
by Andy Hawthorne

GET UP TO SPEED WITH RAILS IN A WEEKEND

JU
M

P START : R
AILS

H
aw

thorne

In just a few short years, Ruby on Rails has grown from cool, hipster upstart 
to global powerhouse. Developers around the world are passionate about 
Rails, and with good reason. 

Why learn Rails? 

USD $29.95 CAD $29.95 

WEB DEVELOPMENT

Print: 978-0-9874674-2-3

Ebook:  978-0-9874674-3-0 RailsRailsAndy Hawtthorne is a freelance writer and web 
developer from Coventry, England. He has spent 12 
years as a web developer, and still likes trying new 
web coding technologies.

Andy Hawthorne

WHY YOU NEED TO READ THIS BOOK TODAY

 � BUILD FAST:  With  60,000+ ready-to-go Ruby Gems, powerful, new functionality is a never more 

than a few keystrokes away.

 � DISCOVER:  Test Driven Development for better programming practices

 � SCALE APPS:  Look at Github, Twitter, Hulu and Penny Arcade. All huge. All successful. All Rails.

 � GET HIRED:  Just look at any job board, there’s massive demand for Rails developers. 

In Jump Start: Rails you’ll learn about Ruby and Model-View-Controller 
architecture, how to build a Rails application, and to deploy it using Heroku. 

It’s time to jump on board the Rails train!



JUMP START RAILS
BY ANDY HAWTHORNE



Jump Start Rails
by Andy Hawthorne

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Glenn Goodrich

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9874674-2-3 (print)

ISBN 978-0-9874674-3-0 (ebook)

Printed and bound in the United States of America

ii



About Andy Hawthorne

Andy is a freelance writer and web developer from Coventry, England. He has spent 12 years

as a web developer, and still likes trying new web coding technologies.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

iii

http://www.sitepoint.com/




To my wife Mary— without her

never-failing love and support I'd

never get anything finished. And

to my Dad, who inspired me to

write in the first place.





Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Who Should Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Conventions Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Code Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Tips, Notes, and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Do you want to keep learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Getting on Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Do I need to know Ruby? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

What You'll Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Rails Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Rails and MVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Installing Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Installing Rails on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Installing on GNU Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Installing Rails on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Some Other Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

rbenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Installing Ruby Gems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A Word about Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Starting an App . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Data First? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Hello, World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A Simple App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The Project Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Generating a Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Some Notes About the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Template Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Setting the Default Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Creating a Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Some Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Some Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Putting up Some Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Generating a Scaffold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Active Record Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Test Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

The Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Tests Rails Has Already Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Unit Testing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Creating a Layout with Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Install the Gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Connect the Bootstrap Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Refining the Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Some Notes about the Rails Asset Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 3 Working with Data . . . . . . . . . . . . . . . . . . . . . . 57

Starting the App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Little Bit of Planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



Generating a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Adding Some Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Adding a Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Adding Another Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Creating an Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Some Rails Routing Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Adding a Test for Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Installing ActiveAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 4 Creating an ActiveAdmin
Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Creating Admin Functionality Manually . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Creating a New Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Showing Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Creating Resources with ActiveAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Back to the Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Editing the Pages Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A New Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

An Additional Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Adding Recent Posts to the Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Controlling Fields on the Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Extra Functionality with Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 5 Adding More Features . . . . . . . . . . . . . . . . 109

The FriendlyId Gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Managing Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



Installing the Gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Using the Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Creating an Uploads Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Updating the Post Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Uploading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Displaying Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Creating Thumbnail Images on the Fly . . . . . . . . . . . . . . . . . . . . . . 122

Uploading to S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Creating a Layout with Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Custom Helper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Changing the Posts Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Updating the Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Controlling Images in the Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Chapter 6 Deploying to Heroku . . . . . . . . . . . . . . . . . . . 141

Using Partials to Add a Twitter Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Dash of CoffeeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Watch out for Those Turbolinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Adding the Portfolio (or Other Content) Section . . . . . . . . . . . . . . 151

Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Hello, Heroku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Working with Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Adding a Custom Domain Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Finally... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

x



Preface
Ruby on Rails was created in 2003 by David Heinemeier Hansson. Since then it has

been extended by more than 21,000 contributors.

Rails was always intended to make web development a much slicker process than

was previously available with other technologies. It doesn't require thousands of

lines of code to get common functionality built into your apps. Rails uses the concept

of "convention over configuration", meaning that many of the common tasks we do

when developing web applications are covered quickly and easily.

It is true to say that Rails has a steeper learner curve than, say, your average PHP

framework. However, the effort to learn it is certainly worth it. I doubt that you will

ever fully go back to choosing other technologies over Rails where it makes sense

for the app you are building.

The Ruby programming language is a delight to work with, too. It's what Rails is

built on, and it offers a powerful set of features for all sorts of programming tasks,

not just those for the Web.

This is a short book, designed to give you a "jump start" with Rails. I've based it on

my own experiences of building a production Rails app for the first time. Hopefully,

like me, you will come to enjoy the slick, efficient web development experience

that Rails provides.

Who Should Read This Book
Developers seeking a rapid introduction to Rails. You'll need to know HTML and

CSS, and experience with other programming languages would be useful.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:



<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds 
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
  background-color: #CCC;
  border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

  border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
  ⋮
  return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

xii



URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/books/jsrails1/

The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/jsrails1/code.php

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?227-Ruby-amp-Rails

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

xiii

http://www.sitepoint.com/books/jsrails1/
http://www.sitepoint.com/books/jsrails1/code.php
http://www.sitepoint.com/forums/forumdisplay.php?227-Ruby-amp-Rails


Do you want to keep learning?
You can now get unlimited access to courses and ALL SitePoint books at Learnable

for one low price. Enroll now and start learning today! Join Learnable and you’ll

stay ahead of the newest technology trends: http://www.learnable.com.

Once you’ve mastered the principles of Rails, challenge yourself with our online

quiz. Can you achieve a perfect score? Head on over to

http://quizpoint.com/#categories/RUBY.

xiv

http://www.learnable.com
http://quizpoint.com/#categories/RUBY


Chapter1
Getting on Rails
Welcome to Jump Start Rails! If you've come to Rails from another server-side coding

technology such as PHP, you are in for a treat. Rails offers a slick and efficient

coding experience for web developers, and was created with built-in solutions to

many of the common web development headaches.

Rails is open source and free to use, which means that you don't need to spend a

lot to get developing with it. In fact, the biggest outlay will probably be purchasing

an editor. We'll look at the options a little later in this chapter.

Rails was created in 2003 by David Heinemeier Hansson of 37 Signals1 fame. Since

then, it has seen rapid development by the Rails core team2, with over 2,000 con-

tributors. Rails runs on the Ruby3 general purpose programming language, created

by Yukihiro “Matz” Matsumoto, in 1995.

1 http://37signals.com/
2 http://rubyonrails.org/core
3 http://www.ruby-lang.org/en/

http://37signals.com/
http://rubyonrails.org/core
http://www.ruby-lang.org/en/


Do I need to know Ruby?
You can certainly build simple Rails apps with a limited knowledge of Ruby. Many

developers tend to learn Ruby as they learn Rails. And as your knowledge and

confidence with Rails increases, you'll want to do more with it.

I've found that you can do this in incremental steps; it's entirely possible to build

a Rails app while you are still learning Ruby. The good news is that learning Rails

is a great experience, but learning Ruby is equally rewarding — especially if you

have come from another language like PHP, for example. Ruby is described on the

Ruby website4 as "a programmer's best friend" for a reason. So to really get into Rails

a good knowledge of Ruby will be required — eventually.

Ruby seems to be built for learning on the go—whenever you come across an obstacle,

the answer is never far away. Ruby Docs5 will help enormously with this.

What You'll Need
Ruby on Rails6, like many other web coding technologies, requires some setting up

on your system first. It's not too scary, though, and since this book covers Rails 4.0,

we only have to be concerned with setting up to use the latest versions.

Rails isn't Ruby. It's built using Ruby, and you use Ruby to build Rails applications.

As such, it needs to be present on your system for Rails to run. Happily Ruby is

available to run pretty much everywhere.

The Rails Stack
There are several components that make up the Rails stack. Obviously Ruby is one

component, the other main one being a database of some kind.

During the process of guiding you through installing Rails in this chapter, I'll mention

PostgreSQL7 and Ruby Version Manager (RVM)8. Technically neither are essential

requirements; it's just that they are common tools used in creating a Rails stack.

4 http://www.ruby-lang.org/en/
5 http://ruby-doc.org/core-1.9.3/
6 http://rubyonrails.org/
7 http://www.postgresql.org/
8 http://rvm.io

Jump Start Rails2

http://www.ruby-lang.org/en/
http://ruby-doc.org/core-1.9.3/
http://rubyonrails.org/
http://www.postgresql.org/
http://rvm.io


RVM is a sandboxed way to install numerous versions of Ruby on your system, all

without affecting any system configuration files. It's available for Unix-based systems,

and as part of an installer9 for Windows.

If you create a Rails project without specifying a database, one will be created any-

way. It'll be a SQLite database10, and will serve very well for your initial Rails in-

vestigation. However, in Chapter 6, we'll be deploying to Heroku11, and that requires

a PostgreSQL database12. As such, we'll be making PostgreSQL part of our Rails

stack too.

Rails and MVC
The Rails framework is based on the Model View Controller (MVC) design pattern.

No doubt you'll have heard of it if you've already spent time around web develop-

ment. The truth is that, with Rails, there are real advantages to be had from MVC.

A few of these advantages are:

■ the ability to keep application logic (or business logic, if you prefer) separate

from the user interface

■ Don't Repeat Yourself (DRY) capability. The term DRY also applies in all forms

of web and software development. It's a concept where the objective is to only

write one piece of code to perform a particular task. You'll see this in action as

we begin to build our main app

■ a clear pattern for where each type of code should be stored within the application

Rails uses MVC like this:

■ Models are used mostly for setting the rules for interaction with database tables.

Normally, you would have one model per database table.

9 http://railsinstaller.org/
10 http://www.sqlite.org/
11 http://www.heroku.com/
12 http://www.postgresql.org/

3Getting on Rails

http://railsinstaller.org/
http://www.sqlite.org/
http://www.heroku.com/
http://www.postgresql.org/


■ Views are HTML files with Ruby embedded to perform tasks for the presentation

of data. Views are the user interface   the part of your app with which the user

interacts.

■ Controllers are the components that decide how to respond to user requests.

They are responsible for coordinating responses too. You can think of them as

traffic police directing requests and responses around the application. It's im-

portant to understand that controllers are the only components that can speak

to models and views, as well as to our user's browser.

Installing Rails
Let's run through the basic process of getting Rails installed on Windows, Mac, and

Linux.

Installing Rails on Windows
I'm going to stick my neck out here: If you intend to work seriously with Rails, then

you might want to consider switching to a Unix-based operating system. The reason

is a practical one: You'll be spending a lot time on the command line with Rails.

You will also need to keep your Ruby gems up to date. This is all done via the

command line. The fact is, it's far easier to manage this stuff on a Unix system such

as Linux or Mac OS X. You could always run a Virtual Machine for your Rails-

coding projects, and I'll explain how to do that later in this chapter.

There are options for Windows users, and it's worth mentioning that huge efforts

are being made to make Ruby easier to work with on Windows.

If you are running Windows, there is now an easy solution for getting going with

Rails. The RailsInstaller13 has been provided by the team at Engine Yard, and it

takes the pain out of configuring Ruby and Rails manually. Simply download the

installer, run it, and away you go.

The installer includes all of the required gems and dependencies so that you can

start using Rails immediately. It even includes Git, the version control system,

widely used in the Ruby/Rails community.

13 http://railsinstaller.org/

Jump Start Rails4

http://railsinstaller.org/


PostgreSQL Database
You can download the required software from the PostgreSQL14. It includes the

excellent pgAdmin tool—a graphical user interface for the database. You just need

to download and install the software and leave it at that. There is very little else to

do, as you will work with the database mostly via Rails.

When we get to deployment, I'll explain how you can import and export data between

your local PostgreSQL installation and the server running at Heroku.

Another Option for Windows Users
There is another way of setting up for Rails development on Windows―a virtual

machine (VM). It's a more involved process, but if you want to try Linux, this is one

way to do it.

For example, there is an excellent open source package available for Windows,

called VirtualBox15. VirtualBox provides you with the required base in which you're

free to create as many virtual machines as your system can handle. The idea is that

you install whichever flavor of Linux takes your fancy, install Ruby/Rails and the

associated requirements, and do your development in the VM, rather than on your

base system.

The advantage of this approach is that you don't have to install any of the required

components on your base system so, should anything go awry, you can simply delete

the VM and start again. Your base system is not affected in any way.

So, how do we do it? First, you'll have some downloading to do, and it certainly

helps if you have installed a Linux distribution (distro for short) before. Here are

the steps:

1. Download the ISO for your chosen Linux distro. I always store mine in a folder

called iso in my Home directory—it makes it easier to find when you create your

VM.

2. Download VirtualBox, and install it. This should prove to be just a normal install-

ation, like any other software.

14 http://www.postgresql.org/download/windows/
15 https://www.virtualbox.org/wiki/Downloads

5Getting on Rails

http://www.postgresql.org/download/windows/
https://www.virtualbox.org/wiki/Downloads


3. Create a new VM, and select the ISO file you downloaded as the source. The ISO

file for various flavors of Linux can be found at their respective sites. For Ubuntu,

for example, head to Ubuntu's download page16 and follow the instructions to

download Ubuntu Desktop.

4. Once you have the ISO file, you can create a new VM and mount the ISO file,

which will boot into the installation program. Installing Ubuntu, for example, is

not difficult, but you may hit a speed bump or two. If you do, search the Web for

"installing Ubuntu on VirtualBox" for an avalanche of information.

There is an article on RubySource that demonstrates how to create a functional Rails

development environment using VirtualBox here17.

It's worth mentioning that you can install VirtualBox on most platforms, including

Linux. Once you have completed the above steps, you can jump in and install Rails

for Linux, which is covered in the next section.

Installing on GNU Linux
Most Linux distros come with Ruby installed, but there's a good chance that this

will be Ruby 1.8.7. While this is okay for older versions of Rails, we are using the

latest, Rails 4.0, so we need Ruby 1.9.3 or higher. And for the purposes of this book

we'll be using 2.0.

At the time of writing, there isn't a Rails Installer version for Linux, although there

is one planned. So for now, we'll have to do it ourselves. It's not difficult, though,

and as long as you're careful about installing the dependencies, you'll have a trouble-

free Rails installation running via RVM in no time.

The steps to install RVM vary from distro to distro. I'm going to cover installation

on the popular Ubuntu distro (version 12.10).

This routine will work on a fresh Ubuntu installation (so if you are installing in a

VM it'll work just fine), and I've also followed the same steps on older installations

of Ubuntu 12.10.

16 http://ubuntu.com/download
17 ???

Jump Start Rails6

http://ubuntu.com/download
???


Right, down to business. I've gone through this process with a clean Ubuntu install-

ation running in a VM. We'll be doing everything via the Terminal, so fire it up,

and install curl:

sudo apt-get install curl

Likewise, we'll be needing Git for version control because that's how we deploy to

Heroku, and we need some essential tools to help us build some of the gems:

sudo apt-get install git-core build-essential

Next, we can go ahead and install RVM:

curl -L get.rvm.io | bash -s stable

When the installation completes, RVM provides you with essential information

about requirements and dependencies that need to be satisfied to run Ruby properly.

You can see what you need with:

rvm requirements

You'll get a list of dependencies that must be installed. The list will look something

like this:

    Additional Dependencies:
    # For Ruby / Ruby HEAD (MRI, Rubinius, & REE), 
    install the  following:
    ruby: /usr/bin/apt-get install build-essential openssl 
➥libreadline6 libreadline6-dev curl git-core zlib1g 
➥zlib1g-dev libssl-dev libyaml-dev libsqlite3-dev sqlite3 
➥libxml2-dev libxslt-dev autoconf libc6-dev ncurses-dev 
➥automake libtool bison subversion pkg-config

You can get all these dependencies installed in one hit in Terminal, by using apt-

get. So you would enter:

7Getting on Rails



sudo apt-get install build-essential openssl libreadline6 
➥libreadline6-dev curl git-core zlib1g zlib1g-dev libssl-dev
➥ libyaml-dev libsqlite3-dev sqlite3 libxml2-dev libxslt-dev 
➥autoconf libc6-dev ncurses-dev automake libtool bison 
➥subversion pkg-config

Please note that the list of dependencies you see may not be the same as what's

shown here. Also, RVM does allow you to enable a setting that will automatically

handle the requirements (rvm autolibs enable) if you wish. For our purposes

we'll install them using apt-get.

Just to clear up any confusion here, you'll need to use sudo here, because the de-

pendencies that are being installed are system wide. However, when we use RVM

to install gems a little later, you shouldn't use sudo. That's because RVM installs

on your local user account. That's why it's sandboxed and doesn't affect your system

Ruby.

Next, you need to make sure that RVM is being loaded as a function. The usual

method is to get on Terminal and enter:

source ~/.rvm/scripts/rvm

Re-start Terminal, and then enter:

type rvm | head -n 1

You should get: RVM is a function as a reply. If you do, great. If not, you'll need

to follow the instructions on the RVM web site18.

Installing Ruby
Now we can install Ruby. Enter:

rvm install 2.0.0

RVM will download and install Ruby version 2.0.0. Next, ensure your system is

using the newly installed version of Ruby as the default:

18 https://rvm.io/integration/gnome-terminal/

Jump Start Rails8

https://rvm.io/integration/gnome-terminal/


rvm use 2.0.0 --default

We should be good to install Rails now:

gem install rails

That's it! Rails is now up and running.

We can also install PostgreSQL.This can be done via apt-get in Terminal, and you'll

also find it in the Ubuntu Software Centre. However, since you'll be needing the

development header files and their dependencies so that you can install the pg gem,

the easiest way to do it is to install everything you need via the Synaptic Package

Manager.

That can be installed via the Ubuntu Software Centre, as shown in Figure 1.1.

Figure 1.1. Ubuntu Software Centre

Then, via Synaptic, you can install all the components you need just by searching

for them: PostgreSQL itself, a file called postgresql-server-dev-9.1, and pgAdmin,

the GUI tool for working with PostgreSQL.

9Getting on Rails



Installing Rails on Mac OS X
Macs come with Ruby installed already. The only problem is, Rails needs at least

Ruby version 1.9 or higher to run and your Mac (yes, even one running Mountain

Lion) comes with Ruby 1.8.7. That's the bad news.

The good news is, Engine Yard have made a version of RailsInstaller19 for Macs too.

Even better, it installs in a sandbox so it has no effect on your system Ruby. All you

need to do is download the .DMG file and install it as you would any other Mac

software.

RailsInstaller provides you with everything you need to start building Rails apps.

Just keep in mind that the Installer adds RVM to your system so that you can easily

run different versions of Ruby, and different isolated sets of gems (called, unsurpris-

ingly, "gemsets"). As a beginner, you may not see any advantage in that, but trust

me, if you've tried installation in other ways, the resulting pain is not nice at all.

You also get another treat with RailsInstaller. It comes in the shape of the JewelryBox,

which is shown in Figure 1.2. It's a graphical user interface for managing the Rubies

and associated gem sets you have on your system.

Figure 1.2. RailsInstaller JewelryBox

There are two kinds of experiences when installing gems via this set-up: hellish or

easy! To avoid the hellish option, you'll be needing some compilers.

19 http://railsinstaller.org

Jump Start Rails10

http://railsinstaller.org


For OS X Mountain Lion you need software from Apple called XCode20. It's available

on the Mac App Store21, is free (although the download will suck up several gigabytes

of data), and installs just like any other software. You'll also need the command

line tools. You can use these if you are a member of the Apple developer community

as a separate download. Or, you can install them directly from within XCode. You'll

find the option to do so from the preferences panel (Preferences > Downloads >

Components > Install), as shown in Figure 1.3.

Figure 1.3. XCode command line tools

You can install just RVM without the RailsInstaller. RVM and its gemsets help you

jump between Ruby versions for your Ruby applications. XCode gives you the tools

that you need to compile those gems that require compilation when installed. If it

seems a bit convoluted right now, rest assured, it will get clearer as you play with

Ruby and Rails more.

Homebrew
If RVM helps you manage your Ruby-based dependencies (meaning, gems),

Homebrew helps you manage those dependencies outside of Ruby. One such de-

pendency is PostgresSQL, which I mentioned earlier.

Homebrew refers to itself as "the missing package manager for OS X", and it's a good

description.

We are planning to build an app and deploy it to Heroku. For that, you'd be well

advised to get used to working with PostgreSQL. And to install that, we really need

20 https://developer.apple.com/xcode/
21 https://itunes.apple.com/us/app/xcode/id497799835

11Getting on Rails

https://developer.apple.com/xcode/
https://itunes.apple.com/us/app/xcode/id497799835


Homebrew. There are Mac binaries available for PostgreSQL, but I don't recommend

you use those for one simple reason: For the pg gem to install correctly, you'll need

the development header files installed; you don't get them with the binary versions,

but you do when you install via Homebrew.

To install Homebrew you should follow the instructions22. In a nutshell, though,

you use Ruby to install it:

ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)" 

Homebrew will sort out any dependency issues, and install everything in a sand-

boxed environment in /usr/local.

Once Homebrew is installed, you can then install PostgreSQL with:

brew install postgresql

I don't recommend installing the download version of PostgreSQL from its website

because you'll be missing the development files needed to install the pg gem. You

can, however, download and install pgAdmin23, which will help you see and ma-

nipulate the content of your databases.

Some Other Options
There are some alternatives to the options I've mentioned so far.

rbenv
For completeness, I should mention one other option for managing Rubies. It's called

rbenv24 and you can read about how it differs from RVM at its website25.

Personally, I've always chosen RVM, and the reason is simple: allowing for the

caveats mentioned in this chapter RVM gets very close to the software Nirvana of

"it just works." That's not to say rbenv doesn't work, but since you're going to be

busy mastering Rails, why add learning a different Ruby manager to your to-do list?

22 http://mxcl.github.com/homebrew/
23 http://www.pgadmin.org/
24 https://github.com/sstephenson/rbenv
25 https://github.com/sstephenson/rbenv/wiki/Why-rbenv%3F

Jump Start Rails12

http://mxcl.github.com/homebrew/
http://www.pgadmin.org/
https://github.com/sstephenson/rbenv
https://github.com/sstephenson/rbenv/wiki/Why-rbenv%3F


Databases
If you don't specify a different database, Rails will use SQLite by default. Since will

deploy to Heroku, I'm going to use PostgreSQL for the main app we build in this

book.

It's worth mentioning that you do have the option to develop using SQLite and still

deploy to Heroku. However, keep in mind that you cannot use SQLite on Heroku.

So the best way to develop locally using SQLite, and deploy to Heroku's PostgreSQL

server, is to make a change in your Gemfile. We'll cover how to do that in the next

section.

Installing Ruby Gems
Now that you are running RVM, it's worth pointing out that adding other gems is

easy. For example, if you type the following at the command line the Thin gem will

be installed:

gem install thin

"Thin," by the way, is another web server for running Rails applications.

Rails, along with most Ruby gems and applications, doesn'tt require you to manually

install each gem at the command line. To do this you can use Bundler26. If you

place all the gems you need into a file called "Gemfile" in the root of your application,

Bundler will install them all with a simple command. You'll see this in action soon.

If you were going to use SQLite for local development, then before you deployed

to Heroku, you would need to make a change in your Gemfile like this:

group :production, :staging do
  gem "pg"
end

26 http://gembundler.com/

13Getting on Rails

http://gembundler.com/


group :development, :test do
  gem "sqlite3-ruby", "~> 1.3.0", :require => "sqlite3"
end

This ensures that you are using the pg (short for PostgreSQL) gem when running

on Heroku, and SQLite when working locally, and demonstrates how important the

Gemfile is. Rails uses Bundler to manage a consistent environment for Ruby applic-

ations. Bundler is amazing because it tracks the gems your application needs to run,

along with the versions.

Your application's Gemfile lists all the gems being used, and what version. To install

all the gems in your app's Gemfile, you'd jump into Terminal and enter:

bundle install

The Gemfile has to have at least one source, but once that's in place, bundle install

will download and install all the gems that the app needs to run. You'll see this in

action throughout the book.

A Word about Editors
Choosing an editor for Rails, or for any other web development for that matter, is

subjective. However, I'll offer this piece of advice: don't use an IDE, because you

won't learn that way. You should also consider investing in an editor such as Sublime

Text 227. It's available on all platforms, which means you can work on your Windows

machine, Mac, or Linux and have the same coding experience.

If you are looking for a free option, you have a couple of choices that are popular

in the Ruby/Rails community. First, there is GNU Emacs28, which has a minor

mode29 (think plugin) that's dedicated to Rails development. The other well-known

free option is Vim30. There are versions of it available for most platforms, and there

is also a dedicated Rails plugin31. You'll also find there are many packages specific

to Rails development being added. That said, the learning curve for Emacs and Vim

27 http://www.sublimetext.com/
28 http://www.gnu.org/software/emacs/
29 https://github.com/remvee/emacs-rails
30 http://www.vim.org/download.php
31 https://github.com/tpope/vim-rails

Jump Start Rails14

http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.gnu.org/software/emacs/
https://github.com/remvee/emacs-rails
https://github.com/remvee/emacs-rails
http://www.vim.org/download.php
https://github.com/tpope/vim-rails


can be daunting, and most new Rails developers are already absorbing a lot of new

information.

Summary
You now have Rails up and running on your computer. Most problems that arise

when installing Rails have been answered, and the Rails community is friendly and

helpful. In the worse-case scenario, installing via RVM means that it is easy to dump

the local RVM folder and start again. However, that shouldn't be necessary as long

as you've paid attention to the dependencies needed for your chosen platform.

It's time for code. So let's begin creating Rails apps to see what all the fuss is about...

15Getting on Rails





Chapter2
Starting an App
The plan, by the end of the book, is for you to have built a fully functioning Rails

application—and, in this chapter, we are going to start that process. We'll do it by

building a smaller training app—something you can refer back to and experiment

with as your knowledge of Rails grows. That way, you'll get a feel for how a Rails

app hangs together. You'll also become familiar with the various files and directories

that make up a standard Rails app.

Data First?
It's common when building an app for the data requirements to come first. In fact,

we'll be doing exactly that when we start our main project for the book―planning

the database schema and creating models are the first tasks.

Now this might feel a bit strange if you've come from a different web language/tech-

nology, such as PHP. After all, seeing something up and running first is nice, isn't

it? I remember feeling a bit flummoxed when I first started out with Rails, what

with all the talk of models and schemas before I knew what the app was even going

to look like. For that reason we're going to approach the training app from the front

end first.



Hello, World
It's common practice when trying out a new programming technology to build

something that says: "Hello, world!" Our training app will initially include a simple

layout and seeing a view in action. We'll link some pages together too, so you can

develop a feel for how static pages in Rails work. And while it won't do anything

in particular, our training app will serve as a reference and a place for experimenting.

Let's write some code.

A Simple App
As I said in Chapter 1, when developing with Rails, you'll be spending a lot of time

on the command line. Now is the time to start getting used to that, so fire up the

terminal!

I suggest that you create a new folder in your home directory for storing all your

Rails projects. I call mine rails_projects. Not the most imaginative title, perhaps, but,

for the purposes of this book, it would be useful if you follow my example and give

yours the same name, then we'll all know where we are.

In terminal, change directory into your rails_projects folder:

cd ~/rails_projects

In Chapter 1, we installed Ruby Version Manager (RVM). One of the many excellent

features of RVM is that we can create project specific gemsets. That means we create

a bundle of gems dedicated to the project we are working on. If it helps, think of it

as a way to manage app-specific dependencies.

Type the following via terminal:

rvm use --create 2.0.0@training

This creates a new gemset. Next, we install Rails into the new gemset.

Jump Start Rails18



gem install rails

You will now see a ton of text on the screen as all the dependencies of Rails are

installed.

Then, to create a Rails app we enter:

rails new training

Next, we switch into the training directory, and create a RVM project file:

cd training
rvm --rvmrc 2.0.0@training

That's it. We now have a project-specific gemset. The rails new command will

have generated a whole bunch of files and folders, as seen in Figure 2.1.

Figure 2.1. Generating a new app

19Starting an App



As you may have gathered, the rails new command has a number of other options

you can use. We'll be discovering these as we progress. One such option is to choose

which database we want to employ. Since we didn't specify a database in this in-

stance, we'll receive a default SQLite database to use should we need it.

I bet you'd like to see what this app looks like, wouldn't you? Let's take a peek. Back

in terminal type:

rails server

You can shorten that command to just rails s. You'll see the built-in server start

up, as shown in Figure 2.2.

Figure 2.2. Webrick start-up

Should you get an error like "Could not find a JavaScript runtime," then you need

to open your Gemfile in an editor and find the line that references "therubyracer".

Uncomment this line, save the Gemfile, and type bundle install in the terminal.

This will create a JavaScript runtime that is used by Rails to evaluate CoffeeScript.

Now you can open your browser, and head to the default Rails welcome page1,

which is shown in Figure 2.3.

1 http://localhost:3000

Jump Start Rails20

http://localhost:3000


Figure 2.3. Default Rails

Cool! So now you're up and running. However, while the default Rails page is really

nice, it would be good if we could create something ourselves. Just before we do

that, though, it's worth taking a quick look at all the stuff Rails created for us when

we created our app.

The Project Folders
Rails generated a number of folders and files for us, shown in Figure 2.3.

21Starting an App



Figure 2.4. A Rails project

Here's a quick run-through of what they all are:

■ app —The core of your application is found here. This is where you'll spend

most of your time.

■ bin — Rails places any executables associated with your application in this

directory. By default, it has the bundle, rails, and rake commands. Yes, this

is the same rails command you used earlier to start the application server.

Jump Start Rails22



■ config —As the name implies, all the configuration options for your app can be

found here, including the .yml file for database connection parameters, and

routes.rb for creating routing options.

■ db — This is the home for scripts that are used to manage relational database

tables.

■ lib — This is the place for code that isn't a natural fit for model, views, or con-

trollers. You'll put code here that you want to share across resources.

■ log — Log data about how your app runs is stored here. It doesn't just contain

errors, but also information about requests and how they were processed.

■ public — You'll find the home for default 404 pages, and static HTML files here.

In previous versions of Rails, you'd find the default index.html here.

■ test — Rails generates tests for you, and then you add to them to test your applic-

ation.

■ tmp — This is where you'll find cached data, temporary files, and session files.

■ vendor — Third-party code and assets go in this directory.

There are also some other files, such as Gemfile and Gemfile.lock, but we'll get to

those later.

Generators
Generators are the built-in way we generate all sorts of resources for our app. In

terminal we can produce a list of the generators we have available to us:

rails generate

You'll see a list that looks like Figure 2.3.

23Starting an App



Figure 2.5. Rails generators

As we build our app(s) you'll see most of these generators in action.

Generating a Controller
Right now we want to create the simplest page possible, so we need a controller.

The function of a controller is to translate an incoming request into an action

provided by your application.

Here we go. Back in terminal, enter:

Jump Start Rails24



rails generate controller pages index about

You'll see Rails create the controller for you, as shown in Figure 2.3.

Figure 2.6. Generating a controller

You'll notice that a bunch of other files are created too. Don't concern yourself with

these for now. Instead, let's take a look at the core files Rails generated for us (Fig-

ure 2.7).

Figure 2.7. The pages_controller

25Starting an App



The rails generate controller command created the PagesController with the

two methods we specified: index and about.

We'll be flipping between terminal and our editor a lot, so it's worth opening another

tab in terminal. This way we'll have a tab for typing commands, and a tab for running

the Rails server.

Let's test what we've got so far by opening a new tab in terminal and entering: rails

server or rails s for short. Then you can go to localhost:3000. Figure 2.8 shows

the modest masterpiece you'll be presented with

Figure 2.8. A first look

If we want to spice up our page just a little bit, we can add an instance variable,

and then display the contents in our view.

In pages_controller.rb inside the index action, you can add an instance variable, like

so:

def index
  @notice = "This came from the pages controller"
end

Then, in app/views/pages we can edit index.html.erb like this:

Jump Start Rails26



<h1>Pages#index</h1>
<p>Find me in app/views/pages/index.html.erb</p>
<p><%= @notice %></p>

Figure 2.9. A first change

You may be thinking that, so far, we've put in a lot of effort to display a very simple

HTML page. While that's true, you've seen a small piece of Ruby code for the first

time. And it provides a glimpse of the power we have to create all sorts of data in-

teractions between our business logic and the user interface. Our pages controller

has a method called index that will render the view called index.html.erb in the

views/pages directory. Hopefully, you can see the conventions of Rails start to be-

come clearer.

In our view, you'll see that Rails replaces the contents of <%= %> with the actual

value of the instance variable we created in the controller method. In this case, we

only sent through a simple string. We can use the same idea for more powerful op-

tions though, as we'll see later.

27Starting an App



Some Notes About the Controller
Before moving on, we should take a slightly closer look at what happened when

we ran the generator. You can see that Rails created a file called pages_controller.rb,

and inside it we see that there is a class called PagesController. So what Rails did

was take the name we entered in the generator, and use it to create the resource we

requested.

Controllers we generate almost always inherit from the ApplicationController

class, which is what is meant by the line:

class PagesController < ApplicationController

The ApplicationController is created when we run rails new. It can be found

in app/controllers/application_controller.rb.

We define methods using def , so def index is the start of our index method. At

the moment, we have very little else in the method, so it has end pretty much straight

away.

Layouts
We can see already that what's presented to us in the browser is a little bland. Part

of the fix for this is layouts. They provide a way for us to set out our pages with all

the common elements in place, using placeholders for the content that varies for

each page.

And in case you're wondering, you can use more than one layout, too.

If you look at the code in our Rails-generated views, you'll notice that they don't

even have a full HTML page. Yet if you "view source" in your browser, you'll see

complete HTML page code. You might conclude that a layout of some kind is already

in use, and you'd be correct. You'll find it in: app/views/layouts and it's called

application.html.erb. This one looks after the whole app. But what if you wanted a

layout for a particular controller?

No problem. All you need to do is create a layout file that has the same name as

one of your controllers. So, if we create pages.html.erb in app/views/layouts and add

Jump Start Rails28



the code below we create something known as a code spike. This means it's proof-

of-concept code. We'll learn more about code spikes later on in this chapter.

<!DOCTYPE html>
<html>
<head>
    <title>Training</title>
    <%= stylesheet_link_tag    "application", :media => "all", 
➥"data-turbolinks-track" => true %>
    <%= javascript_include_tag "application", "data-turbolinks-
➥track" => true %>
    <%= csrf_meta_tags %>
</head>
<body>
        <div style="width: 950px; margin: 0px auto;">
            <h2>This is the layout for the pages controller</h2>
            <%= yield %>
        </div>
</body>
</html>

You've probably guessed that <%= yield %> gets replaced with the contents of the

view that we load from the controller action.

If you reload http://localhost:3000/pages/index in your browser, you'll see our

new layout take effect immediately.

Template Data
There's another neat trick you can use, too. Let's say there's an element of design

you want to appear on all pages, but not necessarily with the same content each

time. You can add something like this to the pages layout:

<%= yield :note %>

Then, in your views, enter the following:

<% content_for(:note) do %>
    <p>This could be different for each view.</p>
<% end %>

This is a simple and handy way to work with template data.

29Starting an App



Setting the Default Page
Pointing your browser at http://localhost:3000/pages/index will deliver the

default Ruby on Rails start page. It's fine, but we probably don't want that for our

application. This means it's time to do some initial work with Rails routes.

It'd be easy to dedicate an entire book to the wonders of routing with Rails. For now,

though, we just need to get something up and running.

If you open config/routes.rb you'll see something like this:

Training::Application.routes.draw do
    get "pages/index"
    get "pages/about"

Rails has already created two routes for the methods we have in our page controller

(the generator did that for us). You may be wondering if there's a better way of telling

Rails about our Pages resource. There is, and we'll get to that a little later. To begin

with we'll concentrate on creating simple routes.

To set the default page, in config/routes.rb add:

root :to => 'pages#index'

When you go to http://localhost:3000/pages/index now, you should see the

page we have been working on.

Creating a Route
You've already seen how a Rails generator created routes for each action in our

pages controller. That gives us a URL like http://localhost/pages/about. What

about if we wanted to drop the pages part of that URL, though?

Update your routes file (config/routes.rb) so it looks like this:

Training::Application.routes.draw do
    get "pages/index"
    get "about", :to => 'pages#about'

Jump Start Rails30



    root :to => 'pages#index'
end

Then, back in your browser, you can try opening localhost:3000/about. You

should see that the about page is loaded. But what would happen if we wanted a

bunch of static pages? Our route file could start getting quite long. This is Rails,

however, so there is a better way.

Ryan Bates of railscasts.com2 fame has a useful solution3 for this. All we need to

do is create an array in the routes file, then we can pass in a variable to process the

actual route for us, like this:

routes.rb (excerpt)

Training::Application.routes.draw do
    root :to => 'pages#index'

    %w[about contact cv].each do |page|
      get page, controller: 'pages', action: page
    end
end

The %w[... element is Ruby shorthand for creating an array from strings without

having to quote each string. It saves typing all those commas; for example: values

= ["one", "two", "five", "three sir", "three"]

After you have created the actions and views, visiting localhost:3000/contact

will display your contact page. Notice that our array has also eliminated the need

for pages to be in our URLs too. How great is that?

Some Linking
We can link our two views together using the link_to method. For example, in

app/views/pages/index.html.erb you can add:

2 http://www.railscasts.com
3 http://railscasts.com/episodes/117-semi-static-pages-revised

31Starting an App

http://www.railscasts.com
http://railscasts.com/episodes/117-semi-static-pages-revised


<p><%= link_to "About", '/about' %></p>

In the generated source in your browser, you'll see this:

<p><a href="/about">About</a></p>

Then, in app/views/about.html.erb you can add:

<p><%= link_to "Home", '/' %></p>

It's basic, but at least you've seen how we can link our static pages.

Some Styling
So, we can create layouts, and we can do some basic routing, but our pages still

look ugly. Let's do something about that next.

It's worth noting that stylesheets in Rails use Sass4. Sass became part of Rails at

version 3.1 and is described as a "meta-language on top of CSS." It provides more

control over styling by adding features such as nested rules, variables, mixins and

more. Variables, for example, are a useful feature of Sass; imagine needing to assign

a colour to multiple elements in your stylesheet. With a Sass variable you only have

to do it once.

Also, remember when we generated the controller and Rails generated a bunch of

other files for us? Well, one of those other files was a stylesheet for our pages con-

troller.

Take a look in app/assets/stylesheets and you'll see a file called: pages.css.scss. For

now, any style rules that we want to apply to our pages controller can go in there.

Let's add some:

4 http://sass-lang.com/

Jump Start Rails32

http://sass-lang.com/


pages.css.scss (excerpt)

body{
    font-family: Georgia, Times, "Times New Roman", serif;
    font-size: 1.2em;
}

You can check your changes in the browser, or add more styles if you wish. You

may be wondering how the style rule(s) you added got picked up by Rails.

If you remember, in the layout file (app/views/layouts/pages.html.erb) there is a line

of code that looks like this:

<%= stylesheet_link_tag    "application", media:"all", "data-turbolinks-track" => "true" %>

Any style rules that you add to your stylesheets are compiled and included in

application.css at run time. Neat, eh?

Putting up Some Scaffolding
We now have a simple app that responds to requests for static pages. We'll use this

knowledge for our personal website's info pages. A simple blog engine is also one

of the features for our main app. While we're working with the training app, it's

worth taking a look at a feature in Rails called scaffolding.

Scaffolding lets you quickly create a resource that interacts with the database. You

pass in the field names that you want, and Rails pretty much does the rest. It can

be useful for creating a working version of a particular feature in a single operation.

It's also useful for getting an overview of working with data in a Rails app.

We don't employ scaffolding like this in a production app. This is largely because

the end goals are more complex than scaffolding is able to produce. But while,

usually, it's easier just to write Rails code in the first place, it is worth a look.

Generating a Scaffold
In terminal, make sure you are in your project folder. Then enter:

33Starting an App



rails g scaffold Post title:string blurb:string body:text

You'll see that a bunch of files are created, shown in Figure 2.10.

Figure 2.10. Rails scaffolding

You can see that Rails created a controller, model, and an assortment of views.

You'll notice that Rails added resources :posts to your routes.rb file too.

The next thing we have to do is migrate the database. Migrations let you alter your

database in a structured and organized way, saving you the chore of editing SQL

by hand.

Jump Start Rails34



To achieve this we use our friend rake, like so:

rake db:migrate

rake, also called "ruby make," is a build program that allows you to create and run

tasks easily. Rails uses rake for many things.

The above command will run any outstanding migrations. Rails is clever enough

to figure out which migrations have already been processed. We didn't specify a

database, so Rails will use a default SQLite database. Figure 2.11 shows what's

generated (in the db directory):

Figure 2.11. Rails database

We can see that Rails chose SQLite by taking a look at the /config/database.yml file:

database.yml

# SQLite version 3.x
#   gem install sqlite3
#
#   Ensure the SQLite 3 gem is defined in your Gemfile
#   gem 'sqlite3'
development:
  adapter: sqlite3
  database: db/development.sqlite3
  pool: 5
  timeout: 5000

# Warning: The database defined as "test" will be erased and
# re-generated from your development database when you run "rake".

35Starting an App



# Do not set this db to the same as development or production.
test:
  adapter: sqlite3
  database: db/test.sqlite3
  pool: 5
  timeout: 5000

production:
  adapter: sqlite3
  database: db/production.sqlite3
  pool: 5
  timeout: 5000

So now we have a basic structure for the sample blog element of our app. You can

visit your creation by pointing your browser at localhost:3000/posts. There, you

will be greeted by an empty list of posts. We can fix that, though. Click the Add Post

link, and you'll be taken through to a form. Enter a couple of posts using this, and

you'll see that when the form is submitted, you are now populating the database.

After you have submitted a post, clicking the Back link will take you back to the

listing of all your posts. Click the Edit link next to the post, and you get taken through

to a form where you can change any part of the contents of the post, and then re-

save it.

Likewise, if you click on the Delete link, you will be prompted first, as shown in

Figure 2.12.

Jump Start Rails36



Figure 2.12. Deleting a post

Click OK and the post will be deleted.

What we have here is a working application. It's a long way from being complete,

of course, but it does give a useful insight into what can be achieved. There are

some issues to address, though. For example, we wouldn't want our blog admin to

be available to everyone, would we? And what happens if we try adding an empty

record? Give it a go.

Fixing the permissions/authentication problem is a bigger deal, so we'll come to

that a little later. However, fixing the empty record problem can be achieved quickly,

so let's do that now.

To begin with, let's make sure we understand what happens when we are working

with records via the forms that scaffolding produced for us.

Open up app/controllers/post_controller.rb and you'll see that we have actions named:

index, show, new, edit, create, update, and delete. Each of these is designed to

respond to an HTTP verb (POST, GET, DELETE, etc.).

37Starting an App



The index action contains an ActiveRecord call: @posts = Post.all to retrieve all

the records in the posts table in our database.

The show action retrieves one record using the passed-in parameter of the post id

your user clicked on: @post = Post.find(params[:id]).

The new action provides a form for users to add a new record to the database. The

call to Post.new creates a new blank structure based on the Post model. The con-

troller doesn't worry about what the actual schema for a post is; it just passes the

structure to the view. It's the create method that performs the actual save to the

database.

The edit action also uses GET to collect a record for user editing: @post =

Post.find(params[:id]). The record is passed to the view that contains a form

that you then use to make the edits. Like new, the actual data editing doesn't take

place here. The changes will be processed via the update method.

The create method creates a new Post object based on the :post parameters sent

in from the form. You'll see in the create action that an attempt is made to save

the data with if @post.save. If the attempt is successful, the user is informed that

the save succeeded. If it fails, the error is reported back to the user and the incoming

data is sent to a copy of the form with:

else
    format.html { render action: "new" }

The update action works much the same way as create, but it responds to PUT

rather than POST. The record to update is selected via the passed-in parameter from

the URL: @post = Post.find(params[:id]). Once the record is found, the up-

date_attributes method is used to try to change the stored values. There is a

success or error response here too.

The delete action responds to the HTTP DELETE request. Again, the record for

deletion is selected via the passed-in parameter. There are two things that happen.

First, the object is located and then a call to the DESTROY method is made. It is

assumed that the delete process has happened, so there is a redirect to the main list

of posts. The form contains some JavaScript to get the user to confirm that they want

to delete the record. Notice that the action doesn't have anything to request that the

user confirm the deletion.

Jump Start Rails38



Finally, you may be wondering why a few of our actions mention format and what

this means. Briefly, Rails controllers respond to requests for HTML pages by default,

so when you go to localhost:300/posts, you get an HTML representation of the

existing posts. You don't have to say you want HTML, because it is the default

presentation mode, but you could if you appended .html to your request like so:

http://localhost:3000/posts.html. Rails controllers can also respond to requests

for JavaScript Object Notation (JSON). JSON is a serializable, text-based format that

is readily consumed by JavaScript clients, like your web browser. JSON is most often

used to create Application Programming Interfaces (APIs) and is not meant to be

seen by humans. I won't be covering JSON and API creation in this book, but your

career as a Rails developer will, no doubt, take you down that path eventually.

Active Record Validations
Let's face it — people don't always enter the data we'd like them to enter. Even you

might be guilty of this occasionally — when entering a new blog post on your own

blog, for example. And because we live in an imperfect world we need some way

of protecting our data integrity.

One thing we can do straight away is to add some validation to strengthen our

models. By adding a few simple rules to our models, we can automatically have

Rails do the heavy lifting for us. By default we add validation rules to our models,

and Rails then applies the rules to our forms, including a nice notification system,

shown in Figure 2.13.

39Starting an App



Figure 2.13. Rails validation

And that's that, for basic validation anyway. Let's take a closer look, though; what

does the actual code in the model look like?

class Post < ActiveRecord::Base
  attr_accessible :title, :slug, :blurb, :content
  validates :body, :title, :presence => true
end

You should try each of the following in your browser, so that you can see how Rails

handles each validation change. You'll be impressed, I promise.

Here, we're using validates_presence_of to ensure that a value is added for each

field. It's the least we can do to protect our models. What happens, though, when

we have a text field that should contain a certain amount of text? For example, it

Jump Start Rails40



seems reasonable that our blurb field should contain at least 10 characters. We can

validate for that:

class Post < ActiveRecord::Base
  attr_accessible :title, :slug, :blurb, :content
  validates :blurb, :length => { :minimum => 10 } 
  validates :body, :title, :presence => true
end

There is something else we can do to strengthen the validation on the blurb field.

Since the field has the data type of string, it's limited in capacity to around 255

characters. So let's create a validation rule that satisfies both conditions (minimum

and maximum):

class Post < ActiveRecord::Base
  validates :blurb, :length => { :in => 10..255 } 
  validates :body, :title, :presence => true
end

Here, you can see that the number of characters is restricted within acceptable

parameters for our database table. There's one more thing. What about a situation

in which we only want text to be added? That is, characters, not numbers? We can

do that, too, by adding a regular expression:

validates :blurb, :length => { :in => 10..255 }, :format => { :with 
➥=> /^\A[a-zA-Z\d ]+\z/, :message => "Only letters allowed", 
➥:multiline => true}

Now we have validation that works in the way we want.

Test Driven Development
The first thing to note is that Rails was built with testing in mind. You'll have already

spotted that tests are generated for you each time you add a new resource.

The second thing is that Rails has its testing rig built-in. You can use others, such

as RSpec5. In truth, you may find that you switch to RSpec quite quickly because

of its support for Behavior Driven Development (BDD).

5 http://rspec.info/

41Starting an App

http://rspec.info/


We'll focus on Ruby's built-in Test::Unit here, though. It has plenty to offer and

provides good code coverage for our app.

You can think of TDD as a design activity. It furthers the purpose of testing from

being just a way to make sure code runs as expected. Rather, TDD offers a way to

clarify the purpose of the code. As you add new features to your app, you create

tests that test the idea with which you're working.

If you're new to TDD, Figure 2.14 shows a diagram that explains the basic concept

behind it.

Figure 2.14. Test Driven Development

It also means that we need to know what we are testing for. So when you're adding

a new test, you'll already need to know what you expect to happen. You might figure

Jump Start Rails42



that out by writing a code spike. All that means is code that won't make it into

production, but which enables you to figure out what you're attempting to do.

The tests you create, then, help to steer the design of the app based on the required

functionality. By writing your tests first, they will fail initially. But as you figure

out the design, you will eventually receive passing tests. From here you tighten up

the code to make it as good as it can be. This process is often referred to as "red,

green, refactor."

Let's see what Rails has to offer.

The Environments
All Rails applications have three environments: one for production, one for devel-

opment, and one for testing. If you take a look in your config/database.yml file, you'll

see the three environments clearly. The test database is designed to be used for all

your testing activity. As such, it shouldn't matter if you end up deleting its data.

You can make sure that the test database is ready to go with:

rake db:test:prepare

This ensures that there are no pending migrations. And it loads the test schema for

the database.

Tests Rails Has Already Generated
Figure 2.15 shows the tests Rails has already generated.

Figure 2.15. Rails tests

What we have here is a models folder for testing models, a controllers folder for

testing controllers, and an integration folder for tests that involve controllers inter-

43Starting an App



acting. You'll notice that we also have a fixtures folder. Fixtures is just another way

of saying sample data.

Fixtures
Good tests require good fixtures. Rails will populate your test database with pre-

defined data before the tests are run. They are created using the YAML format. As

you begin to create resources, Rails will generate some fixtures for you. Take a look

in test/fixtures:

one:
  title: MyString
  blurb: MyString
  body: MyText

two:
  title: MyString
  blurb: MyString
  body: MyText

You probably should replace the content with something more meaningful for our

application:

posts.yml

one:
  title: The first post
  blurb: This post won't be about very much at all.
  body: So, here is a meaningless post. 

two:
  title: The second post
  blurb: There had to be two, didn't there?
  body: Yep, you guessed it, this is the second post.

Rails will automatically load the fixtures found in test/fixtures for the unit and

functional tests that you create.

Something to Watch Out For 
Fixtures can make your tests brittle. The reason, simply, is this: you create fixtures

for one set of tests, and they pass. But then you change the fixtures for another test

Jump Start Rails44



or tests and, while those tests might pass, the fixture change can then break the

original tests.

There is an answer, though, which we'll see in action shortly. In short, it revolves

around specifying which fixture file gets loaded for our tests. After all, the default

action by Rails is to load all the fixtures, because, to Rails, it seems logical that's

what you'd want. For now, just keep in mind that there's a way to get past the

problem should you need to.

Unit Testing Models
I mentioned earlier that Unit Tests are tests for your models. The default test (in

test/models/post_test.rb) that Rails has created for us when we created the posts

scaffold looks like this:

require 'test_helper'

class PostTest < ActiveSupport::TestCase
  # test "the truth" do
  #   assert true
  # end
end

The test_helper file contains the default configuration used to run our tests. You can

see that our testing class inherits from: ActiveSupport::TestCase.

Let's run a test. We'll need to make sure everything is ready to go with:

rake db:migrate
rake db:test:load

Looking at the code in our test, we can uncomment the the truth method, and

then from the terminal enter:

rake test

You should get something like Figure 2.16.

45Starting an App



Figure 2.16. A first test

The '.' indicates a passing test. We've used a simple truth assertion here. Assertions

are used to evaluate an object or expression for the expected results. Obviously this

is not a test of our app, but it demonstrates how to run a test. It's worth noting that

Test::Unit comes with some ready-to-run tests.

If your tests fail, it's likely due to the validators we added on the Post model above.

Can you get them to pass? If not, don't worry, we'll get them to pass in a bit.

Now we'll add an actual test. Here, we want to make sure that when a post is saved

it has a title. You may remember that we have a validation that already does this.

But let's create the test anyway:

test "should not save post without title" do
    post = Post.new
    assert !post.save
end

Now, when we run rake test, what happens? That's right: all our tests and asser-

tions pass. If you temporarily comment out the validations in app/models/post.rb,

however, and run the test again you'll see your first failing test.

Now, if you're thinking that there's no point testing when you can use validations,

not so fast. Think about what we've done here: if we were using proper TDD tech-

niques, we'd have written our test before adding any validation. Unit tests on

models are mostly for ensuring that we're getting the data we want. So our test

proves that we have a fighting chance of getting the data we want in our database.

There are still more improvements that can be made. For example, how can we test

those validations? It'd be nice if we could actually test that the validations do what

Jump Start Rails46



we think they are going to do. Well, guess what? This is Rails, so we can do just

that.

Here's a new test to add to test/unit/post_test.rb:

test "post values should not be empty" do
    post = Post.new
    assert post.invalid?
    assert post.errors[:title].any?
    assert post.errors[:blurb].any?
    assert post.errors[:body].any?
end

Can you see how this addresses the issue about tests versus validations? This test

creates a new post, fires it at the model, and then ensures that the model correctly

fires errors back because the fields can't be blank. How awesome is that? You can

run the tests with rake test:units, too.

This means we know that the model is working in its most basic form. We can now

drill down and do some specific testing. For example, our validations say that the

blurb field should only accept text. Let's make sure that's going to be the case. And

while we're at it, we'll use one of our fixtures to throw some data at the test too:

test "blurb should be a string" do
    post = Post.new(title: posts(:one).title,
                    blurb: posts(:one).blurb,
                    body: "Body? Whose?")

    assert blurb.title.kind_of? String 
end

Run the tests, and we get:

Run options: 
# Running tests:
..
Finished tests in 0.095570s, 20.9271 tests/s, 52.3177 assertions/s.
2 tests, 5 assertions, 0 failures, 0 errors, 0 skips

The line that's interesting here is: blurb: posts(:one).blurb. What this does is

load the fixture data from test/fixtures/posts.yml from the record named one. Use

47Starting an App



descriptive fixture names. "One" is fine for this simple example, but more descriptive

names will make things easier in a bigger app.

Functional Tests
We can also test the controllers. Or, to put it another way, test the user-facing layers.

Controller tests let us check with assertions how a single request to a controller action

is handled. The scaffolding we generated has created a whole series of tests already.

Take a look in test/controllers/posts_controller_test.rb to see what I mean.

Now run them with: rake test:functionals, and you'll notice they fail. Why is

that?

When we try to add a blank record, the model validation kicks in, and the tests fail.

What we need to do is change the tests in order to reflect that fact.

We do this by setting up the test so that some data actually gets fired at the model.

Open up test/functional/posts_controller_test.rb and add the setup code like this:

class PostsControllerTest < ActionController::TestCase
  setup do
    @post = posts(:one)
    @update = {
      title: 'Here is the title',
      blurb: 'Here is the blurb',
      body: 'Here is the body'
    }
  end

The two tests that failed were: should get new and should update post. For the

new post test, update it to look like this:

test "should create post" do
    assert_difference('Post.count') do
    post :create, post: @update
end

As for the update test, alter the code like this:

Jump Start Rails48



test "should update post" do
    put :update, id: @post, post: @update
    assert_redirected_to post_path(assigns(:post))
end

Done? Now rerun the tests:

Run options: 
# Running tests:
.........
Finished tests in 0.443877s, 20.2759 tests/s, 27.0345 assertions/s.
9 tests, 12 assertions, 0 failures, 0 errors, 0 skips

Excellent. Problem solved! Hopefully this little run-though of writing some tests

for our app has shown you the power of Rails' built-in testing.

Creating a Layout with Bootstrap
There are lots of reasons to like the flexibility that offered by Rails layouts. However,

if you're not a designer, making something that looks nice can still be a challenge.

Enter Bootstrap6. Bootstrap is a CSS framework that provides a set of grids for layout,

typographical and HTML element styles, and some cool JavaScript interactions.

Thanks to the extensive Ruby ecosystem there are several gems we can use with

our Rails app to seamlessly integrate Bootstrap. The example I'll demonstrate here

(we'll be using it in our main app, too) is called boostrap sass7.

It takes very little effort to set the gem up, and it's also very easy to add the Bootstrap

resources into our app.

Install the Gem
Open up your Gemfile, and add the line:

gem 'bootstrap-sass'

Then, in terminal, run bundle install.

6 http://twitter.github.com/bootstrap/
7 https://github.com/thomas-mcdonald/bootstrap-sass

49Starting an App

http://twitter.github.com/bootstrap/
https://github.com/thomas-mcdonald/bootstrap-sass


Connect the Bootstrap Assets
Next, create a new custom.css.scss file in app/assets/stylesheets. There are other ways

to add the Bootstrap styles, but I've found that by having a separate file, it's easy to

add the style rules you want to use for the layout, among other things.

To use the Bootstrap stylesheets just add the following to custom.css.scss:

@import "bootstrap";
@import "bootstrap-responsive";

To use the Bootstrap JavaScript files, just add //= require bootstrap to

app/assets/javascripts/application.js like this:

//= require jquery
//= require jquery_ujs
//= require_tree .
//= require bootstrap

That's it, Bootstrap is now installed.

So now we can start thinking about a layout. The Bootstrap website has some useful

examples, so we'll borrow one of those. I've chosen the fluid layout8 example.

First, let's copy the style rules found in the <head> of the example file into our

custom.css.scss file:

body {
    padding-top: 60px;
    padding-bottom: 40px;
}

.sidebar-nav {
    padding: 9px 0;
}

Then, copy and paste the HTML code from the sample into your

app/views/layouts/pages.html.erb file. We're using a fluid layout, meaning that

Bootstrap will use percentage values rather than pixels for column widths.

8 http://twitter.github.com/bootstrap/examples/fluid.html

Jump Start Rails50

http://twitter.github.com/bootstrap/examples/fluid.html


Your layout file should now look like this:

<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width, 
➥initial-scale=1.0">
    <%= stylesheet_link_tag    "application", :media => "all", 
➥"data-turbolinks-track" => true%>
    <%= javascript_include_tag "application", 
➥"data-turbolinks-track" => true %>
    <%= csrf_meta_tags %>
</head>
<body>
  <div class="navbar navbar-inverse navbar-fixed-top">
    <div class="navbar-inner">
      <div class="container-fluid">
         <a class="brand">Jump Start Rails</a>
      </div>        
     </div>
  </div>
  <div class="container-fluid">
    <div class="row-fluid">
      <div class="span3">
        <ul class="nav nav-list">
          <li class="nav-header">Sidebar</li>
          <li class="active"><a href="#">Link</a></li>
          <li class="nav-header">Sidebar</li>
          <li><a href="#">Link</a></li>
          <li><a href="#">Link</a></li>
          <li class="nav-header">Sidebar</li>
          <li><a href="#">Link</a></li>
        </ul>
      </div>
      <div class="span9">
        <%= yield %>
      </div>
    </div>
    <hr/>
    <footer></footer>
  </div>
  
</body>
</html>

51Starting an App



Refining the Layout
What we have is looking good, but there are still some improvements we can make.

For example, it's reasonable to assume that we'll want the menu to appear on most

of our pages. So rather than leave that big, untidy blob in the layout file, we'll move

it into a partial.

You can think of partials as a kind of include file. They are created using the handy

render method. To create one for the menu, do the following:

Add a new folder in app/views called shared. Inside that folder, create a file called

_menu.html.erb. Note the "_". That's how we tell Rails we intend this file to be a

partial. You can now copy the code for the left-hand menu into it:

<ul class="nav nav-list">
    <li class="nav-header">Sidebar</li>
    <li class="active"><a href="#">Link</a></li>
    <li class="nav-header">Sidebar</li>
    <li><a href="#">Link</a></li>
    <li><a href="#">Link</a></li>
    <li class="nav-header">Sidebar</li>
    <li><a href="#">Link</a></li>
</ul>

In pages.html.erb, replace the navigation (in the <div class="span3"> tag) with the

following:

<%= render "/shared/menu" %>

Figure 2.17 shows how it looks by starting the server from terminal, and pointing

your browser at localhost:3000.

Jump Start Rails52



Figure 2.17. Layout with Bootstrap

Some Notes about the Rails Asset Pipeline
It used to be that, when developing a Rails application, anything that was a static

resource got thrown into the junk drawer located in the public folder. As a result

JavaScript, stylesheets, and images were all piled in there with impunity.

At RailsConf 2011 Rails creator David Heinemeier Hansson pointed out the problem,

and explained how the assets for an app should be considered part of the app, rather

than as stuff thrown in the public folder as an afterthought.

That gave rise to the Sprockets library being included in Rails from version 3.1. The

library is responsible for compiling and serving static web assets such as JavaScript

and CSS files. It can also function as a "preprocessor pipeline," meaning it can use

Sass/SCSS as you've already seen.

This compiling can be seen, too. First, run your app as normal, fire up local-

host:3000, and then do a "view source" in your browser. You will see a long list of

stylesheets and JavaScript files listed in the <head> section of the document.

Next, stop the server, and restart it with this command (which runs the app in

production mode):

53Starting an App



rails server -e production

It's worth noting here, that if you are using a database other than SQLite, you'll need

to ensure that you have proper connection parameters set in config/database.yml.

When you load the app in your browser, you'll most likely see an unstyled page. If

you look in the server log, you'll see something like this:

ActionController::RoutingError (No route matches 
➥[GET] "/stylesheets/application.css"):

What's happening here? Well, the message is telling you to edit:

/config/enviroments/production.rb and ensure that the config.assets.compile is set to

true. Then re-start the server using Rails server -e production, as before. When

you refresh your browser, the app should load as normal. Do a "view source," and

you'll see that the long list of resources are now only displayed as one file reference.

Pop back into terminal, and you'll see this:

I, [2013-05-05T09:00:30.450735 #2688]  INFO -- : 
➥Processing by PagesController#index as HTML
I, [2013-05-05T09:00:30.468154 #2688]  INFO -- :   
➥Rendered pages/index.html.erb within layouts/pages (1.1ms)
I, [2013-05-05T09:00:49.899789 #2688]  INFO -- :   
➥Rendered shared/_menu.html.erb (0.9ms)
...

What you can see here is the asset pipeline doing its thing. Our assets have been

compiled into single files (one for JavaScript, one for CSS) and are now integrated

into the app.

Summary
In this chapter, we've made a simple app by creating a layout and some views first.

We've also taken a look at scaffolding to quickly prototype an app and sampled the

built-in testing capabilities that Rails has to offer. Lastly, we've seen how we're going

to create our layout for the main project app that we'll be building throughout the

rest of the book.

Jump Start Rails54



In Chapter 3, we'll start developing the main app in earnest and, while we're at it,

introduce a site administration system to make it easy to work with the content for

our app.

55Starting an App





Chapter3
Working with Data
The focus of this chapter is to begin building our project app in earnest. We'll create

resources and see how we can work with migrations to add to, and change, the

structure of our database tables. We'll also install a Ruby gem called ActiveAdmin1

that will give us a really slick interface to manage the database content for our app.

Aside from the fact that ActiveAdmin is a powerful administration tool, it's also a

valuable time saver. And since Jump Start Rails is a short book, we'll be using it

here for that very reason. You should be aware of that, and the fact that ActiveAdmin

won't be the right choice for all apps you might build. If, for example, you need to

design a lot of flexibility into your app, using the application controllers to create

an administrative section is the way to go.

The app we'll be building is designed to be a personal web app that includes a blog,

a portfolio section, and a mail form, among other things. We'll be deploying it to

Heroku2 once we're done. You may want to add different sections to your app, so

we'll be covering enough to give you a platform to do that.

1 http://activeadmin.info
2 http://www.heroku.com

http://activeadmin.info
http://www.heroku.com


Lastly, because we're planning to use ActiveAdmin, there's no need for us to create

any scaffolding. However, to get the most out of this useful gem, we need to have

something up and running first. So let's get coding.

Starting the App
We'll get started with a new project, but this time we'll be using the PostgreSQL

database:

rails new jumpstartrails -d postgresql
cd jumpstartrails

If you created a gemset for your "training" app in the last chapter, you will have to

create a new gemset for this app. rvm use --create 2.0.0@jumpstartrails fol-

lowed by gem install rails will get your rails command back.

We've used the -d switch here, to tell Rails that we want to use a different database,

PostgreSQL in this case. Rails will use that information to create a different

config/database.yml file from the one we saw in Chapter 2. We'll be adding our

database role credentials in that file shortly.

Switching Rails…

The rails new command has a lot of "switches" you can use. For example, you

could add --skip-gemfile so that Rails doesn't create a Gemfile. You can see

all the available options by entering: rails new -h in Terminal.

I've stuck with the name jumpstartrails but you can (and should) call your app

whatever you'd like. You should now change into the project directory in terminal.

When you run rails new it will create a directory with the same name as the

overall project. So, using my example, that would be jumpstartrails. You'll need to

change into the new directory to continue working on the project.

It's a good idea to create a new role in PostgreSQL for your app. It's simple to do

that using the excellent pgAdmin tool, as shown in Figure 3.1.

Jump Start Rails58



Figure 3.1. pgAdmin roles

59Working with Data



Figure 3.2. New pgAdmin Login role

You'll need to supply a role name ("jumpstartrails" in Figure 3.2) and a password

(in the Definition tab). The role will also need the ability to create databases (in the

Role privileges tab, shown in Figure 3.3).

Jump Start Rails60



Figure 3.3. pgAdmin role options

Then, in config/database.yml, you add the new credentials:

development:
  host: localhost
  adapter: postgresql
  encoding: unicode
  database: jumpstartrails_development
  pool: 5
  username: jumpstartrails
  password: your password

test:
  host: localhost
  adapter: postgresql
  encoding: unicode
  database: jumpstartrails_test
  pool: 5
  username: jumpstartrails
  password: your password

61Working with Data



production:
  host: localhost
  adapter: postgresql
  encoding: unicode
  database: jumpstartrails_production
  pool: 5
  username: jumpstartrails
  password: your password

Once you've done that, you can run:

rake db:create

This will generate two databases for you: projectname_development and project-

name_test. These two databases will help you develop your applications by running

the migrations (more on those shortly) that you need to create and alter the structure

of the database that supports your app. The test database (as we saw in Chapter 2),

lets you add dummy data so that you can run unit tests as part of the development

process.

A Little Bit of Planning 
It's time to think about the main sections that we want for our app. In the previous

chapter, we saw how we could put a simple app together consisting of some static

pages. We'll most likely still want static pages for this app, too (Home, About,

Contact). However, this time, we'll keep them as part of the app itself by storing the

content in our database. The advantage in doing this is that we'll also be able to use

ActiveAdmin to edit the page content.

We'll also add a blog. Once again, we'll use ActiveAdmin to enable us to manage

posts on the blog. And the same goes for the portfolio section.

So with those three areas in mind, we can begin building our app.

Generating a Model
We'll start by generating a model for pages, and we can use a generator to create it

for us:

Jump Start Rails62



rails g model Page title:string content:text

When the generator completes, you'll see this:

invoke  active_record
create    db/migrate/20130301081154_create_pages.rb
create    app/models/page.rb
invoke    test_unit
create    test/models/page_test.rb
create    test/fixtures/pages.yml

Results May Vary

The date stamp in your migrations filenames will be different, of course.

You can see that some unit test "stubs" have been created, along with the model itself,

and a migration file. Great! That's our model created. Now we can migrate the

database to create the tables:

rake db:migrate

Before we go racing on, however, there are a couple of points worth making. First,

what happens if we don't get our database schema exactly right, first time? For ex-

ample, say I wanted to add a text field called slug to this table. The purpose of the

field would be to hold a friendly URL reference for each record in the table. That's

so that we have human-friendly text in our URLs rather than a string of numbers.

Let's say I also want a blurb field to contain a short paragraph that provides a de-

scription of the page too.

There is a way to alter table structures using migrations, even if we've already run

the migration. To add another field, we just create another migration. Fire up the

terminal and enter:

rails g migration AddSlugAndBlurbToPages slug:string blurb:string

This'll create a new migration in db/migrate. Open up the file, and it'll look like

this:

63Working with Data



class AddSlugAndBlurbToPages < ActiveRecord::Migration
  def change
    add_column :pages, :slug, :string
    add_column :pages, :blurb, :string
  end
end

So now we can run rake db:migrate again, and we'll see:

==  AddSlugAndBlurbToPages: migrating ================
-- add_column(:pages, :slug, :string)
   -> 0.0014s
-- add_column(:pages, :blurb, :string)
   -> 0.0007s
==  AddSlugAndBlurbToPages: migrated (0.0022s) =======

The name of the migration (AddSlugAndBlurbToPages), is very important, as Rails

will parse that name to create the right migration.

While we should always plan our database schema as carefully as we can, it's not

always going to be possible to get everything right. At least now we can add more

fields if we need them.

But what happens if we end up adding fields we don't need? We don't really need

a blurb field for our static pages, do we? Our friend rake offers us an option to fix

that. What we can do is roll back the last migration, fix it to remove the blurb field,

and then run it again so that we only get the slug field we want to keep.

Let's run the rollback first:

rake db:rollback

What this does is reverse the last migration we ran. It can do this because the migra-

tion used the change method. The change method is useful because it removes the

need to write both the up and down methods where Rails can figure out how to revert

the changes automatically.

Jump Start Rails64



More on Migrations

You can read more about migrations in the Rails Guides3.

What we need to do now, though, is change the migration file so that it will only

add the slug field. We'll be able to rerun it then.

Open the migration file in your editor and change it so that it looks like this:

class AddSlugToPages < ActiveRecord::Migration
  def change
    add_column :pages, :slug, :string
  end
end

You'll also need to rename the file: 20130301082735_add_slug_to_pages.rb (remember,

the date stamp part will be different in your version). Save your changes and run

the migration with rake db:migrate and you'll see:

==  AddSlugToPages: migrating ===================
-- add_column(:pages, :slug, :string)
-> 0.0009s
==  AddSlugToPages: migrated (0.0010s) ==========

Great! So now we have a bit more control over what fields we have in the database

tables. Next, we'll want to protect our data, so we'll add some validation.

Adding Some Validation
As you've already seen, validation helps ensure that we only have valid data passed

to our database. How do you decide what to validate? Obviously needs vary from

application to application, and even resource to resource. However, the simple way

to think about validation is this: even if you are storing blog posts, say, you still

want to be sure that you've correctly added a title, some content, maybe a category,

and so on. Validating now prevents potential pain later.

3 http://guides.rubyonrails.org/migrations.html

65Working with Data

http://guides.rubyonrails.org/migrations.html


The Rails Console
To help us understand this, we can introduce the rails console. The console

provides a way for us to interact with our application from the command line. It

offers both the full power of Ruby via IRB4, and also the means to try out ideas

without using the actual website.

To use it, fire up the terminal and enter:

rails console --sandbox

You'll see something like this:

Loading development environment in sandbox (Rails 4.0.0)
Any modifications you make will be rolled back on exit
2.0.0-p0 :001 >

Note the comment about changes being rolled back. That's because we started the

console sandboxed in order to try things out. If we wanted to make real changes to

the database, we'd just start the console without the --sandbox option.

First, let's see what was created for us when we generated the Page model. All you

need to do is type Page into the console to examine the object. You'll see something

like this:

2.0.0-p0 :001 > Page
 => Page(id: integer, title: string, content: text, created_at: 
➥datetime, updated_at: datetime, slug: string)

Here, we can see the model as we created it, and also that the new slug field has

indeed been added. Notice that ActiveRecord has created a id field, and a couple

of timestamp fields for us too: created_at: datetime, updated_at: datetime.

You'll always get these fields when generating models, and they're really useful, as

we'll see later in the book.

Let's create a record so we can see how the process works. In console enter:

4 http://www.ruby-lang.org/en/documentation/quickstart/

Jump Start Rails66

http://www.ruby-lang.org/en/documentation/quickstart/


bad_data = Page.new(:title => 'a', :content => 'Here is some 
➥content', :slug => 'my-first-page')

When you press Enter you'll see this confirmation:

=> #<Page id: nil, title: "a", content: "Here is some content", 
➥created_at: nil, updated_at: nil, slug: "my-first-page">

We can confirm that this is a new record with:

bad_data.new_record?

Console will reply with: => true indicating that the record has not yet been saved.

You'll have probably noticed that I've used a title with a single character. That's an

example of the kind of data we don't want in our database. If it's a page title, it

should be long enough to actually be a title. However, there is nothing stopping us

from saving the record. We'll do that now with:

bad_data.save

This will trigger a response like so:

2.0.0-p0 :007 > bad_data.save
   (0.2ms)  BEGIN
  SQL (73.6ms)  INSERT INTO "pages" ("content", "created_at", "slug" 
➥,"title", "updated_at") VALUES ($1, $2, $3, $4, $5) RETURNING "id"  
➥[["content", "Here is some content"], ["created_at", Fri, 01 Mar 
➥2013 22:35:13 UTC +00:00], ["slug", "my-first-page"], ["title", 
➥"a"], ["updated_at", Fri, 01 Mar 2013 22:35:13 UTC +00:00]]
   (0.8ms)  COMMIT
 => true

To find all the records in the table we can simply enter:

Page.all

And this will trigger the following response:

67Working with Data



Page Load (0.5ms)  SELECT "pages".* FROM "pages"
 => #<ActiveRecord::Relation [#<Page id: 1, title: "a", content: 
➥"Here is some content", created_at: "2013-03-01 22:35:13", 
➥updated_at: "2013-03-01 22:35:13", slug: "my-first-page">]>

Or we could do a find for the specific record, like this:

Page.find(1)

This returns:

Page Load (0.9ms)  SELECT "pages".* FROM "pages" WHERE 
➥"pages"."id" = $1 LIMIT 1  [["id", 1]]
 => #<Page id: 1, title: "a", content: "Here is some content",
➥ created_at: "2013-03-01 22:35:13", updated_at: "2013-03-01 
➥22:35:13", slug: "my-first-page">

We'd better fix that junk title. We can run an update by finding the record:

page = Page.find(1)

And providing a proper title:

page.update_attributes(:title => 'Fixing the bad data')

If we run Page.find(1) again now, we'll see something like:

Page Load (1.0ms)  SELECT "pages".* FROM "pages" WHERE "pages"."id" 
➥= $1 LIMIT 1  [["id", 1]]
 => #<Page id: 1, title: "Fixing the bad data", content: "Here is 
➥some content", created_at: "2013-03-01 22:35:13", updated_at: 
➥"2013-03-01 23:04:32", slug: "my-first-page">

What we see here, then, is that our first page contains invalid data. We don't want

to allow invalid or junk data into our database, and that's why we need validations.

You can press ctrl d or type 'exit' to exit the console.

You've likely seen that our Page model inherits from ActiveRecord::Base. Act-

iveRecord is the module Rails uses to allow us to call simple methods on the model

Jump Start Rails68



and have it interact with the database. It supplies methods to support validation as

well.

ActiveRecord uses the valid? method to verify whether or not an object's valid. So

when the validations are applied, any errors are accessed via the errors instance

method. We get to use validation via ActiveRecord's many helpers. Not only that,

but we can also use them inside our class definitions.

Let's get to some code.

In our Page model, we have three fields: title, slug and content. How might we

decide to validate each of those?

■ title: at the very least, we should check that we've got one. We might also check

its length.

■ slug : we should definitely check that we have data, and that it only contains

characters. Remember: this field will be used to create pretty URLs.

■ content : again, we need to make sure we've got some, and perhaps check for

minimum length while we're at it.

Open up your Page model. We'll start with title:

class Page < ActiveRecord::Base
  attr_accessible :title, :slug, :blurb, :content
  validates :title, presence: true, length: { minimum: 5 }
end

This says that there must be a title, and that it must contain a minimum of five

characters.

Next, we'll add this validation rule:

validates :slug, presence: true, format: { with: /\A[a-zA-Z]+\z/, 
➥message: "Only letters allowed" }

This ensures that our slug has a value, and that it only contains letters. Notice that

we've the option to add our own (friendlier) error messages. Hang on, though—if

69Working with Data



our validation is only going to allow letters, and the slug is for our URLs, we'll need

to allow hyphens, right? No problem. We can alter the validation rule like this:

with: /\A[a-zA-Z-]+\z/

Now the hyphen will be accepted.

Finally, we can copy our title validation for our content validation. It makes sense

to increase the minimum length, though, as a page consisting of just two characters

might look a bit odd!

validates :content, presence: true, length: { minimum: 100 }

Adding a Controller
We might as well create a controller to go with the model:

rails g controller pages index

In Chapter 2 we looked at which options the Rails generators provide for us. When

you generate a controller, you'll see output similar to this:

create  app/controllers/pages_controller.rb
   route  get "pages/index"
  invoke  erb
  create    app/views/pages
  create    app/views/pages/index.html.erb
  invoke  test_unit
  create    test/controllers/pages_controller_test.rb
  invoke  helper
  create    app/helpers/pages_helper.rb
  invoke    test_unit
  create      test/helpers/pages_helper_test.rb
  invoke  assets
  invoke    coffee
  create      app/assets/javascripts/pages.js.coffee
  invoke    scss
  create      app/assets/stylesheets/pages.css.scss

In app/controllers we now have a new file called pages_controller.rb. Open

it up, and it'll look like this:

Jump Start Rails70



class PagesController < ApplicationController
  def index
  end
end

Not very exciting, to be fair. But it doesn't need to be just yet. We've simply created

an index action for now; we'll add more later.

Next up, it's time for us to create another resource.

Adding Another Resource
We have our pages. Now what about a blog? And what should it consist of? We'll

start with categories and posts. Usefully, this'll also enable us to learn how to create

an association between our database tables.

First, we'll create a model for categories:

rails g model Category title:string slug:string description:string

Then, we'll create one for our posts (watch out for something new here):

rails g model Post title:string slug:string blurb:string 
➥content:text category:references

Creating an Association
Did you notice the addition of category:references above? That tells Rails that

we want a one-to-many association between the category and post models. That

is, one category can have many posts. If you take a look inside the post model,

you'll see this:

class Post < ActiveRecord::Base
  attr_accessible :title, :slug, :blurb, :content, :category_id
  belongs_to :category
end

Rails has added: belongs_to :category for us. We now need to update our category

model:

71Working with Data



class Category < ActiveRecord::Base
  attr_accessible :title, :slug, :description
  has_many :posts
end

Here, we just need to add: has_many :posts to complete the association. Next

chapter spoiler alert! When we generate an ActiveAdmin resource for these models,

ActiveAdmin will automatically pick up the association. So when we add a new

post, we'll be offered a drop-down menu to choose a category. How great is that?

You should now run the migrations with: rake db:migrate.

Some Rails Routing Notes
Routing in Rails is very powerful. If you read the comments in config/routes.rb

you'll get a feel for some of the tricks you can do. You'll also notice that Rails has

added a route for us already:

get "pages/index"

That's because we created a controller called pages. If you start the Rails server

with: rails s and point your browser at http://localhost:3000/pages/index,

you'll see the view that Rails created for us when we generated the controller.

However, if you change the URL to http://localhost:3000/pages you'll get an

error. That's because there isn't a specific route set for that.

We can make one, though, by adding the following to your config/routes.rb file:

get 'pages' => 'pages#index'

You should now be able to go to http://localhost:3000/pages without error.

The routes file would quickly get filled up, though, if we chose to do that for all the

routes we wanted to create. But this is Rails, so there must be another way.

By default, Rails uses a concept known as resource routing. It allows you to easily

set up all the common routes you need for a given resource. That means instead of

needing to create separate routes for index, show, new, edit, create, update, and

destroy actions, you can create a resourceful route in a single line of code:

Jump Start Rails72



resources :pages

We can create routes like this because browsers request a URL using a specific HTTP

method. The most common methods are GET, PUT, POST, PATCH, and DELETE.

Each of those methods is a request to perform an operation on a resource. So our

resource route maps a number of related requests to the actions in a single controller.

REST

REST stands for REpresentational State Transfer and provides a way for web

servers to communicate using different services.

If you look back at the training app we developed in Chapter 2, you'll see that in

the config/routes.rb file, we have a route like this:

resources :posts

When you look inside the posts controller, you'll see that Rails has commented on

each action to demonstrate which HTTP method that action responds to:

#GET /posts/1/edit
def edit
end

The comment also shows the type of route the action will respond to. Remember

that Rails is able to deliver different formats from the action, too:

format.html { redirect_to @post, notice: 'Post was successfully 
➥created.' }
format.json { render action: 'show', status: :created, location: 
➥@post }

So what we have here is a Rails convention. By creating the resource, and a resource

route we'll automatically get responses to HTTP requests for GET, PUT, POST,

PATCH, and DELETE.

Next, we'll make sure that the root for our app points to our newly created pages

controller. So add this to config/routes.rb :

73Working with Data



root 'pages#index'

Then, fire up the server:

rails s

Now point your browser at: http://localhost:3000. You'll be greeted by a design

masterpiece...

Rails Routing

You can read more about Rails routing in the Rails Guides.5

Adding a Test for Routes
The core idea of routing in Rails is fairly simple. It means that in a small app, such

as the one we're building here, the routes we'll need are quite simple. We can (and

should) still test them, though.

For example, we'll be creating a custom route for our pages, so that we can use a

URL like: http://localhost:3000/about. It can still be tested, but we just need to

change how we create the test.

A test for a regular Rails action might look like this:

test "should route to post" do
  assert_routing '/posts/1', { :controller => "posts", :action =>
➥ "show", :id => "1" }
end

We can adapt this test a little, for our pages controller. But where would we put

this test? Well, since controllers handle traffic through our app, and controller tests

are known as functional tests, that's where we should put our routing tests.

Take a look inside test/controllers and you'll see that Rails has already created a file

called pages_controller_test.rb. Inside you'll find a test like this:

5 http://guides.rubyonrails.org/routing.html

Jump Start Rails74

http://guides.rubyonrails.org/routing.html


test "should get index" do
    get :index
    assert_response :success
end

So we can now begin to add our simple route test. Looking at the example above,

we'll try:

test "should route to page" do
    assert_routing '/pages/1', { :controller => "pages", :action =>
➥ "show", :id => "1"}
end

If we were to run that test (rake test:functionals) it would pass with flying colors.

That's because we have the route resources :pages already set up. However, if we

want routes to our pages that allow URLs such as http://localhost:3000/about

to work we need a slightly different test:

test "should route to about page" do
    assert_routing '/about', { :controller => "pages", :action =>
➥ "about"}
 end

Now, when you run the tests this time, they'll fail with the error:

No route matches "/about"

Which is fair enough; there isn't such a route just yet. The other thing to bear in

mind, is that our about route doesn't fall inside the resource routes that Rails is

automatically aware of. If you refer back to the training app in Chapter 2, you'll see

that in the posts controller we have actions for index, show, new, edit, create,

update, and destroy. You'll also remember that to get around this problem in the

training app, we created a special route using a Ruby array. Here it is again:

75Working with Data



%w[about contact cv].each do |page|
    get page, controller: 'pages', action: page
end

If you add this to your routes file, make sure you've created an about action in

app/controllers/pages_controller.rb:

def about
end

You should be able to run the functional tests again, and this time get:

Run options: --seed 27501
# Running tests
...
Finished tests in 0.124173s, 24.1598 tests/s, 56.3730 assertions/s.
3 tests, 7 assertions, 0 failures, 0 errors, 0 skips

Excellent! Now our tests pass, and we know that in order to continue testing pages

routes, we simply need to add to the array in our routes file, and create the associated

action in the controller.

Installing ActiveAdmin
At this point in our app, we have a decision to make. In a real world app you'd need

to decide whether to create all the back-end admin yourself (using generators, of

course), or to use a gem like ActiveAdmin. The answer lies in how much control

you want to have.

If you think the app will need detailed control for admin, then you're probably

better off creating everything yourself. For an app like the one we're creating here,

though, ActiveAdmin can be a huge time saver. And make no mistake, it's very

powerful.

One of the benefits of using Ruby and Rails to build web apps, is that there is a huge

ecosystem of gems available to solve almost any problem your app is likely to throw

at you.

This is a short book, and is intended to conclude with you having built a complete

Rails app. By using a gem from that vast ecosystem, we can speed up this process

Jump Start Rails76



considerably. That's why we are going to be using ActiveAdmin to provide an ad-

ministrative back-end for creating and managing content for our app, instead of

using the application controllers and writing Rails code to build the app adminis-

tration.

The ActiveAdmin gem is designed to provide common application patterns (such

as adding/editing/deleting records), to make it easier for developers to create back-

end administration quickly and easily. It also provides administrative login through

another excellent gem called Devise.

In Chapter 4, we'll be taking a closer look at what it has to offer. For now, though,

we'll get it installed and ready to go.

First, we need to add some gems to the Gemfile:

gem 'devise', github: 'plataformatec/devise', branch: 'rails4'
gem 'activeadmin', github: 'RubySource/active_admin, branch: 'rails4'
gem "ransack", github: 'RubySource/ransack', branch: 'rails-4'
gem 'protected_attributes'

Also, you'll need to change the version of the jquery-ui gem used by the application.

gem 'jquery-ui', '~> 2.3.0'

Since we are using a hot-off-the-press version of Rails, many gems are not yet sup-

ported by Rails 4 with their released versions. In this case, we have to point to

branches of ActiveAdmin and its supporting gems in order to stay on the bleeding

edge.

When we add new gems, we need to run bundle install. Next, we can install

ActiveAdmin:

rails generate active_admin:install

When the install process finishes, you'll see the message shown in Figure 3.4 appear.

77Working with Data



Figure 3.4. ActiveAdmin Install Message

Let's run through this message, line by line:

1. We don't need to worry about this just yet.

2. This is already completed.

3. This needs to be done. Open up app/views/layouts/application.html.erb and copy

in the code shown, just above the <%=yield %>:

<body>
<p class="notice"><%= notice %></p>
<p class="alert"><%= alert %></p>
<%= yield %>
...

4. We'll attend to this later. For now, let's copy the line of code config.assets.ini-

tialize_on_precompile = false and add it to config/application.rb, but

commented out:

Jump Start Rails78



#config.assets.initialize_on_precompile = false

There's a reason for leaving it commented out. We'll get to that in Chapter 6.

5. This is worth noting, but we don't need to do anything about it just now.

Remember when I mentioned the bleeding edge? Well, we have one more issue

to fix before we can live with ActiveAdmin and Rails 4. In a nutshell, the act-

iveadmin:install command creates the wrong migration file for admin users.

To fix it, change the db/migrate/<timestamp>_devise_create_admin_users.rb

file to:

          class DeviseCreateAdminUsers < ActiveRecord::Migration
            def self.up
              create_table(:admin_users) do |t|
                ## Database authenticatable
                t.string :email,              :null => false,
➥ :default => ""
                t.string :encrypted_password, :null => false,
➥ :default => ""

                ## Recoverable
                t.string   :reset_password_token
                t.datetime :reset_password_sent_at

                ## Rememberable
                t.datetime :remember_created_at

                ## Trackable
                t.integer  :sign_in_count, :default => 0
                t.datetime :current_sign_in_at
                t.datetime :last_sign_in_at
                t.string   :current_sign_in_ip
                t.string   :last_sign_in_ip

                ## Confirmable
                # t.string   :confirmation_token
                # t.datetime :confirmed_at
                # t.datetime :confirmation_sent_at
                # t.string   :unconfirmed_email # 
➥Only if using reconfirmable

                ## Lockable

79Working with Data



                # t.integer  :failed_attempts, :default => 0 # 
➥Only if lock strategy is :failed_attempts
                # t.string   :unlock_token # 
➥Only if unlock strategy is :email or :both
                # t.datetime :locked_at

                ## Token authenticatable
                # t.string :authentication_token

                # Uncomment below if timestamps were not included
➥ in your original model.
                # t.timestamps
              end

              add_index :admin_users, :email,                
➥:unique => true
              add_index :admin_users, :reset_password_token, 
➥:unique => true
              # add_index :admin_users, :confirmation_token,   
➥:unique => true
              # add_index :admin_users, :unlock_token,         
➥:unique => true
              # add_index :admin_users, :authentication_token, 
➥:unique => true
              # Create a default user
              AdminUser.create!(:email => 'admin@example.com', 
➥:password => 'password', :password_confirmation => 'password')

            end

            def self.down
              # By default, we don't want to make any assumption 
➥about how to roll back a migration when your
              # model already existed. Please edit below which 
➥fields you would like to remove in this migration.
              raise ActiveRecord::IrreversibleMigration
            end
          end      

Also, delete the db/migrate/<timestamp>_add_devise_to_admin_users.rbfile.

Done? The next step is to run the database migration:

Jump Start Rails80



rake db:migrate

You'll see all the tables that ActiveAdmin requires being created.

At this point, restart the Rails server, and then point your browser at http://local-

host:3000/admin. You can login in with admin@example.com and password for the

password. You'll be greeted by the main dashboard, shown in Figure 3.5. It's a bit

empty at the moment, but fear not; we'll be changing that as we continue to build

the app.

Figure 3.5. ActiveAdmin Dashboard

One thing we should do immediately is change the admin user. You can do that by

clicking on Admin Users on the menu bar at the top of the screen, then click New

Admin User. Fill out the details and save the new user. You can delete admin@ex-

ample.com. This will log you out so that you can log back in with your new admin

username.

Summary
We're nicely poised to add ActiveAdmin resources and make our app more useful.

We've covered a lot of ground in this chapter: we've generated a couple of resources

that we can use as the basis for our app; we've created some routes and added tests

for them; and we've seen how we can work with our database using the Rails console,

and manage the database structure with migrations.

Coming up in Chapter 4, we'll be making the ActiveAdmin dashboard more useful,

and creating the resources we want for the app so we can begin to add content.

81Working with Data





Chapter4
Creating an ActiveAdmin Resource
We're now nicely set up to begin working with ActiveAdmin to create resources.

As explained in the previous chapter we are using ActiveAdmin to create the back-

end administration for our app, instead of writing the Rails code ourselves.

Before we get into ActiveAdmin, though, it's worth taking a quick look at what

would be involved in creating the elements ourselves by utilizing the application

controllers.

Creating Admin Functionality Manually
You can return to your training app to try out writing Rails code to develop admin

resources. You'll need to add a pages resource as we did in Chapter 3.

So, at this stage we've got a PageController called pages_controller, and it contains

two empty actions: index and about. For administrative purposes the convention

is to use the index action to list all the records for a particular resource.

Following Rails conventions, we'll also need a corresponding Page model. Fire up

the terminal—ensuring you're in your training application directory—and type:



rails g model Page title:string slug:string content:text

You'll see the output shown in Figure 4.1 as Rails creates our model with the attrib-

utes we requested.

Figure 4.1. Generate Page Model

You should then run the migration by typing:

rake db:migrate

We have a controller; we have a model; the last structural element is a route. Open

config/routes.rb and add:

resources :pages

You should do this just below the resources:posts line in the file.

For the purposes of this exercise we'll skip over the fact that, ordinarily, we'd need

to put that kind of functionality behind a login/authentication system. Instead, let's

see how we'd go about getting a list of all the pages stored in the database.

Wait a minute, though: wouldn't it be useful to see how we can create a form that

will allow us to add a page via our browser? It certainly would, so let's do that first.

In our app/controllers/pages_controller.rb we'll add a callback to share common setup

and constraints between our various actions:

class PagesController < ApplicationController
  before_action :set_page, only: [:show, :edit, :update, :destroy]

In this example, we are running the set_page method before the actions in the only

array.

Jump Start Rails84



You use callbacks in your controllers to write a chunk of code once, and then use

it before or after any action in the controller is called. In essence this means they

can be used to add actions such as authentication, logging, response compression,

and also response customization. Rails supports three types of callback: before,

after, and around.

The callback filters are called just before, or just after an controller action has been

processed. They can run as methods inside the controller, or they're passed to the

controller object when they're run. It doesn't matter which way you choose to run

them—the callback will have access to information about the request, response, and

other controller attributes.

Here, we're going to use a callback called set_page for the actions listed in the array.

So now we should create the callback at the bottom of the file, and with private

access only:

 private
    # Use callbacks to share common setup or constraints 
➥between actions.
    def set_page
      @page = Page.find(params[:id])
    end

    # Never trust parameters from the scary internet, only 
➥allow the white list through.
    def page_params
      params.require(:page).permit(:title, :slug, :content)
    end

We add the set_page method, which will grab the id parameter out of the requested

URL and search the database for the Page with that id. For example, if the URL is

http://localhost:3000/pages/123/edit, the id is 123 and the @page instance

variable will have the Page with that id. Then, the edit action will run and that

same @page variable will be available.

The page_params method is a new Rails convention that ensures you only use the

data from the request that you need. It's possible for evildoers to try to pass data

and scripts to your application, and if you don't take precautions, they can hack

into your server or database. The params.require(:page).permit(:title, :slug,

:content) is one line of defense.

85Creating an ActiveAdmin Resource



Creating a New Page
Now we can begin to create the actions to work with data. Add a new action like

this:

def new
  @page = Page.new
end      

You'll see here that we have an instance variable @page that is assigned the new

object method for the Page model. We'll also need a view in app/views/pages named

new.html.erb. This'll need to contain a form so we can enter the record we want to

add:

<%= form_for(@page) do |f| %>

  <p>
    <%= f.label :title %><br />
    <%= f.text_field :title %>
  </p>
  <p>
    <%= f.label :slug %><br />
    <%= f.text_field :slug %>
  </p>
  <p>
    <%= f.label :content %><br />
    <%= f.text_area :content %>
  </p>
  <p>
    <%= f.submit %>
  </p>
<% end %>

We're using the form_for helper here, which creates a regular HTML form, but with

a twist. The parameter used (@page) informs the method which instance variable

to use when naming fields and passing field values back to the controller.

What this means is that we need another action in the pages controller. It should

look like this:

Jump Start Rails86



def create
  @page = Page.new(page_params)
  @page.save
  redirect_to action: :show, id: @page.id
end

Here, we gather in the values entered on the form by calling our page_params call-

back action. We then use the save method from Active Record to save what's been

passed in from the form. Finally, we redirect back to the show action. We'll get to

creating that action next.

Showing Pages

def show
end      

It looks like this method does nothing, but don't forget about the before_action

callback to the set_page method that sets our @page instance variable!

We also need a corresponding view in app/views/pages called show.html.erb:

show.html.erb

<p>
  <strong>Title:</strong>
  <%= @page.title %>
</p>

<p>
  <strong>Slug:</strong>
  <%= @page.slug %>
</p>

<p>
  <strong>Content:</strong>
  <%= @page.content %>
</p>   

So now we've created a form and the actions needed in the controller to save a new

page record to the database. Next up we can create the code for listing all the pages

in the index action:

87Creating an ActiveAdmin Resource



def index
  @pages = Page.all
end   

Then, in views/index.html.erb we can add code to display the records retrieved, as

shown in Figure 4.2.

<h1>Listing pages</h1>
<table>
  <thead>
    <tr>
      <th>Title</th>
      <th>Slug</th>
      <th>Content</th>
      <th></th>
      <th></th>
      <th></th>
    </tr>
  </thead>
  <tbody>
  <% @pages.each do |page| %>
    <tr>
      <td><%= page.title %></td>
      <td><%= page.slug %></td>
      <td><%= page.content %></td>
    </tr>
  <% end %>
  </tbody>
</table>

<%= link_to "New Page", new_page_path %>

Jump Start Rails88



Figure 4.2. Index page listing

There's still more we could (and should) do. For example, it'd be smart to add some

validation to the form, and also to turn the form into a view partial so that it can be

easily included in other views. However, you've now seen the process for beginning

to write the Rails code needed to create the administration area for your app.

Partials

We haven't discussed partials yet, and we won't be covering them in detail until

Chapter 6. However, for now, you can think of them as a kind of include file.

Creating Resources with ActiveAdmin
Being able to generate the resources you need by writing Rails code is a skill you

will need to develop. However, ActiveAdmin provides a powerful set of features

that makes generating the administrative backend for our app quick and efficient.

And that means we won't have to go through the process we saw at the beginning

of this chapter.

ActiveAdmin has an extensive range of functionality. Here's a quick run-through

of some of the key features:

■ User authentication — ActiveAdmin uses the Devise gem1 to manage user logins.

1 https://github.com/plataformatec/devise

89Creating an ActiveAdmin Resource

https://github.com/plataformatec/devise


■ Index styles — the dashboard comes with a number of possible layouts including

tables (the default), grid, blocks, and even a blog view.

■ Filters — you can search text fields, dates, and numeric fields for records in your

database.

■ Global navigation — it comes with a customizable menu bar to give you control

over the admin interface.

All of those components would take time to develop, and would need to be planned

carefully. ActiveAdmin already knows how to put them together, and does this by

your running of the generators, not as a result of you writing lots of code.

ActiveAdmin comes with these generators so that you can quickly build the admin

functions, and then edit them to suit your needs. To begin with, we'll create an

ActiveAdmin resource so that we can manage the static pages of our application.

Return to your jumpstartrails app, fire up terminal, and make sure you're in your

project folder. Then enter:

rails generate active_admin:resource Page

You'll get a reply like this:

create  app/admin/pages.rb

Then, start up the Rails server (rails s), log in at: http://localhost:3000/admin

and your new pages resource will be available, as shown in Figure 4.3.

Figure 4.3. Pages resource

Jump Start Rails90



Clicking on the Pages link at the top of our Dashboard will show all the existing

pages, as shown in Figure 4.4.

Figure 4.4. Pages Admin

Click Create one and you'll see a form (shown with validation messages in Figure 4.5)

that enables you to create a page.

91Creating an ActiveAdmin Resource



Figure 4.5. ActiveAdmin validation

Let's create an About page for our app, as shown in Figure 4.6. We'll just add some

dummy content for now, but notice that the content is HTML.

Figure 4.6. Create the About page

Jump Start Rails92



If you return to the list of Pages in ActiveAdmin, you'll see your newly created page,

shown in Figure 4.7.

Figure 4.7. Pages listing with new page

In order to display this page in our application, we have to retrieve it from the

database. Open up app/controllers/pages_controller.rb and change the about to:

def about
    @page =Page.where(slug: 'about').first
end

If you created your About page with the slug attribute set to about, this will grab

that page and set the @page instance variable. If you're used to writing a lot more

code to query your database, wave it goodbye. That's all we need in order to ask

Rails to get the contents of our page for us.

Next, we'll need to add a view. In app/views/pages create a new file called

about.html.erb. In it, we'll add some code to display the contents of the page:

<p><%= @page.content.html_safe %></p>

Here, we're asking Rails to display the contents of the content field returned from

the query. I've also applied the html_safe method because we're storing HTML in

the content field. It'll be stripped automatically by Rails unless we specifically say

it's safe to display.

93Creating an ActiveAdmin Resource



Do you remember that routing trick we used in Chapter 3? Well, now you'll be able

to try it out. Point your browser at http://localhost:3000/about and your admit-

tedly ugly page (with content in place), will be displayed.

Back to the Dashboard
Now that we've proven our admin system works, we should take a look at some of

the things we can do to make the ActiveAdmin dashboard a bit more useful. The

default dashboard is deliberately sparse, but there are lots of options available, so

really it's a matter of deciding what you want it to contain. For now, though, we'll

put something together that'll display the most recent pages we've created.

You'll notice that there's a default message being displayed. We can remove that,

and add something of our own. To do that, open the app/admin/dashboard.rb file.

All of our dashboard work is done in this file. While you're there, it's worth reading

the comments in the file as you'll find some useful information. We'll put some of

the commented code to use shortly. But first, we'll comment out the default message:

div :class => "blank_slate_container", 
➥:id => "dashboard_default_message" do
  #  span :class => "blank_slate" do
  #    span I18n.t("active_admin.dashboard_welcome.welcome")
  #    small I18n.t("active_admin.dashboard_welcome.call_to_action")
  #  end
end

Now the default message no longer shows up on the Dashboard page.

Let's say we want to create a section in the dashboard that'll list the pages we have

stored in the database. We've a choice between panels, columns, and tables. We'll

try a table first, inside a section. To create a section in the dashboard, we use the

sectionmethod. The table_for command is one of the most useful for our purpose.

We can specify the columns we want to show, and limit how many records are

displayed.

We can also restrict how many results we display in the table. Our code would look

something like this:

Jump Start Rails94



section "Recent Pages" do
  table_for Page.order("created_at desc").limit(3) do
    column :title
    column :slug
    column :created_at
  end
  strong { link_to "View All Pages", admin_pages_path }
end

We've also added a link to go to a listing of the pages we've created with this line:

strong { link_to "View All Pages", admin_pages_path }. The result is shown

in Figure 4.8.

Figure 4.8. New Dashboard

Editing the Pages Listing
If you look at the listing of pages at http://localhost:3000/admin/pages, you'll

see that the listing contains all of our fields by default. That might be what you

want. However, it can also present a problem with the layout of this page. The main

issue we're likely to have here is the content field. Given this will contain the entire

contents of our page that we intend to display to our users, it won't be long before

the listing becomes unwieldy.

The good news is that there is a way to fix it. But just to prove the point, let's make

another page. Click the New Page button and fill in the form with whatever content

95Creating an ActiveAdmin Resource



you want. Mind gone momentarily blank? Throw in a few paragraphs2 of Lorem

Ipsum. You'll be able to delete the page or edit its contents later.

Once the page is created, return to http://localhost:3000/admin/pages and you'll

see what I mean. As shown in Figure 4.9, we only have two pages and it already

looks a bit cumbersome.

Figure 4.9. ActiveAdmin before customisation

Let's fix it. Open up app/admin/pages.rb. There isn't much in there, but it's where

we can begin to edit the columns that appear. Add a list of the columns you want

to display, like this:

ActiveAdmin.register Page do
  index do
    column :title
    column :slug
    column :created_at
  end
end

Then pop back to your browser and refresh the pages listing. You'll see that we've

removed the content field from the listing, so it looks much tidier. However, we've

now lost the options to edit and delete the pages from our listing. Thankfully, it's

easy to put them back. We just need to add a call to default_actions:

ActiveAdmin.register Page do
  index do
    column :title

2 http://www.lipsum.com/

Jump Start Rails96

http://www.lipsum.com/


    column :slug
    column :created_at
    default_actions
  end
end

Refresh your browser window, and the view edit delete links will be back. We've

effectively removed the content field from the main listing, which makes sense be-

cause we don't need the content field in a list of all our pages.

All of these customizations to the ActiveAdmin views are possible thanks to a Do-

main Specific Language (DSL) supported by ActiveAdmin. This DSL is focused on

making changes to the view very simple, as you've seen. This is not core to Rails,

but it's a great example of what a gem can provide in terms of function and flexibility.

What is a Domain Specific Language?

A DSL is a type of programming language dedicated to a particular problem do-

main. Ruby and Rails are full of gems that utilize DSLs to solve specific problems.

You will hear of terms like HAML, Rspec, and MiniTest, just to name a few. DSLs

are great when done right. In this case, the problem domain is customizing the

view in ActiveAdmin. We will continue to utilize this DSL to customize ActiveAd-

min forms and views throughout this chapter.

Next, we'll generate another resource for our app. It'll be a basic blog with categories

and posts. With a little bit of work, we can have our new resource in the admin

area, including the automatic detection of associations we'll create between tables.

A New Resource
This is where we get some real help from ActiveAdmin. If you remember, we created

posts and categories resources in the previous chapter. You'll also remember that

the association was automatically picked up by Rails in the form of one category

can have many posts. The big news here is that the association will be automatically

detected by ActiveAdmin too. What that means is that the forms that ActiveAdmin

generates will already be set up with a category field for when we add a new post.

Jump into terminal and enter:

97Creating an ActiveAdmin Resource



rails g active_admin:resource Category

Follow this with:

rails g active_admin:resource Post

Then fire up the server with rails s   if you don't already have it running   and log

into http://localhost:3000/admin. As shown in Figure 4.10, we now have our

categories and posts links available for managing content.

Figure 4.10. New ActiveAdmin resources

Head into the Categories section, and add a first category. Figure 4.11 show one I

created:

Figure 4.11. ActiveAdmin category

Jump Start Rails98



Then, go into the posts section, and click the New Post button. As you can see in

Figure 4.12, the association has automatically been picked up:

Figure 4.12. New post

Great! So now we can add categories and posts. That said, we don't have a way to

actually display them to our users yet. Before we do so, there's still some work we

can do in ActiveAdmin. For example, if you go ahead and add a couple of posts,

you'll see that we have the same problem we had with the pages listing—namely

that the main posts listing is going to get very cluttered if we don't do something to

tidy it up.

To do that tidying, we need to go into app/admin/posts.rb and add the columns we

want just as we did for pages:

ActiveAdmin.register Post do
  index do
    column :title
    column :slug
    column :blurb

99Creating an ActiveAdmin Resource



    column :created_at
    default_actions
  end
end

There. That's fixed the potential issue with page bloat.

An Additional Controller
We need to create a controller for our posts resource. Let's do that next:

rails g controller posts index show

We've created the controller with two actions: index and show. It's so we have a

way to show a list of posts, and then a way to view individual posts. This will also

create the views we need. In Chapter 5 we'll continue to flesh out the app, but for

the rest of this chapter, we'll return to the dashboard once more and add our recent

posts to a panel.

Adding Recent Posts to the Dashboard
One thing we might do to make the dashboard a little more useful is to add a list of

recent posts. And just to demonstrate the concept of laying out the dashboard with

columns, we'll go right ahead and add an info panel too. The info panel can display

more useful things than just plain text, but the purpose here is purely to demonstrate

how to break up the dashboard into a columns layout.

To begin, open up app/admin/dashboard.rb and add a new columns section after the

section we created before:

....
    strong { link_to "View All Pages", admin_pages_path }
end

columns do
end

It's entirely possible to nest panels inside a column, so that's what we'll do here:

Jump Start Rails100



column do
  panel "Recent Posts" do
    table_for Post.order("created_at desc").limit(5) do
      column :title
      column :created_at
    end
  end
end

Then we'll add a simple info panel:

column do
  panel "Info" do
    para "Welcome to ActiveAdmin."
  end
end

The whole dashboard file should now look like this:

dashboard.rb

ActiveAdmin.register_page "Dashboard" do

  menu :priority => 1, :label => 
➥proc{ I18n.t("active_admin.dashboard") }

  content :title => proc{ I18n.t("active_admin.dashboard") } do
    div :class => "blank_slate_container", 
➥:id => "dashboard_default_message" do
    end

    section "Recent Pages" do
      table_for Page.order("created_at desc").limit(3) do
        column :title
        column :slug
        column :created_at
      end

      strong { link_to "View All Pages", admin_pages_path }
      br
    end

    # Here's an example of a dashboard with columns and panels.

101Creating an ActiveAdmin Resource



    columns do
      column do
        panel "Recent Posts" do
          table_for Post.order("created_at desc").limit(5) do
            column :title
            column :created_at
          end
        end
      end

      column do
        panel "Info" do
          para "Welcome to ActiveAdmin."
        end
      end
    end
  end # content
end

If you point your browser at http://localhost:3000/admin and login, you'll now

see the columns and panels. It'd be useful, though, if we could click on the title of

recent posts, to view them. All we need to do is change the way the title column

is rendered. We can employ the link_to helper like this:

column("Title"){|post| link_to(post.title, admin_post_path(post)) } 

Figure 4.13 show what our dashboard now looks like.

Figure 4.13. The dashboard with new columns

Jump Start Rails102



There are other things we could do of course, but what you want on your dashboard

will depend on the app you are building. You've now seen some of the possibilities.

A Helping Hand

You'll be creating your own helper in the next chapter. However, Rails provides

quite a number of helpers for working with assets, forms, dates, numbers etc. The

helpers are available to all resources, meaning that you can call them in your

controllers and views where you need them.

Controlling Fields on the Forms
It's possible to edit the way the form fields behave—when creating and editing a

resource—in ActiveAdmin too.

If we want to add the ability to upload an image for each blog post we write, then

we'll need to add an image upload field to our posts form(s). It also means we have

to change the form itself, so that our browsers know that we want to be able to upload

files.

Before that, we'll need to add a new field to our posts table so that we can store the

image filename with the post. We can do that by generating a new migration to add

the field:

rails g migration AddImageToPosts image:string

We'll make it a string data type because that'll be capable of holding the filename.

Don't forget to run: rake db:migrate. In Chapter 5 we'll learn how we actually

perform the image upload. For now, we just want to make sure that we've edited

the create post form to include an image upload field.

ActiveAdmin uses a gem called Formtastic3 to create the various forms that are used

throughout the administration interface. It provides a nice clean way to create forms

for your Rails apps. It's not hard to see why the creators of ActiveAdmin chose to

include it as part of the ActiveAdmin gem.

3 https://github.com/justinfrench/formtastic

103Creating an ActiveAdmin Resource

https://github.com/justinfrench/formtastic


To add the new form field, we need to create a fresh version of the form for adding

a post. In order to do that, open up app/admin/posts.rb. We've code here already to

manage the layout of the list of posts, and we can add our new form code to this.

We'll start after the closing end of our columns override:

index do
  column :title
  column :slug
  column :blurb
  column :created_at
  default_actions
end

form :html => { :enctype => "multipart/form-data" } do |f|

Now we can start creating the fields. The thing to remember here is that, since we

are overriding the default form, we need to ensure that we add the fields that should

be available:

form :html => { :enctype => "multipart/form-data" } do |f|
  f.inputs 'Details' do
    f.input :title
    f.input :slug
    f.input :blurb
    f.input :category
    f.input :content, :as => :text
  end

Formtastic will render the fields as standard HTML text fields unless we specify

otherwise. The content field should be a text-area, which is why we add: :as =>

:text to the field definition.

So far, the changes have re-created the form as we have already seen it, with one

important difference: the form will now be file-upload aware. We can now continue

with the next section of our form:

Jump Start Rails104



f.inputs 'Images' do
  f.input :image, :label => 'Post image', :as => :file
end

This input corresponds with our new image field we added in the migration. We

have set the type to file so that we get a file browser button rendered by the browser.

The whole form looks like this:

form :html => { :enctype => "multipart/form-data" } do |f|
  f.inputs 'Details' do
    f.input :title
    f.input :slug
    f.input :blurb
    f.input :category
    f.input :content, :as => :text
  end

  f.inputs 'Images' do
    f.input :image, :label => 'Post image', :as => :file
  end
  f.buttons
end

Figure 4.14 show how our form looks now.

105Creating an ActiveAdmin Resource



Figure 4.14. The new add post form

Extra Functionality with Scopes
Scopes are another feature of ActiveAdmin that add a useful filtering mechanism

for the records in our database. The core idea of scopes is to filter records using a

particular criteria. For example, let's say we wanted to see all the posts in a certain

category. We can add a scope that will provide a button link above the main listing

of posts.

Let's open app/admin/posts.rb and add a scope to it at the beginning (this is the

usual convention):

Jump Start Rails106



ActiveAdmin.register Post do
   scope :rails
    index do
    ...

Then, in the post model (app/models/post.rb) we need to add the filter:

class Post < ActiveRecord::Base
  attr_accessible :title, :slug, :blurb, :content
  belongs_to :category
  scope :rails, -> { where(category_id: 1) }
end

We've used the name rails because that's the first category added. If you added a

different one, then just change the name accordingly. You can add more than one

scope too, if you wish. Then, when you refresh your browser and click through to

the posts resource, you'll see Figure 4.15.

Figure 4.15. Scopes

Click the button, and you'll be taken to the rails category (or whichever category

you've chosen). At the moment, it doesn't look particularly exciting in here, but it's

not hard to imagine how useful this feature will become when you have lots of posts

and categories.

107Creating an ActiveAdmin Resource



Summary
We've covered a lot of ground in this chapter. We've set up ActiveAdmin so that

it's easy for us to add content to our small app. We've seen how to create ActiveAd-

min resources, how to change the dashboard layout, and how to change the layout

of the various forms.

We've also seen how ActiveAdmin interacts with the rest of our Rails app. Elements

such as the validation rules that we've added work as expected, and any new re-

sources that are generated get automatically picked up by ActiveAdmin.

In short, we're now in a good position to continue adding features to our app, which

is what we'll do in the next chapter.

Jump Start Rails108



Chapter5
Adding More Features
Although it may not feel like it, we've completed major parts of our app already.

Getting ActiveAdmin up and running has made it easy to begin adding content in

earnest. But there are still some tweaks we can do to make working with the app a

more pleasant experience. For example, you'll probably want to draw in some vis-

itors to your site—which means we could do with some help from the Ruby ecosys-

tem to add more features to our app.

In this chapter, we'll be adding the following:

■ a gem to enable us to use pretty URLs, such as http://local-

host:3000/posts/my-first-blog-post, rather than the Rails default style, such

as http://local:3000/pages/1

■ a gem that allows us to add metadata, such as page titles and meta descriptions,

regardless of the fact that we're using layouts

■ the app is desperately in need of a design makeover, and we can do that with

the Bootstrap gem, so we'll implement our look and feel with a set of styles and

layouts



■ because we're deploying to Heroku, and it doesn't have a file system as such

(more on that in Chapter 6), we'll see how we can implement file upload from

inside our ActiveAdmin installation.

The FriendlyId Gem
First we'll deal with making pretty URLs. The FriendlyId gem1 is designed to create

slugs and permalinks for Active Record in your Rails app resources.

Permalinks

A permalink is a URL that points to a specific blog post or article when it's in an

archive section of your site. Permalinks don't change and are therefore less likely

to result in broken links to archived content.

FriendlyId has a range of useful features. We'll use it here to create those "pretty"

URLs we're after. Before we tackle that, though, we need to do a bit of work to get

a list of posts appearing from our posts index action. So open up

app/controllers/posts_controller.rb (in your jumpstartrails application directory), and

change the index action to look like this:

def index
  @posts = Post.all
end

Then, open up app/views/posts/index.html.erb and add the following:

<h1>Posts#index</h1>
<% @posts.each do |post| %>
  <%= post.title %> - <%= link_to 'Read Post', post %><br />
<% end %>

We're still a long way from winning any design awards but we are building func-

tionality. Here, we're looping through the records that Rails returned for us, and

printing them out in a simple list. We're using the link_to helper to create a link

to the show action of our controller, which should look like this:

1 https://github.com/norman/friendly_id

Jump Start Rails110

https://github.com/norman/friendly_id


def show
  @post = Post.find(params[:id])
end

Although this is fairly self-explanatory, it's also significant bearing in mind what

we want to do with the URLs. We're picking up the number value from the URL

and using it to pass to Active Record to search out and return the record for us, as

shown in Figure 5.1.

Figure 5.1. Rails default URLs

Finally, we need to update the view in app/views/posts/show.html.erb like so (for

now, at least):

<p>
  <strong>Title:</strong> <%= @post.title %>
</p>

<p>
  <%= @post.content %>
</p>

<%= link_to 'Back', posts_path %>

You may have spotted why we created a database field called slug. What we want

for our URLs is a nice, friendly, human-readable name instead of a number, and

using our slug field in the URL is ideal. Enter FriendlyId.

First, we must add the gem to our Gemfile:

111Adding More Features



gem 'friendly_id', github: 'FriendlyId/friendly_id', branch: 'rails4'

Notice we have to point at a specific branch of the Github repository. This is life

on the bleeding edge...

Then run: bundle install.

Next, we need to open up app/models/post.rb. The FriendlyId gem requires that we

extend our model to use the FriendlyId gem, and then reference the field in the

database upon which we've based our slug. The post model should now look like

this:

class Post < ActiveRecord::Base
  belongs_to :category
  attr_accessible :blurb, :content, :slug, :title, :category_id
  scope :rails, -> {where(category_id: 1) }
  extend FriendlyId
  friendly_id :title, use: :slugged
end

The line: friendly_id :title, use: :slugged tells FriendlyId that we want to

use the slugged version of our title field in the URLs. The word "slugged" simply

means a hyphenated version of our title that's suitable for a URL. We can safely do

this because we've already created the slug field in the database table. Now, if you

have the Rails server running, you'll need to re-start it. Then you can refresh your

browser window on the posts page, and click one of the Read Post links.

Figure 5.2. Pretty URL applied

Jump Start Rails112



As you can see in Figure 5.2, the address bar shows that our URLs are now working.

What about the admin area, though? Well, log in, and you'll see that ActiveAdmin

has picked up the new URL format already, as shown in Figure 5.3.

Figure 5.3. Admin URLs

There's something else that FriendlyId looks after for us, too. Let's say that we want

to change the title of a post. What would happen to the URL? Well, what we'd need

is for the slug field to be updated to reflect the new URL. And guess what? That's

exactly what happens. Why not try it out on one of your posts now? All you need

to do is change the title, click save, and check the value in the slug field. You'll see

that the slug is updated to a hyphenated version of the new title you've added.

That's our URLs fixed. Next, we'll look at working with metadata.

Managing Metadata
First, let's be clear about the problem we're trying to solve in this section. The

metadata of a web page stores items such as title, description, character set, and the

like. It's important for many things, not least of which is Search Engine Optimization

(SEO). Each one of our blog posts will need different metadata values so search

engines know how to categorize and rank them. Since we're storing our posts in the

database, we only have one metadata section for the entire application. So how can

we change the metadata (which is in the <head> section of our HTML page) for each

post?

Well, we could write a Rails helper that dynamically swaps the contents of the

metadata as each post loads. We would need to be drawing the data from our database

113Adding More Features



for the meta fields, but that would be entirely possible. Or, we could turn to the

Ruby gems ecosystem and see if there's anything to make the process easier.

And guess what? There is! In this instance we're going to be working with a gem

called metamagic2. It has a single purpose, and that's to allow us to add metadata

(content, keywords) for our posts and pages.

First things first: let's add the gem to our Gemfile:

gem 'metamagic'

Then run bundle install as usual.

The first thing we need to do is make our layout aware of metamagic. So open

app/views/layouts/application.html.erb and change the <head> section like this:

<!DOCTYPE html>
<html>
<head>
  <%= metamagic %>
  <%= stylesheet_link_tag    "application", media: "all",
➥ "data-turbolinks-track" => true %>
  <%= javascript_include_tag "application", "data-turbolinks-track"
➥ => true %>
  <%= csrf_meta_tags %>
</head>

The next question is, how can we tell the dynamic sections of our app what meta

we want to use? Well, if we start with pages, we just need to add metamagic values

to the views. Open app/views/pages.index.html.erb and at the top of the file add the

following:

2 https://github.com/lassebunk/metamagic

Jump Start Rails114

https://github.com/lassebunk/metamagic


<%
meta :title => "My title",
     :description => "The Jump Start Rails App",
     :keywords => %w(rails ruby on rails Rails)
%>

You'll no doubt recognize these as the regular metadata options. Save the view, and

then fire up the Rails server if it's not already running, and point your browser at

http://localhost:3000. Use your browser's "view source" feature to check the

source code of the generated page, as shown in Figure 5.4.

Figure 5.4. Viewing metadata

That's fine for the static pages, but what about our blog? For

app/views/posts/index.html.erb you can do much the same as for the static pages. For

individual posts we can use the data we have in our database. Open up

app/views/posts/show.html.erb and update it to look like this:

show.html.erb

<%
meta title: @post.title,
     description: @post.blurb,
     keywords: %w(rails ruby on rails Rails jump start rails)
%>
<p>
  <strong>Title:</strong> <%= @post.title %>
</p>

<p>
  <%= @post.content %>

115Adding More Features



</p>

<%= link_to 'Back', posts_path %>

You can see here that we're using the title and blurb fields to populate the meta

tags dynamically. If you load one of your posts in your browser, and then do a "view

source" again, as shown in Figure 5.5, you'll see that your metadata has populated

as expected:

Figure 5.5. Viewing metadata for posts

There's one other thing we can do, too. What happens if we don't have specific meta

tags set for part of our app? Well, metamagic lets us use a set of default tags. Re-

open app/views/layout/application.html.erb and swap the <% metamagic %>

reference to one that includes the defaults you want to use:

<%= metamagic title: "My default title", description: 
➥"My default description.", keywords: %w(ruby rails 
➥ Ruby on Rails) %>

Where you don't specify the metadata you want to apply, the default metadata will

be used instead. That means you can keep your SEO references consistent

throughout the app.

Uploads
The next bit of functionality that will be useful to add to our app is the ability to

upload images. We've done some of the groundwork for this already. If you recall,

in the last chapter we added a new form to ActiveAdmin that provides an image

upload input field. We also added a new field called image to our posts table in

the database.

That means that we have upload-aware forms in the admin area, and a database

table ready to store the filename of the upload for each post. We're going to restrict

Jump Start Rails116



our blog to one image per post, based on the conventional blogging wisdom that

there should be a supporting image for each blog post.

Initially, we'll get the upload working by uploading files to our app's public folder.

Once that's happening, we'll see how to upload images to the Amazon S3 storage

service.

Cloud Storage With S3

Amazon S33 is a simple web service that can be used to store and retrieve any

amount of data from anywhere on the Web. It uses the concept of buckets to store

your data. So you could have a dedicated bucket for the app we are working on.

The Amazon Web Services (AWS) free tier includes 5GB of storage. You'll need

to sign up for an account to use it, but if you already have an Amazon account for

purchases, you can log into AWS with those credentials.

We are going to be using yet another gem from the Ruby ecosystem. This one's called

CarrierWave4. When it comes to file uploading with Rails there are several options

available. You could just use Rails, and upload the image to a binary field in your

database. You'd then need to write Rails code to create an upload form, and the

controller actions to run the actual upload.

Using a gem created specifically for the task makes life easier, and also provides

greater options for uploading.

Paperclip

Another popular upload gem you may want to consider using is called Paperclip.5

Installing the Gem
Add gem carrierwave to your Gemfile, and then run bundle install. There are

some optional resources you can install, but we'll get to those in a moment.

3 http://aws.amazon.com/s3/
4 https://github.com/jnicklas/carrierwave
5 https://github.com/thoughtbot/paperclip

117Adding More Features

http://aws.amazon.com/s3/
https://github.com/jnicklas/carrierwave
https://github.com/thoughtbot/paperclip


Using the Generator
CarrierWave comes with a generator so that we can generate an uploader class. All

we need to do is provide a name for the class like this:

rails g uploader image

We're using the class name image, because we named the field in our database table

image. The above command will create a new directory called uploaders in the app

directory. The generated class file will be named image_uploader.rb, and it contains

plenty of comments to help us out.

Creating an Uploads Folder
To begin with, all we need to do is make an uploads folder inside the public folder:

mkdir public/uploads

And then make sure it has write permissions so that the files can be uploaded:

chmod -R 777 public/uploads

The command will work for Unix systems. If you're on Windows and using Rails

Installer, you'll be able to use the terminal app to do the same thing. If you aren't

using Rails Installer, there's a guide here6 to set folder permissions.

We've used the recursive switch here because CarrierWave will upload files into

sub-directories organized by model and date.

Updating the Post Model
Now we can add the upload to the posts model. That's done by calling the

mount_uploader method. We pass in the name—image—that we used above when

generating the uploader class. Your post model should look like this:

6 http://www.wikihow.com/Change-File-Permissions-on-Windows-7

Jump Start Rails118

http://www.wikihow.com/Change-File-Permissions-on-Windows-7


post.rb

class Post < ActiveRecord::Base
  belongs_to :category
  attr_accessible :blurb, :content, :slug, :title, :category_id,
➥ :image
  scope :rails, where(:category_id => 1)
  extend FriendlyId
  friendly_id :title, use: :slugged
  mount_uploader :image, ImageUploader
end

(Be sure you add :image to the attr_accessible list!)

If you cast your mind back to the form we created in ActiveAdmin you'll remember

that it is intended to store the path to an image. The model now knows about our

uploaded file, and CarrierWave will also write the path to the image field in a

new/edited post record, as shown in Figure 5.6.

Figure 5.6. Upload field

Uploading
We should now be able to try an upload. Either create a new post, or edit an existing

one. You should be aware that different browsers render file inputs differently   and

unfortunately there's nothing you can do about it. The Webkit browsers (Safari,

Chrome) just display a button that, when clicked, will produce a file-system browse

window. When you have chosen a file, the filename will appear next to the button.

In Firefox and Internet Explorer, you get an actual text field.

When you save the post, you'll see that the file path is written to the record, as

shown in Figure 5.7.

119Adding More Features



Figure 5.7. Record with a filepath

And if you check your uploads folder, you should see the image has been added.

There is more that we can do, though.

Scaling Images Requires ImageMagick

Being able to scale images dynamically requires the ImageMagick library. You

can download a binary version for Windows7. If you're on a Mac, you can install

via brew install ImageMagick, and if you use Ubuntu Linux you can install

it withsudo apt-get install imagemagick libmagickwand-dev. Although

this is an optional addition, it's very useful for creating thumbnail images dynam-

ically — something we'll be doing later in the chapter.

7 http://www.imagemagick.org/script/binary-releases.php

Jump Start Rails120

http://www.imagemagick.org/script/binary-releases.php


Displaying Images
How would we go about actually displaying an uploaded image? You'll need to

open up app/views/posts/show.html.erb and amend it like this:

show.html.erb

<%
meta :title => @post.title,
     :description => @post.blurb,
     :keywords => %w(rails ruby on rails Rails)
%>
<p>
  <strong>Title: </strong> <%= @post.title %>
</p>

<p>
  <%= image_tag @post.image_url.to_s %>
</p>

<p>
  <%= @post.content %>
</p>

<%= link_to 'Back', posts_path %>

We're using a couple of helper methods here. First, we're using the ActionView

helper image_tag that renders to a standard HTML image tag. We're also using the

to_s method that ensures the file path we have stored is treated as a string. Finally,

image_url ensures that Rails knows we mean to point to the uploads directory in

our public folder, rather than the assets directory, where images would normally be

stored. The results are shown in Figure 5.8.

121Adding More Features



Figure 5.8. Post with image

Creating Thumbnail Images on the Fly
It'd be nice if we could display a thumbnail image of the main post image in our

list of posts, wouldn't it? Well, we can. Assuming that you have ImageMagick in-

stalled, you can re-open app/uploaders/image_uploader.rb.

First of all we need to add another gem to the Gemfile:

gem "rmagick"

Don't forget to run bundle install.

Jump Start Rails122



In the app/uploaders/image_uploader.rb file, you'll see the following line commented

out for now:

include CarrierWave::RMagick

Uncomment it so that our uploader knows it can call on Imagemagick for scaling

operations. Next, further down the file, you'll see this line commented out, too:

version :thumb do

   ..
end

Uncomment that too, and change it to look like this:

version :thumb do
   process :resize_to_limit => [100, 100]
end

We're calling the process method, and also the resize to limit method to scale

the image as it uploads. ImageMagick will do this by maintaining the aspect ratio,

which is why the method is called "resize to limit"; the limits here are set to 100px.

Now, when we upload a file, we'll also get a thumbnail version, as shown in Fig-

ure 5.9.

123Adding More Features



Figure 5.9. Thumbnails

Now we can update app/views/posts/index.html.erb like this:

<h1>Posts#index</h1>
<% @posts.each do |post| %>
    <%= image_tag post.image_url(:thumb).to_s %> - <%= post.title %>
➥ - <%= link_to 'Read Post', post %><br />
<% end %>

This is as before, except we are also calling the CarrierWave :thumb method to re-

trieve the thumbnail version of our image, as shown in Figure 5.10.

Jump Start Rails124



Figure 5.10. Posts with thumbs

We're in a good position now to get our uploads sent to Amazon S3 rather than to

the file system. There are a couple of advantages in doing this. First, it means that

deploying the app to Heroku won't be a problem, and second, even if we move

where the app is deployed to, we have our uploaded resources all stored in one

place.

Uploading to S3
The main tasks involved in sending our image uploads to S3 are creating an initial-

izer, and adding some extra options to enable CarrierWave to work with a gem called

Fog8. Fog can connect to variety of cloud resources, one of them being AWS. Carri-
8 http://fog.io/

125Adding More Features

http://fog.io/


erWave uses that functionality to connect your uploads to a bucket of your choosing

on your S3 account. Much of the complexity is hidden away, so we only have to

configure a couple of things, and our uploads will work.

The first thing to do is add the Fog gem:

gem 'fog'

Then run bundle install as normal.

Then you should log into your S3 account and create a bucket for your app, as

shown in Figure 5.11.

Figure 5.11. Creating a bucket

It's a good idea to do that now because you'll need the name of the bucket for the

configuration options, and you'll also need your S3 credentials for the initializer

code (you can find them if you click your name in the upper right-hand corner of

the AWS console and choose "Security Credentials").

Next, we need to create a new file in app/config/initializers called carrierwave.rb. And

you'll need to add the following to it:

Jump Start Rails126



CarrierWave.configure do |config|
     config.fog_credentials = {
    :provider               => 'AWS',                          
➥# required
    :aws_access_key_id      => 'your access id',               
➥# required
    :aws_secret_access_key  => 'your secret key',              
➥# required
    :region                 => 'eu-west-1',                  
➥# optional, defaults to 'us-east-1'
    :host                   => 's3.example.com',             
➥# optional, defaults to nil
    :endpoint               => 'https://s3.example.com:8080'
➥ # optional, defaults to nil
  }
  config.fog_directory  = 'your bucket name'                     
➥# required
  config.fog_public     = false                                   
➥# optional, defaults to true
  config.fog_attributes = {'Cache-Control'=>'max-age=315576000'}  
➥# optional, defaults to {}

end

Now we can update the uploader class to use Fog. Open up

app/uploaders/image_uploader.rb and change the top section of the file like this:

class ImageUploader < CarrierWave::Uploader::Base

  include CarrierWave::RMagick
  include CarrierWave::MimeTypes
  process :set_content_type
  # Include the Sprockets helpers for Rails 3.1+ asset pipeline
➥ compatibility:
  # include Sprockets::Helpers::RailsHelper
  # include Sprockets::Helpers::IsolatedHelper

  # Choose what kind of storage to use for this uploader:
  storage :fog

There are a couple of important differences here. First, we've added the call to

CarrierWave MimeTypes along with the set_content_type option to make sure

127Adding More Features



that the correct MIME type is set for the image. We've also told CarrierWave that

we want to use Fog for storage, meaning that CarrierWave will pass the upload

procedure to Fog for sending to S3.

You can restart the server now, log back into your admin area, and edit one of your

posts. This time, when you click the Update button, the file path still gets written

to the database, and the upload still runs. The crucial difference now is that the file

path will be a URL to the file on your S3 account, and the file you chose will be

uploaded to your nominated bucket.

Creating a Layout with Bootstrap
It's high time we did something with our look and feel, isn't it? We've already seen

how to utilize Bootstrap9 in Chapter 2. We'll employ it here too, but this time we'll

see how we can use it to work with different layouts for different parts of our app.

First we need to install the bootstrap-sass gem10. Add gem 'bootstrap-sass' to

your Gemfile and then run bundle install.

Next, we'll create a layout specific to the pages resource in our app. In

app/views/layouts , create a new file called pages.html.erb. If you recall, when we

create a layout with the same name as a resource in our app, Rails will automatically

use that layout when we call any actions in the pages controller.

Now we should open up app/assets/stylesheets/pages.css.scss. In Chapter 2 we created

a new stylesheet and added all our style information in there. This time, we'll use

the stylesheet specific to the resource, so that we can see how easy it is to create

different layouts for our app resources.

In pages.css.scss add the links for Bootstrap:

@import "bootstrap";
@import "bootstrap-responsive";

This effectively installs the Bootstrap styles into the app. Bootstrap also has some

behaviour that we need to include with our application JavaScript. Open

app/assets/javascripts/application.js and add the following to the end of the file:

9 http://twitter.github.com/bootstrap/
10 https://github.com/thomas-mcdonald/bootstrap-sass

Jump Start Rails128

http://twitter.github.com/bootstrap/
https://github.com/thomas-mcdonald/bootstrap-sass


//= require bootstrap

For pages we'll use the "Justified Nav11"sample Bootstrap layout. There are some

style rules to add to app/assets/stylesheets/pages.css.scss starting with the main layout

sections:

body {
  padding-top: 20px;
  padding-bottom: 60px;
}

/* Custom container */
.container {
  margin: 0 auto;
  max-width: 1000px;
}
.container > hr {
  margin: 60px 0;
}

/* Main marketing message and sign up button */
.jumbotron {
  margin: 80px 0;
  text-align: center;
}
.jumbotron h1 {
  font-size: 100px;
  line-height: 1;
}
.jumbotron .lead {
  font-size: 24px;
  line-height: 1.25;
}
.jumbotron .btn {
  font-size: 21px;
  padding: 14px 24px;
}

/* Supporting marketing content */
.marketing {
  margin: 60px 0;

11 http://twitter.github.com/bootstrap/examples/justified-nav.html

129Adding More Features

http://twitter.github.com/bootstrap/examples/justified-nav.html


}
.marketing p + h4 {
  margin-top: 28px;
}

Next, we'll add styles for the navigation bar:

/* Customize navbar links to fill the entire space of the .navbar */
.navbar .navbar-inner {
  padding: 0;
}
.navbar .nav {
  margin: 0;
  display: table;
  width: 100%;
}
.navbar .nav li {
  display: table-cell;
  width: 1%;
  float: none;
}
.navbar .nav li a {
  font-weight: bold;
  text-align: center;
  border-left: 1px solid rgba(255,255,255,.75);
  border-right: 1px solid rgba(0,0,0,.1);
}
.navbar .nav li:first-child a {
  border-left: 0;
  border-radius: 3px 0 0 3px;
}
.navbar .nav li:last-child a {
  border-right: 0;
  border-radius: 0 3px 3px 0;
}

Now we can add our layout to app/views/layouts/pages.html.erb like this:

pages.html.erb

<!DOCTYPE html>
<html>
<head>

Jump Start Rails130



  <%= metamagic title: "My default title", description: "My 
➥default description.", 
➥keywords: %w(keyword1 keyword2 keyword3) %>
  <%= stylesheet_link_tag    "pages", :media => "all" %>
  <%= javascript_include_tag "application" %>
  <%= csrf_meta_tags %>
</head>
<body>

<div class="container">

  <div class="masthead">
    <h3 class="muted">Jump Start Rails</h3>
      <div class="navbar">
        <div class="navbar-inner">
          <div class="container">
            <ul class="nav">
              <%= nav_link 'Home', root_path %>
              <%= nav_link 'About', about_path %>
              <%= nav_link 'Blog', posts_path %> 
           </ul>
          </div>
        </div>
      </div><!-- /.navbar -->
   </div>

  <%= yield %>
  <hr>

  <div class="footer">
    <p>&copy; Jump Start Rails 2013</p>
  </div>
</div> <!-- /container -->

</body>
</html>

Most of this is straightforward HTML, apart from a call to a custom helper, which

we'll get to right now.

A Custom Helper
Let's take a look at what <%= nav_link 'Home', root_path %> does. We need a

way to indicate to the user which page in the navigation is "active". For example,

131Adding More Features



if the user is on the About page, the About link in the navigation should be high-

lighted. The best way to do this is with a CSS class, which we'll call active.

The problem we have is how to inform our regular HTML nav bar which page the

user has clicked on. Our pages are not static HTML files, so we can't just manually

change this for each page. We need a Rails helper to sort out the problem.

What we want is for each link in the nav bar to have a unique value that we can

pass to our helper. The helper will then decide which page we are on, and send a

string back that writes the CSS class reference where it's needed.

In each <li> of the menu list, we have a call to a helper called nav_link.

Open app/helpers/application_helper.rb and add the following:

module ApplicationHelper
  def nav_link(link_text, link_path)
    class_name = current_page?(link_path) ? 'active' : ''
    content_tag(:li, :class => class_name) do
      link_to link_text, link_path
    end
  end
end

Our helper is passed two parameters: the link text, and the path. Then we check to

see if we are on the current page using the rails built-in helper called current_page.

Next, we use the Rails content_tag helper to return the HTML <li> with the CSS

class applied.

The next thing to do is log into your admin section and update the content for your

index page. Save it, and then go to http://localhost:3000 (having first started

the Rails server).

When you test the links in your browser now, you should see that when you click

on each page, the nav bar button is highlighted to show what page you are on, as

shown in Figure 5.12.

Jump Start Rails132



Figure 5.12. Navbar with helper working

Changing the Posts Layout
We have pages looking a lot nicer now, but what about posts? First, we can make

a layout for it by adding posts.html.erb to app/views/layouts. Then, it's just a matter

of choosing the layout you want. Since this is a blog, we can keep the layout more

or less the same as for pages, but with a slightly narrower container class.

Also, we'll add a Bootstrap hero unit to display a link to our latest post. Here's the

layout example:

<!DOCTYPE html>
<html>
<head>

  <%= metamagic :title => "My default title", :description => "My 
➥default description.", 
➥:keywords => %w(keyword1 keyword2 keyword3) %>
  <%= stylesheet_link_tag    "posts", :media => "all" %>
  <%= javascript_include_tag "application" %>
  <%= csrf_meta_tags %>
</head>
<body>

<div class="container">

  <div class="masthead">
    <h3 class="muted">Jump Start Rails</h3>
      <div class="navbar">
        <div class="navbar-inner">
          <div class="container">
            <ul class="nav">
              <%= nav_link 'Home', root_path %>
              <%= nav_link 'About', about_path %>
              <%= nav_link 'Blog', posts_path %>

133Adding More Features



            </ul>
          </div>
        </div>
      </div><!-- /.navbar -->
    </div>

    <%= yield %>
    <hr />

  <div class="footer">
    <p>&copy; Jump Start Rails 2013</p>
  </div>
</div> <!-- /container -->

</body>
</html>

You can see this is the same layout as before, but you could change the layout here

completely if required. You’ll need to copy over the styles we have in pages.css.scss

into posts.css.scss, including the Bootstrap imports. We need to do this because we're

not including the application.css manifest file in this layout, only the posts stylesheet.

That allows us to have layout specific styles if we want them.

In this example, you only need to change one style rule in posts.css.scss, but feel free

to experiment if you wish:

.container {
  margin: 0 auto;
  max-width: 920px;
 }

That won't affect your other layouts—only this one.

Now we can alter the way app/view/posts/index.html.erb looks. Here's the code:

index.html.erb

<div class="hero-unit">
  <h2>Latest post: <%= @latest.title %></h2>
  <p><%= @latest.blurb %></p>
  <p>
    <%= link_to 'Read Post', @latest, :class => "btn btn-primary 

Jump Start Rails134



➥btn-large" %>
  </p>
</div>
<h1>Posts</h1>

<table class="table table-bordered">
  <% @posts.each do |post| %>
    <tr>
      <td style="width:100px;"><%= image_tag post.image_url(:thumb).
➥to_s %></td>
        <td>
          <strong><%= post.title %></strong><br />
          <%= post.blurb %><br />
          <%= link_to 'Read Post', post %>
      </td>
    </tr>
  <% end %>
</table>

You may have noticed the new instance variable @latest. We need to add a new

call to ActiveRecord in the controller action. Open app/controllers/posts_controller.rb

and change the index action to this:

def index
  @posts = Post.all
  @latest = Post.last
end

You can probably guess what Post.last is doing. It simply retrieves the last record

added to the posts table in the database.

We have used a Bootstrap component called a hero unit, which is nice large display

block. We're also using a couple of Bootstrap classes to make our table look more

polished, as shown in Figure 5.13. The Rails code is the same as we had previously,

only now it's sitting inside the <table> structure.

135Adding More Features



More on Bootstrap

You can read more about Bootstrap typography components in Bootstrap's docu-

mentation.12

Figure 5.13. The finished posts layout

Updating the Navigation
Remember that button-highlighting trick we employed for the main navigation bar?

Well, we can also use it here. While our users are reading and interacting with the

blog, it'd be useful to indicate to them that's where they are. Let's change the

nav_link application helper we made earlier in app/helpers/application_helper.rb.

We'll add a third argument that will force the active class to be true:

def nav_link(link_text, link_path, force_active = false)
  class_name = (force_active || current_page?(link_path)) ? 
➥'active' : ''
  content_tag(:li, class: class_name) do

12 http://twitter.github.com/bootstrap/components.html#typography

Jump Start Rails136

http://twitter.github.com/bootstrap/components.html#typography
http://twitter.github.com/bootstrap/components.html#typography


    link_to link_text, link_path
  end
end        

As you'll see, we can force the navigation by passing true as the last argument. The

app/views/layouts/posts.html.erb layout file requires a small modification:

<%= nav_link 'Blog', posts_path, true %>   

Now, whenever users are viewing your blog, the nav bar will highlight accordingly.

Controlling Images in the Layout
At the moment, our uploaded images will display with no word wrapping when

we view a post. However, by applying another Bootstrap class we can make things

look much nicer. Open up app/views/posts/show.html.erb and amend the code like

this:

show.html.erb

<%
meta title: @post.title,
     description: @post.blurb,
     keywords: %w(rails ruby on rails Rails)
%>
<p>
  <strong>Title: </strong> <%= @post.title %>
</p>

<p>
  <p class='pull-left'><%= image_tag @post.image_url.to_s %></p>
</p>

<p>
  <%= @post.content %>
</p>

<%= link_to 'Back', posts_path %>

The pull-left class floats the image to the left, allowing the post content to wrap

around it, as shown in Figure 5.14.

137Adding More Features



Figure 5.14. Image with wrapped content

We've also made sure that the .html_safe method is allowing for HTML content

from the database to be rendered.

Summary
We now have a much more complete app. We've also moved closer to being ready

to deploy it. In this chapter we've seen how we can upload files using Rails with

the Fog and CarrierWave gems. This method provides a powerful solution for up-

loading images to a central repository.

We also used FriendlyId to make pretty URLs. This is an important step and means

our URLs are far more user-friendly now. And the great thing is, they work in Act-

iveAdmin too.

The metamagic gem has solved the problem of how to add metadata for each of our

resources—another important step for the marketing of our content.

Jump Start Rails138



Finally, we've witnessed the power of Rails layouts. By creating a layout for each

of our resources, we've seen how we can have complete control over the look and

feel of the app.

Coming up in the final chapter, we'll be looking at how to deploy our app to Heroku.

We'll also see how to keep the content in our database synchronized between Heroku

and our local version.

139Adding More Features





Chapter6
Deploying to Heroku
In this, our final chapter, we'll add a couple more features to give us a more complete

app, and then we'll deal with deploying to Heroku. We'll also see how to keep the

Heroku database in sync with our own.

Using Partials to Add a Twitter Feed
Although probably not true of the app that we're building, it's possible that layout

files can get quite busy. By now, you probably won't be surprised to learn that Rails

offers a way to deal with the problem: partial templates.

Partial templates, or partials for short, allow you to break up the rendering process

into manageable chunks. They are similar to include files in other frameworks. By

using a partial, you can move the code for a particular layout component into a

separate file. That's especially useful where you have a repeated layout component

such as a menu bar. By moving such code blocks into a partial it helps to keep your

layouts clean and tidy.

How about an example? Let's just say that we want to include a Twitter feed in our

app. Twitter offers widgets1 that make adding the required code easy. All you do
1 https://twitter.com/settings/widgets/new

https://twitter.com/settings/widgets/new


is choose a few options on the widget page and the code to embed will be generated

for you. You should then make a copy of the generated code. The question is: where

do we put this code?

Figure 6.1. Twitter widget

Go ahead and generate a widget (you'll need a Twitter account), as you'll be using

the generated code in your partial. As you can see in Figure 6.1, I created a Search

widget based on the "rails" hashtag. Feel free to customize your Twitter widget any

way you like.

When dealing with partials, another Rails convention is to use an underscore at the

beginning of the filename. So let's create a new folder in app/views named partials.

Jump Start Rails142



Then, inside that folder, create a new file called _twitter.html.erb. You should paste

the code you copied for your Twitter widget into this file.

To use the partial we will put the render method to use. The render method is re-

sponsible for outputting to the user's browser.

The render Method

You can read more about the render method in the Rails documentation.2

We're now free to use our partial wherever we want it to display. Let's try it out in

the app/views/pages/about.html.erb view. We can use the Bootstrap grid system

to split the view into sections like this:

<div class="row">
  <div class="span9 offset3">
    <h2>Send us a message</h2>
  </div>
</div>
<div class="row-fluid">
  <div class="span8">
    form here
  </div>
  <div class="span4">Twitter here</div>
</div>

Then we can use the Bootstrap styles to create a form, and render our partial:

<div class="row">
  <div class="span9 offset2">
    <h3>About Jump Start Rails</h3>
  </div>
</div>
<div class="row-fluid">
  <div class="span8">
  Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do 
  eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut 
  enim ad minim veniam, quis nostrud exercitation ullamco laboris
  nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
  reprehenderit in voluptate velit esse cillum dolore eu fugiat 

2 http://edgeguides.rubyonrails.org/layouts_and_rendering.html#using-render

143Deploying to Heroku

http://edgeguides.rubyonrails.org/layouts_and_rendering.html#using-render


  nulla pariatur. Excepteur sint occaecat cupidatat non proident, 
  sunt in culpa qui officia deserunt mollit anim id est laborum.
  </div>
  <div class="span4"><%= render "partials/twitter" %></div>
</div>

You can now see your changes by going to http://localhost:3000/about. You

might need to add about to the array we have in app/config/routes.rb for routing

purposes:

%w[about portfolio].each do |page|
    get page, controller: 'pages', action: page
end

You can see that including the messy Twitter embed code would have certainly

made this view harder to read. But now that it's tucked away in a partial, it's kept

the view nice and tidy. Also, we now have a partial with our Twitter feed in it that

we can include anywhere in our app.

A Dash of CoffeeScript
Rails has seen various implementations of JavaScript built-in over its lifetime. It

has also used different JavaScript frameworks—Prototype3 being the favored one

for a while. There was an AJAX implementation available via Remote JavaScript

(RJS). There were a number of helper methods added, too, and it all got a bit tangled

and messy for a while. However, Rails still scored well in its support for AJAX.

Further development in both Rails and JavaScript saw a shift to more REST-based

approaches, and that made RJS and all those helpers feel unnecessary. Then, jQuery4

took over from Prototype as the favoured way to introduce JavaScript interactions,

and the Rails developers noticed. So when Rails 3.X was introduced, jQuery became

the standard JavaScript framework supported by Rails.

CoffeeScript5 was introduced to Rails in version 3.1. CoffeeScript is independent

from Rails, and was created by Jeremy Ashkenas in 2009. The idea of it was to get

3 http://prototypejs.org/
4 http://jquery.com/
5 https://github.com/jashkenas/coffee-script/

Jump Start Rails144

http://prototypejs.org/
http://jquery.com/
https://github.com/jashkenas/coffee-script/


past some of JavaScript's idiosyncrasies, while retaining the good parts of the lan-

guage. CoffeeScript looks like Ruby, and is written like Ruby, but compiles to

JavaScript.

Let me reiterate: you write CoffeeScript instead of JavaScript. As such, if you aren't

familiar with JavaScript, then you may not appreciate what you're missing (or

gaining, as it were.) If you are familiar with JavaScript, you can still write it: just

take the .coffee extension off of the filename and you're good to go, old school.

Getting up to Speed With CoffeScript

SitePoint has an excellent guide, Jump Start CoffeeScript6, to get you started with

CoffeeScript.

You'll have probably noticed that as you generated resources in your app, you were

also getting files named like app/assets/javascripts/pages.js.coffee. Any code you put

in the pages.js.coffee file will be available to call in the pages views.

Before we delve into some CoffeeScript code, it's worth bearing in mind a few syntax

rules. The idea of CoffeeScript is to simplify the code you write. That means curly

braces are gone. CoffeeScript uses indentation (a bit like Python if you are familiar

with that), to denote code blocks. Also, JavaScript uses a lot of anonymous functions.

CoffeeScript supports a shorter syntax for defining them: -> instead of function.

You won't be typing any semicolons either. As in Ruby, they are only necessary if

you're using more than one statement on a line.

The next thing to be aware of is that you can still write jQuery code (bearing in

mind the syntax rules above). If you've invested any time in learning jQuery, it'll

still be useful to you as you write CoffeeScript.

Let's take a look at some code, shall we? The functionality we'll eventually add is

a simple toggle link in our list of posts for the blog. When the page first loads, the

blurb contents will be hidden. Clicking the link will display the blurb, and clicking

it again will hide it.

First, though, we'll do something a bit simpler. Let's say we want to add a hyperlink

that, when clicked, displays a welcome message to our users. To do this using jQuery

6 http://www.sitepoint.com/books/coffeescript1/

145Deploying to Heroku

http://www.sitepoint.com/books/coffeescript1/


we would add a class or an ID to the hyperlink, so add as the last line in

app/views/posts/index.html.erb:

<a href="#" id="test_click">Just testing</a>

Then, in our jQuery code, we would do something like:

$(document).ready(function(){
  $("#test_click").click(function() {
      alert("Hello!");
  });
});

Or if we wanted to create a function specifically for the task:

$(document).ready(function(){
  $("#test_click").click(function() {
    say_hello();
  });
});

function say_hello()
{
  alert("Hello!");
}

What do we need to do to achieve the same thing with CoffeeScript? Since we're

going to be adding our required functionality to posts.js.coffee we'll do our work

there. Open up app/assets/javascripts/posts.js.coffee and add the following:

$(document).ready ->
  $('#test_click').click (e) ->
    do notify

  notify = -> alert('Hello!')

It does look a bit strange at first, but after reading it through a few times we can see

where the differences are. For example, the jQuery version begins with: $(docu-

ment).ready(function(){ to make sure the DOM is fully loaded before we do any

browser interactions. The CoffeeScript version looks like this: $(document).ready

->. You can see that most of the brackets and braces are dropped, and we can also

Jump Start Rails146



see that the -> is being used in place of function. Finally, CoffeeScript uses

whitespace to delimit blocks. In other words, everything that is at the same indention

level is considered to be in the same block, which may be a function, if statement,

or loop.

Next, we can compare the click event code: $("#test_click").click(function()

{ and CoffeeScript $('#test_click').click (e) ->. By now you'll be getting the

idea that CoffeeScript is more compact that regular JavaScript, and that it's more

Ruby-like syntactically. In the next part of the code, we start to see real changes.

First, in CoffeeScript we can call a function with just: do notify. The do keyword

will immediately invoke a passed function.

Finally, the function itself is nice and clean too: notify = -> alert('Hello!').

Where notify in this case is a variable that has the actual function assigned to it.

After you've allowed the code to run by accessing http://localhost:3000/posts

in your browser, you'll see that the generated source looks like this:

(function() {
  $(document).ready(function() {
    var notify;
    $('#test_click').click(function(e) {
      return notify();
    });
    return notify = function() {
      return alert('Hello!');
    };
  });

}).call(this);

Figure 6.2 shows the result of clicking the link.

147Deploying to Heroku



Figure 6.2. Trying CoffeeScript

Now we have a basic idea of how CoffeeScript works. Next, we'll figure out how to

add the actual functionality we want.

There is a potential problem with what we're trying to do with the blurb sections:

the records are coming from the database in a loop. We can't use the IDs on our

HTML elements to indicate each different blurb section, because IDs on DOM ele-

ments are supposed to be unique in our markup. So, for the toggle action to work,

we need a way to apply the functionality to each blurb element in the loop.

So the first thing we'll do is add some extra HTML in app/views/posts/index.html.erb

view. The section we're interested in is where we loop through the records. Change

it to look like this:

Jump Start Rails148



index.html.erb (excerpt)

<table class="table table-bordered">
  <% @posts.each do |post| %>
  <tr>
    <td style="width:100px;"><%= image_tag post.image_url(:thumb).
➥to_s %></td>
      <td>
        <div>
          <strong><%= post.title %></strong><br />
            <p class="blurb_target">
              <a href="#">Show/hide blurb</a>
            </p>
         </div>
         <p class="blurb_content"><%= post.blurb %></p>
         <%= link_to 'Read Post', post %>
      </td>
    </tr>
  <% end %>
</table>

We've added a <div> to act as a parent container for the toggle link and the <p>

containing the actual blurb. Notice that we now also have three elements that we

can access with JavaScript:

■ a class called blurb_target

■ a class called blurb_content

■ a containing <div>

Next, open up app/assets/javascripts/posts.js.coffee. We'll start writing the code we need,

starting with:

$(document).ready ->

This ensures the DOM is loaded before we begin. Then we'll hide all the

blurb_content paragraphs, so that the user gets to decide whether to show them

or not:

149Deploying to Heroku



$('.blurb_content').hide()

Then we can respond to the click event (when the user clicks the toggle link) like

this:

$('.blurb_target').click (e) ->
  $(this).parent().next('.blurb_content').toggle(400)
  return false

Although there are only a couple of lines of code here, there's quite a lot going on.

First of all, we're using the jQuery this method, which simply lets us work with

the current element. Then we use the jQuery parent method to search through the

parent elements of our toggle link. As we pass through the elements, blurb_content

is toggled.

What this means is that, no matter how many posts are returned in the list, we can

traverse the elements, making it possible to toggle the blurb for each post. The return

false ensures that we don't get a window reload when the links are clicked.

Watch out for Those Turbolinks
A new feature, introduced just prior to the release of Rails 4.0, is called Turbolinks.

Its basic purpose is to try to speed up the web application.

Turbolinks saves the browser having to recompile the JavaScript and CSS you're

using between each page change. It does that by keeping the current page instance

alive, replacing only the body and title on each page load.

While Turbolinks does improve the speed of your app, there's an important caveat.

If you're using say, jQuery and its $(document).ready() function, you'll find that

some of your jQuery code will stop working.

Take our simple “hello” message we coded earlier. You'll be able to click the link

and see the message on the blog page, but depending on where you navigate to next

in the app, there's a good chance that, on returning to the blog page, the link will

no longer work.

The reason is that Turbolinks is only replacing the body and title on page load, so

any JavaScript that's already fired, won't fire again.

Jump Start Rails150



The simplest solution is to add the jQuery Turbolinks 7 gem. Add gem 'jquery-

turbolinks'to your Gemfile and run bundle install.

Now, add the asset to your app/assets/javascripts/application.js file, like this:

//= require jquery 
//= require jquery.turbolinks 
//= require jquery_ujs 
//= require turbolinks 
//= require_tree . 
//= require bootstrap

This gem ensures that your $(document).ready() code will work again, by re-en-

abling the page:load event. Once you've installed jQuery Turbolinks, you’ll find

your code works as expected.

There's another section we should add to our app: the portfolio section, which can

also employ a small piece of CoffeeScript. We'll do this next.

Adding the Portfolio (or Other Content) Section
Throughout the development of the app so far, we've been referring to a portfolio

section. It doesn't need to be a portfolio section, of course. It can be whatever other

content you'd like to have. For example, the Jump Start Rails app uses exactly the

same idea presented in Figure 6.3 for the book overview section.

7 https://github.com/kossnocorp/jquery.turbolinks

151Deploying to Heroku

https://github.com/kossnocorp/jquery.turbolinks


Figure 6.3. Portfolio section

You'll see that this section uses a tabbed interface, so we'll implement that here too.

Remember, for the purposes of this example we'll refer to the portfolio section, but

it could easily refer to any other section you want to add.

You'll need to add an extra link to the top menu in your layouts. We'll make the

portfolio page a static one, rather than store it in the database. This is likely to be a

page that only needs to be updated once in a while, so there's no real benefit to

storing the content in the database.

You should add the new section to our nav too, and update the pages controller

like this:

class PagesController < ApplicationController
  def index
    @page =Page.find(1)
  end

  def about
    @page =Page.find(2)
  end

  def contact
  end

Jump Start Rails152



  def portfolio
  end
end

The layouts have an extra link added:

<ul class="nav">
  <%= nav_link 'Home', root_path %>
  <%= nav_link 'About', about_path %>
  <%= nav_link 'Portfolio', portfolio_path %>
  <%= nav_link 'Blog', posts_path %>
</ul>

And don't forget to create the view: app/views/pages/portfolio.html.erb.

We'll use Bootstrap's grid system to get a basic two-column layout for the view:

<div class="row">
  <div class="span5" style="font-size: 12px;">
    content here
  </div>
  <div class="span4">
    content here
  </div>
</div>

We're going to add the jQuery UI tabs widget8 for the portfolio section. We'll add

the default version here, but feel free to experiment. We can add the tabs HTML

markup to the left-hand <div> (the one with class="span5") we created in the

portfolio view:

<div id="tabs">
  <ul>
    <li><a href="#tabs-1">Nunc tincidunt</a></li>
    <li><a href="#tabs-2">Proin dolor</a></li>
    <li><a href="#tabs-3">Aenean lacinia</a></li>
  </ul>
  <div id="tabs-1">
    <p>Tab content.</p>

8 http://jqueryui.com/tabs/

153Deploying to Heroku

http://jqueryui.com/tabs/


  </div>
  <div id="tabs-2">
    <p>Tab content.</p>
   </div>
   <div id="tabs-3">
    <p>Tab content</p>
   </div>
</div>

We can just add some dummy text for the other column for now. Next, we add the

jQuery UI support files. The good news is that Rails comes with almost all the files

required. It already has jQuery itself, and the jQuery UI JavaScript file. So all we

need to do is add the call to the stylesheet in the <head> of our layout files:

<link rel="stylesheet" href="http://code.jquery.com/ui/1.10.2/themes
➥/smoothness/jquery-ui.css" />

Now we get to the CoffeeScript part. There's very little JavaScript code needed for

the default functionality of the tabs; we simply need the tabs function. The usual

jQuery code required to get it working looks like this:

$(function() {
    $( "#tabs" ).tabs();
 });

But with CoffeeScript we can get more concise than that! Open

app/assets/javascripts/pages.js.coffee and add:

$ -> $( "#tabs" ).tabs()

The CoffeeScript version does exactly the same thing — it just needs far less code

to do it. You can now try it in your browser. Go to http://localhost:3000/portflio

and your tabbed interface should be working.

Deployment
If you have experience of working with other web development technologies such

as PHP, you're probably used to FTPing to a server to upload your files. With Rails

apps, you deploy them.

Jump Start Rails154



Heroku9 is a cloud application platform designed to enable developers to concentrate

fully on developing their apps, rather than worrying about server configurations,

scaling, and so on. Heroku provides all the tools you need to begin deployment, so

we'll get those installed first.

The Heroku Toolbelt
Since we're going to be deploying to Heroku you'll need a Heroku account. You can

sign up for a free one10.

We're getting closer to deploying the app now. To get ready for the process, we'll

need to install the Heroku Toolbelt11. This is provided free of charge by Heroku,

and contains key tools that you need to deploy to Heroku. It consists of:

■ the Heroku client which is a command-line tool for creating and managing

Heroku apps

■ Foreman12 for running your app locally

■ the Git13 version control system which you'll use to carry out the deployment

to Heroku

There are separate downloads available for Windows, Mac, and Ubuntu Linux. After

you've downloaded the app, the installation method is as normal for whichever

operating system you use—there are no special procedures to follow.

Once you have the toolbelt installed, you'll have access to the heroku command

from your terminal shell. To get started, fire up terminal and enter:

heroku login

You'll be prompted to enter your Heroku account credentials. Heroku will check

to see if you have an existing Secure Shell (SSH) public key. If you don't, it will

take you through the process of generating one, so you can communicate securely

between your own machine and the Heroku cloud servers.

9 http://heroku.com
10 https://id.heroku.com/signup
11 http://toolbelt.heroku.com
12 http://blog.daviddollar.org/2011/05/06/introducing-foreman.html
13 http://git-scm.com/

155Deploying to Heroku

http://heroku.com
https://id.heroku.com/signup
http://toolbelt.heroku.com
http://blog.daviddollar.org/2011/05/06/introducing-foreman.html
http://git-scm.com/


We are now ready to begin deployment.

Use the Heroku Docs

It's worth consulting Heroku's own documentation14 on how to deploy an app.

Hello, Heroku
The first step to deploying an app to Heroku is to introduce Git Source Code Man-

agement (SCM) into the mix. If you've used other version control systems, you'll

already know what Git will do. Perhaps you've already used Git, but if you haven't,

fear not. It's easy enough to work with.

Git, like any other version control system, lets us keep versions of our code. When

you're working on a new feature for example, you can do so on a new branch so as

not to affect the main line of development in the master branch.

The clear benefit of this is that we can easily go back to a previous version of our

code, or wait until we have a new feature working before merging it into our master

branch.

Not only that, but Git is based on the idea of a distributed system. That means we

can develop and commit locally, and then push our code to a remote server when

we're ready. And that's exactly how we deploy our app to Heroku.

To begin then, we'll initialize a Git project. Fire up terminal, and make sure you're

in your project directory. Then enter:

git init

Then we'll add all our project app files:

git add .

The '.' simply means add all files. Next, we'll commit our work so far:

14 https://devcenter.heroku.com/categories/reference

Jump Start Rails156

https://devcenter.heroku.com/categories/reference


git commit -am 'first commit'

Github Is Good for You

It's a good idea to create a Github15 account. Then you'll be able to store your code

there, as well as deploying to Heroku. That's one of the great things about Git, you

can have more than one remote server. We'll discover how to connect to a remote

repository shortly. First though, we need to create our Heroku app.

Now we've done that, we can create a Heroku project:

heroku create

You'll see your project being created with a slightly odd name like this one:

Creating vast-citadel-3111... done, stack is cedar

To give your project a sensible name, do this:

heroku apps:rename yourprojectname

Oh, and don't try to use jumpstartrails — that name is taken! You'll see output

like this:

heroku apps:rename jumpstartrails
Renaming vast-citadel-3111 to jumpstartrails... done
http://jumpstartrails.herokuapp.com/ 
➥| git@heroku.com:jumpstartrails.git
Git remote heroku updated

The nice thing about that little procedure is that our Git remote repository is updated

with the new name too, so we don't have to worry about it. Finally, we need to enable

some features on Heroku to allow asset compilation to be successful. Type the fol-

lowing at the command line

heroku labs:enable user-env-compile

15 https://github.com

157Deploying to Heroku

https://github.com


You will get a message about the experimental nature of this feature, but forge on.

Deployment
We're going to jump ahead now and deploy the app. But there are a couple of issues

you need to be aware of during the process. Rather than try to explain them first,

we'll run the deployment and then fix the problems.

To deploy, make sure you have committed any changes, and then push to the master

branch on Heroku:

git push heroku master

You'll see the deployment run through, including the gems being installed, and asset

precompile running. At that point, you'll see what looks like a major error occur,

shown in Figure 6.4. Did I mention we're on the bleeding edge?

Figure 6.4. Sass::Plugin Error

This error can be attributed to a change in the way Rails 4 handles the precompilation

of assets (stylesheets, JavaScript files, images, and so on). In Rails 3.2.x, the asset

pipeline was on by default, but in Rails 4 it is off in production.

In other words, Rails 4.0 presumes the assets are already compiled. Unfortunately,

ActiveAdmin is not quite ready for this change. As such, we need to change a line

in our config/environments/production.rb file. Change:

config.assets.compile = false

to

Jump Start Rails158



config.assets.compile = true

In order to get this change to Heroku, we need to commit and push it. At the terminal,

type:

git add . && git commit -m "Fix asset compilation error ActiveAdmin"

This rather involved command is actually two commands separated by a &&. The

first command adds all the changed (and untracked) files to the Git index, while

the second command writes those files to the Git repository. Now, we can push to

Heroku:

git push heroku master

Let me emphasize that this is not necessarily the best setting for a production Rails

application, but we're making a temporary concession to keep moving. Once Heroku

(as well as many of the gems we're using) solidifies its support for Rails 4, you'll

likely be able to revert this change.

Web development with a community-supported framework, such Rails, often brings

situations like this in front of the developer. As you grow, you'll learn how to make

the call on your own.

With that change in place, type git push heroku master again, and you'll see

something like:

-----> Preparing app for Rails asset pipeline
       Running: rake assets:precompile
       Asset precompilation completed (58.22s)

Asset Precompilation

You can read more about asset precompilation in the Rails documentation.16

16 http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets

159Deploying to Heroku

http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets


And then proceed as normal. You'll see that because we're no longer initialising on

precompile the process has to complete before the rest of the deployment runs.

That's that problem solved.

Migrate the Database
Bear in mind that there is still no data in the Heroku PostgreSQL database that has

been created for your app. There is a way we can synchronize the data with our

local data, and we'll get to that shortly. First, we need to create the structure of our

database on Heroku. This is done by running the migrations, like so:

heroku run rake db:migrate 

You'll see a message similar to Figure 6.5, followed by the migrations running.

Figure 6.5. Migrating the Database on Heroku

At this point, our Heroku application should be functional!

Create an Admin User
If you remember, ActiveAdmin comes with a sample user. So we need to replace

that one with a user of our own. You should now be able to point your browser at

http://yourapp.herokuapp.com/admin and log in using: admin@example.com and

password. Then create a new user and delete the sample one as we did in Chapter

4. You'll need to log back in after you have completed those steps.

Working with Data
While you're in the admin area, it would be a good time to add some pages to match

the sections you've included (dummy content will do for now). If you don't, you'll

Jump Start Rails160



get errors when you visit the front-end of the app because there's no content. If you

remember, use your ActiveAdmin dashboard to create an about page,

It's a bit of a pain having to add the content you created locally again, but there is

a way you can fix it. First, you'll need to install the pgbackup tool that Heroku offers.

It can be used for free, and allows you to import and export data easily.

Installing the pgbackup Tool
To use the free month-retention tier (your backups are stored for a month), hop into

terminal, and make sure you are in your project directory. Then enter:

heroku addons:add pgbackups:auto-month

You'll see a response that looks something like this:

Adding pgbackups:auto-month on jumpstartrails... done, v8 (free)
You can now use "pgbackups" to backup your databases or import 
➥an external backup.

That's all there is to installing the tool. Now to actually using it.

Heroku has a number of extremely useful add-ons you can use in your app. Check

the add-ons page17 for more information.

The name pgbackup implies that it is a backup tool — which it is. But it has a gen-

eral-purpose structure, allowing you to use it for import and export. That means

it's capable of importing and exporting to/from an external database — such as your

local PostgreSQL installation. And the really nice thing is that it doesn't take too

much effort to run either an export or an import. The import is slightly more in-

volved, but it's certainly not prohibitively tricky.

Exporting Data from Heroku (Production)
We'll deal with an export from our "production" application to our local development

database first. Back in terminal, start the backup with:

17 http://addons.heroku.com

161Deploying to Heroku

http://addons.heroku.com


heroku pgbackups:capture

This will produce some output like this:

HEROKU_POSTGRESQL_GRAY_URL (DATABASE_URL)  ----backup--->  b001

Capturing... done
Storing... done

Then we can use curl to retrieve the file:

curl -o latest.dump `heroku pgbackups:url`

This will drop the file into your project directory. You can then import the data

using the pg_restore tool.

The pg_restore Tool

Read more about the pg_restore tool in the PostgreSQL documentation.18

The command you need is this rather lengthly one:

pg_restore --verbose --clean --no-acl --no-owner -h localhost -U 
➥myuser -d jumpstartrails_development latest.dump

In this command myuser and mydb are the names you're using locally for your

PostgreSQL setup.

Importing Data into Heroku
To import data from your local into the Heroku database, you first create a dump

file of your local data. The easiest way to do that is use the pgAdmin tool, as shown

in Figure 6.6.

18 http://www.postgresql.org/docs/9.1/static/app-pgrestore.html

Jump Start Rails162

http://www.postgresql.org/docs/9.1/static/app-pgrestore.html


Figure 6.6. pgAdmin backup

You just need to provide a location on your machine, and a filename, and the backup

will run through, as shown in Figure 6.7.

163Deploying to Heroku



Figure 6.7. pgAdmin backup running

Then, based on Heroku's advice, the best plan is to upload the file to your Amazon

S3 account. If you don't want to use your S3 account, the file must be placed

somewhere with an HTTP-accessible URL. Another easy example is a public folder

on Dropbox19.

Once the file is in your S3 account, you will need to allow everyone permission to

download the file, as shown in Figure 6.8. This might sound scary, but it just means

the file will have the same permissions as any web accessible file.

19 http://www.dropbox.com

Jump Start Rails164

http://www.dropbox.com


Figure 6.8. Setting S3 permissions

Then, back in terminal, you can run the restore using the S3 URL of the uploaded

file:

heroku pgbackups:restore DATABASE 
➥'https://s3-eu-west-1.amazonaws.com/jumpstartrails/jsr.dump'

You'll then see output like this:

HEROKU_POSTGRESQL_GRAY_URL (DATABASE_URL)  <---restore---  jsr.dump

 !    WARNING: Destructive Action
 !    This command will affect the app: jumpstartrails
 !    To proceed, type "jumpstartrails" or re-run this command with 
➥--confirm jumpstartrails

> jumpstartrails

Retrieving... done
Restoring... done

You'll be prompted to enter the project name, and then the backup will run. Now

you have your local data pushed live.

What this means is that you can now easily transfer data between the two databases.

It'll help to keep the data for your app in sync between development and production.

165Deploying to Heroku



Adding a Custom Domain Name
Heroku allows you to add a domain name that you have registered with a provider.

As long as you can access the DNS records for your domain, you'll be able to set a

CNAME value that points to your app on Heroku.

Indeed, that's the first step. Log into your domain name provider and create a CNAME

record that points to the www part of your domain. The value you provide for the

entry is yourappname.herokuapp.com. The admin screens to create a CNAME record

vary from host to host, but your host's tech support will help you out if you get

stuck.

Then, back in terminal, make sure you're in your project directory and enter:

heroku domains:add www.yourdomainname.com

You can add more than one name if you wish. To remove a domain you enter:

heroku domains:remove www.yourdomain.com

You can read more about adding a custom domain to your application in the Heroku

documentation20.

So you can use your own domain names with your app on Heroku too. Great!

Finally...
Give yourself a pat on the back! You've built your first Rails app! Not only that, but

you're now well equipped to try building more complex apps.

All that's left for you to do now is add some great content and keep improving your

skills. In this chapter we've added a splash of interactivity with CoffeeScript, and

we've added our Twitter feed using partials. Also, we hooked ourselves up with

Heroku by installing the Toolbelt and deploying the app. We've seen how you can

import and export data between your local PostgreSQL and the database Heroku

provides for you.

20 https://devcenter.heroku.com/articles/custom-domains

Jump Start Rails166

https://devcenter.heroku.com/articles/custom-domains
https://devcenter.heroku.com/articles/custom-domains


This book is too short to offer a comprehensive guide to developing with Rails. Your

next step should be to take a much closer look at Ruby and Rails. They both offer

a huge array of development options.

A good place to start the process of expanding your knowledge is the RailsApps

Project21. Download the app code, and see how they're put together.

What this book has done is show you how, with just some of the basics covered,

you can get an app up and running. Ruby has a huge ecosystem, and you've seen

just a small area of that through the use of the gems used in the main project.

Now you've had your jump start, enjoy the full power of Ruby and Rails!

21 http://railsapps.github.io/

167Deploying to Heroku

http://railsapps.github.io/
http://railsapps.github.io/


by Andy Hawthorne

GET UP TO SPEED WITH RAILS IN A WEEKEND

JU
M

P START : R
AILS

H
aw

thorne

In just a few short years, Ruby on Rails has grown from cool, hipster upstart 
to global powerhouse. Developers around the world are passionate about 
Rails, and with good reason. 

Why learn Rails? 

USD $29.95 CAD $29.95 

WEB DEVELOPMENT

Print: 978-0-9874674-2-3

Ebook:  978-0-9874674-3-0 RailsRailsAndy Hawtthorne is a freelance writer and web 
developer from Coventry, England. He has spent 12 
years as a web developer, and still likes trying new 
web coding technologies.

Andy Hawthorne

WHY YOU NEED TO READ THIS BOOK TODAY

 � BUILD FAST:  With  60,000+ ready-to-go Ruby Gems, powerful, new functionality is a never more 

than a few keystrokes away.

 � DISCOVER:  Test Driven Development for better programming practices

 � SCALE APPS:  Look at Github, Twitter, Hulu and Penny Arcade. All huge. All successful. All Rails.

 � GET HIRED:  Just look at any job board, there’s massive demand for Rails developers. 

In Jump Start: Rails you’ll learn about Ruby and Model-View-Controller 
architecture, how to build a Rails application, and to deploy it using Heroku. 

It’s time to jump on board the Rails train!


	Jump Start Rails
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Do you want to keep learning?

	Getting on Rails
	Do I need to know Ruby?
	What You'll Need
	The Rails Stack
	Rails and MVC
	Installing Rails
	Installing Rails on Windows
	PostgreSQL Database
	Another Option for Windows Users

	Installing on GNU Linux
	Installing Ruby

	Installing Rails on Mac OS X
	Homebrew


	Some Other Options
	rbenv
	Databases

	Installing Ruby Gems
	A Word about Editors
	Summary

	Starting an App
	Data First?
	Hello, World
	A Simple App
	The Project Folders
	Generators
	Generating a Controller

	Some Notes About the Controller
	Layouts
	Template Data

	Setting the Default Page
	Creating a Route
	Some Linking

	Some Styling
	Putting up Some Scaffolding
	Generating a Scaffold
	Active Record Validations

	Test Driven Development
	The Environments
	Tests Rails Has Already Generated
	Fixtures
	Something to Watch Out For�

	Unit Testing Models
	Functional Tests


	Creating a Layout with Bootstrap
	Install the Gem
	Connect the Bootstrap Assets
	Refining the Layout

	Some Notes about the Rails Asset Pipeline
	Summary

	Working with Data
	Starting the App
	A Little Bit of Planning�
	Generating a Model
	Adding Some Validation
	The Rails Console

	Adding a Controller

	Adding Another Resource
	Creating an Association

	Some Rails Routing Notes
	Adding a Test for Routes

	Installing ActiveAdmin
	Summary

	Creating an ActiveAdmin Resource
	Creating Admin Functionality Manually
	Creating a New Page
	Showing Pages

	Creating Resources with ActiveAdmin
	Back to the Dashboard
	Editing the Pages Listing
	A New Resource
	An Additional Controller

	Adding Recent Posts to the Dashboard
	Controlling Fields on the Forms
	Extra Functionality with Scopes

	Summary

	Adding More Features
	The FriendlyId Gem
	Managing Metadata
	Uploads
	Installing the Gem
	Using the Generator
	Creating an Uploads Folder
	Updating the Post Model
	Uploading
	Displaying Images
	Creating Thumbnail Images on the Fly
	Uploading to S3

	Creating a Layout with Bootstrap
	A Custom Helper
	Changing the Posts Layout
	Updating the Navigation
	Controlling Images in the Layout

	Summary

	Deploying to Heroku
	Using Partials to Add a Twitter Feed
	A Dash of CoffeeScript
	Watch out for Those Turbolinks
	Adding the Portfolio (or Other Content) Section
	Deployment
	The Heroku Toolbelt


	Hello, Heroku
	Deployment
	Migrate the Database
	Create an Admin User

	Working with Data
	Installing the pgbackup Tool
	Exporting Data from Heroku (Production)
	Importing Data into Heroku


	Adding a Custom Domain Name
	Finally...


