
GET UP TO SPEED WITH BOOTSTRAP IN A WEEKEND

Syed Fazle Rahman
JU

M
P START : BO

O
TSTRAP

RAH
M

AN

Originally developed by Twitter, Bootstrap is by far the most popular front-end
web framework. It has revolutionized modern web development, making it easy
to build professional, feature-packed websites in no time.

Better still, Bootstrap is built from the ground up to be fully responsive, meaning
your designs will look beautiful on any device.

What’s inside?

 _ Install Bootstrap and set up your projects

 _ Understand how Bootstrap can speed up the web development process

 _ Master the grid system: responsive, mobile first layouts that work on any device

 _ Take advantage of Bootstrap’s components to quickly and easily add features

like panels, navigations, forms, and more

 _ Use Twitter’s powerful plug-ins to add interactivity, without writing a line of

JavaScript!

 _ Customize Bootstrap with Less and create templates that look and behave ex-

actly as you want

USD $34.95 CAD $34.95

WEB DEVELOPMENT
Print: 978-0-9802858-2-6
Ebook: 978-0-9870908-0-5

EVERYTHING YOU NEED TO KNOW ABOUT BOOTSTRAP IN ONE PLACE!

Syed Fazle Rahman is a web developer and a blogger, with over four years of free-
lancing experience. His expertise includes HTML5, CSS3, Less, JavaScript, jQuery
and Ember.js. He’s currently working on hybrid applications for smartphones and
smart TVs.

By Syed Fazle Rahman

9780980285826-POD.indd 1 22/05/2014 6:31 pm

Summary of Contents

Preface . xiii

1. Up, Close, and Personal with Bootstrap . 1

2. Bootstrap Grid System . 17

3. Exploring Bootstrap Components . 47

4. Bootstrap Plugins for Fun and Profit . 89

5. Diving Deep: Customizing Bootstrap . 139

6. Optimizing Bootstrap . 155

JUMP START
BOOTSTRAP

BY SYED FAZLE RAHMAN

Jump Start Bootstrap
by Syed Fazle Rahman

Copyright © 2014 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Ivaylo Gerchev

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9922794-3-1 (print)

ISBN 978-0-9922794-7-9 (ebook)

Printed and bound in the United States of America

iv

About Syed Fazle Rahman

Syed Fazle Rahman is a web developer and a blogger, with over four years of freelancing

experience. His expertise includes HTML5, CSS3, Less, JavaScript, jQuery, and Ember.js.

He’s currently working on hybrid applications for smartphones and smart TVs.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

v

http://www.sitepoint.com/

To my lovely parents, troublesome

brother, cute sister, and my best

buddy, Sandeep.

Table of Contents

Preface . xiii

Who Should Read This Book . xiii

Conventions Used . xiii

Code Samples . xiv

Tips, Notes, and Warnings . xv

Supplementary Materials . xv

Want to Take Your Learning Further? . xvi

Chapter 1 Up, Close, and Personal with
Bootstrap . 1

What is Bootstrap? . 1

Why Does It Exist? . 2

How Can It Help Me? . 3

History of CSS Frameworks . 3

The Need for CSS Prototyping . 3

The Origins of Bootstrap . 4

Bootstrap’s Competition . 6

Who Uses Bootstrap? . 6

Overview of Responsive Web Design . 7

Adjusting a Layout Based on Screen Size . 7

Getting Bootstrap Ready . 9

Chapter 2 Bootstrap Grid System 17

What Is a Grid System? . 17

Building a Basic Grid . 18

Case Study: Creating a Dynamic Layout . 26

Designing for Desktops . 29

Designing for Tablets . 35

Designing for Mobile . 36

Nesting Columns . 39

Offsetting Columns . 43

Reordering Grids Manually . 44

Summary . 45

Chapter 3 Exploring Bootstrap
Components . 47

Page Components . 47

Page Headers . 47

Panels . 50

Media Object . 51

Thumbnails . 54

List Group . 58

Navigation Components . 63

Navs . 64

Navbar . 66

Breadcrumb . 73

Standing Out . 74

Label . 74

Buttons . 75

Glyphicons . 77

Wells . 78

Badges . 79

Fun with Forms . 80

Basic Form . 80

Horizontal Forms . 82

Inline Form . 84

x

Helper Classes in Forms . 86

Control Sizing . 87

Summary . 154

Chapter 4 Bootstrap Plugins for Fun and
Profit . 89

Extending Functionality . 90

Dropdowns . 91

Dropdowns with JavaScript . 94

Alert Messages . 99

Alert Messages with JavaScript . 101

Buttons . 102

Buttons with JavaScript . 105

Managing Content . 106

ScrollSpy . 106

ScrollSpy with JavaScript . 110

Tabs . 111

Tabs with JavaScript . 113

Collapse . 114

Collapse with JavaScript . 118

Tooltip . 120

Tooltip with JavaScript . 122

Popovers . 125

Popovers with JavaScript . 127

Getting Fancy . 128

Carousel . 129

Carousel with JavaScript . 132

Modals . 133

Modals with JavaScript . 136

Summary . 154

xi

Chapter 5 Diving Deep: Customizing
Bootstrap . 139

Customizing Bootstrap Stylesheets . 140

Customizing Bootstrap Using CSS . 141

Customizing Bootstrap Using Less . 144

Overriding Styles Using Less . 147

Compiling Less . 151

Customizing Bootstrap before Downloading . 152

Media Queries and Bootstrap . 153

Summary . 154

Chapter 6 Optimizing Bootstrap 155

Optimization Techniques . 155

Optimizing CSS . 156

Optimizing JavaScript . 158

Optimizing Images . 160

Avoiding Common Pitfalls . 161

Where to Go From Here . 162

xii

Preface
Crafting a modern, professional website from scratch takes a lot of time and effort.

Sites today need to be responsive, mobile first, slickly designed, and fast. Bootstrap

helps designers and developers by providing a vast array of HTML components and

a grid system that make creating professional, responsive templates a snap, and can

greatly cut down development time.

Bootstrap is useful for everyone, but it's a blessing for novice developers. All the

intricate CSS and JavaScript required to create complex web components are pre-

written. Only some HTML markup is needed to make them work. More experienced

developers can take advantage of the number of customization options that Bootstrap

offers, including Less and Sass support.

Throughout this book, I have tried to provide a complete guide to the Bootstrap

framework. We'll cover how we can build beautiful responsive websites without

needing to gain expertise in advanced web development techniques. We'll discuss

the various useful CSS components and JavaScript plugins that Bootstrap provides

out of the box. We'll also cover various ways of customizing the look and feel of

Bootstrap to generate completely unique designs.

Hopefully by now that you're excited to start building your first websites using the

Bootstrap framework. By the end of this book, I am confident that you will have the

skills to quickly create a beautiful responsive website template. I hope both this

book, and the Bootstrap framework, satisfy your web designing needs.

Who Should Read This Book
This book is suitable for beginner to intermediate level web designers and developers.

Experience of HTML and CSS is assumed, and some knowledge of JavaScript is

helpful.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all it, a ⋮ will

be displayed:

function animate() {
 ⋮
 return new_variable;
}

xiv

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and that should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/store/jump-start-bootstrap/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/jsbootstrap1

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

SitePoint’s forums, for help on any tricky web problems.

xv

http://www.sitepoint.com/store/jump-start-bootstrap/
https://github.com/spbooks/jsbootstrap1
http://www.sitepoint.com/forums/forumdisplay.php?53-CSS-amp-Page-Layout

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book. We appreciate your support. Do you want to continue

learning? You can now get unlimited access to courses and ALL SitePoint books at

Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xvi

http://www.learnable.com

Chapter1
Up, Close, and Personal with Bootstrap
In this chapter, weʼll learn the basics of Bootstrap and understand how it can speed

up the web development process. Weʼll start with a brief overview of the history of

CSS frameworks and then move on to explain the term Responsive Web Design, or

RWD. Finally, weʼll see how to set up a new Bootstrap project and use it to create

our first basic web page.

What is Bootstrap?
Bootstrap is a front-end framework that helps developers to jump start the web de-

velopment process. Developers who are moving to front-end development from

hardcore server-side programming languages such as Java or PHP can find it very

difficult to come to grips with CSS and JavaScript; however, with Bootstrap they

only have to concentrate on writing proper HTML, leaving the tricky CSS and

JavaScript to Bootstrap.

Bootstrap is not only useful for novice web developers. As we proceed throughout

the book, you will come to see how Bootstrap can be a boon for expert coders too.

Why Does It Exist?
Imagine you have to design a website with an attractive navigation bar, stylish

buttons, nice typography, placeholders for texts and images, a big image slider, and

more—yet you arenʼt a front end development expert. But what if these features

were already coded for you, and you just had to write a little HTML to use them?

This is Bootstrap.

All the CSS classes and JavaScript code needed are already included in the Bootstrap

package. For example, using the class btn with link (<a>) elements will make

them appear like a button as seen in Figure 1.1. Additionally, using the btn-primary

class with a link will make it a dark blue button:

➥Visit Google

Figure 1.1. Creating a button with Bootstrap

Yet Bootstrap is more than just decorating links, images and typography. One of its

most important features is the grid system. You cannot create a mobile-friendly and

responsive website without the grid system. Weʼll discuss responsive web design

and the grid system later in this chapter.

Jump Start Bootstrap2

How Can It Help Me?
As Iʼve mentioned, Bootstrap is a plus for a novice designer, but itʼs not restricted

to novices. Experts can also use Bootstrapʼs code as a base to create something new.

Bootstrap allows you to customize its styles through the use of Less1 and Sass2.

Developers acquainted with these technologies can completely modify Bootstrapʼs
default look and feel. There are multiple ways of customizing Bootstrap, and weʼll
look at these in a later chapter.

History of CSS Frameworks
It all started when CSS frameworks like YUI3 (Yahoo User Interface Library) and

Blueprint4 became popular around 2006-07. They brought with them many funda-

mental resources like CSS reset, fonts, grids, animation effects, buttons, and so on.

Developers began to realize that these frameworks were useful for dealing with

many of the tedious repetitive tasks required to develop a website, and that their

use could greatly improve development turnaround time.

These basic CSS frameworks were followed by a generation of “full fledged” front-

end frameworks, such as Bootstrap, which added JavaScript to the mix. Bootstrap

combined commonly used CSS and JavaScript components together, catering to

many basic development requirements, such as creating sliders, making pop-up

effects, and drop-down menus.

Bootstrap encapsulates many useful components that can be easily employed in

website projects. It uses standard HTML markup for each component. With Bootstrap,

developers have only to focus on writing proper HTML markup that the framework

can understand and render accordingly.

The Need for CSS Prototyping
The main reason for having a good CSS framework is to ease the development pro-

cess. There are many common tasks that every web designer caries out while devel-

oping a website. Tasks such as clearing browser resets, creating a proper grid system

1 http://lesscss.org/
2 http://sass-lang.com/
3 http://yuilibrary.com/
4 http://www.blueprintcss.org/

3Up, Close, and Personal with Bootstrap

http://lesscss.org/
http://sass-lang.com/
http://yuilibrary.com/
http://www.blueprintcss.org/

for website layout, and assigning typography rules can become frustrating and time-

consuming if done repeatedly for every project. A good CSS framework provides a

powerful set of tools that streamline these tasks.

Some of the main highlights of a good CSS framework include:

■ faster development
■ organized and maintainable code
■ allowing you to spend time on innovation rather than reinventing the wheel.

The Origins of Bootstrap
Bootstrap was developed in 2011 by Mark Otto and Jacob Thornton, a pair of web

developers at Twitter. Their main focus was to bring consistency and maintainability

in their code.

Hereʼs a quote from Mark Ottoʼs blog5 about the genesis of Bootstrap:

... [A] super small group of developers and I got together to design

and build a new internal tool and saw an opportunity to do some-

thing more. Through that process, we saw ourselves build something

much more substantial than another internal tool. Months later, we

ended up with an early version of Bootstrap as a way to document

and share common design patterns and assets within the company.

Bootstrap 1.0.0 was launched in 2011 with only CSS and HTML components. There

were no JavaScript plugins included in it until Bootstrap 1.3.0, a version that was

also compatible with IE7 and IE8.

2012 saw another major update with Bootstrap 2.0.0. It was a complete rewrite of

the Bootstrap library, as well as becoming a responsive framework. Its components

were compatible with all kinds of devices—mobiles, tablets and desktops—and lots

of new CSS and JavaScript plugins were included in the package.

After 15 major updates, Bootstrap 3 in 2013 was another significant release, becoming

a “Mobile First and always responsive” framework. In the earlier versions of the

framework, making a responsive website was optional. In the 2013 release, there

were changes in the names of the classes and also in the folder structure of the

5 http://markdotto.com/

Jump Start Bootstrap4

http://markdotto.com/

project. Be aware, though, that Bootstrap 3 is not backward compatible. You cannot

directly migrate to this version by replacing the core CSS and JavaScript files.

If you want to have a look at the complete journey of Bootstrap, check out historical

releases on GitHub.6 It also shows the changes that were made to each version.

Today, Bootstrap has a huge global community of developers who regularly contrib-

ute to its code base at GitHub. It also has an active discussion at the Stack Overflow

community with tags such as bootstrap7, twitter-bootstrap8 and twitter-bootstrap-

39.

Bootstrap has become one of the most sought after technologies today. It is a must-

have if you are a full-stack developer, as show by the screenshot in Figure 1.2 from

Indeed.comʼs Bootstrap job trends.

Figure 1.2. Bootstrap skills in demand

6 https://github.com/twbs/bootstrap/releases
7 http://stackoverflow.com/questions/tagged/bootstrap
8 http://stackoverflow.com/questions/tagged/twitter-bootstrap
9 http://stackoverflow.com/questions/tagged/twitter-bootstrap-3

5Up, Close, and Personal with Bootstrap

https://github.com/twbs/bootstrap/releases
https://github.com/twbs/bootstrap/releases
http://stackoverflow.com/questions/tagged/bootstrap
http://stackoverflow.com/questions/tagged/twitter-bootstrap
http://stackoverflow.com/questions/tagged/twitter-bootstrap-3
http://stackoverflow.com/questions/tagged/twitter-bootstrap-3

At the time of writing, Bootstrap 3.1.1 is the latest version. Hence, the book’s content

and code will be compatible with Bootstrap 3.1.1 and above.

Bootstrap’s Competition
There are many other popular frameworks that are competing with Bootstrap in the

front-end framework arena. Some of them are:

■ Foundation framework by Zurb10

■ Semantic UI11

■ Gumby framework12

■ Pure by Yahoo13

Who Uses Bootstrap?
Itʼs worthwhile checking out real-life projects based on a technology before adopting

it. It can help to give a clear understanding of what can be achieved using that par-

ticular technology. Here are some examples of real-life website projects that have

been created with the help of Bootstrap:

■ OpenDesk14

■ Riot Designs15

■ 20Jeans16

■ Red Antler17

■ Uberflip18

10 http://foundation.zurb.com/
11 http://semantic-ui.com/
12 http://gumbyframework.com/
13 http://purecss.io/
14 https://www.opendesk.cc/
15 http://riotdesign.eu/en/
16 https://www.20jeans.com/
17 http://redantler.com/
18 www.uberflip.com

Jump Start Bootstrap6

http://foundation.zurb.com/
http://semantic-ui.com/
http://gumbyframework.com/
http://purecss.io/
https://www.opendesk.cc/
http://riotdesign.eu/en/
https://www.20jeans.com/
http://redantler.com/
www.uberflip.com

Overview of Responsive Web Design
Responsive web design allows developers to create a website that can change its

layout on the go. Developers can then create a single design that works on any kind

of device: mobiles, tablets, smart TVs, and PCs.

Sites designed responsively are generally fluid designs. They readjust themselves

according to the size of the screen they are viewed in and are also compatible with

the touch interfaces of mobile devices. Using responsive web design, developers

can create powerful web apps that replace native apps on platforms such as iOS

and Android.

Adjusting a Layout Based on Screen Size
Letʼs check out an example to better understand this concept. Suppose we have the

layout shown in Figure 1.3 for a desktop screen.

Figure 1.3. Our layout for a desktop screen

7Up, Close, and Personal with Bootstrap

We have three main sections in our desktop layout: the header, the content section,

and the footer area. The header section contains a logo and a rectangular ad. The

content section contains four smaller posts placed side by side horizontally. We

then have two bigger posts placed underneath the smaller posts. Finally, we have

a footer section in which there is simple copyright text.

It is obvious that weʼre unable to easily view this page on our tablets and cell phones

as it will fail to fit the screen properly. The design needs to be customized for those

users.

Letʼs suppose we have used Bootstrap to create the desktop layout. We have used

its grid system to create a responsive design so that the layout will automatically

adjust to suit tablets and mobile devices.

On tablet devices, the layout will appear as shown in Figure 1.4. The ad has been

hidden from the header section and the logo has been centered. The layout fits

perfectly.

Figure 1.4. Our layout adjusted for tablet screens

Jump Start Bootstrap8

In the smartphone view, shown in Figure 1.5, we can see that the header section

continues to follow the tablet view but thereʼs a major change in the content section.

The posts reflow themselves to the bottom forming two rows, each containing two

posts. The bigger posts are now placed on top of each other—one post in one row

(the second big post is off the bottom of the screen).

Figure 1.5. Our layout adjusted for smartphones

Thatʼs a very basic overview of how a responsive design behaves. We can obviously

do a lot more than what is shown in the aforementioned example. Weʼll learn more

about responsive web design while studying grid systems in Chapter 2.

Getting Bootstrap Ready
Finally we have arrived at the most important topic in this chapter: getting our

hands dirty with Bootstrap!

9Up, Close, and Personal with Bootstrap

First we need the Bootstrap package, so letʼs go to the official Bootstrap website at

http://getbootstrap.com and download the latest 3.x.x version. Extract the archive

file and copy the following folders:

- /css
- /fonts
- /js

Create a project folder with any name you wish. I have named mine Bootstrap_demos.

Paste the above folders into this project folder.

Now open up your favorite HTML editor (I personally recommend Sublime Text19),

create a new file called index.html, and enter the following code snippet into it:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>My First Bootstrap Application</title>
 </head>
 <body>

 </body>
</html>

This is a simple HTML structure for our first Bootstrap app.

Our project directory should now look like Figure 1.6.

19 http://www.sublimetext.com/

Jump Start Bootstrap10

http://getbootstrap.com
http://www.sublimetext.com/

Figure 1.6. Our initial project folder structure

Now letʼs include Bootstrap inside our HTML file. First, we need to include Boot-

strapʼs CSS file. Open up the /css folder and you should see a file named bootstrap.css.

This is Bootstrapʼs main CSS file.

What's bootstrap.min.css?

Thereʼs also another file named bootstrap.min.css, which is the minified version

of bootstrap.css. It is called minified because it has no spaces and no comments,

which reduces the size of the file. It will be used when your project is completed

and is ready for production.

Letʼs link our CSS file into index.html. Place the following inside the <head> tag and

below the <title> tag:

<link rel="stylesheet" type="text/css" href="css/bootstrap.css">

Bootstrap requires jQuery for its JavaScript components to work. Go to jquery.com20

and download jQuery version 1.11.0. Bootstrap supports Internet Explorer 8 and

above. If you download jQuery version 2, IE8+ will fail to function properly because

20 http://jquery.com/

11Up, Close, and Personal with Bootstrap

http://jquery.com/

jQuery has officially opted out of support for IE8 in versions 2 and above. Hence,

jQuery 1.11.0 is needed, the latest version of jQuery 1.

After you have downloaded the jquery.js file, paste it into the /js folder of your project

directory. Next, weʼll link it into our index.html using the following code:

<script src="js/jquery.js"></script>

It is recommended that you insert jQuery just inside the <body> tag instead of the

<head> tag. This is so that jQuery is loaded after all the HTML contents are loaded,

reducing the pageʼs loading time.

Now we have to include Bootstrapʼs JavaScript file:

<script src="js/bootstrap.js"></script>

index.html should now look like this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>My First Bootstrap Application</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">
 </head>
 <body>

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
</html>

In order to make Bootstrap completely compatible with every kind of device, we

need to include some necessary meta tags.

First, we should tell browsers that our website contains characters from the Unicode

character set, a superset of the ASCII character set. This is done using the following

meta tag:

Jump Start Bootstrap12

<meta charset="utf-8">

Sometimes, Internet Explorer may run in compatibility mode. Using the following

code snippet would force IE to use the latest rendering engine to render our website.

This will prevent our website from breaking as older rendering engines do not

support all properties of CSS:

<meta http-equiv="X-UA-Compatible" content="IE=edge">

Next, weʼll make our site consume all the space available inside the browser window,

whether itʼs a tablet or a mobile or even a desktop screen. We tell the browser to

scale our application to the size of window space available:

<meta name="viewport" content="width=device-width, initial-scale=1">

initial-scale=1 in the code means scale it to 100%.

Now our index.html should look like this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>My First Bootstrap Application</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">
 </head>
 <body>

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
</html>

Thereʼs one final step we need to deal with in the above code. Bootstrap 3 uses

many HTML5 elements and CSS3 properties that wonʼt work in Internet Explorer

8. We now have to add some scripts that will only be called into action when the

13Up, Close, and Personal with Bootstrap

website is opened in IE8, bringing support for HTML5 and CSS3 in it. These scripts

are html5shiv.js and respond.js:

<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

Using These Scripts

You donʼt have to download html5shiv.js and respond.js. You can simply directly

link to their CDN, as shown above.

Now our index.html page is complete. It should look like this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>My First Bootstrap Application</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/
➥respond.js/1.4.2/respond.min.js"></script>
 <![endif]-->

 </head>
 <body>
 <h1>Hello World!</h1>

 <script src="js/jquery.js"></script>

Jump Start Bootstrap14

 <script src="js/bootstrap.js"></script>
 </body>
</html>

I have included an h1 element containing “Hello World!”. Go ahead and load the

page in your browser. You should see “Hello World!” written in a nice font.

If you are using Google Chrome, you have an easy option to check that all the

JavaScript and CSS files are loaded properly. Right-click on the page and go to Inspect

Element. Click on the Console tab and if no errors are displayed, all the JavaScript

files have loaded properly. Next, go to the Network tab; if there are no 404 errors,

all the CSS files are linked properly.

Figure 1.7. Checking that files have loaded correctly in Chrome

Finally, we are done with setting up our Bootstrap project. Weʼll be using a similar

set up in the rest of this book.

15Up, Close, and Personal with Bootstrap

Chapter2
Bootstrap Grid System
In this chapter, we'll discover one of the most important features of Bootstrap: the

grid system. We'll learn how the grid system works and how we can use it in our

applications. We'll also create some sample website layouts in order to understand

it better.

What Is a Grid System?
A grid system allows us to properly house our website's content. It divides the

screen into multiple rows and columns that can be used to create various types of

layouts. Once we have the rows and columns defined, we can decide which HTML

element will be placed where.

Bootstrap's grid system divides the screen into columns―up to 12 in each row. The

column widths vary according to the size of screen they're displayed in. Hence,

Bootstrap's grid system is responsive, as the columns resize themselves dynamically

when the size of browser window changes. You can create an infinite number of

rows depending on your design's requirements. The intersection of these rows and

columns forms a rectangular grid to contain the website's content.

As an example, in Figure 2.1 I have created a row and then used the grid system to

divide it into 12 columns. I have changed each column's background color to make

them distinct. Each column here is represented by a number.

Figure 2.1. A sample page showing a 12-column grid

Building a Basic Grid
In this section, we're going to create our first website layout using Bootstrap's grid

system. We will be using the same Bootstrap setup, Bootstrap_demos, that we created

in the last chapter. Copy all the files that are present inside the Bootstrap_demos

folder. Then create a new folder called chapter_2 and paste those files inside it.

Now open index.html, change the page title to “Bootstrap Grid System” and remove

the <h1> tag from the body. We should now have a basic HTML page that looks like

this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>Bootstrap Grid System</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">

Jump Start Bootstrap18

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

 </head>
 <body>
 <!-- Body content goes here -->

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
</html>

Bootstrap recommends that we should place all the rows and columns inside a

container to ensure proper alignment and padding. There are two types of container

classes in Bootstrap: container and container-fluid. The former creates a fixed-

width container in the browser window, while the latter creates a full-width fluid

container. The fixed-width container is styled to appear at the center of the screen,

omitting extra space on both sides. Hence, it is a good practice to wrap all the con-

tents within a container.

We will use the fixed-width container in our demo. Let's go ahead and create a

container in our HTML page:

<div class="container">
</div>

Next, we'll create a row inside a container. Once the row is defined, we can start

creating the columns. Bootstrap has a class row for creating rows:

<div class="container">
 <div class="row">
 </div>
</div>

You can create an infinite number of rows but they must be placed within a contain-

er. For better results, it is recommended to have a single container with all the rows

inside it.

19Bootstrap Grid System

In Bootstrap, columns are created by specifying how many of the 12 available

Bootstrap columns you wish to span. Suppose we want to have only a single column.

It should span across all twelve available Bootstrap columns. For this we'll use the

class col-xs-12, with the number 12 specifying the amount of columns to span.

(You can ignore the xs term in the class name for now; we'll discuss that later).

Similarly, to create two equal-width columns in a row, we'd use the class col-xs-

6 for each one. This tells Bootstrap that we want two columns that span across six

of Bootstrap's columns, as follows:

<div class="container">
 <div class="row">
 <div class="col-xs-6">
 <h4>Column 1</h4>
 </div>
 <div class="col-xs-6">
 <h4>Column 2</h4>
 </div>
 </div>
</div>

The result can be seen in Figure 2.2.

Figure 2.2. Two equally sized columns on our grid

To make our columns clearer, let's give each one a background color. We'll create

a new CSS file called styles.css inside the CSS folder of our project. It's not a standard

Jump Start Bootstrap20

filename, you can name it anything you wish. Next, we'll link this file in our

index.html using a link element inside the head element:

<link href="css/styles.css" rel="stylesheet">

Let's drop some CSS into this file to make each column have a different background

color:

.col1{
 background: #5C7080;
}

.col2{
 background: #6BC0FF;
}

We also have to add the classes col1 and col2 in our markup so that the columns

pick their respective CSS styling. The updated markup is as follows:

<div class="container">
 <div class="row">
 <div class="col-xs-6 col1">
 <h4>Column 1</h4>
 </div>
 <div class="col-xs-6 col2">
 <h4>Column 2</h4>

21Bootstrap Grid System

 </div>
 </div>
</div>

Figure 2.3. A two-column layout with background color styling

But what does the xs stand for in the class col-xs-6? Bootstrap has four types of

class prefixes for creating columns for different size displays:

1. col-xs for extra small displays (screen width < 768px)

2. col-sm for smaller displays (screen width ≥ 768px)

3. col-md for medium displays (screen width ≥ 992px)

4. col-lg for larger displays (screen width ≥ 1200px)

When we specify the class col-xs-12, it means the element should span all 12 of

the available Bootstrap columns on extra small screens. But what about larger dis-

plays? In the above code, we haven't specified how the div should behave on larger

screen types. Fortunately, Bootstrap will automatically follow the layout specified

for the smallest screen size. Hence, our div will span 12 columns in all types of

displays in this code.

Let's examine the following markup:

<div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col1">

Jump Start Bootstrap22

 <h4>Column 1</h4>
 </div>
 <div class="col-xs-12 col-sm-6 col2">
 <h4>Column 2</h4>
 </div>
 </div>
</div>

In this code we have used the class col-xs-12 for an extra small display and class

col-sm-6 for a smaller sized display. Hence, each column in an extra small-sized

display will occupy all the 12 available Bootstrap columns, which will appear as a

stack of columns. Yet on a smaller display, they will occupy only six Bootstrap

columns each to achieve a two-column layout as shown in Figure 2.4. .

23Bootstrap Grid System

Figure 2.4. The layout on smaller screens

Let's add another row of columns in the previous code. We'll replicate the same

markup that was used to create a row in the code. The final markup for two rows

and four columns in our layout is as follows:

<div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col1">
 <h4>Column 1</h4>
 </div>

Jump Start Bootstrap24

 <div class="col-xs-12 col-sm-6 col2">
 <h4>Column 2</h4>
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12 col-sm-6 col3">
 <h4>Column 3</h4>
 </div>
 <div class="col-xs-12 col-sm-6 col4">
 <h4>Column 4</h4>
 </div>
 </div>
</div>

I have added two new classes, col3 and col4, to give our columns different back-

ground colors:

.col3{
 background: #E8AA4C;
}

.col4{
 background: #FF384E;
}

And here's the result, shown in Figure 2.5.

25Bootstrap Grid System

Figure 2.5. A two-row, four-column layout

Case Study: Creating a Dynamic Layout
Let's see how to put the grid system into practice, creating a dynamic layout that

adjusts to the size of device it is viewed in.

Suppose we have to create a blog layout using the Bootstrap framework. We're given

the wireframe shown in Figure 2.6 for the desktop display.

Jump Start Bootstrap26

Figure 2.6. A wireframe of the site as it should appear on desktop displays

In the wireframe, we have a header that spans across the width of the whole website.

Then we have a three-column layout containing blog posts. If we view the same

layout in a tablet (portrait mode), it will look very clumsy. Hence, we have a re-

designed the wireframe for tablet mode, as shown in Figure 2.7.

27Bootstrap Grid System

Figure 2.7. A wireframe of the site as it should appear on tablet displays

In this design, we see that the header looks the same as in desktop mode. The posts

underneath are now contained in a two-column layout instead of three. Next, we'll

need to view the same website on mobile devices. The wireframe for a mobile display

is shown in Figure 2.8.

Jump Start Bootstrap28

Figure 2.8. A wireframe of the site as it should appear on mobile displays

We have just converted the two columns into one column in a mobile design.

Let's discuss how to achieve this design in our markup.

Designing for Desktops
As stated, medium-sized displays are considered larger than 992px. Desktop displays

are mostly larger than this size. Thus, we will be using the class with prefix col-

md to lay out the columns in desktop displays. This layout will also be followed in

larger displays that are larger than 1200px, so for this design we can ignore adding

classes with prefix col-lg as they'd have no additional effect on the layout.

29Bootstrap Grid System

Create a new HTML file called blog.html. Paste the basic HTML structure with

Bootstrap set up, as stated in the previous chapter. Change the content of the <title>

tag to “My First Bootstrap Website” and remove the <h1> tag from the body. The

markup for blog.html should look like this:

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>My First Bootstrap Website</title>
 <link rel="stylesheet" type="text/css"
➥href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

 </head>
 <body>
 <!-- Body content goes here -->

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
 </html>

We need to first make a container to hold all the blog's content. Let's go with a fixed-

width container using the class container:

<div class="container">
</div>

Next, we have a header as per the desktop wireframe. Let's create a row with a single

column that spans across all 12 Bootstrap columns.

Jump Start Bootstrap30

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>
</div>

In the above code, I've used Bootstrap's helper class text-center to align the text

inside the column. We're now done with the header.

Now to create a three-column layout that will hold the blog posts. Since we have a

total of 12 Bootstrap columns to use, we'll let our columns span across four Bootstrap

columns each. This way we'll have three equally sized columns. Let's devise a new

row and start building columns with the class col-md-4:

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>

 <hr>

 <div class="row">
 <div class="col-md-4">

 </div>
 <div class="col-md-4">

 </div>
 <div class="col-md-4">

 </div>
 </div>
</div>

I have also used an <hr> in between two rows to draw a horizontal line after the

header.

31Bootstrap Grid System

It's time to fill the columns with some dummy content. We'll use an <h3> tag and

a <p> tag with some lorem ipsum text for this purpose:

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>

 <hr>

 <div class="row">
 <div class="col-md-4">
 <h3>Post Title 1</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
➥elit, sed do eiusmod tempor incididunt ut labore et dolore magna
➥aliqua. </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 2</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
➥elit, sed do eiusmod tempor incididunt ut labore et dolore magna
➥aliqua. </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 3</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
➥elit, sed do eiusmod tempor incididunt ut labore et dolore magna
➥aliqua. </p>
 </div>
 </div>
</div>

The blog.html page will look like Figure 2.9.

Jump Start Bootstrap32

Figure 2.9. Our incomplete blog layout on desktop displays

As per the wireframe for a desktop display, we're still left with another three columns

of blog posts. This time, we won't create a separate row for the next three columns.

Instead, we'll directly append these columns to the existing row of columns in the

previous code. You might be wondering how we can have 24 columns (six columns

spanning across four Bootstrap columns each) in just a single row. Well, Bootstrap

allows only 12 Bootstrap columns in a single row. If we try to exceed that, the rest

of the columns will be adjusted into the next line. This new line will again have

the capacity of 12 Bootstrap columns. This way we can tie all the blog post columns

into a single row.

Let's go ahead and update the markup with three new columns:

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>

 <hr>

 <div class="row">
 <div class="col-md-4">
 <h3>Post Title 1</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>

33Bootstrap Grid System

 <div class="col-md-4">
 <h3>Post Title 2</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 3</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 4</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 5</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4">
 <h3>Post Title 6</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 </div>
</div>

Finally, we have converted the desktop wireframe into an HTML page as shown in

Figure 2.10.

Figure 2.10. Our complete blog layout on desktop displays

Jump Start Bootstrap34

Designing for Tablets
Let's now modify our code to achieve the wireframe layout for tablets. Unlike desktop

displays, tablets can be viewed in two formats: Portrait and Landscape. A tablet's

landscape view is considered a medium-sized display (screen width ≥ 992px),

which we've already taken care of using col-md-* classes. We're now left with the

portrait view, which is a small-sized display. This can be achieved using col-sm-*

classes.

Since we have to achieve a two-column layout in smaller displays, we have to force

each column to span across six Bootstrap columns. This way we get only two

columns (two by six Bootstrap columns = 12 Bootstrap columns) in each row. But

here we have only one row. Hence, once all the 12 Bootstrap columns are occupied,

the remaining columns will appear in the next line creating a new row each time.

Let's proceed and add an extra class col-sm-6 to our desktop layout code:

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>

 <hr>

 <div class="row">
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 1</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 2</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 3</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 4</h3>
 <p>Lorem ipsum dolor sit amet ... </p>

35Bootstrap Grid System

 </div>
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 5</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6">
 <h3>Post Title 6</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 </div>
</div>

So, as shown in Figure 2.11, we have two layouts for tablets: a three-column layout

for landscape mode and a two-column layout in portrait mode.

Figure 2.11. A two-column layout for tablets

Designing for Mobile
Like tablets, mobiles can also be viewed in landscape and portrait mode. The

landscape view in mobile devices utilize small-sized displays (screen width ≥

Jump Start Bootstrap36

768px) that we have already taken care of using col-sm-* classes. Portrait view in

mobile devices employs extra small-sized displays (screen width < 768px).

As per the wireframe for a mobile device, we have to create a single-column layout.

I hope you already have an idea how to achieve it in the aforementioned code. For

extra small screens, we have to use classes that have the col-xs prefix. Here, we

want each blog post columns to occupy all the 12 Bootstrap columns so that we

have only one blog post in each row. Our class will be col-xs-12, so let's proceed

and add this class to our code:

<div class="container">
 <div class="row">
 <div class="col-md-12 text-center">
 <h1>My First Bootstrap Blog</h1>
 </div>
 </div>

 <hr>

 <div class="row">
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 1</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 2</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 3</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 4</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 5</h3>
 <p>Lorem ipsum dolor sit amet ... </p>
 </div>
 <div class="col-md-4 col-sm-6 col-xs-12">
 <h3>Post Title 6</h3>
 <p>Lorem ipsum dolor sit amet ... </p>

37Bootstrap Grid System

 </div>
 </div>
</div>

Figure 2.12. A 1-column layout on small screens

Finally, we have a complete HTML page that is responsive and works on any kind

of display―the one-column layout is shown in Figure 2.12. You can even host this

project using a free cloud-based service such as Google Drive1 and then test it on

an actual tablet or mobile device; alternatively, manually resize the browser width

1 https://drive.google.com/

Jump Start Bootstrap38

https://drive.google.com/

and watch the layout change dynamically. I hope you found this case study useful

in understanding Bootstrap's grid system.

Nesting Columns
You can always create a new set of 12 Bootstrap columns within any column in

your layout. This can be done by building a new row element within an existing

column and then filling this row with custom columns. Since we are starting a new

row here, any column within it can also span across 12 Bootstrap columns, but the

width of this row will be restricted to its parent's width.

Let's illustrate this with an example. Make a new HTML file in the project called

nested.html. Form the HTML markup with Bootstrap set up in it as discussed in the

last chapter. In addition, link the CSS file styles.css that we created earlier in this

chapter. The markup of this new HTML file should look this:

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>My First Bootstrap Website</title>
 <link rel="stylesheet" type="text/css"
➥href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

 </head>
 <body>

 <script src="js/jquery.js"></script>

39Bootstrap Grid System

 <script src="js/bootstrap.js"></script>
 </body>
 </html>

Let's create a container and a row within it:

<div class="container">
 <div class="row">

 </div>
</div>

Targeting medium-sized displays, we'll construct a two-column layout. By now,

we know that to create a two-column layout, we should span our columns to six

Bootstrap columns. Hence, the class for generating such columns will be col-md-

6. Let's add two columns to the previous markup:

<div class="container">
 <div class="row">
 <div class="col-md-6 col1">
 <h3>Column 1</h3>
 </div>
 <div class="col-md-6 col2">
 <h3>Column 2</h3>
 </div>
 </div>
</div>

In this code, we have also pulled two classes from our styles.css file: col1 and col2.

These two classes will help us provide some background color to our columns. Now

the HTML page should look like the screenshot in Figure 2.13.

Jump Start Bootstrap40

Figure 2.13. A simple two-column layout

Let's now nest the first column “Column 1” and start a new row within it:

<div class="container">
 <div class="row">
 <div class="col-md-6 col1">
 <h3>Column 1</h3>
 <!-- Nesting Starts -->
 <div class="row">

 </div>
 </div>
 <div class="col-md-6 col2">
 <h3>Column 2</h3>
 </div>
 </div>
</div>

As we have a new row, let's form two columns again within it:

<div class="container">
 <div class="row">
 <div class="col-md-6 col1">
 <h3>Column 1</h3>
 <!-- Nesting Starts -->

41Bootstrap Grid System

 <div class="row">
 <div class="col-md-6 col3">
 <h3>Column 4</h3>
 </div>
 <div class="col-md-6 col4">
 <h3>Column 5</h3>
 </div>
 </div>
 </div>
 <div class="col-md-6 col2">
 <h3>Column 2</h3>
 </div>
 </div>
</div>

As you can see in Figure 2.14, the two new columns are now placed within the first

column. Here I have used the classes col3 and col4 from styles.css to apply the

background color.

Figure 2.14. Nested two-column layout

The ability to nest columns comes in handy when creating complex layouts. You

can also further nest the innermost row and generate a new set of columns within

it. This process can continue until you achieve the desired layout.

Jump Start Bootstrap42

Offsetting Columns
Offsetting is another great feature of Bootstrap's grid system. It is generally used to

increase the left margin of a column. For example, if you have a column that should

appear after a gap of three Bootstrap columns, you can use the offsetting feature.

Classes that are available for offsetting are:

■ col-xs-offset-*

■ col-sm-offset-*

■ col-md-offset-*

■ col-lg-offset-*

Suppose we want to move a column three Bootstrap columns towards the right in

extra-small displays, we can use the class "col-xs-offset-3", for example:

<div class="row">
 <div class="col-xs-6 col-xs-offset-3 col1">
 <h1>Hello Learnable!</h1>
 </div>
</div>

This code will result in a column that spans to six Bootstrap columns, offset three

columns towards the right as shown in Figure 2.15.

Figure 2.15. An offset column

43Bootstrap Grid System

Centering Your Column

Note that there's a three-column gap on both the left and right side of this column.

This is one of the best ways of centering a 50% width column in the middle of

the screen.

Reordering Grids Manually
We can also reorder the columns irrespective of the order in which they're written

in the code. If we have written a col-md-9 column first and then a col-md-3 column,

we can easily swap their position when the HTML page is rendered by a browser.

This is done using Bootstrap's pull and push classes.

Classes such as col-xs-pull-* and col-xs-push-* are used to move a column to-

wards the left and right respectively by a certain number of columns. For example:

<div class="row">
 <div class="col-xs-9 col-xs-push-3">
 <h1>Pushed Column</h1>
 </div>
 <div class="col-xs-3 col-xs-pull-9">
 <h1>Pulled Column</h1>
 </div>
</div>

In the code, col-xs-9 column is pushed by three columns so it has moved towards

the right. The col-xs-3 column is also pulled by nine columns towards the left.

Hence, they appear as if they have swapped their original position when viewed

on a browser.

There are several variants of push and pull classes as per the screen size:

■ col-xs-pull-* and col-xs-push-* for extra smaller screens
■ col-sm-pull-* and col-sm-push-* for smaller screens
■ col-md-pull-* and col-md-push-* for medium screens
■ col-lg-pull-* and col-lg-push-* for larger screens

You can replace * with an integer between one and 12 depending on the number

of columns you want to pull or push them.

Jump Start Bootstrap44

Summary
You can produce almost any kind of website layout using Bootstrap's grid system.

If used properly you can design a beautiful and responsive website that works in

almost any kind of display device. Features like nesting, offsetting and reordering

also make it more powerful.

For more documentation on Bootstrap's grid system, refer to http://getboot-

strap.com/css/#grid.

45Bootstrap Grid System

Chapter3
Exploring Bootstrap Components
In this chapter, we'll start using some of Bootstrap's most useful HTML components.

Components such as buttons, headers, navigation menus, and comments system

are commonly found on websites. Through its components, Bootstrap helps us add

such features to our sites quickly and easily.

Page Components
Page components form the basic structure of a web page. Examples of page compon-

ents include page headers, standout panels for displaying important information,

nested comments sections, image thumbnails, and stacked lists of links. These are

popular components that can take quite a while to develop from scratch.

In this section, we'll focus on creating reusable HTML components using Bootstrap-

recommended markup and classes. Let's start with page headers.

Page Headers
Giving a page a heading or title is not a big deal. Anyone can use an <h1> tag to

display a heading on a web page; however, to neatly display a title with cleared

browser default styles, the proper amount of spacing around it, and a small subtitle

beside it can consume a surprising amount of time.

Fortunately, Bootstrap has created an HTML component to be used as a page

header that takes care of all these additional tasks for us. Before we check out the

markup for the page header, let's first set up the project that we'll be using

throughout this chapter.

First, copy the contents of the folder Bootstrap_demos and paste them into a new

folder called Chapter_3. Open the index.html file and remove the <h1> tag that is

present inside the <body> tag.

Now, let's add the markup for a page header:

<div class="page-header">
 <h1>Chapter 3</h1>
</div>

Whenever you want to use the <h1> tag for a page title, you can wrap it in a <div>

element that has a class of page-header to create a page header component.

Now let's view index.html in our browser. It should look like Figure 3.1.

Figure 3.1. A basic page header

Jump Start Bootstrap48

As you can see, the page header component doesn't add any additional styles for

the h1 other than a thin gray bottom border. It only comes with styles for adding

subtitles, which we'll see soon.

A small issue that we see here is that the page header has stuck to the browser's left

border. That's because we haven't defined a container for all the contents of our

web page. So let's create a global container:

<div class="container">

</div>

Now place the page header markup inside the container div. Our final markup

should look like this:

<div class="container">
 <div class="page-header">
 <h1>Chapter 3</h1>
 </div>
</div>

And the result can be seen in Figure 3.2.

Figure 3.2. Our header in a container

If you want to add a subtitle beside the title of the page, you can put it inside the

same <h1> tag that we used before. Make sure you wrap the subtitle inside a

<small></small> tag, like so:

49Exploring Bootstrap Components

<div class="container">
 <div class="page-header">
 <h1>Chapter 3 <small>Exploring Bootstrap Components
➥</small></h1>
 </div>
</div>

The effect can be seen in Figure 3.3.

Figure 3.3. Header with subtitle

Panels
Panels are used to display text or images within a box with rounded corners. Here's

how to create a panel, and what it looks like in Figure 3.4:

<div class="panel panel-default">
 <div class="panel-heading">
 ATTENTION
 </div>
 <div class="panel-body">
 Lorem ipsum dolor sit ametnim ...
 </div>
 <div class="panel-footer">
 Agree

Jump Start Bootstrap50

➥Decline
 </div>
</div>

Figure 3.4. A panel

As you can see, the panel div has been divided into three parts: the panel-head,

panel-body, and panel-footer. Each of these panel parts is optional.

Panels come with various color options. In the previous code, I've used the default

color with the help of the panel-default class. You can also use other classes for

different colors:

■ panel-primary for dark blue
■ panel-success for green
■ panel-info for sky blue
■ panel-warning for yellow
■ panel-danger for red

Media Object
Media object is used for creating components that should contain left- or right-

aligned media (image, video, or audio) alongside some textual content. It is best

suited for creating features such as a comments section, displaying tweets, or

showing product details where a product image is present.

51Exploring Bootstrap Components

Designing a comments section for your website can be a tricky task. You need to

carefully design some reusable HTML markup that supports nested commenting.

Bootstrap's media object comes in handy here, as you can quite easily create multiple

levels of nested comments using it.

The markup for creating a media object is:

<div class="media">

 <img class="media-object" src="path/to/image"
➥alt="Syed Fazle Rahman">

 <div class="media-body">
 <h4 class="media-heading">Awesome piece of work!</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 </div>
</div>

To produce a media object you need to create a div with a class of media. Then you

put two necessary components within it: the media itself (here it's an image) and

the media-body. As seen from the code snippet, the media should have the class

media-object and be wrapped within an <a> tag. You can then align the media

to either side by adding a pull-left or pull-right class to the a element.

Next, the media-body div should have two further components: the title and the

textual content. The title can be given using an h4 element with a media-heading

class and the textual content is represented using a p element.

That's it! Go ahead and view it in the browser; it should look like Figure 3.5.

Jump Start Bootstrap52

Figure 3.5. A media object

To create a nested comments design, we can place more media object markup inside

the media-body div of the previous media object as follows:

<div class="media">

 <img class="media-object" src="path/to/image"
➥alt="Syed Fazle Rahman">

 <div class="media-body">
 <h4 class="media-heading">Awesome piece of work!</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>

 <!-- Second Media Object -->
 <div class="media">

 <img class="media-object" src="path/to/image"
➥alt="Syed Fazle Rahman">

 <div class="media-body">
 <h4 class="media-heading">Awesome piece of
➥work!</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 </div>
 </div>

53Exploring Bootstrap Components

 </div>
</div>

Figure 3.6 shows our nested media object.

Figure 3.6. Nested media object

You can use as many nesting levels as you wish.

Thumbnails
Displaying images and video thumbnails is a snap with Bootstrap's thumbnails

component. It is used for displaying images and videos with clickable appeal by

applying a border that forms a box around them. It also comes with a neat hover

effect that highlights the focused thumbnail by changing its border color to blue.

Here's the markup for creating a thumbnail:

Let's create a four-column design using Bootstrap's grid system. We'll place an image

in each column and then apply thumbnail markup to each one.

Jump Start Bootstrap54

As seen in the previous chapter, we'll use the class col-xs-3 to create a four- column

design:

<div class="row">
 <div class="col-xs-3">

 </div>
 <div class="col-xs-3">

 </div>
 <div class="col-xs-3">

 </div>
 <div class="col-xs-3">

 </div>
</div>

This produces the result shown in Figure 3.7.

55Exploring Bootstrap Components

Figure 3.7. Thumbnails

Try hovering your mouse icon over each image and you should get a nice highlighted

effect. In the aforementioned code, you can see that I have applied the class

thumbnail to an anchor tag <a>. You can also use a <div> tag instead of an anchor

to represent a thumbnail.

Let's give a caption to each thumbnail. We just need to add an extra div with class

caption just below the tag. Our snippet for a thumbnail with a caption should

be:

 <div class="caption">
 <h3>Caption Goes Here!</h3>
 </div>

If you apply a caption to each thumbnail on the page, it will produce a similar result

to Figure 3.8.

Jump Start Bootstrap56

Figure 3.8. Thumbnails with captions

You can also add some excerpts to each thumbnail and a Read More button for

linking to different pages in your website. For this we need to first replace the link

element with the class thumbnail with a div element. Then we add an excerpt using

<p> inside the “caption” div and a link with a “Read More” anchor and classes

btn and btn-primary inside the same “caption” div. After making these changes,

our final markup for a post thumbnail will be as follows:

<div class="thumbnail">

 <div class="caption">
 <h3>Microsoft</h3>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 <p>Read More</p>
 </div>
</div>

The above code will produce a result similar to Figure 3.9.

57Exploring Bootstrap Components

Figure 3.9. Captions with "Read More" links

List Group
List group is a useful component for creating lists, such as a list of useful resources

or a list of recent activities. You can also use it for a complex list of large amounts

of textual content.

The markup for creating a list group is as follows, with the result shown directly

below in Figure 3.10:

<ul class="list-group">
 <li class="list-group-item">Inbox
 <li class="list-group-item">Sent
 <li class="list-group-item">Drafts

Jump Start Bootstrap58

 <li class="list-group-item">Deleted
 <li class="list-group-item">Spam

Figure 3.10. A list group

You need to add the class list-group to a ul element or a div element to make its

children appear as a list. The children can be li elements or a elements, depending

on your parent element choice. The child should always have the class list-group-

item.

59Exploring Bootstrap Components

Lists of Links

When you want to display a list of links, you should use the anchor element a

instead of list elements li (that also means using a parent div, instead of a ul).

We can also display a number (such as those used to indicate pending notifications)

beside each list item using the badge component. We'll learn more about badges

later in this chapter, but for now you can add the following snippet inside each

“list-group-item” to display a number beside each one:

14

So our updated list group will now look like Figure 3.11.

Jump Start Bootstrap60

Figure 3.11. Updated list group

As you can see, the badges beautifully align themselves to the right of each list item.

We can also apply various colors to each list item by adding list-group-item-*

classes along with list-group-item. They are as follows:

■ list-group-item-success for green
■ list-group-item-info for sky blue
■ list-group-item-warning for pale yellow
■ list-group-item-danger for light red

61Exploring Bootstrap Components

For example, adding list-group-item-success to the list-group-item class in

the following list will give it a light green background color:

<li class="list-group-item list-group-item-success">Inbox

We can do more with list groups than just construct straightforward lists, though.

If you want to create a list in which each list item contains some textual content

along with a heading, you could use the following markup:

 <h4 class="list-group-item-heading">Item heading</h4>
 <p class="list-group-item-text">Lorem ipsum dolor sit ...</p>

Instead of just text, we are now placing a set of h4 and p elements in each list-

group-item element. We're using the classes list-group-item-heading and list-

group-item-text for h4 and p elements respectively to display them appropriately,

seen in Figure 3.12.

Jump Start Bootstrap62

Figure 3.12. A list group with text

You can also highlight any element in the list using an additional class active.

Here, I have highlighted the first element.

Navigation Components
Features such as navigation bars and breadcrumbs have become an essential part

of many websites. Bootstrap comes with many components built in to help build

such features. Let's proceed and create our first navigation component.

63Exploring Bootstrap Components

Navs
Navs are a group of links that are placed inline with each other to be used for nav-

igation. We have options to make this group of links appear either as tabs or small

buttons, the latter known as pills in Bootstrap. We will first learn how to create tab-

like links and then proceed to create pill-like links.

We create tab-like navigation links like so:

<ul class="nav nav-tabs">
 <li class="active">About
 Activity
 Liked Pages

Here's a screenshot of what they look like(Figure 3.13).

Figure 3.13. Tab-like navigation

The class nav is common to both tabs and pills. We've added the nav-tabs class to

make our navigation bar look like tabs.

We create pill-like navigation links this way (and seen following in Figure 3.14):

Jump Start Bootstrap64

<ul class="nav nav-pills">
 <li class="active">About
 Activity
 Liked Pages

Figure 3.14. Pill-like navigation

Here, we have replaced the class nav-tabs with class nav-pills, which make the

same list look like pills.

We can also vertically stack these pills by attaching an additional class nav-stacked

to it:

<ul class="nav nav-pills nav-stacked">
 <li class="active">About
 Activity
 Liked Pages

Figure 3.15 shows some vertically stacked pill navigation.

65Exploring Bootstrap Components

Figure 3.15. Stacked pill-like nav

Navbar
The Navbar is one of the most interesting Bootstrap components. Novice developers

often find constructing navigation bars as one of the most daunting aspects of

website development. It brings many challenges, such as ensuring proper alignment

with the header as well as the rest of the body. Properly aligning links, the search

bar, and drop-down menus inside a navigation bar can make the job even harder.

Bootstrap makes creating navigation bars very easy. It comes with various options

to build all types of navigation bars that are responsive, automatically collapsing

when the screen's size is small.

We'll first cover how to create a simple navbar with Bootstrap, and then move on

to form more complex ones.

First, we'll build a div element, with two classes navbar and navbar-default. These

classes are important to Bootstrap as they identify where to apply the navigation

bar styles and effects:

Jump Start Bootstrap66

<div class="navbar navbar-default">
</div>

Next, we'll use a div with class container-fluid inside this navbar element. This

will wrap all the contents of the navbar and create a full-width container inside it:

<div class="navbar navbar-default">
 <div class="container-fluid">

 </div>
</div>

Now, let's start inserting other elements inside the navbar. First, we'll place a div

with class navbar-header. This will be used for website branding purposes, such

as displaying the name of the website or its logo. We'll also place a hidden button

inside the navbar-header element that will be visible only in smaller screens where

the navbar collapses. This hidden button will be later used to expand the collapsed

menu in smaller screens:

<div class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
➥data-toggle="collapse" data-target="#mynavbar-content">

 </button>
 SitePoint
 </div>
 </div>
</div>

In the code, we have placed a button with a class navbar-toggle that is used by

Bootstrap to activate the navbar's toggling behavior. It should have two custom

data-* type attributes: data-toggle and data-target. data-toggle tells the script

what to do when the button is clicked, whereas data-target tells which section to

toggle when clicked. Here, the data-target attribute is holding an id of a section

that we're yet to define. That section will be toggled when the button is clicked.

The span elements inside the button are used for displaying the icon.

67Exploring Bootstrap Components

We have also defined an a element with class navbar-brand that holds the name

of our website. At this point, you should check what the code renders to in your

browser. It should display as shown in Figure 3.16.

Figure 3.16. A navbar

Try resizing the browser window to a smaller size. You should see the navbar dis-

playing the hidden button on smaller windows, as shown in Figure 3.17.

Jump Start Bootstrap68

Figure 3.17. Our navbar on smaller displays

Next, we'll create another div that will be the sibling of navbar-header; that is, it

is present at the same level in the markup hierarchy. We will give two classes to

this element: collapse and navbar-collapse. As this div will contain all the navbar

content, we'll give the id mynavbar-content to it, the same id that is mentioned

inside the data-toggle attribute of the hidden button. The code should now look

like this:

<div class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
➥data-toggle="collapse" data-target="#mynavbar-content">

 </button>
 Sitepoint

69Exploring Bootstrap Components

 </div>

 <div class="collapse navbar-collapse" id="mynavbar-content">

 </div>
 </div>
</div>

Now let's start filling up the navbar-collapse element with the set of links we want

to place inside the navigation bar. We'll use the ul element with classes nav and

navbar-nav here. These classes are used to align the links properly with the navig-

ation bar:

<div class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
➥data-toggle="collapse" data-target="#mynavbar-content">

 </button>
 SitePoint
 </div>

 <div class="collapse navbar-collapse" id="mynavbar-content">
 <ul class="nav navbar-nav">
 <li class="active">Home
 About
 Pricing
 Contact
 Feedback

 </div>
 </div>
</div>

Our final navbar with links should look like Figure 3.18.

Jump Start Bootstrap70

Figure 3.18. Final navbar

You can also try resizing the browser and use the hidden button to show the menu

in a smaller screen. You should have something similar to Figure 3.19.

71Exploring Bootstrap Components

Figure 3.19. Resized navbar

Amazing, no? You have created a highly responsive navigation bar without writing

a single line of CSS or JavaScript code.

Later in this chapter, we'll see how to design a form in Bootstrap. You can directly

place that form within the navbar-collapse element to show it inside the navigation

bar.

Drop-down menus are another important component of any navigation bar we see

today. You can easily convert one of the li elements of the navbar-nav list to a

drop-down menu as follows:

Jump Start Bootstrap72

<li class="dropdown">

➥About <b class="caret">
 <ul class="dropdown-menu">
 Board of Members
 Developers Team
 Designing Team
 <li class="divider">
 Investors
 Share holders

Add a class dropdown to the li that you want to make a drop-down. Then insert an

additional ul list with class dropdown-menu to represent child links. Figure 3.20

shows the outcome.

Figure 3.20. A drop-down menu

Breadcrumb
Breadcrumbs are used to show the current page's location in the site hierarchy.

Bootstrap's breadcrumb component has a very simple markup and can be placed

anywhere in your website:

73Exploring Bootstrap Components

<ol class="breadcrumb">
 Home
 About
 <li class="active">Author

This should result in Figure 3.21.

Figure 3.21. Breadcrumb

Standing Out
Sometimes we need to design components that when used with other HTML ele-

ments grab visitors' attention immediately. They can be labels, notification icons,

or huge buttons such as “Buy now”, “Grab it”, and so on. Bootstrap ships with many

such components out of the box. Let's check out some of the important ones.

Label
Labels are the best way to display short text beside other components. Sometimes

we may need to display text such as “New” or “Download now”, for example, beside

some other HTML elements. Labels come in handy in such places.

To display a label, you need to add a label class to inline HTML elements such as

span and i. Here, we'll use a span to show a label beside an h3 element:

Jump Start Bootstrap74

<h3>Jump Start Bootstrap New
➥</h3>

Figure 3.22 shows what this looks like.

Figure 3.22. Labels

There's an additional class, label-default, that is necessary to tell Bootstrap which

variant of label we want to use. The available label variants are:

■ label-default for gray
■ label-primary for dark blue
■ label-success for green
■ label-info for light blue
■ label-warning for orange
■ label-danger for red

Buttons
You can easily create a button in Bootstrap. You just have to add the btn class to

convert an a, button, or input element into a fancy bold button in Bootstrap:

Click Here

Figure 3.23 shows what it will look like.

75Exploring Bootstrap Components

Figure 3.23. Bootstrap buttons

Buttons come in various color options:

■ btn-default for white
■ btn-primary for dark blue
■ btn-success for green
■ btn-info for light blue
■ btn-warning for orange
■ btn-danger for red

And in various sizes:

■ btn-lg for large buttons
■ btn-sm for small buttons
■ btn-xs for extra small buttons

Here are some examples of how they can be used:

<button type="button" class="btn btn-primary btn-lg">Large button
➥</button>

<button type="button" class="btn btn-primary">Default button
➥</button>

<button type="button" class="btn btn-primary btn-sm">Small

Jump Start Bootstrap76

➥button</button>

<button type="button" class="btn btn-primary btn-xs">Extra
➥small button</button>

There are some more helper classes for buttons available:

■ btn-block will make the button span across the whole grid

■ active will make the button look like it's currently clicked

■ disabled will make the button unable to be clicked and appear faded. You

should also be careful while using this class, as it will prevent click action on

input and button elements but won't disable the click action on a elements.

Glyphicons
Glyphicons are used to display small icons. They are lightweight font icons and

not images. There are many advantages of using a glyphicon instead of small images,

including:

■ saving multiple requests for small images or sprites

■ as they are font icons, their colors and sizes can be varied on the go using CSS

properties

■ that they look crisp and sharp in all kind of displays.

To use glyphicons, you need to use markup like this:

This code displays a heart icon. Every icon in the glyphicons set comes with a

unique class. You need to replace “glyphicon-heart” with the name of the class

of the icon you want to display. A list of glyphicon icons and their classes can be

found at the Bootstrap website.1

Glyphicon icons are designed by a freelance developer named Jan Kovařík and not

by the Bootstrap developers. Most of the icons aren't free, though Kovařík has

1 http://getbootstrap.com/components/#glyphicons

77Exploring Bootstrap Components

http://getbootstrap.com/components/#glyphicons

donated a set of icons to the Bootstrap team. You can find more font icons on his

website, glyphicons.com.2

Wells
Wells are a useful component that wrap the content within a rounded cornered box

with a gray background, giving an inset effect to the content. They can be used to

highlight important facts amongst long textual content, for example, or an author's

bio box in a blogging application:

<div class="well">
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>
</div>

Here's the effect in Figure 3.24.

Figure 3.24. Wells

You may be unsatisfied with the amount of spacing around the content. Fortunately,

Bootstrap has a solution for that too! Wells comes in three variants:

1. Default: use only the well class.

2. Large spacing: use the well and well-lg classes together.

3. Small spacing: use the well and well-sm classes together.

2 http://glyphicons.com

Jump Start Bootstrap78

http://glyphicons.com

Badges
Badges are similar to the labels that we have already discussed, but there's a major

difference: labels are rectangular in shape, whereas badges are more rounded. Badges

are mostly used to display numbers such as unread items, notifications, and so on,

rather than text.

Badges are self-collapsing components, which means when there's no content inside

the badge it will not be visible on the website.

The markup for a badge component looks like this:

23

A more custom usage of a badge is:

Inbox
➥23

And you can see the output in Figure 3.25.

Figure 3.25. Badges

That ends our discussion on the stand out components of Bootstrap. Though these

components are not essential to create great responsive websites, they definitely

provide additional value for your visitors. Let's now check out how creating forms

has become even easier in Bootstrap.

79Exploring Bootstrap Components

Fun with Forms
Forms are a very important part of our websites. They are used in the registration

and login pages, contact and feedback pages, search boxes, and many other places.

Bootstrap allows you to create various types of forms within minutes. You can also

use many of HTML5's form validation attributes that are well supported by Bootstrap.

So let's build our first basic form.

Basic Form
To construct a form, we need a form element with the form class added to it:

<form class="form">
</form>

For each label and input field, we require a form-group classed div element. Let's

create an input field that will ask our visitors their name:

<form class="form">
 <div class="form-group">
 <label for="nameField">Name</label>
 <input type="text" class="form-control" id="nameField"
➥placeholder="Your Name" />
 </div>
</form>

Attaching the class form-control to an input element will make it a full-width

element, seen in Figure 3.26.

Jump Start Bootstrap80

Figure 3.26. A basic form

Let's fill the form with email, phone number, and textarea fields and, finally, a

submit button. The complete markup and screenshot in Figure 3.27 follows:

<form class="form">
 <div class="form-group">
 <label for="nameField">Name</label>
 <input type="text" class="form-control" id="nameField"
➥placeholder="Your Name" />
 </div>

 <div class="form-group">
 <label for="emailField">Email</label>
 <input type="email" class="form-control" id="emailField"
➥placeholder="Your Email" />
 </div>

 <div class="form-group">
 <label for="phoneField">Phone</label>
 <input type="text" class="form-control" id="phoneField"
➥placeholder="Your Phone Number" />
 </div>

 <div class="form-group">
 <label for="descField">Description</label>
 <textarea class="form-control" id="descField" placeholder="
➥Your Comments"></textarea>
 </div>

81Exploring Bootstrap Components

 <button type="submit" class="btn btn-primary">Submit</button>
➥<button type="reset" class="btn btn-default">Reset</button>
</form>

Figure 3.27. Form with added fields

Horizontal Forms
In the previous form, we have displayed a label on top and then the input field.

Suppose we want to display the labels to the side of the input fields instead. Then

we can use Bootstrap's grid system inside the form element, like so:

<form class="form-horizontal">
 <div class="form-group">
 <label for="nameField" class="col-xs-2">Name</label>
 <div class="col-xs-10">
 <input type="text" class="form-control" id="nameField"
➥placeholder="Your Name" />
 </div>
 </div>

 <div class="form-group">
 <label for="emailField" class="col-xs-2">Email</label>
 <div class="col-xs-10">
 <input type="email" class="form-control" id="emailField"

Jump Start Bootstrap82

➥placeholder="Your Email" />
 </div>
 </div>

 <div class="form-group">
 <label for="phoneField" class="col-xs-2">Phone</label>
 <div class="col-xs-10">
 <input type="text" class="form-control" id="phoneField"
➥placeholder="Your Phone Number" />
 </div>
 </div>

 <div class="form-group">
 <label for="descField" class="col-xs-2">Description</label>
 <div class="col-xs-10">
 <textarea class="form-control" id="descField"
➥placeholder="Your Comments"></textarea>
 </div>
 </div>

 <div class="col-xs-10 col-xs-offset-2">
 <button type="submit" class="btn btn-primary">Submit
➥</button> <button type="reset" class="btn btn-default">Reset
➥</button>
 </div>

</form>

This should produce the horizontal form shown in Figure 3.28.

83Exploring Bootstrap Components

Figure 3.28. A horizontal form

In the code, we have replaced the form's class from form to form-horizontal as

per Bootstrap's rules. Then we have added a class col-xs-2 to the label element

so that it spans across two Bootstrap columns. Next, we have wrapped the input

field inside a div that spans across ten Bootstrap columns with the help of class

col-xs-10.

Inline Form
We can also create forms whose elements are present in a single line. An example

is a login form in the top navigation bar where both the username and password

fields are placed side-by-side.

The markup for an inline form is as follows:

<div class="well well-sm">
 <form class="form-inline">
 <div class="form-group">
 <input type="email" class="form-control" id="emailField"
➥placeholder="Enter email">
 </div>

 <div class="form-group">
 <input type="password" class="form-control"
➥id="passwordField" placeholder="Password">
 </div>

Jump Start Bootstrap84

 <div class="checkbox">
 <label>
 <input type="checkbox"> Remember me
 </label>
 </div>

 <button type="submit" class="btn btn-primary">Sign in
➥</button>
 </form>
</div>

This should produce the inline form shown in Figure 3.29.

Figure 3.29. Inline form

The only major difference between an inline form and the previous forms is the

name of the class. We have replaced the class form with form-inline to make the

form elements inline. In the previous code, we have also wrapped the whole form

content within a well component to make it look even better.

If you look carefully in the above code, you'll see that I have not used form-group

for displaying a checkbox element. For proper alignment of a checkbox and the text

beside it, you should wrap both of them inside a div classed as checkbox. In such

cases, you should also place the input elements inside the label elements so that

the click-on text is properly mapped to the corresponding input element.

In case you need a radio button instead of a checkbox, replace the class checkbox

with radio:

85Exploring Bootstrap Components

<div class="radio">
 <label>
 <input type="radio" value="Male">
 Male
 </label>
</div>

Helper Classes in Forms
There are several additional “helper”classes available from Bootstrap that help in

displaying forms properly.

If you have used the disabled attribute to disable an input element, Bootstrap has

a style defined for it. For example, this code:

<input class="form-control" type="text"
➥placeholder="Disabled input here..." disabled>

will look like Figure 3.30.

Figure 3.30. Disabled form inputs

Bootstrap also has three validation states for input elements:

1. has-success

2. has-error

3. has-warning

Here's an example of how validation state can be used:

Jump Start Bootstrap86

<div class="form-group has-success">
 <label class="control-label" for="inputField">
➥Input with success</label>
 <input type="text" class="form-control" id="inputField">
</div>

Applying has-success will make the label text and border field green in color.

Similarly, has-warning will employ a dull brown color and has-danger will use

dark red. These has-* type classes will only apply colors to form-control, control-

label, and help-block classed elements. If you want to show some custom text

when a user enters invalid values in the input field, use a span element with class

help-block. The help-block will appear below its corresponding input field when

invalid values are entered.

Control Sizing
You can vary the height of input elements using the control sizing classes of Boot-

strap:

■ input-lg for bigger input elements than the default size.

■ input-sm for smaller input elements than the default size.

Here's some examples of them in use:

<input class="form-control input-lg" type="text"
➥placeholder="Larger Input Field">
<input class="form-control" type="text"
➥placeholder="Default Input Field">
<input class="form-control input-sm" type="text"
➥placeholder="Smaller Input Field">

that should result in the output shown in Figure 3.31.

87Exploring Bootstrap Components

Figure 3.31. Control sizing

Summary
In this chapter, we have seen a collection of reusable Bootstrap components that

are ready to use. As you've seen, there are a large number of different components

available in Bootstrap, and initially, you may find it difficult to remember so many

different types of classes; however, you can always refer to the documentation for

reference whenever you land in trouble.3

3 http://getbootstrap.com/components

Jump Start Bootstrap88

http://getbootstrap.com/components
http://getbootstrap.com/components

Chapter4
Bootstrap Plugins for Fun and Profit
JavaScript is the de facto scripting language of the Web. Beautiful image slideshows,

drop-down menus, and popovers are just some examples of popular website features

that can be created by combining JavaScript with CSS. In this chapter, we'll check

out some of the ready-to-use JavaScript plugins that Bootstrap 3 provides for us,

making it easy to create such advanced website features.

There are two different ways of using Bootstrap's JavaScript plugins. The first

method requires no JavaScript at all. You just have to follow some recommended

HTML markup to use them. The other method needs some JavaScript knowledge

for initializing and customizing the plugins. We'll discuss both methods of using

plugins, and you can decide which one suits you best.

All the plugins that we're going to use in this chapter are included in the boot-

strap.js or bootstrap.min.js. If you have followed the instructions for download-

ing Bootstrap in Chapter 1, you should find bootstrap.js inside the /js folder of the

project.

Before proceeding, let's set up a new project for this chapter. We'll be using the

same folder that we created in Chapter 1, Bootstrap_demos. Copy all the files in this

folder and paste them inside a new folder named Chapter 4. Open index.html using

text editor. Change the text inside the <title> tag to read “Bootstrap Plugins”. Next,

remove the <h1> tag from the body. Finally, the index.html file should look like this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>Bootstrap Plugins</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

 </head>
 <body>

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
</html>

Extending Functionality
Imagine a menu bar without any drop-down functionality. Kind of boring, right?

Gone are the days when a navigation bar used to consist of just a simple list of links.

In this section, we are going to use some of Bootstrap's JavaScript plugins that will

help in extending the functionality of the existing components of our website. We

will see how to add drop-down menus to navigation bars, the ability to toggle the

states of buttons when clicked, beautiful alert messages that vanish after being dis-

played for some time, and more.

Jump Start Bootstrap90

Dropdowns
The markup for creating a dropdown is as follows:

<div class="dropdown">
 <a data-toggle="dropdown" data-target="#"
➥href="http://www.google.com">
 Dropdown

 <ul class="dropdown-menu">
 Link 1
 Link 2
 Link 3
 Link 4

</div>

Every dropdown should have two important elements: an a element and a ul ele-

ment. Here the ul element is hidden by default and the a element is used to toggle

the dropdown menu. The a element has two necessary data-* attributes: data-

toggle and data-target. The data-toggle attribute tells Bootstrap to activate the

dropdown effect on the link element whenever clicked. On the other hand, the

data-target attribute is used to prevent the page redirection when a link is clicked.

It's unnecessary to provide an href attribute here, as it will be ignored. This link

element should contain some anchor text, such as “Dropdown” , and a down arrow

icon, which is produced using a class of caret.

Is the Caret a Glyphicon?

The caret class is not a glyphicon class. Bootstrap has written special CSS styles

for the class caret that will produce this down arrow icon. If you want to learn

how they did it, open the bootstrap.css file and search for “.caret” You will

find a set of CSS properties associated with it.

You can also use a glyphicon instead of this down arrow. For that you need to

replace the markup of the caret with the markup of a glyphicon:

91Bootstrap Plugins for Fun and Profit

Once the link and icons are placed properly, you can then create a ul list for repres-

enting the list of links in the dropdown menu. This ul element should have the

class dropdown-menu. Now, we have a simple dropdown that displays a menu when

the link is clicked. We can view it in the browser as shown in Figure 4.1.

Figure 4.1. A simple dropdown menu

Let's use the dropdown plugin with the tabs and pills menus that we created in the

previous chapter.

Here's the markup for the pills menu:

<ul class="nav nav-pills">
 <li class="active">Home
 Profile
 Messages

Let's create a dropdown plugin in the second item of the previous list:

Jump Start Bootstrap92

<ul class="nav nav-pills">
 <li class="active">Home
 <li class="dropdown">
 <a data-toggle="dropdown" data-target="#"
➥href="http://www.google.com">
 Profile

 <ul class="dropdown-menu">
 Link 1
 Link 2
 Link 3
 Link 4

 Messages

We have placed the whole markup of the dropdown plugin inside the second li

element and assigned it a class dropdown. Hence, the above pills menu with a

dropdown plugin should look like Figure 4.2.

Figure 4.2. A pills menu with dropdown

93Bootstrap Plugins for Fun and Profit

You can use this dropdown plugin with any component by injecting it as shown in

the previous code.

Dropdowns with JavaScript
The dropdown plugin from Bootstrap can also be used using JavaScript. Instead of

providing the custom attributes such as data-*, you can use JavaScript objects to

pass such information. Bootstrap uses the jQuery library for all JavaScript-related

operations. Hence, importing jquery.js is crucial for using JavaScript-related

customization in Bootstrap.

To trigger the dropdown plugin through jQuery, you need to use the method drop-

down():

$().dropdown('toggle');

We can use this method to toggle the state of the dropdown from closed to opened

whenever the page loads. For example, if our code snippet for creating a dropdown

is as follows:

<div class="dropdown" id="myDropdown">
 <a class="myDropdownHandle" data-toggle="dropdown"
➥data-target="#" href="#">
 Dropdown

 <ul class="dropdown-menu">
 Link 1
 Link 2
 Link 3
 Link 4

</div>

You need to call the dropdown() method on the ready() method of jQuery:

Jump Start Bootstrap94

<script type="text/javascript">
 $(document).ready(function(){
 $('.myDropdownHandle').dropdown('toggle');
 });
</script>

You can see I have used the dropdown() method after selecting .myDropdownHandle.

By default, the state of a dropdown is closed; whenever you refresh the page it will

toggle the state and make the menu visible.

Bootstrap provides various events attached to the dropdown plugin. They are:

■ show.bs.dropdown: this event is triggered when the handle is just clicked; the

dropdown handle has received the request to open the hidden menu

■ shown.bs.dropdown: this event is triggered after the menu is shown

■ hide.bs.dropdown: this event is triggered just before closing the menu

■ hidden.bs.dropdown: this event is triggered when the menu is closed

The show and hide events happen just before completing the request whereas shown

and hidden events happen as the request is complete. Here, the request was to open

and close the dropdown menu.

Let me show you a demo explaining how to use these events. I have written the

following jQuery snippet to target all the states of a dropdown plugin that prints a

statement as each event is triggered:

$('#myDropdown').on('show.bs.dropdown', function () {
 console.log("Opening dropdown..");
});

$('#myDropdown').on('shown.bs.dropdown', function () {
 console.log("Dropdown opened..");
});

$('#myDropdown').on('hide.bs.dropdown', function () {
 console.log("Hiding dropdown..");
});

95Bootstrap Plugins for Fun and Profit

$('#myDropdown').on('hidden.bs.dropdown', function () {
 console.log("Dropdown hidden..");
});

On clicking the link handle, the console is populated with the first two messages:

“Opening dropdown” and “Dropdown opened”, as seen in Figure 4.3.

Figure 4.3. The initial click

Clicking the handle again will display the last two messages, as shown in Figure 4.4.

Jump Start Bootstrap96

Figure 4.4. Clicking the handle again

Finally, index.html with the above events should look like this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>Bootstrap Plugins</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/
➥html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/
➥respond.min.js"></script>
 <![endif]-->

97Bootstrap Plugins for Fun and Profit

 </head>
 <body>
 <div class="container">
 <div class="dropdown" id="myDropdown">
 <a class="myDropdownHandle" data-toggle="dropdown"
➥data-target="#" href="#">
 Dropdown

 <ul class="dropdown-menu">
 Link 1
 Link 2
 Link 3
 Link 4

 </div>
 </div>

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 <script type="text/javascript">
 $(document).ready(function(){

 $('#myDropdown').on('show.bs.dropdown', function () {
 console.log("Opening dropdown..");
 });

 $('#myDropdown').on('shown.bs.dropdown', function () {
 console.log("Dropdown opened..");
 });

 $('#myDropdown').on('hide.bs.dropdown', function () {
 console.log("Hiding dropdown..");
 });

 $('#myDropdown').on('hidden.bs.dropdown', function () {
 console.log("Dropdown hidden..");
 });

 });

Jump Start Bootstrap98

 </script>
 </body>
</html>

You will find these events extremely useful in situations where the links in the

dropdown menu are dynamically populated with data from the server. In such

cases, you can fire an Ajax request to the server on the show.bs.dropdown event

and populate the dropdown menu before it is shown.

Alert Messages
Bootstrap comes with a very useful component for displaying alert messages in

various sections of our website; you can use them for displaying a success message,

a warning message, a failure message, or an information message. These messages

can be annoying to visitors, hence they should have dismiss functionality added to

give visitors the ability to hide them.

In this section, we'll create an alert message using Bootstrap and see how we can

add dismiss functionality to it.

Here's the markup for a “success” alert message:

<div class="alert alert-success">
 Amount has been transferred successfully.
</div>

Every alert should have the alert class attached to it. It should also have an addi-

tional contextual class, such as alert-success. There are four self-explanatory

contextual classes for alert messages:

1. alert-success

2. alert-info

3. alert-danger

4. alert-warning

The alert shown in the above code doesn't have a dismiss functionality, so it is al-

ways visible in the web page, as shown in Figure 4.5.

99Bootstrap Plugins for Fun and Profit

Figure 4.5. A regular alert message without dismiss functionality

The markup for a dismissable alert box, and what it looks like onscreen in Figure 4.6,

is as follows:

<div class="alert alert-success alert-dismissable">
 <button type="button" class="close" data-dismiss="alert">
➥×</button>
 Amount has been transferred successfully.
</div>

Figure 4.6. A dismissable alert box

To create a dismissable alert message, we need to add class alert-dismissable to

the alert box. Next, we require a button that will close the alert message when

clicked. The button should have data-dismiss attribute, which tells Bootstrap the

Jump Start Bootstrap100

component to dismiss when clicked. Bootstrap positions this button to the top-right

position of the alert box with the help of the close class. This dismiss action on

the close button is added by Bootstrap using JavaScript and captured using the

data-dismiss attribute.

Using Links Within an Alert

If you want to place a link within an alert, you need to add a class alert-link

to the a element. This provides a matching color to link with respect to the alert

box color:

<div class="alert alert-success alert-dismissable">
 <button type="button" class="close" data-dismiss=
➥"alert">×</button>
 Amount has been transferred successfully. Go to <a
➥href="#" class="alert-link">account page.
</div>

Alert Messages with JavaScript
You can also dismiss an alert message using Bootstrap's alert() method in jQuery:

$(".alert").alert('close');

Alert messages have two events associated with them:

1. close.bs.alert: triggered just before closing the alert box

2. closed.bs.alert: triggered after the alert box is closed

Here's an example using the above events:

$('.alert').on('close.bs.alert', function () {
 console.log("Closing alert..");
});

101Bootstrap Plugins for Fun and Profit

$('.alert').on('closed.bs.alert', function () {
 console.log("Alert closed!");
});

Buttons
We saw how to create various types of buttons in the previous chapter. Here we'll

see how we can use them in different situations and change their states using

Bootstrap's JavaScript plugins.

Bootstrap buttons have two states: active and inactive. The active state has a class

called active, but there's no class for the inactive state. Instead, you can create a

simple button that toggles between these two states using the following markup:

<button type="button" class="btn btn-lg btn-default"
➥data-toggle="button">Toggle Me!</button>

In the code, I have created a large gray button using btn, btn-lg, and btn-default

classes. It is currently in the inactive state. When the user clicks on it, Bootstrap

will add an extra active class to the button.

When you click on the button, you'll see an inset-like style applied to it. On clicking

again it reverts back to the original style, as shown in Figure 4.7. The attribute data-

toggle with a value button helps in achieving this toggling functionality.

Jump Start Bootstrap102

Figure 4.7. The two states of our button

Styling checkboxes and radio buttons with CSS can be tricky. Bootstrap has a way

to redesign them; it makes a set of checkboxes or radio buttons into a set of Bootstrap

buttons that are placed alongside each other. Let's go ahead and check out some

sample markup, with the result shown in Figure 4.8:

<div class="btn-group" data-toggle="buttons">

 <label class="btn btn-default"
 <input type="checkbox"> Option 1
 </label>

 <label class="btn btn-default">
 <input type="checkbox"> Option 2
 </label>

103Bootstrap Plugins for Fun and Profit

 <label class="btn btn-default">
 <input type="checkbox"> Option 3
 </label>

</div>

Figure 4.8. Bootstrap Checkboxes

You can see in Figure 4.8 that Bootstrap has completely revamped the display of

the checkboxes. They are now appearing as a group of Bootstrap buttons. Since they

are checkboxes, I was able to check both Option 1 and Option 3. To create this group

of checkboxes, you need a parent div with a class btn-group. It should also have

an attribute data-toggle with a value of buttons. All the checkbox-type input

elements should be wrapped inside label elements. These labels must have Boot-

strap's button classes. In this case, I have opted for gray-colored buttons.

Multi-colored Checkboxes

You can create multi-colored buttons in the button group by mixing Bootstrap's

button classes, such as btn-primary, btn-info, and so on.

You can also create a group of radio buttons in which only one button is selectable.

Here's the markup with the result shown in Figure 4.9:

<div class="btn-group" data-toggle="buttons">

 <label class="btn btn-info">
 <input type="radio" name="options"> Option 1
 </label>

 <label class="btn btn-info">
 <input type="radio" name="options"> Option 2
 </label>

Jump Start Bootstrap104

 <label class="btn btn-info">
 <input type="radio" name="options"> Option 3
 </label>

</div>

Figure 4.9. Bootstrap radio button

The only change in the markup is to modify the type attribute of the input element

from checkbox to radio. Additionally, you have to logically group the radio buttons

by applying a common name attribute value to all of them. In this case, I've also re-

placed btn-default to btn-info to change the color of the buttons from gray to

light blue.

Buttons with JavaScript
Bootstrap comes with the button() method to toggle the state of the button through

jQuery. You can use it in the following way:

$("mybutton").button('toggle');

You can also change the button to its loading state. In this state the button will re-

main disabled, but you need to define additional loading text using the data-

loading-text attribute in the button element:

<button id="myLoadingButton" type="button" class="btn btn-primary"
➥data-loading-text="loading stuff...">Load data</button>

Let's change the state of the button to loading using jQuery when it's clicked:

105Bootstrap Plugins for Fun and Profit

$('#myLoadingButton').click(function () {
 $(this).button('loading');
});

The text on the button will change from “Load data” to “Loading stuff” when clicked.

You can also reset the button state using the reset parameter in the button()

method:

$("myLoadingButton").button('reset');

We also have an option to display different text when the loading is complete. We

can do it using the data-complete-text attribute on the button and changing the

state to complete using the .button('complete') method:

<button id="myLoadingButton" type="button" class="btn btn-primary"
➥data-complete-text="Completed!">Load data</button>

Managing Content
Managing content properly is extremely important for any website. If things become

complicated then it's more likely that visitors won't return to your website. Bootstrap

provides many JavaScript plugins that can help us organize and display our content.

Let's have a look at some of them.

ScrollSpy
ScrollSpy is one of the most popular modern-day JavaScript plugins. It is widely

used in websites that only have a single page. The plugin listens to scrolling within

any DOM element and highlights a menu item in the navigation bar based upon the

element's scroll position.

Basically, it is a two-component plugin; it consists of a navbar and a contents area.

The contents area is divided into multiple sections, with each section having a

unique ID. The navbar consists of only internal links with section IDs as the values

of their href attribute. Once the user starts scrolling, the corresponding link in the

navbar is highlighted as per the section that is currently on display.

Let's build a navbar first. Here's the markup:

Jump Start Bootstrap106

<nav id="navbarExample" class="navbar navbar-default"
➥role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle" type="button"
➥data-toggle="collapse" data-target=".navbarLinks">

 </button>
 SitePoint
 </div>
 <div class="collapse navbar-collapse navbarLinks">
 <ul class="nav navbar-nav">
 <li class="active">Home
 <li class="">About
 <li class="">Contact Us
 <li class="">Map

 </div>
 </div>
</nav>

The links in the navbar markup are all internal links to particular sections in the

content.

The markup for the contents section is as follows:

<div data-spy="scroll" data-target="#navbarExample" data-offset="0"
➥class="scrollspy-example">

 <h4 id="Home">Home</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 <h4 id="about">About</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 <h4 id="contact">Contact Us</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 <h4 id="map">Map</h4>

107Bootstrap Plugins for Fun and Profit

 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

</div>

The contents section is composed of four pairs of <h4> and <p> tags. Each h4 element

has a unique ID that matches with the internal links of the aforementioned navbar.

To make the ScrollSpy work, you should add two custom data attributes to the

content sections: data-spy and data-target. data-spy tells Bootstrap what the

contents area is for the ScrollSpy plugin. It should have a value scroll to start

listening to scrolling in this area. The data-target attribute tells which links it has

to highlight. It should contains the ID of the parent of the nav element.

The data-offset attribute tells Bootstrap how many pixels to leave from the top

before activating the ScrollSpy plugin. Sometimes, the navigation bar elements may

be updated before we actually scroll to the actual element. This might happen if

we've placed some additional HTML markup above the ScrollSpy area. This inter-

feres with the area height calculation that is done internally by the plugin. We can

use data-offset attribute and set the value as the height of the interfering element.

Henceforth, the plugin will only start listening to the user's scrolling once the inter-

fering element has been scrolled past.

Here's the full markup of index.html with ScrollSpy:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">

 <title>Bootstrap Plugins</title>
 <link rel="stylesheet" type="text/css" href="css/bootstrap.css">

 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/libs/html5shiv/
➥3.7.0/html5shiv.js"></script>
 <script src="https://oss.maxcdn.com/libs/respond.js/
➥1.4.2/respond.min.js"></script>
 <![endif]-->

Jump Start Bootstrap108

 <style type="text/css">
 .scrollspy-example{
 position:relative;
 height:200px;
 margin-top:10px;
 overflow:auto}
 </style>

 </head>
 <body>
 <div class="container">
 <nav id="navbarExample" class="navbar navbar-default"
➥role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button class="navbar-toggle" type="button"
➥data-toggle="collapse" data-target=".navbarLinks">

 </button>
 SitePoint
 </div>
 <div class="collapse navbar-collapse navbarLinks">
 <ul class="nav navbar-nav">
 <li class="active">Home
 <li class="">About
 <li class="">Contact Us
 <li class="">Map

 </div>
 </div>
 </nav>
 <div data-spy="scroll" data-target="#navbarExample"
➥data-offset="0" class="scrollspy-example">

 <h4 id="Home">Home</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 <h4 id="about">About</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 <h4 id="contact">Contact Us</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

109Bootstrap Plugins for Fun and Profit

 <h4 id="map">Map</h4>
 <p>Lorem ipsum dolor sit amet, consectetur ... </p>

 </div>
 </div>

 <script src="js/jquery.js"></script>
 <script src="js/bootstrap.js"></script>
 </body>
</html>

In Figure 4.10, you can see that I've scrolled down to the “About” section, and the

“About” link is highlighted in the navbar.

Figure 4.10. Using ScrollSpy

ScrollSpy with JavaScript
Bootstrap has the scrollspy() method that takes optional parameters to customize

the ScrollSpy plugin. You can set the target navbar's parent class through JavaScript

by passing the appropriate options object as follows:

$('.scrollspy-example').scrollspy({ target: '#navbarExample' });

If you are passing options through JavaScript, you can ignore setting data-* attributes

inside the element's markup.

Jump Start Bootstrap110

Another important parameter that can be passed is the refresh string. If you've

done DOM manipulations such as adding or deleting elements from the ScrollSpy

area, you'll need to call the scrollspy("refresh")method. This will help ScrollSpy

to recalculate the height of the scrollable area, which might have changed due to

the addition and deletion of DOM elements:

$('.scrollspy-example').scrollspy("refresh");

ScrollSpy comes with only one custom event attached to it: activate.bs.scrollspy.

It is fired whenever a new element is highlighted in the navbar. You can capture

this event to do additional tasks, such as making Ajax requests to the server, per-

forming extra calculations, and so on. Here's how we could use it:

$('#navbarExample').on('activate.bs.scrollspy', function () {
 console.log("New link highlighted!");
});

Tabs
In the previous chapter, we saw how to make a set of links look like tabs―but they

weren't actually tabs! In this section, we are going to make some tab panes, put some

dummy data into them, and make those tab panes respond to the corresponding tab

links.

For tabs to work, we need Bootstrap's nav-tabs component and tab-content

component. Let's create some nav-tabs:

<!-- Nav tabs -->
<ul class="nav nav-tabs">
 <li class="active">Home
 Profile
 Messages
 Settings

Each link in the nav-tabs component should have a data-toggle attribute with

the value tab. This allows Bootstrap to map the click events to the corresponding

tab pane. The href attribute in these links should contain the IDs of the correspond-

ing tab panes.

111Bootstrap Plugins for Fun and Profit

Here's the markup for the tab panes:

<!-- Tab panes -->
<div class="tab-content">
 <div class="tab-pane active" id="home">
 <h3>The home</h3>
 </div>
 <div class="tab-pane" id="profile">
 <h3>The profile</h3>
 </div>
 <div class="tab-pane" id="messages">
 <h3>Messages central</h3>
 </div>
 <div class="tab-pane" id="settings">
 <h3>Setting panel</h3>
 </div>
</div>

To create tab panes, we need to first define a container for them. This container

should have a class tab-content. For a tab pane, we need to create a new div ele-

ment with the class tab-pane. These tab-panes should also have unique IDs, as

these will be referenced to in the links of the nav-tabs. The number of tab-panes

should be equal to the number of links present in nav-tabs. Adding the class active

to a li element in nav-tabs and the corresponding tab-pane makes it the default

tab.

That's it! You have a working tabs plugin. Go ahead and view it in the browser. The

results are shown in Figure 4.11.

Jump Start Bootstrap112

Figure 4.11. A working tab interface

Adding a Fade Effect

Add the class fade to each tab-pane to apply a fading effect while switching

between tabs. The first tab pane should also have a class in to properly apply a

fading effect to the initial content:

 <div class="tab-pane fade in active" id="home">
 <h3>The home</h3>
 </div>
 <div class="tab-pane fade" id="profile">
 <h3>The profile</h3>
 </div>

Tabs with JavaScript
There are two JavaScript events associated with the tab plugin. These are:

1. show.bs.tab: this event is triggered on tab show, but before the new tab is opened

2. shown.bs.tab: the event is triggered after a tab is opened

Here's an example of how it's used:

113Bootstrap Plugins for Fun and Profit

$('.nav-tabs li a').on('show.bs.tab', function () {
 console.log("Opening tab");
});

$('.nav-tabs li a').on('shown.bs.tab', function () {
 console.log("Tab opened!");
});

Collapse
The collapse plugin is popularly known as an “accordion” plugin on the Web. It is

a plugin that houses multiple vertically stacked tabs, but can open only one tab at

a time. Figure 4.12 shows a screenshot of the collapse plugin.

Figure 4.12. The collapse plugin

In Bootstrap, a collapse is created by housing multiple panel components together

in a single container. We saw how to create a panel in the last chapter. We also

know that a panel has two components: the panel-heading and panel-body.

To create a collapse, we need a group of panels housed inside a container. This

container is created using a div element with the class panel-group. It should also

have an ID associated with it.

Jump Start Bootstrap114

<div class="panel-group" id="accordion">
</div>

We need to fill this container with different panels components that will serve as

tabs. Let's create a single panel component inside this panel-group:

<div class="panel-group" id="accordion">

 <div class="panel panel-default">

 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
➥href="#collapseOne">
 Collapsible Group Item #1

 </h4>
 </div>

 <div id="collapseOne" class="panel-collapse collapse in">
 <div class="panel-body">
 Lorem ipsum dolor sit ...
 </div>
 </div>

 </div>

</div>

Here, I have inserted the markup for a single panel component inside the panel

group container. Every panel is divided into two parts: a panel-heading element

and a panel-body element.

The panel-heading element contains an h4 element with an a element wraped

within it. This combination of <h4> and <a> tags makes a tab in the collapse plugin.

The h4 element should have a class panel-title. The a element should have three

very important attributes: data-toggle, data-parent, and href. The data-toggle

should represent what type of plugin it is. The data-parent element should contain

the ID of the panel-group element. Finally, the href of such links should contain

the ID of the parent element of panel-body.

115Bootstrap Plugins for Fun and Profit

Unlike normal panels where panel-body isn't wrapped inside any div, it is mandat-

ory here to achieve the collapse effect. This wrapper element should have the classes

panel-collapse, collapse, and in. The class collapse is used to hide the content

whereas the combination of collapse and in displays the content. Hence, the first

wrapper has both collapse and in classes and remaining all the wrappers should

only have the collapse class. The class panel-collapse is used by Bootstrap's

JavaScript to identify the wrapper.

Repeat the same markup for multiple tabs. The following markup shows a collapse

plugin with three vertically stacked tabs, with the result shown in Figure 4.13:

<div class="panel-group" id="accordion">

 <!-- Panel 1 -->
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
➥href="#collapseOne">
 Collapsible Group Item #1

 </h4>
 </div>
 <div id="collapseOne" class="panel-collapse collapse in">
 <div class="panel-body">
 Lorem ipsum dolor sit amet, consectetur ...
 </div>
 </div>

 <!-- Panel 2 -->
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
➥href="#collapseTwo">
 Collapsible Group Item #2

 </h4>
 </div>
 <div id="collapseTwo" class="panel-collapse collapse">
 <div class="panel-body">
 Lorem ipsum dolor sit amet, consectetur ...
 </div>

Jump Start Bootstrap116

 </div>
 </div>

 <!-- Panel 3 -->
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
➥href="#collapseThree">
 Collapsible Group Item #3

 </h4>
 </div>
 <div id="collapseThree" class="panel-collapse collapse">
 <div class="panel-body">
 Lorem ipsum dolor sit amet, consectetur ...
 </div>
 </div>
 </div>
 </div>

Figure 4.13. Final collapse plugin

117Bootstrap Plugins for Fun and Profit

Collapse with JavaScript
Bootstrap provides the collapse() method for changing the default behavior of the

collapse plugin. By default, only one tab can be opened at a time. We can override

this behavior by passing the custom options object to the above method. Let's do

that.

In the previous collapse plugin's markup we had added a class collapse to all the

panel-body wrappers. Let's select this class and call the collapse() method on it:

$('.collapse').collapse({
 toggle: false
});

In the snippet, I have passed an anonymous object that has a property toggle with

a value set to false. This will force all the tabs to stay open when other tabs are

opening. Go ahead and try it yourself.

As shown in Figure 4.14, you can see all the tabs are opened simultaneously.

Jump Start Bootstrap118

Figure 4.14. All tabs open in our collapse

You also have option to pass various predefined strings to the collapse() method:

1. collapse('toggle'): toggles the tab from one state to another

2. collapse('show'): opens a tab

3. collapse('hide'): closes a tab

Bootstrap also comes with four custom events attached to the collapse plugin:

1. show.bs.collapse: fired just before opening the tab

2. shown.bs.collapse: fired after the tab is opened

3. hide.bs.collapse: fired just before closing the tab

4. hidden.bs.collapse: fired after the tab is closed

119Bootstrap Plugins for Fun and Profit

Here's how they're used:

$('.collapse').on('show.bs.collapse', function () {
 console.log('Opening tab..');
});

$('.collapse').on('shown.bs.collapse', function () {
 console.log('Tab opened.');
});

$('.collapse').on('hide.bs.collapse', function () {
 console.log('Hiding tab..');
});

$('.collapse').on('hidden.bs.collapse', function () {
 console.log('Tab hidden');
});

Tooltip
A Bootstrap tooltip is a small floating message that appears when the mouse is

hovered over a component in a website. It is generally used to display help text for

a particular component.

Bootstrap's tooltip is made using CSS and triggered through JavaScript. It's extremely

lightweight compared to many other tooltip plugins available today. There are also

easy customization options to position the tooltip with respect to its parent compon-

ent (top, bottom, right, and left). To use a tooltip, we have to define some custom

data-* attributes.

Let's build a demo tooltip on a button component:

<button type="button" class="btn btn-default" data-toggle="tooltip"
➥data-placement="bottom" title="I am a Bootstrap button">Who am I?
➥</button>

You need to add a data-toggle attribute with the value tooltip, a title attribute

containing the text that you want to display in the tooltip, and a data-placement

attribute. The data-placement attribute accepts one of the following four values:

top, bottom, left, and right. As its name suggests, the data-placement attribute

defines the position of the tooltip with respect to its parent component.

Jump Start Bootstrap120

Let's go ahead and view this button in a browser. You'll see that it fails to work;

there's no tooltip when the mouse is hovered on the button. For performance reasons,

in Bootstrap tooltips need to be initialized manually through jQuery. So let's go

ahead and add the following script, after all the <script> tags in the body:

<script type="text/javascript">
 $(document).ready(function(){
 $('.tooltipButton').tooltip();
 });
</script>

In this code we have used the tooltipButton class as the selector. Hence, we need

to add this class to the button for the tooltip to work.

We also need to modify the HTML code of the button and add the class tooltipBut-

ton to it:

<button type="button" class="btn btn-default tooltipButton"
➥data-toggle="tooltip" data-placement="bottom"
➥title="I am a Bootstrap button">Who am I?</button>

Refresh the web page and a tooltip should appear, as shown in Figure 4.15.

121Bootstrap Plugins for Fun and Profit

Figure 4.15. A tooltip

Tooltip with JavaScript
We have just seen that we need to call the tooltip() method to make the tooltip

function. Here, we'll see how we can customize the tooltip plugin by passing various

options through this function.

The method takes an object containing various optional properties for changing the

general behavior of atooltip:

var options = {
 animation : true;
};

$(".tooltipButton").tooltip(options);

In the code, I have defined a JavaScript object called options. I've set the property

animation to true so that the tooltip gets a fading effect whenever its displayed.

Finally, I have passed this object to the tooltip() method.

Jump Start Bootstrap122

Other properties that can be passed are:

■ html: This property takes a Boolean value. If it is set to true then the content

that is present inside the title attribute will be parsed as HTML. Otherwise, it

will be displayed as-is.

■ placement: This property takes five string values: top, bottom, left, right, and

auto. It defines the position of thetooltip with respect to the component. If set

to auto, the tooltip will be oriented automatically.

■ selector: This is a special option available from Bootstrap. If you have called

the tooltip() method on a parent container, you might like to filter the child

elements on which this tooltip should work, and you can do that with this option.

You can provide values such as a, a[href='hello.html'] or but-

ton[class='tooltipbuttons'].

■ title: If you didn't use the custom attribute data-title in the HTML markup,

you can pass the tooltip title through this option. This takes a string value, such

as title: "This is a button".

■ trigger: All the tooltips are shown by hovering over the component. Use this

option to override the default behavior. Values that this option can take are:

click, focus, hover, and manual. You can also combine these values separated

by a space; for example click hover, hover focus, and so on.

■ delay: If you want to avoid having the tooltip appear immediately, use this

property to set a delay amount (in milliseconds).

■ container: Use this property to append a tooltip to specific elements such as

body. This will prevent the tooltip from floating away from the triggering element

during a window resize.

Apart from accepting an options object, the tooltip() method also accepts several

predefined string values. These strings are mapped to the custom behavior of the

tooltip; for example:

$('.tooltipButton').tooltip('show');

Passing the string “show”will make the tooltip appear. Possible string values are:

123Bootstrap Plugins for Fun and Profit

1. “show”: shows the tooltip

2. “hide”: hides the tooltip

3. “toggle”: toggles the state of the tooltip (if a tooltip is currently hidden this will

show it, and vice versa)

4. “destroy”: this string hides and destroys the tooltip related to a particular ele-

ment; once destroyed, the associated tooltip cannot be used again

Just like other Bootstrap plugins, tooltip also comes with custom events that can be

captured to perform extra tasks. These events are:

1. show.bs.tooltip: this event is fired before the tooltip is visible

2. shown.bs.tooltip: this event is fired after the tooltip is visible

3. hide.bs.tooltip: fired before the tooltip is hidden

4. hidden.bs.tooltip: fired after the tooltip is hidden

Here's how you'd use them:

$('.tooltipButton').on('show.bs.tooltip', function () {
 console.log("Showing tooltip..");
});

$('.tooltipButton').on('shown.bs.tooltip', function () {
 console.log("Tooltip shown.");
});

$('.tooltipButton').on('hide.bs.tooltip', function () {
 console.log("Hiding tooltip..");
});

Jump Start Bootstrap124

$('.tooltipButton').on('hidden.bs.tooltip', function () {
 console.log("Tooltip hidden.");
});

Popovers
Popovers are another useful plugin that are comparable to tooltips. The difference

is that popovers are larger and more stylish than tooltips, as shown in Figure 4.16.

They look very similar to the popovers in Apple iBooks' dictionary feature.

Figure 4.16. Popovers versus tooltips

You can place more content in a popover than a tooltip. It is recommended to use

popovers instead of tooltips when you have more HTML content or textual content

to display.

Let's trigger a popover to activate on the click event of a button. The markup to do

this is:

125Bootstrap Plugins for Fun and Profit

<button type="button" class="btn btn-danger" data-toggle="popover"
➥data-placement="bottom" data-content="Lorem Ipsum Donor."
➥title="This is a demo popover">
 Click Me!
</button>

There are a few custom data-* attributes that are necessary for the popover plugin

to function. These are similar to the custom attributes used in tooltips. The data-

toggle attribute directs what to trigger when an action is performed on this button.

The data-placement attribute specifies the position of the popover. The data-

content attribute should contain the content you want to convey in the popover.

Finally, set the title attribute to append a header to the plugin.

Just like tooltips, popovers should also be manually initiated. You can use the fol-

lowing script:

<script type="text/javascript"
 $(document).ready(function(){
 $('.popoverButton').popover();
 });
</script>

As the selector in this code is a class, we need to add the popoverButton class to

the button. The results are shown in Figure 4.17.

Jump Start Bootstrap126

Figure 4.17. Popover

Popovers with JavaScript
Bootstrap provides the popover() method for customizing the default behavior of

the popover plugin. It accepts an options object, just like the tooltip plugin. All the

options properties available to the tooltip plugin discussed earlier also apply to the

popover plugin.

For example:

var options = {
 animation: true,
 placement: "right"
};

$('.popoverButton').popover(options);

The popover plugin also accepts a set of predefined strings that are mapped to certain

behaviors of a popover; for instance:

127Bootstrap Plugins for Fun and Profit

$('.popoverButton').popover("show");

Just like a tooltip plugin, we have the same set of predefined strings to change the

state of a popover plugin. When passing the “show” string, the popover will be vis-

ible. Other available strings are: “hide”, “toggle” and “destroy”.

Popovers also come with custom events very similar to the events of the tooltip

plugin. The events associated with popovers are:

1. show.bs.popover: fired just before showing the popover

2. shown.bs.popover: fired after the popover is shown

3. hide.bs.popover: fired just before hiding the popover

4. hidden.bs.popover: fired after hiding the popover

Usage is similar to the tooltip plugin:

$('.popoverButton').on('show.bs.popover', function () {
 console.log("Opening popover..");
});

$('.popoverButton').on('shown.bs.popover', function () {
 console.log("Popover opened.");
});

$('.popoverButton').on('hide.bs.popover', function () {
 console.log("Hiding popover..");
});

$('.popoverButton').on('hidden.bs.popover', function () {
 console.log("Popover hidden.");
});

Getting Fancy
In this section, we will be discussing two very important plugins: carousel and

modal.

Carousel is a responsive slideshow plugin and modal is a lightbox-like plugin. Each

one lets you showcase your content in a fancy way.

Jump Start Bootstrap128

Carousel
Slideshows are very popular, and can be used for news, ecommerce, and video

sharing sites, for instance. This type of feature is used to showcase the most popular

items on the website in a well-organized, attractive slideshow. Building such

slideshows can be time-consuming, however, and these features can also be prone

to bugs. In this section, we'll see how to use Bootstrap's carousel plugin to build

beautiful responsive slideshows.

The markup for creating a carousel is as follows:

<div id="bestCarsCarousel" class="carousel slide"
➥data-ride="carousel">

 <!-- Indicators -->
 <ol class="carousel-indicators">
 <li data-target="#bestCarsCarousel" data-slide-to="0"
➥class="active">
 <li data-target="#bestCarsCarousel" data-slide-to="1">
 <li data-target="#bestCarsCarousel" data-slide-to="2">

 <!-- Wrapper for slides -->
 <div class="carousel-inner">
 <div class="item active">

 <div class="carousel-caption">
 <h3>Car 1</h3>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 </div>
 </div>

 <div class="item">

 <div class="carousel-caption">
 <h3>Car 2</h3>
 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 </div>
 </div>

 <div class="item">

 <div class="carousel-caption" >
 <h3>Car 3</h3>

129Bootstrap Plugins for Fun and Profit

 <p>Lorem ipsum dolor sit amet, consectetur ...</p>
 </div>
 </div>
 </div>

 <!-- Controls -->
 <a class="left carousel-control" href="#bestCarsCarousel"
➥data-slide="prev">

 <a class="right carousel-control" href="#bestCarsCarousel"
➥data-slide="next">

</div>

As seen in the code, the main wrapper container for our carousel should have the

classes carousel and slide. The class slide is used to give a sliding effect to each

slide in the carousel. It should also have a custom attribute data-ride, which tells

Bootstrap to start the sliding effect as soon as the page loads. Without this attribute

the slides will fail to change automatically until you've done so manually the first

time.

Every carousel plugin has three subsections in it: indicators, body, and controls.

To create a carousel Indicator, you have to define an ordered list with a class of

carousel-indicators. The number of li elements in it depends on the number of

slides you want to have. Each li element should have a data-target attribute

containing the ID of the carousel container. It should also have a data-slide-to

attribute containing the sequence number of the particular slide it will point to.

Next, we build the heart of the carousel, the slides. First, we create a wrapper element

for all the slides. This will be a div with the class carousel-inner. Each slide is

defined by a div element that has a class item. Every item must have a representing

image and optional textual data. This image will be used as a background for that

particular slide item. For each image we can add related captions and some addi-

tional textual data. These captions are wrapped by a div element that has a class

carousel-caption. The caption can be inserted using any one of the HTML heading

tags: <h1>, <h2>, <h3>, and so on. For related text you can use <p> tags.

Jump Start Bootstrap130

Repeat the same item markup for each slide. After you're done with creating all the

slides, we'll build a controls section for navigating carousel content.

The carousel controls are constructed using <a> tags with a class carousel-control

and one of the directional classes such as left or right. The href attribute of these

links should contain the ID of the carousel wrapper. Once the controls are formed,

we insert left and right symbols in them. These symbols are glyphicons.

It's time to check the carousel in the browser, shown in Figure 4.18.

Figure 4.18. A carousel of cars

Amazing, no? We have created a powerful responsive slideshow without writing a

single piece of JavaScript or CSS.

Carousels and Older Versions of IE

Though Bootstrap may be compatible with IE8 and above, the carousel is not fully

compatible. The sliding effect will fail to work in CSS3-incompatible browsers

131Bootstrap Plugins for Fun and Profit

such as IE8 and I9. The carousel indicators will appear as squares in these browsers,

rather than being circular.

Carousel with JavaScript
Bootstrap has the carousel() method for calling carousels through JavaScript. You

can use this method to pass customized options to change the default behavior of

a carousel.

There are only three JavaScript options available for carousel: interval, pause, and

wrap. Here they are in the code:

var options = {
 interval: 7000,
 pause: 'hover',
 wrap: true
};

$('#bestCarsCarousel').carousel(options);

The interval property is used to specify the time duration between each slide. The

pause option takes only one value hover, which tells Bootstrap to stop carousel

sliding on mouse hover. The wrap option takes Boolean values to set the cycling of

carousel to on or off. If set to true, the carousel will start sliding to the first slide

after displaying the last slide and this will continue.

Other parameters that can also be passed to the carousel() method include:

1. cycle: to enable cycling functionality of a carousel

2. pause: to pause the slideshow from JavaScript

3. number: to specify the time duration between two slides

4. prev: to change the slide to the previous slide

5. next: to change the slide to the next slide

The carousel plugin comes with two custom events:

1. slide.bs.carousel: fired before the slide is changed

Jump Start Bootstrap132

2. slid.bs.carousel: fired after the slide has changed

Here's how to use them:

$('#bestCarsCarousel').on('slide.bs.carousel', function () {
 console.log("Changing slide..");
});

$('#bestCarsCarousel').on('slid.bs.carousel', function () {
 console.log("Slide changed.");
});

Modals
Modals are HTML elements that are hidden in a web page, sliding down from the

top of the screen when triggered. It is one of the best plugins to use to display dialog

prompts, such as alert and confirm dialogs. You can also use it to showcase a larger

version of an image, display a long list of terms and conditions, or to display sign-

up/login forms.

With Bootstrap 3, modals have become responsive. This means that they look good

and operate well even on smaller screens. Let's go ahead and create a modal:

<div class="modal fade" id="myModal">

 <div class="modal-dialog">

 <div class="modal-content">

 <!-- Modal Header -->
 <div class="modal-header">
 <button type="button" class="close"
➥data-dismiss="modal">×</button>
 <h4 class="modal-title">Welcome Back!</h4>
 </div>

 <!-- Modal Body -->
 <div class="modal-body">
 <h1>Hello Readers!</h1>
 </div>

 <!-- Modal Footer -->
 <div class="modal-footer">

133Bootstrap Plugins for Fun and Profit

 <button type="button" class="btn btn-default"
➥data-dismiss="modal">Close</button>
 <button type="button" class="btn btn-primary">
➥Save changes</button>
 </div>

 </div>
 </div>
</div>

Every modal should have a container with the class modal. To give a fading effect

to the modal we need to add the class fade as well to the same container. Next, we

define a div element that has a class modal-dialog. This is responsible for con-

trolling the size of the modal. By default, it's resized as per the size of the screen.

Shortly we'll see how to change the size of the modal by adding some additional

classes to modal-dialog. Inside the modal dialog, we'll create a wrapper element

that wraps various subsections of a modal. This wrapper element should have a

class called modal-content.

The subsections to the modal are the header, body and footer. The header and

footer part are optional. To create a modal header, you need a div element with

class modal-header. Inside it you can put a modal title and a modal dismiss icon.

The modal title is given using an h4 element with class modal-title. The dismiss

icon here is a multiplication (x) symbol that is wrapped around a button element.

This button should have the class close so that it is aligned to the top-left corner

of the modal header. Adding a data-dismiss attribute enables the button to close

the modal when clicked.

For the body, we need a div with the class modal-body. You can put almost any

content inside this element. You can even use Bootstrap's grid system to organize

content properly inside it.

Finally, for creating a modal footer, we define a div element that has a class modal-

footer. The content inside a modal footer are right-aligned by default.

If you check the previous modal code snippet inside a browser, you will find

nothing; modals are hidden in nature. You have to create a handle to trigger it:

Jump Start Bootstrap134

<button class="btn btn-primary btn-lg" data-toggle="modal"
➥data-target="#myModal">
 Launch modal
 </button>

In this code, I've used a button component to trigger the modal. It should have a

data-target attribute to tell Bootstrap which modal to trigger as there can be mul-

tiple modals in a website. We also need the data-toggle attribute defined to de-

termine what to trigger when clicked.

Now we are all set to use our modal. Go ahead and click on the button to see a

modal fading within the browser, as depicted in Figure 4.19.

Figure 4.19. Our modal

135Bootstrap Plugins for Fun and Profit

Modal Placement

The modal markup has to be placed in the top-level position in the document to

prevent conflict with other components. Yet there's no restriction when placing

the modal handle. It can be placed anywhere in the document.

Modals come in three widths: large, default, and small. These can be really helpful

for fitting the content properly in the modal dialog.

If no additional class is provided to modal-dialog, it will appear in the default

width of 600p. To make the modal large or small, you need to add one of these

classes to the modal-dialog element:

■ modal-lg: for a large modal of width 900px

■ modal-sm: for a small modal of width 300px

Modals with JavaScript
Bootstrap provides the modal() method to trigger a modal through JavaScript. This

method also accepts an options object containing various properties for customizing

the default behavior of a modal:

var options = {
 backdrop: true,
 keyboard: false,
 show: true,
 remote: false
}

$("#myModal").modal(options);

The backdrop propertiy accepts Boolean values or the string value “static”. When

a modal is launched, a dark transparent backdrop appears by default behind the

modal body. Setting this property to true makes the backdrop visible. Set it to false

and the backdrop disappears. When set to “static” , the modal won't close when

there's a click anywhere outside the modal body.

The keyboard property is used to enable or disable escape key functionality from

the keyboard. When set to false, the Esc key won't close the modal.

Jump Start Bootstrap136

The show property is used to toggle the visibility of the modal through JavaScript.

When set to true, the modal will appear automatically without requiring a click on

any handle element.

The a element, which may be used as a modal handle element, can comprise an

attribute href containing a link. The Bootstrap modal has an option to load this

link inside its modal-body element when clicked on the handle. This feature is

turned off by default. If you want to use this feature and load the link inside the

modal-body, set the remote property to true.

Events associated with Bootstrap modal include:

1. show.bs.modal: fired just before opening the modal

2. shown.bs.modal: fired after the modal is open

3. hide.bs.modal: fired just before hiding the modal

4. hidden.bs.modal: fired after the modal is hidden

5. loaded.bs.modal: fired after the remote content is loaded

Here's how they are used:

$('#myModal').on('show.bs.modal', function () {
 console.log("Opening Modal..");
});

$('#myModal').on('shown.bs.modal', function () {
 console.log("Modal opened.");
});

$('#myModal').on('hide.bs.modal', function () {
 console.log("Hiding Modal..");
});

$('#myModal').on('hidden.bs.modal', function () {
 console.log("Modal hidden.");
});

Summary
Through this chapter, we have learned how to use many of the popular Bootstrap

JavaScript plugins. We have also learned how to customize them by setting custom

data-* attributes and through JavaScript. When working with Bootstrap, you should

137Bootstrap Plugins for Fun and Profit

always make use of the built-in plugins whenever possible and avoid writing custom

plugins.

Jump Start Bootstrap138

Chapter5
Diving Deep: Customizing Bootstrap
Imagine a Web where all the websites built with Bootstrap look and feel the same.

Boring, right? Fortunately, we have the power to change the default styles of any

framework we work with.

Many of Bootstrap's components and plugins have their own default styles. In order

to give them a personal touch, you need to replace their CSS rules and define your

own.

In the first chapter, I shared with you some of the popular websites built on Boot-

strap. They have all customized Bootstrap's CSS to make their templates look unique

and beautiful.

In this chapter, we'll discuss the various methods we can use to completely custom-

ize Bootstrap's default styles, and analyze which method is more preferable and

why. Finally, we will try to understand how Bootstrap's CSS was written to make

it a highly responsive framework.

Customizing Bootstrap Stylesheets
You can customize Bootstrap in various ways. In this section, we'll see customization

through static CSS files and through Less files.

What's Less?

Less1 is a CSS preprocessor that extends CSS capabilities, adding programming

features such as variables, mixins, functions, and so on. It keeps CSS modular,

maintainable, and extendible. Less files are compiled to generate CSS files that

you can then use in your projects.

If you work with Ruby, Sass2 is an alternative to Less. It is also a CSS preprocessor

that Bootstrap supports; however, we won't be covering Sass customizations in

this book.

The stylesheets that come with Bootstrap's default package are normal CSS files. If

you open the static CSS files using a text editor, you'll find lots of selectors and

their associated CSS properties. You may be tempted to directly change CSS prop-

erties and their values in these files to save time, but I would strongly advise against

it.

There are many disadvantages of directly modifying the CSS files. Some of the im-

portant ones are:

■ The changes are irreversible. You won't remember the CSS properties and their

values that were present originally, so you'll be unable to revert back to the ori-

ginal Bootstrap style.

■ Any changes made by you to one selector may break down the responsiveness

of Bootstrap.

■ Debugging becomes very difficult; you need to understand the CSS inheritance

chain to reach the parent selector.

Before we jump into customization, let's first set up the project that will be used in

this chapter. As always, we'll be using the project created in Chapter 1, Boot-

1 http://lesscss.org
2 http://sass-lang.com

Jump Start Bootstrap140

http://lesscss.org
http://sass-lang.com

strap_demos. Copy all the contents into a new folder named Chapter_5. Open

index.html and change the title of the page to “Customizing Bootstrap”. Now remove

the <h1> tag from the body.

Customizing Bootstrap Using CSS
This type of customization is generally known as overriding the default CSS. We

effectively overwrite some of Bootstrap's CSS properties with different values of

our own.

First, we create a new file called app.css (or whatever you wish) inside the /css folder.

Then we open index.html and link to the new CSS file. The link to this new CSS file

should be included just below the link to Bootstrap's CSS file:

<link rel="stylesheet" type="text/css" href="css/bootstrap.css">
<link rel="stylesheet" type="text/css" href="css/app.css">

Let's add a Bootstrap button, shown in Figure 5.1. We'll use that to show how to

make some changes to its default design:

141Diving Deep: Customizing Bootstrap

<div class="container">
 Big Fat Button
</div>

Figure 5.1. Our default button

Here's what we'll now do to customize this button:

■ remove the rounded corners from this button
■ alter the padding amount
■ tweak the font size
■ change the background color

Let's inspect the button using a developer tool. We'll use Chrome, as shown in Fig-

ure 5.2, but you can use any similar tool of your choice, such as Firebug in Firefox.

The properties such as padding, font-size, and border-radius come from the

class btn, whereas the property background is applied through the class btn-

primary. To modify them, we'll need to override the properties using the same se-

lectors in our CSS file, app.css.

Jump Start Bootstrap142

Figure 5.2. Inspecting our button in Chrome's developer tool

Open app.css and add the following CSS:

.btn{
 border-radius: 0;
 padding: 5px 10px;
 font-size: 16px;
}

.btn-primary{
 background: #63AEF0;
}

If we refresh our page, our button should now look like Figure 5.3.

143Diving Deep: Customizing Bootstrap

Figure 5.3. A customized button

Note that we have used the Bootstrap classes btn and btn-primary to override the

CSS styles. Henceforth, whenever you use Bootstrap's button component it will

have a changed style that looks like Figure 5.3. To revert back to the original style,

we simply remove the CSS styles from the app.css file.

If you want to change the style of only a particular button in your web page, instead

of targeting Bootstrap's selectors, use IDs to apply a CSS change.

Customizing Bootstrap Using Less
If you are a Less developer you will love this section, as there are plenty of options

for working with Less to customize Bootstrap. There's a Less file for every Bootstrap

component to change their properties easily. To access all the Less files, you need

to download a particular version of Bootstrap. Go to http://getbootstrap.com/getting-

started/ and select Download Source. This source package contains both compiled

and raw .less files.

Jump Start Bootstrap144

http://getbootstrap.com/getting-started/
http://getbootstrap.com/getting-started/

The Less files are located inside the folder called less. Here, you will find many .less

files named as per Bootstrap's components. All the CSS properties and values related

to a particular component are present inside the corresponding .less file. You will

also find a file named bootstrap.less, which is the main .less file. It imports all the

.less files present inside that folder. You need to compile only this file to generate

a customized Bootstrap stylesheet. Let's categorize all the files inside this folder.

Bootstrap's Variables and the Mixins
All the variables and mixins used in Bootstrap are present inside two distinct files:

1. variables.less contains all standard colors used in Bootstrap, default responsive

width values, default padding values, and margin values. If you want to make

any such changes you need to deal with this file.

2. mixins.less contains mixins to generate vendor prefixes and dynamically calculate

widths of grids, placeholders, button sizes, and so on.

Reset Files
There are two reset files to clear browser defaults:

1. normalize.less clears many browser defaults like font family, font sizes, paddings

and margins, heading tags defaults, styles of form elements, and so on.

2. print.less contains media queries for print support.

Core Files
There are seven core .less files:

■ scaffolding.less contains all the helper classes for images (such as .img-responsive

and .img-circle), styles for various states of link elements, horizontal rules,

styles for screen readers, and so on.

■ type.less is a typography file that contains various styling for heading tags, para-

graph tags, and other content-related helper classes such as .lead, .text-muted,

and so forth.

■ code.less contains CSS properties for styling any code presented on the web page.

145Diving Deep: Customizing Bootstrap

■ grid.less is concerned with all the CSS values applied on the Bootstrap grid sys-

tem.

■ tables.less has styles for decorating the <table> element. It also defines various

helper classes for tables such as .table-condensed, .table-bordered, and so

on.

■ forms.less beautifies form elements such as text fields, legends, checkboxes, radio

buttons, and so forth.

■ buttons.less contains styles for styling various types of Bootstrap buttons. All the

button-related classes are defined here.

Component Files
There are 21 component files in Bootstrap. Each component covered in the previous

chapter has its own .less file. All the CSS definitions related to a component can be

found in its .less file.

■ component-animations.less

■ glyphicons.less

■ dropdowns.less

■ button-groups.less

■ input-groups.less

■ navs.less

■ navbar.less

■ breadcrumbs.less

■ pagination.less
■ pager.less

■ labels.less

■ badges.less

■ jumbotron.less

■ thumbnails.less

■ alerts.less

■ progress-bars.less

■ media.less

■ list-group.less

■ panels.less

Jump Start Bootstrap146

■ wells.less

■ close.less

There's an additional file in this list that is not actually a component in itself,

close.less. It contains the CSS rules for the dismiss button used in modals, alerts,

and other elements to close this particular component.

Plugin Files
There are four .less files that define the CSS styles of JavaScript plugins triggered

or created using Bootstrap's markup:

■ modals.less

■ tooltip.less

■ popovers.less

■ carousel.less

Utility Files
Finally, we have two utility files in Bootstrap:

■ utilities.less

■ responsive-utilities.less

These files define classes that help us to better organize the Bootstrap components.

They have helpful classes such as .clearfix to clear a component from all the

elements present around it, and .hide and .show to toggle visibility of components,

for example. responsive-utilities.less contains visibility utilities such as .visible-lg

and .hidden-sm.

Overriding Styles Using Less
Let's use Less to override the style of a modal. We will customize modals.less to

apply a flat (metro-style) design, remove the rounded corners, and reduce the

shadow applied to it. We will also change the background color and text color of

the modal. Let's open modals.less and make these changes.

The rounded corners to the modal are applied through the class modal-content.

Let's find this selector in modals.less. It should look like this:

147Diving Deep: Customizing Bootstrap

// Actual modal
.modal-content {
 position: relative;
 background-color: @modal-content-bg;
 border: 1px solid @modal-content-fallback-border-color;
➥//old browsers fallback (ie8 etc)
 border: 1px solid @modal-content-border-color;
 border-radius: @border-radius-large;
 .box-shadow(0 3px 9px rgba(0,0,0,.5));
 background-clip: padding-box;
 // Remove focus outline from opened modal
 outline: 0;
}

From the code, we can see the rounded corners come from the property border-

radius whose value is a Less variable initialized in variables.less. Let's comment out

this line to remove rounded corners:

// Actual modal
.modal-content {
 position: relative;
 background-color: @modal-content-bg;
 border: 1px solid @modal-content-fallback-border-color;
➥//old browsers fallback (ie8 etc)
 border: 1px solid @modal-content-border-color;
// border-radius: @border-radius-large;
 .box-shadow(0 3px 9px rgba(0,0,0,.5));
 background-clip: padding-box;
 // Remove focus outline from opened modal
 outline: 0;
}

Now, we have to reduce the amount of shadow. Analyzing the code, we can see

that the .box-shdow() mixin is responsible for producing the shadow property in

CSS. This mixin is defined in the mixins.less file, and the shadow values are passed

as a value to this mixin. Let's change this value as per our requirement. The amount

of shadow is defined by the third number in the value, which is passed as the argu-

ment―it's 9px currently. Let's reduce this number to 2px. Hence, our selector should

now look like this:

Jump Start Bootstrap148

// Actual modal
.modal-content {
 position: relative;
 background-color: @modal-content-bg;
 border: 1px solid @modal-content-fallback-border-color;
➥//old browsers fallback (ie8 etc)
 border: 1px solid @modal-content-border-color;
 border-radius: @border-radius-large;
 .box-shadow(0 3px 2px rgba(0,0,0,.5));
 background-clip: padding-box;
 // Remove focus outline from opened modal
 outline: 0;
}

We also need to change the box-shadow value in one of the media queries, which

overrides the previous changes. We'll learn about media queries soon. But for now,

you need to understand that Bootstrap has different CSS rules for devices of unique

sizes. So let's go ahead and find the following media query in modals.less:

// Scale up the modal
@media (min-width: @screen-sm-min) {
 // Automatically set modal's width for larger viewports
 .modal-dialog {
 width: @modal-md;
 margin: 30px auto;
 }
 .modal-content {
 .box-shadow(0 5px 15px rgba(0,0,0,.5));
 }

 // Modal sizes
 .modal-sm { width: @modal-sm; }
}

Let's pass the new box-shadow value to the .box-shadow() mixin in this media

query:

// Scale up the modal
@media (min-width: @screen-sm-min) {
 // Automatically set modal's width for larger viewports
 .modal-dialog {
 width: @modal-md;

149Diving Deep: Customizing Bootstrap

 margin: 30px auto;
 }
 .modal-content {
 .box-shadow(0 5px 2px rgba(0,0,0,.5));
 }

 // Modal sizes
 .modal-sm { width: @modal-sm; }
}

Let's now change the modal's background color. We'll use a predefined variable

@brand-info from variables.less as the background color of the modal. This variable

is initialized to #5bc0de, which is a light blue color. For the text color, let's use the

variable @body-bg, which is set to #fff in the same file. The modified modal-content

selector should now look like:

// Actual modal
.modal-content {
 position: relative;
 background-color: @modal-content-bg;
 border: 1px solid @modal-content-fallback-border-color;
➥//old browsers fallback (ie8 etc)
 border: 1px solid @modal-content-border-color;
 border-radius: @border-radius-large;
 .box-shadow(0 3px 9px rgba(0,0,0,.5));
 background-clip: padding-box;
 // Remove focus outline from opened modal
 outline: 0;

 background: @brand-info;
 color: @body-bg;

}

We have made all the customizations planned, but let's make one final change to

the modal-backdrop selector. modal-backdrop is a transparent layer that appears

behind the modal-content whenever the modal component is triggered.

Let's change the background color of this modal-background from black to white:

Jump Start Bootstrap150

// Modal background
.modal-backdrop {
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 z-index: @zindex-modal-background;
 background-color: @body-bg;
 // Fade for backdrop
 &.fade { .opacity(0); }
 &.in { .opacity(@modal-backdrop-opacity); }
}

Finally, we are done with all the customization. It's time to compile the bootstrap.less

file that imports modals.less. Once the .less file is compiled to generate bootstrap.css,

you can use this file in your project by replacing the old bootstrap.css (we will discuss

how to compile a Less file in the following section). Henceforth, whenever you use

the modal component it will use the customized style. In Figure 5.4 is a screenshot

showing the customized modal component.

Figure 5.4. Modal customized with Less

Compiling Less
Compiling Less is relatively straightforward. Here, I am going to show you some of

the standard ways of doing it.

151Diving Deep: Customizing Bootstrap

Using Node
If you have Node installed, you can use Node's package manager to install the less

compiler:

$ npm install -g less

Once less is installed, use the following command to compile bootstrap.less into

bootstrap.css. You have to navigate to the /less folder using the command prompt

and then type this command:

$ lessc bootstrap.less > bootstrap.css

Using Third-party Software
There are plenty of GUI applications for writing and compiling Less code. Some of

the popular options include Crunch!3, SimpLESS,4 and Mixture.5

Customizing Bootstrap before Downloading
Yes, you heard right. Bootstrap allows you to edit and select the features you want

that should be present inside your own custom Bootstrap package.6

It has a field beside each Less variable, so if you don't know how to use Less you

can use this form to edit the default values. It also has a checkbox alongside each

Bootstrap component and plugin. You can uncheck any that you don't want to use,

as shown in Figure 5.5.

3 http://crunchapp.net/
4 http://wearekiss.com/simpless
5 http://mixture.io/
6 http://getbootstrap.com/customize

Jump Start Bootstrap152

http://crunchapp.net/
http://wearekiss.com/simpless
http://mixture.io/
http://getbootstrap.com/customize

Figure 5.5. Customizing the Bootstrap package

Unchecking a particular component may also uncheck other components that are

dependent on it. For example, unchecking Forms from the customize page will also

uncheck Input groups and Navbar automatically. Hence, you need to be careful

when making selections!

Media Queries and Bootstrap
Media queries were introduced as a part of CSS3 to dynamically control website

content depending on screen resolution. It's one of the key technologies beneath

every responsive framework available today. Bootstrap uses media queries to

properly define many CSS rules to make it a responsive framework.

Understanding media queries is important if you want to customize Bootstrap's re-

sponsive grid system. Let's take a look at a simple media query:

153Diving Deep: Customizing Bootstrap

@media all and (min-width: 699px){
 h1{
 display: none;
 }
}

Every media query should have a media type and an expression. The media type

specifies on what type of devices the linked document will be displayed Here, the

media type is all. The expression further limits the stylesheet's scope using media

features, such as width, height, and color. Here, the expression is min-width:

699px. This media query will apply the CSS properties contained in it if the browser

width is greater than 699px. Hence, the h1 element will be hidden on screens wider

than 699px.

There are many media types and media features available to us. Examples of media

types include all, print, screen, and projection. Examples of media features in-

clude height, max-height, and max-width.

Bootstrap has defined many media queries for various device sizes to create a highly

responsive framework. One of the snippets from Bootstrap's CSS file is shown here:

@media (min-width: 768px) {
 .container {
 width: 750px;
 }
}

To read more about media queries, refer to the Mozilla Developer Network docu-

mentation.7

Summary
In this chapter, we've discussed the various ways of customizing Bootstrap and seen

how to customize Bootstrap via CSS and Less. As we've seen, Bootstrap offers many

options for altering the default styles, giving you the power to create your own

unique and beautiful designs.

7 https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

Jump Start Bootstrap154

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

Chapter6
Optimizing Bootstrap
So we have reached the final chapter of the book. We've really come a long way,

now having the capability to build a professional, responsive website using Bootstrap.

But the final piece of the puzzle is discovering how to optimize our creations so

that they not only look good but also perform well.

In this chapter, you will be learning techniques to optimize a website built with

Bootstrap (or, indeed, any other front-end framework). We will be working with

CSS and JavaScript minification and also streamlining the Bootstrap default package.

We will try to understand the limitations of Bootstrap and discuss some of the

common pitfalls of using it.

Optimization Techniques
A website needs to look good and perform well. Web users have become impatient,

and a slow-loading website will be dismissed, irrespective of how beautifully de-

signed it is.

In order to build the right template, we need to optimize our CSS files, JavaScript

files, and images. All these files are served to the browser via separate request calls,

so the lighter they are, the better the overall performance of the website.

Optimizing CSS
When dealing with the Bootstrap framework, we generally end up creating more

than one CSS file. By default, every Bootstrap project comes with the bootstrap.css

file included in the website's template. On top of that, we will normally have custom

CSS files to make our website look more attractive. Here are a few tasks we can do

to reduce the size of the CSS files in our website's template.

Use the Minified Bootstrap CSS File
As stated in the previous chapter, Bootstrap allows developers to select only those

components that are actually needed while developing the template. This reduces

the overall size of the main Bootstrap CSS file (bootstrap.css). Once the website is

ready for production, we can further reduce the size of this CSS file by using its

minified version (bootstrap.min.css).

Remove Unused Bootstrap Components Using Less
If you prefer writing CSS through Less, you have the additional option of customizing

Bootstrap through its main Less file (bootstrap.less). If you open this file, you'll see

lots of import statements aggregating various Bootstrap components together. You

can comment out those import statements that are irrelevant to your template.

For example, to avoid using Bootstrap's labels, badges, and progress bars, you can

comment out the following lines from bootstrap.less file:

@import "labels.less";
@import "badges.less";
@import "progress-bars.less";

Suppose that you don't want to use any of Bootstrap's JavaScript plugins. Remove

all the CSS rules associated with them by commenting out the following lines from

bootstrap.less to exclude them completely:

Jump Start Bootstrap156

// Components w/ JavaScript
@import "modals.less";
@import "tooltip.less";
@import "popovers.less";
@import "carousel.less";

You can also remove the default font icons (glyphicons) that are built into the

Bootstrap package. First you need to delete all the glyphicon-* font files from the

fonts folder. Then comment out the following import statement from bootstrap.less

file:

@import "glyphicons.less";

After you're done commenting out those components that you won't be using,

compile the main bootstrap.less file to form bootstrap.css, as discussed in the previous

chapter. This way you can reduce the size of the CSS file.

Compress all the CSS Files into One File
After developing your website's template, you will likely be left with a version of

Bootstrap's CSS file and multiple custom CSS files. You can combine all these files

into one CSS file, which will help in reducing the number of HTTP requests, as

well as the combined size of all the CSS files.

There are several tools to help you with the compression process. One of my favorites

is Recess from Twitter,1 an open-source code quality tool for CSS. You can read

how to install and use Recess at SitePoint.2

Let's first combine all the CSS files into a main one called application.css. This can

done using CSS's @import statement as follows:

1 http://twitter.github.io/recess/
2 ttp://www.sitepoint.com/optimizing-css-stylesheets-recess/

157Optimizing Bootstrap

http://twitter.github.io/recess/
ttp://www.sitepoint.com/optimizing-css-stylesheets-recess/

@import url("bootstrap.min.css");
@import url("myCSSFile1.css");
@import url("myCSSFile2.css");
@import url("myCSSFile3.css");
@import url("myCSSFile4.css");

You need to ensure that you are providing relative paths in the import statements

with respect to application.css.

Next, run the recess command in the terminal:

recess path/to/application.css --compress >
➥path/to/application.min.css

This will create a new CSS file called application.min.css in the same folder. This

new CSS file will be much smaller in size than the original separate files.

Optimizing JavaScript
Optimizing the JavaScript files is equally as important as optimizing the CSS files.

Bootstrap comes with flexible options to remove any unwanted JavaScript plugins

that we won't be using in our projects. This can greatly help in reducing the size of

the main JavaScript file bootstrap.js.

Use a Minified Bootstrap JavaScript file
If you want to be able to use all of Bootstrap's JavaScript plugins, you should include

the minified file bootstrap.min.js file rather than bootstrap.js when sending the project

for production.

Remove Unused Bootstrap JavaScript plugins
Just like we did for CSS components, you can head over to Bootstrap's customization

page and deselect any JavaScript plugins you don't need before downloading. This

can be the easiest way of removing unwanted JavaScript plugins from Bootstrap.

Bootstrap also comes with a separate .js file for each of its JavaScript plugins. For

example, it has modal.js for modals and carousel.js for carousels. You can access these

individual files only if you have downloaded Bootstrap's source package.

Jump Start Bootstrap158

Going to the Source Package

Bootstrap's source package can be obtained by selecting the Download Source option

at the Bootstrap download page.3

Once downloaded, you can head over to the js folder to find all the .js files related

to each of Bootstrap's JavaScript plugins. You can then include just those files in

your project that you want to use.

Compress All the JavaScript Files into One
Just as with CSS, it is a good idea to have all your JavaScript files compressed into

a single .js file. One of my favorite JavaScript compression tools is CompressJS,

which is found on its GitHub page to download the package.4 With CompressJS,

you have to provide the paths to all the .js files with a space between them.

Here's an example:

$./compressjs.sh jquery.min.js bootstrap.min.js
➥myCustomJavaScript.js

This command will compile all the JavaScript files and produce the output in a

single .js file. It gives a random name to the compressed file and tells you the file-

name. If you have many JavaScript files, you can place them all in a single folder

and compile them together as follows:

$./compressjs.sh scripts/*.js

The terminal output should be similar to Figure 6.1.

3 http://getbootstrap.com/getting-started/#download
4 https://github.com/dfsq/compressJS.sh

159Optimizing Bootstrap

http://getbootstrap.com/getting-started/#download
https://github.com/dfsq/compressJS.sh

Figure 6.1. Running CompressJS

Optimizing Images
It is often the images that cause the slow loading of web pages. Imagine a situation

where we need to display an image of resolution 500px by 500px but instead we

have an image of resolution 2000px by 2000px. We can use Bootstrap's helper class

img-responsive to fit that bigger image into a 500px by 500px div; however, while

the helper class has assisted in displaying the image properly, it hasn't actually re-

duced the file size of the image. Unfortunately, Bootstrap lacks the tools to fix this

issue.

There are several server-side tools that can identify the request type of a particular

image and then resize the image before serving it. Some of the tools I've been using

are Adaptive Images5 and TimThumb,6 but I won't be covering them in this book

as they are server-side tools. Installation and usage instructions are available on

their official websites.

5 http://adaptive-images.com/
6 http://www.binarymoon.co.uk/projects/timthumb/

Jump Start Bootstrap160

http://adaptive-images.com/
http://www.binarymoon.co.uk/projects/timthumb/

Avoiding Common Pitfalls
By now, you'll understand that Bootstrap is one of the best frameworks for building

responsive websites. With Bootstrap, there's no need to develop a separate mobile

version of your site. A single responsive version can be viewed on any kind of

device.

Yet there are a few common pitfalls that Bootstrap developers often fall into while

developing responsive websites. These issues can make your websites slow and

non-responsive in smaller devices, so be aware of them:

■ Using different HTML markup for specific devices: New developers often take

advantage of Bootstrap's responsive utility features such as hidden-sm and vis-

ible-sm to toggle the display of various components on a website. They write

different versions of the HTML markup in one document and then use these

helper classes to toggle the component display as per the browser window size.

By doing this they forget that the overall size of the HTML page is increasing,

which will slow down the rendering process. Hence, it is advisable to use

Bootstrap's grid system to dynamically resize the same HTML markup in browsers

of all sizes.

■ Using Bootstrap in applications that target IE8 and below: I have seen larger

organizations that still target compatibility with Internet Explorer version 8 and

below. Though Bootstrap does provide support for IE8, there are some CSS3

properties that will fail to work in it such as border-radius and box-shadows.

Therefore it is advisable to avoid using Bootstrap if your target audience is IE8

and lower. In fact, you definitely should not use Bootstrap 3 in applications that

target audiences with IE7 and below.

■ Using Bootstrap to make hybrid mobile applications: You should avoid using

Bootstrap to create hybrid applications that are developed using web-based

technologies and then ported into mobile platforms. Bootstrap can be too heavy

for such applications. You can instead use the Ratchet framework,7 which is

developed especially for creating mobile applications. Ratchet comes from the

same Bootstrap team, and you can learn more about it on SitePoint.8

7 http://goratchet.com
8 http://www.sitepoint.com/prototype-mobile-apps-easily-ratchet/

161Optimizing Bootstrap

http://goratchet.com
http://www.sitepoint.com/prototype-mobile-apps-easily-ratchet/

The Bootstrap team keeps on releasing newer versions by fixing known problems

and adding new features. You can also check out Bootstrap's official issues page to

keep track of current known issues with Bootstrap 3.9

Where to Go From Here
As the saying goes, “practice makes perfect.” The more you practice with Bootstrap,

the better control you have on your designs. One way to practice is to try to recreate

the designs of popular responsive websites using Bootstrap. Here's a list of websites

you can take inspiration from:

■ Hudson's Bay Company10

■ Dribbble11

■ Google+12

■ Pinterest13

■ Zurb14

■ Sony15

■ Microsoft16

■ Bootstrap17

We've taken a look at some built-in Bootstrap plugins in this book, but it's also worth

investigating some of the third-party Bootstrap plugins that are available as they

can add powerful features to your sites. Here's a selection of the most popular:

■ FuelUX18 adds various popular features such as datepicker, checkbox, combobox,

loader, pill box, and tree.

9 https://github.com/twbs/bootstrap/issues
10 http://www3.hbc.com/
11 http://dribbble.com/
12 http://plus.google.com
13 http://www.pinterest.com
14 http://www.zurb.com
15 http://www.sony.com
16 http://www.microsoft.com
17 http://getbootstrap.com
18 https://github.com/ExactTarget/fuelux/tree/3.0.0-wip

Jump Start Bootstrap162

https://github.com/twbs/bootstrap/issues
http://www3.hbc.com/
http://dribbble.com/
http://plus.google.com
http://www.pinterest.com
http://www.zurb.com
http://www.sony.com
http://www.microsoft.com
http://getbootstrap.com
https://github.com/ExactTarget/fuelux/tree/3.0.0-wip

■ Jasny Bootstrap19 brings in some important features that were not available in

Bootstrap 3. For example, off canvas (a slide-out menu from either side of the

screen like in apps for mobile devices), row link (converting table rows into

clickable links), input mask (forcing user to enter data in a specific format), and

file input (a stylish file input field).

■ Bootstrap Lightbox20 adds an image lightbox feature to Bootstrap.

■ Bootstrap Image Gallery21 comes with a fully functional, ready-to-use image

gallery for Bootstrap.

■ Bootstrap Notifications22 gives the capability to display fancy notifications

anywhere on the screen.

■ Bootstrap Markdown23 provides markdown editing tools in Bootstrap.

■ Bootstrap Colorpicker24 adds a color-picker widget.

■ Bootstrap Star Rating25 provides star rating tools.

You should try out Bootstrap in your upcoming projects to get a feel for the rapid

development environment that it promises. You can also follow the Bootstrap tu-

torials on SitePoint to explore more. Keep Bootstrapping!

19 http://jasny.github.io/bootstrap/
20 http://www.jasonbutz.info/bootstrap-lightbox/
21 http://blueimp.github.io/Bootstrap-Image-Gallery/)
22 http://goodybag.github.io/bootstrap-notify/
23 http://toopay.github.io/bootstrap-markdown/
24 http://www.eyecon.ro/bootstrap-colorpicker/
25 http://plugins.krajee.com/star-rating

163Optimizing Bootstrap

http://jasny.github.io/bootstrap/
http://www.jasonbutz.info/bootstrap-lightbox/
http://blueimp.github.io/Bootstrap-Image-Gallery/)
http://goodybag.github.io/bootstrap-notify/
http://toopay.github.io/bootstrap-markdown/
http://www.eyecon.ro/bootstrap-colorpicker/
http://plugins.krajee.com/star-rating

	Jump Start Bootstrap
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to Take Your Learning Further?

	Up, Close, and Personal with Bootstrap
	What is Bootstrap?
	Why Does It Exist?
	How Can It Help Me?

	History of CSS Frameworks
	The Need for CSS Prototyping
	The Origins of Bootstrap
	Bootstrap’s Competition
	Who Uses Bootstrap?

	Overview of Responsive Web Design
	Adjusting a Layout Based on Screen Size

	Getting Bootstrap Ready

	Bootstrap Grid System
	What Is a Grid System?
	Building a Basic Grid
	Case Study: Creating a Dynamic Layout
	Designing for Desktops
	Designing for Tablets
	Designing for Mobile

	Nesting Columns
	Offsetting Columns
	Reordering Grids Manually
	Summary

	Exploring Bootstrap Components
	Page Components
	Page Headers
	Panels
	Media Object
	Thumbnails
	List Group

	Navigation Components
	Navs
	Navbar
	Breadcrumb

	Standing Out
	Label
	Buttons
	Glyphicons
	Wells
	Badges

	Fun with Forms
	Basic Form
	Horizontal Forms
	Inline Form
	Helper Classes in Forms
	Control Sizing

	Summary

	Bootstrap Plugins for Fun and Profit
	Extending Functionality
	Dropdowns
	Dropdowns with JavaScript
	Alert Messages
	Alert Messages with JavaScript
	Buttons
	Buttons with JavaScript

	Managing Content
	ScrollSpy
	ScrollSpy with JavaScript
	Tabs
	Tabs with JavaScript
	Collapse
	Collapse with JavaScript
	Tooltip
	Tooltip with JavaScript
	Popovers
	Popovers with JavaScript

	Getting Fancy
	Carousel
	Carousel with JavaScript
	Modals
	Modals with JavaScript

	Summary

	Diving Deep: Customizing Bootstrap
	Customizing Bootstrap Stylesheets
	Customizing Bootstrap Using CSS
	Customizing Bootstrap Using Less
	Bootstrap's Variables and the Mixins
	Reset Files
	Core Files
	Component Files
	Plugin Files
	Utility Files

	Overriding Styles Using Less
	Compiling Less
	Using Node
	Using Third-party Software

	Customizing Bootstrap before Downloading
	Media Queries and Bootstrap
	Summary

	Optimizing Bootstrap
	Optimization Techniques
	Optimizing CSS
	Use the Minified Bootstrap CSS File
	Remove Unused Bootstrap Components Using Less
	Compress all the CSS Files into One File

	Optimizing JavaScript
	Use a Minified Bootstrap JavaScript file
	Remove Unused Bootstrap JavaScript plugins
	Compress All the JavaScript Files into One

	Optimizing Images

	Avoiding Common Pitfalls
	Where to Go From Here

