

this folder contains the main application file.

:app_file

This can be used to set the main application file. It can be useful as it sets the

root folder, which, in turn, sets the location of the views and public folders.

Jump Start Sinatra68

Sinatra will always try to figure out what the app_file is, but there are few

situations where you’d want to change this.

:port

This setting is used to establish the port that the application will run on once

the web server is started. This is set to 4567 by default, but can be changed like

so:

set :port, 1234

Note that this only works if the server is started by executing the Ruby file (as

we’ve been doing so far), rather than using a rackup file (as we’ll do later in the

section called “Rack It Up!”).

:show_exceptions

This shows a backtrace on error pages to help with debugging. It is enabled by

default in development mode, but can be turned off with the following code:

configure :development do
 disable :show_exceptions
end

:logging

If this is enabled, all error messages are logged to STDERR. By default, it is enabled

in classic Sinatra applications (this is the only style we have used so far), but

is disabled in modular Sinatra applications (which we’ll look at in Chapter 7).

Custom Settings
It’s also possible to create your own custom settings in Sinatra. These can be used

for application-wide variables and are stored in the settings object. Custom settings

can be easily created using the set method.

Sinatra by Extension

Custom settings are useful when you create a Sinatra extension (see the section

called “External Gems” in Chapter 5) as you can use the settings object to

provide default settings for the extension. These can then be set to other values

from within the main application using the set method.

69Setting up to Go Live

For example, we could create a setting called name with the value of Frank using

the following code:

set :name, "Frank"

To access this, we just need to use the settings object like so:

settings.name

We can even create dynamic settings using a block:

set(:image_folder){ :root + '/images' }

This will append /images at the end of the path to the root folder, and will update

if the root folder changes.

Here’s another example:

set(:dice_roll){ 1 + rand(5) }

This will return a different number every time settings.dice_roll is called.

Enable and Disable
Settings that can only have Boolean true or false values can also be set using

enable and disable for better readability. For example, instead of:

set :logging, true

we could write:

enable :logging

These methods also take multiple arguments, so more than one setting can be set

to true or false at once, for example:

disable :logging, :sessions

Jump Start Sinatra70

This is typical of many of Sinatra’s helper methods. They make the code much more

readable, which is always ideal!

Sessions
HTTP is a stateless protocol, which means that each request is independent of

others. In other words, each request knows nothing about the previous or next re-

quest. One way to overcome this and keep track of one request to the next is to use

sessions. Sinatra uses cookie-based sessions by default, so small amounts of inform-

ation can be stored in a session cookie on the user’s machine; this information is

then accessible via the session hash. Session cookies are destroyed when a user’s

session finishes by closing the browser, so the information only persists for this

duration. Sessions are also signed while in production mode with a randomly gen-

erated token to ensure that no one has been tampering with the cookie. This token

can be set manually using the following setting:

set :session_secret, 'try to make this long and hard to guess'

The Lowdown on Cookies

Cookies are small files that are saved locally on the user’s computer. There are

two types of cookies: session cookies and persistent cookies. Session cookies only

last for the term of a session, and are deleted when the user closes the browser.

Persistent cookies are kept after a session has finished, so can be used by the

server in subsequent sessions.

To get started with sessions, you first have to enable them. It only needs to be done

once, so it should go in a configure block, like so:

chapter04/main.rb (excerpt)

configure do
 enable :sessions
end

Now you can get and set information using the session hash. Here’s a quick example:

71Setting up to Go Live

chapter04/main.rb (excerpt)

get '/set/:name' do
 session[:name] = params[:name]
end

This route grabs the name entered in the URL and stores it in the params hash, as

we’ve previously done. The problem is that the information in the params hash will

only be available for that request. By placing this value in the session hash, it is

now available for all requests. We can create another route handler to test this out:

chapter04/main.rb (excerpt)

get '/get/hello' do
 "Hello #{session[:name]}"
end

Visit http://localhost:4567/set/Frank, and then http://localhost:4567/get/hello; you

should see the message Hello Frank.

Using Sessions with Sinatra::Reloader

Sessions won’t work on older versions of Sinatra if you’re using Sinatra::Reloader.

You can fix this by either upgrading your version of Sinatra, or setting the

session_secret manually.

Implementing a Simple Login Mechanism
We can use sessions to implement a simple login mechanism on our Songs By

Sinatra website. To start with, open up main.rb and add the following to the configure

block near the top of the page (after the require statements):

chapter04/main.rb (excerpt)

configure do
 enable :sessions
 set :username, 'frank'
 set :password, 'sinatra'
end

Jump Start Sinatra72

http://localhost:4567/set/Frank
http://localhost:4567/get/hello

This enables sessions, then sets up a username and password. Next, we need a login

route handler:

chapter04/main.rb (excerpt)

get '/login' do
 slim :login
end

This is a basic route handler that displays a view called login. Let’s create that

view now. Save the following code in a file called login.slim in the views directory:

chapter04/views/login.slim

form action="/login" method="POST"
 label for="username" Username:
 input#username type="text" name="username"
 label for="password" Password:
 input#password type="password" name="password"
 input type="submit" value="Log In"

This is a login form that simply has an input field for the username and an input

field for the password. It is submitted to the same URL, but as a POST request, so

we need to create a handler to deal with what happens when the form is submitted.

Add the following route handler to main.rb:

chapter04/main.rb (excerpt)

post '/login' do
 if params[:username] == settings.username && params[:password] ==
➥ settings.password
 session[:admin] = true
 redirect to('/songs')
 else
 slim :login
 end
end

In this route handler, we check to see if the strings entered in the form (saved in

the params hash) are the same as the strings in the configure block. If they are, we

set session[:admin] to true. This means that if a user is logged in, there will be a

73Setting up to Go Live

session variable called admin set to true. We can use this to protect some or all of

our routes by adding the following code to the top of a route handler:

halt(401,'Not Authorized') unless session[:admin]

This uses Sinatra’s halt method to stop the application dead in its tracks, and if

the session variable evaluates to anything other than true, it issues a 401 status

code with the message “Not Authorized.”

For example, if we only wanted people who were logged in to be able to have access

to the new songs page, we could change the route handler in song.rb to the following:

chapter04/song.rb (excerpt)

get '/songs/new' do
halt(401,'Not Authorized') unless session[:admin]

 @song = Song.new
 slim :new_song
end

Other candidate routes worth protecting are editing songs, deleting songs, creating

songs, and updating songs.

Logging Out
To log out, we destroy the session variable. This can be done by using the clear

method for the session object. The following route handler will destroy the session

and then redirect the user to the login page:

chapter04/main.rb (excerpt)

get '/logout' do
 session.clear
 redirect to('/login')
end

See if you can (or cannot) perform certain tasks depending on whether you are

logged in or not. It’s a very basic system but it works, and with very little code!

Jump Start Sinatra74

Beware Session-based Authentication

Being a modest login system, this session-based authentication is certainly not

meant to be used in a production setting. If you need a proper authorization system,

you should try looking at some of the many gems that are available, such as

sinatra-authentication or warden. Even then, using sessions for authentic-

ation can still leave the application vulnerable to, for example, a CSRF (cross-site

request forgery) attack.1 Sinatra does its best to protect against these attacks, but

a better solution would be to avoid using session-based authentication altogether

and send a token in the HTTP header.

Deploying the Site
We’re now at the stage of deploying our website to a live server. Heroku is a Platform

as a Service (PaaS) that can be used to host web applications in the cloud. It started

as a Ruby-only service, but has expanded to support lots of different languages and

frameworks. Deploying a Sinatra application on Heroku is straightforward and, best

of all, free for basic sites!

To get started, head over to Heroku and sign up for an account.2 Once you’ve done

this, install the Heroku Toolbelt.3 This provides you with the following software

utilities: a command line interface that’s used to communicate with Heroku; Fore-

man, which is used to run applications locally; and Git, a revision control system

that is used to deploy sites to Heroku.

Git in a Nutshell

Git is a distributed revision control system that was developed by Linus Torvalds,

developer of the Linux kernel. It allows you to track changes in your code, make

different branches of code, and “roll back” to previous versions. It’s perfect for

people working in teams, as every team member has their own repository that

they can make changes to. These changes can then be merged with other members’

repositories. It is an essential part of the workflow when deploying applications

to Heroku, but is invaluable for keeping all projects under revision control. GitHub4

1 This is when a malicious link from another site will try to exploit the fact that a user is still logged

in to your application.
2 https://api.heroku.com/signup
3 https://toolbelt.heroku.com/
4 https://github.com

75Setting up to Go Live

https://api.heroku.com/signup
https://toolbelt.heroku.com/
https://github.com

is an online place to keep repositories and share code, and is well worth looking

into for any developer. In fact, Sinatra itself is developed using Git and is also

hosted on GitHub.

Creating a Heroku App
Upon installing the Heroku Toolbelt, you should now have access to the heroku

command from within the terminal. First of all, try logging in using the same details

as when you signed up for Heroku.

To create a Heroku app, we use the command heroku create followed by the name

of the app. In our case, we want to call the app songs-by-sinatra, so we’d use the

following command:

$ heroku create songs-by-sinatra-from-daz

Unfortunately, you won’t be able to use the name songs-by-sinatra, because I’ve

already taken it! You can choose your own app name, or just leave it blank and

Heroku will allocate a name for you.

Bundler
Bundler is a program that helps manage all the gems used by an application. It is

particularly useful at ensuring that the gems used are the same in development and

production. Let’s install the bundler gem to start:

$ gem install bundler

Gemfile
Bundler uses a Gemfile to keep track of all the gems used by the application. Create

an empty file and save it as Gemfile (no extension). Inside this file, list all the gems

that our application uses, like so:

chapter04/Gemfile

source :rubygems
gem "sinatra"
gem "slim"
gem "sass"

Jump Start Sinatra76

gem "dm-core"
gem "dm-migrations"
gem "thin"
gem "pg", :group => :production
gem "dm-postgres-adapter", :group => :production
gem "dm-sqlite-adapter", :group => :development

You can specify a certain version or place some gems in groups. Here, we’re using

production and development groups to differentiate between the fact that we are

using SQLite locally, while Heroku uses PostgreSQL.

Once the Gemfile has been created, we use Bundler to install all these gems, then

lock them down to the versions being used with the following command:

$ bundle install --without production

This should create a new file called Gemfile.lock that contains all the gems we are

using, as well as their dependencies. The --without production flag ensures that

any gems that were placed in the production group aren’t installed locally.

Rack It Up!
Next, we create a rackup file, which are configuration files used by Rack apps. For

our purposes, Heroku uses them to run Sinatra applications. We create a text file,

save it as config.ru, and place the following code inside it:

chapter04/config.ru

require './main'
run Sinatra::Application

There’s little to it, really; it just tells Rack the name of the file we’re using, and then

starts the Sinatra application running. It’s also possible to put more settings and

configuration into a rackup file, as we’ll see later, but this will be fine for now.

Git
To be able to deploy to Heroku, we’ll need to place all our code in a Git repository.

We’ll initialize an empty Git repository in our application directory by typing the

following command:

77Setting up to Go Live

$ git init

If you’re yet to set up Git, it’s worth establishing your username and email address

(used to label the commits that you make) with the following commands:

$ git config user.name "DAZ"
$ git config user.email "example@sitepoint.com"

Next, we’ll add all the current directory files to the repository using this command:

$ git add .

And last of all, we will commit these changes to the repository using the commit

command. In addition, we’ll attach a message that describes the changes that have

just been made to the repository, using the -m flag:

$ git commit -m 'initial commit'

Now all our code is safely under version control.

Git Tutorials

There are loads of free Git resources out there if you want to learn more about Git.

Here are a few for starters:

GitHub (https://help.github.com/)

has extremely useful help pages

Git Magic (http://www-cs-students.stanford.edu/~blynn/gitmagic/)

uses some great metaphors to explain how Git works

Git Immersion (http://gitimmersion.com/)

is beautifully presented and easy to follow in a step-by-step tutorial format

Pro Git (http://git-scm.com/book)

is a full book available for free online

Jump Start Sinatra78

https://help.github.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://gitimmersion.com/
http://git-scm.com/book

Deploying to Heroku
Now we’ll go ahead and create an app on Heroku by typing the following command

in the terminal:

$ heroku create songs-by-sinatra-from-daz

Once this is done, deploying the website is a cinch. Run the following command:

$ git push heroku master

You should receive a message confirming that your application has been deployed

to Heroku along the lines of:

-----> Launching... done, v4
 http://songs-by-sinatra-from-daz.herokuapp.com deployed to He
➥roku

Our website is now live on the Internet!

We can see it by typing the following command:

$ heroku open

This should open up a browser window showing our live website.

Troubleshooting Heroku

If you find your app is failing to deploy on Heroku, try using this command to

see what’s going wrong:

$ heroku logs

Setting up the Database on Heroku
Our website is functioning fine, except for the song pages that use a database back

end. This is because we’re yet to configure the database to run on Heroku’s servers.

Heroku uses a PostgreSQL database and a URL in an environment variable called

79Setting up to Go Live

ENV['DATABASE_URL']. Move your :development database configuration from song.rb

to main.rb, and ensure the correct database will be used in production like so:

chapter04/main.rb (excerpt)

configure :development do
 DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")
end

configure :production do
 DataMapper.setup(:default, ENV['DATABASE_URL'])
end

This specifies two separate databases for the different environments: SQLite in de-

velopment on our local machine and PostgreSQL in production on Heroku.

Because we’ve just changed the code, we use Git to add the changes to our repository

using the following commands:

$ git add .

Next, we commit these changes, with a message about what we did:

$ git commit -m 'added database configuration'

Last of all, we push the changes to Heroku:

$ git push heroku master

These changes become live immediately. It is a very common workflow when

working with Git and Heroku: make changes, add, commit, push—and it will soon

become second nature!

One last point to remember is to create the database on Heroku’s servers, since the

database we’re using only exists locally. To do this, we need to use Heroku’s console:

$ heroku run console

Jump Start Sinatra80

This works just like an IRB session. We require our main.rb file and run the same

command we used in the section called “Migrations” in Chapter 3 to create the

database table:

> require './main'

> DataMapper.auto_migrate!

Now if you go to the live website at http://yourappname.herokuapp.com/songs,

everything should be working as it does on our local version.

Time to Shine
In this chapter, we covered how to configure Sinatra using configure blocks. We

also explored how you can use a different configure block for each environment:

development, test, and production. Next, we looked at settings, including some of

Sinatra’s built-in settings, and saw how to make your own customized ones.

We introduced sessions and employed them to build a simple login system for our

Songs By Sinatra website. Then we used Heroku to deploy the site live to the Web.

Along the way, we installed and used the Git revision control system.

In the next chapter, we’ll be introducing helper methods and looking at how to use

them to make development easier. We’ll also address using external gems to add

extra functionality to an application.

81Setting up to Go Live

Chapter5
Helpers and Finders
In the last chapter, we identified how to configure settings in Sinatra in different

environments and finished by deploying our site live on the Heroku platform. In

this chapter, we’ll learn about using helper methods to make our code easier to read

and less repetitive.

We’ll also look at using external gems to add extra functionality to our application.

In particular, we’ll use the Sinatra::Flash gem to provide feedback messages after

redirects, and the Pony gem to help send an email from our application’s contact

page.

To finish off, we’ll build our own extension that uses the login functionality from

the previous chapter to protect certain pages of our application.

Helper Methods
Helper methods (or helpers, for short) are snippets of code that can be repeatedly

used in route handlers and views. If a piece of code is long and complicated, it

makes sense to wrap it up in a helper method so that the route handlers don’t fill

up with hard-to-follow code.

Helper methods make an application’s code easier to read and follow. They’re par-

ticularly useful to DRY up the code if there are tasks that often need carrying out.

There are loads of helpers already built into Sinatra, but we can also write our own

helper methods … which is exactly what we’re going to do in this chapter!

Helpers Block
Creating helper methods is easy; they’re just ordinary methods that are placed inside

a helpers block like so:

helpers do
 # helper methods go here
end

Any methods defined in this block can be used within route handlers or views too.

To demonstrate, let’s build a couple of simple helpers to improve our application.

Linking to Stylesheets
First, let’s create a helper method for adding stylesheet link tags to our application.

Currently, we have one stylesheet link tag that’s hardcoded into our layout file:

chapter05/views/layout.slim (excerpt)

link rel="stylesheet" href="/styles.css"

At some point, we may want to add more stylesheets to our application, so let’s

make a helper method that makes this task easier. Open up main.rb and add the

following helpers block after the configuration block:

chapter05/main.rb (excerpt)

helpers do
 def css(*stylesheets)
 stylesheets.map do |stylesheet|
 "<link href=\"/#{stylesheet}.css\" media=\"screen, projection\
➥" rel=\"stylesheet\" />"
 end.join
 end
end

Jump Start Sinatra84

This creates a helper method called css that accepts any number arguments (signified

by the * before the stylesheets argument). A stylesheet link tag is then generated

for each argument. The arguments are the filenames of the stylesheet (without the

.css extension), and can be given as strings or symbols. For example, this code:

== css :styles, :custom, :widgets

generates the following links:

<link href="/styles.css" media="screen projection"
 rel="stylesheet"/>
<link href="/custom.css" media="screen projection"
 rel="stylesheet"/>
<link href="/widgets.css" media="screen projection"
 rel="stylesheet"/>

Since we only have the one stylesheet (called styles.css) for now, we just replace the

link tag in our layout.slim file with our new helper syntax:

chapter05/views/layout.slim (excerpt)

head
 title== @title || "Songs By Sinatra"
 meta charset="utf-8"
== css :styles

While it only saves us a small amount of work at this stage, it does save us from

having to remember the link tag notation, and will make it easier if we want to add

more stylesheets in the future.

Styling the Current Page
The next helper method will check to see if the href attribute of a link on a page is

the same as the current path that was requested by the user; in other words, does

the link point to the page to which we’ve just navigated? We can obtain this inform-

ation using a method of Rack’s request object called path: request.path.

This will return the path of the page that’s currently being visited, relative to the

root URL—the same type of paths that we use in our route handlers. We’re going

to create a helper method called current? that will add a class of current to any

links that point to the page presently being viewed. This class will enable us to style

85Helpers and Finders

them differently from other links to show the user they’re already on that page.

Here’s the code that needs to be put inside the helpers block:

chapter05/main.rb (excerpt)

helpers do
 def css(*stylesheets)
 stylesheets.map do |stylesheet|
 "<link href=\"/#{stylesheet}.css\" media=\"screen, projection\
➥" rel=\"stylesheet\" />"
 end.join
 end

 def current?(path='/')
 (request.path==path || request.path==path+'/') ? "current" : nil
 end
end

This uses Ruby’s ternary operator, ?, to check if the path supplied as an argument

to the helper is the same as the current path given by request.path. (Note, some

setups result in request.path receiving a trailing slash, so we need to plan for both

outcomes.) If they’re the same, we simply return the string "current". If not, a value

of nil is returned. To use this helper, we employ it in views when specifying the

class attribute of links. In fact, a good place to use this is in the nav element in our

layout file. Change the code in the nav block so that it looks like the following:

chapter05/views/nav.slim

nav
 ul
 li
 a href=="/" title="Home" class==current? Home
 li
 a href=="/about" class==current?("/about") title="About" About
 li
 a href=="/contact" class==current?("/contact") title="Contact"
➥ Contact
 li
 a href=="/songs" class==current?("/songs") title="Songs" Songs

Now these links will have a class of current if they link to the page that’s currently

being shown. And if they’re not linking to the current page, there will be no class

attribute at all (because nil was returned from the current? method).

Jump Start Sinatra86

All we have to do now is add a slightly different style for links that are for the current

page. Let’s use a Sass function called lighten to make them five percent lighter

than the other links by adding the following to styles.scss:

chapter05/views/styles.scss (excerpt)

nav a.current {
 background: lighten($black, 5%);
}

If you restart the server and look at any of the pages, you’ll see that the tab for the

current page is slightly lighter, as in Figure 5.1.

Figure 5.1. A lighter style

Setting Titles
We’ll now create a helper method to set the title element. Page titles can currently

be set using the instance variable @title in the route handler. The title tag in the

layout uses this, or falls back onto the name, “Songs By Sinatra”:

chapter05/views/layout.slim (excerpt)

title== @title || "Songs By Sinatra"

Let’s use a helper method to deal with setting the title in the main application,

rather than in the layout. This can be done with a one-line helper method in the

helpers block:

87Helpers and Finders

chapter05/main.rb (excerpt)

def set_title
 @title ||= "Songs By Sinatra"
end

This method uses Ruby’s conditional assignment operator, ||=, which will leave

@title as if it has already been set; otherwise, it will be set to "Songs By Sinatra".

Now, the title tag in our layout file just needs to be:

chapter05/views/layout.slim (excerpt)

title== @title

This helper needs to be applied to all our routes to set the title. Rather than doing

this manually, we can simply call the method in a before filter. Anything inside a

before filter block will be run before each request. To ensure that every page has a

title set, we can add the following code to main.rb (it can go anywhere, but it is

common to put it near the top of the file, after the settings and configuration):

chapter05/main.rb (excerpt)

before do
 set_title
end

It might not be a surprise to learn that there’s also an after filter that runs any code

inside its block after every request.

Pattern Matching in Routes

You can add a pattern as an argument to filters so that they only happen if the

route matches that pattern. For example, the following filter will apply exclusively

to any routes that start with /special/:

after '/special/*' do
 # do something special
end

Jump Start Sinatra88

Song Helpers Module
Next, we’re going to create some helpers to make the route handlers in our song file

read more nicely. But instead of placing the methods in the helpers block, we will

create a module called SongHelpers to put them in. Open up song.rb and place the

following code near the top of the file (after the Song class):

chapter05/song.rb (excerpt)

module SongHelpers
 def find_songs
 @songs = Song.all
 end

 def find_song
 Song.get(params[:id])
 end

 def create_song
 @song = Song.create(params[:song])
 end
end

Here we have three fairly straightforward methods for the Song class: the first is

find_songs, which simply fetches all the songs (though this could be modified in

future to accept an argument to give a more selective search). The second method,

find_song (note this is singular), finds a particular song in the database using the

value of params[:id]. The last method, create_song method instantiates a new

Song object using the attributes in the params[:song] hash.

Next, we register these methods as helper methods. Place the following line after

the module:

chapter05/song.rb (excerpt)

 ⋮
 def create_song
 @song = Song.create(params[:song])
 end
end

helpers SongHelpers

89Helpers and Finders

Now we can use these methods in our route handlers. Change the following five

route handlers so that they look like this:

chapter05/song.rb (excerpt)

get '/songs' do
find_songs

 slim :songs
end

get '/songs/new' do
 halt(401,'Not Authorized') unless session[:admin]
 @song = Song.new
 slim :new_song
end

get '/songs/:id' do
 @song = find_song
 slim :show_song
end

get '/songs/:id/edit' do
 @song = find_song
 slim :edit_song
end

post '/songs' do
create_song

 redirect to("/songs/#{@song.id}")
end

put '/songs/:id' do
song = find_song

 song.update(params[:song])
 redirect to("/songs/#{song.id}")
end

delete '/songs/:id' do
find_song.destroy

 redirect to('/songs')
end

While no functionality has been added with these helpers, the code in the route

handlers is now much more readable. Refactoring code such as this is an important

Jump Start Sinatra90

step when building applications, as it makes the code easier to maintain. You should

always be on the lookout for ways to make your route handlers leaner by abstracting

code into reusable helpers.

External Gems
There are a number of Sinatra extensions that add extra functionality to Sinatra and

are available as gems. We’re going to look at a couple of them in this chapter to help

improve the functionality of our application.

Sinatra::Flash
Sinatra::Flash1 is an extension that lets you store information between requests.

Often, when an application processes a request, it will redirect to another URL upon

finishing, which generates another request. This means that any information from

the previous request is lost (due to the stateless nature of HTTP). Sinatra::Flash

overcomes this by providing access to the flash—a hash-like object that stores tem-

porary values such as error messages so that they can be retrieved later—usually

on the next request. It also removes the information once it’s been used. All this

can be achieved via sessions (and that’s exactly how Sinatra::Flash does it), but

Sinatra::Flash is easy to implement and provides a number of helper methods.

Frugal Flash

Sinatra::Flash copies all of its functionality from the flash found in Ruby on Rails;

however, like most things in Sinatra, it uses much less code!

First, we install the sinatra-flash gem, like so:

$ gem install sinatra-flash

Add the require 'sinatra/flash' statement to the top of your main.rb file. Now

we can place messages in the flash notice in our route handlers. One place where

this is useful is in our song.rb file. Open it up and edit the following POST route

handler so that it looks like the code that follows:

1 https://github.com/SFEley/sinatra-flash

91Helpers and Finders

https://github.com/SFEley/sinatra-flash

chapter05/song.rb (excerpt)

post '/songs' do
flash[:notice] = "Song successfully added" if create_song

 redirect to("/songs/#{@song.id}")
end

This appends a message to the flash confirming that the song has been successfully

added to the database; then it redirects to the next page. The message has a key of

:notice, but you can use any key that you like. To test this out, we put the flash

into our views. Sinatra::Flash provides a useful helper method called styled-flash

that creates some HTML if the flash has any entries. The best place to put this

helper is in our layout file. Place the following line on the line above == yield in

layout.slim:

chapter05/views/layout.slim (excerpt)

section
== styled_flash

Try adding a song and then checking the HTML created after the redirect to the

song page. It should contain the following:

<div id='flash'>
 <div class='flash notice'>
 Song successfully added
 <div>
</div>

This gives us some hooks that we can use for styling the flash. To start off, add the

following to styles.scss to place the message in a pink box:

chapter05/views/styles.scss (excerpt)

.flash {
 width: 600px;
 padding: 5px;
 font-weight: bold;
 margin: 20px;
 background: lighten($red, 60%);

Jump Start Sinatra92

 color: $red;
 border: 1px solid $red;
}

Notice that we’re using the $red variable that we created in the section called

“Getting Sassy” in Chapter 2, along with the lighten function to ensure that the

colors are consistent across the application? Now the flash is working, we can add

it to the other route handlers that use redirect. Observe that in each case we only

display the flash message conditionally based on the operation being successful:

chapter05/song.rb (excerpt)

put '/songs/:id' do
 protected!
 song = find_song
if song.update(params[:song])

 flash[:notice] = "Song successfully updated"
 end
 redirect to("/songs/#{song.id}")
end

delete '/songs/:id' do
if find_song.destroy

 flash[:notice] = "Song deleted"
 end
 redirect to('/songs')
end

Failing Gracefully

We’ve taken care to display flash messages when the operations are successful

only; our route handlers failed to cover the outcome when it’s unfavorable.

Therefore, it’s a useful exercise to have a go at making the application fail a bit

more gracefully.

Once this is saved, restart the server and have a go at creating, updating, and deleting

some songs. You should see a similar sight to Figure 5.2.

93Helpers and Finders

Figure 5.2. Certainly no flash in the pan

Pony Mail
It’s fair to say that our Contact page is a bit basic at the moment, with just an email

address people can use. It’s relatively easy to create a contact form, which generates

an email that’s then sent to us. Sinatra has no email functionality baked in, but this

can be easily provided by the Pony gem.2 Install it using the following code:

$ gem install pony

Remember to add require 'pony' to your main.rb file as usual. Now we’ll add a

form to the Contact page. Open up contact.slim and change it to this:

chapter05/views/contact.slim

p You can contact me by filling in the form below:
form action="/contact" method="POST"
 label for="name" Name:
 input type="text" name="name"
 label for="email" Email:

2 http://rubygems.org/gems/pony

Jump Start Sinatra94

http://rubygems.org/gems/pony

 input type="text" name="email"
 label for="message" Your Message:
 textarea name="message"
 input type="submit" value="Send Message"

This straightforward form contains fields for a name, an email address, and a short

message. If you reached http://localhost:4567/contact, you should see something

along the lines of Figure 5.3.

Figure 5.3. Fielding enquiries

Now we process the message and send it as an email when the form is submitted.

The action and method attributes of the form tag tell us that the information is sent

to the route /contact as a post request, so we can create a route handler to deal

with it:

chapter05/main.rb (excerpt)

post '/contact' do
 send_message
 flash[:notice] = "Thank you for your message. We'll be in touch s
➥oon."
 redirect to('/')
end

95Helpers and Finders

http://localhost:4567/contact

This uses the helper method send_message to deal with the message that was posted.

We’re yet to actually create this helper method, but it fits in with our new mantra

of keeping our route handlers short and descriptive (and there’s quite a lot of code

for dealing with the message, so this definitely make sense). We’re also using the

flash to display a thank-you message to the user before redirecting them back to the

Home page. Let’s now create that helper method—the following method goes in the

helpers block:

chapter05/main.rb (excerpt)

def send_message
 Pony.mail(
 :from => params[:name] + "<" + params[:email] + ">",
 :to => 'daz@gmail.com',
 :subject => params[:name] + " has contacted you",
 :body => params[:message],
 :port => '587',
 :via => :smtp,
 :via_options => {
 :address => 'smtp.gmail.com',
 :port => '587',
 :enable_starttls_auto => true,
 :user_name => 'daz',
 :password => 'secret',
 :authentication => :plain,
 :domain => 'localhost.localdomain'
 })
end

As you can see, there’s quite a lot of code there. Most of it is a mixture of standard

options for Pony and you can just copy them straight down, but the following will

need changing for your application:

:to => This needs to be your own email address.

:address => If you don’t have a Gmail account, you should change this to your

mail provider’s address.

:username => This is the username with which you access your email.

:password => This is the password you use to access your email account.

Jump Start Sinatra96

Keep It Under Wraps

Be careful not to make any of your code public if it contains any of this information!

Give this a test. Fill in the form, press send, and you should receive an email from

your application! Cool, huh?

Email in Production
For email to work in our production environment, we’ll use a Heroku add-on called

SendGrid.3 This lets you send up to 200 emails a day from your application for free.

Paid-for plans are also available if you need to send more. To install this add-on,

type the following code into a command prompt:

$ heroku addons:add sendgrid:starter

For it to work, we’ll make a few changes to our code. The best way to do this is to

edit our send_message helper so that it receives the correct settings. We will then

place the different configuration settings in the relevant configure blocks:

chapter05/main.rb (excerpt)

configure :development do
 DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")
 set :email_address => 'smtp.gmail.com',
 :email_user_name => 'daz',
 :email_password => 'secret',
 :email_domain => 'localhost.localdomain'
end

configure :production do
 DataMapper.setup(:default, ENV['DATABASE_URL'])
 set :email_address => 'smtp.sendgrid.net',
 :email_user_name => ENV['SENDGRID_USERNAME'],
 :email_password => ENV['SENDGRID_PASSWORD'],
 :email_domain => 'heroku.com'
end

3 http://sendgrid.com/

97Helpers and Finders

http://sendgrid.com/

This keeps the settings we employed for the development environment and uses

the required settings for SendGrid in the production environment. Notice that we

only need to use the set method once if we enter the multiple settings as a hash.

ENV['SENDGRID_USERNAME'] and ENV['SENDGRID_PASSWORD'] are Heroku environ-

ment variables; they are values that are kept securely on Heroku’s servers and are

created automatically when you install the SendGrid add-on. If you want to see all

the environment variables that are set on your application that Heroku uses, try the

following command:

$ heroku config

You can also add your own using the following command:

$ heroku config:add NAME=Frank

Now that we’ve configured our email contact form to work on Heroku, we’ll add

the following lines to our Gemfile so that the new gems are included:

chapter05/Gemfile (excerpt)

gem "sinatra-flash"
gem "pony"

Last of all, we run the following commands to bundle the new gems and then push

all the changes to our live server. As usual, we’ll use the following commands:

$ bundle install --without production

$ git add .

$ git commit -m 'Added email contact form'

$ git push heroku master

Now your live site includes a nice contact form. Why not use it to send yourself a

congratulatory email?

Jump Start Sinatra98

Sinatra::Contrib
We’ve just used two external gems to add some extra functionality to our application.

The Sinatra::Contrib project4 aims to collect lots of useful functionality into one

gem, with different modules that can be used as required. We have already seen the

really useful sinatra-reloader in the section called “Your First Sinatra App” in

Chapter 1. Other extensions include:

sinatra-cookies

provides helpers for reading and writing cookies more easily

sinatra-respond_with

allows you to process a request based on the MIME type requested in the

header

sinatra-content_for

provides a content_for helper that works the same as the one found in Ruby

on Rails; basically, it allows you to insert custom blocks of view code into pre-

defined content blocks in the layout

sinatra-namespace

provides namespace support, allowing you to define parts of the application

that only apply to certain namespaces

sinatra-json

adds a JSON helper method that allows you to generate and return JSON docu-

ments

sinatra-test_helpers

provides a number of methods to help make testing easier

It’s well worth installing the sinatra-contrib gem (gem install sinatra-contrib)

and having a play around with some of these extensions, especially if you feel your

application needs a bit of extra functionality.

4 https://github.com/sinatra/sinatra-contrib

99Helpers and Finders

https://github.com/sinatra/sinatra-contrib

Admin Extension
In Chapter 4, we used sessions to create route handlers that allowed users to log in

and out of the application. You can remove that code from song.rb and main.rb, be-

cause we’re now going to create some useful helper methods that protect pages and

check whether a user is logged in or not. We’re also going to register helper methods

another way—as a Sinatra extension. Extensions go in separate files and include

helper methods, settings, and route handlers. To use the extension, you require the

file in your application. This makes them reusable, and they can also be packaged

as a gem for distribution. To produce the extension, create a new folder in the root

directory called sinatra. Inside this folder, create a new file called auth.rb. The full

code for this extension is shown:

chapter05/sinatra/auth.rb

require 'sinatra/base'
require 'sinatra/flash'

module Sinatra
 module Auth
 module Helpers
 def authorized?
 session[:admin]
 end

 def protected!
 halt 401,slim(:unauthorized) unless authorized?
 end
 end

 def self.registered(app)
 app.helpers Helpers

 app.enable :sessions

 app.set :username => 'frank',
 :password => 'sinatra'

 app.get '/login' do
 slim :login
 end

 app.post '/login' do

Jump Start Sinatra100

 if params[:username] == settings.username && params[:passwo
➥rd] == settings.password
 session[:admin] = true
 flash[:notice] = "You are now logged in as #{settings.use
➥rname}"
 redirect to('/songs')
 else
 flash[:notice] = "The username or password you entered ar
➥e incorrect"
 redirect to('/login')
 end
 end

 app.get '/logout' do
 session[:admin] = nil
 flash[:notice] = "You have now logged out"
 redirect to('/')
 end
 end
 end
 register Auth
end

At the top of the file, we require 'sinatra/base'. Every Sinatra extension has

to require this file—it is the core of Sinatra minus the code needed to be an

actual application.

We’re also requiring Sinatra::Flash as the extension will use flash for displaying

messages after the user logs in and out.

Our extension is then created as a module nested inside a Sinatra module.

This is the standard structure for all Sinatra extensions.

We place the helper methods that our extension will use at the start of the

module. These are created inside their own module called Helpers (you can

call it whatever you like, but Helpers seems to make sense).

Inside the Helpers module, we’ve added two helper methods. The first is

authorized?, which checks to see if a user has logged in by checking if the

value of session[:admin] is true. This is a good method to use in route

handlers and views.

101Helpers and Finders

The second method is protected!. It specifies that a route handler can only

be accessed by a user who is logged in (notice that it utilizes the authorized?

helper method to check this).

This uses Sinatra’s haltmethod, which immediately stops a request and returns

a specified HTTP code (401 in this case). It also shows a view called

unauthorized, which we’ll produce shortly and save in our views directory.

After the helpers, we’ll devise a method called self.registered(app). This

contains all the settings for the extension, and all the route handlers. It also

specifies the name of the helpers module that we just created. Inside this, all

the methods need to be methods of the app object, which is the argument passed

to self.registered, and is, in fact, the application using the extension.

Gem of an Extension

If you have installed the Sinatra::Contrib gem, it has a handy module called

sinatra-extension that lets you write extensions without having to add settings,

configuration, and route handlers as methods of the application. To use it, you

need to require it at the top of the extension file and then include it in the extension

module. If we were to use it in our Auth extension, the start of the file would look

like this:

require 'sinatra/extension'
Module Sinatra
 extend Sinatra::Extension

Now instead of app.get '/login', we can simply write get '/login'.

This line says to use the module called Helpers for the helpers.

After this, we enable sessions …

… and create some settings. These settings can be overridden in main.rb, which

means that you can change all the settings used by the extension without having

to touch the extension file. They are just default settings.

Then there are the route handlers. These are much the same as those that we

created in the last chapter, although we’re now using Sinatra::Flash to add

some nice messages when the user logs in and out.

Jump Start Sinatra102

Finally, at the end of the file, we register the extension.

Once you’ve saved the file, add this line to the list of requires at the top of main.rb:

chapter05/main.rb (excerpt)

require './sinatra/auth'

Finally, as mentioned in point , we need an unauthorized view:

chapter05/views/unauthorized.slim

h1 Unauthorized
p You need to be logged in to view this page.

Restart the server, and you should be able to log in and out using our new extension.

To make it easier for our users, let’s add a link so that they can do this in a footer.

We want this to be on every page, so let’s add the following code to the bottom of

layout.slim within the body:

chapter05/views/layout.slim (excerpt)

footer
 - if authorized?
 a href="/logout" log out
 - else
 a href="/login" log in

This uses the authorized? helper to check if the user is logged in or not, and then

presents the relevant link (to either log in or out).

Our last task is to utilize the protected! method to require users to log in to certain

pages. For example, the page for creating a new song should only be available to a

user who is logged in, so it should have the protected! method placed at the start

of the route handler. Open up song.rb and change it so that it looks like the following:

chapter05/song.rb (excerpt)

get '/songs/new' do
protected!

103Helpers and Finders

I’d strongly advise you to add the protected! method to the create, edit, update,

and delete route handlers too!

Changing the Username and Password
The point of making the Auth extension is so that it can be reused in other applica-

tions, but it’s highly unlikely that other applications will want to use the same

username and password (not to mention the security risk). Changing these is

straightforward, though; instead of editing the auth.rb file, you can just set them

from within main.rb, like so:

set :username, 'daz'
set :password, 'secret'

Settings in the main application file will always supersede the default settings in

the extension file, making it easy to customize an extension’s settings without

having to go poking around in the extension’s code.

A Little Help from My Friends
In this chapter, we introduced the concept of helper methods for keeping our code

tidy and reusable. We created some helpers that could be used in the views to make

them read better, and added some functionality for styling current pages. We also

created some helper methods that removed any complicated logic out of the route

handlers and made them easier to read.

After this, we used the Sinatra::Flash and Pony gems to add extra functionality to

our application. We also installed the SendGrid add-on on Heroku to allow us to

send email on our production server. We finished off by creating our own Sinatra

extension that allows users to log in and out of our application. This provided a

couple of handy helper methods that allowed us to check if a user was logged in,

and ensured that a route required a user to be logged in before it could be accessed.

In the next chapter, we will look at how we can use JavaScript in our application,

including utilizing CoffeeScript to make writing JavaScript more enjoyable. We’ll

also be using jQuery to help process requests asynchronously.

Jump Start Sinatra104

Chapter6
Jazzing up with JavaScript
Our web application is now coming along nicely—we have a number of pages, a

database of songs, login functionality, and an email contact form. In this chapter

we’re going to go use JavaScript to add some extra effects and functionality to the

front end of the application.

We won’t be getting our hands dirty writing JavaScript, though. Instead, we’ll use

CoffeeScript—a nicer alternative to all the brackets and curly braces of JavaScript

—that will then be compiled into JavaScript for us.

In addition, we’ll be using the jQuery library to add a date-picker to the song form

to make entering a date easier. Then we’ll finish off by adding a Like button to each

song, so that users can show their love for the song. This will utilize Ajax to com-

municate with the server in the background.

CoffeeScript
CoffeeScript1 is a language that compiles into JavaScript. It was written by Jeremy

Ashkenas in 2009 as an attempt to make writing JavaScript a smoother experience.

1 http://coffeescript.org/

http://coffeescript.org/

The syntax is more Ruby-like, and it helps to streamline JavaScript into shorter,

easier-to-read code that is more maintainable. It has become very popular over the

last few years, particularly in the Ruby community, and has been incorporated into

Ruby on Rails from version 3.1.

We’re going to use CoffeeScript to produce the JavaScript used by our application

in the rest of the book because of the benefits I’ve just cited. Writing CoffeeScript

can take some getting used to at first, though, especially if you’ve written JavaScript.

Luckily, the website has a great interactive tutorial that will take you through the

syntax’s basics. If you want to learn more about CoffeeScript, you could also take

a look at Jump Start CoffeeScript by Earle Castledine.2

CoffeeScript in Sinatra
Using CoffeeScript in Sinatra is a piece of cake. To get started, we install a couple

of gems: coffee-script, which compiles the CoffeeScript, and therubyracer,

which embeds the V8 JavaScript engine into Ruby, allowing it to interpret JavaScript:

$ gem install coffee-script therubyracer

Node.js Has Your Back

Installing The Ruby Racer gem is unnecessary if you have Node.js installed on

your system. You will, however, still need it to run on Heroku.

Now we require the V8 engine and CoffeeScript in our application by adding this

line to the top of main.rb:

chapter06/main.rb (excerpt)

require 'v8'
require 'coffee-script'

Good practice dictates that we put our JavaScript in a separate file. This needs a

link in layout.slim, which we’ll add just below the stylesheet link:

2 http://www.sitepoint.com/books/coffeescript1/

Jump Start Sinatra106

http://www.sitepoint.com/books/coffeescript1/

chapter06/views/layout.slim (excerpt)

== css :styles
script src="/javascripts/application.js"

The JavaScript file referred to in the src attribute doesn’t actually exist (we’re yet

to even have a javascripts folder in the public directory!). As mentioned, we’re going

to create our JavaScript file using CoffeeScript, which will be in a file in the views

directory. To ensure Sinatra deals with this, we add the following route handler in

main.rb:

chapter06/main.rb (excerpt)

get('/styles.css'){ scss :styles }
get('/javascripts/application.js'){ coffee :application }

This employs the coffee helper method to tell Sinatra to process the request using

CoffeeScript. It utilizes a CoffeeScript file called application in the views directory.

Let’s create that file now, save it as application.coffee in the views directory, and place

the following code inside:

chapter06/views/application.coffee (excerpt)

alert 'Hello!'

This is a basic example to test that all is working. Save it, start the server running,

and visit any page on our web application. If it’s working as it should be, all the

pages on the local site should now have a popup saying “Hello!” as in Figure 6.1.

107Jazzing up with JavaScript

Figure 6.1. The Hello! alert: a reassuring sign

What’s happening is that the CoffeeScript is being compiled into JavaScript on the

server. You can see the compiled JavaScript that is output by visiting

http://localhost:4567/javascripts/application.js, which should look like this:

(function() {
 alert('Hello!');
}).call(this);

As you can see in this code, the JavaScript produced by CoffeeScript follows the

best practice of wrapping all the JavaScript in a self-executing function. This avoids

any clashes with other JavaScript files in the global scope.

Now we know that we can create JavaScript using CoffeeScript, we can go on and

add some nice effects to our application. But rather than write all this from scratch,

we’ll use the incredibly useful jQuery library.

jQuery
jQuery3 is a popular JavaScript library that makes navigating a document easier. It

also includes some basic effects and Ajax functionality. It was written in 2006 by

John Resig, and quickly gained popularity. This open-source project is now main-

tained by the jQuery Team and actively developed by a vibrant community.

3 http://jquery.com/

Jump Start Sinatra108

http://localhost:4567/javascripts/application.js
http://jquery.com/

There are a number of effects in the jQuery UI library4 with literally hundreds of

third-party plugins that add extra functionality to the front end of applications. If

you want to really master jQuery, I can recommend reading JQuery: Novice to Ninja

by Earle Castledine and Craig Sharkie.5

To use jQuery and the jQuery UI, we include a link to the JavaScript files in our

HTML pages. The jQuery UI also needs a stylesheet styling the UI elements (such

as sliders and calendar widgets). These are just plain old JavaScript files that can

be downloaded from the jQuery website, but you can also link to the files on the

jQuery Content Delivery Network (CDN), which means we avoid having to keep the

files on our own server.

The following code includes the latest versions of jQuery and the jQuery UI, as well

as the UI stylesheet, and should go above the link to the application.js in layout.slim:

chapter06/views/layout.slim (excerpt)

link href="http://code.jquery.com/ui/1.9.1/themes/base/jquery-ui.css
➥" media="screen, projection" rel="stylesheet"
script src="http://code.jquery.com/jquery-1.8.2.min.js"
script src="http://code.jquery.com/ui/1.9.0/jquery-ui.js"
script src="/javascripts/application.js"

Visit the jQuery website to find the latest version of these libraries, rather than use

the version specified here. You can also customize your UI library so that it only

has the modules you require, leading to less JavaScript to download.

Content Delivery Networks

A Content Delivery Network (CDN) is a distributed system of web servers that aim

to deliver content to users quickly and efficiently. A large number of CDNs are

available for JavaScript libraries. The idea is that if lots of sites use the same CDN

or “hotlink,” it will be cached locally on the user’s machine, saving the user from

an extra download across all those sites. The downside is a loss of control and

the chance (however small) that the CDN might go down and be unavailable.

4 http://jqueryui.com/
5 http://www.sitepoint.com/books/jquery2

109Jazzing up with JavaScript

http://jqueryui.com/
http://www.sitepoint.com/books/jquery2
http://www.sitepoint.com/books/jquery2

There are pros and cons of using this method, discussed in this informative post

by Craig Buckler.6

If you’d prefer to ignore jQuery CDNs, just download the files and save them in

the public directory of your application.

Date Picker
jQuery UI has a nifty date picker widget that displays a calendar for users to pick

a date; it saves them from having to type it in directly, which can be awkward. It is

also easy to implement once we have the relevant JavaScript included. In fact, it’s

just a few lines in application.coffee:

chapter06/views/application.coffee (excerpt)

$ ->
 $('#released_on')
 .datepicker(changeYear: true, yearRange: '1940:2000')

This starts with the ubiquitous jQuery $ function that all of your jQuery code should

be wrapped in. The next line finds the date input field because it has the id of

released_on (jQuery uses CSS selector syntax to find elements on a web page, so

in this case it is #released_on). It then uses the datepicker() method to add the

relevant functionality. We have also specified some options as a JavaScript object

literal that allow the year to be changed (changeYear: true) and limit the years to

go from 1940 to 2000 (yearRange: '1940:2000'), which is roughly the time span

that Sinatra’s songs were published. All the options for the date picker widget can

be found on the jQuery UI documentation page.7

Now have a go at creating or updating a song, and you should see a similar sight to

Figure 6.2 when you click in the date input field.

6 http://www.sitepoint.com/should-you-use-a-cdn/
7 http://api.jqueryui.com/datepicker/

Jump Start Sinatra110

http://www.sitepoint.com/should-you-use-a-cdn/
http://www.sitepoint.com/should-you-use-a-cdn/
http://api.jqueryui.com/datepicker/

Figure 6.2. A date to remember

Before we move on, let’s commit these changes to our Git repository:

$ git add .
$ git commit -m 'Added CoffeeScript and jQuery and implemented a ca
➥lendar widget'

Adding a Like Button
Let’s now add some more functionality to our application. We’re going to follow in

the footsteps of popular social media sites and add a like button to each song. This

enables users to click on the button if they like a song, and will keep track of how

many times it has been “liked.”

Git Branches
Since we’re adding a new feature and now using Git to manage our code, we should

take advantage of its ability to branch our code. Git keeps different branches of your

code; you can see them by typing the following into a command prompt when in

the root directory of your application:

111Jazzing up with JavaScript

$ git branch
* master

You should see that there’s only one branch—the default branch—called “master.”

The asterisk (*) next to it indicates that it’s the branch currently being used.

Whenever you decide to add a new feature to your application, it’s a good idea to

branch the code. This way, the master branch is protected if everything goes wrong.

Once the branch is working correctly, you can merge the changes back into the

master branch. To add a new branch called “like,” enter the following command:

$ git branch like

Then check that it’s been created:

$ git branch
 like
* master

The new branch has been created, but we’re still on the master branch. To change

to the “like” branch, use the checkout command:

$ git checkout like
Switched to branch 'like'

Now we can make changes without worrying about wrecking the master branch!

Like Button
Before we implement the Like button, we’ll add a new property to our Song class

that keeps track of how many times a song has been liked. We’ll call this likes and

make it an Integer (you can’t have half a like!) Adding an extra property using

DataMapper is easy—we just open up song.rb and add the following property to the

Song class:

chapter06/song.rb (excerpt)

property :likes, Integer, :default => 0

Jump Start Sinatra112

Notice that we’ve provided a default value of zero. This is because all songs start

with zero likes; without this as a default value, the initial value would be nil, and

that may cause problems when we want to query how many times a song has been

“liked” and it’s yet to have any likes.

Nil Is Not Zero!

nil is a special object in Ruby; it’s actually one of only two objects that have a

Boolean value of false (the other being false itself). This means that it is differ-

ent to the number zero, 0, or an empty string, "".

We now update the database table with this new property. To do this, we go into

IRB and require the main.rb file:

$ irb
irb> require './main'
=> true

Now we just use DataMapper’s brilliant auto_upgrade! method, which updates

our database table without destroying any of the data that’s already there:

irb> DataMapper.auto_upgrade!

It’s easy to underestimate the awesomeness of this method if you haven’t worked

with other database interfaces before. Changing the table structure mid-project

would normally result in a world of pain making the database work. This method

allows us to iterate rapidly while building the application, adding new features and

properties as and when needed.

Let’s just check that it worked. Stay in IRB and try the following query:

irb> song = Song.first
irb> song.likes
=> 0

This verifies that the first song that was already saved in the database now has a

likes property, and is set to the default value of zero. Now we can move on and

implement the Like button on each song’s page.

113Jazzing up with JavaScript

Open up show_song.slim in the views directory and add the following code after the

song lyrics:

chapter06/views/show_song.slim (excerpt)

pre= @song.lyrics
#like
== slim :like
form action="/songs/#{@song.id}/like" method="POST"
input type="submit" value="Like"

This creates a div element with an id of like (which will be a useful hook to

refer to this element with JavaScript later).

We’re using a partial here called like, which displays a message indicating

how many times the song has been “liked.” This goes in its own view file as

it contains quite a bit of logic; it will also be used when we add Ajax later.

Our #like div contains a form with an action attribute, which posts the form

to a URL; for example, /songs/2/like.

Finally, our form contains just one input button to press.

Save the following code as like.slim in the views folder:

chapter06/views/like.slim

- if @song.likes == 0
 p Nobody has liked this song so far!
- if @song.likes == 1
 p This song has been liked once
- if @song.likes > 1
 p This song has been liked #{@song.likes} times

We’ll create a route handler to deal with the POST URL. Add the following code to

the bottom of song.rb:

chapter06/song.rb (excerpt)

post '/songs/:id/like' do
 @song = find_song
 @song.likes = @song.likes.next

Jump Start Sinatra114

 @song.save
 redirect back
end

I hope this code is self-explanatory. It uses one of our song helpers from the previous

chapter to find the song given in the URL, and assigns it to the variable @song. It

then increases the number of “likes” by one using the next method, and saves it to

the database. After this, we use the back helper method to redirect to the previous

page that was requested, which, in this case, just reloads the same page. This has

the effect of updating the like.slim partial with the new number of “likes.”

Before we start “liking” some songs, let’s add some style to make our button more

attractive. Using the like.png I’ve supplied in the public folder, add the following

code to the bottom of styles.scss:

chapter06/views/styles.scss (excerpt)

#like {
 p {
 font-weight: bold;
 color: $red;
 }
 input {
 background: $red url(/images/like.png) 0 2px no-repeat;
 border: darken($red, 10%) 1px solid;
 height: 28px;
 padding-left: 24px;
 }
}

Save everything, start up the server, and you should be able to test out the “like”

functionality. Have a go at “liking” some of the songs, as in Figure 6.3.

115Jazzing up with JavaScript

Figure 6.3. Testing the Like function

Ajax
Reloading a whole page when only a small part of it has been updated is inefficient.

This is because the whole page is returned from the server and reloaded, resulting

in a poor user experience waiting for the page to refresh. Ajax can help us overcome

this problem by loading content asynchronously in the background, so a page reload

is unnecessary.

From Pop Sensation to Long Player

Ajax used to be a buzzword in web development; now it’s just one of the standard

tools that people use when building web applications. The phrase was first coined

by Jesse James Garrett in 2005 to stand for Asynchronous JavaScript And XML.

It really took off, especially since Google were making extensive use of similar

techniques in its Gmail and Google Maps applications with impressive results.

The term Ajax has stuck, however, and it’s now a standard technique used by web

applications to create interactions that take place without page reloads. The advent

of frameworks such as jQuery has made it easy to implement and helped to iron

out any browser inconsistencies. Using Ajax can make a web application feel a

lot more responsive and more like a traditional desktop application.

Jump Start Sinatra116

“Ajaxifying” the Like Button
Our Like button is a perfect candidate for using Ajax. A press of the button will update

the number of “likes” a song has without the tedium of reloading the whole page.

That the code for our Like button already works before Ajax is added is good, since

it means it will work for browsers without JavaScript enabled, or which don’t support

XMLHttpRequest (this approach is known as progressive enhancement).

Adding Ajax functionality to our Like button is basically a three-step process:

1. Stop the actual request from happening when the button is pressed, so that we

prevent the page from reloading.

2. Increase the number of “likes” by one and save it to the database behind the

scenes.

3. Update the number of “likes” shown on the page, possibly with an effect to show

this has happened.

To implement Ajax in our application, we update the code in application.coffee to

include the following:

chapter06/views/application.coffee (excerpt)

$ ->
 $('#released_on')
 .datepicker(changeYear: true, yearRange: '1940:2000')
$('#like input').click (event) ->
event.preventDefault()
$.post(
$('#like form').attr('action')
(data) -> $('#like p').html(data)

 .effect('highlight', color: '#fcd')
)

This line searches for the input button inside the div with an id of like using

CSS-style syntax (#like input). We then attach an event listener that checks

for when this button is clicked.

When this happens, the default behavior is prevented using the

event.preventDefault() function, so the form will not be posted.

117Jazzing up with JavaScript

Instead, an Ajax POST request is sent using the $.post function.

This is sent to the URL contained in the form’s action attribute, which we can

access using $('#like form').attr('action').

The last line ensures the data that’s returned will then be placed inside the

paragraph element that is inside the “like” div (#like p in CSS selector syntax).

We also add a little highlight flash as a visual cue for the user to show that the

paragraph has been updated using the effect function, effect('highlight',

color: '#fcd').

At the moment, no data is returned by the server; we need to modify the route

handler to act differently if Ajax is used. Sinatra has a neat helper method for this

called request.xhr? that returns true if the request was made using Ajax and false

if not. Open up song.rb and update the like route handler to be as follows:

chapter06/song.rb (excerpt)

post '/songs/:id/like' do
 @song = find_song
 @song.likes = @song.likes.next
 @song.save
 redirect to"/songs/#{@song.id}" unless request.xhr?
 slim :like, :layout => false
end

With this change, we only redirect back to the same page if the request was initiated

by the user via Ajax. If the redirect fails, we return the HTML produced from the

like.slim partial. This snippet of HTML is inserted into the web page using JavaScript.

We need to set the layout to false, otherwise the layout will also be returned and

repeated on the page.

Pushing the Changes Live
Now that we have added a bit of pizzazz using JavaScript, it’s time to push these

changes to our live server and show the world. Before we do this, we’ll merge our

Like button functionality back into the master branch. It’s a work pattern that’s worth

becoming used to as you experiment with new features in an application. To start

with, we need to add and commit the changes to the like branch:

Jump Start Sinatra118

$ git add .
$ git commit -m 'Added a Like button'

Next, we change back to the master branch and merge the changes from the like

branch:

$ git checkout master
$ git merge like

Now the master branch has the Like button functionality, so we can safely remove

the like branch using the -d flag:

$ git branch -d like

We are almost ready to push these changes to Heroku, but since we’ve used some

new gems, we need to add the following lines to the Gemfile:

chapter06/Gemfile (excerpt)

gem "coffee-script"
gem "therubyracer"

We then use Bundler to install these new gems:

$ bundle install

Now we are ready to push the changes to Heroku, using what should now be the

familiar three commands:

$ git add .
$ git commit -m 'installed coffeescipt and rubyracer gems using bun
➥dler'
$ git push heroku master

This should deploy all our changes to the live site. One last task is to make sure the

database on Heroku is updated. To do this, we log in to a console session on Heroku

and then utilize the same commands we used locally earlier:

119Jazzing up with JavaScript

$ heroku run console
Running `console` attached to terminal... up, run.1
irb> require './main'
=> true
irb> DataMapper.auto_upgrade!

All That Jazz
We’ve really applied some gloss on our application in this chapter. We’ve used

CoffeeScript to create JavaScript and employed the jQuery and jQuery UI libraries

to improve the user experience with a calendar widget.

We’ve also added a Like button to each song page enabling users to “like” a song.

Ajax gives this a snappy feel, but it also works fine without JavaScript present.

Before you move on to the next and final chapter, have a look at the jQuery and

jQuery UI websites to see what other bits of functionality could be added to your

application. I’m sure you’ll find lots of cool features that would further enhance it.

In the final chapter, we’ll look at using Sinatra’s modular architecture to help make

the application easier to maintain and reuse in future.

Jump Start Sinatra120

Chapter7
The Final Act
We’ve finished building our application now; it does everything it needs to do, so

no more functionality will be added. This chapter is all about making our app more

maintainable by switching to a modular structure. We’ll look at how to create a

modular-style application in Sinatra and discuss the benefits of doing so. I will

demonstrate this by separating the website and song files into separate modules,

and use Rack to route the URLs to the correct module.

We’ll cover how easy it is to use Sinatra to create Rack middleware applications

that can be used in other Sinatra applications, as well as other Rack-based frame-

works such as Ruby on Rails. To demonstrate this, we’ll create our own asset

handler middleware to help make using CoffeeScript and CSS preprocessors easier

in our application, as well as in future projects.

Then we will finish off by looking at the Padrino framework, which is based on

Sinatra’s modular structure.

Modular Sinatra Applications
So far, all the applications we’ve seen in this book have been in the classic style.

These use the top-level DSL of Ruby, meaning that all the methods exist in the top-

level scope of the main object. The application itself is represented by the

Sinatra::Application object.

It is also possible to build modular applications that use separate classes. Using

separate classes means that the global namespace is not polluted, as all the methods

will be defined in the scope of a specific class.1 Using the modular style also allows

multiple Sinatra applications for each Ruby process.

Modular versus Classic

Modular-style applications are more suited to complex applications and those

that are created by multiple developers. It’s fine to use the classic style in most

use cases—often it’s the most suitable and immediate way of doing things!

Here’s a basic example of a modular application:

require 'sinatra/base'

class ModularApp < Sinatra::Base
 set :name, "Modular App"
 get '/' do
 "Hello from #{settings.name}"
 end

 run! if __FILE__ == $0
end

The route handlers (and configuration, helpers, and settings) are all placed inside

a class that inherits from Sinatra::Base. It’s important that we require 'sinatra/base'

rather than 'sinatra', as this would trigger creating a classic-style application.

1 This usually isn’t a problem for most applications, but if you planned to release your application as a

gem it could be; any methods with the same name in other gems would cause conflicts, although Sinatra

does take a number of steps to try to stop this becoming an issue.

Jump Start Sinatra122

Another difference with modular-style applications is that we have to explicitly

start the application using the run! method at the end of the class. The if condition

at the end checks to see if the file was directly executed, rather than being used in

a test or by a rackup file.

When All Files Are Created Equal

__FILE__ is a relative path to the current file in use and $0 represents the name of

the file that was executed from the command line. So checking that these two are

equal will check if the file that required this one is the file that was executed,

rather than, for example, a test file.

Routes and settings can also be defined outside of the class body like so:

ModularApp.get '/hello' do
 "Hello again"
end

ModularApp.set :name, "Mod App"

Developing Modular Applications
The modular-style application can make it easier to develop large applications,

particularly when working in teams. The application can be broken down into

smaller modules for each feature and developed in a self-contained environment,

possibly by different people. Each module would have its own route handlers and

views that are developed independently, before being put together and served up

by the main application.

Modularizing Songs By Sinatra
We could make the Songs By Sinatra website modular by splitting the main website

and song section into separate classes that could be developed independently of

each other.

To do this, we’ll be placing the code in main.rb in its own class. This file is mainly

concerned with the website portion of our application, so we’ll name the class

Website. After all the requires in main.rb, let’s open up our Website class, like so:

123The Final Act

chapter07/main.rb (excerpt)

require 'sinatra/base'
require 'slim'
require 'sass'
require 'sinatra/flash'
require 'pony'
require './sinatra/auth'
require 'v8'
require 'coffee-script'

class Website < Sinatra::Base

All modular applications need to be subclasses of Sinatra::Base in order to inherit

all of Sinatra’s methods, but without becoming a top-level DSL (which is what

would happen if it inherited from Sinatra solely). After opening the Website class,

we explicitly register any extensions we’re using:

chapter07/main.rb (excerpt)

class Website < Sinatra::Base
 register Sinatra::Auth
 register Sinatra::Flash

Registering Extensions

Another big difference between modular applications is that extensions need to

be explicitly registered. The Auth extension that we created in Chapter 5 has the

following line at the bottom of the module:

register Auth

This automatically registers the extension in a classic-style application so that its

routes and helper methods can be used. When using a modular-style application,

we must register the extensions we wish to use explicitly in each class on a case-

by-case basis. This gives us more granular control over which extensions are re-

gistered with which modules.

After this, we add the configuration and settings:

Jump Start Sinatra124

chapter07/main.rb (excerpt)

 register Sinatra::Flash

 configure do
 enable :sessions
 set :username, 'frank'
 set :password, 'sinatra'
 end

 configure :development do
 set :email_address => 'smtp.gmail.com',
 :email_user_name => 'daz',
 :email_password => 'secret',
 :email_domain => 'localhost.localdomain'
 end

 configure :production do
 set :email_address => 'smtp.sendgrid.net',
 :email_user_name => ENV['SENDGRID_USERNAME'],
 :email_password => ENV['SENDGRID_PASSWORD'],
 :email_domain => 'heroku.com'
 end

These are just like before, although the configuration for the databases has been re-

moved and will later be placed in the SongController class, as the database is only

used by songs.

The before filter comes next, and stays the same as it was before:

chapter07/main.rb (excerpt)

before do
 set_title
end

Next, we’ll define the helper methods. The helper block is no longer necessary as

helper methods are actually just class methods, so they become plain old methods

of the Website class:

125The Final Act

chapter07/main.rb (excerpt)

def css(*stylesheets)
 ⋮
end

def current?(path='/')
 (request.path==path || request.path==path+'/') ? "current" : nil
end

def set_title
 @title ||= "Songs By Sinatra"
end

def send_message
 ⋮
end

After this, the routes stay the same as before:

chapter07/main.rb (excerpt)

def send_message
 ⋮
end

get('/styles.css'){ scss :styles }
get('/javascripts/application.js'){ coffee :application }

get '/' do
 slim :home
end

get '/about' do
 ⋮
end

get '/contact' do
 slim :contact
end

not_found do
 slim :not_found
end

Jump Start Sinatra126

post '/contact' do
 ⋮
end

And last of all, remember to close the new Website class at the end of the file:

chapter07/main.rb (excerpt)

 post '/contact' do
 ⋮
 end
end

Song Controller Module
In the song.rb file, we’ll create a SongController class that is also a subclass of

Sinatra::Base. This is where we place all the settings, helpers, and route handlers

for songs, keeping them separate from the actual Song class that contains all the

business logic for songs.

First of all, we must update our require statements:

chapter07/song.rb (excerpt)

require 'sinatra/base'
require 'dm-core'
require 'dm-migrations'
require 'slim'
require 'sass'
require 'sinatra/flash'
require './sinatra/auth'

Then the following code goes after the SongHelpers module in song.rb. Here, we

register the extensions that this class will use, as well as any helper modules:

chapter07/song.rb (excerpt)

module SongHelpers
 ⋮
end

class SongController < Sinatra::Base

127The Final Act

 enable :method_override
 register Sinatra::Flash
 register Sinatra::Auth

 helpers SongHelpers

Way back in the section called “Editing Songs” in Chapter 3, we used some hidden

form fields with the name of _method so that we could use PUT and DELETE HTTP

methods, even though they lack browser support. This is known as method overrid-

ing; the method_override setting is enabled by default in classic applications, but

not in modular applications. This means that we’ll have to explicitly enable it in

the Song class in order for the update and delete routes to behave as expected and

map to the correct route handlers.

After this, we’ll take the database configuration settings that we removed from the

Website class and place them inside the SongController class:

chapter07/song.rb (excerpt)

helpers SongHelpers

configure do
 enable :sessions
 set :username, 'frank'
 set :password, 'sinatra'
end

configure :development do
 DataMapper.setup(:default, "sqlite3://#{Dir.pwd}/development.db")
end

configure :production do
 DataMapper.setup(:default, ENV['DATABASE_URL'])
end

After the configuration settings, we add some of the helper methods that we used

in the Website class, as well as the before filter. This is because they are utilized

in the layout that’s employed by both the Website and SongController classes:

Jump Start Sinatra128

chapter07/song.rb (excerpt)

configure :production do
 DataMapper.setup(:default, ENV['DATABASE_URL'])
end

before do
 set_title
end

def css(*stylesheets)
 stylesheets.map do |stylesheet|
 "<link href=\"/#{stylesheet}.css\" media=\"screen, projection\"
➥rel=\"stylesheet\" />"
 end.join
end

def current?(path='/')
 (request.path==path || request.path==path+'/') ? "current" : nil
end

def set_title
 @title ||= "Songs By Sinatra"
end

Last of all come the route handlers, but the big change here is that the routes are no

longer prefixed with /songs. Instead, this will be added to the URL by the Rack

router. It needs to be set up in the config.ru file, and is covered in the section called

“Rack Routing”:

chapter07/song.rb (excerpt)

 get '/' do
 find_songs
 slim :songs
 end

 get '/new' do
 protected!
 @song = Song.new
 slim :new_song
 end

 get '/:id' do

129The Final Act

 @song = find_song
 slim :show_song
 end

 get '/:id/edit' do
 protected!
 @song = find_song
 slim :edit_song
 end

 post '/' do
 protected!
 create_song
 if create_song
 flash[:notice] = "Song successfully added"
 end
 redirect to("/#{@song.id}")
 end

 put '/:id' do
 protected!
 song = find_song
 if song.update(params[:song])
 flash[:notice] = "Song successfully updated"
 end
 redirect to("/#{song.id}")
 end

 delete '/:id' do
 protected!
 if find_song.destroy
 flash[:notice] = "Song deleted"
 end
 redirect to('/')
 end

 post '/:id/like' do
 @song = find_song
 @song.likes = @song.likes.next
 @song.save
 redirect to("/#{@song.id}") unless request.xhr?
 slim :like, :layout => false
 end
end

Jump Start Sinatra130

Rack Routing
Now that we’ve moved our application routes into a modular structure, we’re able

to utilize Rack to route our URLs based on some namespacing. This is done using

the config.ru file. When the file is executed using run, we employ Rack to start the

applications based on the URL entered (rather than running the application expli-

citly). Here’s the code that should go in config.ru:

chapter07/config.ru

require 'sinatra/base'

require './main'
require './song'

map('/songs') { run SongController }
map('/') { run Website }

The map method is used to create a songs namespace for the Song class. This means

that any URLs starting with /songs will be mapped to the route handlers in the

SongController class.

Namespace Help

Sinatra has a url helper method that can be used in views to add the correct

namespace. So if the following link was produced in a view in the

SongController, it would be mapped to /songs/about, rather than just /about:

a href=url('/about')

The to helper method that we’ve been using in our route handlers is just an alias

for the url helper method, so it performs the same task.

Test it out by running rackup from the command prompt; by default, your Sinatra

app should now be running on port 9292, so check out http://localhost:9292 and

make sure it all works.

131The Final Act

http://localhost:9292

Subclassing Modules
Once you’ve created some classes in the modular style, you can create subclasses

of these. The subclass will inherit all the routes and settings from the parent class,

but, as with Ruby methods in subclasses, any routes and settings defined in the

subclass will override those in the parent class. Here’s an example to demonstrate:

require 'sinatra/base'

class App < Sinatra::Base
 set :name, "App"

 get '/' do
 "this is the app"
 end

 get '/hello' do
 "Hello, this is #{settings.name}"
 end
end

class Sub < App
 set :name, "Sub"

 get '/' do
 "This is the sub app"
 end
end

Sub.run!

To try this out, save this code in a file called subclass.rb; then, open up a terminal

and navigate to where the file is saved and type ruby subclass.rb.

In this example, the Sub class inherits the routes and settings in the App class, but

we then override the / route handler and :name setting. So if you visit

http://localhost:4567/, the message This is the sub app is displayed, and if you

visit http://localhost:4567/hello, you’ll see the message, Hello, this is Sub.

Jump Start Sinatra132

http://localhost:4567/
http://localhost:4567/hello

Create a Parent Class to Keep It DRY

You might have found it annoying (and not at all DRY) that we had to register

many of the same extensions and define many of the helper methods in both the

Website and Song class. The solution is to create a parent class (called, for ex-

ample, ApplicationController), that registers all extensions and helper

methods. The Website and SongController classes can then inherit from this

class. The code would look like this:

class ApplicationController < Sinatra::Base
 register Sinatra::Flash
 register Sinatra::Auth
end

class Website < ApplicationController
 ⋮
end

class Song < ApplicationController
 ⋮
end

Middleware
Remember Figure 1.1 from way back in Chapter 1? Figure 7.1 shows the traditional

client-server model.

Figure 7.1. The traditional client-server model returns for an encore

Middleware is a layer of software sitting between the client and server that offers

extra functionality. You can have any number of middleware stacked in between

the server and the client, as shown in Figure 7.2.

133The Final Act

Figure 7.2. Middleware sitting pretty in the middle

In the Ruby world, Rack is used to manage middleware by organizing all the different

middleware applications into a stack and then serving them in order.

Because all the major Ruby frameworks operate with Rack, middleware can be

written in Sinatra and then applied, for example, in a Rails application using Rails

Metal. In fact, there are a large number of Ruby gems that act as middleware,

providing all sorts of functionality such as authentication, caching, and stopping

spam prevention.

Asset Middleware
We have been using SCSS to create CSS since the section called “Getting Sassy” in

Chapter 2 and CoffeeScript for JavaScript since Chapter 6. This required us to add

the following route handlers:

get('/styles.css'){ scss :styles }
get('/javascripts/application.js'){ coffee :application }

Let’s have a go at moving this functionality into middleware that will allow our

application to use CoffeeScript to produce JavaScript, and provide a choice of CSS

preprocessors for CSS. It makes sense to move this functionality to middleware, as

it can then be reused in future applications. To start with, remove the two route

handlers from the Website class in main.rb and create a new file called asset-handler.rb

containing the following code:

chapter07/asset-handler.rb (excerpt)

class AssetHandler < Sinatra::Base

First of all, we make our AssetHandler class a subclass of Sinatra::Base, which

is the same for all Sinatra middleware. After this, we’ll include some default settings

in a configure block that will make our middleware more flexible for future use:

Jump Start Sinatra134

chapter07/asset-handler.rb (excerpt)

class AssetHandler < Sinatra::Base
 configure do
 set :views, File.dirname(__FILE__) + '/assets'
 set :jsdir, 'js'
 set :cssdir, 'css'
 enable :coffeescript
 set :cssengine, 'scss'
 end

The :views setting is used to change the views folder to one called assets. This is

where we’ll keep all our asset files. We also have settings for the folder names where

the CoffeeScript and SCSS files are kept within the assets directory; the default setting

is a subdirectory called js for the CoffeeScript files, and a subdirectory called css

for the SCSS files.

The :coffeescript setting is enabled by default, but can be disabled if we don’t

want to use CoffeeScript to compile JavaScript. If this is set to false, the routes will

simply point to a JavaScript file in the public directory.

Last of all, the :cssengine setting allows us to choose which CSS preprocessor to

use. We’ll set the default to scss as this is what we’ve been using throughout the

book, but it could be changed to less or sass if desired.

Now we’ll add two route handlers that catch all routes ending in .js and .css:

chapter07/asset-handler.rb (excerpt)

 set :cssengine, 'scss'
 end

get '/javascripts/*.js' do
pass unless settings.coffeescript?
coffee (settings.jsdir + '/' + params[:splat].first).to_sym

end

 get '/*.css' do
 send(settings.cssengine, (settings.cssdir + '/' + params[:splat]
➥.first).to_sym)
end

end

135The Final Act

The first route handler picks up any links to JavaScript files. Since it is im-

possible to know in advance what the names of the JavaScript and CSS files

might be, we use the wildcard “*” symbol in the routes.

The pass method is used to simply pass over this handler and find another

matching route if the :coffeescript setting is false. If it is true, however,

the coffee method is used to display the file with the same name as the

JavaScript file requested in the directory specified by the :jsdir directory.

Given that we’re using a wildcard in the route handler, any route used will be

contained in the params[:splat] array. Therefore, any number of JavaScript

links can be added without us requiring any new route handlers; the middle-

ware will pick these routes up and deal with them accordingly.

The second route handler uses the send method; since it’s impossible to know

in advance which preprocessor to use, we don’t know which method to use.

The send method lets us invoke a method from the string stored in the

:cssengine setting.

Before we finish, we make sure to close the class.

Misplaced Files

Remember to move the application.coffee file into an /assets/js folder and the

styles.scss file into an /assets/css folder.

Using Middleware
To use our new AssetHandler middleware, we require the asset-handler.rb file and

add the use method in any classes that use it. We only need it in the Website class,

so add the following to main.rb:

chapter07/main.rb (excerpt)

require './asset-handler'

class Website < Sinatra::Base
use AssetHandler

Jump Start Sinatra136

Relative Requires

The line require './asset-handler' looks a bit messy, with the period and

slash at the front. If you want to tidy up your require statements, there are two

ways of doing it.

If you’re running Ruby 1.9 or higher, you could use the require_relative

method. This requires files relative to where the current file is located, so instead

of the require statement we just used, we could simply write:

require_relative 'asset-handler'

The other option is to add the current directory to Ruby’s load path. The load

path is an array of all the places where Ruby should look for files that have been

required (the directory where gems are stored is already in the load path, which

is why there’s no need to specify where these are when you require them). Using

the following line of code before your require statements will add the current

directory to the load path:

$: << '.'

Now you can require the files as normal (that is, without the ./):

require 'asset-handler'

If you’re running a version of Ruby lower than 1.9 (though you really shouldn’t

be!), the current directory is already in the load path, so you can just require the

files like this anyway.

Caching
We can improve the performance of our asset handler by adding support for caching.

This is done by setting HTTP headers so that the page is only requested if it’s been

updated with the last_modified header (a date) and the etag header. An ETag, or

entity tag, is a string used to identify the version of a resource such as a web page.

If a resource changes, its etag should change to reflect this.

Sinatra has some useful helper methods for controlling caching, such as expires,

cache_control, last_modified, and etag. These can be used to set the HTTP

headers so that Sinatra will check whether a page has been modified before request-

137The Final Act

ing it from the server. If no modification has been made, the page will use a cached

version and return a HTTP status code of 304 instead of 200.

We’re going to set the last_modified headers for our assets according to the last

time the directories were modified using the mtime method of the File object. For

example, the following line of code can be used to set the last_modified header

for the JavaScript assets:

last_modified File.mtime(settings.root+'/assets/'+settings.jsdir)

To add caching for our assets, change the route handler code in asset-handler.rb to

the following:

chapter07/asset-handler.rb (excerpt)

get '/javascripts/*.js' do
 pass unless settings.coffeescript?
last_modified File.mtime(settings.root+'/assets/'+settings.jsdir)

 cache_control :public, :must_revalidate
 coffee (settings.jsdir + '/' + params[:splat].first).to_sym
end

get '/*.css' do
last_modified File.mtime(settings.root+'/assets/'+settings.cssdir)

 cache_control :public, :must_revalidate
 send(settings.cssengine, (settings.cssdir + '/' + params[:splat]
➥.first).to_sym)
end

Cache Controls

The :public setting means that any intermediary cache (such as an ISP’s proxy

server) can also cache the content in addition to the client. If the data is of a

sensitive nature, you could use the :private setting, which only allows cached

content to be stored on the local client.

The :must_revalidate setting indicates that the client or intermediary cache

must confirm that the content is still up to date on every request.

Jump Start Sinatra138

If you start the application running and then check the server logs in the terminal

window, you should see status codes of 304 for the /javascripts/application.js and

/styles.css (assuming you’ve left the files untouched!).

Set Your Headers Globally to Save on Server Load Time

A neat trick for setting the last_modified and etag headers globally is to use

the application’s start time. While this may not strictly be the actual time all files

were last modified, we can usually assume that if the application has been restar-

ted, something has been changed; therefore, it’s worth flushing the cache out and

reloading the pages anyway.

To do this, the following setting needs to be placed inside a configure block:

configure do
 set :start_time, Time.now
end

Because the code inside a configure block is only run once when an application

starts, this setting will effectively provide the start time of the application. We

can then use this for the last_modified header and convert it to a string for the

etag header.

It can then be used to apply caching to all the pages in our website using this

before filter:

before do
 last_modified settings.start_time
 etag settings.start_time.to_s
 cache_control :public, :must_revalidate
end

This is a useful way of reducing the load on the server in an application by

avoiding any needless round trips to the server.

Now is a good time to push your updates to Heroku.

Middleware Settings
The settings in the asset handler middleware could be changed by editing the

asset-handler.rb file directly. This isn’t ideal, as we’d prefer to just leave this file as

it is, particularly if it’s to be used in other projects. Thankfully, it is possible to

139The Final Act

change the settings from within the Website class (or anywhere else in our applic-

ation). This is because settings are actually just methods of the AssetHandler class,

so we can simply override those methods to change them. For example, if we didn’t

want to use CoffeeScript, we could disable it using the following line:

AssetHandler.disable :coffeescript

Better Assets

This is a basic example of an asset handler. If you want a more robust and feature-

rich option, there are a number to consider such as:

■ Rake::Pipeline https://github.com/livingsocial/rake-pipeline
■ Sinatra AssetPack https://github.com/rstacruz/sinatra-assetpack
■ Sprockets https://github.com/sstephenson/sprockets

Rolling Your Own Framework
Using the modular style, along with extensions and middleware, Sinatra becomes

extremely flexible. It does not force you to use any particular type of architecture,

so there’s nothing stopping you from creating your own bespoke microframework

that fits your needs perfectly. You can choose which database ORM, folder layout,

and rendering engine to use. Additional functionality is possible with Sinatra ex-

tensions and Rack middleware.

For example, we could create a Rails-like MVC structure. In Figure 7.3, I’m including

a Song model to demonstrate how our Songs By Sinatra site might look using this

framework.

Jump Start Sinatra140

https://github.com/livingsocial/rake-pipeline
https://github.com/rstacruz/sinatra-assetpack
https://github.com/sstephenson/sprockets

Figure 7.3. Rolling our own Rails structure in Sinatra

The controllers would contain all the route handlers. In the controller directory, we

could create an ApplicationController class that is a subclass of Sinatra::Base.

This would set up all the views and layouts used by the whole application, and

also register any application-wide extensions:

class ApplicationController < Sinatra::Base
end

Other controllers, such as the WebsiteController and SongController, would

then inherit from this class:

141The Final Act

WebsiteController < ApplicationController
end
SongController < ApplicationController
end

application_helper.rb would contain all the helpers used by the overall application.

Other helper files, such as website_helper and song_helper.rb, could be used for

model-specific helper methods.

The config.ru file could then be used to require all the relevant files and serve the

controllers based on the URLs provided:

require 'sinatra/base'
Dir.glob('./{helpers,controllers}/*.rb').each {|file| require file }

map('/songs') { run SongController }
map('/') { run WebsiteController }

As an exercise, try refactoring the Songs By Sinatra application to fit this framework

structure. You could then develop a custom framework solution that works for you.

Padrino
Creating your own framework is great fun and gives you an unprecedented level of

control, but sometimes you just want to start building an application with some of

the setup and configuration already done for you. If this is the case, I’d recommend

checking out Padrino,2 a framework based on Sinatra.

Padrino leverages the modular structure amazingly well to create a robust full-stack

framework with all the features, and it still manages to be lightweight in comparison

to other frameworks such as Ruby on Rails. It is also agnostic to which database

ORM, testing framework, and JavaScript library is chosen.

Padrino includes a number of built-in components such as an administration inter-

face, caching support, code generators, view helpers, internationalization support,

and email controls. All of these components are optional, so you can add and remove

them as your application needs them.

2 http://www.padrinorb.com/

Jump Start Sinatra142

http://www.padrinorb.com/

They can also be added as standalone components to Sinatra applications. This is

useful if your application requires only some of the functionality without the extra

overhead of the full framework. Padrino is a great example of building on top of

Sinatra’s foundation, so I would definitely recommend looking at the source code

on GitHub.3

In a Class of Its Own
We made no changes to how the application functions in this chapter. Instead, we

broke it down into separate modules that could be developed independently of each

other, making it more flexible and easier to maintain. We also used Rack to route

each module to a namespaced URL.

After this, we looked at how middleware fits into the Rack ecosystem and how

Sinatra can be used to build middleware. We built a simple asset handler middleware

that helps to serve CoffeeScript and SCSS files in our Sinatra application, as well

as being easily configurable for use in other applications.

Finally, we investigated the possibility of using Sinatra to build your own framework

for developing web applications. We finished off by looking at the Padrino frame-

work, which is a great example of a modular Sinatra application.

Start Spreading the News …
I hope that through reading this book, you have learned enough about Sinatra to go

forward and start building your own exciting websites, web applications, and web

services.

We have covered a lot in a short space, culminating in a modular, database-driven

site. You should now have all the tools you need to press on and start building your

own web tools using Sinatra and huge dollops of your own imagination. The only

thing holding you back is your own technical ability and inventiveness. Sinatra is

inherently flexible and lets you work in any way you wish.

Now that you’ve finished this book, your journey with Sinatra is just beginning.

Read online posts, participate in forums, and ask questions. Most of all, experiment!

There are no barriers when it comes to building an application with Sinatra, so try

3 https://github.com/padrino/padrino-framework

143The Final Act

https://github.com/padrino/padrino-framework
https://github.com/padrino/padrino-framework

as many approaches as you can and keep developing your skills. You can use Sinatra

to build a small website, test out some code quickly, build a web interface for an

existing Ruby program, or build a fully fledged modular web application. There are

endless possibilities.

Have fun!

Jump Start Sinatra144

Index

Symbols
404 status codes, 28

:private settings, 138

:public settings, 138

“page missing” page, 26–28

A
adding songs (see creating (adding)

songs)

Admin extension, 100–104

after filter block, 88

Ajax, 116–118

Apple Mac (see Mac installations)

architecture choice in Sinatra, 140–142

Ashkenas, Jeremy, 105

asset middleware, 134–136, 139–140

authentication, 75

(see also login mechanisms)

authorization systems, 102–104

automigrations, 45

B
before filter block, 88

betting game, 11–12

Bundler, 76

buttons, adding (see Like buttons)

C
caching, 137–139

calendars (date picker widgets), 110, 111

changing usernames and passwords, 104

classes

parent classes, 133

subclassing modules, 132

classic applications, 122

client-server models, 133

CoffeeScript, 105–120

asset middleware and, 135

in Sinatra, 106–108

coffee-script gem, 106

collecting records, 39–63

command prompt, 7

configuration, 65–67

modular applications, 124–127, 128

Rack applications, 77

contact forms, 94–97

delete, 97–98

Content Delivery Networks (CDNs), 109–

110

controller directory, 141

cookies, 71

creating (adding) songs, 45–47, 57–60

CRUD operations, 51

CSS preprocessors, 34–38, 135

CSS stylesheets (see stylesheets)

current page, 85–87

custom settings, 69–71

D
databases

CRUD operations, 45–49

example, 40

modular applications, 125

nonrelational databases, 41

record collection, 39–63

setting up on Heroku, 79–81

updating, 113, 119

DataMapper, 42

CRUD operations, 45–49

properties, 43–44

updating database using, 113

date picker widgets, 110, 111

dates, using strftime method, 55

Debian (see Linux)

DELETE requests, 62

deleting (removing) songs, 49, 62–63

deploying the website, 75–81

development environment, 66

disable method, 70

Don’t Repeat Yourself (DRY) principle,

17–20, 133

dynamic views, 16–17

E
editing songs (see updating (editing)

songs)

email, 94–98

Embedded Ruby (ERB)

views and, 15–17

enable method, 70

entity tags (ETags), 137

environmental configuration, 67

environments, 66–67, 77

ERB (see Embedded Ruby (ERB))

ETags (entity tags), 137

execution of files, 123

extensions (see Sinatra extensions)

external gems (see Sinatra extensions)

external views, 20–22

F
files, checking for execution of, 123

filters, pattern matching in routes, 88

finding (reading) songs (see reading

(finding) songs)

flash, 91–93, 94

folders, 22–23

forms, 59

for creating songs, 57–60

login mechanisms, 73

framework choice in Sinatra, 140–142

G
Gemfile, 76–77

gems

(see also Sinatra extensions)

GET requests, 50–51

Git (distributed revision control system),

75, 77–78

Git branches, 111–112

global header settings, 139

GNU/Linux (see Linux)

H
halt method, 74

hashes (see params hash; session hash)

headers, setting globally, 139

helper methods, 83–91

modular applications, 125

redirect helper method, 60

SongHelpers module, 89–91

helpers blocks, 84

Heroku, 75

creating apps, 76

making changes live, 118–119

SendGrid email add-on, 97

Homebrew, 5, 41

HTML

(see also views)

146

ERB and, 15–16

Ruby statements in, 16–17

HTTP (Hypertext Transfer Protocol), 2

HTTP status codes, 28

HTTP verbs, 50–51, 53

I
idempotent methods, 51

images, 23, 24

inline views, 15, 16, 21

installation

Ruby and RubyGems, 4–5

Sinatra, 4–5

SQLite, 40–41

instance variables, 28–30

integers from strings, 12

Interactive Ruby (IRB), 44–45

IRB (see Interactive Ruby (IRB))

IRB prompt, 45

J
JavaScript, 105, 108

(see also CoffeeScript)

jQuery, 108–109

jQuery UI, 109

L
layouts

avoiding repetition using, 17–20

LESS (CSS preprocessor), 34

Like buttons, 111–118

adding Ajax functionality to, 117–118

merging to master branch, 118

styling, 115

Linux installations, 5, 40

listing songs, 53–54

load paths, 137

logging out, 74

logic statements, 16

login mechanisms, 72–74, 102, 104

M
Mac installations, 5, 41

mapping ORMs, 41

method overriding, 128

methods, HTTP (see HTTP verbs)

middleware, 133–140

asset middleware, 134–136

using middleware, 136

migrations, 45

missing pages, 26–28

mixins, 34, 37–38

Mizerany, Blake, 3

modular applications, 122–123

developing, 123–130

registering extensions, 124

subclassing modules, 132

versus classic applications, 122

N
named parameters, 8–10

namespaces, 131

nav element, 86

navigation lists, 63

nil versus zero, 113

Node.js, 106

nonrelational databases, 41

O
Object Relational Mappers (ORMs), 41–

42

147

object-oriented languages (see Ruby)

online forms (see forms)

P
Padrino, 142–143

page titles, setting, 87–88

page uploading, 116

params hash, 9–10, 12, 72

parent classes, 133

partials, 33–34

password, changing, 104

path information, 86

pattern matching in routes, 88

Platform as a Service (PaaS), 75

Pony gem, 94–97

POST requests, 50–51, 61, 62

PostgreSQL, 77

preprocessors (see CSS preprocessors)

production environment, 66, 97–98

progressive enhancement, 117

public folders, 22

PUT requests, 61

R
Rack

environments in, 66–67

middleware, 134

rackup configuration files, 77

routing URLs using, 131

Sinatra built on, 3

reading (finding) songs, 47–48

record collection, 39–63

redirect helper method, 60

registering extensions, 124

relative requires, 137

reloading pages, 116

removing songs (see deleting (removing)

songs)

rendering engines, 30–33

REpresentational State Transfer (REST)

patterns, 51–53

require statements, 127

Resig, John, 108

revision control systems, 75

route handlers, 6

asset middleware and, 135

instance variables and, 28–30

modular applications, 126, 129

SongHelpers module, 89–91

using the scss method, 35

routes, pattern matching in, 88

Ruby, 1 (see Embedded Ruby (ERB))

(see also Interactive Ruby (IRB);

methods)

installation, 4–5

load paths, 137

middleware, 134

Sinatra and, 2

version 1.8 tips, 6, 137

RubyGems, installation, 4–5

S
Sass (CSS preprocessor), 34, 38

SCSS (Sass CSS preprocessor), 34–38

SendGrid email add-on, 97

servers, 6, 8

session hash, 72

session-based authentication, 75

sessions, 71–72

settings, 68–75

cache controls, 138

enable and disable, 70

global header settings, 139

148

modular applications, 124–127

setting page titles, 87–88

showing songs, 54–56, 57

Sinatra

(see also modular applications; web-

site construction)

architecture choice in, 140–142

benefits of using, 4

clones of, 3

CoffeeScript in, 106–108

connecting Ruby to the web, 3, 49

creating a betting game, 11–12

installation, 4–5

support community, 4

what it is, 1–4

writing a simple app, 6, 7

Sinatra extensions

custom settings, 69

external gems, 91–104

registering, 124

sinatra-extension in Sinatra::Contrib,

102

Sinatra, Frank, 'had so much class', 3

Sinatra::Base, 124

Sinatra::Contrib, 99, 102

Sinatra::Flash, 91–93, 94

Sinatra::Reloader, 8, 72

Slim rendering engine, 30–33

Song class

connecting Ruby to the web, 49

creating, 42–44

CRUD operations, 45–49

interacting with in IRB, 44–45

modular applications, 127

SongController class, 127–130

SongHelpers module, 89–91, 127

Songs By Sinatra (see website construc-

tion)

Songs By Sinatra (website) (see website

construction)

SQL (Structured Query Language), 40

SQLite installation, 40–41

stateless protocols, sessions and, 71

status codes, 28

strftime method, 55

strings, 14

Structured Query Language (see SQL

(Structured Query Language))

stylesheets, 24–25, 26

(see also CSS preprocessors)

linking with helpers blocks, 84–85

styling current page, 85–87

styling Like buttons, 115, 116

subclassing modules, 132

symbols, in Ruby, 14

T
terminal command prompt, 7

test environment, 66

therubyracer gem, 106

titles, setting, 87–88

to helper method, 131

to_i method, 12

U
Ubuntu (see Linux)

updating (editing) songs, 48–49, 60–61,

62

url helper method, 131

URLs

REST patterns and, 51–53

routing using Rack, 131

149

username, changing, 104

V
V8 JavaScript engine, 106

variables

CSS preprocessor variables, 34

ERB and variable assignments, 16–17

instance variables, 28–30

named parameters and, 8–10

settings, 68

verbs (see HTTP verbs)

views

(see also layouts)

dynamic views, 16–17

ERB and, 15–16

external, 20–22

partials, 33–34

views folder, 21

W
website construction

(see also forms)

architecture choice in Sinatra, 140–

142

basic, 13–38

connecting Ruby to the web, 49

CRUD operations, 45–49

deploying the website, 75–81

developing modular applications,

123–130

example (Songs By Sinatra), 13–14

making changes live, 118–119

page uploading, 116

record collection, 39–63

with CoffeeScript, 105–120

Windows installations, 4, 40

Z
zero versus nil, 113

150

Congratulations on Finishing the Book

See yourself as
Sinatra-savvy?
Time to test yourself with our
online quiz. With questions
based on the content in the
book, only the sharpest
Sinatra virtuosos can achieve
a perfect score.

http://quizpoint.com/#categories/SINATRA

Take the Quiz Here:

Hey ...

Thanks for buying this book. We really
appreciate your support!

We’d like to think that you’re
now a “Friend of SitePoint,”
and so would like to invite
you to our special “Friends of
SitePoint” page.

Here you can SAVE up to 43%
on a range of other super-cool
SitePoint products.

Save over 40% with this link:

Link: sitepoint.com/friends

Password: friends

gallery-replace-generic.indd 2 1/03/12 5:13 PM

Darren Jones has been programming and building
websites for more than a decade. After discovering
Ruby on Rails, he fell in love with Sinatra’s approach
to web development. Darren now contributes Sinatra
tutorials to the RubySource website, and lists water
polo and mathematics among his interests.

Darren Jones

ient Ruby
applications without the weight of Rails. In fact, consider that the entire
Sinatra codebase weighs in at less than 2,000 lines—around 1% the size of
Rails! And, unlike Rails, you have the freedom to choose the tools you prefer.
For instance, go with your own HTML templating engine and CSS preprocessors.

Sinatra gives you:

Lightning sPEED
Sinatra’s crazy-tiny
codebase makes for
performance that Rails
simply can’t touch.

PLUS discover how to: build modular applications, simplify your
HTML with Slim templating, use Git for versioning control, and apply

USD $24.95 CAD $24.95

WEB DEVELOPMENT
PRINT: 978-0-9873321-4-1
Ebook: 978-0-9873321-5-8

Apple, Github, and the BBC use SINATRA. Why?

Flexibility
No framework should
dictate how you work.
Sinatra works YOUR
way with YOUR tools!

Maintainability
Break free from
dependency hell.
Use only the Gems
your project needs.

sitepoint.com/jumpstart-sinatra

	Front cover
	Jump Start Sinatra
	Copyright
	Dedication and biographies
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Challenge Yourself
	Friends of SitePoint
	Acknowledgments

	Sinatra Takes to the Stage
	What is Sinatra?
	Why should you use Sinatra?

	Installing Sinatra
	Windows
	GNU/Linux
	Mac

	Your First Sinatra App
	Variables and Named Parameters
	Creating a Betting Game
	Sinatra: The Safe Bet

	Building a Basic Website
	Example Website: Songs By Sinatra
	ERB and Views
	Becoming Dynamic
	DRYing Out with Layouts
	External Views
	Folder Structure
	Enhancing with Images

	Adding Some Style
	Missing Pages
	Instance Variables
	Start Your Engines
	Partials
	Getting Sassy
	Take the Long View

	Collecting Records
	Databases
	Installing SQLite
	Windows
	GNU/Linux
	Mac OS X

	Object Relational Mappers
	DataMapper

	Song Class
	Interacting with the Song Class in IRB
	Migrations

	CRUD Operations
	Creating Songs
	Reading Songs
	Updating Songs
	Deleting Songs

	Putting It on the Web
	HTTP Verbs
	RESTful URLs
	Listing Songs
	Showing Songs
	Creating New Songs
	The Redirect Helper

	Editing Songs
	Deleting Songs

	Finishing Touches
	For the Record

	Setting up to Go Live
	Configuration
	Environments
	Environmental Configuration

	Settings
	Custom Settings
	Enable and Disable

	Sessions
	Implementing a Simple Login Mechanism
	Logging Out

	Deploying the Site
	Creating a Heroku App
	Bundler
	Gemfile

	Rack It Up!
	Git
	Deploying to Heroku
	Setting up the Database on Heroku

	Time to Shine

	Helpers and Finders
	Helper Methods
	Helpers Block
	Linking to Stylesheets
	Styling the Current Page
	Setting Titles

	Song Helpers Module

	External Gems
	Sinatra::Flash
	Pony Mail
	Email in Production

	Sinatra::Contrib
	Admin Extension
	Changing the Username and Password

	A Little Help from My Friends

	Jazzing up with JavaScript
	CoffeeScript
	CoffeeScript in Sinatra
	jQuery
	Date Picker
	Adding a Like Button
	Git Branches
	Like Button
	Ajax
	“Ajaxifying” the Like Button

	Pushing the Changes Live

	All That Jazz

	The Final Act
	Modular Sinatra Applications
	Developing Modular Applications
	Modularizing Songs By Sinatra
	Song Controller Module

	Rack Routing
	Subclassing Modules
	Middleware
	Asset Middleware
	Using Middleware
	Caching
	Middleware Settings

	Rolling Your Own Framework
	Padrino
	In a Class of Its Own
	Start Spreading the News …

	Index
	Quiz
	Friend of SitePoint
	Back cover

