

JUMP START

SASS
HUGO GIRAUDEL

& MIRIAM SUZANNE

GET UP TO SPEED WITH SASS IN A WEEKEND

S
A

S
S

JU
M

P
 S

TA
R

T S
A

S
S

G
IR

A
U

D
E

L

&
 S

U
ZA

N
N

E

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9941826-7-8

EBOOK ISBN: 978-0-9943470-1-5

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $29.95 CAD $34.95

Sass bridges the gap between what CSS can offer and what
we as web developers need in our daily routine. Using Sass,
you can write your stylesheets in a more concise, dynamic,
and readable way, and cut down many of the tedious repetitive
tasks that come with writing vanilla CSS. Sass simplifies
your stylesheets, adding some useful features missing from
CSS. Most importantly, Sass makes it easier to create web
applications, reduces the monotony and overhead of writing
CSS, and will save you time.

This book provides a comprehensive introduction to Sass for
the beginner. In just one weekend, you’ll learn:

• What preprocessors are and how they can be useful

• Installation and getting started with Sass

• Discover Sass features that make writing CSS a breeze: variables,

 mixins, and functions

• Add logic to your stylesheets with loops and conditions

• Best practice project architecture

• The Sass ecosystem

• And more!

STREAMLINE YOUR CSS
DEVELOPMENT WITH SASS

YOUR AUTHORS

Miriam Suzanne is an author, performer,
musician, designer, and web developer.
She has been an active member of the
Sass community since developing the
Susy layout toolkit in 2009. She creates
web software with OddBird, music with
Teacup Gorilla, novels and poetry with
[WriteyWrite], theater with Vicious Trap,
and lego spaceships with anyone who
is interested.

MIRIAM
SUZANNE

HUGO
GIRAUDEL

Hugo is a French front-end developer
and writer working at Edenspiekermann
in Berlin, Germany. Since discovering
Sass in 2012, Hugo has devoted a lot
of his time to assisting the language’s
community, authoring Sass Guidelines,
SassDoc and hundreds of articles on
front-end technologies. In his spare
time, Hugo likes to work on open-source
software, hang out with his cats, eat
French cheese and play pool. Not
necessarily in this order.

Summary of Contents

Foreword . xiii

1. Hello World! . 1

2. Getting Started . 9

3. Variables . 15

4. Functions and Mixins . 41

5. Loops and Conditions . 57

6. Nesting . 75

7. The @extend Directive . 91

8. Warnings and Errors . 105

9. Architecture . 113

10. The Sass Ecosystem . 139

JUMP START SASS
BY HUGO GIRAUDEL
& MIRIAM SUZANNE

Jump Start Sass
by Hugo Giraudel and Miriam Suzanne

Copyright © 2016 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTech Editor: Kaelig Deloumeau-Prigent

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9941826-7-8 (print)

ISBN 978-0-9943470-1-5 (ebook)

Printed and bound in the United States of America

iv

About Hugo Giraudel

Hugo is a French front-end developer and writer working at Edenspiekermann in Berlin,

Germany. Since discovering Sass in 2012, he has devoted a lot of time assisting the Sass

community, as well as authoring SassGuidelines, SassDoc, and hundreds of articles on front-

end technologies. In his spare time Hugo likes to work on open-source software, hang out

with his cats, eat French cheese, and play pool—not necessarily in that order. You can find

him on Twitter at: https://twitter.com/HugoGiraudel.

About Miriam Suzanne

Miriam Suzanne is an author, performer, musician, designer, and web developer. She has

been an active member of the Sass community since developing the Susy layout toolkit in

2009. Miriam creates web software with OddBird, music with Teacup Gorilla, novels and

poetry with [WriteyWrite], theater with Vicious Trap, and Lego spaceships with anyone who

is interested. She is also the author of Riding SideSaddle* (a multimedia open-source novel),

and The Post-Obsolete Book (a performable website).

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

https://twitter.com/HugoGiraudel
http://www.sitepoint.com/

Table of Contents

Foreword . xiii

Who Should Read This Book . xiv

Conventions Used . xiv

Code Samples . xiv

Tips, Notes, and Warnings . xv

Supplementary Materials . xv

Want to take your learning further? . xvi

Chapter 1 Hello World! . 1

CSS in Modern Front-end Development . 1

What is Sass? . 2

What is preprocessing? . 3

The Tale of Two Syntaxes . 3

LibSass . 5

Alternative Processing Tools . 6

Chapter 2 Getting Started . 9

Ruby Sass . 9

Installing Ruby . 10

Installing Sass . 10

Using Sass . 11

LibSass (with node-sass) . 11

Installing Node.js . 12

Installing node-sass . 12

Using Sass . 12

Wrapping Things Up . 13

Chapter 3 Variables . 15

Data Types . 16

Strings . 17

Numbers . 18

Colors . 21

Booleans . 23

Null . 24

Lists . 25

Maps . 27

Scope . 29

The !global Flag . 30

The !default Flag . 31

Interpolation . 32

Creating Meaningful Variables . 35

CSS Custom Properties or Sass Variables . 37

Wrapping Things Up . 39

Chapter 4 Functions and Mixins 41

Functions . 41

Parameters . 43

Usage . 45

Arguments List . 46

Functions for Asset Management: a Case Study 49

Native Functions . 51

Mixins . 51

Parameters . 52

Inner Content . 53

Wrapping Things Up . 55

viii

Chapter 5 Loops and Conditions 57

Conditions . 57

Multiple Conditions . 59

Conditional Operators . 61

Ternary Functions . 62

Loops . 63

The for-loop . 64

The each-loop . 67

The while-loop . 72

Wrapping Things Up . 73

Chapter 6 Nesting . 75

Selector Nesting . 75

Variable Scoping . 77

The Ampersand Selector . 78

Context Nesting . 82

The @at-root Directive . 85

Property Nesting . 86

Best Practices and Nesting Etiquette . 88

Wrapping Things Up . 89

Chapter 7 The @extend Directive 91

Building Clear Relationships . 91

Extending Utilities . 93

The Placeholder (Extend-only) Selector . 95

Advanced Extending . 96

Nesting Extends . 97

The Limits of Extending . 98

Confusing Cascade . 98

ix

Collateral Damage . 99

Hard-to-Read Output . 101

Media Query Madness . 102

Dependable Mixins . 103

Wrapping Things Up . 104

Chapter 8 Warnings and Errors 105

Warnings . 106

The Difference between @warn and @debug 108

Errors . 109

Wrapping Things Up . 112

Chapter 9 Architecture . 113

Multiple Files and Folders . 114

CSS Imports . 114

Sass Imports and Partials . 115

Components and Organization . 117

Object-oriented CSS (OOCSS) . 119

Atomic Design . 121

Block, Element, Modifier (BEM) . 123

Scalable and Modular Architecture for CSS (SMACSS) 125

Hugo’s 7-1 . 126

Inverted Triangle CSS (ITCSS) . 128

Miriam’s Mix-n-Match . 131

Modular Imports in Sass 4 . 134

Locality . 135

Encapsulation . 136

Wrapping Things Up . 136

x

Chapter 10 The Sass Ecosystem . 139

Open-source Sass . 140

Frameworks . 142

Grids . 143

Media Queries . 145

Toolkits . 149

Beautiful Code . 154

Package Managers . 158

A Sassy Wrap! . 161

xi

Foreword
When I started contributing to the features and development of Sass more than eight

years ago, I’d never have predicted that one day it would reshape the face of modern

front-end web development. But these days, Sass is a staple technology for web

developers and designers. It may not be right for every project, but you absolutely

must have Sass in your toolbox.

Even more exciting to me is the amazing community of smart, talented, and enthu-

siastic designers and developers that has sprung up around a technology created to

help front-end developers build stylesheets in a more reusable and maintainable

way. From meetups to dedicated conferences, people around the globe have come

together to share their excitement for Sass―clearly there’s more going on here than

in your standard web development tool!

Over the years, two of those community members, Miriam Suzanne and Hugo

Giraudel, have become some of the most notable users and creators of Sass plugins

and best practices for how to use Sass effectively. Miriam created one of the most

well-known grid system frameworks, Susy1, along with a wonderful testing tool

named true2, for ensuring that Sass code is working correctly. Hugo’s writing on

websites such as Sass Guidelines3 has set the standard for how to wield Sass effect-

ively, while his plugins have pushed Sass to the very limits of what’s possible. Both

have left an indelible mark on Sass, both in the community and on the technology

itself. Moreover, they are trusted advisors when early feedback is sought on new

features that are being added to the language.

If you’re yet to learn Sass, there’s no time like the present. I suggest that you jump

start your learning of Sass right now with this book. The combined expertise of

these authors with more than a decade of learning and crafting world-class websites

using Sass means that you’re in great hands.

Chris Eppstein, Sass Core Developer

1 http://susy.oddbird.net/
2 http://oddbird.net/true/
3 http://sass-guidelin.es/

http://susy.oddbird.net/
http://oddbird.net/true/
http://sass-guidelin.es/

Who Should Read This Book
This book assumes reasonable familiarity with HTML and CSS. You don’t need to

be familiar with JavaScript or any programming language, although some experience

would be helpful. No prior experience with Sass or any other CSS preprocessor is

assumed.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer’s Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

xiv

URL.open("http://www.sitepoint.com/blogs/2015/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/premium/books/jssass1

The book’s website, containing links, updates, resources, and more.

http://community.sitepoint.com/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

xv

https://www.sitepoint.com/premium/books/jssass1
http://community.sitepoint.com/

Want to take your learning further?
Thanks for choosing to buy a SitePoint book. Would you like to continue learning?

You can now gain unlimited access to ALL SitePoint books and courses plus high-

quality books from our selected partners at SitePoint Premium4. Enroll now and

start learning today!

4 https://www.sitepoint.com/premium/home

xvi

https://www.sitepoint.com/premium/home

Chapter1
Hello World!
Welcome, fellow developer! I heard you wanted to learn about Sass. How adventur-

ous! Worry not, my friend, as we will be your guides during this incredible journey,

walking you through ten chapters in no time so that you can start using Sass in your

day-to-day projects.

From learning about variables and mixins, to how to structure your project architec-

ture—this book will cover the basics of the language in a detailed, informative, and

fun way.

CSS in Modern Front-end Development
The creation and maintenance of our projects on the Web has advanced as the Web

has progressed. Where we were once perhaps webmasters, the many, varied discip-

lines involved in making websites and applications has diversified. Front-end de-

velopment is now one of many roles required in making today’s websites. A front-

end developer will generally now produce HTML, CSS, and JavaScript for a web

application or site so that its visitors can access the content and interact with it.

With modern websites providing more content in various ways and with most web

makers adopting an approach that incorporates responsive web design principles,

we’re now writing more complex CSS than ever before. Add to that how CSS is an

ever-changing language, with more and more features added to its existing set every

year.

CSS practices and methodologies such as OOCSS1, SMACSS2, ITCSS3, and BEM4

(to name but four) are excellent tools and processes that help with writing stylesheets

and keeping us sane in this modern era of front-end development. Yet, creating CSS

for a responsive, device-agnostic website using OOCSS and BEM can lead to thou-

sands of lines of code in one cumbersome file.

We will soon explore how Sass can help you with this. But if you happen to be a

total beginner on the matter, you might even be wondering …

What is Sass?
Sass is a stylesheet language that is an extension of CSS. It is one of a few prepro-

cessors (more on that in a bit) available to the front-end developer. As it has been

around the longest (of the aforementioned preprocessors), we could agree with the

official website5 when it reports to be the “most mature, stable, and powerful pro-

fessional-grade CSS extension language in the world.”

Using Sass helps eliminate some of the monotony and overhead from writing CSS.

No longer will you have to remember that specific hex color code for the company’s

brand. Say goodbye to one long CSS stylesheet or additional HTTP requests, as well

as increased page load times by splitting up your CSS files to several files such as

reset.css, mobile.css, tablet.css, desktop.css and print.css. Want an easier way to write

CSS media queries? Sass has you covered. Like using ems or rems but hate working

out the math? Sass can help you.

All in all, we can safely state that Sass will make it easier for you to develop websites

and web applications—benefiting you, your client, and your clients’ users. Keep

1 http://oocss.org/
2 https://smacss.com/
3 http://itcss.io/
4 https://en.bem.info/
5 http://sass-lang.com

Jump Start Sass2

http://oocss.org/
https://smacss.com/
http://itcss.io/
https://en.bem.info/
http://sass-lang.com

your work in check and minimize opportunities for broken designs using the power

of Sass.

Sass may have its downfalls but, generally, problems that developers find with Sass

are usually when they struggle to understand some aspect of it. With this book, we

hope to give you the building blocks to write awesome Sass code. But you will re-

quire a firm grasp of CSS as well; if you write bad CSS in the first place, you’ll end

up writing bad Sass too. You might be familiar with the saying “Tools do not output

bad code. Bad developers do.” Remember, Sass is just a preprocessing tool, which

leads us to our next section.

What is preprocessing?
As mentioned, Sass is a preprocessor. It takes Sass (.sass) or SCSS (.scss) files as

input, and outputs CSS files (.css). Sass adds a lot of great features that can help

to create better stylesheets, but as you know, web browsers only understand CSS,

not Sass. What we do is write our CSS (with as much a sprinkling of Sass as needed)

in .scss or .sass files in our code editor, and then have Sass compile that into a .css

file for the browser to read.

Using a preprocessing language such as Sass means we’re not bound within the

limitations of CSS. Sass can—and does—add features that enhance our writing of

CSS; however, it does not—and cannot—add features to CSS itself. It’s vital that

you grasp this from the outset.

The Tale of Two Syntaxes
When talking about Sass, we usually refer to the preprocessor and the language as

a whole; for example, a Sass project, or a Sass variable. Meanwhile, Sass (the pre-

processor) allows two syntaxes:

1. Sass, also known as the indented syntax

2. SCSS, or Sassy CSS, a CSS-like syntax

Let’s pause for a moment for a short history lesson. Initially, Sass was part of another

preprocessor (that still exists) called Haml6, which was heavily inspired by the

6 http://haml.info/

3Hello World!

http://haml.info/

programming language Ruby. Sass stylesheets used a Ruby-like syntax with no

braces or semicolons, and a strict indentation:

.media
 margin: 10px
 overflow: hidden

.media .img
 float: left
 margin-right: 10px
 display: block

.media .content
 float: right
 margin-left: 10px

This was up until 2009, when the new .scss file format was introduced that adhered

more closely to the usual CSS syntax. The rule of thumb here is if it is valid CSS,

it’s valid SCSS:

.media {
 margin: 10px;
 overflow: hidden;
}

.media .img {
 float: left;
 margin-right: 10px;
 display: block;
}

.media .content {
 float: right;
 margin-left: 10px;
}

As to which syntax to use, the choice is really up to the author as both are strictly

equivalent in features. The Sass indented syntax is shorter and lighter to type because

almost all punctuation is gone, but it’s also incompatible with default CSS syntax.

It would appear that SCSS is the most popular in the Sass community as it is closer

to CSS and has an easier learning curve, contrary to the whitespace-sensitive syntax

Jump Start Sass4

of Sass. Because of this, we’ll be using SCSS in the code displayed throughout this

book.

Note that “Sass” is never uppercase, no matter whether we’re talking about the

language or the syntax. Meanwhile, “SCSS” is always uppercase. You could use

http://SassnotSASS.com/ as a reminder.

SassScript

You might have heard of SassScript, the actual scripting language used by Sass.

The Sass interpreter then translates SassScript into CSS. This is not vital inform-

ation, just a something to be aware of.

LibSass
There are two primary implementations of the Sass compiler: one in Ruby, and

another (called LibSass) in C/C++. People often wonder which one is official, or

better. The short answer is that you can use either one; they are both official. The

latest versions should be fully interoperable with each other, and new features will

be released in tandem from here on.

The long answer starts in 2007 with a different language called Haml7, mentioned

in the previous section. Hampton Catlin8 designed his HTML Abstraction Markup

Language to provide a more structured and easier-to-read templating language for

HTML. Before long he had added Sass to the project, bringing a similar look and

feel to CSS. For several years Haml and Sass were packaged together in the Haml

Ruby gem. At that point, many users saw Sass as a syntax improvement on CSS,

with very few additional features.

Eventually, people started to realize that Sass had more to offer than a whitespace-

aware syntax. Nesting and variables grew into mixins, functions, loops, and condi-

tions (features we’ll discuss in upcoming chapters). Sass grew bigger than Haml,

and split off into its own project with Natalie Weizenbaum9 at the helm. Still, it

remained a Ruby gem, and was most popular with teams that already used Ruby in

their projects. Others were weary of adding such a large new language dependency.

7 http://haml.info/
8 https://twitter.com/hcatlin
9 https://twitter.com/nex3

5Hello World!

http://SassnotSASS.com/
http://haml.info/
https://twitter.com/hcatlin
https://twitter.com/nex3

As Sass grew and third-party Sass tools became more powerful, compilation times

began to drag. The combination of speed and portability issues gave Hampton a

new idea. In 2013, at the first ever Sass Conference, he announced the arrival of

LibSass: a C/C++ port of the Sass engine. Developers started flocking to LibSass,

speculating that it might be the end of Ruby Sass, even though it was far from

compatible with it at the time.

It wasn’t the end, but it did divide the community between two versions of the

language for some time. That’s why a year later at SassConf 2014, Chris Eppstein10

and Weizenbaum announced a feature-freeze on Ruby Sass, enabling LibSass a

chance to catch up. The plan was to align both engines with an external specification,

and then develop and release future features together.

So far, it’s gone exactly according to plan. A major development push on LibSass

was led by Marcel Greter11 and Michael Mifsud12, where feature parity (or something

close to it) was announced at SassConf 2015. LibSass now has wrappers available

for Go, Java, JavaScript, Lua, .Net, Node (with Gulp and Grunt plugins), Perl, PHP,

Python, Scala, and even Ruby. The two engines are fully compatible, and Sass is

back in development mode. Sass 4 is underway with exciting new features.

There is still work to be done documenting the Sass specification and writing tests

for any Sass implementation against which to develop. LibSass now has all the of-

ficial Sass features working to the best of its knowledge, but without shared tests,

parity will never be certain. In the meantime, I’ve tried to document the features

available in different versions of Ruby Sass and LibSass with the Sass Compatibility13

project.

Alternative Processing Tools
As with most aspects of the web industry, there are always alternatives. Although

it was first to market, Sass now shares the land of CSS processing with other open-

source projects. Stylus, Less, and PostCSS also assist with writing CSS, just like

Sass.

10 https://twitter.com/chriseppstein
11 https://github.com/mgreter
12 https://twitter.com/xzyfer
13 http://sass-compatibility.github.io/

Jump Start Sass6

https://twitter.com/chriseppstein
https://github.com/mgreter
https://twitter.com/xzyfer
http://sass-compatibility.github.io/

Each tool has a different approach, but ends up being quite similar to the other op-

tions when it comes to features.

Stylus14 is built in Node.js. If Sass tries to stay conservative in regard to the CSS

language, Stylus is usually more permissive, implementing a lot of features that

you’d consider “too much for CSS”. Additionally, Stylus is very flexible with the

syntax: you can safely omit most bits of punctuation without risking a compilation

error.

Less15 is fundamentally different to Sass, despite looking similar in a number of

ways: it is a declarative language while Sass is imperative. The difference, while

subtle, implies a few things. When it comes to explaining the difference between

Less and Sass, Matthew Dean explains it best16:

A declarative language (my emphasis) describes to a machine what

we want, and an imperative language tells the machine how to do

it.

...

What that means is that Less extends the CSS language under the

same declarative model, whereas Sass is a programming language

whose syntax is based on CSS. Another way of saying it: both Less

and Sass look like CSS, but Sass does not act like CSS.

— Less, the world’s most misunderstood CSS pre-processor17

To be frank, this is quite a deep topic of which very few developers are aware. This

is for good reason, as it is of little consequence to know this kind of distinction

when authoring stylesheets. All in all, Sass and Less are very similar.

Last but not least, PostCSS18, which is written in JavaScript, has a different approach

as it does nothing more in itself than read your stylesheet. To actually create

something out of this tool, you have to configure plugins. A plugin is basically an

14 http://stylus-lang.com/
15 http://lesscss.org/
16 http://getcrunch.co/2015/10/08/less-the-worlds-most-misunderstood-css-pre-processor/
17 http://getcrunch.co/2015/10/08/less-the-worlds-most-misunderstood-css-pre-processor/
18 https://github.com/postcss/postcss

7Hello World!

http://stylus-lang.com/
http://lesscss.org/
http://getcrunch.co/2015/10/08/less-the-worlds-most-misunderstood-css-pre-processor/
http://getcrunch.co/2015/10/08/less-the-worlds-most-misunderstood-css-pre-processor/
https://github.com/postcss/postcss

instruction for PostCSS to translate one thing into another. PostCSS enjoys an eco-

system of hundreds of plugins; some of them are particularly popular, such as

Autoprefixer19, a plugin that adds vendor prefixes to your CSS based on a given

configuration of browsers and versions to support.

But enough talking about the other kids on the block. I assume you chose Sass. And

as you’ll soon discover, that is a fine choice.

19 https://github.com/postcss/autoprefixer

Jump Start Sass8

https://github.com/postcss/autoprefixer

Chapter2
Getting Started
In the previous chapter, we talked a lot about what Sass actually is and how it can

help us bridge the gap between what CSS can offer and what we actually need in

our daily routine as web designers. Now is well past the time to start.

As discussed previously, Sass (mostly) exists as both a Ruby gem (sometimes called

Ruby Sass) and a wrapped C/C++ library (also known as LibSass). Additionally,

there are a lot of applications for front-end development that take care of everything

for you, such as CodeKit1 or Prepros2.

We’ll now see how to set it up in these environments, starting with the Ruby version.

Ruby Sass
The programming language Ruby handles dependencies as gems. A gem is a package

that contains program (or script) information along with files to install. Therefore,

the sass gem is a package containing everything needed to compile Sass stylesheets

to CSS.

1 http://incident57.com/codekit/
2 https://prepros.io/

http://incident57.com/codekit/
https://prepros.io/

To install the Sass gem, you will need Ruby first.

Installing Ruby
On Mac OS, Ruby comes preinstalled so there’s nothing further to do.

On Debian or Ubuntu Linux distributions, you need to install Ruby manually like

so:

sudo apt-get install ruby-full

For other less common Linux distributions, I recommend you check the Ruby official

documentation3 to see how to install it properly.

On a Windows machine, you’ll have to go through the Ruby Installer4 setup, a

simple program that helps install and run Ruby. It’s slightly less straightforward

than other operating systems, but what can you do?

Installing Sass
Once Ruby is correctly set up, you can start installing gems, in particular the one

we care about: sass. To install it, open a terminal window (on Mac OS, it would

be the Terminal application, while on Windows, it would be Ruby prompt). Then

type the following command:

gem install sass

And that’s it! Sass is now installed on your machine and you can use the sass

command to compile your stylesheets. You have to admit it was very simple, wasn’t

it?

Permission Errors

If you have a permission error on Mac or Linux, you might need to prefix your

command with sudo.

3 https://www.ruby-lang.org/
4 http://rubyinstaller.org/

Jump Start Sass10

https://www.ruby-lang.org/
https://www.ruby-lang.org/
http://rubyinstaller.org/

Using Sass
Now that you’ve installed the Sass gem, let’s try to use it.

The Sass gem provides a sass command that accepts a lot of options. For the sake

of simplicity, we won’t be covering them all, although we’ll still address how to

use the basics. See the official documentation5 for more advanced usages.

In its simplest form, the sass command accepts an input file and an output file,

like so:

sass input.scss output.css

When working on stylesheets, it’s tedious to execute the former command every

time we make a change to the input file. To work around this, we can use what we

call a watcher. A watcher is a program that detects when a file is being changed,

executing a task when it happens.

Sass comes with a built-in watch feature: the --watch option. Every time the input

file is being modified, Sass will recompile it and override the output file:

sass --watch input.scss output.css

As we’ll discuss in great length in Chapter 9, it is quite uncommon to have just one

single Sass file to compile. More often than not, styles are written across a plethora

of files gathered in a folder. You will want Sass to compile the whole folder without

having to specify a list of files manually. This is how you do it:

sass --watch sass/:stylesheet/.

LibSass (with node-sass)
As stated in the first chapter, LibSass is unusable on its own and must be wrapped

by another library to provide an interface for compiling Sass stylesheets to CSS.

The most popular wrapper for LibSass has to be node-sass6, a Node.js library that

compiles Sass to CSS through LibSass.

5 http://sass-lang.com/documentation/file.SASS_REFERENCE.html#using_sass
6 https://github.com/sass/node-sass

11Getting Started

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#using_sass
https://github.com/sass/node-sass

Installing Node.js
To be able to use node-sass, we’ll obviously require Node.js. The easiest way to install

Node.js is by using one of the installers on the home page of the project7. Once

done, you’ll be able to install node packages, which leads us to the next step.

Installing node-sass
Node-sass is a Node package distributed through npm8. It provides both a command-

line interface and a JavaScript API to interact with the inner program. Your first

task is to install it—either locally in the project with --save or globally with -g:

npm install node-sass -g

Using Sass
The command-line interfaces (CLI) of Ruby Sass and node-sass are similar but not

entirely compatible so if in doubt, refer to the documentation of the relevant library.

Compiling a single file to CSS is the same as with Ruby Sass:

node-sass input.scss output.css

You can also add the --watch flag in the same fashion to tell Sass to automatically

recompile the file on change:

node-sass --watch input.scss output.css

However, it’s slightly different when you want to watch a folder:

7 https://nodejs.org/en/
8 https://www.npmjs.com/

Jump Start Sass12

https://nodejs.org/en/
https://www.npmjs.com/

node-sass --watch sass/ --output stylesheets/

Wrapping Things Up
All right then. We are now fully ready to actually start writing Sass code. Feel free

to create a dummy project on your computer, launch the watcher, and experiment

as you progress through the book. There is no better way to learn than by practicing.

13Getting Started

Chapter3
Variables
Variables are at the core of most—if not all—programming languages that ever exis-

ted. A variable, broadly speaking, is a storage location paired with an associated

identifier (aka a variable name). So a variable is basically made up of a key and a

value, the former being used to retrieve the latter.

When applied to Sass, variables give authors the ability to store bits of content so

that they can be reused throughout the stylesheets. This is especially handy for

colors: one can avoid having countless hues of the same color after a long time spent

working on a project. Variables can also be helpful for storing other types of content

such as font lists, maps of breakpoints, and default asset paths—presumably anything

that you may want to use multiple times across the stylesheet, particularly those

that could be updated at a later point.

A variable in Sass always starts with a dollar sign ($), whether you are using it for

assignment or retrieval. Directly next to the dollar sign comes the variable name,

which is usually made of latin characters, numbers and dashes, or underscores.

Actually, any character can be used as long as it is escaped if needed.

The Same Escape Route

Sass follows the same rules as CSS when it comes to escaping characters in iden-

tifiers. For more information about CSS character escape sequences, be sure to

have a look at the eponymous article by Mathias Bynens1.

For assignment, the variable name and its value are separated with a colon. Finally,

a semicolon ends the statement (in the SCSS version only):

// Variable assignment
$my-variable: 42px;

// Variable usage
.foo {
 width: $my-variable;
}

Dashes + Underscores = Same

Dashes and underscores are considered the strict equivalent in variable names;

hence, $my-variable and $my_variable actually refer to the same location.

You could use one to assign the value and the other to retrieve it, and it will work

seamlessly. What’s important to remember is that the dash or underscore is a

matter of preference, not syntax.

[Hyphens and underscores being treated the same] is intentional.

The rationale is that the separator is a stylistic preference, not

a meaningful one. — Chris Eppstein, Sass core designer

Data Types
All values in Sass, or rather SassScript (the scripting language itself), are associated

to a specific data type. There are seven data types in SassScript:

■ string (e.g. "Hello world", kittens)
■ number (e.g. 42, 1337px)
■ color (e.g. hotpink, rgb(1, 33, 7), #BADA55)

1 https://mathiasbynens.be/notes/css-escapes

Jump Start Sass16

https://mathiasbynens.be/notes/css-escapes

■ list (e.g. (a, b, c), a b c)
■ map (e.g. (a: 1, b: 2))
■ bool (true or false)
■ null (null)

Data types are a way for both Sass and those authoring content to know what kind

of operations and functions can be run on a specific value. As far as I can tell, all

programming languages use some form of typing.

For instance, we can perform mathematical operations with numbers and colors

(yes, colors!), but not strings. It is possible to run some specific functions on lists

and maps, but not on booleans and null values.

To know the type of a Sass variable, we use the type-of(..) built-in function. It

returns precisely one of the seven aforementioned types. For more information

about how functions work, refer to Chapter 4.

Strings
The string data type has to be the most basic type there is since we use it in our

life so much, even outside of any computer-related activity. A string is nothing more

than a series of characters, such as Hello world!:

$my-variable: 'Hello world!';

In most languages, a string needs to be quoted, meaning it should be wrapped with

quotes, either double (") or simple ('). In Sass, however, strings do not have to be

quoted. It is perfectly fine for a string to live by itself without being wrapped within

quotes, as long as non-indentifier characters (latin alphabet, numbers, hyphens,

underscores, and spaces) are escaped. Moreover, an unquoted string is—thank-

fully—strictly equivalent to its quoted counterpart, so that "abc" (or 'abc') is the

same as abc. Quoting strings is usually considered best practice, however; not only

because it sticks to the syntax of most languages, but because there are some classic

gotchas with unquoted strings in Sass when they map with a CSS color keyword

(such as red).

String variables are useful for storing some CSS values, property names, or identifiers,

such as sans-serif, left, or margin-bottom. When storing string content that maps

17Variables

one-to-one with CSS (such as the three aforementioned examples), we usually omit

the quotes because CSS requires them unquoted:

$font-name: 'Helvetica';
$font-type: sans-serif;

.foo {
 font-family: $helvetica, $font-type;
}

Note that it is still possible to quote or unquote a string using the quote(..) and

unquote(..) native functions. For more information about how functions work,

refer to Chapter 4.

Strings can be concatenated (joined together) using the plus symbol (+). You can

thus create a new string from several chunks:

$base-path: '/images/';
$file-name: 'kittens';
$extension: 'png';
$file-path: $base-path + $file-name + '.' + $extension;
// -> '/images/kittens.png'

Numbers
As with strings, numbers are a very basic type of content. I would not dare explain

to you what a number is, although I’ll point out a very important specificity about

Sass numbers before going any further: a number in Sass can—but does not neces-

sarily—have a unit, like 42px.

This behavior, while unconventional at first glance, actually makes sense: you need

to be able to perform operations on numbers with a unit just as you run calculations

on numbers without. In other words, both 42 and 42px are numbers, while 42 px

and px42 are strings.

Returning to CSS, numbers are typically the sort of items you want to store in vari-

ables because they’re likely to be the moving parts of your application. Think of the

maximum width of the container (for example, 1180px), or the number of columns

in the grid system in use (such as 12). You want to make those values easily config-

urable in order to keep the codebase clean and maintainable:

Jump Start Sass18

$container-max-width: 1180px;

.container {
 width: 100%;
 margin: 0 auto;
 max-width: $container-max-width;
}

Obviously, you can perform operations on numerical values. Sass supports the five

basic operators: plus (+), minus (-), multiply (*), divide (/), and modulo (%). Some

Sass third-party tools such as Compass2 or SassyMath3 add extra math features; for

example, power (pow(..)), square root (sqrt(..)), Pi (pi()), and so on.

In the following example, we used the $element-width variable as the value for the

width property, as well as a way to compute the negative left margin required to

horizontally center the element:

$element-width: 400px;

/**
 * 1. Size the element
 * 2. Horizontally center the element in its container
 * @TODO: move to CSS transforms once we drop support for IE 8
 */
.foo {
 width: $element-width; /* 1 */
 position: absolute; /* 2 */
 left: 50%; /* 2 */
 margin-left: ($element-width / -2); /* 2 */
}

Before going any further, you might be interested to know that division in Sass is

a bit more complex than first expected: the slash symbol (/) actually has a meaning

in CSS (think of the font shorthand property) . As a result, there are three scenarios

in which Sass does perform division instead of leaving the / as authored:

■ If the value, or any part of it, is stored in a variable or returned by a function.
■ If the value is surrounded by parentheses.

2 http://compass-style.org/
3 https://github.com/at-import/Sassy-math

19Variables

http://compass-style.org/
https://github.com/at-import/Sassy-math

■ If the value is used as part of another arithmetic expression.

The following code snippet illustrates these scenarios:

.foo {
 $gap: 20px;
 // No variable nor parentheses: no division performed
 font: 16px / 2 sans-serif;
 // Wrapping parentheses: division returning 8px
 padding: (16px / 2);
 // Member as variable: division returning 10px
 margin: $gap / 2;
 // Arithmetic expression: calculation returning 308px
 width: 300px + 16px / 2;
}

Units
Before moving on to the next data type, allow me to explain how units are handled

in Sass. For starters, units are not just random strings living at the end of numbers;

they actually belong to the number. Otherwise, you’d be unable to perform operations

on it. That is why the next two examples produce entirely different results:

$value: 42;
$good: $value * 1px;
$bad: $value + px;

The $good variable multiplies $value with 1px, making the result 42px, a valid

number. On the other hand, the $bad variable simply appends the px string at the

end of $value, composing a string. While that may seem like small fry, having a

string in place of a number is not only inconsistent, it can bring new issues, such

as it being impossible to perform any further mathematical operations on it.

As you can guess from the previous example, units in Sass behave the same way in

real life. To have 42px from 42, you need to multiply it by one member of the px

unit (1px). Similarly, to have 42 from 42px, you have to divide it by one member of

the px unit (1px):

Jump Start Sass20

$initial-value: 42;
$value-in-px: ($initial-value * 1px); // 42px
$unitless-value: ($value-in-px / 1px); // 42

For more information about the way units work in Sass, be sure to have a look at

this article from me, Understanding Sass Units4.

Colors
Colors occupy a major position in the CSS language. Sass ends up being a valuable

ally when it comes to manipulating colors, mostly by providing a handful of

powerful functions, yet there’s more it can do.

For starters, a color in Sass—as in CSS— can be expressed in three to four different

ways, using:

■ the rgb(..)/rgba(..) CSS functions (for example, rgb(1, 33, 7)),
■ the hsl(..)/hsla(..) CSS functions (for example, hsla(1, 33%, 7%, 0.5)),
■ the hexadecimal notation (for example, #BADA55)
■ when available, a keyword name (for example, hotpink).

Avoid Color Keywords

CSS color keywords are not recommended, unless for rapid prototyping. Indeed,

as English words some of them do a poor job at describing the color they represent,

especially for non-native speakers (chartreuse, papayawhip). In addition,

keywords are not perfectly semantic; for instance gray is actually darker than

darkgray, and the confusion between grey and gray can lead to inconsistent

usages of this color.

Any of those notations will make the value a color, thus eligible to be manipulated

as a color by Sass.

Storing colors is probably the best use case for Sass variables, as maintaining a strict

and consistent color chart has proven to be a difficult challenge, especially in large

projects. By keeping frequently-used colors in variables, we save ourselves from

guessing and inventing new colors:

4 http://www.sitepoint.com/understanding-sass-units/

21Variables

http://www.sitepoint.com/understanding-sass-units/

$brand-color: #BADA55;

.logo {
 color: $brand-color;
}

It improves more so once you start using Sass native color-manipulation functions,

such as darken(..), lighten(..), and mix(..). Let’s now consider an alert module

with different themes depending on the type of message (information, warning,

confirm):

.message {
 padding: 10px;
 border: 1px solid currentcolor;
}

.message-info {
 $color: blue;
 color: $color;
 background-color: lighten($color, 20%);
}

.message-danger {
 $color: red;
 color: $color;
 background-color: lighten($color, 20%);
}

.message-confirm {
 $color: green;
 color: $color;
 background-color: lighten($color, 20%);
}

Thanks to the lighten(..) function, it is not only possible but also very easy to

create a tint of our color to compute the background color of our message. If you

already have an idea on how to optimize this code, hold your horses because we

will tackle this in the next chapter!

Jump Start Sass22

Booleans
Booleans (or bools, for short) are specific values that exist in almost any programming

language. There are only two boolean values: true and false (written slightly dif-

ferently depending on the language). Sass sticks to these writing conventions.

Because there is no such thing as a boolean value in CSS, booleans are quite

worthless on their own. They become interesting when coupled with conditional

statements, introduced in Chapter 5. In the meantime, here’s a short example:

$support-legacy-browsers: true;

@if $support-legacy-browsers {
 .clearfix {
 *zoom: 1;
 }
}

.clearfix:after {
 content: '';
 display: table;
 clear: both;
}

As you can see, booleans are perfect to handle toggle-like options, such as shall we

support old browsers?, shall we output vendor prefixes?, shall we include this

module?, and so on.

The not Keyword
Unlike most other languages, Sass lacks a bang operator (!) to get the opposite of a

value, such as if (!value). Instead, it provides the not keyword, which works the

same way:

$bool: false;

// "if not false"
// which can be rewritten as: "if true"

23Variables

@if not $bool {
 // We get in there
}

Bang Bang not not

Along the same lines, while being a bad pattern from the C programming world,

the very popular “bang bang you’re a boolean” technique (!!value) to coerce a

value to a boolean is doable in Sass by chaining two not keywords:

$value: 'Hello world!';
$coerced-value: not not $value; // true

A falsy value would return false, while a truthy value would return true. In

Sass, only two values are falsy: false and null (as you will see in the next sec-

tion), so anything else returns true.

Null
We’re dealing with a particular scenario here because there is one single value that

has null as a data type: null. Indeed, null is both the value and its type, making

it a very specific element of the Sass language.

Note that it has to be lowercase and unquoted for it to be from null type; NULL or

any variant containing uppercase letters is from type string:

$type: type-of(null); // null
$type: type-of(NULL); // string
$type: type-of('null'); // string
$type: type-of('n' + 'u' + 'LL'); // string

null is commonly used to describe an empty value that will be filled later on, or

an empty state that’s neither true nor false. Because of this, null has a very handy

behavior: when evaluated as a CSS value, Sass will omit the declaration altogether:

$value: null;

.foo {
 // This declaration will not be output since

Jump Start Sass24

 // the variable is evaluated as `null`
 color: $value;
}

While it may seem odd at first, this behavior is actually very helpful when building

mixins (see Chapter 4) with optional arguments. Instead of testing each argument

to see if it has a value, we can take advantage of a null value not being output:

@mixin absolute($top: null, $right: null, $bottom: null, $left:
➥ null) {
 position: absolute;
 top: $top;
 right: $right;
 bottom: $bottom;
 left: $left;
}

Here’s an example:

.foo {
 @include absolute($top: 13px, $left: 37px);
}

This Sass snippet would be compiled to:

.foo {
 position: absolute;
 top: 13px;
 left: 37px;
}

Lists
We’ve just seen the five primary data types of Sass, leaving just lists and maps.

These two types are atypical as they mostly act as containers.

Take lists, for instance: they are basically what other languages call arrays. Arrays

are often used to store a collection of related values, usually to iterate over them in

order to perform a repeated action.

25Variables

A Sass list is a collection of zero or more values separated by either spaces or com-

mas. Values from a list can be of any type, including list, leading to nested lists

(which can be quite complex to deal with later on):

$list: (42, hotpink, 'kittens');

From there, it is possible—and likely—to iterate over the values from the list in order

to perform a task with them, such as outputting similar CSS rule sets. To do so, we

need to use a loop (introduced in Chapter 5).

The first point to know about lists is that it’s the delimiter (either spaces or commas,

known thanks to the list-separator(..) function) that makes a list, not the

wrapping parentheses. Actually, parentheses are optional unless the list is empty

(thus having no apparent delimiter).

$empty-list: ();

That being said, we highly recommend always using parentheses as they make the

code easier to read. Any two or more values separated by a space or a comma form

a list:

$value: Hello world;
$type: type-of($value); // list
$length: length($value); // 2
$separator: list-separator($value); // space

While the previous example might look like a string, it actually is a two-item list

(note the length(..) function call), because of the space delimiter. To make it an

explicit string, wrap it in (single or double) quotes. Here’s another—preferred—way

of describing the previous list:

$value: ('Hello', 'world');
$type: type-of($value); // list
$length: length($value); // 2
$separator: list-separator($value); // comma

Although more verbose, it’s clear from first glance that the value is indeed a list,

and that both values are strings.

Jump Start Sass26

While it’s possible to call list-related functions on single values (such as length(..),

for instance), it does not make the value an actual list:

$value: 'foo';
$length: length($value); // 1
$type: type-of($value); // string

And since wrapping parentheses do not help to make a value a list, making it

('foo')will also fail. Yet there is a way to create a single item list: Sass allows lists

that use a comma as a separator to have a trailing comma after the last value. By

adding a trailing comma to any value, Sass coerces it into a list:

$value: ('foo',);
$length: length($value); // 1
$type: type-of($value); // list

Lengthy matters

The length(..) function returns the length of a value (which might be greater

than one for lists and maps), but not the length of a string! To count the number

of characters in a string, use str-length(..).

Maps
In some ways, maps are similar to lists. Broadly speaking, a map is a series of pairs

of associated keys and values where keys are unique to each map. While a list is

usually tied to a specific order—as it is basically the only way to find a value

within it—a map uses its keys to find their associated value.

In other words, you would use a list when you need an index (for instance, for the

:nth-child(..) selector), and a map when you need a key (such as a string):

$message-themes: (
 'info': deepskyblue,
 'danger': tomato,

27Variables

 'warning': gold,
 'confirm': lightgreen,
);

From there, you either iterate on the map—in which case you will need a loop, see

Chapter 5—or you can pick a specific value from the map based on its key using

the map-get(..) function:

.message-info { color: map-get($message-themes, 'info'); }

.message-danger { color: map-get($message-themes, 'danger'); }

.message-warning { color: map-get($message-themes, 'warning'); }

.message-confirm { color: map-get($message-themes, 'confirm'); }

You have to know that in Sass—unlike JavaScript, for instance—keys of a map can

be of any type and not just strings. Yes, lists and maps as well, although they have

to remain unique:

$color-names: (
 #ff0000: 'blood',
 #00ff00: 'grass',
 #0000ff: 'ocean',
);

In the previous example, keys are colors. Be aware that using anything other than

strings as map keys might confuse developers coming from a background where

hash / associative arrays / map keys have to be strings. In my opinion, this is unne-

cessary and can be avoided by using clean (or less) logic and sticking to string keys.

For more information, be sure to have a look at Using Sass Maps5 by yours truly.

No Trials with the Trailing Comma

It is possible to add a trailing comma to the last pair of a map. I would indeed re-

commend doing so as it makes adding new values easier, and git diffs simpler.

5 http://www.sitepoint.com/using-sass-maps/

Jump Start Sass28

http://www.sitepoint.com/using-sass-maps/

Empty Maps

An empty map is described exactly like an empty list (()). Therefore, when testing

the type of the () value with the type-of(..) function, it returns list (as maps

were added to the language later on).

Scope
Now that we’ve seen what kind of values variables can store, allow me to provide

some extra hints about the way variables work, if only for your own sanity.

Variables can be defined absolutely anywhere in a stylesheet: at root level, within

CSS rule sets, within mixins, within functions, within @media and @supports

blocks—everywhere. Depending on where a variable is assigned, however, its access

might be restricted to a specific code block; this is what we usually call a scope.

Sass handles scopes the way you would expect it to: a variable defined in a mixin,

function, or rule set is local by default. This means that a global variable and a local

variable can share the same name seamlessly: the local will be restricted to its own

scope, while the global will be accessible elsewhere in the document.

This is referred to as variable shadowing in Sass. When declaring in an inner scope

(such as a function or rule set) a variable whose name already exists in the global

namespace, the local variable is said to be shadowing the global one:

$padding: 10px;

.module {
 $padding: 20px;
 padding: $padding; // 20px
}

.foo {
 padding: $padding; // 10px
}

In this case, there is a global variable called $padding with a value of 10px. Within

the .module {} rule set (scope), a local variable also named $padding is created

with a value of 20px. Within the scope, the value of $padding is now 20px, but

29Variables

anywhere else in the document, it still refers to the global value, 10px. Thus, this

code snippet will be compiled to:

.module {
 padding: 20px;
}

.foo {
 padding: 10px;
}

The !global Flag
To definitely override a global variable from a local scope, we use the !global flag.

By definitely, I mean that the variable is not shadowed but effectively replaced by

a new value.

Let’s have a look at our previous example using the global flag to update the $padding

value, instead of simply shadowing it:

$padding: 10px;

.module {
 $padding: 20px !global;
 padding: $padding;
}

.foo {
 padding: $padding;
}

Can you guess what the result will be? Have a look at this if you’re stuck:

.module {
 padding: 20px;
}

Jump Start Sass30

.foo {
 padding: 20px;
}

In line four, the !global flag actually reassigns the $padding variable to the new

value, making it 20px for the .foo {} rule set as well.

When Not to Make !global a Global Move

While it might be tempting to use the !global flag when defining a variable at

the root of a document, it is probably wiser to omit it. Indeed, this is an abuse of

!global that might make the code confusing. On top of that, Sass is likely to

prevent the usage of !global on a root-level variable assignment in a future ver-

sion.

The !default Flag
Last but not least when it comes to variable assignment is that there’s a mechanism

that makes it possible to assign a variable if it doesn’t have a value yet—the !default

flag:

$padding: 10px;
$padding: 20px !default;

.foo {
 padding: $padding; // 10px
}

Because of this, it’s recommended that you use !default when declaring default

configuration variables. Not only does it make it clear that the variable is a default

value, it also makes reassigning easier.

The !default flag is incredibly useful when building third-party libraries and

modules. It enables users to configure the library, but still provide defaults if they

don’t:

// Your configuration of the third party library
$third-party-output-prefix: false;

// The third party library has some default values such as

31Variables

// $third-party-output-prefix: true !default;
// In this case, the value is `false` thanks to `!default`.
@import 'third-party-library';

The !default flag also comes in handy when dealing with dynamically created

Sass files from user input, such as theme files:

// User theme stylesheet containing:
// $brand-color: hotpink;
@import 'user-theme';

// Default configuration
$brand-color: grey !default;

.foo {
 color: $brand-color; // hotpink
}

Bear in mind that variables with null value are treated as unassigned by default,

which means that a variable assignment with !default will override a variable as-

signment to null:

$padding: null;
$padding: 20px !default;

.foo {
 padding: $padding; // 20px
}

Interpolation
We are almost done with variables. The last point to grasp is the concept of inter-

polation. Often referred to as variable interpolation or variable substitution, this

concept is not unique to Sass. Actually, you can find it in most languages.

To put it simply, interpolating is the process of evaluating an expression or a string

containing one or more variables, yielding a result in which the variables are replaced

with their corresponding values in memory.

Jump Start Sass32

Let’s look at an example. In the section dedicated to understanding strings, we have

learned that we can concatenate strings with others. This is useful when building

a string from moving parts such as variables:

$name: 'Hugo';

.foo {
 content: 'Hello ' + $name + '!'; // Hello Hugo!
}

Though, you’ll concede that this is highly verbose. Thanks to variable interpolation,

we can actually have a string containing variable(s) without having to concatenate

several string chunks:

$name: 'Hugo';

.foo {
 content: 'Hello #{$name}!';
}

By wrapping a variable identifier with #{}, it tells Sass to treat the content of the

variable as plain CSS (roughly speaking). One of the most common use cases for

interpolating a variable is within the calc(..) CSS function. Let’s try it:

.main {
 $sidebar-width: 300px;
 width: calc(100% - $sidebar-width); // calc(100% - $sidebar-width)
}

Unfortunately, this will fail to work as expected since the resulting CSS will literally

be calc(100% - $sidebar-width). Because of the calc(..) function, Sass does

not replace the $sidebar-width variable with its value. To prevent this from hap-

pening, let’s interpolate it:

.main {
 $sidebar-width: 300px;
 width: calc(100% - #{$sidebar-width}); // calc(100% - 300px)
}

It works perfectly now!

33Variables

Media queries are another case where you’ll have to deal with variable interpolation.

To be concise, Sass will only evaluate Sass variables in a media query if they’re

within a pair of parentheses. So when dynamically creating media blocks, you need

to wrap the whole thing in parentheses. This is perfectly fine for complex media

queries such as (min-width: 1337px), but it might cause an issue for media

keywords such as screen:

$media: screen;
$feature: min-width;
$value: 1337px;

@media ($media) and ($feature: $value) {
 // …
}

The previous snippet is compiled as:

@media (screen) and (min-width: 1337px) {}

Yet this is invalid CSS because of (screen). The media keyword should not be

wrapped in parentheses. In order to make Sass evaluate the variable, we have no

choice but to interpolate it:

$media: screen;
$feature: min-width;
$value: 1337px;

@media #{$media} and ($feature: $value) {
 // …
}

The last example is for dynamically generated selectors. To use a variable in a se-

lector, we have to interpolate it:

Jump Start Sass34

$section: 'home';

.section-#{$section} {
 background: transparent;
}

For more information about Sass interpolation, be sure to have a look at my tutorial,

Everything You Need To Know About Sass Interpolation6.

Creating Meaningful Variables
Let’s face it: being able to use variables to write CSS is awesome. It’s convenient,

useful and makes our lives easier. Mind, we have to pay attention to keep this feature

meaningful, because it turns out to be quite easy to create too many or poorly thought

variables.

To finish off this chapter, I will provide some guidelines to creating meaningful

variables, serving your project rather than introducing unnecessary complexity.

Let’s talk a bit about naming your variables. As CSS is a language that is essentially

hyphenated (rare exceptions mistakes aside), I recommend that you stick to this

convention: use hyphens to separate words within your variables names rather than

underscores or camel case:

// Yep
$brand-color: #BADA55;

// Nope
$brand_color: #BADA55;

// Definitely nope
$brandColor: #BADA55;

// Stop it
$BrandColor: #BADA55;

6 http://webdesign.tutsplus.com/tutorials/all-you-ever-need-to-know-about-sass-interpolation--cms-

21375

35Variables

http://webdesign.tutsplus.com/tutorials/all-you-ever-need-to-know-about-sass-interpolation--cms-21375

// Why are you doing this?
$BrAnDcOlOr: #BADA55;

You may have heard of constants. A constant is an immutable value that, unlike a

variable, cannot be reassigned. Sass does not support actual constants. If you need

one—odd, but perhaps understandable if building a framework—I’d probably recom-

mend using uppercase letters separated with underscores (also known as snakerized):

// This variable contains the list of valid CSS positions.
// It actually is a constant, hence the different naming syntax.
$CSS_POSITIONS: (top, right, bottom, left, center);

The variable name should be used to describe the value without explicitly referring

to its contents. The rule of thumb is if you cannot change the value (while keeping

the same data type) without the variable name becoming meaningless, it is probably

a poor name. For example, $spacing-10: 10px is a bad idea because if at some

point the spacing changes from 10px, the variable name becomes inconsistent:

// Yep
$global-spacing: 10px;

// Nope
$spacing-10: 10px;

Keep in mind that you are making variables: their value should be able to be changed.

Now there is the case of colors. Unless described with color keywords such as red

(unlikely, but just as an example), colors are very hard to comprehend. HSL (Hue

Saturation Lightness) notation makes it slightly easier than RGB and hexadecimal,

but still, hsl(42, 78%, 54%) is not quite obvious.

As a result, it can be useful to store colors in representative variable names. For

instance, hsl(42, 78%, 54%) could be stored in a $gold variable since it’s a golden

yellow. The problem now, though, is that we can only slightly tweak the color

without making its name incoherent.

Jump Start Sass36

Name that Hue!

Name That Color7 is a crazy little tool that finds a name for any given color.

One solution is to store colors in variables with representative names, and then use

these in other generic variables where the original meaning is retained:

$gold: hsl(42, 78%, 54%);
$dark-blue: rgb(13, 33, 70);

$primary-theme-color: $gold;
$secondary-theme-color: $dark-blue;

Here we store our hard-to-read colors in simple descriptive variables; then use these

variables in more generic ones. Now both our code and colors are readable and easy

to grasp, and we can still change—and not just tweak—the theme colors without

the risk of having incoherent variable names.

It’s also best to avoid naming your variables after the way they’re used such as

$border-color, or $blockquote-margin. While it might sound handy at the time,

sooner or later you will use those variables for completely different purposes, and

you’ll be left with a name that makes little sense, or is misleading even. This is why

it’s advisable not to be too specific with your variable names.

CSS Custom Properties or Sass Variables
Fairly recently a specification was approved for CSS custom properties, often referred

to as CSS variables. Indeed, custom properties share the same purpose as variables,

limiting code repetition by associating values to specific identifiers (variable names).

This new feature has already hit some browsers, though we might have to wait a

while before it’s broad enough to use on a daily basis without risk.

Browser support aside, we can ask ourselves whether CSS variables are here to re-

place Sass ones. The answer is most likely to be yes, although both features share

subtle differences that must be understood to have a good overview of the current

(and future) situation.

7 http://chir.ag/projects/name-that-color/#BADA55

37Variables

http://chir.ag/projects/name-that-color/#BADA55

For starters, there are good reasons why CSS variables are not called CSS Variables

but CSS custom properties. It’s because they are not actual variables, strictly

speaking. On the other hand, custom properties are very well named: they are custom

CSS properties. Understand that they are not any different from other CSS properties

such as width or color; only that they are made by authors and not part of any

specification—hence the word custom.

Before jumping onto what that actually means in regard to Sass variables, let’s look

at a short example to see how CSS custom properties work. Custom properties must

start with two hyphens (--) to be recognized as such, and the var(..) function has

to be used to retrieve their value:

/**
 * Declaring a CSS custom property named `main-color` at root level
 * so that it is accessible anywhere in the document
 */
:root {
 --main-color: #BADA55;
}

/**
 * Using the `main-color` variable through the `var(..)` function
 */
body {
 background-color: var(--main-color);
}

Now, if you’ve properly followed everything we said about variables scoping in

Sass, you might ask how the body {} rule set is able to use the --main-color vari-

able, as it’s been defined in a totally different rule set (:root {}). First, know that

:root has no special meaning here; we could have used html as well. Second, do

you remember how the C in CSS means Cascading? This is for a good reason. The

variable is accessible to body because it follows the cascade, and body happens to

be a child of :root (the html element). And this makes a huge difference.

Like most other CSS properties, CSS custom ones do follow the cascade and are

accessible to the children of the element to which they’ve been declared. It is recom-

mended to declare global variables on :root because it’s the root of the document,

making those custom properties accessible anywhere in it.

Jump Start Sass38

Hence, Sass variables are scoped and rely on a global scope to be accessible any-

where, while CSS variables respect the cascade principle and should be defined on

the uppermost element to flow down the document. This is the first major difference.

Returning to the previous example, this is actual CSS code parsed and run in the

browser, and not compiled in any way. While this might sound irrelevant, it makes

a big difference between CSS custom properties and Sass variables. CSS custom

properties still exist once in the browser; they still can be read and updated—with

JavaScript, for instance. Changing a whole color theme might take nothing more

than changing the value of a variable on the root element, thanks to CSS custom

properties:

// Styles from the :root element
var styles = window.getComputedStyle(document.documentElement);
// Get current color set in `--main-color` variable
var color = styles.getPropertyValue('--main-color');
// Replace the color with a new value; now all elements using
// `--main-color` will be updated with the new color value. Handy!
document.documentElement.styles.setProperty('--main-color',
➥ 'hotpink');

Variables versus Preprocessors

For more information about the differences between Sass variables and CSS custom

properties, be sure to have a look at What CSS Variables Can Do That Preprocessors

Can’t8 by Daniel Imms.

Therefore, Sass variables and CSS custom properties both serve the same purpose,

but are fundamentally different in their approach. Because CSS custom properties

still exist when in the browser, they allow some features that Sass variables will

never be able to reach.

Wrapping Things Up
In this chapter we’ve discussed variables, one of the key Sass features that you’ll

be using very frequently. As well as running through the available variable types

(string, number, color, bool, null, list, and map), we also looked at variable interpol-

ation, variable scope, and some best practices around variable naming. We finished

8 http://www.sitepoint.com/css-variables-can-preprocessors-cant/

39Variables

http://www.sitepoint.com/css-variables-can-preprocessors-cant/
http://www.sitepoint.com/css-variables-can-preprocessors-cant/

up with a comparison of CSS custom properties and Sass variables, and when to

use each of them. In the next chapter, we’re going to discuss functions and mixins.

Jump Start Sass40

Chapter4
Functions and Mixins
If you are new to Sass, you’ve probably heard that it’s possible to create your own

functions, as well as what’s known as mixins. Let’s start with what a function is

before moving on to mixins.

Functions
In computer science, a function is a chunk of code that returns a result, possibly

accepting arguments. It’s an ideal way to extract repeated pieces of code into a single

reusable pattern. As a consequence, functions exist in almost all programming lan-

guages, even CSS! Think about it—when writing url(..) or rgba(..), we use CSS

functions already. What’s interesting is that Sass not only provides a lot of built-in

functions, it also provides authors with a way to define custom functions:

// Using the `darken(..)` built-in Sass function
.foo {
 color: darken(#BADA55, 4.2%); // #B3D643
}

In Sass, a function definition starts with @function, then the name of the function,

then a pair of parentheses—possibly but not necessarily containing parameters

passed to the function. The core of the function is then written between braces ({

.. }).

Let’s look at a simple example. Here’s a function that accepts no argument and re-

turns the base URL for the assets folder as a string:

// The `get-base-url()` function has no parameter
@function get-base-url() {
 @return '/assets/';
}

// Usage
.module {
 background-image: url(get-base-url() + 'unicorn.png');
}

As you can see, a Sass function returns a result through the @return directive. Note

that it must contain at least one return statement, or else an error is thrown. If we’d

forgotten the @return statement from our previous function, Sass would have

thrown:

Function get-base-url finished without @return

A function can be defined almost anywhere in a document and not just at root level.

When defined within a rule set, a function is scoped to that rule set, the same way

variables are local when defined within a specific block. The concept of global

shadowing applies to functions as well. A local function sharing its name with a

global one will shadow the latter inside the scope where it’s defined:

@function get-base-url(..) {
 @return '/assets/';
}

.module {
 // Shadow `get-base-url()` function within `.module {}`
 @function get-base-url() {
 @return 'http://cdn.example.com/assets/';
 }

 background-image: url(get-base-url() + 'unicorn.png');
}

Jump Start Sass42

.foo {
 background-image: url(get-base-url() + 'kittens.png');
}

The compiled CSS of this example looks like this:

.module {
 background-image: url('http://cdn.example.com/assets/unicorn.png'
➥);
}

.foo {
 background-image: url('/assets/kittens.png');
}

Keep in mind that functions cannot be defined within mixins or other functions.

Parameters

Parameters and Arguments

A parameter is the variable that’s part of the function’s signature (function declar-

ation). An argument is an expression used when calling the function.

As there is little to no interest in using a function in place of a variable when no

parameter is involved, let’s move on to functions with parameters. These are defined

in the function signature as variables, separated with commas. Let’s have a look at

a (not-so-useful, yet simple) example, a multiplication function:

@function multiply($a, $b) {
 @return ($a * $b);
}

Parameters can also have a default value—in which case they are called optional

parameters. To define an optional parameter, do as if you were declaring a variable

in the function signature (without the closing semicolon):

43Functions and Mixins

// `$a` is mandatory and `$b` is optional (default value being 2)
@function multiply($a, $b: 2) {
 @return ($a * $b);
}

Note that optional parameters must come after any non-optional parameter. If you

try the following, it will throw an error:

// Throws an error:
// > `Required argument $b must come before any optional arguments.`
@function multiply($a: 2, $b) {
 @return ($a * $b);
}

Before going any further, let’s try our new function. When calling a Sass function,

you can either pass arguments in the order they are defined, or you can use what

we call named arguments or keyword arguments,1 in which case you are not entitled

to follow the defined order. To use named arguments, do as if you were defining

variables in the function call (again, without the closing semicolon):

$element-width: 400px;

.foo {
 // Calling `multiply(..)` with arguments in the defined order
 width: multiply($element-width, 3); // 1200px
 // Calling `multiply(..)` relying on default value
 // for second parameter
 padding: multiply(10px); // 20px
}

.bar {
 // Calling `multiply(..)` using keyword arguments
 width: multiply($b: 3, $a: $element-width); // 1200px
}

There are three benefits of using named arguments over definition order:

1. They can be declared in any order.

2. Arguments are obvious to understand when named.

1 These are sometimes referred to as kwargs in certain languages, but I personally think it makes them

sound like a duck.

Jump Start Sass44

3. In functions with many optional parameters, only relevant arguments can be

defined, leaving the others to their default value.

Here’s an example:

@function set-color-theme(
 $primary,
 $secondary: darken($primary, 10%),
 $tertiary: lighten($primary, 10%)
) {
 // Do something
}

$color-theme: set-color-theme(hotpink, $tertiary: pink);

In this example:

■ $primary is passed without being named, simply as a first argument;
■ $secondary is left to its default value;
■ $tertiary is named and set to pink.

Usage
More often than not, functions are used as CSS values; however, they can be useful

in other circumstances. Actually, functions can be used anywhere variables can so

within selectors, media queries, properties, values, and inside variables, functions,

mixins, and so on. Although, like variables, they might need to be interpolated (see

Chapter 3) when used in unconventional places:

// Just for the sake of demonstration, here's a function declaration
@function my-function() {
 @return 'foo';
}

// Calling the function in itself does not work and throws an error:
// > `Invalid CSS after " my-function()": expected "{", was ";"`
.foo {
 my-function();
}

// Calling the function in place of a property works as long as it
// is properly interpolated. See chapter 3.

45Functions and Mixins

.foo {
 #{my-function()}: 'bar';
}

// Calling the function in place of a selector works as long as it
// is properly interpolated. See chapter 3.
.foo, #{my-function()} {
 content: 'bar';
}

// Calling the function inside a variable value works perfectly.
$foo: my-function();

// Calling the function in place of a media query value works
// perfectly.
@media (min-width: my-function()) { .. }

// Calling the function in place of a feature query value works
// perfectly.
@supports (content: my-function()) { .. }

Arguments List
Finally, functions can have an unknown number of parameters if ever needed. To

do so, simply add an ellipsis (...) to the last parameter of the signature:

// `map-deep-get` intends to help getting values
// deeply nested in maps
// The first parameter is the map to browse
// Any parameter after that are keys nested within each others
@function map-deep-get($map, $keys...) {
 @each $key in $keys {
 $map: map-get($map, $key);
 }

 @return $map;
}

This type of argument is often referred to as arg-list (short for arguments list) and

is sometimes referred to as variable arguments. The name is obviously inspired by

the actual type of this variable: arglist (as you can see with type-of(..)). If you

read this book in chapter order and just finished the chapter about variables, you

Jump Start Sass46

might recall that I failed to mention the arglist data type. The truth is I wanted to

go easy on you to begin with!

arglist is in fact a valid Sass data type that only comes up when dealing with ar-

guments lists. As far as I can tell, an arglist behaves the same way a list does, so

I’m not entirely sure why a distinction between the two was needed. Basically, you

can loop on an arguments list the way you would a list, and access its items with

the nth(..) function the same way:

@function dummy($mandatory, $extra-arguments...) {
 // Do something
}

$foo: dummy('Hello', 'how', 'are', 'you', '?');
// -> $mandatory: 'Hello'
// -> $extra-arguments: 'how', 'are', 'you', '?'

So why bother adding the ellipsis to make this parameter an arguments list when

we could use a regular list? Although this is subjective, I feel it clearly indicates

there can be as many arguments as needed—possibly a lot.

There is a specific scenario where I do like using arguments lists: when creating

aliases. Let’s say you have a function with a long name, such as ns-get-media-

context:

// `ns` stands for namespace, which is usually the short name for
// the app/site/lib.
// Namespacing variables, functions, mixins and placeholders is
// usually a good idea in order to prevent naming conflicts.
@function ns-get-media-context($media, $options) {
 // Do something
}

Now, depending on how your code is built, it might be tedious to type the name of

this function every time. Consequently, you would prefer a shorter name. So we’ll

create a get-context alias for ns-get-media-context:

47Functions and Mixins

// Alias for `ns-get-media-context`.
@function get-context($arguments...) {
 @return ns-get-media-context($arguments...);
}

Instead of repeating the signature of ns-get-media-context, we used a dummy

$arguments parameter with an ellipsis indicating that we accept an unknown amount

of arguments. If the signature of ns-get-media-context ever changes, there’s no

need to update the alias!

Arguments lists are much more powerful than simply creating aliases, as they can

be used to expand a list or a map of values into a series of arguments passed to a

function or mixin. Consider the following $media-context-arguments variable

containing the media and the options passed to our ns-get-media-context function:

// The first value is the media, the second is the map of options
$media-context-arguments: ('screen', ());

If you had to call the function with these arguments, you’d probably do the following:

$media-context: get-context(
 nth($media-context-arguments, 1),
 nth($media-context-arguments, 2)
);

Using the nth(..) function, we can grab specific values from a list. This example

is fine as there are only two arguments, but what if there were four or five? Surely

we can do better than this tedious way. Indeed we can, using arguments lists! When

calling the function, we can pass our $media-context-arguments list as a series of

arguments using ...:

$media-context: get-context($media-context-arguments...);

In this case, the first argument from the list will be used for the first parameter of

the function, the second one for the second parameter, and so on. It’s much more

concise and definitely more elegant.

This works exactly the same with a map. Let’s rewrite our $media-context-argu-

ments variable using a map:

Jump Start Sass48

$media-context-arguments: (
 'media': 'screen',
 'options': ()
);

By naming our map keys exactly like the parameters from the get-context function,

we make it possible to pass the map as a series of arguments, where it will just

work™:

$media-context: get-context($media-context-arguments...);

Functions for Asset Management: a Case Study
At this point, you know almost everything there is to know about functions—al-

though I must say it’s usually quite hard to find a legitimate use case for Sass

functions unless you build a framework or complex architecture. As you’ll soon

discover, mixins are typically much more useful.

One task I do like using functions for, though, is asset management. Let’s say we

have an assets/ folder containing a subfolder per asset type, such as images/,

fonts/, and so on. In order to prevent typing url('assets/images/...') every

time we want to refer to an image asset, we can use functions to enhance the CSS

url(..) function.

I added SassDoc (see Chapter 10) comments to this example to make it even clearer

(and directly usable in your own projects):

/// CDN URL where all assets are served from
/// @type String
$base-url: 'http://cdn.example.com/assets/';

/// Native `url(..)` function wrapper
/// @param {String} $base - base URL for the asset
/// @param {String} $type - asset type folder (e.g. `fonts/`)
/// @param {String} $path - asset path
/// @return {Url}
@function asset($base, $type, $path) {
 @return url($base + $type + $path);
}

/// Returns URL to an image based on its path

49Functions and Mixins

/// @param {String} $path - image path
/// @param {String} $base [$base-url] - base URL
/// @return {Url}
@function image($path, $base: $base-url) {
 @return asset($base, 'images/', $path);
}

/// Returns URL to a font based on its path
/// @param {String} $path - font path
/// @param {String} $base [$base-url] - base URL
/// @return {Url}
@function font($path, $base: $base-url) {
 @return asset($base, 'fonts/', $path);
}

This very lightweight system is actually a wrapper for the url(..) CSS function.

Instead of manually typing the whole path in the url(..) function, we can use

image(..) and font(..) shortcut functions to make it both more elegant and

readable:

@font-face {
 font-family: 'My Awesome Font';
 font-weight: normal;
 font-style: normal;
 src: font('my-awesome-font.eot?#iefix') format('embedded-
➥opentype'),
 font('my-awesome-font.woff') format('woff'),
 font('my-awesome-font.woff2') format('woff2'),
 font('my-awesome-font.ttf') format('truetype');
}

.foo {
 background-image: image('kittens.png');
}

This code will be compiled to:

@font-face {
 font-family: 'My Awesome Font';
 font-weight: normal;
 font-style: normal;
 src: url('http://cdn.example.com/assets/fonts/my-awesome-font.eot?
➥#iefix') format('embedded-opentype'), url('http://cdn.example.com/

Jump Start Sass50

➥assets/fonts/my-awesome-font.woff') format('woff'), url('http://
➥cdn.example.com/assets/fonts/my-awesome-font.woff2') format
➥('woff2'), url('http://cdn.example.com/assets/fonts/my-awesome-
➥font.ttf') format('truetype');
}

.foo {
 background-image: url('http://cdn.example.com/assets/images/
➥kittens.png');
}

Native Functions
Sass provides a lot of built-in functions to make writing styles an easier task. In the

previous chapter, we saw how we could use some functions to manipulate colors

such as lighten(..) and darken(..), or lists and maps with length(..). This is

only the tip of the iceberg.

There are a lot of math, strings, lists, maps, and colors functions that are usable out

of the box. Listing them all here would take too much time (and ink!), so if you’re

interested to know more about the native tools Sass provides, I recommend you

have a look at the official documentation2.

Mixins
Now that you know how functions work, understanding mixins will be a

breeze—trust me. Before jumping in, let’s see what a mixin actually is.

To put it very simply, a mixin is a function that can output code rather than return

a result. While a function is a good way to abstract a repeated operation based on

parameters, a mixin is a terrific way to abstract repeated style patterns—all with

the ability to adapt the output based on parameters.

A mixin can be defined anywhere but inside a function or another mixin. To define

it, there’s the @mixin notation. As for the function declaration, the name of the

mixin comes right after it, and then the parameters (if any). Unlike functions, when

mixins have no parameters, the parentheses are optional.

2 http://sass-lang.com/documentation/Sass/Script/Functions.html

51Functions and Mixins

http://sass-lang.com/documentation/Sass/Script/Functions.html

Let’s create our first mixin; a utility to help horizontally center a block element:

@mixin center {
 width: 100%;
 max-width: 1180px;
 margin-left: auto;
 margin-right: auto;
}

To use a mixin, you have to call it with the @include directive (+ symbol in Sass

indented syntax) followed by the name of the mixin. If needed, the parameters follow

(see the next section):

.container {
 @include center;
}

When Sass encounters a mixin inclusion, it replaces it with the content of the

mixin, replacing the variables with passed-in arguments. Coming back to our previ-

ous example, it will yield a result as follows:

.container {
 width: 100%;
 max-width: 1180px;
 margin-left: auto;
 margin-right: auto;
}

Parameters
Most of the time, mixins will accept parameters since this is where they really kick

in. These parameters can have a default value, as we saw with functions. Let’s add

a little embellishment to this: the default value of a parameter can be the value of

another parameter defined before it (this is also true for functions). Like in this ex-

ample, the default value of the $height parameter is the value of the $width argu-

ment:

/// Sizing mixin from width and height
/// If height is omitted, same as width
/// @param {Length} $width - element width

Jump Start Sass52

/// @param {Length} $height [$width] - element height
@mixin size($width, $height: $width) {
 width: $width;
 height: $height;
}

// Usage
.foo {
 @include size(100%, 42px);
}

.bar {
 @include size(100px);
}

When compiling this code, Sass will render:

.foo {
 width: 100%;
 height: 42px;
}

.bar {
 width: 100px;
 height: 100px;
}

Inner Content
As mixins behave exactly the same as functions regarding arguments, let’s move on

to a feature very specific to mixins: the @content directive.

The @content directive—which has no other form than simply @content—allows

authors to pass block of styles to their mixins. When a mixin has one or more

@content directives defined in its core, it can be given custom content between

braces ({ and }), like so:

@mixin my-mixin {
 @content;
}

.foo {

53Functions and Mixins

 @include my-mixin {
 // We can add stuff here
 }
}

As is, this mixin has absolutely no purpose; however, being able to pass dynamic

content to a mixin turns out to be very handy when you want to define abstractions

relating to the construction of selectors and directives. For instance:

@mixin on-event {
 &:hover,
 &:active,
 &:focus {
 @content;
 }
}

.foo {
 color: blue;

 @include on-event {
 color: red;
 }
}

In the previous example, we want .foo to be blue, but red when hovered, active or

focused. For more information about the selector reference variable (&), please refer

to Chapter 6. Anyway, here is the CSS output:

.foo {
 color: blue;
}

.foo:hover, .foo:active, .foo:focus {
 color: red;
}

As you can see, the @content directive is especially useful when building dynamic

selectors or context blocks, such as @media or @supports.

Jump Start Sass54

@content Immutability

You store, alter, or iterate the content of a @content directive. What is being

passed to a mixin through @content is immutable and unknown.

In addition, variables local to a mixin such as those defined in the mixin signature

or the mixin scope cannot be used in passed style blocks. They only exist within

the mixin scope and not anywhere else. If you try to use one of those variables in

a passed style block, it will either default to the global variable if any, or will simply

throw an error:

@mixin my-mixin($argument) {
 @content;
}

// Does not work and throws an error
// > `Undefined variable: "$argument".`
.foo {
 @include my-mixin('foo') {
 content: $argument;
 }
}

Wrapping Things Up
Mixins and functions are helpful tools to abstract parts of your code in order to

avoid repetitions. Both can have parameters—mandatory or optional—if they have

a default value. Just remember the difference between the two: a function returns

a value, while a mixin outputs CSS code.

Before moving on to the next chapter, allow me to offer you a small example. In the

last chapter, we worked on a alert module to display warnings, informative or

confirm messages. Unfortunately, we ended up having quite a repetitive code. Perfect

case for a mixin then!

@mixin message($color, $background-color: lighten($color, 20%)) {
 color: $color;
 background-color: $background-color;
}

55Functions and Mixins

.message {
 padding: 10px;
 border: 1px solid currentcolor;
}

.message-info {
 @include message(blue);
}

.message-danger {
 @include message(red);
}

.message-confirm {
 @include message(green);
}

Jump Start Sass56

Chapter5
Loops and Conditions
Our journey with Sass is going well so far, don’t you think? We now have a solid

understanding of variables, and know about functions and mixins.

Mixins and functions usually involve logic to perform well. For instance: “do this

in this condition, or do that,” or “iterate over this list to perform some action.”

That’s why this chapter will be dedicated to Sass logic handlers: loops and condi-

tions.

Conditional statements represent the simplest control structures, and more often

that not, you’ll need them to use loops effectively. Therefore we’ll start with that

right away, if you don’t mind (see what I did there?).

Conditions
Conditions are a pillar of any piece of software ever written. Even outside of the

computer world, we perform actions based on conditions on a daily basis. “If I have

time, I’ll stop by the cleaner after work,” or “I’ll have this fancy barbecue regardless

of whether it will rain or not.” Therefore, it’s only logical (pun intended) to have

these path switchers in our programs.

At this point, you might be wondering why? Why on earth would we need conditions

in our stylesheets? This is a valid concern as Sass conditions are perhaps not

something you’ll use on a daily basis. Still, when building functions or mixins, it’s

important to be able to check the given arguments; you may act differently depending

on what they are.

In most programming languages, the basic conditional structure exists under the

form of if condition then … else …. The syntax in itself depends on the language,

but it usually works the same. Sass is no exception, using the @if and @else direct-

ives.

A conditional structure in Sass always starts with the @if keyword, directly followed

by an expression. This expression can be almost anything: a variable, a function

call, a raw value, an equation. The code to be executed if the expression matches

lives between an opening and a closing brace ({..}):

@if $condition {
 // Then do something
}

If necessary, we can add an @else token and put extra code between braces to execute

in case the condition is not matched:

@if $condition {
 // Then do something
} @else {
 // Do something else
}

Presentation is Almost Everything

Keep in mind that:

■ the condition can be safely wrapped in parentheses ((..)) to make it easier

to spot and be closer to other languages syntax (such as JavaScript or PHP)

■ although not vital, it is recommended that the @else directive be placed on

the same line as the closing brace to keep a certain visual hierarchy.

Jump Start Sass58

Before exploring a few examples, we should understand how Sass evaluates the

condition expression to determine which code block to execute. Roughly speaking,

it behaves like any other language, converting (or coercing) the value to a boolean;

if the result is true, the condition is truthy, otherwise it’s said to be falsy.

As we have seen in Chapter 3, only two values are falsy in Sass: false and null.

Thus, the conversion to Boolean is extremely simplistic. If the expression is evaluated

to either false or null, the @else block is executed (if any). Otherwise the condition

is truthy and the @if block is executed (even for values such as 0, "" or ()).

Now that everything is crystal clear, consider the following example. We’ll output

a specific declaration for old versions of Internet Explorer depending on the status

of a boolean variable:

// Define whether old versions of IE should be supported
$support-ie: true !default;

// If `$support-ie` is truthy, then output the code block
@if $support-ie {
 .clearfix {
 *zoom: 1;
 }
}

.clearfix::after {
 content: '';
 display: table;
 clear: both;
}

Multiple Conditions
Life is not all black or all white. Sometimes, there are shades of gray. Sometimes,

you need to do it differently, or pull out all stops, and if everything fails eventually

you do whatever needs to be done. For instance, “if the weather is good, we’ll have

a barbecue; otherwise we can go to Miriam’s and still cook; or else, I’ll stay home.”

Sass does provide a way to handle these scenarios. Put simply, you can place extra

conditions between the first @if and the optional @else statement. These are written

using a combination of both keywords, like so: @else if <condition>.

59Loops and Conditions

Tip: A Lesser-known Option

You can also write it as @elseif with no space between the two words; however,

as very few people know about this, we’d recommend the two words for consist-

ency.

Be aware that as soon as a condition is evaluated to true, its code is executed and

no other condition in the chain can be matched. Remember that this is basically a

switch: in total, either zero or one condition can be matched, not more.

Let’s illustrate this with a dummy example, printing a sentence depending on the

value of a number:

$number: 42;

.foo {
 @if ($number > 1337) {
 content: 'Value is greater than 1337px.';
 } @else if ($number >= 0) {
 content: 'Value is between 0 and 1337.'
 } @else {
 content: 'Value is lower than 0.';
 }
}

In this code snippet, our conditional structure allows three outcomes:

1. The value is greater than 1337. This is an explicit statement articulated in the

condition expression as $number > 1337.

2. The value is between 0 and 1337. This is a partially explicit statement. The con-

dition expression asks for the number to be greater than or equal to 0 with $number

>= 0, but it says nothing about being lower than 1338. Although we know that

if we managed to be lower, it’s because the first condition was evaluated to be

falsy. Therefore the number is not greater than 1337 at this point. We can then

assume that for this condition to match, the number has to be between 0 and

1337.

3. The value is lower than 0. This is an implicit statement as we only used the @else

directive to imply it. We know that to get there, all previous statements must

have failed, so the number is neither greater than 1337 nor between 0 and 1337.

Hence, it must be lower than 0.

Jump Start Sass60

We could have gone more granular if we needed to. There is no limit to the number

of chained conditional statements, although having too many of them conveys a

poorly constructed code and is likely to hurt readability and maintainability.

Conditional Operators
All right! Now that we know how to use conditions, we can dive a little further and

learn how to express advanced statements composed of several expressions. Think

about it: choices do not always rely on a single condition; sometimes it is several

conditions that, when all matched, will lead to an event such as “if the weather is

good enough and I can find some charcoal, I’ll have a barbecue.” Then there’s the

case of at least one condition being true, for example: “if I receive a negative answer,

or worse, no answer at all, I’ll be disappointed.”

You might be familiar with && (logical AND) and || (logical OR) operators from

various languages such as JavaScript or PHP. Sass aims to be a human-friendly

language, so it provides and and or keywords respectively, which have to be written

in lowercase.

The resolution of an expression involving one or many operators behaves like so:

each component of the expression is evaluated on its own, then the results of these

evaluations interact with the and and or keywords. For instance:

$apple: true;
$cherry: false;

// This statement is evaluated as such:
// @if true and false { .. }
// Because `false` isn't a truthy value, the statement doesn't match
@if $apple and $cherry { .. }

// This statement is evaluated as such:
// @if true or false { .. }
// Because `true` is a truthy value, the statement does match
@if $apple or $cherry { .. }

Beware when mixing and and or keywords in a single statement. Expressions are

evaluated from left to right, and in some cases you might encounter unexpected

results. For instance, compare these two identical statements where only the paren-

theses differ:

61Loops and Conditions

.foo {
 @if $apple and ($cherry or $orange) {
 color: "$apple must be truthy and either $cherry or $orange (or
➥both) must be truthy.";
 }

 @if ($apple and $cherry) or $orange {
 color: "Both $apple and $cherry, or $orange (or all of them)
➥must be truthy.";
 }
}

In the first case, $apple has to be truthy and either $cherry or $orange (or both)

must be truthy as well for the condition to match. In the second case, both $apple

and $cherry, or $orange (or the three values) must be truthy for the condition to

match. Now consider those values:

$apple: false;
$cherry: true;
$orange: true;

$apple is falsy so the first condition is discarded right away; however, since $orange

is truthy, the second condition matches. As you can see, parentheses are not always

optional and can have a decisive impact on the outcome of a conditional statement.

Ternary Functions
You might have already heard the expression ternary operator. In computer science,

a ternary operator takes three arguments, as the name suggest. The first one is

usually a condition that is evaluated, depending on whether its result is truthy or

falsy; the second or third argument is returned respectively.

Most languages use a syntax borrowed from C, using a question mark (?) after the

condition and a colon (:) between the two possible outcomes.

Let’s take a JavaScript example to illustrate. In this scenario, we define a background-

Color variable to be red if an error variable is truthy, or green if otherwise:

Jump Start Sass62

var backgroundColor = error ? 'red' : 'green';

We now come back to Sass, which is without a ternary operator; however, it does

have a ternary function. It’s basically the same except it’s an actual built-in function

rather than operator-like syntax. This function is appropriately named if(..).

The first argument of the if(..) function is the condition, the second one is the

result if the condition is truthy, and the third one is the returned value if the condi-

tion is falsy. This function is useful when wanting to shorten an @if/@else statement

to a single line:

$background-color: if($error, red, green);

Here, if the $error variable is truthy, $background-color will be red, otherwise it

will be green. We could have written this using a regular condition as well:

$background-color: green;

@if $error {
 $background-color: red;
}

Loops
Now that we’re comfortable with conditional statements, it’s time to address a notion

that’s slightly more complex. Loops, present in many if not most languages, are lo-

gical structures that aim to repeat a chunk of code a certain number of times. Loops

are typically used to iterate over collections in order to perform a repeated action

on all members of the collection. For instance, you could loop over a list of class

names to apply a specific color to them.

There are three kind of loops in Sass, just as in any other programming language:

the for-loop, the each-loop, and the while-loop. All three are intended to perform

an operation for a certain amount of occurrences. It’s possible to use any kind of

loop in any scenario, although they do have their differences that must be known

to pick the right tool for the right job.

63Loops and Conditions

The for-loop
The for-loop is a logical structure that iterates a given number of times. In Sass (as

in any other language), the for-loop expects a starting index and an ending index,

and runs as many times as needed from start to end. Inside the content the index

variable is provided, making it the ideal ally when wanting to iterate over a set

while knowing the current index of iteration.

A for-loop is witten as follows:

1. the @for directive

2. the name of the index variable (usually but not necessarily $i)

3. the keyword from

4. the start index (as a static number, a variable, or a function call)

5. either the keyword through (end index inclusive) or the keyword to (end index

exclusive)

6. the end index (as a static number, a variable, or a function call)

Let’s look at a few basic examples. First, iterating from 1 through 5 (inclusive), then

looping from 2 to 4 (exclusive):

// Using direct numbers and `through`
@for $i from 1 through 5 {
 // Code to execute 5 times, where `$i` equals:
 // 1
 // 2
 // 3
 // 4
 // 5
}

// Using variables and `to`
$start: 2;
$end: 4;

@for $index from $start to $end {
 // Code to execute 2 times, where `$index` equals:

Jump Start Sass64

 // 2
 // 3
}

For-loops are especially handy when used with :nth-child(..) and :nth-of-

type(..) (as well as the less popular :nth-last-child(..) and :nth-last-of-

type(..)) pseudo-classes as they rely on numeric indexes.

For instance, let’s imagine that you have a fade-in animation that you apply to all

items of a container with an increasing delay to make them appear one after the

other. Without a loop, you could end up writing:

.item:nth-child(1) { animation-delay: 0.0s; }

.item:nth-child(2) { animation-delay: 0.1s; }

.item:nth-child(3) { animation-delay: 0.2s; }

.item:nth-child(4) { animation-delay: 0.3s; }

.item:nth-child(5) { animation-delay: 0.4s; }

.item:nth-child(6) { animation-delay: 0.5s; }

.item:nth-child(7) { animation-delay: 0.6s; }

.item:nth-child(8) { animation-delay: 0.7s; }

.item:nth-child(9) { animation-delay: 0.8s; }

.item:nth-child(10) { animation-delay: 0.9s; }

A bit tedious, isn’t it? Especially if you have to update the gap between two arrivals,

or the number of items. This is typically where a for-loop can kick in and save the

day:

@for $i from 1 through 10 {
 .item:nth-child(#{$i}) {
 animation-delay: ($i - 1) * 0.1s;
 }
}

Let’s go through this piece of code one line at a time to fully understand what is

happening. In the first iteration, the value of $i is 1. We open a rule set with

.item:nth-child(1) as a selector, to which we apply the animation-delay property.

The value for this property is 0s (because, 1 - 1 * 0.1 = 0). Then the $i is in-

creased by 1 and we go through the loop again. This is repeated until $i reaches

10, in which case the loops plays one last time and then stops running.

65Loops and Conditions

Note how we need to escape the $i variable (#{$i}) in the pseudo-class to print it

correctly as part of the selector. Then, we subtract one to the $i variable (so that

there is no delay on the first item) and multiply this with 0.1s to have the correct

delay for each item.

Similarly, we could make use of the CSS hsl(..) color function and how it expects

a number as a hue. We could apply a slightly different border color (or background

color, or whatever) to all items of our list so as to generate a rainbow list:

@for $i from 1 through 10 {
 .item:nth-child(#{$i}) {
 border: 1px solid hsl($i * 15, 75%, 75%);
 }
}

As in our previous example, the first loop iteration’s value of $i is 1. We create the

same selector as earlier—.item:nth-child(1)—to which we apply the border

property with a value of 1px solid hsl(15, 75%, 75%). Then the loop starts over

with $i being incremented by one.

In this case, 15 is really just an arbitrary delta. The first item will have a hue of 15,

the second one 30, and so on. As we have ten items, the hue will spread from 15 to

150 (a little less than half the color wheel). Depending on the number of items and

the amplitude you want for the rainbow effect, you might increase or decrease this

value.

Our last example before moving on to the next loop will be to apply different font

sizes to the six levels of headings we have in HTML. We could loop through a list

of six sizes and apply them respectively to each level of heading:

$sizes: (2em, 1.75em, 1.5em, 1.25em, 1em, 0.75em);

@for $i from 1 through length($sizes) {
 h#{$i} {
 font-size: nth($sizes, $i);
 }
}

This code would compile to:

Jump Start Sass66

h1 { font-size: 2em; }
h2 { font-size: 1.75em; }
h3 { font-size: 1.5em; }
h4 { font-size: 1.25em; }
h5 { font-size: 1em; }
h6 { font-size: 0.75em; }

If we want to be a bit more secure, we could make sure that we limit it to six in order

not to generate any undesired selector.

To do so, we can use the min(..) function from Sass. In the following scenario, the

$sizes list has seven values. We want to loop through the values of the list, but

only up to six values. We therefore need to take the minimum number between six

and the length of the list as the end index of the loop:

$sizes: (2em, 1.75em, 1.5em, 1.25em, 1em, 0.75em, 0.5em); // 7 value
➥s!

@for $i from 1 through min(length($sizes), 6) {
 h#{$i} {
 font-size: nth($sizes, $i);
 }
}

The each-loop
The each-loop is a logical structure aiming at iterating over a collection, which is

either a list or a map in Sass. Therefore, an each-loop runs as many times as the

number of elements in a collection (items in a list, key/value pairs in a map). You

could imagine a scenario where you store aliases for font sizes in a map such as xs

for 0.75em, s for 1em, and so on. By iterating on the map, you could possibly generate

selectors to which you would apply a specific font-size value.

There are a few variations of the each-structure, so we will start with the simplest

and most popular one: looping through a list. Then we’ll slowly move towards iter-

ating over nested lists and maps.

A simple each-loop is written as follows:

1. the @each directive

2. the name of the item variable

67Loops and Conditions

3. the keyword in

4. the collection to iterate over

As an example, consider the following code aimed at going through the alphabet,

one letter after the other. We first define a list of 26 letters. Then we loop through

it with an each-loop, accessing the current letter in the loop with $letter:

$alphabet: (a b c d e f g h i j k l m n o p q r s t u v w x y z);

@each $letter in $alphabet {
 // Do something with `$letter`
}

A good use case would be applying a specific background image to a series of ele-

ments, such as a photo for each author in a list:

$authors: ('hugo', 'miriam');

@each $author in $authors {
 .section-#{$author} {
 background-image: url('/images/authors/#{$author}.jpg');
 }
}

Here again, we interpolate the variable to correctly print it as part of a selector. We

do the same inside the URL as it lives inside quotes (hence, it would be printed as

$author without a proper variable interpolation).

In such a scenario, we rely on the image file being named after the class used for

the section. This is a fine assumption and way of doing if we actually can name the

files the way we want (which is not always the case when using a CMS, for instance).

If we know the filenames but they don’t quite match the section names, we can

create sublists and rely on what is called the multi-assignment feature from the

@each directive to rewrite our example.

To put it simply, multi-assignment is a feature from Sass each-loops that allows

authors to define several variables that can then be accessed in the loop content. It

is especially useful when iterating on maps, or, as you’ll notice in the next code

snippet, nested lists:

Jump Start Sass68

$authors: (
 ('hugo', 'hugo_giraudel.jpg'),
 ('miriam', 'suzanne-miriam.png')
);

@each $author, $filename in $authors {
 .section-#{$author} {
 background-image: url('/images/authors/#{$filename}');
 }
}

In this example, we first define a two-dimensional list where the top level contains

authors and the sublists contain everything we need for each author. Then we use

multi-assignment in the loop definition to define a variable per column. The word

“column” is actually fictive here, and only means that the $author variable will

serve for the first value of each sublist, and the $filename variable will serve for

the second value of each sublist. This code would compile to:

.section-hugo {
 background-image: url("/images/authors/hugo_giraudel.jpg");
}

.section-miriam {
 background-image: url("/images/authors/suzanne-miriam.png");
}

We are not limited to two-item lists, of course! Let’s say we want to have a color

per author. Using multi-assignment, it ends up being very easy to do:

$authors: (
 ('hugo', 'hugo_giraudel.jpg', deeppink),
 ('miriam', 'suzanne-miriam.png', hotpink)
);

@each $author, $filename, $color in $authors {
 .section-#{$author} {
 background-image: url('/images/authors/#{$filename}');

69Loops and Conditions

 color: $color;
 }
}

To add a custom color to each author, we simply add a third item in each author’s

list, and a third variable in the loop definition. The code would compile like this:

.section-hugo {
 background-image: url("/images/authors/hugo_giraudel.jpg");
 color: deeppink;
}

.section-miriam {
 background-image: url("/images/authors/suzanne-miriam.png");
 color: hotpink;
}

The problem with this solution is that it quickly becomes unreadable and unmain-

tainable when there are more than three or four parameters. This usually indicates

that it’s time to switch to a map. Often, a map is a more robust solution than nested

lists as it allows you to name values (the purpose of map keys), making the code

easier to read and maintain.

In our current scenario, we actually need a list of maps. This will comprise a list

of authors where each author is a map with three key/value pairs: a section name,

a filename, and a color. Then, we’ll use the map-get(..) function to access indi-

vidual author properties inside the loop:

$authors: (
 (
 'name': 'hugo',
 'filename': 'hugo_giraudel.jpg',
 'color': deeppink
),
 (
 'name': 'miriam',
 'filename': 'suzanne-miriam.png',
 'color': hotpink
)
);

Jump Start Sass70

@each $author in $authors {
 $author: map-get($author, 'name');
 $filename: map-get($author, 'filename');
 $color: map-get($author, 'color');

 .section-#{$author} {
 background-image: url('/images/authors/#{$filename}');
 color: $color;
 }
}

Here we’ve started the loop content by storing all properties from the author map

in variables, but this, of course, is not required. We could have directly put the map-

get(..) calls in the rule set, although it would have made the code slightly harder

to read.

Finally, we could also write our code using nested maps instead of nested lists, or

a list of maps. In this case, we’d map an author name (e.g. miriam) to a map of

properties (filename and color). Then, we’d use the map-specific multi-assignment

of the @each directive to iterate over it:

$authors: (
 'hugo': (
 'filename': 'hugo_giraudel.jpg',
 'color': deeppink
),
 'miriam': (
 'filename': 'suzanne-miriam.png',
 'color': hotpink
)
);

@each $author, $properties in $authors {
 $filename: map-get($properties, 'filename');
 $color: map-get($properties, 'color');

 .section-#{$author} {
 background-image: url('/images/authors/#{$filename}');

71Loops and Conditions

 color: $color;
 }
}

When using an each-loop to iterate over a map, the first variable in the loop definition

contains the current key, and the second one contains the current value. In this

case, $properties contains a map with filename and color keys.

Two Variables Are Better Than One

When looping through a map with a single variable, it contains the key and the

value as a two-item list. This is not ideal, so be sure to always define two variables

in the loop: one for the key, one for the value.

The while-loop
The while-loop is, as the name suggests, a way to execute a chunk of code as long

as a condition remains true. While-loops are frequently used in low levels of software

applications, especially to simulate threads, a process that we want to run perman-

ently until there is some form of change.

In Sass, it is very hard to find a decent use case for a while-loop. Both the @each

and @for directives cover close to 100% of cases, so it is highly unlikely for you to

find a while-loop in a Sass file—unless a library is doing crazy stuff (which should

be avoided in a live project).

Nevertheless, here is how a while-loop is described in Sass:

1. the @while directive

2. the matching condition for the loop to keep going

$number: 4;

@while ($number > 0) {
 // Do something with `$number`
 $number: $number - 1;
}

Take care to ensure that the condition ends up being falsy at some point or you’ll

get stuck in an infinite loop.

Jump Start Sass72

It’s difficult to find a single good example for a while-loop in Sass. A not-so-bad

one would be to build a str-replace(..) function, but it turns out that creating a

recursive function1 is actually easier and just as—if not more—efficient.

Wrapping Things Up
In this chapter, we have learned about two logical structures: conditional statements

and loops. Conditional statements are used to execute a block of code based on a

condition. Loops are used to repeat a block of code a certain number of times, or to

iterate over a collection such as a list or a map.

We can now mix both features—as well as some we’ve seen in previous chapters—to

create powerful helpers. Let’s continue on our example from previous chapters by

automating slightly further:

$message-themes: (
 'info': blue,
 'confirm': green,
 'warning': red
);

@mixin message($color, $background-color: null) {
 color: $color;

 @if type-of($color) == 'color' {
 background-color: lighten($color, 20%);
 } @else {
 @warn 'Parameter $color for message mixin should be a color.';
 }
}

.message {
 padding: 10px;
 border: 1px solid currentcolor;
}

@for $theme, $color in $message-themes {
 .message-#{$theme} {

1 http://www.sassmeister.com/gist/1b4f2da5527830088e4d

73Loops and Conditions

http://www.sassmeister.com/gist/1b4f2da5527830088e4d
http://www.sassmeister.com/gist/1b4f2da5527830088e4d

 @include message($color);
 }
}

In this code snippet, we ensured correct parameters thanks to conditional statements,

and automated the CSS output with a configuration map and a loop. Isn’t it nice

how everything is coming together?

Jump Start Sass74

Chapter6
Nesting
If we had to name three features that make Sass a popular stylesheet authoring tool,

it would likely be variables, mixins, and nesting. As we will see in this chapter,

nesting appears in several forms when it comes to Sass but by far the most popular

one is selector nesting. Let’s start with this.

Selector Nesting
Selector nesting, or “nested rules1” as described in the official documentation, is

the ability to write rule sets within other rule sets that result in composed selectors.

This is one of those concepts that are hard to describe but surprisingly easy to un-

derstand with an example.

Consider two rule sets like so:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;

1 http://sass-lang.com/documentation/file.SASS_REFERENCE.html#nested_rules

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#nested_rules

}

.container p {
 text-indent: 1em;
}

This is nothing but plain CSS so there should be no surprise at this point. We could

decide to rewrite our code using Sass nesting. Let’s try that:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;

 p {
 text-indent: 1em;
 }
}

In this scenario, we have inserted our second rule set inside the first. This tells Sass

to generate a new selector in descending order from the nested selectors, in this

case: .container and p. This piece of code will result in the exact same snippet

from earlier.

There are no limits to selector nesting, neither in number nor in depth. You can

also nest compound selectors and lists of selectors. For instance, if we wanted to

also indent list items, we could add it to our existing p selector:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;

 p, li {
 text-indent: 1em;
 }
}

Compiling this would generate the following CSS code:

Jump Start Sass76

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;
}

.container p,

.container li {
 text-indent: 1em;
}

Variable Scoping
We often put selector nesting and variable scoping together, and for good reason.

Because of the way variables work in Sass, when defining variables inside a rule

set, all the nested rule sets will have access to them. Consider our previous example:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;

 p {
 text-indent: 1em;
 }
}

Let’s assume we want the horizontal padding of the container and the text indenta-

tion of paragraphs to be a shared value (here, 1em). A variable is a smart and simple

way to do this. Now, depending on where we declare it, its access will be restricted

to some selectors and not others.

In the following code snippet, the $rhythm variable is defined at the root level,

which means it’s available for the entire stylesheet. This includes other (imported

/ importing) files. That might be what you’re after. Or not:

$rhythm: 1em;

.container {
 margin: 0 auto;
 max-width: 42em;

77Nesting

 padding: 0 $rhythm;

 p {
 text-indent: $rhythm;
 }
}

What if we want to restrict $rhythm to the .container selector? We have seen how

to do this in the chapter dedicated to variables: we move the variable declaration

two lines down:

.container {
 $rhythm: 1em;

 margin: 0 auto;
 max-width: 42em;
 padding: 0 $rhythm;

 p {
 text-indent: $rhythm;
 }
}

What’s nice about this is that the p rule set is still able to access $rhythm because

it’s been defined in a parent scope. We get the best of both worlds: our variable is

scoped to a specific context (not global), and we can use it to share a value between

several rule sets. Win-win.

Global Alert!

Now is probably a good time to remind you of the !global flag visited in

Chapter 3.

The Ampersand Selector
Ah, the almighty ampersand selector! It’s actually quite an informal nickname for

the parent selector reference. (You have to admit that’s a bit less catchy.)

When nesting rules within each other, it might be useful to dynamically access the

parent selector from an inner rule. The & selector does precisely this. Again, it’s a

Jump Start Sass78

tough concept to explain without jumping on a piece of code. Consider a classic

link styling:

a {
 color: deeppink;
}

a:hover,
a:active {
 color: hotpink;
}

How would we handle it if we wanted to nest the second rule set inside the first?

It’s not really a child per se, more like a state. Let’s try something that won’t work

first, just for the sake of our explanation:

a {
 color: deeppink;

 // This is not the selector you are looking for.
 :hover,
 :active {
 color: hotpink
 }
}

Can you guess what will be the CSS output for this code sample? It might be a bit

tricky if you are unfamiliar with Sass nesting. If you guessed a :hover and a

:active with a space, you’d be right! When doing this, Sass treats :hover, :active

like children, creating the selector from both parts (a, and :hover, :active) just

like before.

So how do we prevent Sass from adding this extra space between a and :hover?

We use the ampersand selector to reference the parent selector inside the nested

one. Let’s see:

a {
 color: deeppink;

 &:hover,
 &:active {

79Nesting

 color: hotpink
 }
}

In this extremely simple scenario, & literally represents a once the selectors have

been “unfolded”. Sass will therefore create the intended CSS, as described at the

beginning of this section.

This is, of course, one of the many use cases for the parent selector reference. For

instance, if we come back to our paragraph example from earlier, we could also

write a rule set for all paragraphs, and then restrict a part of it (with a nested rule

set) to paragraphs that live inside a .container:

p {
 margin: 1em 0;

 .container & {
 text-indent: 1em;
 }
}

Once Sass unfolds all the nested selectors, it ends up with a first selector that is p,

and then another that is .container p. As you might have guessed, the & represents

p in this scenario.

The & reference is replaced with the parent selector as it appears in the CSS. This

means that when dealing with a deeply nested rule, the parent selector will be fully

resolved before the & is replaced:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;

 p {
 text-indent: 1em;

 a {
 color: deeppink;

 &:hover,

Jump Start Sass80

 &:active {
 color: hotpink;
 }
 }
 }
}

The previous code snippet will be compiled to:

.container {
 margin: 0 auto;
 max-width: 42em;
 padding: 0 1em;
}

.container p {
 text-indent: 1em;
}

.container p a {
 color: deeppink;
}

.container p a:hover,

.container p a:active {
 color: hotpink;
}

The ampersand selector can also be followed by a suffix that will be added to the

parent selector. Consider a scenario where we have a base class—let’s say .compon-

ent—that is slightly modified when the component is hidden—let’s say .component-

hidden:

.component {
 display: block;

 &-hidden {

81Nesting

 display: none;
 }
}

In this scenario, the resulting selector will not be a selector with several parts. It

will be a new class made from the initial one, thanks to the ampersand and the

suffix:

.component {
 display: block;
}

.component-hidden {
 display: none;
}

Context Nesting
There’s another type of nesting that happens to be quite popular as well: the ability

to nest contexts. The terminology varies in Sass literature, so you might be familiar

with this feature as another term. Basically, it’s the ability to nest a CSS scoping

directive inside another CSS scoping directive or a rule set, such as a media query

(@media) or a support query (@supports).

Let’s imagine a navigation with items going from block-level display to inline-block

after a certain viewport breakpoint. Here’s how you would write this in CSS:

.navigation li {
 display: block;
}

@media screen and (min-width: 42em) {
 .navigation li {
 display: inline-block;
 }
}

The @media directive in itself may vary: some people like to omit the screen and

part, but it does not matter much for our example. Now, this does the job very well,

but creates a reading rupture between the two rule sets. Yet, they refer to the same

Jump Start Sass82

set of elements. To avoid this, it is possible to nest the media query inside the initial

rule set, like so:

.navigation li {
 display: block;

 @media screen and (min-width: 42em) {
 display: inline-block;
 }
}

Once compiled, this will result in the exact same CSS code as seen above. Mean-

while, it’s an interesting way of writing context-specific styles because it keeps

everything related in the same place. In this case, we are still talking about .navig-

ation li, just under a different context.

There again, there is no limit to the depth of nesting. It is perfectly possible to nest

media contexts within other media contexts. Consider this way of writing our pre-

vious code:

@media screen {
 .navigation li {
 display: block;

 @media (min-width: 42em) {
 display: inline-block;
 }
 }
}

The compiled code is slightly different as the whole rule set has been wrapped in

a media context. We will end up with:

@media screen {
 .navigation li {
 display: block;
 }
}

@media screen and (min-width: 42em) {
 .navigation li {

83Nesting

 display: inline-block;
 }
}

As you can see, the two nested media queries have been merged to compose a new

media query, just like nested selectors do. For the record, the include-media2 Sass

library (see Chapter 10) heavily relies on this feature to handle complex breakpoints.

Media Queries Support

Some browsers (but not all) support nested media queries out of the box. The

ability to nest media queries was not part of CSS 2.1 but came in with CSS Condi-

tional Rules Module Level 3.

As stated before, it works the same with the CSS @supports directive. In case you’re

unfamiliar with this feature, it basically makes the browser only apply styles passed

to the @supports directive when supporting a given set of features. Let’s say we

want our navigation to use flexbox when supported:

.navigation {
 display: block;

 @supports (display: flex) {
 display: flex;
 }
}

Just like before, this code will be unfolded. I am sure you can guess the result of

the compilation by now:

.navigation {
 display: block;
}

@supports (display: flex) {
 .navigation {

2 http://include-media.com

Jump Start Sass84

http://include-media.com

 display: flex;
 }
}

I have to admit it’s quite a dull example, but it illustrates well how nice it is to be

able to nest support queries inside rule sets in order to preserve selector context.

The @at-root Directive
The @at-root directive was introduced so as to be able to emit a style block at the

root of the document, rather than nest it beneath its parent selectors. Admittedly,

the use cases for this feature are difficult to come by. Either Sass is clever enough

so that we don’t have to use it, or the cognitive overhead of a solution involving

@at-root is usually not worth the trouble.

Actually, there is one simple yet not that uncommon use case: qualifying a class

from within its rule set. Let’s say that you style buttons with .button, but want to

apply different styles when buttons are links (a elements). You might be tempted

to write:

.button {
 display: inline-block;

 a& {
 text-decoration: none;
 }
}

Unfortunately, this will fail to work, with Sass giving the following error:

Invalid CSS after "a": expected "{", was "&" "&" may only be used at
➥ the beginning of a compound selector.

When faced with such an error, we can try to interpolate the ampersand selector:

.button {
 display: inline-block;

 a#{&} {

85Nesting

 text-decoration: none;
 }
}

This does prevent the compilation from failing but yields an unexpected result,

even though it’s quite close to the desired one:

.button {
 display: inline-block;
}

.button a.button {
 text-decoration: none;
}

To avoid having the a#{&} selector actually nested within the .button rule set, we

can make good use of the @at-root directive and have Sass output this rule set at

the root of the document:

.button {
 color: red;

 @at-root a#{&} {
 color: blue;
 }
}

Our final CSS looks like this:

.button {
 display: inline-block;
}

a.button {
 text-decoration: none;
}

Property Nesting
As stated at the beginning of this chapter, rule sets are not the only thing that can

be nested with Sass nesting features. It’s also possible to nest properties; however,

Jump Start Sass86

very few people know this. I suppose this is probably because it’s not a super useful

feature, but I still feel I should tell you about it.

You know how CSS uses hyphens to delimit words in property names? For instance,

take the font-related properties: font-family, font-size, font-weight, font-style,

amongst others. Well, it turns out that you can nest the second part of each property

name inside the first. Hold on, let’s illustrate this:

.container {
 font-family: 'Jump Start', sans-serif;
 font-size: 42px;
 font-weight: bold;
 font-style: normal;
}

We can rewrite our previous rule set this way:

.container {
 font: {
 family: 'Jump Start', sans-serif;
 size: 42px;
 weight: bold;
 style: normal;
 };
}

If you’re like me, you might be wondering about the point of such a feature. Why

would you write this rather than the CSS equivalent? I’m not too sure, but it’s likely

to be remains from the indented syntax era (.sass) where it kind of made sense. It

might also have some programmatic advantages, such as storing these characteristics

in a map.

In the following code sample, we store all the characteristics from our typography

in a map, then iterate over it inside the font property to generate the correct declar-

ations:

.container {
 $font: (
 'family': ('Jump Start', sans-serif),
 'size': 42px,
 'weight': bold,

87Nesting

 'style': normal,
);

 font: {
 @each $property, $value in $font {
 #{$property}: $value;
 }
 };
}

This seems too over-engineered, if you want my opinion, which leads us to …

Best Practices and Nesting Etiquette
Nesting is a very powerful feature—so much so that there is actually a draft of pro-

posal to bring it (albeit with a different syntax) to CSS itself. That being said, I need

to warn you about abusing nesting, especially selector nesting. I’ve been using Sass

for a few years now, and still I have a hard time to justify the use of selector nesting.

Despite what some developers say, selector nesting does not make it any faster to

write code, especially when you know your code editor and how to use it. It’s un-

likely that your speed bottleneck is typing CSS selectors. If you have to use selector

nesting, the reason should never be to avoid retyping selectors.

It makes the code harder to read as well. Not only is it easy to lose track of the

context when using deeply nested rule sets, sooner or later it’s a cry for overly

specific selectors. I can’t speak for you, but I’d prefer to read a flat CSS file than a

horizontal pyramid of rule sets.

Another downside of selector composing (the result of selector nesting), is that it

makes the codebase harder to search. Let’s say that you’re looking for .container

p because you’ve spotted a tiny bug in your browser’s developer tool. You type this

selector into the search engine of your code editor, but it finds nothing. This is be-

cause the selector has been generated from the nesting of two rule sets, so you have

to actually look for .container and then find the occurrence where it contains a p

selector.

Here’s an example to illustrate the problem. Consider the following markup relying

on the Block Element Modifier (BEM) methodology (more on that in Chapter 9):

Jump Start Sass88

<div class="block">
 …
</div>

The developer responsible for the styling of this component has heavily used Sass

nesting and written this:

.block {
 &__element {
 &--is-hidden {
 display: none;
 }
 }
}

Let’s say that you have to modify this rule to use opacity instead of display. You

cannot search for .block__element--is-hidden because this string does not exist

per se in the code. As a result, you have to look for all the occurrences of the --is-

hidden modifier in the codebase. Far from convenient—especially on a large project.

That said, I think this feature still has some positive uses. For instance, being able

to nest pseudo-classes, pseudo-elements, and media queries actually is very efficient

and good for readability; it makes it easier to figure out that a selector is just a state

variation (for example, :hover) of the parent one.

It also turns out to be very useful for frameworks / library builders who can compose

classes dynamically in a context-aware fashion. Not what you might encounter a

lot of in your daily stylesheet, but still a valid use case for this feature.

Wrapping Things Up
Sass nesting is a powerful feature that should not be abused. It could potentially

harm readability and maintainability for very little gain.

Try to avoid using unnecessary nesting, keeping it mostly for pseudo-classes, pseudo-

elements, and contexts (@media and @supports) unless you have good reasons to

do otherwise.

89Nesting

Chapter7
The @extend Directive
Welcome to the most powerful, dangerous, and controversial feature in the Sass

language! The @extend directive is one way to handle inheritance1 in Sass. The goal

is to represent a relationship between two items, where one is a category and the

other is an object within that category—sometimes called an “is-a” relationship.

Hugo is a developer, Chewbacca is a Wookie, and a warning is a message.

Building Clear Relationships
In order to understand the purpose of @extend, let’s start with some plain CSS for

a message style, and then more specific info and warning message variations. In

our brilliantly designed fantasy, the default message style will give us a basic gray

box, while the info and warning variations add some color:

.message {
 background-color: gray;
 border: 1px solid black;
 margin: 1em;
}

1 https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

.info {
 background-color: blue;
 border: 1px solid black;
 margin: 1em;
}

.warning {
 background-color: red;
 border: 1px solid black;
 margin: 1em;
}

This code will work fine, but it’s repetitive without showing the relationships that

exist between a message and a warning. We could solve the repetition in several

ways, but CSS lacks a way to show relationships between classes. You can use

multiple classes to show relationships between elements, but the only way to show

relations between classes is through selector-grouping:

.message, .info, .warning {
 background-color: gray;
 border: 1px solid black;
 margin: 1em;
}

.info {
 background-color: blue;
}

.warning {
 background-color: red;
}

We’ve eliminated the repetition and given some sense of grouping in the initial

block—but if those lonely .info and .warning selectors ever become separated

from the group, there’s no way to know they’re related. If our relationships ever

span multiple Sass partials (we’ll discuss these more in Chapter 9), we’re out of

luck. The @extend directive provides a shortcut for this kind of selector grouping

while making the relationships explicit. We can write the following Sass and output

exactly the same CSS as before:

Jump Start Sass92

.message {
 background-color: gray;
 border: 1px solid black;
 margin: 1em;
}

.info {
 @extend .message;
 background-color: blue;
}

.warning {
 @extend .message;
 background-color: red;
}

Extending Utilities
In many ways, @extend looks like a mixin without arguments, and that’s another

way they’re often used. Common utilities such as clearfix and hide-text work

fine as mixins, but don’t require arguments. Let’s use a common Sass variation on

the micro clearfix2 by Nicolas Gallagher:

// Mixin Input

@mixin clearfix {
 &::after {
 content: '';
 display: table;
 clear: both;
 }
}

.emory {
 @include clearfix;
}

.gracie {
 @include clearfix;
}

2 http://nicolasgallagher.com/micro-clearfix-hack/

93The @extend Directive

http://nicolasgallagher.com/micro-clearfix-hack/

.miko {
 @include clearfix;
}

/* Mixin Output */

.emory::after {
 content: '';
 display: table;
 clear: both;
}

.gracie::after {
 content: '';
 display: table;
 clear: both;
}

.miko::after {
 content: '';
 display: table;
 clear: both;
}

Using @extend will create less output:

// Extends Input

.clearfix::after {
 content: '';
 display: table;
 clear: both;
}

.emory {
 @extend .clearfix;
}

.gracie {
 @extend .clearfix;
}

Jump Start Sass94

.miko {
 @extend .clearfix;
}

/* Extends Output */

.clearfix::after, .emory::after, .gracie::after, .miko::after {
 content: '';
 display: table;
 clear: both;
}

The Placeholder (Extend-only) Selector
To make the @extend output even prettier, we can use a placeholder selector—a

new selector type that only exists in Sass. Placeholder selectors look like class or

id selectors, but they start with % instead of . or #, and disappear completely in the

output:

// Placeholder Input

%clearfix::after {
 content: '';
 display: table;
 clear: both;
}

.emory {
 @extend .clearfix;
}

.gracie {
 @extend .clearfix;
}

.miko {
 @extend .clearfix;
}

/* Placeholder Output */

.emory::after, .gracie::after, .miko::after {

95The @extend Directive

 content: '';
 display: table;
 clear: both;
}

This is great for third-party libraries wanting to provide extendable classes without

adding bloat to code. If a placeholder is not extended, that code block is never

rendered.

Advanced Extending
Extend works by finding every occurrence that matches the original (extended) se-

lector’s meaning and adding the new extending selector in its place. It works no

matter how complex the selector, what context it’s in or how it was written, and

what order they are declared. Mixins have to be defined before they’re used, but

extends do not. These interactions can become quite tricky:

.hoverlink {
 @extend a:hover;
}

a {
 &[href*='http://'] {
 &:hover {
 text-decoration: underline;
 }
 }
}

Before researching this book, we would never have guessed what that compiles to:

a[href*='http://']:hover, [href*='http://'].hoverlink {
 text-decoration: underline;
}

Extends will chain together if they become intertwined, which might be powerful

but is more often a costly accident. If .warning extends .message, which extends

.overlay—then .warning will also extend .overlay by association.

Jump Start Sass96

You can also extend multiple selectors in a single block, and even with a single

@extend directive. These two .error-message blocks would result in the same

output:

.error-message {
 @extend .error;
 @extend .message;
}

.error-message {
 @extend .error, .message;
}

If you extend something that isn’t there, Sass will throw an error:

".error-message" failed to @extend ".aliens".
The selector ".aliens" was not found.
Use "@extend .aliens !optional" if the extend should be able to fail.

Just like it says, adding !optional to your @extend will silence that error, making

your extension optional. This is especially helpful when working with third-party

libraries. Here's an example:

.error-message {
 @extend .aliens !optional;
}

Nesting Extends
The most notorious feature of @extend is when one nested selector extends another:

.leonardo .cobb .dicaprio {
 background: blue;
}

97The @extend Directive

.cillian .fischer .murphy {
 @extend .dicaprio
}

If Sass compiled every possible meaning behind that extension—weaving together

each possible iteration—the results would be exponentially long. Sass is smarter

than that, but still has to cover reasonable possibilities:

.leonardo .cobb .dicaprio,

.leonardo .cobb .cillian .fischer .murphy,

.cillian .fischer .leonardo .cobb .murphy {
 background: blue;
}

It’s a dangerous road to go down, unless you’re trying to generate experimental poetry

in your CSS.

The Limits of Extending
Extending is a beautiful idea, but there are no guarantees of a happy ending. There

are a number of issues that have lead some developers to reject @extends completely.

As for the book’s authors, while Miriam chooses to be cautious in her condemnations,

Hugo’s skepticism can be deemed justifiable.

Confusing Cascade
My main complaint is that @extend messes with the cascade3, changing the spe-

cificity of styles in ways that are not obvious or easy to control. While mixins inject

code where you call them, @extend injects code somewhere else entirely—adding

selectors to the original extended code block, which might be in a different file or

even hidden inside a third-party package. While that may not be a big issue for a

utility such as clearfix, it can cause major issues when used recklessly. Don’t try

this at home:

%large {
 font-size: 4rem;
}

3 http://www.sitepoint.com/web-foundations/cascade/

Jump Start Sass98

http://www.sitepoint.com/web-foundations/cascade/

%small {
 font-size: 0.75rem;
}

.message {
 @extend %small;
}

.important {
 @extend %large;
}

Which class has a higher specificity, .message or .important? Usually, in a conflict

the class defined second will take priority over any preceding classes. In this case

it doesn’t matter what order we defined the classes, only the order we defined our

initial placeholders. No matter how you define your classes later in the document,

an extension of %small will never override an extension of %large. The specificity

isn’t determined by the order in which you use extensions, but the order in which

they’re defined:

.important {
 font-size: 4rem;
}

.message {
 font-size: 0.75rem;
}

If there is any chance that specificity will be an issue, @extend should be off the

table.

Collateral Damage
Because a selector can appear multiple times in a stylesheet, extended selectors are

replaced everywhere they appear. You might be altering code you haven’t considered.

Using our initial message example, what happens if we want the .message class to

look different in other contexts?

99The @extend Directive

// in one file…
.message {
 background-color: gray;
 border: 1px solid black;
 margin: 1em;
}

.warning {
 @extend .message;
 background-color: red;
}

// in another file…
.dark-theme {
 .message {
 background-color: black;
 }
}

We never explicitly asked for .dark-theme .warning to get a different style, but

now there’s one that completely overrides the original purpose:

.message, .warning {
 background-color: gray;
 border: 1px solid black;
 margin: 1em;
}

.warning {
 background-color: red;
}

.dark-theme .message, .dark-theme .warning {
 background-color: black;
}

Many teams avoid this problem by only extending placeholder selectors and only

defining placeholders in one location. That’s a great rule of thumb, and helps to

make extensions clear and controllable.

Jump Start Sass100

Hard-to-Read Output
You’ll remember that the entire purpose of @extend was to cut down on bloat. In

some cases, this can work in your favor, but sometimes it can backfire once you

account for gzip4—the best practice for serving CSS files. Gzip uses recurring patterns

to improve compression. Even though it is clear that our mixin output is larger than

our extended output for the clearfix above, various people have reported that

mixins can outperform extensions after zipping.

But even before gzip, there’s a chance that you’re causing unexpected bloat and

confusing output. Consider the following bad idea, which tries to extend a bold-text

selector:

.typography {
 .bold {
 font-weight: bold;
 }
}

.widget-warning strong {
 @extend .bold;
}

.widget-info strong {
 @extend .bold;
}

.alert-error .important {
 @extend .bold;
}

This looks great in Sass, but the CSS output is hard to read. You’d want to avoid

seeing this in your browser inspector:

.typography .bold,

.typography .widget-warning strong,

.widget-warning .typography strong,

.typography .widget-info strong,

.widget-info .typography strong,

.typography .alert-error .important,

4 http://www.gzip.org/

101The @extend Directive

http://www.gzip.org/

.alert-error .typography .important {
 font-weight: bold;
}

Instead of repeating a relatively short string (font-weight: bold;), we’ve started

repeating long selector chains. We’ve also triggered the nesting feature, which forces

Sass to output multiple selector options for each extension. Do we always want

.typography first in the chain, or do we sometimes want it in the middle? There’s

no way to state that explicitly, so Sass is designed to cover all the possibilities.

When you see that long list of selectors in your browser inspector, it can be difficult

to trace back to your original code—or hard to know your original intention. Suffice

it to say, you should look at the output CSS to make sure it means what you intended.

But that’s true for any feature, @extend or otherwise. If you’re using a preprocessor,

you should be checking the output for unexpected issues.

Media Query Madness
Last but not least, @extend fails to work at all across media queries. Selectors inside

one media query cannot extend selectors outside that same query (and vice versa).

The following will result in an error:

%clearfix::after {
 content: '';
 display: table;
 clear: both;
}

@media (min-width: 40em) {
 .container {
 @extend %cleafix;
 }
}

Various people have proposed using mixins that will wrap extends, so you can

choose between the two options on the fly:

// Defining a Mixtend:
@mixin clearfix($mixin: false) {
 @if $mixin {

Jump Start Sass102

 &::after {
 content: '';
 display: table;
 clear: both;
 }
 } @else {
 @extend %clearfix;
 }
}

%clearfix {
 @include clearfix(mixin);
}

// Using a Mixtend:
.container {
 @include clearfix;
}

@media (min-width: 48em) {
 .grid-row {
 @include clearfix(mixin);
 }
}

It’s a clever solution, but I’m unsure whether it’s worth the effort, and hiding @extend

inside a mixin might just make it more dangerous. If it’s better for your situation,

just use a mixin.

Dependable Mixins
While the media query issue may get fixed down the road, the other issues are here

to stay. It’s nothing to do with how @extend is implemented in Sass; rather it’s from

basic problems with trying to represent inheritance in CSS. The current hold-up

with @media is that every proposal fixing that issue would make the other issues

worse.

In the end, we’re unwilling to say that @extend is always bad. Many people put it

to good use, and you can too. But it’s true that mixins are often easier to understand,

with little or no downside in most cases.

103The @extend Directive

Wrapping Things Up
We’ve learned that @extend is one of the most powerful features in Sass, but also

that it one of its most controversial. Some developers reject it completely in favor

of using mixins, particularly as @extend can lead to issues with the cascade if not

used with care, and it can also create hard-to-read and bloated output. In the next

chapter, we’re going to look at warnings and errors.

Jump Start Sass104

Chapter8
Warnings and Errors
Our incredible journey through Sass is slowly coming to an end, and so far you’ve

been doing great! There’s one technical chapter left before we look at project archi-

tecture, and then you’ll be fully equipped to write Sass code in your own projects.

Now we’re going to look at warnings and errors. Both form a one-way communication

system between the program (in this case, Sass) and the developer (you). If you’re

wondering about the point of errors in the CSS world, remember that you already

know the answer. Whenever you forget a semicolon or use a function incorrectly,

Sass throws an error at you, explaining what you’ve done wrong and how you can

fix it, thankfully! It would be a real pain to have to dig into the code to figure out

what’s gone wrong.

Sass has long provided a way to emit warnings from stylesheets, but it’s only recently

added support to throw errors as well—and for good reason! Over the last few years,

Sass has allowed authors to build complex systems to abstract difficult or repetitive

patterns and concepts, such as grids. These systems must be able to communicate

with authors, stopping the compilation process with a custom error message if

anything ever goes wrong.

Both warnings and errors are emitted in the current output channel. When compiling

Sass by hand or by using a tool through a command line interface (CLI) such as

Grunt1 or Gulp2, the output stream is the console. For tools that include a user in-

terface, such as Codekit3 or Prepros4, it’s likely that they catch and display warnings

and errors as part of their interface. Online playgrounds such as CodePen5 and

SassMeister6 manage to catch errors but not warnings, so don’t be alarmed if you’re

unable to test them in there.

Warnings
As has been stated, the ability to emit warnings in Sass is not new. It’s possible to

display messages or the value of any SassScript expression to the standard output

stream through the @warn directive.

A warning has no impact on the compilation process; it does not prevent compiling

to pursue or change it in any way. Its only purpose is to display a message in the

console.

There are a lot of reasons to use warnings in Sass. Here are a couple, but you’re

likely to find your own:

■ informing the user of an assumption made about the code in order to avoid sur-

prise and hard-to-track bugs
■ advising about a deprecated function or mixin as part of a library or framework

Sending a warning is dead simple to do: start with the @warn directive, then state

whatever it is. Warnings are usually made to provide some information and context,

so they often feature a sentence explaining the situation. That being said, you don’t

have to use a string; you can warn with a number, a list, a map—whatever. Here,

we print a string:

1 http://gruntjs.com/
2 http://gulpjs.com/
3 https://incident57.com/codekit/
4 https://prepros.io/
5 http://codepen.io/
6 http://sassmeister.com

Jump Start Sass106

http://gruntjs.com/
http://gulpjs.com/
https://incident57.com/codekit/
https://prepros.io/
http://codepen.io/
http://sassmeister.com

@warn 'Uh-oh, something looks weird.';

Using a regular CLI client, this warning will emit the following output:

WARNING: Uh-oh, something looks weird.
 on line 1 of /Users/hgiraudel/jump-start-sass/warning.scss

Hey, that’s nice, isn’t it? Although this warning is far from helpful. It says that

something looks weird but does not say what, why, or what can be done to stop it

from looking weird. We’ll discuss how we can improve on warnings further on.

Let’s move on to a more serious example now that we know how to use the feature.

Imagine we have a Sass custom function that attempts to convert a pixel value in

em unit:

@function px-to-em($value, $base-font-size: 16px) {
 @return ($value / $base-font-size) * 1em;
}

// Usage
.foo {
 font-size: px-to-em(42px); // 2.625em
}

All good. Now, what happens when passing a unitless number—such as 42—to the

function? Maybe you’ve guessed it, but as it’s not quite obvious I’ll give you the

answer:

2.625em/px isn’t a valid CSS value.

This happens because you’re trying to perform a calculation between incompatible

units (px and em). What we could do to circumvent this issue is assume the unitless

value be expressed in pixels and convert it first:

@function px-to-em($value, $base-font-size: 16px) {
 @if unitless($value) {
 @warn 'Assuming value `#{$value}` to be in pixels; attempting to
➥ convert it.';
 $value: $value * 1px;

107Warnings and Errors

 }

 @return ($value / $base-font-size) * 1em;
}

The function is expecting a value expressed in pixels. We can still make it work

with a unitless value; however, we cannot be sure that this is the expected behavior.

We can only assume that it’s good enough.

Because we’re assuming what is the correct behavior for our function, it’s important

to let the developer know what we’re doing and why. Otherwise it could lead to

bugs that are hard to track, which is not what you should be aiming for.

Another practical example would be to warn against the usage of a deprecated

function or mixin. You might have already heard of or used Bourbon7, a lightweight

mixin library for Sass. Bourbon is actively maintained, and sometimes requires re-

moving helpers from the library. To avoid suddenly breaking a person’s code,

Bourbon warns about future deprecations way before it actually removes mixins:

@mixin inline-block {
 display: inline-block;

 @warn 'The `inline-block` mixin is deprecated and will be removed
➥ in the next major version release.';
}

Clever! People who still use the inline-block mixin from Bourbon are aware that

the library will remove it completely in the next version, so they know to start up-

dating their codebase to remove the mixin.

The Difference between @warn and @debug
You may or may not be familiar with the @debug directive, which prints the value

of a SassScript expression to the standard output stream in the same fashion as

@warn. You might be wondering why there are two features performing the same

task, and what could possibly be the difference between the two.

7 http://bourbon.io/

Jump Start Sass108

http://bourbon.io/

Well, there are two major differences between warning about a value and debugging

a value. The first one is that warnings can be turned off using the quiet option.

Debugs, on the other hand, will always be printed so that you remember to remove

them when you’re done using them.

The second difference is that warnings come with a stack trace—a report of the

active stack frames at a certain point in time during the execution of a program. As

a result, you know from where they’re being emitted. Debugs only print the value,

along with the line they were called in, but they offer no extra information.

The @debug directive can really come in handy when you want to know what’s inside

a variable, for instance:

@debug $base-font-size;

Errors
Warnings and errors behave fairly similarly in Sass, so learning about errors is going

to be a breeze now that you are perfectly familiar with warnings! The only difference

between an error and a warning is—as you might have guessed—that the error stops

the compilation process.

Using errors can be handy when validating parameters from mixins and functions,

for instance. In the previous section, this worked even when the given argument

was not exactly as expected, but we cannot (and should not) always do this. Most

of the time, if arguments are invalid, it is better to throw an error so that the

stylesheet author can fix the problem.

You can throw an error using the @error directive. As for warnings, you can pass

anything to this directive—not necessarily a string, although it usually makes more

sense to provide a clear context. The argument (what you give to the @error direct-

ive) will be printed in the standard output stream, as well as a stack trace to give

more insight about the problem. The compilation process will stop immediately.

Let’s start with a Gandalf-approved error:

109Warnings and Errors

@error 'YOUUUUU! SHALL NOT. PASS.';

The output might depend on how you compile your stylesheets, as some tools catch

and enhance the errors a certain way. Using the standard sass Ruby binary (gem),

here’s how it looks:

Error: YOUUUUU! SHALL NOT. PASS.
 on line 1 of /Users/hgiraudel/jump-start-sass/error.scss
 Use --trace for backtrace.

With the trace option, you can have the full stack trace from Sass itself, which isn’t

that useful unless there’s an actual bug somewhere in the preprocessor. Hence why

it is hidden as a default.

No try/catch in Sass

It’s not possible to catch a Sass error in a “programming” fashion, as Sass has no

provision for a try/catch feature in the way other languages do. Therefore, it’s

impossible to try an expression that might break, swallow the error, and perform

something else instead.

Time to take a look at a real practical example. Let’s start by writing a small function

to help accessing deeply nested values in maps, map-deep-get(..):

@function map-deep-get($map, $keys...) {
 @each $key in $keys {
 $map: map-get($map, $key);

 @if (type-of($map) == 'null') {
 @return $map;
 }
 }

 @return $map;
}

Let’s enhance it with custom errors. But first, consider the following map and map-

deep-get(..) call:

Jump Start Sass110

$map: (
 'foo': (
 'bar': (
 'baz': 42
)
)
);

$value: map-deep-get($map, 'foo', 'bar', 'baz', 'qux');

As you may have noticed, the map lacks having a qux key nested in baz. Indeed,

baz is not even associated with a map; instead, it is mapped to a number (42). If we

try to execute this code, it will yield:

Error: 42 is not a map for `map-get`
 on line 1 of /Users/hgiraudel/jump-start-sass/error.scss

Sass tries to perform a map-get(..) on 42 and emits an error because it cannot be

done. While the error message is correct, it’s not very helpful. What would be

helpful is to know the name of the key that caused the issue. We can do that!

We already check whether $map is null to perform an early return so as to avoid a

compilation error if a key doesn’t exist. We can perform a second check to ensure

that the map is actually a map, or we throw a meaningful error:

@function map-deep-get($map, $keys...) {
 @each $key in $keys {
 $map: map-get($map, $key);

 // If `$map` does not contain the next key, return `null`
 @if type-of($map) == 'null' {
 @return $map;
 }

 // If `$map` is not a map, throw an error
 @if type-of($map) != 'map' {
 @error 'Key `#{$key}` is not associated with a map but a
➥#{type-of($map)} (`#{$map}`).';
 }
 }

111Warnings and Errors

 @return $map;
}

If we run our previous snippet again, here’s the output:

Error: Key `baz` is not associated with a map but a number (`42`).
 on line 1 of /Users/hgiraudel/jump-start-sass/error.scss

That’s much better! It’s now easy to fix our map and/or our function call thanks to

the helpful error message.

Wrapping Things Up
In this chapter, we learned how we can use Sass to emit warnings and throw errors

in the standard output stream. This is usually the console, but it might vary depend-

ing on the way one compiles stylesheets.

Warnings are helpful to emit non-critical messages to stylesheet authors—especially

for framework and library authors—such as deprecation warnings or code assump-

tions. On the other hand, errors are used to prevent the compilation from pursuing,

making it clear that the code needs to be fixed before going any further.

All in all, warnings and errors are especially useful inside functions and mixins in

order to validate user input, ensuring the stylesheets are being compiled as expected.

Jump Start Sass112

Chapter9
Architecture
Architecture has always been one of the major pain points in CSS development.

Without any variables, control directives, macros, or object inheritance, CSS code

tends to be long and repetitive—a single ever-growing file. While it’s technically

possible to split plain CSS into multiple files that reference each other with @import,

the additional HTTP requests make that a poor solution. As you’ve seen, Sass has

an answer for every piece of the architecture puzzle—but what’s the best way to

put it all together?

Ask ten experts, and you’ll receive ten different answers—most of them involving

(or aided by) Sass. OOCSS1, SMACSS2, Atomic Design3, ITCSS4, and BEM5 are all

popular systems for CSS architecture, but there are many more. If you’re using a

1 https://github.com/stubbornella/oocss/wiki
2 https://smacss.com/
3 http://patternlab.io/
4 http://technotif.com/manage-large-css-projects-with-itcss/
5 https://en.bem.info/

https://github.com/stubbornella/oocss/wiki
https://smacss.com/
http://patternlab.io/
http://technotif.com/manage-large-css-projects-with-itcss/
https://en.bem.info/

front-end framework such as Bootstrap6 or Foundation7, there might be some archi-

tectural opinions already built in.

These are all solid systems, none of which were designed with your project in mind.

CSS architecture is hard, so it’s a mistake to trust any one-size-fits-all solution.

There is no “right” answer that works for every team on every project. We’d recom-

mend learning them all, and then mashing together the best parts to create a system

that works well for you.

Let’s start with a broad discussion of the building blocks, and then look at the ways

we can fit them together.

Multiple Files and Folders
Breaking your code into multiple files is one key advantage to using a preprocessor,

and forms the basis of any architecture. With Sass, there’s no harm in breaking your

code into the smallest logical units and organizing it into multiple files and folders.

We recommend taking full advantage of it.

Sass has bestowed new power on the CSS @import rule, allowing you to combine

Sass and CSS files during compilation so they can be sent to the browser as one

single file. This is the only place where Sass has stepped on the toes of an existing

CSS directive, so it behaves differently in Sass than it did in CSS.

CSS Imports
As mentioned, the CSS @import directive allows you to reference one CSS file from

another. Importing is handled by the browser and requires additional HTTP re-

quests—since the importing file has to be parsed before the @import directive is

discovered. If you have a chain of files importing each other, those imports will

happen in sequence, blocking the document from rendering until all the CSS has

loaded. For that reason, most people avoid CSS imports entirely.

Using CSS imports, you can reference another CSS file using relative or absolute

paths, even adding a media query rule for conditional imports. Even though Sass

6 http://getbootstrap.com/
7 http://foundation.zurb.com/

Jump Start Sass114

http://getbootstrap.com/
http://foundation.zurb.com/

provides different functionality under the same at-rule, there are various cases in

which Sass will fall back to the vanilla CSS output, such as when:

■ an imported file has a .css extension
■ a filename begins with http:// or https://
■ the filename is a url(..) function
■ @import has any media queries

The following will compile to standard CSS imports, even in Sass:

@import 'relative/styles.css';
@import 'http://absolute.com/styles.css';
@import url('landscape.css') screen and (orientation: landscape);

Sass Imports and Partials
Sass imports look similar to CSS imports, but the imported files are compiled into

one single output file, as though their contents (including variables, mixins, func-

tions, and placeholders) were copied and pasted into place before compilation. This

type of Sass import will only work on files with .sass or .scss extensions, but you

can leave the extension off when importing (as long as there are no similarly named

files). In fact, we recommend dropping the extension whenever you can, for simpli-

city. It’s also possible to import multiple files in one command, or import files into

a nested context:

// Import an explicit file relative to the current directory
@import 'path/to/explicit.scss';

// Import a file with either the .sass or .scss extension
@import 'implicit';

// Import multiple files...
@import 'path/to/emory.scss',
 'miko',
 'path/to/gracie';

// Import a file into a nested context...
// (imagine the file copied and pasted into this context)

115Architecture

.latte {
 @import 'espresso';
}

The most common use of Sass importing is for partial files—Sass files that are not

compiled on their own but are for importing into other files. If you want a Sass file

to remain uncompiled until it’s imported, add an underscore (_) to the start of the

filename. Sass files that start with _ won’t compile on their own, but can be imported

into other files. When importing partials, Sass allows you to leave the _ off, which

is similar to leaving off an extension. For example:

// _authors.scss
.miriam { background: blue; }

// jumpstartsass.scss
@import 'authors'; // Shorthand for importing '_authors.scss'

// jumpstartsass.css (compiled CSS)
.miriam { background: blue; }

Running Sass in this directory (sass --update .) compiles jumpstartsass.scss to

jumpstartsass.css; however, it won’t create an _authors.css file, since it has a leading

underscore.

Sass partials form the basis of any Sass architecture. Because all Sass imports are

handled at compile time and never interrupt the browser, it’s perfectly safe (and

recommended) to use as many partials as necessary, compiling them into a single

stylesheet for production. For the sake of being organized we recommend breaking

out partials liberally, sorting them into folders, and importing them all back into

one single master file for compilation. A common Sass directory for a project might

look like this:

sass/
|
|– config/
| |– _colors.scss # Color palettes
| |– _webfonts.scss # Webfont information
| … # Etc.
|
|– layout/

Jump Start Sass116

| |– _navigation.scss # Navigation
| |– _banner.scss # Site Banner
| … # Etc.
|
|– modules/
| |– _calendar.scss # Calendar widget styles
| |– _contact.scss # Contact form styles
| … # Etc.
|
|– patterns/
| |– _buttons.scss # Buttons
| |– _dropdown.scss # Dropdown
| … # Etc.
|
|- main.scss # The primary Sass file to be compiled

After organizing all your partials, they can be imported into the single primary

main.scss file for compilation:

// Primary Sass File: main.scss
@import 'config/colors';
@import 'config/webfonts';

@import 'patterns/buttons';
@import 'patterns/dropdown';

@import 'layout/navigation';
@import 'layout/banner';

@import 'modules/calendar';
@import 'modules/contact';

Components and Organization
We’ve advised you to use partials, folders, and imports—but what’s really important

is how to use them efficiently. This is where everyone’s opinions differ, and your

mileage may vary.

Most CSS and Sass organization systems are based on some concept of user interface

“components” or discrete pieces that can be put together to form a complete project.

Components can be any size or shape, but they should focus on doing one task in-

dependently, and in a reusable way. A button, a drop-down, a calendar, and a search

117Architecture

form are all examples of components that can be reused at different places across

a project. Thinking about your project as a collection of components will help you

towards having an organized and maintainable architecture, whether you’re using

Sass or plain CSS.

Because of the way CSS works, the order of your code will also affect its meaning:

later code has priority in the cascade over the code before it. Some of the popular

branded architectures (the ones you know by name) try to eliminate this feature of

the cascade entirely, but I use it as a guide—organizing code from the most general

to the most specific—so the priority override makes sense. Code that we want applied

generally across the site should come first, growing slowly in specificity and detail

as we move towards more unique components and special cases.

I first learned of this approach from Natalie Downe8’s wonderful CSS Systems9 talk

in 2008 before I’d ever used Sass. Her architecture at the time started with elements

(h1, ol, ul, and so on) grouped by “type”, followed by classes grouped by the “effect”

created, and finally IDs grouped by the “component” they affect. These days it’s

common practice to avoid IDs altogether, and break elements into smaller pieces,

but the concept remains the same: global defaults first, followed by site-wide patterns

and broad layouts, and finally, more specific modules, themes, and overrides.

Sass projects include another category of site-wide defaults not found in CSS: code

with no output at all—such as variables, functions, and mixin definitions. Many

people (myself included) break that code into its own set of partials, to be imported

anywhere it might be useful. I have a complete folder just for site-wide Sass helpers

and configuration that don’t result in output. Those files act as a single, definitive,

and reusable configuration that defines the boundaries of a project. By ensuring

your configuration is output-free, you can import it anywhere without worrying

about duplicated or unwanted styles.

Here are some guidelines for thinking about architecture:

1. Break your code into the smallest logical component partials.

2. Organize your partials into grouped folders based on specificity.

3. Import those partials into one master file in order of specificity.

8 https://twitter.com/Natbat
9 http://www.slideshare.net/nataliedowne/css-systems-presentation

Jump Start Sass118

https://twitter.com/Natbat
http://www.slideshare.net/nataliedowne/css-systems-presentation

However, many variations do exist on the specific ways people implement those

ideas.

You may also find that a lot of the branded systems developed by and for massive

companies with large-scale needs don’t always translate to smaller teams and

products. Every project has different requirements, so you should never assume

that the best solution for InstaFace or MyPinBook is going to be the best solution

for you.

Object-oriented CSS (OOCSS)
OOCSS10 is one of the original front-end architectures, and the initial inspiration

for adding the @extend directive to Sass. A project from Nicole Sullivan11, it places

a strong emphasis on finding the right granularity for CSS objects, a theme that

comes up in most of the systems we’ll look at here.

Sullivan argues that rather than trying to match back-end objects, a CSS object

should look for more granular design patterns that might be used across a variety

of content types. A prime example is what she calls the media object—a fixed-size

media element (such as an image or video) alongside fluid content such as text.

10 https://github.com/stubbornella/oocss/wiki
11 https://twitter.com/stubbornella

119Architecture

https://github.com/stubbornella/oocss/wiki
https://twitter.com/stubbornella

Figure 9.1. Facebook media object

If you look at Facebook, which Sullivan helped refactor, you’ll see one media-object

design used across the site to display a wide range of back-end objects—from stories

and comments, to notifications, advertisements, and profile details. You can see an

example in Figure 9.1. By defining objects at a granular level, a small amount of

CSS can be used to style large swathes of the application.

At its best, OOCSS is a powerful tool for simplifying CSS and perfecting the per-

formance of large-scale applications. But taken to extremes, the OOCSS approach

can leave you with a mess of single-purpose utility classes (such as .padding-left-

10px) that couple your HTML and CSS too tightly, and eliminate any maintainability

you might get from more semantic code. You’ll have to find the right balance for

each project.

Whatever else you do, the two main principles of OOCSS are worth keeping in mind

(indeed, committing to memory) while you work out your own architecture:

Jump Start Sass120

■ Separate structure and skin. By having multiple design skins (colors, back-

grounds, borders, and so on) that you can mix and match with structural objects,

it’s possible to achieve more visual variety with less code. In practice, this also

means decoupling styles from the base semantics of HTML tags. By styling classes

(.primary-header) instead of tags (h1), you have more flexibility to keep HTML

meaningful, while applying consistent styles wherever they’re appropriate.

■ Separate container and content. OOCSS objects should not be dependent on

their location or context, but be reusable and able to fill whatever container they

are given. This ensures that an object will look the same in any context, without

developers having to guess what a given element or class will do in different

situations.

There is no organizational structure built into OOCSS, but there is a framework

available on GitHub12 that provides a number of common objects, as well as docu-

mentation on customizing the framework to your needs.

Atomic Design
Atomic Design13 is also driven by questions of granularity. Initially devised by Brad

Frost14, an atomic project is broken down into five stages: atoms, molecules, organ-

isms, templates, and pages. The idea is to style the stages in order, starting granular

and working outwards, with each stage building on the one before.

According to Atomic Design, atoms can be abstract information such as color palettes,

fonts, and typographic scales; they can also be default styles for tags such as form

labels, buttons, and paragraphs. Since I can never remember the scientific terms, I

break these two ideas down further and refer to the former as “configuration” or

“settings” (having no output on their own), and the latter “base” or “initial” styles

(having output).

Atoms can be put together to form molecules. Combine an image with a paragraph

and button (all atoms), and you have a simple product-listing molecule. Molecules

are small components that do one task well. Group a number of these molecules

together, and you have an organism (in this case, a gallery of products). Organisms

12 https://github.com/stubbornella/oocss
13 http://patternlab.io/
14 https://twitter.com/brad_frost

121Architecture

https://github.com/stubbornella/oocss
https://github.com/stubbornella/oocss
http://patternlab.io/
https://twitter.com/brad_frost
https://twitter.com/brad_frost

are larger grouped components that form a section of the interface. Your site banner

might also be an organism, combining a logo, navigation, and search form. I call

these next two stages “patterns” and “components,” but it’s recommended that you

work with your team to find terms you all understand clearly.

At this point, the developers of Atomic Design abandon their biochemical analogy,

and move to templates. Templates combine the smaller molecules and organisms

into actual layout structures. If you run a news site, you might have a list template

and a detail template for your articles. Each specific instance of a template is called

a page. The home page and archive page of your news site may both use the article-

list template, but they have different content. Pages are the most specific combination

of all the other stages.

A standard Atomic Design directory will be organized into these five stage-based

folders:

sass/
|
|– atoms/
| |– _colors.scss
| |– _buttons.scss
| …
|
|– molecules/
| |– _navigation.scss
| |– _search.scss
| …
|
|– organisms/
| |– _banner.scss
| |– _gallery.scss
| …
|
|– templates/
| |– _list.scss
| |– _detail.scss
| …
|
|– pages/
| |– _home.scss
| |– _archive.scss

Jump Start Sass122

| …
|
|- main.scss

Atomic Design also provides a framework called Pattern Lab15. As with OOCSS,

avoid confusing the framework with the design system philosophy. You can apply

the philosophy anywhere, but the tools are still available if you need them. Frame-

works can be a great way to keep code consistent across a large team or project, but

always remember that you know your project better than Brad Frost, Nicole Sullivan,

or the authors of this book. If there’s a conflict between your needs and the frame-

work you’re using, always put your project first.

Block, Element, Modifier (BEM)
BEM16 is a system developed by the Yandex17 team. This is a much more extensive

system, with its fingers in every aspect of your code—from JSON data structures,

to templates, as well as CSS.

The BEM CSS architecture is built around the three ideas in its title. Blocks are

components of any size, and can be nested inside each other. The header block

might contain a logo block, a navigation block, and a search block. Blocks are

reusable, independent, and mobile—so they can be put anywhere on the page, and

repeated as often as necessary. Elements are the constituent parts that belong to a

specific block. A menu block might be made up of four tab elements. Modifiers are

flags on blocks or elements that change their appearance, behavior, or state.

The most immediately recognizable aspect of BEM syntax is an intricate naming

convention that uses long class names instead of nesting selectors. Rather than tar-

geting .block .element, you would target .block__element. There are variations

on the exact syntax, but the formal documentation allow hyphens (-) within a block,

element, or modifier name; double underscore (__) between block and element

names; and single underscore (_) before a boolean (true/false) modifier, or between

a key-value modifier name and its given value.

15 http://patternlab.io/
16 https://en.bem.info/
17 https://www.yandex.com/

123Architecture

http://patternlab.io/
https://en.bem.info/
https://www.yandex.com/

Here’s an example straight from the BEM documentation that defines a form block

with a _login boolean modifier, a _theme_forest key-value modifier, and two

elements:

<form class="form form_login form_theme_forest">
 <input class="form__input">
 <input class="form__submit form__submit_disabled">
</form>

A related Sass partial would look like this:

.form {}

.form_theme_forest {}

.form_login {}

.form__input {}

.form__submit {}

.form__submit_disabled {}

When BEM naming became popular, people started using the Sass parent selector

(&) to automatically generate their BEM class names with less repetition in the code:

.form {
 border: 1px solid black;

 &__submit {
 background-color: green;

 &_disabled {
 background-color: gray;
 }
 }
}

.form {
 border: 1px solid black;
}
.form__submit {
 background-color: green;
}

Jump Start Sass124

.form__submit_disabled {
 background-color: gray;
}

On the surface, this works great—but it comes at the cost of searchability, as was

pointed out in Chapter 6. If another developer has to find the .form__submit_dis-

abled Sass in order to make a change, searching your Sass files for .form__sub-

mit_disabled will fail to return any results.

The BEM file structure goes beyond CSS and Sass, organizing all assets (JavaScript,

CSS, images, and so on) into shared directories by block. Elements and modifiers

have their own subdirectories using the same underscore-driven naming conventions:

blocks/
|- input/
| |- _type/
| | |- input_type_search.css
| |
| |- __box/
| | |- input__box.css
| |
| |- input.css
| |- input.js
|
|- button/
| |- button.css
| |- button.js
| |- button.png

Scalable and Modular Architecture for CSS (SMACSS)
SMACSS18 is a book, workshop, and philosophy by Jonathan Snook19. Like Atomic

Design, this architecture uses five categories for organizing your CSS, except that

they aren’t organized from small to large. Detailed naming patterns are provided to

help keep class names consistent. It’s one of the most popular brand-name architec-

tures, and may even be the most comprehensive.

18 https://smacss.com/
19 https://twitter.com/snookca

125Architecture

https://smacss.com/
https://twitter.com/snookca

The five categories here are base, layout, module, state, and theme. Base rules define

the default style of elements, which work similarly to the atoms of Atomic Design.

Layout styles are used to break the document into sections that can contain modules,

the individual components of a design. State rules define different JavaScript-de-

pendent states for a module or layout; that is, how does it change when it is active

or inactive, collapsed or expanded? Most sites have no need for themes, but they

can be used to describe multiple style options for the same modules.

In order to help keep CSS and HTML modules small and mobile, SMACSS pays

special attention to what Snook calls the depth of applicability. You may know of

the Sass “inception rule,” which states that you should never nest selectors more

than three layers deep. That rule helps to keep selectors short (no more than three

layers), but the depth of applicability is a bit different. Rather than counting the

number of layers, it counts the total DOM distance between the first and last layers.

Let’s look at a simple example. Since .mammalia > .primates > .hominidae >

.sapiens > .rollsman > .erin has a depth of six, the same basic selector written

as .mammalia .sapiens .erin would still have a depth of six. By shortening the

selector, we’ve lowered the specificity (a good thing!), but we still have a large depth

of applicability. The problem with so much depth is that it makes our CSS more

dependent on a particular HTML structure. This is generally solved by keeping our

HTML and CSS components small and independent from their containers.

Hugo’s 7-1
Hugo uses a variation of SMACSS for organizing Sass partials. He calls it the “7-120”

system, because it uses seven folders of partials and one master file to pull them all

together.

The base/ folder contains broad standards across a site—such as a reset, default

styles for common HTML tags, common animations, and basic typography. The

layout folder includes everything one might need for laying out the structure of a

site; for example, boilerplate-like headers, footers, and navigation, as well as your

grid system and layout helpers. The components folder is organized into partials by

component; the pages folder contains any page-specific styles; and a themes folder

holds any theme-related styles (if your project has multiple themes).

20 http://sass-guidelin.es/#the-7-1-pattern

Jump Start Sass126

http://sass-guidelin.es/#the-7-1-pattern

7-1 also includes an abstracts folder for Sass tools and helpers, which is organized

into partials for global variables, functions, mixins, and placeholders. Nothing in

this folder should output any CSS if compiled on its own.

Hugo leaves the possibility of organizing these partials by topic (typography, colors,

etc.) rather than type (variables, mixins, functions) for larger projects, but I recom-

mend that across the board. The topic is always the more important distinction in

my mind. Placeholders are the only type that I treat in any special way, because

their output remains in the location they are defined—while variables, functions,

and mixins create output where they are used.

Finally, there is a vendors folder for third-party libraries, frameworks, and toolkits

such as Normalize, Bootstrap, jQueryUI, FancyButtonsOMG, and so on. These are

often kept separate so as to not edit them should they need upgrading later.

Put it all together, and you have a Sass directory similar to this:

sass/
|
|– base/
| |– _reset.scss # Reset/normalize
| |– _typography.scss # Typography rules
| … # Etc.
|
|– components/
| |– _buttons.scss # Buttons
| |– _carousel.scss # Carousel
| |– _cover.scss # Cover
| |– _dropdown.scss # Dropdown
| … # Etc.
|
|– layout/
| |– _navigation.scss # Navigation
| |– _grid.scss # Grid system
| |– _header.scss # Header
| |– _footer.scss # Footer
| … # Etc.
|
|– pages/
| |– _home.scss # Home specific styles
| |– _contact.scss # Contact specific styles
| … # Etc.
|

127Architecture

|– themes/
| |– _theme.scss # Default theme
| |– _admin.scss # Admin theme
| … # Etc.
|
|– utils/
| |– _variables.scss # Sass Variables
| |– _functions.scss # Sass Functions
| |– _mixins.scss # Sass Mixins
| |– _helpers.scss # Class & placeholders helpers
|
|– vendors/
| |– _bootstrap.scss # Bootstrap
| |– _jquery-ui.scss # jQuery UI
| … # Etc.
|
`– main.scss # Main Sass file

Inverted Triangle CSS (ITCSS)
ITCSS21 is a new architecture that is just starting to gain attention. This system from

Harry Roberts22 does a great job defining the problem of CSS architecture and pro-

posing a solution that comes directly out of the CSS language. Rather than working

around inheritance and specificity, Roberts puts them at the center of his methodo-

logy.

ITCSS organizes all your Sass and CSS based on three metrics: reach, specificity,

and explicitness—visualized as an inverted triangle, as shown in Figure 9.2:

21 http://technotif.com/manage-large-css-projects-with-itcss/
22 https://twitter.com/csswizardry

Jump Start Sass128

http://technotif.com/manage-large-css-projects-with-itcss/
https://twitter.com/csswizardry

Figure 9.2. ITCSS’s inverted triangle

Code should be organized from least to most explicit, starting with general catch-

all rules (such as a reset) and moving up to more explicit styles (such as .contact-

form). Similarly, code is organized from broadest to narrowest reach—so that styles

affecting more HTML come early in the code, and styles with a more localized ap-

plication come later. Finally, code is organized from lowest to highest specificity,

so that later code can always override earlier code.

With those metrics in mind, the triangle is broken down into seven layers. Each

layer is more specific, explicit, and narrow-reaching than the layer before it, as

shown in Figure 9.3:

129Architecture

Figure 9.3. ITCSS’s layers

Let’s explore what these layers are in detail. Settings contains global Sass configur-

ation that can be accessed anywhere in the project, such as font sizes, colors, and

other project configuration. Tools are global functions and mixins that are helpful

across the project and not specific to one component. Generic is the first layer with

CSS output of its own, which includes browser resets or normalization, global box-

sizing, and any other broad-scoped rules. The elements layer provides default styles

for bare HTML elements such as links and paragraphs. It’s similar to the generic

layer, except that it provides a more opinionated style.

ITCSS objects are similar to OOCSS objects, and are defined in class-based selectors.

They define reusable patterns that have a consistent structure no matter what content

or cosmetic style is applied, just like the OOCSS media object does. Components

are recognizable pieces of an interface, such as a contact form or a product listing.

After the initial setup, this is where the majority of a project’s feature-building work

takes place. Finally, trump styles can be used to override any other layer. Trumps

should be used sparingly, and have as narrow a scope as possible.

Jump Start Sass130

All these layers can be organized into groups of partials. Roberts uses a multilevel

file-naming convention (layer-name.partial-name.scss), but we’d recommend

using folders instead. The results could look like this:

@import “settings/global”;
@import “settings/colors”;

@import “tools/functions”;
@import “tools/mixins”;

@import “generic/box-sizing”;
@import “generic/normalize”;

@import “elements/headings”;
@import “elements/links”;

@import “objects/wrappers”;
@import “objects/grid”;

@import “components/site-nav”;
@import “components/buttons”;
@import “components/carousel”;

@import “trumps/clearfix”;
@import “trumps/utilities”;
@import “trumps/ie8”;

Miriam’s Mix-n-Match
All that is well and good, but I’m writing this chapter and I think my own architec-

ture is way cooler than anything else we’ve discussed. I’m yet to give it a name, but

I will as soon as I decide to tour the universe giving workshops to all my adoring

fans. A girl can dream, right?

To tell you the truth, I love parts of all these systems—especially ITCSS. I take what

works for my team, and make adjustments as needed from one project to the next.

For me, it all starts with one rule: follow the cascade. In practice it looks a lot like

ITCSS or Atomic Design (though I find the latter’s biochemical metaphor confusing).

I use the same metrics, but break down the categories in slightly different ways.

I start with Sass config files that have no output but define all the parameters of a

design: colors, fonts, sizes, media-queries, z-indexes, and so on. In my case, it’s al-

131Architecture

most entirely Sass map variables accessed with a powerful set of functions and

mixins I take from project to project: OddBird’s23 Accoutrement toolkits. Chris

Sauvé24 refers to this approach as a “Sass Central Nervous System”—a consistent

system for maintaining and accessing abstract meta-patterns and style guidelines.

Ours look something like this:

// Accoutrement Config
// -------------------

$colors: (
 // base color palette
 'brand-blue': hsl(195, 100%, 43%),
 'brand-red': hsl(0, 100%, 50%),
 'brand-pink': hsl(330, 100%, 45%),

 // color style guide
 'background': hsl(0, 0%, 100%),
 'text': 'brand-blue' ('shade': 80%),
 'action': 'brand-pink',
 'focus': 'brand-blue',
);

$sizes: (
 // base font size
 'body-text': 22px,

 // type sizes
 'rhythm': 'body-text' ('minor-third': 2),
 'h1': 'body-text' ('minor-third': 3),
 'h2': 'body-text' ('minor-third': 2),
 'h3': 'body-text' ('minor-third': 1),

 // other
 'corners': 3px,
 'page': 30rem,
);

$fonts: (
 // hosted web font
 'body': (
 'name': 'CenturyOldStyle',

23 https://github.com/oddbird
24 https://twitter.com/lemonmade

Jump Start Sass132

https://github.com/oddbird
https://twitter.com/lemonmade
https://twitter.com/lemonmade

 'stack': ('Baskerville', 'Palatino', 'Cambria', 'Georgia',
➥ 'serif'),
 'regular': 'CenturyOldStyle-regular', // webfont file names...
 'italic': 'CenturyOldStyle-italic',
 'bold': 'CenturyOldStyle-bold',
),

 // web-safe font stack
 'code': (
 'name': 'Consolas',
 'stack': ('Menlo', 'Monaco', 'Lucida Console', 'Liberation Mono'
➥, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Courier New',
➥'monospace', 'serif')
),
);

The toolkit layer is prebuilt, and moves with us from project to project. It includes

functions and mixins that put our configuration to work: automating @font-face

imports, font-stacks, and typographical rhythms, as well as applying our color

palette. It also helps with accessible color contrasts, and automatically generates a

visual style guide, so we can see the fonts, colors, and sizes in action.

The next level up is what I call initial styles—resets, web font imports, global de-

faults, and so on. This is the first layer of code with actual CSS output, and it’s a

thin layer. At this point we’re not styling any real patterns, just trying to establish

a slightly more beautiful and branded version of the browser defaults.

From there I often establish the site layout, adding patterns as needed. The layout

partials are similar to Hugo’s, describing all the primary structures of the site. Pat-

terns are design objects, similar to objects in OOCSS and ITCSS. They’re not related

to specific content, and might be used anywhere, for anything. For example, buttons

and form elements are always some of my first design patterns on a project.

Patterns are abstract, and have no real meaning until they’re used in a compon-

ent—the actual bits of user interface that appear on a site. Components should follow

all the rules described earlier in the chapter: reusable, repeatable, and able to fit in

any container. What others systems call page and theme styles are usually defined

either as layout templates or components that just happen to be full screen. Any

vendor code that I use will come through a packaging system such as npm, and live

outside my visible Sass directory:

133Architecture

sass/
|
|– config/
| |– _colors.scss # Color palettes
| |– _fonts.scss # Font palettes
| … # Etc.
|
|– initial/
| |– _init.scss # reset/normalization
| |– _root.scss # global defaults (mostly :root, html, body)
| |– _webfonts.scss # @font-face imports
| … # Etc.
|
|– layout/
| |– _navigation.scss # Navigation
| |– _banner.scss # Site Banner
| … # Etc.
|
|– patterns/
| |– _buttons.scss # Buttons
| |– _dropdown.scss # Dropdown
| … # Etc.
|
|– components/
| |– _calendar.scss # Calendar widget styles
| |– _contact.scss # Contact form styles
| … # Etc.
|
|- main.scss # The primary Sass file to be compiled

Lately, I’ve also included a styleguide folder, and an extra styleguide.scss root

Sass file to be compiled separately. These files contain any styleguide-specific

components not required by the main app—styles for the color palette, font speci-

mens, and so on.

Modular Imports in Sass 4
As this chapter was being written, the core Sass designers, Natalie Weizenbaum

and Chris Eppstein, were working out the details for modular imports, the major

new feature that is driving plans for Sass 4. The specifics are still in flux, but the

direction they’re going in is exciting, so it’s worth giving you a sneak peak at what

they’ve done so far.

Jump Start Sass134

Modular imports are a move away from the CSS @import syntax towards one that

is more powerful and Sass-specific. Where Sass imports currently work as though

the entire imported document has been cut and pasted into place, modular imports

provide a lot more control for the developer—inspired by best practice in languages

such as Python and Dart. It will probably look a little like this:

@use 'path/to/sitepoint/author' as 'miriam';

.sitepoint {
 @include miriam.write('Jump Start Sass');
 -webkit-paycheck: miriam.money('millions');
}

Okay, there may not be a -webkit-paycheck property coming anytime soon, but

the rest looks good. So what’s it all about, and why do we need it?

Locality
With the current Sass import system, variables, mixins, and functions live in a

global namespace across all files; conflicts are common. It’s impossible to tell by

looking at a single Sass file what already exists in that global space; however, with

modular imports, nothing is made global unless I explicitly request it. The @use

directive will be visible at the top of any importing file, giving me a complete list

of available APIs and the power to namespace each however I see fit.

If you @use 'example/grids' as 'grid' at the top of a file, and the

example/grids.scss file contains a span() mixin and a gutter() function, then they

become available in your file as grid.span() and grid.gutter() (the . syntax is

still under discussion). The same will be possible with variables, so a $columns

variable would be available to as $grid.columns.

// example/grids.scss
@mixin span(…) { … }
@function gutter(…) { … }
$columns: 12;

// my-file.scss
@use 'example/grids' as 'grid';

.column {

135Architecture

 @include grid.span(5 of $grid.columns);
 margin-bottom: grid.gutter();
}

Sass will default to using the filename as a prefix if none is provided, and also allow

you to remove the prefix when you need to. It’s still not clear if prefixing will work

with placeholder selectors.

In addition to using a file with or without a given prefix, it might be possible to use

an entire file as a mixin, so you can apply the code of that file anywhere you

want—even in a nested context. The syntax is still under consideration, but it would

make the entire CSS contents (that are not wrapped in a mixin) available to you as

a single mixin.

Encapsulation
Modular imports will also give developers—especially library authors—more power

over their public API. Currently, when you load a Sass library such as Susy, you

gain access to pages and pages of undocumented functions that you’ll never use.

I’ve done my best to hide those functions behind long names like _susy-valid-

column-math, but they still clutter the global namespace unnecessarily. With encap-

sulation, you’ll have control over which mixins, functions, variables, and (possibly)

placeholders should be made public. Adding - or _ to the start of a name will define

it as private.

There is also talk of a @forward directive that would allow authors to pass the API

from one module along as part of another. If you wanted to build a Susy flexbox

extension, for example, you could tell your extension to forward the Susy API along

to your users.

All of this, of course, is still in the works, and likely to change before it becomes

available later in the year. I can’t wait to see how it turns out—in what ways it

changes Sass architecture, and helps the Sass ecosystem.

Wrapping Things Up
We’ve taken a fairly in-depth look at architecture for your Sass projects. We started

off by discussing @import, and seeing how you can use it to split your project code

into small logical units and organizing it across multiple files, partials and folders.

Jump Start Sass136

This forms the basis of any projects architecture. We then moved on to discuss a

whole range of architecture options; which you choose will depend on your own

projects and preferences. Finally we looked at future options for modular imports

that should be in Sass 4.

137Architecture

Chapter10
The Sass Ecosystem
In my mind, the Sass ecosystem is where it all comes together. If you ask the Sass

core developers, they’ll tell you that the community is where it all starts. Sass first

gained wide-spread attention when Chris Eppstein released Compass1 in 2009, a

project specifically designed to manage Sass packages and encourage open-source

Sass code-sharing.

At that time, code-sharing in CSS meant copy-pasting libraries of prebuilt class

names. Some people were sharing resets and grid systems, but that was about it.

Eppstein saw an opportunity for Sass to change that, and help bring open-source

collaboration to designers as CSS authors. And that, my friends, is the only reason

I’m writing this book today.

But community wasn’t the only drive behind Compass; it’s also become a cornerstone

philosophy in the Sass language design. As new features are added, Eppstein and

his colleague Natalie Weizenbaum regularly discuss how these will affect the ability

to share code and maintain consistency across Sass projects.

1 http://compass-style.org

http://compass-style.org

If you’re just starting with Sass, or looking for suggestions on how to use it, there’s

a thriving community of newsletters, blogs, and podcasts to which you can turn.

Sass News2, created by Stuart Robson3 and maintained by Jina Bolton4, is a monthly

email digest of Sass-related news. Sass Bites5 by Micah Godbolt6 is a podcast that

offers Sass demonstrations, tutorials, and interviews every Thursday at noon (Pacific

Time). The Sass Way7 is a community blog offering Sass tutorials and articles for

every level of experience. And, of course, many of the large web design sites (such

as SitePoint8 and CSS-Tricks9) provide regular Sass content as well. A quick web

search will turn up many more.

Open-source Sass
When I first discovered Sass in 2009, there were only a few open-source Sass projects

publicly available. Chris was working hard to change this, having just released

Compass. To show what could be done, he included two grid systems with Com-

pass—Sass ports of existing CSS grid systems: 960gs10, and Blueprint11—with a

few variables and mixins to make them customizable and semantic. Sass allowed

you to use a grid without all those ugly classes! Yes, at one point that seemed special.

The Sass ecosystem has come a long way since then. Now you can find Sass libraries

to help solve any number of common web design problems. Nearly 200 have been

collected on Sache12, a database of Sass extensions, and more are added regularly.

You can even add your own, which we’d recommend! But that’s the tip of the ice-

berg. The npm website shows almost 4,000 results for Sass, and GitHub returns over

14,000 results. It’s hard to say what the actual numbers are, but if you want to solve

a problem with Sass, you probably have several options from which to choose.

2 http://www.sassnews.com/
3 https://twitter.com/StuRobson
4 https://twitter.com/jina
5 https://www.youtube.com/user/sassbites
6 https://twitter.com/micahgodbolt
7 http://thesassway.com/
8 http://www.sitepoint.com/html-css/css/sass-css/
9 https://css-tricks.com/
10 http://960.gs/
11 http://www.blueprintcss.org/
12 http://www.sache.in/

Jump Start Sass140

http://www.sassnews.com/
https://twitter.com/StuRobson
https://twitter.com/jina
https://www.youtube.com/user/sassbites
https://twitter.com/micahgodbolt
http://thesassway.com/
http://www.sitepoint.com/html-css/css/sass-css/
https://css-tricks.com/
http://960.gs/
http://www.blueprintcss.org/
http://www.sache.in/

Whilst there are Sass libraries for everything, we can break them down into roughly

four categories. There are the big front-end frameworks that provide all the common

front-end patterns a site might need. The largest frameworks such as Bootstrap13

and Foundation14 take this to an extreme, providing Ikea-style website kits just

waiting to be assembled. They’re great if you’re after a fast and simple solution, but

as soon as you venture into unknown territory, you are on your own.

Many of the big frameworks are available in Sass, but a Sass framework generally

looks a bit different. Rather than providing fully realized front-end patterns, the

Sass frameworks provide all the Sass utilities and toolkits that you might need along

the way: helpers for layout, accessibility, typography, and so on.

There are also design component libraries that focus on providing specific styles,

such as glossy buttons or nice typography. These are often smaller and modular

tools, but they can be even more opinionated than the big frameworks because they

are trying to achieve a precise design outcome. They are useful if you have a look

that you want to achieve, and are unsure how to get there—or you just want to get

there quickly and consistently.

Finally, there are the abstract toolkit utilities that act more like a hammer: they’re

good at hitting things, but they don’t care what’s hit, or why. As a consultant, these

are my favorite tools, because I can take them from one project to the next without

any baggage or preconceptions. Most of the tools we’ve built fall into this category.

Toolkits are useful if you want to make certain tasks easier while still building

everything from scratch.

Those four categories aren’t mutually exclusive, but they can be helpful for thinking

about the code you depend on. One framework will often span all four categories,

and any project might depend on a mix. For me, a good set of utilities and toolkits

form the basis of every project—and usually follow me from one to the next. I use

design components and frameworks rarely, only when a project specifically calls

for it.

13 http://getbootstrap.com/
14 http://foundation.zurb.com/

141The Sass Ecosystem

http://getbootstrap.com/
http://foundation.zurb.com/

Frameworks
Compass15 was the first big Sass framework. It was primarily intended as a Sass

package manager, but also included a library of common utilities for other Sass

toolkits (Compass plugins) to reference. Compass provided a wide range of utilities,

but became most popular for its vast library of CSS vendor-prefixing mixins. Rather

than writing out all the prefixes for animation or learning each different linear-

gradient syntax, you could simply use the appropriate Compass mixin or function.

Compass has reached the end of its life and is no longer being actively maintained,

but ThoughtBot’s Bourbon16 provides a similar set of features. Both are Ruby gems:

gem install bourbon
gem install compass

And Bourbon is now also available as a Node package:

npm install bourbon

Both have been built around the official CSS3 syntax, so their APIs are often (but

not always) identical. For example, both can take the following animation keyframes:

@include keyframes(grow) {
 from {
 @include transform(scale(0));
 }
 to {
 @include transform(scale(1));
 }
}

And return efficiently prefixed CSS for every browser:

@-webkit-keyframes grow {
 from {
 -webkit-transform: scale(0);
 }

15 http://compass-style.org
16 http://bourbon.io/

Jump Start Sass142

http://compass-style.org
http://bourbon.io/

 to {
 -webkit-transform: scale(1);
 }
}

@keyframes grow {
 from {
 transform: scale(0);
 }
 to {
 transform: scale(1);
 }
}

Grids
Grid systems were quite popular when Sass first started to gain attention, and they

are prime candidates for Sassification. Early CSS grids had little or no flexibility

and involved bulky libraries of classes that were hard to read. Sass provided the

tools for improvements.

As far as we know, Susy17 was the first grid system for Sass. I originally designed

it to achieve Natalie Downe’s18 math-heavy layout system. Her approach could not

be represented in a CSS library, but was straightforward to replicate with Sass math.

Whilst never setting out to be a grid-system author, the first thing I ever did with

Sass was write the mixin that would later become Susy. Now a number of tools

exist that all provide roughly the same features, with slight variations.

Susy is focused on flexibility, because you know what your project needs better

than anyone else. While the quickest entry point for Susy is the span(..) mixin,

its true power comes from the similarly named span(..) function and gutter(..)

companion. The mixin provides float-based output, but the functions can be used

anywhere to create any style of grid you can imagine; for example:

// Susy configuration:
$susy: (
 columns: 12, // the number of columns in a grid

17 http://susy.oddbird.net/
18 http://blog.natbat.net/post/46614243624/css-systems

143The Sass Ecosystem

http://susy.oddbird.net/
http://blog.natbat.net/post/46614243624/css-systems

 gutters: 1/4, // the size of a gutter relative to a column
);

// Span mixin:
article {
 @include span(8 of 12);
}

// Susy functions:
aside {
 flex: 1 1 span(4 of 12);
 margin-left: gutter();
}

/* Compiled CSS */
article {
 width: 66.10169%;
 float: left;
 margin-right: 1.69492%;
}

aside {
 flex: 1 1 32.20339%;
 margin-left: 1.69492%;
}

Susy is available through Ruby gems, Bower, npm, and GitHub. Susy Three19 is

well underway at this point, with plans to simplify the configuration options and

focus even more on the core functions—moving opinionated output into optional

plugins.

Singularity20 started with a strong focus on asymmetrical grids (columns not neces-

sarily being all the same size), and has grown into a powerful and well-rounded

grid toolkit. Created by Scott Kellum21, and maintained by Sam Richard22, Singu-

larity explicitly manages the relationship between media queries and grids, asking

you to define both up front.

19 https://GitHub.com/oddbird/susy/tree/threeish
20 https://github.com/at-import/Singularity/wiki
21 https://twitter.com/ScottKellum
22 https://twitter.com/Snugug

Jump Start Sass144

https://GitHub.com/oddbird/susy/tree/threeish
https://github.com/at-import/Singularity/wiki
https://twitter.com/ScottKellum
https://twitter.com/Snugug

Singularity uses two primary values to define your grid: grids and gutters. At

first, they seem similar to Susy’s columns and gutters. Grids are defined with a

unitless number of columns, or a list of unitless asymmetrical column sizes. Gutters

are also defined with a unitless number, describing the ratio of a gutter to a single

column. They are defined using the add-grid(..) and add-gutter(..) mixins:

// Symmetrical
@include add-grid(12); // 12 columns
@include add-gutter(1/4); // gutters are 1/4 the size of a column

// Asymmetrical
@include add-grid(1 3 5 7); // 4 uneven columns, sized relative to
➥each other
@include add-gutter(0.25) // gutters are sized relative to
➥column-sizes

And that’s where the similarities end. Singularity allows you to add new grids at

explicit breakpoints:

@include add-grid(3);
@include add-grid(6 at 500px);
@include add-grid(1 3 5 7 at 900px);

@include add-gutter(1/3);
@include add-gutter(.25 at 900px);

Of course, Sass is unaware of the DOM, but if you use the Breakpoint plugin for

media queries (see the next section), Singularity does know when it’s being used

inside a breakpoint that matches your description.

Media Queries
With the popularity of responsive design came a boom in the development of media

query handling tools. Since media queries in CSS require a limited amount of repe-

tition or prefixing, these tools mainly help to store and organize common breakpoints,

providing syntax sugar along the way. They also have fallback options for (increas-

ingly rare) browsers without support for media queries.

145The Sass Ecosystem

The first major media query plugin we knew about was Breakpoint23, from Mason

Wendell24 and Sam Richard. Breakpoint starts by providing a sparse syntax for the

most common min/max queries:

.mason::after {
 @include breakpoint(400px) {
 content: 'A single number is used as a min-width.';
 }

 @include breakpoint(400px 900px) {
 content: 'A pair of numbers are used for min- and max-width.';
 }

 @include breakpoint('height' 300px 500px) {
 content: 'You can also be explicit about the property, such as
➥ height.';
 }
}

@media (min-width: 400px) {
 .mason::after {
 content: 'A single number is used as a min-width.';
 }
}

@media (min-width: 400px) and (max-width: 900px) {
 .mason::after {
 content: 'A pair of numbers are used for min- and max-width.';
 }
}

@media (min-height: 300px) and (max-height: 500px) {
 .mason::after {
 content: 'You can also be explicit about the property, such as
➥ height.';
 }
}

The Breakpoint syntax expands from there to include every complex media query

type you can imagine. It also furnishes several options for browser fallbacks in the

23 https://github.com/at-import/breakpoint/wiki
24 https://twitter.com/codingdesigner

Jump Start Sass146

https://github.com/at-import/breakpoint/wiki
https://twitter.com/codingdesigner
https://twitter.com/codingdesigner

original file, or separately. Perhaps most interesting (though I’d be pressed to name

a use case), you can access details about the current media query at any time:

.sam::before {
 @include breakpoint(700px (orientation landscape)) {
 content: 'orientation: ' + breakpoint-get-context('orientation');
 content: 'min-width: ' + breakpoint-get-context('min-width');
 content: 'max-width: ' + breakpoint-get-context('max-width');
 }
}

@media (min-width: 700px) and (orientation: landscape) {
 .sam::before {
 content: "orientation: landscape";
 content: "min-width: 700px";
 content: "max-width: false";
 }
}

Eduardo Bouças25 has his own take on media queries (with help from Hugo), called

include-media26. Include-media starts with a map of predefined breakpoints, then

uses >, <, =, and other comparison characters to turn them into full queries rendered

by the media(..) mixin. Include-media also supplies built-in keywords for orient-

ation, resolution, and media categories:

$breakpoints: (
 turtle: 320px,
 dog: 768px,
 giraffe: 1024px
);

.eduardo::before {
 @include media(">turtle", "<=dog") {
 content: 'Larger than turtle (320px), but smaller or equal to

25 https://twitter.com/eduardoboucas
26 http://include-media.com/

147The Sass Ecosystem

https://twitter.com/eduardoboucas
http://include-media.com/

➥ dog (768px)';
 }
}

@media (min-width: 321px) and (max-width: 768px) {
 .eduardo::before {
 content: 'Larger than turtle (320px), but smaller or equal to
➥ dog (768px)';
 }
}

For my work, I rarely need anything as powerful as Breakpoint or include-media;

it’s mainly about keeping all my configurations in one place. I use a map like

Eduardo’s, with a set of “prepositional” mixins (above(..), below(..), and

between(..)) to cover the common cases. Breakpoints can be set explicitly, but

because I’m using Accoutrement-Layout27 along with Accoutrement-Scale28, I can

instead reference layout sizes directly where they’re defined:

// Layout Sizes
$sizes: (
 'page': 40em, // the max-width of my layout container
);

// Special Breakpoints
$breakpoints: (
 'toolbar-text': 15em, // a breakpoint for showing text beside
➥ toolbar icons
);

// Accoutrement Usage
.miriam {
 @include above('toolbar-text') {
 .toolbar-text { display: inline-block; }
 }

 @include below('page') {

27 http://oddbird.net/accoutrement-layout/sassdoc/
28 http://oddbird.net/accoutrement-scale/sassdoc/

Jump Start Sass148

http://oddbird.net/accoutrement-layout/sassdoc/
http://oddbird.net/accoutrement-scale/sassdoc/

 padding: 1em;
 }
}

Toolkits
The best Sass libraries are the utility toolkits that help you write better Sass without

any opinion on the output styles you’re creating. The popular Modular Scale29

plugin from Scott Kellum helps you define “modular typographic scales” and access

them across your project. Modular Scale configuration starts with two variables:

$ms-base: 1em;
$ms-ratio: $golden;

The $ms-base variable defines the starting point of the scale, while $ms-ratio

defines the ratio between numbers. Modular Scale includes a long list of prenamed

ratios, such as the default golden ratio, which represents a ratio of 1:1.618. Starting

with those defaults, the modular scale looks like this:

1em->1.61803em->2.61803em->4.23607em->6.8541em->11.09017em…

You can use the ms(..) function to access numbers up and down the scale, with a

0 index for the base number. Calling ms(1) will return 1.61803em, ms(2) will return

2.61803em, and so on. Modular Scale also allows you to start from multiple base

numbers and intertwine multiple ratios for a more dense scale. There is also an ms-

respond(..) mixin that will automatically adjust your font sizes across a range of

the scale, from one predefined breakpoint to another.

Mathematical Constants Are Not Prefixed

Unlike other variables from Modular Scale, $golden is not prefixed with $ms-

because it is a mathematical constant, and therefore does not need to namespaced.

29 https://github.com/modularscale/modularscale-sass

149The Sass Ecosystem

https://github.com/modularscale/modularscale-sass

Sassdash30, an interesting utility by David Khourshid31, is a Sass implementation

of the popular lodash32 JavaScript library. It’s a high-level utility, designed to help

toolkit authors write complex Sass more easily. If you’re used to lodash, it should

be known territory, as nearly the entire library has been ported. I’m unfamiliar with

lodash, and this library is so vast it’s hard to know where to start. Here’s one clever

function that plucks values from multiple maps based on a shared key:

$authors: (
 ('name': 'Hugo', 'origin': 'France'),
 ('name': 'Miriam', 'origin': 'Lesotho')
);

$origins: _pluck($authors, 'origin'); // ('France', 'Lesotho')

David also built Sassport33, a toolkit for sharing JavaScript functions and values

with your Sass. For example, you might define your color palette in JavaScript:

// my-colors.js
module.exports = {
 primary: '#C0FF33',
 secondary: '#BADA55'
};

And then access it in your Sass:

// stylesheet.scss
$colors: require('path/to/my-colors');
$primary: map-get($colors, 'primary');

Sassport is able to recognize different Sass data types (strings, maps, colors, and so

on), and make the correct choice for translating data between JavaScript and Sass.

You can also write JavaScript functions such as this one for the size of an image:

30 https://github.com/davidkpiano/sassdash
31 https://twitter.com/DavidKPiano
32 https://lodash.com/
33 https://github.com/davidkpiano/sassport

Jump Start Sass150

https://github.com/davidkpiano/sassdash
https://twitter.com/DavidKPiano
https://lodash.com/
https://github.com/davidkpiano/sassport

// index.js
var sassport = require('sassport');
var sizeOf = require('image-size');

sassport()
 .functions({
 'size-of($path)': sassport.wrap(function(path) {
 return sizeOf(path);
 }, { unit: 'px' })
 });

Now you can use that JavaScript function inside your Sass:

// stylesheet.scss
$image-size: size-of('miriam.png');

// resulting map:
$image-size: (
 'width': 145px,
 'height': 175px,
);

At OddBird, we use a set of modular but interconnected toolkits that we call Ac-

coutrement34. The primary Accoutrement modules handle color and sizing

palettes, providing a central configuration and functions for accessing those settings

across a project.

Accoutrement-Color35 starts with a map of colors to be used in the project. I like

using maps to collect all my related values into one place, rather than having sixteen

different variables. If we named sixteen color variables $color-pink, $color-red,

and so on, we could see that they’re related, but Sass doesn’t know that. Putting

them together in a map tells Sass that they’re part of a single system, so we can loop

through them in Sass. This is a feature I use regularly, especially when creating

visual styleguides.

The downside is that map values are unable to easily reference other values in the

same map. The following will fail to work because the $colors variable is yet to

34 http://oddbird.net/accoutrement/
35 http://oddbird.net/accoutrement-color/sassdoc/

151The Sass Ecosystem

http://oddbird.net/accoutrement/
http://oddbird.net/accoutrement/
http://oddbird.net/accoutrement-color/sassdoc/

actually exist at declaration time when we are trying to access it in the tint(..)

function:

// Maps can't reference themselves …
$colors: (
 'pink': hsl(330, 100%, 45%),
 'callout': tint(map-get($colors, 'pink'), 90%),
);

The accoutrement toolkits work around this by describing relationships in a consist-

ent syntax and then resolving them at runtime. Here’s the color map for my personal

website:

$colors: (
 // brand colors
 'light': #fff,
 'gray': hsl(0, 0%, 50%),
 'blue': hsl(195, 100%, 43%),
 'red': hsl(0, 100%, 50%),
 'pink': hsl(330, 100%, 45%),

 // site palette
 'primary': 'pink',
 'background': 'light',
 'text': 'gray' ('shade': 50%),

 'callout': 'primary' ('tint': 90%),
 'accent': 'blue' ('shade': 15%),

 'action': 'primary',
 'focus': 'accent',
 'overlay': 'background' ('rgba': 0.9),
 'shadow': 'text' ('rgba': 0.75),

 'title': 'action' ('shade': 15%),
 'border': 'title',
);

Then we use a color(..) function that is intelligent about accessing the map recurs-

ively (to follow each reference) and resolving the adjustments called for. Each ad-

justment includes the name of a color-adjustment function defined in Sass (e.g.

rgba(..)) or elsewhere in Accoutrement-Color (e.g. tint(..) and shade(..)), and

Jump Start Sass152

the necessary arguments to pass in addition to the color being adjusted. So col-

or('text') will start by finding the value of gray (hsl(0, 0%, 50%)) and then

calling shade(hsl(0, 0%, 50%), 50%) to return the result.

Accoutrement-Color also provides luminance and contrast tools based on the

WCAG36 guidelines for accessible color contrast. The contrast(..) function will

return the best contrast from a list of options, while the contrasted(..) mixin

outputs a background color with the best-contrasted text

// Sass input

.contrast {
 // get best contrast for 'pink' from either 'background' or 'text'
 color: contrast('pink', 'background', 'text');
}

.contrasted {
 @inlcude contrasted('pink', 'background', 'text');
}

/* CSS output */
.contrast {
 color: #fff;
}

.contrasted {
 background-color: hsl(330, 100%, 45%);
 color: #fff;
}

Accoutrement-Scale37 works similarly, but describes common sizes to be used in

a project: from font sizes and line-heights, to columns, gutters, border widths, and

layout element widths. All of them can be defined explicitly or using a modular

scale (based loosely on Scott Kellum’s Modular Scale), and accessed in any compar-

able units. The font-size(..) function sets both font size and line heights based

on the defined scale, and the size(..) function allows you to access any size on

the fly.

36 https://www.w3.org/WAI/intro/wcag
37 http://oddbird.net/accoutrement-scale/sassdoc/

153The Sass Ecosystem

https://www.w3.org/WAI/intro/wcag
http://oddbird.net/accoutrement-scale/sassdoc/

Accoutrement-Layout38 provides media query tools that tie into existing scales,

with additional tools for managing z-index, box-sizing, positioning, and other

common layout issues. Accoutrement-Type39 lets us define all our web fonts in one

map and import them automatically with a single call to @include import-webfonts.

Then font stacks can be applied with a call to @include font-family('myFont').

All the accoutrements play nicely together, so much so that we’re working on a

SassDoc-based living styleguide generator called Herman40 to bring them all together

(see later in the chapter for more on SassDoc).

Beautiful Code
Clean, beautiful code should be a goal in every project. If other developers need to

make a change, they should be able to read what is there and understand it. Readable

code is the core of maintainability, and the first step towards readable code is a

good linter. Like a good spell-checker, the linter should catch all your small typos

and formatting mistakes, so it’s not left to others to do so. It’s the first line of defense

before a good code review with other developers.

There are several great linters for Sass: scss-lint41 is a Ruby gem, and the newer

sasslint42 and stylelint43, which are npm packages for Node. Both allow you to

configure linting rules for your project, such as maximum nesting levels, leading

zeros on decimals, and organization of properties in a block. You can even create

your own rules as needed.

Sass Guidelines44 are handy for organizing your project, setting up your linters,

establishing naming conventions, and so on. Written by Hugo, it’s an opinionated

styleguide for your code; it might not all work for you, but it’s a great place to start.

If you’re using Sass variables, functions, and mixins, it’s recommended that you

document how they work. Toolkit authors will find it particularly important, but

anyone who has extensive tooling built into their projects should also consider

38 http://oddbird.net/accoutrement-layout/sassdoc/
39 http://oddbird.net/accoutrement-type/sassdoc/
40 https://github.com/oddbird/sassdoc-theme-herman
41 https://github.com/brigade/scss-lint
42 https://github.com/sasstools/sass-lint
43 http://stylelint.io/
44 http://sass-guidelin.es/

Jump Start Sass154

http://oddbird.net/accoutrement-layout/sassdoc/
http://oddbird.net/accoutrement-type/sassdoc/
https://github.com/oddbird/sassdoc-theme-herman
https://github.com/brigade/scss-lint
https://github.com/sasstools/sass-lint
http://stylelint.io/
http://sass-guidelin.es/

documentation for their team. Another great tool from Hugo is SassDoc45, an npm

package that parses your Sass comments and generates a beautiful static site with

your documentation.

Here’s the SassDoc comment for our tint(..) function in Accoutrement-Colors. It

starts with a general description, and then explicitly documents each parameter

and the expected return:

/// Mix a color with `white` to get a lighter tint.
///
/// @param {String | list} $color -
/// The name of a color in your palette,
/// with optional adjustments in the form of `(<function-name>:
➥ <args>)`.
/// @param {Percentage} $percentage -
/// The percentage of white to mix in.
/// Higher percentages will result in a lighter tint.
///
/// @return {Color} -
/// A calculated css-ready color-value based on your global color
➥ palette.
@function tint(
 $color,
 $percentage
) {
 /* … */
}

Using the default theme (from which there are several to choose, or you can design

your own), SassDoc converts that comment into a static website, as shown in Fig-

ure 10.1.

45 http://sassdoc.com

155The Sass Ecosystem

http://sassdoc.com

Figure 10.1. SassDoc Output

Testing is also important if you are doing anything complex with functions or

mixins. It’s a good way to ensure your code won’t break any time you make adjust-

ments, but it can also be helpful in developing new features. If you write the tests

first, you’ll know exactly if the feature works correctly when your tests pass!

True46 is a unit-testing toolkit from yours truly, written in pure Sass so that it works

anywhere Sass is compiled. The core testing happens in assertion functions: assert-

equal(..), assert-unequal(..), assert-true(..), and assert-false(..). These

are organized into tests, and can be grouped in test modules. Here’s an example of

True testing our tint(..) function:

@include test-module('Tint [function]') {
 @include test('Adjusts the tint of a color') {
 @include assert-equal(
 tint('primary', 25%),
 mix(#fff, color('primary'), 25%),

46 http://oddbird.net/true/

Jump Start Sass156

http://oddbird.net/true/

 'Returns a color mixed with white at a given weight.');
 }
}

When compiled, True will output CSS comments with detailed results, and warn

you in the console if any tests fail:

/* # Module: Tint [function] */
/* ------------------------- */
/* Test: Adjusts the tint of a color */
/* ✔ Returns a color mixed with white at a given weight. */

/* … */

/* # SUMMARY ---------- */
/* 16 Tests: */
/* - 14 Passed */
/* - 0 Failed */
/* - 2 Output to CSS */
/* -------------------- */

What does it mean that two tests were “output to CSS” in this example? Those tests

aren’t shown, but they are testing mixin output. Using pure CSS, True can only

confirm the results of function tests, so mixin tests are simply output to the CSS

where they can be compared manually (gross) or with a CSS parser (better!). To

make that easy, True integrates with JavaScript test runners such as Mocha47, and

has a Ruby command line interface written by Scott Davis48. Either one will parse

the CSS output completely, including the output from mixins, and give you full

results for both function and mixin tests:

Luminance [function]
 ✓ Returns luminance of a color

Contrast Ratio [function]
 ✓ Returns contrast ratio between two colors

Contrast [function]
 ✓ Dark on light

47 https://mochajs.org/
48 https://twitter.com/jetviper21

157The Sass Ecosystem

https://mochajs.org/
https://twitter.com/jetviper21

 ✓ Light on dark
 ✓ Default light fallback
 ✓ Default dark fallback
 ✓ Multiple contrast options

contrasted [mixin]
 ✓ Dark on light
 ✓ Light on dark

Tint [function]
 ✓ Adjusts the tint of a color

Shade [function]
 ✓ Adjusts the shade of a color

Color [function]
 ✓ Named color
 ✓ Referenced color
 ✓ Adjusted color
 ✓ Complex nesting of colors
 ✓ Multiple adjustment function arguments

16 passing (11ms)

Package Managers
There is no one way to share (or use) third-party Sass code, but there are several

popular package managers that can be helpful. You can always copy and paste Sass

into place, but that leaves you disconnected from the source. One of the advantages

of using third-party code is that others help you update and maintain it. If you copy

and paste third-party code, you’re on your own. No one can send you bug fixes,

patches, and updates.

You can also use a version control system such as git to download packages directly

from an online repository like GitHub. That’s a step in the right direction because

now your copied code is linked back to its origin. You’re part of a community!

Package managers take that one step further, allowing you to manage and update

all your dependencies in one place. In the days before LibSass, most Sass libraries

Jump Start Sass158

were distributed as Ruby Gems49 and often managed through a tool such as Bund-

ler50. Many Sass libraries are still available as gems, but it’s becoming more common

to see npm (and occasionally Bower) packages, since everyone has JavaScript in

their stack already. Popular libraries are often available through all the major

packaging systems.

If you’re using RubyGems, Compass provides extra package management features

specifically for Sass libraries. This allows those libraries to automatically register

with the Sass compiler and provide static assets (JavaScript, images, and so on) in

addition to Sass.

To package your library as a gem, you’ll need a gemspec file in your project’s root

directory. A gemspec looks a little like this:

miriam.gemspec
Gem::Specification.new do |s|
 s.name = 'miriam'
 s.version = '0.1.0'
 s.licenses = ['MIT']
 s.summary = "A Sassy toolkit named after me."
 s.authors = ["Miriam Suzanne"]
 s.email = 'miriam@oddbird.net'
 s.files = Dir.glob("lib/*.*")
 s.files += Dir.glob("sass/**/*.*")
 s.homepage = 'http://oddbird.net/'
end

Making your gem self-register with Sass requires a Ruby lib file as well. Here’s some

code I copy from one project to another, changing the names as necessary. It starts

by registering with Compass if it’s available, otherwise it uses an environment

variable. Not sure what that all means? Don’t worry—I do it without knowing any

Ruby, and just reading directions and copy-pasting code from other Sass libraries:

lib/miriam.rb
miriam_stylesheets_path = File.expand_path(File.join(File.dirname
➥(__FILE__), '..', 'sass'))
ENV['SASS_PATH'] ||= ''

49 https://rubygems.org
50 http://bundler.io/

159The Sass Ecosystem

https://rubygems.org
http://bundler.io/
http://bundler.io/

begin
 require 'compass'
 ENV['SASS_PATH'] = ENV['SASS_PATH'] + File::PATH_SEPARATOR +
➥ Compass.configuration.sass_load_paths.join(File::PATH_SEPARATOR)
rescue LoadError
end

Compass not found, register on the Sass path via the environment.
ENV['SASS_PATH'] += File::PATH_SEPARATOR + miriam_stylesheets_path

If you’re packaging for Compass, you can also add a short Compass lib file:

lib/compass-miriam.rb
require 'miriam'

With miriam.gemspec and your lib files in place, you can run gem build miri-

am.gemspec to build the package, and gem push miriam-0.1.0.gem to make it

available online. Using a release naming pattern such as SemVer51 will help your

users understand what’s contained in each release.

Packaging with npm or Bower is simpler, in my opinion. Bower is an npm package

itself, so either way you’ll start by installing Node52 and npm. With that in place,

both require slight variations on a JSON file (package.json or bower.json), which will

be created for you if you run npm init or bower init and answer the required

questions. If you register on the respective sites, you can then bower register (a

one-time command) or npm publish (every time you release a new version). Bower

doesn’t require version updates because it relies on GitHub tags instead.

Bower users can install your package with something along the lines of bower in-

stall miriam, and npm users can npm install miriam. Your package will be

downloaded into their bower_components/ or node_modules/ folders, respectively.

Eyeglass53 is a more trimmed down Sass package manager that Chris Eppstein (the

creator of Compass) has been working on. It uses npm in place of Ruby Gems, since

the community is moving in that direction with LibSass. To mark your library as

51 http://semver.org/
52 https://nodejs.org/en/
53 https://github.com/sass-eyeglass/eyeglass

Jump Start Sass160

http://semver.org/
https://nodejs.org/en/
https://github.com/sass-eyeglass/eyeglass

an Eyeglass module, add eyeglass-module as a keyword in your npm package.json

file, along with a brief eyeglass block:

{
 …
 "keywords": ["eyeglass-module", "sass", …],
 "eyeglass": {
 "name": "miriam", # the name of your module
 "needs": "^0.6.0" # the version of eyeglass required
 },
 …
}

Eyeglass also allows you to extend Sass with JavaScript functions and pass along

static assets. The tool is still pre-1.0, but there are a number of interesting features

on the way, so it’s worth keeping an eye on.

There’s no right answer for code-sharing and package managers, but as community

is the goal, try to go along with the crowd on these decisions. Look around to see

what your community is doing, and follow suit.

A Sassy Wrap!
This is a lot of information to digest—so we recommend forgetting all of it. Go grab

a cookie, make yourself some tea, and start playing around with live code on Sass-

meister54 or CodePen55. The Web is a young field, and Sass an even younger lan-

guage—there is plenty to explore!

You don’t have to design Twittstrap and have a million followers to be an active

part of the community. Start by playing around, looking for better solutions to the

problems you face every day. For me, Sass toolkits are the byproduct of my work.

Whenever I notice my code becoming repetitive or difficult to maintain, I look for

the patterns. Often, my first solution to a problem is over-engineered, over-opinion-

ated, and over-specific—but after using it for a while, I’m able to trim it down to

the essence.

54 http://www.sassmeister.com/
55 http://codepen.io/

161The Sass Ecosystem

http://www.sassmeister.com/
http://www.sassmeister.com/
http://codepen.io/

Start by solving your own problems using other people’s solutions as a reference

point. Then share your solutions, and receive feedback. This book’s authors (Hugo56

and Miriam57) are both on Twitter, as are the core Sass designers (Natalie Weizen-

baum58 and Chris Eppstein59) and the rest of the community. Talk to us! Share your

toys! We’re excited to see what you build.

56 https://twitter.com/hugogiraudel
57 https://twitter.com/mirisuzanne
58 https://twitter.com/nex3
59 https://twitter.com/chriseppstein

Jump Start Sass162

https://twitter.com/hugogiraudel
https://twitter.com/mirisuzanne
https://twitter.com/nex3
https://twitter.com/nex3
https://twitter.com/chriseppstein

	Jump Start Sass
	Table of Contents
	Foreword
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to take your learning further?

	Hello World!
	CSS in Modern Front-end Development
	What is Sass?
	What is preprocessing?
	The Tale of Two Syntaxes
	LibSass
	Alternative Processing Tools

	Getting Started
	Ruby Sass
	Installing Ruby
	Installing Sass
	Using Sass

	LibSass (with node-sass)
	Installing Node.js
	Installing node-sass
	Using Sass

	Wrapping Things Up

	Variables
	Data Types
	Strings
	Numbers
	Units

	Colors
	Booleans
	The not Keyword

	Null
	Lists
	Maps

	Scope
	The !global Flag
	The !default Flag

	Interpolation
	Creating Meaningful Variables
	CSS Custom Properties or Sass Variables
	Wrapping Things Up

	Functions and Mixins
	Functions
	Parameters
	Usage
	Arguments List
	Functions for Asset Management: a Case Study
	Native Functions

	Mixins
	Parameters
	Inner Content

	Wrapping Things Up

	Loops and Conditions
	Conditions
	Multiple Conditions
	Conditional Operators
	Ternary Functions

	Loops
	The for-loop
	The each-loop
	The while-loop

	Wrapping Things Up

	Nesting
	Selector Nesting
	Variable Scoping
	The Ampersand Selector

	Context Nesting
	The @at-root Directive

	Property Nesting
	Best Practices and Nesting Etiquette
	Wrapping Things Up

	The @extend Directive
	Building Clear Relationships
	Extending Utilities
	The Placeholder (Extend-only) Selector
	Advanced Extending
	Nesting Extends
	The Limits of Extending
	Confusing Cascade
	Collateral Damage
	Hard-to-Read Output
	Media Query Madness
	Dependable Mixins

	Wrapping Things Up

	Warnings and Errors
	Warnings
	The Difference between @warn and @debug

	Errors
	Wrapping Things Up

	Architecture
	Multiple Files and Folders
	CSS Imports
	Sass Imports and Partials

	Components and Organization
	Object-oriented CSS (OOCSS)
	Atomic Design
	Block, Element, Modifier (BEM)
	Scalable and Modular Architecture for CSS (SMACSS)
	Hugo’s 7-1
	Inverted Triangle CSS (ITCSS)
	Miriam’s Mix-n-Match

	Modular Imports in Sass 4
	Locality
	Encapsulation

	Wrapping Things Up

	The Sass Ecosystem
	Open-source Sass
	Frameworks
	Grids
	Media Queries
	Toolkits
	Beautiful Code
	Package Managers
	A Sassy Wrap!

