

Summary of Contents

Preface . xiii

1. What is HTML5? . 1

2. The Anatomy of HTML5 . 7

3. Structuring Documents . 17

4. HTML5 Forms . 33

5. HTML5 Multimedia: Audio and Video . 51

JUMP START
HTML5
BASICS

BY TIFFANY B. BROWN

Jump Start HTML5 Basics
by Tiffany B. Brown

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Craig Buckler

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9922794-9-3 (print)

ISBN 978-0-9922794-8-6 (ebook)

Printed and bound in the United States of America

iv

About Tiffany B. Brown

Tiffany B. Brown is a freelance web developer and technical writer based in Los Angeles.

She has worked on the web for more than a decade at a mix of media companies and agencies.

Before founding her consultancy, Webinista, Inc., she was part of the Opera Software De-

veloper Relations & Tools team. Now she offers web development and consulting services

to agencies and small design teams.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

v

http://www.sitepoint.com/

To my husband, Jason Toney, who

made it possible for me to write

this book by playing the role of a

supportive wife. To my sisters by

choice: Shoshana and Cheryl. To

my unexpected cheerleaders:

Divya Manian, Chris Mills, David

Storey, and Jen Hanen. To my

mom for being mom. And to my

late father, who was more of an

inspiration than I ever realized.

Table of Contents

Preface . xiii

Who Should Read This Book . xiii

Conventions Used . xiii

Code Samples . xiii

Tips, Notes, and Warnings . xiv

Supplementary Materials . xv

Tools You’ll Need . xv

Do You Want to Keep Learning? . xvi

Chapter 1 What is HTML5? . 1

A Brief History of HTML5 . 2

HTML: The Early Years . 2

A Detour Through XHTML Land . 3

The Battle for World DOM-ination . 4

Applets and Plugins . 4

What HTML5 Isn’t . 5

A Note on the HTML5 Specification . 6

Chapter 2 The Anatomy of HTML5 7

Your First HTML5 Document . 8

The Two Modes of HTML5 Syntax . 9

HTML Syntax . 10

To Quote or Not Quote: Attributes in HTML5 12

A Pared-down HTML5 Document . 12

"XHTML5": HTML5’s XML Syntax . 13

Chapter 3 Structuring Documents 17

The article Element . 20

Putting It Together . 23

The section Element . 25

div Versus section . 27

Other Document Elements . 28

figure and figcaption . 28

main Element . 29

Chapter 4 HTML5 Forms . 33

Starting an HTML5 Form . 34

The input Element . 35

Collecting Names . 35

Using Form Labels . 36

Requiring Form Fields . 36

Styling Required Forms . 37

Collecting Email Addresses, Phone Numbers, and URLs 38

Uploading Files . 42

The datalist Element . 44

Other Input Types . 45

Date and Time Inputs . 49

Chapter 5 HTML5 Multimedia: Audio and
Video . 51

Adding Controls . 52

Autoplaying and Looping Media . 53

Video-only Attributes . 54

Place Holding with poster . 54

Controlling Video Dimensions . 55

x

Bandwidth Use and Playback Responsiveness . 55

Cross-browser Audio and Video . 56

Using Multiple Video or Audio Files . 58

xi

Preface
HTML (HyperText Markup Language) is the predominant language of web pages.

Whenever you read or interact with a page in your browser, chances are it’s an

HTML document. Originally developed as a way to describe and share scientific

papers, HTML is now used to mark up all sorts of documents and create visual in-

terfaces for browser-based software.

With HTML5, however, HTML has become as much an of API (Application Pro-

cessing Interface) for developing browser-based software as it is a markup language.

In this book, we’ll talk about the history of HTML and HTML5 and explore some

of its new features.

Who Should Read This Book
Although this book is meant for HTML5 beginners, its brevity means that it can’t

be comprehensive. As a result, we do assume some prior knowledge of HTML. If

you are completely new to web development, SitePoint’s Build Your Own Website

Using HTML and CSS may be a better book for you.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

xiv

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/store/jump-start-html5-basics/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/jshtml-basics1

The downloadable code archive for this book.

http://www.sitepoint.com/forums/

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Tools You’ll Need
All you’ll need to develop HTML5 documents is a text editor for writing, and a

browser for viewing your work. Don't use word processing software. Those programs

are made for writing documents, not for programming. Instead, you’ll need software

that can read and write plain text.

xv

http://www.sitepoint.com/store/jump-start-html5-basics/
https://github.com/spbooks/jshtml-basics1
http://www.sitepoint.com/forums/

If you’re a Windows user, try Notepad++1, a free and open-source text editor. Mac

OS X users may want to try TextWrangler2 by Bare Bones software. It's free, but not

open source. Brackets3 is another option for Windows and Mac users. Linux users

can use gEdit, which is bundled with Ubuntu Linux, or try the free and open source

Bluefish4. Paid software options are also available, and are sometimes more refined

than free and open-source options.

You'll also need at least one browser that supports HTML5 in order to make use of

the examples in this book. Make sure you’re using the latest version of Google

Chrome, Microsoft Internet Explorer, Apple Safari, Opera, or Mozilla Firefox

available for your operating system. Internet Explorer and Safari are bundled with

Microsoft Windows and Mac OS X, respectively. Other browsers may be downloaded

from their company web sites.

Do You Want to Keep Learning?
You can now get unlimited access to courses and all SitePoint books at Learnable5

for one low price. Enroll now and start learning today! Join Learnable and you’ll

stay ahead of the newest technology trends: http://www.learnable.com.

1 http://notepad-plus-plus.org/
2 http://www.barebones.com/products/textwrangler/
3 http://brackets.io/
4 http://bluefish.openoffice.nl/
5 https://learnable.com/

xvi

http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/
http://brackets.io/
http://bluefish.openoffice.nl/
https://learnable.com/
http://www.learnable.com

Chapter1
What is HTML5?
The easy answer is that it’s the latest version of HTML. But that doesn’t tell us much.

Specifically, HTML5:

■ defines a parsing algorithm for generating a consistent DOM (Document Object

Model) tree, even from ambiguous or poor-quality markup

■ adds new elements to support multimedia and web applications

■ redefines the rules and semantics of existing HTML elements

With HTML5, we can now embed audio and video natively within HTML documents.

We can use inline SVG (Scalable Vector Graphics) markup. We can build more robust

form experiences, complete with native error checking. We can create games, charts,

and animations using the canvas element. Documents can communicate with each

other using cross-document messaging. In other words, HTML5 is much more of

an application platform, not just a markup language.

A Brief History of HTML5
The story of how and why HTML5 came to be is too long to adequately cover in

this book. That said, a little historical context may help you understand some of

how HTML5 came to be.

HTML has its roots in Standard General Markup Language, or SGML. Think of

SGML as a set of rules for defining and creating markup languages.

HTML, or HyperText Markup Language, began as an application of SGML. Created

in the early 1990s, HTML was a standardized way to describe the structure of hy-

pertext documents. "Hypertext" simply means that the text "contains links to other

texts" and is not constrained by linearity1.

By describing the structure of a document, we decouple it from how it looks, or

how it’s presented to the end user. This made it easier to share and redistribute.

The associated Hypertext Transfer Protocol (HTTP) made sharing documents over

the internet easy.

HTML: The Early Years
"HTML 1" defined a simple, tag-based syntax for explaining document structure—a

very basic document structure. Paragraph (p) and list item (li) elements didn’t re-

quire an end tag. The earliest version2 didn’t even include the img or table elements.

Image support was added in version 1.23 of the specification.

HTML grammar changed only slightly with version 2.04. Now we could use end

tags for elements such as p and li, but these end tags were optional. The transition

from HTML 2.0 to HTML 3.2, however, marked a huge leap.

With HTML 3.2, we could change type rendering with the font element. We could

add robust interactivity with Java applets and the applet element. We could add

tabular data with the table, tr and td elements. But perhaps the most significant

feature introduced in HTML 3.2 was style sheets.

1 http://www.w3.org/WhatIs.html
2 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
3 http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
4 http://www.w3.org/MarkUp/html-spec/

Jump Start HTML5 Basics2

http://www.w3.org/WhatIs.html
http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/MarkUp/html-spec/

Most of the web, however, settled on HTML 4. With the advent of HTML 4, we

could tell the browser how to parse our document by choosing a document type.

HTML 4 offered three options:

■ Transitional, which allowed for a mix of deprecated HTML 3.2 elements and

HTML 4

■ Strict, which only allowed HTML 4 elements

■ Frameset, which allowed multiple documents to be embedded in one using the

frame element

What HTML versions 1 through 4 didn’t provide, however, were clear rules about

how to parse HTML.

The W3C stopped working on HTML 4 in 1998, instead choosing to focus its efforts

on a replacement: XHTML.

A Detour Through XHTML Land
XHTML 1.05 was created as "a reformulation of HTML 4 as an XML 1.0 application."

XML, eXtensible Markup Language, was a web-friendly revision of SGML, offering

stricter rules for writing and parsing markup.

XHTML, for example, required lower case tags while HTML allowed upper case

tags, lower case tags, or a mix of the two. XHTML required end tags for all non-

empty elements such as p and li. Empty elements such as br and img had to be

closed with a />. You had to quote all of your attributes, and escape your am-

persands. All pages had to be served as application/xml+xhtml MIME type.

XHTML taught us how to write better-quality markup. But ultimately suffered from

a lack of proper browser support.

XForms6, on the other hand, was supposed to replace HTML forms. XForms intro-

duced upload and range elements to provide richer ways to interact with web sites.

XForms didn’t gain much traction, however. After all, why introduce a specific

markup language for forms to the web? Why not enhance HTML instead?

5 http://www.w3.org/TR/xhtml1/
6 http://www.w3.org/TR/2007/REC-xforms-20071029/

3What is HTML5?

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/2007/REC-xforms-20071029/

The Battle for World DOM-ination
In 1996, Netscape released Netscape Navigator 2.0 with support for two separate,

but related technologies: JavaScript and the Document Object Model. We usually

talk about them as though they’re one and the same thing, but DOM is an API for

interacting with HTML documents. JavaScript is the primary language for interacting

with that API.

Netscape Navigator’s DOM interface turned each element of an HTML page into an

object that could be created, moved, modified, or deleted using a scripting language.

Now we could add animation or interactivity to our web pages, even if we had to

wait ages for them to download over our super-slow, 14.4Kbps modems.

The DOM was such a brilliant addition to the web that other browsers quickly fol-

lowed suit. But not every browser implemented the DOM in quite the same way.

Netscape Navigator, for example, used document.layers objects to reference the

entire collection of HTML nodes. Microsoft Internet Explorer went with docu-

ment.all. And web developers everywhere spent years struggling to reconcile the

two. Opera and WebKit, for what it’s worth, followed Internet Explorer’s lead. Both

browsers adopted document.all.

Eventually "DOM0" went from being a standard-through-implementation to a

standard-through-specification with the Document Object Model (DOM) Level 1

Specification7. Rather than document.layers and document.all, we could use

document.getElementById and document.getElementsByTagName. Today, all

browsers support the DOM.

Applets and Plugins
In the midst of all of this—the growth of HTML, the rise of the DOM, and the shift

to XHTML—applets and browser plugins joined the party. To their credit, applets

and plugins added functionality missing from HTML. For example, RealPlayer and

Apple’s QuickTime brought audio and video to the web. With Java applets, you

could run a spreadsheet program in your browser. Macromedia (now Adobe) Flash

and Shockwave let us add all of the above, plus animations.

Applets and plugins, however, suffered from three major problems:

7 http://www.w3.org/TR/REC-DOM-Level-1/

Jump Start HTML5 Basics4

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

1. Users who don’t have the plugin (or the applet environment) can’t see the content.

2. Applets and plugins expanded the surface for internet-based security breaches.

3. They were commercial products, and required developers to pay a license fee.

What’s more, plugins and applets sometimes caused their host environment—the

browser—to slow or crash.

So what we had on the web was a scenario in which:

■ Browsers didn’t parse HTML according to the same rules.

■ New markup languages offered few clear advantages over HTML but added

overhead to implement.

■ Plugins and applets offered additional functionality, but created security and

stability issues for browsers and licensing costs for developers.

These are the problems that HTML5 solves:

■ It incorporates features and grammars introduced by XHTML and XForms.

■ It almost eliminates the need for plugins and the stability and security issues

they may introduce.

What HTML5 Isn’t
I admit that I’m taking a bit of a purist approach in this book. HTML5 has become

a buzzword-y shorthand for "everything cool we can do in the browser that we

couldn’t do before." In this book, however, we mean HTML elements and their

Document Object Model (DOM) APIs.

We won’t talk much about features introduced with CSS (Cascading Style Sheets),

Level 3 in these pages. We will talk about what’s commonly called "JavaScript", but

is more accurately the DOM HTML API. We’ll also talk about Scalable Vector

Graphics, or SVG—but only to the extent that we discuss mixing SVG and HTML

within the same document.

5What is HTML5?

This book is intended as a short introduction to HTML5. For that reason, we won’t

cover advanced features in depth. This book will, however, give you an introduction

to what’s new and different about HTML5 versus previous versions.

A Note on the HTML5 Specification
Both the Web Hypertext Application Technology Working Group (WHATWG) and

the World Wide Web Consortium (W3C) publish HTML5 specifications. The two

groups worked together for years, creating a single specification managed by a single

editor. However in 2011, they diverged. There are now two competing, though

largely similar, versions of the specification. Each has its own editor.

The WHATWG version8 of the specification is a "living document." New features

are added, tweaked, and occasionally removed after some discussion within the

community. This version is far more fluid and subject to change.

The W3C, however, has a different process. Specification editors still consult the

community, but each document moves in phases from "Working Draft" to "Candidate

Recommendation" to "W3C Recommendation." As a result, W3C specifications are

versioned. The 2011 joint version of HTML5 specification became the W3C’s HTML5

Specification9. Subsequent revisions are part of the HTML 5.1 specification10.

There are differences between the two specifications, some subtle, some significant.

These differences are not well documented, however. Since this book doesn’t delve

in to the minutiae of HTML5, these differences won’t mean much for us.

8 http://www.whatwg.org/specs/web-apps/current-work/multipage/
9 http://www.w3.org/TR/html5/
10 http://www.w3.org/html/wg/drafts/html/master/Overview.html

Jump Start HTML5 Basics6

http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/html/wg/drafts/html/master/Overview.html

Chapter2
The Anatomy of HTML5
Every HTML document is made from elements, and elements are represented by

tags. Tags are a sequence of characters that mark where different parts of an element

start and/or stops.

All tags begin with a left-facing angle bracket (<) and end with a right-facing angle

bracket (>). Every element has a start tag or opening tag, which starts with <, and

is followed by the element name (or an abbreviation of it). The element name may

be followed by an attribute (or series of attributes) that describes how that instance

of an element is supposed to behave. You can set an explicit value for an attribute

with an = sign. Some attributes, however, are empty. If an empty attribute is present,

the value is true. Let’s look at an example using the input element.

<input type="text" name="first_name" disabled>

Here, type, name and disabled are all attributes. The first two have explicit values,

but disabled is empty. Some elements allow empty attributes, and these are usually

those that might otherwise accept true/false values. Here’s the tricky part: The value

of an empty attribute is either true or false based on the presence or absence of the

attribute, regardless of its set value. In other words, both disabled="true" and

disabled="false" would also disable input control.

Most elements also have a closing tag. Closing tags also start with <, but rather than

being immediately followed by the element name, they are followed by a forward

slash (/). Then comes the element name, and right-angle bracket or >. However,

some elements are known as void elements. These elements cannot contain content,

and so do not have a closing tag. The input element shown above is an example of

a void element.

Now that we’ve covered the basics of tags, let’s take a closer look at an HTML5

document.

Your First HTML5 Document
Open up your favorite text editor and type the following. Save it as hi.html.

<!DOCTYPE html>
<html>
 <head>
 <title>Hi</title>
 </head>
 <body>
 <p>Hi</p>
 </body>
</html>

Congratulations—you’ve written your first HTML5 document! It’s not fancy, perhaps,

but it does illustrate the basics of HTML5.

Our first line, <!DOCTYPE html> is required. This is how the browser knows that

we’re sending HTML5. Without it, there’s a risk of browsers parsing our document

incorrectly. Why? Because of DOCTYPE switching.

DOCTYPE switching means that browsers parse and render a document differently

based on the value of the <!DOCTYPE declaration, if it's served with a Content-

type:text/html response header. Most browsers implemented some version of

DOCTYPE switching in order to correctly render documents that relied on non-

standard browser behavior, or outdated specifications.

Jump Start HTML5 Basics8

HTML 4.01 and XHTML 1.0, for example, had multiple modes—strict, transitional,

and frameset—that could be triggered with a DOCTYPE declaration, whereas HTML

4.01 used the following DOCTYPE for its strict mode.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

Transitional, or loose DOCTYPE declarations trigger quirks mode. In quirks mode,

each browser parses the document a little bit differently based on its own bugs and

deviations from web standards.

Strict DOCTYPE declarations trigger standards mode or almost standards mode.

Each browser will parse the document according to rules agreed upon in the HTML

and CSS specifications.

A missing DOCTYPE, however, also triggers quirks mode. So HTML5 defined the

shortest DOCTYPE possible. The HTML5 specification explains:

"DOCTYPEs are required for legacy reasons. When omitted, browsers

tend to use a different rendering mode that is incompatible with

some specifications. Including the DOCTYPE in a document ensures

that the browser makes a best-effort attempt at following the relevant

specifications."

And so, using the HTML5 DOCTYPE (<!DOCTYPE html>) triggers standards mode,

even for older browsers that lack HTML5 parsers.

The Two Modes of HTML5 Syntax
HTML5 has two parsing modes or syntaxes: HTML and XML. The difference depends

on whether the document is served with a Content-type: text/html header or a

Content-type: application/xml+xhtml header.

If it’s served as text/html, the following rules apply:

■ Start tags are not required for every element.

■ End tags are not required for every element.

■ Only void elements such as br, img, and link may be "self-closed" with />.

9The Anatomy of HTML5

■ Tags and attributes are case-insensitive.

■ Attributes do not need to be quoted.

■ Some attributes may be empty (such as checked and disabled).

■ Special characters, or entities, do not have to be escaped.

■ The document must include an HTML5 DOCTYPE.

HTML Syntax
Let’s look at another HTML5 document.

<!DOCTYPE html>
 <html>
 <head>
 <meta charset=utf-8>
 <title>Hi</title>
 <!--
 This is an example of a comment.
 The lines below show how to include CSS
 -->
 <link rel=stylesheet href=style.css type=text/css>
 <style>
 body{
 background: aliceblue;
 }
 <style>
 </head>
 <body>
 <p>

 Isn't this a lovely flower?

 <p>
 Yes, that is a lovely flower. What kind is it?

 <script src=foo.js></script>
 </body>
</html>

Again, our first line is a DOCTYPE declaration. As with all HTML5 tags, it’s case-

insensitive. If you don’t like reaching for Shift, you could type <!doctype html>

Jump Start HTML5 Basics10

instead. If you really enjoy using Caps Lock, you could also type <!DOCTYPE HTML>

instead.

Next is the head element. The head element typically contains information about

the document, such as its title or character set. In this example, our head element

contains a meta element that defines the character set for this document. Including

a character set is optional, but you should always set one and it's recommended

that you use UTF-81.

Make Sure You’re Using UTF-8

Ideally, verify your text editor saves your documents with UTF-8 encoding "without

BOM" and uses Unix/Linux line-endings.

Our head element also contains our document title (<title>Hi</title>). In most

browsers, the text between the title tags is displayed at the top of the browser

window or tab.

Comments in HTML are bits of text that aren’t rendered in the browser. They’re

only viewable in the source code, and are typically used to leave notes to yourself

or a coworker about the document. Some software programs that generate HTML

code may also include comments. Comments may appear just about anywhere in

an HTML document. Each one must start with <!-- and end with -->.

A document head may also contain link elements that point to external resources,

as shown here. Resources may include style sheets, favicon images, or RSS feeds.

We use the rel attribute to describe the relationship between our document and

the one we’re linking to. In this case, we’re linking to a cascading style sheet, or

CSS file. CSS is the stylesheet language that we use to describe the way a document

looks rather than its structure.

We can also use a style element (delineated here by <style> and </style>) to in-

clude CSS in our file. Using a link element, however, lets us share the same style

sheet file across multiple pages.

1 http://www.w3.org/International/questions/qa-choosing-encodings

11The Anatomy of HTML5

http://www.w3.org/International/questions/qa-choosing-encodings
http://www.w3.org/International/questions/qa-choosing-encodings

By the way, both meta and link, are examples of void HTML elements; we could

also self-close them using />. For example, <meta charset=utf-8> would become

<meta charset=utf-8 />, but it isn’t necessary to do this.

To Quote or Not Quote: Attributes in HTML5
In the previous example, our attribute values are unquoted. In our hi.html example,

we used quotes. Either is valid in HTML5, and you may use double (") or single (')

quotes.

Be careful with unquoted attribute values. It’s fine to leave a single-word value

unquoted. A space-separated list of values, however, must be enclosed in quotes.

If not, the parser will interpret the first value as the value of the attribute, and sub-

sequent values as empty attributes. Consider the following snippet:

<code class=php highlightsyntax><?php echo 'Hello!'; ?></code>

Because both values for the class attribute are not enclosed in quotes, the browser

interprets it like so:

<code class="php" highlightsyntax><?php echo 'Hello!'; ?></code>

Only php is recognized as a class name, and we’ve unintentionally added an empty

highlightsyntax attribute to our element. Changing class=php highlightsyntax

to class="php highlightsyntax" (or the single-quoted class='php highlightsyn-

tax') ensures that both class attribute values are treated as such.

A Pared-down HTML5 Document
According to the rules of HTML—this is also true of HTML 4—some elements don’t

require start tags or end tags. Those elements are implicit. Even if you leave them

out of your markup, the browser acts as if they’ve been included. The body element

is one such element. We could, in theory, re-write our hi.html example to look like

this.

Jump Start HTML5 Basics12

<!DOCTYPE html>
<head>
 <meta charset=utf-8>
 <title>Hi</title>
 <p>Hi

When our browser creates the document node tree, it will add a body element for

us.

Just because you can skip end tags doesn’t mean you should. The browser will need

to generate a DOM in either case. Closing elements reduces the chance that browsers

will parse your intended DOM incorrectly. Balancing start and end tags makes errors

easier to spot and fix, particularly if you use a text editor with syntax highlighting.

If you’re working within a large team or within a CMS (Content Management System),

using start and end tags also increases the chance that your chunk of HTML will

work with those of your colleagues. For the remainder of this book, we’ll use start

and end tags, even when optional.

Start and End Tags

To discover which elements require start and end tags, consult the World Wide

Web Consortium’s guide HTML: The Markup Language (an HTML language refer-

ence)2. The W3C also manages the Web Platform Docs3 which includes this in-

formation.

"XHTML5": HTML5’s XML Syntax
HTML5 can also be written using a stricter, XML-like syntax. You may remember

from Chapter 1 that XHTML 1.0 was "a reformulation of HTML 4 as an XML 1.0

application." That isn’t quite true of what is sometimes called "XHTML5". XHTML5

is best understood as HTML5 that’s written and parsed using the syntax rules of

XML and served with a Content-type: application/xml+xhtml response header.

The following rules apply to "XHTML5":

■ All elements must have a start tag.

2 http://www.w3.org/TR/html-markup/
3 http://docs.webplatform.org/wiki/Main_Page

13The Anatomy of HTML5

http://www.w3.org/TR/html-markup/
http://www.w3.org/TR/html-markup/
http://docs.webplatform.org/wiki/Main_Page

■ Non-void elements with a start tag must have an end tag (p and li, for example).

■ Any element may be "self-closed" using />.

■ Tags and attributes are case sensitive, typically lowercase.

■ Attribute values must be enclosed in quotes.

■ Empty attributes are forbidden (checked must instead be checked="checked"

or checked="true").

■ Special characters must be escaped using character entities.

Our html start tag also needs an xmlns (XML name space) attribute. If we rewrite

our document from above to use XML syntax, it would look like the example below.

<!DOCTYPE html>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8" />
 <title>Hi</title>
 </head>
 <body>
 <p>

 Isn't this a lovely flower?
 </p>
 <script src="foo.js" />
 </body>
</html>

Here we’ve added the XML name space with the xmlns attribute, to let the browser

know that we’re using the stricter syntax. We’ve also self-closed the tags for our

empty or void elements, meta and img. According to the rules of XML and XHTML,

all elements must be closed either with an end tag or by self-closing with a space,

slash, and a right-pointing angle bracket (/>).

In this example, we have also self-closed our script tag. We could also have used

a normal </script> tag, as we’ve done with our other elements. The script element

is a little bit of an oddball. You can embed scripting within your documents by

placing it between script start and end tags. When you do this, you must include

an end tag.

Jump Start HTML5 Basics14

However, you can also link to an external script file using a script tag and the src

attribute. If you do so, and serve your pages as text/html, you must use a closing

</script> tag. If you serve your pages as application/xml+xhtml, you may also

use the self-closing syntax.

Don’t forget: in order for the browser to parse this document according to

XML/XHTML rules, our document must be sent from the server with a Content-

type: application/xml+xhtml response header. In fact, including this header will

trigger XHTML5 parsing in conforming browsers even if the DOCTYPE is missing.

Configuring Your Server

In order for your web server or application to send the Content-type: applic-

ation/xml+xhtml response header, it must be configured to do so. If you’re using

a web host, there’s a good chance your web host has done this already for files

with an .xhtml extension. Here you would just need to rename hi.html to hi.xhtml.

If that doesn't work, consult your web server documentation.

As you may have realized, XML parsing rules are more persnickety. It’s much

easier to use the text/html MIME type and its looser HTML syntax.

15The Anatomy of HTML5

Chapter3
Structuring Documents
HTML5 adds several elements that provide a way to break a single document into

multiple chunks of content—content that may be either related or independent.

These elements add semantic richness to our markup, and make it easier to repurpose

our documents across media and devices.

We’ll take a look at these elements and how they interact using a fictitious top story

from a fictitious news web site: The HTML5 News-Press, as shown in Figure 3.1.

Figure 3.1. The HTML5 News-Press

Our news story page begins with a masthead and main navigation bar. In previous

versions of HTML, we might have marked that up like so:

<div id="header">
 <h1>HTML5 <i>News-Press</i></h1>
 <h2>All the news that's fit to link</h2>
 <ul id="nav">
 World
 National
 Metro area
 Sports
 Arts & Entertainment

</div>

Our page ends with a footer element. Again, using HTML 4, our markup might look

like this:

Jump Start HTML5 Basics18

<div id="footer">

 Contact Us
 Terms of Use
 Privacy Policy

 <p>No copyright 2013 HTML5 News-Press.</p>
</div>

HTML5, however, adds elements specifically for this purpose: header, nav and

footer.

The header element functions as a header for the contents of a document segment.

The footer functions as a footer for a document segment. Notice, I said segment

and not document or page. Some elements are considered sectioning elements.

They split a document into sections or chunks. One of these elements, of course, is

the new section element. Other sectioning elements include body, article, aside,

are nav as well. Here’s the tricky part: each sectioning element may contain its own

header and footer. It’s a bit confusing, but the main point here is that a document

may contain multiple header and footer elements.

<header>
 <h1>HTML5 <i>News-Press</i></h1>
 <h2>All the news that's fit to link</h2>
 <nav>

 World
 National
 Metro area
 Sports
 Arts & Entertainment

 </nav>
</header>

Here, we’ve wrapped our masthead and navigation in header tags. We’ve also

swapped our id="nav" attribute and value for the nav element. Let’s re-write our

footer using HTML5’s footer element.

19Structuring Documents

<footer>

 Contact Us
 Terms of Use
 Privacy Policy

 <p>No copyright 2013 HTML5 News-Press.</p>
</footer>

Here we’ve simply swapped <div id="footer"> for <footer>. Our document bones

are in place. Let’s add some flesh.

The article Element
As defined by the HTML5 specification, the article element:

"[R]epresents a complete, or self-contained, composition in a docu-

ment, page, application, or site and that is, in principle, independ-

ently distributable or reusable, e.g. in syndication."

Magazine articles and blog posts are obvious examples of when an article element

would be semantically appropriate. But you could also use it for blog comments.

This element is appropriate for any almost content item that could be reused.

We can replace our <div id="article"> start and end tags with article tags.

<article>
 <h1>Sky fall imminent says young chicken leader</h1>

 <p class="byline">
 <b class="reporter">Foxy Loxy
 <i class="employment-status">Staff Writer</i>
 </p>

 <div class="aside">

 <h2>About Henny Penny</h2>

 <dl>
 <dt>Age</dt>
 <dd>32</dd>

Jump Start HTML5 Basics20

 <dt>Occupation</dt>
 <dd>President, National Organization of Chickens</dd>

 <dt>Education</dt>
 <dd>B.A., Chicken Studies, Farmer University</dd>
 <dd>J.D., University of Cluckland</dd>
 </dl>

 <p>
 Penny joined the National Organization of Chickens in 2002
 ➥as a staff lobbyist after short, but effective career in
 ➥the Farmlandia senate. Penny rose through the
 ➥organization's ranks, serving as secretary, then vice-
 ➥president before being elected president by the group's
 ➥members in 2011.
 </p>

 <p>
 The National Organization of Chickens is an advocacy group
 ➥focused on environmental justice for chickens.
 </p>
 </div>

 <p>
 LONDON -- Henny Penny, young leader of the National
 ➥Organization of Chickens announced that the sky will fall
 ➥within the next week. Opponents criticize Penny,
 ➥suggesting that acorns are the more likely threat.
 </p>

 <p>
 Phasellus viverra faucibus arcu ullamcorper sodales. Curabitur
 ➥tincidunt est in imperdiet ultrices. Sed dignissim felis a
 ➥neque dignissim, nec cursus sapien egestas.
 </p>

 <div id="article-meta">
 <p class="reporter-contact">You may reach reporter Foxy Loxy
 ➥via email at foxy.loxy@html5newspress.com</p>
 <p class="contributor">Staff writer Turkey Lurkey contributed
 ➥to this report.</p>
 <p class="pubdate">Published:

21Structuring Documents

 ➥<time>2013-07-11T09:00:00-07:00</time>.</p>
 </div>
</article>

The article element is an example of sectioning content, which means it may

contain a header and a footer. If we think about it, our <div id="article-meta">

could be considered a footer for our article element. How about we swap our div

element tags for footer tags?

<footer id="article-meta">
 <p class="reporter-contact">You may reach reporter Foxy Loxy
 ➥via email at foxy.loxy@html5newspress.com</p>
 <p class="contributor">Staff writer Turkey Lurkey contributed
 ➥to this report.</p>
 <p class="pubdate">Published:
 ➥<time>2013-07-11T09:00:00-07:00</time>.</p>
</footer>

We are keeping our id attribute intact, however. This makes it easier to distinguish

from other footer elements on the page if we add CSS or DOM scripting.

Think of the aside element as the HTML5 equivalent of newspaper or magazine

sidebar. It denotes content that's related to the main article, but could stand alone.

In our HTML 4 example, we used <div class="sidebar"> to mark up our aside.

However, the aside element offers more meaning and context. Let’s change our

markup to use the aside element instead.

<aside>
 <h2>About Henny Penny</h2>
 <dl>
 <dt>Age</dt>
 <dd>32</dd>

 <dt>Occupation</dt>
 <dd>President, National Organization of Chickens</dd>

 <dt>Education</dt>
 <dd>B.A., Chicken Studies, Farmer University</dd>
 <dd>J.D., University of Cluckland</dd>
 </dl>

Jump Start HTML5 Basics22

 <p>
 Penny joined the National Organization of Chickens in 2002
 ➥as a staff lobbyist after short, but effective career in
 ➥the Farmlandia senate. Penny rose through the
 ➥organization's ranks, serving as secretary, then vice-
 ➥president before being elected president by the group's
 ➥members in 2011.
 </p>

 <p>
 The National Organization of Chickens is an advocacy group
 ➥focused on environmental justice for chickens.
 </p>
</aside>

Putting It Together
Our finished HTML5 document looks like this.

<!DOCTYPE html>
<head>
 <meta charset="utf-8">
 <title>HTML5 News-Press</title>
</head>
<body>
 <header>
 <h1>HTML5 <i>News-Press</i></h1>
 <h2>All the news that's fit to link</h2>
 <nav>

 World
 National
 Metro area
 Sports
 Arts & Entertainment

 </nav>
</header>

<article>
 <h1>Sky fall imminent says young chicken leader</h1>

 <p class="byline">
 <b class="reporter">Foxy Loxy

23Structuring Documents

 <i class="employment-status">Staff Writer</i>
 </p>

 <aside>

 <h2>About Henny Penny</h2>

 <dl>
 <dt>Age</dt>
 <dd>32</dd>

 <dt>Occupation</dt>
 <dd>President, National Organization of Chickens</dd>

 <dt>Education</dt>
 <dd>B.A., Chicken Studies, Farmer University</dd>
 <dd>J.D., University of Cluckland</dd>
 </dl>

 <p>
 Penny joined the National Organization of Chickens in 2002
 ➥as a staff lobbyist after short, but effective career in
 ➥the Farmlandia senate. Penny rose through the
 ➥organization's ranks, serving as secretary, then vice-
 ➥president before being elected president by the group's
 ➥members in 2011.
 </p>

 <p>
 The National Organization of Chickens is an advocacy group
 ➥focused on environmental justice for chickens.
 </p>
 </aside>

 <p>
 LONDON -- Henny Penny, young leader of the National
 ➥Organization of Chickens announced that the sky will fall
 ➥within the next week. Opponents criticize Penny,
 ➥suggesting that acorns are the more likely threat.
 </p>

 <p>
 Phasellus viverra faucibus arcu ullamcorper sodales. Curabitur
 ➥tincidunt est in imperdiet ultrices. Sed dignissim felis a
 ➥neque dignissim, nec cursus sapien egestas.

Jump Start HTML5 Basics24

 </p>

 <footer id="article-meta">
 <p class="reporter-contact">You may reach reporter Foxy Loxy
 ➥via email at foxy.loxy@html5newspress.com</p>
 <p class="contributor">Staff writer Turkey Lurkey contributed
 ➥to this report.</p>
 <p class="pubdate">Published:
 ➥<time>2013-07-11T09:00:00-07:00</time>.</p>
 </footer>

</article>

<footer>

 Contact Us
 Terms of Use
 Privacy Policy

 <p>No copyright 2013 HTML5 News-Press.</p>
</footer>

The point of these new elements is to have a standardized way to describe document

structures. HTML is, at heart, a language for exchanging and repurposing documents.

Using these structural elements means that the same document can be published

as a web page and also syndicated for e-book readers without having to sort through

a jumble of arbitrary div elements and id attributes.

The section Element
HTML5 also introduces the section element, which is used to define segments of

a document that are neither a header, footer, navigation, article, or aside. It’s more

specific than our old friend, the div element, but more generic than article.

Let’s use the section element to mark up the HTML5 News-Press home page, shown

in Figure 3.2.

25Structuring Documents

Figure 3.2. HTML5 News-Press home page

Here we have three sections of news stories: "Top Stories," "Sports," and "Business."

In HTML 4, the div elements is the clear choice to define these sections because

it’s our only choice. But in HTML5, we have the somewhat more descriptive section

element.

<section id="topstories">
 <h1>Top stories</h1>

 Sky fall imminent says young chicken
 ➥leader
 Wolf blows down homes of sticks, straw
 Children lost after breadcrumb trail goes
 ➥missing found safe
 Cow jumps over moon, witnesses
 ➥astounded

 <footer>

Jump Start HTML5 Basics26

 <p>More news</p>
 </footer>
</section>

<section id="sports">
 <h1>Sports</h1>

 David beats Goliath in upset
 Goods top Evils 3-2
 Local swimmer qualifies for 2016
 ➥Olympics
 Woonsocket Little League team reaches
 ➥semis

 <footer>
 <p>More sports</p>
 </footer>
</section>

<section id="business">
 <h1>Business</h1>

 BigWidgets, Ltd. expansion to create 3,000
 ➥jobs
 U.S. dollar, Euro achieve parity
 GiantAirline and Air Humongous to merge
 WorldDomination Banc deemed 'too big to
 ➥fail'

 <footer>
 <p>More business</p>
 </footer>
</section>

div Versus section
While these new sectioning elements give us better semantics and meaning, they

also bring a touch of confusion. One question you may be asking is: "Is it still okay

to use the div element?

27Structuring Documents

The short answer is "Yes." After all, div is still a valid HTML5 element. But div has

little semantic value. It doesn’t tell us anything about what it contains, so use it for

those rare instances when another semantically-relevant tag doesn’t exist. For ex-

ample, you may find that you need to add an extra element as a "wrapper" to ease

styling. Or perhaps you want to group several French-language elements within an

English-language document. Enclosing those elements with <div lang="fr"> and

</div> is certainly appropriate. It most other cases, it’s better to use section,

header, nav, footer, article or aside.

Other Document Elements
New sectioning elements aren’t the only new document-related elements introduced

in HTML5. In this chapter, we’ll look at the following elements:

■ figure and figcaption for defining figures, charts, and diagrams

■ main which explicitly defines the predominant portion of a document’s content

figure and figcaption
If a document was accompanied by a chart or diagram, in HTML 4, we might have

used a combination of div and p elements to mark it up as shown below.

<div class="graph" id="figure1">

 <p class="caption">Figure 1: Chocolate has increased in price
 ➥by 200% since 2008.</p>
</div>

That’s an acceptable way to do it. But what happens when we want to read it on

our fancy-pants ereader that displays HTML documents using a book-style layout?

Using <div class="chart"> doesn’t tell us much about what this chunk of inform-

ation is and how it should be displayed.

In this case, we should use the figure element. It gives us a way to mark up charts

and captions and make them independent of document flow. How about we modify

our markup a bit?

Jump Start HTML5 Basics28

<figure class="graph" id="figure1">

 <p class="caption">Figure 1: Chocolate has increased in price
 ➥by 200% since 2008.</p>
</figure>

Now our e-reader knows this is a chart, and can display it in a suitable way. We’ve

kept the class and ID attributes. The former comes in handy for CSS styling ― per-

haps we want to display graphs differently than diagrams. The latter makes it easy

to link to our figure.

We still have <p class="caption"> though, don’t we? How about we use the fig-

caption element instead? figcaption serves as a caption or legend for its sibling

content. It isn’t required, but if included, figcaption needs to be either the first

child or last child of a figure element. Let’s change our markup once more:

<figure class="graph" id="figure1">

 <figcaption>Figure 1: Chocolate has increased in price
 ➥by 200% since 2008.</figcaption>
</figure>

main Element
The main element is one of the newest elements in HTML5. It actually isn’t in the

2011 version of the specification published by the World Wide Web Consortium,

but it is a part of the HTML 5.1 specification.

Unsurprisingly, main should be used to clarify the main part of a document or ap-

plication. By "main part," of a document, we mean content that:

■ is unique to the document or application

■ doesn’t include elements, such as a global header or footer, that are shared across

a site

To date, only Chrome 26+, Firefox 21+, and Opera 15+ support the main element.

Support should come to Internet Explorer and Safari in a future release.

29Structuring Documents

What’s the use case for main? Some browsers, such as Safari and Firefox for Android,

offer a "reader mode" that strips away headers, footers, and ads. These browsers

currently use heuristics—an educated guess—to determine the main content of a

document. Using main makes it clear to the browser which segment of the page it

should focus on. Browsers can also use the main element as a hook for accessibility

features, such the ability to skip navigation.

Let’s take one last look at our news article markup, this time including the main

element.

<!DOCTYPE html>
<html lang="en-us">
<head>
 <meta charset="UTF-8">
 <title>HTML5 News-Press</title>
 <link rel="stylesheet" href="s.css" media="screen">
</head>
<body>
<div id="wrapper">
 <header>
 <h1>HTML5 <i>News-Press</i></h1>
 <h2>All the news that's fit to link</h2>
 <nav>

 World
 National
 Metro area
 Sports
 Arts & Entertainment

 </nav>
 </header>

 <main>
 <article>
 <header>
 <h1>Sky fall imminent says young chicken leader</h1>
 <p class="byline">
 <b class="reporter">Foxy Loxy
 <i class="employment-status">Staff Writer</i>
 </p>
 </header>

Jump Start HTML5 Basics30

 <aside>
 <h2>About Henny Penny</h2>
 <dl>
 <dt>Age</dt>
 <dd>32</dd>

 <dt>Occupation</dt>
 <dd>President, National Organization of Chickens</dd>

 <dt>Education</dt>
 <dd>B.A., Chicken Studies, Farmer University</dd>
 <dd>J.D., University of Cluckland</dd>
 </dl>
 <p>
 Penny joined the National Organization of Chickens in 2002
 ➥as a staff lobbyist after short, but effective career in
 ➥the Farmlandia senate. Penny rose through the
 ➥organization's ranks, serving as secretary, then vice-
 ➥president before being elected president by the group's
 ➥members in 2011.
 </p>

 <p>
 The National Organization of Chickens is an advocacy group
 ➥focused on environmental justice for chickens.
 </p>
 </aside>

 <p>
 LONDON -- Henny Penny, young leader of the National
 ➥Organization of Chickens announced that the sky will fall
 ➥within the next week. Opponents criticize Penny,
 ➥suggesting that acorns are the more likely threat.
 </p>

 <p>
 Phasellus viverra faucibus arcu ullamcorper sodales.
 ➥Curabitur tincidunt est in imperdiet ultrices. Sed
 ➥dignissim felis a neque dignissim, nec cursus sapien
 ➥egestas.
 </p>

 </article>
 </main>

31Structuring Documents

 <footer>

 Contact Us
 Terms of Use
 Privacy Policy

 <p>No copyright 2013 HTML5 News-Press.</p>
 </footer>

</div>
</body>
</html>

Now we have a document that's more accessible and easier for browsers of all kinds

to consume and display.

Jump Start HTML5 Basics32

Chapter4
HTML5 Forms
HTML5 forms are a leap forward from those in previous versions of HTML. We now

have a half dozen new input states or types, such as range and url; we have new

attributes that let us require fields, or specify a particular format; we have an API

that lets us constrain and validate input; and finally, we have new form elements,

such as datalist, that let us create engaging user interfaces without heavy JavaScript

libraries or plugins.

Unfortunately, not every browser supports all of these features just yet. For now we

still need to use JavaScript libraries, and polyfills1 (downloadable code which

provides facilities that are not built into a web browser) as fall back strategies.

The best way to understand HTML5 forms is to build one. Let’s try building a form

that collects story suggestions for the HTML5 News-Press site from the previous

chapter. We’ll need to gather the following information with our form:

■ Name

■ City of residence

1 http://remysharp.com/2010/10/08/what-is-a-polyfill/

http://remysharp.com/2010/10/08/what-is-a-polyfill/

■ Email address

■ A telephone number

■ A URL where we can learn more (if there is one)

■ The actual story idea

At the very least, we’ll want to require the user to provide a first name, email address,

and their story idea.

Starting an HTML5 Form
To build our HTML form, we’ll need to start with an opening form element tag.

Because we want to submit this form to a server-side processing script, we’ll need

to include two attributes.

■ action: the URL of the script

■ method: the HTTP request method to use, sometimes GET, but usually POST

Since this could be a lengthy message, we’ll use POST rather than GET. GET is better

suited to short key-value pairs, such as search boxes. Other HTTP methods, such

as PUT, HEAD, or DELETE may also be used with forms, but most of the time you’ll

use GET or POST.

It's worth noting here that application/x-www-form-urlencoded is the default

content type value for form data. We could also explicitly set it using the enctype

attribute, but we don’t have to.

We could also set our enctype attribute to multipart/form-data as shown below:

<form action="/script" method="post" enctype="multipart/form-data">

Either is fine for sending text. If we wanted to upload files, however, we would

need to use enctype="multipart/form-data".

Jump Start HTML5 Basics34

The input Element
The input element is the most commonly used element for creating form controls.

An input tag typically includes the following attributes.

■ name: the name of the field

■ type: indicates what kind of input control to display

■ id: a unique identifier for the field

■ value: sets a default value for the field

Of these, only name is required in order for our form to send data. Each name attribute

becomes a key or field name for our server-side script. That said, in most cases,

you'll also want to set the type attribute.

There are about a dozen possible values for the type attribute, most of which we’ll

cover in this chapter. Each type value corresponds to a different kind of user interface

control and set of validation constraints. The most liberal value for the type attrib-

ute—and the default state of the input element—is text.

Collecting Names
People names and place names are usually a mix of alphanumeric characters, spaces,

and punctuation marks. For this reason, we’ll use the text input state for those

fields. Let’s add form fields for the letter writer’s name and city of residence. Since

we want to require the user to provide a name, we’ll also add a required attribute.

<p>
 <label for="your_name">Your name:</label>
 <input type="text" name="your_name" id="your_name" required>
</p>

<p>

35HTML5 Forms

 <label for="city">City of residence:</label>
 <input type="text" name="city" id="city">
</p>

id and name attributes

The id attribute may, but does not have to be, the same as the name attribute.

Using Form Labels
We’ve added an unfamiliar element here: label. The label element in an HTML

form works just like the label on a paper form. It tells the user what to enter in the

field. In order to associate a label with a form control, the label must have a for

attribute that matches the id attribute of its form field. Or you could place the form

control inside of the label element.

<label>Your name:
 <input type="text" name="your_name" id="your_name" required>
</label>

Using the for and id attributes, however, offers a little more flexibility for page

layouts.

Why not just use text without wrapping it in a label element? Using label increases

the usability of the web for those with physical or cognitive challenges. Screen-

reading software, for example, uses labels to help low-vision users in filling out

forms. It’s an accessibility feature that’s baked into HTML.

Requiring Form Fields
One of the great improvements of HTML5 over previous versions is native form

validation. By adding the required attribute, we are asking the browser to make

sure this field has been filled out before submitting the form.

Empty Attributes

The required attribute is an example of an empty attribute. Its presence or absence

determines whether that value is set.

Jump Start HTML5 Basics36

If the your_name field is empty when the user submits our form, Chrome, Opera,

and Internet Explorer 10+ will prevent submission and alert the user, as shown in

Figure 4.1. No DOM scripting is necessary.

Figure 4.1. A form submission error message in Chrome

Notice that I didn’t mention Safari. For better or worse, Safari versions 6.0.5 and

older don't provide native user interface feedback. It does support HTML5 validation,

but we’ll still need to use DOM scripting and CSS to alert the user about form sub-

mission. We’ll discuss one way to do this in the Validation API section.

Styling Required Forms
You may want to visually indicate which fields are required and which aren’t using

CSS. There are two CSS selectors we can use to target required fields.

1. Using the attribute selector [required].

2. Using the :required pseudo-class.

The :required pseudo-class is a CSS Selectors, Level 42 selector, but support is

available in the latest version of every major browser. CSS Level 4 selectors also

adds an :optional pseudo-class that we could use instead to target the input fields

that aren’t required.

2 http://www.w3.org/TR/selectors4/

37HTML5 Forms

http://www.w3.org/TR/selectors4/

To target older browsers that lack CSS4 selector support, use the attribute selector.

For example, if we want to add a 1 pixel red border around our required fields, we

could add the following to our CSS.

input[required], input:required
{
 border: 1px solid #c00;
}

Collecting Email Addresses, Phone Numbers, and URLs
We’ll want to let our tipster know that we’ve received their input. That means our

form needs fields for the email address and phone number. We also want to collect

URLs where we can learn more information about this story idea, so our form will

also need a field for the URL.

With previous versions of HTML, we'd use a text field for all of these and validate

the data with JavaScript. HTML5, however, defines three new input types for this

purpose: email, tel and url.

Let’s add an email field to our form. We’ll also make it required.

<p>
 <label for="email">E-mail address</label>
 <input type="email" name="email" id="email" required>
</p>

Using the email type tells the browser to check this field for a valid email address.

It can’t, of course, tell whether the address can receive mail. But it will check that

the input for this field is syntactically valid. If a user enters an invalid address, most

browsers will alert the user when he or she submits the form.

You may also want to let the user provide multiple email addresses. In that case,

use the multiple attribute. The user can then enter one or more e-mail addresses,

each separated by a comma.

Any time you permit multiple values for one input field, it’s a good idea to indicate

that it’s allowed with a label or explanatory text.

Jump Start HTML5 Basics38

On Validation

Although native data validation is a part of HTML5, you should still use server-

side validation and escape any output that originates with the user. Not all browsers

support HTML5, and not all input sent to your script will come from your form.

Phone numbers are another story. Email addresses adhere to a standard format, but

telephone numbers do not. In the United Kingdom, phone numbers may be up to

11 digits long. In the United States, they are no more than 10 digits. Some countries

have phone numbers that contain 13 digits. The formatting of phone numbers also

varies by country. Inconsistent lengths and formats make native phone number

validation difficult. As a result, the specification doesn’t define an algorithm for

doing so.

Let’s add a telephone field to our form. To do that, we do need to add an input field

and set the value of its type attribute to tel. We won’t make it required.

<p>
 <label for="telephone">Telephone number:</label>
 <input type="tel" name="telephone" id="telephone">
</p>

The big advantage of using tel instead of text is to trigger a telephone input screen

in browsers that support it.

Figure 4.2. The tel input type in Firefox Mobile

Though tel doesn’t give us automatic validation, we can shape user input using

two attributes:

■ placeholder, which offers a 'hint' to the user about what format this field expects.

39HTML5 Forms

■ pattern, which sets a regular expression pattern that the browser can use to

validate input.

Our imaginary newspaper is based in the United States, and has a US-based audience.

We’ll reflect that in our attribute values.

<p>
 <label for="telephone">Telephone number:</label>
 <input type="tel" name="telephone" id="telephone"
 ➥placeholder="(000) 000-0000"
 ➥pattern="\([2-9][0-9]{2}\) [0-9]{3}-[0-9]{4}">
</p>

For our placeholder attribute, we’ve just added text that reflects the expected format

for this phone number.

Placeholder Text

Placeholder text is not a replacement for the label element. Provide a label for

each input field, even if you use the placeholder attribute

For pattern, we’ve used a regular expression. This attribute provides a format or

pattern that the input must match before the form can be submitted. Almost any

valid JavaScript regular expressions can be used with the pattern attribute. Unlike

with JavaScript, you can’t set global or case-insensitive flags. To allow both upper

and lower case letters, your pattern must use [a-zA-Z].The pattern attribute itself

may be used with text, search, email, url and telephone input types.

Regular Expressions

Regular expressions are a big, complex topic and, as such, they’re beyond the

scope of this book. For a more complete reference, consult WebPlatform.org’s

documentation3.

The url input type works much the same way as email does. It validates user input

against accepted URL patterns. Protocol prefixes such as ftp:// and gopher:// are

3 http://docs.webplatform.org/wiki/concepts/programming/javascript/regex

Jump Start HTML5 Basics40

http://docs.webplatform.org/wiki/concepts/programming/javascript/regex
http://docs.webplatform.org/wiki/concepts/programming/javascript/regex

permitted. In this case, we want to limit user input to domains using the http://

and https:// protocols. So we’ll add a pattern attribute here as well.

<p>
 <label for="url">
 Please provide a web site where we can learn more (if
 ➥applicable):
 </label>
 <input type="url" name="current_site" id="current_site"
 ➥placeholder="http://www.example.com/"
 ➥pattern="http(|s)://[-0-9a-z]{1,253}\.[.a-z]{2,7}">
 </p>

We’ve also added placeholder text as a cue to the user about what we’d like them

to tell us. Altogether, your form should resemble the one below:

<form action="./script" method="POST">
 <p>
 <label for="your_name">Your name:</label>
 <input type="text" name="your_name" id="your_name">
 </p>

 <p>
 <label for="city">City of residence:</label>
 <input type="text" name="city" id="city">
 </p>

 <p>
 <label for="email">
 E-mail address
 (separate multiple e-mail addresses with a comma):
 </label>
 <input type="email" name="email" id="email"
 ➥placeholder="jane.doe@example.com" multiple >
 </p>

 <p>
 <label for="tel">Telephone number:</label>
 <input type="tel" name="phone_number" if="phone_number"
 ➥placeholder="(000) 000-0000"
 ➥pattern="\([2-9][0-9]{2}\) [0-9]{3}-[0-9]{4}">
 </p>

 <p>

41HTML5 Forms

 <label for="url">
 Please provide a web site where we can learn more (if
 ➥applicable):
 </label>
 <input type="url" name="current_site" id="current_site"
 ➥placeholder="http://www.example.com/"
 ➥pattern="http(|s)://[-0-9a-z]{1,253}\.[.a-z]{2,7}">
 </p>

 <p>
 <label for="project">Tell us your story idea:</label>
 <textarea name="story_idea" id="story_idea"
 ➥placeholder="Briefly tell us what we should write about and
 ➥why."
 ➥maxlength="2000"></textarea>
 </p>

 <p>
 <button type="submit">Send it!</button>
 </p>
</form>

Uploading Files
The file input type is not new to HTML. We’ve been able to upload files since

HTML 3.2. What is new, however, is the multiple attribute, which lets us upload

multiple files using one form field. In this section, we’ll build a form that lets users

upload audio files.

First we’ll need to create a start tag for the form element.

<form action="/script" method="post" enctype="multipart/form-data">

As with our previous form, our start tag has action and method attributes. But note

that the value of its enctype attribute is multipart/form-data. Again, when upload-

ing binary data, we must use the multipart/form-data encoding type.

Next, we need to add an input tag, and set the value of its type attribute to file.

We’ll name it upload, but you can choose almost any name you like. To permit

multiple file uploads, we’ll need to add the multiple attribute.

Jump Start HTML5 Basics42

<input type="file" name="upload" id="upload" multiple>

PHP Form Keys

PHP requires form keys with multiple values to use square bracket array syntax.

If you’re using PHP to handle your forms, append square brackets to the name

(for example: name="upload" would become name="upload[]").

We can also restrict what files can be uploaded in the browser with the accept at-

tribute. The value of accept may be any of the following:

■ audio/*, video/*, image/*

■ a valid MIME type such as image/png or text/plain

■ a file extension that begins with '.'

You may include multiple accept values; separate them with a comma. Let’s update

our form field to accept only MP3 and Ogg Vorbis files.

<input type="file" multiple name="upload" id="upload"
➥accept=".mp3,.ogv">

We’ll finish up our form with a submit button and closing form tag:

<form action="/script" method="post" enctype="multipart/form-data">
 <p>
 <label for="upload">Your file(s):</label>
 <input type="file" multiple name="upload" id="upload"
 ➥accept=".mp3,.ogv">
 </p>
 <p>
 <button type="submit">Upload!</button>
 </p>
</form>

When submitted, our server-side script will save those files, and return a "thank

you" message.

43HTML5 Forms

Take Appropriate Precautions

You can’t rely on browser-based validation or restrictions. Take appropriate pre-

cautions, and make sure that your file uploads are being placed in a directory that

is not web-accessible.

The datalist Element
With the datalist element, we can add a predefined set of options to any form input

control. Let’s take a look at how we go about this. First, we’ll create a datalist of

destination options for a fictitious airline:

<datalist id="where_we_fly">
 <option>Accra, Ghana</option>
 <option>Paris, France</option>
 <option>Melbourne, Australia</option>
 <option>Lima, Peru</option>
 <option>Los Angeles, United Sates</option>
 <option>Kuala Lumpur, Malaysia</option>
</datalist>

Now we can associate it with an input field using the list attribute.

<p>
 <label for="destination">Where would you like to go?</label>
 <input type="text" name="destination" id="destination" value=""
 ➥list="where_we_fly">
</p>

In browsers that support the datalist element, the code above will associate a

predefined list of options with the input element. When the user enters text,

matching entries are displayed in the list below the field as shown in Figure 4.3.

Jump Start HTML5 Basics44

Figure 4.3. datalist in IE

In browsers without support for datalist, the text input field will behave normally.

Although data lists may, in theory, be associated with other input types, not all

browsers support this.

Other Input Types
We’ve already discussed several input types in this chapter, but there are a few

more that we’ll cover in this section.

■ search

■ range

■ number

■ color

■ datetime and datetime-local

■ date

■ month

■ week

■ time

Aside from the range input type and search, support for these types varies wildly.

Some browsers may have full support for one input type, complete with a user in-

terface control, but lack another one entirely.

45HTML5 Forms

It’s possible to determine whether a browser supports a particular input type by

testing the value returned by its type attribute. If a browser doesn’t support a partic-

ular type, the value of its type attribute will default to text. For example, consider

the following range input:

<input type="range" value="" id="slider">

We could test for browser support using the following bit of JavaScript code.

var hasRange = function(elID){
 return document.getElementById(elID).type == 'range';
}

In browsers that do not support range, the function above will return false. Other-

wise, it will return true. Libraries such as Modernizr4 make it easier to check for

support.

input type="search"

For the most part, search operates like the text input type. It merely provides a

type that can be visually distinct from text boxes. For example, in Safari, Chrome,

and Opera 15 on Mac OS X, search input fields have rounded corners.

Figure 4.4. The Search input type in Safari

input type="range"

The range input type presents the user with a slider control that’s well suited to

approximate value inputs between an upper and lower boundary. By default, it’s a

horizontal control, as shown in Figure 4.5. However with some CSS (transform:

rotate(-90deg)), you can also display range inputs vertically.

4 http://modernizr.com/

Jump Start HTML5 Basics46

http://modernizr.com/

Figure 4.5. The range input type

By default, the upper and lower boundaries of the range type are 0 and 100. Change

this by setting the min and max attributes. You can also control the 'smoothness' and

precision of the thumb position using the step attribute as shown below.

<input type="range" value="" min="0" max="100" step="10">

Every time the user moves the thumb on this range input control, the value of the

range will increase or decrease by 10 between 0 and 100. You can also control pre-

cision by associating a datalist element with the range input. Each option will

be rendered as a 'notch' along the width of the range in browsers that support it—to

date, that’s Chrome and Opera 15.

Unfortunately, range isn’t supported in Internet Explorer 9 and older, or Firefox 22

and older. In those browsers, the form control will be a text box instead of a range

element.

input type="number"

The number type is another form control type for numeric input values. According

to the specification, any floating point number is a valid value. In practice, though,

things are little more complicated.

By default, the number input type only accepts integers. Entering 4.2776, for example,

will cause a validation error in conforming browsers, such as shown in Figure 4.6.

47HTML5 Forms

Figure 4.6. An error when entering a floating point number

In order to accept floating point values, we need to set the step attribute. In browsers

with incremental arrow controls, such as shown in Figure 4.7, step controls how

much the number is incremented or decremented with each press of the arrow

button.

Figure 4.7. Decimal values with the step attribute

For example, when step="0.5", both 1.5 and 98 are valid values, but 88.1 is not.

When step=".01", however, 88.1, 1.5, and 98 are all valid values, as is 3.14. In a

way, you can use the step attribute to control the floating point precision of your

numbers.

<!-- Increments number by 0.5 -->
<input type="number" name="num" id="num" value="" step=".05">

<!-- Increments number by .01; precision to the hundredth -->
<input type="number" name="num" id="num" value="" step=".01">

Jump Start HTML5 Basics48

<!-- Increments number by 0.001; precision to the thousandth -->
<input type="number" name="num" id="num" value="" step=".001">

In order to make our 4.2776 value an accepted one, we would need to use set our

step attribute to .0001. Unfortunately, this workaround does not work in Opera 12

and older versions.

Date and Time Inputs
Finally, let’s look at the date and time input types. There are six of them, listed be-

low.

■ datetime: Select a date and time as a global, forced-UTC string

■ datetime-local: Select a date and time in the user’s local time zone

■ date: Select a single date with a time component of midnight UTC

■ month: Select a month and year

■ week: Select a week and year

■ time: Select a time in hours and minutes

Browsers that support these types will display a time picker widget (for the time

type), a date picker widget (for date, month, and week), or both (datetime and dat-

etime-local), as shown in Figure 4.8.

Figure 4.8. The time picker widget in Opera

49HTML5 Forms

The datetime and datetime-local input types are subtly different. The former

treats all input as a UTC (coordinated, universal) date and time. Browsers may in-

dicate to the user that this is a UTC time input—as Opera version 12 does—or it

may display a localized user interface, and convert the time under the hood.

Chrome and Opera 15 support all but datetime. Safari as of version 6.0.5, Firefox

as of version 25, and Internet Explorer as of version 10 do not support any of these

types.

input type="color"

With the color input type, we can add a native color picker control to our applica-

tions. What the color picker looks like depends on the browser and operating system.

However in all cases, only six-digit hexadecimal color values are valid. This means

that you can’t specify a color with transparency as you can with CSS. The default

value for the color type is #000000.

Unfortunately, the color input type is only supported by Chrome and Opera 11

and 12 (but not version 15.0). It’s not ready for prime time, but is mentioned here

for completeness.

Jump Start HTML5 Basics50

Chapter5
HTML5 Multimedia: Audio and Video
Perhaps the biggest change in HTML5 is its multimedia capabilities. HTML5 brings

with it native audio and video, and almost replaces the plugins of the old web. I

say "almost" because browser vendors have yet to agree on a default format for web

audio and video.

We’ll talk about cross-browser support later in this chapter. First let’s look at the

bare minimum necessary to add video to your web page: a video tag and a src at-

tribute.

<video src="path_to_file.video"></video>

In HTML5, that closing tag is required. If you’re using XHTML syntax, you can self-

close it instead like so: <video src="path_to_file.video" />. The audio element

is almost the same. All that’s required is the opening audio tag, a src attribute and

a closing </audio> tag.

<audio src="path_to_file.audio"></audio>

Again, if we were using XHTML5 syntax, we could self-close our tag instead: <audio

src="path_to_file.audio" />.

Adding Controls
Unfortunately, as shown in Figure 5.1, our snippet from above won’t do anything

besides add the media file. We won’t be able to play our video, because it will be

stuck at the first frame. We won’t even know that there’s audio on the page.

Figure 5.1. An example of a video element without controls in Firefox. Image from Big Buck Bunny by the Blender

Foundation1.

What we need are some controls: perhaps a play button and a scrubbable progress

bar. We might also want a timer that reveals how much of the media has played,

and a volume control. Luckily for us, browsers have these built-in to their audio

and video support. We can activate them by adding the controls attribute.

<video src="path_to_file.video" controls>

1 http://bigbuckbunny.org/

Jump Start HTML5 Basics52

http://bigbuckbunny.org/
http://bigbuckbunny.org/

The controls attribute tells the browser that we want playback controls to be

available for this media instance. In most browsers, this means the user will see a

play and pause button, elapsed time indicator, and volume control, as shown in

Figure 5.2. The player may also include a button that allows the user to toggle

between full-screen and original size. What these default controls look like depends

on the browser.

Figure 5.2. An example of a video element with controls in Firefox. Image from Big Buck Bunny by the Blender

Foundation2.

controls is another example of an empty attribute. We could also use con-

trols="true" or controls="controls" if we were using XML syntax. Adding the

controls attribute, regardless of its value, will make the controls visible. Using

controls=false will not hide them.

Autoplaying and Looping Media
Perhaps we want to use a short video clip as a background element. We might want

to create an "art installation" experience in which a video plays and re-plays auto-

2 http://bigbuckbunny.org/

53HTML5 Multimedia: Audio and Video

http://bigbuckbunny.org/
http://bigbuckbunny.org/

matically. Not a problem. We can do this by adding the autoplay and loop attributes

to our video or audio tag.

<video src="path_to_file.video" autoplay loop></video>

<audio src="path_to_file.audio" autoplay loop></audio>

With autoplay, our media will begin as soon as the browser has received enough

data to start playback. When the audio or video ends, loop tells the browser to re-

start the media file from the beginning.

Use autoplay with Caution

Some audio and video can be embarrassingly bad or just embarrassing if heard.

Do your audience a favor: silence auto-playing media with the muted attribute.

<video src="annoying.video" autoplay loop muted></video>

Video-only Attributes
Although most attributes that apply to the video tag also apply to audio, a

few—related to visual display—do not:

■ height: Sets the height of the video player.

■ width: Sets the width of the video player.

■ poster: Specifies an image to display prior to video playback.

Place Holding with poster
A poster image acts as a placeholder for a video. It’s typically a still image from the

video, though it could be a company logo, title screen, icon, or some other image.

Once the page loads, visitors will see the poster image until the video begins play-

back.

To add a poster image, add a poster attribute. Set its value to the path of an image.

Most image formats work for poster images, although Internet Explorer sometimes

struggles with SVG files.

Jump Start HTML5 Basics54

<video src="path_to_file.video" poster="path_to_poster_image.jpg">
</video>

Be careful with the size of your poster image. Ideally, it should be the same dimen-

sions as your video. Initially the video player dimensions will match the poster

image dimensions. Then browser will resize the player once it has determined the

intrinsic height and width of the video. Setting an explicit height and width for

your video player prevents this resizing.

Controlling Video Dimensions
Whether you use a poster image or not, explicitly setting the height and width of

your player prevents the browser from having to redraw the page once the video

loads. One way to do this, of course, is to include the height and width attributes

with the video tag. Both attributes accept percentages, which are useful when

building a responsive or fluid layout.

<video src="path_to_file.video" poster="path_to_poster_image.jpg"
➥width="100%" height="100%"></video>

You may also set the height and width of the video player using CSS.

video {
 width: 960px;
 height: 540px;
}

In this example, we’ve used pixels. For responsive layouts, you may prefer to use

viewport percentage units: vh and vw. Any valid CSS length unit outlined in the

CSS Values and Units Module Level 33 is acceptable. Using CSS to set the video

player’s dimensions will override any width and height attributes applied to the

element itself.

Bandwidth Use and Playback Responsiveness
Most browsers download a portion of an audio or video file as the page loads.

Typically this snippet of media contains the file’s metadata, such as duration and

3 http://www.w3.org/TR/css3-values/

55HTML5 Multimedia: Audio and Video

http://www.w3.org/TR/css3-values/

dimensions, and a few seconds of the playable data. When the user initiates playback,

the browser makes a second request for the rest of the file.

Each of these requests places an additional demand on the server, whether or not

your visitor interacts with the media file. You can change this behavior with the

preload attribute. Set it to one of three possible values:

■ metadata tells the browser that it’s okay to download a portion of the file.

■ auto tells the browser that it’s okay to download as much of the video as it wants.

■ none tells the browser not to download anything until the user requests it.

Using preload="auto" provides the fastest playback for the user. Browsers will

download as much of the resource as it needs to provide consistent playback. For

shorter clips, that could be the entire file.

With preload="none", users could experience a significant lag between pressing

the play control and media playback. However, this option will lead most browsers

to download the least amount of data.

Set Explicit Video Height and Width When Using preload="none"

With preload="none", you may want to set an explicit width and height either

in the video element itself, or using CSS. Otherwise, you may trigger a page reflow

when the video loads and begins to play.

Using preload="metadata" is a bit of a compromise between auto and none. In

most browsers, there won’t be a lag between the user requesting playback and the

action, as you often get with preload="none". But because the browser pre-loads a

smaller portion of the media file, playback may not instantaneous as with pre-

load="auto".

Cross-browser Audio and Video
This almost sounds to good to be true, doesn’t it? Native audio and video without

a plug-in! Not so fast. There is one thing is holding us back: file format support.

Browser vendors disagree about whether there should be a default multimedia codec,

and if so, which one.

Jump Start HTML5 Basics56

Apple and Microsoft have decided to support H.264/MPEG-4 video and MPEG-3

audio in their browsers (Safari and Internet Explorer, respectively). H.264 is a pro-

prietary, high-definition format for displaying video, usually within an MPEG-4

container. MPEG-3 is an audio compression format. Because these formats are pro-

prietary, browser developers must pay licensing fees if they’d like to add support

for these formats to their software.

Mozilla and Opera are opposed H.264 and MPEG-3 largely because of those royalty

fees. Instead their browsers (Firefox and Opera) support open source codecs such

as Ogg Theora and WebM. Firefox does support H.264 and MPEG-3 for mobile

devices, but not for desktop and laptops. Internet Explorer supports also other codecs

if the user has installed them. Google Chrome, to its credit, supports all of the above.

The Great Codec Divide means that cross-browser video requires one of two ap-

proaches:

1. Encode only an H.264 version of the video and use a Flash video container as a

fallback to serve the video to browsers that don’t support H.264 natively.

2. Encode the video in multiple formats, and let the browser choose which to play.

The first option is best if you need to support older browsers. Internet Explorer 8,

for example, lacks support for audio and video. JavaScript libraries such as Video.js4

and audio.js5 use this strategy.

The second option is better if you do not need to support older browsers. It will

work for desktop and mobile device browsers. We’ll use this approach here.

Transcoding Software

To transcode videos from one format to another, try FFMpeg6, a command-line

tool, or Miro Video Converter7. Both are free and open source, with Mac OS X,

Windows, and Linux builds available.

4 http://www.videojs.com/
5 http://kolber.github.io/audiojs/
6 http://www.ffmpeg.org/
7 http://www.mirovideoconverter.com/

57HTML5 Multimedia: Audio and Video

http://www.videojs.com/
http://kolber.github.io/audiojs/
http://www.ffmpeg.org/
http://www.mirovideoconverter.com/

Using Multiple Video or Audio Files
To offer multiple file formats, we need to use the source element: one <source>

tag for each file format. Attributes such as autoplay, loop, and controls should

still be a part of the <video> or <audio> tag. But our src attribute must move to our

<source> tags.

<audio controls>
 <source src="path_to_mpeg3_file.mp3">
 <source src="path_to_ogg_file.ogg">
</audio>

We can optionally add a type attribute to each source tag. At the very least, type

should contain a valid MIME type. But it may also include a codec as shown below.

<audio controls>
 <source src="mpeg3_file.mp3" type="audio/mpeg">
 <source src="ogg_vorbis_file.ogg" type="audio/ogg; codecs=vorbis">
 <source src="ogg_flac_file.oga" type="audio/ogg; codecs=flac">
</audio>

preload=none on Safari

Using preload=nonewith multiple sources may prevent Safari from downloading

the correct file. Safari 6.0.5 will ignore any file besides the first one when pre-

load=none. Even if the user presses play, Safari will not load another video

source. Avoid this by listing a Safari-compatible source first. Otherwise set the

value of preload to metadata or auto.

Each browser will download the first available file that it's capable of playing.

Jump Start HTML5 Basics58

	Jump Start HTML5 Basics
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Tools You’ll Need
	Do You Want to Keep Learning?

	What is HTML5?
	A Brief History of HTML5
	HTML: The Early Years
	A Detour Through XHTML Land
	The Battle for World DOM-ination
	Applets and Plugins

	What HTML5 Isn’t
	A Note on the HTML5 Specification

	The Anatomy of HTML5
	Your First HTML5 Document
	The Two Modes of HTML5 Syntax
	HTML Syntax
	To Quote or Not Quote: Attributes in HTML5
	A Pared-down HTML5 Document
	"XHTML5": HTML5’s XML Syntax

	Structuring Documents
	The article Element
	Putting It Together
	The section Element
	div Versus section

	Other Document Elements
	figure and figcaption
	main Element

	HTML5 Forms
	Starting an HTML5 Form
	The input Element
	Collecting Names
	Using Form Labels

	Requiring Form Fields
	Styling Required Forms
	Collecting Email Addresses, Phone Numbers, and URLs

	Uploading Files
	The datalist Element
	Other Input Types
	input type="search"
	input type="range"
	input type="number"

	Date and Time Inputs
	input type="color"

	HTML5 Multimedia: Audio and Video
	Adding Controls
	Autoplaying and Looping Media
	Video-only Attributes
	Place Holding with poster
	Controlling Video Dimensions

	Bandwidth Use and Playback Responsiveness
	Cross-browser Audio and Video
	Using Multiple Video or Audio Files

