

Summary of Contents

Preface . xi

1. Getting Started with MySQL . 1

2. Storing Data . 15

3. Retrieving and Updating Data . 37

4. Working with Multiple Tables . 57

5. Connecting from Code . 77

6. Programming the Database . 95

7. Backups and Replication . 121

JUMP START
MYSQL
BY TIMOTHY BORONCZYK

Jump Start MySQL
by Timothy Boronczyk

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Ralph MasonProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Peter Nijssen

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9924612-8-7 (print)

ISBN 978-0-9941826-3-0 (ebook)

Printed and bound in the United States of America

iv

About Timothy Boronczyk

Timothy Boronczyk is a native of Syracuse, NY, where he works as a senior developer at

ShoreGroup, Inc. He's been involved with Web technologies since 1998, has a degree in

Software Application Programming, and is a Zend Certified Engineer. In what little spare

time he has left, Timothy enjoys hanging out with friends, speaking Esperanto, and sleeping

with his feet off the end of the bed. He's easily distracted by shiny objects.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

Table of Contents

Preface . xi

What is a Database? . xi

From Codd to MySQL, a Brief History . xiii

Alternatives and the Future of MySQL . xv

Who Should Read This Book . xvi

Conventions Used . xvi

Code Samples . xvi

Tips, Notes, and Warnings . xvii

Supplementary Materials . xvii

Want to Take Your Learning Further? . xviii

Chapter 1 Getting Started with MySQL 1

Installing MySQL on Linux . 2

Installing via a Package Manager . 2

Installing from Source . 5

Installing MySQL on Windows . 8

Communicating with the Server . 10

MySQL Accounts and Security . 11

Conclusion . 14

Chapter 2 Storing Data . 15

Creating Tables . 16

Data Types and Storage Requirements . 20

Storage Engines . 27

Adding Data . 31

Using Transactions . 33

Conclusion . 35

Chapter 3 Retrieving and Updating Data 37

Deploying Sakila . 38

Retrieving Data . 40

Ordering Results . 41

Managing the Number of Returned Rows . 44

Aggregate Functions and Grouping . 49

Keeping Data Fresh . 51

Updating Data . 51

Deleting Data . 53

Conclusion . 55

Chapter 4 Working with Multiple Tables 57

Joining Tables . 58

Types of Joins . 61

Abstracting with Views . 66

Normal Forms . 69

First Normal Form . 70

Second Normal Form . 71

Third Normal Form . 73

Altering Tables . 74

Conclusion . 76

Chapter 5 Connecting from Code 77

Connecting from Python with Connector/Python 78

Basic Querying . 79

Buffered and Unbuffered Results . 81

Prepared Statements . 82

viii

Connecting from PHP with PDO . 84

Basic Querying . 85

Handling Errors . 88

Prepared Statements . 89

Connecting from R with RMySQL . 90

Working with Tables . 91

Basic Querying . 93

Conclusion . 94

Chapter 6 Programming the Database 95

Learning the Basics . 96

Functions . 99

Stored Procedures . 102

Triggers . 105

Events . 109

User-defined Functions . 112

Conclusion . 119

Chapter 7 Backups and Replication 121

Logical Backups . 121

Using mysqldump . 122

Redirecting SELECT . 124

Physical Backups . 124

Replication . 126

Setting up Replication . 127

Fixing Broken Replication . 130

Plan Ahead . 131

Conclusion . 133

ix

Preface
From “big data” data sets in an enterprise data center to hand-scribbled shopping

lists, data is everywhere. Corporations collect as much of it as they can and analyze

it to formulate new business strategies. Scientists study data looking for answers

that can save lives, improve our environment, and explain our place in the universe.

Even the average person maintains a fair amount of data, from ledgers detailing

one’s spending habits to phone numbers in a cellphone’s address book. Storing and

organizing all of this this data has become so easy that we often take for granted

many of the database concepts and algorithms that make these things possible.

This book is an introduction to the basic concepts of working with a Relational

Database Management System (RDBMS)—specifically, the popular, open source

RDBMS MySQL. Like other installments in SitePoint’s Jump Start series, it aims to

give you a head start in your understanding of the chosen technology. You’ll learn

the basics quickly, in a friendly, (hopefully) pain-free way, and have a solid

foundation to continue on in your learning.

I’m very grateful to have been given the opportunity to write this book. What separ-

ates it from others in the lineup is that it discusses a technology widely used both

within and outside the world of web development. That’s not to say MySQL isn’t

popular with developers creating web-based applications—quite the contrary! But

databases are used in many other areas as well and I've tried to capture this in my

selection of topics.

What is a Database?
Although we tend to associate the word database with the digital world of computers,

the term simply refers to any organized collection of data. A database can therefore

be digital/electronic or physical. The filing cabinet full of financial records that sits

in the corner of your home office is a physical database. The cookbooks on your

bookshelf, with their dog-eared pages and extra recipes clipped from magazines

tucked inside, can also be viewed as a physical database.

In the digital world, databases are classified by how they organize and store their

data. Some common types of digital databases are:

■ Flat file databases ― these store data sequentially, often in plain text files. They

are easy to create and to add data to but they also have several drawbacks. Flat

file databases are slow to search, may contain redundant data, and can easily

become corrupted. An example of this type of database is the text file created

by a solitaire game to store users’ high scores.

■ Hierarchical databases ― these organize data in parent/child relationships.

They are highly organized and searching is efficient, but hierarchical databases

are difficult to navigate when you’re not familiar with their relationships.

Maintaining data relationships over time can be difficult as well. The Windows

Registry is an example of a hierarchical database.

■ Key-value/document-oriented databases ― these store free-form data indexed

by a key or hash value. They typically scale across wide network topologies very

well but share many of the problems with flat file databases. They often contain

redundant data, do not maintain relationships, and searching them can be slow.

Redis and CouchDB are popular “NoSQL” database systems that manage these

types of databases.

■ Relational databases ― these organize data in rows and tables, much like a

printed price list or bus schedule can be organized as a table. Relational databases

can support indexing large amounts of data for quick retrieval, but the relation-

ships between tables can become very complex.

Sitting above most modern digital databases is a database server, an application

designed specifically for managing databases, and which is responsible for marshal-

ing access to the underlying data. We never work directly with a database in such

systems. Instead, we send requests to add, update, remove, or fetch the desired data

to the server. The server performs the requested actions on our behalf and forwards

the results on to us. The book you’re reading right now focuses on MySQL, a database

server that manages relational databases.

Since the mid 1980s, Structured Query Language (SQL) has been the standard

language used to communicate with relational database management systems. SQL

consists of statements for adding, retrieving, and managing data, creating and

maintaining tables, and even managing databases. Statements can be divided into

categories or “sub-languages” based on their purpose: those pertaining to data

storage and retrieval make up the Data Manipulation Language (DML), those for

xii

table and database management make up the Data Definition Language (DDL), and

those that grant or revoke access to the database make up the Data Control Language

(DCL). It’s good to know about these if they come up in conversation at your next

database administrator cocktail party, but I don’t make such fine distinctions here.

I’ll refer to DML, DDL, and DCL statements all collectively as SQL.

From Codd to MySQL, a Brief History
Early databases organized their data into tree or graph structures and accessing the

data required a programmer to write code to directly traverse these structures. This

was a fragile approach and it was risky to add or update data, or to change the data’s

organization. Edgar Codd challenged this approach in 1970 in his paper A Relational

Model of Data for Large Shared Data Banks. He argued that a superior approach

would be to organize data into tables and to treat it independently from relationship,

ordering, and indexing information. This was an intriguing concept at the time and

engineers at IBM’s San Jose Research Laboratory began work on System R, a project

to prove the validity of Codd’s theories.

The System R project produced the first implementation of SQL and proved that

the relational concepts championed by Codd were sound. When Larry Ellison heard

about the research going into the System R prototype, he was so impressed that he

incorporated Codd’s ideas and the SQL language into his own database server, Oracle.

Incidentally, Ellison beat IBM to market in 1979 and Oracle became the first com-

mercially available relational database management system.

Meanwhile, computer science professors at the University of California, Berkeley,

had also taken an interest in Codd’s paper. The university obtained funding from

the National Science Foundation and the research divisions of the United States

Air Force and the United States Army and set a rotating team of students—led by

Michael Stonebraker—to work on University INGRES. INGRES explored many of

Codd’s relational ideas, but also implemented its own query language called QUEL.

As students graduated and went on to work at other software companies, commercial

INGRES-inspired systems and clones appeared, most notably Sybase (later licensed

to Microsoft and rebranded as Microsoft SQL Server). INGRES itself was commer-

cialized and quickly became a market leader.

INGRES’ position of dominance started to decline 1985 when public sentiment

shifted in favor of SQL over QUEL. SQL was accepted as a standard by both the

xiii

American National Standards Institute and the International Organization for

Standards by 1987, and the decade came to a close with Oracle and SQL on top.

In 1993, David Hughes was developing a network-monitoring application that stored

data in a Postgres (a successor of INGRES) managed database. For portability, he

also wanted to provide an SQL interface to the data so he wrote a QUEL-to-SQL

translator which he named miniSQL. As work continued on his monitoring app,

Hughes grew frustrated by Postgres’ hardware requirements and decided to evolve

miniSQL into his own light-weight database management system. miniSQL favored

a small resource footprint over complete adherence to the SQL standards, imple-

menting only the most important subset of the standards. Hughes distributed his

system for a fraction of the cost that current commercial offerings were licensed at

and miniSQL went on to become the first low-cost, SQL-based relational database

system. The stage was now set for MySQL.

At that same time, Monty Widenius was developing web-based applications for the

still-burgeoning Internet using UNIREG, his own home-grown database server.

Widenius found that accessing UNIREG to generate dynamic pages was too resource

intensive and began to look for an alternative. miniSQL piqued his interest, as it

had grown very popular due to its pricing strategy—especially among shared hosting

providers—but it didn’t implement some of the features Widenius’ applications

needed. He ended up rewriting UNIREG for better performance, but also took the

opportunity to reimplement its API to be compatible with miniSQL’s. This would

allow him to take take advantage of the many third-party utilities that had sprung

up for miniSQL. Widenius renamed his server MySQL and a friend convinced him

to release it publicly.

MySQL was made available under the GNU General Public License, and Widenius

and his friends, David Axmark and Allan Larsson, founded MySQL AB in 1995 to

shepherd the development of MySQL and provide alternative licensing and support

for commercial customers. Whereas miniSQL was affordable, for most users MySQL

was practially free.

Since the licensing terms for MySQL were amenable for inclusion in most Linux

distributions, and because its API was compatible with miniSQL but made more

features available, MySQL quickly ate most of miniSQL’s market share. Today,

MySQL is the second most popular SQL RDBMS (the number one spot is held by

SQLite thanks in large part to its use in smartphones and embedded software).

xiv

Alternatives and the Future of MySQL
Sun Microsystems bought MySQL AB in 2008 for $1 billion, and in 2010, Oracle

Corporation acquired Sun Microsystems and its assets (including MySQL) for $7.4

billion. The same company that beat IBM and INGRES in the 1980s now owned the

copyrights to MySQL. And Oracle already had its own flagship database, so any

fears the community had about the future of MySQL under Sun were only exacer-

bated by the Oracle acquisition.

But thanks to the GPL, anyone can make improvements and build upon MySQL,

so long as those changes are properly licensed. This means others can make enhance-

ments to MySQL, or even fork it, and release their own version. And forks there

are!

■ Dorsal Source ― the first MySQL fork made by Proven Scaling in response to

complaints over Sun’s slow release process and the company handled com-

munity-submitted bug fixes and enhancements. The project is now defunct.

■ Drizzle1 ― a fork of MySQL by Brian Aker with the goal of being a faster, pared-

down version of MySQL specifically for supporting web applications. Core

functionality is provided by a kernel and additional features are provided by

plugins. The project isn’t defunct, but development seems to have stalled.

■ Percona Server2 ― a fork maintained by the consulting firm Percona LLC. Its

goal is to be a drop-in MySQL replacement that offers improved performance

and various enterprise-grade features not found in Oracle’s Community edition.

■ MariaDB3 ― a fork by Monty Widenius himself in response to the Sun and Oracle

acquisitions. It aims to be a community-friendly replacement that maintains

feature-parity for most use cases.

1 http://www.drizzle.org/
2 http://www.percona.com/software/percona-server
3 https://mariadb.org/

xv

http://www.drizzle.org/
http://www.percona.com/software/percona-server
https://mariadb.org/

Learn More about the Forks

To learn more about the MySQL forks, watch the talk “Different MySQL Forks for

Different Folks4” given by Sheeri Cabral at Confoo in 2013.

The long-term outlook for the MySQL “brand” is strong despite tensions in the

community. Oracle hasn’t shuttered MySQL as many feared, and the quality of re-

leases has actually improved under their stewardship. The forks provide competition,

which hopefully is a good thing. Even in the most cynical sense, the past decade

has seen an uptick in the use of open source in the enterprise setting so MySQL

won’t be going anywhere anytime soon.

Who Should Read This Book
This book is aimed at those interested in working with data and want to learn how

to use MySQL. To get the most out of some parts of this book, you should have some

previous programming experience, although no specific language is required.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

4 https://www.youtube.com/watch?v=dcWoHusSAsE

xvi

https://www.youtube.com/watch?v=dcWoHusSAsE
https://www.youtube.com/watch?v=dcWoHusSAsE

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2015/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/jsmysql1/

The book’s website, which contains links, updates, resources, and more.

xvii

http://www.learnable.com/books/jsmysql1/

http://community.sitepoint.com/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book—we appreciate your support. Do you want to continue

learning? You can now gain unlimited access to courses and ALL SitePoint books

at Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xviii

http://community.sitepoint.com/
http://www.learnable.com

Chapter1
Getting Started with MySQL
This chapter presents the first steps of getting started with MySQL. I’ll show you

how to install MySQL on both Linux and Windows systems, so be sure to follow

along on the platform of your choice. Then you’ll begin to get acquainted with

MySQL’s command-line client as we use it to connect to the database server and

create our first database.

Often the first step of installing an application is to determine which version is

appropriate, so it’s worth noting that MySQL is available in several “flavors.” From

Oracle there is the freely available Community Edition and the paid commercial

Standard, Enterprise, and Cluster Carrier Grade editions. The differences between

Community Edition and the paid versions boil down to licensing and support con-

tracts, some additional server plugins, and backup and monitoring utilities.

MySQL is open-source software released under the GNU General Public License so

it should come as no surprise there are also alternative forks available. Two popular

forks are MariaDB, a community-maintained “enhanced, drop-in replacement” for

MySQL, and Percona Server, a drop-in maintained by the consulting firm Percona

LLC. The differences between MySQL, MariaDB, and Percona are mostly impercept-

ible to the casual user.

You’re free to use whichever flavor of MySQL you like, but to maintain focus and

consistency I’ll use Oracle’s Community Edition version 5.6.23 (the current stable

release at the time I’m writing this book). I’ll also limit these instructions to Debi-

an/Ubuntu, RedHat/CentOS, and Windows Server 2012. This list of operating systems

covers the major platforms that MySQL is likely to run on in a production environ-

ment.

Local Development Environment

For readers looking to set up an installation for local development, I recommend

creating a virtual machine using Oracle’s VirtualBox1. You can install one of the

aforementioned operating systems on the virtual machine and then install MySQL

using this chapter’s instructions. Not only does this give you the ability to work

with a dev environment which can be configured as closely as possible to produc-

tion without being tied down to a specific server or network, but also your local

system remains clean from extra services and applications, whether your system

is running Linux, Windows, or OS X.

Installing MySQL on Linux
Linux isn’t a homogeneous platform and each distro has a preferred way to install

software. In this section, I’ll cover how to install MySQL on Debian/Ubuntu and

Red Hat/CentOS systems using a package manager and how to compile and install

MySQL from source. This will equip you with the necessary skills to handle most

any Linux-based installation scenarios you may encounter.

Installing via a Package Manager
Most modern Linux systems use a package manager to make software installation

a trivial task. And because it’s so popular, chances are MySQL or one of its forks is

available in your distro’s package repositories. Debian/Ubuntu offers Oracle’s MySQL

Community Edition in their repos, and users can get up and running by simply

typing sudo apt-get install mysql-server. Red Hat/CentOS repositories recently

replaced MySQL with MariaDB; users can install MariaDB with su -c 'yum install

mariadb-server'.

1 https://www.virtualbox.org/

Jump Start MySQL2

https://www.virtualbox.org/

Installing software from a distro-maintained repository is fine for most users, but

relying on these repos may not give you the most current release. Luckily, we don’t

have to give up the convenience that working with packages affords us. Oracle

provides up-to-date RPM and DEB packages which can be installed using rpm and

dpkg. They also maintain APT and Yum repositories and provide special packages

to automatically add these repos to your system’s list of known repositories.

The following steps register one of Oracle’s repositories and install MySQL Com-

munity Edition from it. If your server isn’t running a graphical interface and you

can’t use a text-based browser like Lynx, you’ll need to complete the first four steps

on another system and copy the file to your server.

1. Open a browser and navigate to the MySQL Repositories page at

http://dev.mysql.com/downloads/repo.

2. Click the Download link for the MySQL Yum Repository or MySQL APT Repository

depending on your platform’s package manager. You’ll be redirected to a page

that lists various configuration packages.

3. Click the Download button next to the package appropriate for your system. For

example, a Red Hat/CentOS 7 user should download the package Red Hat Enterprise

Linux 7 / Oracle Linux 7 (Architecture Independent), RPM Package. An Ubuntu user

using Trusty Tahr should download the package Ubuntu Linux 14.04 (Architecture

Independent), DEB.

4. Oracle will try to trick you into signing up for an account. This isn’t mandatory,

so scroll down to the bottom of the page and click the link No thanks, just start my

download to start the download.

5. Using a terminal window, navigate to the directory you downloaded (or copied)

the package to and execute the appropriate command to install it:

■ Red Hat/CentOS users should run rpm -i mysql-community-release-el7-

5.noarch.rpm.

■ Debian/Ubuntu users should run dpkg -i mysql-apt-config_0.2.1-

1ubuntu14.04_all.deb.

6. The repository is now registered and you can install MySQL Community Edition

with your package manager:

3Getting Started with MySQL

http://dev.mysql.com/downloads/repo

■ Red Hat/CentOS users should run su -c 'yum install mysql-community-

server'.

■ Debian/Ubuntu users should run sudo apt-get install mysql-server-5.6.

Ubuntu users will be prompted during the installation process for a password for

MySQL’s root user (Debian and Red Hat/CentOS users will provide this password

with a post-install command in the next step). MySQL maintains its own list of ac-

counts separate from the user accounts on our system—that is, while the username

may be the same, the MySQL root user isn’t the same as the Linux root user.

Red Hat/CentOS users should run these post-install commands to set the password

for MySQL’s root user, register MySQL as a system service, and start a running in-

stance (Debian/Ubuntu automatically registers and starts MySQL):

1. Set the root user’s password for MySQL: mysqladmin -u root password.

2. Register MySQL to start when the system boots: su -c 'chkconfig --level

2345 mysqld on'.

3. Start the MySQL server: su -c 'systemctl start mysql'.

MySQL Community Edition is now installed on your system. For future reference,

the following commands are used to start, stop, and check the running status of

MySQL:

■ Start MySQL

■ Ubuntu — sudo service mysql start

■ Debian — sudo systemctl start mysqld

■ Red Hat/CentOS — su -c 'systemctl start mysql'

■ Stop MySQL

■ Ubuntu — sudo service mysql stop

■ Debian — sudo systemctl stop mysqld

■ Red Hat/CentOS — su -c 'systemctl stop mysql'

Jump Start MySQL4

■ Query MySQL’s running state

■ Ubuntu — service mysql status

■ Debian — sudo systemctl status mysqld

■ Red Hat/CentOS — su -c 'systemctl status mysql'

A Simpler Future

Different commands are used to start, stop, and monitor MySQL because Ubuntu

uses Upstart and the other distros use systemd. The Ubuntu developers plan to

migrate to the systemd init system starting in 15.04. By the time 16.04 LTS rolls

out, the commands to perform these tasks will be the same as those on Debian.

Installing from Source
It’s becoming less and less common for system administrators to compile software

from source code, but doing so often gives complete control over an application’s

features, optimizations, and configuration settings. As you might expect, it’s also

the most involved installation method.

The following steps show how to download the MySQL Community Edition source

code, compile it, and install it. Again, if you don’t have access to a graphical interface

or text-based browser on the server then you’ll need to complete the first few steps

on another system and copy over the download.

1. Open a browser and navigate to the MySQL Community Downloads page at

http://dev.mysql.com/downloads.

2. Click the MySQL Community Server link to be taken to the Download MySQL

Community Server page. The various platform options are filtered by the drop-

down labeled Select Platform.

3. Set the drop-down to Source Code, scroll down to the Generic Linux (Architecture

Independent), Compressed TAR Archive entry, and click its Download button.

4. An Oracle account isn’t mandatory for continuing with the download. Scroll to

the bottom of the page and click the link No thanks, just start my download to begin

the download.

5Getting Started with MySQL

http://dev.mysql.com/downloads

5. Using a terminal window, create a new user account dedicated solely to running

the MySQL server:

sudo groupadd mysql
sudo useradd -r -g mysql mysql

6. Navigate to the directory you downloaded the source archive to. Extract the

archive and change into the code’s directory:

cd /tmp
gzip -cd mysql-5.6.23.tar.gz | tar xvf -
cd mysql-5.6.23

7. Generate the build scripts by running cmake. I don’t specify any options below,

but a full list of configuration options can be found in the online documentation2.

cmake .

8. Run make to compile MySQL, and then with elevated privileges run make install

to copy the resulting binaries, utilities, libraries, and documentation files to their

new home on your system:

make
sudo make install

9. Make sure the installed files are assigned the correct ownership and access per-

missions:

sudo chown -R mysql /usr/local/mysql
sudo chgrp -R mysql /usr/local/mysql

10. MySQL’s data directory and system tables need to be initialized by the

mysql_install_db script found in the installation’s scripts directory. The script

2 http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html

Jump Start MySQL6

http://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html

uses paths relative to the installation directory, so invoke it from the installation

directory rather than the scripts directory or somewhere else:

cd /usr/local/mysql
sudo scripts/mysql_install_db --user=mysql

11. Start MySQL and set its root user’s password:

sudo mysqld_safe &
mysqladmin -u root password

The installation of MySQL itself is complete, but there’s still some additional system

configuration tasks you should consider. I recommend adding the installation’s bin

directory to the PATH environment variable so you can run MySQL’s utilities without

providing a full path each time. Assuming you use Bash, add the following lines to

/etc/profile:

PATH=/usr/local/mysql/bin:$PATH
export PATH

Working with PATH

Setting the value of PATH in /etc/profile makes the utilities conveniently ac-

cessible for all system users. If you only want your own account to have this

ability then add the lines to your ~/.bash_profile or ~/.bashrc file instead.

It’s also likely you’ll want MySQL to start automatically when the system boots.

These steps assume your system uses a SysV-style init process.

1. Place a copy of the mysql.server script found in the source code’s support-

files directory in your system’s init.d directory and make the script executable:

sudo cp /tmp/mysql-5.6.23/support-files/mysql.server \
 /etc/init.d/mysql
sudo chmod 755 /etc/init.d/mysql

2. Create symbolic links that point to the script from the desired runlevels:

7Getting Started with MySQL

ln -s /etc/init.d/mysql /etc/rc3.d/S99mysql
ln -s /etc/init.d/mysql /etc/rc0.d/K01mysql

You can now run the command sudo /etc/init.d/mysql start to start MySQL

and run sudo /etc/init.d/mysql stop to stop it.

Installing MySQL on Windows
Windows is a relatively homogeneous platform compared to Linux even though

several versions of the OS are actively maintained at any given time by Microsoft.

The instructions here target Server 2012, but may be more or less applicable to a

desktop OS like Windows 8.

1. Open a browser and navigate to the MySQL Community Downloads page at

http://dev.mysql.com/downloads.

2. Click the link for MySQL Community Server to be taken to the Download MySQL

Community Server page. The various platform options here are filtered by the

drop-down labeled Select Platform.

3. Set the drop-down to Microsoft Windows and click the Download button next to

the appropriate Windows MSI Installer for your architecture, most likely 64-bit.

4. Scroll to the bottom of the page and click the link No thanks, just start my download

to begin the download.

5. Navigate to the folder you downloaded the MSI file to and double-click the file

to launch the installation wizard.

6. Advance through the wizard’s welcome screen by pressing the Next button.

7. At the License Agreement screen, click the checkbox to accept the terms of the

agreement, and press Next.

8. At the Choose Setup Type screen, choose Typical, then press the Install button to

begin the installation. You may be prompted by User Account Control to proceed

depending on the security policies in effect.

9. Press the Finish button once the wizard is finished.

Jump Start MySQL8

http://dev.mysql.com/downloads

Now follow these post-install configuration steps to add the installation’s bin dir-

ectory to the system PATH variable and register MySQL as a service.

1. Open the System Properties window.

a. Press the key combination WIN-C to bring up the Edge UI.

b. Click the Search charm, search for Control Panel, and click on the Control

Panel icon when it appears in the results.

c. If Control Panel is in Category view, click the System and Security entry and

then System to launch the System panel item. If Control Panel is in Icon view,

click the System icon.

2. Click the Advanced systems settings link to open the System Properties window.

3. Select the Advanced tab if it’s not already selected and then press the Environment

Variables button to open the Environment Variables window.

4. Select the Path entry in the System variables section and press the Edit button.

5. Add the bin directory’s path (C:\Program Files\MySQL\MySQL Server 5.6\bin)

to the end of the existing value, separating the entry from the previous entries

with a semicolon.

6. Open Command Prompt with administrator privileges. Depending on the security

policies in effect, you may be prompted by User Account Control to continue.

a. Press the key combination WIN-C to bring up the Edge UI.

b. Click the Search charm and search for Command Prompt.

c. Right-click the Command Prompt icon when it appears in the results and select

Run as administrator.

7. Run mysqld.exe --install at the prompt. The command should report back

the service was successfully installed.

You’re now able to invoke the utilities when using Command Prompt without

providing their full path because MySQL’s bin directory appears in the list that

Windows searches for executables. And since MySQL is registered as a service, it

9Getting Started with MySQL

will start automatically when the system boots and can be controlled from Windows

Service Manager. Alternatively, the following commands may be executed in

Command Prompt with administrator privileges to start and stop the MySQL server

as well.

■ Start MySQL — net start mysql

■ Stop MySQL — net stop mysql

Communicating with the Server
A MySQL server sits idle, waiting to receive queries. When it receives one, the

server performs the requested action on our behalf and responds back with the

result. There are several ways we can communicate with MySQL, for example pro-

grammatically from an application we wrote or interactively using a dedicated client

program. We’ll use the command-line client that’s included in the MySQL installa-

tion to connect and communicate with the running server throughout most of this

book, and in Chapter 5 we’ll discuss sending SQL statements programmatically.

Open a terminal window or Command Prompt and run mysql -u root -p. The -u

option specifies the username of the MySQL account used for the connection and

-p will prompt for the account’s password. When prompted, enter the root account’s

password you set earlier.

Options Galore

-u and -p are just two of many options accepted by the client. Here’s a list of

some other options you may find yourself using frequently (you can call the client

with the option -? for a complete listing):

■ -A — don’t re-initialize the auto-complete lookup

■ -B — run in batch mode

■ -e statement — execute the given SQL statement

■ -h hostname — specify a hostname to a remote database server

■ -N — suppress column names from the result output

■ -p — prompt for the account’s password to connect

Jump Start MySQL10

■ -u username — specify the username of an account to connect

■ -? — list all of the available options

The client displays the mysql> prompt once you’ve successfully connected to

MySQL. It’s at this prompt we’ll submit our SQL statements. The client displays

the server’s response, timing information for how long it took to execute the request,

and whether any errors or warnings were encountered.

The MySQL server is capable of managing more than one database at a time. To ask

what databases it’s managing, enter SHOW DATABASES; at the prompt. The response

will show a list of all the databases MySQL is managing. If you’re connected to a

newly installed instance then you’ll only see the three databases that are used by

MySQL itself: information_schema, mysql, and performance_schema. You may

also see a test database which is created by mysql_install_db for use as a sandbox.

The CREATE DATABASE statement creates a new database. To create a database named

“jumpstart”, send the statement CREATE DATABASE jumpstart; at the prompt. Then

send SHOW DATABASES; again, and you’ll see the new database added to the list.

To let the client know we want to work with a specific database, we use the USE

command. Enter USE jumpstart; at the prompt, and all subsequent statements we

send will be executed against the jumpstart database. It’s possible to specify a target

database when connecting with the command-line client, for example mysql -u

root -p jumpstart.

The SHOW TABLES statement instructs MySQL to return a list of tables in the currently

active database. Of course, we haven’t added any tables to the jumpstart database

yet so sending SHOW TABLES; will be met with the response “Empty set.” There’s a

fair bit of planning involved to create a table properly, and we’ve covered a lot

already, so I’ll save that for the next chapter.

To quit the client, either type exit or use the key combination CTRL-D.

MySQL Accounts and Security
The final thing I feel the need to cover in this chapter is MySQL user accounts. Even

though MySQL’s root user isn’t the same as the system’s root account, it’s still not

intended to be used on a regular basis. The MySQL root user should only be used

11Getting Started with MySQL

for administrative tasks such as creating new user accounts, setting permissions,

and flushing access caches. Less privileged accounts should be used on a day-to-

day basis.

To create a new user account, connect to the MySQL server with the command-line

client using the root account and send the following CREATE USER statement:

CREATE USER 'jump'@'localhost' IDENTIFIED BY 'secret';

The statement creates a new account with the username “jump” and password

“secret” that will permit the user to authenticate from the same system MySQL is

running on. Different hostnames and IP addresses can be used in place of localhost

to allow connections from different systems and networks. However, bear in mind

that MySQL considers each username/hostname pair to be a separate account. That

is, jump@localhost and jump@192.168.1.100 are treated as separate accounts, each

with their own set of privileges.

Wildcards

The _ and % characters are wildcards that can be used in the hostname part to

provide partial matches, for example “192.168.1.10_” or “%.example.com”. _

matches a single character and % matches any number of characters. Thus, the

following can be used to create an account capable of authenticating from any

system—a convenient but potentially very insecure practice:

CREATE USER 'jump'@'%' IDENTIFIED BY 'secret';

Whether MySQL permits a user to perform an activity depends on what privileges

are associated with the account. New accounts are created without any privileges

so we must explicitly grant any that the account will need. The "jump" user will

require several privileges as you use it to follow along throughout the rest of this

book. For now, let’s grant a basic set of privileges to start with (you can grant addi-

tional privileges as they become necessary). Enter the following statement:

Jump Start MySQL12

GRANT CREATE, DROP, ALTER, INSERT, UPDATE, SELECT, DELETE,
INDEX ON jumpstart.* TO 'jump'@'localhost';

The syntax of MySQL’s GRANT statement is flexible enough that we can narrow the

scope of a privilege down to specific columns of a table, or to certain tables in a

database. Here, we’ve simply instructed MySQL to allow these permissions for all

tables (denoted by the *) in our jumpstart database. The privileges granted are:

■ CREATE — allows the user to create databases and tables

■ DROP — allows the user to delete entire tables and databases

■ ALTER — allows the user to change the definition of an existing table

■ INSERT — allows the user to add records to a table

■ UPDATE — allows the user to update existing records in a table

■ SELECT — allows the user to retrieve existing records from a table

■ DELETE — allows the user to delete existing records from a table

■ INDEX — allows the user to create or delete indexes

A full list of privileges and what they allow an account to do can be found in the

documentation3. In the future, if it’s determined an account needs extra privileges

then they can be granted by issuing another GRANT statement. Privileges that are no

longer needed can be revoked with a REVOKE statement, the syntax of which is

identical to that of GRANT:

REVOKE CREATE, DROP, ALTER, INDEX ON jumpstart.* TO
'jump'@'localhost';

Whenever a user-related or privilege-related change is made, we need to send a

FLUSH PRIVILEGES statement to instruct MySQL to reload the cache of account in-

formation it maintains so the updates can take effect. Otherwise, the changes will

go unnoticed until MySQL is restarted:

3 http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html

13Getting Started with MySQL

http://dev.mysql.com/doc/refman/5.6/en/privileges-provided.html

FLUSH PRIVILEGES;

Exit the command-line client after you send the FLUSH PRIVILEGES statement and

reconnect using the new "jump" account. If you’ve entered the statements correctly,

and provided the correct password when prompted, you’ll be greeted with the

mysql> prompt.

Conclusion
We’ve definitely covered a lot of ground in this chapter. You’ve learned how to install

MySQL on various platforms, how to connect to a MySQL server using the command-

line client, how to create a new database, and even a bit about basic MySQL user

management.

Although you may be anxious to dive into the next chapter, I suggest you skim

through the online MySQL manual first—specifically to see what it has to say on

the topics we’ve covered so far. Review the details of the CREATE USER and GRANT

statements. Learn how to change an account’s password and how to delete an account

that’s no longer needed. Think about what privileges you’d assign to an account

that needs to store and retrieve data as part of some back-end process for a website.

In Chapter 2, we’ll get into the specifics of storing data in a database. I’ll show you

how to create a table and insert new rows into it. We’ll also discuss what types of

data can be stored in a table, what a storage engines is, and how our choice of engine

affects the way MySQL manages our data.

Jump Start MySQL14

Chapter2
Storing Data
Data stored in a relational database is organized into tables. A database table organ-

izes data in a grid-like fashion, where each entry forms a row and each column

identifies a specific value in the entry. To illustrate this, here’s a table showing the

number of medals won by each of the top five medal-winning countries that parti-

cipated in the 2014 Winter Olympic Games. Each row lists the country’s name, how

many gold medals, silver medals, and bronze medals were won, and the total

number of medals won.

TotalBronzeSilverGoldCountry

3391113Russia

281279United States

2610511Norway

2551010Canada

24978Netherlands

A table like the one above is “physical” in that we can see it printed in a book or

drawn on a whiteboard. It’s limited only by the amount of physical space available.

On the other hand, a database table is an intangible structure stored somewhere on

a hard drive or in computer memory. We can only imagine it or make drawings to

represent it. A database table is interpreted by a computer process (such as MySQL),

and the limitations of the interpreting process impose restrictions on the table. The

number of columns, the number of rows, and even what the individual values in a

row can be, all depend upon what the computer system and database server can

handle. But despite these limitations, a database table is actually very flexible. We

can define relationships between tables, combine multiple tables together, sort rows

and view specific entries, remove rows, and easily perform various calculations on

the data.

In this chapter, we’ll look at the CREATE TABLE statement—which defines new

database tables—and discuss some important details surrounding table creation:

MySQL’s supported data types, naming restrictions, and storage engines. We’ll also

see how to add rows to a table with the INSERT statement, and finish by discussing

transactions.

Creating Tables
Tables are created using the CREATE TABLE statement. In its simplest form, the

statement provides the name of the table we we want to create and a list of column

names and their data types. Not surprisingly, a CREATE TABLE statement can be very

very complex depending on the requirements driving the design of the table. We

can specify one or more attributes as part of a column’s definition; such attributes

can limit the range of values the column can store or specify a default value when

one isn’t provided by the user. Defining any logical relationships that exist between

the table and another, and which storage engine MySQL should use to manage the

table, is also common. You can see how detailed the statement can be if you look

at the syntax and options for CREATE TABLE in the MySQL documentation1.

Let’s take a look at a pair of relatively simple CREATE TABLE statements. (I’ll highlight

some common points that add complexity, but I won’t get too crazy, I promise.)

With the jumpstart database created in Chapter 1 as your active database, issue

the statements below. MySQL should respond “Query OK” after each one.

1 http://dev.mysql.com/doc/refman/5.6/en/create-table.html

Jump Start MySQL16

http://dev.mysql.com/doc/refman/5.6/en/create-table.html

CREATE TABLE employee (
 employee_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(30) NOT NULL,
 first_name VARCHAR(30) NOT NULL,
 email VARCHAR(100) NOT NULL,
 hire_date DATE NOT NULL,
 notes MEDIUMTEXT,

 PRIMARY KEY (employee_id),
 INDEX (last_name),
 UNIQUE (email)
)
ENGINE=InnoDB;

CREATE TABLE address (
 employee_id INTEGER UNSIGNED NOT NULL,
 address VARCHAR(50) NOT NULL,
 city VARCHAR(30) NOT NULL,
 state CHAR(2) NOT NULL,
 postcode CHAR(5) NOT NULL,

 FOREIGN KEY (employee_id)
 REFERENCES employee (employee_id)
)
ENGINE=InnoDB;

The first statement creates a table named employee, designed to store basic inform-

ation about a company’s employees—their name, email address, date of hire, and

perhaps any notes the Human Resources director might provide. The formatting is

just to keep things readable for ourselves; it makes no difference to MySQL whether

we write a statement entirely on one line or across several lines with indentation.

The spacing in a statement is also generally irrelevant.

Local Bias

The address table has a North American bias. An address in the United States

or Mexico fits perfectly, and a Canadian address can store the two-letter province

or territory abbreviation in the state column. But an address in the Netherlands,

for example, needs space for a 6-character postal code. Feel free to adapt the

definition to your own locale.

17Storing Data

Names chosen for a table and its columns can be anything we like so long as they

adhere to the following restrictions:

■ The name uses basic Latin letters (A–Z, both uppercase and lowercase), the

dollar sign ($), underscore (_), or Unicode characters U+0080–U+FFFF.

■ The null character 0x00, Unicode characters U+10000 and higher, and characters

that are prohibited in file names like slash (/), backslash (\), and period are not

allowed in a name.

■ The name must be quoted if it contains characters outside of the above. MySQL

uses backticks by default for this (`…`) although it can be configured to use single

quotes ('…') as well. I recommend sticking with the default.

■ The name must be quoted if it’s a MySQL reserved keyword. A list of reserved

words can be found in the online documentation2.

The employee_id column is designated as the table’s primary key. A primary key

is a column in which all of the values are distinct and can be used to uniquely

identify each and every row in the table. In more complex table definitions, we may

define a primary key from multiple columns together, but using a single INTEGER

type column is the most common practice. Only one primary key can be defined

per table (hence the name primary key).

The employee_id column also has the AUTO_INCREMENT attribute. Whenever we add

a row that doesn’t provide a value for this column, MySQL will automatically use

the next highest sequential integer as its value. Suppose we have a number of rows

in the employee table and the largest employee_id value among them is 42. If we

add a new row without an employee_id value, MySQL will use 43 for the missing

value. If we then add another row without the value, MySQL will use 44, and so

on. Only one column in the table can be designated an auto-increment column, and

the column must also be a primary key.

Behind the scenes, MySQL maintains various data structures to track data and rela-

tionships. The INDEX defined on last_name lets MySQL know that we might use

its value in our selection criteria later when we retrieve rows—for example, if we

wanted to search for employees named Smith or Jones. MySQL will create and

2 http://dev.mysql.com/doc/refman/5.6/en/reserved-words.html

Jump Start MySQL18

http://dev.mysql.com/doc/refman/5.6/en/reserved-words.html

manage a special index structure with the values in the column to make its search

more efficient. Don’t go overboard adding indexes though. It takes time for MySQL

to maintain them so row retrieval may be faster, but adding/updating rows will be

slower.

The term constraint describes a special condition imposed on a column or table

that must be adhered to at all times. Most of the column definitions have NOT NULL,

a constraint that prohibits storing NULL values in the column. NULL is a special value

that represents the absence of a value. Essentially, NOT NULL means the column

must hold a value. MySQL treats NULL differently from an empty value, such as an

empty text string.

The UNIQUE constraint defined on the email column ensures all of the email ad-

dresses stored in the table are different. UNIQUE and PRIMARY KEY are similar, but

there are important differences between them. Because the values in a primary key

column must be able to unambiguously identify each row, its uniqueness is inherent.

We don’t explicitly specify UNIQUE with PRIMARY KEY. And while only one primary

key can be defined per table, we can provide any number of UNIQUE constraints. A

UNIQUE column may also contain NULL values, something PRIMARY KEY doesn’t allow.

The FOREIGN KEY constraint in the address table’s CREATE TABLE statement refer-

ences the employee table, thus defining a relationship between the two tables. This

relationship means that a row in the address table is logically related to whatever

row in the employee table that has the same value in its employee_id column. Take,

for instance, a row in the address table with an employee_id value of 42. That row

may be associated with the row in the employee table whose employee_id value is

also 42. In other words, an address with employee_id 42 is linked to employee 42’s

employee record. A FOREIGN KEY column doesn’t need to have the same name as

its partner column in the other table, but the two must share the same data type and

NULL constraint.

We can issue DESCRIBE or SHOW CREATE TABLE statements to verify a table was cre-

ated or view the definition of an existing table. The DESCRIBE statement returns the

list of the table’s column names and their data types, and SHOW CREATE TABLE returns

a statement that can be used later to re-create the table.

19Storing Data

DESCRIBE employee;

SHOW CREATE TABLE employee;

Pick a Convention

A convention I’ve adopted is to type MySQL keywords in uppercase and my own

identifiers in lowercase. MySQL doesn’t treat keywords and column names in a

case-sensitive manner, but table names might be case-sensitive depending on the

file system storing your tables’ files. It’s best to pick a convention—whatever it

may be—and stick with it.

So far, we’ve discussed the column attributes and table constraints that appear in

the example, but we haven't discussed the data types. The next part of this chapter

may be a little dry, but it covers some important information. Each type requires a

different amount of storage on disk and in memory so we always want to specify

the minimum viable type for a column. The amount of wasted space from assigning

a data type that’s larger than necessary might be negligible at first because there’s

only a handful of rows, but it can add up quickly as more and more data is added

to the table.

Data Types and Storage Requirements
MySQL supports many different data types, most of which we’ll discuss in the fol-

lowing paragraphs. The term data type refers to the classification of data based on

its possible values, the set of operations we can perform on it, and its storage require-

ments. Values of the INTEGER type can only consist of integers like 0, 42, and 1337.

This is different from the DECIMAL type which consists of decimal numbers like

1.61, 3.14, and 100.0. We can perform operations like addition, subtraction, multi-

plication, and division on INTEGER and DECIMAL values, but these cannot be per-

formed on text-based types like CHAR and TEXT.

Numeric Types
MySQL offers the INTEGER (also abbreviated as INT), TINYINT, SMALLINT, MEDIUMINT,

and BIGINT data types for storing integer data. These types differ in the number of

bytes they occupy to represent a value. This in turn limits the range of integers each

type can hold. For example, TINYINT uses 1 byte, so its range is -128 to 127—the

Jump Start MySQL20

range of numbers than can be expressed in binary with 8 bits. INTEGER uses 4 bytes,

so its range is larger: -2,147,483,648 to 2,147,483,647.

We can also specify the UNSIGNED attribute with integer-based types. The type con-

sumes the same amount of space but negative values are disallowed in exchange

for raising the upper bound. For example, the range of TINYINT UNSIGNED becomes

0 to 255. Both TINYINT and TINYINT UNSIGNED represent a range of 256 integers,

but their starting points are -128 and 0 respectively.

The following table shows the storage requirements and range for each of MySQL’s

integer types, both signed and unsigned:

Max.

Unsigned

Min.

Unsigned

Max.

Signed

Min.

Signed

Storage

Used

(Bytes)

Data Type

2550127-128 1271TINYINT

65,535032,767-32,7682SMALLINT

6,777,21508,388,607-8,388,6083MEDIUMINT

4,294,967,29502,147,483,647-2,147,483,6484INTEGER

18,446,744,

073,709,551,

615

09,223,372,

036,854,775,

807

-9,223,372,

036,854,775,

808

8BIGINT

DECIMAL, FLOAT, and DOUBLE are types that support real numbers. We also must

provide the precision (the number of total digits) and scale (the number of digits

that follow the decimal point) when we use one of these types. DECIMAL(5,2) has

a range of -999.99 to 999.99—that is, five digits in total with two of them following

the decimal point. We can specify UNSIGNED for these types as well, but doing so

only disallows negative values. This is because the upper limit is defined by the

precision and scale we provide.

The DECIMAL type is a fixed-point data type which means it preserves the exact

precision of its value in calculations. This is useful for representing values like

monetary amounts. The maximum precision we can specify for DECIMAL is 65, and

the maximum scale is 30. On the other hand, FLOAT and DOUBLE are both floating-

point types. Calculations with these types are approximate because some rounding

21Storing Data

may occur due to how the values are represented internally in the computer. The

difference between FLOAT and DOUBLE is the amount of space they occupy, which

in turn affects their accuracy. FLOAT is 4-byte single-precision which is generally

accurate up to 7 decimal places. DOUBLE is 8-byte double-precision which is generally

accurate up to 15 decimal places.

The BIT data type stores a bit-sequence. This is useful for storing bit-field values

like flags and bit masks. BIT has a capacity of 1 to 64 bits. BIT(1) can only hold 0

or 1; BIT(2) can hold the binary values 00, 01, 10, and 11; BIT(3) can hold the

binary values 000, 001, 010, 011, 100, 101, 110, and 111, and so on. MySQL uses

the notation b'value' to specify the value as string of binary digits, like b'101010'.

String Types
MySQL devotes several data types to storing textual data: CHAR, VARCHAR, BINARY,

VARBINARY, TEXT, TINYTEXT, MEDIUMTEXT, LONGTEXT, BLOB, TINYBLOB, MEDIUMBLOB,

and LONGBLOB. The sized types like TINYTEXT and MEDIUMTEXT behave exactly like

TEXT although each is constrained by a different maximum amount of text it can

hold. The same is true for BLOB and its sized counterparts, TINYBLOB, MEDIUMBLOB,

and LONGBLOB.

We must provide a length when we specify a CHAR or VARCHAR type. CHAR(255), for

instance, stores text strings 255 characters long, and VARCHAR(255) stores strings

up to 255 characters in length. Notice that I said “255 characters” and “up to 255

characters.” CHAR is intended to store fixed-length strings, values that will always

have the same number of characters across all rows in the table. The amount of

space remains constant. VARCHAR stores variable-length strings, values that can have

different lengths across the rows. The amount of space each value occupies is de-

termined by the length of the string.

I’ll highlight the difference between CHAR and VARCHAR using the string “Hello

World”. The string is 11 characters long, and it will occupy 11 bytes (plus an extra

byte or two that MySQL needs to add for its own bookkeeping) if we store it in a

VARCHAR(255) column. But with CHAR(255), the storage space is constant across all

rows in the table. MySQL pads the string with 244 spaces. The padding is removed

when we retrieve the string and the original 11-character “Hello World” string is

returned, but all CHAR(255) strings occupy 255 bytes when they’re stored.

Jump Start MySQL22

Maximum Lengths

CHAR and VARCHAR have different maximum lengths. CHAR is allowed up to 255

characters and VARCHAR is allowed up to 65,535 characters. You probably won’t

want to use VARCHAR(65535) though. MySQL limits the size of a row to 25,535

bytes. Almost all of the row’s columns contribute to the size (TEXT and BLOB are

excluded), so you wouldn’t have space left for the other columns. You find detailed

information about the limits on row and column sizes in the online documenta-

tion3.

BINARY and VARBINARY behave similarly to CHAR and VARCHAR except they’re used

for binary strings. MySQL treats binary strings as a series of bytes, not characters,

and doesn’t take collation or character set into consideration when working with

them. No special semantics are applied; any sorting or comparison operations per-

formed are based on the ordinal value of each byte. MySQL uses the NULL byte

0x00 to pad/strip BINARY values.

TEXT and BLOB are variable-length data types for storing larger amounts of text.

Neither performs padding/stripping, which makes them ideal for preserving the

exact nature of the data. TEXT values are treated as character strings and BLOB values

are treated as binary strings. The TEXT and BLOB columns (and their sized variants)

are also excluded when MySQL calculates the length of a row, so consider using

one of them when you need to store more than 65,535 bytes of data.

The non-binary string types CHAR, VARCHAR, and TEXT can be given the CHARACTER

SET attribute to specify the data’s encoding. A character set determines how the

underlying bits and bytes are interpreted as human-readable characters. Common

sets include ASCII (ascii), ISO 8859-1 (latin1), and UTF-8 (utf8). The default

character set when none is specified is latin1.

CREATE TABLE charset_example (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 ascii_string VARCHAR(255) CHARACTER SET ascii NOT NULL,
 latin1_string VARCHAR(255) CHARACTER SET latin1 NOT NULL,
 utf8_string VARCHAR(255) CHARACTER SET utf8 NOT NULL,

3 https://dev.mysql.com/doc/refman/5.6/en/column-count-limit.html

23Storing Data

https://dev.mysql.com/doc/refman/5.6/en/column-count-limit.html
https://dev.mysql.com/doc/refman/5.6/en/column-count-limit.html

 PRIMARY KEY (id)
);

The ENUM and SET data types restrict a value to those allowed by a defined list. A

column defined as ENUM('Alpha', 'Beta', 'Gamma') can only contain one of the

strings listed in the definition, either “Alpha”, “Beta”, or “Gamma”. SET holds

strings with one or more comma-separated values from its list. SET('Alpha',

'Beta', 'Gamma') can hold values like “Alpha”, “Alpha,Beta,Gamma”,

“Beta,Gamma”, and so on.

Use ENUM with Caution

I have nothing against ENUM when it’s use suits my data, but this seemingly inno-

cent data type is not without controversy. Chris Komlenic’s blog post “8 Reasons

Why MySQL’s ENUM Data Type Is Evil”4 is a good read on the subject.

The following table shows the storage requirements and the maximum length allowed

for MySQL’s string types:

MaximumStorage Used (Bytes)Data Type

255 charsm × maximum-size

character in the character

set

CHAR(m)

65,535 charsup to 2 bytes + m ×

maximum-size character

in the character set

VARCHAR(m)

65,535 charssize of string in bytes + 2TEXT

255 charssize of string in bytes + 1TINYTEXT

16,777,215 charssize of string in bytes + 3MEDIUMTEXT

4,294,967,295 charssize of string in bytes + 4LONGTEXT

255 bytesmBINARY(m)

65,535 bytesup to 2 bytes + mVARBINARY(m)

4 http://komlenic.com/244

Jump Start MySQL24

http://komlenic.com/244
http://komlenic.com/244

MaximumStorage Used (Bytes)Data Type

65,535 bytessize of string in bytes + 2BLOB

255 bytessize of string in bytes + 1TINYBLOB

16,777,215 bytessize of string in bytes + 3MEDIUMBLOB

4,294,967,295 bytessize of string in bytes + 4LONGBLOB

65,535 valuesup to 2 bytesENUM

64 membersup to 8 bytesSET

Temporal Types
The data types DATETIME, TIMESTAMP, DATE, TIME, and YEAR are for working with

date and time values. Both DATETIME and TIMESTAMP hold values containing date

and time parts using the format 'YYYY-MM-DD HH:mm:ss' (YYYY is a four-digit year,

MM is a two-digit month, DD a two-digit day, HH a two-digit hour, mm two-digit minutes,

and ss two-digit seconds). For example, '2015-03-15 13:15:00' is 1:15 p.m. on

the third of March, 2015. The DATE, TIME, and YEAR types all store their single re-

spective part values. Besides 'HH:mm:ss' to represent a time of day—such as

13:15:00—TIME values may also be given like 'HHH:mm:ss' to represent an elapsed

amount of time—such as 293:23:10, meaning 293 hours, 23 minutes, and 10 seconds.

MySQL can automatically initialize and update DATETIME and TIMESTAMP values

with the current date and time whenever a row is added or updated. If the INSERT

statement adds a new row to the table but doesn’t have a value for the TIMESTAMP

column, MySQL will use the current date and time as the value. MySQL also updates

a TIMESTAMP column’s value when any of the values in its row are updated. While

this behavior is automatic for TIMESTAMP, we can also apply it to DATETIME columns

by specifying the attributes DEFAULT CURRENT_TIMESTAMP and ON UPDATE CUR-

RENT_TIMESTAMP in the column definition.

25Storing Data

Variations in Temporal Types

There are a few subtleties to the behavior of temporal data types across different

releases of MySQL, especially with TIMESTAMP and YEAR. Review the document-

ation on timestamp initialization5 and two-digit years6.

The following table shows the range and storage requirements for each of MySQL’s

temporal types:

MaximumMinimumStorage Used

(Bytes)

Data Type

9999-12-31

23:59:59

1000-01-01

00:00:00

8DATETIME

2038-01-19

03:14:07 UTC

1970-01-01

00:00:01 UTC

4TIMESTAMP

9999-12-311000-01-013DATE

838:59:59-838:59:593TIME

215519011YEAR

Spacial Data Types
The Open Geospatial Consortium has published a large number of standards focused

on the representation of geographic information in various formats. MySQL offers

a few types based on the consortium’s work for storing such data: POINT, LINESTRING,

POLYGON, GEOMETRY, MULTIPOINT, MULTISTRING, MULTIPOLYGON, and GEOMETRYCOLLEC-

TION.

The POINT, LINESTRING, and POLYGON types each support the geometric values sug-

gested by their names. A POINT holds the coordinates of a single point, like

Point(10, 20), and a LINESTRING holds point pairs that define a line, like LineS-

tring(Point(10, 20), Point(30, 20)). The GEOMETRY type is a super-type that

can hold both POINT and LINESTRING values. The MULTI* and GEOMETRYCOLLECTION

types support multiple members of the same values that their singular counterparts

5 http://dev.mysql.com/doc/refman/5.6/en/timestamp-initialization.html
6 http://dev.mysql.com/doc/refman/5.6/en/two-digit-years.html

Jump Start MySQL26

http://dev.mysql.com/doc/refman/5.6/en/timestamp-initialization.html
http://dev.mysql.com/doc/refman/5.6/en/two-digit-years.html

do. For example, a MULTIPOINT column can hold several points like Multi-

Point(Point(10, 20), Point(20, 20), Point(30, 20)).

Working with spacial data can be a discipline in itself, so we won’t discuss it further.

The following resources are a good starting point (no pun intended) if you’re inter-

ested in learning more about the facilities MySQL has for working with spacial data:

■ MySQL Manual: Extensions for Spatial Data7

■ MySQL GIS Forum8

■ Open Geospatial Consortium9

Storage Engines
The term storage engine refers to the underlying logic and programming code re-

sponsible for managing our tables and data. An engine principally abstracts away

the specific details of how data might be organized on the disk or in memory and

allows us to think of it simply in terms of tables and rows. But different engines

also have different abilities and restrictions. MySQL implements a pluggable archi-

tecture that gives us the ability to select different storage engines as we see fit, and

different tables can be managed by different engines even in the same database.

You can issue a SHOW ENGINES statement to see a list of storage engines available to

your MySQL server.

SHOW ENGINES;

InnoDB has been MySQL’s default storage engine since MySQL 5.5 and a CREATE

STATEMENT that doesn’t include the ENGINE clause will result in a table managed by

this engine. InnoDB is ACID-compliant, which means every transaction—one or

more statements sent to the server that must be treated as a single whole—must

observe the following four constraints:

7 http://dev.mysql.com/doc/refman/5.6/en/spatial-extensions.html
8 http://forums.mysql.com/list.php?23
9 http://www.opengeospatial.org

27Storing Data

http://dev.mysql.com/doc/refman/5.6/en/spatial-extensions.html
http://forums.mysql.com/list.php?23
http://www.opengeospatial.org

■ Atomicity ― Each transaction is committed in its entirety or not at all. If part of

a transaction fails—perhaps one statement fails in the middle of the batch—then

the data must be returned to the state it was in before the start of the transaction.

■ Consistency ― All changes made by a transaction must leave the data in a valid

state as defined by any constraints and other rules. This means that no foreign

key constraints can be violated, there can be no disallowed values (such as a

NULL in a NOT NULL column), and so on.

■ Isolation ― All transactions must be isolated from one another. Two transactions

that occur at the same time must not affect or be affected by each other.

■ Durability ― Once a transaction’s changes are committed, they are final and

can’t be rolled back.

The InnoDB engine also employs row-level locking. Whenever an engine’s process

writes a row to a table, it needs to make sure another process isn’t attempting to

write to the same location at the same time. To prevent this, the writing process

establishes a lock, writes the data, and then releases the lock. The other process

must wait until the lock is free before it can establish its own lock. Several processes

can add and update data concurrently in the same table, just not the same row in

the table.

With its ACID compliance and row-level locking strategy, InnoDB is a good choice

when you need a reliable, general-purpose storage engine.

MyISAM was the default storage engine prior to MySQL 5.5. It’s based on the ori-

ginal UNIREG’s rewritten ISAM engine, and as such its focus is speed and maintain-

ing a small resource footprint. MyISAM trades ACID compliance and features like

foreign-key enforcement for faster performance. Because MyISAM doesn’t have the

overhead that comes with ensuring ACID behavior, the engine is a good choice for

mostly read-only data, and when you’re forced to run MySQL on low-end hardware.

MyISAM implements a table-level locking strategy. The lock is held against the

entire table and no two processes can add or update data in the same table at the

same time. This means MyISAM has a lower level of concurrency than InnoDB.

In addition to InnoDB and MyISAM, Oracle MySQL also other storage engines:

Jump Start MySQL28

■ Archive ― The Archive engine is useful if you need to save a large amount of

data but will rarely access it. New rows are compressed and appended to the

table’s existing data. Rows are uncompressed on-demand when we retrieve them.

The compression helps the data to consume less disk space, but it also means

MySQL can’t rely on indexes to efficiently search the data; MySQL has to scan

through the entire table’s contents to find matching rows. The compress/append

strategy also means statements like DELETE, UPDATE, and REPLACE aren't supported.

■ Blackhole ― The Blackhole engine behaves like a /dev/null device. It accepts

any data we send and then immediately discards it. To borrow from the tagline

of a particular brand of insect trap, “data checks in, but it doesn’t check out”.

The engine is useful for testing and development scenarios and for setting up a

repeater system in a replicated environment.

■ CSV ― The CSV engine stores comma-separated data in text files. These files

are easily handled by spreadsheet applications, like Microsoft Excel or OpenOffice

Calc, which makes it useful to transfer a table’s data to or from a spreadsheet,

or export the data to some automated process. However, many limitations are

imposed to ensure the integrity of the CSV file. It doesn’t support primary and

foreign keys, various constraints, or columns that allow NULL values.

■ Federated ― The Federated engine is useful when you need to work with data

from a remote MySQL table as if it were local. No data is stored locally for a

Federated-managed table. Instead, all rows are read from and written to the remote

database. Keep in mind that performance is slower when working with remote

data as opposed to local data, and indexes are not supported, because access to

the actual data is managed by the remote server.

■ Merge ― MyISAM tables are limited in size by restrictions put in place by the

operating system’s file system. The Merge engine enables us to work around this

by joining multiple MyISAM tables together so we can treat the rows as if they

were all stored in one large table. Each table that’s part of the merged table must

share the same column ordering and definitions.

■ Memory ― The Memory engine stores data in RAM, which gives us lower latency

and faster access than disk-based storage can offer. You should only store non-

critical data in a Memory-managed table because it will be cleared from RAM

29Storing Data

when the MySQL server shuts down. Because of its access speed, this engine is

useful for storing things like cache or session data.

■ NDB ― NDB is MySQL’s engine designed to support database clustering. Like

InnoDB, NDB is also ACID-compliant.

The documentation has more detailed information for each engine10. But to help

you understand how the engines make different trade-offs to offer better performance

or different features, here’s a table that highlights some of the key differences between

each of them. I’ve marked features that are dependent upon the engine managing

the base table with ?.

NDBMem-

ory

MergeFeder-

ated

CSVBlack-

hole

Ar-

chive

My-

ISAM

Inno-

DB

Fea-

ture

384EBRAMNo

Limit

N/AFile

system

N/ANo

Limit

256TB64TBStorage

limit

YesNoNo?NoNoNoNoYesACID

YesNoNo?NoNoNoNoYesFore-

ign

keys

enfo-

rced

YesYesYesNoNoN/ANoYesYesInde-

xes

YesNoYes?YesYesYesYesYesConc-

urrent

inserts

YesYesNo?NoNoNoYesYesUNIQUE

enfor-

ced

10 http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

Jump Start MySQL30

http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

NDBMem-

ory

MergeFeder-

ated

CSVBlack-

hole

Ar-

chive

My-

ISAM

Inno-

DB

Fea-

ture

NoNoNo?NoN/ANoYesYesFull-

text

search

RowTableTable?TableTableTableTableRowLock

level

YesNoNo?NoNoNoNoYesTransa-

ctions

YesNoNo?NoYesYesYesYesSpatial

data

types

YesYesYesYesYesN/AYesYesYesEncry-

ption

YesYesYesYesYesYesYesYesYesRepli-

cation

YesNoNoNoNoNoNoNoNoClust-

ering

Adding Data
New rows are added to a table using the INSERT statement. The complexity of an

INSERT statement is much less than CREATE TABLE—something you’re probably re-

lieved to hear after the last few pages.

Go ahead and issue the following INSERT statement to add a new row of data to the

employee table. The statement provides the target table’s name, a list of which

columns we’re supplying data for, and the values themselves.

31Storing Data

INSERT INTO employee
 (first_name, last_name, email, hire_date)
VALUES
 ('Nischal', 'Bhatia', 'nbhatia@example.com', '2014-12-15');

We’ll discuss the SELECT statement in the next chapter, but for now we can use the

following to look at the contents of the employee table and verify the record was

successfully added:

SELECT * FROM employee;

The reply shown in the command-line client should look like this:

+-------------+-----------+------------+---------------------+-----
| employee_id | last_name | first_name | email | hire
+-------------+-----------+------------+---------------------+-----
| 1 | Bhatia | Nischal | nbhatia@example.com | 2014
+-------------+-----------+------------+---------------------+-----
1 row in set (0.00 sec)

The employee table’s CREATE TABLE statement defines six columns, but notice I’ve

only given four in the INSERT statement. The employee_id column was defined

with the AUTO_INCREMENT attribute, so MySQL automatically assigns a sequential

value for that column. The notes column is assigned NULL indicating the absence

of any value. Also notice that I didn’t provide the column names in the same order

as they appear in the definition. Columns in an INSERT statement can be listed in

any order we like so long as the data values are ordered similarly so they match up.

You Can Omit Column Names

It’s possible (but not recommended, if only for reasons of clarity) to omit the

column names entirely if you provide values for all of the columns. Without the

names, values must be given in the same order that the columns are defined in

the CREATE TABLE statement.

Jump Start MySQL32

INSERT INTO employee
VALUES (NULL, 'Bhatia', 'Nischal', 'nbhatia@example.com',
'2014-12-15', NULL);

Numeric values, such as INTEGER or DECIMAL values, and the NULL are provided as

bare, unquoted literals. Values for the other data types, like CHAR and DATE, are

given as quoted strings. MySQL’s default configuration allows both single quotes

('…') and double quotes ("…") for this, but single quotes are preferred because then

your statements won’t rely on a specific configuration.

You may be wondering what happens if a single-quoted string value contains a

quote mark, as in the name O’Brian. We need to escape the quote by adding a des-

ignated character before it. This way, MySQL knows the quote doesn’t mark the

end of the string. The traditional approach is to duplicate the quote, as in

'O''Brian'. By default, MySQL also supports using the backslash character, as in

'O\'Brian'. You can find more information on strings in the documentation11.

Practice writing some INSERT statements. Try adding a few more rows to the employ-

ee table, omitting the employee_id value as we did before, and then retrieve the

table’s contents to see the auto-incrementing values assigned by MySQL.

Now try adding a row to the address table. Remember, the table’s employee_id

field was defined as a foreign key that points back to the employee table. This means

the employee_id value of Nischal Bhatia’s address record must match the employ-

ee_id value of his employment record. For me, that value is 1 because it was the

first row I added to employee table.

INSERT INTO address
 (employee_id, address, city, state, postcode)
VALUES
 (1, '123 Main Street', 'Anytowne', 'XE', '97052');

Using Transactions
A transaction is a set of statements that are treated as a group. The START TRANSAC-

TION statement begins a transaction and MySQL considers any statements that follow

11 http://dev.mysql.com/doc/refman/5.6/en/string-literals.html

33Storing Data

http://dev.mysql.com/doc/refman/5.6/en/string-literals.html

to be part of that transaction. The transaction ends with either a COMMIT or ROLLBACK

statement. COMMIT finalizes the transaction, making the changes official, and ROLLBACK

rolls back the transaction, discarding any changes.

Let’s perform a small experiment using transactions to highlight the ACID concepts

of atomicity, consistency, isolation, and durability. First, send the following state-

ments. You’ll see a new row added to the employee table, but it’s only temporary

because we haven’t finalized the transaction yet.

START TRANSACTION;

INSERT INTO employee
 (employee_id, last_name, first_name, email, hire_date)
VALUES
 (42, 'Virey', 'Gener', 'gvirey@example.com', '2015-04-02');

SELECT * FROM employee;

Connect to MySQL with another instance of the command-line client in a different

terminal and send the same SELECT statement. You’ll see that the row is missing

from the result. This shows the transaction we initiated in the first client is isolated

from any other connection.

Switch back to the first client and roll back the transaction. The SELECT will then

show the row is no longer in the employee table. The rollback has left the data in a

consistent state; the same rows that were there before we started the transaction are

there and no constraints are violated.

ROLLBACK;

SELECT * FROM employee;

Let’s start another transaction and add some rows, but this time we’ll commit it.

START TRANSACTION;

INSERT INTO employee
 (employee_id, last_name, first_name, email, hire_date)
VALUES
 (42, 'Virey', 'Gener', 'gvirey@example.com', '2015-04-02');

Jump Start MySQL34

INSERT INTO address
 (employee_id, address, city, state, postcode)
VALUES
 (42, '227 North Avenue', 'Anytowne', 'XE', '97052');

COMMIT;

Sending a SELECT statement in both clients should show that Gener’s details have

been finalized in the database. The two INSERT statements were executed as an

atomic unit—the effect of the transaction is all or nothing. All of the data was

written to the database when we committed the transaction and the only way to

update or remove the information is by issuing other statements.

Conclusion
In this chapter, we learned how to define a new database table with the CREATE

TABLE statement and how to add rows to a table using INSERT. For CREATE TABLE,

we discussed what data types are available with MySQL, how AUTO_INCREMENT in-

structs MySQL to assign sequential integer values to a primary key, and how each

storage engine targets a different usage scenario. For INSERT, we briefly discussed

string quoting and experimented using transactions.

Before moving on, take some time to play around with what we’ve covered here.

See what happens when you try to add a row to addresswith an employee_id value

that doesn’t exist in the employee table. What happens if you attempt to add a row

to the employee table with an employee_id value that’s already used? Can you add

more than one row with the same employee_id in the address table? If so, then

what does this mean about the relationship between the employee and address

tables? See hows MySQL responds when you try to store a value that exceeds the

limits of its data type.

As the number of rows in a table increases, we’ll want something better than the

way we’ve used SELECT so far. The next chapter will discuss how we can retrieve

only the data we’re interested in. I’ll also show you how to update and delete rows.

By the end of the Chapter 3, you’ll know how to perform the four major operations

with MySQL that are expected from any database server: create rows (INSERT), re-

trieve them (SELECT), update them (UPDATE), and delete them (DELETE).

35Storing Data

Chapter3
Retrieving and Updating Data
In Chapter 2, I briefly introduced you to the SELECT statement by using SELECT *

to display all of the rows in the employee and address tables. But SELECT is certainly

more powerful and flexible than that. It has the ability to retrieve only certain

columns, filter and sort rows, and even select rows from multiple tables based on

the relationships we’ve defined. You’ll learn how to use SELECT to do all that and

more in this chapter and in Chapter 4.

I also promised to show you the UPDATE and DELETE statements so you’ll be able to

perform the four basic data operations: creating rows, retrieving them, and keeping

them current either by updating them or deleting them. You already know how to

create rows, so in this chapter we’ll discuss retrieval, updating, and deletion.

There’s a small bit of housekeeping we need to tend to, however, before we turn

our full attention to writing SELECT, UPDATE, and DELETE statements. The jumpstart

database has served us well so far, but we’d spend a fair amount of time to make it

suitable for experimenting with for the rest of the book. So, first we’ll install the

sakila database (named after MySQL’s dolphin mascot).

Deploying Sakila
Let’s switch from the jumpstart database to sakila, the standard training database

available from MySQL’s website. It represents activity at a fictitious DVD rental

store and includes customers, inventory, and sales data.

A Little Bit of History

Brick-and-mortar video rental outlets have largely been displaced by video on

demand and DVD mailing services like Netflix. Take it from me (as someone who’s

old enough to remember), this wasn’t the case in 2005 when the sakila database

was first developed. The revolution had only just begun, and a mom-and-pop

video store could still be found in every neighborhood.

The following steps download the necessary files and sets up the database. As in

Chapter 1, if your server isn’t running a graphical interface then you’ll need to

complete the download steps on a separate system and copy the archive over.

1. Open a web browser and navigate to the Other MySQL Documentation page at

http://dev.mysql.com/doc/index-other.html .

2. Scroll down to the Example Databases section and click on the appropriate

download link for the sakila database. TGZ is recommended for Linux users

and ZIP for Windows users.

3. Navigate to the directory where you downloaded the archive to. Extract its con-

tents and navigate into the new sakila-db directory it produces.

■ Linux users can execute the following commands:

cd /tmp
gzip -cd sakila-db.tar.gz | tar xvf -
cd sakila-db

■ Windows users can perform the following steps:

a. Navigate to the download folder using File Explorer. Right-click the archive

and click Extract All… to extract its contents.

Jump Start MySQL38

http://dev.mysql.com/doc/index-other.html

b. Navigate into the new sakila-db folders until you reach the SQL files. Click

in File Explorer’s address bar to highlight the location and press CTRL+C to

copy it to your clipboard.

c. Navigate into the folder using Command Prompt. The location stored in the

clipboard can be pasted by right-clicking anywhere in the prompt’s window

and selecting Paste.

CD "C:\Users\UserName\Downloads\sakila-db"

4. The sakila-schema.sql file contains the statements necessary to create the

database, its tables, and other assets. Execute the following command in the ter-

minal or Command Prompt to import it and provide the password for MySQL’s

root user when prompted (this was set in Chapter 1).

mysql -u root -p < sakila-schema.sql

5. Now we need to grant privileges to our “jump” user account so we can use it to

access the database. Connect to MySQL using the root account, and issue the

following GRANT and FLUSH statements.

GRANT CREATE, DROP, ALTER, INSERT, UPDATE, SELECT, DELETE,
INDEX, CREATE VIEW, CREATE ROUTINE, ALTER ROUTINE, EXECUTE,
TRIGGER, INDEX ON sakila.* TO 'jump'@'localhost';
GRANT SUPER, RELOAD, FILE ON *.* TO 'jump'@'localhost';
FLUSH PRIVILEGES;

6. Finally, exit the command-line client and execute the following command to

populate the sakila tables with data from sakila-data.sql:

mysql -u jump -p < sakila-data.sql

More Privileges

Notice that we specified more privileges than we did the last time we used GRANT.

The additional privileges give our account access to functionality we’ll need later

39Retrieving and Updating Data

in the book. Also, notice that two GRANT statements are issued—one that references

the sakila database and another that references *.*. The privileges given in the

second GRANT statement are global privileges, valid across all databases managed

by MySQL (I figured now is as good a time as any to add them).

Take a few minutes to familiarize yourself with the new database. Use the SHOW

TABLES and DESCRIBE or SHOW CREATE TABLE statements discussed in Chapter 1 to

see what tables exist and what their definitions are.

Retrieving Data
Of course, it wouldn’t make sense to place information in a database if we could

never pull it back out again. The SQL workhorse statement SELECT gives us this

ability.

Let’s pull some data out of the actor table first. The table consists of four columns,

actor_id, first_name, last_name, and last_update, and holds 200 rows of data.

You’ve already seen that * is used a shorthand notation to retrieve all of the columns,

so we’ll see how to retrieve only the specific columns we’re interested in. Make

sure you’re connected to MySQL using the “jump” account with sakila set as the

active database, and then issue this statement:

SELECT last_name, first_name FROM actor;

The desired columns, in this case last_name and first_name, are given in the SELECT

statement as a comma-separated list. MySQL’s response looks like this:

+-------------+--------------+
| last_name | first_name |
+-------------+--------------+
GUINESS	PENELOPE
WAHLBERG	NICK
CHASE	ED
⋮	
FAWCETT	JULIA

Jump Start MySQL40

| TEMPLE | THORA |
+-------------+--------------+
200 rows in set (0.00 sec)

Just Showing a Snippet

Imagine all of the paper that would be wasted if I duplicated the entire result set

for each example! To save the trees, I’ve shown just a handful of rows from the

beginning and end of the result. A vertical ellipsis represents the omitted rows.

You’ll see this often throughout the book.

The rows will most likely be returned to us in the same order they were added to

the actor table, but this isn’t guaranteed. MySQL makes no promises about the order

in which it will return the rows if we don’t specifically ask for them to be sorted.

As long as 200 rows are returned, and you only see values from the last_name and

first_name columns, it’s okay if your response reflects a different ordering than in

the example here.

Ordering Results
When the order of rows in the result is important, we can use an ORDER BY clause

in the SELECT statement and MySQL will sort the rows before returning them to us.

Reissue the SELECT statement, but this time add ORDER BY to sort the results.

SELECT last_name, first_name FROM actor ORDER BY last_name;

MySQL sorts the rows in ascending order (A–Z or 1, 2, 3, …), based on the values

in the last_name column, and responds like so:

+--------------+-------------+
| last_name | first_name |
+--------------+-------------+
AKROYD	CHRISTIAN
AKROYD	KIRSTEN
AKROYD	DEBBIE
⋮	
ZELLWEGER	CAMERON

41Retrieving and Updating Data

| ZELLWEGER | JULIA |
+--------------+-------------+
200 rows in set (0.00 sec)

The default sort direction is ascending, but we can explicitly request ascending

with the keyword ASC or descending order (Z–A or …, 3, 2, 1) with DESC. We can

also sort the results on multiple columns.

Let’s fine-tune the sorting by modifying our statement’s ORDER BY clause.

SELECT last_name, first_name FROM actor ORDER BY last_name ASC,
first_name DESC;

We’ve asked MySQL to sort the results first by the values in the last_name column,

which I’ve explicitly requested as ascending rather than relying on the default be-

havior, and then by first_name in descending order. The response we get back

looks like this:

+--------------+-------------+
| last_name | first_name |
+--------------+-------------+
AKROYD	KIRSTEN
AKROYD	DEBBIE
AKROYD	CHRISTIAN
⋮	
ZELLWEGER	JULIA
ZELLWEGER	CAMERON
+--------------+-------------+
200 rows in set (0.00 sec)

There are only 200 rows in the actor table, so MySQL can fetch them, order them,

and return them to us in a fraction of a second. As the number of rows increases,

or as the complexity of a SELECT statement grows, the retrieval and sorting processes

become slower. Because of this, it’s a good idea to make a habit of thinking carefully

about the statements you write and retrieving only the data you need.

Ordering is influenced by character collation, a set of rules that dictate which

character comes before the other when sorting. For example, diacritics are ignored

in English, so “Böhm” comes before “Brown”. Yet in Swedish, Ö is an independent

Jump Start MySQL42

letter that sorts after R, so “Brown” comes before “Böhm”. Also governed by the

collation is whether sort comparisons are case-sensitive or not.

The statement SHOW COLLATION will return a list of collations that your installation

of MySQL is aware of. The first part of a collation’s name is the character set it’s

designed to work with. Those ending in _ci perform case-insensitive comparisons,

those in _cs perform case-insensitive comparisons, and those in _bin use the un-

derlying binary value of each character in comparisons.

SHOW COLLATION;

+--------------------+---------+-----+--------+----------+---------+
| Collation | Charset | Id | Default| Compiled | Sortlen |
+--------------------+---------+-----+--------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
big5_bin	big5	848		Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
⋮					
eucjpms_japanese_ci	eucjpms	97	Yes	Yes	1
eucjpms_bin	eucjpms	98		Yes	1
+--------------------+---------+-----+--------+----------+---------+
219 rows in set (0.00 sec)

A yes value in the output’s Default column means that collation is the default for

its character set. MySQL’s default character set is latin1 and the default collation

is latin1_swedish_ci (MySQL AB was a Swedish company, after all). The tables

in sakila were defined to use utf8, which the default collation for is utf8_gener-

al_ci. A different collation can be given in the ORDER BY clause to override the

default.

SELECT last_name, first_name FROM actor ORDER BY last_name
COLLATE utf8_bin ASC;

Character Matters

If you request a collation that wasn’t designed to work with a column’s character

set, MySQL will respond with an error message similar to the following:

43Retrieving and Updating Data

ERROR 1253 (42000): COLLATION 'latin1_general_cs' is not
valid for CHARACTER SET 'utf8'

Character sets and collations are complex topics. If you want to go down the collation

rabbit hole, check out the following to learn more:

■ MySQL Manual: Globalization1

■ MySQL’s Character Sets and Collations Demystified2

■ MySQL Tutorial: Setting Character Sets and Collations in MySQL3

■ Sorting It All Out: an Introduction to Collation4

Managing the Number of Returned Rows
We’re able to restrict what data we retrieve, in a horizontal sense, by listing specific

table columns in a SELECT statement. Restricting in the vertical sense requires us

to limit the number of rows we retrieve. There are two ways to accomplish this:

selecting rows that match some filtering criteria that we specify, and instructing

MySQL to return no more than some maximum number of rows.

The LIMIT clause places a hard limit on the number of rows MySQL returns to us.

For example, if we’re only interested in the first five actors in the result set, we can

add LIMIT 5 to the SELECT statement.

SELECT last_name, first_name FROM actor ORDER BY last_name,
first_name DESC LIMIT 5;

MySQL still sorts all of the rows, but then simply “chops off” the first five rows and

sends those back to us.

1 http://dev.mysql.com/doc/refman/5.6/en/globalization.html
2 http://code.openark.org/blog/mysql/mysqls-character-sets-and-collations-demystified
3 http://www.mysqltutorial.org/mysql-collation
4 http://download.microsoft.com/download/3/7/1/371c04e1-1fc3-462c-abbc-fa6068e14643/21-Collation-

Intro.pdf

Jump Start MySQL44

http://dev.mysql.com/doc/refman/5.6/en/globalization.html
http://code.openark.org/blog/mysql/mysqls-character-sets-and-collations-demystified
http://www.mysqltutorial.org/mysql-collation
http://download.microsoft.com/download/3/7/1/371c04e1-1fc3-462c-abbc-fa6068e14643/21-CollationIntro.pdf

+-----------+------------+
| last_name | first_name |
+-----------+------------+
AKROYD	KIRSTEN
AKROYD	DEBBIE
AKROYD	CHRISTIAN
ALLEN	MERYL
ALLEN	KIM
+-----------+------------+
5 rows in set (0.10 sec)

Clause Ordering

The order in which clauses appear in a SELECT statement is important, but don’t

worry if you can’t always remember the correct order. You can always consult

the documentation for SELECT5. After a while, writing clauses in the necessary

order will become second nature to you.

The WHERE clause gives us the ability to specify conditions that a row must match

for MySQL to include it in the results. For example, we can retrieve only the rows

with a column value greater or less than some arbitrary value we provide. Let’s look

at some data from the film table:

SELECT title, length, rating FROM film WHERE length < 60
ORDER BY title;

The statement retrieves a movie’s title, running time, and rating for each row. The

table’s length column holds the movie’s duration in minutes, so the WHERE clause

specified the condition as length < 60. The result should only show the rows for

movies with a run time less than 60 minutes.

+----------------------+--------+--------+
| title | length | rating |
+----------------------+--------+--------+
ACE GOLDFINGER	48	G
ADAPTATION HOLES	50	NC-17
AIRPORT POLLOCK	54	R
⋮

5 http://dev.mysql.com/doc/refman/5.6/en/select.html

45Retrieving and Updating Data

http://dev.mysql.com/doc/refman/5.6/en/select.html

| WOLVES DESIRE | 55 | NC-17 |
| ZORRO ARK | 50 | NC-17 |
+----------------------+--------+--------+
96 rows in set (0.00 sec)

Every condition we write needs to accurately reflect what we want to retrieve because

MySQL will follow it to the letter. I retrieved the movies that run less than an hour.

But what about those that run exactly 60 minutes? To include them, I need to update

the WHERE condition to read length <= 60. To retrieve the movies that run exactly

60 minutes, I’d update the condition to read length = 60.

We can also use standard logical operators like AND and OR to provide multiple

conditions. For example, to select movies that run between one hour and two hours

inclusively, we can specify two conditions and use the AND operator.

SELECT title, length, rating FROM film WHERE length >= 60 AND
length <= 120 ORDER BY title;

+---------------------------+--------+--------+
| title | length | rating |
+---------------------------+--------+--------+
ACADEMY DINOSAUR	86	PG
AFFAIR PREJUDICE	117	G
AIRPLANE SIERRA	62	PG-13
⋮		
ZHIVAGO CORE	105	PG-13
ZOOLANDER FICTION	101	NC-17
+---------------------------+--------+--------+
447 rows in set (0.00 sec)

To select those that run exactly one, two, or three hours, we can provide conditions

using the OR operator.

SELECT title, length FROM film WHERE length = 60 OR length = 120 OR
length = 180 ORDER BY title;

+------------------------+--------+--------+
| title | length | rating |
+------------------------+--------+--------+
ALLEY EVOLUTION	180	NC-17
BUBBLE GROSSE	60	R
CALENDAR GUNFIGHT	120	NC-17

Jump Start MySQL46

⋮
| SOMETHING DUCK | 180 | NC-17 |
| UNTOUCHABLES SUNRISE | 120 | NC-17 |
+------------------------+--------+--------+
24 rows in set (0.00 sec)

These examples demonstrate what a SELECT statement looks like with more than

one condition in its WHERE clause, but they also highlight two very common scenarios.

Specifying that a column’s value must be within a certain range, or be equal to one

of several allowed values, is so common that there are special operators for these

tasks: BETWEEN … AND and IN. The condition length BETWEEN 60 AND 120 has the

same meaning as length >= 60 AND length <= 120 and the condition length IN

(60, 120, 180) has the same meaning as length = 60 OR length = 120 OR

length = 180. The IN operator is especially helpful for keeping statements short

and readable when the WHERE clause would otherwise become unwieldy with many

different comparison values.

We can use the = operator to match an entire string value, as with title = 'HOLIDAY

GAMES', but sometimes we’ll only know a portion of the string. In such cases, we

can use the LIKE operator with the wild cards % and _, like this:

SELECT title, length, rating FROM film WHERE title LIKE '%GAME%'
ORDER BY title;

_ matches a single character in the string and % matches any number of characters,

so the above statement returns all the movies with GAME somewhere in their title.

The results are:

+-----------------+--------+--------+
| title | length | rating |
+-----------------+--------+--------+
GAMES BOWFINGER	119	PG-13
HOLIDAY GAMES	78	PG-13
RAGE GAMES	120	R
+-----------------+--------+--------+
3 rows in set (0.00 sec)

For the sake of convenience, here’s a table that shows some of the basic comparison

operators available to us. More information can be found in the online documenta-

47Retrieving and Updating Data

http://dev.mysql.com/doc/refman/5.6/en/non-typed-operators.html

tion6. Other operators are discussed in the documentation as well, like the standard

mathematical operators +, -, *, /, and %, and the logical operators AND, OR, NOT, and

XOR.

DescriptionOperator

True when A and B are equalA = B

True when A is less than BA < B

True when A equal or less than BA <= B

True when A is greater than BA > B

True when A equal or greater than BA >= B

True when A and B are not equalA != B or A <> B

True when A is a NULL valueA IS NULL

True when A matches the pattern string

(pattern wildcards are % and _)

A LIKE 'PATTERN%'

True when A matches the regular

expression

A REGEXP '/EXPRESSION/'

True when A is in the range of B and C

inclusive (same as A >= B AND A <= C)

A BETWEEN B AND C

True when A is equal to one of the

values in the given set (same as A = B

OR A = C OR A = D)

A IN (B,C,D)

It’s also possible to combine the results from multiple SELECT statements using

UNION. Because each additional set is appended to the result, each statement must

return the same number of columns.

SELECT title FROM film WHERE title LIKE 'A%'
UNION
SELECT title FROM film WHERE title LIKE 'Z%';

+-----------------------+
| title |
+-----------------------+

6 http://dev.mysql.com/doc/refman/5.6/en/non-typed-operators.html

Jump Start MySQL48

http://dev.mysql.com/doc/refman/5.6/en/non-typed-operators.html

| ACADEMY DINOSAUR |
| ACE GOLDFINGER |
| ADAPTATION HOLES |
⋮
| ZHIVAGO CORE |
| ZOOLANDER FICTION |
+-----------------------+
49 rows in set (0.00 sec)

Aggregate Functions and Grouping
Aside from filtering and sorting, MySQL also has the ability to group and condense

rows and summarize their data. Aggregate functions like COUNT(), SUM(), and MAX()

perform their calculation using all of the column’s values from the matching rows

to come up with a single summary value.

SELECT MAX(amount) FROM payment;

+-------------+
| MAX(amount) |
+-------------+
| 11.99 |
+-------------+
1 row in set (0.01 sec)

As its name suggests, MAX() returns the largest value from all of its rows. In the ex-

ample above, it’s using all of the amount values in the payment table to show us that

the most money any customer has spent in one visit to the store is $11.99.

The COUNT() function simply counts the number of rows it passes over. For this

reason, it’s quite common to use COUNT() to determine the size of a table.

SELECT COUNT(payment_id) FROM payment;

MySQL reports back that there are over 16,000 rows in the payment table.

+-------------------+
| COUNT(payment_id) |
+-------------------+

49Retrieving and Updating Data

| 16017 |
+-------------------+
1 row in set (0.01 sec)

Aggregate functions are most useful when row are broken up into groups. The cal-

culation is performed using each row in the group, and we can draw comparisons

based on the differences between groups to gain better insight into our data. The

GROUP BY clause gathers the rows into groups.

Suppose we want to find the top 10 customers who’ve spent the most money renting

movies. We could issue several SELECT statements to retrieve the necessary data

and perform the calculations manually, but it’s faster and easier to ask MySQL to

do the work for us.

SELECT customer_id, SUM(amount) AS amt FROM payment GROUP BY
customer_id ORDER BY amt DESC LIMIT 10;

The GROUP BY clause batches rows with the same customer_id values into groups.

Then, the SUM() function adds up the values and returns the sum for each group.

By gathering the rows into a different batch for each customer and summing their

payment amounts, we can easily work out how much each customer has spent.

Sorting the results and returning the 10 highest values shows us who our most

profitable customers are.

+-------------+--------+
| customer_id | amt |
+-------------+--------+
526	221.55
148	216.54
144	195.58
178	194.61
137	194.61
459	186.62
469	177.60
468	175.61
236	175.58

Jump Start MySQL50

| 181 | 174.66 |
+-------------+--------+
10 rows in set (0.01 sec)

The AS Keyword

The AS keyword creates a temporary alias for a column or expression. Rather than

writing ORDER BY SUM(amount) DESC in the example, I gave the value the alias

amt.

Keeping Data Fresh
Now we’ll look at the UPDATE and DELETE statements. Just like SELECT, UPDATE and

DELETE rely on a WHERE clause to target specific rows. If such a clause is absent, the

statements affect every row in the table (behavior we generally won’t want).

Use With Caution

UPDATE and DELETE are potentially dangerous statements because they will update

or delete the wrong rows if the WHERE clause doesn’t match what you intend—a

situation you may not be able to recover from without a current backup on hand.

I recommend that you write a SELECT statement to verify the conditions in your

WHERE clause first to be sure you match the intended rows before issuing a de-

structive statement.

Updating Data
Suppose a customer recently married her long-time sweetheart (aww!), changed her

name from Courtney Day to Courtney Day-Webb, and we’ve been tasked with up-

dating her details in the customer table. We’ll start by retrieving her current details

with a WHERE clause to match her maiden name.

SELECT customer_id, first_name, last_name FROM customer WHERE
first_name = 'Courtney' AND last_name = 'Day';

Courtney’s name is distinct enough that only one row matches. MySQL returns the

following:

51Retrieving and Updating Data

+-------------+------------+-----------+---------------------+
| customer_id | first_name | last_name | last_update |
+-------------+------------+-----------+---------------------+
| 245 | COURTNEY | DAY | 2006-02-15 04:57:20 |
+-------------+------------+-----------+---------------------+
1 row in set (0.00 sec)

If multiple rows were returned, we’d need to decide which is the correct row to

update and what unique values we could use to target it. A table’s primary key is

typically a good choice in this situation, because the values in such columns must

be unique across all of rows in in the table. The customer_id column is the customer

table’s primary key, so WHERE customer_id = 245 unambiguously identifies the

target row.

To update Courtney’s last name, we’ll send MySQL the following UPDATE statement:

UPDATE customer SET last_name = 'DAY-WEBB' WHERE
customer_id = 245;

MySQL reports back that the row has been updated. And if we select the row again,

we can see this for ourselves.

+-------------+------------+-----------+---------------------+
| customer_id | first_name | last_name | last_update |
+-------------+------------+-----------+---------------------+
| 245 | COURTNEY | DAY-WEBB | 2015-03-16 13:27:44 |
+-------------+------------+-----------+---------------------+
1 row in set (0.00 sec)

If you compare these values with the ones MySQL retrieved for our first SELECT

statement, you’ll notice the value of the last_update column has changed as well.

The column is defined in the customer table’s CREATE TABLE statement as TIMESTAMP.

As you may recall from the discussion in Chapter 2, MySQL updates a TIMESTAMP

column’s value whenever any of the values in the row are updated.

If you don’t want a TIMESTAMP value to change when you modify another value, you

need to specify that in the UPDATE statement as well, like so:

Jump Start MySQL52

UPDATE customer SET last_name = 'DAY-WEBB', last_update =
last_update WHERE customer_id = 245;

This example UPDATE statement also illustrates a couple interesting points: we can

provide as many comma-separated column assignments as we like after the SET

keyword, and MySQL uses the column’s value of the row whenever the column

name appears on the right-hand side in an expression.

Deleting Data
A common practice when deleting data is to perform a soft delete—that is, not to

delete a row, but rather to toggle the value in a dedicated column that represents

whether the row is considered live. The customer table defines a TINYINT column

named active for this purpose. A drawback to this approach is that you must re-

member to provide a WHERE clause with active = 1 with each SELECT statement

you write to exclude inactive rows. Another is that unwanted data still resides in

the table, taking up storage space and possibly slowing down searches. But on the

other hand, this approach makes it possible to recover from accidental deletions

simply by toggling the active value back again, something that’s not possible with

a true deletion.

To set Courtney’s row inactive, update the active column to be 0.

UPDATE customer SET active = 0 WHERE customer_id = 245;

Deleting Inactive Rows

To mitigate the resource consumption issues with soft deletion, one suggestion

is to set up a recurring task that deletes inactive rows after a certain amount of

time, or to move them to an archive table if the data is still needed (for example,

for historical reporting purposes). This can be accomplished using “temporal

triggers” which are discussed in Chapter 6.

The DELETE statement permanently deletes matching rows, and looks like this:

53Retrieving and Updating Data

DELETE FROM customer WHERE customer_id = 245;

Aside from being the customer table’s primary key, the customer_id column is also

the target of foreign key constraint in the payment and rental tables. Because of

this, the DELETE statement above fails if you try to send it with the following error:

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign
key constraint fails (`sakila`.`payment`, CONSTRAINT
`fk_payment_customer` FOREIGN KEY (`customer_id`) REFERENCES
`customer` (`customer_id`) ON UPDATE CASCADE)

MySQL knows there are rows in the payment table related to the row in the customer

table, and deleting the customer row would leave those rows orphaned, so the foreign

key constraint is enforced to preserve the integrity of our data. The same situation

would occur if we were to delete a row from the employee table in the jumpstart

database: any corresponding rows in the address table would be left orphaned.

There must be no dependent rows elsewhere to successfully delete a row targeted

by a foreign key constraint, so we need to delete Courtney’s payment and rental

history (any rows in the payment and rental tables with a customer_id value of

245) before we are allowed to remove her customer row.

DELETE FROM payment WHERE customer_id = 245;
DELETE FROM rental WHERE customer_id = 245;
DELETE FROM customer WHERE customer_id = 245;

Cascading Actions

When defining relationships, we can specify ON DELETE CASCADE as part of the

definition of a table’s foreign key. Then, whenever MySQL detects the delete action

would result in orphaned rows, the delete will cascade to the associated table and

those rows will be deleted as well. The documentation offers more information

on ON DELETE CASCADE and other cascading behavior for foreign keys7.

7 http://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

Jump Start MySQL54

http://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

Conclusion
In this chapter, we switched from the jumpstart database to sakila and learned

how to retrieve data, sort it, and summarize it with SELECT and its various clauses.

We also learned how to keep data up to date using UPDATE, and how to delete stale

data using either a soft deletion strategy or DELETE statements. There’s no denying

we’ve covered a lot.

To reinforce what you’ve learned here and gain more insight, see what the MySQL

documentation has to say about SELECT, UPDATE, and DELETE. Also, look up the op-

erators used in WHERE clauses, GROUP BY, and aggregate functions. Then take some

time to play around with the topics we discussed here. Retrieve all of the actors

with “SON” in their last name and sort them alphabetically. Calculate how many

films there are for each rating category—G, PG, PG-13, R, and NC-17. What’s the ID

of the customer who’s made the most visits to the video store?

In the next chapter, we’ll work more with SELECT. You’ll see how to use multiple

tables in the same statement and how the complexity of such statements can be

abstracted by virtual tables called views. I’ll also introduce you to normalization,

a process that keeps our table relationships healthy and protects the integrity of our

data.

55Retrieving and Updating Data

Chapter4
Working with Multiple Tables
Next to the table, the most important concept in the world of relational databases

is, not surprisingly, relationships. Very early on in our discussions you saw how a

record can be organized across multiple tables—each row in a table being part of a

larger whole. It follows, then, that you’ll sometimes find the need to work with

several tables at the same time.

This chapter is all about working with multiple tables. In it’s first half, we’ll continue

with SELECT, and you’ll learn how to reference more than one table in the same

statement. I’ll show you why this is useful and the different ways the tables can be

combined. Depending on the number of tables and how they are related, things can

start to get a bit unwieldy. To help combat this, we’ll also take a look at how to

define and use virtual tables known as views.

In the second half of this chapter, we’ll shift our attention to maintaining happy

and healthy relationships. You’ll learn about normalization, the practice of organ-

izing tables to minimize redundancy and to promote data consistency and integrity.

Then I’ll introduce you to ALTER TABLE, the statement which modifies an existing

table (something that comes in handy when normalizing a database).

This chapter also brings an end to our discussions concerning basic SQL. The rest

of the book will focus on more MySQL-specific topics, like communicating with a

MySQL server from code, programming the database, and making backups.

Joining Tables
Let’s identify the top five actors who made the most film appearances and the

number of films they’ve each starred in. Using what we’ve learned so far, we’ll need

to write two SELECT statements. The first statement will target the film_actor table

which contains a row for each actor’s appearance in a film.

SELECT actor_id, COUNT(actor_id) AS appearances
FROM film_actor GROUP BY actor_id ORDER BY appearances DESC
LIMIT 5;

The statement groups the results using the actor_id and the COUNT() function gives

us the number of rows in each group. By ordering the results and looking at the first

five rows, we’re able to determine the IDs and number of appearances for each of

the most active actors. The response looks like this:

+----------+-------------+
| actor_id | appearances |
+----------+-------------+
107	42
102	41
198	40
181	39
23	37
+----------+-------------+
5 rows in set (0.01 sec)

The actor IDs will be used in our second statement. It maps the IDs to the corres-

ponding rows in the actor table so we can retrieve the names.

SELECT actor_id, first_name, last_name FROM actor WHERE
actor_id IN (107, 102, 198, 181, 23);

Here’s the result:

Jump Start MySQL58

+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
23	SANDRA	KILMER
102	WALTER	TORN
107	GINA	DEGENERES
181	MATTHEW	CARREY
198	MARY	KEITEL
+----------+------------+-----------+
5 rows in set (0.00 sec)

We have all the information we wanted, but unfortunately we still need to match

up the actors’ names and appearance counts manually. This approach has proven

less than ideal. If only we had the ability to link the film_actor and actor tables

together and perform the operations on their combined rows. Then we could write

just one statement, and even get a better result! Well, JOIN lets us do exactly that

by connecting two or more tables based on a relationship that we specify.

Here’s a SELECT statement that retrieves the names and appearance counts using

JOIN (I’ve added some line breaks and indentation to make the statement easier to

read):

SELECT
 a.first_name, a.last_name,
 COUNT(fa.film_id) AS appearance_count
FROM
 film_actor AS fa
 JOIN actor AS a ON a.actor_id = fa.actor_id
GROUP BY
 fa.actor_id
ORDER BY
 appearance_count DESC,
 a.first_name ASC,
 a.last_name ASC
LIMIT 5;

The result is much better. The rows are sorted, and best of all there’s no manual

activity required.

59Working with Multiple Tables

+------------+-----------+------------------+
| first_name | last_name | appearance_count |
+------------+-----------+------------------+
GINA	DEGENERES	42
WALTER	TORN	41
MARY	KEITEL	40
MATTHEW	CARREY	39
SANDRA	KILMER	37
+------------+-----------+------------------+
5 rows in set (0.00 sec)

JOIN pairs the rows of the two tables using the common values in their actor_id

columns. Which tables, and how rows match up to one another, is up to us. We can

join two tables using columns that define a foreign key relationship as we did here,

or we can write more interesting joins that join a table against itself. How and what

we join depends on the table definitions and the result we’re looking to achieve.

Using the AS Keyword

The AS keyword is optional when you define a column or table alias. I typically

don’t use AS to alias table names in my own day-to-day statements, but I’m using

it here for clarity. Regardless, I always use ASwith column names because it helps

me make sure my column names are correctly separated by commas. Consider

the following:

SELECT actor_id, first_name last_name FROM actor;

It’s not clear to someone else looking at the statement whether I’m missing a

comma between first_name and last_name or foolishly aliasing first_name

in my result set (MySQL will interpret it the second way). Following such conven-

tions makes the intent clear, and thus we know the statement has an error.

Theta-style Joins

The conditions that define the join originally appeared in the statement’s WHERE

clause, a style now known as theta-style joins or traditional joins. A theta-style

join looks like this:

Jump Start MySQL60

SELECT
 a.first_name, a.last_name,
 COUNT(fa.film_id) AS appearance_count
FROM
 film_actor AS fa
 JOIN actor AS a
WHERE
 a.actor_id = fa.actor_id;

Nowadays, most people prefer to write ANSI-style joins, which move the condi-

tions into the FROM clause. I’ve found this style to be easier to understand and

easier to debug because the join and filtering conditions aren’t muddled together.

This is the style I use in this book.

Types of Joins
The three join types available to us with MySQL are INNER JOIN, LEFT OUTER JOIN,

and RIGHT OUTER JOIN. The default is INNER JOIN, so when JOIN appears by itself

(as it did in the earlier statements) MySQL interprets it as an INNER JOIN. It’s im-

portant to know how each type behaves because if the desired rows aren’t captured

by the join in the first place then they can’t possibly appear in the final result.

It’ll be easier to understand the different joins using two simple tables—each popu-

lated with a couple rows of data—than using the actor and film data, so go ahead

and set up the tables foo and bar with the following statements:

CREATE TABLE foo (
 foo_id INTEGER,
 foo_value CHAR(3)
);

CREATE TABLE bar (
 bar_id INTEGER,
 bar_value CHAR(3),
 foo_id INTEGER
);

INSERT INTO foo (foo_id, foo_value) VALUES (1, 'foo');
INSERT INTO foo (foo_id, foo_value) VALUES (2, 'bar');

61Working with Multiple Tables

INSERT INTO bar (bar_id, bar_value, foo_id) VALUES (1, 'baz', 2);
INSERT INTO bar (bar_id, bar_value, foo_id) VALUES (2, 'qux', 3);

Now let’s join the two tables using INNER JOIN.

SELECT * FROM foo f INNER JOIN bar b ON b.foo_id = f.foo_id;

MySQL compares each row in the first table against each in the second table and

identifies matching pairs based on the ON condition. The rows that match are joined

together and included in the result. Our ON condition specifies that the value in

both tables’ foo_id column must be equal, and only one pair of rows meets the re-

quirement.

+--------+-----------+--------+-----------+--------+
| foo_id | foo_value | bar_id | bar_value | foo_id |
+--------+-----------+--------+-----------+--------+
| 2 | bar | 1 | baz | 2 |
+--------+-----------+--------+-----------+--------+
1 row in set (0.00 sec)

It can be helpful to think of the tables in a join as circles in a Venn diagram where

the ON condition determines where they intersect. Presented as such, INNER JOIN

produces a result that looks like Figure 4.1. The diagonal hatching represents the

result of the join.

Jump Start MySQL62

Figure 4.1. INNER JOIN behavior illustrated as a Venn diagram.

The two OUTER JOINs return the same rows as INNER JOIN, but also include the

unmatched rows from one table or the other (the outer parts of the intersecting

circles). LEFT OUTER JOIN includes the unmatched rows from the table that appears

to the left of the JOIN keyword. In the result, the columns defined by the other table

contain NULL.

SELECT * FROM foo f LEFT OUTER JOIN bar b ON
f.foo_id = b.foo_id;
+--------+-----------+--------+-----------+--------+
| foo_id | foo_value | bar_id | bar_value | foo_id |
+--------+-----------+--------+-----------+--------+
| 2 | bar | 1 | baz | 2 |
| 1 | foo | NULL | NULL | NULL |
+--------+-----------+--------+-----------+--------+

The LEFT OUTER JOIN produces a result that looks like Figure 4.2.

63Working with Multiple Tables

Figure 4.2. LEFT OUTER JOIN behavior illustrated as a Venn diagram.

NULL is Different

Remember that NULL is a special value that represents the absence of a value.

NULLs are treated differently from other values, and any comparisons that involve

NULLs will themselves return NULL. This means operators like = or != don’t work

with filtering NULLs. Be sure you use IS NULL and IS NOT NULL when checking

for NULLs. More information can be found in the online documentation1.

RIGHT OUTER JOIN is the opposite of LEFT OUTER JOIN, returning the unmatched

rows from the table appearing to the right of the JOIN keyword.

SELECT * FROM foo f RIGHT OUTER JOIN bar b ON
f.foo_id = b.foo_id;
+--------+-----------+--------+-----------+--------+
| foo_id | foo_value | bar_id | bar_value | foo_id |
+--------+-----------+--------+-----------+--------+
| 2 | bar | 1 | baz | 2 |

1 http://dev.mysql.com/doc/refman/5.6/en/problems-with-null.html

Jump Start MySQL64

http://dev.mysql.com/doc/refman/5.6/en/problems-with-null.html

| NULL | NULL | 2 | qux | 3 |
+--------+-----------+--------+-----------+--------+
2 rows in set (0.00 sec)

Figure 4.3 shows the diagram for RIGHT OUTER JOIN.

Figure 4.3. RIGHT OUTTER JOIN behavior illustrated as a Venn diagram.

When no condition is specified for how the tables should be joined, MySQL matchs

every row in the first table against every row in the second. This is what’s known

as a Cartesian product. Generally, this is something to avoid because the number

of rows in the the result set will be quite large.

SELECT * FROM foo JOIN bar;
+--------+-----------+--------+-----------+--------+
| foo_id | foo_value | bar_id | bar_value | foo_id |
+--------+-----------+--------+-----------+--------+
1	foo	1	baz	2
2	bar	1	baz	2
1	foo	2	qux	3

65Working with Multiple Tables

| 2 | bar | 2 | qux | 3 |
+--------+-----------+--------+-----------+--------+
4 rows in set (0.00 sec)

No FULL OUTER JOIN

Unlike some other relational database systems, MySQL does not support FULL

OUTER JOIN—a join that includes the unmatched rows of both the left and right

tables. See the post “How to Simulate FULL OUTER JOIN in MySQL”2 by Baron

Schwartz.

Abstracting with Views
Many everyday objects are made up of smaller components that are assembled to-

gether. For example, a computer is built from various parts, one of which is the

motherboard. The motherboard in turn has circuits built using integrated chips,

transistors, resistors, and capacitors. Each level of abstraction hides the underlying

complexity beneath it. This allows us to think of the components as building blocks;

we can combine them in different ways to build new products without concerning

ourselves with minor implementation details.

Views give us a way to abstract a complex statement by presenting its result as a

virtual table, thus hiding any potentially complex joins, calculations, and filtering

operations from other statements that reference it. Views look like regular tables to

our SELECT statements, and we can even join multiple views if we want, although

the data is still stored in their original base tables.

Here’s a CREATE VIEW statement that abstracts our earlier join and grouping to find

how many film appearances each actor has made:

CREATE VIEW actor_appearance
AS SELECT
 a.first_name, a.last_name,
 COUNT(fa.film_id) AS appearance_count
FROM
 film_actor AS fa

2 http://www.xaprb.com/blog/2006/05/26/how-to-write-full-outer-join-in-mysql/

Jump Start MySQL66

http://www.xaprb.com/blog/2006/05/26/how-to-write-full-outer-join-in-mysql/

 JOIN actor AS a ON a.actor_id = fa.actor_id
GROUP BY
 fa.actor_id;

We can now easily identify the actors with the most appearances with a concise

and easy-to-understand statement:

SELECT * FROM actor_appearance ORDER BY appearance_count
DESC LIMIT 5;

The column names of a view are the names that result from the underlying statement.

That is, if the SELECT statement retrieves the actor_id, first_name, and last_name

columns, those will be the names of the view’s columns. This can sometimes be

problematic because column names must be unique.

Suppose we want a view that presents name and address information from the

customer and address tables. Furthermore, let’s suppose we want to include the

last_update values from both tables. Here’s the SELECT statement:

SELECT
 c.first_name, c.last_name, c.last_update, a.address,
 a.last_update
FROM
 customer AS c
 JOIN address AS a ON a.address_id = c.address_id;

The resulting column names will be first_name, last_name, last_update, address,

and last_update. This is fine for a standard SELECT statement, but MySQL will

respond with an error if we try to create a view using it because the name

last_update is not unique.

Error 1060 (42S21): Duplicate column name 'last_name'

One solution is to alias the offending column names in the SELECT statement using

AS—just as we did earlier to provide more friendly names for calculated columns.

Another solution is to explicitly define names for the columns as part of the CREATE

VIEW statement. When we do this, the names are placed after the view name and

the number of names must match the number of columns returned by the SELECT.

67Working with Multiple Tables

CREATE VIEW customer_address (
 first_name, last_name, cust_last_update, address,
 addr_last_upate
)
AS SELECT
 c.first_name, c.last_name, c.last_update, a.address,
 a.last_update
FROM
 customer AS c
 JOIN address AS a ON a.address_id = c.address_id;

Fixing a View

The definition of a view is static. If an identifier referenced in the definition

changes—for example, if we rename a table or delete a column—the view will

break. You can use ALTER VIEW to redefine the view when this happens.

ALTER VIEW customer_address AS SELECT …

Aside from helping to reign in complexity, views can provide a certain level of se-

curity and peace of mind. Let’s revisit the soft delete strategy we talked about in

Chapter 3 which uses a dedicated column to specify whether a row is considered

active or not. We can define a view that mirrors such tables and filters out the inact-

ive rows.

CREATE VIEW active_customer
AS SELECT
 customer_id, first_name, last_name, email
FROM
 customer
WHERE
 active = 1;

We can then restrict users to the active_customer view instead of allowing them

access to the customer table. They’ll only see the active rows while other processes

can still access the original data for maintenance and reporting purposes.

We can also restrict what columns a user sees with a view. Notice in the example

above that I didn’t include the address_id column and a few others. Suppose there’s

Jump Start MySQL68

an employee who needs access to the customers’ email addresses but not their

mailing addresses. The view makes sure only the appropriate information is available

without the need for us to redesign the tables.

However, keep in mind that abstracting complexity with views also abstracts the

cost of the statement. When working with a view, a user may not be aware of what

MySQL is doing behind the scenes, and thus may not understand the true cost in

terms of database load caused by the underlying statements.

Updating View Data

Views behave like regular tables for SELECT statements, but not for UPDATE and

DELETE statements. There are many obstacles for MySQL to overcome to be able

to mutate the data safely and reliably, so my advice is not to even bother. It’s just

not worth the hassle. This is because a view is only a definition; the data one re-

turns still lives in the original tables. See the documentation for more information

on what affects the updatability of a view3.

Normal Forms
Armed with the knowledge of how to join tables and abstract complexity behind

views, you should never be intimidated by the number of tables in aa normalized

database. The term normalization refers to the process of organizing data—by fol-

lowing specific rules—to eliminate redundancy and inconsistencies.

The main benefits of database normalization are:

■ Decreased storage requirements — duplicate data means there is more data to

be stored, which requires more disk space and memory. Minimizing such redund-

ancy makes efficient use of the resources available to the database.

■ Data integrity — if the same data appears in several places, there’s increased

opportunity for inconsistencies to be introduced. For example, if a name appears

in two different tables, it’s possible to misspell one of the instances or perhaps

update one instance and miss the other.

3 http://dev.mysql.com/doc/refman/5.6/en/view-updatability.html

69Working with Multiple Tables

http://dev.mysql.com/doc/refman/5.6/en/view-updatability.html

■ Maintainability — the rules for normalization focus on maintaining relationships

and put the R in RDBMS. The result is tables that have a clearly defined and

logical purpose. When one table stores actor details and another stores movie

data, it’s easier to update the data than if it were all mixed together in a single

table.

A normalized database may be a well-designed database, but you should know that

normalization can also have a negative impact on performance. It requires time and

effort for MySQL to join tables. We can mitigate this by defining and using keys and

indexes properly, and by filtering results so that MySQL is doing the hardest work

on the smallest possible number of rows.

There are several levels of normalization. A table is said to be in a specific normal

form when its tables adhere to that level’s rules. I’ll keep our discussion here focused

on the First Normal Form, Second Normal Form, and Third Normal Form, abbrevi-

ated as 1NF, 2NF, and 3NF. Most of the other forms define things that are already

a consequence of adhering to these first three forms.

First Normal Form
First Normal Form is simple and pretty much states that every field should hold

only one value. Some RDBMSs support compound data types like arrays, but MySQL

doesn’t. This fortunately goes a long way in helping us avoid breaking this rule.

What’s left for us to worry about is to avoid using the SET data type or any cute

hacks designed to cram more than one value into a field, like storing JSON-encoded

objects or strings of comma-separated values.

Here’s a table that stores some actors and the movies they starred in. Some rows

contain more than one movie title in the film_title column, violating 1NF.

+------------+-----------+-----------------------------+
| first_name | last_name | film_title |
+------------+---+
| SCARLETT | BENING | ROOF CHAMPION, YOUTH KICK |
| MICHAEL | BOLGER | HOMEWARD CIDER, SANTA PARIS |

Jump Start MySQL70

| VAL | BOLGER | PATIENT SISTER, YOUTH KICK |
| DARYL | CRAWFORD | BROTHERHOOD BLANKET |
+------------+-----------+-----------------------------+

To fix this situation, we need to split up the offending values and place them in

their own rows. The first_name and last_name values are duplicated so each row

is complete.

+------------+-----------+---------------------+
| first_name | last_name | film_title |
+------------+---------------------------------+
SCARLETT	BENING	ROOF CHAMPION
SCARLETT	BENING	YOUTH KICK
MICHAEL	BOLGER	HOMEWARD CIDER
MICHAEL	BOLGER	SANTA PARIS
VAL	BOLGER	PATIENT SISTER
VAL	BOLGER	YOUTH KICK
DARYL	CRAWFORD	BROTHERHOOD BLANKET
+------------+-----------+---------------------+

The table now meets 1NF because every field holds a single value. No field contains

multiple values.

Second Normal Form
A table is in Second Normal Form when it meets the criteria for 1NF (so all 2NF

tables are also 1NF) and every non-key field can be accessed using a logically related

key. If the key is a compound key, each field that makes up the key must be related

to all of the columns in the row.

Here I’ve added an actor_id column and film_id column to the example table

which give us a compound key we can use to target an appearance:

+----------+------------+-----------+---------+--------------------+
| actor_id | first_name | last_name | film_id | film_title |
+----------+------------+-----------+---------+--------------------+
124	SCARLETT	BENING	742	ROOF CHAMPION
124	SCARLETT	BENING	997	YOUTH KICK
185	MICHAEL	BOLGER	427	HOMEWARD CIDER
185	MICHAEL	BOLGER	761	SANTA PARIS
37	VAL	BOLGER	663	PATIENT SISTER

71Working with Multiple Tables

| 37 | VAL | BOLGER | 997 | YOUTH KICK |
| 129 | DARYL | CRAWFORD | 101 | BROTHERHOOD BLANKET|
+----------+------------+-----------+---------+--------------------+

Focusing on the film_title columns, the field in the row with actor_id value 124

and film_id value 997 holds a different “Youth Kick” string from the row with

actor_id 37 and film_id 997. We can differentiate between them using the actor_id

and film_id values together as a compound key, but the table isn’t in 2NF because

relying on anything that’s not film-related to access a film title is a violation of the

rules. That is, there’s a logical connection between film_id and film_title because

they both pertain to movies, but actor_id has no connection to film_title. 2NF’s

focus is on making sure our keys make logical sense.

The remedy is to move the film_title column to its own table.

+----------+------------+-----------+---------+
| actor_id | first_name | last_name | film_id |
+----------+------------+-----------+---------+
124	SCARLETT	BENING	742
124	SCARLETT	BENING	997
185	MICHAEL	BOLGER	427
185	MICHAEL	BOLGER	761
37	VAL	BOLGER	663
37	VAL	BOLGER	997
129	DARYL	CRAWFORD	101
+----------+------------+-----------+---------+

+---------+---------------------+
| film_id | title |
+---------+---------------------+
742	ROOF CHAMPION
997	YOUTH KICK
427	HOMEWARD CIDER
761	SANTA PARIS
663	PATIENT SISTER
101	BROTHERHOOD BLANKET
+---------+---------------------+

Each movie title is now accessible by its own key and none of them depends on

non-film related information. Using the film_id column as a foreign key between

the tables maintains the original connection the records had. Additionally, we’ve

Jump Start MySQL72

eliminated some redundancy by moving the movie titles to a new table. There’s no

wasted space from storing a movie title more than once.

The new table certainly follows 2NF, but we haven’t entirely fixed the original table.

We still have the same problem with actor names as we did with the film titles: not

all of the columns that make up our key are logically related to the column whose

value we want to target. This will be resolved when we apply the rules of 3NF.

Normalization is a process and it’s common for one form to serve as a stepping stone

to the next, and for a form to satisfy more than just its own requirements.

Third Normal Form
A table is in Third Normal Form when the criteria for 2NF are met and all non-key

fields are accessible by the table’s primary key. We know we still have a problem

with actor names because we can only target specific first_name and last_name

fields by referencing actor_id and film_id. An actor’s name doesn’t depend on

the films they starred in. actor_id is related logically to the names, but the duplic-

ation of values from following 1NF prohibits us from using it that way. We need to

migrate the name columns to a separate table just as we did with the movie titles.

+----------+---------+
| actor_id | film_id |
+----------+---------+
124	742
124	997
185	427
185	761
37	663
37	997
129	101
+----------+---------+

+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
124	SCARLETT	BENING
185	MICHAEL	BOLGER
37	VAL	BOLGER
129	DARYL	CRAWFORD
+----------+------------+-----------+

+---------+---------------------+

73Working with Multiple Tables

| film_id | title |
+---------+---------------------+
742	ROOF CHAMPION
997	YOUTH KICK
427	HOMEWARD CIDER
761	SANTA PARIS
663	PATIENT SISTER
101	BROTHERHOOD BLANKET
+---------+---------------------+

Moving the actor names to their own table permits us to use actor_id as the primary

key for accessing them and again eliminates the duplication of data. What’s left of

our original table are the two ID columns which preserves the appearance connec-

tions. The result is not only 2NF, but also meets the requirements for 3NF.

The process of normalizing the table resulted in something that looks very similar

to how the sakila database’s actor, film_actor, and film tables are organized.

Every column in the actor table has some logical connection to actors, each column

in the film table pertains to movies, and the film_actor table is a junction table

of foreign keys that maintain the relationships. A statement can join all three tables

to identify the actors and their appearances, but the specific pieces of data are better

organized and isolated from one another. Keeping 3NF in mind when planning out

your tables goes a long way towards a well-designed database.

SELECT
 a.actor_id, a.first_name, a.last_name, f.film_id, f.title
FROM
 film_actor fa
 JOIN actor a ON fa.actor_id = a.actor_id
 JOIN film f ON fa.film_id = f.film_id;

Altering Tables
You may need to change the definition of an existing table when you normalizing

an existing database, which is done using the ALTER TABLE statement. It lets us re-

name tables, add, remove, and rename columns, change column data types, add

and delete keys and indexes, and even switch storage engines. To give you a taste

of what ALTER TABLE statements look like, I’ll show you a few that create and remove

columns and indexes, since these are the most common actions needed for normal-

ization.

Jump Start MySQL74

An ALTER TABLE statement that adds a new column to a table looks like this:

ALTER TABLE actor ADD COLUMN bio VARCHAR(255) AFTER last_name;

The statement adds a bio column to the actor table to hold additional information

about an actor. The definition for the column—in this case just a VARCHAR data

type—is the same as what we would use in a CREATE TABLE. This means we can

also specify attributes like a default value or NOT NULL if we want to. The position

clause AFTER last_name instructs MySQL to place the new column after the

last_name column in the table’s definition. Without the clause, the column will be

appended as the last column of the table.

Default Values

Each row will have its field for a newly created column set to the column’s default

value. If no default value is defined, the fields will be set to NULL.

An ALTER TABLE statement to delete the bio column looks like this:

ALTER TABLE actor DROP COLUMN bio;

To create an index, the ALTER TABLE statement looks like this:

ALTER TABLE actor ADD INDEX idx_last_update (last_update);

The statement creates an index named idx_last_update against the last_update

column of the actor table. As with column definitions, the syntax to specify an

index mirrors that used in the CREATE TABLE statement.

And here’s the ALTER TABLE statement to drop the index:

ALTER TABLE actor DROP INDEX idx_last_update;

ALTER TABLE requires the index’s name to drop it. If you don’t know what its name

is, either because you didn’t provide an explicit name when you created it or because

you simply forgot what you named it, you can find out by issuing a SHOW CREATE

TABLE statement. Alternatively, you can send a SHOW INDEX statement:

75Working with Multiple Tables

SHOW INDEX FROM actor;

It’s worth knowing that the ALTER TABLE statement allows us to provide multiple

actions in the same statement. To provide more than one action, simply separate

the actions with a comma, like so:

ALTER TABLE actor
 ADD COLUMN bio VARCHAR(255) AFTER last_name,
 ADD INDEX idx_last_update (last_update);

Conclusion
In this chapter, we’ve covered a lot information about working with multiple tables.

You learned how to join tables in a SELECT statement, and also how to hide the

complexity of such statements using views. We went through an exercise in normal-

ization to see how 1NF, 2NF, and 3NF help us organize our database properly. And

finally, I introduced you to ALTER TABLE, the statement used to modify the definition

of an existing table.

As always, I encourage you to experiment with different scenarios to reinforce what

you’ve learned here. Try to find the customers that rented the most movies. Are

there customers whose rental habits show they have a favorite actor? Look through

the other tables defined in the sakila database and observe how they follow 3NF.

It’s also a good idea to search for additional resources that expand on the topics I’ve

introduced. You can learn more about joins4, views5, and ALTER TABLE6 in the

documentation. Also, Wikipedia has a great write-up on normalization7.

Now we’ll look at MySQL from the programmer’s perspective. In Chapter 5, we’ll

take a step back from SQL and see what communicating with MySQL looks like

using Python, PHP, and R. Then, in Chapter 6, we’ll see what facilities are available

for programming MySQL and the database itself.

4 http://dev.mysql.com/doc/refman/5.6/en/join.html
5 http://dev.mysql.com/doc/refman/5.6/en/create-view.html
6 http://dev.mysql.com/doc/refman/5.6/en/alter-table.html
7 http://en.wikipedia.org/wiki/Database_normalization

Jump Start MySQL76

http://dev.mysql.com/doc/refman/5.6/en/join.html
http://dev.mysql.com/doc/refman/5.6/en/create-view.html
http://dev.mysql.com/doc/refman/5.6/en/alter-table.html
http://en.wikipedia.org/wiki/Database_normalization

Chapter5
Connecting from Code
It’s more common for users to work with data stored in a database through an ap-

plication’s display than to directly send queries to the server using a command-line

client. Although any specific details depend on the nature and purpose of each

application, generally speaking the program provides an interface to accept input

and display data, and some internal process to formulate queries and communicate

with the database management system. Users may not even be aware their data is

stored in a database behind all of that. In this chapter, we’ll discuss the basics of

communicating with MySQL from programming code.

There are many programming languages to choose from—even if we restrict ourselves

to the most popular ones. Luckily, the popularity of MySQL pretty much guarantees

that a library exists to connect to the server in whatever language you prefer. I’ve

chosen to present three languages in this chapter: Python, because of its widespread

use as a general-purpose programming language; PHP, because of its popularity

with those who develop web-based applications; and R, because of its fast-growing

use in statistics and data analysis.

Connecting from Python with
Connector/Python
Python is the popular, dynamically-typed programming language created by Guido

van Rossum. Since its first release in 1991, Python has found itself a home in sci-

entific computing, information security, and general systems programming. Various

desktop applications, such as LightWave 3D, GIMP, and LibreOffice, integrate Python

to extend their capabilities through scripting. It was listed twice in TIOBE Software’s

Programming Language Hall of Fame (in 2007 and 2010), and has held a position

in the top 10 of the TIOBE Programming Community Index since 2004.

There are several libraries available for working with MySQL in Python, of which

the more popular are Connector/Python from Oracle, MySQLdb, and SQLAlchemy.

We’ll discuss Connector/Python here.

One of Connector/Python’s most important features is that it implements MySQL’s

communication protocols completely in Python. For us, this means that no compil-

ation or extra libraries are needed outside of the Python language itself. Connect-

or/Python also conforms to PEP 249 (Python Database API Specification v2.01) so

what you learn from using this library is directly applicable to other libraries that

conform to the same standard.

Connector/Python is available from various sources. The library is available for

download from the MySQL website as a DEB package, RPM package, or MSI installer,

and its source code was recently released on GitHub2. The library may even be

available through your distro’s package manager (Debian/Ubuntu users can run

sudo apt-get install python-mysql.connector). But my personal preference

for installing Python libraries is to use pip, so that’s what I’ll show here. To install

Connector/Python with pip, open a terminal and execute the following command:

pip install --allow-external mysql-connector-python \
 mysql-connector-python

Connector/Python is hosted externally from pip’s primary index which is why we

need to provide the option --allow-external in the command above. The first in-

1 https://www.python.org/dev/peps/pep-0249/
2 http://github.com/oracle/mysql-connector-python

Jump Start MySQL78

https://www.python.org/dev/peps/pep-0249/
http://github.com/oracle/mysql-connector-python

stance of mysql-connector-python is that option’s argument, and the second is the

requirement we want to install.

Basic Querying
Here’s an example that shows what using Connector/Python—or any PEP 249-

compliant database library for that matter—looks like:

#! /usr/bin/env python

Step 1: import the connector
import mysql.connector

Step 2: open a connection
conn = mysql.connector.Connect(host="localhost", user="jump",
 password="secret", database="sakila")

Step 3: obtain a cursor
cursor = conn.cursor()

Step 4: construct and send a query
query = ("SELECT last_name, first_name FROM actor "
 "ORDER BY last_name, first_name")
cursor.execute(query)

Step 5: iterate the results
for row in cursor:
 print("{:<45} {:<45}".format(*row))

Step 6: clean up
cursor.close()
conn.close()

The mysql.connector.Connect() method accepts keyword arguments for the in-

formation necessary to establish a connection to MySQL and returns a MySQLConnec-

tion object. This object represents the connection between us and the server, and

is used to commit/rollback transactions and obtain new instances of a MySQLCursor

object. The term cursor refers to an internal structure used to iteratively process

the rows in a result set. In general, you can think of the MySQLCursor object as an

iterator that traverses a collection of records, one row at a time, making each available

to us as a tuple.

79Connecting from Code

Working with Positional Values

Elements in the result tuple are positionally defined by the order in which the

column names appear in the SELECT statement. Working with positional values

requires vigilance because it can be difficult to keep track of a large number of

columns. Version 2 of Connector/Python will address this by introducing dictionary

and named tuple results, but this is an enhancement not specified by PEP 249.

Besides iterating over the MySQLCursor object directly, we can use the fetchone(),

fetchmany(), and fetchall() methods it offers, which do pretty much what each

of their names imply. fetchone() returns the current row from the result, fetch-

many() accepts an integer argument and returns a list of that many rows, and

fetchall() returns a list containing all of the rows in the result set.

Here’s an example that demonstrates the use of these cursor methods:

Just a convenience function for formatted output
def display(*row):
 print("{:<45} {:<45}".format(*row))

send a query
query = ("SELECT last_name, first_name FROM actor "
 "ORDER BY last_name, first_name")
cursor.execute(query)

fetch one row
row = cursor.fetchone()
display(*row)

fetch the next 20 rows
rows = cursor.fetchmany(20)
for row in rows:
 display(*row)

fetch all of the remaining rows
rows = cursor.fetchall()
for row in rows:
 display(*row)

Connector/Python disables autocommit by default, so statements that affect the

database will not be committed automatically. This may take the uninitiated by

surprise, and lead to head scratching when updates don’t seem to stick. If you’re

Jump Start MySQL80

using a transactional storage engine like InnoDB, it’s necessary to commit your

changes with the connection’s commit() method. Statements in the transaction can

alternatively be rolled back using the connection’s rollback() method.

send a query - affects the database
query = ("INSERT INTO actor (last_name, first_name) "
 "VALUES ('OLIVER', 'BRENDA')")
cursor.execute(query)

commit the transaction
conn.commit()

Buffered and Unbuffered Results
The default behavior for Connector/Python is to use unbuffered results. This means

that, whenever we issue a statement that returns data, all of the rows in the result

set must be processed or an InternalError exception will be raised with the message

“Unread results found.” An unbuffered result set resides on the MySQL server, and

each row is transmitted to the client when it’s needed. Buffered results, on the

other hand, are transferred immediately from MySQL and sit client-side where they

wait to be accessed by our program. In a perfect world, we’d select only the data

we intend to consume, but when the cursor will be closed prematurely, the way to

avoid raising the exception is to use buffered results.

The MySQLCursorBuffered object is designed to buffer results. Whether we obtain

a MySQLCursor or MySQLCursorBuffered instance from cursor() is determined by

the argument buffered=True. We can pass the argument to connect() when we

first open the connection to MySQL, and subsequent cursors created from it will

be MySQLCursorBuffered objects. Alternatively, we can pass buffered=True to

cursor() to obtain a MySQLCursorBuffered instance.

dbcreds = {
 "host": "localhost",
 "user": "jump",
 "password": "secret",
 "database": "sakila"
}

connect to the database server. cursor() returns a MySQLCursor
object

81Connecting from Code

conn = mysql.connector.Connect(**dbcreds)
cursor = conn.cursor()
print(type(cursor))

a second connection to the server. cursor() returns a
MySQLBuffered object
conn2 = mysql.connector.Connect(buffered=True, **dbcreds)
cursor2 = conn2.cursor()
print(type(cursor2))

cursor() returns a MySQLBuffered object
cursor3 = conn.cursor(buffered=True)
print(type(cursor3))

Prepared Statements
Sometimes the same basic statement is executed multiple times, but with different

values each time. Prepared statements are often the most efficient route to take be-

cause the overhead for the server to parse and analyzing the statement is incurred

only once. You can think of prepared statements as like a template: it provides a

statement’s syntax and column names, but placeholders appear where the data

values would be. MySQL parses the template, but delays execution of the statement

until it receives the missing values.

PEP 249 defines the following styles for specifying placeholders, but also states that

libraries only need to implement one of them to be considered compliant:

■ Question mark — WHERE first_name = ? AND last_name = ?

■ Numeric position — WHERE first_name = :1 AND last_name = :2

■ Named parameter — WHERE first_name = :fname AND last_name = :lname

■ C-style format code — WHERE first_name = %s AND last_name = %s

■ Pyformat code — WHERE first_name = %(fname)s AND last_name = %(lname)s

Connector/Python supports the use of question marks and C-style format codes.

Jump Start MySQL82

Placeholder Substitution

Connector/Python allows placeholder substitution for non-prepared statements

(regular query statements) as well, although the placeholder styles are different.

C-style format codes and Pyformat codes can be used for non-prepared statements.

When C-style formatting is used, data values are passed as a tuple, along with the

statement, to the cursor’s execute() method. Values are passed as a dictionary

to execute() when Pyformat codes are used.

The first step to using prepared statements is to instantiate a cursor object capable

of handling them. This is done by passing the argument prepared=True to the

connection object’s cursor() method. The method then returns an instance of

MySQLCursorPrepared which is a child class of MySQLCursor. The first time we call

execute(), the cursor prepares the statement and executes it. Both the cursor and

MySQL remember the statement for the duration of the connection and the prepare

process is skipped for subsequent calls with the same statement.

obtain a cursor capable of using prepared statements
cursor = conn.cursor(prepared=True)

construct a query template (C-style format)
query = ("INSERT INTO actor (last_name, first_name) "
 "VALUES (%s, %s)")

here's some data ...
records = [
 ("AFFLECK", "LAUREN"),
 ("BUTTERFIELD", "MIKE"),
 ("EASTERBROOK", "ANGELA")
]

execute a query for each record
for row in records:
 cursor.execute(query, row)

commit the transaction
conn.commit()

Because they handle data separately from the query statement, an additional benefit

of using prepared statements is the protection they provide against SQL injection

attacks. This is why many programmers prefer prepared statements—regardless of

83Connecting from Code

the number of times a statement is executed—when working with user-supplied

data.

Connecting from PHP with PDO
PHP was released in 1995 by Rasmus Lerdof and quickly became the most popular

server-side scripting language for developing dynamic websites and web-based ap-

plications. In large part, this was thanks to its gentle learning curve and integration

into the web stack. PHP powers platforms such as MediaWiki and WordPress, and

sites like Wikipedia, Facebook, and Etsy.

PHP also gained a reputation for being a sloppy language and a security risk; but

while this was true in its early days, it certainly isn’t true today. Efforts to clean up

the language have restricted or removed features that were prone to abuse or attack,

and modern-day PHP professionals are perhaps more conscious of security issues

and best practices than their counterparts.

Two extensions are available for communicating with MySQL from PHP: the MySQLi

extension, and the PDO extension. Here we’ll take a look at PDO.

The MySQL Extension

A third extension, the MySQL extension, is deprecated and and will be moved to

the PECL repository in PHP7. You may come across code that relies on it, simply

because of the large amount of legacy PHP code still in production, but any new

code you write should use either PDO or MySQLi.

PDO is made up of two parts: there’s a high-level API that exposes objects to issue

statements and iterate the results, and there are low-level drivers that handle resource

management and the actual communication between PHP and the MySQL database

server. This architecture has allowed PDO to consolidate a lot of functionality that

was previously spread across different database extensions, such as MySQL, Post-

greSQL, SQLite, and MSSQL. A programmer can now use the same API regardless

of the server they work with.

PDO is part of the default PHP installation, but the MySQL driver needs to be in-

stalled separately. Debian/Ubuntu users can install it by running sudo apt-get

install php5-mysql, and Red Hat/CentOS users can run su -c 'yum install

php-mysql'. On Windows, all of the PDO drivers are included in the PHP installa-

Jump Start MySQL84

tion’s ext folder. You just need to update your php.ini file by adding or uncom-

menting the following line:

extension=php_pdo_mysql.dll

Basic Querying
Using PDO to interface with MySQL from PHP looks like this:

<?php
// Step 1: open a connection
$db = new PDO("mysql:host=localhost;dbname=sakila", "jump",
 "secret");

// Step 2: construct and send a query
$query = "SELECT last_name, first_name FROM actor " .
 "ORDER BY last_name, first_name";
$result = $db->query($query);

// Step 3: iterate the results
echo "";
while ($row = $result->fetch()) {
 vprintf("%s %s", $row);
}
echo "";

// Step 4: clean up
$result->closeCursor();
$db = null;

Connecting to MySQL and selecting a database happens when we instantiate a new

PDO object, passing to it a DSN string, username, and password. The term DSN is

an abbreviation for Data Source Name, a string that identifies what low-level PDO

driver should be used and any additional connection details that may be necessary.

The query() method returns an object instance of the PDOStatement class which

offers several methods to retrieve rows from the query’s result set: fetch(),

fetchObject() and fetchAll(). The fetch() method returns rows one at a time,

and fetchAll() returns an array of all of the orws. We can pass both methods a

constant to specify how rows should be returned. The most common fetch styles

are:

85Connecting from Code

■ PDO::FETCH_ASSOC ― returns the row as an associative array with column names

as the array keys

■ PDO::FETCH_NUM ― returns the row as an array with column positions as the

array indexes

■ PDO::FETCH_BOTH ― returns the row as an array with members accessible by

both column name and position (default behavior)

■ PDO::FETCH_OBJECT ― return the row as an anonymous object with column

names as its public properties

The following example shows how each of these styles affects how we access the

result’s rows. You can visit the documentation for fetch()3 to learn what other

styles are available.

// just a convenience function for output
function display($lastName, $firstName) {
 echo "<div>{$lastName} {$firstName}</div>";
}

// send a query
$query = "SELECT last_name, first_name FROM actor " .
 "ORDER BY last_name, first_name";
$result = $db->query($query);

// fetch one row as associative array
$row = $result->fetch(PDO::FETCH_ASSOC);
display($row["last_name"], $row["first_name"]);

// fetch next row as numerically-indexed array
$rows = $result->fetch(PDO::FETCH_NUM);
display($row[0], $row[1]);

// fetch another row accessible both ways
$rows = $result->fetch(PDO::FETCH_BOTH);
display($row[0], $row[1]);
display($row["last_name"], $row["first_name"]);

// fetch all remaining rows as objects

3 http://php.net/pdostatement.fetch

Jump Start MySQL86

http://php.net/pdostatement.fetch

while ($row = $result->fetch(PDO::FETCH_OBJ)) {
 display($row->last_name, $row->first_name);
}

The fetchObject() method can be called without arguments, in which case it be-

haves pretty much like fetch(PDO::FETCH_OBJECT), but it’s preferred that you

provide the name of a class and possibly an array of constructor arguments with

fetchObject(). The method creates an instance of the specified class, populates

its properties with the record’s details, and then invokes the constructor with any

constructor arguments you provided. This example shows how to use fetchObject()

to initialize an object with a result row:

// define a simple class
class Actor
{
 // properties initialized by PDO
 private $last_name;
 private $first_name;

 public function getLastName() {
 return $this->last_name;
 }
 public function getFirstName() {
 return $this->first_name;
 }
}

// send a query
$query = "SELECT last_name, first_name FROM actor " .
 "ORDER BY last_name, first_name";
$result = $db->query($query);

// instanciate an Actor object populated by query results
$row = $result->fetchObject("Actor");
display($row->getLastName(), $row->getFirstName());

Understand How fetchObject() Behaves

It can be argued that fetchObject() is intrinsically broken because the method

invokes the object’s constructor after setting its properties. Property values set by

the record can be overwritten by any initialization that takes place in the construct-

87Connecting from Code

or. Before you use it, make sure you understand how fetchObject() behaves

and whether it will play nice with your classes’ constructors.

PDO uses buffered results by default, so all of the rows are sent immediately from

MySQL and sit client-side where they wait to be accessed by PHP. Alternatively,

unbuffered results only transmit a row from the MySQL server when it’s needed.

You can specify whether PDO should use buffered or unbuffered results by setting

the PDO::MYSQL_ATTR_USE_BUFFERED_QUERY attribute like so:

<?php
$db = new PDO("mysql:host=localhost;dbname=sakila", "jump",
 "secret");
// use buffered results, set false for unbuffered
$db->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, true);

When using unbuffered results, you must consume all of the rows or free the cursor’s

resources with PDO::closeCursor(). Otherwise, if you still have unread rows from

a SELECT statement then any subsequent INSERT or UPDATE statements will silently

fail. I suggest making a habit of using closeCursor() regardless, as I did in our first

PHP example, to avoid such potentially frustrating situations.

Handling Errors
PDO can be configured in different ways to handle any errors it encounters when

working with MySQL; we only need to pass the constant that represents the desired

behavior to the PDO object’s setAttribute() method. The error mode constants are:

■ PDO::ERRMODE_SILENT ― silent mode, does not interrupt the script’s execution

(default behavior)

■ PDO::ERRMODE_WARNING ― warning mode, triggers an E_WARNING message

■ PDO::ERRMODE_EXCEPTION ― exception mode, throws a PDOException object

No matter which behavior is configured, PDO internally stores information about

any error it encounters. We can check the error using the errorInfo() method,

which returns an array containing the five-character error string (defined by the

ANSI SQL-92 standard), a driver-specific error code, and a driver-specific error

message.

Jump Start MySQL88

// Set error mode to silent
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_SILENT);

// submit a malformed query
$query = "MALFORMED QUERY";
$result = $db->query($query);

// display the error details
print_r($db->errorInfo());

When we specify exception mode, the description of what went wrong is available

with the exception object’s getMessage() method.

// set error mode to exception
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// submit a malformed query
$query = "MALFORMED QUERY";
try {
 $result = $db->query($query);
}
catch (PDOException $e) {
 // Display the exception message
 echo $e->getMessage();
}

Prepared Statements
As I mentioned earlier with Connector/Python, prepared statements are primarily

an efficient way to execute the same statement multiple times, but they also impli-

citly guard against injection attacks because data is handled separately from the

statement. PHP is used mainly for developing back ends for web-based applications

and dynamic sites, and injection attacks are one of the most common security vul-

nerabilities faced by such platforms. It should come as no surprise then that most

PHP programmers take advantage of the secondary benefit of prepared state-

ments—that of protecting against injection attacks—and use them exclusively.

To use prepared statements, we first provide the statement template to the PDO ob-

ject’s prepare() method with placeholders appearing where the data values would

be. PDO supports both anonymous positional placeholders (?) and named place-

holders (:name). We then send the partial statement to the server and are returned

89Connecting from Code

a PDOStatement object instance. We pass the data values to the object’s execute()

method to execute the statement.

// construct a query template
$query = "INSERT INTO actor (last_name, first_name) VALUES " .
 "(:last, :first)";

// prepare the statement
$stmt = $db->prepare($query);

// here's some data...
$records = [
 ["last" => "AFFLECK", "first" => "LAUREN"],
 ["last" => "BUTTERFIELD", "first" => "MIKE"],
 ["last" => "EASTERBROOK", "first" => "ANGELA"]
];

// execute the query for each record
foreach ($records as $row) {
 $stmt->execute($row);
}

Connecting from R with RMySQL
Created by Robert Gentleman and Ross Ihaka in 1996, R is a modern implementation

of the S programming language and is a feature-rich programming environment

specifically tailored for data analysis and visualization. R’s popularity has grown

rapidly among data miners and scientists, surpassing the use of Excel, Python, and

SAS for such work. Companies like Facebook, Google, ANZ Bank, and Pfizer have

all used R to gain better insight into their research data.

Although an R programmer may be more accustomed to consuming data for analysis

from Excel spreadsheets or CSV files than from a database servers, working with

such servers can be useful when data is shared between many applications, or when

full calculations would exhaust R’s available memory. Performing operations in

MySQL before the records are retrieved can make working in R easier, too. For ex-

ample, computing quantiles on sorted data is much easier. From MySQL’s perspect-

ive, R is also a nice complement with its graphing capabilities and comprehensive

statistics and data analysis functionality.

Jump Start MySQL90

The library scene for working with MySQL is not as diverse for R as it is for the

other languages we’ve discussed. The DBI package provides virtual classes that es-

tablish a common interface for working with relational database systems, and other

packages extend DBI to work with their target database. As MySQL users, we’ll be

looking at the RMySQL library.

If you’re using a Linux distro, RMySQL may be available through your system’s

package manager (Ubuntu users can install it with the command apt-get install

r-cran-mysql). RMySQL is also available in CRAN, the Comprehensive R Archive

Network, so we can just as easily install the package from within the R environment

itself. When it’s installed in this manner, the source code for RMySQL will be

downloaded to your system and compiled locally, so you'll need a suitable compiler

tool chain, and have the MySQL client library and header files installed.

Executing the following code within R will download, compile, and install RMySQL

from the indicated CRAN repository. DBI will also be installed automatically if it

hasn’t been installed already:

install.packages("RMySQL", repos="http://cran.rstudio.com")

Installation Issues

Troubleshooting anything that goes wrong in the compilation process is beyond

the scope of this book. There are many online resources you can turn to if you

encounter an issue. A good starting point is to search for any distinct error messages

you encounter using your favorite search engine.

Working with Tables
Using the dbReadTable() method, we can conveniently read the contents of an

entire table into an R dataframe. However, you should check whether the data can

fit comfortably in R’s available memory. This goes beyond just pushing table rows

into memory; it also involves minding the amount that’s consumed at various points

in your analysis.

Using RMySQL to import the entire table from MySQL into an R dataframe looks

like this:

91Connecting from Code

#! /usr/bin/env Rscript

Step 1: import library
library(RMySQL)

Step 2: open a connection
con <- dbConnect(MySQL(), user="jump", password="secret",
 host="localhost", dbname="sakila")

Step 3: read the table into a dataframe
dframe <- dbReadTable(con, "actor")

Step 4: analyze the data
summary(dframe)

Step 5: cleanup
dbDisconnect(con)
rm(con)

The dbConnect()method connects to the MySQL server and returns a MySQLConnec-

tion object that represents the connection between us and the server. The first ar-

gument is mandatory—a DBIDriver object—which I created and passed inline using

MySQL(). In this case, RMySQL behaves like PHP’s PDO extension, in that it separates

the implementation of the DBI classes from the lower-level driver logic. The remain-

ing arguments are the authentication parameters needed to successfully connect to

the MySQL server.

dbReadTable() then receives the connection object and the name of the table we

want to import. It retrieves the entire contents of the table and returns it as a data-

frame. The mapping between MySQL’s datatypes and R’s Integer, Numeric, and

Character types is a bit imperfect (the RMySQL driver’s source code is full of com-

ments that reflect the developer’s frustration in this regard). Observe any warnings

that might be issued, and ensure any type coercion or casting doesn’t jeopardize

the integrity of your results.

Finally, the dbDisconnect() method closes the connection and frees any resources.

It’s also possible to go the other way and create a table in the database from the

contents of a dataframe using the dbWriteTable() method. This method takes at

minimum the connection object, a name for the table that will be created, and a

dataframe of rows to populate the table. This is a convenient way to push the inter-

Jump Start MySQL92

mediate data of an analysis, or its results, to a database where it can be made

available to other applications. Don’t count on the resulting column definitions to

be very precise, though. Columns created with dbWriteTable()will be typed mostly

as TEXT or DOUBLE. You’ll need to issue an ALTER TABLE statement separately if you

want to change any of the definitions or add any indexes.

create a duplicate actor table without row_names column
dbWriteTable(con, "actor_dupe", dframe)

RMySQL also adds a TEXT column named row_names to the new table which stores

the name from the dataframe that the record had. If the rows already have a column

suitable for use as a primary key, this column is redundant. We can suppress it by

passing the argument row.names=FALSE.

create a duplicate actor table without row_names column
dbWriteTable(con, "actor_dupe", dframe, row.names=FALSE)

Basic Querying
Given the nature of work typically done in R, it’s safe to say it’s more common to

import and export data using dbReadTable() and dbWriteTable() than to issue a

query statement and iteratively process the results. But when we do need such

query/result functionality—for example, if we want to sort the rows before bringing

them into R—we can use dbGetQuery() and dbSendQuery().

The dbGetQuery() method accepts the connection object and an SQL statement. It

then executes the statement and returns a dataframe populated with all of the result’s

rows. Here’s an example:

query <- paste0("SELECT last_name, first_name FROM actor ",
 "ORDER BY last_name, first_name")
dframe <- dbGetQuery(con, query)

To retrieve the rows iteratively, either one by one or in chunks, we use the db-

SendQuery(). Unlike dbGetQuery() query, this method executes the statement but

doesn’t return any rows. Instead, it returns a MySQLResult object which we use with

the dbFetch() and dbHasCompleted() methods to read in the result’s rows.

93Connecting from Code

query <- paste0("SELECT last_name, first_name FROM actor ",
 "ORDER BY last_name, first_name")
res <- dbSendQuery(con, query)
while (!dbHasCompleted(res)) {
 # retrieve data 20 rows at a time
 chunk <- dbFetch(res, n=20)
 # do something with the data
 print(chunk)
}
free the result set
dbClearResult(res)

Before each iteration of the while loop, the dbHasCompleted() method inspects the

state of the resource and returns whether or not all rows have been retrieved. The

n argument to dbFetch() instructs the method to return a dataframe of up that many

rows of data (I retrieved 20 rows in the example above). If we give n=-1, dbFetch()

will return a dataframe with all of the remaining rows. RMySQL results are unbuf-

fered, so it's important to make sure all of them are consumed and any used resources

are freed using dbClearResult().

Conclusion
You now know what working with MySQL looks like from the programmer’s per-

spective. The approach to interfacing with MySQL is generally consistent across

languages and libraries: establish a connection, send a statement, receive the results,

and terminate the connection. The finer details of reading in records is what dif-

fers—for example, whether the result set is buffered or unbuffered and how values

are converted between MySQL’s type system and the programming language's.

I did my best to weigh popularity and purpose when selecting the languages and

libraries to discuss here. I’m sorry if your preferred language/library wasn’t among

them, but don’t panic! Consider this chapter helpful in understanding the general

concepts of working with MySQL from code. Now that you understand the basics,

you can more easily understand another language/library’s resources.

The next chapter will give us a look at programming from MySQL’s perspective.

We’ll see how to program MySQL with stored procedures and triggers, routines that

execute within a MySQL database. We’ll also see how to write custom functions to

use in our statements, like COUNT() and SUM() are.

Jump Start MySQL94

Chapter6
Programming the Database
A stored routine is a set of statements stored and executed in the database. From

the perspective of a database administrator, routines can provide an additional level

of security because we can give users access through an API of routines instead of

allowing them to access or modify data in the tables directly. From the programmer's

perspective, routines can improve an application’s performance in some cases be-

cause they process data while it’s still in the database. The logic may execute more

efficiently, because of things like server hardware and programming language

choices, and aggregate calculations (such as summation, averaging, etc.) reduce the

amount of data sent across the network back to an application. To help reduce code

duplication, logic that’s common to various applications using the same database

can even be written as stored routines.

Stored routines in MySQL are written using a procedural language that closely ad-

heres to SQL/PSM, a standard that extends SQL with common programming concepts

like variables, IF constructs, and loops. SQL/PSM itself was inspired by Ada, a

language created at the behest of the US Department of Defense in 1979 for program-

ming embedded computer systems, and shares much of the same syntax.

In this chapter, we’ll see what some of the basic constructs look like in SQL and

then look at the four types of routines available: stored procedures, functions, trig-

gers, and events. I’ll also show you how to write user-defined functions in C and

how to register them with MySQL, making them appear like a native, built-in

function. Whereas Chapter 5 focused on programming with a database, this chapter

is about programming in the database.

Learning the Basics
The body of a stored routine can consist of many statements, but MySQL expects

us to provide its definition as a single statement. This is a problem when we’re using

the command-line client because the client isn’t smart enough to distinguish the

semicolons terminating the statements in the routine’s body from the semicolon

that terminates the defining statement itself. The solution is to change the current

session’s delimiter to something other than a semicolon. It can be reset to practically

anything, but $$ or // are the most common choices, because they’re not likely to

appear in the definition.

The DELIMITER command to change the delimiter to $$ is:

DELIMITER $$

To change the delimiter back to the semicolon, the command is:

DELIMITER ;

Resetting the Delimiter

Get in the habit of setting the delimiter back to a semicolon after you finish defining

your routine. Otherwise, you’ll inevitably type it by force of habit and the client

will sit patiently waiting for the current delimiter. Aside from feeling a bit foolish,

though, it’s not a big deal if you forget. Typing the current delimiter after the in-

advertent semicolon will submit the statement without issue. (And then you can

change the delimiter!)

There are three kinds of variables you’ll encounter when writing routines for MySQL,

and each has a different form and scope from the others. They are:

Jump Start MySQL96

■ Local variables ― the variable appears in the body of a routine and is named as

a bare literal (for example, my_var). Local variables are scoped to a BEGIN/END

block and defined using DECLARE. They are automatically initialized to NULL

every time the routine is executed. Parameters in a procedure definition are also

local variables.

■ Session variables ― the variable can appear pretty much anywhere, inside or

outside of a routine. Session variable names carry the leading sigil @ (for example,

@my_var) and are initialized to NULL. They behave similarly to global variables

in programming languages like C, PHP, and Ruby, unconcerned with the scope

they’re used in. Session variables exist for the duration of the connection to the

MySQL server.

■ System variables ― the variable is predefined by MySQL and is used to inspect

or change the behavior of the server and connection environment. Global system

variables affecting the MySQL server are either annotated with the keyword

GLOBAL or carry the prefix @@global. (for example, GLOBAL time_format or

@@global.time_format). Session system variables affecting the connection of

individual clients are annotated with the keyword SESSION or are prefixed with

@@session. (for example, SESSION time_zone or @@session.time_zone).

Assigning a value to a variable looks like this:

SET my_var = 42;

Variables can also be set from the results of a SELECT statement using INTO. The

INTO keyword redirects the column values to the designated variables, so the number

of columns and variables in the statement must match, and the result set can only

contain one row.

SELECT first_name, last_name INTO @fname, @lname FROM
actor WHERE id = 7;

The ability to take a different course of action based on whether a given condition

holds true is one of the staples of any programming language, so naturally IF is in-

cluded among the procedural programming constructs that augment SQL. It behaves

exactly as you would expect.

97Programming the Database

IF my_var > 0 THEN
 SELECT 'value is positive';
ELSEIF my_var < 0 THEN
 SELECT 'value is negative';
ELSE
 SELECT 'value is zero';
END IF;

The keyword IF begins the construct followed by a conditional expression, and

THEN introduces the branch’s body. Multiple branches are provided, each with their

own conditions using ELSEIF, and ELSE marks the final default block. END IF marks

the end of the entire construct.

Sometimes it’s more convenient to organize logic into a CASE construct, especially

when the conditions all test the same variable but for a different value. The CASE

construct uses the keywords CASE and WHEN like this:

CASE rating
WHEN 'G', 'PG', 'PG-13' THEN
 SELECT 'family friendly';
WHEN 'R' THEN
 SELECT 'adults only';
ELSE
 SELECT 'unknown rating';
END CASE;

The same set of statements can be executed in a loop using flow control constructs

like WHILE and REPEAT. MySQL’s WHILE construct tests its condition at the beginning

of each iteration, and repeatedly executes the body for as long as the condition holds

true. The construct looks like this:

WHILE countdown > 0 DO
 SET countdown = countdown - 1;
END WHILE;

The REPEAT construct tests its condition at the end of an iteration and continues to

loop over statements until the condition is true. In other words, it loops while the

condition is false. The REPEAT construct looks like this:

Jump Start MySQL98

REPEAT
 SET countdown = countdown - 1;
UNTIL countdown = 0
END REPEAT;

MySQL also offers cursors for programmatic iteration of a result set in a stored

procedure. A local variable is defined in the procedure as CURSOR followed by a

SELECT statement. The statement is executed and the cursor is initialized with OPEN.

FETCH reads the current row’s values into variables and advances the cursor to the

next row. CLOSE frees the cursor. Also useful when working with cursors is the built-

in FOUND_ROWS() function which returns the number of rows in the result set of the

last SELECT statement executed.

DECLARE id, i INTEGER UNSIGNED;
DECLARE name CHAR(45);
DECLARE curs CURSOR FOR SELECT customer_id, last_name
 FROM customer;

OPEN curs;
SET i = FOUND_ROWS();
WHILE i > 0 THEN
 SET i = i - 1;
 FETCH curs INTO id, name;
END WHILE;
CLOSE curs;

Last but not least, there are several ways to provide comments in SQL code:

-- this is a single-line comment

this is another single-line comment

/* this comment can span
 multiple lines */

Functions
A function is a stored routine that accepts input via arguments and returns a value

to the calling context. Functions are used directly in expressions and statements,

just like the native functions COUNT(), MAX(), and SUM() that we saw in earlier

chapters.

99Programming the Database

Functions can be classified into two broad groups, based on their behavior: aggregate

functions, and singe-value functions. All of the built-in functions we’ve seen are

aggregate functions. Their logic is repeatedly executed over a set of inputs and the

result is a single value reduced from all of the inputs. Single-value functions behave

like the typical function or method in most programming languages with each input

executing independently from any others. Custom aggregate functions must be

written as UDFs using C or C++, so we’ll discuss them later. Right now, we’ll concern

ourselves only with single-value functions.

Suppose we want to format the film titles for display with the first letter of each

word capitalized and the remaining letters in lower case. MySQL offers a selection

of string-related functions already, but unfortunately, none of them do exactly what

we want to do here. We have two possible options. Either we can retrieve a title

and format it in our application’s code (assuming we’re working with MySQL pro-

grammatically) or write a stored routine to do the formatting, which we can then

use directly in our SELECT statements. Since we’re talking about programming

MySQL, let’s go the SQL route.

Here’s how a CREATE FUNCTION statement defines the custom function:

DELIMITER $$

CREATE FUNCTION UCWords (
 string VARCHAR(255)
) RETURNS VARCHAR(255)
BEGIN
 DECLARE buffer VARCHAR(255) DEFAULT '';
 DECLARE word VARCHAR(255);
 DECLARE pos TINYINT UNSIGNED;

 REPEAT
 -- pop word from beginning of string
 SET pos = LOCATE(' ', string);
 IF pos > 0 THEN
 SET word = SUBSTRING(string, 1, pos - 1);
 SET string = SUBSTRING(string, pos + 1);
 ELSE
 -- reached the last word
 SET word = string;
 SET string = '';
 END IF;

Jump Start MySQL100

 SET word = CONCAT(
 UPPER(SUBSTRING(word, 1, 1)),
 LOWER(SUBSTRING(word, 2)));

 SET buffer = CONCAT(buffer, ' ', word);
 UNTIL LENGTH(string) = 0
 END REPEAT;

 -- trim leading space
 RETURN SUBSTRING(buffer, 2);
END$$

DELIMITER ;

The CREATE FUNCTION statement creates a custom, single-value function named

UCWords(). The function accepts a VARCHAR argument as input (the film title) and

returns the formatted string (also a VARCHAR). The execution of the function stops

when the RETURN statement is encountered, and the value of the RETURN expression

is sent directly back to the calling environment. When the body contains more than

one statement, the statements must be grouped in a BEGIN/END block. This is optional

when the body contains only a single statement, though I like to provide BEGIN/END

regardless for the sake of consistency.

Built-in String Functions

Several built-in string functions are used in the body of UCWords to slice, dice,

and transform the input. A list of available functions can be found in the docu-

mentation1.

The stored function can be used just like any native function in an expression or

statement.

SELECT UCWords(title) AS title FROM film ORDER BY title;
+-----------------------------+
| UCWords(title) |
+-----------------------------+
| Academy Dinosaur |
| Ace Goldfinger |

1 http://dev.mysql.com/doc/refman/5.6/en/functions.html

101Programming the Database

http://dev.mysql.com/doc/refman/5.6/en/functions.html
http://dev.mysql.com/doc/refman/5.6/en/functions.html

| Adaptation Holes |
⋮
| Zoolander Fiction |
| Zorro Ark |
+-----------------------------+
1000 rows in set (0.02 sec)

Stored functions can be convenient because they’re easier to write than UDFs, but

it’s important to keep in mind that they also execute more slowly than their compiled

counterparts. This is because they’re interpreted by MySQL. This may prove prob-

lematic when called repeatedly in a statement that retrieves a large result set.

Useful Statements for Managing Stored Functions

Here are some additional statements you may find useful when working with

stored functions:

■ List the stored functions available in the database:

SHOW FUNCTION STATUS;

■ View the definition of a stored function:

SHOW CREATE FUNCTION function_name;

■ Delete a stored function:

DROP FUNCTION function_name;

Stored Procedures
Stored procedures are essentially small programs stored in the database. Whereas

functions are used for calculations, procedures are intended for more general tasks

or to execute business logic. They’re invoked by a CALL statement with the proced-

ure’s name and possibly any parameters it takes. In addition to passing information

to the procedure using parameters, we send values back out to the calling environ-

ment via the parameters as well.

Jump Start MySQL102

Let’s say we want a convenient way to generate a small report that lists how many

outstanding rentals a customer has and what the movie titles are. As you might

suspect, we can do this with a stored procedure. Here’s an example of a CREATE

PROCEDURE statement that defines a procedure named customer_rentals:

DELIMITER $$

CREATE PROCEDURE rental_report (
 IN cust_id INTEGER UNSIGNED,
 OUT film_count TINYINT
) BEGIN
 DECLARE cust_name VARCHAR(92);
 DECLARE i INTEGER;
 -- cursors must be declared after all other variables
 DECLARE curs CURSOR FOR SELECT
 UCWords(CONCAT(c.last_name, ', ', c.first_name)),
 COUNT(i.film_id)
 FROM
 rental r
 JOIN inventory i ON r.inventory_id = i.inventory_id
 JOIN customer c ON r.customer_id = c.customer_id
 WHERE
 r.return_date IS NULL
 AND r.customer_id = cust_id
 GROUP BY
 r.customer_id;

 OPEN curs;
 IF FOUND_ROWS() > 0 THEN
 FETCH curs INTO cust_name, film_count;

 -- header
 (SELECT
 cust_id AS `CUSTOMER ID`,
 cust_name AS `CUSTOMER NAME`,
 film_count AS `RENTALS`)
 UNION

 -- list film rentals
 (SELECT
 ' ', ' ', UCWords(f.title)
 FROM
 rental r
 JOIN inventory i ON r.inventory_id = i.inventory_id

103Programming the Database

 JOIN film f ON i.film_id = f.film_id
 WHERE
 r.return_date IS NULL
 AND r.customer_id = cust_id
 ORDER BY
 f.title);
 ELSE
 SET film_count = 0;
 SELECT
 customer_id AS `CUSTOMER ID`,
 UCWords(CONCAT(last_name, ', ', first_name))
 AS `CUSTOMER NAME`,
 0 AS `RENTALS`
 FROM
 customer
 WHERE
 customer_id = cust_id;
 END IF;
 CLOSE curs;
END$$

DELIMITER ;

CREATE PROCEDURE gives a name for the procedure, a list of parameters, and any

statements that make up the body of the routine. In particular, rental_report accepts

a customer ID, outputs the desired report of the customer’s outstanding rentals, and

returns the number of rentals through its OUT parameter.

Calling the procedure looks like this:

CALL rental_report(560, @count);
+-------------+-------------------+-------------------+
| CUSTOMER ID | CUSTOMER NAME | RENTALS |
+-------------+-------------------+-------------------+
| 560 | Archuleta, Jordan | 2 |
| | | Pianist Outfield |
| | | Movie Shakespeare |
+-------------+-------------------+-------------------+

Jump Start MySQL104

3 rows in set (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

After invoking rental_report, the @count variable is populated and can be used

in subsequent statements.

SELECT @count;
+--------+
| @count |
+--------+
| 2 |
+--------+
1 row in set (0.00 sec)

Useful Statements for Managing Stored Procedures

Here are some additional statements you may find useful when working with

stored procedures:

■ List the stored procedures available in the database:

SHOW PROCEDURE STATUS;

■ View the definition of a stored procedure:

SHOW CREATE PROCEDURE procedure_name;

■ Delete a stored procedure:

DROP PROCEDURE procedure_name;

Triggers
A trigger is a stored routine that’s automatically invoked by MySQL. Triggers are

bound to a table and execute either before or after an INSERT, UPDATE, or DELETE

statement is performed, depending on how we define them.

105Programming the Database

Suppose we want to know the average amount a customer spends so we can gauge

the relationship they have with our stores and the clerk can potentially upsell any

less profitable transactions. We can glean this information from the database

ourselves, but we can also use some custom stored functions, and a trigger, to have

MySQL calculate and maintain the information for us in real time.

First, add two new columns to the customer table to record the number of payments

and the average amount for each customer.

ALTER TABLE customer
 ADD COLUMN payment_count INTEGER NOT NULL DEFAULT 0,
 ADD COLUMN average_amount DECIMAL(5,2) NOT NULL DEFAULT 0.00;

The new fields in each row are all initialized to 0, so next we need to populate them.

Running a SELECT statement with COUNT()—to count the number of payment records

in the payment table for a given customer—will give us the value for their record’s

payment_count. By issuing a SELECT statement that uses AVG(), a built-in aggregate

function that returns the average of its set of inputs, we can find out what all of the

customer's payments average out to. Each statement can be wrapped in a function

that returns the desired value which we can then use in a simple UPDATE statement

to fill in the values across the entire table instead of filling them in all manually.

DELIMITER $$

CREATE FUNCTION tally_payment_count (
 id SMALLINT UNSIGNED
) RETURNS INTEGER UNSIGNED
BEGIN
 DECLARE pay_count INTEGER UNSIGNED;

 SELECT COUNT(customer_id) INTO pay_count FROM payment WHERE
 customer_id = id;

 RETURN pay_count;
END $$

CREATE FUNCTION tally_average_amount (
 id SMALLINT UNSIGNED
) RETURNS DECIMAL(5,2)
BEGIN
 DECLARE avg_amnt DECIMAL(5,2);

Jump Start MySQL106

 SELECT AVG(amount) INTO avg_amnt FROM payment WHERE
 customer_id = id;

 RETURN avg_amnt;
END $$

DELIMITER ;

We then fill the payment_count and average_amount fields by calling the functions

in the following UPDATE statement:

UPDATE customer SET
 payment_count = tally_payment_count(customer_id),
 average_amount = tally_average_amount(customer_id);

Now we’re faced with the problem of maintaining these columns going forward. If

we were to run the UPDATE statement just periodically, the values in customer won’t

always be current. It’s preferable to issue the update for a customer every time a

payment is made, and performing this via a trigger bound to the payment table en-

sures that it will happen for every transaction without any manual effort.

DELIMITER $$

CREATE TRIGGER maintain_customer_spending_after_payment_insert
AFTER INSERT ON payment
FOR EACH ROW
BEGIN
 UPDATE customer SET
 payment_count = tally_payment_count(NEW.customer_id),
 average_amount = tally_average_amount(NEW.customer_id)
 WHERE
 customer_id = NEW.customer_id;
END $$

DELIMITER ;

Triggers can be invoked either before or after an action takes place. Here, AFTER

INSERT specifies that maintain_customer_spending_after_payment_insert should

execute after MySQL inserts the row into the payment table. If I specified BEFORE

INSERT instead, MySQL would execute the trigger before it inserts the row. Only

107Programming the Database

one trigger per time/action pairing can be assigned to a table. That is, you can define

a trigger to execute before an update, and another to execute after the update, but

you can’t define two BEFORE UPDATE triggers for the same table.

Triggers don’t accept input from parameters like the other stored routines we’ve

seen. They do, however, have access to the row’s modified values. For INSERT

statements, the new values added to the table are accessible by prefixing NEW. to

their column name, and the old values that are removed by a DELETE statement are

available by prefixing OLD. to their column name. Since UPDATE statements replace

existing values, OLD. provides access to the original values, and NEW. provides access

to their replacements.

Working Around Limitations

To work around the one trigger per time/action per table limitation, you can place

your logic in various stored procedures and then use a trigger as the driving

mechanism to call them. For example, you can’t write something like this:

CREATE TRIGGER foo AFTER INSERT ON mytable …
CREATE TRIGGER bar AFTER INSERT ON mytable …

But you can write something like this:

CREATE PROCEDURE foo …
CREATE PROCEDURE bar …

CREATE TRIGGER mytable_after_insert
AFTER INSERT ON mytable FOR EACH ROW
BEGIN
 CALL foo();
 CALL bar();
END $$

Useful Statements for Managing Triggers

Here are some additional statements you may find useful when working with

triggers:

■ List the definitions of all triggers:

Jump Start MySQL108

SHOW TRIGGERS;

■ View the definition of a specific trigger:

SHOW TRIGGERS LIKE 'trigger_name';

■ Delete a trigger:

DROP TRIGGER procedure_name;

Events
Events are sometimes referred to as “temporal triggers” because they are routines

scheduled to run at a certain time. They’re similar in concept to the Unix scheduling

services cron and at, or Windows Task Scheduler, except they live in the database.

The advantage of events is that they’re cross platform; since they run in the database,

we’re not tied to a specific platform scheduler.

MySQL has a dedicated event scheduler subsystem that’s responsible for executing

events at the correct time. The global system variable event_scheduler is used to

turn the scheduler system on and off. By default, the scheduler isn’t running, so we

need to set event_scheduler to “ON” to start it.

SET GLOBAL event_scheduler = ON;

Events are defined/scheduled using CREATE EVENT. Here’s an example that sets any

rows in the customer table to inactive if the customer’s data in the rental table

shows they haven’t rented a movie in the past three years:

DELIMITER $$

CREATE EVENT inactive_customer_maintenance
 ON SCHEDULE
 EVERY 1 DAY
 DO
BEGIN

109Programming the Database

 UPDATE
 customer c
 JOIN rental r ON c.customer_id = r.customer_id
 SET
 c.active = 0
 WHERE
 r.rental_date < DATE_SUB(NOW(), INTERVAL 3 YEAR);
END$$

DELIMITER ;

Following ON SCHEDULE, the keyword AT can be used to schedule a run-once event,

followed by the timestamp of when the event should execute. For example, ON

SCHEDULE AT '2015-11-03 00:00:00' registers the event to run at midnight on

November 3rd. Alternatively, EVERY is used to specify a recurring interval. The ex-

ample event above is scheduled to run once every day.

Events can be scheduled to execute just once or on a recurring basis. Recurring

events can repeat indefinitely or for a specific duration. Although our example re-

peats forever, STARTS and ENDS can be used to bracket the time in which the event

is valid. Start and end times can be specified as datetime values, or as relative values

using intervals.

CREATE EVENT inactive_customer_maintenance
 ON SCHEDULE
 EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP
 ENDS CURRENT_TIMESTAMP + INTERVAL 1 MONTH
 DO
BEGIN
…

Interval expressions are provided using the keyword INTERVAL followed by a unit

and measure. For example, INTERVAL 1 MONTH for one month, and INTERVAL 5

HOUR for five hours. Available measures include YEAR, QUARTER, MONTH, WEEK, DAY,

MINUTE, and SECOND. More complex measures are YEAR_MONTH, DAY_HOUR, DAY_MINUTE,

DAY_SECOND, HOUR_MINUTE, HOUR_SECOND, and MINUTE_SECOND. When using these,

the unit is a string with the two parts separated by a colon. INTERVAL '1:12'

DAY_HOUR, for example, means every 1 day and 12 hours.

Jump Start MySQL110

MySQL will automatically delete events after they’ve run through the duration of

their schedule. We can add ON COMPLETION PRESERVE to the definition to preserve

them, like so:

CREATE EVENT my_zombie_event
 ON SCHEDULE
 EVERY 1 DAY
 ENDS CURRENT_TIMESTAMP + INTERVAL 1 MONTH
 ON COMPLETION PRESERVE
 DO
BEGIN
…

Useful Statements for Managing Events

Here are some additional statements you may find useful when working with

events:

■ List events and their status:

SHOW EVENTS;

■ View the definition of an event:

SHOW CREATE EVENT event_name;

■ Disable/enable an event:

ALTER EVENT event_name DISABLE;
ALTER EVENT event_name ENABLE;

■ Delete an event:

DROP EVENT event_name;

111Programming the Database

User-defined Functions
A user-defined function (UDF) is code written in C or C++ which is then compiled

into a library and loaded into MySQL as a plugin. There are several reasons why

we might want to do this: a function written in C is more performant than one

written in SQL; such functions can access system libraries and expose functionality

that otherwise wouldn’t be available; and custom, aggregate-value functions must

be written as UDFs because no other facility exists to cleanly maintain the accumu-

lator for their final result.

UDF Libraries

A small collection of UDF libraries is available at http://www.mysqludf.org and

http://www.fromdual.com/mysql-plugins-and-udfs. You can also search public

repositories on sites like GitHub to find useful functions.

Minimally, a UDF implementation consists of three C/C++ functions:

■ myfunc_init() ― initializes any resources needed by myfunc().

■ myfunc() ― performs the actual work of the function.

■ myfunc_deinit() ― frees any resources initialized by myfunc_init() and used

in myfunc().

MySQL calls these functions when a user invokes the UDF in the manner illustrated

in Figure 6.1.

Figure 6.1. Calling order of the underlying functions when a single-value UDF is used.

Jump Start MySQL112

http://www.mysqludf.org
http://www.fromdual.com/mysql-plugins-and-udfs

Aggregate functions also implement myfunc_clear() to reset the accumulator before

each set, and myfunc_add() to update the accumulator for each value. The calls in

an aggregate-value UDF are illustrated in Figure 6.2.

Figure 6.2. Calling order of the underlying functions when an aggregate-value UDF is used.

In each of the names, I’ve used myfunc as a placeholder. In the actual implementa-

tion, myfunc would be replaced with the name of UDF function as it would appear

to the end user.

Let’s walk through an aggregate-value function in C and create a UDF that returns

an integer’s Benford value based on a set of inputs. Benford's law states the distri-

bution of the first digits in a set of numbers should follow a specific pattern. The

digit 1, for example, should appear approximately 30% of the time as the leading

digit, whereas the digit 9 should appear less than 5% of the time in that position.

A number’s Benford value is thus the percentage of its appearance as the first digit

in all the values in the set.

Benford's Law

Benford’s law has has been used to detect fraud in election results and accounting

activities. You can read up on it on the Data Genetics blog2 and see it in action at

testingbenfordslaw.com3.

First, there are the typical includes, function prototypes, and typedefs like you

would see in any C code:

2 http://datagenetics.com/blog/march52012/index.html
3 http://testingbenfordslaw.com

113Programming the Database

http://datagenetics.com/blog/march52012/index.html
http://testingbenfordslaw.com

#include <stdlib.h>
#include <string.h>
#include "mysql.h"

my_bool benford_init(UDF_INIT *, UDF_ARGS *, char *);
void benford_deinit(UDF_INIT *);
void benford_clear(UDF_INIT *, UDF_ARGS *, char *, char *);
void benford_add(UDF_INIT *, UDF_ARGS *, char *, char *);
double benford(UDF_INIT *, UDF_ARGS *, char *, char *, char *);

typedef struct
{
 int seen; /* count of times the digit is seen */
 int rows; /* the number of rows processed */
}
benford_data;

The mysql.h header defines the client API to work with MySQL. You should have

it if you installed MySQL from source, but if you installed MySQL via a package

manager, you’ll probably need to install the development package for the mysqlclient

library as well. On Ubuntu, the package is libmysqlclient-dev.

UDF_INIT is the main data structure passed between the functions by MySQL. It

contains values that affect the behavior and return value of the UDF as well as a

pointer we can assign to share our bendford_data struct. UDF_ARGS is a structure

that lets us access information about the arguments passed to the UDF from the user

such as the number of arguments provided and their values. The remaining argu-

ments are a mix of NULL indicators and error message pointers. All of the arguments4

and return requirements5 for the API functions are documented in the MySQL

manual.

Here’s the implementation of our initialization function:

my_bool benford_init(UDF_INIT *initid, UDF_ARGS *args, char *message)
{
 /* verify incoming arguments */
 if (args->arg_count != 2) {
 strcpy(message, "function expects two arguments.");

4 http://dev.mysql.com/doc/refman/5.6/en/udf-arguments.html
5 http://dev.mysql.com/doc/refman/5.6/en/udf-return-values.html

Jump Start MySQL114

http://dev.mysql.com/doc/refman/5.6/en/udf-arguments.html
http://dev.mysql.com/doc/refman/5.6/en/udf-return-values.html

 return 1;
 }
 /* coerce arguments - first arg to string will allow us to
 accept INT, DOUBLE, and REAL values (and also easier to
 extract most significant digit), the second arg must be
 INT to compare */
 args->arg_type[0] = STRING_RESULT;
 args->arg_type[1] = INT_RESULT;

 /* init shared data block */
 benford_data *data;
 if (!(data = (benford_data *)malloc(sizeof(benford_data)))) {
 strcpy(message, "Couldn't allocate memory");
 return 1;
 }
 data->seen = 0;
 data->rows = 0;
 initid->ptr = (char *)data;

 /* function will return 2 decimal places */
 initid->decimals = 2;

 return 0;
}

The init function verifies that the number of incoming arguments is correct (there

should be two), coerces them to specific types to make our lives easier, allocates an

instance of our benford_data structure, and sets the behavior of the function to

return two decimal places. The benford_data struct is assigned to the pointer be-

longing to UDF_INIT so it can be passed between the various functions.

The clean-up function simply needs to free the shared struct so we don’t have any

memory leaks.

void benford_deinit(UDF_INIT *initid)
{
 free(initid->ptr);
}

At the beginning of each set of inputs, the clear function is invoked, which gives

us an opportunity to initialize the tallies.

115Programming the Database

void benford_clear(UDF_INIT *initid, UDF_ARGS *args, char *is_null,
 char *error)
{
 benford_data *data = (benford_data *)initid->ptr;
 /* init values to 0 */
 data->seen = 0;
 data->rows = 0;
}

For each field in the set, MySQL calls the add function. This is where we look at

the first digit in the number and decide whether it’s the digit we’re tracking or not.

In either case, we’ll increment the row counter so we can later calculate the percent-

age of the digit’s appearance.

void benford_add(UDF_INIT *initid, UDF_ARGS *args, char *is_null,
 char *error)
{
 benford_data *data = (benford_data *)initid->ptr;
 data->rows++;

 if (args->args[0] && args->args[1]) {
 /* extract the leading digit – easy because it's a string */
 char *str = args->args[0];
 int i = str[0] - '0';

 int j = *((int *)args->args[1]);
 if (i && i == j) {
 data->seen++;
 }
 }
}

The main function calculates the Benford value as the percentage of times the digit

appeared as the leading digit and returns it as a decimal. MySQL invokes this main

function at the end of each group. If there’s another group to process afterward—for

example, if we’re using GROUP BY in our SELECT statement—MySQL will call the

clear function and begin working on the next set.

double benford(UDF_INIT *initid, UDF_ARGS *args, char* result,
 char *is_null, char *error)
{
 benford_data *data = (benford_data *)initid->ptr;

Jump Start MySQL116

 if (data->rows) { /* no divide by zero! */
 return data->seen / (double)data->rows;
 }
 return 0.0;
}

The code needs to be compiled as a shared library and linked against the MySQL

client libraries. Assuming your development toolchain is set up with gcc and you’re

at a Bash prompt, the compile command looks like this:

gcc -fPIC -shared -o udf_benford.so udf_benford.c \
 $(mysql_config --cflags) $(mysql_config --libs)

Compiling on Windows

Compiling on Windows is a bit more involved. Refer to the documentation6 for

guidance.

Work Through Compile Errors

The intricacies of coding and compiling C code are outside the scope of this book.

If you run into trouble, read the error messages generated by your compiler and

linker carefully and then consult the documentation to make sure you’re doing

things correctly. Sites like stackoverflow.com7 can also be a good resource. Look

through their archives to see if someone else has run into the same problem and

found a solution.

The resulting module needs to be copied to MySQL’s plugin directory which can

be located by inspecting the value of the global system variable plugin_dir.

SHOW GLOBAL VARIABLES like 'plugin_dir';
+---------------+------------------------+
| Variable_name | Value |
+---------------+------------------------+

6 http://dev.mysql.com/doc/refman/5.6/en/udf-compiling.html
7 http://stackoverflow.com/

117Programming the Database

http://dev.mysql.com/doc/refman/5.6/en/udf-compiling.html
http://stackoverflow.com/

| plugin_dir | /usr/lib/mysql/plugin/ |
+---------------+------------------------+
1 row in set (0.00 sec)

If MySQL is running on a system that uses AppArmor—a security layer that controls

access to the file system beyond the standard permission system—it may be denied

access to the files in the plugin directory. You can resolve the issue either by updat-

ing the AppArmor profile for MySQL, or by setting it to run in “complain” mode

using aa-complain.

The last piece of the puzzle is to expose the functionality to the database by regis-

tering the UDF. For each function that’s to be made available, a CREATE FUNCTION

statement is executed that specifies the return type and the library file where the

implementation can be found. If the UDF is an aggregate-value function, as our ex-

ample is, then the statement should read CREATE AGGREGATE FUNCTION.

CREATE AGGREGATE FUNCTION benford RETURNS REAL
SONAME 'udf_benford.so';

Whenever you register a UDF, make sure the return type listed in the CREATE

FUNCTION statement is what the function really returns. I’ve seen the same problem

several times where someone cuts and pastes the statement from somewhere, changes

the name of the function and library file, but forgets to touch the return type. In the

best-case scenario, a mismatch will cause NULL values to be returned. In the worst,

it could crash MySQL.

Once registered, we can use the function in our statements.

SELECT customer_id, benford(amount, 1) FROM payment
GROUP BY customer_id;

+-------------+--------------------+
| customer_id | benford(amount, 1) |
+-------------+--------------------+
| 1 | 0.03 |
| 2 | 0.04 |
| 3 | 0.12 |
…
| 598 | 0.00 |

Jump Start MySQL118

| 599 | 0.16 |
+-------------+--------------------+
599 rows in set (0.02 sec)

Conclusion
As you became acquainted with each routine presented in this chapter, hopefully

you gained an appreciation of just how much power and flexibility they give us.

You’ve learned about stored procedures, functions, triggers, and events. You've also

seen how a UDF is written in C and accessed by MySQL. Whether to use them or

not depends on what makes sense given what you’re trying to accomplish. If you’re

writing an application that connects to MySQL and you want to code all logic in

your app, that’s fine. If you’ll get better performance or gain flexibility by pushing

that logic into the database, that’s fine too.

If you find yourself writing stored routines in any serious capacity, you’ll want to

invest in proper development tools. For debugging, Debugger for MySQL8 works

well. It’s a debugging IDE that supports breakpoints, watches, auto-completion,

online help, and more. It’s not free open-source software, but it runs on Windows

and Linux under Wine and the developers offer a free, 14-day trial. For unit testing,

frameworks are available that let you write tests in SQL like utMySQL9 and

STK/Unit10. The book MySQL 5.1 Plugin Development11 by Sergei Golubchik and

Andrew Hutchings may also serve you well if you want to write UDF functions and

other MySQL plugins.

Take some time to play around with the concepts we’ve discussed here before

moving on. In the next chapter, our time together will come to a close as we look

at how to back up and restore MySQL databases and configure MySQL’s replication

service.

8 http://mydebugger.com
9 http://utmysql.sourceforge.net/
10 http://stk.wikidot.com/stk-unit
11 https://www.packtpub.com/big-data-and-business-intelligence/mysql-51-plugin-development

119Programming the Database

http://mydebugger.com
http://utmysql.sourceforge.net/
http://stk.wikidot.com/stk-unit
https://www.packtpub.com/big-data-and-business-intelligence/mysql-51-plugin-development

Chapter7
Backups and Replication
As our lives become more and more datacentric, the importance of having backups

cannot be overstated. The effects of data loss can range from mildly irritating, such

as losing your contacts list, to having a serious economic impact, such as a bank

losing financial records. The more important your data is, and the more difficult it

is to recreate, the more important it is to have backups.

I feel it’s important to share with you a few ways to back up your MySQL databases

before we say our goodbyes, so in this chapter we’ll discuss making physical and

logical backups. I’ll also walk you through the steps to set up basic replication.

Replication requires at least two MySQL installations—one to be the master and

another to be the slave—so you’ll need to install MySQL on another system if you

plan on following along.

Logical Backups
A logical backup creates one or more files containing statements that can be used

to reconstruct the database and its data. The files we downloaded in Chapter 3 from

the MySQL website to set up the sakila database are one example of a logical

backup. Such backups are portable, meaning they can be restored to pretty much

any MySQL server with minimal fuss. But they can also take longer to create—and

are slower to restore from—than other types of backups because the statements must

be processed by MySQL.

Using mysqldump
We can use the command-line utility mysqldump that’s included with MySQL to

make logical backups. The program communicates with the server to retrieve our

data and writes out the various statements capable of rebuilding the database. To

make sure no changes are made during the process, we need to lock the tables with

a “read lock” which makes the database read-only.

Follow these steps to make a logical backup of the sakila database using mysqldump:

1. In the command-line client, make sure sakila is the active database and issue a

FLUSH TABLES statement so any pending operations are completed and the lock

is established.

FLUSH TABLES WITH READ LOCK;

The lock will be in effect until we release it as long as this connection stays active.

2. Leave the client running in its current window and open a second terminal

window or Command Prompt. In the second window, invoke mysqldump.

mysqldump -u root -p sakila > sakila-backup.sql

mysqldump outputs its statements to standard output, which is useful if you want

to pipeline them as input to another command, but here I just redirect them to

create the file sakila-backup.sql. The -u and -p options specify a user account,

and prompt for a password to connect to MySQL (just like the command-line

client), and sakila is obviously the database we’re backing up.

3. Go back to the command-line client running in the first window and release the

lock:

UNLOCK TABLES;

Jump Start MySQL122

There are many options we can provide to mysqldump to get exactly what we want

in our backup. The following is a brief list of some of the options you may find es-

pecially useful. For a complete list, you can either invoke the utility with -? or

check out the documentation1.

■ --add-drop-table — include a DROP TABLE statement before any CREATE TABLE

statements in the output. Without dropping a table first, the import process will

fail on the CREATE TABLE statement when the backup is restored on a system

that already has the tables defined.

■ --disable-keys — add a statement that disables indexes and keys before the

INSERT statements, and another statement afterwards to re-enable them. This

can help speed up large imports, because MySQL can record its indexes all at

once instead of after each INSERT.

■ --events — export the definitions for any stored events associated with the

database.

■ --hex-blob — output binary values using hexadecimal notation. This can help

protect against certain byte sequences being incorrectly interpreted, causing a

restore to fail.

■ --tables — back up only specific tables instead of all tables in the database.

Any values after the option are treated as table names.

■ --triggers— export the definitions for any triggers associated with the database.

■ --routines — export the definitions for any stored procedures associated with

the database.

■ --where — a WHERE condition used to return only specific rows. For example,

--tables actor --where last_name LIKE 'B%' will only export rows from

the actor table for actors whose last name starts with B.

Dump Files

You’ll sometimes hear a backup file referred to as a “dump file,” because the data

has been dumped from the database into a file. I've let sophomoric humor get the

1 http://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

123Backups and Replication

http://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

better of me a few times, telling my boss I'm going to “take a dump on the produc-

tion server.” Feel free to use the joke, but your mileage may vary.

Redirecting SELECT
Another way to make logical backups is to issue a SELECT statement, and redirect

the data to a specific file using INTO OUTFILE. This approach backs up the table’s

data but not the table definition, so it’s quite limited; but it’s also said to be the

fastest way to get data out of MySQL:

SELECT * FROM actor INTO OUTFILE '/tmp/actor.txt';

Exporting data in this manner is very restricted, for reasons of security. The output

file can only be created on the host running MySQL, not the system you may be

logged in from. The file also must not exist already. This prevents a malicious user

from potentially overwriting sensitive system files.

The LOAD DATA statement imports data exported to a file in this manner:

LOAD DATA INFILE '/tmp/actor.txt' INTO TABLE actor;

Since INTO OUTFILE backs up the only the table’s data—and with minimal structur-

ing—importing the file could be problematic in some instances. The data is blindly

loaded, so there is potential for key conflicts or duplicated rows if data already exists

in the table. Check out the documentation for more information on INTO OUTFILE2

and LOAD DATA3.

Physical Backups
A physical backup is a raw copy of the files and directories managed by MySQL.

Making a physical backup is generally faster than a logical backup, because it's

really just a copy operation. But a drawback to physical backups is that they can’t

capture data that hasn’t been persisted to disk—for example, tables managed by the

MEMORY storage engine. If you recall from our discussion in Chapter 2, MEMORY keeps

its data in RAM, so there are no files for us to copy. Also, physical backups are less

2 http://dev.mysql.com/doc/refman/5.6/en/select-into.html
3 http://dev.mysql.com/doc/refman/5.6/en/load-data.html

Jump Start MySQL124

http://dev.mysql.com/doc/refman/5.6/en/select-into.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html

portable, and can only be restored to a similar system; a backup taken as an LVM

snapshot on a Linux server can’t be restored to a Windows system.

Before we can make a physical backup, we need to identify the directory that MySQL

stores our data in. Inspecting the global system variable datadir will tell us the

location:

SHOW VARIABLES LIKE 'datadir';
+---------------+-----------------+
| Variable_name | Value |
+---------------+-----------------+
| datadir | /var/lib/mysql/ |
+---------------+-----------------+
1 row in set (0.00 sec)

Inside the data directory are separate directories for each of the databases that

MySQL manages. In earlier times, when MyISAM was MySQL’s principle storage

engine, you could copy the database’s directory and call it a day. MyISAM stores

both: the table definitions and the data are stored together in the same directory.

InnoDB is different, though. All data in InnoDB-managed tables, regardless of

database, is stored together in idbdata files in the base data directory. Given that

InnoDB is the default storage engine, I recommend backing up the entire data dir-

ectory.

It's also important that MySQL doesn’t attempt to modify any of the files during

our backup procedure, which would result in a bad copy. We need to stop MySQL

before starting the backup, and then restart it after we’ve finished.

Here’s an example that makes a physical backup on Ubuntu:

sudo service mysql stop
sudo tar -cpzf /media/external/mysql-backup-$(date +%F).tgz \
 /var/lib/mysql
sudo service mysql start

The backup medium can be pretty much anything that suits your needs. If you’re

a developer, backing up a personal dev environment, you might copy them to an

external hard drive. If you’re working in an enterprise setting, the backup might be

saved to a SAN, and later copied to high-capacity tape and shipped to an off-site

storage facility.

125Backups and Replication

To restore a physical backup, we need to stop MySQL, copy the files back into place,

and then start MySQL:

sudo service mysql stop
sudo tar -C / --same-owner -xvzpf \
 /media/external/mysql-backup-YYYY-MM-DD.tgz
sudo service mysql start

There are many utilities for copying files and directories. Linux users have com-

mands like cp, tar, and cpio, as well as LVM snapshots. Windows users have xcopy

and robocopy and VSS (Volume Shadow Copy). And of course, both systems have

a variety of dedicated backup applications as well.

Make Sure You Preserve Permissions

Whichever tool you use, make sure it can preserve the files’ ownership and access

permissions (this is what the -p flag does during compression, and what -p and

--same-owner flags do during extraction in my examples above using tar).

Otherwise, you’ll need to reset the permissions after you restore the backup.

Replication
Replication is the ability for one or more slave servers to maintain a copy of another

MySQL server’s data. With replication enabled, when we add, update, and delete

rows in the master server’s database, details about the event are recorded to a special

log file. The slaves then retrieve the logged details and repeat events to maintain

their own local copy of the database, in near real time.

A master server doesn’t wait for each slave to process an event; each slave is respons-

ible for itself. That is, replication is an asynchronous process. Slave servers track

their current position in the log, so we can bring a slave down for maintenance and

it’ll continue processing from the point it left off when we bring it back online.

Replication is useful in many different situations:

■ Backups ― we can stop replication on a slave server and we can make a physical

backup of its data without affecting the availability of the master.

Jump Start MySQL126

■ Redundancy ― if a full copy of the database is maintained on a slave, the master

can be swapped out with a slave with little effort in failover or disaster-recovery

scenarios.

■ Scalability and performance ― in heavy-load environments, write operations

can be issued against the master, while read operations can be executed against

read-only slaves, fanned out behind a load balancer.

There are three ways an event can be recorded in the log file: statement-based, row-

based, and mixed-format logging. The default is statement-based logging, which

records SQL statements that the slave will execute. Row-based logging writes details

about every change the event effected. Mixed-format logging records SQL statements

for most events, but switches to change details under certain circumstances. You

can read about each approach, and the advantages and disadvantages of each, in

the documentation4.

More on Replication

For a more detailed explanation of how replication works (beyond the 10,000 foot

overview I’ve given here) check out this blog post by Aurimas Mikalauskas5.

Setting up Replication
The following steps guide you through the process of configuring MySQL replication

with one master and one slave. To complete the steps, you’ll need two machines

with MySQL installed—one which we’ll designate as the master, and another as

the slave.

1. Locate MySQL’s configuration file on each system. The file is named my.cnf on

Linux systems, and can be located using find / -name my.cnf. On Windows,

it’s named my.ini, and can be found using the Edge UI’s Search charm.

2. Edit the master server’s configuration file. If a configuration entry we want is

commented out with a leading #, enable it by deleting the character. If the entry

doesn’t exist, add it under the [mysqld] section. The entries of interest are:

4 http://dev.mysql.com/doc/refman/5.6/en/replication-formats.html
5 http://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-work/

127Backups and Replication

http://dev.mysql.com/doc/refman/5.6/en/replication-formats.html
http://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-work/

■ server-id ― identifies this server in the replication setup. It should be active

(uncommented) and given a positive integer value unique between all of the

servers in the group.

■ log_bin ― identifies the base name of the replication log file I mentioned

earlier. This entry should be active.

■ binlog_do_db ― identifies which databases will be logged for replication.

Multiple databases can be listed, separated by spaces. This entry should be

active.

■ skip_networking or bind-address ― these entries configure whether MySQL

accepts connections from the outside world or not. If skip_neworking is en-

abled, or bind-address is set to a value like 127.0.0.1, the master rejects the

slave's connection attempts. We’ll want these entries commented out.

Here are example values suitable for our master setup:

server-id = 1
log_bin = mysql-bin
binlog_do_db = sakila
bind-address = 127.0.0.1

3. Save your changes to the master’s configuration file and restart its MySQL in-

stance.

4. Connect to the master with the command-line client, using the root user to create

a new user account for the slave to use. We’ll configure the slave to use this ac-

count to receive the replication details:

CREATE USER 'repluser'@'%' IDENTIFIED BY 'P@$$w0rd';
GRANT REPLICATION SLAVE ON *.* TO 'repluser'@'%';
FLUSH PRIVILEGES;

5. Take a backup of the master’s database. We’ll use the backup to populate the

slave, to ensure it starts out in sync with the master.

a. Lock sakila’s tables:

Jump Start MySQL128

FLUSH TABLES WITH READ LOCK;

b. Execute the dump command in a new terminal:

mysqldump -u root -p sakila > sakila-backup.sql

c. Return to the command-line client and release the lock:

UNLOCK TABLES;

6. Issue a SHOW MASTER STATUS statement to get information about the current state

of the master. Remember the values the master reports back, because we’ll need

them to configure the slave:

SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000001 | 107 | sakila | |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

7. Copy the master’s backup file—made in step 5—over to the slave.

8. On the slave, create the sakila database and import the backup file:

mysql -u root -p -e 'CREATE DATABASE sakila'
mysql -u root -p < sakila-backup.sql

9. Open the slave server’s configuration file and set the server-id value. Remember,

the value must be unique among all servers in the replication group:

server-id = 2

10. Save the change to the configuration file and restart the slave MySQL instance.

129Backups and Replication

11. With the command-line client, connect to the slave, and send the statement SHOW

SLAVE STATUS\G to make sure its replication process is not running. If the value

of Slave_IO_Running and Slave_SQL_Running aren’t both “No,” issue STOP

SLAVE;.

Better Readability for Wide Output

The slave status presents a lot of fields that can be difficult to read because of

line wrapping. Using \G to terminate the statement—instead of a semi-

colon—causes the client to format the results vertically.

12. Send the following statement to the slave, to configure it to communicate with

the master:

CHANGE MASTER TO
 MASTER_HOST = '192.168.1.100',
 MASTER_USER = 'repluser',
 MASTER_PASSWORD = 'P@$$w0rd',
 MASTER_LOG_FILE = 'mysql-bin.000001',
 MASTER_LOG_POS = 107;

The MASTER_HOST value is the address of your master server, MASTER_USER and

MASTER_PASSWORD are the credentials for the newly created replication account,

and MASTER_LOG_FILE and MASTER_LOG_POS indicate the current state of the

master’s log file, as returned by the earlier SHOW MASTER STATUS statement.

13. Start the slave’s replication process by sending START SLAVE;.

14. Verify that replication is running with a SHOW SLAVE STATUS statement. The

values of Slave_IO_Running and Slave_SQL_Running should now both be “Yes.”

To test that replication is working, make an update or insert a new row on the

master, and check the slave to see if the change propagated automatically.

Fixing Broken Replication
There are some things that aren’t safe to do in a replicated environment, because

they can either break replication or result in inconsistencies between the master's

and slave's data. For example, inserting a row on a slave that would have otherwise

Jump Start MySQL130

been replicated from the master is a no-no. Replication would attempt to insert a

row that already exists, and thus cause an error. Using nondeterministic functions

(functions that can return different values given the same input values) can also

cause issues, especially when statement-based replication is used. For example, the

NOW() function returns the current date and time. What was “now” on the master

will not be “now” on the slave when the replicated statement is processed.

Whenever the slave encounters a problem, it will stop replication and wait for us

to fix the issue. This behavior is ultimately a safety feature, because continuing on

otherwise could potentially jeopardize the integrity of our data. Unfortunately, there

is no notification when replication stops. Whether you use enterprise-grade tools

like Nagios and Zabbix, or a homespun Bash script executed by cron, it’s important

to have some sort of monitoring in place.

When things go wrong, issue a SHOW SLAVE STATUS statement on the slave, and in-

spect the value of Last_SQL_Error to find out what the problem is. If things are ir-

recoverably broken, then rebuilding the slave’s database may be your only option.

But sometimes it's just one or two statements that get in the way—for example, a

CREATE TABLE statement that failed to replicate because the table already existed

on the slave. If that’s the case, it’s possible to skip the statement and let the replica-

tion process continue by issuing the following statements on the slave:

STOP SLAVE;
SET GLOBAL sql_slave_skip_counter = 1;
START SLAVE;

You can skip two statements by setting the global sql_slave_skip_counter variable

to 2, three statements with 3, and so on. Be careful, though. If the failed statement

is part of a transaction, the entire transaction will be skipped.

Plan Ahead
Now is the time to work out your backup procedures. People can be forgetful despite

their best intentions, so an automated approach is preferable to one that relies on

manual intervention. Each operating system comes with scheduling utilities: Linux

distros have cron, and Windows has Task Scheduler. Even a dedicated backup

utility worth its salt should have some scheduling capability.

131Backups and Replication

Once you have your backups, decide how best to protect them. If you’re working

in a corporate environment, research the regulations, guidelines, and best practices

for your particular industry. Typically, off-site storage of the backups is preferred.

For personal backups, there are several free and commercial cloud backup providers.

You should also periodically test your backups. Make sure you’re backing up the

right files, and that you're able to restore them without issue. The middle of a crisis

is never a good time to realize your backups are worthless.

The following table summarizes some of the pros and cons of the backup strategies

discussed in this chapter:

ReplicationPhysicalLogical

Pros ■ Doesn’t affect

master

■ Easy to

implement

■ Easy to

implement

■ More portable ■ Near real time■ Faster to make

■ Faster to

restore

■ Able to

selectively

back up data

■ Log file can

also be used for

audit
■ Backups

potentially use

less space

■ Can back up

MEMORY

Cons ■ More involved

setup

■ Less portable■ Slower to make

■ ■Slower to

restore

Backups are

not selective

(all or nothing)

■ Requires

additional

hardware■ Backups use

more space ■ Can only back

up what’s on

disk

■ Requires

additional

monitoring

because of SQL

statements

■ ■Must be

scheduled

Must be

scheduled

Jump Start MySQL132

Conclusion
In each chapter, I encouraged you to try out the concepts we covered, and un-

doubtedly you’ve started applying what you’ve learned in your day-to-day activities.

Make sure that effort is safe by backing up your data, whether it’s with logical

backups, physical backups, or replication.

And with that, the time has come for us to part ways. Congratulations on reaching

the end of the book! We’ve discussed a wide range of topics to bring you up to speed

on as much MySQL as possible in the least amount of time. From installing MySQL

and getting acquainted with its command-line client in Chapter 1 to working with

multiple tables in Chapter 4, and familiarizing yourself with programming, both

with and in MySQL, in Chapter 5 and Chapter 6, I trust you’ve learned a lot in these

few pages.

Now go forth, dear friend, and spread your newfound wings.

133Backups and Replication

	Jump Start MySQL
	Table of Contents
	Preface
	What is a Database?
	From Codd to MySQL, a Brief History
	Alternatives and the Future of MySQL
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to Take Your Learning Further?

	Getting Started with MySQL
	Installing MySQL on Linux
	Installing via a Package Manager
	Installing from Source

	Installing MySQL on Windows
	Communicating with the Server
	MySQL Accounts and Security
	Conclusion

	Storing Data
	Creating Tables
	Data Types and Storage Requirements
	Numeric Types
	String Types
	Temporal Types
	Spacial Data Types

	Storage Engines

	Adding Data
	Using Transactions

	Conclusion

	Retrieving and Updating Data
	Deploying Sakila
	Retrieving Data
	Ordering Results
	Managing the Number of Returned Rows
	Aggregate Functions and Grouping

	Keeping Data Fresh
	Updating Data
	Deleting Data

	Conclusion

	Working with Multiple Tables
	Joining Tables
	Types of Joins

	Abstracting with Views
	Normal Forms
	First Normal Form
	Second Normal Form
	Third Normal Form

	Altering Tables
	Conclusion

	Connecting from Code
	Connecting from Python with Connector/Python
	Basic Querying
	Buffered and Unbuffered Results
	Prepared Statements

	Connecting from PHP with PDO
	Basic Querying
	Handling Errors
	Prepared Statements

	Connecting from R with RMySQL
	Working with Tables
	Basic Querying

	Conclusion

	Programming the Database
	Learning the Basics
	Functions
	Stored Procedures
	Triggers
	Events
	User-defined Functions
	Conclusion

	Backups and Replication
	Logical Backups
	Using mysqldump
	Redirecting SELECT

	Physical Backups
	Replication
	Setting up Replication
	Fixing Broken Replication

	Plan Ahead
	Conclusion

