
By Earle Castledine

GET UP TO SPEED WITH COFFEESCRIPT IN A WEEKEND

By Earle Castledine

JUMP START
COFFEESCRIPT

BY EARLE CASTLEDINE

Jump Start CoffeeScript
by Earle Castledine

Copyright © 2012 SitePoint Pty. Ltd.

Expert Reviewer: Craig SharkieProduct Manager: Simon Mackie

English Editor: Kelly SteeleTechnical Editor: Diana MacDonald

Cover Designer: Alex WalkerAssistant Technical Editor: Ben Axnick

Indexer: Glenda Browne

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9872478-2-7 (print)

ISBN 978-0-9872478-3-4 (ebook)

Printed and bound in the United States of America

ii

Dedication

To Amelia: If I could write, I’d write a book for you.

About the Author

Sporting a Masters in Information Technology and a lifetime of experience on the Web of

Hard Knocks, Earle Castledine (aka Mr Speaker) holds an interest in everything computery.

Raised in the wild by various 8-bit home computers, he settled in the Internet during the

mid-nineties and has been living and working there ever since.

A senior systems analyst and JavaScript flâneur, he is equally happy in the muddy pits of

.NET code, the dense foliage of mobile apps and games, and the fluffy clouds of client-side

interaction development.

As co-creator of client-side opus http://www.turntubelist.com/, as well as many web-based

experiments, Earle recognizes the Internet not as a lubricant for social change, but as a vehicle

for unleashing frivolous ECMAScript gadgets and interesting time-wasting technologies.

About the Expert Reviewer

Craig was once happy to call himself a developer, speaker, author, and advocate. Since then,

he’s added JS meet founder and JSConf organizer to the list—and expert reviewer. Should

you add husband and father, and you’d be getting closer to working out why he’s often un-

reasonably happy. In 2000, he was asked by short-sighted bosses where he wanted to be in

five years’ time, and twelve years on he’s still doing the same thing—working with languages

he loves in a community that expands on possibilities as fast as it creates them.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, Mobile,

design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Around 150 pages in length, they can be read in a weekend,

giving you a solid grounding in the topic and the confidence to experiment on your own.

iii

Table of Contents

Preface . ix

Who Should Read This Book . ix

Conventions Used . ix

Code Samples . ix

Tips, Notes, and Warnings . xi

Supplementary Materials . xi

Challenge Yourself . xii

Friends of SitePoint . xii

Chapter 1 Getting Started . 1

HTML5 Game Jam Challenge . 2

The Basics . 3

Missing Cruft . 6

Whitespace . 6

Comments . 7

Types, Variables, and Scope . 7

Functions . 8

Starting the Game Project . 10

Installing: an Overview . 10

Client-side Compilation on the Fly . 11

Installing CoffeeScript Properly . 13

Choosing Our Tech . 16

Document Object Model . 17

Canvas . 18

Further Options . 19

Drawing Something: Using Canvas . 20

We’re on Our Way . 22

Chapter 2 CoffeeScript Fundamentals 23

More of the Basics . 24

Setting Up Our Project . 24

alert versus console.log . 25

Returning to JavaScript . 27

Strings . 27

Conditionals and Operators . 28

Loops and Ranges . 31

Objects and Arrays . 33

Introducing Professor Digman-Rünner . 35

The Canvas API . 36

Context and Soaking up Nulls . 37

Drawing Primitives . 40

Draw an Image . 42

Processing a Sprite Sheet . 43

Random Map . 44

Ready to Rumble . 46

Chapter 3 Features to Boost Your Game 47

Team Meeting . 47

Functions Revisited . 48

Default Argument Values . 49

Function Gotchas . 51

List Comprehensions . 53

Creating a Level . 55

Building Larger Projects . 58

Removing the Safety Wrapper . 59

Compiling a List of Files . 60

Getting Serious with Cake . 61

Handling Player Input . 61

vi

Dispatching with Switch . 63

Adding the Professor . 64

And There Was Light! . 66

Chapter 4 Game Loop and Classes 67

The Game Loop . 67

Improving Our Loop . 68

Looping with RequestAnimationFrame 70

Classes . 71

Constructor and Auto Properties . 73

Class Inheritance . 74

Game Classes . 77

The Level Class . 77

The Block Class . 80

Loading Levels . 82

Driving a Level . 85

Kicking It All Off . 86

Adding New Blocks . 88

Stay Classy . 90

Chapter 5 Bringing a Game to Life 91

Block Collision Detection . 91

Destructured Assignment 1: Arrays . 95

Splats . 99

Gravity . 100

Ladders . 103

Collecting . 107

Testing Class Types . 107

Collision . 110

Ninja AI . 111

vii

Destructured Assignment 2: Objects . 113

Adding the AI Rules into the Code . 115

Power to the Professor . 117

Digging Holes . 117

Building Blocks . 119

Set for Life . 120

Chapter 6 CoffeeScript and HTML5 FX 121

HTML-ifying things . 121

Using jQuery . 122

CSS Effects . 125

Canvas Scrolling . 127

Audio and Sound Effects . 128

Animation . 130

Walk Animation . 131

Falling Animation . 132

Screens and Dialogs . 133

Particles . 141

Game Over . 144

Chapter 7 Epilogue . 145

And on the Seventh Day ... 145

Index . 147

viii

Preface
CoffeeScript is “a little language that compiles into JavaScript.”1 It aims to smooth

over some of JavaScript’s rougher edges while highlighting and augmenting the

impressive flexibility at the core of the JavaScript language. It’s clean, concise, and

maintainable, and makes writing client-side code really, really fun.

Jump Start CoffeeScript is a book about CoffeeScript. Its goal is to help you become

productive with CoffeeScript as quickly as possible. From the first line in the book,

you’ll be writing code that shows just how easy it is to take the plunge into this

delightfully addictive world.

Along the way, we’ll make a game. Not just the outer husk of a boring space-based

shoot ’em up, but a complete, extensible HTML5 game with tile maps, particle effects,

AI, and (of course) ninjas. You’ll see how CoffeeScript’s succinctness and elegance

is the perfect partner for effectively prototyping and refining your ideas.

That’s it. By the end of this book, you’ll know how to make HTML5 games, and

proficiently code (and think) in CoffeeScript, as well as have a deeper understanding

of the power and beauty of JavaScript itself.

Who Should Read This Book
If you have some knowledge of web programming concepts and want to streamline

writing JavaScript, this book is for you.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

1 http://coffeescript.org/

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

x

URL.open("http://jspro.com/raw-javascript/how-to-create-custom-even
➥ts-in-javascript/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/books/coffeescript1/

The book’s website, containing links, updates, resources, and more.

http://www.sitepoint.com/books/coffeescript1/code.php

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?15-JavaScript-amp-jQuery

SitePoint’s JavaScript forum, for help on any tricky CoffeeScript problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

xi

Challenge Yourself
Once you’ve mastered CoffeeScript, test yourself with our online quiz. With questions

based on the book’s content, only true CoffeeScript champions can achieve a perfect

score. Head on over to http://quizpoint.com/#categories/COFFEESCRIPT.

Friends of SitePoint
Thanks for buying this book. We really appreciate your support! We now think of

you as a “Friend of SitePoint,” and so would like to invite you to our special page:

http://sitepoint.com/friends. Here you can SAVE up to 43% on a range of other

super-cool SitePoint products, just by using the password: friends.

xii

http://quizpoint.com/#categories/COFFEESCRIPT
http://sitepoint.com/friends

Chapter1
Getting Started
CoffeeScript is a programming language that looks like this:

hello = (name) ->
 alert "Hello, #{name}!"

hello "World"

Here, we’re defining and then calling a function, hello, which accepts a single

parameter, name, and is displayed in an annoying fashion on the screen (via alert).

If you’re a coder, you’ve probably identified a few interesting elements in this piece

of code. Indeed, one of this book’s goals is to thoroughly explore the syntactic and

pragmatic choices that make CoffeeScript an interesting programming language.

CoffeeScript occupies a weird space in the programming language landscape: it was

designed from the beginning to piggyback on top of JavaScript, the de facto language

of the Web. CoffeeScript code is transpiled (or transcompiled) directly into JavaScript

code, a cunning trick to leverage the ubiquity of the web browser as an execution

environment. This means that CoffeeScript runs wherever JavaScript runs, and can

do whatever JavaScript can do. And with the rise of technologies like Node.js and

HTML5, that’s a lot of places and a lot of functionality.

Why write a language that’s simply a copy of another language? Because the primary

purpose of CoffeeScript is to be a simpler version of JavaScript. CoffeeScript aims

to highlight and streamline the fantastically powerful parts of its progenitor while

concealing and repairing its rough spots. It aims to be more expressive, yet more

succinct. It aims to be fun.

How? Without going into details (and never mind if some of the following sounds

like gibberish), CoffeeScript provides us with a bunch of features that we currently

lack: nicer syntax, function binding (to help with scoping issues), multiline strings,

splats (for neatly handling variable parameter lengths), lambda functions with im-

plicit returns, list comprehensions, destructuring, ranges, simple classes with inher-

itance, string interpolation, a funky existential operator ... and so much more.

A side effect of learning CoffeeScript is that you will improve at JavaScript. If you’re

here because you hate JavaScript and never want to see another line of it, I have

bad news: CoffeeScript is not an attempt to kill JavaScript (unlike some newer

transpiled languages—I’m looking at you, Dart), but to co-exist and ultimately help

improve JavaScript itself. That’s how good it is!

HTML5 Game Jam Challenge
It’s 9.00 a.m. on Monday morning. You’re sitting in a coffee shop, eagerly awaiting

the arrival of your fellow team members to commence your entry in the “7-day

HTML5 Game Jam-a-Thon Challenge (TM),” as advertised in Figure 1.1. The rules

are simple: You have seven days to create an HTML5 video game from scratch.

Figure 1.1. Game Jam-a-Thon

Our game will be a traditional 2D platform-type affair, with bad guys and platforms

and ladders and such—and you’ve decided that it’s the perfect project to learn some

CoffeeScript. Of course, you’ve failed to mention to your teammates that, despite

the incredibly tight time frame for the competition, you’re going to write the game

Jump Start CoffeeScript2

in a language that you have no experience in. We’d better take a few minutes to

learn some of the basics before they arrive …

The Basics
First up, how can we run some code? It turns out that the options available for ex-

ecuting CoffeeScript are legion. As we only have a few minutes to get up to speed,

we’ll choose the simplest:

■ Head to the CoffeeScript website [http://www.coffeescript.org].
■ Select the Try CoffeeScript tab.
■ Activate the Run button, as shown in Figure 1.2.

Figure 1.2. Hello CoffeeScript

Ebbs and Flows

The Internet ebbs and flows like the tides, and by the time you read this text, the

“click-to-run” functionality may have moved, morphed, or disappeared from the

CoffeeScript website. If that’s the case, don’t fear: we’re covering more options in

the section called “Starting the Game Project”.

The default code is a simple alert box that shows the text, “Hello, CoffeeScript!”

Any CoffeeScript code in the left panel will be transpiled to its JavaScript output,

shown in the right-hand panel, and executed. The actual pop-up box implementation

is not from CoffeeScript, but from the native browser code that’s called from the

JavaScript output. When we’re using CoffeeScript in the browser, we have access

to the DOM as we do in JavaScript.

3Getting Started

Let’s remove the default CoffeeScript code and add some of our own. We’ll create

a small function to reverse a string. There’s no need to fully understand it yet (try

to figure it out, though!), but if you’re typing along at home, you might want to indent

using spaces because hitting tab will change the focused area:

Simple string reversal function
reverse = (sentence) ->
 sentence
 .split("")
 .reverse()
 .join("")

Now use our new reversing powers!
text = "rats live on"
backwards = reverse text
alert "#{text} #{backwards}"

Running this will reward you with a popup containing the forward and reversed

text.

Running Directly in the Browser

How is our code—which isn’t JavaScript—running directly in the browser like

this? Perhaps you’d guess it’s sending it off to the server for compilation? Nope.

The trick is, CoffeeScript is written in CoffeeScript. And, as you know, CoffeeScript

outputs to JavaScript. Therefore, the CoffeeScript compiler can be included in a

web page and compiled on the fly.

Let’s contrast that block of code with how we’d write it using plain JavaScript:

var text, backwards;

// Simple string reversal function
function reverse(sentence) {
 return sentence
 .split("")
 .reverse()
 .join("");
}

// Now use our new reversing powers!

Jump Start CoffeeScript4

text = "rats live on";
backwards = reverse(text);
alert(text + " " + backwards);

You’ll probably notice that the CoffeeScript and JavaScript versions are fairly sim-

ilar. That’s not surprising in this case because we’re using only a few of CoffeeScript’s

fancy features, and the guts of the algorithm (the split/reverse/join manipulation)

is simply using JavaScript’s native methods. The truth is—especially when you’re

beginning—you can mostly get away with writing CoffeeScript just like JavaScript.

So it’s easy to begin writing code and add in the cool tricks as you learn them.

Here’s some more simple CoffeeScript and its corresponding JavaScript output.

Nothing will happen when you run this (because collided is never true); it’s merely

to highlight more differences. If you’re just starting out with CoffeeScript, comparing

the before and after code is invaluable for learning how it works:

lives = 3
collided = false

...after some game logic...

if collided
 lives = lives - 1
 alert "Game Over" if lives is 0

Once compiled, this will spit out the following:

var collided, lives;

lives = 3;
collided = false;

if (collided) {
 lives = lives - 1;
 if (lives === 0) {
 alert("Game Over");
 }
}

5Getting Started

JavaScript under the Hood

This is the actual JavaScript that the CoffeeScript transpiles itself into. It may not

be exactly how you’d write your own JavaScript, but it is functionally equivalent.

In CoffeeScript, we don’t use a var declaration; it’s done for us, and we’re using

some kind of weird inverted syntax to test if lives is 0. Even in these two brief

snippets, there are a bunch of small and important differences between the languages.

I’m warning you now: if you’re a long-time JavaScripter, some of them might rub

you the wrong way at first, so hang tight …

Missing Cruft
CoffeeScript does away with a bundle of the boilerplate elements of JavaScript code:

semicolons and curly braces are gone, there are no var keywords for variable

definitions, parentheses are often omitted when calling functions, and function and

return statements are nowhere to be seen.

This is a considered attempt on CoffeeScript’s part to remove as much as possible

that’s not directly related to the problem you’re trying to solve. For those of us who

have spent our whole lives with the function/return construct, it seems a minor

point; like people who swear they don’t even notice advertisements anymore, we’re

sure that the cruft has no effect on us. But just as with advertising, the cruft is still

there, doing its best to be confused with content—making it harder to parse (visually),

and easier for bugs to stay hidden.

A pleasant side effect of this cruft removal is that CoffeeScript programs are notice-

ably shorter than their JavaScript counterparts.

Whitespace
Superficially, JavaScript looks a lot like C or Java—that’s why we have curly braces

to delimit code blocks. CoffeeScript decided to go the Ruby/Python route and use

significant whitespace—tabs and spaces—to define a statement block. Nested blocks

are achieved by nesting indentation levels. Be sure to keep indentation consistent

within each source file (and for your sanity, across the entire project!). So if you’re

using two spaces, always use two spaces; otherwise, the compiler can become lost.

Jump Start CoffeeScript6

Historically, programmers will fervently fight for or against “spaces or braces” in

the same way they’d argue “tabs versus spaces.” CoffeeScript avoids some of the

problems of significant whitespace by virtue of its transpiled nature; for example,

people dislike that whitespace is unable to be minimized, unlike curly-brace pro-

gramming languages. However, as our output is JavaScript, it’s this output that will

be the target of our minimization efforts.

Comments
Comments aren’t executed:

Commencing a line with a # indicates a comment

What’s more, they’re excluded from the JavaScript output:

So, this is a case where CoffeeScript is, in fact, more verbose than JavaScript! If you

want a multiline comment block, you use the triple hashes:

###
 Everything you put here will be ignored. Unlike
 single-line comments - these show up in the output.
###

This will produce the following:

/*
 Everything you put here will be ignored. Unlike
 single-line comments - these show up in the output.
*/

Multiline comments are included in the compiled output; this makes them useful

for adding block headers to each file, for example.

Types, Variables, and Scope
CoffeeScript types are JavaScript types: numbers are numbers, strings are strings,

Booleans are Booleans. But the way variables are handled is quite different. As

you’ve seen from the examples so far, there is no var statement in CoffeeScript—it’s

7Getting Started

handled automatically. So, if you had the following variable declarations in JavaS-

cript:

var result = [],
 count = 0,
 $el;

… the equivalent in CoffeeScript would be simply:

result = []
count = 0

We wouldn’t define $el because we’re yet to use it! When you define a variable in

CoffeeScript, the var declaration is pushed up to the closest scope that the variable

is in (similar to Ruby’s local scope). This avoids the common pitfall in JavaScript

of accidentally creating global variables—though it does mean you need to take care

to avoid reusing variable names when you nest functions, because the inner variable

will just be a reference to the outer variable.

CoffeeScript also helps out with some of the other fun parts of JavaScript scope,

which we’ll delve into later.

Functions
Functions are one of the most powerful aspects of JavaScript. They are first-class

citizens of the language, because you can pass a function as a parameter or return

a function as the result from another function. You can compose them—just as you

can in other functional programming languages, such as Lisp. In fact, as JavaScript’s

resident guru, Douglas Crockford, once said, JavaScript has more in common with

functional languages like Lisp or Scheme than with C or Java.1

You might not be sold on functional programming (cough just yet cough), but it’s

a paradigm that is very powerful and a lot of fun. As an example, part of jQuery’s

success is due to the joy of being able to chain a bunch of functions together to

manipulate and process lists of DOM nodes. Each step of the jQuery chain returns

a new list, and the lists can be filtered or transformed as needed.

1 http://javascript.crockford.com/javascript

Jump Start CoffeeScript8

If you utilize a functional style—or do a lot of asynchronous work—you would have

noticed an issue with JavaScript: a large chunk of your code consists of the function

and return keywords. Consider the following JavaScript snippet that takes an array

of angles in degrees, converts them to radians, and then returns only values that

appear in the first two quadrants (the “top half” of the circle), as seen in Figure 1.3.

Figure 1.3. Danger ahead

We might do this in a game to fetch directions to enemies in our field of view:

[45, 135, 225, 315].map(function(degrees) {
 return degrees * (Math.PI / 180);
}).filter(function(radians) {
 return radians % (2 * Math.PI) < Math.PI;
});

First we use map to convert degrees to radians, then filter to only keep the values

we’re interested in. Here’s the same code in CoffeeScript (please note that there are

more idiomatic ways to do mapping and filtering in CoffeeScript, but this is just to

highlight the difference between function declarations):

[45, 135, 225, 315].map (degrees) ->
 degrees * (Math.PI / 180)
 .filter (radians) ->
 radians % (2 * Math.PI) < Math.PI

Even for this tiny (albeit convoluted) demonstration, that’s 158 JavaScript bytes

versus 128 CoffeeScript bytes. Again, typing a few extra characters is not the issue;

the point is that our CoffeeScript code contains just the bare essentials to define

9Getting Started

our problem. In this case, it does it by replacing the function keyword with the

symbol ->, and by having implicit returns.

The CoffeeScript compiler tries to make sure that all statements in the language can

be used as expressions, so nearly everything will have a return value. The last ex-

pression inside a function will give the value that’s returned. Consider:

square = (x) -> x * x

Short Syntax

This short function syntax is out-and-out a good idea; so good that it’s been accep-

ted into the next version of JavaScript. I’m trusting that by the time you read this

book, it will be part of the standard and already implemented in your browser—and

this whole section will seem obvious to you. If that’s the case, just remember: you

have CoffeeScript to thank for it!

Starting the Game Project
Hmmm, this is a bad sign. It’s the kick-off meeting on day one and your team is

already half an hour late. After ordering another cup of coffee,2 you decide you

might as well start on the game. The first step is to create the base project and set

up your environment for development.

Installing: an Overview
As we mentioned right at the beginning, CoffeeScript sits in a bit of a weird space

for a language. For most programming languages, “installing” means downloading

a package from the author’s website and running it. But CoffeeScript is a bit different:

the core compiler is available as a command line tool that can be run in any Java-

Script environment, and at the present time this means running under Node.js.

Node.js is a popular platform for running JavaScript applications. It’s often used as

a web server for serving apps that use JavaScript as both the client- and server-side

language. However, CoffeeScript uses it for running its command line tool that

compiles our sources. We need to install both Node.js and then the coffee tool.

2 Please note, this is not a coffee pun. We’ve strived to eliminate all coffee-based puns from the book.

Jump Start CoffeeScript10

Client-side Compilation on the Fly
“My teammates will be here any minute, and you expect me to install and configure

the whole internet in ten seconds? There must be another way … ,” you grumble

to yourself. Well, there is another way. But you have to promise after you have tried

it and written some code to read the next section on installing things properly.

On the CoffeeScript.org website, we were running code and executing it live. This

worked because CoffeeScript is written in CoffeeScript, so the compiler itself can

be output as plain-old JavaScript. You can download a special version of this

JavaScript that, when included in your web page, automatically compiles any Cof-

feeScript code snippets on the page. Magic!

Not for General Consumption

This technique of finding and compiling pieces of CoffeeScript in the page is a

novel and interesting idea, but it’s inefficient. Every page view requires the com-

piler to be loaded unnecessarily (it should be cached after the first view), and

every chunk of code must be recompiled—which, depending on the complexity

and size of the code, can be very slow. It’s a useful tool for testing, but if you’re

serving pages to the grand public, you should be using precompiled JavaScript.

The first step is to grab the compiler. The official source repository for the entire

project is on Jeremy Ashkenas’s (the creator of CoffeeScript—commit that name to

memory!) GitHub repository at https://github.com/jashkenas/coffee-script. At the

moment, we’re only interested in the JavaScript file for the browser. This lives in

the extras/ directory of the repository, or you can grab it from the direct link via the

website at http://coffeescript.org/extras/coffee-script.js.

Save the file to your project—wherever you’d normally put your third-party scripts

(I'm putting it in the /vendor directory)—and include it in the page:

chapter01/01jsandcs/index.html (excerpt)

<script src="vendor/coffee-script.js"></script>

To define a snippet of CoffeeScript, you have to wrap it in a script tag and give it

the custom type text/coffeescript (rather than the usual text/javascript). This

11Getting Started

prevents the browser from trying to execute it as regular JavaScript, and gives the

CoffeeScript library a way to find all the code it needs to compile:

<script type="text/coffeescript">
 alert "Look ma! no braces!"
</script>

These snippets can be sprinkled anywhere in the code, though you should probably

follow good practices and place your scripts at the bottom of the page. Here’s a full

example, including both our favorite languages together:

chapter01/01jsandcs/index.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>HTML5 Game Jam Entry</title>
</head>
<body>
 <h1>Ready to RUMBLE!</h1>
 <script src="vendor/coffee-script.js"
 type="text/javascript"></script>

 <!-- Run some JavaScript -->
 <script type="text/javascript">
 alert("JavaScript is here.");
 </script>

 <!-- Run some CoffeeScript -->
 <script type="text/coffeescript">
 alert "CoffeeScript is here, too!"
 </script>
</body>
</html>

CoffeeScript running directly in the browser … weird! If you didn’t get the alert

dialog, double-check the path to the library, and be sure you set the script type

correctly. You should make sure the functions we wrote above work here too.

Jump Start CoffeeScript12

Installing CoffeeScript Properly
It’s time to get serious. Our real goal setup is to create an environment that lets us

run the coffee utility, which is a command-line tool for turning CoffeeScript files

into JavaScript files that we then include in our web pages like any ordinary resource.

No Installation Required

Some web frameworks such as Ruby on Rails3 and the Play! framework4 support

CoffeeScript by default. If you’re using such a framework, none of this installation

is necessary; just place your .coffee files in the correct place and the framework

will compile them for you. If CoffeeScript is not supported by your framework of

choice, write the creators a persuasive email today!

Installing Node.js
First up, you’ll need the latest stable version of the Node.js platform. Handy installers

are available for Windows and Mac from the download page at

http://nodejs.org/download/. If you’re in a Unix environment, you can also grab

the sources from the download page or install via your distro’s package manager.5

Once the install is complete, you should be able to run Node.js from your terminal

via node, as shown in Figure 1.4. If the install completed correctly but the node

command was not found, be sure to restart your shell session, and check that the

Node path exists in your shell environment path.

3 http://www.rubyonrails.org
4 http://www.playframework.org
5 https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

13Getting Started

Figure 1.4. Running Node.js from your terminal

Installing Coffee
The next step is to install coffee. The easiest way to do this is via npm, Node’s

package manager for installing modules. This is installed when you install Node,

so it should already be available to you. Try it out with the following command (if

you’re still on the Node command line, you’ll need to exit by pressing Ctrl-d):

npm --version

We want to use npm to grab the coffee-script module6 (note the hyphen). To actu-

ally install the module, use npm’s install command:

npm install -g coffee-script

Global versus Local

On the official Node.js blog, sparing use of global installs is recommended.7 The

guideline is to use a global install if the package needs to be accessed on the

command line, as in our case.

This will fetch the module and make it available via Node.js. You can make sure

everything has gone to plan by opening up a new console session and asking for

some help on our new module:

6 https://npmjs.org/package/coffee-script
7 http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/

Jump Start CoffeeScript14

coffee --help

This should show output in the vein of Figure 1.5.

Figure 1.5. Outputting CoffeeScript help

Coffee Options

That’s it for installing—our system is now fully operational. The last step is to figure

out how to integrate coffee into our workflow. By default, the coffee utility will

run .coffee files. To test it out, create a blank document in your text editor and save

it as friday.coffee; then add the following:

chapter01/02isitfriday/script.coffee (excerpt)

day = new Date().getDay()
isFriday = if day == 5 then "YES!" else "no."

console.log "Is it Friday? #{isFriday}"

Finally, a tool to tell us if it’s Friday or not! Again, don’t worry too much about the

syntax for now, but the final line is used to log to the screen output (because an

alert is only for the browser). To run it, type the following at your prompt (making

sure you are in the same directory as the file):

coffee friday.coffee

15Getting Started

The output, of course, will depend on the day you run it! Now we know how to

make command line tools, but that’s no good for an HTML5 game—we need

JavaScript files. First, modify the console.log to be an alert (we’ll look more at

console.log in the section called “alert versus console.log” in Chapter 2):

chapter01/02isitfriday/script.coffee (excerpt)

alert "Is it Friday? #{isFriday}"

Now it’s time to compile the CoffeeScript code using the --compile (or -c) flag:

coffee -c script.coffee

This generates a JavaScript file of the same name in the same directory, but with

the .js extension. Open up this file now and have a look at what coffee has done.

It’s plain ol’ JavaScript, which we can link to in a website as usual:

chapter01/02isitfriday/index.html (excerpt)

<!DOCTYPE html>
<html>
<head>
 <title>Is it Friday?</title>
</head>
<body>
 <script src="script.js" type="text/javascript"></script>
</body>
</html>

The coffee tool has a stack of features that we’ll use as we go along. At the moment,

you’ll notice that every time you make a change in your .coffee source file, you need

to rerun the coffee command. We’ll look at how to bypass this, and create an effi-

cient coding workflow in Chapter 2.

Choosing Our Tech
We’ve come so far, but still only have an alert dialog to show for our efforts. It’s

time to make some executive decisions on how this game is going to work, and put

some action up on the screen.

Jump Start CoffeeScript16

Document Object Model
We have a few options when it comes to rendering HTML5 games. The oldest and

most widely supported is to use positioned DOM elements, such as divs or DOM

images. Elements will be dynamically added and removed from the container with

their appropriate animation frame or tile image. During the render phase of our

game loop, we update the style properties of elements that have changed. For ex-

ample, we might update a player’s DOM element (el) in response to a player model:

el.style.left = player.x
el.style.top = player.y

There are a few advantages of using the DOM. Being inherent to a web page, it’s the

most “web” of all our options; like any regular DOM element, you can easily attach

mouse event handlers—like mouseover or mousedown—to individual elements of

your game (you have to calculate this manually otherwise). You can also right-click

on your player and see debug information with your regular debugging tools.

The DOM is supported absolutely everywhere on the Web (albeit with the familiar

cross-browser problems that you have to deal with in web development). There’s

also a lot of work being done by the browser vendors on hardware acceleration of

the DOM, so rendering games can be as fast as—or faster than—a canvas equivalent.

The disadvantages are that the browser can quickly slow down if your game contains

a lot of entities that are onscreen at the same time. Anytime a node in a web page

is changed, the browser is forced to perform a reflow, updating and repainting

everything. This is generally the slowest operation the browser performs. There are

ways to minimize this issue (using document fragments that are replaced in

bulk)—but if you’re trying to make Raiden IV,8 you’re going to notice slowdowns.

Finally, the biggest disadvantage to using the DOM is that you’re limited in your

graphical processing abilities. You have no access to the individual pixels on the

screen, so all your effects—such as explosions or particle effects—can only be done

with static images, rather than be generated programmatically.

8 http://en.wikipedia.org/wiki/Raiden_(video_game)

17Getting Started

Canvas
To circumvent this limitation, HTML5 has given us the canvas element. This is a

block-level element that consumes a rectangular space in your web page, like an

image—except it’s a visual that we can alter with JavaScript! The Canvas API has

many cool features: drawing and compositing shapes and paths, manipulating and

transforming images, filling with gradients, and setting individual pixels. You can

see some of them in action in Figure 1.6.

Figure 1.6. A particle effect system running completely in canvas

Support for canvas is growing, and the browser implementations are constantly

improving (which means canvas animations will run faster). The API is quite simple,

but lets us do an impressive number of graphical operations—certainly enough for

turning out some fantastic-looking games.

However, rendering to canvas is very different to the DOM. Our processing flexibility

comes at a price: we have to manually draw everything in the correct position for

every frame. With the DOM, we can use CSS transitions to say “move the player

from here to there over a ten-second period.” With canvas, we have to take care of

all that ourselves. Additionally, if we want to know if the user clicked on a button

in our game, we have to take the x and y coordinates of the mouse and figure out if

there’s a button at that position (at least, until hit regions are widely supported)!

Jump Start CoffeeScript18

Further Options
Although many HTML games use either DOM or canvas for rendering, there are a

few more options available to us. SVG (Scalable Vector Graphics) is widely suppor-

ted, is fantastic for drawing and manipulating vector graphics, and lets you easily

add event handlers to nodes. It’s less commonly used for games at the moment, but

if you want your graphics to scale to different devices easily, it’s worth a look!

And if two dimensions are just not enough, WebGL is the new kid in town. It brings

the raw power of OpenGL to the browser, opening the door for very advanced 3D

games. Learning OpenGL is a whole world of pain, however, so we’re not even going

to consider it at the moment. If we were, it would definitely be via the awesome

three.js library,9 which simplifies building 3D games significantly, as shown by the

graphics in Figure 1.7.

Figure 1.7. Three.js 3D tank game

When generating games, it’s good practice to separate the game logic from the ren-

dering code; then, at runtime, you can choose which render to use. So if the browser

has no support for canvas, you can render to the DOM or use SVG. If you want to

be extremely crazy, you could even create a version that renders to the 16×16 pixel

browser favicon like the classic “Defender of the Favicon”!10

9 http://mrdoob.github.com/three.js/
10 http://www.p01.org/releases/DEFENDER_of_the_favicon/

19Getting Started

Drawing Something: Using Canvas
Alas, we only have seven days to create this game, so we’re going to keep develop-

ment simple (yet powerful!) and use the Canvas API for rendering our game. The

ultimate goal will be to import our graphics as sprite sheets for making animations

and so forth. But first of all, it’s time to push some pixels on the screen. Plop a

canvas element into your web page using a unique ID:

chapter01/03disco/index.html (excerpt)

<canvas id="game"></canvas>

Now we need to grab a reference to its drawing context via CoffeeScript:

chapter01/03disco/script.coffee (excerpt)

ctx = document
 .getElementById("game")
 .getContext("2d")

ctx.fillStyle = "#000"
ctx.fillRect 0, 0, ctx.canvas.width, ctx.canvas.height

Compile Your File

If you’re compiling this code with coffee, it needs to be in a separate file, com-

piled, then included in the web page. See chapter01/03disco/ for the full code.

There you go, a black rectangle. Any canvas drawing operations need to be done

against a context that we fetch by calling the getContext("2d") method on the

canvas DOM element. When we implement this for our actual game, we’ll have to

add in a check that the user’s browser actually does support the canvas element;

for now, we’ll let it slide.

Once you have a canvas context, we can use all of its API methods to draw awesome

visuals on the screen. So far, we’ve only set the fillStyle (this can be a named

color, or a hex, RGB(A), or HSL(A) value; note, however, support for CSS3 color

notation varies across browsers) and filled a solid rectangle to the screen (starting

at coordinate 0, 0 from the top-left corner and using the canvas’s width and height

to know its size) with fillRect.

Jump Start CoffeeScript20

So we have an object on the screen, but it’s hardly exciting. Let’s jump ahead a little

in our CoffeeScript studies for the purpose of spicing it up a bit. Underneath the

fillRect command, add in the following code:

chapter01/03disco/script.coffee (excerpt)

noise = ->
 for x in [0..20]
 for y in [0..10]
 color = Math.floor(Math.random() * 360)
 ctx.fillStyle = "hsl(#{color}, 60%, 50%)"
 ctx.fillRect x * 15, y * 15, 14, 14

setInterval noise, 100

This will produce the image shown in Figure 1.8.

Figure 1.8. 1970s disco squares

Form, movement, color … it’s seventies disco time! Movement is indicated in the

last line: the setInterval call. This is a standard JavaScript method that executes

a given function repeatedly at a given interval time (in our code, that’s every 100

milliseconds). We ask it to call our noise function.

Unlike the “hello world” function typed at the very start of this chapter, noise takes

no parameters, so there’s no need to add empty parentheses in the definition. The

next couple of lines might look a bit odd; they’re responsible for creating the grid

21Getting Started

that the li’l rectangles snap to (we’ll dissect them fully in the section called “Loops

and Ranges” in Chapter 2).

Finally, the meat of the routine: drawing hundreds of little squares. First, we choose

a random color hue; then fill a 14×14 pixel rectangle at every grid position. The

grid position is determined by multiplying the x and y coordinates by 15. Because

the grid is 15 pixels, and we only draw rectangles 14 pixels squared, there is a one-

pixel black line separating them. This is just the background showing through.

HSL Colors

Choosing some nice-looking random colors with a very small amount of code can

be tough. The trick we’ve used here is to take advantage of canvas’s support or

HSL (Hue/Saturation/Lightness) colors. HSL is an alternative to the RGB and hex

(#00000-style) color definitions. In HSL, the first value represents the hue in a

range: 0 (and 360) is red, 120 is green, and 240 is blue. Other numbers are hues

in between them. The second parameter is the saturation, and the last is the

lightness. These parameters are defined as percentages.

To generate our assortment of colors with HSL, we just select a random shade

between 0 and 360, turn the saturation and lightness down a bit, and voilà—nice

random colors!

We’re on Our Way
“Oooh, what’s that?” asks your pixel artist over your shoulder. They’re an hour and

a half late, but finally the team has sheepishly wandered into the café. It comprises

a pixel artist, a web designer, and a story writer/ideas person—plus you, the coder.

“Where have you folk been?” you ask. They look at you blankly. You give them a

rundown of your progress so far, and how the game will be written in CoffeeScript

using canvas. You point at the colorful squares flashing on your screen and they

nod with vague comprehension. You explain that the game will be a 2D platformer

with retro-style graphics and some nice effects—unless they have any other ideas?

They stare blankly again.

Looks like you’ll be taking the lead on this project. Thankfully, CoffeeScript is well-

positioned to help you in your mission. And we’ve only just scratched the surface

of its flexibility and power!

Jump Start CoffeeScript22

Chapter2
CoffeeScript Fundamentals
It’s Day 2 of the inaugural “7-day HTML5 Game Jam-a-Thon Challenge (TM),” and

the situation has gone from bad to worse. After last night’s team kick-off party,

everyone else decided to go out on the town for “one more.” It’s now 11.00 a.m.

and still no sign of any team members. Your questions about graphic concepts and

plot suggestions remain unanswered in your outbox, and you’re bored with waiting.

Lacking real direction on where the game is headed, we might have to set our own

goals for the day. First up, we need to learn enough CoffeeScript to be able to code

anything. There may be a cleaner and more efficient way to code our solutions, but

we want to be able to solve any problem that comes our way. If we’re successful,

we can feel more comfortable about finishing our game in time (and we can convince

our manager to let us use CoffeeScript for the mega-corporate client project they

just won).

Our secondary goal is to apply our newfound knowledge to the task of properly

bootstrapping our game, and putting some real assets on the screen: a title screen,

or some characters and backgrounds. That’s a lot to do ... so let’s get cracking!

More of the Basics
Like any language, it’s going to take us a while before we become proficient. It’s

impossible to master everything right away, but we have a tight schedule, so we

need to be productive, fast! Because we’re looking at the very basics, we’ll have to

first work through some examples that aren’t directly related to the creation of our

game. But never fear, we’ll only spend a short time in boring-example land before

delving into the exciting world of our game.

Setting Up Our Project
Our initial project tree will look like Figure 2.1. The details are sketchy, and you

probably have your own idea of where everything should go, but it’ll do for a base.

Figure 2.1. Planning our project tree

As you can see, it’s just a basic web structure. The most important parts are the src

and scripts folders. The src folder will hold all our .coffee files for the entire game.

These are compiled directly into the script folder, from where they can be imported

into our index.html page.

Let’s open up our editor, and add a message to the game.coffee file:

chapter02/src/game.coffee

alert "Game loaded!"

There are many ways to compile files for CoffeeScript. For smaller projects, the

method described below will suffice. For larger projects, refer to the section called

“Building Larger Projects” in Chapter 3. In the last chapter, we compiled individual

input files to matching output files. The coffee tool can also combine all the scripts

into one script, so we only have one HTTP request to load in our index.html file.

Jump Start CoffeeScript24

Another indispensable feature is coffee’s ability to watch a directory for changes.

This means anytime you make a change in a source file, the code is compiled and

deployed instantly. The command we’ll be using to join and watch our game files

looks like this (and assumes it is being run from the src/ directory):

coffee -j ../script/main.js -w -c game.coffee

This will populate the script folder with the main.js file. Now we can include this

in our web page:

chapter02/index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset=UTF-8>
 <link rel="stylesheet" href="css/main.css">
 </head>
 <body>
 <div id="container">
 <canvas id="game" width="580" height="480"></canvas>
 </div>
 <script src="script/main.js" type="text/javascript"></script>
 </body>
</html>

Loading the page should give us the console message, and changing the .coffee file

and refreshing the page should update it. Note that the page includes a reference

to a CSS file to improve the game’s appearance by automatically tiling the back-

ground image. If you wish to use it, the file is available at chapter02/css/main.css.

With that said, we’re now ready to code!

alert versus console.log
Before we move on, let’s look at our alternatives to testing via alert. So far, we’ve

been alerting things to see some output. It’s a tried-and-true method of debugging

code, but we have some better choices at our disposal these days. Modern versions

of Chrome and Firefox—along with IE9—contain a console tool for this purpose

so that our debugging avoids blocking the main browser thread as it does with the

alert dialog. The APIs differ from browser to browser—and browser extensions

can expand on this (some support amazing debugging features, so be sure to check

25CoffeeScript Fundamentals

out what your browser offers1)—but generally they’ll support at least a couple of

standard methods:

console.log "No more alerts!"
console.error "In case something goes wrong."

These will appear in the console window, which can be opened from a keyboard

shortcut or via the application menus. You can also specify any number of arguments

to log; just pass them as a comma-separated list:

console.log "Some math:", Math.PI, Math.E
console.error "Danger! Danger! "

A sample of the console output as viewed in the Chrome Developer Tools is shown

in Figure 2.2.

Figure 2.2. The Chrome Developer Tools console

Debugging with CoffeeScript can sometimes be more difficult than you’d expect,

as the errors that are displayed are based on the final compiled code, rather than

your source code. This means that line numbers will fail to match up, and is one

reason for having some familiarity with the JavaScript that’s spat out.

There is new technology slowly filtering into browsers called “source maps” that

will help map source code to the compiled output for debugging purposes; however,

until there’s widespread support, we’ll have to make do with reading JavaScript

and making good use of console.log!

1 http://www.browserstack.com/debugging-tools

Jump Start CoffeeScript26

Returning to JavaScript
Learning a new language can sometimes be a frustrating experience. You know ex-

actly how to perform a task in one language, but have no idea how to do it in the

new one. CoffeeScript gives you a fallback if you really need it, a way to embed

pieces of JavaScript directly in your CoffeeScript source. Any text wrapped in

backticks or grave accents [`] will simply be passed straight through to the JavaScript

output. For example, this is CoffeeScript:

greeter = `function(name) {
 console.log("Hello, " + name);
}`

The JavaScript output generated from it is as follows:

var greeter;

greeter = function(name) {
 console.log("Hello, " + name);
};

Notice that anything inside the backticks is handed on exactly as typed, but

everything around it is compiled as usual. It’s to be hoped that you wouldn’t resort

to this feature too often, but it’s nice to know it’s there.

Strings
A lot of today’s web development involves string manipulation, and currently

JavaScript has some clunky string handling. Much of the clunk is due to be repaired

in the ECMAScript 6 specification, but until then, CoffeeScript is here to smooth

over the rough patches.

The first feature CoffeeScript adds is multiline strings. To use this feature, simply

utilize your enter key:

lastSentence = "To use this
 feature, simply utilize
 your enter key"

27CoffeeScript Fundamentals

To use quotes in the string itself, you’ll have to escape them with a backslash. When

compiled, the multiline string will simply be concatenated into a one-liner. If that’s

not what you’re after, and you want to keep your formatting (or you just want to

avoid the hassle of escaping away your double quotes), you can use the block string

feature employing triple double quotes:

haiku = """
 I mean, we're looking
 Down on Wayne's basement. Only
 That's not Wayne's basement
"""

The final and coolest string bonus on offer with CoffeeScript is string interpolation.

Many of the examples we’ve seen have already demonstrated this concept; it’s the

ability to easily embed values in the middle of double-quoted strings (including the

multiline and block strings), without laborious string concatenation:

name = "Steak Styles"
score = 8675308
display = "Player #{name} has #{score++} points"

A token is formed by wrapping an expression with #{ and }. These tokens are re-

placed in the compiled output in a manner that resembles how you’d probably do

it in plain old JavaScript:

var display = "Player " + name + " has " + (score++) + " points";

That’s a lot of pluses and quotes. It’s a minor pain to both read and write, especially

when building complicated expressions. CoffeeScript’s string interpolation takes

that pain away.

Conditionals and Operators
Our language wouldn’t be “Turing complete”2 without some conditional branching.

Naturally, it’s straightforward, but there are a few extras in CoffeeScript to make

our code more concise, readable, and fun:

2 http://en.wikipedia.org/wiki/Turing_completeness

Jump Start CoffeeScript28

if lives == 0
 alert "Game Over!"
 running = false
else
 frameCount += 1

Like function calls, the parentheses are missing, and we have to indent to start a

new code block. However, if it’s just a simple one-liner, you can join the statements

with the then keyword, or put the expression first (this inverted or post-fix form

comes up a lot in CoffeeScript). The following two lines compile to exactly the same

JavaScript:

if lives == 0 then alert "Game Over"

alert "Game Over" if lives == 0

Oftentimes, you’ll simply be using if statements to test a condition before assigning

a value to a variable. CoffeeScript lacks the ternary construct (which in C-like lan-

guages allows you to do statements such as danger = (distance < 0) ? "HIGH"

: "LOW"); rather, it uses the same if structure as above:

danger = if distance < 10 then "HIGH" else "LOW"

And if the else clause is unnecessary, there’s even a nicer construct for conditional

assignments:

danger = "HIGH" if distance < 10

Operator Aliases
You only need a small amount of JavaScript coding under your belt before its con-

cepts of “truthiness” and “falsiness” bite you. The idea of true and false seems

so binary, but there are some crazy aspects to it in JavaScript stemming from distinct

types and values evaluating true or false differently; this in turn makes equality-

testing bug-prone. For example, an empty string evaluates to false and an undefined

value also evaluates to false, so you need to be careful how you test.

29CoffeeScript Fundamentals

To guarantee equality on these types, you can use JavaScript’s triple equals operator

[===] rather than the regular double equals [==]. This is a good idea that helps avoid

nasty logic bugs, so naturally CoffeeScript bakes this right in, compiling == into ===

and != into !==, and you don’t have to worry about it.

But there’s more: a whole slew of JavaScript operators are aliased for your comfort

too, though instead of symbols, they’re aliased to their English-language equivalents.

For example, JavaScript’s not (!), and (&&), and or (||) operators are aliased to not,

and, and or! Consider the following:

drawGlow() if (running and energy > 10) or poweredUp

Not everyone is going to be thrilled with this literate style, though some will love

it. The reasoning behind these operators is to help write code that you (and other

people working with your code) can easily read. If you were born and raised with

pipes and ampersands, you might think changing to prose is a useless feature, but

give it a go.

If you find yourself liking it, here are a few more to add to the mix: is and isnt are

aliases for == and != (which, as we said, is an alias for the triple equals versions);

on and yes are the equivalent of true; and off and no are both the same as false.

Finally, the inverse of if is aliased to unless, letting us write code such as:

power = on unless lives is 0

This will compile down to:

var power;
if (lives !== 0) {
 power = true;
}

Again, all these are optional; it’s up to your personal style. You might like to use

the aliases when testing against variable names, and regular symbols when testing

numbers, for example.

Jump Start CoffeeScript30

Loops and Ranges
We’ve already used a few for loops in the examples and by the time we’ve finished

the game, we’ll be almost sick of them. Tile-based games are rooted in a 2D grid,

therefore you spend a lot of time inside nested loops: the outside loop to iterate

over the rows of the grid, and the inside loop for the columns. However, for most

other work such as web development, we won’t use loops as much as we do in game

development; this is because we process our lists using comprehensions, a concise

notation for specifying operations over a list, which we’ll look at fully in the section

called “List Comprehensions” in Chapter 3.

The loops we’ve used so far have been defined using ranges, where our loop iterates

over the values inside the range. Just like the if statement, we can either write an

indented code block, or use the inverse form for simple expressions:

console.log "GO!" for [1..3]

This will give us three "GO!"s on the console. You have the option to break out of

a for loop or continue on to the next iteration with break and continue—exactly

the same as in JavaScript. In many cases, we’ll want to have access to the current

index the loop is in. To do this, we assign the current value to a variable:

console.log "...and a #{ x }" for x in [1..4]

These kinds of range loops will be compiled into regular for loops, albeit with a

hidden temporary variable: this is to allow anything we throw at CoffeeScript to be

handled generically:

var x, _i;

for (x = _i = 1; _i <= 4; x = ++_i) {
 console.log("...and a " + x);
}

Inclusive versus Exclusive Ranges

Notice that the range loop includes the start and end figure. If your programmer

brain dislikes the last number being included, you can use the triple-period syntax:

31CoffeeScript Fundamentals

[0...4]; this gives us the numbers 0 to 3, more like the for loops you might be

used to!

Ranges do not have to be ascending. If you want a descending range, simply put

the larger number as the first argument, and the smaller as the second. And if you

need a different size step between loops, you can specify it with the by keyword

after the range, remembering to use the correct sign:

for x in [99..1] by -2
 console.log "#{x} bottles of beer on the wall"

If our logic to execute is a short one-liner, we can use the post-fix form in the same

way we did for our conditionals:

console.log x for x in [1..10]

But for is not the only way to move in a circle: CoffeeScript also provides a low-

level while loop. Like our operator alias, we also have a “while not” version: until.

These can be used as traditional while loops, or in post-fix form for prose-like

readability:

animatePlayer() while alive
fall() until yPosition is 0

The final looping loop is loop; use it if you want to loop forever. Well, nothing lasts

forever: it’s just a while(true){} that can be broken with break:

loop
 killBaddie()
 break if baddieCount is 0

Comprehensive Collectivism

The constructs we’ve covered here should be familiar to programmers of imperative

languages like Java or C; however, CoffeeScript favors using comprehensions over

low-level loops. The idea is to abstract away the technical process of looping and

concentrate on processing a collection as if it were a single item. This leads to

shorter, more expressive code—so stay tuned!

Jump Start CoffeeScript32

Objects and Arrays
Okay, we can control our program flow, but what about data structures? We have

Arrays for lists, and Objects for key/value dictionaries; what more do we need?

Arrays are defined by wrapping your comma-separated list in square brackets:

blocks = ["dirt", "stone", "coal", "iron ore"]
console.log blocks.length # 4

Each array element can be of any type (including other arrays), and whitespace is

ignored; the compiled version will be concatenated into one long line. If you include

line breaks, the trailing comma on each line is optional. This is useful when you’re

defining lists that will be processed one-dimensionally, but are better represented

visually in two dimensions (quite common for games):

levelMap1 = [
 1,1,1,1,1
 1,0,0,0,1
 1,0,1,0,1
 1,0,0,0,1
 1,1,1,1,1
]

Naturally, all the Array’s built-in properties and methods are available: push, pop,

reverse, join, concat ... it’s all there. Additionally, CoffeeScript provides some

helpers for slicing, dicing, and processing arrays, the most notable being able to use

them directly in for loops:

register block for block in ["dirt", "stone", "coal"]

The for … in construct will call the register function on each string in our array,

as did the range loops above. One difference is that for our regular arrays, we might

also want to know the current index the loop is in. We do this by supplying an extra

variable, separated by a comma:

topPlayers = ["Max", "Lily", "Brian", "Tracy"]
for player, i in topPlayers
 console.log "Rank: #{ i }. Player: #{ player }"

33CoffeeScript Fundamentals

Now, on to objects! At their base, objects are a collection of key/value pairs. They’re

a fundamental method of encapsulation in CoffeeScript, allowing us to group related

functionality together in a single location. Objects are structured by indentation,

though braces are optional—but particularly useful when you only need a small

object that can be defined on a single line:

player =
 x: 10
 y: 25
 stats:
 score: 1337
 update: (speed) ->
 @x += speed
 @stats.score += 5

The player object contains a bunch of key/value pairs: x, and y as numbers, stats

as a nested object, and update as a function. The outside world can interact with

the object directly via its name:

player.update 2.5

Inside the update function, you’ll notice the variable names commence with an @,

which is an alias for this., a keyword used to indicate the current scope. Scope is

a hairy issue in JavaScript, so we’ll talk about this some more later; for now, you

can see that prefixing an identifier with the @ symbol means we’re referring to the

identifier in the current scope. In our example, the update function will compile

as:

this.x += speed;
this.stats.score += 5;

This will update the player properties accordingly.

Reserved Words as Keys

In JavaScript, there’s a small army of reserved words that each perform a certain

task. Normally, these words must be quoted if you’re going to use them as keys

in your object; but, once again, CoffeeScript has us covered. If you happen to use

a reserved word, it’ll be automagically quoted.

Jump Start CoffeeScript34

We can iterate over an object in a similar way that we did for Arrays, but this time

using the for … of construct:

for own key, value of player
 console.log "#{key}: #{value}"

You can choose any identifier for the key and value variables. Notice the own

keyword in there? This is optional, and used to counter another fun gotcha from

JavaScript: looping over the keys of an object that were defined directly, rather than

being inherited (for each key, it tests the object’s hasOwnProperty(key) function

under the covers).

Introducing Professor Digman-Rünner
It’s well into the afternoon, with minimal movement from the team. One email from

the pixel artist says she refuses to draw anything until there’s a theme, and there’s

a strange tweet from the story writer saying he had the most amazing idea for the

game last night, but he struggles to recall it now. Fed up, you crack open your image

editor, set the pencil tool to one pixel, and draw like you’ve never drawn before

(which is true), as evident in Figure 2.3.

Figure 2.3. Creating our game characters

Okay, that’s extremely retro, but it’s something. Looks like we have a guy in a lab

coat wearing safety goggles, and a ninja ...

And like a flash, it all becomes clear: Welcome to the world of “Professor Digman-

Rünner: Particle Physicist”!3 The Professor is hot on the trail of the infamous ele-

mentary particle, the Pig’s Boffin. After years of study at the “Digman-Rünner Re-

3 I wanted this blinking, but SitePoint told me it was impractical.

35CoffeeScript Fundamentals

search Institute for Research,” he’s finally proven the existence of the elusive particle

and is ready to announce it to the scientific community.

Alas, there is trouble afoot. His archenemy and nemesis, Stealthy HawkMan, has a

lucrative book-publishing deal in the works for his personal memoirs, the majority

of which is just him making fun of the Professor’s study of Pig’s Boffin. If the Pro-

fessor were to release his findings to the public, his archenemy’s book deal would

fall through, forcing Stealthy HawkMan to continue in the teaching position he

despises. Using his international HawkMan family connections, Stealthy organizes

a team of Japanese ninjas (frozen in time since the Meiji Restoration of 1868) to steal

the Professor’s particle research.

Luckily, the ninjas are relatively unfamiliar with the Standard Model of particle

physics. This provides the Professor with an opportunity to reclaim his work using

his two superpowers (which he’s been secretly developing over the years). His

primary superpower of running will be handy to escape the ninjas, while his sec-

ondary power will enable him to dig traps in the laboratory floor that will ensnare

unsuspecting ninjas. It’s all up to Professor Digman-Rünner. Good luck.

The Canvas API
Clearly, we’re going to require some graphics for our game. And for that, we’ll have

to step out of the laboratory in order to become familiar with the HTML5 Canvas

API. We don’t need to master it (indeed, for our immediate purposes we just want

to place our professor and some ninjas on the screen), but it’s a fairly simple API,

and we’ll use more of it when it comes time to add flourishes.

CoffeeScript and the Canvas API

How are CoffeeScript and the Canvas API related? If you’re just starting out with

web development, it’s easy to be confused about the separate parts. The Canvas

DOM element was introduced as part of HTML5. To draw on the canvas, you use

various drawing and manipulation methods via its API, which you access in the

browser via JavaScript. And as we know, if we can target it with JavaScript, we

can also target it with CoffeeScript!

The Canvas API requires some boilerplate setup, and a place to live. Let’s add a

new Coffee file, called gfx.coffee, to hold our graphics container object; this will

Jump Start CoffeeScript36

include a bunch of helpful properties and methods that we’ll access often. For now,

we’ll just set up a blank init function as an entrance point:

chapter02/src/gfx.coffee (excerpt)

gfx =
 init: ->

We’ll add this to our list of files that coffee is watching too:

coffee -j ../script/main.js -w -c gfx.coffee game.coffee

Check the compiled main.js file and make sure you can see a reference to our gfx

object.

Context and Soaking up Nulls
To draw shapes and graphics on the screen, any and all drawing operations must

be done on a canvas’s context. Usually, you’ll grab this context when your applic-

ation initializes and either keep a reference to it, or pass it around your functions

that need it. To obtain the reference, ask for it from the canvas DOM element in

your web page using getContext:

chapter02/src/gfx.coffee (excerpt)

init: ->
 canvasDOM = document.getElementById "game"
 @ctx = canvasDOM.getContext "2d"

This will give you a 2D context to draw in (store it in the gfx object as ctx), assuming

there’s a document element, the document contains a <canvas id="game"></canvas>

tag, and the user’s browser actually supports the Canvas API.

But what if any of these assumptions are incorrect? If either of the first two assump-

tions is incorrect, the next line will fail; if the last is incorrect, any use of ctx will

fail. In all cases, the user will be left wondering what the heck is going on.

We’ll have to let the user know if there’s a problem, and abort the running of the

game. We could do that by returning true or false from our init function to indicate

if initialization was successful:

37CoffeeScript Fundamentals

chapter02/src/gfx.coffee (excerpt)

init: ->
 canvasDOM = document.getElementById "game"
 @ctx = canvasDOM.getContext "2d" if canvasDOM != null
 return @ctx == null

This works, and stops our code from crashing if something is amiss. However,

CoffeeScript provides us with a way to do it that’s more concise, and without requir-

ing the declaration of intermediate temporary variables:

chapter02/src/gfx.coffee (excerpt)

init: ->
 canvas = document.querySelector "#game"
 @ctx = canvas?.getContext? "2d"
 @ctx?

We use the ? operator on a variable to “soak up nulls.” If the value is null, the code

keeps running, and we can handle any errors afterwards. The ? operator can also

be used to assign default values. For example, to select and assign the DOM element

only if the canvas element was yet to be assigned already, we could do this:

canvas = canvas ? document.querySelector "#game"

Though, in this situation, it seems redundant to have to assign canvas to itself like

this, so we can use the shortcut version instead:

canvas ?= document.querySelector "#game"

What if document is missing?

In reality, if there is no document or the document.getElementById fails, you

have bigger problems—something has gone seriously wrong. For a regular project,

this is unnecessary; just checking the context, which some browsers won’t support,

should be sufficient.

Back in our main game.coffee file, we can now initialize our canvas element and

notify the user if the initialization failed:

Jump Start CoffeeScript38

chapter02/src/game.coffee (excerpt)

game =
 init: ->
 if not gfx.init()
 alert "Could not set up game canvas!"
 return # abort the game

Start the game running
game.init()

With the initialization out of the way, we can start to find out more about our game

canvas. The context contains a field called canvas, which in turn contains its own

width and height fields. However, since we already have a reference to canvas, we

can access the width and height fields directly. We’ll be using these often, so let’s

expand our gfx object and attach some shortcuts:

chapter02/src/gfx.coffee (excerpt)

init: ->
 canvas = document.querySelector "#game"
 @ctx = canvas?.getContext? "2d"
 return false if not @ctx
 @w = canvas.width
 @h = canvas.height
 true

Now that we’re reasonably sure we have a place to draw, let’s start with a clean

slate by clearing our canvas using the clearRect method:

chapter02/src/gfx.coffee (excerpt)

gfx.ctx.clearRect 0, 0, gfx.w, gfx.h

Actually, while we’re at it, let’s make that a helper method that we can add directly

to our gfx object:

chapter02/src/gfx.coffee (excerpt)

clear: -> @ctx.clearRect 0, 0, @w, @h

And then call it from the game code:

39CoffeeScript Fundamentals

chapter02/src/game.coffee (excerpt)

init: ->
 if not gfx.init()
 alert "Could not set up game canvas!"
 return # abort the game

 # Ready to play!
 gfx.clear()

The clearRect method removes any content from the rectangle specified by the

arguments x1, y1, x2, and y2. In our example, we’ve emptied everything by clearing

from the point 0, 0 (top left) to the point at width and height of the canvas (bottom

right). In a game, this method is often called before each frame to erase the last

frame’s content. This is a bit unnecessary if you’re going to fill the entire screen

anyway; for example, if you’re drawing a tiled map. However, be aware that trans-

parent images can still cause issues. When in doubt, it’s best to clear each frame

and then optimize as your performance needs dictate.

Drawing Primitives
To draw shapes on the screen, we need to define the style properties of our context

and then call the method that draws it. Generally, shapes can be either stroked

(drawn as an outline) or filled (colored in), and the styles must be defined separately

for either. While we won’t be using this code in the upcoming sections, feel free to

experiment by appending it to the end of your game.coffee file. (Make sure to delete

it or comment it out when you’re done experimenting.) Here’s an example of filling

and then stroking a rectangle:

chapter02/src/game.coffee (excerpt)

c = gfx.ctx
c.fillStyle = "orange"
c.fillRect 10, 10, 300, 80
c.strokeStyle = "#3f3f3f"
c.strokeRect 10, 10, 300, 80

Jump Start CoffeeScript40

Context Is Important

You always need a context to draw in, and for our game that context is always

going to be gfx.ctx. Because we sometimes need to perform a lot of operations

on the context, we’ll often alias gfx.ctx to c, just to keep the code shorter.

And that’s all there is to it if your end goal is to make an orange rectangle with a

dark-gray border!

The fillRect and strokeRect methods both accept four parameters: the x and y

coordinates of the top-left corner of the rectangle, and the width and height of the

rectangle. Although our rectangle looks like a single item, it actually requires two

separate drawing operations; we just happen to use the same parameter values for

each.

For our game, we’ll certainly have to draw some text. Just like the rectangle, we

specify some styles, then fill or stroke the text:

chapter02/src/game.coffee (excerpt)

c.fillStyle = "#202020"
c.font = "14pt monospace"
c.fillText "Professor Digman-Rünner", 30, 55

Aaaand … Figure 2.4 reveals our title screen! The fillText method takes a string

to draw, and an (x, y) coordinate from which to start drawing.

Figure 2.4. Basic title screen

The Canvas API offers plenty more than this: creating (and stroking or filling) paths,

arcs (for circles), Bézier curves, a host of gradient fill options, text metrics (for

measuring strings for alignment) ... and lots more. We’ll address them as we need

them, but if you find yourself wondering if such-and-such a feature exists, the API

41CoffeeScript Fundamentals

is very consistent and these basics scale well. Head over to the spec and find out

more!4

Draw an Image
We have no intention of creating our graphics out of squares and circles—that’s too

much work. We want our pixel artist to hand us a bunch of amazing graphics and

we’ll render them instead. Though, with our pixel artist still missing in action, we

have our blocky professor and ninjas to tide us over.

Our game is going to be tile-based: which means the background will be a grid

composed of a handful of tiles rather than one great big image. We’ll create all our

levels out of these tiles. We’ve chosen (rather randomly) 24×24 pixel tiles. Historic-

ally, the size of tiles has been constrained to powers of two to fit in the smallest

number of machine bytes; however, we have no limitations on the desktop, so you

can choose whatever you like. 24×24 and 32×32 are still very common for pixel-art

games, though.

We’ve created some tiles—the ground block and a ladder—as well as some character

images. On-screen character images in 2D video games are called sprites. When we

push all our art together in a fixed-size grid, as we have done, we call it a sprite

sheet. In our game, we draw the correct subsection of the sprite sheet to the screen

for each tile and character. It’s a very handy way to keep all our assets together, as

well as reduce our game’s loading time.

To put our image on canvas, we need an image source to draw. You might be hoping

to simply reference our PNG file by providing the URL as a string, but, unfortunately,

canvas doesn’t work that way. The source must be either a DOM image or another

canvas object. This means we have to take care of loading the image manually and

making sure it has loaded before we try to draw it.

The most common approach to resource loading is to dynamically create an image,

and hook into its load event. If you have a bunch of images to load, you’ll have to

be a bit cleverer, or consider using a dedicated resource loader. In this case, we’ll

just save our image to our gfx object and provide a callback that runs when our

image is loaded:

4 http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

Jump Start CoffeeScript42

chapter02/src/gfx.coffee (excerpt)

load: (onload) ->
 @sprites = new Image()
 @sprites.src = "resources/sprites.png"
 @sprites.onload = -> onload()

When we call load, we provide a function once our image is ready. This will be

where we start running the game and perform other initialization work; for now,

let’s just start drawing directly inside the callback. Underneath our context check,

add the following call:

chapter02/src/game.coffee (excerpt)

init: ->
 ⋮
 gfx.load ->
 c = gfx.ctx
 c.drawImage gfx.sprites, 10, 20

The drawImage function takes the image we want to draw, and an x and y screen

position. Our example draws the sprites ten pixels in from the left, and 20 pixels

down from the top.

Processing a Sprite Sheet
Drawing the entire image will be useful for drawing title screens, menu backgrounds,

and the like, but no good for drawing our sprites. We need to be able to extract and

draw just a slice of each image for each tile and character. The drawImage method

has another signature for this very purpose:

drawImage image, sx, sy, sw, sh, dx, dy, dw, dh

This version takes an image, then two sets of coordinates: a source rectangle and a

destination rectangle. The source rectangle specifies where we want our slice to

start (sx, sy), and how much of the image we want to copy (sw, sh). Having defined

the area to copy, we then define where to paste it (dx, dy), and how big the final

image should be (dw, dh). If we make the destination width and height different from

the source width and height, it will be stretched to fit (which can be cool for crazy

effects!).

43CoffeeScript Fundamentals

Calculating the slice coordinates for each sprite is a pain, and will be required fre-

quently, so let’s make it into another method of our gfx object. The drawing context

and the sprite image are stored here, so we can refer to them using the alias, @:

chapter02/src/gfx.coffee (excerpt)

drawSprite: (col, row, x, y) ->
 @ctx.drawImage @sprites,
 col * 24, row * 24, 24, 24,
 x, y, 24, 24

With a tiny amount of math, we can calculate our slice from a given row and column

of the sprite sheet. The tiles are 24×24 pixels, hence the abundance of 24s: each

slice is column × tile-width wide, and row × tile-height tall. To test it out, let’s give

our Professor his first solo performance on the screen:

chapter02/src/game.coffee (excerpt)

gfx.load: ->
 ⋮
 gfx.drawSprite 0, 0, 100, 50

Figure 2.5 shows the result.

Figure 2.5. Professor performs a solo

The Professor lives at the top of our sprite sheet, and his first frame is in column 0

and row 0. Whenever we want to draw a sprite, we have to count its row and column,

and give it the x and y position to start drawing from. Simple as that!

Random Map
The day is starting to drag on, and having done the hard work of placing a character

onscreen, it’s time to have a little fun. By now, this should be relatively easy to

follow:

Jump Start CoffeeScript44

chapter02/src/game.coffee (excerpt)

gfx.load: ->
 ⋮
 rand = (max) -> Math.floor Math.random() * max
 for y in [0..19]
 for x in [0..23]
 col = rand 7
 row = rand 2
 gfx.drawSprite col, row, x * 24, y * 24

And that pixelated Andy Warhol effort seen in Figure 2.6 is the basis of our game!

Figure 2.6. Our grid takes shape, to Warholian effect

Rather than randomly draw tiles, we’ll design the grid with love and care. There

are a bunch of magic numbers in that snippet (which we’ll deal with soon): we are

drawing 20 rows and 24 columns (counting from 0), and choosing a tile from the

sprite sheet by selecting a random row and column (we only have two rows at the

moment). The little rand function is a helper to return a random integer between 0

and max, so we can avoid repeating those unsightly math functions.

Feeling adventurous?

Here are a few tests for consolidating what we’ve covered:

■ Make a random map featuring only the dirt and stone tiles.

■ Create the ’70s disco from Chapter 1, but with sprites instead of rectangles

(hint: remember to clear the context!).

■ Write a random number helper that accepts both a min and a max. Extra points

if min is optional. Use it to draw a map sans the Professor or ninjas.

45CoffeeScript Fundamentals

Ready to Rumble
We now have full control over our code and pixels, and are ready to rumble. Having

covered and mastered the essential basics of CoffeeScript, we can start using Cof-

feeScript for all our coding needs. Well, mostly … there’s still a lot of powerful

functionality to uncover. And with our 7-day HTML5 Game Jam-a-Thon Challenge

(TM) team proving unreliable, we’re going to need all the help we can get!

Jump Start CoffeeScript46

Chapter3
Features to Boost Your Game
It’s certainly been a whirlwind couple of days and we now have the basics of Coffee-

Script under our belts. While the basics are fun, it’s the more advanced aspects of

the language that make it interesting. In this chapter, we’ll apply the basics for our

game to work, and make a start exploring the more interesting parts as we go: ad-

vanced module and function features, and the all-powerful list comprehensions.

Team Meeting
You pitch your game idea and initial mockups, and naturally the team is in love

with the “Professor Digman-Rünner” concept; they’ve already started planning spin-

offs and talking about merchandising and franchising options.

The story writer is very intrigued with the history of the Professor, and the tapestry

of rich characters that will support him. The pixel artist is excited about the rough

work you’ve started and is chattering about color theory and radical shading possib-

ilities. Everyone (except yourself) agrees that they need to think about it for a while,

and promptly depart the café, leaving you to stare at your to-do list filled with un-

assigned tasks.

Having already established the groundwork of a tile-based map yesterday, you decide

that the focus for today will be creating levels and maps. Once we have our levels

working, we’ll want to populate them with the Professor, too, and control him with

the keyboard. And if we have any time left over, we should also start looking for

some new team members. Busy day ahead!

Functions Revisited
Functions, being first-class citizens, are already powerful in JavaScript, and Cof-

feeScript adds some syntactic niceness that makes working with functions even

more enjoyable. Let’s take another look at the ways we can define various functions:

square = (x) -> x * x
distance = (x1, y1, x2, y2) ->
 diff = square(x1 - x2) + square(y1 - y2)
 Math.sqrt diff
test = -> alert distance(2, 3, 5, 5)

The first function, square, simply squares a number and returns the value. The

function body is included inline with the function definition. Notice how much

more the actual logic of the function jumps out at the reader, compared to the

JavaScript equivalent in the snippet that follows, which is shrouded in long keywords

and assorted other symbols (this is particularly a problem when doing functional-

style programming, where programs are composed of many small functions):

function square(x) {
 return x * x;
}

The next function we define, distance, takes four parameters: the x and y coordinates

of, say, a bad guy in our game, and the x and y coordinates of our trusty hero. It

then calculates the distance between the two entities using Pythagoras’ Theorem

(and using our square function). This very useful piece of math tells us how far

away the bad guys are! We define the function body as a block by indenting it.

The final example, test, is a function that takes no parameters and simply alerts a

test run of our distance function. Because everything is an expression, the result

of the alert is actually returned from the function (though the result of alert is al-

ways undefined). Notice, too, that the parentheses are optional:

Jump Start CoffeeScript48

test = () -> alert "this is ok, too!"

Default Argument Values
Our drawSprite method is quite cool, as it lets us draw any of our tiles on the screen,

wherever we want. However, we’d like to make it more powerful, and be able to

specify the width and height of the source tile space (for example, so we could draw

a big tile in one operation), as well as specifying the scale to draw the tiles. Let’s

begin a new function that handles these tasks:

chapter03/src/gfx.coffee (excerpt)

drawSpriteFancy: (col, row, x, y, w, h, scale) -> # do the work

If we call drawSpriteFancy like this:

gfx.drawSpriteFancy(0, 0, 10, 10, 2, 2, 2)

… we want it to draw a 2×2 tile area to the screen (at position 10, 10) and scale it

to twice the height. To achieve this behavior, we’ll first add the tile width and

height constants in our gfx object. Because we’ll be working a lot with grids, we’ll

be using this to calculate offsets, rather than have magic numbers everywhere that

could change if, say, the pixel artist wants to use 32×24 pixel tiles for the final

graphics:

chapter03/src/gfx.coffee (excerpt)

gfx =
 tileW: 24
 tileH: 24

Now we’ll use these values to calculate the coordinates of the pixels we draw by

multiplying the number of tiles by the tile width and height (and in the process do

away with all our magic numbers):

chapter03/src/gfx.coffee (excerpt)

drawSpriteFancy: (col, row, x, y, w, h, scale) ->
 w *= @tileW
 h *= @tileH

49Features to Boost Your Game

 @ctx.drawImage @sprites,
 col * w, row * h, w, h,
 x, y, w * scale, h * scale

Awesome! But it seems a bit of a shame that we need two functions that do basically

the same job. Our original drawSprite method is just a call to drawSpriteFancy

with w, h, and scale being 1. It’s time to introduce default arguments! Default argu-

ments let us specify a value to use if the calling code fails to pass a value of its own.

To combine our two sprite drawing functions, we remove the old drawSprite

function, and modify the drawSpriteFancy function like so:

chapter03/src/gfx.coffee (excerpt)

drawSprite: (col, row, x, y, w = 1, h = 1, scale = 1) ->
 w *= @tileW
 h *= @tileH
 @ctx.drawImage @sprites,
 col * w, row * h, w, h,
 x, y, w * scale, h * scale

We can assign a value directly to the parameter name. When calling the function,

if we fail to supply w, h, and scale arguments, they’ll be magically set for us. In our

game, this is perfect. For the majority of the time, we’ll want normal-size tiles. Feel

free to replace the contents of the gfx.load callback (but keep the rand function!),

as we won’t be needing a screen full of random tiles any longer. From the callback,

we can call drawSprite as usual:

chapter03/src/game.coffee (excerpt)

gfx.drawSprite(0, 0, 50, 50)

Then, when we want the extra features, we just add in the extra parameters, over-

riding the height, width, scale, or all of the optional arguments. Here’s a version

that will draw a two-tile-high image with the default scale:

chapter03/src/game.coffee (excerpt)

gfx.drawSprite(0, 0, 74, 50, 1, 1, 2)

Figure 3.1 shows the result.

Jump Start CoffeeScript50

Figure 3.1. The two-tile-high club

Win By Default

When compiled, the JavaScript simply checks if the argument is null. If so, it

assigns the default value—so it’s more useful and natural to only include defaults

for the trailing arguments (or all arguments), otherwise the client code would have

to explicitly pass nulls to get the defaults. For example, if we removed the default

value from the final scale argument, we’d have to call drawSprite(0, 0, 10,

10, null, null, 2) for the default width and height.

Function Gotchas
There are a couple of gotchas when writing functions that you should be aware of,

especially when starting out. The first is because of the optional parentheses:

strategy () -> # do something
strategy() -> # do something

Despite having only a one-space difference, these two declarations perform very

different operations. The first calls the strategy function with one parameter, that

being the anonymous function. The second calls strategy with zero parameters,

and applies the anonymous function to the result of strategy (the result would itself

have to be a function for this code to work). The difference is much more obvious

if we also include the optional empty parentheses for the second call:

strategy() () -> #do something

The second gotcha involves lining up your code blocks when using anonymous

functions as parameters. For example, the setTimeout function accepts two para-

meters: a function to call, and a time delay to wait until it calls the function:

setTimeout functionName, delayInMilliseconds

51Features to Boost Your Game

If you want the function to be an inline anonymous function, you have to be careful

with the parameters that follow:

setTimeout ->
 if goalsAttained is 0
 alert "Time expired!"
 else
 nextGoal()
, 2000

Like always, to finish a code block you have to “unindent”; however, unlike always,

the next symbol is a comma. This can look a bit weird, so some people like to wrap

the entire block in parentheses to make it more obvious. This can also be used to

do inline functions:

setTimeout (-> alert "Time expired!"), 2000

A related gotcha is common when chaining function calls. Function chaining is

very useful when processing lists and the result of each operation is a new list on

which further operations can be performed. This will be particularly familiar to

developers who’ve used jQuery (which we’ll cover in the section called “Using

jQuery” in Chapter 6) where function chaining is an addictive habit! You might be

tempted to write your chains like this:

badGuys
 .attack player1
 .moveTo 10, 10

But there’s a problem here, and the actual compiled output would be:

badGuys.attack(player1.moveTo(10, 10));

Notice that the chain is broken and the moveTo function is applied to the player1

object? If you think of your chains as a single line of code, the problem is more ob-

vious. And the solution again is that you need to include the parentheses:

badGuys
 .attack(player1)
 .moveTo(10, 10)

Jump Start CoffeeScript52

List Comprehensions
The for loops that we looked at in the section called “Loops and Ranges” in

Chapter 2 have some superpowers that make working with lists of data a joy (if

you’re into that kind of thing). They are list comprehensions that create new lists

from themselves—allowing you to easily manipulate and process your data with

minimal amounts of boilerplate-looping syntax.

The trick to list comprehensions in CoffeeScript is that loops, like nearly every ex-

pression, will also return a result. This might seem a bit weird; that is, what’s the

result of a loop? Under the hood, CoffeeScript will create a new array and push the

result of each loop iteration into it, and thus form a list of the processed data. Very

nifty! To use it, simply wrap the for loop in parentheses (hmm, this is starting to

sound familiar!); then return the value you want from the parenthesized expression.

We need a fitting example to show the stealthy power of our for expression—and

what’s more stealthy than a bunch of ninjas? Let’s plot a bunch of them randomly

on the screen, with the assistance of a couple of helper functions:

chapter03/src/game.coffee (excerpt)

makeANinja = () ->
 x: rand gfx.w
 y: rand gfx.h

drawANinja = (n) -> gfx.drawSprite 0, 1, n.x, n.y

ninjas = (makeANinja() for [0...20])

We have one function—makeANinja—that returns an object containing a random

number (using our rand function from the section called “Random Map” in

Chapter 2) between 0 and the canvas width, and another random number between

0 and the canvas height. The next function draws a ninja (the tile at position 0 of

row 1) at a random position on the screen.

Our comprehension calls our ninja factory in each iteration of the loop, and pushes

it to the resulting array. And hey presto: 20 ninjas held in our custom storage facility

(well, a regular old array). The comprehension expression does not have to be a

function; whatever value you put here will be added to the array, though it does

53Features to Boost Your Game

work particularly nicely as a factory, and we’ll be using this more as we progress

through the game.

But the ninjas might be a bit too stealthy for us at the moment, because they’re

completely invisible. Let’s coax them out of their hiding places and draw them on

the screen from our gfx.load callback:

chapter03/src/game.coffee (excerpt)

drawANinja n for n in ninjas

Ah! We can now see them in Figure 3.2.

Figure 3.2. Ninjas coming out to play

We can feel more confident of our safety when they’re in plain sight like that.

Comprehensions also allow us to use guard conditions to filter the results, using

the when keyword. If we only wanted to see the ninjas on the left side of the screen,

we could filter the list based on the ninja’s x position:

chapter03/src/game.coffee (excerpt)

leftNinjas = (n for n in ninjas when n.x < gfx.w / 2)
drawANinja n for n in leftNinjas

Our guard condition tests that the ninja’s x position is less than half the canvas

width. When ninjas pass the test, they’re added to the final list. We can draw the

lucky winners as we did before.

We’re applying the comprehensions to our ninja objects, but they work consistently

for any data type; for example, if you wanted to find overly long name fields in your

Jump Start CoffeeScript54

database, you could just filter them (the result will be an array containing the valid-

ation error message for each long name):

people = ["Smith", "Jones", "Castledine-Carlin"]
longNames = for name in people when name.length > 10
 "Validation error for person: #{name}"

JavaScript Alternatives

Comprehensions can be used to do forEach, map, and filter. These functions

do exist in recent versions of JavaScript, and you can use them too, if you like—but

they aren’t quite as idiomatic as the constructs we just discussed.

Creating a Level
Time to get back to Professor Digman-Rünner. In the section called “Random Map”

in Chapter 2, we had random tiles all over the screen, and our goal was to harness

some order from the chaos and create a level. Most games will feature some kind

of level editor to quickly build fun and exciting gameplay. We’ll build our editor

later when we need it; for now, we’d like to be able to draw some levels in ASCII,

and have them rendered as tiles.

We’ll start with the most entertaining part: sketching out a level. Add a new variable,

level1, and make it a multiline string:

chapter03/src/game.coffee (excerpt)

level1 = """

 *.
 @#@@@@#@.
 #....#..
 #....#..
 ..*..#...@@@.
 ..@@@@@...#..
 ...#......#..
 ...#......#..
 ...#......#..
 .OOOOOOOOOOOO
"""

55Features to Boost Your Game

If you squint your eyes, you might just be able to figure out what that is—a small

level! Each character represents a different tile in the game: the @ symbol is dirt,

the # symbol is a ladder, the * is a magic particle … and so on. It’s a fairly low-tech

way to go about level design, but it’s a start!

Next, we have to map our level to the corresponding tiles in our sprite sheet. For

now, we’ll make a function that accepts our ASCII map and returns a 2D array of

tile coordinates. Create the makeLevel function that will do three tasks:

chapter03/src/game.coffee (excerpt)

makeLevel = (ascii) ->
 # 1. Define the tile-to-symbol map
 # 2. Cut up the ASCII string into characters
 # 3. Map the characters to their tiles

The first step is to define an object that will map the characters to sprite sheet co-

ordinates:

chapter03/src/game.coffee (excerpt)

1. Define the tile-to-symbol map
tiles =
 "@": [4, 1]
 "O": [4, 0]
 "*": [5, 1]
 "#": [5, 0]

If we ask for tiles["@"], it gives us the array [4, 1], which matches the fifth sprite

on the second row: the dirt image.

The next step is to chop up the ASCII string. If you look in the compiled source for

level1 (or read the section on strings), you’ll see that the string is just one great big

long line, and any line breaks are escaped as “\n” new-line characters. If we split

the string at each row (using JavaScript’s split function), we’ll have an array of

strings. If we then split each of these rows into characters, there will be a 2D array

of the tile symbols. Here’s a cunning comprehension to do just that:

Jump Start CoffeeScript56

chapter03/src/game.coffee (excerpt)

2. Cut up the ASCII string
asciiMap = (row.split "" for row in ascii.split "\n")

By the By

In the section called “Loops and Ranges” in Chapter 2 covering “plain old” for

loops, we saw that you can use the keyword by to step over each range in different-

sized jumps—and of course, it works here too. Doing ascii.split "\n" by

2 would make our levels half the height by skipping every second line!

This is a great example of the expressive power of comprehensions: it’s doing a lot

of work in few characters, but its function is still very clear. With our 2D array in

hand, we can move on to the final step of mapping each cell to the tile coordinates.

Another comprehension will help us here, and the list it produces becomes the

output of the function:

chapter03/src/game.coffee (excerpt)

3. Map the characters to their tiles
(for row in asciiMap
 for col in row
 tiles[col])

For each row of the asciiMap, each cell is mapped to the tile coordinates and re-

turned. If no tile is found—which will be the case for some of our periods—it returns

a null, giving us our final (very simple) level model. Now we can move on to ren-

dering it. For now, we’ll do this straight inside the gfx.load callback function like

we did in the section called “Draw an Image” in Chapter 2:

chapter03/src/game.coffee (excerpt)

Create a map from the ascii
level = makeLevel level1

Draw the level
for row, y in level
 for tile, x in row
 continue if not tile

57Features to Boost Your Game

 xPos = x * gfx.tileW
 yPos = y * gfx.tileH
 gfx.drawSprite tile[0], tile[1], xPos, yPos

This drawing code should look fairly familiar. It’s exactly the same as our random

map, but this time we’re skipping over any nulls (so it leaves a blank space) and

calculating the correct position using the tile width and height. The result is in

Figure 3.3.

Figure 3.3. Stepping up to the platform

That has to make you giggle just a little bit: our ASCII doodling transformed into

an awesome-looking platformer level! In the section called “Loading Levels” in

Chapter 4, we’ll refactor how we generate levels for our next set of goals—but all

of the for comprehensions will stay with us.

Many day-to-day computing tasks involve filtering and transforming lists. The more

you master comprehensions, the more you see how having a conventional interface

for list processing is a very powerful feature. And once again, we’ll be seeing a lot

more of these guys before the game is done.

Building Larger Projects
The next step in our game is to handle player input and create a player module to

hold our Professor. This necessitates adding two new files to keep things manageable

and reusable for any games we make in the future (cough Professor Digman-Rünner:

Re-dug cough). The filenames will have to be included in the compile step:

Jump Start CoffeeScript58

coffee -j ../script/main.js -w -c gfx.coffee keys.coffee player.cof
➥fee game.coffee

But adding the filename to coffee for every file will scale poorly—we could end

up with hundreds of files to include! A simple option is to remove all the filenames

and replace them with a wildcard:

coffee -j ../script/main.js -w -c .

This finds every file in the current directory and any subdirectories, and compiles

them to the output file. This is a much nicer solution, because any new files we add

to the project are automatically included and compiled as our project grows.

There’s a problem, though: the coffee command reads directories from the file

system alphabetically, so all the contained code will be imported and executed in

this order. Most of the time, this is fine, because we namespace and modularize our

code (like we did with the gfx object), and ensure everything has loaded before

running any code. The fact that gfx is defined before keys won’t matter.

However, if we have code that directly depends on other code (and we will if we

have a base class or base object prototype), the order becomes important. We can’t

inherit traits from an object that’s undefined, and so the code will break. A naive

approach would be to simply name the files alphabetically (perhaps by adding an

underscore to base objects), but that’s a fairly dirty hack; we need a better solution.

Removing the Safety Wrapper
By default, CoffeeScript will wrap all your code in a “safety wrapper” to stop you

leaking variables into the global namespace. In our project, we’re careful to only

expose our high-level objects; our game is running standalone, so we won’t be inter-

acting with other random code anyway. If we wanted to take matters into our own

hands, we could leave off the wrapper by adding --bare (or -b for short).

We’d still have our ordering issue, though. But if we used individual JavaScript

files instead of joining the files into one main.js file, it would then be up to us to

include these output scripts in the HTML page, and we could do that in any order

we liked:

59Features to Boost Your Game

coffee -b -w -c .

Compiling a List of Files
If you dislike the idea of adding a huge stack of JavaScript includes, and you’re on

a Unix-like system, you could turn to a command line solution. Create a simple text

file (which we’ll call files) that contains each file you want (including relative path),

separated by line breaks:

chapter03/src/files

gfx.coffee
game.coffee

Then perform the compilation by streaming the file paths into coffee:

xargs -t coffee -j ../script/main.js -w -c < files

It’s also fairly simple to turn this idea into a small bash script (we’ll call it compile)

and execute that:

chapter03/src/compile

#!/bin/sh

xargs -t coffee -j ../script/main.js -w -c << EOF
gfx.coffee
game.coffee
EOF

If you set the execute permission (chmod +x compile), you can then run it by typing

./compile (once you have all your files in place).

Keeping Orderly and Up to Date

Remember to add to this list whenever you create a new .coffee file. This way,

compiling the project will be trivial as you follow along with the examples. Keep

in mind that the order they’re listed in is important, and that game.coffee should

always be the last item.

Jump Start CoffeeScript60

Getting Serious with Cake
Eventually, you’ll hit a project that outgrows these simple solutions and needs some

more heavy-duty control over the build process. The CoffeeScript installation process

included a command called Cake. Cake is a simple build tool similar in functionality

to Make1 or Rake2 (see what they did there?) that automates the process of compiling,

building, minifying, and concatenating your CoffeeScript projects. Tasks are defined

in a Cakefile and executed when you run the command cake. Cakefiles are written

in CoffeeScript, so they can be as basic or complex as you need:

task 'greet', 'Say hello to everyone', ->
 console.log 'Hello, World!'

You can interact with the file system and command line (necessary for running the

coffee compiler, for example), and completely define your build and deployment

process. To learn more about Cake and Cakefiles, head over to the wiki.3

Handling Player Input
A game is only a game if the user has some input into what’s happening, hence our

need to handle input. Our game is going to be primarily controlled with the keyboard,

so we’ll need to hook into the DOM events that fire keyboard events. This is a famil-

iar task in web development, because the Web uses an event-driven model: the user

clicks an element, or scrolls a page, or presses a key. Your code listens for these

events and responds appropriately.

But games are a little different. Typically a game is driven by a game loop that runs

many times a second, and changes are made little by little in each frame to give the

appearance of smooth motion. Instead of reacting to events, we want to poll the

status of our input devices.

We’re using the browser DOM, so we still need to trap the keyboard events when

they happen; however, we’ll store the state of the keyboard in our keys object and

interrogate this proxy in the game. We’ll also add a field for each key used. While

1 http://linux.101hacks.com/unix/make/
2 http://guides.rubyonrails.org/command_line.html#rake
3 https://github.com/jashkenas/coffee-script/wiki/%5BHowTo%5D-Compiling-and-Setting-Up-Build-

Tools

61Features to Boost Your Game

we’re still yet to know exactly what’s happening in our game (thanks very much,

lazy team members), we can assume we’ll need keys for moving up, down, left, and

right, as well as a key for performing an action, such as a fire button. We’ll make

that the space bar for now, but we can update it later if necessary:

chapter03/src/keys.coffee (excerpt)

keys =
 up: false,
 down: false,
 left: false,
 right: false,
 space: false,

 reset: ->
 @up = @down = @left = @right = @space = false

 trigger: (keyCode, isDown) -> # handle the key event

The properties all default to false, which means that they’re not pressed. While a

key is held down, the value will change to true; that way, we can use it as a condi-

tion in our game:

fire() if keys.space

There’s also a reset function to move everything back to the defaults. It’ll come in

handy for the times where keys become stuck because keyboard events fail to be

sent as expected. For example, the user could press the space bar, then click on a

different browser tab, then release the key, and finally come back to the game. Be-

cause we never receive the keyup event, our game still thinks the space bar is being

held down.

We’ll tie the DOM events to the keys object via the trigger method. At the bottom

of keys.coffee—outside of the keys object—add the following event handlers:

chapter03/src/keys.coffee (excerpt)

document.addEventListener "keydown", (e) ->
 keys.trigger e.keyCode, true
, false

Jump Start CoffeeScript62

document.addEventListener "keyup", (e) ->
 keys.trigger e.keyCode, false
, false

The document.addEventListener function allows us to listen for various events.

We want the keydown and keyup events. From these, we extract the keyCode (the

number associated with each key) and send it off to our trigger function, along

with a flag indicating whether it was key press or a key release.

DOM Event Listeners

The addEventListener is a standard event on modern web browsers—but

modern web browsers vary! We can easily write some code that works consistently

across browsers, but we’re currently in the prototyping phase of our game and

need to work quickly. We’ll probably replace these calls later with their jQuery

equivalent, which takes care of the inconsistencies for us.

Dispatching with Switch
With the events firing correctly and providing us with the key code and key state,

we can dispatch this information to our keys state. We could do this with a stack

of if statements that test if each key we care about has been pressed, but a cleaner

way is to use the switch statement:

chapter03/src/keys.coffee (excerpt)

trigger: (keyCode, isDown) ->
switch keyCode

 when 37 then @left = isDown
 when 39 then @right = isDown
 when 38 then @up = isDown
 when 40 then @down = isDown
 when 32
 console.log "FIRE AWAY!" if isDown
 @space = isDown

The key code that the DOM event gives us is an integer representing the key. If we

press the right arrow key, the key code will be 37, so we set the @right property

accordingly.

63Features to Boost Your Game

Where can we find the key codes?

Obviously, resources exist that list all the ASCII standard keys and their codes,

but the easiest way is to just add console.log keyCode to the trigger function

and press some keys!

I’m sure you won’t be surprised to learn that a switch statement is yet another ex-

pression that returns a value. This means that it can be assigned directly to a variable,

or returned from a function.

Adding the Professor
What’s the use of having a godlike ability to form levels if there’s no one around to

admire our handiwork? We’re reaching the end of Day 3 of the Game Jam, so we’d

better launch Professor Digman-Rünner into his own game.

Create a new file, player.coffee, (remember to add it to your compile file) and define

a player with these properties:

chapter03/src/player.coffee (excerpt)

player =
 x: gfx.tileW * 3
 y: gfx.tileH * 5
 speed: 4

We’ll set the Professor at a beginning position of four tiles in and six down, and

give him a speed of four (why four? Why not?). Next up, we add two methods: one

to update the player’s position and another to render the player:

chapter03/src/player.coffee (excerpt)

update: ->
render: (gfx) ->

These two methods will feature in just about every entity and item we add to our

game. The update method will update the object’s internal state, and the render

method will represent that state for the current frame. The Professor’s update

method is controlled by looking at the current state of the keys object:

Jump Start CoffeeScript64

chapter03/src/player.coffee (excerpt)

update: ->
@x -= @speed if keys.left

 @x += @speed if keys.right
 @y += @speed if keys.down
 @y -= @speed if keys.up

In contrast, when our ninjas are added, they’ll have some AI that updates their po-

sitions and dictates their actions rather than keyboard input. By now, the render

method will be obvious:

chapter03/src/player.coffee (excerpt)

render: (gfx) -> gfx.drawSprite 0, 0, @x, @y

All we need to do now is call our player’s update and render methods. It needs to

occur quickly to give the illusion of movement; this is known as the game loop, and

will be the subject of the section called “The Game Loop” in Chapter 4. We can do

a quick ’n’ easy one right now so that you can show those teammates.

In the main game code, after the graphics have been initialized and the level created,

we’ll add a call to JavaScript’s setInterval; this is a function that repeatedly calls

some code at a set interval. Sounds perfect for us:

chapter03/src/game.coffee (excerpt)

level = makeLevel level1

setInterval ->
 # run game things
 # draw the level
 ⋮
, 33

The code will be run every 33 milliseconds. What do we have to run, though? First,

we should call our player’s update method. Then we can begin rendering, making

sure to gfx.clear() before we draw the level, then the player. The setInterval

will run its magic and loop through the code again, and again, and again:

65Features to Boost Your Game

chapter03/src/game.coffee (excerpt)

run game things
player.update()

gfx.clear()

draw the level
for row, y in level
 for tile, x in row
 continue if not tile
 xPos = x * gfx.tileW
 yPos = y * gfx.tileH
 gfx.drawSprite tile[0], tile[1], xPos, yPos

player.render(gfx)

This gives the illusion of movement. Sort of. The Professor, seen in Figure 3.4, can

apparently jetpack around the screen like a bird as we control him with the keyboard.

He’s yet to interact with the environment, but at least he’s alive!

Figure 3.4. Alive and flying

And There Was Light!
What a blast! You were able to learn and use some of the more advanced features

of CoffeeScript to implement game levels and a controllable player. More import-

antly, you have a solid base to build on and an understanding of ideas and goals

behind CoffeeScript itself. Now we can apply these ideas and bring our project to

life.

Jump Start CoffeeScript66

Chapter4
Game Loop and Classes
It’s now day 4 of 7 and you’re starting to sweat. The story writer announced he has

too much “real” work on and will have to bow out of the race, but says he still wants

a cut of any profits arising from his contributions to the project. You explain to him

how percentages of zero work, and he leaves in a huff.

You know that if you lack a solid base to build on by the end of the day, pushing a

complete product out the door will be tough. Let’s knuckle down and apply some

structure to our game. In this chapter, we’ll take the prototype we’ve been working

on and refactor it into a bunch of classes that will organize and drive the game.

The Game Loop
But first, we need to clean up our mess from last night. In our haste to put some

animation on the screen, we used the simple setInterval timer to continually loop

over the updating and drawing methods. This morning, we’ll need to rework this

into what will become the very heart of our game: the game loop.

Unlike the event-driven nature of the Web, a game loop approach requires constant

work for the browser: clearing the screen, updating all models, and rendering any

changes to the screen. Such operations need to be at least 30 frames per second,

otherwise animation will look jumpy. External events, such as user input, are polled

by the system every frame, rather than being told to us directly.

Improving Our Loop
It’s time to sketch out the game module that will be the master of our game universe.

We will build on the concepts we developed in previous chapters using new code.

It will be responsible for the high-level aspects of the entire game: starting, stopping,

resetting, initializing, and scheduling the updates and renders of every object. Here

it is stubbed out, so we can fill it in method by method:

chapter04/src/game.coffee

@game =
 running: false
 init: ->
 stop: ->
 start: ->
 reset: ->
 tick: ->
 update: ->
 render: ->

While we’re at it, we should move the call to game.init into index.html:

chapter04/index.html (excerpt)

<script src="script/main.js" type="text/javascript"></script>
<script type="text/javascript">game.init()</script>

Starting from the top, the running flag will be used to start and stop the game, in

case we want to add a pause feature at some point. Next up, we have the initialization

code, which should look familiar by now:

chapter04/src/game.coffee (excerpt)

init: ->
 if not gfx.init()
 alert "Sorry, no canvas"
 return
 gfx.load -> game.reset()

Jump Start CoffeeScript68

Once the canvas element has been initialized, the code will call the game’s reset

method. When making a game, it’s important to split up your initialization code

(which runs just once—at start up) from your reset code (which runs every time the

player dies and wants to play again). It’s common to bundle all this together when

you’re prototyping, but it’s always a pain to split up later!

self Reflection

In the callback, we’re explicitly referring to the game object rather than the this

object; that’s because the code’s scope has been altered. There are other ways to

get around this; a common one is to keep a reference to the original scope by as-

signing it to a variable self = this, then in the callback using the stored scope

self.reset(). CoffeeScript also provides us with a nicer approach: function

binding, which we’ll see in the section called “Function Binding” in Chapter 6.

The start and stop methods only toggle our internal running flag. We could set

the field directly, rather than use the setter methods, but later we might want to do

some extra logic when a game is paused or resumed:

chapter04/src/game.coffee (excerpt)

stop: -> @running = false
start: -> @running = true

Our reset method is called from the initialization code and will pass on the message

to the keys object; this ensures there are no key presses stuck from the previous

run. It then kicks everything off, setting the running property to true via @start()

and calling the main tick method. tick is our game loop—each tick is a frame in

our game. It makes sure the timing is correct and fires off the game logic:

chapter04/src/game.coffee (excerpt)

reset: ->
 keys.reset()
 if not @running
 @start()
 @tick()

69Game Loop and Classes

In Chapter 3, we used setInterval to loop infinitely. The next step up from this

is to use its partner in crime, setTimeout. setTimeout works exactly the same, but

it loops just a single time, giving us control over when to do the next tick:

chapter04/src/game.coffee (excerpt)

tick: ->
 return if not @running
 gfx.clear()
 @update()
 @render()
 setTimeout (-> game.tick()), 33

We check that the game is running, and if it is we call the update and render

functions (which we’ll define in a while). setTimeout is then called, delaying for

33 milliseconds. Why 33? Because that will give us a frame rate of around 30 frames

per second. It’s derived from the simple calculation: 1000 milliseconds (in a

second) / 30 frames = 33-ish. For most games, modern computers will not flinch

at this rate, so you can bump it up if you want. A setting of 16 milliseconds will

give you around 60 frames per second (the generally accepted “good” frame

rate)—just be sure to test it on the worst computer you want your game to run on!

Looping with RequestAnimationFrame
But our game loop is still very naive. Indeed, game loop logic can become extremely

complex if you want rock-solid, flawless timing. The core of the problem is that

although setTimeout says it will call our code after 33 milliseconds, it’s prone to

being wrong. Sometimes it’s a bit slower; sometimes a bit faster; sometimes the

browser’s garbage collection kicks in and the loop seems to hang for a frame;

sometimes, your user will have a slow computer that fails to keep up.

A good game loop will account for all these situations and update accordingly by

tying your animation to the delta of time that passed since the last tick. You can

then move the onscreen entities more or less to make up for lags and hiccups, so

that everything appears to move smoothly, all the time. A good game loop will also

separate the game logic from the rendering aspects of the code—either by using two

distinct looping mechanisms, or via a scheduler inside the main loop. It typically

performs rendering as fast as it can, while updating intensive game logic at a slower

Jump Start CoffeeScript70

rate. It will skip frames, or run update logic multiple times in a single loop to keep

behavior and presentation synced up.

Good game loops are hard, so we’ll resist going down that path. But we can do better

than setTimeout without breaking our brains, thanks to the recently introduced

requestAnimationFrame timer.

The requestAnimationFrame timer is designed especially for animations,1 providing

us with a smoother experience than its other JavaScript timing brethren. It also has

the added advantage of pausing when the user switches tabs, so your game won’t

be responsible for draining the life out of users’ laptops if they forget they’ve left it

open in another tab! The use of the timer is similar to setTimeout. In fact, we can

just replace the setTimeout call directly:

requestAnimationFrame ->
 game.tick()

We’ve gained the support of the browser’s low-level animation timing mechanisms.

One element we’ve lost, however, is the ability to set the frame rate manually.

Everything will be running at 60 frames per second.

This is perfect for our game, but what happens in a few years if the browser vendors

decide to bump that speed up, or even down? Our game will be tied to this timer

and everything will run much faster or slower.

You can see it’s a much smarter idea to keep your animation amounts independent

of the frame rate. We’ll skip doing this for simplicity’s sake, but it’s relatively easy

to do. A couple of great online resources on the subject are CreativeJS’s “The Secret

to Silky Smooth JavaScript Animation”2 and Glen Fiedler’s “Fix Your Timestep.”3

Classes
Our primary unit of code reuse till now has been the module: we have a module

for the graphics, one for player input, one for the main game object, and one for the

player. These have all been (kind of) singletons, meaning that we only have a single

1 https://developer.mozilla.org/en-US/docs/DOM/window.requestAnimationFrame
2 http://creativejs.com/resources/requestanimationframe/
3 http://gafferongames.com/game-physics/fix-your-timestep/

71Game Loop and Classes

instance of each object. It is possible that we’ll want more than one instance of the

player object (if we make a two-player version), and we’ll most surely want more

than one ninja attacking the Professor. Additionally, there are a lot of similarities

between the Professor and the ninjas that we’d like to extract and reuse.

JavaScript has a model of prototypal inheritance for instantiating and extending

objects. In this model, our instances are created in a factory-like approach from a

prototype function. All instances share the same prototype, meaning that they all

have the same methods and properties even when they’re added to the prototype

after instantiation. Although quite different from the classic object-oriented approach,

it’s very flexible and powerful. So flexible, in fact, that it actually allows us to im-

plement a object-oriented model on top of it—though the syntax required to do so

is a little funky. CoffeeScript circumvents the funk by providing some nice syntactic

sugar for simple classes.

Classes are defined using the class keyword. The smallest class we could create

(without properties or methods) consists of the keyword and class name:

class Player

Under the covers, this will become a regular function (called Player) that is the

prototype function for instantiating our objects. Although the compiled code will

look quite different, refactoring our original player object into a class is very easy.

Our original looked like this:

player =
 speed: 4
 update: -> …
 render: (gfx) -> …

The x and y properties are gone (for the moment) because they’ll need to be set on

an instance-by-instance basis, rather than hardcoded. The class version needs only

a small modification to its definition to complete the transformation: class Player:

Jump Start CoffeeScript72

chapter04/src/Player.coffee (excerpt)

class Player
 speed: 4
 update: -> …
 render: (gfx) -> …

We changed the name to Player with an uppercase P. Uppercasing class names is

a common convention, but not vital. If you look at the compiled JavaScript for the

class, you’ll see that Player is no longer an object but a function with the class details

attached to its prototype property. We can make some players with it using new:

player1 = new Player()
player2 = new Player()

Because each instance is just an object, our player code will continue to work. Each

instance has its own properties and methods (the methods being shared among all

instances to save memory) that you can set and call:

player1.update()
player1.render gfx
player2.speed = 5

CoffeeScript’s classes are quite simple, and a great way to group related reusable

functionality—especially for a game. We’ll be using them extensively.

Constructor and Auto Properties
We’ll often want to set some parameters or run some startup code for each instance

of an object we create. For this, CoffeeScript gives us a special method constructor

that will be called upon object instantiation:

chapter04/src/Player.coffee (excerpt)

class Player
constructor: -> #runs when instantiated

Like any function, the constructor can also accept parameters. The most common

use of this is to set some initial properties for the instance. We removed the player’s

73Game Loop and Classes

x and y coordinates earlier; these would work nicely here, as we’ll probably have

no idea where we want the player to start until we create it:

chapter04/src/Player.coffee (excerpt)

constructor: (x, y) ->
 @x = x
 @y = y

Just as with ordinary objects, we set class properties using the this alias @. The

constructor will assign the parameters we pass in to the class’s x and y properties.

Doing initialization code like this is so common that CoffeeScript gives us a bit of

sugar to make matters cleaner:

chapter04/src/Player.coffee (excerpt)

constructor: (@x, @y) ->

No need to clutter up our constructors with boring details—CoffeeScript can auto-

matically do the boilerplate stuff for us!

this Is It

Automatically assigning values to this properties is not restricted to classes; you

can use it on regular objects, and even functions. The effect is the same, where it

assigns the parameter to a property of the same name in the current scope.

When we create our player object, we can now set the screen position dynamically:

professor = new Player 10, 20
console.log professor.x, professor.y # ==> 10, 20

Class Inheritance
The Professor must be feeling a bit lonely. It’s about time we unleashed some hoards

of pixel ninjas. These will be encapsulated in a new class (in a file called Ninja.coffee)

that will contain our ninja logic:

Jump Start CoffeeScript74

chapter04/src/Ninja.coffee (excerpt)

class Ninja
 speed: 4
 update: ->
 render: (gfx) ->

Hmm, that looks comparable to the Professor’s class definition … and it’s likely

we’ll want to add some more characters later that will be similar too. We could just

copy/paste our code, but then if we make any changes, we’d have to modify it

everywhere. A better solution is to extract all the similarities into a base class and

give that functionality to anyone who needs it via inheritance: our player and ninjas

objects will inherit the properties and methods from its parent.

We’ll give our generic base character a suitably generic name: Entity. Our professor

is an Entity and each ninja is an Entity. Because there will be multiple related

objects, we’ll make a new subdirectory in our project called entities and move

Player.coffee and Ninja.coffee there.

A new file, _Entity.coffee, will contain the underlying characteristics that define

entities in our game. What you include here will vary from game to game, but some

are standard: positions, directions, generic update methods, and so forth:

chapter04/src/entities/_Entity.coffee (excerpt)

class Entity
 speed: 4
 dir: "LEFT"
 constructor: (@x, @y) ->
 update: ->
 render: (gfx) -> gfx.ctx.fillText "?", @x, @y

We’ve added a new dir property to hold the direction that the entity faces (we’ll

keep it simple by using strings to define either "LEFT" or "RIGHT"). The constructor

will set the x and y properties for us, and the render method will draw a question

mark at the entity’s current location when called.

Why draw a question mark? Well, we’ll probably never directly make an entity

object; rather, we’ll call the subclass that inherit from it. Each subclass will override

the render method with its own implementation (and draw itself correctly). If a

75Game Loop and Classes

subclass forgets to do this, we’ll see a question mark appear on the screen and

(surely) realize what’s going on!

OOPs!

CoffeeScript’s classes aren’t intended to replicate a fully blown object-oriented

model, so we’re unable to make abstract classes or define private variables, although

there are ways to replicate these kinds of features (such as wrapping private code

in an internal function). This is a consequence of JavaScript’s inheritance model,

which encourages a functional programming style. Trying to code JavaScript too

much like Java will only leave you with leaky abstractions and a bad headache.

With the core entity model defined, we can refactor our Professor and the ninjas to

use it. To inherit from a base class, you use the CoffeeScript keyword extends fol-

lowed by the base class name:

chapter04/src/entities/Player.coffee (excerpt)

class Player extends Entity
 update: -> …
 render: (gfx) -> gfx.drawSprite 0, 0, @x, @y

Now the Player object has all the features of Entity. We’ve provided a new render

method that completely shadows the base, so any call to render will draw the pro-

fessor frame instead of the question mark. Refactoring our ninjas is just as easy, and

our final Ninja class becomes equally small:

chapter04/src/entities/Ninja.coffee (excerpt)

class Ninja extends Entity
 render: (gfx) -> gfx.drawSprite 0, 1, @x, @y

Everything that’s the same about a player and a ninja (it turns out that professors

and ninjas have a lot in common) is kept neatly in the base class, and anything that

differs (currently the visual representation only) is defined in the subclass. Both

the base and subclasses will grow substantially bigger before the game is done!

We are now free to freshly mint all the professors and ninjas we need:

Jump Start CoffeeScript76

player = new Player 50, 50
ninja1 = new Ninja 80, 50
player.render gfx
ninja1.render gfx

Here’s the result in Figure 4.1.

Figure 4.1. The ninja and the Professor

Game Classes
CoffeeScript’s classes look like the way to go for our game: they group logic together

properly and allow us to easily create armies of ninjas. It’s time to really start

thinking about what we need in this game in addition to the Professor and ninjas.

We are making a tile-based game that will be divided into levels. Each level will be

progressively harder, and slowly introduce the player to all the rules of the game.

This means we have to model the levels, and the levels will comprise blocks. The

blocks will be the interesting part of our game in that they’ll define how our entities

move and what they can do. We’ve been calling them tiles so far; the difference is

that a block will be the object containing logic, whereas a tile is simply the image

that represents a block.

Later on we’ll probably also need some menus and game screens, and maybe even

some more classes for any crazy effects we want to add at the end. For now, let’s

start with the levels.

The Level Class
The level function we created in Chapter 3 was great for putting some pixels on

the screen, but we need a bit more control. We’ll replace our makeLevel function

with a new class, Level. And although it’s unnecessary to subclass a level like we

did with our entities, we’ll nevertheless put it in its own directory—levels—because

we’ll keep our level data in there too.

77Game Loop and Classes

The primary function of the Level class will be to parse our level data and create

the blocks. Every time we begin a game, or the player completes a level, we’ll create

a new Level instance and pass in the data to have it load. There are a few properties

we’ll need to keep track of, too: the width and height (in tiles) of the level, how

many magic particles (which we’ll generically call treasures) the Professor needs

to collect to finish the level, and a list of all the ninjas on the loose:

chapter04/src/levels/Level.coffee (excerpt)

class Level
 w: 0
 h: 0
 treasures: 0
 ninjas: []
 constructor: (level, @game) -> @load level
 load: (level) ->
 update: ->
 render: (gfx) ->

The constructor simply stores a reference to game and flips the level data over to

the load function to do the parsing. We can also see the familiar update and render

methods that will be responsible for updating and rendering all the items the level

is managing. We’ll leave the Level class at stubs for now and fill it out later; we

just need to define it so that our entities know about its existence.

Calling the Super Class
Each of our entity subclasses has their own render method; if we fail to supply

one, we have the base class functionality instead. But sometimes you want both the

base class functionality and some custom functionality. To achieve this, we use

super (as in “super class”—not just because it’s a great feature) from the subclass.

To see it in action, consider this addition to our game: our entities knowing some

facts about the level that they live in. For example, the Professor will have to check

what kind of block he’s currently standing on to see whether it obstructs his path,

or if he’s allowed to pass through it. We’ll pass the level itself to each entity as we

create the entity, and keep a reference for when the level’s needed:

Jump Start CoffeeScript78

chapter04/src/entities/_Entity.coffee (excerpt)

class Entity
 ⋮
 constructor: (@level, @x, @y) ->

The level is set, along with the x and locations of all of our entities. But now we’ve

decided that we want to personalize the Professor a bit, by changing his default

direction. In the base class, we default to "LEFT", but our players will start in the

top-left side of the screen; as a consequence, they’ll be facing the wrong way.

We’ll want to set this inside the Player constructor function. But wait! If we put a

constructor in the subclass, it will override the base class—and our base properties

will fail to be set. Luckily, we can still reach the base class using super. super will

call the base class method of the same name that we’re currently in. To put our

parameters back up to the Entity class, we call super inside the constructor:

chapter04/src/entities/Player.coffee (excerpt)

constructor: (level, x, y) ->
 super level, x, y
 @dir = "RIGHT"

This sets the parameters as before, and we can then proceed with our player-specific

logic (in this case, it’s setting the direction to "RIGHT"). That’s exactly what we

want—although it’s a mild inconvenience to have to copy all the function parameters

manually like this, as they’re exactly the same in the base class. Of course, Coffee-

Script gives us some sugar:

chapter04/src/entities/Player.coffee (excerpt)

constructor: ->
super

 @dir = "RIGHT"

If you call super without arguments or parentheses, it will pass all parameters dir-

ectly to the base class. Super! And super isn’t just for the constructor: any method

in a subclass can call the super class’s method of the same name. For example, to

reuse the base render code, we could call it from our Player class:

79Game Loop and Classes

render: (gfx) ->
 super
 gfx.drawSprite 0, 0, @x, @y

However, if you were to call this in our main game loop, you’d see that only the

Professor is drawn, rather than the question mark that we used as our placeholder.

Actually, both are called, but the base is called first and the Professor is drawn over

the top of it. If we wanted to switch the order, we simply call super after we draw:

render: (gfx) ->
 gfx.drawSprite 0, 0, @x, @y
 super

If you then hide the background tiles, you’ll see the question mark.

No base class?

CoffeeScript implements the super functionality by keeping a reference to the

parent class’s prototype. When you use super, it simply tries to call the method

on the parent prototype—so it’s not going to stop you calling a base class method

that doesn’t exist!

The Block Class
Every tile in our map will be an object, even the blank spaces. This allows us to put

a lot of logic into our maps; some blocks will be solid (and impossible to walk

through), some will be diggable (in order to dig holes), and some will be climbable

(so that we can have ladders for our entities to go up and down). We’ll put each

block in its own class, but derive them from a common base class called Block,

which will live in the file, _Block.coffee, in a new directory: blocks!

chapter04/src/blocks/_Block.coffee (excerpt)

class Block
 solid: false
 constructor: ->
 update: ->
 render: (gfx, x, y) ->

Jump Start CoffeeScript80

Extending Prototypes

If you weren’t using CoffeeScript’s class helpers and wanted to add methods to

the object’s prototype directly, you can use the extends operator, ::. For example,

Block::update is the equivalent of Block.prototype.update.

Like our entities, blocks will have an update and a render method that will be

called every frame. Unlike our entities, blocks will lack their own position—the

Level class will send the x and y tile locations along when it calls the render

function. Because we’re doing nothing inside the block’s render function, this block

will be invisible.

So while we’re here, let’s define our first visible block: Dirt. Dirt will be one of our

primary platform materials. The entities will be unable to walk on or fall through

dirt, but the Professor will be able to dig into it later:

chapter04/src/blocks/Dirt.coffee (excerpt)

class Dirt extends Block
 solid: true
 render: (gfx, x, y) -> gfx.drawSprite 4, 1, x, y

Dirt extends our base Block class but overrides the solid property (our flag for

disallowing entities to pass) and render to draw the correct tile for this block:

chapter04/src/game.coffee (excerpt)

d = new Dirt()
d.render gfx, 10, 10

Our block, shown in Figure 4.2, is relatively unexciting, but it has potential. And

adding new blocks with any crazy functionality you can imagine becomes easy.

Figure 4.2. Uneventful block

81Game Loop and Classes

Loading Levels
With all our classes in place, we can start to thread everything together. In Chapter 3,

we took a stab at drawing a map of tiles; now, we’re going to refactor that into more

heavyweight code. First, we add a file—levels.coffee—in the levels directory that will

hold the definition of all our game levels:

chapter04/src/levels/levels.coffee (excerpt)

levels = [{
 name: "DIG and BUILD"
 data: """
 .P................X.....
 @-@@.........@@@@@@@-@..
 .#..@@@.............#...
 .#.....@@.@@.....X..#...
 @OO#.........#@@...O#..^
 ...#.........#......#.^O
 ...#..@@-@@@@#..-@@@@@OO
 ...#....#....#..#.......
 ...#....#....#..#.......
 ...#....#....#..#.......
 @-@@OOOOO.#.@@@@@#@@-@@@
 .#.X......#......#..#...
 .#...*....#......#..#...
 ####..@@#@@..-@@@@@@@..*
 ####....#....#.........#
 ####....#....#.........#
 OOOOOOOOOOOOOOOOOOOOOOOO
 """}]

This will be an array of objects. Each object will be a level containing a name (which

we’ll eventually display before the level commences), a multiline string data that

plots the level map as we did earlier. Our Level only understands a few symbols

so far: “.” for a blank block, and @ for a dirt block. Shortly, we’ll add X for a ninja,

and P for the Professor. We’re going to ignore the Professor for the time being—he’s

a special case that we’ll look at shortly—but we’ll place him in the level map because

it would be rude to omit him.

Defining our ninjas and players inside our map like this is cheating a bit; a ninja is

not a block, it’s an entity. When our level loader encounters an X, it needs to do a

Jump Start CoffeeScript82

few tasks to introduce a new ninja properly. We’ll pull these out into a small helper

function inside Level:

chapter04/src/levels/Level.coffee (excerpt)

load: (level) ->
addNinja: (x, y) ->
 xPos = x * gfx.tileW
 yPos = y * gfx.tileH
ninja = new Ninja @, xPos, yPos
@ninjas.push ninja

First, it has to calculate the screen pixel position of the ninja from the provided

map position.

It then creates a new instance of our Ninja class (passing the level instance,

and the screen x and y location).

Finally, the ninja is added to the level’s array of ninjas so that we can wrangle

them as a group.

Test this method by manually adding a ninja from inside the Level constructor:

@addNinja 1, 1
ninja = @ninjas[0]
alert "Ninja 1 at: #{ninja.x}, #{ninja.y}"

Now we can revisit our level-loading magic. Here are the steps to transform our

ASCII art into the level model:

chapter04/src/levels/Level.coffee (excerpt)

load: (level) ->
 # 1. Clear level items
 # 2. Parse the level string into a map
 # 3. Loop over the map and create the blocks
 # 4. Set the level height and width

Step one is nice and easy; each time we begin a level (whether it’s a new game, a

new level, or the player has died and is restarting), we need to ensure that the correct

state is reset. We remove any ninjas that we’ve already created, and set the treasure

count back to 0:

83Game Loop and Classes

chapter04/src/levels/Level.coffee (excerpt)

1. Clear level items
@ninjas = []
@treasures = 0

Next up is to parse the level data string. This uses exactly the same for comprehen-

sion that we used originally to turn the string into a 2D array of characters:

chapter04/src/levels/Level.coffee (excerpt)

2. Parse the level string into a map
asciiMap = (row.split "" for row in level.data.split "\n")

When the Parentheses Count

The parentheses in this statement are a prerequisite. If you omit them, the loop

results won’t be collated into an array—you’ll just have the value of the final ex-

pression.

Here comes the fun part: making some real blocks. The plan is to loop over the

asciiMap we just created and map each character symbol to its corresponding Block

instance. The result will be a 2D array that’s the same size as asciiMap, except

populated with blocks:

chapter04/src/levels/Level.coffee (excerpt)

3. Loop over the map and create the blocks
@map = for row, y in asciiMap
 for col, x in row
 switch col
 when "@" then new Dirt()
 when "X"
 @addNinja x, y
 new Block()
 else new Block()

Remember that the switch statement can return a value, so we make sure to return

some kind of Block for every possible case. If we find a @, we return a new Dirt

object; if we find an X, we add a new Ninja via our helper method and return an

Jump Start CoffeeScript84

empty block. And if we find an unknown symbol (which will be the “.”s and the

Professor’s P in our map), we return an empty block.

Cheats Never Prosper

Earlier, we said that defining the ninjas in the ASCII map was cheating. Here’s

why. When we find an entity, we instantiate and process it, then replace it with

an empty block. That means entities can only ever start on an empty block. A

better solution is to declare separate maps for entities and blocks, and process

them separately. The downside to this approach is that it’s difficult to see at a

glance everything in your level.

The final step is to set a couple of helpful level properties: h (the height) and w (the

width) of the newly processed map:

chapter04/src/levels/Level.coffee (excerpt)

4. Set the level height and width
@h = @map.length
@w = @map[0].length

To use the load method, pass in the level we want to use (we only made a single

level, so can only use level[0] for now). To test it, create a new Level from outside:

myLevel = new Level levels[0]

We end up with our map property populated properly and some ninjas neatly nested

in the ninjas array. A lot of alliteration, but little fun—because we see nothing yet.

Driving a Level
Now that we’ve modeled a level, how can we use it in the game? Once again, it’s

back to our trusty update and render methods. Unlike an entity or a block, the

level is no screen object; as a result, it does no internal processing of its own, but

rather manages the child items it’s responsible for: the ninjas and the map blocks:

85Game Loop and Classes

chapter04/src/levels/Level.coffee (excerpt)

update: ->
 # Update the level blocks
 for row in @map
 for block in row
 block.update()
 ninjas.update() for ninjas in @ninjas

Every block receives an update notice, even though nobody needs it at the moment;

they will soon enough. For example, the Dirt block can be dug away, but it will

reappear over time; the update method is where we’ll perform this kind of logic.

The ninjas all receive the update message too; this is where we’ll perform our AI

calculations for attacking the Professor.

All that’s left is to display the level to the user. This is almost identical to updating,

but passes in x and y tile coordinates for rendering at the right place on the screen:

chapter04/src/levels/Level.coffee (excerpt)

render: (gfx) ->
 # Render the level blocks
 for row, y in @map
 for block, x in row
 block.render gfx, x * gfx.tileW, y * gfx.tileH
 ninjas.render gfx for ninjas in @ninjas

Kicking It All Off
We’re still yet to have anything onscreen. Before we address this, let’s deal with

the glaring omission: the Professor. We added him to the level data map without

bringing him to life. Because the Professor will transcend individual levels, we’ll

define him at the game scope and have the level call the code from the game to pos-

ition him. In the game object, add this helper:

chapter04/src/game.coffee (excerpt)

setPlayer: (x, y, level) ->
 @player.level = level
 @player.x = x
 @player.y = y

Jump Start CoffeeScript86

This will give the player the current level and set his x and y location. The level

then calls this helper when it finds a P in the ASCII map. In the Level class, we’ll

add a method after the addNinja method (passing the calculated x and y position

and the this reference, which is the current level instance):

chapter04/src/levels/Level.coffee (excerpt)

addPlayer: (x, y) ->
 @game.setPlayer x * gfx.tileW, y * gfx.tileH, @
addNinja: (x, y) ->

Then we add a new case to the level loading switch statement. It’s the same as for

the ninja’s: adding the player, and returning a new empty block:

chapter04/src/levels/Level.coffee (excerpt)

when "P"
 @addPlayer x, y
 new Block()

One Professor

There’s only one professor per map. He’s instantiated at the game level, so even

if we included multiple Ps in the ASCII map, the addPlayer method will reset

the player’s position, rather than create a new instance as with the ninjas.

The moment has arrived, with all the pieces now in place. At the start of the game

reset method (which will be called every time the game restarts), create a new

Player and a new Level:

chapter04/src/game.coffee (excerpt)

reset: ->
 @player = new Player
 @level = new Level levels[0], @

We give them a heartbeat by calling update and render every tick:

87Game Loop and Classes

chapter04/src/game.coffee (excerpt)

update: ->
 @level.update()
 @player.update()
render: ->
 @level.render gfx
 @player.render gfx

I hope you can see how the update and render idea permeates throughout the game.

At the top level, we have a game loop that calls our two primary methods. The game

is responsible for two children: the player and the level. In turn, these children

can have children of their own. The level manages the ninjas and the blocks, and

so passes the heartbeat down to them, as shown in Figure 4.3. In this way, the

message filters down to all the objects in the game: “Update yourself. Draw yourself.”

And there we have the heart of a game.

Figure 4.3. Implanting a heartbeat

Adding New Blocks
Content with the solid foundations you’ve built for the game, you show the team,

outlining the impressive new game loop and extensible class-based system.

“Looks exactly the same as yesterday,” says the web technician. “Did you do any-

thing?”

In a bid to prove that your work was not for naught, you make the bold claim that

adding new blocks to the game is so simple you can do it in minutes. The team

gather incredulously around your laptop.

“First, we need a rock block,” you start. “It’s just like the dirt block we have, but it

will be undiggable and unmovable.”

Jump Start CoffeeScript88

You create a file in the block folder called Rock.coffee, and extend the Block class:

chapter04/src/blocks/Rock.coffee (excerpt)

class Rock extends Block
 solid: true
 render: (gfx, x, y) -> gfx.drawSprite 4, 0, x, y

Next, you add the code to create a new Rock instance in the Level loading coding:

chapter04/src/levels/Level.coffee (excerpt)

when "@" then new Dirt()
when "O" then new Rock()

“And that’s it,” you say, a little smugly. “Rocks rock!”

“Hmm,” says the pixel artist, unimpressed. “It’s just the same as the Dirt block.

Why don’t you add the magic-collectible-particle-thing you’ve been talking about?

And make it move or something.”

“Oookaay … ” you say, pondering the best way to display the magical “Pig’s Boffin”

particle. Just like the Rock, you create a new class for the particle called

Treasure.coffee, which, of course, must also extend the Block base class.

chapter04/src/blocks/Treasure.coffee (excerpt)

class Treasure extends Block
 render: (gfx, x, y) ->
 gfx.drawSprite 5, 1, x, y

Add treasures to the level loading class. There is one difference here: the particles

represent the actual goal of the level. When all particles are collected, the level is

finished, so you need to keep track of how many are around. At the start of the level

loading code, you reset the @treasure variable to 0. Every time you add a new

particle to the game, you have to increment this counter:

chapter04/src/levels/Level.coffee (excerpt)

when "*"
 @treasures++
 new Treasure()

89Game Loop and Classes

You add a few “*”s to the map and test that the particles are showing up. Good—but

there’s no movement. Suddenly, you have an idea: how about having the particles

“float” up and down by following a small sine wave path? We’ll need a state variable

to keep track of the offset, so we’ll initialize it to a random value between 0 and Pi:

chapter04/src/blocks/Treasure.coffee (excerpt)

class Treasure extends Block
constructor: -> @yOff = Math.random() * Math.PI

And then update the offset by a small amount every frame. The divisor represents

the frequency that the particle will oscillate at:

chapter04/src/blocks/Treasure.coffee (excerpt)

update: -> @yOff += Math.PI / 24

Now we can add the offset into the rendering code. We take the sine of the offset

and multiply it by a constant representing the amplitude of the wave:

chapter04/src/blocks/Treasure.coffee (excerpt)

ySine = Math.floor Math.sin(@yOff) * 4
gfx.drawSprite 5, 1, x, y + ySine

“Whoa!” exclaim the team as they witness the action in Figure 4.4. “Awesome!”

Figure 4.4. The bouncing particle over time

Stay Classy
Having comprehended the benefits of splitting up your game into small manageable

pieces, you start thinking about the next steps. You now have the base of a game,

and a good working knowledge of (nearly) all CoffeeScript’s major features. There

are a few tricks to learn yet, and so many toys to add to the game, but you now have

quiet confidence in CoffeeScript making matters much easier from here on in …

Jump Start CoffeeScript90

Chapter5
Bringing a Game to Life
This chapter is going to apply all that we’ve learned, rigorously and unrelentingly.

We have a long day ahead of us: block collisions, entity collisions, gravity, ladders,

AI, collectibles, digging, and building. It seems like a forest of features but, thank-

fully, our base lets us easily add them one tree at a time.

Block Collision Detection
Our levels are ephemeral at the moment; pretty pictures in the background with no

effect on our players. We need some collision detection, as evident in Figure 5.1.

Figure 5.1. Up against the wall

The principle behind our block collision code goes like this: starting from a current

picture (the first image in Figure 5.1), the entity will register its intent to move

(either through AI for the ninjas, or by pressing the keys for the player). We take

this intent and see how many pixels it would move if nothing was blocking it (the

second image in Figure 5.1). We test this new position, and if something is blocking

the entity, we move it back a little to the correct position so that it’s touching the

edges of the block, without overlapping it (the final image in Figure 5.1).

This task is made more difficult because at any point the player could be touching

several blocks (up to four in our game, because the entities are smaller than the

block’s width and height). So our pseudo code (which will be in the _Entity base

class) goes like this:

chapter05/src/entities/_Entity.coffee (excerpt)

class Entity
 x: 0
 y: 0
 w: 18
 h: 24
 ⋮
 move: (x, y) ->
 # 1. Determine the intended position we'll move to
 # 2. Check possible block collisions due to vertical movement
 # 3. If collision occurs, move entity back to the edge
 # 4. Check possible block collisions due to horizontal movement
 # 5. If edges overlap, move entity back a little
 # 6. Finally, add the allowed movement to the current position

The move function accepts the x and y offsets (the amount we want to move) from

the entity’s current location. We need to check the vertical amount separately from

the horizontal amount because even if one of them is blocked, the other may be

free. Checking separately allows our entities to “slide” along walls rather than just

stopping dead as soon as they touch a solid block.

Thankfully, steps two and three are almost identical to steps four and five; however,

there’s still a big chunk of code to complete, and we’ll need some helper functions

to do so. Define a new file called _utils.coffee for holding all our little utility functions

that will be used throughout the game:

Jump Start CoffeeScript92

chapter05/src/_utils.coffee (excerpt)

utils =
 now: -> new Date().getTime()
 snap: (value, snapSize) -> Math.floor(value / snapSize) * snapSize
 rand: (min, max) ->
 if not max?
 max = min
 min = 0
 range = max - min
 Math.floor (Math.random() * range) + min

They can then be used like so:

utils.now()

The now function returns the current time in milliseconds, which will be used a lot

for animations and general timing. The snap function we’ll need for our collision

detection; its purpose is to give us the closest grid crossing based on the “snap size.”

For example, we can find the left edge of a tile by snapping a position to the tile

width. Consider our player is at position 50, and our tiles are 24 pixels wide:

utils.snap(50, 24) # => 48

This tells us that the left edge of the tile the player is in lies at pixel 48—very handy

when working with grids. Okay, back to the Entity class. In the move function, we’ll

first set up a couple of variables:

chapter05/src/entities/_Entity.coffee (excerpt)

1. Determine the intended position we'll move to
xo = x
yo = y
xv = @x + xo
yv = @y + yo

We keep a copy of the x and ymovements because they’ll be updated in the function

and we need a reference to the originals. Next, we find the actual screen position

the entity will move to by adding the intent to the current location.

93Bringing a Game to Life

To figure out which blocks our entities are touching, we have to look at each corner

of the entity and see where it is in relation to the map.

Imagine that our Professor is falling through the air. No blocks are around to stop

him. Suddenly (as depicted in Figure 5.2) he meets with the earth. If you asked his

top-left, top-right, or bottom-right corners if he could keep falling, they’d say “no

problem—our tiles are blank!” However, if you asked his bottom-left corner, it would

reply, “Um, no, actually—we’re gonna hit dirt if you let us move during this frame!”

Figure 5.2. On a collision course

To figure out the type of block we’d be touching, we’ll add some helpers to the

Level source: first, a tool to convert from an (x, y) screen position to the corres-

ponding tile number. This is done by dividing the coordinate values by their respect-

ive tile dimensions:

chapter05/src/levels/Level.coffee (excerpt)

getBlockIndex: (x, y) -> [
 Math.floor x / gfx.tileW
 Math.floor y / gfx.tileH
]

If the player is standing at position (30, 10), level.getBlockIndex(30, 10) will

return the array [1, 0] corresponding to the map index 1 across and 0 down. We

can use this helper to locate the actual map block instance:

chapter05/src/levels/Level.coffee (excerpt)

getBlock: (x, y) ->
 tiles = @getBlockIndex x, y
 xBlock = tiles[0]
 yBlock = tiles[1]
 @map[yBlock]?[xBlock] or new Rock()

Jump Start CoffeeScript94

If the tile location is invalid, we return a new Rock instance that will block the en-

tity’s path and avoids them wandering off into the void:

level.getBlock(100, 100) # => Rock object

Destructured Assignment 1: Arrays
The getBlock function works, but it’s a bit annoying that we have to unravel the

return value of the getBlockIndex call into its component pieces using the temporary

tiles variable. To get around it, CoffeeScript provides a powerful and addictive

feature: destructured assignment (also often called pattern matching—a term I

prefer). It lets us pull apart an element, match some (or all) parts of it, and assign

the matched pieces to other variables, all in a single statement.

We can use destructured assignment to eliminate the tile variable altogether, as-

signing directly to the xBlock and yBlock variables:

chapter05/src/levels/Level.coffee (excerpt)

getBlock: (x, y) ->
[xBlock, yBlock] = @getBlockIndex x, y

 @map[yBlock]?[xBlock] or new Rock()

The format looks a little weird at first, because the left-hand side of the expression

is an array! CoffeeScript pulls the result of the right-hand side apart, and assigns

the corresponding elements to those on the left-hand side.

We could use this feature for switching the values of variables without using an

intermediate variable:

[x, y] = [y, x]

Pattern matching is fantastically powerful and very expressive. Here’s an example

of another Level helper function that uses our new-found feature in the middle of

a for comprehension:

chapter05/src/levels/Level.coffee (excerpt)

getBlocks: (coords) -> @getBlock x, y for [x, y] in coords

95Bringing a Game to Life

getBlocks will fetch multiple blocks in one call at once if we provide an array of

arrays each containing the (x, y) position to check. It’s useful because our entity has

four corners, so we can check them all in a single call. We’ll apply it back in our

entity’s move method as step two of the collision-detection routine:

chapter05/src/entities/_Entity.coffee (excerpt)

2. Check possible block collisions due to vertical movement
[tl, bl, tr, br] = @level.getBlocks([
 [@x, yv],
 [@x, yv + (@h - 1)],
 [@x + (@w - 1), yv],
 [@x + (@w - 1), yv + (@h - 1)]])

The getBlocks call will return a Block instance for each of the position arrays we

ask for. We’re asking for four: the top-left, bottom-left, top-right, and bottom-right

coordinates of the entity. Because an array is returned, we can destructure the result

into four variables (tl, bl, tr, and br) for further processing. If we applied this call

to the Professor’s position as depicted back in Figure 5.2, we’d have this result:

[Block, Dirt, Block, Block]

This indicates that everything is clear except for the bottom-left corner, which is a

dirt block.

Mix and Match

Pattern matching is not limited to arrays. If you’re feeling the power, stay tuned

for the coming sections, where we see a few more tricks up this fantastic feature’s

sleeves.

As we’re only checking vertical movement in this call, we check the entity’s current

x position, and its intended (rather than current) y position. To clarify this further,

let’s break down the fourth position in the array: the bottom-right corner point:

@x + (@w - 1), yv + (@h - 1)

Jump Start CoffeeScript96

The bottom-right corner of the entity (checking for vertical movement) is the current

x position (@x) plus the entity’s width (minus one because it’s zero-based), and the

intended y position (yv) plus the entity’s height (again, minus one).

Before we use the blocks found, we have to add one last helper method to the Level

class: a tool to give us the pixel position of the edge of the block we’re in. We’ll use

this to ascertain how much we have to move the player or the ninja back if they try

to move into a solid object:

chapter05/src/levels/Level.coffee (excerpt)

getBlockEdge: (position, forVertical = false) ->
 snapTo = if not forVertical then gfx.tileW else gfx.tileH
 utils.snap position, snapTo

This uses the snap utility function we made earlier. If we’re checking vertical

movement, it will report the top-closest edge; otherwise, it’ll return the left-closest

edge. The distance between the entity’s position and an edge is the number of pixels

to shift:

chapter05/src/entities/_Entity.coffee (excerpt)

3. If collision occurs, move entity back to the edge
if y < 0 and (tl.solid or tr.solid)
 yo = @level.getBlockEdge(@y, "VERT") - @y
if y > 0 and (bl.solid or br.solid)
 yo = @level.getBlockEdge(yv + (@h - 1), "VERT") - @y - @h

The first if condition will be true if the entity is trying to move upwards, and if

the top-left or top-right blocks it will be touching are solid. If so, it gets moved

back a little bit to a non-touching position. It does the same again if the player is

trying to move downwards, and is blocked by the bottom-left or bottom-right blocks.

Steps 4 and 5 are almost identical to 2 and 3—but we are checking the horizontal

changes: that is, we add the intended x movement amount to the current position

and see what would happen if we tried to move there. If there is a collision, we

update the movement amount until there isn’t:

97Bringing a Game to Life

chapter05/src/entities/_Entity.coffee (excerpt)

4. Check possible block collisions due to horizontal movement
[tl, bl, tr, br] = @level.getBlocks([
 [@x, yv],
 [@x, yv + (@h - 1)],
 [@x + (@w - 1), yv],
 [@x + (@w - 1), yv + (@h - 1)]])

5. If edges overlap, move entity back a little
if x < 0 and (tl.solid or bl.solid)
 xo = @level.getBlockEdge(@x) - @x
if x > 0 and (tr.solid or br.solid)
 xo = @level.getBlockEdge(xv + (@w - 1)) - @x - @w

The results of this armful of code are two carefully calculated variables: xo and yo.

These contain the amount the entity is allowed to move in order to avoid colliding.

We add these amounts to the entity’s position:

chapter05/src/entities/_Entity.coffee (excerpt)

6. Finally, add the allowed movement to the current position
@x += xo
@y += yo

Phew. That was fairly complex—though our pattern matching at least lets us write

it in a clear way. To place our collision detection into the game, we have to modify

our player-handling code. Instead of updating the player’s position directly, we

keep track of intended movements in some temporary variables, and then pass them

to our move function when we want to check for collisions:

chapter05/src/entities/Player.coffee (excerpt)

update: ->
xo = yo = 0

xo -= @speed if keys.left
xo += @speed if keys.right
yo += @speed if keys.down
yo -= @speed if keys.up

@move(xo, yo)

Jump Start CoffeeScript98

As we fly around the screen, the move function will prevent us from going through

solid walls. Suddenly it feels a lot more game-like!

Splats
Before we move on, we’ll quickly revisit the getBlocks method, which accepted

an array of arrays each containing an (x, y) position. The extra array wrapper is an

unnecessary data structure for this simple check; it would be more natural to accept

any number of parameters and apply the getBlock function to each. CoffeeScript

gives us a convenient way to carve up our arrays (including function parameter

lists) using splats, which “soak up” lists of arguments:

chapter05/src/levels/Level.coffee (excerpt)

getBlocks: (coords...) -> @getBlock x, y for [x, y] in coords

Splatted arguments are written with a trailing ellipsis (...) and indicate that the

parameter can contain multiple values. To use this in our original move code, we

simply remove the wrapping array and pass each position array as individual

parameters:

chapter05/src/levels/Level.coffee (excerpt)

[tl, bl, tr, br] = @level.getBlocks(
 [xv, @y],
 [xv, @y + (@h - 1)],
 [xv + (@w - 1), @y],
 [xv + (@w - 1), @y + (@h - 1)])

This code will now work equally happily with one or many parameters without

requiring the redundant array wrapper.

Splats can be even more powerful than this, though: they don’t have to be the first

and only parameter of a function. You can specify as many normal parameters as

you need and designate one of them to be “the rest.” In the following example, we

have a function that takes any number of points. The function uses moveTo to move

to the first point, and then lineTo to draw lines between the subsequent points:

99Bringing a Game to Life

drawLines = (head, tail...) ->
 gfx.ctx.moveTo head.x, head.y
 gfx.ctx.lineTo p.x, p.y for p in tail

In this case, splats are great because they allow us to treat the first parameter differ-

ently from the rest. Splats can be applied to any array, and they don’t have to be

located as the final parameter either. In this final example, we chop up the

leaderboard array into the first, middle, and last component parts:

leaderboard = ["ERC, AMY, BOB, AAA, STU"]

[winner, others..., loser] = leaderboard
console.log """
 First place: #{winner}.
 Last place: #{loser}."""

If the leaderboard array contained only two elements, the others parameter would

be an empty list. If it fails to contain enough to fill in the fixed parameters of winner

and loser, they would be undefined.

Splats and Destructured Assignment

You can also combine splats with a destructured assignment. For example,

[first, others..., last] = level.map would assign the first map block

to the first variable, the last to last, and everything else to others.

You can have only one splat per list, naturally; if you included more, CoffeeScript

would have no way of knowing how you wanted your arguments chopped up!

Gravity
With our solid walls in full effect, we now have quite a good role-playing game

shaping up. Unfortunately, we’re making a platform game! To rectify this, we need

to force some gravity upon our entities. To simulate gravity, we apply a small con-

stant downward movement every frame to any entity not standing on solid ground.

We’ll have two new flags on our entity objects: one to indicate whether they’re

falling or not, and a second to indicate if they were falling in the previous frame

(this will be useful for doing ninja AI). We initialize them to true so that they’re in

Jump Start CoffeeScript100

motion to begin with, and will adjust themselves accordingly in the first frame. Add

and initialize the flags in the constructor:

chapter05/src/entities/_Entity.coffee (excerpt)

constructor: (@level, @x, @y) ->
 # Falling flags
 @falling = true
 @wasFalling = true

Now in the move function, right at the beginning, we can add our gravity constant:

2 x entity speed. It might not be the scientifically accurate 9.81m/s2—but it looks

good enough in action (be sure to play around with it!):

chapter05/src/entities/_Entity.coffee (excerpt)

move: (x, y) ->
 # Add falling speed
 y += @speed * 2 if @falling
 @wasFalling = @falling

Further down the method, when we’re checking our vertical downward movement,

we have to update the @falling flag to false if we hit a solid bottom-left or bottom-

right block:

chapter05/src/entities/_Entity.coffee (excerpt)

if y > 0 and (bl.solid or br.solid)
 yo = @level.getBlockEdge(yv + (@h - 1), "VERT") - @y - @h
@falling = false # Add this line to stop falling!

We only apply gravity if our entities are falling, which is true when the game ini-

tializes, but is set to false when we hit the ground. And it’s never set to true ever

again—even if our entities walk right out into thin air! We need to ameliorate the

move function to do some additional logic based on the blocks our entities are (or

aren’t) touching. Let’s break this logic up into a separate function that runs after

we’ve done the final (x, y) move:

101Bringing a Game to Life

chapter05/src/entities/_Entity.coffee (excerpt)

Add the allowed movement
@x += xo
@y += yo

check the new position!
@checkNewPos x, y

The new checkNewPos function is passed the original x and y amounts we requested

to move. This lets us perform some logic based on the user’s intent:

chapter05/src/entities/_Entity.coffee (excerpt)

checkNewPos: (origX, origY) ->
 # check edges and underfoot
 nearBlocks = [tl, bl, tr, br] = @level.getBlocks(
 [@x, @y],
 [@x, @y + @h],
 [@x + (@w - 1), @y],
 [@x + (@w - 1), @y + @h])

We perform a new check on the player’s actual position to determine the blocks

that are now touching. We’ve assigned them to individual block variables (tl, bl,

and so on), as well as the nearBlocks array containing them all. We’ll see why

shortly.

Let’s now test if an entity has started to fall. This is true if they aren’t already falling,

and if they aren’t standing on the ground. (The call is split into nested if statements,

because I know we’ll be adding some more stuff when we get to ladders!):

chapter05/src/entities/_Entity.coffee (excerpt)

Make sure we’re standing on solid ground
if not @falling
 if not (bl.solid or br.solid)
 @falling = true

And now our entities are falling! There’s one final change to make to the player for

reasons that are specific to the rules of the game: in our game you’re unable to move

horizontally while you are falling. This is unusual for platform games (even though

Jump Start CoffeeScript102

it’s more realistic!), but we need to prevent the player from reaching platforms we

don’t want them to, without solving our devious level puzzles.

Inside the Player class, add a condition around the left and right key logic:

chapter05/src/entities/Player.coffee (excerpt)

if not @falling
 if keys.left
 xo -= @speed
 @dir = "LEFT"

 if keys.right
 xo += @speed
 @dir = "RIGHT"

Ladders
Gravity is great and all, but it’s no fun being stuck at the bottom of a level for the

whole game. We need some ladders to lift people back up into the air. When an

entity is touching a ladder, they can move up or down it to reach other platforms.

So, without further ado, let’s look at the new block in the game: Ladder.coffee:

chapter05/src/blocks/Ladder.coffee (excerpt)

class Ladder extends Block
 climbable: true
 constructor: (@top) ->
 @frame = if top then 6 else 5
 render: (gfx, x, y) -> gfx.drawSprite @frame, 0, x, y

There are a couple of special aspects to the ladder. First, it has a climbable property,

indicating an entity can go up and down it. We have to add this property into the

Block base class, too, but set it to false, so that no other blocks are accidentally

climbable:

chapter05/src/blocks/_Block.coffee (excerpt)

class Block
 solid: false
 climbable: false
 ⋮

103Bringing a Game to Life

Second, we render a different image frame depending on whether we pass true or

false to the constructor’s top parameter. This is just to render an alternative image

for the very top rung of the ladder. To get these guys onto the screen, we add the

creation code to our block factory inside Level.coffee :

chapter05/src/levels/Level.coffee (excerpt)

when "#" then new Ladder()
when "-" then new Ladder true # Top of the ladder

Ladders are quite complex entities. While they’re simple at heart, there are a lot of

edge cases we need to consider to make the interaction between player and ladder

feel natural. We’ll start with the easy parts first. Like with gravity, we’ll add some

flags to keep track of the entity’s state in the Entity constructor:

chapter05/src/entities/_Entity.coffee (excerpt)

Ladder flags
@onLadder = false
@wasOnLadder = false
@onTopOfLadder = false

The interesting one here is onTopOfLadder. This needs to be set to true when the

player is at the very top of a ladder; it’s used for the ninja AI, and for stopping a

player from moving up into the sky when its feet are touching a ladder, but there

is no ladder above it.

To set these flags, we’ll employ the checkNewPos method:

chapter05/src/entities/_Entity.coffee (excerpt)

checkNewPos: (origX, origY) ->
@wasOnLadder = @onLadder

We first store the value of the old onLadder variable, like we did with gravity. Next,

we’ll add some code after the block check (where we set the nearBlocks array) to

perform the core of our ladder logic:

Jump Start CoffeeScript104

chapter05/src/entities/_Entity.coffee (excerpt)

Touching ladder logic
@onLadder = false
touchingALadder = nearBlocks.some (block) -> block.climbable

Every frame, we are initializing onLadder to false. The next line uses the JavaScript

some function to see if any of the blocks we’re touching are climbable. some takes

an array of elements and returns true if at least one of the elements matches the

predicate function. In our case, we check all the nearBlocks to see if any are

climbable:

chapter05/src/entities/_Entity.coffee (excerpt)

if touchingALadder
 @onLadder = true
 @falling = false

 # Snap to ladders if trying to go up or down
 ⋮

If the entity is on a ladder, we have some work to do. We set the onLadder property

and set falling to false (you can never be falling if you’re touching a ladder!). We

also prepare for the big one: snapping our entity to the ladder. If the intent is to

move up or down, we’ll snap the entity to the center of the ladder. This solves some

problems with entities stuck between ladders and blocks, and makes the game feel,

well, snappy!

chapter05/src/entities/_Entity.coffee (excerpt)

Snap to ladders if trying to go up or down
if origY isnt 0
 snapAmount = utils.snap @x, gfx.tileW
 if not (bl.climbable or tl.climbable)
 @x = snapAmount + gfx.tileW
 if not (br.climbable or tr.climbable)
 @x = snapAmount

We only do this if there was intent to move up or down (the origY is not zero). If

the blocks to the left of the entity are not ladders, we snap to the right by adding

one tile’s width to the snap amount; if the tiles to the right are not climbable, we

105Bringing a Game to Life

snap to the left edge. In Figure 5.3, we can see the Professor climbing towards the

top of our recently implemented ladder.

Figure 5.3. Admiring the view

And that’s it for touching ladders. But we still have some matters to fix up outside

of our touchingALadder check. The first concerns standing on the very top of a

ladder. This is a bit weird, because we have to check that: a) we’re on the ladder,

b) the blocks above our head are not climbable, and c) the position of our feet (y

position + height) is at the very bottom of the tile (the modulus of the feet position

in regard to the tile height is 0):

chapter05/src/entities/_Entity.coffee (excerpt)

@onTopOfLadder =
 @onLadder and not (tl.climbable or tr.climbable) and
 (@y + @h) % gfx.tileH is 0

Finally, at the very bottom of the checkNewPos function, we can update our

“standing on solid ground” test to account for ladders. We do this by adding checks

for the onLadder flag, and the blocks’ climbable flag:

chapter05/src/entities/_Entity.coffee (excerpt)

Make sure we’re standing on solid ground
if not @onLadder and not @falling
 if not (bl.solid or br.solid or bl.climbable or br.climbable)
 @falling = true

To restrict the Professor’s vertical movement to ladders, we add a couple of tests to

the player’s update function. The player can only move up and down if the up or

down key is pressed while on a ladder. And a player should never move up a ladder

if they’re already at the very top!

Jump Start CoffeeScript106

chapter05/src/entities/_Entity.coffee (excerpt)

yo += @speed if keys.down and @onLadder
yo -= @speed if keys.up and @onLadder and not @onTopOfLadder

As you can see, ladders are easy enough to implement, but they present some tricky

edge cases. Indeed, the first pass of the Professor’s ladder code was much simpler,

with none of the onTopOfLadder nonsense, or snapping—but the results were far

less satisfying when playing.

Collecting
Things are really shaping up now, but the game still lacks a goal … it’s just running

around some platforms and ladders. The point of the game is for the Professor to

reclaim his particle research from around his laboratory, so let’s make the research

particles collectible! We’ve already seen how to make a block climbable, so fortu-

nately there’s little that’s new here.

In the Block base class, we’ll add yet another property under climbable called

touchable. Touchable things can be touched! Depending on who touches it, we

can perform different actions; in this case, if the Professor touches a treasure, he’ll

collect it:

chapter05/src/blocks/_Block.coffee (excerpt)

class Block
touchable: false

touchable is false for all blocks, except for our Treasure (at the moment). In addi-

tion, we’ll add a flag to indicate if the block has been collected by the player:

chapter05/src/blocks/_Treasure.coffee (excerpt)

class Treasure extends Block
 touchable: true
 collected: false

Testing Class Types
To decide if an entity is touching a touchable block, we do exactly what we did

for climbables. In the Entity class, we check nearBlocks to see if we’re interested

107Bringing a Game to Life

in any of the surrounding blocks. If so, we call the block’s touch method (passing

it the entity that touched it):

chapter05/src/entities/_Entity.coffee (excerpt)

Collect any touchables
block.touch @ for block in nearBlocks when block.touchable

This, of course, implies that the block has a touch method, which we’ll need to add

to the Treasure class:

chapter05/src/blocks/Treasure.coffee (excerpt)

touch: (entity) -> @collected = true

Hmmm … but now we have a problem. Currently, any entity is able to collect a

Treasure block that it touches. But as we all know, ninjas are unable to pick up

items—only the Professor can. So we have to check that the entity touching the

block is the Professor. To do this, we use the constructor property that CoffeeScript

exposes to us:

chapter05/src/entities/_Entity.coffee (excerpt)

touch: (entity) ->
 @collected = true if entity.constructor is Player

This works because the constructor property on a class instance is the class itself.

So to test for ninjas, you’d check if it’s the Ninja class: if entity.constructor

is Ninja.

Now that we can trust it’s the Professor picking up the treasure, we can remove it

from the level. The Treasure block’s update method needs a bit more information

than our other blocks now. Previously, all blocks were self-contained, but the

treasure needs to interact with the level, so we’ll change the Level code that updates

all blocks to add in this extra information:

Jump Start CoffeeScript108

chapter05/src/levels/Level.coffee (excerpt)

update: ->
 # Update the level blocks
 for row, y in @map
 for block, x in row
 block.update x, y, @

We’re changing very little here—just passing in the additional x, y, and level in-

formation to each block. Because it’s unnecessary for most blocks to interact directly

with the level, they’ll simply ignore those parameters. But our treasure needs it:

chapter05/src/blocks/Treasure.coffee (excerpt)

update: (x, y, level) ->
 @yOff += Math.PI / 24
if @collected

 level.removeBlock x, y, @

The Level code has some interesting tasks to do if some treasure is collected. It re-

places the Treasure block with an empty block (removing the treasure from the

game), and, more importantly, it decrements its internal treasures count:

chapter05/src/levels/Level.coffee (excerpt)

removeBlock: (x, y, block) ->
 @map[y][x] = new Block()
 if block.constructor is Treasure
 if --@treasures == 0
 alert "Level Complete!"
 @game.reset()

As Figure 5.4 shows, if the count is 0, the level is finished!

109Bringing a Game to Life

Figure 5.4. Doing your level best

Now the Professor has a job to do! We only have one level, so “Level Complete” in

this instance means “Game Over.” But for now, that’s awesome.

Collision
The ninjas have been receiving a fairly raw deal up to now: they’re unable to pick

things up, and they can’t even move. Let’s at least give them one impressive power:

the ability to kill the Professor instantly upon contact! At the bottom of the level’s

update method, after updating the ninjas, we add the following comprehension to

test collisions between the Professor and the ninjas:

chapter05/src/levels/Level.coffee (excerpt)

@player.update()
@checkCollision @game.player, ninjas for ninjas in @ninjas

The checkCollision function will compare the bounding box of two entities. A

bounding box is the rectangle made up from the four corner points of an entity. If

two bounding boxes overlap, there’s a collision, as seen in Figure 5.5.

Figure 5.5. Bounding boxes collide

Jump Start CoffeeScript110

In the first frame, a ninja is plummeting towards the Professor, but so far, the Pro-

fessor is okay. In the second frame, however, the bounding boxes overlap—and we

all know that overlapping a ninja is bad for your health:

chapter05/src/levels/Level.coffee (excerpt)

checkCollision: (p, b) ->
 if p.x + p.w >= b.x and
 p.x <= b.x + b.w and
 p.y + p.h >= b.y and
 p.y <= b.y + b.h
 alert "You are dead."
 @game.reset()

If you draw the points out on a piece of paper, you’ll see that our test makes sense.

The player’s right edge must be more than the entity’s left edge, and its left edge

must be less than the entity’s right edge; similarly for the top and bottom edge. This

kind of test is called an Axis-Aligned Bounding Box (AABB) test. It’s nice and easy

to implement, and works great for any rectangular-ish objects (which you’ll find

most characters are!).

Mad Skillz

Because AABB tests use the extreme edges of the entity, collisions can sometimes

feel too sensitive. A common technique that fixes this is using a bounding box

that’s smaller than the entity. It can lead to some false negatives, but will make

the player feel more adept at skillfully dodging a ninja!

Ninja AI
Our ninjas are now lethal, but they’re far from stealthy. They just stand there being

slightly dangerous like a pointy cactus might. To transform our cacti into formidable

foes, we have to add some movement logic, which we’ll loosely label Artificial In-

telligence. Rather than an amazing feat of complex machine learning, our AI will

be a series of simple rules that make it look like the ninja has a motive.

The motive is to seek out the Professor. The two modes to enact the motive are

CRUISING and HUNTING. The ninja will start in CRUISING mode that works as follows:

1. Choose a direction to move: left, right, or idle.

111Bringing a Game to Life

2. Move in that direction for a random amount of time.

3. After the time is up, choose again.

Okay, that’s hardly formidable so far—they just run around randomly. While

cruising, there are two ways a ninja can change modes to HUNTING:

■ if the ninja is on the same horizontal plane as the Professor (because the ninja

can “see” him)

■ when the ninja is touching a ladder randomly (sometimes the ninja will climb

or descend to try to find the Professor)

In HUNTING mode, the ninja becomes obsessed with stalking the Professor and will

try to move towards him by:

■ moving left or right if they’re on the same horizontal plane
■ moving up or down if they’re on a ladder
■ going back to CRUISING mode if neither of these are true

In order for the ninja to chase the the player, we need to pass a reference to the

Player in the constructor. A well-encapsulated approach would be to pass the game

object reference when creating a Level, and then pass the @game.player object to

each Ninja as we create them. To make things easier for the Professor, let’s also

make the ninjas move a little slower:

chapter05/src/entities/Ninja.coffee (excerpt)

class Ninja extends Entity
constructor: (level, x, y, @player) -> super level, x, y

 speed: 3

We’ll create a simple state machine to implement the rules, and add two properties

to the Ninja: state and subState. These will be simple strings that we’ll use to

identify where we are in the rules:

Jump Start CoffeeScript112

chapter05/src/entities/Ninja.coffee (excerpt)

class Ninja extends Entity
state: "CRUISING"

 subState: "IDLE"
 ⋮

We’ll initialize the Ninja to CRUISING mode, and heading in the direction IDLE—so,

just standing around. We also need a couple of functions for dealing with our dif-

ferent AI modes. They’ll work the same: we’ll give the current player position (px

and py), they’ll perform some logic, then pass back the x and y numbers to move as

an array:

chapter05/src/entities/Ninja.coffee (excerpt)

cruise: (px, py) ->
 x = y = 0
 # Do cruising logic
 [x, y]
hunt: (px, py) ->
 x = y = 0
 # Do hunting logic
 [x, y]

The amounts that come back from the AI logic are then fed into the entity’s move

function during an update. Notice the difference between the Professor and the

ninjas? The Professor gets his x and y figuress directly from the user’s keyboard

actions, but the ninjas get it from our AI functions.

Destructured Assignment 2: Objects
Before we can do any AI calculations, we need to grab the Professor’s current location

and call the correct AI function. If the ninja is falling, then we don’t want it to do

anything (except fall), so we set the x and y move amounts to zero. Otherwise, we

get the amounts from the corresponding functions and feed them into move:

chapter05/src/entities/Ninja.coffee (excerpt)

update: ->
 [xo, yo] = if @falling then [0, 0] else
 {x: px, y: py} = @player
 switch @state

113Bringing a Game to Life

 when "CRUISING" then @cruise px, py
 when "HUNTING" then @hunt px, py

 @move xo, yo

That’s a pretty dense bit of code for a single expression. The output of the expression

is always an array of two values. The output comes either directly if the player is

falling, or from the functions executed inside the switch statement. It’s then destruc-

tured into the xo and yo variables, which we can pass to move.

But what is that line buried in the middle: {x: px, y: py} = @player? It’s another

example of destructured assignment but this time applied to objects!

One nicety is that if you want to destruct properties to variables with the same

name, you don’t even have to explicitly name them. So, if we wanted to assign the

player’s locations to variables named x and y (which is what they are called on the

object), instead of this:

{x:x, y:y} = @player

… we could just write this:

{x, y} = @player

Dig Deep

You can go deeper than a single level when pattern matching on objects. For ex-

ample, we can easily pull information about the player from our level object:

{player: {speed, dir}} = level
console.log speed, dir // 4, “LEFT”

Just like destructuring arrays, destructuring objects helps eliminate a lot of boilerplate

code and temporary variables—resulting in more beautiful code.

Jump Start CoffeeScript114

Adding the AI Rules into the Code
Converting our written AI rules to code is fairly straightforward. We start with our

CRUISING code—depending on our substate, we either move left or right (or neither

if the ninja is IDLE):

chapter05/src/entities/Ninja.coffee (excerpt)

Do cruising logic
switch @subState
 when "RIGHT"
 x += @speed
 @dir = "RIGHT"
 when "LEFT"
 x -= @speed
 @dir = "LEFT"

Now we need a way to choose a new direction. We’ll add a time: 0 property to the

top of the Ninja class. This will be used to flag that it’s time to change the strategy:

chapter05/src/entities/Ninja.coffee (excerpt)

time: 0
⋮
cruise: (px, py) ->
 ⋮
 if --@time < 0
 newMove = utils.rand 5
 @time = utils.rand 20, 40;
 @subState = switch newMove
 when 0, 1 then "LEFT"
 when 2, 3 then "RIGHT"
 else "IDLE"

Using the utils.rand utility method that you wrote as an exercise under Feeling

adventurous? in Chapter 2, which is now in chapter05/src/_utils.coffee, we pick a

number between 0 and 4. We weight the output to choose the new direction (there’s

a 2/5 chance of moving left or right, but only a 1/5 chance of being idle). We also

assign a random time of between 20 and 40 ticks to move in the new direction.

That’s all we need for crazy ninjas!

115Bringing a Game to Life

But we want more—we need them to hunt down the Professor. If they start touching

a ladder (that is, they are onLadder but not wasOnLadder), there’s a random chance

to switch to HUNTING mode:

chapter05/src/entities/Ninja.coffee (excerpt)

Just touched a ladder
if @onLadder and not @wasOnLadder
 @state = "HUNTING" if Math.random() < 0.5

And if they can see the Professor directly, the hunt is definitely on!

chapter05/src/entities/Ninja.coffee (excerpt)

Spotted the player… run at them!
@state = "HUNTING" if py == @y

Our HUNTING logic is simple enough. If we can see our target or we’re standing on

top of a ladder, we start moving in the direction of the Professor:

chapter05/src/entities/Ninja.coffee (excerpt)

Do hunting logic
if py is @y or @onTopOfLadder
 if px > @x
 x += @speed
 @dir = "RIGHT"
 else
 x -= @speed
 @dir = "LEFT"

If the Professor’s x is less than our x, we move left; otherwise, right:

chapter05/src/entities/Ninja.coffee (excerpt)

else if @onLadder
 y -= @speed if not @onTopOfLadder and py < @y
 y += @speed if py > @y

If we’re on a ladder, we do the same as left and right, but in the y direction. Now

the ninjas know how to climb!

Jump Start CoffeeScript116

chapter05/src/entities/Ninja.coffee (excerpt)

else
 @state = "CRUISING"
 @subState = "LEFT"

The last possibility is that the player is out of view, in which case we switch back

to CRUISING mode. It’s quite amazing to see such simple rules give the appearance

of a motive. Sure, they may not be the smartest ninjas on the block, but they make

worthy opponents for the Professor, and making them smarter is just a matter of

adding some new rules!

Power to the Professor
The day is wearing on, and you’re starting to feel the pain. Your fingers are sore

and you haven’t stood up for the past three hours. The game is now in an acceptable

working state, yet still you feel unfulfilled. The Professor lacks any kind of special

powers. He has to be able to dig and build, otherwise he’s technically not our Pro-

fessor. You summon up your remaining strength for the last push …

Digging Holes
The Professor will be able to dig holes in platforms in order to create a sneaky escape

route for himself, or to create a trap that averts a chasing ninja. Both digging and

building involves meddling with the underlying map structure of our level. Digging

will make a solid block unsolid, and vice versa. Both actions are temporary, and

the results will be undone after a short delay.

We’ll begin by modifying the Player. It needs a new property called lastDig that

defaults to the current time (utils.now())—the last time the player dug a hole. This

is used to prevent a player digging too quickly.

Digging will be triggered when the user hits the fire button (we’ll use the space bar).

This is handled near the other input checks inside update:

chapter05/src/entities/Player.coffee (excerpt)

@dig() if keys.space

@move xo, yo

117Bringing a Game to Life

The dig method handles the timing we talked about (you can only dig once every

6,000 milliseconds) and after a dig has occurred, the lastDig time is set to now.

chapter05/src/entities/Player.coffee (excerpt)

dig: ->
 return if utils.now() - @lastDig < (6 * 1000) # 6 seconds

 @level.digAt @dir, @x, @y
 @lastDig = utils.now()

The line in the middle does all the real work, however. It calls a new digAt method

on the level class, passing the player’s direction, x and y:

chapter05/src/levels/Level.coffee (excerpt)

digAt: (dir, x, y) ->
 [xb, yb] = @getBlockIndex x, y

 xb = xb + if dir == "RIGHT" then 1 else -1
 return if yb + 1 > @h or xb < 0 or xb > @w - 1
 block = @map[yb + 1][xb]

 # Dig the block!

First, we retrieve the block’s x and y indexes from the given player coordinate. Next,

we check if the block in front or behind the player (depending on their direction)

is inside the map. If it is, we know what the Professor is trying to dig.

As it stands, no blocks currently know how to be dug. The Dirt block is the only

diggable element in the game, so we have to enable it to be dug. Add a digTime

property and set it to 80. This will indicate how long the hole will be on screen:

chapter05/src/blocks/Dirt.coffee (excerpt)

digIt: ->
 @digTime = 80
 @solid = false

When the block’s digIt method is called, the digTime is initialized and the block

becomes unsolid, so our entities will pass right through it! We don’t want that to

be permanent, though, so we change it back in our update method:

Jump Start CoffeeScript118

chapter05/src/blocks/Dirt.coffee (excerpt)

update: ->
 @solid = true if --@digTime is 50

The block becomes solid again part way through the digTime countdown. This is

because we want to fade the block in as it’s becoming solid, but without waiting for

the entire fade animation to occur before our entities can walk on it again. To do

the fade, we temporarily modify the drawing context’s globalAlpha property to a

level that’s a function of the current digTime:

chapter05/src/blocks/Dirt.coffee (excerpt)

render: (gfx, x, y) ->
oldAlpha = gfx.ctx.globalAlpha

 gfx.ctx.globalAlpha = 1 - @digTime / 80
 gfx.drawSprite 4, 1, x, y
 gfx.ctx.globalAlpha = oldAlpha

When we dig, the block will become invisible, then slowly fade back in. All that’s

left to do is call the digIt function on a block (if it has one) to start the process. We

do this at the end of the level’s digAt function:

chapter05/src/levels/Level.coffee (excerpt)

Dig the block!
block.digIt() if block.digIt?

Any block can implement the digIt function if it needs to be diggable.

Building Blocks
In our game, building is similar to digging, but there are a few important differences.

You can dig any block that implements a digIt method, but you can only build on

an empty block. The empty block is replaced with a completely new block. This

block will be called Gravel, and we’ll put it in blocks/Gravel.coffee:

chapter05/src/blocks/Gravel.coffee (excerpt)

class Gravel extends Block
 solid: true
 digTime: 100

119Bringing a Game to Life

 update: (x, y, level) ->
 if --@digTime < 0
 level.removeBlock x, y, @

 render: (gfx, x, y) ->
 oldAlpha = gfx.ctx.globalAlpha
 gfx.ctx.globalAlpha = @digTime / 50
 gfx.drawSprite 4, 2, x, y
 gfx.ctx.globalAlpha = oldAlpha

The Gravel class is similar to the Dirt class—except that when the block has existed

for long enough (once our timer is down to 0), the block actually removes itself from

the map, just as the Treasure block did.

To create a new block, we add just a single line to the end of the level’s digAt

method (below the block.digIt() call):

chapter05/src/levels/Level.coffee (excerpt)

Building
@map[yb + 1][xb] = new Gravel() if block.constructor is Block

If the block the Professor is trying to dig is actually empty (that is, it’s a Block), we

create a new instance of Gravel and put it in the map.

Digging allows the Professor to make sneaky getaways from the ninjas, and building

lets him reach otherwise inaccessible platforms and areas. Using these two game

mechanics, we can now easily make some puzzle-like levels where the player has

to carefully consider and use the Professor’s powers to reach the treasure.

Set for Life
Holy cow. A game. Today, we’ve been to hell and back—but the results have been

worth it. The base we’ve crafted over the previous chapters has proven to be

powerful indeed. And adding each new feature was (relatively) easy.

The remaining team members huddle around your laptop, running the game through

its paces and eagerly barking ideas of features for you to add. You’re not listening,

though; instead, you’re enjoying a well-earned powernap.

Jump Start CoffeeScript120

Chapter6
CoffeeScript and HTML5 FX
You sit at the local café like a Zen master. Part of your team has abandoned the

project; the remaining members squabble with each other, unconvinced that a fully

working game can be hewn from the prototype you’ve produced thus far. You,

however, are free from doubt. The path before you illuminates itself, bathed in a

sea of elegant CoffeeScript: scrolling platforms, sound effects, animations, particle

effects, game screens, and dialogs. CoffeeScript has become the path of least resist-

ance between your brain and Professor Digman-Rünner.

HTML-ifying things
Day 1 of the “7-day HTML5 Game Jam-a-Thon Challenge (TM)” seems like a happy,

hazy memory. You’ve changed a lot since those simpler times, and you know now

is your last chance to steer the team back on track. They’ve lost faith in the game,

so you need to really impress them to restore hope. It’s at that very moment it hits

you: so far we’ve all but ignored the fact we’re working with web technologies. We

have a utility belt of tools and techniques that can easily be employed both inside

and on top of our current game.

Using jQuery
jQuery is a (some would say the) DOM and Ajax library for facilitating client-side

manipulation of web pages: adding event handlers, adding classes and styles, creating

elements and updating existing elements—all with impressive cross-browser support.

Having just recently read an excellent book on the subject (ahem jQuery Novice to

Ninja1 ahem) you decide that the terseness of jQuery nicely matches CoffeeScript’s,

and so head over to http://www.jquery.com/ to download it.

To include jQuery in your CoffeeScript project, you need to install some dependen-

cies, configure your package management system to, wait, what? No! We simply

want to use jQuery (which is just JavaScript) in our CoffeeScript project, which is

also just JavaScript! To set up any third-party libraries, dump them into your project

(we’ll use the /vendor folder) and include them in your HTML pages as usual:

chapter06/index.html (excerpt)

<script src="vendor/jquery-1.8.2.min.js"></script>

Nothing special is required to use third-party libraries, but CoffeeScript’s elegance

does tend to make working with them more fun. We’ll change how we select the

main game canvas element, in the init method of gfx.coffee, going from this:

canvas = document.querySelector("#game")

… to this:

chapter06/src/gfx.coffee (excerpt)

canvas = $("#game")[0]

You can see what we mean when we say jQuery is concise! Astute CoffeeScripters

might note that we could equally use:

canvas = $ "#game" [0]

… omitting the parentheses. And indeed they’d be right: the $ function is an alias

to the jQuery function, and function calls in CoffeeScript don’t need parentheses

1 http://www.sitepoint.com/books/jquery2/

Jump Start CoffeeScript122

for parameters. However, it looks weird with the dollar sign floating by itself, and

more importantly, it can lead to issues when we use one of jQuery’s coolest features:

function chaining. For a (contrived) example of chained function calls, here’s how

we’d add a new CSS class to the canvas element and make it disappear:

$("#game").addClass("screen").hide()

When we chain calls like this we typically have to leave the parentheses around

the parameters so that CoffeeScript associates them correctly (see the section called

“Function Gotchas” in Chapter 3).

We can use some more jQuery help in adding event handlers. This is a common

source of cross-browser headaches, so we might as well take them out of the equation.

In the keys.coffee file, we’ll update our handcrafted efforts from this:

document.addEventListener "keydown", (e) ->
 keys.trigger e.keyCode, true
,false

document.addEventListener "keyup", (e) ->
 keys.trigger e.keyCode, false
,false

… over to jQuery’s quite delightful shortcuts:

chapter06/src/keys.coffee (excerpt)

$(document).keydown (e) -> keys.trigger e.keyCode, true
$(document).keyup (e) -> keys.trigger e.keyCode, false

Do I need to use jQuery?

Our game is using a lot of HTML5 features that will only run in modern browsers.

We can be quite confident that any browser that supports our game will also

support the addEventListener and querySelector native methods correctly.

This means you don’t have to use jQuery—it’s a nice library, but as browsers be-

come better they start to fill in the holes that jQuery was written to patch!

123CoffeeScript and HTML5 FX

Function Binding
There’s one aspect that feels a bit strange with our event handlers, though. In the

handler function, we have to reference the global keys object directly. It’s because

the scope of this (or its alias, @) inside the function has changed (thanks to JavaS-

cript’s scoping rules, this would refer to the global window object rather than our

custom keys object). Similarly, our call to setTimeout in game.coffee refers to the

global game object. A common method to circumvent this issue and retain the calling

scope is to keep a reference to the outside scope in a closure:

self = @
setTimeout (-> self.tick()), 33

A closure encloses the execution environment of an outside scope with that of an

internal scope; in the aforementioned example, the variable self is not defined in

the event handler’s context, but it can be found when JavaScript looks up its chain

of scopes. Now we have a way of capturing a different value of this!

Keeping the scope in this way is sometimes called function binding, and is so

common that CoffeeScript supplies a nice wrapper to take care of the plumbing for

us. To use function binding in CoffeeScript, we utilize the “fat arrow” syntax:

chapter06/src/game.coffee (excerpt)

setTimeout (=> @tick()), 33

Notice that the scope inside the function handler is now the same as the scope in

the calling function, namely our game object. Additionally, we have now banished

the unsightly self = this.

One factor to be careful of, however, is that now we’ve changed the scope, the in-

ternal meaning of this has changed. In jQuery, for example, this usually refers to

the DOM object/s that you’ve selected (which is very convenient). By using fat arrow

syntax, we mess around with that, and therefore lose the reference. If we need to

retrieve the object, it’s actually passed as the target property on the event parameter:

$(document).keydown (e) => theDocument = e.target

Jump Start CoffeeScript124

When we need the original element, the jQuery code becomes more hideous. Hmmm,

looks like we have a trade-off. It can be unclear when to use normal functions and

when to use bound functions. Generally, if the code inside the function deals

primarily with the calling code, use fat arrows; otherwise, stick to basic functions.

Closure Wrapper, with do

Function binding is great for event handlers, but if your goal is just to close over

a variable (say, inside a loop), you can use CoffeeScript’s do keyword. This wraps

your code inside a function:

for url in urls
 do (url) ->
 $.ajax url,
 success: -> console.log url

Without the do wrapper, the console.log line would print the incorrect URL;

by the time it executed, the for loop would have completed, and the value would

be the last URL in the list.

CSS Effects
Creating games on the Web has some serious perils: HTML5 is still in its infancy,

and we face constantly morphing browser implementations. New features are intro-

duced on what seems like a weekly basis, and they change rapidly. Thankfully, the

basics are relatively set in stone, though it’s easy to forget they’re there when

swimming in the pool of awesome new HTML additions.

Take our game, for example. We’ve created our own complete rendering system for

drawing pixels on the screen using the canvas element. One very interesting aspect

of the canvas element is that it’s just a DOM element (for instance, we can style it

with CSS, just as we can with any DOM element!). This is an easy and cheap (cheap

as in CPU cycles) way to add a bit of polish to our game without having to get our

hands dirty in the Canvas API.

Styling Your Canvas
The quickest win we can look at is styling the canvas element itself. We’re already

rendering the background via a simple CSS property, but CSS3 gives us some super-

125CoffeeScript and HTML5 FX

cool features that can be used to add effects—effects that people playing the game

will assume are just part of our rendering engine.

As an example, let’s add a vignette to the entire surface. A vignette is the name of

the effect that’s employed heavily on hipster photo apps. With CSS3, we can add

multiple backgrounds to an element by separating them with commas; so in addition

to our brick background, we’ll add a radial gradient to give a dark, ominous feeling

to the action (replace webkit with other browser prefixes as necessary):

chapter06/css/main.css (excerpt)

#game {
 background:

-webkit-radial-gradient(
 rgba(0, 0, 0, 0.0) 25%,
 rgba(0, 0, 0, 0.7)),
 url(resources/bg.png);

As CSS evolves, the power it brings is enormous, and with CSS filters on the hori-

zon,2 it looks even more promising. Applying CSS directly to our game is fairly

wacky … some might even say “hacky.” But game dev history is chock-full of these

kinds of hacks used for impressive results.

Cheap Parallax Effect
Applying CSS to an element is a nice way to add a static effect, but we’re making

games here … static is no fun, everything needs to be dynamic! Of course, web pages

are no stranger to dynamic elements, and, again, our game canvas is no exception.

We can update CSS properties from inside the game, to create effects that would be

a lot tougher to do in straight Canvas API code.

We’ll demonstrate this with an effect that is a bit more dramatic: parallax scrolling.

Parallax scrolling is the name of the effect where layers that are further in the

background move more slowly than layers in the foreground. Our foreground is not

scrolling at all, so our parallax effect will be a kind of weird “inverse parallax” for

now (in a second we’ll look at moving the foreground too).

2 https://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html

Jump Start CoffeeScript126

Our plan is to link the background brick position to the player’s location, using the

background-position CSS property. In the game.coffee class, at the end of the

rendering method, we add the following:

chapter06/src/game.coffee (excerpt)

backX = 1 - (@player.x / gfx.w) * 100
backY = 1 - (@player.y / gfx.h) * 100
gfx.ctx.canvas.style.backgroundPosition = "#{backX}px #{backY}px"

We access the canvas’s CSS styles via the gfx.ctx.canvas.style property. We set

the background-position (marked as backgroundPosition in script) to the player’s

position as a percentage of the playing field. This gives an interesting scrolling ef-

fect—with no Canvas APIs needed!

These effects are only scratching the surface; you can go wild with combining

technologies. Overlay styled divs or other regular DOM elements as layers, add CSS

transition and animation effects, change class names dynamically—nothing is off

limits. It’s good fun to apply years of web-page development tricks directly to your

game—and it can lead to some unusual and unexpected results.

Canvas Scrolling
There are some built-in tricks buried inside canvas too, and just as we took advantage

of the inherent abilities of CSS to get some nice effects “on the cheap,” we can do

the same with canvas. So far, we’ve only been using canvas’s rendering methods

for drawing images, rectangles, and text, but the API also provides a few useful tools

for manipulating the canvas object itself: scale, rotate, and translate.

These transformations work similarly to their CSS counterparts—stretching, rotating,

and moving things around—but can be applied on an operation-by-operation basis.

We need to take some care to accomplish this, because if we apply a transformation

to a context, that transformation will be in effect for all future drawing operations.

To avoid this, we should maintain a stack of transformations that we push and pop

as required. To push and pop, we use the canvas methods save and restore. Here’s

how we’d apply it to our main game rendering in game.coffee:

127CoffeeScript and HTML5 FX

chapter06/src/game.coffee (excerpt)

render: (gfx) ->
gfx.ctx.save()

 // Do some tricks

 // Render the game
 @level.render gfx
 @player.render gfx
gfx.ctx.restore()

To see why it’s important to save and restore the context, imagine if we rotated the

canvas by just 0.1 of a degree in the render function: c.rotate(0.1). You’d barely

notice this, right? Try it out and see (by commenting out the save and restore

lines). Woah, the game is spinning unplayably! The problem is that we aren’t just

rotating the canvas by 0.1 degrees, we’re rotating it by 0.1 degrees every frame!

By calling restore, the canvas context is reset to the last save state, so we aren’t

compounding the rotation. To put this to use in our game, let’s employ scale and

translate to implement a cool scrolling effect. We’ll scale up the canvas so

everything is bigger (so we won’t see the whole screen at once anymore). We then

translate (move) the element so the player is in the center:

chapter06/src/game.coffee (excerpt)

// Do some tricks
gfx.ctx.scale 1.3, 1.3
leftEdge = 210
offx = if @player.x > leftEdge then -@player.x + leftEdge else 0
gfx.ctx.translate offx, -@player.y + 130

That. Is. Cool. We’ve squished in a lot of magic numbers there—what’s going on?

Well, the first step is straightforward: we scale up the canvas to 1.3 times its original

size. We then figure out if the player is far enough away from the left edge of the

level to require scrolling, and translate to the new position. Try messing around

with the magic numbers to understand how the centering works.

Audio and Sound Effects
Audio has been the neglected, unloved, and largely unsupported cousin of the Web.

Until recently, the state-of-the-art was dinky MIDI files, or Flash-based players. But

Jump Start CoffeeScript128

the tide is turning! The new Web Audio API specification3 provides the means for

playing multiple sound files, as well as playing sounds you generate in code. Of

course, not all browsers support all aspects of the Web Audio API specification, but

at least there has been progress.

Acquiring suitable sounds for your game used to be a challenge. You could head

out with a microphone and make field recordings, buy sample CDs, scour Freesound4

for suitable noises, or lose a few days stuck inside audio synthesizers and digital

signal processors. All these solutions are time-consuming and laborious, especially

when our game jam schedule allows one hour for everything sound-related.

Thankfully, there’s a standard go-to answer for game-jam sounds: sfxr5 by Tomas

Petterson. sfxr is a synthesizer specially designed to make random 8-bit effects for

sounds like power-ups, explosions, character deaths, and other special effects. It’s

super easy to use and you can quickly craft a suite of sounds that match the ambience

of your (8-bit) game.

Once we have our sounds, we create a new CoffeeScript file called sound.coffee,

where we’ll initialize the sounds and supply a convenient way to trigger them (if

you don’t want to make your own, sound files are provided to you in resources/):

chapter06/src/sound.coffee

sound =
 audio: {}
 list:
 "dig": "dig.wav"
 "fall": "falling.wav"
 "particle": "particle.wav"
 "dead": "dead.wav"
 init: ->
 @audio[name] =
 new Audio "resources/#{url}" for name, url of @list
 play: (name) ->
 @audio[name]?.currentTime = 0;
 @audio[name]?.play()
sound.init()

3 https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
4 http://www.freesound.org
5 http://www.drpetter.se/project_sfxr.html

129CoffeeScript and HTML5 FX

We have included four sounds to load: for digging, falling, dying, and finding a

particle. The properties of the sound object are iterated over and loaded by creating

a new instance of the HTML5 audio tag and passing the resource URL. The play

method accepts the sound name and uses the native currentTime property to rewind

the sound and then play it.

To play a sound in our game, decide where you want the triggering to happen. For

example, in the Treasure class we remove the treasure block when the Professor

collects it. This seems like the perfect place to play the magical “particle” sound:

chapter06/src/blocks/Treasure.coffee (excerpt)

if @collected
 level.removeBlock x, y, @
sound.play "particle"

The sound object above is quite naive: the audio tag is relatively new, and different

browsers can only play certain file formats. Unfortunately this means for the moment

we have to supply our audio resources in multiple formats, and do some feature

detection in code; for example, new Audio().canPlayType('audio/mpeg;') will

tell us if the browser thinks it knows how to play an MP3. In addition, we should

ensure sounds have loaded fully before we try to play them. We can do this by

listening for the canplaythrough event. To avoid this, we’ll just use WAV files that

everybody knows how to play. Finally, the audio element has a bunch of other

methods and properties for controlling volume and such. The spec has more.6

Whatever you end up using, never make the mistake of leaving sound out of your

game—even during a time-limited hackathon! Sound is very powerful. Good sounds

can totally change the character and feel of your game, and help enormously in

immersing a player in the action.

Animation
People might wonder why our game’s set entirely on conveyor belts: everyone’s

just sliding around! We’ll add some frames for when the Professor is falling, and

provide a kind of walking animation—or, as we say in the biz, a walk cycle.

6 http://www.w3.org/wiki/HTML/Elements/audio

Jump Start CoffeeScript130

Walk Animation
A walk cycle is the animation pattern that repeats over and over to give the illusion

that our character is walking. A good walk cycle is difficult to perfect, as it consists

of four to eight (sometimes more) individual animation frames that mimic human

movement. Thankfully, we only want an 8-bit walk cycle. This will comprise two

frames: legs up, legs down, fitting the style and aesthetics of our game. If we had

an elaborate eight-frame walk cycle with lo-fi sprites, it would just feel wrong!

We can implement a two-frame cycle effortlessly, without needing to keep an internal

count of which frame we’re on. We’ll use the ol’ game dev trick of tying our anima-

tion frame to the current time. Add this helper to our utils object:

chapter06/src/_utils.coffee (excerpt)

counter: (max, speed = 100) -> Math.floor @now() / speed % max

The counter function takes a maximum value to count to, and a speed (default is

100ms). Dividing the current time by the speed results in the number of steps that

have occurred since JavaScript’s epoch: January 1, 1970. This only becomes useful

when we take the modulus of those steps by the maximum value. Now we have a

counter that counts to our maximum value, then resets—ad infinitum!

To use this for animation, we’ll link a counter to the player’s sprite. In the

Player.render method, the sprite is defaulted to position 0 (the very first sprite in

our sprite sheet), and if the user is holding down the left or right key, we make a

counter from 0 to 1. We add this to the drawSprite call:

chapter06/src/entities/Player.coffee (excerpt)

fx = if @dir is "LEFT" then 2 else 0
fx += utils.counter 2 if keys.left or keys.right

gfx.drawSprite fx, 0, @x, @y

The result is the fx variable toggles between 0 and 1 every hundred milliseconds

when the user is moving. The Professor runs! As will the ninjas:

131CoffeeScript and HTML5 FX

chapter06/src/entities/Ninja.coffee (excerpt)

fx = if @dir is "LEFT" then 2 else 0
fx += utils.counter 2

gfx.drawSprite fx, 1, @x, @y

Using a counter tied to time is a quick-and-dirty way to animate sprites without

worrying about state. It’s a great trick to commit to memory for the next game jam!

Falling Animation
While we’re in the Player render, we may as well add in the falling animation we

drew for the Professor, way back at the beginning. The “falling” frames are on the

second row of the sprites.png file. In the first cell, the Professor is facing right; in

the second, he’s facing left. Now we have to show different frames depending on

whether he’s falling or not:

chapter06/src/entities/Player.coffee (excerpt)

fy = fx = 0
isLeft = @dir is "LEFT"
if @falling
 fx = 1 if isLeft
 fy = 2
else
 fx = 2 if isLeft
 fx += utils.counter 2 if keys.left or keys.right

gfx.drawSprite fx, fy, @x, @y

Where to Go from Here

Although our time-based flip-book approach to animation is naive and limited,

it does let us create an impressive array of movement with minimal artwork. If

you find that your rendering code becomes an unmaintainable mess of if state-

ments, you might want to beef it up—perhaps using a state machine like we did

with the ninja AI!

Jump Start CoffeeScript132

Screens and Dialogs
Our game is going to scare the daylights out of users if, once loaded, it throws them

straight into the deep end without warnings or instructions or anything. Though

that sounds like it might be a cool idea for a horror/reality game, it’s not the ambience

we’re striving for with Professor Digman-Rünner.

We want a title screen with some instructions on how to play, and an introduction

to the Professor himself. We need a brief “Get ready!” screen before action com-

mences, and, finally, we have to dispose of the ugly pop-up dialogs when the

player dies or completes a level.

Adding Screens
First, we’ll concentrate on adding the concept of a “screen” in our game. Screens

will help us compose the flow throughout; for example, we could have one screen

for the title page, one for options, and one for the gameplay. A screen takes up the

entire view area, with only one screen running at a time.

Here’s the idea behind our implementation of a screen: the main game object will

hold a reference to the current screen, sending the update and render messages to

this screen. This means it will no longer need references to levels and players—the

game screen will now be responsible for that.

We’ll create a simple Screen class to act as an interface for our subclasses. We’ll

call this _Screen.coffee and put it in the new screens directory:

chapter06/src/screens/_Screen.coffee

class Screen
 constructor: ->
 update: ->
 render: (gfx) ->

This should be looking familiar by now! The game object will call the update and

render functions for the current screen, so we need to specify these in the base

class. Every screen in our game will then be a subclass of Screen. For example, let’s

create GameScreen.coffee; it’s destined to become the new controller of the game:

133CoffeeScript and HTML5 FX

chapter06/src/screens/GameScreen.coffee

class GameScreen extends Screen

We’ll just leave it as a placeholder for now, and move on to the title screen.

Inserting a Title Screen
TitleScreen.coffee will have the admirable task of delivering the all-important first

impression to the user:

chapter06/src/screens/TitleScreen.coffee (excerpt)

class TitleScreen extends Screen
 min: 20
 update: ->
 return if @min-- > 0
 game.screen = new GameScreen() if keys.space

The main purpose of the title screen is to display information, but we need to be

able to dismiss the screen, too. We want to start the game when the player hits the

space key. We check the keys object and if space is true, we replace the current

screen (the title screen) with a new instance of the GameScreen. This seems fair

enough, but what is the field called min that defaults to 20?

It’s just a simple counter that prevents us from hitting the space key too quickly—if

the title screen has been displayed for less than 20 ticks, we skip key processing.

The reason for it is that the player might still be holding down the space key from

when they died in the last game; without a delay, a new game would be immediately

launched without the poor player having a chance to pause for a second.

Rendering the screen can be as simple or complex as you want. To test it out, we’ll

just render some static images and text, but you could include a counter to trigger

animations, or sine effects (as we did with the treasure), or whatever you think will

most entice your users to play:

chapter06/src/screens/TitleScreen.coffee (excerpt)

render: (gfx) ->
 c = gfx.ctx

Jump Start CoffeeScript134

 gfx.clear()
 c.drawImage gfx.title, 180, 10
 # Some instructions
 c.fillStyle = "#e0e0e0"
 c.font = "14pt monospace"
 gfx.drawSprite 5, 1, 480, 180
 c.fillText "Collect all \"Pig’s Boffin\" particles.",
 50, 210
 c.fillText "Press space to start...", 50, 240

You’ll also have to load the title image in the gfx.load method:

chapter06/src/gfx.coffee (excerpt)

@title = new Image()
@title.src = "resources/title.png"

Okay, the title screen is defined; now it’s time to chop up our game object. We’re

going to strip out all the gameplay-related functionality from the game object and

replace it with the screen functionality. First, we add the screen property to the

game object with a default of null:

chapter06/src/game.coffee (excerpt)

@game =
screen: null

In the game’s reset method, we no longer initialize @screen and @player; instead,

we specify the screen that we’d like to display when the game loads. In our case,

that’s the title screen:

chapter06/src/game.coffee (excerpt)

reset: ->
@screen = new TitleScreen()

Finally, we have to update and render the screen. While we’re in mid-refactor, we

comment out the current code in the render and update methods, testing that our

screens are working correctly. Then we’ll replace it:

135CoffeeScript and HTML5 FX

chapter06/src/game.coffee (excerpt)

update: ->
@screen.update()

render: ->
@screen.render gfx

As we’ve done throughout, we simply pass the update and render messages along.

The code that we commented out will be moved into the game screen soon, but let’s

test out the new title screen. If we run the new code, our familiar game is gone, but

we do have a spiffy new title screen! Hitting the space key should launch the game

screen … however, when we hit the space key, nothing happens.

Well, something does happen: the new GameScreen instance is created and the game

object updates and renders it every frame, but we still need to implement the update

and render methods.

The Game Screen
We still have to move all the existing game code from game.coffee into

GameScreen.coffee. The game object becomes the controller of the highest-level

activities: looping and passing messages to the correct screens. The GameScreen

now takes charge of our players and levels. The stubbed-out class looks like this

(the comments indicate the code is copied directly from the old game object):

chapter06/src/screens/GameScreen.coffee (excerpt)

class GameScreen extends Screen
 levelNumber: 0
 constructor: ->
 @player = new Player()
 @startLevel()
 setPlayer: (x, y, level) ->
 # Set the player to the correct level position
 update: ->
 # Update level, player, and check collisions
 startLevel: ->
 @level = new Level levels[@levelNumber], @
 levelComplete: ->
 if ++@levelNumber >= levels.length
 game.win()
 else

Jump Start CoffeeScript136

 @startLevel()
 render: (gfx) ->
 # Render the level

The GameScreen holds information that’s relevant to the current game: loading the

level, updating and rendering, and checking if the game has been completed. This

is where you’d include details like “score” and “lives” if your game requires them.

Our game only has two screens: the title and the game. You’ll probably want to add

a few more; perhaps an “options” screen, or stand-alone “You win the game!” and

“Game over” screens. Another option is to just pop up this information over the

current screen. For that, we’ll need dialog boxes …

Overlaying Dialogs
Dialogs work exactly the same as screens, except they’re overlaid on the current

screen, rather being a discrete unit of game workflow. We’ll use dialogs to add a

“Get ready!” message to the beginning of each level, as well as use them to replace

the nasty pop-up boxes we’ve been using so far.

Just as for screens, let’s make a new folder and call it dialogs. We’ll create a base

class containing our old friends constructor, update, and render:

chapter06/src/dialogs/_Dialog.coffee

class Dialog
 constructor: ->
 update: ->
 render: (gfx) ->

Now that our game object has been refactored, adding in dialogs is a cinch: we add

a new property, dialog, and make sure we clear it in the reset function. Anytime

the dialog property is set, the dialog will be displayed, and the action in the back-

ground will be paused:

chapter06/src/game.coffee (excerpt)

@game =
dialog: null

 reset: ->
@dialog = null

137CoffeeScript and HTML5 FX

 render: (gfx) ->
 @screen.render gfx

@dialog.render gfx if @dialog

 update: ->
if @dialog?

 @dialog.update()
 else
 @screen.update()

Nothing scary here, though it’s essential that the dialog is rendered after the screen

(otherwise the dialog will be overwritten by the screen graphics), and that we only

call the screen’s update method if there is no dialog. Otherwise, the action would

continue on in the background and ninjas would kill us—most unsportsman-

like—while we were reading the dialog.

Our first dialog will be the “Get ready!” message when a level begins. Our level data

structure has an additional field called name, which we’ll pass into the dialog to

display and store in the level field via the constructor:

chapter06/src/dialogs/LevelDialog.coffee

class LevelDialog extends Dialog
 time: 50
 constructor: (@level) ->
 update: ->
 if --@time == 0
 game.dialog = null

A dialog differs from a screen in that it has a countdown timer; when it expires, the

countdown clears itself from the game object, and the menu is gone. For rendering,

we’ll draw a translucent rectangle and display the text in the box:

chapter06/src/dialogs/LevelDialog.coffee (excerpt)

render: (gfx) ->
 c = gfx.ctx
 c.save()
 c.translate 100, 150
 c.fillStyle = "hsla(205, 40%, 50%, 0.8)"
 c.fillRect 0, 0, 350, 200

Jump Start CoffeeScript138

 c.fillStyle = "#e0e0e0"
 c.fillText "#{ @level }", 50, 100
 c.restore()

Streamlined Dialogs

Want to ensure that all your dialogs looked exactly the same? You could encapsu-

late the rectangle and text drawing into a separate function in the base class, and

call the base render method before you do your dialog-specific rendering.

To display the dialog, we need to instantiate it and assign it to the game’s dialog

property at the point where we create a new level. Figure 6.1 shows the result:

chapter06/src/screens/GameScreen.coffee (excerpt)

@level = new Level levels[@levelNumber], @
game.dialog = new LevelDialog(levels[@levelNumber].name)

Figure 6.1. The level dialog gives users time to prepare

Adding further dialogs requires very little work: create the Dialog subclass with

the dialog-specific drawing operations, then set it as the value of game.dialog when

you want it to appear. To test this out, we’ll implement a “Game over” dialog for

when a player dies, in a file called DeadDialog.coffee:

139CoffeeScript and HTML5 FX

chapter06/src/dialogs/DeadDialog.coffee

class DeadDialog extends Dialog
 time: 100
 update: ->
 game.reset() if --@time == 0

 render: (gfx) ->
 c = gfx.ctx
 c.save()
 c.translate 100, 150
 c.fillStyle = "hsla(5, 40%, 50%, 0.8)"
 c.fillRect 0, 0, 350, 200

 c.fillStyle = "#e0e0e0"
 c.fillText "Ninjas have killed you!", 50, 100
 c.restore()

The “Game over” dialog runs for 100 ticks, displaying the unfortunate news of the

Professor’s untimely death. When the 100 ticks have passed, the dialog calls the

game’s reset method to start over. Previously, when we found a collision with a

ninja, we would execute the code:

alert "You are dead."
game.reset()

Now, we just have to create a dialog and it takes care of the rest (if you’re yet to insert

it, now is the perfect time to play the dead.wav sound effect):

chapter06/src/levels/Level.coffee (excerpt)

sound.play "dead"
game.dialog = new DeadDialog()

It turns out, oddly enough, that winning is similar to dying for the Professor. Create

a file called WinDialog.coffee with the same code, displaying a different message.

And that’s it. If you’re feeling creative, you could (and should) create a completely

separate screen for the final victory scene, so that the player feels all tingly when

they successfully complete the vast challenges you’ve forced upon them.

Jump Start CoffeeScript140

Particles
You are fast running out of hours in the day, but you have the burning desire to add

one more feature before you’re done: a feature so powerful it can transform the

dreariest of games into a eye-boggling visual feast … the particle effect! A particle

effect is a collection of tiny visual pieces that each move and change separately, but

work together to give the impression of smoke, fire, magic, or other abstract concepts.

Abstract concepts! That’s how powerful they are. For an example of a relatively

feature-rich particle system, go have a look at Parcycle.7

A particle system can be as complex or simple as need be, and they’re lots of fun

to code. Each individual particle is given some specific properties, as well as some

simple rules that evolve these properties. Individually they look … well, like

nothing at all, really … but combined—that’s when the magic happens.

A crazy super-high-res effect system will sit poorly with the lo-fi 8-bit aesthetic

we’ve been cultivating thus far, so we need to be careful. The idea is to create a

particle effect for when the Professor digs—but instead of the tiny gradient-filled

particles of Parcycle, we’ll use large flat rectangular particles.

Our system will comprise three parts: an individual particle, a controller to wrangle

all the particles, and an object that specifies the initial properties and rules for our

effect. We’ll put all the components in a file named Particle.coffee in a particles folder.

It commences with our final dig effect, which contains the following rules:

chapter06/src/particles/Particle.coffee (excerpt)

digParticles =
 life: 20
 num: 6
 size: [6, 4]
 xStart: [-2, 8]
 yStart: [-5, 0]
 xVelocity: [-1, 0]
 yVelocity: [-4, -1]
 acc: [0, 0.3]
 col:

7 http://www.mrspeaker.net/dev/parcycle

141CoffeeScript and HTML5 FX

 h: 20
 s: 60
 l: 40

The whole effect will last for 20 ticks, and be made up of six individual particles

each 6 pixels by 4 pixels in size (life, num, and size properties respectively). Each

particle will start at a random x position between −2 and 8 pixels from the player’s

location, and its horizontal velocity will vary between −1 and 0. The y properties

are specified in the same way. In each frame, acceleration is applied separately to

the horizontal and vertical components of the particle’s velocity. And finally, the

particle will be set an HSL color value of (20, 60%, 40%).

Phew. That seems like a lot of properties—but particle systems can be far more

complicated than this! The next step is to define the individual pieces. We’ll make

a class, Particle, that uses the rules from the options we defined:

chapter06/src/particles/Particle.coffee (excerpt)

class Particle
 constructor: (x, y, @opt) ->
 @a = 0.5
 @x = x + utils.rand @opt.xStart[0], @opt.xStart[1]
 @y = y + utils.rand @opt.yStart[0], @opt.yStart[1]
 @xVelocity = utils.rand @opt.xVelocity[0], @opt.xVelocity[1]
 @yVelocity = utils.rand @opt.yVelocity[0], @opt.yVelocity[1]
 update: ->
 @a -= 0.01
 @x += @xVelocity
 @y += @yVelocity
 @xVelocity += @opt.acc[0]
 @yVelocity += @opt.acc[1]
 render: (gfx) ->
 gfx.ctx.fillStyle =
 "hsla(#{@opt.col.h}, #{@opt.col.s}%, #{@opt.col.l}%, #{@a})"
 gfx.ctx.fillRect Math.floor(@x), Math.floor(@y), @opt.size[0],
 @opt.size[1]

Simple math is applied to each particle during each frame, to update its appearance

and position. The a property is for the alpha value of the particle, which is set to

fade over time (decreasing by 0.01 each frame). This could be implemented as a

field if you wanted to vary it for other effects.

Jump Start CoffeeScript142

To wrangle a bunch of particles, we need a controller. The Particles class—as

distinct from Particle—will take care of our collection of particles. When we start

the effect, we can pass our options in, but we also use CoffeeScript’s default para-

meters to employ the digParticles by default.

chapter06/src/particles/Particle.coffee (excerpt)

class Particles
 constructor: (x, y, @opt = digParticles) ->
 @life = @opt.life
 @ps = (new Particle(x, y, @opt) for [0..@opt.num])

 update: ->
 p.update() for p in @ps
 @life-- > 0

 render: (gfx) -> p.render gfx for p in @ps

We use a nice little for comprehension to create the batch of particles, and then

update and render them each frame. If the life of the particle system is over, we return

false to indicate we’re done processing this batch.

We want to create an instance of Particles every time the player digs or builds a

block. This means that we need a way to wrangle the wrangler: we want a collection

of a collection of particles! This is handled in the Level class.

First, a container is added as a property:

chapter06/src/levels/Level.coffee (excerpt)

particles: []

… as well as a simple helper method for creating new effects:

chapter06/src/levels/Level.coffee (excerpt)

addParticles: (x, y) ->
 @particles.push new Particles x, y

And finally, as we’ve typed a million times already, each element is given the update

and render messages (we’ve put them at the very end of each method):

143CoffeeScript and HTML5 FX

chapter06/src/levels/Level.coffee (excerpt)

update: ->
@particles = (p for p in @particles when p.update())

render: (gfx) ->
p.render gfx for p in @particles

Notice that we’re reassigning the particles array each frame using the filter keyword

when. When a particle effect is complete and its update method returns false, it

will be removed from the array (because the effect has finished).

To put the effect into the game, we have to call the addParticle helper, supplying

the Professor’s x and y positions. We do this at the end of the digAt function in

Level.coffee, just before we play the dig sound!

chapter06/src/levels/Level.coffee (excerpt)

@addParticles xb * gfx.tileW, (yb + 1) * gfx.tileH
sound.play "dig"

Look at those pretty dirt particles fly! Particle systems are extremely addictive, so

you’re encouraged to dig in and expand this simple system as much as you can,

and add particles wherever possible: when the Professor is falling, when he lands,

when the ninjas change direction, on the splash screen … everywhere!

Game Over
Holy cow. You lean back from your laptop and make two simultaneous realizations:

one, you haven’t taken a breather for the last few hours, so now’s probably a good

time to do that. And two, you’ve made a video game. A video game with heroes and

villains, and animations, and dialogs, and scrolling, and sounds … You look over

at the web guy and the artist. They’re just twiddling their thumbs, reading Reddit.

It seems you ended up making the entire game by yourself. And as you put Professor

Digman-Rünner through his final paces, you realize it’s probably better this way.

Jump Start CoffeeScript144

Chapter7
Epilogue

And on the Seventh Day ...
There’s one remaining day in the “7-day HTML5 Game Jam-a-Thon Challenge (TM),”

but frankly, you’ve decided it’s unnecessary.

Six days ago, you made the insane decision to undertake the challenge with the

notable handicap of never having used the language before, yet here you now stand

with time on your hands. Working quickly and efficiently requires tools that let you

express yourself clearly and tersely, and CoffeeScript fits that bill very nicely indeed.

Starting with the very basics, we powered through variable scoping, basic functions,

and loops. We took these building blocks and applied them to mastering data

structures and drawing items on the screen. Professor Digman-Rünner was born.

With the foundations laid, we dived into the juicy parts: list comprehensions, ad-

vanced function features, and destructured assignment. Like Frankenstein, we

brought the game to life with the game loop and CoffeeScript’s class system.

The spirit of CoffeeScript coursed through our veins, and we could move on to the

true purpose of learning to code in any language: prying ideas out of our head and

onto the screen. To this end, we added (with consummate ease) ninjas and collision

detection, digging and building, ladders, scrolling, particles, animation—

Your remaining team members abruptly interrupt your flashback.

“Listen, we’ve been talking,” they start. “And we know we dropped the ball for

game jam … but we we want to make it up to you. Have a look at this concept art

we did for a new game.” The pixel artist hands you a sketch book. It contains a fa-

miliar face and the phrase:

Professor Digman-Rünner 2: Diggin’ ’n’ Runnin’.

“What do you think? We do all the art, you provide the coding magic?” They look

at you with hope and excitement. You give a sigh, shrug, and say, “I guess I’ll just

have to brew up a fresh pot of CoffeeScript.”

One coffee-based pun for the entire week. I think we can live with that.

Jump Start CoffeeScript146

Index

Symbols
3D games, 19

A
AABB (Axis-Aligned Bounding Box), 111

alert code for debugging, 25–26

animation, 130–132

arguments

default argument values, 49–51

arguments, splatted, 99–100

Array, 33–35

arrays, 95–99

Artificial Intelligence, 111–113, 115–117

ASCII maps, 55–56

Ashkenas, Jeremy, 11

audio, 128–130

auto properties, 74

Axis-Aligned Bounding Box (AABB), 111

B
base class, 75

base classes, 80

Block class, 80–81

block collision detection, 91–99, 110–

111

blocks

adding new, 88–90

digging and building blocks, 117–120

bound functions (see function binding)

bounding boxes, 110–111

branching, 28–29

browsers

Document Object Model and, 17

in-browser compilation, 4

build tools, 61

C
Cake command, 61

canvas, 18

clearRect method, 39–40

compilation, 20

context, 37–40, 41

drawing images, 42–43

drawing primitives, 40–42

drawing with, 20–22

scrolling, 127–128

soaking up nulls, 38

styling, 125–126

Canvas API, 18, 36–44

manipulation of objects, 127–128

chaining function calls, 52

character images (see sprites)

characters

ability to kill, 110–111

action from, 88

adding to game, 64–66

at multiple levels, 86–88

core entity model, 75–76

core entity models, 77

creating, 35–36

digging and building by, 117–120

movement logic, 111–113, 115–117

player modules, 58

characters utility

creating, 35

class inheritance, 74–76, 77

class types, testing

testing, 107–110

classes, 71–73, 77–88

(see also Block class; Level class)

client-side compilation, 11–12

client-side manipulation, with jQuery,

122–123

closures, 124

coffee utility, 13

change deployment, 25

installation, 14–15

options, 15–16

CoffeeScript

(see also compilation; installation)

advanced, 48–66

basics, 3, 23–46

defining snippets of, 11–12

features of, 2

JavaScript and, 1–2

outputting help, 14, 15

website, 3

collecting particles, 107–110

collision detection, 91–99, 110–111

colors, HSL, 22

comments, 7

compilation, 24

canvas, 20

client-side compilation, 11–12

in-browser compilation, 4

lists of files, 60

precompiled JavaScript, 11

comprehensions, 32, 53–55

conditionals, 28–29

console tool, 25–26

console tool function, 26

constructors, 73–74

controllers, 141–143

cruft, 6

CRUISING code, 115

CSS effects, 18, 125–127

D
debugging, 25–26

default argument values, 49–51

destructured assignment (pattern

matching), 95–99, 100, 113–114

dialogs, 137–140

dispatching

with switch statements, 63–64

distance function, 48

Document Object Model (DOM), 17

player input and, 61–63

document, missing, 38

DOM elements (see Document Object

Model (DOM))

drawing (see canvas)

drawSprite function, 49–51

E
entity models, 75–76, 77

equality-testing, 29–30

event listeners, 62–63

F
falling animation, 132

files

compiling a list of, 60

for loops, 31, 53–55

function binding, 124–125

functions, 8–10

bound functions, 124–125

chaining function calls, 52

lining up code blocks, 51–52

148

optional parentheses, 51

string reversal example, 4–5

ways of defining, 48

G
game classes, 77–88

game development

(see also characters; movement; player

input)

ability to kill, 110–111

collecting goal, 107–110

game development utility

nested loops, 31

Game Jam-a-Thon (see HTML5 Game Jam

Challenge)

game loops, 65, 67–71

with RequestAnimationFrame, 70–71

game screens, 133–134, 136–137

getBlocks function, 96

GitHub repository, 11

graphical processing abilities, DOM and

canvas, 17–18

gravity, 100–103

H
help, outputting, 14, 15

HSL (hue, saturation, lightness) colors,

22

HTML5 Canvas API (see Canvas API)

HTML5 Game Jam Challenge, 2

(see also characters)

HTML5 tools, 121–144

HUNTING code, 116–117

I
images, drawing, 42–43

indentation, 6

inheritance, 74–76

input (see player input)

installation, 13–14

coffee utility, 14–15

global versus local, 14

Node.js, 13–14

overview, 10

J
JavaScript

CoffeeScript and, 1–2

CoffeeScript code compared with, 4–

6

embedded in CoffeeScript, 27

functions in, 55

jQuery, 122–123

K
key codes, 63–64

keyboard input, 61–63

keys, 34

L
ladders, 103–107

Level class, 77–78

levels, 58

characters at multiple, 86–88

creating, 55–58

ladders for movement up, 103–107

loading levels, 82–85

use in game, 85–86

list comprehensions, 53–55

loops, 31–32, 53–55

149

M
maps, 55–56, 85

move function, 92

movement

(see also collision detection)

Artificial Intelligence, 111–113, 115–

117

gravity simulation, 100–103

ladders for, 103–107

scrolling, 126–128

setInterval function, 21

walk cycles, 131–132

N
nested blocks, 6

Node.js

installation, 10, 13–14

running from your terminal, 13, 14

noise

(see also sound effects)

noise function, 21

now function, 93

npm (Node’s package manager), 14

O
object-oriented models, 76

Objects, 33–35

objects

destructured assignment, 113–114

prototypal inheritance, 72

openGL, 19

operator aliases, 29–30

operators, 28–29

P
parallax scrolling, 126–127

parentheses, 84

particle effect, 18

particles, 90, 107–110, 141–144

pattern matching (destructured assign-

ment), 95–99, 100, 113–114

Play! framework, 13

Player function, 72

(see also characters)

player input, 58, 61–63

project planning, 24–25

larger projects, 58–61

prototypal inheritance, 72

R
random map, 44–45

range loops, 31–32

inclusive versus exclusive ranges, 31–

32

rendering, 19, 64–66

HTML5 games, 16–22

RequestAnimationFrame, 70–71

reserved words as keys, 34

reset method, 69

Ruby on Rails, 13

S
safety wrappers, 59

Scalable Vector Graphics, 19

scope, 8

screens, 133–137

script tags, 11–12

scrolling, 126–128

self = this variable, 69

setInterval function, 21

setTimeout function, 70

short function syntax, 10

150

significant whitespace, 6–7

sine wave path, 90

snap function, 93

sound effects, 128–130

(see also noise)

spaces (significant whitespace), 6–7

splats, 99–100

sprites, 43–44, 49–51

grid development, 45

square function, 48

state machine, 112

strings, 27–28

super class, 78–80

SVG (Scalable Vector Graphics), 19

switch statements, 63–64

T
tabs (significant whitespace), 6–7

test function, 48

title screen, 134–136

basic title screen, 41

transpilation into JavaScript, 1–2

types, 7

U
updating, 64–66

V
variables, 7–8

vignettes, 126

W
walk cycles, 131–132

Web Audio specification, 129

WebGL, 19

whitespace, 6–7

151

Hey ...

sitepoint.com/friends

Save over 40% with this link:

Password: friends

Link:

Thanks for buying this book. We really
appreciate your support!

We’d like to think that you’re
now a “Friend of SitePoint,”
and so would like to invite
you to our special “Friends of
SitePoint” page.

Here you can SAVE up to 43%
on a range of other super-cool
SitePoint products.

gallery-replace-generic.indd 2 1/03/12 5:13 PM

Sporting a Masters in Information Technology and a
lifetime of experience on the Web of Hard Knocks,
Earle Castledine (aka Mr Speaker) is a world-renowned
JavaScript expert.

When not conducting countless web-based experiments,
he’s sharing his expertise to audiences all over the
globe.Earle Castledine

JU
M

P START : C
O

FFEESC
R

IPT
Earle C

astledine

will empower you to write better JavaScript, accomplishing more while
expending much less sweat!

Read this book and, in a weekend, you’ll learn how to:

SET UP Everything you need to begin using Coffeescript

 EASILY work with Loops, splats, and function binding

 STRUCTURE your code with classes

 DEVELOP a FUN 2D PLATForm Game

PLUS, you’ll discover how to use HTML5 canvas to draw and
manipulate graphics.

USD $24.95 CAD $24.95

WEB DEVELOPMENT
Print: 978-0-9872478-2-7
Ebook: 978-0-9872478-3-4

Get a Jump Start on COFFEESCRIPT today

 sitepoint.com/coffeescript

	Front cover
	Jump Start CoffeeScript
	Copyright
	Dedication, biographies
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Challenge Yourself
	Friends of SitePoint

	Getting Started
	HTML5 Game Jam Challenge
	The Basics
	Missing Cruft
	Whitespace
	Comments
	Types, Variables, and Scope
	Functions

	Starting the Game Project
	Installing: an Overview
	Client-side Compilation on the Fly
	Installing CoffeeScript Properly
	Installing Node.js
	Installing Coffee
	Coffee Options

	Choosing Our Tech
	Document Object Model
	Canvas
	Further Options

	Drawing Something: Using Canvas
	We’re on Our Way

	CoffeeScript Fundamentals
	More of the Basics
	Setting Up Our Project
	alert versus console.log
	Returning to JavaScript
	Strings
	Conditionals and Operators
	Operator Aliases

	Loops and Ranges
	Objects and Arrays

	Introducing Professor Digman-Rünner
	The Canvas API
	Context and Soaking up Nulls
	Drawing Primitives
	Draw an Image
	Processing a Sprite Sheet

	Random Map
	Ready to Rumble

	Features to Boost Your Game
	Team Meeting
	Functions Revisited
	Default Argument Values
	Function Gotchas
	List Comprehensions
	Creating a Level

	Building Larger Projects
	Removing the Safety Wrapper
	Compiling a List of Files
	Getting Serious with Cake

	Handling Player Input
	Dispatching with Switch

	Adding the Professor
	And There Was Light!

	Game Loop and Classes
	The Game Loop
	Improving Our Loop
	Looping with RequestAnimationFrame

	Classes
	Constructor and Auto Properties
	Class Inheritance

	Game Classes
	The Level Class
	Calling the Super Class

	The Block Class
	Loading Levels
	Driving a Level
	Kicking It All Off

	Adding New Blocks
	Stay Classy

	Bringing a Game to Life
	Block Collision Detection
	Destructured Assignment 1: Arrays
	Splats
	Gravity
	Ladders
	Collecting
	Testing Class Types

	Collision
	Ninja AI
	Destructured Assignment 2: Objects
	Adding the AI Rules into the Code

	Power to the Professor
	Digging Holes
	Building Blocks

	Set for Life

	CoffeeScript and HTML5 FX
	HTML-ifying things
	Using jQuery
	Function Binding

	CSS Effects
	Styling Your Canvas
	Cheap Parallax Effect

	Canvas Scrolling
	Audio and Sound Effects

	Animation
	Walk Animation
	Falling Animation
	Screens and Dialogs
	Adding Screens
	Inserting a Title Screen
	The Game Screen
	Overlaying Dialogs

	Particles

	Game Over

	Epilogue
	And on the Seventh Day ...

	Index
	Friends of SitePoint
	Back cover

