
Summary of Contents

Preface . xxv

1. Hello JavaScript . 1

2. Programming Basics . 19

3. Arrays, Logic, and Loops . 55

4. Functions . 81

5. Objects . 111

6. The Document Object Model . 143

7. Events . 183

8. Forms . 207

9. The Window Object . 241

10. Testing and Debugging . 263

11. Functional JavaScript . 291

12. Object-oriented Programming in JavaScript . 327

13. Ajax . 377

14. HTML5 APIs . 399

15. Organizing Your Code . 427

16. Next Steps . 461

JAVASCRIPT:
NOVICE TO

NINJA
BY DARREN JONES

JavaScript: Novice to Ninja
by Darren Jones

Copyright © 2014 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Craig Buckler

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9924612-2-5 (print)

ISBN 978-0-9924612-1-8 (ebook)

Printed and bound in the United States of America

iv

About Darren Jones

Darren has been playing around with programming and building websites for over a decade.

He wrote the SitePoint book Jump Start Sinatra, and also produced the Getting Started With

Ruby video tutorials for Learnable, as well as writing a number of articles published on

SitePoint.

In recent years, having seen just how powerful the language can be, Darren has started to use

JavaScript much more heavily. He believes that JavaScript will be the most important pro-

gramming language to learn in the future.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

To my two favourite super heroes,

Zac & Sienna ― love you loads x

Table of Contents

Preface . xxv

Who Should Read This Book . xxvi

Conventions Used . xxvi

Code Samples . xxvi

Tips, Notes, and Warnings . xxvii

Supplementary Materials . xxviii

Want to Take Your Learning Further? . xxviii

Chapter 1 Hello JavaScript . 1

Programming . 2

JavaScript . 2

The History of JavaScript . 3

The Browser Wars . 4

Web 2.0 . 5

Standards . 5

HTML5 . 5

Node.js . 6

The Future of JavaScript . 6

A Ninja Programming Environment . 7

JavaScript Version . 7

Text Editors . 7

Browser Console . 8

Your First JavaScript Program . 9

JavaScript in the Browser . 10

Three Layers of the Web . 10

Unobtrusive JavaScript . 11

Graceful Degradation and Progressive Enhancement 12

Your Second JavaScript Program . 13

The Project: Quiz Ninja . 15

Chapter Summary . 17

Chapter 2 Programming Basics . 19

Comments . 20

JavaScript Grammar . 21

Data Types . 22

Strings . 23

Variables . 24

Reserved Words . 26

Assignment . 27

String Properties and Methods . 27

Numbers . 31

Octal and Hexadecimal Numbers . 31

Exponential Notation . 32

Number Methods . 32

Arithmetic Operations . 33

Changing Variables . 34

Incrementing Values . 35

Infinity . 36

NaN . 37

Type Coercion . 37

Converting Between Strings and Numbers . 38

Undefined . 41

Null . 41

Booleans . 41

Logical Operators . 42

! (Logical NOT) . 42

&& (Logical AND) . 43

x

|| (Logical OR) . 44

Lazy Evaluation . 44

Bitwise Operators . 45

Bitwise NOT . 45

Bitwise AND . 46

Bitwise OR . 46

Bitwise XOR . 47

Bitwise Shift Operators . 47

Comparison . 48

Equality . 48

Soft Equality . 48

Hard Equality . 49

Inequality . 51

Greater Than and Less Than . 51

Quiz Ninja Project . 53

Summary . 54

Chapter 3 Arrays, Logic, and Loops 55

Arrays . 56

Stacks of Pizza . 56

Adding Values to Arrays . 57

Creating Array Literals . 58

Removing Values from Arrays . 59

Array Properties and Methods . 60

Pop, Push, Shift, and Unshift . 61

Merging Arrays . 64

The join() Method . 65

Slicing and Splicing . 65

Reverse . 67

Sort . 67

xi

Finding if a Value is in an Array . 68

Multidimensional Arrays . 68

Logic . 69

if Statements . 69

else Statements . 70

Ternary Operator . 71

switch Statements . 71

Loops . 72

while Loops . 73

Infinite Loops . 74

do ... while Loops . 74

for Loops . 75

Nested for Loops . 76

Looping over Arrays . 77

Quiz Ninja Project . 77

Summary . 79

Chapter 4 Functions . 81

Defining a Function . 82

Function Declarations . 82

Function Expressions . 82

Function() Constructors . 83

Invoking a Function . 84

Return Values . 87

Parameters and Arguments . 88

The arguments Variable . 89

Default Arguments . 90

Scope . 92

Global Scope . 92

Local Scope . 93

xii

Hoisting . 95

Variable Hoisting . 95

Function Hoisting . 96

Callbacks . 97

Sorting Arrays . 99

Improving the mean() Function . 100

Array Iterators . 101

forEach() . 102

map() . 102

reduce() . 103

Using map() and reduce() Together . 104

filter() . 105

Quiz Ninja Project . 105

Summary . 109

Chapter 5 Objects . 111

Object Literals . 112

A Super Example . 112

Creating Objects . 113

Accessing Properties . 114

Calling Methods . 114

Checking if Properties or Methods Exist . 115

Finding all the Properties of an Object . 115

Adding Properties . 116

Changing Properties . 117

Removing Properties . 117

Nested Objects . 118

Objects as Parameters to Functions . 118

Built-in Objects . 120

JSON . 120

xiii

The Math Object . 122

Mathematical Constants . 122

Mathematical Operations . 122

Trigonometric Functions . 125

Random Numbers . 127

Experimental Methods . 128

The Date Object . 128

Constructor Function . 128

Getter Methods . 130

Setter Methods . 132

The RegExp Object . 133

Creating Regular Expressions . 133

RegExp Methods . 134

Basic Regular Expressions . 134

Character Groups . 135

Regular Expression Properties . 136

Special Characters . 137

Modifiers . 137

A Practical Example . 138

String Methods . 139

Roll the Dice! . 139

Quiz Ninja Project . 140

Summary . 141

Chapter 6 The Document Object Model 143

The Document Object Model . 144

What is the Document Object Model? . 144

History of the DOM . 145

An Example Web Page . 145

Getting Elements . 147

xiv

Legacy DOM Shortcut Methods . 149

Getting an Element by Its ID . 150

Get Elements by Their Tag Name . 150

Get Elements by Their Class Name . 151

Query Selectors . 151

Navigating the DOM Tree . 153

Finding the Value of a Node . 155

Getting and Setting Attributes . 156

Getting an Element’s Attributes . 156

Setting an Element’s Attributes . 157

Classes of an Element . 158

The className Property . 158

The classList Property . 158

Updating the DOM by Creating Dynamic Markup 160

Creating an Element . 160

Creating a Text Node . 161

Appending Nodes . 161

Putting It All Together in a Function . 162

Adding Elements to the Page . 162

Remove Elements from a Page . 166

Replacing Elements on a Page . 167

innerHTML . 169

Live Collections . 170

Updating CSS . 171

Camel Case Properties . 172

Disappearing Act . 173

Checking Style Properties . 174

Quiz Ninja Project . 176

Adding Some Style . 179

Summary . 181

xv

Chapter 7 Events . 183

Event Listeners . 184

Inline Event Handlers . 185

Older Event Handlers . 186

Event Listeners . 186

Example Code . 187

The Event Object . 189

Types of Event . 190

The Event Target . 190

Coordinates of an Event . 190

Which Mouse Button Was Pressed? . 191

Types of Events . 191

Mouse Events . 191

Keyboard Events . 193

Modifier Keys . 195

Touch Events . 196

Touch Event Properties . 197

Removing Event Listeners . 198

Stopping Default Behavior . 199

Event Propagation . 200

Bubbling . 200

Capturing . 201

Stopping the Bubbling Phase . 202

Event Delegation . 203

Quiz Ninja Project . 203

Summary . 205

Chapter 8 Forms . 207

Forms . 208

A Searching Example . 208

xvi

Accessing Form Elements . 209

Form Properties and Methods . 210

Form Events . 211

Submitting a Form . 212

Retrieving and Changing Values from a Form 213

Form Controls . 216

Input Fields . 219

Text Input Fields . 219

Password Input Fields . 220

Checkbox Input Fields . 220

Radio Button Input Fields . 222

Hidden Input Fields . 223

File Input Fields . 224

Select Drop-down List . 226

Text Areas . 227

Buttons . 227

I Need a Hero! . 228

Form Validation . 229

Quiz Ninja Project . 234

Summary . 238

Chapter 9 The Window Object . 241

The Browser Object Model . 242

Going Global . 242

Dialogs . 243

Browser Information . 244

Which Browser? . 244

Location, Location, Location . 245

The Browser History . 247

Controlling Windows . 248

xvii

Screen Information . 249

The Document Object . 249

document.write() . 249

Cookies . 250

Timing Functions . 254

Animation . 255

requestAnimationFrame . 257

Quiz Ninja Project . 259

Summary . 261

Chapter 10 Testing and Debugging 263

Errors, Exceptions, and Warnings . 264

The Importance of Testing and Debugging . 265

Strict Mode . 266

Linting Tools . 267

Feature Detection . 267

Debugging in the Browser . 268

The Trusty Alert . 268

Using the Console . 269

Debugging Tools . 269

Error Objects . 270

Throwing Exceptions . 271

Exception Handling . 272

try, catch, and finally . 272

Tests . 274

Test-driven Development . 274

Testing Frameworks . 275

Jasmine . 275

Crunching Some Numbers . 276

Quiz Ninja Project . 287

xviii

Summary . 289

Chapter 11 Functional JavaScript 291

What is Functional Programming? . 292

Functions that Return Functions . 296

Function Properties and Methods . 297

Call and Apply Methods . 297

Custom Properties . 299

Callbacks . 300

Event-driven Asynchronous Programming 300

Generalized Functions . 302

Closures . 302

Function Scope . 303

The Ninja Training Temple . 303

A Basic Closure Example . 305

Returning a Function . 305

A Counter Example . 306

A Functional Example . 306

Immediately Invoked Function Expressions . 308

Temporary Variables . 308

Mimicking Block Scope . 309

Initialization Code . 310

Safe Use of Strict Mode . 311

Creating Self-contained Modules . 311

Functions that Define and Rewrite Themselves 312

Init-Time Branching . 314

Recursive Functions . 315

Currying . 317

A General Curry Function . 319

Quiz Ninja Project . 320

xix

Summary . 325

Chapter 12 Object-oriented Programming in
JavaScript . 327

Object-oriented Programming . 328

Encapsulation . 328

Polymorphism . 328

Inheritance . 329

Classes . 462

Constructor Functions . 329

Prototypal Inheritance . 334

The Prototype Object . 335

Finding Out the Prototype . 336

Own Properties and Prototype Properties . 337

The Prototype Is Live! . 338

Overwriting Prototype Properties . 340

What Should the Prototype Be Used For? . 340

Public and Private Methods . 342

Inheritance . 344

The Prototype Chain . 344

The Object Constructor Function . 345

Enumerable Properties . 345

Polymorphism . 346

Property Attributes and Descriptors . 350

Getting and Setting Property Descriptors . 351

Getters and Setters . 351

Creating Objects from Objects . 353

Object-based Inheritance . 355

Object Prototype Chain . 357

Adding Methods to Built-in Objects . 358

xx

Mixins . 360

Using Mixins to Add Properties . 364

Using Mixins to Create a copy() Method 364

Using the Mixin Method to Add Modular Functionality 365

Chaining Functions . 367

This and That . 367

Use that = this . 368

Use bind(this) . 369

Borrowing Methods from Prototypes . 369

Borrowing Array Methods . 370

Quiz Ninja Project . 371

Summary . 374

Chapter 13 Ajax . 377

Clients and Servers . 378

A Brief History of Ajax . 379

The XMLHttpRequest Object . 381

readystate . 381

Opening the Request . 382

Sending the Request . 383

Receiving the Response . 383

Receiving Information . 385

Sending Information . 388

FormData . 390

Ajax Timeouts . 392

JSON With Padding . 392

JSONP in Action . 393

Quiz Ninja Project . 395

Summary . 459

xxi

Chapter 14 HTML5 APIs . 399

The Development of HTML5 . 400

WHATWG . 400

Working Together . 400

Adoption . 401

Modules . 433

The data- Attribute . 401

HTML5 APIs . 403

HTML5 Web Storage . 403

Geolocation . 406

Web Workers . 408

Multimedia . 415

Other APIs . 418

Drawing with Canvas . 418

Shims and Polyfills . 422

Quiz Ninja Project . 422

Summary . 424

Chapter 15 Organizing Your Code 427

Frameworks . 428

DOM Manipulation Example . 428

jQuery . 429

Advantages and Disadvantages of Frameworks 430

When to Use a Framework . 431

Some Useful Frameworks . 431

Modules . 433

CommonJS Modules . 435

Asynchronous Module Definitions . 436

Package Managers . 437

Browserify . 437

xxii

Bower . 438

Ender . 439

MVC Libraries . 439

A Quick List Example . 441

MVC Frameworks . 445

Templates . 446

Minification . 449

Task Runners . 450

Grunt . 450

Gulp . 452

Deploying JavaScript . 453

Quiz Ninja Project . 454

Deployment . 456

Summary . 459

Chapter 16 Next Steps . 461

What’s Next: ECMA6, Harmony . 461

Block Scope . 462

Classes . 462

Arrow Notation . 464

Default Parameters . 464

Promises . 465

Generators . 466

Modules Using Export and Import . 468

Ready to Use Today . 469

Ninja Skills . 470

Version Control . 470

Keep Your Knowledge Up to Date . 471

Use Common JavaScript Coding Patterns . 472

Build Things . 472

xxiii

JavaScript Development Ideas . 473

HTML5 Game Development . 473

Single-page Web Applications . 474

App Development . 474

Node.js Development . 475

And There’s More! . 475

Summary . 476

xxiv

Preface
The aim of this book is to introduce you to programming using the JavaScript lan-

guage, eventually helping you to develop into a JavaScript ninja.

This is an exciting time to be learning JavaScript, having finally outgrown its early

reputation as a basic scripting language used to produce cringeworthy effects on

web pages. Today, JavaScript is used to produce professional and powerful web

applications. Modern browsers are now capable of running JavaScript code at

lightning speed, and Node.js has helped to revolutionize it by facilitating its use in

other environments. This has led to a much more professional and structured ap-

proach to building JavaScript applications, where it is now considered a full-fledged

programming language. In short, JavaScript has grown up.

JavaScript has a number of cool features that make it stand out from other languages,

such as callbacks, first-class functions, prototypal inheritance, and closures. Its

event-based model also makes it a very good choice for modern web application

development. JavaScript’s ace in the pack, though, is something of which every

language is envious―its ubiquity. JavaScript is available almost everywhere; anybody

who has access to a browser can use it. And this is increasing every year as it be-

comes more readily available outside the browser environment. This translates into

JavaScript’s reach being immense: it is already the most popular language on Git-

Hub.1 I can only see JavaScript growing even more popular in the future as it becomes

the language of choice for the Internet of Things2—helping to control household

appliances, even program robots.

Before I get carried away, though, I should point out that JavaScript is far from

perfect, having a number of flaws. It is missing some important programming con-

structs, such as modules and private functions, that are considered standard in

many modern programming languages. Yet it’s also an unbelievably flexible language,

where many of these gaps can be filled using the tools that it provides. In addition,

many libraries have sprung into existence that help to extend JavaScript so that it’s

now able to reach its full potential.

1 https://www.asad.pw/blog/2014/11/04/github-language-popularity-statistics/
2 http://en.wikipedia.org/wiki/Internet_of_Things

https://www.asad.pw/blog/2014/11/04/github-language-popularity-statistics/
https://www.asad.pw/blog/2014/11/04/github-language-popularity-statistics/
http://en.wikipedia.org/wiki/Internet_of_Things

This book starts off with the basics, assuming no programming or JavaScript

knowledge, but quickly gets up to speed covering all the main topics in great depth

such as functions, objects, and DOM manipulation. More advanced topics such as

error handling and testing, functional programming, and OOP are then introduced

after the basics have been covered. There have been some exciting new developments

in the world of JavaScript over the last few years such as Ajax, HTML5 APIs, and

task runners, and these are covered in the last part of the book. There’s also a prac-

tical project to build a quiz application that is developed throughout the book to-

wards the end of each chapter. I’ve written with developing for modern browsers

in mind, so I’ve always tried to use the most up-to-date methods in the examples.

Having said that, I’ve also tried to acknowledge if something might not work in an

older browser, or if a workaround is needed.

It’s a long way ahead―16 chapters, to be precise. But remember, every ninja’s

journey starts with a single page (or something like that, anyway). So, turn the page

and let’s get started!

Who Should Read This Book
This book is suitable for beginner-level web designers and developers. Some

knowledge of HTML and CSS is assumed, but no previous programming experience

is necessary.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify distinct types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing:

xxvi

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, a ⋮ will be

displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

xxvii

Ahem, Excuse Me …

Notes are useful asides that are related, but not critical, to the topic at hand. Think

of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/jsninja1/

The book’s website, which contains links, updates, resources, and more.

https://github.com/spbooks/jsninja1/

The downloadable code archive for this book.

http://community.sitepoint.com/category/javascript

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book—we appreciate your support. Do you want to continue

learning? You can now gain unlimited access to courses and ALL SitePoint books

at Learnable for one low price. Enroll now and start learning today! Join Learnable

and you’ll stay ahead of the newest technology trends: http://www.learnable.com.

xxviii

http://www.learnable.com/books/jsninja1/
https://github.com/spbooks/jsninja1/
http://community.sitepoint.com/category/javascript
http://www.learnable.com

Chapter1
Hello JavaScript
Now it’s time to start learning JavaScript. In this chapter, we’re going to introduce

the language, as well as set up a programming environment. We’ll also write our

first programs in JavaScript.

Here’s what this chapter will cover:

■ programming

■ the history of JavaScript

■ the tools that are needed to program in JavaScript

■ Hello, World!―your first JavaScript program

■ JavaScript in the console

■ JavaScript in the web browser

■ another more complicated JavaScript program

Programming
Programming is about making computers do what you want. A computer program

is basically a series of instructions that tell your computer how to perform a task.

Unfortunately, though, computers don’t speak the same language as us―they only

use 1s and 0s. The first computers were programmed using punched cards, with a

hole representing a 1 and no hole representing 0. Machine code and assembly lan-

guage are low-level programming languages that are closely associated with a

computer’s hardware. These can be difficult in which to program because they in-

volve writing very abstract code that is heavily tied to a computer’s architecture.

Alternatively, high-level programming languages allow abstractions such as functions

and logical statements to be used, making code easier for humans to read and write.

Programs are written in a language such as C, C++ or Java, which is then compiled

into machine code and executed. These programs are usually very fast and are often

used to write games and professional business software where speed is important.

Interpreted high-level languages that are translated into machine code at run time

are often referred to as scripting languages. They typically run slower than compiled

languages, although interpreters are becoming more and more sophisticated, increas-

ingly blurring the line between compiled and interpreted languages.

JavaScript
The language we’ll be learning in this book is JavaScript, often referred to as the

language of the Web. Nearly all web browsers can run JavaScript, making it one of

the most popular programming languages in the world. It has a low barrier to

entry―all you need to program in JavaScript is a text editor and a web browser.

Although it is easy to get started, JavaScript can be a tricky language to grasp as it

has some unique features and interesting quirks. Once you have mastered it, though,

you’ll find it is a very flexible and expressive language that can create some

powerful applications.

JavaScript is a high-level language that is compiled at run time. This means that it

requires an engine that is responsible for interpreting programs and running them.

The most common JavaScript engines are found in browsers such as Firefox, Chrome,

or Internet Explorer, although JavaScript can be run without a browser. Many

JavaScript: Novice to Ninja2

modern JavaScript engines use a Just-in-time (JIT) interpreting process, which

considerably speeds up the compilation process, making the programs run faster.

JavaScript is also a dynamic language, which means that elements of a program can

change while it is running.

The History of JavaScript
The World Wide Web was originally a bunch of pages linked together by hyperlinks.

Soon people wanted more interaction and so Netscape (an early browser vendor)

asked Brendan Eich to develop a new language for their Navigator browser. This

needed to be done quickly because of the intense competition between Netscape

and Microsoft to be first to market, and Eich managed to create a prototype language

in just ten days. In order to do this, he borrowed various elements from other lan-

guages, including AWK, Java, Perl, Scheme, HyperTalk, and Self. The new language

was originally called LiveScript, but was hastily rebranded as JavaScript so that it

could benefit from the publicity that the Sun Microsystem’s Java language was at-

tracting at the time. This name has often caused some unfortunate confusion, with

JavaScript often thought of as a lighter version of Java; the two languages are unre-

lated, although JavaScript does share some syntax with Java.

JavaScript made its debut in version 2 of Netscape’s Navigator browser in 1995. The

following year, Microsoft reverse-engineered JavaScript to create their own version,

called JScript to avoid copyright issues with Sun Microsystems who owned the Java

trademark and had licensed it to Netscape. JScript shipped with version 3 of the

Internet Explorer browser and was almost identical to JavaScript―it even included

all the same bugs and quirks―but did have some extra Internet Explorer-only fea-

tures. Microsoft included another scripting language called VBScript with Internet

Explorere at the same time, although this never really caught on.

JavaScript (and JScript) was immediately popular. It had a low barrier to entry and

was relatively easy to learn, which meant an explosion in its usage making web

pages dynamic and more interactive. Unfortunately, its low barrier was also a curse

as it meant that people could write snippets of code without much understanding

of what they were actually doing. Code could be easily copied and pasted and was

often used incorrectly, leading to lots of poor code examples appearing all over the

Web. JavaScript was also frequently used to create annoying pop-up adverts and

3Hello JavaScript

for browser sniffing (the process of detecting which browser was being used to view

a web page), and it started to gain a negative reputation.

Netscape and Sun Microsystems decided to standardize the language along with

the help of the European Computer Manufacturers Association, who would host

the standard. This standardized language was called ECMAScript, again, to avoid

infringing on Sun’s Java trademark. This caused even more confusion, but eventually

ECMAScript was used to refer to the specification, and JavaScript was (and still is)

used to refer to the language itself.

The ECMAScript standard can be difficult to interpret in places, so the implement-

ations of JavaScript can vary in assorted JavaScript engines. This is why some web

browsers behave differently when running JavaScript programs.

The Browser Wars
By the time Netscape Navigator 4 and Internet Explorer 4 were released, JavaScript

had become incredibly popular. Microsoft had started a lot of hype about the term

Dynamic HTML, or DHTML for short, to refer to the use of JavaScript to make HTML

more interactive and dynamic. In an attempt to seize upon this popularity, Netscape

and Microsoft tried to add new proprietary features, which lead to different syntaxes

being used. This "arms race" of adding new features to compete became known as

the Browser Wars. The unfortunate downside was that programmers had to write

two versions of code to achieve the same results in each browser. Professional pro-

grammers often dismissed JavaScript as a toy language unsuitable for any serious

programming, but this was unfair criticism―the language wasn’t the problem, it

was the way it was being implemented and used.

Eventually, Microsoft won the browser wars and Internet Explorer emerged as the

dominant browser. Support for standards had also increased, helped largely by the

efforts of the Web Standards Project (WaSP). Developer and browser vendors started

to work together and embrace the standards laid out by the World Wide Web Con-

sortium (W3C) and ECMA.

The open source web browser Firefox debuted in 2002 and Apple launched the

Safari browser in 2003. These both had strong standards support, which meant that

developers were able to produce better web applications using JavaScript that be-

haved consistently across different browsers.

JavaScript: Novice to Ninja4

Web 2.0
In 2005, sites such as Google Maps, Flickr, and Gmail started to appear and success-

fully demonstrated that JavaScript was capable of creating rich internet applications

that looked and behaved like native desktop applications. At around the same time,

the term Ajax, short for Asynchronous JavaScript And XML, was coined by Jesse

James Garrett. This described a technique of obtaining data from a server in the

background and updating only the relevant parts of the web page without the need

for a full page reload, enabling the user to still interact with the rest of the page.

This created a more seamless experience for users where it was used extensively

in many Web 2.0 applications. As a result a lot of professional programmers took

more notice of JavaScript and it began to be seen as a powerful and flexible program-

ming language, capable of producing high-quality code.

Standards
As JavaScript became used for more sophisticated applications and browsers em-

braced standards, the JavaScript landscape changed. A new browser war started,

but this time it was about seeing which browser could be the most standards-com-

pliant. There has also been competition to increase the speed of the JavaScript engine

that is built into the different browsers. This started in 2008 when engineers at

Google developed the V8 engine to run inside the Chrome browser. It was signific-

antly faster than previous JavaScript engines and signalled another arms race as

other browser vendors responded by increasing the speed of their engines. JavaScript

now runs significantly faster in modern browsers and the pace of improvement

shows no sign of slowing down.

HTML5
HTML5 is the latest HTML specification, although it is actually more of an umbrella

term for all the latest technologies that are used on the Web. This includes HTML,

CSS3 modules, and lots of APIs that use JavaScript to interact with web pages. These

will be covered in more detail in Chapter 10.

HTML5 has proven to be very popular and is emerging as a dominant standard for

web development. JavaScript is a key feature in how some of its more interesting

aspects work.

5Hello JavaScript

Node.js
In 2009, Ryan Dahl developed Node.js, which allows server-side applications to be

written in JavaScript. It is based on the Google's V8 engine and implements non-

blocking input and outputs in an event-driven environment. This allows the creation

of fast and powerful real-time web applications written exclusively in JavaScript.

It has also lead to many applications and JavaScript libraries that don’t use the

browser at all. Node JS has proven to be exceptionally popular and its usage contin-

ues to grow. This has increased the interest in and use of JavaScript as it starts to

appear in many environments.

The popularity of Node,js has lead to an interesting development known as Iso-

morphic JavaScript. This involves having the same JavaScript code that can be run

either on the client- or server-side: if a browser is unable to run the code, it can be

run on the server and downloaded, or if the server is unavailable, the code can be

run on the client.

The Future of JavaScript
These are exciting times for JavaScript as it is being used for more and more applic-

ations beyond simply making web pages interactive. A big growth area at the moment

is Single Page Applications. These applications run in the browser and rely heavily

on JavaScript. HTML5 games that use JavaScript extensively are also becoming in-

creasingly popular, especially as the graphical ability of browsers continues to im-

prove.

JavaScript and HTML5 technologies can be used to develop browser extensions,

Windows 8 desktop widgets, and Firefox OS and Chrome OS applications. Many

non web-related applications also use JavaScript as their scripting language. It can

be used to add interactivity to PDF documents, create HTML templates (Mustache),

interact with a database (MongoDB), and even control robots (Cylon.js)!

It certainly seems like JavaScript has a bright future. As the web platform continues

to evolve and mature and its usage grows beyond the browser, JavaScript is sure to

remain a central part of future developments.

JavaScript: Novice to Ninja6

A Ninja Programming Environment
A ninja needs very little to program JavaScript. All one needs is a text editor and a

web browser such as Firefox, Opera, Internet Explorer, Safari, or Chrome.

JavaScript Version
We’ll be using version 5 of ECMAScript in this book and assume that you are using

a modern browser (try to update to the latest version of whichever is your favorite).

You can’t always rely on users to have the latest version, though, so we’ll also try

to point out when some of the code will fail to work in older browsers.

Text Editors
If you are using Windows, Notepad will work just fine. If you find it a bit too basic,

you might want to try Notepad++1, E Text Editor2, UltraEdit3, or Sublime Text4.

If you are using a Mac, options include the built-in TextEdit, Text Wrangler5,

TextMate6, or Atom text editor7. You could also use Sublime Text8.

If you are using Linux, you’ll be fine with the built-in text editor (such as Gedit,

Genie, Kate, Vim, or Emacs), or you could also use E Text Editor9 or Sublime Text10.

You can also consider an Integrated Development Environment (IDE) such as Ec-

lipse11, Coda12, NetBeans13, or the online Cloud 914.

1 http://notepad-plus-plus.org/
2 https://github.com/etexteditor/e
3 http://www.ultraedit.com/
4 http://www.sublimetext.com/
5 http://www.barebones.com/products/textwrangler/
6 http://macromates.com/
7 https://atom.io/
8 http://www.sublimetext.com/
9 https://github.com/etexteditor/e
10 http://www.sublimetext.com/
11 http://www.eclipse.org/webtools/jsdt/
12 https://panic.com/coda/
13 https://netbeans.org/
14 https://c9.io/

7Hello JavaScript

http://notepad-plus-plus.org/
https://github.com/etexteditor/e
http://www.ultraedit.com/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
http://macromates.com/
https://atom.io/
http://www.sublimetext.com/
https://github.com/etexteditor/e
http://www.sublimetext.com/
http://www.eclipse.org/webtools/jsdt/
http://www.eclipse.org/webtools/jsdt/
https://panic.com/coda/
https://netbeans.org/
https://c9.io/

Another interesting option is Brackets15, which is free, cross-platform, and even

written in JavaScript!

Browser Console
Nearly every browser can run JavaScript and most modern browsers now include

a JavaScript console that can be used to run snippets of JavaScript code. Here are

some instructions on how to launch a JavaScript console in some of the more pop-

ular browsers:

Chrome
View > Developer > JavaScript Console, or press Command + Option + J (Mac) or Control

+ Shift + J (Windows/Linux)

Safari
Press Command + Option + I

Internet Explorer
Press F12 to open the developer tools. Click the Console tab.

FireFox
Press CTRL + SHIFT + K to open the web console (on Windows) or COMMAND +

SHIFT + K (on Macs).

Alternatives
You could install the Firebug add-on16, press F12 to open Firebug, and click on the

Console tab.

Another option is to use the excellent JS Console17 website. This allows you to enter

JavaScript commands directly into the browser and see the results. I have used this

console to run most of the code snippets in this book.

15 http://brackets.io/
16 https://getfirebug.com/
17 http://jsconsole.com/

JavaScript: Novice to Ninja8

http://brackets.io/
https://getfirebug.com/
http://jsconsole.com/

Your First JavaScript Program
That’s enough talk about JavaScript―it’s time to write your first program!

It is a tradition when learning programming languages to start with a "Hello world!"

program. This is a simple program that outputs the phrase "Hello world!" to announce

your arrival to the world of programming. We’re going to stick to this tradition and

write a "Hello world" program in JavaScript.

Go to JS Console in your browser and enter the following line of code:

console.log("Hello World!");

If all went to plan you should see a line in your console saying "Hello World!",

similar to the screenshot in Figure 1.1.

Figure 1.1. "Hello, world!"

The program is a single statement that instructs the console to log the statement

"Hello World!" to the console.

9Hello JavaScript

Congratulations, you’ve just written your first JavaScript program. It might not look

like much, but remember that every ninja’s journey begins with a single step!

JavaScript in the Browser
JavaScript is an interpreted language and needs a host environment to run. Because

of its origins, the main environment that JavaScript runs in is the browser, although

it can be run in other environments; for example, Node.js can be used to run

JavaScript on a server. By far the most common use of JavaScript is still to make

web pages interactive. This means we should have a look at what makes a web page.

Three Layers of the Web
Nearly all web pages are made up of three key ingredients―HTML, CSS, and

JavaScript. HTML is for the content, CSS is the presentation layer, and JavaScript

adds the interactivity. You can think of this as being a bit like a pizza. You start

with the base, the HTML. Then you layer the sauce and cheese on top, that’s the

CSS. And last of all you put the toppings on. Each layer exists separately, but adds

something extra to the pizza. In the same way that you can have a perfectly good

pizza without any toppings, it isn’t essential to have JavaScript on a website. And

just as you can also have a pizza without any cheese that won’t taste any good, a

website without CSS will function perfectly well, but it won’t look particularly

good.

Keeping the Layers Separate

It is now widely considered best practice to keep all of these layers separate and

separate the concerns of each layer, so each layer is only responsible for one thing.

Putting them altogether can lead to very complicated pages where all of the code

is mixed up together in one file, causing "tag soup" or "code spaghetti". This used

to be the standard way of producing a website and there are still plenty of examples

around on the web that do this.

Each layer builds on the last. A web page should be able to function with just the

HTML layer―in fact, many websites celebrate "naked day18" when they remove the

CSS layer from their site. A website using just the HTML layer will be in its purest

form and look very old school, but should still be fully functional.

18 http://naked.threepixeldrift.com/

JavaScript: Novice to Ninja10

http://naked.threepixeldrift.com/

Unobtrusive JavaScript
When JavaScript was initially used, it was designed to be inserted directly into the

HTML code as can be seen in this example:

Click Me

This made it difficult to see what was happening as the JavaScript code was mixed

up with the HTML. It also meant that the code was tightly coupled to the HTML,

so any changes in the HTML required that the JavaScript code would also need

changing to stop it breaking.

It’s possible to keep the JavaScript code on its own away from the HTML by placing

it inside its own <script> tags, like so:

<script>
 button = document.getElementById(’button’)
 button.addEventListener("click", function() {
 console.log("Hello World!");
 };
</script>

Unobtrusive JavaScript is when the JavaScript code is kept completely separate

from the HTML and CSS, preferably in its own file. This can be linked to using the

same script tag and the src attribute to specify the file to link to:

<script src="js/scripts.js"></script>

The JavaScript code would then be placed in a file called scripts.js.

Avoid Using Self-closing Tags

If you’ve used XML or XHTML, you might have come across self-closing tags such

as this script tag:

<script src="js/scripts.js" />

These will fail to work in HTML5, so should be avoided.

11Hello JavaScript

You may see some legacy code that uses the language attribute:

<script src="js/scripts.js" language="javascript"></script>

This is unnecessary in HTML5, but it will still work.

In a similar way, the CSS should also be kept in a separate file, so the only code in

a web page is the actual HTML. This is considered best practice and is the approach

we’ll be using in the book.

Graceful Degradation and Progressive
Enhancement

Graceful degradation is the process of building a website so that it works best in a

modern browser that uses JavaScript, but still works to a reasonable standard in

older browsers or if JavaScript or some of its features are unavailable. An example

of this are programs that are broadcast in high definition (HD)―they work best on

HD televisions but still work on a standard TV; it’s just that the picture quality will

be of lesser quality. The programs will even still work on a black-and-white televi-

sion.

Progressive enhancement is the process of building a web page from the ground up

with a base level of functionality and then adding extra enhancements if they are

available in the browser. This should feel natural if you follow the principle of three

layers, with the JavaScript layer enhancing the web page rather than being an essen-

tial element that the page cannot exist without. An example might be the phone

companies who offer a basic level of phone calls, but provide extra services such

as call-waiting and caller ID if your telephone supports it.

Whenever you add JavaScript to a web page, you should always think about the

approach you want to take. Do you want to start with lots of amazing effects that

push the boundaries and then make sure the experience degrades gracefully for

those people who might not have the latest and greatest browsers? Or do you want

to start off building a functional website that works across most browsers and then

enhance the experience using JavaScript? The two approaches are similar, but subtly

different. This blog post19 might help you to decide which approach to take.

19 http://www.sitepoint.com/progressive-enhancement-graceful-degradation-choice/

JavaScript: Novice to Ninja12

http://www.sitepoint.com/progressive-enhancement-graceful-degradation-choice/

Your Second JavaScript Program
We’re going to finish the chapter with a second JavaScript program. This example

is much more complicated than the previous one and includes a lot of concepts

that will be covered in later chapters in more depth, so don’t worry if you fail to

understand them at this stage! The idea is to show you what JavaScript is capable

of doing and introduce some of the important concepts that will be covered in the

upcoming chapters.

We’ll follow the practice of unobtrusive JavaScript mentioned earlier and keep our

JavaScript code in a separate file. Start by creating a folder called rainbow. Inside

that folder create a file called rainbow.htm and another folder called js that contains

a file inside it called scripts.js.

Let’s start with the HTML. Open up rainbow.htm and enter the following code:

rainbow.htm

<head>
 <meta charset="utf-8">
 <title>I Can Click A Rainbow</title>
</head>
<body>
 <button id="button">click me</button>
<script src="js/scripts.js"></script>
</body>
</html>

This file is a fairly standard HTML5 page that contains a button with an ID of button.

The ID attribute is very useful for JavaScript to use as a hook to access different

elements of the page. At the bottom is a script tag that links to our JavaScript file

inside the js folder.

Now for the JavaScript. Open up scripts.js and enter the following code:

js/scripts.js

var button = document.getElementById("button");

var rainbow = ["red","orange","yellow","green","blue","indigo",
➥"violet"];

13Hello JavaScript

function change() {
 document.body.style.background = rainbow[Math.floor(7*Math.
➥random())];
}
button.addEventListener("click", change);

Our first task in the JavaScript code is create a variable called button (we cover

variables in Chapter 2).

We then use the document.getElementById function to find the HTML element

with the ID of button (covered in Chapter 6). This is then assigned to the button

variable.

We now create another variable called rainbow. This is assigned to an array contain-

ing a list of strings of different colors (we cover strings and variables in Chapter 2

and arrays in Chapter 3).

Then we create a function called change (we cover functions in Chapter 4). This

sets the background color of the body element to one of the colors of the rainbow

(changing the style of a page will be covered in Chapter 6). This involves selecting

a random number using the built-in Math object (covered in Chapter 5) and selecting

the corresponding color from the rainbow array.

Last of all, we create an event handler, which checks for when the button is clicked

on. When this happens it calls the change function that we just defined (event

handlers are covered in Chapter 7).

Open rainbow.htm in your favourite browser and try clicking on the button a few

times. If everything is working correctly the background should change to every

color of the rainbow, such as in the screenshot in Figure 1.2.

JavaScript: Novice to Ninja14

Figure 1.2. I can click a rainbow

The Project: Quiz Ninja
Throughout this book we will be building an example application called "Quiz

Ninja". This is a quiz application where the aim is for the player to answer questions

the real names of super heores. The quiz application will run in the browswer and

use many of the concepts covered in the book. At the end of each chapter we will

use the skills we have covered in that chapter to develop the appliation further.

The application will adhere to the good solid principles of three separate web layers

and unobtrusive JavaScript. This means that we need to keep the HTML, CSS, and

JavaScript in separate files, so let’s create those files now.

Create a folder called quiz_ninja and inside create the following files and folders:

■ index.htm

■ js/scripts.js

■ css/styles.css

Add the following code to index.htm:

index.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="description" content="A quiz game for ninjas">
 <meta name="author" content="DAZ">

15Hello JavaScript

 <title>Quiz Ninja</title>
 <link rel="stylesheet" href="css/styles.css">
</head>
<body>
 <header>
 <h1>Quiz Ninja!</h1>
 </header>
<script src="js/scripts.js"></script>
</body>
</html>

This is a standard HTML5 layout with a simple heading at the top of the page. We’ll

add more to the page as the application develops in later chapters.

Now it’s time to style the page. Add the following code to the styles.css file in the

css folder:

css/styles.css

*{
 margin: 0;
 padding: 0;
}

header {
 font: bold 36px/120% Arial, Helvetica, sans-serif;
 background: #333;
 color: #c00;
 text-transform: uppercase;
}

This resets all the margins and padding to zero and styles the heading in ninja-like

red and black colors.

And finally we’ll add some interactivity using JavaScript. Place the following code

inside the scripts.js file in the js folder:

JavaScript: Novice to Ninja16

js/scripts.js

// welcome the user
alert("Welcome to Quiz Ninja!");

The first line uses the alert function that displays a welcome message to the player

in a dialog box in the browser. alert isn’t actually part of the official ECMAScript

specification, but is used by all browsers as a way of showing messages.

To give this a try, open the index.htm file in your favorite browser. You should be

greeted by the welcome message alert box, such as in the screenshot shown in Fig-

ure 1.3.

Figure 1.3. Quiz Ninja!

This gives us a good solid start to our project that we can build on over the course

of the book as our JavaScript knowledge develops.

Chapter Summary
■ JavaScript was created in 1995 by Netscape.

17Hello JavaScript

■ It became popular very quickly and is now considered the language of the Web.

■ The browser wars caused many problems for JavaScript and resulted in lots of

fragmented and code that was hard to maintain.

■ The advent of Ajax and its use in web apps such as Gmail and Google Maps

prompted a resurgence in JavaScript.

■ JavaScript’s main environment is the browser, but it doesn’t have to be used

there.

■ You only need a text editor and a browser (or other host environment with a

JavaScript interpreter) to write JavaScript.

■ Graceful degradation and progressive enhancement are the process of ensuring

that users receive a decent experience even if they lack some of the requirements.

■ Unobtrusive JavaScript is when the JavaScript functionality is separated from

the HTML content and CSS styling.

In the next chapter we’re going to start looking at some programming fundament-

als―let’s get to it, ninja!

JavaScript: Novice to Ninja18

Chapter2
Programming Basics
In the last chapter, we introduced JavaScript and set up a programming environment

where we got our hands dirty with a few JavaScript programs. In this chapter, we’re

going to delve further to learn how JavaScript works, and start writing some pro-

grams.

We’ll cover the following topics:

■ the importance of well-commented code

■ JavaScript grammar―expressions, statements, semicolons, and whitespace

■ primitive data types

■ strings―string literals and string methods such as length

■ variables―declaring and assigning

■ numbers―decimal, hexadecimal, octal and exponent form, Infinity, and NaN

■ arithmetic operations such as +, -, *, /, and %

■ undefined and null

■ Booleans―truthy and falsy values

■ logical operators―AND, OR, and NOT

■ our project―where we’ll set some question and answer variables and use alert

boxes to display them

Comments
Our first task on our journey to becoming a JavaScript ninja is learning how to write

comments in JavaScript. This may seem a strange place to start, because in program-

ming a comment is a piece of code that is ignored by the language―it doesn’t do

anything. Despite this, comments are extremely important: well-commented code

is the hallmark of a ninja programmer. It makes it easier for anybody reading your

code to understand what’s going on, and that includes you! Believe me, you’ll be

thankful you commented your code when you come back to read it after a few weeks.

You only need to write enough so that it’s clear what the code is supposed to do.

In JavaScript there are two types of comment.

Single line comments start with // and finish at the end of the line:

// this is a short comment

Multiline comments start with /* and finish with */:

/* This is a longer comment
anything here will be ignored
This is a useful place to put notes
*/

It’s good practice to write comments in your code. There are even utilities that can

take your comments and produce documentation from them such as JSDoc Toolkit1,

Docco2, and YUIDoc3. You’ll see lots of comments throughout the code in this book.

1 http://code.google.com/p/jsdoc-toolkit/
2 http://jashkenas.github.io/docco/
3 http://yui.github.io/yuidoc/

JavaScript: Novice to Ninja20

http://code.google.com/p/jsdoc-toolkit/
http://jashkenas.github.io/docco/
http://yui.github.io/yuidoc/

JavaScript Grammar
The syntax used by JavaScript is known as a C-style syntax, which is similar to the

one used by Java.

A JavaScript program is made up of a series of statements. Each statement ends

with a new line or semicolon.

Here is an example of two statements, one on each line:

a = "Hello World!"
alert(a)

This example could also be written as follows, using semicolons at the end of each

statement:

a = "Hello World!";alert(a);

There’s no need to actually use a semicolon to terminate a statement because

JavaScript interpreters use a process called Automatic Semicolon Insertion (ASI).

This will attempt to place semicolons at the end of lines for you; however, it can

be error-prone and cause a number of automated services such as code minifiers

and validators to not work properly.

For this reason, it’s considered best practice to combine the two and write each

statement on a new line, terminated by a semi-colon, like so:

a = "Hello World!";
alert(a);

A block is a series of statements that are collected together inside curly braces:

{
 // this is a block containing 2 statements
 var a = "Hello!";
 alert(a);
}

Blocks do not need to be terminated by a semicolon.

21Programming Basics

Whitespace (such as spaces, tabs, and new lines) is used to separate the different

values in each statement You can use as much whitespace as required to format

your code so that it is neat and easy to read. Examples of this include using spaces

to indent nested code and multiple lines to separate blocks of code.

Data Types
JavaScript has six different types of value. There are five primitive data types:

■ string

■ number

■ Boolean

■ undefined

■ null

Any value that isn’t one of the primitive data types listed is an object (these are

covered in Chapter 5). We’ll discuss each primitive value over the next few pages.

JavaScript has a special operator called typeof for finding out the type of a value.

Here are some examples of the different value types:

typeof "hello"
<< "string"

typeof 10
<< "number"

typeof true
<< "boolean"

JavaScript: Novice to Ninja22

typeof { ninja: "turtle" }
<< "object"

Operators

An operator applies an operation to a value, which is known as the operand. A

unary operator only requires one operand; for example:

typeof "hello"

The operator is typeof and the string "hello" is the operand.

A binary operator requires two operands; for instance:

3 + 5

The operator is + and the numbers 3 and 5 are the operands. There is also a ternary

operator that requires three operands, which is covered in the next chapter.

Strings
A string is a collection of letters (or characters, to be more precise). We can create

a string literal by writing a group of characters inside quote marks like this:

"hello"

String Constructor Function

You can also create a string object using the following constructor function:

new String("hello")

This will create a new string that is the same as the string literal "hello", although

it will be classed as an object rather than a primitive value. For this reason it is

preferable to use the string literal notation ... not to mention it requires less typing

to use literals!

We can also use single quote marks if we prefer:

23Programming Basics

'hello'

If you want to use double quote marks inside a string literal, you need to use single

quote marks to enclose the string. And if you want to use an apostrophe in your

string, you need to employ double quote marks to enclose the string:

"It’s me"

Another option is to do what’s called escaping the quotation mark. You place a

backslash before the apostrophe so that it appears as an apostrophe inside the string

instead of terminating the string:

'It\'s me'

Escaping Characters

The backslash is used to escape special characters in strings such as:

■ single quote marks \'

■ double quote marks \"

■ end of line \n

■ carriage return \r

■ tab \t

If you want to actually write a backslash, you need to escape it with another

backslash:

"This is a backslash \\"
<< "This is a backslash \"

Variables
Variables are common in programming languages. They are a way of storing a value

in memory for later use. In JavaScript, we start by declaring a variable. This is done

using the keyword var:

JavaScript: Novice to Ninja24

var a; // declare a variable called a
<< undefined

var message;
<< undefined

Notice that the console outputs undefined. This is a special JavaScript primitive

value that is covered later in the chapter, but it’s basically saying that the variable

has been created but is yet to be assigned a value.

You don’t actually have to declare variables before using them, but as we’ll see later,

bad things can happen if you choose not to. So remember, a ninja will always declare

variables.

You can even declare multiple variables at once:

var a,b,c; // 3 variables declared at once
<< undefined

Rules for Naming Variables

When naming variables, you should try to give them sensible names that describe

what the variable represents; hence, answer is a better variable name than x.

A variable name can start with any upper or lower case letter, an underscore (_),

or dollar symbol ($). It can also contain numbers but cannot start with them. Here

are some examples:

$name
_answer
firstName
last_name
address_line1

Variable names are case sensitive, so ANSWER is different to Answer and answer.

When using multiple words for variable names there are two conventions that

can be used. Camel case starts with a lowercase letter and then each new word is

capitalized:

25Programming Basics

firstNameAndLastName

Underscore separates each new word with an underscore:

first_name_and_last_name

JavaScript’s built-in functions use the camel-case notation, but you can choose to

use one or the other or a combination of the two when naming variables. What’s

important for a ninja is to be consistent.

Reserved Words
The following words are reserved for use by the language and cannot be used to

name variables (or the function parameters and object properties that appear in later

chapters):

abstract, boolean, break, byte, case, catch, char, class, const,
continue, debugger, default, delete, do, double, else, enum,
export, extends, false, final, finally, float, for, function,
goto, if, implements, import, in instanceof, int, inteface,
long, native, new, null, package, private, protected, public,
return, short, static, super, switch, synchronized, this, throw,
throws, transient, true, try, typeof, var, volatile, void, while,
with

These words are reserved because many of them are used by the language itself,

and you will come across them later in this book.

Many are not used by the language, however; one can only assume they were planned

to be used at some point, but never were. There are also a few words not reserved

that should have been as they are an important part of the language:

undefined, NaN, Infinity

These are covered later in this chapter. You should also avoid using these words

for variable names.

JavaScript: Novice to Ninja26

Assignment
To assign a value to a variable, we use the = operator. This example shows how we

would set the variable name to point to the string literal "Walter":

var name; // declare the variable first
<< undefined

name = "Walter"; // assign the variable to a string
<< "Walter"

Once the variable has been assigned a value, it is displayed in the console output.

To see the value of a variable, simply enter it in the console. The variable name now

refers to the string "Walter", so it will behave exactly the same as that string:

name;
<< "Walter"

typeof name;
<< "string"

This is a useful way of dealing with long strings as it saves us from typing them

over and over again. It’s also useful if the value stored in the variable is likely to

change (hence the name, variable).

You can declare and initialize a variable at the same time:

var name = "Jesse";
<< "Jesse"

You can also declare and assign values to multiple variables in a single statement:

var x = 2, y, z = "Hi!"; // y has only been declared, it's undefined
<< undefined

String Properties and Methods
Primitive values and objects have properties and methods. Properties are information

about the object or value, while methods perform an action on the object or

value―either to change it or to tell us something about it.

27Programming Basics

Object Wrappers

Technically, only objects have properties and methods. JavaScript overcomes this

by creating wrapper objects for primitive values. This all happens in the back-

ground, so for all intents and purposes it appears that primitive values also have

properties and methods.

We can access the properties of a string using dot notation. This involves writing a

dot followed by the property we are interested in. For example, every string has a

length property that tells us how many characters are in the string:

name = "Heisenberg"; // declare and assign a variable
<< "Heisenberg"

name.length; // call the length method on name
<< 10

As you can see, this tells us that there are ten characters in the string stored in the

name variable.

Bracket Notation

Another notation you can use to access a primitive value’s properties are square

brackets:

name['length']; // note the property name is in quote marks
<< 10

All properties of primitive values are immutable, which means that they’re unable

to be changed. You can try, but your efforts will be futile:

name.length;
<< 10

name.length = 7; // try to change the length
<< 7

JavaScript: Novice to Ninja28

name.length; // check to see if it's changed
<< 10

A method is an action that a primitive value or object can perform. To call a method,

we use the dot operator [.] followed by the name of the method, followed by par-

entheses (this is a useful way to distinguish between a property and a method―meth-

ods end with parentheses). For example, we can write a string in all capital letters

using the toUpperCase() method:

name.toUpperCase();
<< "HEISENBERG"

Or the toLowerCase() method, which will write my name in all lower-case letters:

name.toLowerCase();
<< "heisenberg"

If you want to know which character is at a certain position, you can use the char-

At() method:

name.charAt(1);
<< "e"

This tells us that the character "e" is at position 1. If you were thinking that it should

be "H", this is because the first letter is classed as being at position 0 (you’ll find

that counting usually starts at zero in programming!).

If you want to find where a certain character or substring appears in a string, we

can use the indexOf() method:

name.indexOf("H");
<< 0

If a character doesn’t appear in the string, -1 will be returned:

29Programming Basics

name.indexOf("a");
<< -1

If we want the last occurrence of a character or substring, we can use the lastIndex-

Of() method:

name.lastIndexOf("e");
<< 7

The concat() method can be used to concatenate two or more strings together:

"JavaScript".concat("Ninja");
<< "JavaScriptNinja"

"Hello".concat(" ","World","!");
<< "Hello World!"

A shortcut for string concatenation is to use the + symbol to add the two strings to-

gether:

"Java" + "Script" + " " + "Ninja";
<< "JavaScript Ninja"

The trim() method will remove any whitespace from the beginning and end of a

string:

" Hello World ".trim();
➥// the space in the middle will be preserved
<< "Hello World"

" \t\t JavaScript Ninja! \r".trim();
➥// escaped tabs and carriage returns are also removed
<< "JavaScript Ninja!"

Support for trim()

The trim() method was a relatively recent addition to the collection of string

methods so is not supported in older browsers.

JavaScript: Novice to Ninja30

Numbers
Number can be integers (whole numbers, such as 3) or floating point decimals (often

referred to as just "decimals" or "floats", such as 3.14159). For example:

typeof 3;
<< "number"

typeof 3.14159;
<< "number"

As you can see in the examples above, JavaScript doesn’t distinguish between in-

tegers and floating point decimals―they are both given the type of "number", which

is a different approach to most other programming languages. This is set out in the

ECMAScript specification, although most JavaScript engines will treat integers and

floats differently in the background in order to improve efficiency.

Number Constructor Function

Just like strings, numbers also have a constructor function:

new Number(3)

This is much more verbose than simply writing the number 3, which is known

as a number literal, so it is recommended that you stick to using number literals.

Octal and Hexadecimal Numbers
If a number starts with a 0x, it is considered to be in hexadecimal (base 16) notation:

0xAF; // A represents 10, F represents 15
<< 175

Hexadecimal or "hex" numbers are often used for color codes on the Web. You can

read more about them on Wikipedia4.

If a number starts with a zero, it is usually considered to be in octal (base 8) notation:

4 http://en.wikipedia.org/wiki/Hexadecimal

31Programming Basics

http://en.wikipedia.org/wiki/Hexadecimal

047; // 4 eights and 7 units
<< 39

Octal numbers are not actually part of the ECMAScript standard, but many JavaScript

engines implement this convention.

Exponential Notation
Numbers can also be represented in exponential notation, which is shorthand for

"multiply by 10 to the power of" (you may have heard this referred to as "scientific

notation" or "standard form"). Here are some examples:

1e6; // means 1 multiplied by 10 to the power 6 (a million)
<< 1000000

2E3; // can also be written as 2E3, 2E+3 and 2e+3
<< 2000

Fractional values can be created by using a negative index value:

2.5e-3; // means 2.5 multiplied by 10 to the power -3 (0.001)
<< 0.0025

Number Methods
Numbers also have some built-in methods, although you need to be careful when

using the dot notation with number literals that are integers because the dot can be

confused for a decimal point. There are a few ways to deal with this, which we’ll

demonstrate with the toExponential() method; this returns the number as a string

in exponential notation.

Use two dots:

5..toExponential(); >> "5e+0"

Put a space before the dot:

5 .toExponential(); >> "5e+0"

Always write integers as a decimal:

JavaScript: Novice to Ninja32

5.0.toExponential(); >> "5e+0"

Place the integer in parentheses:

(5).toExponential(); >> "5e+0"

Assign the number to a variable:

var number = 5;
>> 5

number.toExponential();
>> "5e+0"

The toFixed() method rounds a number to a fixed number of decimal places:

var pi = 3.1415926;
<< undefined

pi.toFixed(3); // only one dot needed when using variables
<< "3.142"

Note that the value is returned as a string.

The toPrecision()method rounds a number to a fixed number of significant figures

that is once again returned as a string (and often using exponential notation):

325678..toPrecision(2);
<< "3.3e+5"

2.459.toPrecision(2);
<< "2.5"

Arithmetic Operations
All the usual arithmetic operations can be carried out in JavaScript.

Addition:

33Programming Basics

5 + 4.3;
<< 9.3

Subtraction:

6 - 11;
>> -5

Multiplication:

6 * 7;
<< 42

Division:

3/7;
<<0.42857142857142855

You can also calculate the remainder of a division using the % operator:

23%6; // the same as asking 'what is the remainder
➥when 13 is divided by 6'
<< 5

This is similar to, but not quite the same as, modulo arithmetic. That's because the

result always has the same sign as the first number:

-4%3; // -4 modulo 3 would be 2
<< -1

Changing Variables
If a variable has been assigned a numerical value, it can be increased using the fol-

lowing operation:

JavaScript: Novice to Ninja34

points = 0; // initialize points score to zero
<< 0

points = points + 10;
<< 10

This will increase the value held in the points variable by 10. You can also use the

compound assignment operator, +=, which is a shortcut for performing the same

task, but helps you avoid writing the variable name twice:

points += 10;
<< 20

There are equivalent compound assignment operators for all the operators in the

previous section:

points -= 5; // decreases points by 5
<< 15

points *= 2; // doubles points
<< 30

points /= 3; // divides value of points by 3
<< 10

points %= 7; // changes the value of points to the remainder
➥if its current value is divided by 7
<< 3

Incrementing Values
If you only want to increment a value by 1, you can use the ++ operator. This goes

either directly before or after the variable.

So what’s the difference between putting the ++ operator before or after the variable?

The main difference is the value that is returned by the operation. Both operations

increase the value of the points variable by 1, but points++ will return the original

value then increase it by 1, whereas ++points will increase the value by 1, then

return the new value:

35Programming Basics

points++; // will return 3, then increase points to 4
<< 3

++points; // will increase points to 5, then return it
<< 5

There is also a -- operator that works in the same way:

points--;
<< 5

--points;
<< 3

Infinity
Infinity is a special error value in JavaScript that is used to represent any number

that is too big for JavaScript to deal with. The biggest number that JavaScript can

handle is 1.7976931348623157e+308:

1e308; // 1 with 308 zeroes!
<< 1e308

2e308; // too big!
<< Infinity

There is also a value -Infinity, which is used for negative numbers that go below

-1.7976931348623157e+308:

-1e309;
<< -Infinity

The value of Infinity can also be obtained by dividing by zero:

1/0;
<< Infinity

The smallest number that JavaScript can deal with is 5e-324. Anything below this

evaluates to either 5e-324 or zero:

JavaScript: Novice to Ninja36

5e-324;
<< 5e-324

3e-325;
<< 5e-324

2e-325;
<< 0

NaN
NaN is an error value that is short for "Not a Number". It is used when an operation

is attempted and the result isn’t numerical:

"hello" * 5;
<< NaN

The result returned by the typeof operator is rather ironic, however:

typeof Nan;
<< 'number'

Type Coercion
Type coercion is the process of converting the type of a value in the background to

try and make an operation work. For example, if you try to multiply a string and a

number together, JavaScript will attempt to coerce the string into a number:

"2" * 8;
<< 16

This may seem useful, but the process is not always logical or consistent, causing

a lot of confusion. For example, if you try to add a string and a number together,

JavaScript will convert the number to a string and then concatenate the two strings

together:

37Programming Basics

"2" + 8;
<< "28"

This can make it difficult to spot type errors in your code, so you should always try

to be very explicit about the types of values you are working with.

Converting Between Strings and Numbers
We can convert numbers to strings and vice versa using a variety of methods.

Converting Strings to Numbers
To covert a string into a number we can multiply a numerical string by 1, which

will convert it into a number because of type coercion:

answer = "5" * 1;
<< 5

typeof answer;
<< "number"

Another neat way of converting a string to an integer is to simply place a + symbol

in front of it:

answer = +"5";
<< 5

typeof answer;
<< "number"

Yet another way to convert a string into a number is to use the Number function:

Number("23");
<< 23

This is the preferred way to convert strings to numbers as it avoids type coercion

in the background. The conversion is explicit, making it obvious what is being done.

JavaScript: Novice to Ninja38

Converting Numbers to Strings
To change numbers into strings you can add an empty string, which will use type

coercion to silently convert the number into a string in the background:

3 +'';
<< "3"

The preferred way, however, is to use the String function:

String(3);
<< "3"

There is also the very similar toString() method, but this may change the base of

the number. For example, if you want to write the number 10 in binary (base two),

you could write:

> 10..toString(2):
<< "1010"

You can go up to base 36, although after base ten, letters are used to represent the

digits:

> 1000000..toString(36) // a million in base 36
<< "lfls"

Parsing Numbers
There is also a useful function called parseInt() that can be used to convert a string

representation of a numerical value back into an integer. You can specify the base

of the number you are trying to convert, for example:

parseInt("1010",2); // converts from binary, back to decimal
<< 10

parseInt("omg",36);
<< 31912

39Programming Basics

parseInt("23",10);
<< 23

If a string starts with a number, the parseInt function will use this number and

ignore any letters that come afterwards:

var address = "221B Baker Street"
<< undefined

parseInt(address, 10)
<< 221

If you try to do this with the Number function, it returns NaN:

Number(address)
<< NaN

And if you use parseInt with a decimal, it will remove anything after the decimal

point:

parseInt("2.4",10)
<< 2

Be careful not to think that this is rounding the number to the nearest integer; it

simply removes the part after the decimal point, as seen in this example:

parseInt("2.9",10)
<< 2

There is also a similar function called parseFloat() that converts strings into

floating point decimal numbers:

JavaScript: Novice to Ninja40

parseFloat("2.9",10)
<< 2.9

Undefined
undefined is the value given to variables that have not been assigned a value. It can

also occur if an object’s property doesn’t exist or a function has a missing parameter.

It is basically JavaScript’s way of saying "I can’t find a value for this."

Null
null means "no value". It can be thought of as a placeholder that JavaScript uses to

say "there should be an value here, but there isn’t at the moment."

undefined and null are both "non-value" values. They are similar, although they

behave slightly differently. For example, if you try to do sums with them:

10 + null // null behaves like zero
<< 10

10 + undefined // undefined is not a number
<< NaN

null is coerced to be 0, making the sum possible whereas undefined is coerced to

NaN, making the sum impossible to perform.

Values tend to be set to undefined by JavaScript, whereas values are usually set to

null manually by the programmer.

Booleans
There are only two Boolean values: true and false. They are named after George

Boole, an English mathematician who worked in the field of algebraic logic. Boolean

values are fundamental in the logical statements that make up a computer program.

Every value in JavaScript has a Boolean value and most of them are true (these are

known as ‘truthy’ values).

To find the Boolean value of something, you can use the Boolean function like so:

41Programming Basics

Boolean(“hello”);
<< true

Boolean(42);
<< true

Boolean(0);
<< false

Only seven values are always false and these are known as falsy values:

* "" // double quoted empty string
* '' // single quoted empty string
* 0
* NaN
* false
* null
* undefined

Truthy and Falsy Values

The fact that empty strings and zero are considered falsy can cause confusion at

times, especially since other programming languages don't behave similarly. A

ninja needs to be especially careful when dealing with numbers that might be

zero, or strings that are empty.

For more on truthy and falsy values, see this article on SitePoint.5

Logical Operators
A logical operator can be used with any primitive value or object. The results are

based on whether the values are considered to be truthy or falsy.

! (Logical NOT)
Placing the ! operator in front of a value will convert it to a Boolean and return the

opposite value. So truthy values will return false, and falsy values will return

true. This is known as negation:

5 http://www.sitepoint.com/javascript-truthy-falsy/

JavaScript: Novice to Ninja42

http://www.sitepoint.com/javascript-truthy-falsy/

!true;
<< false

!0;
<< true

You can use double negation (!!) to find out if a value is truthy or falsy (it is a

shortcut to using the Boolean function we employed earlier because you are effect-

ively negating the negation):

!!'';
<< false

!!"hello";
<< true

!!3;
<< true

!!NaN;
<< false

!!"false";
<< true

!!'0';
<< true

&& (Logical AND)
Imagine that you are having a party and want to have some rules about who is al-

lowed in. You might want to only allow people who are wearing glasses AND who

are over 18 to be allowed in. This is an example of a logical AND condition: anybody

coming to the party must satisfy both conditions before they are let in.

The logical AND operator works on two or more values (the operands) and only

evaluates to true if all the operands are truthy. The value that is returned is the last

truthy value if they are all true, or the first falsy value if at least one of them is false:

43Programming Basics

true && true;
<< true

3 && 0; // returns 0 because it is falsy
<< 0

|| (Logical OR)
Now imagine that you relax the rules for your party and allow people in if they

wear glasses OR are over 18. This means that they only have to satisfy one of the

rules to be allowed in―an example of a logical OR condition.

The logical OR operator also works on two or more operands, but evaluates to true

if any of the operands are true, so it only evaluates to false if both operands are

falsy. The value that is returned is the first truthy value if any of them are true, or

the last falsy value if all of them are false:

true || false;
<< true

NaN || undefined;
➥// both NaN and undefined are falsy, so undefined will be returned
<< undefined

Lazy Evaluation
Remember the party example when the condition for entry was that attendees had

to wear glasses and be over 18? If you saw somebody without glasses, would you

bother asking them to prove that they were over 18? There’d be no point because

by not wearing glasses, they wouldn’t be allowed in anyway.

When the rules were relaxed, people were allowed in if they were wearing glasses

or if over 18. If somebody arrived wearing glasses, there would be no need to check

their age.

These are examples of lazy evaluation―you only check as many conditions as you

have to for somebody to be allowed in. JavaScript performs a similar task and uses

lazy evaluation when processing the logical AND and OR operators. This means

that it stops evaluating any further operands once the result is clear.

JavaScript: Novice to Ninja44

For example, for a logical AND expression to be true, all the operands have to be

true; if any of them are false, there is no point checking any subsequent operands

as the result will still be false. Similarly, for a logical OR to be true, only one of the

operands has to be true; hence, as soon as an operand is evaluated to true, the result

is returned as true and any subsequent operands won’t be checked as the result is

of no consequence.

This is demonstrated in the examples below:

a = 0; // declare the variable a and assign the value of 0
<< 0

false && (a = 1); // (a = 1) is truthy, but it won't be evaluated,
➥ since the first operand is false
<< false

a; // the value of a is still 0
<< 0

false || (a = 1); // this will evaluate both operands, so a will be
➥ assigned the value of 1, which is returned
<< 1

Bitwise Operators
Bitwise operators work with operands that are 32-bit integers. These are numbers

written in binary (base two) that have 32 digits made up of just 0s and 1s. Here are

some examples:

5 is written as 00000000000000000000000000000101
100 is written as 00000000000000000000000001100100
15 is written as 00000000000000000000000000001111

JavaScript will convert any values used with bitwise operators into a 32-bit integer

and then carry out the operation.

Bitwise NOT
The bitwise NOT operator [~] will convert the number to a 32-bit integer, then

change all the 1s to 0 and all the 0s to 1s. For example, 2476 can be represented as:

45Programming Basics

 000000000000000001011010101100

Which will change to:

 111111111111111110100101010011

This is 1073736019, but the result actually uses negative values, as you can see in

the code:

 ~44;
 << -45

In most cases, this operator will return an integer that adds to the original operand

to make -1.

Bitwise AND
You can also use the bitwise AND operator, [&], which will convert both numbers

into binary and returns a number that in binary has a 1 in each position for which

the corresponding bits of both operands are 1s. Here’s an example:

12 & 10; // in binary this is 1100 & 1010, so only the first digit
➥is 1 in both cases
<< 8

It can also be used with non-integers, where it returns 1 for true and 0 for false.

5 & "hello"; // both are true
<< 1

Bitwise OR
There is also the bitwise OR operator, [|], which will convert both numbers into

binary and return a number that in binary has a 1 in each position for which the

corresponding bits of either operands are 1s. Here’s an example:

JavaScript: Novice to Ninja46

12 | 10; // in binary this is 1100 & 1010, so the first 3 digits
➥contain a 1
<< 14

This can also be used with non-integers, and returns 1 for true and 0 for false.

'' | "";
<< 0 // both are falsy

Bitwise XOR
Another operation is the bitwise XOR operator, [^], which stands for "eXclusive

OR". This will convert both numbers into binary and return a number that in binary

has a 1 in each position for which the corresponding bits of either operands are 1s,

but not both 1s. Here’s an example:

12 ^ 10; // in binary this is 1100 & 1010, so only the second and
➥third digits are exclusively 1s
<< 6

When using non-integer values, this evaluates to 1 if either operands are truthy and

evaluates to 0 if both operands are truthy or both are falsy:

1 ^ 0; // The first operand is truthy
<< 1

true ^ true; // if both operands are true then the result is false
<< 0

Bitwise Shift Operators
The bitwise shift operators, << and >>, will move the binary representation a given

number of places to the right or left, which effectively multiplies or divides the

number by powers of two:

3 << 1; // multiply by 2
<< 6

16 >> 1; // divide by 2
<< 8

47Programming Basics

5 << 3; multiply by 2 cubed (8)
<< 40

Comparison
We often need to compare values when we are programming. JavaScript has several

ways to compare two values.

Equality
Remember earlier, when we assigned a value to a variable? We used the = operator

to do this, which would be the logical choice for testing if two values are equal.

Unfortunately, we can’t use it because it is used for assigning values to variables.

For example, say we had a variable called answer and we wanted to check if it was

equal to 5, we might try doing this:

answer = 5;
<< 5

What we’ve actually done is assign the value of 5 to the variable answer, effectively

overwriting the previous value!

The correct way to check for equality is to use either a double equals operator, ==,

known as "soft equality" or the triple equals operator, ===, known as "hard equality".

Soft Equality
We can check if answer is in fact equal to 5 using soft equality, like so:

answer == 5;
<< true

This seems to work fine, but unfortunately there are some slight problems when

using soft equality:

JavaScript: Novice to Ninja48

answer == "5";
<< true

As you can see, JavaScript is returning true when we are checking if the variable

answer is equal to the string "5", when in fact answer is equal to the number 5. This

is an important difference, but when a soft inequality is used, JavaScript will attempt

to coerce the two values to the same type when doing the comparison. This can

lead to some very strange results:

" " == 0;
<< true

" " == "0";
<< false

false == "0";
<< true

"1" == true;
<< true

"2" == true;
<< false

"true" == true;
<< false

null == undefined;
<< true

As you can see, values that are not actually equal have a tendency to be reported

as being equal to each other when using the soft equality operator.

Hard Equality
Hard equality also tests that the two values are the same type:

answer === 5;
<< true

answer === "5";
<< false

49Programming Basics

null === undefined;
<< false

As you can see, hard equality reports that the variable answer is the number 5, but

not the string "5". It also correctly reports that null and undefined are two different

values.

When is Not a Number not Not a Number?

The only strange result produced by hard equality is this:

NaN === Nan;
<< false

NaN is the only value in JavaScript that is not equal to itself. To deal with this,

there is a special function called isNaN to test it:

isNaN(NaN);
<< true

isNaN(5);
<< false

Unfortunately, this doesn’t always work properly, as can be seen in this example:

isNaN("hello");
<< true

This is because the function first of all tries to convert the string to a number, and

strings without numerals are converted to NaN:

Number("hello");
<< NaN

The only way to accurately check if a value is NaN is to check that its type is a

number (because NaN is of type "number") and also check that the isNaN function

returns true. These two conditions should be combined using the logical AND

(&&) that we saw earlier:

JavaScript: Novice to Ninja50

isnan = NaN; // set the variable isnan to be NaN
<< NaN

notnan = "hello"; // set the variable notnan to "hello"
<< "hello"

typeof(isnan) === "number" && isNaN(isnan);
<< true

typeof(notnan) === "number" && isNaN(notnan);
<< false

So, a JavaScript ninja should always use hard equality when testing if two values

are equal. This will avoid the problems caused by JavaScript’s type coercion.

If you want to check whether a number represented by a string is equal to a

number, you should convert it to a number yourself explicitly:

> Number("5") === 5
<< true

This can be useful when you’re checking values entered in a form as these are

always strings.

Inequality
We can check if two values are not equal using the inequality operator. There is a

soft inequality operator, != and a hard inequality operator, !==. These work in a

similar way to the soft and hard equality operators:

16 != "16"; // type coercion makes these equal
<< false

16 !== "16";
<< true

As with equality, it is much better to use the hard inequality operator as this will

give more reliable results unaffected by type coercion.

Greater Than and Less Than
We can check if a value is greater than another using the > operator:

51Programming Basics

8 > 4; << true

You can also use the "less than" < operator in a similar way:

8 < 4; << false

If you want to check if a value is greater than or equal to another value, you can use

the >= operator, but be careful, the equality test works in the same way as the soft

equality operator:

8 >= 4;
<< true

8 >= 8;
<< true

8 >= "8";
<< true

As you can see, type coercion means that strings can be confused with numbers.

Unfortunately, there are no "hard" greater-than or equal-to operators, so an alternative

way to avoid type coercion is to use a combination of the greater-than operator, lo-

gical OR, and a hard equality:

8 > 8 || 8 === 8;
<< true

8 > "8" || 8 === "8";
<< false

There is also a similar "less-than or equal-to" operator:

-1 <= 1;
<< true

-1 <= -1;
<< true

These operators can also be used with strings, which will be alphabetically ordered

to check if one string is "less than" the other:

JavaScript: Novice to Ninja52

"apples" < "bananas";
>> true

Be careful, though, as the results are case-sensitive and upper-case letters are con-

sidered to be "less than" lower-case letters:

"apples" < "Bananas";
>> false

Quiz Ninja Project
Now that we have come to the end of the chapter, it’s time to put what we’ve learned

into practice in our Quiz Ninja project.

Since we’ve been learning all about JavaScript in this chapter, we’re going to add

some code in the scripts.js file. Open that file and add the following lines:

scripts.js (excerpt)

var question = "What is Superman's real name?"
var answer = prompt(question);
alert("You answered " + answer);

Now let’s go through this code line by line to see what is happening:

var question = "What is Superman's real name?"

This declares a variable called name and assigns the string "What is Superman's

real name?" to it. Next, we need to ask the question stored in the question variable,

using a prompt dialog:

var answer = prompt(question);

A prompt dialog allows the player to type in an answer, which is stored in a variable

called answer.

Finally, we use an alert dialog to display the player's answer:

alert("You answered " + answer);

53Programming Basics

This shows the player the answer they provided. In the next chapter we'll look at

how to check if it's correct.

Have a go at playing the quiz by opening the index.htm file in your browser. It should

look a little like the screenshot in Figure 2.1.

Figure 2.1. Let’s play Quiz Ninja!

This is a good example of using the prompt and alert dialogs, along with variables

to store the responses in to create some interactivity with the user.

Summary
In this chapter, we’ve learned about the primitive data types that are the basic

building blocks of all JavaScript programs: strings, numbers, Booleans, undefined

and null. We’ve also learned about variables and different methods for strings and

numbers, as well as how to convert between the two types. We finished by looking

at the different logical operators and ways of comparing values.

In the next chapter, we’ll be looking at arrays, logic, and loops.

JavaScript: Novice to Ninja54

Chapter3
Arrays, Logic, and Loops
In the last chapter we were introduced to JavaScript’s primitive values, and also

did a bit of programming. In this chapter we’re going to look at arrays, a useful data

structure for storing lists of values. We’ll also look at logical statements that allow

us to control the flow of a program, as well as loops that allow us to repeat blocks

of code over and over again.

We will cover the following topics:

■ array literals

■ adding and removing values from arrays

■ array methods

■ if and else statements

■ switch statements

■ while loops

■ do … while loops

■ for loops

■ iterating over an array

■ our project―use arrays, loops, and logic to ask multiple questions in our quiz

Arrays
An array is an ordered list of values. To create an array literal, simply write a pair

of square brackets:

var myArray = [];
<< []

You can also use an array constructor function:

var myArray = new Array();
<< []

Both of these produce an empty array object, but it is preferable to stick to using

array literals as they take less typing.

Arrays are not primitive values but a special built-in object, as we can see when we

use the typeof operator:

typeof []
<< "object"

Stacks of Pizza
Donatello works at the Ninja Pizzeria where he cooks pizzas and then boxes them

ready for delivery. He has a large pile of empty boxes ready to be filled up with

pizza. Each box has a number on the side and since Donatello is also a programming

ninja, he always starts counting from zero! Donatello's stack of boxes can be seen

in Figure 3.1.

JavaScript: Novice to Ninja56

Figure 3.1. A stack of pizza boxes

We can create an array to represent Donatello’s pile of pizza boxes in JavaScript by

creating an empty array literal called pizzas:

var pizzas = [];

Each empty box can be thought of as representing an empty element in this array.

To find out what is in box 0, Donatello can open it up and peek inside. In JavaScript,

we can find out the value of element 0 in the pizzas array using the following code:

pizzas[0];
<< undefined

To access a specific value in an array, we write its position in the array in square

brackets (this is known as its index). If an element in an array is empty, undefined

is returned.

Adding Values to Arrays
If Donatello wants to put a Margherita pizza in box 0, he just needs to open the box

and put it inside. To place the string "Margherita" inside the first element of our

pizzas array, we need to assign it to element 0, like so:

57Arrays, Logic, and Loops

pizzas[0] = "Margherita";

Each item in an array can be treated like a variable. You can change the value using

the assignment operator =. For example, we can change the value of the first item

in the pizzas array to "Ham & Pineapple":

pizzas[0] = "Ham & Pineapple";

If Donatello receives a few more pizza orders, he can fill up the boxes up with pizzas

one by one. We can also do this to our array by assigning more values:

pizza[1] = "Mushroom";
pizza[2] = "Spinach & Rocket"

Just as Donatello can put a pizza in any of the boxes in the pile, we can also use the

index notation to add new items to any element in the pizzas array:

pizzas[5] = "Pineapple & Sweetcorn";
<< "Pineapple & Sweetcorn"

We can look at the pizzas array by simply typing its name into the console:

pizzas;
<< ["Ham & Pineapple", "Mushroom", "Spinach & Rocket", undefined,
➥ undefined, "Pineapple & Sweetcorn"]

Here we can see that the sixth item (with an index of 5) has been filled with the

string "Pineapple & Sweetcorn". This has made the array longer than it was before,

so all the other unused slots in the array are filled by the value undefined, just as

if Donatello had put a pizza in the sixth box and left the other boxes empty.

Creating Array Literals
We can create an array literal using square brackets that already contain some initial

values, so there’s no need to add each value one by one. So we could create another

pile of pizza boxes as the following array literal:

JavaScript: Novice to Ninja58

var pizzas = ["Margherita", "Mushroom", "Spinach & Rocket",
➥"Pineapple & Sweetcorn"];
<< ["Margherita", "Mushroom", "Spinach & Rocket", "Pineapple &
➥Sweetcorn"];

You don’t even have to use the same types of items inside an array. This array

contains each of the five different types of primitive values, as well as an empty

object:

mixedArray = [null, 1, "two", true, undefined, {}];
<< [null, 1, "two", true, undefined, {}]

Removing Values from Arrays
Donatello can remove a pizza from a box, by opening it and taking the pizza out,

leaving the box empty. The delete operator does the same task and will remove an

item from an array:

delete pizzas[3];
<< true

If we look at the pizzas array, we can see that the fourth entry (with an index of 3)

has indeed been removed ... but it has been replaced by a value of undefined (as if

the box was empty):

pizzas;
<< ["Margherita", "Mushroom", "Spinach & Rocket", undefined]

Watch out for this as it can even trip up experienced programmers. The value that

was in position 3 ("Pineapple & Sweetcorn") has been deleted from the array, but

the space that it occupied is still there and contains a value of undefined. Remember

that Donatello only removed the pizza from the box and didn’t remove the box

completely. This means that the array still has the same number of elements and

the position can still be referenced as an index, but it will just return undefined:

59Arrays, Logic, and Loops

pizzas[3]
<< undefined

Array Properties and Methods
Arrays are a powerful weapon in a JavaScript ninja’s toolkit and have some useful

methods. To demonstrate these, we’re going to use the following pizzas array that

is similar to the one we produced earlier. You’ll need to create a reference to it by

entering the following into the console:

pizzas = ["Margherita", "Mushroom", "Spinach & Rocket", "Ham &
➥Pinapple", "Pineapple & Sweetcorn"]

To find the length of an array, we can use the length property. This is the equivalent

to Donatello counting how many boxes are in his pile of pizza boxes:

> pizzas.length
<< 5

We can use the length to find the last item in an array:

> pizzas[pizzas.length - 1]
<< "Pineapple & Sweetcorn"

Notice that we have to subtract 1 from the length value. This is because the index

starts at 0, so the last item in the array will have an index of 1 less than the array’s

length.

The length property is mutable, meaning you can manually change it:

> pizzas.length = 8
<< 8
> pizzas
<< ["Margherita", "Mushroom", "Spinach & Rocket", "Ham & Pinapple",
➥"Pineapple & Sweetcorn", undefined, undefined, undefined]

As you can see, if you make the array longer, the extra slots will be filled in with

undefined:

JavaScript: Novice to Ninja60

> pizzas.length = 3
<< 3
> pizzas
<< ["Margherita", "Mushroom", "Spinach & Rocket"]

If you make the array shorter than it already is, all the extra elements will be removed

completely.

Figure 3.2. Making the array shorter

Figure 3.2 shows the effect of making the array shorter.

Pop, Push, Shift, and Unshift
To remove the last item from an array, we can use the pop() method. This is just

as if Donatello removed a pizza box from the top of his pile:

61Arrays, Logic, and Loops

pizzas.pop();
<< "Spinach & Rocket"

Figure 3.3. Popping a pizza box from the array

Figure 3.3 shows the effect of using pop on the array. The pizzas array no longer

contains the string "Spinach & Rocket".

The push() method appends a new value to the end of the array. This is like

Donatello putting a new pizza box on top of the pile, as shown in Figure 3.4. The

method returns the new length of the array:

pizzas.push("Pepperoni");
<< 3

JavaScript: Novice to Ninja62

Figure 3.4. Pushing a pizza box onto our array

The shift() method works in a similar way to the pop() method, but this removes

the first item in the array. This is like Donatello removing a pizza box from the

bottom of his stack of boxes, as shown in Figure 3.5:

pizzas.shift();
<< "Margherita"

Figure 3.5. Using shift() on our array

63Arrays, Logic, and Loops

The unshift() method is similar to the push() method, but this appends a new

item to the beginning of the array. This is the equivalent of Donatello adding a new

pizza box to the bottom of the pile, as shown in Figure 3.6:

pizzas.unshift("Chicken & Bacon");
<< 3

Figure 3.6. Using unshift() on our array

Merging Arrays
The concat() method can be used to merge an array with one or more arrays:

pizzas.concat(["Spicy Beef", "Chicken and Mushroom"]);
<< ["Chicken & Bacon", "Mushroom", "Pepperoni","Spicy Beef",
➥ "Chicken and Mushroom"]

Note that this does not change the pizzas array, it simply creates another array

combining the two arrays. You can use assignment to change the pizzas array to

this new array. This would be like Donatello adding a whole new pile of boxes on

top of the pile he already has:

pizzas = pizzas.concat(["Spicy Beef", "Chicken and Mushroom"]);
<< ["Chicken & Bacon", "Mushroom", "Pepperoni","Spicy Beef",
➥ "Chicken and Mushroom"]

Now the pizzas array contains these two new strings.

JavaScript: Novice to Ninja64

The join() Method
The join() method can be used to turn the array into a string that comprises all

the items in the array, separated by commas. This is as if Donatello was asked to

write down a list of all the pizzas in his pile of boxes:

pizzas.join();
<< "Chicken & Bacon,Mushroom,Pepperoni,Spicy Beef,Chicken
➥and Mushroom"

You can choose a separator other than a comma by placing it inside the parentheses.

Let’s try using an ampersand:

pizzas.join(" & ");
<< "Chicken & Bacon & Mushroom & Pepperoni & Spicy Beef & Chicken
➥and Mushroom"

Slicing and Splicing
Be careful not to get confused with the pizza analogy here―we’re slicing the array,

not the actual pizzas! The slice() method creates a subarray, effectively chopping

out a slice of an original array starting at one index and finishing at the next. This

would be the same as Donatello taking a selection of the pizza boxes from the whole

pile, from the second pizza up to but not including the fourth:

pizzas.slice(2,4) // starts at the third item (index of 2) and
➥finishes at the fourth (the item with index 4 is not included)
<< ["Pepperoni", "Spicy Beef"]

Note that this operation is non-destructive―no items are actually removed from

the array, as we can see if we look at the pizzas array:

pizzas;
<< ["Chicken & Bacon", "Mushroom", "Pepperoni", "Spicy Beef",
➥"Chicken and Mushroom"]

The splice() method removes items from an array and then inserts new items in

their place. Say Donatello wanted to remove the Pepperoni pizza from the pile and

replace it with some other boxes containing Chicken and Pepper, and Veggie Deluxe:

65Arrays, Logic, and Loops

> pizzas.splice(2, 1, "Chicken and Pepper", "Veggie Deluxe")
<< ["Pepperoni"]

> pizzas
<< ["Chicken & Bacon", "Mushroom", "Chicken and Pepper", "Veggie
➥Deluxe", "Spicy Beef", "Chicken and Mushroom"]

The first number tells us the index at which to start the splice. In the example we

started at index 2, which is the third item in the array ("Pepperoni"). The second

number tells us how many items to remove from the array. In the example, this was

just the one item. Every value after this is then inserted into the array at the same

place the other items were removed. The strings "Chicken and Pepper", "Veggie

Deluxe" are inserted in our example, starting at the third item. Notice that the

splice() method returns the items removed from the array as a subarray, so in the

example, it returned the array ["Pepperoni"].

The splice() method can also be used to insert values into an array at a specific

index without removing any items, by indicating that zero items are to be removed:

pizzas.splice(4,0,"Ham & Mushroom"); // inserts "Ham & Mushroom as
➥the fifth item in the pizzas array
<< []

Notice that an empty array is returned, but the new value of "Ham & Mushroom"

has been inserted, which we can see if we look at the pizzas array:

pizzas;
<< ["Chicken & Bacon", "Mushroom", "Chicken and Pepper", "Veggie
➥Deluxe", "Ham & Mushroom", "Spicy Beef", "Chicken and Mushroom"]

We saw earlier that we can use the delete operator to remove an item from an array.

Unfortunately, this leaves a value of undefined in its place. If you want to remove

a value completely, you can use the splice() method with a length of 1 and without

specifying any values to add:

JavaScript: Novice to Ninja66

pizzas.splice(2,1); // will remove the item at index 2 (i.e. the
➥third item in the array)
<< ["Chicken and Pepper"];

The value that has been removed will be returned as an array containing that value.

If we now look at the pizzas array, we can see that "Chicken and Pepper" has been

removed completely:

pizzas;
<< ["Chicken & Bacon", "Mushroom", "Veggie Deluxe", "Ham & Mushroom"
➥, "Spicy Beef", "Chicken and Mushroom"]

Reverse
We can reverse the order of an array using the reverse() method:

pizzas.reverse();
<< ["Chicken and Mushroom", "Spicy Beef", "Ham & Mushroom",
➥"Veggie Deluxe", "Mushroom", "Chicken & Bacon"]

Note that this changes the order of the array permanently.

Sort
We can sort the order of an array using the sort() method:

pizzas.sort();
<< ["Chicken & Bacon", "Chicken and Mushroom", "Ham & Mushroom"
➥, "Mushroom", "Spicy Beef", "Veggie Deluxe"]

It is alphabetical order by default for String objects. Note that this also changes the

order of the array permanently.

Numbers Are Sorted Alphabetically

Numbers are also sorted alphabetically, so 9 will come after 10 when you try to

sort an array of numbers:

67Arrays, Logic, and Loops

[5, 9, 10].sort();
<< [10, 5, 9]

This can be fixed using a special type of function called a callback. We’ll cover

how to do this in Chapter 4.

Finding if a Value is in an Array
We can find out if an array contains an object using the indexOf() method to find

the first occurrence of a value in an array. If the item is in the array, it will return

the index of the first occurrence of that item:

pizzas.indexOf("Spicy Beef");
<< 4

If the item is not in the array, it will return -1:

pizzas.indexOf("Margherita");
<< -1

Multidimensional Arrays
You can even have an array of arrays, known as a multidimensional array, for ex-

ample:

multiDimensional = [[0,1],["one","two","three"],[],[true,false]];
<< [[0,1],["one","two","three"],[],[true,false]]

This could be used to create a coordinate system:

coordinates = [[1,3],[4,2]];
<< [[1,3],[4,2]]

To access the values in a multidimensional array, we use two indices: one to refer

to the item’s place in the outer array, and one to refer to its place in the inner array:

x1 = coordinates[0][0]; // The first value of the first array
<< 1

JavaScript: Novice to Ninja68

x2 = coordinates[1][0]; // The first value of the second array
<< 4

y1 = coordinates[0][1]; // The second value of the first array
<< 3

y2 = coordinates[1][1]; // The second value of the second array
<< 2

Logic
In this section we will begin to look at logical conditions that allow you to control

the flow of a program.

if Statements
An if looks like the following:

if (condition) {
 code to run if condition is true
}

The code inside the block will only run if the condition is true. If the condition is

not a Boolean value, it will be converted to a Boolean, depending on whether or

not it is truthy or falsy (see Chapter 2).

Here is an example that will only display the alert message if the value of the age

variable is less than 18:

var age = 23;
if (age<18) {
 alert("Sorry, you are not old enough to play this game");
}

Try changing the value of the age variable to a value below 18 as it does in this

code, and the alert box will show as in Figure 3.7:

69Arrays, Logic, and Loops

var age = 12;
if (age < 18) {
 alert("Sorry, you are not old enough to play this game");
}

Figure 3.7. Adding age verification

else Statements
The else keyword can be used to add an extra block of code to run if the condition

is false. An if ... else statement looks like this:

if (condition) {
 code to run if condition is true
} else {
 code to run if condition isn't true
}

As an example, we can test if a number is even or odd using the following code:

n = 12;
if (n%2 === 0) {
 console.log("n is an even number");

JavaScript: Novice to Ninja70

} else {
 console.log("n is an odd number");
}

This uses the % operator that we met in the last chapter to check the remainder when

dividing the variable n by 2. All even numbers leave no remainder when divided

by 2, so we can test to see if n%2 is equal to zero; if it is, n must be even. If n is not

even, then it must be odd.

Try running the code with different values of n, to check that it works.

Ternary Operator
A shorthand way of writing an if ... else statement is to use the ternary operator,

?, which takes three operands in the following format:

condition ? (code to run if condition is true) : (code to run if
➥condition isn't true)

Here’s the example for testing if the variable n is odd or even, rewritten to use the

ternary operator:

n = 5;
n%2 === 0 ? console.log("n is an even number") : console.log("n is
➥an odd number");
<< n is an odd number

The ternary operator can make your code more succinct, but can also make it difficult

to read, so be careful when you use it.

switch Statements
You can actually string lots of if and else statements together to make a logical

decision tree:

if (number === 4) {
 alert("You rolled a four");
} else if (number === 5) {
 alert("You rolled a five");
} else if(number === 6){

71Arrays, Logic, and Loops

 alert("You rolled a six");
} else {
 alert("You rolled a number less than four");
}

The switch operator can be used instead, like so:

switch (number) {
case 4:
 alert("You rolled a four");
 break;
case 5:
 alert("You rolled a five");
 break;
case 6:
 alert("You rolled a six");
 break;
default:
 alert("You rolled a number less than four");
 break;
}

The value that you are comparing goes in parentheses after the switch operator. A

case keyword is then used for each possible value that can occur (4, 5, and 6 in the

example above). After each case statement is the code that that needs to be run if

that case occurs.

It is important to finish each case block with the break keyword, as this stops any

more of the case blocks being executed. Without a break statement, the program

will "fall through" and continue to evaluate subsequent case blocks. This is some-

times implemented on purpose, but it is confusing and should be avoided―a ninja

always finishes a case block with a break!

The default keyword is used at the end for any code than needs to be run if none

of the cases are true.

Loops
Loops will repeat a piece of code over and over again according to certain conditions.

JavaScript: Novice to Ninja72

while Loops
We’ll start by looking at a while loop. This will repeatedly run a block of code while

a certain condition is true and takes the following structure:

while (condition) {
 do something
}

Here’s an example that will count down from ten, alerting us with a line from the

famous song:

var bottles = 10;
while (bottles > 0){
 alert("There were " + bottles + " green bottles, hanging on the
➥wall. And if one green bottle should accidently fall, there'd be
➥ " + (bottles-1) + " green bottles hanging on the wall");
 bottles--;
}

We start by declaring a variable called bottles. Any variables that are used in the

loop must be initialized before the loop is run, otherwise there will be an error when

they are mentioned.

The loop starts here with the while keyword and is followed by a condition and a

block of code. The condition in the example is that the number of bottles has to be

greater than zero. This basically means "keep repeating the block of code, as long

as the number of bottles is greater than zero".

The block of code uses the alert function to display a message about the number

of bottles, and then uses the decrement operator to decrease the bottles variable

by one.

Here’s a more concise way of writing the same loop that moves the increment into

the condition:

var bottles = 11;
while (--bottles){
 alert("There were " + bottles + " green bottles, hanging on the

73Arrays, Logic, and Loops

➥wall. And if one green bottle should accidently fall, there'd be
➥" + (bottles-1) + " green bottles hanging on the wall");
}

The reason that this code works is because the loop will continue while the bottles

variable is true, and after each loop, the value of the bottles variable decreases by

1. When the bottles variable reaches 0, it is not true anymore (remember that 0 is

a falsy value) so the loop will stop. Notice that you have to start with one more

bottle (11) as it will be decreased by one even before the first block is run.

Infinite Loops
It is important that the condition in a while loop will be met at some point, otherwise

you’ll be stuck in an infinite loop that can crash your program.

Consider the following loop:

var n = 1;
while(n>0){
 alert("Hello");
 n++;
}

This loop will keep running, as the variable n will always be above zero. Most

browsers will warn you that there is a slow running script when this happens and

give you the option to stop it. If not, you can usually kill the process by closing the

tab or restarting the browser.

do ... while Loops
A do ... while loop is similar to a while loop. The only difference is that the

condition comes after the block of code:

do {
 do something
} while(condition)

This means that the block of code will always be run at least once, regardless of the

condition being true or not.

JavaScript: Novice to Ninja74

Here’s the same example we saw before, rewritten as a do ... while loop:

var bottles = 10;
do {
 alert("There were " + bottles + " green bottles, hanging on the
➥wall. And if one green bottle should accidently fall, there'd be
➥ " + (bottles-1) + " green bottles hanging on the wall");
 bottles--;
} while (bottles > 0)

for Loops
for loops are by far the most common in JavaScript and take the following form:

for (initialization ; condition ; after) { do something }

The initialization code is run before the loop starts and is usually employed to ini-

tialize any variables used in the loop. The condition has to be satisfied for the loop

to continue. The after code is what to do after each iteration of the loop, and it is

typically used to increment a counter of some sort.

Here’s the green bottles example written as a for loop:

for (var bottles = 10 ; bottles > 0 ; bottles--) {
 alert("There were " + bottles + " green bottles, hanging on the
➥wall. And if one green bottle should accidently fall, there'd be
➥ " + (bottles-1) + " green bottles hanging on the wall");
}

Each of the three parts are optional, and the code could be written as:

var bottles = 10; // bottles is initialized here instead
for (; bottles > 0 ;) { // empty initialization and increment
 alert("There were " + bottles + " green bottles, hanging on the
➥wall. And if one green bottle should accidently fall, there'd be
➥ " + (bottles-1) + " green bottles hanging on the wall");
 bottles--; // increment moved into code block
}

As you can see, it’s possible to use a while loop, a do ... while loop, or a for loop

to achieve the same results. A for loop is the most common as it keeps all the details

75Arrays, Logic, and Loops

of the loop (the initialization, condition, and increment) in one place and separate

from the code block.

Nested for Loops
You can place a loop inside another loop to create a nested loop. It will have an

inner loop that will run all the way through before the next step of the outer loop

occurs.

Here’s an example that produces a multiplication table up to 12 x 12:

for(var n=1 ; n<13 ; n++){
 for(var m=1 ; m<13 ; m++){
 console.log(m + " multiplied by " + n + " is " + n*m);
 }
 }

The outer loop counts up from n=1 to n=12. For every iteration of the outer loop,

the inner loop counts up from m=1 to m=12. This means that it starts in the first iter-

ation with n = 1 and m = 1, producing the following output that is logged to the

console:

<< 1 multiplied by 1 is 1

In the next iteration, we are still inside the inner loop, so n remains as 1, but m is

incremented to 2, giving:

<< 1 multiplied by 2 is 2

m continues to increase until it reaches 12. After this, we leave the inner loop and

return to the outer loop, where n increases to 2. We then re-enter the inner loop and

m is reset back to 1 and begins counting up to 12 again. This continues until the last

iteration produces the line:

JavaScript: Novice to Ninja76

<< 12 multiplied by 12 is 144

Looping over Arrays
A for loop can be used to iterate over each value in an array. If we take our pizzas

array example from earlier, we can create a for loop that outputs each item in the

array to the console using the following loop:

for(var i=0, max=pizzas.length; i < max; i++){
 console.log(pizzas[i]);
}
<< "Chicken & Bacon"
<< "Chicken and Mushroom"
<< ""Ham & Mushroom""
<< "Mushroom"
<< "Spicy Beef"
<< "Veggie Deluxe"

There are a few points to note in this example. Array indices start their numbering

at zero, so make sure that the value in the for loop also starts at zero. We want the

loop to continue until it reaches the length of the array; this can be set as the variable

max in the initialization part of the for loop, then the condition becomes i < max.

This is preferable to using i < pizzas.length because then the length of the pizzas

array would have to be calculated after every pass through the loop. This might not

sound all that important, but it can make a big difference to the speed of the program

when using large arrays.

Quiz Ninja Project
Now we’ve reached the end of the chapter, so it’s time to use what we have learned

to add some features to our Quiz Ninja project. Open up scripts.js in the js folder.

We'll start by creating a nested array called quiz that contains all the questions and

answers. Each item will be another array that contains the question as its first item

and the answer as its second item:

77Arrays, Logic, and Loops

scripts.js (excerpt)

var quiz = [
 ["What is Superman's real name?","Clarke Kent"],
 ["What is Wonderwoman's real name?","Dianna Prince"],
 ["What is Batman's real name?","Bruce Wayne"]
];

Next, we create and initialize a variable called score to keep track of how many

correct answers the player has given:

scripts.js (excerpt)

var score = 0 // initialize score

Then we loop through the quiz array, asking each question using a prompt dialog

that allows the player to enter an answer which is stored in a variable called answer.

We can then compare this to the actual answer stored in the quiz array:

scripts.js (excerpt)

for(var i=0,max=quiz.length;i<max;i++){

 // get answer from user
 var answer = prompt(quiz[i][0]); // quiz[i][0] is the ith question

 // check if answer is correct
 if(answer === quiz[i][1]){ // quiz[i][1] is the ith answer
 alert("Correct!");
 // increase score by 1
 score++;
 } else {
 alert("Wrong!");
 }
}

An if ... else block is then used, depending on whether the answer is right or

wrong. If it is right, then an alert dialog is shown saying that it is correct and the

score is incremented by 1, using score++. Otherwise, if the answer is wrong, an

alert dialog informs the player.

JavaScript: Novice to Ninja78

When the loop has finished iterating through each question in the questions array,

we finish by using another alert dialog to inform the player that the game is over

and tell them how many questions they answered correctly:

scripts.js (excerpt)

alert("Game Over, you scored " + score + " points");

Have a go at playing the quiz in your browser by opening the index.htm file. It should

look like the screenshot shown in Figure 3.8.

Figure 3.8. Quiz Ninja scores

Our quiz now feels much more like an actual program, and demonstrates the power

of concepts such as arrays, logic, and loops that we’ve learned about in this chapter.

Summary
In this chapter we have learned the following:

■ arrays are an ordered list of values

79Arrays, Logic, and Loops

■ multidimensional arrays contain arrays

■ arrays have lots of methods that can be used to manipulate items in the array

■ we can use an if and else statement to control the flow of code

■ the switch statement can be used instead of multiple if and else statements

■ a while loop and do ... while loop can be used to repeat a block of code while

a condition is still true

■ a for loop works in a similar way to a while loop, but has a different syntax

■ a for loop can be used to iterate over an array

In the next chapter we’ll be learning all about functions, a fundamental part of the

JavaScript language.

JavaScript: Novice to Ninja80

Chapter4
Functions
In the last chapter, we covered arrays, logic, and loops. In this chapter, we’re going

to look at functions. A function is a chunk of code that is almost like a small, self-

contained mini program that can be referenced by a name. They can help to reduce

repetition and make code easier to follow.

In this chapter, we’ll be covering these topics:

■ defining functions―function declarations, function expressions, and Function()

constructors

■ invoking a function

■ return values

■ parameters and arguments

■ scope―global and local

■ hoisting―variables and functions

■ callbacks―functions as a parameter

■ project―we’ll be using functions to make it simpler to understand the Quiz

Ninja code

In JavaScript, functions are considered to be just another value. This means that

they do all the same tasks that other values and objects can do, such as be assigned

to variables, changed and stored in arrays. You can even define a function inside

another function. In technical terms, this means that functions are considered to be

first-class objects in JavaScript.

This makes functions a very important and powerful part of the JavaScript language

with many of its features relying on them. Hence, fully understanding functions is

an essential skill of the JavaScript ninja.

Defining a Function
There are three ways to define a function.

Function Declarations
To define a function literal we can use a function declaration:

function hello(){
 alert("Hello World!");
}

This starts with the function keyword and is followed by the name of the function,

which in this case is called 'hello', followed by parentheses. After this is a block

that contains the code for the function.

This is known as a named function as the function has a name: 'hello'.

Function Expressions
Another way of defining a function literal is to create a function expression. This

assigns an anonymous function to a variable:

JavaScript: Novice to Ninja82

var goodbye = function(){
 alert("Goodbye World!");
};

The function in this example is known as an anonymous function because it does

not have a name; it is simply created, then assigned to the variable goodbye. Altern-

atively we can create a named function expression instead:

var goodbye = function bye(){
 alert("Goodbye World!");
};

The name of this function is bye, and it has been assigned to the variable goodbye.

Notice also that the example ends with a semicolon. This finishes the assignment

statement, whereas a normal function declaration ends in a block (no need for

semicolons at the end of blocks).

A Function’s name Property

Functions are just objects, and objects have properties (more about this in the

Chapter 5). All functions haves a read-only property called name, which can be

accessed like so:

hello.name
<< "hello"

The name property is not actually part of the ECMAScript standard, although most

JavaScript engines support it and use it internally.

Anonymous functions have an empty string as their name property in most

browsers, although some versions of Internet Explorer use undefined.

The name property can be useful when debugging code, as the name of a function

will be used to indicate which functions are causing a problem.

Function() Constructors
A function can also be declared using the constructor Function(). The body of the

function is entered as a string, as shown in this example:

83Functions

hi = new Function('alert("Hi World!");');

We’d avoid recommending this way of declaring functions as it is slower and there

are problems with placing the function’s code inside a string. Even in this simple

example, we had to use different quotation marks for the alert function as those

used for defining the function body itself.

A ninja should always declare functions using function literals―function declara-

tions or function expressions. These two ways of creating functions are similar, al-

though there are some subtle differences that will be covered later in the chapter.

Some people prefer function declarations as they are akin to how functions are de-

clared in other languages. Others prefer function expressions because it is clear that

functions are just another value assigned to a variable, rather than a special feature

of the language. Whether you use function declarations or function expressions is

often a matter of personal taste, but whatever you choose to do―be consistent!

Invoking a Function
Invoking a function is to run the code inside the function’s body. To invoke a

function, simply enter its name, followed by parentheses. This is how we’d invoke

the hello function, for example:

JavaScript: Novice to Ninja84

hello();
<< "Hello world!"

Figure 4.1.

As you can see in Figure 4.1, we get an alert box saying "Hello World!".

The function can be invoked over and over again just by typing its name followed

by parentheses. This is one of the advantages of using functions―there’s no need

to write repetitive blocks of code. Another advantage is that all the functionality is

kept in one place. So if you want to change part of it, you only need to update the

code in one place. This is known as the DRY principle, which stands for Don’t Repeat

Yourself, and it’s important to keep in mind when programming.

85Functions

Don't Repeat Yourself

Don’t Repeat Yourself,1 or DRY, is a principle of programming that specifies that

every part of a program should only be written once. This avoids duplication and

means that there’s no need to keep multiple pieces of code up to date and in sync.

If you have assigned a function to a variable, you need to place parentheses after

the variable to invoke it as a function:

goodbye();
<< "Goodbye World!"

Remember: you need parentheses to invoke a function―either by name or by refer-

ence to the variable it is assigned to. If you skip the parentheses, you are simply

referencing the function itself rather than invoking it, as you can see here:

goodbye;
<< function bye(){
 alert("Goodbye World!");
}

All that has been returned is the function definition that the variable goodbye is

pointing to, rather than running the code. This can be useful if you want to assign

the function to another variable, like so:

seeya = goodbye;
<< function bye(){
 alert("Goodbye World!");
}

Now the variable seeya also points to the function called bye and can be used to

invoke it:

seeya();
<< "Goodbye World!"

The result can be seen in Figure 4.2.

1 http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

JavaScript: Novice to Ninja86

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Figure 4.2. Goodbye World!

Return Values
All functions return a value, which can be specified using the return operator. A

function that doesn’t explicitly return anything (such as all the examples we have

seen so far) will return undefined by default.

The function in this example will return the string "Yo World!":

function yo(){
 return "Yo World!";
}

This means that we can assign a variable to a function invocation and the value of

that variable will be set to the return value of that function:

87Functions

> message = hi();
<< "Yo World!"

The variable message now points to the string "Yo World!". This may seem trivial

in this instance (that is, why not just assign the variable to the string directly?), but

we can create a more complex function that has different return values depending

on certain conditions. This will assign different values to the message variable de-

pending on those conditions.

Parameters and Arguments
Parameters and arguments are often used interchangeably to represent values that

are provided for the function to use. There is a subtle difference though: any para-

meters a function needs are set when the function is defined. When a function is

invoked, it is provided with arguments.

JavaScript does not have a built-in function to square numbers, so we can create

one to demonstrate using parameters. In the example that follows, the square

function takes one parameter, x, which is the number to be squared. In the body of

the function, the name of the parameter acts like a variable equal to the value that

is entered when the function is invoked. As you can see, it is multiplied by itself

and the result is returned by the function:

function square(x){
 return x*x;
}

When we invoke this function, we need to provide an argument, which is the

number to be squared:

square(4.5);
<< 20.25

You can use as many parameters as you like when defining functions. For example,

the following function finds the mean of any three numbers:

JavaScript: Novice to Ninja88

function mean(a,b,c){
 return (a+b+c)/3;
}
<< undefined

mean(2, 6, 19);
<< 9

If a parameter is not provided as an argument when the function is invoked, the

function will still be invoked, but the parameter will be given a value of undefined.

If we try to invoke the mean function with only two arguments, we can see that it

returns NaN because the function cannot do the required operation with undefined:

mean(1,2)
<< NaN

If too many arguments are provided when a function is invoked, the function will

work as normal and the extra arguments will be ignored (although they can be ac-

cessed using the arguments object that is discussed in the next section):

mean(1,2,3,4,5); // will only find the mean of 1,2 and 3
<< 2

The arguments Variable
Every function has a special variable called arguments. This is an array-like object

that contains every argument of the function when it is invoked:

function arguments(){
 return arguments;
}

arguments is not an Array!

Be careful: arguments is not an array. It has a length property and you can read

and write each element using index notation, but it doesn’t have array methods

such as slice(), join(), and forEach(). (However, there is a way of "borrow-

ing" these methods from arrays that we will look at in a later chapter.)

89Functions

Rounding Errors

The last example highlights a problem when doing division in JavaScript. Because

it uses base 2 in the background, it can struggle with some division calculations

and often has slight rounding errors. This usually doesn’t cause a problem, but

you should be aware of it.

Default Arguments
We can use the fact that undefined is used when arguments are not supplied to

provide default values for a function. For example, we can improve the hello

function that we created earlier by adding a name parameter so that it says "hello"

to the value provided as an argument:

function hello(name){
 console.log("Hello " + name + "!");
}

This works as expected, but says "hello" to undefined if no argument is provided:

hello("DAZ");
<< "Hello DAZ!"

hello();
<< "Hello undefined!"

We can improve the function by checking if the name parameter has a value of un-

defined and providing a default value of "World" if so:

function hello(name){
 if (name === undefined) name = "World";
 console.log("Hello " + name + "!");
}

Now we can invoke the hello function with or without arguments:

JavaScript: Novice to Ninja90

hello();
<< "Hello World!"

hello("DAZ");
<< "Hello DAZ!"

Another way of assigning default values is to use the following line:

name = name || "World";

This is using the logical OR operator to check if the name parameter has a truthy

value. If it does, then name will stay the same. If name is falsy (such as undefined),

it will take the value of "World". Be careful using this method, however; if the name

argument is a falsy value it will be set to the default value of "World", and in some

cases you might want it to be the falsy value instead (0, for example).

Default parameters should always come after non-default parameters, otherwise

default values will always have to be entered anyway. Consider the following

function for calculating a discounted price in a store:

function discount(price, amount) {
 if(amount === undefined) amount = 10;
 return price*(100-amount)/100;
}

It takes two arguments: the price of an item and the percentage discount. The store’s

most common discount is 10%, so this is provided as a default value. This means

that the amount argument can be omitted in most cases and a 10% discount will

still be applied:

discount(20) // standard discount of 10%
<< 18

If a different discount is applied, the amount argument can be provided:

discount(15, 20) // discount of 20%
<< 12

This will fail to work, however, if the parameters are reversed:

91Functions

function discount(amount, price) {
 if (amount===undefined) amount = 10;
 return price*(100-amount)/100;
}

Now if we try to use the function with just one argument, the function won’t work,

because price has not been set:

discount(20);
<< NaN

It will work, though, if both values are entered:

discount(10,20);
<< 18

And it will also work if undefined is supplied as the first argument, since amount

will then default to 10:

discount(undefined,20);
<< 18

This somewhat defeats the object of having default parameters! The golden rule to

remember here is that a ninja always put default parameters after all the other

parameters.

Scope
Scope is an important concept in programming. It refers to where a variable is visible

and accessible.

In JavaScript, a function creates its own local scope. This means that any local

variables defined inside a function using the var keyword are not accessible outside

the function.

Global Scope
Any variable declared outside of any function is said to have global scope. That

means that it is accessible everywhere in the program. While this may seem to be

JavaScript: Novice to Ninja92

a good idea at first, it is not considered good practice. A ninja will try to limit the

number of global variables to a minimum, because any variable that shares the same

name will clash and potentially overwrite each other’s values. It might seem unlikely

that this would happen, but it is all too common in large programs when you forget

which variables you have used―think how often we have used the variable i in

for loops already! It can also be a problem when you are writing code in teams or

if you’re using code libraries that may use the same variable names as some of your

code.

Local Scope
Any variable that is declared inside a function using the var statement will only

be available inside that function. This is known as having local scope, as the variable

is only visible in the locality of the function (in other words, inside the function

block).

If the var statement is not used, the variable will have global scope and be available

outside the function. This can be demonstrated in the following example, where

the variable a can have two different values depending on whether it is defined

inside or outside a function:

var a = 1;

function locala() {
 var a = 3; // local variable
 console.log("a inside function: " + a);
}

locala(); // invoke the locala function

console.log("a outside function: " + a);

This results in the subsequent console log:

"a inside function: 3"
"a outside function: 1"

In the example, a is defined globally outside the function and is given the value of

1. This means it has global scope and is available inside and outside the function.

But then a is defined inside the local function using var. This gives it local scope

93Functions

inside the function where it has a value of 3, but it retains the value of 1 outside

the function. For all intents and purposes, the two a variables are different variables.

Here’s another example where we define a global variable and then overwrite it

from within the function:

b = 2;

function localb() {
 b = 4; // overwrites the global variable
 console.log("b inside function: " + b);
}

localb(); // invoke the localb function

console.log("b outside function: " + b);

Here’s the resultant console log:

"b inside function: 4"
"b outside function: 4"

In this example, b is defined globally outside the function and given the value of

2. Yet b is not declared using var inside the function, so it still refers to the global

variable outside the function. This means that b is the same variable both inside

and outside the function and the value of b is overwritten globally to be 4.

Here’s another example that creates a global variable from within a function that is

then still accessible from outside of function:

function localc() {
 c = 5; // creates a new global variable
 console.log("c inside function: " + c);
}

localc(); // invoke the localc function

console.log("c outside function: " + c);

This results in the following console log:

JavaScript: Novice to Ninja94

"c inside function: 5"
"c outside function: 5"

In the example, c is only defined inside the function, but because this is done

without using var, it has global scope and is also available outside the function.

Here’s another function that creates a local variable inside the function that is not

accessible outside the function:

function locald() {
 var d = 6; // creates a new local variable
 console.log("d inside function: " + d);
}

locald(); // invoke the locald function

console.log("d outside function: " + d);

Here’s the console log result:

"d inside function: 6"
"d is not defined"

In this example, d is also only defined inside the function, but by using var it has

local scope and is only accessible inside the function. When we try to log the value

of d outside the function, it causes an error because d is not defined outside its

scope.

Hoisting
Hoisting is the process of moving a value to the top of the code block where it is

used, regardless of where it is defined.

Variable Hoisting
All variable declarations are automatically moved to the top of a function’s scope,

as if they were defined at the start of the function. Variable assignment is not hoisted,

however. This means that a variable assigned at the end of the function will have

a value of undefined until the assignment is made. The following example shows

how this works:

95Functions

function hoist(){
 console.log(a); // at this point a is undefined
 //
 // imagine lots more code here
 //
 var a = "Hoist Me!";
 console.log(a); // now is a string
}

At the beginning of the function, the variable a has not been declared or assigned

a value, so in theory, trying to write its value using console.log(a) should result

in an error. Yet the declaration of a is hoisted to the top of the function, so the

function knows that a variable called a exists. The value that it is assigned to is not

hoisted, however, so until the assignment is made, the value of a is undefined.

Hoisting can cause some confusion, so a ninja should declare, and assign if required,

all local variables at the beginning of a function so that hoisting is unnecessary.

Function Hoisting
Functions that are defined inside other functions are also hoisted, but they behave

differently depending on how they are defined.

If a function is defined using a function declaration, the whole function is hoisted

to the top of the function, meaning that it can be invoked before it has been defined.

A function expression (where an anonymous function is assigned to a variable) is

hoisted in a similar way to variables. So the declaration will be hoisted, but not the

actual function. This means that the function cannot be invoked until after it appears

in the code.

This behaviour also applies to the global scope, as can be seen in the following ex-

ample:

add(2,3); // this will work because the add function is hoisted

function add(x,y){
 console.log(x + y);
}

subtract(5,2); // this won't work because the subtract function

JavaScript: Novice to Ninja96

➥hasn't been defined yet

subtract = function(x,y){
 console.log(x - y);
}

This is the major difference between the two ways of defining function literals and

it may influence your decision regarding which one to use. Some people like that

using function expressions means you’re required to define all functions and assign

them to variables prior to using them. To avoid any problems, a ninja should either

use function declarations or ensure that all function expressions are defined at the

top of the scope, along with any variable declarations.

Callbacks
Remember at the start of this chapter when we said that functions in JavaScript are

first-class objects, and this means that they behave in just the same way as every

other value? Well, they can also be given as a parameter to another function. A

function that is passed as an argument to another is known as a callback.

Here’s a basic example of a function called pizza, which accepts an argument for

the type of topping that goes on the pizza, as well as a callback function saying what

to do with the pizza:

function pizza(topping, callback) {
 console.log("This is a " + topping + " pizza");
 callback();
}

Now we can create some utility functions for what we do with pizzas, such as cook

them and eat them:

function cook() {
 console.log("The pizza is cooking");
}

97Functions

function eat() {
 console.log("I've eaten the pizza!");
}

We’re just logging some simple messages to the console in these examples, but these

functions could be used to do anything in a practical sense.

Let’s have a go at using these utility functions as callbacks in our pizza function:

> pizza("Ham & Pineapple", cook);
<< "This is a Ham & Pineapple pizza"
<< "The pizza is cooking"

> pizza("Ham & Pineapple", eat);
<< "This is a Ham & Pineapple pizza"
<< "I've eaten the pizza!"

Okay, so in these examples, the cook() and eat() functions were quite similar, but

they should demonstrate that you could do something very different in the pizza

function depending on the callback function that is provided as an argument. This

can make your functions much more flexible.

Note that the callbacks cook and eat are passed as arguments without parentheses.

This is because the argument is only a reference to the function. The actual callback

is invoked in the body of the function, where parentheses are used.

A function can also take an anonymous function as a callback. For example, say we

want to deliver a pizza, but we have no deliver function. We can write an anonym-

ous function that does what we want:

pizza("Ham & Pineapple",function(){
 console.log("The pizza has been delivered.");
});

This is only really useful for one-off tasks. It is often a much better idea to keep

functions separate and named so that they can be reused again. It’s also a bad idea

to use this method for long function definitions as it can be confusing where the

callback starts and ends.

JavaScript: Novice to Ninja98

Callbacks are used extensively in many JavaScript functions and we’ll see much

more of them throughout the book.

Sorting Arrays
In the last chapter we saw that arrays have a sort() method that sorted the items

in the array into alphabetical order. This is fine for strings, but it doesn’t work so

well for numbers:

> [1,3,12,5,23,18,7].sort();
<< [1, 12, 18, 23, 3, 5, 7]

The reason for this is that the numbers are converted into strings and then placed

in alphabetical order.

So how do you sort an array of numerical values? The answer is to provide a callback

function to the sort() method that tells the sort() method how to compare two

values, a and b. The callback function should return the following:

■ a negative value if a comes before b

■ 0 if a and b are in the same position
■ a positive value if a comes after b

Here is an example of a compareNumbers function that can be used as a callback to

sort numbers:

function compareNumbers(a,b){
 return a-b;
}

This simply subtracts the two numbers that are being compared, giving a result that

is either negative (if b is bigger than a), zero (if a and b are the same value), or pos-

itive (if a is bigger than b). This means that it can be used as a callback to sort the

array of numbers correctly:

> [1,3,12,5,23,18,7].sort(compareNumbers);
<< [1, 3, 5, 7, 12, 18, 23]

Much better!

99Functions

Watch Out For Overflows

In some rare instances where an array includes some very large and negative

numbers, an overflow error can occur and the result of a-b becomes smaller than

the smallest number that JavaScript is able to cope with. If this is the case, the

following function can be used as a callback instead:

function compareNumbers (a,b) {
 if (a < b) {
 return -1;
 } else if (a> b) {
 return 1;
 } else {
 return 0;
 }
}

Improving the mean() Function
Earlier in the chapter we created a mean() function that would calculate the mean

of any number of arguments. We can improve on this, allowing a callback to be

added as the last argument that specifies a function to be applied to all the numbers

before the mean is calculated. This will allow us to work out things such as the

mean of all numbers if they were doubled or squared.

Here is the code for the improved function that accepts a callback:

function mean(values, callback) {
 var total = 0;
 for(var i=0, max = values.length; i < max; i++) {
 if (typeof callback === "function") {
 total += callback(values[i]);
 } else {
 total += values[i];
 }
 }
 return total/max;
}

The next part of the code is similar to our previous mean() function. , except in the

following if block where we check to see if the callback argument is a function.

JavaScript: Novice to Ninja100

If it is, the callback is applied to each value before being added to the total; otherwise,

the total is calculated using just the values from the array given as the first argument:

 if (typeof callback === "function") {
 total += callback(values[i]);
 } else {
 total += values[i];
 }

Let’s have a go at using it:

> mean([2,5,7,11,4]); // this should just calculate the mean
<< 5.8

Now let’s use an anonymous function to double all the numbers before calculating

the mean:

> mean([2,5,7,11,4],function(x){ return 2*x; });
<< 11.6

This is the equivalent of calculating the mean of 2 * 2, 2 * 5, 2 * 7, 2 * 11, and 2 *

4.

Last of all, let’s use the square function that we wrote earlier in this chapter as a

callback to square all the numbers before calculating the mean:

> mean([2,5,7,11,4],square);
<< 43

This is the equivalent of calculating the mean of 2^2, 5^2, 7^2, 11^2, and 4x^2.

I trust these examples show how using callbacks can make functions much more

powerful and flexible.

Array Iterators
ECMAScript 5 introduced a number of methods for arrays that utilize callbacks to

make them much more flexible.

101Functions

forEach()
In the last chapter, we saw that a for loop could be used to loop through each value

in an array like so:

var colors = ["Red", "Green", "Blue"]

for(var i = 0, max = colors.length ; i < max ; i++) {
 console.log("Color at position " + i + " is " + colors[i]);
}
<< "Color at position 0 is Red"
 "Color at position 1 is Green"
 "Color at position 2 is Blue"

An alternative is to use the forEach() method. This will loop through the array

and invoke a callback function using each value as an argument. The callback

function takes three parameters, the first represents the value in the array, the second

represents the current index and the third represent the array that the callback is

being called on. The example above could be written as:

colors.forEach(function(color,index){
 console.log("Color at position " + index + " is " + color);
});
<< "Color at position 0 is Red"
 "Color at position 1 is Green"
 "Color at position 2 is Blue"

map()
The map() method is very similar to the forEach() method. It also iterates over an

array and takes a callback function as a parameter that is invoked on each item in

the array. This is often used to process data returned from databases in array form,

such as adding HTML tags to plain text. The difference is that it returns a new array

that replaces each value with the return value of the callback function. For example,

we can square every number in an array using the square function we wrote previ-

ously as a callback to the map() method:

[1,2,3].map(square)
<< [1, 4, 9]

JavaScript: Novice to Ninja102

An anonymous function can also be used as a callback. This example will write all

items in the array in uppercase and place them inside paragraph tags:

["red","green","blue"].map(function(color) { return "<p>" + color.
➥toUpperCase() + "</p>"; });
<< ["<p>RED</p>", "<p>GREEN</p>", "<p>BLUE</p>"]

Notice in this example the anonymous function takes a parameter, color, which

refers to the item in the array. This callback can also take two more parameters ―
the second parameter refers to the index number in the array and the third refers

to the array itself. All three parameters can be seen in the next example:

["red","green","blue"].map(function(color, index, array) { return
➥index + ": " + color + " (length " + array.length + ")"; });
<< ["0: red (length 3)", "1: green (length 3)", "2: blue (length 3)
➥"]

reduce()
The reduce() method is another method that iterates over each value in the array,

but this time it cumulatively combines each result to return just a single value. The

callback function is used to describe how to combine each value of the array with

the running total. This is often used to calculate statistics such as averages based

on data returned from a database in array form. It usually takes two parameters: The

first parameter represents the previous value and the second parameter represents

the current item in the array. The following example shows how to sum an array

of numbers:

[1,2,3,4,5].reduce(function(prev,current){
 return prev + current;
});
<< 15

The value of prev starts as the first item in the array. The value of prev then becomes

the result of this operation. Then the next item in the array is added to this running

total, and so on, until every item in the array has been added.

103Functions

The reduce() method also takes a second parameter after the callback, which is

the inital value of prev. For example, we could total the numbers in an array, but

starting at 10, instead of zero:

[1,2,3,4,5].reduce(function(prev,current){
 return prev + current;
},10); // <---- second parameter of 10 here
<< 25

Another example could be to calculate the average word length in a sentence:

sentence = "The quick brown fox jumped over the lazy dog"
<< "The quick brown fox jumped over the lazy dog"

The sentence can be converted into an array using the split() method:

words = sentence.split(" ");
<< ["The", "quick", "brown", "fox", "jumped", "over", "the", "lazy",
➥"dog"]

Now we can use the reduce() function to calculage the total number of letters in

the sentence:

total = words.reduce(function(prev,word) {
 return prev + word.length;
},0);
<< 36

average = total/words.length;
<< 4

Using map() and reduce() Together
The map() and reduce() methods are often used in combination to create some

powerful transformations of data stored in arrays. Because the map() function returns

the transformed array, the reduce() can be chained on the end. For example, we

can calculate the sum of square numbers using the map() method to square each

number in the array and then use the reduce() method to add the results together:

JavaScript: Novice to Ninja104

[1,2,3].map(square).reduce(function(total,x) { return x + total; });
<< 14

Another more complex example could be used to take an array of orders, apply a

sales tax to them using map() and then use reduce() to find the total:

var sales = [100, 230, 55];
totalAfterTaxSales = sales.map(function(amount) {
 return amount * 1.15; // add 15% sales tax
 }).reduce(function(prev,current){
 return prev + current;
 });
<< 442.75

filter()
The filter() method returns a new array that only contains items from the original

array that pass return true when passed to the callback. For example, we can filter

an array of numbers to just the even numbers using the following code:

var numbers = [2, 7, 6, 5, 11, 23, 12]

numbers.filter(function(number) {
 return number%2 === 0; // this returns true if the number is even
 });

<< [2, 6, 12]

There are other array methods that use callbacks that are worth investigating such

as reduceRight(), every(), and some(). More information about them can be found

at the Mozilla Developer Network2.

Quiz Ninja Project
Now that we have a good understanding of functions, we’re going to have a go at

refactoring the code for our Quiz Ninja project so that it uses functions to describe

the main parts of the program. Refactoring is the process of improving the code’s

structure and maintainability without changing its behavior.

2 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

105Functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

What we’re going to do is replace some of the chunks of code with functions. This

will make the code easier to follow and maintain because if we want to make a

change to the functionality, all we need to do is change the code inside the relevant

function.

Open up the scripts.js file in the js folder and replace all the code with the following:

scripts.js (incomplete)

var quiz = [
 ["What is Superman's real name?","Clarke Kent"],
 ["What is Wonderwoman's real name?","Dianna Prince"],
 ["What is Batman's real name?","Bruce Wayne"]
];

var score = 0 // initialize score

play(quiz);

The first part of this code remains the same ― we set up an array of questions and

answers that is stored in the quiz variable and then declare a score variable initial-

ized to 0 to keep track of the player's score. The last line contains an important

change, though ― we invoke a function called play() and pass the quiz array to it

as an argument. This is the main game function that contains all the steps of playing

the game. Let's write that function now by adding the following lines of code to the

end of our scripts.js file (remember that, because of hoisting, function definitions

can go after they are invoked):

scripts.js (excerpt)

function play(quiz){
 // main game loop
 for(var i=0, question, answer, max=quiz.length; i<max; i++) {
 question = quiz[i][0];
 answer = ask(question);
 check(answer);
 }
 // end of main game loop
 gameOver();
}

JavaScript: Novice to Ninja106

This function also contains a number of functions that help to describe how the

game runs, without getting bogged down with too much of the actual logic. It loops

through the quiz array and selects a question. This is an array containing the

question at index 0 and the corresponding answer at index 1 that is stored in the

variable question. The next step is to ask the question (by invoking the ask()

function), then checks the answer the player gives (by invoking the check() func-

tion). After we have looped through every question in the quiz array, the game is

over, so the gameOver() function is invoked. This shows how code can be simplified

abstracting it into separate functions that are descriptively named. It is also useful

as it allows us to change the content of the functions at a later time; if we decide

that the way to check a question will change, for example, all we need to do is edit

the check() function.

Now we need to write the ask() and check() functions. These functions need to

be placed inside the play() function as nested functions. This will give them access

to any variables defined inside the play() function, which is important as they

both require access to the variables that are defined within the scope of the play()

function. So these functions must also be defined inside the scope of the play()

function in order to have access to the variables.

First of all, let's write the ask() function. This goes at the bottom of the play()

function block (before the closing curly brace):

scripts.js (excerpt)

function ask(question) {
 return prompt(question); // quiz[i][0] is the ith questions
}

The ask() function accepts a question parameter. This combination of function

name and parameter name is used to make the code very descriptive ― it reads al-

most like an English sentence: "Ask the question". It uses a prompt dialog and returns

the text entered by the player, which is then saved in a variable called answer.

The check() function is written after the ask() function and has an answer para-

meter. This combination of function name and parameter name again make the code

read more like an English sentence. Naming functions in this way means that we

don't need to use comments to explain what the code does in this case, as it's self-

explanatory:

107Functions

scripts.js (excerpt)

function check(answer) {
 if(answer === quiz[i][1]){ // quiz[i][1] is the ith answer
 alert("Correct!");
 // increase score by 1
 score++;
 } else {
 alert("Wrong!");
 }
}

This function uses the same logic that we used in the last chapter to check if the

answer entered by the player is the same as the answer stored in the array. If it is,

then we increase the score by 1 and if it isn't then we show an alert dialog to say

so.

When all the questions have been asked and all the answers have been checked,

the program breaks out of the loop and then invokes the gameOver() function. This

is also defined at the bottom of the playQuiz function as follows:

scripts.js (excerpt)

function gameOver(){
 // inform the player that the game has finished and tell them
➥how many points they have scored
 alert("Game Over, you scored " + score + " points");
 }
}

This uses an alert dialog to give some feedback about how many questions were

answered correctly.

Once you’ve made these changes, have a go at playing the quiz by opening the

index.htm file in your browser. It should look like the screenshot shown in Figure 4.3.

JavaScript: Novice to Ninja108

Figure 4.3. Playing Quiz Ninja

While you play, you might notice that there’s been no change to the functionality

of the quiz. This is the process of refactoring―the functionality of the application

remains the same, but the underlying code has become more flexible and easier to

maintain, as well as being more readable and descriptive due to the use of functions.

We have abstracted much of the internal game logic out into separate functions,

which means that we can change the mechanics of different aspects of the quiz by

updating the relevant functions.

I hope this helps to demonstrate how functions can make your code more flexible,

maintainable, reusable, and easier to read―as long as they are well-named.

Summary
In this chapter we have learned the following:

■ Functions are first-class objects that behave the same way as all other values.

■ Function literals can be defined using the function declaration, or by creating

a function expression by assigning an anonymous function to a variable.

109Functions

■ All functions return a value. If this is not explicitly stated, the function will return

undefined.

■ A parameter is a value that is written in the parentheses of a function declaration

and can be used like a variable inside the function’s body.

■ An argument is a value that is provided to a function when it is invoked.

■ The arguments variable is an array-like object that allows access to each argument

provided to the function using index notation.

■ Default arguments can be supplied to a function by checking if the actual argu-

ment entered has a value of undefined.

■ Variables defined using var inside functions have local scope. This means that

they are only available inside the function they are defined in.

■ Variables defined without var have global scope, which means they can be ac-

cessed (and overwritten) from anywhere in the program.

■ Variable declarations are hoisted to the top of a functions scope, but variable

assignments are not.

■ Function declarations can be invoked before they are defined because they are

hoisted to the top of the scope, but function expressions cannot be invoked until

after they are defined.

■ A callback is a function that is provided as an argument to another function.

Everything that isn’t a primitive value in JavaScript is an object―the topic of our

next chapter.

JavaScript: Novice to Ninja110

Chapter5
Objects
Everything in JavaScript is either one of the five primitive values we met in Chapter

2 (strings, numbers, Booleans, undefined, and null) or an object. We’ve actually met

some objects already; arrays in Chapter 3 and functions in Chapter 4 are both objects,

although these are built-in objects that are part of the language. In this chapter we’re

going to look at user-defined objects as well as some other built-in objects.

In this chapter, we’ll be covering the following topics:

■ object literals

■ adding properties to objects

■ object methods

■ JSON

■ the Math object

■ the Date object

■ the RegExp object

■ our project―create quiz and question objects and ask random questions

Object Literals
An object in JavaScript is a self-contained set of related values and functions. They

act as a collection of named properties that map to any JavaScript value such as

strings, numbers, Booleans, arrays, and even functions. If a property’s value is a

function, it is known as a method.

One way to think about an object is that it’s like a dictionary where you look up a

property name and see a value. Another way of is that it is like a database of values;

some databases actually use JavaScript objects to store information. This is similar

to a hash or associative array in other programming languages; however, JavaScript

objects are much more flexible as they can be employed to encapsulate code that

can be reused throughout a program. They can also inherit properties from other

objects (which we’ll cover in Chapter 11).

An object literal is an object that is created directly in the language by wrapping

all its properties and methods in curly braces {}. Object literals are a distinguishing

feature of the JavaScript language, as they allow objects to be created quickly without

the need for a class template.

A Super Example
Here is an example of an object literal that describes the Man of Steel:

var superman = {
 name: "Superman",
 "real name": "Clark Kent",
 height: 75,
 weight: 235,
 hero: true,
 villain: false,
 allies: ["Batman","Supergirl","Superboy"],
 fly: function(){

JavaScript: Novice to Ninja112

 return "Up, up and away!";
 }
}

Each property is a key-value pair, separated by commas. In the example, the first

property is called name and its value is "Superman", while the property fly is a

method.

If a property’s name doesn’t follow the rules for naming variables described in

Chapter 2 [14], it needs to be quoted. For example, the property "real name" needs

to be quoted because it contains a space.

Property and Method Names in the Real World

It’s very uncommon to use property and method names that don’t follow the rules

for naming variables. In a real-world app, it is likely that the "real name"

property would actually be named real_name or realName.

All objects are mutable at any time when a program is running. This means that its

properties and methods can be changed or removed and new properties and methods

can be added to the object.

Creating Objects
To create an object literal, simply enter a pair of curly braces. The following example

creates an empty object that is assigned to the variable spiderman:

var spiderman = {};

It’s also possible to create an object using a constructor function. This example will

create an empty object:

var spiderman = new Object();

This method is not recommended, however, and the object literal notation is the

preferred way of creating objects. The obvious reason is because it requires less

typing; a constructor takes more steps in the background, which can cause programs

to run slower.

113Objects

Accessing Properties
You can access the properties of an object using the dot notation that we’ve already

seen in previous chapters:

superman.name
<< "Superman"

You can also access an object’s properties using bracket notation―the property is

represented by a string inside square brackets, so needs to be placed inside single

or double quotation marks:

superman['name']
<< "Superman"

Dot notation is much more common, but bracket notation has a few advantages: It

is the only way to access nonstandard property and method names that don’t follow

the variable naming rules. It also lets you evaluate an expression and use it as the

object key:

superman["real" + " " + "name"] // the property is built using
➥string concatenation
<< "Clarke Kent"

If you try to access a property that doesn’t exist, undefined will be returned:

superman.city
<< undefined

Calling Methods
To call an object’s method we can also use dot or bracket notation. Calling a method

is the same as invoking a function, so parentheses need to be placed after the

method name:

JavaScript: Novice to Ninja114

superman.fly()
<< "Up, up and away!"

superman['fly']()
<< "Up, up and away!"

Checking if Properties or Methods Exist
The in operator can be used to check whether an object has a particular property.

So, for example, we can check if the superman object has a property called city

using this code:

"city" in superman
<< false

Alternatively, you could also check to see if the property or method doesn’t return

undefined:

superman.city !== undefined
<< false

As mentioned earlier, objects can inherit properties from other objects, so all objects

have a method called hasOwnProperty(). This can be used to check whether an

object has a property that is its own, rather than one that has been inherited from

another object:

superman.hasOwnProperty('city');
<< false

superman.hasOwnProperty('name');
<< true

Finding all the Properties of an Object
We can loop through all of an object’s properties and methods by using a for in

loop. For example, to log all the properties of the superman object to the console,

we could use:

115Objects

for(var key in superman) {
 console.log(key + ": " + superman[key]);
}
<< "name: Superman"
<< "real name: Clark Kent"
<< "height: 75"
<< "weight: 235"
<< "hero: true"
<< "villain: false"
<< "allies: Batman,Supergirl,Superboy"
<< "fly: function (){
 console.log(\"Up, up and away!\");
 }"

In this example, we create a variable called key. This is then used to represent the

name of each property or method in the superman object inside the for loop.

To make sure that only an object’s own properties are returned, a quick check can

be implemented beforehand:

for(var key in superman) {
 if(superman.hasOwnProperty(key)){
 console.log(key + ": " + superman[key]);
 }
}

Adding Properties
New properties and methods can be added to objects at any time in a program. This

is done by assigning a value to the new property. For example, if we wanted to add

a new city property to our superman object, we would do it like so:

superman.city = "Metropolis"
<< "Metropolis"

Now if we take a look at the superman object, we can see that it has a city property:

JavaScript: Novice to Ninja116

superman
<< {"city": "Metropolis", "fly": function (){
console.log("Up, up and away!");}, "height": 75, "name": "Superman",
➥"real name": "Clark Kent", "weight": 235}

Notice that the properties don’t necessarily appear in the order that they were

entered. An object is not an ordered list like an array, so you should never rely on

the properties being in a certain order.

Changing Properties
You can change the value of an object’s properties at any time using assignment.

For example, we can change the value of the "real name" property like this:

superman['real name'] = "Kal-El"
<< "Kal-El"

We can check the update has taken place by taking a look at the object:

superman
<< {"allies": ["Batman", "Supergirl", "Superboy"], "city":
➥"Metropolis", "fly": function (){
 console.log("Up, up and away!");
 }, "height": 75, "hero": true, "name": "Superman", "real name":
➥"Kal-El", "villain": false, "weight": 235}

Removing Properties
Any property can be removed from an object using the delete operator. For example,

if we wanted to remove the fly method from the superman object, we would enter

the following:

delete superman.fly
<< true

Now if we take a look at the superman object, we can see that he has lost his ability

to fly:

117Objects

superman
<< {"allies": ["Batman", "Supergirl", "Superboy"], "city":
➥"Metropolis", "height": 75, "hero": true, "name": "Superman",
➥ "real name": "Kal-El", "villain": false, "weight": 235}

Nested Objects
It’s even possible for an object to contain other objects. These are known as nested

objects. Here’s an example of an object that contains a list of other objects. It has

been assigned to the variable jla:

jla = {
 superman: { realName: "Clarke Kent" },
 batman: { realName: "Bruce Wayne" },
 wonderWoman: { realName: "Diana Prince" },
 flash: { realName: "Barry Allen" },
 greenLantern: { realName: "Hal Jordan" },
 martianManhunter: { realName: "John Jones" }
}

The values in nested objects can be accessed by referencing each property name in

order using either dot or bracket notation:

jla.wonderWoman.realName
<< "Diana Prince"

jla['flash']['realName']
<< "Barry Allen"

You can even mix the different notations:

jla.martianManhunter['realName']
<< "John Jones"

Objects as Parameters to Functions
An object literal can be passed as a parameter to a function. This allows the argu-

ments to be given in any order and for default values to be used.

The following example shows how this can be done:

JavaScript: Novice to Ninja118

function greet (options) {
 options = options || {};
 greeting = options.greeting || "Hello";
 name = options.name || "Anon";
 age = options.age || 18
 return greeting + "! My name is " + name + " and I am " + age +
➥" years old.";
}

It takes an object called options as an argument. If no object is provided, we create

an empty object instead in this line:

options = options || {};

This is a common JavaScript pattern used to create default values. It relies on the

logical OR statement being lazily evaluated. If options already exists, only the first

statement will be evaluated, so options will remain as its current value. If no argu-

ments are supplied to the function, the value of options will be undefined, which

is falsy. Then the second operand will be evaluated and options will be assigned

to an empty object literal.

The same method is then used to set default values for the greeting, name, and age

properties of the options object. At the end of the method, a string is returned that

uses the values that were supplied, or the default values.

Here is an example of how the function can be used:

greet({ greeting: "Hi", age: 10, name: "Bart" });
<< "Hi! My name is Bart and I am 10 years old."

You can enter the parameters in any order and if you don’t enter one of the values,

its default value will be used:

greet({ name: "Lisa", age: 8 });
<< "Hello! My name is Lisa and I am 8 years old."

This is a popular pattern used with functions, particularly when there are a lot of

options, and it is common to many JavaScript libraries.

119Objects

Be Careful with Falsy Values

You have to take care when using this method of assigning default values because

any falsy value will result in the default value being used.

For example, if an age of 0 is entered, the default value will be used because 0 is

falsy:

greet({ age: p });
<< "Hello! My name is Anon and I am 18 years old."

Built-in Objects
We’ve already seen the two main built-in objects included in JavaScript: arrays and

functions. JavaScript has a number of other built-in global objects that can be ac-

cessed from anywhere in a program. They provide a number of useful properties

and methods that we’ll cover in this section.

JSON
JavaScript Object Notation, or JSON, was invented by Douglas Crockford in 2001.

It is a popular lightweight data-storage format that is used for data serialization and

configuration. It is often used to exchange information between web services and

is employed by sites such as Twitter, Facebook, and Trello to share information. It

manages to hit the sweet spot between being both human- and machine-readable.

JSON is a string representation of the object literal notation that we have just seen.

There are a few differences, though, such as property names being quoted and not

using functions to create methods.

Here is an example of a JSON object representing the Caped Crusader:

var batman = '{"name": "Batman","real name": "Bruce Wayne","height":
➥ 74,"weight": 210,"hero": true,"villain": false,"allies": ["Robin",
➥"Batgirl","Superman"]}'

JSON is becoming increasingly popular as a data storage format and many program-

ming languages now have libraries dedicated to parsing and generating it. Since

JavaScript: Novice to Ninja120

ECMAScript 5, there has been a global JSON object that can be used to do the same

in JavaScript.

The parse method takes a JSON string and returns a JavaScript object:

JSON.parse(batman);
<< {"allies": ["Robin", "Batgirl", "Superman"], "height": 74,
➥"hero": true, "name": "Batman", "real name": "Bruce Wayne",
➥"villain": false, "weight": 210}

The stringify method does the opposite, taking a JavaScript object and returning

a string of JSON data, as can be seen in the example:

var wonderWoman = {
 name: "Wonder Woman",
 "real name": "Diana Prince",
 height: 72,
 weight: 165,
 hero: true,
 villain: false,
 allies: ["Wonder Girl","Donna Troy","Superman"],
 lasso: function(){
 console.log("You will tell the truth!");
 }
}

JSON.stringify(wonderWoman);
<< "{\"name\":\"Wonder Woman\",\"real name\":\"Diana Prince\",\
➥"height\":72,\"weight\":165,\"hero\":true,\"villain\":false,\
➥"allies\":[\"Wonder Girl\",\"Donna Troy\",\"Superman\"]}"

Note that the quote marks are escaped and any methods an object has (such as the

aforementioned lasso method) will simply be ignored by the stringify method.

These methods are useful when passing data to and from a web server using Ajax

requests (see Chapter 13) or when using localStorage to store data on a user’s machine

(see Chapter 14). JSON data is easy to exchange between different services as most

languages and protocols are able to interpret data as strings of text.

121Objects

The Math Object
The Math object has several properties that represent mathematical constants and

methods. These are used to carry out a number of useful operations.

All the properties and methods of the Math object are immutable and unable to be

changed.

Mathematical Constants
The Math object has eight properties that represent a mix of commonly used math

constants. Note that they are all named in capital letters, which is a convention for

constant values:

> Math.PI // The ratio of the cirumference and diameter of a circle
<< 3.141592653589793

> Math.SQRT2 // The square root of 2
<< 1.4142135623730951

> Math.SQRT1_2 // The reciprocal of the square root of 2
<< 0.7071067811865476

> Math.E // Euler's constant
<< 2.718281828459045

> Math.LN2 // The natural logarithm of 2
<< 0.6931471805599453

> Math.LN10 // The natural logarithm of 10
<< 2.302585092994046

> Math.LOG2E // Log base 2 of Euler's constant
<< 1.4426950408889634

> Math.LOG10E // Log base 10 of Euler's constant
<< 0.4342944819032518

Mathematical Operations
The Math object also has several methods to carry out a variety of useful mathemat-

ical operations.

JavaScript: Novice to Ninja122

The Math.abs() method returns the absolute value of a number. So if the number

is positive, it will remain the same and if it is negative, it will become positive:

> Math.abs(3);
<< 3

> Math.abs(-4.6);
<< 4.6

The Math.ceil() method will round a number up to the next integer, or remain

the same if it is already an integer:

> Math.ceil(4.2);
<< 5

> Math.ceil(8);
<< 8

> Math.ceil(-4.2);
<< -4

The Math.floor() method will round a number down to the next integer, or remain

the same if it is already an integer:

> Math.floor(4.2);
<< 4

> Math.floor(8);
<< 8

> Math.floor(-4.2);
<< -5

The Math.round() method will round a number to the nearest integer:

> Math.round(4.5);
<< 5

> Math.round(4.499);
<< 4

123Objects

> Math.round(-4.2);
<< -4

The Math.exp() method will raise a number to the power of Euler’s constant:

> Math.exp(1); // This is Euler's constant
<< 2.718281828459045

> Math.exp(0); // Any number to the power of 0 is 1
<< 1

> Math.exp(-3);
<< 0.04978706836786393

The Math.pow() method will raise any number (the first argument) to the power of

another number (the second argument):

> Math.pow(3,2); // 3 squared
<< 9

> Math.pow(4.5,0); // Any number to the power of 0 is 1
<< 1

> Math.pow(27,1/3); // A nice way to do cube roots
<<

The Math.sqrt() method returns the positive square root of a number:

> Math.sqrt(121);
<< 11

> Math.sqrt(2); // same as Math.SQRT2
<< 1.4142135623730951

> Math.sqrt(-1); // No built in imaginary numbers!
<< NaN

The Math.log() method returns the natural logarithm of a number:

JavaScript: Novice to Ninja124

> Math.log(Math.E); // Natural logs have a base of Euler's constant
<< 1

> Math.log(1); // log of 1 is zero
<< 0

> Math.log(0); // You can't take the log of zero
<< -Infinity

> Math.log(-2); // You can't take logs of negative numbers
<< NaN

The Math.max() method returns the maximum number from its arguments:

> Math.max(1,2,3);
<< 3

> Math.max(Math.PI,Math.SQRT2, Math.E);
<< 3.141592653589793

And the Math.min() method unsurprisingly returns the minimum number from the

given arguments:

> Math.min(1,2,3);
<< 1

> Math.min(Math.PI,Math.SQRT2, Math.E);
<< 1.4142135623730951

Trigonometric Functions
The Math object also has the standard trigonometric functions, which are very useful

when working with geometrical objects. All angles are measured in radians for these

functions.

Remind Me About Radians

Radians1 are a standard unit of angular measurement, equal to the angle of the

circle’s center corresponding to the arc that subtends it.

1 http://en.wikipedia.org/wiki/Radian

125Objects

http://en.wikipedia.org/wiki/Radian

The Math.sin() returns the sine of an angle:

> Math.sin(Math.PI/6); // this calculation contains rounding errors,
➥ it should be 0.5
<< 0.49999999999999994

The Math.cos() returns the cosine of an angle:

> Math.cos(Math.PI/6);
<< 0.8660254037844387

The Math.tan() returns the tangent of an angle:

> Math.tan(Math.PI/4); // another rounding error, this should be 1
<< 0.9999999999999999

> Math.tan(Math.PI/2); // this should be NaN or Infinity
<< 16331778728383844

The Math.asin() returns the arcsine of a number. The result is an angle:

> Math.asin(1);
<< 1.5707963267948966

The Math.acos() returns the arccosine of a number. The result is an angle:

> Math.acos(0.5);
<< 1.0471975511965976

The Math.atan() returns the arctangent of a number. The result is an angle:

> Math.atan(Math.sqrt(3)); // Same as Math.PI/3
<< 1.0471975511965976

Rounding Errors

You might have noticed that some of the values in the previous examples were

not exactly accurate. For example, sin(π/6) should be 0.5, yet

Math.sin(Math.PI/6) returns 0.49999999999999994.

JavaScript: Novice to Ninja126

This is to be expected when dealing with floating-point decimal numbers. Com-

puters have lots of trouble dealing with decimal fractions (as they work in binary)

and the answers can vary from one platform to another.

Another problem is that the value of π using Math.PI is only given correct to 16

significant figures, which will affect the overall accuracy.

These rounding errors are no big deal for most web applications. Whenever you

perform any calculations, make sure that your program doesn’t rely on exact an-

swers, and has some degree of tolerance instead.

Random Numbers
The Math.random() method is used to create random numbers, which can be very

useful when writing programs. Calling the method will generate a number between

0 and 1, like so:

> Math.random();
<< 0.7881970851344265

To generate a random number between 0 and another number, we can multiply the

value by that number. The following code generates a random number between 0

and 6:

> 6 * Math.random();
<< 4.580981240354013

If we want to generate a random integer, we can use the Math.floor() method that

we saw earlier to remove the decimal part of the return value. The following code

generates a random integer between 0 and 5 (it will never be 6, because it always

rounds down):

> Math.floor(6 * Math.random());
<< 4

It’s a useful exercise to try and write a function that will generate a random number

between two values.

127Objects

Experimental Methods
There are some experimental functions being considered for inclusion in the next

version of the ECMAScript specification and are already implemented in some

browsers. You can find a full list at the Mozilla Developer Reference.2

The Date Object
Date objects hold information about dates and times. Each object represents a single

moment in time.

Constructor Function
A constructor function is used to create a new date object using the new operator:

> today = new Date();
<< [object Date]{

 }

This confirms that the variable today points to a Date object. To see what the date

is, we use the toString() method that all objects have:

> today.toString();
<< "Sun Jun 08 2014 15:43:03 GMT+0100 (BST)"

If an argument is not supplied, the date will default to the current date and time.

It’s possible to create Date objects for any date by supplying it as an argument to

the constructor function. This can be written as a string in a variety of forms:

> christmas = new Date('2014 12 25');
<< [object Date]{

 }

> christmas.toString();
<< "Thu Dec 25 2014 00:00:00 GMT+0000 (GMT)"

> chanukah = new Date('16 December 2014');

2 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

JavaScript: Novice to Ninja128

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

<< [object Date]{

 }

> chanukah.toString();
<< "Tue Dec 16 2014 00:00:00 GMT+0000 (GMT)"

> eid = new Date('Saturday, July 18, 2015');
<< [object Date]{

 }

> eid.toString();
<< "Sat Jul 18 2015 00:00:00 GMT+0100 (BST)"

JavaScript is very flexible in the date format, which can be used in the string that

is provided as an argument; however, in order to be more consistent, it is better to

provide each bit of information about the date as a separate argument. The parameters

that can be provided are as follows:

new Date(year,month,day,hour,minutes,seconds,millisecons)

Here is an example:

> easter = new Date(2015, 3, 05);
<< [object Date]{

 }

> easter.toString();
<< "Sun Apr 05 2015 00:00:00 GMT+0100 (BST)"

Notice that the months start counting at zero, so January is 0, February is 1, and so

on up to December, which is 11.

An alternative is to use a timestamp, which is a single integer argument that repres-

ents the number of milliseconds since the Epoch (1st January 1970):

> diwali = new Date(1414018800000);
<< [object Date]{

129Objects

 }

> diwali.toString();
<< "Thu Oct 23 2014 00:00:00 GMT+0100 (BST)"

The Epoch

The Epoch is 1st January, 1970. This is an arbitrary date that is used in program-

ming as a reference point in time from which to measure dates. This allows dates

to be expressed as an integer that represents the number of seconds since the

Epoch. It results in a very large number and there is a potential problem looming

in 20383 when the number of seconds since the Epoch will be greater than

2,147,483,647, which is the maximum value that many computers can deal with

as a signed 32-bit integer. Fortunately, this problem will not affect JavaScript dates

because it uses floating-point numbers rather than integers, so it can handle bigger

values.

Getter Methods
The properties of date objects are unable to be viewed or changed directly. Instead,

they have a number of methods known as getter methods that return information

about the date object, such as the month and year.

Once you have created a date object it will have access to all the getter methods.

There are two versions of each method, one that returns the information in local

time and the other that uses Coordinated Universal Time (UTC).

Coordinated Universal Time

UTC is the primary time standard by which the world regulates clocks. It was

formalized in 1960 and is much the same as Greenwich Mean Time (GMT). The

main difference is that UTC is a standard that is defined by the scientific com-

munity, unlike GMT.

The getDay() and getUTCDay() methods are used to find the day of the week that

the date object falls on. It returns a number, starting at 0 for Sunday, up to 6 for

Saturday:

3 http://en.wikipedia.org/wiki/Year_2038_problem

JavaScript: Novice to Ninja130

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

> diwali.getDay(); // it's on a Thursday
<< 4

The getDate() and getUTCDate()methods return the day of the month for the date

object:

> diwali.getDate(); // it's on the 23rd
<< 23

The getMonth() and getUTCMonth() methods can be used to find the month of the

date object. It returns an integer, but remember that JavaScript starts counting at 0,

so January is 0, February is 1, and so on up to December being 11:

> diwali.getMonth(); // it's in October
<< 9

The getFullYear() and getUTCFullYear() methods return the year of the date

object. There is also a getYear() method, but it isn’t Y2K compliant, so shouldn’t

be used:

> diwali.getYear(); // broken for years after 2000
<< 114

> diwali.getFullYear(); // use this instead
<< 2014

There are also getHours(), getUTCHours(), getMinutes(), getUTCMinutes(),

getSeconds(), getUTCSeconds, getMilliseconds(), and getUTCMilliseconds()

methods that will return the hours, minutes, seconds and milliseconds since mid-

night.

The getTime()method returns a timestamp representing the number of milliseconds

since the Epoch:

> diwali.getTime();
<< 1414018800000

This can be useful for incrementing dates by a set amount of time; for example, a

day can be represented by 1000 * 60 * 60 * 24 milliseconds:

131Objects

> christmasEve = new Date(christmas.getTime() - 1000 * 60 * 60 * 24)
<< [object Date]{

 }

> christmasEve.toString();
<< Fri Dec 26 2014 00:00:00 GMT+0000 (GMT)"

The getTimezoneOffset() method returns the difference, in minutes, between

local time and UTC. For example, my timezone is currently British Summer Time:

> new Date().getTimezoneOffset()
<< -60

This shows that British Summer Time is one hour ahead of UTC.

Setter Methods
Most of the getter methods covered in the previous section have equivalent setter

methods. These are methods that can be used to change the value of the date held

in a Date object. Each of the methods takes an argument representing the value to

which you update the date. The methods return the timestamp of the updated date

object.

As an example, we can change the value of the date stored in the diwali variable

so that it contains the date of Diwali in 2015, which is on Wednesday, November

11, 2015:

> diwali.setDate(11);
<< 1412982000000

> diwali.setMonth(10); // November is month 10
<< 1415664000000

> diwali.setFullYear(2015);
<< 1447200000000

Note that the values returned by these functions is the timestamp representing the

number of milliseconds since the Epoch. To see the actual date, we need to use the

toString() mehtod:

JavaScript: Novice to Ninja132

> diwali.toString();
<< "Wed Nov 11 2015 00:00:00 GMT+0000 (GMT)"

There are also setHours(), setUTCHours(), setMinutes(), setUTCMinutes(),

setSeconds(), setUTCSeconds, setMilliseconds() and setUTCMilliseconds()

methods that can be used to edit the time portion of a Date object.

Alternatively, if you know the date as a timestamp, you can use the setTime()

method:

> diwali.setTime(1447200000000);
<< 1447200000000

The RegExp Object
A regular expression (or RegExp, for short) is a pattern that can be used to search

or modify strings. A common use case is "find and replace" type operations. For

example, say you were looking for any word ending in "ing," you could use the

regular expression /\w+ing/.

If that example looks a bit confusing, don’t worry, it will become clear as we move

through this section. Regular expressions can look a little strange; in fact, they're

something of a dark art that could easily fill a whole book! They are certainly useful

when manipulating text strings, though, so we'll introduce some of the basics here

and recommend that you carry out further reading once you've finished this book.

Here are a couple of resources for the curious:

■ Mastering Regular Expressions by Jeffrey Fried4

■ Regular Expressions Info5

Creating Regular Expressions
There are two ways to create a regular expression. The first, and preferred way, is

to use the literal notation of writing the regular expression between forward slashes

that we’ve already seen:

4 http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/
5 http://www.regular-expressions.info/

133Objects

http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/
http://www.regular-expressions.info/

var pattern = /\w+ing/;

Alternatively, you can create a new instance of the RegExp object using the new op-

erator:

var pattern = new RegExp('\w+ing');

This permits you to create regular expressions using strings.

RegExp Methods
Once you have created a regular expression object, you can use the test() to see

if a string (passed to the method as a parameter) matches the regular expression

pattern. It returns true if the pattern is in the string, and false if it isn’t:

var pattern = /.*ing/;
<< undefined

pattern.test("joke"); //testing if the string ends in 'ing'
<< false

pattern.test("joking");
<< true

The exec() method works the same as the test() method, but instead of returning

true or false, it returns an array containing the first match found or null if there

aren’t any matches:

pattern.exec("joke"); //testing if the string ends in 'ing'
null

pattern.exec("joking");
["joking"]

Basic Regular Expressions
At the most basic level, a regular expression will just be a string of characters, so

the following will match the string 'java':

JavaScript: Novice to Ninja134

/java/

Character Groups
Groups of characters can be placed together inside square brackets. This character

group represents any one of the characters inside the brackets. For example, the

following regular expression matches any vowel:

/[aeiou]/

A sequence of characters can also be represented by placing a dash [-] between the

first and last characters; for example, all the uppercase letters can be represented

as:

/[A-Z]/

The digits 0-9 can be represented as:

/[0-9]/

If a ^ character is placed at the start of the sequence of characters with the brackets,

it negates the sequence, so the following regular expression represents any character

that is not a capital letter:

/[^A-Z]/

These groups can be combined with letters to make a more complex pattern. For

example, the following regular expression represents the letter J (lower case or

capital) followed by a vowel, followed by a lowercase v, followed by a vowel:

var pattern = /[Jj][aeiou]v[aeiou]/;
<< undefined

pattern.test("JavaScript");
<< true

pattern.test("jive");
<< true

135Objects

pattern.test("hello");
<< false

Regular Expression Properties
Regular expressions are objects and have the following properties:

■ The global property makes the pattern return all matches. By default, the pattern

only looks for the first occurrence of a match.

■ The ignoreCase property makes the pattern case-insensitive. By default, they

are case sensitive.

■ The multiline property makes the pattern multiline. By default, a pattern will

stop at the end of a line.

The following flags can be placed after a regular expression literal to change the

default properties:

■ g sets the global property to true

■ i sets the ignoreCase property to true

■ m sets the multiline property to true

For example, the following regular expression will match "JavaScript" or "javas-

cript" because the ignoreCase property is set to true:

var pattern = /java/i
<< undefined

pattern.test("JavaScript");
<< true

These properties can be checked using the dot notation, but cannot be updated once

the regular expression has been created, as can be seen in the following example:

var pattern = /java/i
<< undefined

JavaScript: Novice to Ninja136

pattern.ignoreCase // checking it is true
<< true

pattern.ignoreCase = false // this won't work
<< false

pattern.ignoreCase // has it changed?
<< true

The only way to change the ignoreCase property to false is to redefine the regular

expression:

pattern = /java/

Special Characters
In a regular expression, there are a number of characters that have a special meaning,

commonly known as metacharacters:

■ . matches any character

■ \w matches any word character, and is equivalent to [A-Za-z0-9_]

■ \W matches any non-word character, and is equivalent to [^A-Za-z0-9_]

■ \d matches any digit character, and is equivalent to [0-9]

■ \D matches any non-digit character, and is equivalent to [^0-9]

■ \s matches any whitespace character, and is equivalent to [\t\r\n\f]

■ \S matches any non-whitespace character, and is equivalent to [^ \t\r\n\f]

Modifiers
Modifiers can be placed after a pattern to match multiple occurrences of that pattern:

■ ? matches zero or one occurrence of the pattern

■ * matches zero or more occurrences of the pattern

■ + matches one or more occurrences of the pattern

137Objects

■ {n} matches n occurrences of the pattern

■ {n,} matches at least n occurrences of the pattern

■ {,m} matches at most m occurrences of the pattern

■ {n,m} matches at least n and at most m occurrences of the pattern

■ ^ specifies that the pattern must come at the beginning

■ $ specifies that the pattern must come at the end

Any special characters or modifiers can be escaped using a backslash. So if you

wanted to match a question mark, ?, you would need to use the regular expression

/\?/.

For example, the following regular expression will match anything that starts with

J followed by one or more vowels, then any letters or numbers ending in ing:

var pattern = /J[aeiou]+\w*ing/

As we can see, it matches the words "Joking" and "Jeering":

pattern.test("Joking");
<< true

pattern.test("Jeering");
<< true

A Practical Example
If we were looking for PDF files and had a list of filenames, this regular expression

could be used to find them (assuming they have a .pdf extension, of course):

var pdf = /.*\.pdf$/;

This looks for zero or more occurrences of any character, followed by an escaped

period, followed by the letters "pdf" that must come at the end of the string:

JavaScript: Novice to Ninja138

pdf.test("chapter1.pdf");
<< true

pdf.test("report.doc");
<< false

String Methods
There are a number of string methods that accept regular expressions as a parameter.

The split() method that we saw in Chapter 2 [14] can also accept a regular expres-

sion that’s used to split a string into the separate elements of an array:

"Hello World from JavaScript!".split(/\s+/) // splits the string
➥on one or more occurrences of a white space character
<< ["Hello", "World", "from", "JavaScript!"]

The match() method returns an array of all the matches:

"JavaScript".match(/[aeiou]/); // return the first vowel
<< ["a"]

"JavaScript".match(/[aeiou]/g); // return an array of all the vowels
➥- note the 'g' flag
<< ["a", "a", "i"]

The search() method returns the position of the first match:

"I'm learning JavaScript".search(/java/i);
<< 13

The replace() method replaces any matches with another string:

"JavaScript".replace(/[aeiou]/ig,"*"); // replace all vowels with *
<< "J*v*Scr*pt"

Roll the Dice!
We’ll finish off by using what we have learned in the chapter to create a dice object.

139Objects

The object will have a roll() method that returns a number between 1 and 6. Here’s

the code to create the dice object:

dice = {
 sides: 6,
 roll: function(){
 return Math.floor(6 * Math.random()) + 1;
 }
}

Let’s take it for a spin:

dice.roll();
<< 5

dice.roll();
<< 3

This is an example of using JavaScript objects to model a real-world object. We’ll

develop this concept further in Chapter 13.

Quiz Ninja Project
Now it's time to take another look at our Quiz Ninja project. We're going to use an

object to store the information about the quiz. Open up scripts.js in the js folder and

enter the following at the top of the file:

scripts.js (excerpt)

quiz = {
"name":"Super Hero Name Quiz",
"description":"How many super heroes can you name?",
"question":"What is the real name of ",
"questions": [
 { "question": "Superman", "answer": "Clarke Kent" },
 { "question": "Batman", "answer": "Bruce Wayne" },
 { "question": "Wonder Woman", "answer": "Dianna Prince" }
]
}

This is an object that contains information about the quiz in its properties. For ex-

ample there are name and description properties that contain string values about

JavaScript: Novice to Ninja140

the quiz. There is also a questions property that contains an array of objects. These

objects replace the nested arrays we used in the previous chapters and have proper-

ties of question and answer. This means that we can refer to a question as

quiz.questions[i].question instead of quiz[i][0] and an answer as

quiz.questions[i].answer instead of quiz[i][1]. So we also now need to make

a change to the for loop in our code when we select the question:

scripts.js (excerpt)

for(var i=0, question, answer, max=quiz.questions.length; i<max;
➥i++) {
 question = quiz.questions[i].question; // change is made here
 answer = ask(question);
 check(answer);
}

We also need to update the ask() function to use the question object notation instead

of array notation:

scripts.js (excerpt)

function ask(question) {
 return prompt(quiz.question + question); // this line changes
}

The following line in the check() function also needs to be changed:

scripts.js (excerpt)

if(answer === quiz.questions[i].answer){

Save these changes then have a go at playing the game again. Once again, we haven't

actually added any functionality, but we have started to make the program more

modular by storing all the quiz information in a separate object. This will make it

easier to expand on the functionality in later chapters

Summary
In this chapter we have learned the following:

■ Objects are a collection of key-value pairs placed inside curly braces {}.

141Objects

■ Objects have properties that can be any JavaScript value. If it is a function then

it is known as a method.

■ An object’s properties and methods can be accessed using either dot notation or

square bracket notation.

■ Objects are mutable, which means that their properties and methods can be

changed or removed.

■ Objects can be used as parameters to functions, which allows arguments to be

entered in any order, or omitted.

■ Nested objects can be created by placing objects inside objects.

■ JSON is a portable data format that uses JavaScript object literals to exchange

information.

■ The Math object gives access to a number of mathematical constants.

■ The Math object can be used to perform mathematical calculations.

■ The Date object can be used to create date objects.

■ Once you’ve created a Date object, you can use the getter methods to access in-

formation about that date.

■ Once you’ve created a Date object, setter methods can be used to change inform-

ation about that date.

■ The Regex object can be used to create regular expressions.

Now we’ve reached the end of the first part of the book, which means that you

should have a good grasp of the JavaScript programming language basics. But

JavaScript was originally designed to be used in the browser, so in the next chapter

we’ll look at how to use JavaScript to interact with web pages.

JavaScript: Novice to Ninja142

Chapter6
The Document Object Model
The Document Object Model (DOM) allows you to access elements of a web page

and enable interaction with the page by adding and removing elements, changing

the order of elements, changing the content of elements, changing element attributes,

and even altering how elements are styled.

In this chapter, we’ll be cover these topics:

■ introduction to the DOM

■ getting elements―getElementById, getElementsByClassName, getElementsBy-

TagName, querySelector, and querySelectorAll

■ navigating the DOM tree

■ getting and setting an element’s attributes

■ updating the DOM by creating dynamic markup

■ changing the CSS of an element

■ our project―insert questions dynamically into the DOM to create a list of quiz

questions

The Document Object Model
What is the Document Object Model?
The Document Object Model, or DOM for short, represents an HTML document as

a network of connected nodes that form a tree-like structure1.

Everything on a web page is represented by a node―HTML tags, the text inside

these tags, even the attributes of a tag are all nodes. The HTML tag is the root node

and every other part of the document is a child node of this.

Take the following piece of HTML as an example:

 <p class="warning"> Something has gone very wrong! </p>

This can be represented as the tree diagram shown in Figure 6.1.

Figure 6.1. The DOM tree

The DOM is not actually part of JavaScript because it is language agnostic. This

means that it can be used in any programming language, not just JavaScript. It is an

1 The DOM can also be used to represent XML and XHTML documents.

JavaScript: Novice to Ninja144

Application Programming Interface (API) that lets us access and modify different

parts of a web page using the built-in document object.

History of the DOM
In the early days of the Web, browser vendors such as Netscape and Microsoft de-

veloped their own distinct ways of accessing parts of a web page. In the beginning,

they tended to focus on common page elements such as images, links, and forms.

These methods became known as DOM level 0, or legacy DOM. Some of the more

common methods can still be used in the current DOM API.

The World Wide Web Consortium (W3C) started to standardize the process and

created the DOM API level 1 in 1998. This introduced a complete model for web

pages that allowed every part of them to be navigated.

The DOM level 2 was published in 2000 and introduced the popular getElement-

ById() method, which made it much easier to access specific elements on a web

page.

The current standard is DOM level 3, although level 4 is in the process of being

developed as a living standard, which means that it is being implemented in browsers

before it is formalized and published.

Despite the standardization process, browsers have not always implemented the

DOM consistently so it has been difficult to program for in the past. Fortunately,

since Internet Explorer 8, DOM support has been much more consistent and most

modern browsers implement the current DOM level 3 API reasonably well. They

are also implementing more of the new DOM level 4 features with every update.

An Example Web Page
To illustrate the DOM concepts covered in this chapter, we’ll use a basic web page

that contains a heading and three paragraph elements. Save the following code in

a file called dom.htm:

dom.htm

<!doctype html>
<html lang="en">
<head>

145The Document Object Model

 <meta charset="utf-8">
 <title>Triathlon DOM</title>
</head>
<body>
 <header>
 <h1 id="title">Triathlon</h1>
 </header>
 <section id="sports">
 <p class="swim">Swim</p>
 <p id="bike">Bike</p>
 <p>Run</p>
 </section>
</body>
</html>

Figure 6.2 shows what this web page would look like as a node tree diagram.

Figure 6.2. Our web page shown as a node tree

This is a Simplified View

This is a slightly simplified diagram as the DOM also stores any whitespace that

is in the HTML document as text nodes.

JavaScript: Novice to Ninja146

The best way to follow along with the examples in this chapter is to use the console

built into the web browser (we discussed how to use this in Chapter 1). The

screenshot in Figure 6.3 shows the page with the console open.

Figure 6.3. Using the console

Getting Elements
The DOM API provides several methods that allow us to access any element on a

page. These methods will return a node object or a node list, which is an array-like

object. These objects can then be assigned to a variable and be inspected or modified.

147The Document Object Model

For example, we can access the body element of a web page and assign it to the

variable body using the following code:

body = document.body;
<< <body>

Now that we have a reference to the body element, we can check its type:

typeof body;
<< "object";

This is a special Node object with a number of properties and methods that we can

use to find information about, or modify, the body element.

For example, we can use the nodeType property to find out what type of node it is:

body.nodeType;
<< 1

All nodes have a numerical code to signify what type they are. These are summarised

in the table below.

TypeCode

element1

attribute2

text3

comment8

document9

There are other types not covered in the table, but these aren’t used in HTML docu-

ments. As we can see from the table, a code of 1 confirms that body is an element

node.

We can also use the nodeName property to find the name of the element:

JavaScript: Novice to Ninja148

body.nodeName;
<< "BODY"

Note that the element name is returned in upper-case letters.

Legacy DOM Shortcut Methods
There are some methods from DOM Level 0 that can still be employed to access

commonly used elements:

■ document.body returns the body element of a web page, as we saw in the previous

example.

■ document.images returns a node list of all the images contained in the document.

■ document.links returns a node list of all the <a> elements and <area> elements

that have an href attribute.

■ document.anchors returns a node list of all the <a> elements that have a name

attribute.

■ document.forms returns a node list of all the forms in the document. This will

be used when we cover forms in Chapter 8.

Array-like, but not an Array

Node lists are array-like objects, but they are not arrays. You can access each item

using index notation. For example, document.images[0] will return the first

image in the node list of all the images in the document.

They also have a length property, which can be used to iterate through every

element using a for loop, like so:

for (var i=0 ; i < document.images.length ; i++) {

 // do something with each image using document.images[i]

}

Node lists don’t have any other array methods such as slice, splice, and join.

149The Document Object Model

Getting an Element by Its ID
The getElementById() method does exactly what it says on the tin. It returns a

reference to the element with a unique id attribute that is given as an argument.

For example, we can get a reference to the h1 element with the id of 'title' in the

dom.htm page by writing this in the console:

title = document.getElementById('title');
<< <h1 id="title">

Every id attribute should be unique to just one element, so this method will return

a reference to that element. For this reason, it’s a very quick way of finding elements

in a document. It is also supported in all the major browsers.

If no element exists with the given ID, null is returned.

Get Elements by Their Tag Name
getElementsByTagName() will return a live node list of all the elements with the

tag name that is provided as an argument. For example, we can get all the paragraphs

in the document using this code:

paragraphs = document.getElementsByTagName('p');
<< HTMLCollection [<p.swim>, <p#bike>, <p>]

As this is a node list, we can use the the index notation to find each individual

paragraph in the list:

swim = paragraphs[0];
<< <p class="swim">

bike = paragraphs[1];
<< <p id="bike">

run = paragraphs[2];
<< <p>

If there are no elements in the document with the given tag name, an empty node

list is returned.

JavaScript: Novice to Ninja150

document.getElementsByTagName() is supported by all major browsers and in In-

ternet Explorer from version 6 onwards.

Get Elements by Their Class Name
getElementsByClassName() will return a live node list of all elements that have

the class name that is supplied as an argument. For example, we can return a col-

lection of all elements with the class of 'swim' using the following:

document.getElementsByClassName('swim');
<< HTMLCollection []

There is only one element on the page that has the class name of swim, but a node

list (with a length of 1) will still be returned:

document.getElementsByClassName('swim').length;
<< 1

Note that if there are no elements with the given class, an HTML collection is still

returned, but it will have a length of 0:

document.getElementsByClassName('walk').length;
<< 0

To access the paragraph element node, we use the index notation to refer to the first

element in the collection:

swim = document.getElementsByClassName('swim')[0];
<< <p class="swim">

This now refers to the actual paragraph element with a class of swim.

document.getElementsByClassName is supported in all the major modern browsers,

but was only supported in Internet Explorer 9 and later.

Query Selectors
The document.querySelector() method allows you to use CSS notation to find

the first element in the document that matches a CSS query selector criteria provided

as an argument. If no elements match, it will return null.

151The Document Object Model

The document.querySelectorAll() method also uses CSS notation but returns a

node list of all the elements in the document that match the CSS query selector. If

no elements match, it will return an empty node list.

These are both very powerful methods that can emulate all the methods discussed,

as well as allowing more fine-grained control over which element nodes are returned.

Know Your Selectors

You do have to know about CSS query selectors to be able to use this method! If

you don’t know, or just need a reminder, you might want to check this page out

at SitePoint.2

For example, the following could be used instead of document.getElementById():

bike = document.querySelector('#bike');
<< <p id="bike">

And this could be used instead of document.getElementsByClassName:

swim = document.querySelectorAll('.swim');
<< NodeList [<p.swim>]

Note that this is not a live node list. See the section later in this chapter for more

details about live node lists.

CSS query selectors are a powerful way of specifying very precise items on a page.

For example, CSS pseudo-selectors can also be used to pinpoint a particular element.

The following code, for example, will return only the last paragraph in the document:

run = document.querySelector('p:last-child');

All modern browsers support these methods and Internet Explorer supported it

from version 8 onwards. Version 8 of Internet Explorer only understands CSS2.1

selectors (what it supports), so complex CSS3 notations such as x ~ y:empty will

fail to work.

2 http://www.sitepoint.com/web-foundations/css-selectors/

JavaScript: Novice to Ninja152

http://www.sitepoint.com/web-foundations/css-selectors/
http://www.sitepoint.com/web-foundations/css-selectors/

jQuery

jQuery is a popular JavaScript framework that makes it very easy to find elements

on a page using a CSS-style syntax. It uses document.querySelectorAll() in

the background whenever it can.

Navigating the DOM Tree
Node objects have a number of properties and methods for navigating around the

document tree. Once you have a reference to an element, you can walk along the

document tree to find other nodes. Let's focus on a particular part of the document

tree in our example. The relationship each node has with the bike node is shown

in Figure 6.4.

Figure 6.4. Navigating the DOM tree

The childNodes property is a list of all the nodes that are children of the node

concerned. The following example will return all the child nodes of the element

with an id of sports:

var sports = document.getElementById('sports');
<< undefined
sports.childNodes;
<< NodeList [#text "
", <p.swim>, #text "

153The Document Object Model

", <p#bike>, #text "
", <p>, #text "
"]

Note that the childNodes property returns all the nodes that are children of an

element. This will include any text nodes and since whitespace is treated as a text

node, there will often be empty text nodes in this collection.

The children property only returns any element nodes that are children of that

node, so will ignore any text nodes. Note that this is only supported in Internet

Explorer from version 9 onwards:

sports.children // this will only contain paragraph elements
<< HTMLCollection [<p>, <p>, <p>]

sports.children.length
<< 3

The firstChild property returns the first child of a node:

sports.firstChild
<< #text "
"

And the lastChild property returns the last child of a node:

sports.lastChild
<< #text "
"

Be careful when using these properties―the first or last child node can often be a

text node, even if it’s just an empty string generated by some whitespace.

For example, you might expect the first child node of the sports element to be the

swim element and the last child to be the run element, but it is in fact a text node,

generated by the whitespace characters in between the <section> and <p> tags:

The parentNode property returns the parent node of an element. The following code

returns the sports node because it is the parent of the bike node:

JavaScript: Novice to Ninja154

bike.parentNode;
<< <section id="sports">

The nextSibling property returns the next adjacent node (that is, the same parent).

It will return null if the node is the last child node of that parent:

bike.nextSibling;
<< #text "
"

The previousSibling property returns the previous adjacent node. It will return

null if the node is the first child of that parent:

bike.previousSibling
<< #text "
"

Once again, these methods find the next and previous node, not element, so they

will often return a blank text node as in the examples above.

Using these properties allows you to navigate around the whole of the document

tree.

Finding the Value of a Node
Finding the text contained within an element is actually trickier than it sounds. For

example, the variable swim has a DOM node that contains the following HTML:

<p class="swim">Swim</p>

It clearly contains the text "swim", but this is held in a text node, which is the first

child of the swim node:

swimTextNode = swim.firstChild;
<< #text "Swim

Now that we have a reference to the text node, we can find the text contained inside

it using the nodeValue method:

155The Document Object Model

swimTextNode.nodeValue;
<< "Swim"

A quicker way of doing this is to use the textContent property. This will return

the text content of an element as a string:

swim.textContent
<< "Swim"

Note that Internet Explorer version 8 does not support the textContent property,

but has the innerText property, which works in a similar way.

Getting and Setting Attributes
All HTML elements have a large number of possible attributes such as class, id,

src, and href. The DOM API contains getter and setter methods that can be used

to view, add, remove, or modify the value of any of these attributes.

Getting an Element’s Attributes
The getAttribute() method returns the value of the attribute provided as an argu-

ment:

swim.getAttribute("class");
<< "swim"

var meta = document.getElementsByTagName("meta")[0];
<< undefined

meta.getAttribute("charset");
<< "utf-8"

If an element does not have the given attribute, it returns null:

JavaScript: Novice to Ninja156

swim.getAttribute("stroke");
<< null

Setting an Element’s Attributes
The setAttribute can change the value of an element’s attributes. It takes two ar-

guments: the attribute that you wish to change and the new value of that attribute.

For example, if we wanted to change the class of the swim element to swimming, we

could do so using this code:

swim.setAttribute("class", "swimming");
<< undefined

swim.getAttribute("class");
<< "swimming"

If an element does not have an attribute, the setAttribute method can be used to

add it to the element. For example, we can add an id of "run" to the run paragraph:

run.setAttribute("id","run");
<< undefined

run.getAttribute("id");
<< "run"

Legacy DOM Attributes

The legacy DOM allows access to attributes using dot notation, like so:

bike.id;
<< "bike"

This notation is still supported, although some attribute names such as class

and for are reserved keywords in JavaScript so we need to use className and

htmlFor instead:

157The Document Object Model

swim.className;
<< "swim"

Classes of an Element
The className Property
As we’ve seen, we can modify the class name of an element using the setAttrib-

ute() method. There is also a className property that allows the class of an element

to be set directly. In addition, it can be used to find out the value of the class attrib-

ute:

swim.className;
<< "swimming"

We can change the class back to swim with the following code:

swim.className = "swim"
<< "swim"

The classList Property
The classList property is a list of all the classes an element has. It has a number

of methods that make it easier to modify the class of an element. It’s supported in

all modern browsers and in Internet Explorer from version 10 onwards.

The add method works in a similar way to the addClass function we created above,

and can be used to add a class to an element. For example, we could add a class of

"sport" to the run element:

run.classList.add('run');
<< undefined

The remove method will remove a specific class from an element. For example, we

could remove the class of "swim" from the swim element:

JavaScript: Novice to Ninja158

swim.classList.remove('swim');
<< undefined

The togglemethod is a particularly useful method that will add a class if an element

doesn’t have it already and remove the class if it does have it. It returns true if the

class was added and false if it was removed. For example:

swim.classList.toggle('sport'); // will remove the 'sport' class
<< false

swimm.classList.toggle('sport'); // will add the 'sport' class back
<< true

The contains method will check to see if an element has a particular class:

swim.classList.contains('sport');
<< true

swim.classList.toggle('sport');
<< false

swim.classList.contains('sport');
<< false

Adding Classes in Old Versions of Internet Explorer

Unfortunately, the classlist property is only available in Internet Explorer

version 10 and above, so if you want to support older versions of Internet Explorer,

you could create a function that will add an extra class to an element, rather than

just replace the current class. The addClass function takes the element and the

new class name to be added as parameters. It uses a simple if block to check if

the value of the className property is truthy. If it is, it will append the new class

to the end of the current class; otherwise, it will simply set the new class as the

element’s class:

function addClass(element,newClass){
 if (element.className) {
 element.className = swim.className + " " + newClass;
 } else {
 element.className = newClass;

159The Document Object Model

 }
 return element.getAttribute("class");
}

Let’s test this out on the swim element, which already has a class of 'swim':

addClass(swim,"sport");
<< "swim sport"

Let’s check that it works for the run element, which was without a class attribute:

addClass(run,"run");
<< "run"

Now the element has a class of 'run'.

Updating the DOM by Creating Dynamic
Markup

So far we’ve looked at how to gain access to different elements of a web page and

find out information about them. We’ve also looked at how to change the attributes

of elements. In this section, we’re going to learn how to create new elements and

add them to the page, as well as edit elements that already exist and remove any

unwanted elements from the page.

Creating an Element
The document object has a createElement() method that takes a tag name as a

parameter and returns that element. For example, we could create a new paragraph

as a DOM fragment in memory by writing the following in the console:

var newPara = document.createElement('p');

At the moment, this paragraph element is empty. To add some content, we’ll need

to create a text node.

JavaScript: Novice to Ninja160

Creating a Text Node
A text node can be created using the document.createTextNode() method. It takes

a parameter, which is a string containing the text that goes in the node. Let's create

the text to go in our new paragraph:

var text = document.createTextNode('Transition 1');

Now we have an element node and a text node, but they are not linked together―we

need to append the text node to the paragraph node.

Appending Nodes
Every node object has an appendChild() method that will add another node (given

as an argument) as a child node. We want our newly created text node to be a child

node of the newPara node. This means that it is newPara that calls the method with

text as an argument:

newPara.appendChild(text);

Now we have a paragraph element that contains the text that we want. So the process

to follow each time you want to create a new element with content is this:

1. create the element node

2. create the text node

3. append the text node to the element node

This can be made simpler by using the textContent property that every element

object has. This will add a text node to an element without the need to append it:

var newPara = document.createElement('p');
newPara.textContent = 'Transition 1';

While this has cut the number of steps from three down to two, it can still become

repetitive, so it’s useful to write a function to make this easier. This is what we’ll

do next.

161The Document Object Model

Putting It All Together in a Function
When we created our new paragraph element, all we specified were the type of tag

we wanted to use and the text inside it. These will form the parameters of our

function. The function will then perform the two steps we used to create the new

element and then return that element:

function createElement (tag,text) {
 el = document.createElement(tag);
 el.textContent = text;
 return el
}

Let’s try it out by creating another new paragraph element:

var anotherPara = createElement("p","Transition 2");

This means that we can now create new elements in a single line of code rather

than three. It’s time to add these new elements to our example page.

Adding Elements to the Page
We have already seen the appendChild() method. This can be called on a node to

add a new child node. The new node will always be added at the end of the list of

child nodes. The following example will add the newPara paragraph element we

created above to the end of the sports section, as shown in Figure 6.5:

JavaScript: Novice to Ninja162

sports.appendChild(newPara);
<< <p>

Figure 6.5. Append child

The appendChild method is useful as you’ll often want to add a new element to the

bottom of a list. But what if you want to place a new element in between two existing

elements?

The insertBefore()will place a new element before another element in the markup.

It’s important to note that this method is called on the parent node. It takes two

parameters: The first is the new node to be added and the second is the node that

you want it to go before (it’s helpful to think that the order of the parameters is the

163The Document Object Model

order they will appear in the markup). For example, we can place the newPara

paragraph before the bike paragraph with the following line of code:

sports.insertBefore(newPara,bike);
<< <p>

This will produce the output shown in Figure 6.6.

Figure 6.6. Insert before

Notice that even though the newPara paragraph had already been placed in the

document, this method can still be used on it. This means that the appendChild()

and insertBefore() methods can be used to move markup that already exists in

JavaScript: Novice to Ninja164

the DOM. This is because a reference to a single DOM element can only exist once

in the page, so if you use multiple inserts and appends, only the last one will have

an effect. If an element is required to appear in several different places in the docu-

ment, it would need to be cloned before each insertion.

This can be seen by using the appendChild() method on the swim paragraph. Since

it already exists, it just moves its position to come after the run paragraph, as shown

in Figure 6.7:

sports.appendChild(swim);
<< <p class="swim">

Figure 6.7. Moving the "swim" node

165The Document Object Model

We can also use insertBefore() to move it back again:

sports.insertBefore(swim,newPara);
<< <p class="swim">

Interestingly, there is no insertAfter method, so you should ensure that you have

access to the correct elements to place an element exactly where you want it.

Remove Elements from a Page
An element can be removed from a page using the removeChild() method. This

method is called on the parent node and has a single parameter, which is the node

to be removed. It returns a reference to the removed node. For example, if we wanted

to remove the swim paragraph we would use the following code:

swim = sports.removeChild(swim);
<< <p class="swim">

As you can see in Figure 6.8, it's been removed.

JavaScript: Novice to Ninja166

Figure 6.8. Remove a child node

Because we have a reference to the element, we can easily put it back into the doc-

ument if we need to:

sports.insertBefore(swim,newPara);
<< <p class="swim">

Replacing Elements on a Page
The replaceChild() method can be used to replace one node with another. It is

called on the parent node and has two parameters: the new node and the node that

is to be replaced. For example, if we wanted to change the content of the <h1> tag

167The Document Object Model

that makes the title of the page, we could replace the text node with a new one, like

so:

h1 = document.getElementById("title");
oldText = h1.firstChild;
newText = document.createTextNode("Iron Man Triathlon");
h1.replaceChild(newText,oldText)

Figure 6.9 shows that the text has now changed to "Iron Man Triathlon".

Figure 6.9. Replacing an element

JavaScript: Novice to Ninja168

innerHTML
The innerHTML node property is not part of the DOM standard, but it’s supported

by all the major browsers. It returns all the child elements of an element as a string

of HTML. If an element contains lots of other elements, all of the raw HTML is re-

turned. In the following example, we can see all the HTML that is contained inside

the section element with a class of sports:

sports.innerHTML
<< "
 <p class="swim">Swim</p>
 <p id="bike">Bike</p>
 <p>Run</p>
 "

The innerHTML property is also writable and can be used to place a chunk of HTML

inside an element. This will replace all of a node’s children with the raw HTML

contained in the string. This saves you having to create a new text node as it is done

automatically and inserted into the DOM. It is also much quicker than using the

standard DOM methods. For example, the heading text that we changed before could

be changed in one line:

h1.innerHTML = "Biathlon";

This becomes an even more powerful method if you want to insert a large amount

of HTML into the document. Instead of creating each element and text node indi-

vidually, you can simply enter the raw HTML as a string. The relevant nodes will

then be added to the DOM tree automatically. For example, we could change

everything contained within the sports section:

sports.innerHTML = "<p>Skiing</p><p>Shooting</p>";

This will now remove all the paragraphs that were children of the sports section

and replace them with two new child paragraph elements that contain a text node

each, as shown in Figure 6.10.

169The Document Object Model

Figure 6.10. Inner HTML

innerHTML and User-generated Content

Be careful when using innerHTML to update a page with any user-generated

content. A user is able to insert JavaScript as HTML, which can then be executed

on your site ... possibly with disastrous consequences!

Live Collections
The node lists returned by the document.getElementsByClassName() and docu-

ment.getElementsByTagName() methods are live collections that will update to

reflect any changes on the page. For example, if a new element with the class swim

JavaScript: Novice to Ninja170

is added or an existing one is removed, the node list updates automatically. There-

fore, its use is discouraged for performance reasons, but it can be useful.

To see an example of this, reload the page again to reset the DOM to its original

state. Let’s take a look at how many elements are in the sports section:

var sports = document.getElementById("sports");
<< undefined

sports.children.length
<< 3

Now remove the swim paragraph:

var swim = document.getElementsByClassName('swim')[0];
<< undefined

sports.removeChild(swim);
<< <p class="swim">

sports.children.length
<< 2

You need to be careful when referring to elements by their index in a collection, as

this can change when markup is added or removed. For example, we saw earlier

that the run paragraph could be accessed using this line of code:

document.getElementsByTagName('p')[2];
<< undefined

Yet now it refers to undefined as nothing is at that index of 2 in the collection; this

is because the swim paragraph has been dynamically removed from the DOM. The

run paragraph isn't the third paragraph in the collection any more, it's the second.

Updating CSS
Every element node has a style property. These can be used to dynamically

modify the presentation of any element on a web page.

To see an example of this, reload the page again to reset the DOM. We can add a

border to the swim paragraph with the following code:

171The Document Object Model

var swim = document.getElementsByClassName('swim')[0];
<< undefined

swim.style.border = "blue 2px solid";
<< "blue 2px solid"

Camel Case Properties
Any CSS property names that are separated by dashes must be written in camelCase

notation, so the dash is removed and the next letter is capitalized because dashes

are not legal characters in property names.

For example, background-color becomes backgroundColor. We can change the

color of the bike background to green using this code:

var bike = document.getElementById("bike");
<< undefined

bike.style.backgroundColor = "green";
<< "green"

You can see this change in Figure 6.11.

JavaScript: Novice to Ninja172

Figure 6.11. Green background

Disappearing Act
One particularly useful CSS property often employed is the display property. This

can be used to make elements disappear and reappear on the page as needed:

var run = document.getElementsByTagName("p")[2];
<< undefined

run.style.display = "block";
<< "block"

You can hide the "run" paragraph with the following code:

173The Document Object Model

run.style.display = "none";
<< "none"

You can see the effect in Figure 6.12.

Figure 6.12. Hiding the "Run" paragraph

Checking Style Properties
The style property can also be used to see what CSS styles have been set on an

element, but unfortunately it applies only to inline styles and styles set using

JavaScript. This means that it excludes styles from external stylesheets, the most

common way of setting styles.

JavaScript: Novice to Ninja174

There is a function called getComputedStyle() that will retrieve all the style inform-

ation of an element that is given as a parameter. This is a read-only property, so is

only used for finding out information about the style of an element.

For example, if you wanted all the styles applied to the bike paragraph, you could

use the following:

bike = document.getElementById('bike');
<< <p id="bike">

styles = getComputedStyle(bike);
<< CSS2Properties { align-content: "stretch", align-items: "stretch"
➥, align-self: "stretch", animation-delay: "0s",
➥animation-direction: "normal", animation-duration: "0s",
➥animation-fill-mode: "none", animation-iteration-count: "1",
➥animation-name: "none", 203 more… }

As you can see, it returns an object (more specifically, it is a CSSStyleDeclaration

object) that contains a list of property-value pairs of all the CSS styles that have

been applied to the element given as an argument. In this example, there are over

200, although CSSStyleDeclaration objects have some built-in methods to help

extract the information. For instance, if I wanted to find out about the element’s

color property I could use this code in the console:

styles.getPropertyCSSValue('color').cssText;
<< "rgb(0, 0, 0)"

This tells us that the color of the text is rgb(0, 0, 0), which is black.

You can read more on the Mozilla Developer Network about the getComputedStyle()

function3 and about CSSStyleDeclaration4 objects.

Use with Caution
While it may seem useful to be able to edit the styles of elements on the fly like

this, it is much better practice to dynamically change the class of an element and

keep the relevant styles for each class in a separate stylesheet; however, there may

be times when you have no access to a stylesheet or its classes.

3 https://developer.mozilla.org/en/docs/Web/API/window.getComputedStyle
4 https://developer.mozilla.org/en-US/docs/Web/API/CSSStyleDeclaration

175The Document Object Model

https://developer.mozilla.org/en/docs/Web/API/window.getComputedStyle
https://developer.mozilla.org/en/docs/Web/API/window.getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/CSSStyleDeclaration

For example, if you wanted to add a red border around one of the paragraphs (to

highlight it for some reason), you could do it this way:

swim.style.border("red 2px solid");

But a better way would be to add a class of "highlighted":

swim.classList.add("highlighted");

And then add the following CSS in a separate stylesheet file:

.highlighted{
 border: red 2px solid;
}

This would give more flexibility if it was later decided to change the look of the

highlighted elements. It could simply be changed at the CSS level, rather than

having to dig around in the JavaScript code.

Quiz Ninja Project
Now that we’ve learned about the Document Object Model, we can start to add some

dynamic markup to display the questions in our quiz. This will mean that there

will be no need to rely on as many alert dialogs.

The first thing we need to do is add some empty section elements to the HTML in

the index.htm file. Add the following after the closing </header> tag:

index.htm (excerpt)

<section id="question"></section>
<section id="feedback"></section>

These empty elements will be used to show the questions and provide feedback

about whether the user has answered a question correctly or not. We'll also add a

paragraph element inside the <header> tags that can be used to display the score

as the game is being played:

JavaScript: Novice to Ninja176

index.htm (excerpt)

<p>Score: <strong id="score">0</p>

The ID attributes of these elements will act as hooks that allow us to easily gain

access to that element using the document.getElementById() method. Let's do that

now by setting up some variables that we can use to access these elements near the

start of the scripts.js file:

scripts.js (excerpt)

//// dom references ////
var $question = document.getElementById("question");
var $score = document.getElementById("score");
var $feedback = document.getElementById("feedback");

Naming Conventions

You may have noticed that all of these variables have been prefixed with the $

symbol, which is a common convention used when naming variables that refer

to DOM elements.

Our next job is to create a function called update() that can be used to update an

element on the page. Add the following function to the top of the scripts.js file:

scripts.js (excerpt)

/// view functions ///

function update(element,content,klass) {
 var p = element.firstChild || document.createElement("p");
 p.textContent = content;
 element.appendChild(p);
 if(klass) {
 p.className = klass;
 }
}

This function has three parameters. The first parameterr is the element that is to be

updated. The second parameter is for the content that it is to be updated with. A

177The Document Object Model

class can also be added to the content that is added using the third parameter, which

is called klass because class is a reserved word in JavaScript.

The first line of the function checks to see if the element already has a first child

and assigns it to the variable p. If it doesn't, then it creates a new paragraph element.

The textContent property is then set to the content provided as an argument and

it is added to the element using the appendChild() method.

Now we need to update some of our existingfunctions to use this new function to

update the HTML instead of using dialogs. The first thing we need to do is udpate

the score element with the score once the game starts. Add the following line of

code to the start of the play() function, right after the score variable has been ini-

tialized:

scripts.js (excerpt)

update($score,score)

This will update the score element to display a score of 0 in the header.

The ask() function now needs an extra line so that the question is displayed in the

HTML instead of the prompt dialog. Unfortunately we still need to use a prompt

dialog to enter the answer (but don't worry, this will change in later chapters!):

scripts.js (excerpt)

function ask(question) {
 update($question,quiz.question + question);
 return prompt("Enter your answer:");
}

This will add a paragraph element to the question section that contains the question,

with a prompt dialog asking for the answer.

Next we need to change the check() function so that it provides some feedback and

updates the score element:

JavaScript: Novice to Ninja178

scripts.js (excerpt)

function check(answer) {
if(answer === quiz.questions[i].answer){
 update($feedback,"Correct!","right");
 // increase score by 1
 score++;
 update($score,score)
} else {
 update($feedback,"Wrong!","wrong");
 }
}

Notice that the updates to the feedback element also contain a third argument of

right or wrong that will be added as a class to the section. This means that we can

style the feedback differently, depending on whether the player's answer is right or

wrong.

Last of all we need to change the gameOver() function so it uses the update()

function instead of an alert dialog. The game over message is placed inside the

question element, so it replaces the last question asked:

scripts.js (excerpt)

function gameOver(){
 // inform the player that the game has finished and tell them how
➥many points they have scored
 update($question,"Game Over, you scored " + score + " points");
}

Adding Some Style
Since we're now using a lot more HTML to display information, we need to add

some extra styles to our CSS file. Open up the styles.css file and add the following:

styles.css (excerpt)

section p {
 font: bold 24px/150% Arial, Helvetica, sans-serif;
 background: #ccc;
 border: #999 2px solid;
 color: #666;
 text-align: center;

179The Document Object Model

 padding: 10px;
 margin: 10px;
 width: 300px;
}

This will style the paragraphs that are added to the question and feedback sections

so that they appear in a gray box with a border, helping them to stand out and be

easy to read.

The feedback paragraphs also have a class of right or wrong depending on whether

the player answers the question correctly or not. We can use this to add some extra

styles to give some visual feedback and color the boxes green for right answers and

red for wrong answers by adding the following styles:

styles.css (excerpt)

.right {
 background: #0c0;
 border: #090 2px solid;
 color: #060;
}

.wrong {
 background: #c00;
 border: #900 2px solid;
 color: #600;
}

Now we've finished adding the styles, have a go at playing the quiz by opening

index.htm in a browser. It should look similar to the screenshot shown in Figure 6.13.

JavaScript: Novice to Ninja180

Figure 6.13. Quiz feedback via DOM updates

This looks much better than using the alert boxes, although, unfortuantely the

messages can sometimes be slightly obscured because the prompt dialog darkens

the screen slightly when it is open. Don't worry about this, because we'll not be

using prompts for much longer.

Now we have successfully moved away from using alert dialogs to update the user

and started to dynamically update the markup on the page instead. This task was

made much easier by the fact that we already had functions for these jobs, meaning

that all we had to do was update our functions to use the DOM instead of alerts.

Summary
In this chapter we have learned the following:

■ The Document Object Model is a way of representing a page of HTML as a tree

of nodes.

■ The document.getElementById, document.getElementsByClassName, docu-

ment.getElementsByTagNames, and document.querySelector can be used to

access elements on a page.

181The Document Object Model

■ The parentNode, previousSibling, nextSibling, childNodes, and children

methods can be used to navigate around the DOM tree.

■ An element’s attributes can be accessed using the getAttribute() method and

updated using the setAttribute() method.

■ The createElement and createTextNodemethods can be used to create dynamic

markup on the fly.

■ Markup can be added to the page using the appendChild and insertBefore

methods.

■ Elements can be replaced using the replaceChild method and removed using

the removeChild method.

■ innerHTML can be used to insert a large chunk of raw HTML directly into the

DOM.

■ The CSS properties of an element can be changed by accessing the style property.

Now that we’ve learned how to find and change the markup of a web page, it’s time

to start interacting with it. In the next chapter we’ll be covering a fundamental part

of the JavaScript language: events.

JavaScript: Novice to Ninja182

Chapter7
Events
We saw in the last chapter how the DOM API links the JavaScript language to web

pages. Events are another part of the DOM API and they are what provides the link

between the web page and user interactions. Every time a user interacts with a web

page, such as clicking on a link, pressing a key, or moving a mouse, an event occurs

that our program can detect and then respond to.

In this chapter, we’ll cover the following topics:

■ introduction to events

■ adding event listeners

■ the event object

■ mouse, keyboard and touch events

■ removing event listeners

■ stopping default behavior

■ event propagation

Event Listeners
Imagine that you’re waiting for a really important email message that you need to

act upon as soon as it arrives, but you also have some JavaScript programming to

do (you’re working on the next big killer app). You could keep checking your email

every couple of minutes to see if the important message has arrived, but this will

cause lots of interruptions to your ninja training. Not to mention that you might be

unable to check your email at the exact moment the message arrives, so it might be

too late to act upon. The obvious answer to this dilemma is to set up a notification

that will pop up as soon as the email arrives. You can happily program away, without

being distracted by having to check your email.

Event listeners in JavaScript work in much the same way. They are like setting a

notification to alert you when something happens. Instead of the program having

to constantly check to see if an event has occurred, the event listener will let it know

when the event happens and the program can then respond appropriately. The

program can get on with the tasks while it waits for the event to happen.

For example, say in your program you want something to happen when a user clicks

on the page. The code to check if a user has clicked might look like this example

(JavaScript doesn’t actually work like this, so this code would fail to work, although

it is the way some applications work):

if (click) {

 doSomething();

} else {

 // carry on with rest of the program

}

The problem with this approach is that the program would have to keep returning

to this if block to check if the click had happened. It’s a bit like having to check

your email every few minutes. This is known as a blocking approach to programming,

as checking for the click is blocking the rest of the program from running.

JavaScript: Novice to Ninja184

Instead, we can use a non-blocking approach and set an event listener that will

listen out for any clicks on the page. Every time this event occurs, a callback function

will be called. So the program can continue processing the rest of the code while

it is waiting for the click event to occur.

The following can be used to attach an event listener to the document that fires

when the user clicks anywhere on the page:

document.body.addEventListener("click", doSomething);

Event listeners are added to elements on the page and are part of the DOM API that

we met in the last chapter. In the example, the event listener has been added to the

document’s body element. It will call the function doSomething when any part of

the page is clicked on. Until that happens, the program will continue to run the rest

of the code.

Clickety Click

The click event occurs when a user clicks with the mouse, presses the Enter

key, or taps the screen, making it a very useful all-round event covering many

types of interaction.

Inline Event Handlers
The original way of dealing with events in the browser was to use inline event at-

tributes that were added directly into the markup. Here’s an example that adds an

onclick event handler to a paragraph element:

<p onclick="console.log('You Clicked!)'">Click Me</p>

The JavaScript code inside the quote marks will be run when a user clicks on the

paragraph. This method will still work in modern browsers, but it isn’t recommended

for a number of reasons:

■ The JavaScript code is mixed up with the HTML markup, breaking the concept

of unobtrusive JavaScript, which says that any JavaScript code should be kept

out of the HTML.

■ Only one event handler can be attached to an element.

185Events

■ The code for the event handlers is hidden away in the markup, making it difficult

to find where these events have been placed.

■ The JavaScript code has to be entered in a string, so you need to be careful when

using apostrophes and quote marks.

I’ve included them here because you may see them in some code examples.

Older Event Handlers
Another method is to use the event handler properties that all node objects have.

These can be assigned to a function that would be invoked when the event occurred.

The following example would trigger an alert:

document.onclick = function (){ console.log("You clicked!"); }

This method is an improvement on the inline event handlers as it keeps the JavaS-

cript out of the HTML markup. It is also well-supported and will work in all

browsers, including older versions. Unfortunately, it still has the restriction that

only one function can be used for each event.

Event Listeners
The recommended standard way of dealing with events is to use event listeners.

These were outlined in DOM level 2 and allow multiple functions to be attached

independently to different events. They are supported in all modern browsers, al-

though only in Internet Explorer from version 9 onwards.

The addEventListener() method is called on a node object, the node to which the

event listener is being applied. For example, this code will attach an event listener

to the document’s body:

document.body.addEventListener("click",doSomething);

The addEventListener() method can also be called without a node, in which case

it is applied to the global object, usually the whole browser window.

Its first parameter is the type of event and the second is a callback function that is

invoked when the event occurs. In this example, we are using the click event and

an anonymous function that produces an alert dialog:

JavaScript: Novice to Ninja186

addEventListener("click", function(){
 alert("You Clicked!")
});

Alternatively, a named function could be used:

function doSomething() {
 alert("You Clicked!");
}

addEventListener("click",doSomething);

The parentheses are not placed after the function when it is used as the argument

to an event listener; otherwise, the function will actually be called when the event

listener is set, instead of when the event happens.

Cross-browser Events

All modern browsers now support the standard event listeners. Unfortunately,

this has not always been the case, where older versions of Internet Explorer used

a different syntax. If you need to support these browsers, JavaScript Rules has

some suggestions for creating a cross-browser event listener function.1

Example Code
To test the examples in this chapter, create a file called events.htm that contains the

following HTML. This includes some paragraph elements that we’ll attach event

listeners to throughout the chapter:

events.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Events Examples</title>
 <link rel="stylesheet" href="css/styles.css">
</head>
<body>

1 http://javascriptrules.com/2009/07/22/cross-browser-event-listener-with-design-patterns/

187Events

http://javascriptrules.com/2009/07/22/cross-browser-event-listener-with-design-patterns/

 <p id="click">Click On Me</p>
 <p id="dblclick">Double Click On Me</p>
 <p id="mouse">Hover On Me</p>
<script src="js/scripts.js"></script>
</body>
</html>

We’ll also need a bit of styling, so create a css folder with a file inside called styles.css

containing this code:

styles.css

p {
 width: 200px;
 height: 200px;
 margin: 10px;
 background-color: #ccc;
 float: left;
}

.highlight{
 background-color: red;
 }

Now create a js folder that contains a file called scripts.js for our JavaScript code.

Place the following inside:

scripts.js

function doSomething(){
 console.log("Something Happened!");
}

addEventListener("click", doSomething);

Try opening events.htm in a browser with the console open and click anywhere on

the page. You should see this message in the console:

JavaScript: Novice to Ninja188

"Something Happened!"

Global Event Listeners

Event listeners are usually called as a method of a particular element on the page.

If there’s no element calling them, they are global and apply to the whole page.

The Event Object
Every time an event occurs, the callback function is called. This function is auto-

matically passed an event object as a parameter that contains information about the

event.

To see an example of this, change the doSomething() function in the scripts.js file

to this:

function doSomething(event){
 console.log(event.type);
}

Now refresh the events.htm page in the browser and try clicking again. You should

see the following appear in the console every time you click:

"click"

In the example, the event.type property is used to tell us that the type of event

that was logged was a click event.

What’s in a Name?

The parameter does not have to be called event. It can be given any legal variable

name, although calling it event can make it easier to read the code. Many de-

velopers often abbreviate it to just e.

189Events

Types of Event
The event.type property returns the type of event that occurred, such as click in

the previous example. The different types of events will be discussed in the next

section.

The Event Target
The event.target property returns a reference to the node that fired the event. If

you change the doSomething() function to the following, it will show a message in

the console telling us the node that was clicked on:

function doSomething(event){
 console.log(event.target);
}

For example, if you click on one of the paragraphs, you should see the following in

the console:

<p id="click">

Coordinates of an Event
The event.screenX and event.screenY properties show the number of pixels from

the left and top of the screen respectively where the event took place.

The event.clientX and event.clientY properties show the number of pixels from

the left and top of the client that is being used (usually the browser window).

The event.pageX and event.pageY properties show the coordinates (in pixels)

where the event took place from the left and top of the document respectively. This

property takes account of whether the page has been scrolled.

All these event properties are similar, but subtly different. They are useful for

finding out the place where a click happened or the position of the mouse cursor.

To see the coordinates that are returned for these properties, change the

doSomething() function to the following:

JavaScript: Novice to Ninja190

function doSomething(event){
 console.log("screen: (" + event.screenX + "," + event.screenY + ")
➥, page: (" + event.pageX + "," + event.pageY + "), client: (" +
➥event.screenX + "," + event.screenY + ")");
}

Which Mouse Button Was Pressed?
The event.which property returns which mouse button or key was pressed. Try

pressing the different mouse buttons (including the middle button) to see what is

returned when you change the doSomething() function to this:

function doSomething(event) {
 console.log(event.which);
};

You should see a "1" in the console if you press the left mouse button, "2" if you

press the middle button, and "3" if you press the right button.

This is useful for finding out which mouse button was pressed, but there are more

precise methods of doing so that are discussed in the next section.

Types of Events
There are several types of events, ranging from when a video has finished playing

to when a resource has completed downloading. You can see a full list on the Events

page of the Mozilla Developer Network.2

In this section we are going to focus on some of the more common events that occur

using the mouse, the keyboard, and touch.

Mouse Events
We have already seen the click event that occurs when a mouse button is clicked.

There is also the mousedown event, which occurs before the click and the mouseup

event, occurring after the click.

This can be seen by adding this code to events.js:

2 https://developer.mozilla.org/en-US/docs/Web/Events

191Events

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

var click = document.getElementById("click");

click.addEventListener("mousedown",function(){ console.log("down")
➥ });
click.addEventListener("click",function(){ console.log("click") });
click.addEventListener("mouseup",function(){ console.log("up") });

There is also the dblclick event, which occurs when the user double-clicks on the

element to which the event listener is attached. To see an example of this, we’ll at-

tach an event listener to the second paragraph in our example (with an ID of

'dblclick'). Add the following code to scripts.js:

var dblclick = document.getElementById("dblclick");
dblclick.addEventListener("dblclick", highlight);

function highlight(event){
 event.target.classList.toggle("highlight");
 }

Now if you double click on the second paragraph, it should change color as the

class of highlight is toggled on and off.

The mouseover event occurs when the mouse pointer is placed over the element to

which the event listener is attached, while the mouseout event occurs when the

mouse pointer moves away from an element. This example uses both the mouseover

and mouseout events to change the color of the third paragraph (with an ID of

"mouse") when the mouse pointer hovers over it, and back again when it moves

away from the paragraph:

var mouse = document.getElementById("mouse");
mouse.addEventListener("mouseover", highlight);
mouse.addEventListener("mouseout", highlight);

The mousemove event occurs whenever the mouse moves. It will only occur while

the cursor is over the element to which it is applied. The following line of code

creates an alert dialog whenever the mouse moves over the third paragraph:

JavaScript: Novice to Ninja192

mouse.addEventListener("mousemove", function() { console.log(
➥"You Moved!"); });

Keyboard Events
There are three events that occur when keys are pressed: keydown, keypress, and

keyup. When a user presses a key, the events occur in that order. They are not tied

to any particular key, although the information about which key was pressed is a

property of the event object.

1. The keydown event occurs when a key is pressed and will continue to occur if

the key is held down.

2. The keypress event occurs after a keydown event but before a keyup event. The

keypress event only occurs for keys that produce character input. This means

that it’s the most reliable way to find out the character that was pressed on the

keyboard.

3. The keyup event occurs when a key is released.

To understand the differences in these events, it is important to distinguish between

a physical key on the keyboard and a character that appears on the screen. The

keydown event is the action of pressing a key, whereas the keypress event is the

action of a character being typed on the screen.

To see an example of this add the following to scripts.js:

addEventListener("keydown",highlight);

Pressing a key will result in the whole document changing color., because the event

listener was applied to the whole document. If you hold a key down, the event will

continue to fire, creating a psychedelic effect on the page.

To see the keyup event working, add the code that uses an anonymous function to

show the exact time the key was released in the console:

193Events

addEventListener("keyup", function stop(event){
 var date = new Date;
 console.log("You stopped pressing the key on " + date);
});

The keydown and keyup event objects both have an event.keyCode property that

returns a numerical code that represents the key that fired the event; for example,

the J key has a key code of 74. You can find the code for each key on the JavaScript

key code page.3

The keypress event object has an event.charCode property that returns a numerical

Unicode character code representing the character that will be shown on the screen.

These two properties are similar, but not the same. For example, on a UK keyboard,

pressing the 3 key results in a keyCode of 51 and a charCode of 51. But if the Shift

key is held down while 3 is pressed the charCode will be 163, but the keyCode will

still be 51.

The String.fromCharCode() method can then be used to convert the event.char-

Code property into a single-character string representation of the character that will

appear on the screen.

This all means that if you want to know which key was pressed, you should use

the keydown event and event.keyCode property. If you want to know which character

will be displayed, you should use the keypress event and the event.keyChar

property.

Add the code to see an alert dialog showing which character was pressed:

addEventListener("keypress", function (event){
 console.log("You pressed the " + String.fromCharCode
➥(event.charCode) + " character");
});

Now when you press a key, you should see a message similar to this in the console:

3 http://www.javascriptkeycode.com

JavaScript: Novice to Ninja194

http://www.javascriptkeycode.com
http://www.javascriptkeycode.com

"You pressed the J character"
"You stopped pressing the key at Wed Aug 20 2014 15:46:42 GMT+0100
➥ (BST)"

Modifier Keys
Pressing the modifier keys such as Shift, Ctrl, Alt, and meta (Cmd on Mac) will fire

the keydown and keyup events, but not the keypress event as they don't produce

any characters on the screen.

The event object also contains information about whether a modifier key was held

down when the key event occurred. The event.shiftKey, event.ctrlKey,

event.altKey, and event.metaKey are all properties of the event object and return

true if the relevant key is held down when the event occurred. For example, the

following code will check to see if the user has pressed the C key (which has a

keycode of 32) while holding down the Ctrl key:

addEventListener("keydown", function(event) {
 if (event.keyCode == 32 && event.ctrlKey)
 console.log("Action cancelled!");
});

The following code checks to see if the Shift key was held down when the mouse

was clicked:

addEventListener("click", function(event) {
 if (event.shiftKey)
 console.log("A Shifty Click!");
});

Take Care When Using Modifier Keys

Many of the modifier keys already have a purpose assigned in the browser or op-

erating system. And although it’s possible to prevent the default behavior in the

browser (see later in this chapter), it’s not considered best practice to do so.

195Events

Touch Events
Many modern devices now support touch events. These are used on smart phones

and tablets, as well as touch-screen monitors, satellite navigators, and trackpads.

Touch events are usually made with a finger, but can also be by stylus or another

part of the body. There are a number of touch events that cover many types of touch

interactions.

It’s important to support mouse events as well as touch events, so that non-touch

devices are also supported. With so many different devices available these days,

you can’t rely on users using just touch or just a mouse. In fact, some devices, such

as touchscreen laptops, support both mouse and touch interactions.

The touchstart event occurs when a user initially touches the surface.

Use touchstart with Caution

Be careful when using the touchstart event as it fires as soon as a user touches

the screen. They may be touching the screen because they want to zoom in or

swipe, and a touchstart event listener could prevent them from doing this.

The click event is often a much safer option as it still fires when the screen is

touched, but there is a slight delay of 300 ms, allowing the user time to perform

another action with the device. The click event can be though of as a "tap" in

the context of a touch event.

The touchend event occurs when a user stops touching the surface:

addEventListener("touchend", function(){
 alert("Thank You");
 }

The touchmove event occurs after a user has touched the screen and then moves

around without leaving. It will continue to occur as long as the user is still touching

the screen, even if they leave the element to which the event listener is attached.

The touchenter event occurs when a user has already started touching the surface,

but then passes over the element to which the event listener is attached.

JavaScript: Novice to Ninja196

The touchleave event occurs when the the user is still touching the surface, but

leaves the element to which the event listener is attached.

The touchcancel event occurs when a touch event is interrupted, such as a user’s

finger moving outside the document window or too many fingers being used at

once. A pop-up dialog will also cancel a touch event.

Swiping

There are no "swipe" events. These need to be created by using a combination of

touchstart, touchmove, and touchleave events that monitor the distance and

direction moved from start to finish of a touch event.

There are proposals for gesture events4 that may be supported in the future.

Touch Event Properties
Because it is possible to touch a surface many times at once, touch event objects

have a property called event.touches. This is a list of touch objects that represents

all the touches taking place on that device. It has a length property that tells you

how many touch points (usually the user's fingers, but could be a stylus) are in

contact with the surface. Each touch object in the list can be accessed using index

notation. For example, if a user touches the screen with two fingers,

events.touches.length would return 2. The first touch object can be accessed

using events.touches[0] and the second using events.touches[1].

Each touch object has a number of properties, many similar to the event object,

such as touch.screenX and touch.screenY to find the coordinates where the finger

is touching the screen. They have other properties such as touch.radiusX and

touch.radiusY, which give an indication of the area covered by the touch, and

touch.force, which returns the amount of pressure being applied by the touch as

a value between 0 and 1.

Each touch object has a touch.identifier property, a unique ID that can be used

to ensure you are dealing with the same touch.

4 https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mouse_gesture_events

197Events

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mouse_gesture_events

More information about touch events can be found on JavaScript Kit,5 although, be

warned, they are complex and difficult to implement. It can be handy to use a library

such as Hammer JS that makes events such as swipe, pinch and rotate easy to im-

plement.6

Removing Event Listeners
An event listener can be removed using the removeEventListener() method. To

see an example, add this paragraph to events.htm:

<p id="once">A one time thing</p>

Now add the following code to scripts.js:

once = document.getElementById("once");
once.addEventListener("click", remove);

function remove(event) {
 console.log("Enjoy this while it lasts!");
 once.style.backgroundColor = "pink";
 once.removeEventListener("click",remove);
}

This adds a click event listener to a paragraph element, but then removes it in the

callback function named remove. This means it will only be called once (try clicking

on it again and nothing happens).

Removal Reference

Note that you cannot use anonymous functions as an argument to addEventL-

istener() if you want to remove it later. This is because there needs to be a

reference to the same function name in the arguments of removeEventListen-

er().

5 http://www.javascriptkit.com/javatutors/touchevents.shtml
6 http://hammerjs.github.io/

JavaScript: Novice to Ninja198

http://www.javascriptkit.com/javatutors/touchevents.shtml
http://hammerjs.github.io/
http://hammerjs.github.io/

Stopping Default Behavior
Some elements have default behavior associated with certain events. For example,

when a user clicks on a link, the browser redirects to the site in the href attribute,

while a form is submitted when the user clicks on the submit button.

preventDefault() is a method of the event object that can be used inside the

callback function to stop the default behavior occurring. To see an example, add

the following line to the events.htm file:

<p>
 Broken Link
</p>

Then add the following event listener inside the script.js file:

var broken = document.getElementById("broken");

broken.addEventListener("click",function(event) {
 event.preventDefault();
 console.log("Broken Link!");
 });

This will stop the page from redirecting to the page specified in the href attribute

and show the message in the console instead.

Use preventDefault() with Caution

Make sure that you think carefully before using preventDefault() to change

default behavior. Users will expect certain behaviors and preventing them may

cause confusion.

Some events do not allow the default behavior to be prevented. This can vary

from browser to browser, but each event object has a property called cancellable

that returns false if it cannot be prevented.

You can also see if the default behavior has been prevented by checking the de-

faultPrevented property.

199Events

Event Propagation
When you click on an element, you are actually clicking on all the elements that it

is nested in. Add the following piece of HTML to the events.htm file:

<ul id="list">
 one
 two
 three

If you click on one of the list items, you are also clicking on the element and

the <body> element. An event is said to propagate as it moves from one element to

another.

Event propagation is the order that the events fire on each element. There are two

forms of event propagation: bubbling and capturing.

Bubbling is when the event fires on the element clicked on first, then bubbles up

the document tree, firing an event on each parent element until it reaches the root

node.

Capturing starts by firing an event on the root element, then propagates downwards,

firing an event on each child element until it reaches the target element that was

clicked on.

Bubbling
The default behavior is bubbling, which we can see happen if we add the following

code to scripts.js:

ul = document.getElementById("list");
li = document.querySelector("#list li");

ul.addEventListener("click", function(event){
 console.log("Clicked on ul");
});

JavaScript: Novice to Ninja200

li.addEventListener("click", function(event){
 console.log("Clicked on li");
});

Now try clicking on the first list item. There should be a message in the console

saying "Clicked on li" because this was the target element. The event then bubbles

up to the parent element and displays a message in the console saying "Clicked

on ul". The event will continue to bubble all the way to the root HTML element,

but nothing will happen because none of the other elements had event listeners at-

tached to them.

Capturing
The addEventListener method has a third parameter, which is a Boolean value

that specifies whether capturing should be used or not. It defaults to false, which

is why bubbling happens by default. There may be instances when you would rather

capture the events instead; for example, you might want events on outer elements

to fire before any events fire on the element that was actually clicked on.

To implement capturing instead, change the code to the following:

ul.addEventListener("click", function(event){
 console.log("Clicked on ul");
},true);

li.addEventListener("click", function(event){
 console.log("Clicked on li");
},true);

Now if you click on the first list item, "Clicked on ul" will be logged to the console

first. The events then propagate downwards to the child element, so "Clicked

on li" is logged to the console next.

If you want the event to both capture and bubble, you must set a separate event

handler for both cases, like so:

// capturing

ul.addEventListener("click", function(event){
 console.log("Clicked on ul");

201Events

},true);

li.addEventListener("click", function(event){
 console.log("Clicked on li");
},true);

// bubbling

ul.addEventListener("click", function(event){
 console.log("Clicked on ul");
},false);

li.addEventListener("click", function(event){
 console.log("Clicked on li");
},false);

These event listeners will have to be removed separately by specifying the relevant

third argument.

Stopping the Bubbling Phase
The bubble phase can be stopped from occurring by adding the event.stopPropaga-

tion() method into the callback function. In the following example, the event will

fail to propagate as the third argument is false, which stops capturing, and the

event.stopPropagation() method is called, which stops bubbling:

li.addEventListener("click", function(event){
 console.log("clicked on li");
 event.stopPropagation();
}, false);

Now clicking on the first list time will only produce one alert, since the click event

will not propagate to the element.

Keep Bubbling

Be very wary of using the event.stopPropagation()method to stop the bubble

phase occurring. There may be other event listeners attached to elements further

up the bubble chain that won’t be fired as a result.

JavaScript: Novice to Ninja202

Event Delegation
Event delegation can be used to attach an event listener to a parent element in order

to capture events that happen to its child elements.

Let’s look at the list items in our example:

<ul id="list">
 one
 two
 three

If we wanted to attach event listeners to all the tags so that they were high-

lighted when they were clicked on, it would need more code to add a separate event

listener to each element. In this case, it would only take a little more effort, but

imagine if you had a 10 x 10 table with 100 elements!

A better way is to attach the event listener to the parent element and then use

the event.target property to identify the element that was clicked on. Add the

following to scripts.js to see this in action (remember that the highlight function

used event.target):

ul.addEventListener("click",highlight);

Now clicking on any list item will highlight that list item as it was the target of the

click event.

This is a useful method if you are adding extra list elements to the DOM dynamically.

Any new list elements that are a child of the element will automatically inherit

this event listener, saving you from having to add an event listener every time a

new list item is added.

Quiz Ninja Project
Now that we’ve reached the end of the chapter, it’s time to add some events to our

Quiz Ninja Project. We’re going to add a button that can be clicked on to start the

game. This will replace the confirm dialog that we’ve been using so far.

To start, add this line of code to index.htm, just before the closing <body> tag:

203Events

<button id="button">Click To Play Quiz Ninja!</button>

This will add a button to the markup. Now we need a reference to it in scripts.js.

Add the following line of code after the other DOM references:

var $start = document.getElementById("start");

Now we need to attach a click event listener to to the button that will start the

game when the button is clicked. Add the following code after the view functions:

// Event listeners
$start.addEventListener('click', function() { play(quiz) } , false);

The only thing left to do is add some styles to the styles.css file to make the button

stand out:

button {
 font: bold 24px/150% Arial, Helvetica, sans-serif;
 display: block;
 width: 300px;
 padding: 10px;
 margin: 10px auto;
}

And that's it ― hopefully you can see that it wasn't too hard to implement a button

to play the game, especially since all the functions we needed were already in place.

Open index.htm and have a go at playing the game. It should look similar to Fig-

ure 7.1.

JavaScript: Novice to Ninja204

Figure 7.1. Playing Quiz Ninja

Summary
In this chapter, we have learned the following:

■ Events occur when a user interacts with a web page.

■ An event listener is attached to a node, watches for an event to happen and then

invokes a callback function.

■ The event object is passed to the callback function as an argument, and contains

lots of properties and methods about the event.

■ There are many types of event, including mouse events, keyboard events, and

touch events.

■ You can remove an event using the removeEventListener method.

■ The default behavior of elements can be prevented using the preventDefault()

function.

205Events

■ Event propagation is the order that the events fire on each element.

■ Event delegation is when an event listener is added to a parent element to capture

events that happen to its children elements.

In the next chapter, we’ll look at one of the biggest users of events: forms.

JavaScript: Novice to Ninja206

Chapter8
Forms
Forms are the most common method of interacting with a web page. A form is the

main component of Google’s home page, and most of us use forms every day to log

into our favorite sites. In this chapter, we will look at how forms can be used to in-

teract with a JavaScript program.

In this chapter, we’ll cover these topics:

■ form controls

■ accessing form elements

■ form properties and methods

■ form events

■ submitting a form

■ retrieving and changing values from a form

■ form validation

■ our project―add a form for answering questions and validation

Forms
Forms are made up of a <form> element that contains form controls such as input

fields, select menus, and buttons. The form can be filled in by a user and is then

submitted to a URL where it is processed on a server.

Each form control has an initial value that is specified in the HTML code and a

current value. The current value can be changed by a user entering information or

interacting with the form’s interface (such as using a slider). Values in a form can

also be changed dynamically using JavaScript.

When a form is submitted, it’s sent to a server where the information is processed

using a “back end” language such as PHP or Ruby. It’s possible to process the in-

formation in a form on the “front end” before it is sent to the server using JavaScript,

which is what we’ll be focusing on in this chapter.

A Searching Example
We’ll start off with a simple example of a form that contains one input field and a

button to submit a search query, not unlike the one used by Google. This example

doesn’t use any styles; you just need to create a file called index.htm that contains

the following code:

index.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Search</title>
</head>
<body>
 <form name="search" action="search">
 <input type="text" name="searchBox">
 <button type="submit">Search</button>
 </form>

JavaScript: Novice to Ninja208

<script src="scripts.js"></script>
</body>
</html>

This form has a name attribute of "search" and contains two controls: an input field

where a user can enter a search phrase and a button to submit the form. The form

can also be submitted by pressing Enter.

The "action" attribute is the URL that the form will be submitted to so that it can

be processed on the server side. The input field also has a "name" attribute of

"searchBox" that is used to access the information inside it.

You should also create a file called scripts.js to put the JavaScript in. This can be

saved in the same directory as index.htm.

Accessing Form Elements
The legacy DOM had a useful method called document.forms that returns an HTML

collection of all the forms in the document in the order that they appear in the

markup. Even though there is only one form in our example, a collection will still

be returned, so we have to use index notation to return the first (and only) form

object, like so:

var form = document.forms[0];

This is the equivalent of using the following method that we learned in chapter 6:

form = document.getElementsByTagname('form')[0]

Instead of using a numerical index, we can use the name attribute to identify a form:

var form = document.forms.search;

Be careful referencing elements in this way, however. If the form had the same name

as any properties or methods of the document.forms object, such as "submit" for

example, that property or method would be referenced instead of the form element.

To avoid this, the square bracket notation can be used (this is also useful if the

form’s name attribute contains any invalid characters, such as spaces or dashes):

209Forms

var form = document.forms['search'];

A form object also has a method called elements that returns an HTML collection

of all the elements contained in the form. In this case the form contains two controls:

an input element and a button element:

var input = form.elements[0];
var button = form.elements[1];

We can also access the form controls using their name attributes as if it was a property

of the form object. So for example, the input field has a name attribute of searchBox

and can be accessed using this code:

var input = form.searchBox

The square bracket notation can be used instead (again, this is useful if there are

any naming clashes with existing property and method names, or if the name is an

invalid variable name):

var input = form['searchBox']

Form Properties and Methods
Form objects have a number of useful properties and methods that can interact with

the form.

The form.submit()method will submit the form automatically. Note that submitting

a form using this method won’t trigger a form "submit" event; that is covered in the

next section.

A form can be submitted manually by the user employing a button or input element

with a type attribute of submit, or even an input element with a type attribute of

image:

JavaScript: Novice to Ninja210

<button type="submit">Submit</button>
<input type="submit" value="Submit">
<input type="image" src="button.png">

The form.reset() method will reset all the form controls back to their initial values

specified in the HTML.

A button with the type attribute of reset can also be used to do this without the

need for additional scripting:

<button type="reset">Reset</button>

Avoid Reset Buttons

Reset buttons are generally considered poor for usability, as they are too easy to

click and then wipe out all the data that’s been entered. So think very carefully

before using one in a form.

The form.action property can be used to set the action attribute of a form, so that

it is sent to a different URL to be processed on the server:

form.action = "/alt/search"

Form Events
There are some events that are exclusive to forms.

The focus event occurs when the cursor is focused on that element. In the case of

an input element, this is when the cursor is placed inside the element (either by

clicking on it or navigating to it using the keyboard). To see an example, add the

following code to scripts.js:

var input = form.elements.searchBox;

input.addEventListener('focus', function(){ alert("focused")},
➥false);

Open search.htm in your browser and place the cursor inside the input field. You

should see an alert dialog similar to the one in the screenshot in Figure 8.1.

211Forms

Figure 8.1. Focused!

The blur event occurs when the user moves the focus away from the form element.

Add the following to scripts.js, reload the page, and then move the cursor away from

the search box:

input.addEventListener('blur', function(){ alert("blurred")},
➥false);

The change event occurs when the user moves the focus away from the form element

after changing it. So if a user clicks in an input field and makes no changes, and

then clicks elsewhere, the change event won’t fire but the blur event will.

Add the following code to scripts.js and reload the page. You’ll notice that the alert

message "changed" only appears if you actually change the value inside the search

box, then move the cursor away from it:

input.addEventListener('change', function(){ alert("changed")},
➥false);

Note that the blur event will also fire, but after the change event.

Submitting a Form
Possibly the most important form event is the submit event, occurring when the

form is submitted. Usually this will send the content of the form to the server to be

JavaScript: Novice to Ninja212

processed, but we can use JavaScript to intercept the form before it’s sent by adding

a submit event listener. Add the following code to the scripts.js file:

var form = document.forms.search;
form.addEventListener ("submit", search, false);

function search() {
 alert("Submitted");
}

Now reload the page and click on the Submit button. You should see an alert dialog

saying “Submitted.” After you click OK, the browser tries to load a nonexistent page

(the URL should end in something similar to ".../search?searchBox=hello"). This is

because when the event fired, our search() function was invoked displaying the

alert dialog; then the form was submitted to the page in its action attribute for

processing, but unfortunately this page doesn’t exist. We won’t create that page

either, since back-end processing won’t be covered in this book. What we’ll do in-

stead is stop the form from being submitted to that URL altogether. This is done by

using the preventDefault() method that we saw in the last chapter. Add the fol-

lowing line to the search function:

function search() {
 alert("Form Submitted");
 return false;
}

Now reload search.htm and try submitting the form. You’ll see that the alert dialog

still appears, but after you click OK, nothing else happens.

Retrieving and Changing Values from a Form
Text input element objects have a value property that can be used to find the text

inside the field.

We can use this to report back what the user has searched for. Edit the search()

function to the following:

213Forms

function search(event) {
 alert("You Searched for: " + input.value);
 event.preventDefault();
}

Note that in this example, input is the global variable defined at the start of the

scripts.js file. It points to the input element in our form, but it could have been called

anything.

Now refresh the page, enter some text in the search box, and you should see a sim-

ilar sight to the screenshot shown in Figure 8.2:

Figure 8.2. Reporting what the user searched for

It’s also possible to set the value using JavaScript. Add the following line of code

to the scripts.js file:

input.value = "Search Here";

Now refresh the page and you should see that the string “Search Here” is displayed

in the input field, as in the screenshot shown in Figure 8.3.

JavaScript: Novice to Ninja214

Figure 8.3. Search Here

The problem with this is that the text remains in the field when the the user clicks

inside it, so it has to be deleted before the user can enter their own text. This is

easily remedied by adding these event handlers:

input.addEventListener('focus', function(){
 if (input.value==="Search Here") {
 input.value = ""
 }
 }, false);

input.addEventListener('blur', function(){
 if(input.value == "") {
 input.value = "Search Here";
 } }, false);

Now the default text will disappear when the user clicks inside the input field (the

focus event) and reappear if the users leaves the field blank and clicks away from

it (the blur event).

Placeholder Text

Similar functionality can be produced in modern browsers using the placeholder

attribute in the HTML markup. Simply change the input field to the following in

index.htm:

215Forms

<input type="text" name="search-box"
➥placeholder="Search Here">

This has slightly different behavior in that the placeholder text is not actually a

value of the input field, so it won’t be submitted as the field’s value if the user

fails to fill it in.

Form Controls
In our previous search example we only used the input and button form controls,

but there are others that can help to make our web pages more interactive.

The different types of form controls are:

■ input fields, including text, passwords, check boxes, radio buttons, and file

uploads

■ select menus for drop-down lists of options

■ textarea for longer text entry

■ button for submitting and resetting forms

To demonstrate all of these HTML form controls, we’ll create another form that

contains all these elements. Back in Chapter 5, we created a superman object that

had lots of properties associated with the Man of Steel. We're going to create a form

that allows a user to enter all these details into a browser, so we'll create a similar

hero object that describes a superhero (or villain).

Create a new project folder that contains the following code in a file called hero.htm:

hero.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Hero Form</title>
 <link rel="stylesheet" href="css/styles.css">
</head>
<body>

JavaScript: Novice to Ninja216

 <form id="hero">
 <label for="name" class="break">Name:</label>
 <input type="text" name="name" autofocus placeholder=
➥"Your Super Hero Name" maxlength=5>
 <button type="submit">Submit</button>
 </form>
 <script src="js/scripts.js"></script>
</body>
</html>

We’ll start with a basic form that’s fairly similar to our previous search example,

containing a text input field and button to submit the form.

HTML5 Attributes

The input element includes some of the new attributes introduced in HTML5.

The autofocus attribute give focus to this element when a page loads. It is the

equivalent to putting the following line of JavaScript in scripts.js:

forms.hero.name.focus();

The placeholder attribute will insert the value provided in the input field until

the user enters some text. This can be useful to place hints about how to fill in

the form.

The maxlength attribute will limit the number of characters that can be entered

in the field to the value given (in this case 32).

There are many new attributes that can be employed to make forms more user-

friendly. A good roundup of all the new form elements can be in this article on

the SitePoint website.1

We’ll also need a css folder containing a file called styles.css that contains the follow-

ing code (it makes the form look a bit neater by displaying some of the controls as

block elements):

1 http://www.sitepoint.com/html5-forms-markup

217Forms

http://www.sitepoint.com/html5-forms-markup
http://www.sitepoint.com/html5-forms-markup

styles.css

label.break, button{
 display: block;
}

And last of all we’ll need a js folder that contains a file called scripts.js. In this file,

let’s start off by assigning the form to a variable and then adding an event listener

for when the form is submitted:

var form = document.forms.hero;
form.addEventListener("submit", makeHero, false);

The event listener will call the makeHero() function when the form is submitted.

In this function, we want to create an object from the information provided in the

form. Let’s implement that function by adding this code to scripts.js:

function makeHero(event) {

 event.preventDefault(); // prevent the form from being submitted

 var hero = {}; // create an empty object

 hero.name = form.name.value; // create a name property based on
➥the input field's value

 alert(JSON.stringify(hero)); // convert object to JSON string and
➥display in alert dialog
}

This function uses the event.preventDefault()method to stop the form from being

submitted. We then create a local variable called hero and assign it to an empty

object literal. We’ll then augment this object with properties from the form, although

we only have the name property at the moment. Once the hero object is created, it

could be returned by the function and then used in the rest of the program. Since

this is just for demonstration purposes, we simple use the JSON.stringify()

method to convert the hero object into a JSON string and then display it in an alert

dialog.

Open up hero.htm in a browser and enter the name of a superhero and you should

see a screenshot similar to Figure 8.4.

JavaScript: Novice to Ninja218

Figure 8.4. Hero’s name

Now that we know our code is working, let’s look at some of the other types of form

controls.

Input Fields
Input fields are the most common types of form control, but there are several cat-

egories of input field as you’ll soon see:

Text Input Fields
The default type of input field is "text" which is used for entering a short piece of

text, such as a username or phone number. In our example, we use a text input field

to enter the name of the superhero. The type="text" attribute isn’t imperative (we

didn’t use it in the search example as "text" is the default), but it is advisable to

use it as it makes the intended purpose of the field explicit, helping with mainten-

ance, readability, and future-proofing.

The initial value of this field can be set in the HTML using the "value" attribute:

219Forms

<input type="text" name="name" value="Enter your name">

Password Input Fields
input type="password" is used to enter passwords or secret information. This

works in the same way as an input field with type="text", except that the characters

are concealed as they are entered so they’re unable to be read on the screen.

To see this in action, we will add a realName property to our hero object. Obviously

the real name of a superhero is secret information, so it needs to be hidden from

prying eyes when it is being entered. Add the following line to the form in hero.htm

(just before the submit button):

 <label for="realName" class="break">Real Name:</label>
 <input type="password" name="realName">

To process this information, we add the following line to the makeHero() function

in scripts.js:

hero.realName = form.realName.value;

As you can see, values from a password input field are accessed in exactly the same

way as text input fields using the value property.

Checkbox Input Fields
Check boxes are created using input fields with type="checkbox". They are used

to select different options that can be checked (true) or left unchecked (false). The

user can select more than one checkbox from a list.

We’ll use checkboxes to add a list of powers that the superhero can have. Add the

following lines of code to the form in hero.htm:

<p>Super Powers:</p>
<label for="flight">Flight:</label>
<input type="checkbox" value="Flight" name="powers">
<label for="strength">Super Strength:</label>
<input type="checkbox" value="Strength" name="powers">
<label for="speed">Super Speed:</label>
<input type="checkbox" value="Super Speed" name="powers">

JavaScript: Novice to Ninja220

<label for="energy">Energy Blasts:</label>
<input type="checkbox" value="Energy Blasts" name="powers">
<label for="telekinesis">Telekinesis:</label>
<input type="checkbox" value="Telekinesis" name="powers">

Notice that all the checkbox elements have the same name property of "powers".

This means that they can be accessed as an HTML collection like so:

form.powers;

We can then iterate over this collection using a for loop to see if each checkbox

was checked. Checkbox objects have a checked property that tells us if it has been

checked or not. It is a Boolean property, so can only have the values true or false.

The value property is used to set the name of the power that can be used if the

checkbox has been checked. Add the following code to the makeHero() function in

scripts.js:

hero.powers = [];
for (i=0; i < form.powers.length; i++) {
 if (form.powers[i].checked) {
 hero.powers.push(form.powers[i].value);
 }
}

This creates a powers property for our hero object that starts as an empty array. We

then iterate over each checkbox to see if it was checked in the form. If it was, we

add the value property of the checkbox to the powers array using the push method.

Note that a checkbox can be set to true using JavaScript by setting its checked

property to true. For example, we could make the first checkbox in the list of powers

appear checked with this line of code:

document.forms.hero.powers[0].checked = true

Checkboxes can also be checked initially using the "checked" attribute in the HTML:

221Forms

<input type="checkbox" value="Flight" name="powers" checked>

Radio Button Input Fields
Radio buttons are created using input fields with type="radio". Like checkboxes

they allow users to check an option as true, but they only give an exclusive choice

of options, so only one option can be selected.

This type of mutually exclusive option could be whether a superhero is a hero or

a villain ... or even an antihero (you know, those ones that are unable to decide

whether to be good or bad). Add this line of code to the form in hero.htm:

<p>What type of hero are you?</p>
<label>Hero:</label>
<input type="radio" name="type" value="Hero">
<label>Villain:</label>
<input type="radio" name="type" value="Villain">
<label>Anti-Hero:</label>
<input type="radio" name="type" value="Antihero">

All these radio buttons have the same name attribute of "type". This is used to group

them together―only one radio button can be checked in a group that have the same

name. It also means we can access an HTML collection of all the radio buttons in

that group using this line of code:

form.type;

Because this is an array-like object, we can use index notation to access each radio

button in the group. For example, the first radio button is:

form.type[0];

Each radio button has a value property that is equal its value attribute. We can use

this to set a type property in our hero object to the value of the radio button that is

selected. Add the following code to the makeHero() function in scripts.js:

for (i=0 ; i < form.type.length ; i++) {
 if (form.type[i].checked) {
 hero.type = form.type[i].value;

JavaScript: Novice to Ninja222

 break;
 }
}

This uses a for loop to iterate over the collection of radio buttons to see which one

has been checked. If it is checked, the hero.type property is set to the radio button’s

value property. Note the use of the break statement. This is because there is no

point continuing the search for a checked radio button once one has been found

since only one of them can be checked.

Radio buttons also have a checked property that returns the Boolean values true

and false, depending on if it has been selected or not. It’s possible to change the

checked property to true, but because only one radio button can be checked at

once, all the others with the same name property will change to false. So the fol-

lowing line of code would check the "antihero" radio button, but the "hero" and

"villain" radio buttons would then be unchecked:

form.type[2].checked = true;

Radio buttons can also be checked initially using the "checked" attribute in the

HTML:

<input type="radio" name="type" value="Villain" checked>

Hidden Input Fields
Hidden fields can be created using input fields with type="hidden". These are not

displayed by the browser but have a "value" attribute that can contain information

that is submitted with the form. They are often used to send information such as

settings or information that the user has already provided. Note that the information

in these fields is in no way secret as it is visible in the HTML, so they shouldn’t be

used for sensitive data. The value of a hidden input field can be changed using

JavaScript.

223Forms

File Input Fields
A file input field can be created using input fields with type="file". They are used

to upload files and most browsers will provide a Browse button or similar that lets

users select a file from their file system.

HTML5 Input Types

There are lots of new input types included in HTML5 such as number, tel, and

color. As browsers start to support these, they will implement different user in-

terface elements depending on the input type. So a number field might use a

slider, whereas a date field will show a calendar. They will also validate automat-

ically, so an email input field will show an error message if it there is no valid

email address.

Let’s add an input type of "number" to our form. Add the following to hero.htm:

 <label for="age" class="break">Age:</label>
 <input type="number" name="age" min=0 step=1>

Number input fields also have optional min and max attributes that can be used

to limit the input given. The step attribute is used to specify how much the value

changes by on each click. Most modern browsers will add controls at the side of

the input field so that the value can be increased or decreased, as shown in Fig-

ure 8.5.

JavaScript: Novice to Ninja224

Figure 8.5. Using the number input field to specify our hero's age

We’ll also need some JavaScript to process the age information. Add the following

line to the makeHero() function in scripts.js:

 hero.age = form.age.value;

These new input types are yet to be all supported, but the good news is that you

can start using them now because they will still work; the browser will just display

a normal text input field if it doesn’t support a particular type. A good roundup

of all the new form elements can be found in this article on SitePoint.2

2 http://www.sitepoint.com/html5-forms-markup

225Forms

http://www.sitepoint.com/html5-forms-markup

Select Drop-down List
Select drop-down lists can be used to select one or more options from a list of values.

The multiple attribute is required if more than one option is to be selected. We’ll

use one in our example to choose the city where our hero operates. Add the following

line of code to the form in hero.htm:

 <label for="City" class="break">Base of Operations:</label>
 <select name="city">
 <option value="" selected>Choose a City</option>
 <option value="Metropolis">Metropolis</option>
 <option value="Gotham City">Gotham City</option>
 <option value="Keystone City">Keystone City</option>
 <option value="Coast City">Coast City</option>
 <option value="Star City">Star City</option>
 </select>

Note that the selected attribute can be used to set the initial value in the HTML.

In this example, the blank option that provides the instructional message “Choose

a City” has this attribute, so it is shown when the page loads.

The name attribute of the <select> element is used to access it in JavaScript:

form.city;

If only one item was selected, this will return a reference to that selection; otherwise

a collection will be returned containing each selection.

Each selection object has a value property that returns the value attribute of the

<option> tag that was selected. Add the following code to the makeHero() function

to set the city property:

hero.city = form.city.value;

It is also possible to find out the index of the option that has been selected using

the selectedIndex property. For example, if a user selected “Gotham City” from

the menu, form.city.selectedIndexwould return two because it is the third option

in the list.

JavaScript: Novice to Ninja226

Text Areas
A <textarea> element is used to enter long pieces of text over multiple lines such

as a comment or blog post. They work in much the same way as input fields. We

access them using the name attribute, and use the value property to see what text

was entered in the form.

For example, we can add a text area to our form for the origin story of our superhero.

Add the following lines of code to the form in hero.htm:

 <label for="origin" class="break">Origin Story:</label>
 <textarea name="origin" rows="20" cols="60"></textarea>

This can easily be added to the hero object by placing the following line of code to

the makeHero() function:

hero.origin = form.origin.value;

It is also possible to change the value in the form directly:

form.origin.value = "Born as Kal-El on the planet Krypton..."

The initial value of a text area can be set in the HTML by placing the text between

the opening and closing tags:

<textarea name="origin" rows="20" cols="60">Born as Kal-El on the
➥planet Krypton...</textarea>

Buttons
We’ve already used a button to submit a form, but there are different types of button.

The default type is submit, which is why we didn’t have to specify the type in our

search example earlier. Another type is reset, which will reset all the form fields

to their initial settings. Let’s add a reset button to our example by adding the follow-

ing line to hero.htm, just before the submit button:

227Forms

 <button type="reset">Reset</button>

Now have a go at filling in part of the form and pressing the reset button; all the

form fields should clear. Remember: this is not recommended good practice for

usability reasons!

The other type is simply button. This doesn’t need to be inside a form element and

has no default behavior. It simply creates a clickable button that can have an event

listener attached to it:

 <button type="button">Click Me</button>

I Need a Hero!
Now that our example form is complete, have a go at filling it in and pressing the

Submit button. You should see something similar to the screenshot in Figure 8.6.

JavaScript: Novice to Ninja228

Figure 8.6. Hero JSON

We’ve successfully created a JavaScript object from form inputs that could then be

used in the rest of our program. In this example we’ve used the JSON.stringify()

method to convert the object into a JSON string, which could then be stored in a

database or exported to an external web service.

Form Validation
Form validation is the process of checking whether a user has entered the information

into a form correctly. Examples of the types of validation that occur include ensuring

that:

■ a required field is completed

■ an email address is valid

229Forms

■ a number is entered when numerical data is required

■ a password is at least a minimum number of characters

Validation can occur on the client side using JavaScript and on the server side. It

is advisable to use both client-side and server-side validation; JavaScript should

not be relied upon to validate any data before it is saved to a database. This is because

it’s possible for a user to modify the JavaScript code and bypass the validation rules.

Instead, JavaScript validation should be used to enhance the user experience when

filling in a form by giving feedback about any errors before it is submitted. This

should then be backed up with more validation performed on the server before the

data is eventually saved to a database. Having said that, it is still useful to validate

on the client side even if the data will be validated again on the server side. This

is because it will ensure that more valid data is sent to the server, which helps to

cut down the number of HTTP requests required to send the form back and forward

from the server to be corrected.

HTML5 has its own validation API that can be used, although it lacks the full support

from all browsers at the moment. The error messages that it produces can look in-

consistent across browsers and are difficult to style.

The API works by simply adding relevant attributes to the form fields. For example,

if a field is a required field that must be filled in, all you need to do is add a "re-

quired" attribute to that field and the browser will take care of the rest.

To see an example of this in action, add a required attribute to the name field in

our hero form:

 <input type="text" name="name" required>

Now refresh the page and leave the name field blank. As you click in another field,

you’ll notice that the blank name field is highlighted because it is a required field,

similar to the screenshot in Figure 8.7.

JavaScript: Novice to Ninja230

Figure 8.7. This is a required field

You can find more information about the HTML5 validation API in this article by

Craig Buckler on SitePoint.3

It is also possible to implement custom form validation using JavaScript. For ex-

ample, say we wanted to exclude any superhero names that begin with an “X.” This

is not a standard form of validation, so we’d have to write our own. Add this code

to scripts.js to see an example of custom validation:

form.addEventListener("submit",validate,false);

function validate(event) {
 var firstLetter = form.name.value[0];
 if (firstLetter.toUpperCase() === "X") {
 event.preventDefault();
 alert("Your name is not allowed to start with X!");

 }
}

This starts by finding the first letter of the value entered in the name field using the

index notation (an index of 0 represents the first letter in a string). It then checks

to see if the first letter is an “X” and alerts the user to the mistake. It also uses the

3 http://www.sitepoint.com/html5-forms-javascript-constraint-validation-api

231Forms

http://www.sitepoint.com/html5-forms-javascript-constraint-validation-api
http://www.sitepoint.com/html5-forms-javascript-constraint-validation-api

preventDefault() method to stop the form from being submitted. Otherwise it re-

turns true, which means the form is submitted as normal.

If you refresh the page and enter a name beginning with “X” in the name field and

then try submitting the form, you should receive an error alert dialog as in the

screenshot shown in Figure 8.8.

Figure 8.8. Validation error alert dialog

We can improve the usability of the form further by giving instant feedback instead

of waiting for the form to be submitted. This can be achieved by adding the event

listener directly to the input field that will fire when the user leaves the field (using

the blur event). The feedback can then be inserted into the label for the input field

JavaScript: Novice to Ninja232

(along with a class of error for styling purposes) for more direct feedback. Add the

following code to scripts.js:

form.name.addEventListener("blur",validateInline,false);

function validateInline(event) {
 // get the fist letter of the name input field
 var firstLetter = form.name.value[0];
 // get a reference to the label for the name input field
 var label = document.querySelector("label[for='name']");
 if (firstLetter.toUpperCase() === "X") {
 label.classList.add("error");
 label.textContent = "Your name is not allowed to start with X!";
 } else { // the error hasn't happened or has been fixed
 label.classList.remove("error");
 label.textContent = "Name:";
 }
}

The else block ensures that if the error has been fixed, the error class is removed

and the label text is returned to normal.

We also should add some styling to the error message so that it stands out. Add the

following to styles.css:

.error{
 background: #f99;
 border: #900 1px solid;
}

Now if you refresh the page and try to enter a name beginning with “X,” you should

see an error message above the input field as soon as you try to move to another

field. This can be seen in the screenshot in Figure 8.9.

233Forms

Figure 8.9. Inline error message

Quiz Ninja Project
Now we can use forms in our Quiz Ninja game so that players can enter their answers

without using prompt dialogs. Our first task is to add a form element with an ID of

answer in the HTML. This goes in between the question and feedback sections in

the index.htm file:

<form id="answer">
 <input type="text">
 <button>Submit Answer</button>
</form>

Now we add a reference to the form in our JavaScript. Add this line to the end of

the DOM references in scripts.js:

var $form = document.getElementById("answer");

The next task to do is remove the for loop that we've been using to loop through

each question. This is because the prompt dialogs that we've been using pause the

execution of the program and wait until the player has entered the answer. This

JavaScript: Novice to Ninja234

won't happen if we use a form, so the program would just loop through each question

without giving the player a chance to answer!

Instead, we're going to use a counter to keep track of which question the player is

up to. Remove the following main game loop code from the scripts.js file:

// main game loop
for(var i=0, question, answer, max=quiz.questions.length; i<max;
➥i++) {
 question = quiz.questions[i].question;
 answer = ask(question);
 check(answer);
}
// end of main game loop

And replace it with this:

var i = 0;
chooseQuestion();

This sets a variable i to 0, which will keep track of how many questions have been

asked. We then invoke the chooseQuestion() function. This is a new function that's

used to select the next question; we then ask it by invoking the ask() function. The

code for this function goes with the other nested functions inside the play() func-

tion:

function chooseQuestion() {
 var question = quiz.questions[i].question;
 ask(question);
}

Next, we remove the following from the ask() function, because it uses a prompt

dialog to ask for an answer:

return prompt("Enter your answer:");

We'll replace it with a couple of lines that give focus to the form's input field and

also remove any previous answer. The input field is the first element in the form,

so has an index of 0:

235Forms

$form[0].value = "";
$form[0].focus();

We need to wait for the player to enter an answer and submit the form before we

check the answer. We can use an event listener to check when the form has been

submitted and then invoke the check() function. Add the following code to the

beginning of the play() function—it has to go inside the play() function so that it

can invoke the nested check() function:

$form.addEventListener('submit', function(event) {
 event.preventDefault();
 check($form[0].value);
 }, false);

This uses the preventDefault() method to stop the default form behavior; then it

invokes the check() function, passing $form[0].value as an argument. This is the

value that is entered in the input field by the player and it will be passed to the the

check() function to see if it's correct.

Next, we add this code to the end of the check() function to increase the value of

i, and then choose the next question:

i++;
if(i === quiz.questions.length) {
 gameOver();
} else {
 chooseQuestion();
}

Players can now use the form instead of prompt dialogs to enter their answers, but

a lot of the elements are displayed when they are unnecessary. For example, when

the page loads the form is displayed, event though there is no question to answer,

and the start button remains on the page, even after the game has started. To remedy

this, we can create a couple of helper functions to hide and show elements as we

need them. Add the following to scripts.js, before the play() function:

function hide(element) {
 element.style.display = "none";
}

JavaScript: Novice to Ninja236

function show(element) {
 element.style.display = "block";
}

These functions change the display CSS property of the element to "none", which

effectively hides the element, although it is still contained in the markup. Now we

can use these functions to hide certain elements at the relevant times. To hide the

form when the page loads, add the following code just before the play() function:

// hide the form at the start of the game
hide($form);

This should mean that only the start button is shown prior to the game commencing.

When the player clicks on the button, the play() function is called and the game

starts. At this point, we want the start button to be hidden and the form to be shown,

so add this at the beginning of the play() function:

// hide button and show form
hide($start);
show($form);

At the end of the game, we want to hide the form and show the start button so that

the player can choose to play again. Add the following to the end of the gameOver()

function:

hide($form);
show($start);

Finally, we'll add some CSS to style the form in styles.css. The input field is actually

styled the same way as the button, so we can simply add the input selector to the

beginning of the declaration:

input, button {
 styles remain the same

The following styles will center the quiz playing area:

237Forms

body{
 width: 400px;
 margin: 0 auto;
 background: #fff;
 height:100vh;
}

html{
 background: #444;
}

Let's have a go at playing it. Open up index.htm and it should look similar to the

screenshot shown in Figure 8.10.

Figure 8.10. Our quiz with no prompt dialogs

Our quiz is now shaping up nicely and looking much more professional without

all the alert and prompt dialogs.

Summary
In this chapter, we have learned the following:

JavaScript: Novice to Ninja238

■ Forms are the primary method used for entering data into a browser.

■ Forms have a variety of controls that are used for entering different types of in-

formation.

■ HTML5 has a large number of new input types that are beginning to be imple-

mented in modern browsers.

■ document.forms will return an HTML collection of all the forms on a page.

■ form.elements will return an HTML collection of all the elements contained

within a form.

■ Forms have focus, blur, and change events that fire as a user interacts with the

form.

■ Forms also have a submit event that can be used to intercept a form before it has

been submitted.

■ The information entered into a form can be read or updated using the value

property of the form controls.

■ The HTML5 form validation API can be used to automatically validate a form,

but only at a basic level, so a custom validation script may be required.

In the next chapter, we’ll look at the window object.

239Forms

Chapter9
The Window Object
The window object represents the browser window that contains a web page. It is

also used to represent the global object in a browser environment.

In this chapter, we’ll cover these topics:

■ the Browser Object Model

■ finding out browser information

■ browser history

■ controlling windows

■ cookies

■ timing functions

■ Our project ― using cookies to welcome back the user

The Browser Object Model
The Browser Object Model (or BOM for short) is a collection of properties and

methods that contain information about the browser and computer screen. For ex-

ample, we can find out which browser the users are utilising (though, this method

is unreliable), the dimensions of their screens, and which pages they have visited

before the current page. It can also be used for the rather dubious practice of creating

pop-up windows, if you’re into annoying your users.

There is no official standard for the BOM, although there are a number of properties

and methods that are supported by all the major browsers, making a sort of de facto

standard. These properties and methods are made available through the window

object. Every browser window, tab, popup, frame, and iframe has a window object.

There Isn’t Always a BOM

Remember that JavaScript can be run in different environments. The BOM only

makes sense in a browser environment. This means that other environments (such

as Node.js) may not have a window object, although they will still have a global

object; for example, Node.js has an object called global.

Going Global
All the way back in Chapter 2, we introduced the concept of global variables. These

are variables that are created without using the var keyword. Global variables can

be accessed in all parts of the program.

Global variables are actual properties of a global object. In a browser environment,

the global object is the window object. This means that any global variable created

is actually a property of the window object:

x = 6;
<< 6

window.x;
<< 6

In general, you should refer to global variables without using the window object (it’s

less typing and your code is more portable between environments). An exception

JavaScript: Novice to Ninja242

is if you need to check whether a global variable has been defined. For example,

the following code will throw an exception if x has not been defined:

if (x) {
 // do something
 }

However, if the variable is accessed as a property of the window object, an exception

will not occur (although the block of code will still not be evaluated without x being

defined):

if (window.x) {
 // do something
}

Some functions that we’ve already met such as parseInt() and isNaN() are global

functions, which in a browser environment makes them methods of the window

object:

window.parseInt(4.2);
<< 4

window.isNaN(4.2);
<< false

Like variables, it is customary to omit accessing them through the window object.

Dialogs
In Chapter 1, we introduced three functions that produced dialogs in the browsers:

alert(), confirm(), and prompt(). These are not part of the ECMAScript standard,

although all major browsers support them as methods of the window object.

The window.alert() method will stop the execution of the program and display a

message in a dialog box. The message is provided as an argument to the method

and undefined is always returned:

243The Window Object

window.alert("Hello")

The window.confirm() method will stop the execution of the program and display

a confirmation dialog that shows the message provided as an argument and giving

the options of OK or Cancel. It returns the Boolean values of true if the user clicks

OK and false if the user clicks Cancel:

window.confirm("Do you wish to continue?")

The window.prompt() method will stop the execution of the program. It displays

a dialog that shows a message provided as an argument as well as an input field

that allows the user to enter text. This text is then returned as a string when the

user clicks OK. If the user clicks Cancel, null is returned:

window.prompt("Please enter your name?")

Dialogs Stop Processing

It is worth reiterating again that these methods will stop the execution of a program

in its tracks. This means that everything will stop processing at the point the

method is called, until the user clicks OK or Cancel. This can cause problems if

the program needs to process something else at the same time or the program is

waiting for a callback to be called.

Browser Information
The window object has a number of properties and methods that provide information

about the user’s browser.

Which Browser?
The window object has a navigator object that contains information about the

browser being used. Its userAgent property will return information about the browser

and operating system being used. For example, if I run the following line of code,

it shows that I am using Firefox version 31.0 on Linux:

JavaScript: Novice to Ninja244

window.navigator.userAgent
<< "Mozilla/5.0 (X11; Linux i686; rv:31.0) Gecko/20100101
➥Firefox/31.0"

Don’t rely on this information though, as it can be modified by a user to masquerade

as a different browser. It’s also difficult to make any sense of the string returned,

because all browsers pretend to be others to some degree. For example, every browser

will include the string "Mozilla" in its userAgent property for reasons of legacy

Netscape compatibility.

Location, Location, Location
The window.location property is an object that contains information about the

URL of the current page. It contains a number of properties that provide information

about different fragments of the URL.

The href property returns the full URL as a string:

window.location.href
<< "https://learnable.com/topics/all/book?utm_source=sitepoint&
➥utm_medium=link&utm_content=top-nav"

This property (as well as most of the others in this section) is a read/write property,

which means that it can also be changed by assignment. If this is done, the page

will be reloaded using the new property. For example, the following line will redirect

the page to the SitePoint home page:

window.location.href = "http://www.sitepoint.com/"
<< "http://www.sitepoint.com/"

The protocol property returns a string describing the protocol used (such as http,

https, pop2, ftp etc.). Note that there is a colon (:) at the end:

window.location.protocol
<< "https:"

The host property returns a string describing the domain of the current URL and

the port number (this is often omitted if the default port 80 is used):

245The Window Object

window.location.host
<< "learnable.com"

The hostname property returns a string describing the domain of the current URL:

window.location.host
<< "learnable.com"

The port property returns a string describing the port number. It will return an

empty string if the port is not explicitly stated in the URL:

window.location.port
<< ""

The pathname property returns a string of the path that follows the domain:

window.location.pathname:
<< "/topics/all/book"

The search property returns a string that starts with a "?" followed by the query

string parameters. It returns an empty string if there are no query string parameters:

window.location.search
<< "?utm_source=sitepoint&utm_medium=link&utm_content=top-nav"

The hash property returns a string that starts with a "#" followed by the fragment

identifiers. It returns an empty string if there are no fragment identifiers:

window.location.hash
<< ""

The origin property returns a string that shows the protocol and domain where

the current page originated from. This property is read-only, so cannot be changed:

window.location.origin
<< "https://learnable.com"

The window.location object also has these methods:

JavaScript: Novice to Ninja246

■ The window.location.reload() method can be used to force a reload of the

current page. If it’s given a parameter of true, it will force the browser to reload

the page from the server, instead of using a cached page.

■ The window.location.assign() method can be used to load another resource

from a URL provided as a parameter, for example:

window.location.assign("http://www.sitepoint.com/")

■ The window.location.replace()method is almost the same as the window.loc-

ation.assign() method, except that the current page will not be stored in the

session history, so the user will be unable to navigate back to it using the back

button.

The Browser History
The window.history property can be used to access information about any previ-

ously visited pages in the current browser session. Avoid confusing this with the

new HTML5 History API.1

The window.history.length property shows how many pages have been visited

before arriving at the current page.

The window.history.go() method can be used to go to a specific page, where 0 is

the current page:

window.history.go(1); // goes forward 1 page
window.history.go(0); // reloads the current page
window.history.go(-1); // goes back 3 pages

There are also the window.history.forward() and window.history.back()

methods that can be used to navigate forwards and backwards by one page respect-

ively, just like using the browser’s forward and back buttons.

1 See this SitePoint post for details. [http://www.sitepoint.com/javascript-history-pushstate/]

247The Window Object

http://www.sitepoint.com/javascript-history-pushstate/

Controlling Windows
A new window can be opened using the window.open() method. This takes the

URL of the page to be opened as its first parameter, and a list of attributes as the

second parameter. This can also be assigned to a variable, so the window can then

be referenced later in the code:

popup = window.open('https://sitepoint.com','SitePoint','width=400,
➥height=400,resizable=yes');

The window.close() method can be used to close a window:

popup.close();

It is also possible to move a window using the window.move() method. This takes

two parameters that are the X and Y coordinates of the screen that the window is

to be moved to:

window.moveTo(0,0); // will move the window to the top-left corner
➥of the screen

You can resize a window using the window.resizeTo() method. This takes two

parameters that specify the width and height of the resized window’s dimensions:

window.resizeTo(600,400);

Avoid Popups!

These methods were largely responsible for giving JavaScript a bad name as they

were used for creating annoying pop-up windows. It's also a bad idea from a us-

ability standpoint to resize or move a user's window.

Many browsers block pop-up windows and disallow some of these methods to be

called in certain cases. For example, you can’t resize a window if more than one

tab is open.

It’s rare that it would be sensible to use any of these methods, so think very care-

fully before using them. There will almost always be a better alternative, and a

ninja will find it.

JavaScript: Novice to Ninja248

Screen Information
The window.screen object contains information about the screen that the browser

is displayed on. You can find out the height and width of the screen in pixels using

the height and width properties respectively:

window.screen.height;
<< 1024

window.screen.width;
<< 1280

The availHeight and availWidth can be used to find the height and width of the

screen, excluding any operating system menus:

window.screen.availWidth;
<< 1280

window.screen.availHeight;
<< 995

The colorDepth property can be used to find the color bit depth of the user’s mon-

itor, although there are few use cases for doing this other than collecting user stat-

istics:

window.screen.colorDepth;
<< 24

The Document Object
Each window object contains a document object. This object has properties and

methods that deal with the page that has been loaded into the window. In Chapter

6, we covered the Document Object Model and the properties and methods used to

manipulate items on the page. The document object contains other methods that are

worth looking at.

document.write()
The write() method simply writes a string of text to the page. If a page has already

loaded, it will completely replace the current document:

249The Window Object

document.write("Hello, world!");

This would replace the whole document with the string “Hello, world!”. It is possible

to include HTML in the string and this will become part of the DOM tree. For ex-

ample, the following piece of code will create an <h1> tag node and a child text

node:

document.write("<h1>Hello, world!</h1>");

The document.write()method can also be used within a document inside <script>

tags to inject a string into the markup. This will not overwrite the rest of the HTML

on the page. The following example will place the text "Hello, world!" inside the

<h1> tags and the rest of the page will display as normal:

<h1>
<script>document.write("Hello, world!")</script>
</h1>

The use of document.write() is heavily frowned upon as it can only be realistically

used by mixing JavaScript within an HTML document. For this reason, there should

be no reason for a ninja to use it, although you might come across it in some old (I

hope) tutorials on the Web.

Cookies
Cookies are small files that are saved locally on a user’s computer. They were inven-

ted by Netscape as a way of getting round HTTP being a stateless protocol. This

means that a browser does not remember anything from one request to another. So

every time a user visits a page, nothing about any previous visits is remembered.

Cookies can be used to sidestep this problem by storing information that can then

be retrieved between requests.

A restriction of cookies is that they can only be read by a web page from the same

domain that set them. This is to stop sites being able to access information about

users, such as other sites they have visited. Cookies are also limited to storing up

to 4KB of data, although 20 cookies are allowed per domain, which can add up to

quite a lot of data.

JavaScript: Novice to Ninja250

Cookies can be used for personalising a user’s browsing experience, storing user

preferences, keeping track of user choices (such as a shopping cart), authentication

and tracking users. The use of cookies for tracking purposes has been much maligned

in recent years.

Their use for data storage is starting to be replaced in many cases by the new HTML5

localStorage API as it allows more data to be stored; this is covered in Chapter 14.

Cookies are still useful for retaining state information (such as if a user is logged

in) because they’re passed between the client and server on every HTTP request.

Cookies take the form of a text file that contain a list of name/value pairs separated

by semicolons. For example, a cookie file might contain the following information:

"name=Superman; hero=true; city=Metropolis"

Creating Cookies
To create a cookie, you assign it to JavaScript’s “cookie jar,” the document.cookie

property, like so:

document.cookie = "name=Superman"
<< "name=Superman"

The document.cookie property acts like a special type of string. Assigning another

cookie to it won’t overwrite the entire property, it will just append it to the end of

the string. So we can add more cookies by assigning them to document.cookie:

document.cookie = "hero=true"
<< "hero=true"

document.cookie = "city=Metropolis"
<< "city=Metropolis"

Changing Cookie Values
A cookie’s value can be changed by reassigning it to document.cookie using the

same name but a different value. The following code will update the value of both

the cookies that we set in the previous section:

251The Window Object

document.cookie = "name=Batman"
<< "name=Batman"
document.cookie = "city=Gotham"
<< "city=Gotham"

Reading Cookies
To see the current contents of the cookie jar, simply enter document.cookie:

document.cookie:
<< "name=Batman; hero=true; city=Gotham"

We can use the split method to break the string into an array containing each

name/value pair, and then use a for loop to iterate through the array:

var cookies = document.cookie.split("; ");
for (var i=0, max=cookies.length; i < max; i++){
 var crumbs = cookies[i].split("=");
 console.log("The value of " + crumbs[0] + " is " + crumbs[1]);
}

To see an example of cookies used in the wild, you can visit nearly any website,

open the console, and type document.cookie.

Cookie Expiry Dates
Cookies are session cookies by default. This means that they are deleted once a

browser session is finished (when the user closes the browser tab or window).

Cookies can be made persistent―that is, lasting beyond the browser session―by

adding "; expires=date" to the end of the cookie when it is set, where date is a

date value in the UTC String format Day, DD-Mon-YYYY HH:MM:SS GMT. The following

example sets a cookie to expire in one day’s time:

var expiryDate = new Date();
var tomorrow = expiryDate.getTime() + 1000 * 60 * 60 * 24;
expiryDate.setTime(tomorrow);

JavaScript: Novice to Ninja252

document.cookie = "name=Batman; expires=" + expiryDate.
➥toUTCString();

An alternative is to set the max-age value. This takes a value in seconds, but is not

supported in Internet Explorer version 9 or earlier:

document.cookie = "name=Batman; max-age=86400" // 86400 secs = 1 day

The Path and Domain of Cookies
By default, cookies can only be read by pages inside the same directory and domain

as the file was set. This is for security reasons so that access to the cookie is limited.

The path can be changed so that any page in the root directory can read the cookie.

It’s done by adding "; path=/" to the end of the cookie when it is set:

document.cookie = "name=Batman; path=/"

It’s also possible to set the domain by adding "; domain=domainName" to the end

of the cookie:

document.cookie = "name=Batman; domain=sitepoint.com";

A cookie can only be read by the domain that created it anyway, but doing this will

allow all subdomains of sitepoint.com (such as javascript.sitepoint.com and

books.sitepoint.com) to read it.

Secure Cookies
Adding "; secure" to the end of the cookie will ensure that it’s only transmitted

over a secure HTTPS network:

document.cookie = "name=Batman; secure"

Deleting Cookies
To remove a cookie, simply set it to expire at a time in the past:

253The Window Object

document.cookie = "name=Batman; expires=Thu, 01 Jan 1970
➥00:00:01 GMT"

If a cookie is a session cookie, it will expire when the tab or window is closed.

A Cookie Library

JavaScript’s cookie handling is quite basic and can also be quite cumbersome.

Many developers use a library such as Cookies.js2 or jsCookie.3 You could even

develop your own set of functions to make dealing with cookies easier.

Timing Functions
The window object provides some useful methods for scheduling the execution of

a function and for repeatedly executing functions at regular intervals.

The window.setTimeout() method accepts a callback to a function as its first

parameter and a number of milliseconds as its second parameter. Try entering the

following example into a console. It should show an alert dialog after three seconds

(that’s 3000 milliseconds):

window.setTimeout(function(){ alert("Time's Up!") }, 3000);
<< 4

Notice that the method returns an integer. This is an ID used to reference that par-

ticular timeout. It can also cancel the timeout using the window.clearTimeout()

method. Try calling the code again:

window.setTimeout(function(){ alert("Time's Up!") }, 3000);
<< 5

Now quickly enter the following code before the alert pops up:

2 https://github.com/ScottHamper/Cookies
3 http://codecanyon.net/item/jscookie-easy-to-use-javascript-cookie-library/308627

JavaScript: Novice to Ninja254

https://github.com/ScottHamper/Cookies
http://codecanyon.net/item/jscookie-easy-to-use-javascript-cookie-library/308627

window.clearTimeout(5); // make sure you use the correct ID
<< undefined

If you were quick enough, and used the correct ID, the alert was prevented from

happening.

The window.setInterval()method works in a similar way to window.setTimeout(),

except that it will continue to invoke the callback function after every given number

of milliseconds.

The previous example used an anonymous function, but it is also possible to use a

named function like so:

function hello(){ console.log("Hello"); };

Now we can set up the interval and assign it to a variable:

repeat = window.setInterval(hello,1000)
<< 6

This should show the message "Hello" in the console every second (1,000 milli-

seconds).

To stop this, we can use the window.clearInterval() method and the variable

repeat as an argument (this is because the window.setInterval() method returns

its ID, so this will be assigned to the variable repeat):

window.clearInterval(repeat);

Animation
The setTimeOut() and setInterval() methods can be used to animate elements

on a web page. As an example, let’s create a web page that shows a colored square,

and make it rotate. Create a folder called animation that contains index.htm, a css

folder containing styles.css, and a js folder containing scripts.js. Place this code inside

index.htm:

255The Window Object

index.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Animation Example</title>
 <link rel="stylesheet" href="css/styles.css">
</head>
<body>
 <div id="square"></div>
 <script src="js/scripts.js"></script>
</body>
</html>

This places a div on the page with an ID of square. Add the following styles.css:

styles.css

#square {
 margin: 100px;
 width: 100px;
 height: 100px;
 background: #d16;
}

This will set the position, dimensions, and color of the div. Now for the anima-

tion―add the following code to scripts.js:

scripts.js (excerpt)

var square = document.getElementById("square");
var angle = 0;

setInterval(function() {
 angle = (angle + 5)%360
 square.style.transform = "rotate(" + angle + "deg)"
}, 1000/6)

This code receives a reference to our square div and then sets a variable called angle

to 0. We then use the setInterval() method to increase the value of angle by 5

(we also use the % operator so that it resets to 0 at 360), then set the transform CSS3

JavaScript: Novice to Ninja256

property to rotate that number of degrees. The second argument is 1000/60, which

equates to a frame speed of 60 frames per second.

Open animation.htm in your browser and you should see a rotating square, although

it will probably be quite slow and not very smooth. This was the only way to achieve

animation using JavaScript until the window.requestAnimationFrame() method

was developed.

requestAnimationFrame
This method of the window object works in much the same way as the window.setInt-

erval() method, although it has a number of improvements to optimize its perform-

ance. These include making the most of the browser’s built-in graphics-handling

capabilities and not running the animation when the tab is inactive, resulting in a

much smoother performance. It is supported in all major browsers, including Internet

Explorer from version 10 onwards. Change the code in scripts.js to the following:

var square = document.getElementById("square");
var angle = 0;

function rotate() {
 angle = (angle + 5)%360
 square.style.transform = "rotate(" + angle + "deg)"
 window.requestAnimationFrame(rotate);
}

id = window.requestAnimationFrame(rotate);

This is similar to the earlier code, but this time we place the rotation code inside a

function called rotate. The last line of this function uses the window.requestAnim-

ationFrame() method and takes the rotate() function as an argument. This will

then call the rotate() function recursively. The frame rate cannot be set using re-

questAnimationFrame(); it’s usually 60 frames per second, although it’s optimized

for the device being used.

To start the animation, we need to call the window.requestAnimationFrame()

method, giving the rotate() function as an argument. This will return a unique ID

that can be employed to stop the animation using the window.cancelAnimation-

Frame() method:

257The Window Object

window.cancelAnimationFrame(id);

Refresh the animation.htm page and you should notice that the animation is much

faster and smoother, as shown in Figure 9.1.

Figure 9.1. Animation in the browser

JavaScript: Novice to Ninja258

CSS Animation

The rotation animation example demonstrates how JavaScript can be used to

perform animations in the browser. It could also be achieved using pure CSS an-

imation with the following style rules in styles.css:

#square {
 margin: 100px;
 width: 100px;
 height: 100px;
 background: #cc0;
 animation: spin 4s linear infinite;
}

@keyframes spin { from { transform:rotate(360deg); } to
➥{ transform:rotate(0deg); } }

In general, it is typically better to use CSS for any animation effects, although

there are times when JavaScript will be the better solution.

Quiz Ninja Project
We’re now going add a timer to our quiz game with a “beat the clock” element to

it. We’ll do this using the window object’s setInterval() method to add a time

limit to the game. First of all, we’ll add an element to the HTML for the timer. Add

the following line to the end of the <header> element inside the index.htm file:

<p id="timer"></p>

We also need to add this code inside the styles.css file to make the timer display in

the center of the header:

#timer{
 text-align: center;
}

Using its ID, add a reference to this element to the other DOM references in the

scripts.js file:

var $timer = document.getElementById("timer");

259The Window Object

We’ll also add the following code to the start of the play() function:

// initialize timer and set up an interval that counts down
var time = 20;
update($timer,time);
var interval = window.setInterval(countDown , 1000);

This sets a variable called time to 20. It is used to measure, in seconds, how the

game will last. The next line updates the timer element with the initial time allowed

for the game. The last line sets up an interval that calls a function called countdown()

every second (1,000 milliseconds). Let’s write that function now. It can be placed

anywhere inside the play() function, but it is probably best placed near the end

with all the other functions:

// this is called every second and decreases the time
function countDown() {
 // decrease time by 1
 time--;
 // update the time displayed
 update($timer,time);
 // the game is over if the timer has reached 0
 if(time <= 0) {
 gameOver();
 }

This function decreases the time variable that we initialized earlier by 1, and then

calls the update() so that the time the player has left is updated and shown in the

header. Last of all, we check to see if the time has reached zero and, if it has, we

call the gameOver() function.

Finally, we have to add a line to the gameOver() function that will remove the in-

terval when the game has finished, otherwise it will continue to keep counting

down past zero! To stop this from happening, we place the following line of code

anywhere inside the gameOver() function:

 // stop the countdown interval
 window.clearInterval(interval);

Try playing the game now by opening index.htm in a browser and see how you go

with the added pressure of beating the clock. It should look similar to Figure 9.2.

JavaScript: Novice to Ninja260

Figure 9.2. A countdown timer

Summary
In this chapter we have learned the following:

■ The window object is the global object in a browser.

■ Global variables are actually properties of the window object.

■ alert, confirm(), and prompt() are all methods of the window object, and open

dialogs that halt the execution of the program.

■ The navigator object gives information about the user’s browser and operating

system, although it can be unreliable.

■ The location object provides information about the URL of the current page.

■ The history object keeps information about the pages that have been visited in

the session.

261The Window Object

■ You can open, close, resize, and move windows (although, this doesn’t mean

that you should!).

■ The screen object provides information about the user’s screen.

■ The document.write() is an archaic method of writing text to the document

and should be avoided.

■ Cookies can be used to store small pieces of information between requests using

the document.cookie property.

■ The window.setTimeout() method can be used to invoke a function after a set

amount of time.

■ The window.setInterval() method can be used to repeatedly invoke a function.

In the next chapter, we’ll be looking at how to handle errors and write tests in

JavaScript.

JavaScript: Novice to Ninja262

Chapter10
Testing and Debugging
Errors and bugs are a fact of life in programming―they will always be there. A ninja

programmer will try to do everything to minimize errors occurring, and find ways

to identify and deal with them quickly when they do occur.

In this chapter, we’ll cover these topics:

■ errors, exceptions, and warnings

■ the importance of testing and debugging

■ strict mode

■ debugging in the browser

■ error objects

■ throwing exceptions

■ exception handling

■ testing frameworks

■ our project―add exception handling and write tests for the Quiz Ninja application

Errors, Exceptions, and Warnings
Errors are caused when something goes wrong in a program. They are usually caused

by one of the following:

■ system error―there is problem with the system or external devices with which

the program is interacting

■ programmer error―the program contains incorrect syntax or faulty logic.; it

could even be as simple as a typo

■ user error―the user has entered data incorrectly that the program is unable to

handle

As programmers, we often have little influence over how external systems work,

so it can be difficult to fix the root cause of system errors. Despite this, we should

still try to catch them and attempt to reduce their impact by working around the

problems they cause. Programmer errors are our responsibility, so we must ensure

they are minimized as much as possible and fixed promptly. We also should try to

limit user errors by predicting any possible interactions that may throw an error,

and ensure they are dealt with in a way that doesn’t negatively affect the user exper-

ience.

When an error occurs in JavaScript, an exception is thrown that will cause the

program to terminate. For example, trying to call a method that is nonexistent will

result in an exception:

document.unicorn();
<< TypeError: document.unicorn is not a function

An exception will also produce a stack trace. It is often not just a single function

or method call that causes an error, but a sequence of function and method calls.

A stack trace will work backwards from the point at which the error occurred to

identify the original function or method that started the sequence.

JavaScript will also show a warning if there is an error in the code that fails to stop

the program from running. This means that the program will continue to run after

JavaScript: Novice to Ninja264

a warning; this can be problematic, though, since the issue that produced the

warning may cause the program to run incorrectly.

An example of a mistake that causes a warning is assigning a value to a variable

that’s undeclared:

pi = 3.142;
<< JavaScript Warning: assignment to undeclared variable

Warnings and exceptions are presented differently in various browser environments.

Some of them will show a small icon in the corner of the browser window to indicate

that an exception or warning has occurred, whereas others require the console to

be open to see any warnings or exceptions.

When an exception occurs, the HTML will still appear but the JavaScript code will

stop working, which isn’t always obvious. If a warning occurs, the JavaScript will

continue to run (although possibly incorrectly).

The Importance of Testing and Debugging
JavaScript is a fairly forgiving language when it comes to errors; it didn’t implement

exceptions at all until ECMAScript version 3. Instead of alerting a user to an error

in a program it just failed silently in the background, and this is sometimes still the

case. It might seem like a good idea at first, but the error might give unexpected or

incorrect results that nobody spots, or lurk in the background for a long time before

causing the program to crash spectacularly. Failing silently makes errors difficult

to spot and longer to track down.

For this reason, ninjas should ensure that the code they write fails loudly in devel-

opment so that any errors can be identified and fixed quickly. In production, a ninja

should try to make the code fail gracefully (although not completely silently―we

still need to know there’s been an error) so that the user experience is not affected,

if possible. This is achieved by making sure exceptions are caught and dealt with

and code is tested rigorously.

265Testing and Debugging

Strict Mode
ECMAScript 5 includes a strict mode that produces more exceptions than warnings

and prohibits the use of some deprecated features. For example, trying to assign a

value to a variable that is undeclared will result in an exception:

e = 2.718;
<< ReferenceError: e is not defined

Increasing the chance of errors might seem like a bad idea at first, but it’s much

better to spot errors earlier on, rather than have them cause problems later. Writing

code in strict mode can also help to improve its clarity and speed, since it follows

conventions and will throw exceptions if any sloppy code practices are used.

Not using strict mode is often referred to as “sloppy mode” as it is forgiving of

sloppy programming practices. Strict mode encourages a better quality of JavaScript

to be written that befits a ninja programmer, so its use is recommended.

Strict mode simply requires the following string to be added to the first line of a

JavaScript file:

"use strict";

This will be picked up by any JavaScript engine that uses strict mode. If the engine

does not support strict mode, this string will simply be ignored.

You can even use strict mode on a per-function basis by adding the line inside a

function. Strict mode will then only be applied to anything inside that function:

function strictly(){
 "use strict";
}

In fact, the recommended way to invoke strict mode is to place all of your code into

a self-invoking function (covered in more detail in Chapter 12), like so:

(function() {
 "use strict";

JavaScript: Novice to Ninja266

 // All your code would go inside this function

 }());

Placing "use strict" at the beginning of a file will enforce strict mode on all the

JavaScript in the file, and if you are using anybody else’s code, there’s no guarantee

that they’ve coded in strict mode. This technique will ensure that only your code

is forced to use strict mode.

Linting Tools
Linting tools such as JS Lint,1 JS Hint,2 and ES Lint3 can be used to test the quality

of JavaScript code, beyond simply using strict mode. They are designed to highlight

any sloppy programming practices or syntax errors, and will complain if certain

style conventions are not followed, such as how code is indented. They can be very

unforgiving and use some opinionated coding conventions, such as not using the

++ and -- increment operators (in the case of JS Lint).

Passing a lint test is no guarantee that your code is correct, but it will mean it will

be more consistent and less likely to have problems. Some of the errors and warnings

that these tools produce can be difficult to understand, but the brilliant JS Lint Error

Explanations4 site is a helpful resource when trying to interpret them.

Feature Detection
Programming in JavaScript can be something of a moving target as the APIs it uses

are in a constant state of flux. And there are new APIs being developed as part of

the HTML5 specification all the time (more on these in chapter 14). Browser vendors

are constantly adding support for these new features, but they don’t always keep

up. What’s more, some browsers will support certain features and others won’t.

You can’t always rely on users having the most up-to-date browser, either.

One way of circumventing this problem is through browser sniffing. This involves

using the string returned by window.navigator.userAgent property that we met

1 http://jslint.com/
2 http://jshint.com/
3 http://eslint.org/
4 http://jslinterrors.com/

267Testing and Debugging

http://jslint.com/
http://jshint.com/
http://eslint.org/
http://jslinterrors.com/
http://jslinterrors.com/

in the last chapter to identify the user’s browser. The relevant methods can then be

used for that browser. This approach is problematic, however, and not recommended

because the user agent string cannot be relied upon. Additionally, the pace of browser

development makes it difficult to keep up with what features are supported across

browser versions.

A better way to determine browser support for a feature is to use feature detection.

This is done using an if statement to check whether an object or method exists

before trying to actually call the method. For example, say we want to use the shiny

new unicorn API, we would wrap any method calls inside the following if block:

if (window.unicorn) {
 unicorn();
}

This ensures that no error occurs if the browser doesn’t support the method, because

referencing a nonexistent method such as window.unicorn (without the parentheses)

will return undefined. As it’s a falsy value, the if block won’t run, but calling the

method unicorn() (with parentheses) will cause an exception to be thrown. This

guarantees that the method is only called if it actually exists and avoids any excep-

tions being thrown.

Debugging in the Browser
Debugging is the process of finding out where bugs occur in the code and then

dealing with them. In many cases, the point at which an error occurs is not always

where it originated, so you’ll need to run through the program to see what’s happen-

ing at different stages of its execution. When doing this, it can be useful to create

what are known as breakpoints, which halt the progress of the code and allow us

to view the value of different variables at that point in the program. There are a

number of options for debugging JavaScript code in the browser.

The Trusty Alert
The most basic form of debugging is to use the alert() method to show a dialog at

certain points in the code. Because alert() stops a program from running until OK

is clicked, it allows us to effectively put breakpoints in the code that let us check

the value of variables at that point to see if they’re what we expect them to be. Take

the following example that checks to see if a person’s age is appropriate:

JavaScript: Novice to Ninja268

function amIOldEnough(age){
 alert(age);
 if (age < 12) {
 return "No, sorry.";
 } else if (age < 18) {
 return "Only if you are accompanied by an adult.";
 }
 else {
 return "Yep, come on in!";
 }
}

The alert method at the start of the function will allow us to see the value of the

age variable at that point; once we click on OK we can check that the correct string

is returned. Using alerts for debugging was the only option in the past, but JavaScript

development has progressed since then and their use is discouraged for debugging

purposes today.

Using the Console
Most modern browsers have a console object that provides a number of methods

for logging information and debugging. It is not part of the official ECMAScript

specification, but is well supported in all the major browsers.

■ The console.log() method can be used to log the value of variables at different

stages of the program, although it will not actually stop executing the program.

■ The console.trace() method will log an interactive stack trace in the console.

This will show the functions that were called in the lead up to an exception

occurring while the code is running.

This SitePoint post5 also lists a few other useful but little-known methods of the

console object.

Debugging Tools
Most modern browsers also have a debugging tool that allows you to set breakpoints

in your code that will pause it at certain points. You can then see the values of all

the variables at those points and modify them. This can be very useful when trying

5 http://www.sitepoint.com/three-little-known-development-console-api-methods/

269Testing and Debugging

http://www.sitepoint.com/three-little-known-development-console-api-methods/

to track down bugs. Here are the links to the debugger documentation for each of

the major browsers:

■ Firefox6

■ Internet Explorer7

■ Chrome8

■ Safari9

Error Objects
An error object can be created by the host environment when an exception occurs,

or it can be created in the code using a constructor function, like so:

var error = new Error();

This constructor function takes a parameter that’s used as the error message:

error = new Error("Oops, something went wrong");

There are six more error objects used for specific errors:

■ EvalError is not used in the current ECMAScript specification and only retained

for backwards compatibility. It was used to identify errors when using the

global eval() function.

■ RangeError is thrown when a number is outside an allowable range of values.

■ ReferenceError is thrown when a reference is made to an item that doesn’t exist.

For example, try calling the function unicorn() in the console (assuming you

haven’t defined a function called unicorn()).

■ SyntaxError is thrown when there’s an error in the code’s syntax.

6 https://developer.mozilla.org/en-US/docs/Tools/Debugger
7 http://msdn.microsoft.com/en-us/library/z959x58c.aspx
8 https://developer.chrome.com/devtools/docs/javascript-debugging
9 https://developer.apple.com/library/mac/documentation/AppleApplications/Conceptual/Safari_De-

veloper_Guide/Debugger/Debugger.html

JavaScript: Novice to Ninja270

https://developer.mozilla.org/en-US/docs/Tools/Debugger
http://msdn.microsoft.com/en-us/library/z959x58c.aspx
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.apple.com/library/mac/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Debugger/Debugger.html

■ TypeError is thrown when there’s an error in the type of value used; for example,

a string is used when a number is expected.

■ URIError is thrown when there’s a problem encoding or decoding the URI.

These error functions can also be used as constructors to create custom error objects:

error = new TypeError("You need to use numbers in this function")

All error objects have a number of properties, but they are often used inconsistently

across browsers. The only properties that are generally safe to use are:

■ The name property returns the name of the error constructor function used as a

string, such as "Error" or "ReferenceError".

■ The message property returns a description of the error and should be provided

as an argument to the Error constructor function.

■ The stack property will return a stack trace for that error.

Throwing Exceptions
So far we have seen errors that are thrown automatically by the JavaScript engine

when an error occurs. It’s also possible to throw your own exceptions using the

throw statement. This will allow for any problems in your code to be highlighted

and dealt with, rather than lurk quietly in the background.

The throw statement can be applied to any JavaScript value and the execution of

the program will still stop:

throw 5;
throw "JavaScript"
throw { name: "Ninja" }

It is best practice, however, to throw an error object. This can then be caught in a

catch block, which is covered later in the chapter:

271Testing and Debugging

throw new Error("Something has gone badly wrong!"

As an example, let’s write a function called squareRoot() to find the square root

of a number. This can be done using the Math.sqrt() method, but it returns NaN

for negative arguments. This is not strictly correct (the answer should be an imaginary

number, but these are unsupported in JavaScript). Our function will throw an error

if the user tries to use a negative argument:

function squareRoot(number) {
 "use strict";
 if (number < 0) {
 throw new Error("You can't square root negative numbers")
 }
 return Math.sqrt(number);
};

Let’s test it out:

squareRoot(121);
<< 11

squareRoot(-1);
<< "You can't square root negative numbers"

Exception Handling
When an exception occurs, the program terminates with an error message. This is

ideal in development as it allows us to identify and fix errors. In production, how-

ever, it will appear as if the program has crashed, which does not reflect well on a

ninja programmer.

It is possible to handle exceptions gracefully by catching the error. Any errors can

be hidden from users, but still identified. We can then deal with the error appropri-

ately―perhaps even ignore it―and keep the program running.

try, catch, and finally
If we suspect a piece of code will result in an exception, we can wrap it in a try

block. This will run the code inside the block as normal, but if an exception occurs

JavaScript: Novice to Ninja272

it will pass the error object that is thrown on to a catch block. Here is a simple ex-

ample using our squareRoot() function from earlier:

function imaginarySquareRoot(number) {
 "use strict";
 try {
 return String(squareRoot(number));
 } catch(error) {
 return squareRoot(-number)+"i";
 }
}

The code inside the catch block will only run if an exception is thrown inside the

try block. The error object is automatically passed as a parameter to the catch

block. This allows us to query the error name, message, and stack properties and

deal with it appropriately. In this case, we actually return a string representation

of an imaginary number:

imaginarySquareRoot(-49) // no error message shown
<< "7i"

A finally block can be added after a catch block. This will always be executed

after the try or catch block, regardless of whether an exception occurred or not. It

is useful if you want some code to run in both cases. We can use this to modify the

imaginarySquareRoot() function so that it adds "+ or -" to the answer before return-

ing it:

function imaginarySquareRoot(number) {
 "use strict";
 try {
 var answer = String(squareRoot(number));
 } catch(error) {
 answer = squareRoot(-number)+"i";
 } finally {

273Testing and Debugging

 return "+ or -" + answer;
 }
}

Tests
Testing is an important part of programming that can often be overlooked. Writing

good tests means that your code will be less brittle as it develops, and any errors

will be identified early on.

A test can simply be a function that tests that a piece of code runs as it should. For

example, we could test that the squareRoot() returns the correct answer with the

following function:

function itSquareRoots4() {
 return squareRoot(4) === 2;
}

Here we’re comparing the result of squareRoot(4) with the number 2. This will

return true if our function works as expected, which it does:

itSquareRoots4();
<< true

Clearly this is in no way a thorough test of the function, but I hope it illustrates how

it works.

Test-driven Development
Test-driven development (TDD) is the process of writing tests before any code.

Obviously these tests will initially fail, because there is no code. The next step is

to write some code so that the tests pass. After this the code is refactored to make

it more readable, faster, and remove repetition. This process should be followed in

small piecemeal chunks every time a new feature is implemented. It gives the fol-

lowing workflow:

1. write tests (that initially fail)

2. write code to pass the tests

3. refactor the code

JavaScript: Novice to Ninja274

4. write more tests for new features

This is often referred to as the “red-green-refactor” cycle of TDD, as failing tests

usually show up as red and tests that pass show as green.

Testing Frameworks
It is possible to write your own tests, as we’ve seen, but this can be a laborious

process. Testing frameworks provide a structure to write meaningful tests and then

run them. There are a large number of frameworks available for JavaScript that can

be seen on Ahref magazine.10 We’ll be focusing on the Jasmine framework by Pivotal

Labs, which was originally known as JsUnit.

Jasmine
Jasmine11 is one of the most popular JavaScript TDD frameworks. It uses the concept

of specs, which are short descriptions of what the code should do. A typical spec

looks like this:

describe("The squareRoot function", function() {
 var number;

 it("square roots 4", function() {
 answer = squareRoot(4);

 expect(answer).toBe(2);
 });
});

This spec is made up of a describe function and a function called it, which contains

the actual spec. There’s another function called expect that’s used for the actual

tests. There are also some thoughtfully named functions called matchers. One ex-

ample is toBe(), seen in the previous code sample. These are placed one after the

other so that they read like an English sentence, making them easier to understand

(even for non-programmers) and the feedback they provide more meaningful. It’s

important to recognise that they are just functions at the end of the day, so they

10 http://www.ahrefmagazine.com/web-development/javascript-testing-frameworks
11 http://jasmine.github.io/

275Testing and Debugging

http://www.ahrefmagazine.com/web-development/javascript-testing-frameworks
http://jasmine.github.io/

behave in exactly the same way as any other function in JavaScript. This means

that any valid JavaScript code can be run inside the spec.

Crunching Some Numbers
To demonstrate the TDD process, we’ll have a go at creating a small library called

“Number Cruncher” that will contain some functions that operate on numbers. The

first function we’ll try to implement will be called factorsOf(). This will take a

number as a parameter and return all the factors of that number as an array.12

To start, download the Jasmine library from GitHub.13 This is a zip file that needs

to be extracted. Then open the directory called dist. This contains more zip files of

all the recent versions of Jasmine. Choose the latest version and extract it . These

files should then be copied into our project folder, called numberTest. The file

structure should look similar to the one in the screenshot in Figure 10.1.

Figure 10.1. File structure

Delete all the files inside the spec and src folders as these are just useful examples

that are provided by Jasmine, and we’re going to create our own. Inside the src folder,

create a blank file called numberCruncher.js; this is where our functions will go. Inside

the spec folder, create a blank file called numberSpec.js, which is where the tests

will go.

The SpecRunner.html file is the file that runs the tests. The script tags will need

changing so that they refer to the correct files:

12 The factors, or divisors, of a number are any integers that divide exactly into the number without

leaving a remainder, for example, the factors of 6 are 1, 2, 3, and 6
13 https://github.com/pivotal/jasmine/archive/master.zip

JavaScript: Novice to Ninja276

https://github.com/pivotal/jasmine/archive/master.zip

specRunner.html (excerpt)

<!-- include source files here... -->
<script type="text/javascript" src="src/numberCruncher.js"></script>

<!-- include spec files here... -->
<script type="text/javascript" src="spec/numberSpec.js"></script>

Now, since we’re doing TDD, we need to start writing the tests. Open up

numberSpec.js and add the following code:

spec/numberSpec.js (incomplete)

describe("The factorsOf() function", function() {

 it("should find the factors of 12", function() {
 expect(factorsOf(12)).toEqual([1,2,3,4,6,12]);
 });

 });

This is one description and one spec that says our factorsOf() function should

return an array containing the factors of 12 when 12 is provided as an argument.

Let’s run the test now by opening SpecRunner.html in a browser. It should look

similar to the screenshot in Figure 10.2.

277Testing and Debugging

Figure 10.2. Our first test fails

This shows that our test has failed. Well, what did you expect? We’ve yet to write

any code! Let’s have a go at writing the factorsOf() function in the

numberCruncher.js file:

src/numberCruncher.js (incomplete)

"use strict";

function factorsOf(n) {
 var factors = [];
 for (var i=1; i < n ; i++) {
 if (n/i === Math.floor(n/i)){
 factors.push(i);
 }

JavaScript: Novice to Ninja278

 }
 return factors;
}

This function creates a local variable called factors and initializes it to an empty

array. It then loops through every integer value from 1 up to n (the number that was

given as an argument) and adds it to the array of factors using the push() method

if it’s a factor. We test if it’s a factor by seeing if the answer leaves a whole number

with no remainder when n is divided by the integer i (the definition of a factor).

Try running the test again by refreshing the SpecRunner.html page. It should look

similar to the screenshot in Figure 10.3.

Figure 10.3. Our test still fails

279Testing and Debugging

Oh dear, it still failed. This time, the failure message is a bit more specific. It says

that it was expecting the array [1,2,3,4,6,12] but received the array

[1,2,3,4,6]―the last number 12 is missing. Looking at our code, this is because

the loop only continues while i < n. We need i to go all the way up to and including

n, requiring just a small tweak to our code:

src/numberCruncher.js (incomplete)

function factorsOf(n) {
 var factors = [];
for (var i=1; i <= n ; i++) { // change on this line

 if (n/i === Math.floor(n/i)){
 factors.push(i);
 }
 }
 return factors;
}

Now if you refresh the SpecRunner.html page, you should get a nice page confirming

that our test has passed, similar to the screenshot in Figure 10.4.

Figure 10.4. Success at last!

Our test passed, and Jasmine gives us some useful feedback about what our code

does. But just because our test passed, doesn’t mean we can stop there. There is

still one more step of the TDD cycle: refactoring.

There are a few places where we can tidy the code up. First of all we should only

really be testing for factors up to the square root because if n/i is a whole number,

not only is i a factor, but n/i will be too. This will cut down the number of steps

JavaScript: Novice to Ninja280

in the for loop dramatically. Secondly, the test to see if i is a factor of n can be

written more succinctly using the % operator. If i is a factor of n, then n%i will equal

0 because there’s no remainder.

src/numberCruncher.js (incomplete)

function factorsOf(n) {
 var factors = [];
 for (var i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
 }
 return factors.sort(function(a,b){ return a > b; });
}

We’ll also sort the array at the end using the sort() method with a callback we saw

in Chapter 4.

Refresh SpecRunner.html to confirm that the tests still pass.

Now that our tests are passing and our code has been refactored, it’s time to add

some more functionality. Let’s write another function called isPrime() that will

return true if a number is prime and false if it isn’t. Let’s start by writing the test

by adding the following code to the numberSpec.js file:

spec/numberSpec.js (incomplete)

describe("The isPrime() function", function() {

 it("should say 2 is prime", function() {
 expect(isPrime(2)).toBe(true);
 });

 it("should say 10 is not prime", function() {
 expect(isPrime(10)).not.toBe(true);
 });

});

We’re using a new describe block because we are testing a different function. This

block has two specs―one to check whether true is returned when a prime number

281Testing and Debugging

(2) is provided as an argument and another to check that true is not returned if a

non-prime number (10) is given as an argument. These specs use the toBe()

matcher, which allows you to check if something is true or false. Note the nice

use of negation using the not matcher (although we should probably be checking

if it is false because this test will pass if anything but true is returned).

If you refresh the page, you’ll see that our new tests are failing, as shown in Fig-

ure 10.5. This is to be expected, since we’re yet to write any code for them.

Figure 10.5. Failing again

We’d better write the isPrime() function. This will use the factorsOf() function

and check to see if the number of factors in the array returned by the factorsOf()

function is 2. This is because all prime numbers have precisely two factors. Add

the following code to the bottom of the numberCruncher.js file:

JavaScript: Novice to Ninja282

src/numberCruncher.js (incomplete, excerpt)

function isPrime(n) {
 return factorsOf(n).length === 2
};

Now if we refresh the SpecRunner.html page, we should receive a message telling us

that all three of our specs have passed, similar to the screenshot in Figure 10.6.

Figure 10.6. Back to the winners’ list

Great, our library of functions is growing! The next step is to once again refactor

our code. It’s a bit brittle at the moment, because both functions accept negative

and non-integer values, which have no factors and aren’t prime. It turns out that

the factorsOf() function fails silently and returns an empty array if either of these

are passed. It would be better to throw an exception to indicate that an incorrect

argument has been used. Let’s create some specs to check that this happens. Open

up numberSpec.js and add the following function at the top of the file:

spec/numberSpec.js (excerpt)

var int, negative, decimal;

beforeEach(function() {
 int = Math.floor(100*Math.random());

283Testing and Debugging

 negative = int*-1;
 decimal = Math.floor + 0.5;
});

This is a setup function and it contains any code that will be run before every spec.

In this case we’re using it to create three random numbers that are assigned to

variables with global scope. The first, int, is an integer between 1 and 100. The

second, negative, is the negative of that number, and the last, decimal, is the same

number, plus 0.5. These numbers can now be used in the specs and will use a dif-

ferent number in each test. Now add the following specs inside the "The factorsOf()

function" describe function:

spec/numberSpec.js (excerpt)

it("should throw an exception for negative numbers", function() {
 expect(function(){ factorsOf(negative) }).toThrow();
});

it("should throw an exception for non-integer numbers", function() {
 expect(function(){ factorsOf(decimal) }).toThrow();
});

These specs use the toThrow() method to check that an exception has been thrown.

One point to note here is that the factorsOf() function being tested needs to be

wrapped in an anonymous function for it to work.

While we’re at it, we can add some extra specs in the "The isPrime() function"

describe function that deal with these numbers. No exceptions are necessary in

these cases; negative numbers and non-integers are simply not prime, so the function

should return false:

spec/numberSpec.js (excerpt)

it("should say a negative number is not prime", function() {
 expect(isPrime(negative)).toBe(false);
});

JavaScript: Novice to Ninja284

it("should say a non-integer is not prime", function() {
 expect(isPrime(decimal)).toBe(false);
});

If you reload the SpecRunner.html file, you’ll see that the tests for the factorsOf()

function fail as expected, but the tests for the isPrime() function pass. This is by

a happy accident because the factorsOf() function is returning an empty array

that is not of length 2, so false is returned as expected.

Let’s try and make all the tests pass by throwing some exceptions in the factorsOf()

function. Change the factorsOf() function to the following in numberCruncher.js:

src/numberCruncher.js (incomplete, excerpt)

function factorsOf(n) {

 if (n < 0) {
 throw new RangeError("Argument Error: Number must be positive");
 }

 if (Math.floor(n) !== n) {
 throw new RangeError("Argument Error: Number must be an
➥integer");
 }

 var factors = [];
 for (var i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
 }
 return factors.sort(function(a,b) { return a > b; });
}

Now the function checks to see if a negative number or non-integer has been provided

as an argument and throws an exception in both cases. Let’s run our tests again by

refreshing the SpecRunner.html page in the browser. If you then click on the “Spec

List” tab you can see the feedback about each spec. It should look similar to the

screenshot in Figure 10.7.

285Testing and Debugging

Figure 10.7. An unexpected fail

Oh, no! Our tests for the factorsOf() function all pass ... but the exceptions have

caused the isPrime() function to choke and fail the tests. We need to add code that

handles any exceptions that might be thrown when the factorsOf() function is

called from within the isPrime() function. This sounds like a job for a

try...catch...finally block. Change the isPrime() function in the numberCruncher.js

file to the following:

src/numberCruncher.js (excerpt)

function isPrime(n){
 var result;
 try{
 result = factorsOf(n).length === 2;
 } catch(e){
 result = false;
 } finally{
 return result;
 }
 }

Now we’ve placed the original code inside a try block, so that if factorsOf()

throws an exception, we can pass it on to the catch block and handle the error. We

know that if there is an error, all we need to do is return false, so we set the variable

JavaScript: Novice to Ninja286

result to be false. Then in the finally block, we simply return result, which

should be true or false.

Now we’ll test our code again by refreshing the SpecRunner.html page. I trust your

results are similar to the screenshot in Figure 10.8.

Figure 10.8. Passing with flying colors

Hooray! All our tests are now passing. We’ll stop there, but I hope that this

demonstrates how TDD can be used to keep adding functionality in small increments

using the fail, pass, refactor cycle.

Quiz Ninja Project
We’re now going to use some of the techniques we’ve learned in this chapter to

improve the quality of our code in the Quiz Ninja project, making it easier to debug.

First of all, we’ll ensure that we use strict mode by wrapping all the code inside an

immediately invoked function expression that’s anonymous. To do this, place this

line of code on the very first line of the scripts.js file:

(function () {

Then place the following line on the very last line of the file:

287Testing and Debugging

}())

This function call is invoked as soon as the file loads, running the code exactly the

same way as usual; however, now all the variables are wrapped up within the scope

of this anonymous function. So if this file is used in conjunction with another

JavaScript file, there will be no problems if any variables in either file share the

same name.

We now should add the "use strict" declaration on the second line of the file:

"use strict";

This ensures that errors will be thrown if there are mistakes in our code, rather than

just failing silently.

The next task is to use the console.log() method to log when some of the important

functions are called. The main functions in the game are chooseQuestion(), ask(),

check(), and gameOver(). Add the following lines of code to the beginning of the

relevant functions:

 console.log("chooseQuestion() invoked");

 console.log("ask() invoked");

 console.log("check() invoked");

 console.log("gameOver() invoked");

These log messages the console to say that a particular function has been invoked,

so we can see where the program is at in its runtime. There will be no impact on

the player, though, as we’re just using the console.

Try playing the game with the console open in the browser. You should see the

messages logged in the console as the program runs, as in the screenshot shown in

Figure 10.9.

JavaScript: Novice to Ninja288

Figure 10.9. Logging messages to the console

Summary
In this chapter, we’ve learned the following:

■ Bugs are unavoidable in code and it’s best to find them early rather than later.

■ JavaScript can be put into strict mode using the string "use strict". This can

be used in a whole file or just a single function.

■ Linting tools can be used to ensure that your code follows good practice and

conventions.

■ Feature detection can check whether a method is supported before calling it,

helping to avoid an exception being thrown.

289Testing and Debugging

■ The console and browser’s built-in debugging tool can be used to interactively

find and fix bugs in code.

■ Exceptions can be thrown using the throw statement.

■ An error object is created when an exception occurs.

■ Any code placed inside a try block will pass any error objects to a catch block

when an exception occurs. Any code inside a finally block will run if an ex-

ception does or does not occur.

■ Test-driven development is the practice of writing tests that fail, then writing

the code that passes the test, then refactoring the code every time a new feature

is implemented.

■ The Jasmine framework can be used to write specs that test code in a structured

way.

In the next chapter, we’ll be taking a look at the concept of functional programming

in JavaScript.

JavaScript: Novice to Ninja290

Chapter11
Functional JavaScript
Functional programming uses functions as the building blocks of a program and

avoids changing the state of data. This means that a program becomes a sequence

of expressions based on the return values of functions. The return value of a function

should only depend on the values provided as arguments.

Functional programming has gained momentum in recent years with a dedicated

following. The popularity of purely functional languages such as Clojure, Scala,

and Erlang sparked an interest in functional programming techniques that continues

to grow. JavaScript has always supported functional-style programming due to

functions being first-class objects. This facilitates some of JavaScript’s most interest-

ing techniques—such as callbacks and closures—that can be used to create cleaner

code that is flexible and powerful.

In this chapter, we’ll cover the following topics:

■ introduction to functional programming

■ function properties and methods

■ functions that return functions

■ callbacks

■ closures

■ immediately Invoked function expressions

■ self-defining functions

■ recursive functions

■ currying

■ our project―improve some of the functions using techniques from this chapter

What is Functional Programming?
In JavaScript, functions are first-class objects, which means that they behave the

same way as every other value. So they can have their own properties and methods,

as well as accepting other functions as parameters and being returned by other

functions. This makes them a very flexible tool to work with in JavaScript, and there

are a variety of techniques and patterns that can be used to make code cleaner.

Functional programming involves using functions to perform a series of operations.

Each function forms an abstraction that should perform a single task, while encap-

sulating the details of its implementation inside the body of the function.

Here’s an example of a random() function that will return a random integer between

two arguments, a and b; if only one argument is supplied, it will return a random

number between 1 and that argument’s value:

function random(a,b) {
 if (b === undefined) b = a, a = 1; // if only one argument is
➥supplied, assume the lower limit is 1
 return Math.floor((b-a+1) * Math.random()) + a;
}

random(6);
<< 4

JavaScript: Novice to Ninja292

random(10,20);
<< 13

This is an example of an abstraction, as it wraps all the logic cleanly away inside

the function.

Functions should not alter the underlying data they deal with―they should simply

return a different value, rather than change the value itself. This is known as non-

destructive data transformation. For example, the following function will return a

string written backwards:

function reverse(string) {
 var array = string.split("");
 array.reverse();
 return array.join("");
}

The function does not change the actual value of the string that’s provided as an

argument, however:

var message = "Hello";
reverse(message);
<< "olleH"

message; // hasn't changed
<< "Hello"

Functions should, as much as possible, only perform a single operation. They can

then be used as building blocks to create other functions that represent more complex

abstractions and extend the functionality further. By only performing a single task

the function becomes more flexible, as it can be used as a building block in many

situations rather than be tightly coupled with one particular operation. It also makes

the code more modular as each function can be improved or replaced as required,

without having to interfere with any of the other functions. This makes it easy to

replace one function with another that either improves the behavior, modifies it

slightly, or even changes it completely.

As an example, we can use the square() function that we created in Chapter 4:

293Functional JavaScript

function square(x){
 return x*x;
}

This function can then be used to create a hypotenuse() function that returns the

length of the hypotenuse of a right-angled triangle,1 given the lengths of the other

two sides as parameters:

function hypotenuse(a,b) {
 total = square(a) + square(b);
 return Math.sqrt(total);
 }

hypotenuse(3,4);
<< 5

The hypotenuse() function uses the square() function to square the numbers,

rather than hard coding a*a and b*b into the function. This means that if we find

a more optimal way to square a number, we only have to improve the implementation

of the square() function. Or if we find an alternative way of calculating the hypo-

tenuse (however unlikely that is!), we could just swap the square() function for

another.

To illustrate the point further, we can create another function called sum() that

takes an array as an argument as well as a callback. The callback is used to transform

the value of each item in the array using the map() method, and then the reduce()

method is used to find the sum of all items in the array:

function sum(array, callback) {
 if(typeof callback === "function") {
 array = array.map(callback);

1 The hypotenuse is the longest side of a right-angled triangle. Its length can be found using the formula

a² + b²= c², which is commonly known as Pythagoras’ Theorem.

JavaScript: Novice to Ninja294

 }
 return array.reduce(function(a,b) { return a + b });
}

The callback makes the function more flexible as it allows a transformation to be

performed on all the numbers in the array before finding the sum. This means it

can be used to find the sum of a set of numbers:

sum([1,2,3]); // returns 1 + 2 + 3
<< 6

Or the sum of a set of numbers after they’ve been squared (here we’re using the

square function as the callback):

sum([1,2,3], square); // returns 1^2 + 2^2 + 3^2
<< 14

This function can then be used to create a mean() function that calculates the mean

of an array of numbers:

function mean(array) {
 return sum(array)/array.length;
}

And last of all, we can reuse the sum(), square(), and mean() functions together

to make a standardDeviation() function that calculates the standard deviation of

an array of numbers:

function standardDeviation(array) {
 return sum(array,square)/array.length - square(mean(array))
}

By separating each piece of functionality into individual functions, we’re able to

put together a more complex function. These functions can also be used to create

other functions that require the mean, sum, or square values.

295Functional JavaScript

Functions that Return Functions
As functions are first-class objects is that they can accept a function as an argument

as well as return another function.

This is the essence of functional programming: it allows generic higher-order

functions to be used to return more specific functions based on particular parameters.

For example, we can create a power() function that returns a function that calculates

values to the power of a given parameter:

function power(x) {
 return function(power) {
 return Math.pow(x,power);
 }
}

Now we can create some more specific functions that use this generic function to

build them. For example, we could implement a twoExp() function that returns

powers of 2, like so:

twoExp = power(2);
<< function (power) {
 return Math.pow(x,power);
 }

twoExp(5);
<< 32

We can create another function called tenExp() that returns powers of 10:

tenExp = power(10);
<< function (power) {
 return Math.pow(x,power);
 }

tenExp(6);
<< 1000000

If a function returns another function, instead of assigning the returned function to

a variable then calling it, the returned function can be invoked immediately using

double parentheses:

JavaScript: Novice to Ninja296

power(3)(5);
<< 243

Function Properties and Methods
The fact that functions are first-class objects means that they can have properties

and methods themselves. For example, all functions have a length property that

returns the number of parameters the function has. In the following code, the square

function takes one parameter:

square.length
<< 1

Call and Apply Methods
The call() method allows a function to be called by an object that is provided as

the first argument. Inside the body of the function, the keyword this is used to refer

to the object the function is called on.

In this example, the sayHi() function refers to an unspecific object called this that

has a property called name:

function sayHi(){
 return "Hi " + this.name;
}

We can create some objects that have a name property and then use the call()

method to invoke the sayHi() function, providing an object as an argument. This

object will then take the value of this in the function:

alfie = { name: "Alfie" };
betty = { name: "Betty" };

sayHi.call(alfie);
<< "Hi Alfie"

297Functional JavaScript

sayHi.call(betty);
<< "Hi Betty"

If the function has arguments, these are given in the same order after the first argu-

ment:

function greet(greeting){
 return greeting + " " + this.name;
}

greet.call(alfie, "Hello");
<< "Hello Alfie"

greet.call(betty, "Yo");
<< "Yo Betty"

If a function does not refer to an object as this in its body, null can be provided

as the first argument:

square.call(null, 4)
<< 16

The apply method works in the same way, except the arguments of the function

are provided as an array, even if there is only one argument:

square.apply(null, [4])
<< 16

This can be useful if the data you’re using as an argument is already in the form of

an array.

These two methods allow generalized functions to be written that are not tied to

specific objects by being methods of that object, giving more flexibility over the

usage of the function.

JavaScript: Novice to Ninja298

Custom Properties
There is nothing to stop from you adding your own properties to functions. For

example, you could add a description property to a function that describes what

it does:

square.description = "Squares a number that is provided as an
➥argument"
<< "Squares a number that is provided as an argument"

A useful feature of this is that it provides result caching, or memoization.

If a function takes some time to compute a return value, we can save the result in

a cache property. Then if the same argument is used again later, we can return the

value from the cache, rather than having to compute the result again. For example,

say that squaring a number was an expensive computational operation that took a

long time. We could rewrite the square() function so that it saved each result in a

cache object that is a property of the function:

function square(x){

 square.cache = square.cache || {}; // initialize the cache as an
➥empty object if it doesn't already exist
 if (!square.cache[x]) { // check to see if this value has already
➥been saved in the cache
 square.cache[x] = x*x; // if not then calculate the value and
➥save it in the cache
 }
 return square.cache[x]
}

If we try calling the function a few times, we can see that the cache object stores

the results:

square(3);
<< 9

square(-11);
<< 121

299Functional JavaScript

square.cache;
<< {"3": 9, "-11": 121}

Customize with Care

Adding your own custom properties to built-in objects can be risky. A ninja de-

veloper should be careful not to override default properties or methods.

Callbacks
We covered callbacks way back in Chapter 4. You’ll recall that they’re functions

that are passed to other functions as arguments.

Event-driven Asynchronous Programming
Callbacks facilitate event-driven asynchronous programming. JavaScript is a single-

threaded environment, which means that only one piece of code will ever be pro-

cessed at a time. This may seem like a limitation, but non-blocking techniques can

be used to ensure that the program continues to run. Instead of waiting for a event

to occur, a callback can be created that’s invoked when the event happens. This

means that the code is able to run out of order, or asynchronously. Events can be

DOM events, such as the click and keyPress that we looked at in Chapter 7, but

they can also be events such as waiting for a file to load, waiting for data from a

database or other website, or waiting for the program to complete a complex opera-

tion. By using callbacks, we ensure that these events don’t hold up the execution

of other parts of the program. Once the event occurs, the callback will be invoked

before returning to the rest of the program.

Here’s an example of a function called wait() that accepts a callback. To simulate

an operation that takes some time to happen, we can use the setTimeout() function

to call the callback after a given number of seconds:

function wait(message, callback, seconds){
 setTimeout(callback,seconds * 1000);
 console.log(message);
}

Now let’s create a callback function to use:

JavaScript: Novice to Ninja300

function selfDestruct(){
 console.log("BOOOOM!");
}

If we invoke the wait() function and then log a message to the console, we can see

how JavaScript works asynchronously:

wait("This tape will self-destruct in five seconds ... ",
➥selfDestruct, 5);
console.log("Hmmm, should I accept this mission or not ... ?");

<< "This tape will self-destruct in five seconds ... "
<< "Hmmm, should I accept this mission or not ... ? "
<< "BOOOOM!"

When the wait() function is invoked, any code inside it is run, so the message

"This tape will self destruct in five seconds ... " is displayed. But when

the setTimeout() function is invoked with a callback, control is handed back to

the program and the next line in the program is run, which displays the message

"Hmmm, should I accept this mission or not ... ?". After five seconds, the

callback is then called. This demonstrates that the setTimeout() function did not

block the rest of the program from running.

Remember, though, that JavaScript is still single-threaded, so only one task can

happen at once. If an event takes little time to happen, it may still have to wait until

other parts of the program have executed before the callback occurs. For example,

let’s see what happens if we set the waiting time to be zero seconds:

wait("This tape will self-destruct immediately ... ", selfDestruct,
➥0);
console.log("Hmmm, should I accept this mission or not ... ?");

<< "This tape will self-destruct immediately ... "
<< "Hmmm, should I accept this mission or not ... ?"
<< "BOOOOM!"

Notice the callback in the wait() function is still invoked last, despite the wait time

being set to zero seconds. We would have expected the callback to have been invoked

immediately, but a callback always has to wait for the current execution stack to

complete before it’s invoked. In this case, the current execution stack is the rest of

301Functional JavaScript

the function and and code already entered in the console. Once these have executed,

the callback is invoked before handing control back to the main program.

Generalized Functions
Callbacks can be used to build more generalized functions. Instead of having lots

of specific functions, one function can be written that accepts a callback. For ex-

ample, we could add a callback parameter to the random() function, so that a calcu-

lation is performed on the random number that’s returned:

function random(a,b,callback) {
 if (b === undefined) b = a, a = 1; // if only one argument is
➥supplied, assume the lower limit is 1
 result = Math.floor((b-a+1) * Math.random()) + a
 if(typeof callback === "function") {
 result = callback(result);
 }
 return result;
}

Now we have a function where more flexibility can be added using a callback. For

example, we can have a random square number from one to 100:

random(1,10,square);
<< 49

Or a random even number from two to ten:

random(1,5, function(n) { return 2 * n });
<< 8

Closures
A closure is a reference to a free variable that was created inside the scope of another

function, but is then kept alive and used in another part of the program. They’re

one of JavaScript’s most powerful features, but they can be difficult to get your head

round initially.

JavaScript: Novice to Ninja302

Function Scope
Back in Chapter 4, we saw that the value of a variable was only available inside the

body of a function if the var keyword was used. In the following example, there

are two variables: global, which is available everywhere, and local, which is only

available inside the function:

var outside = "I'm a global variable";
function fun() {
 var inside = "I'm a global variable";
}

outside;
<< "I'm a global variable"

inside;
<< Error: "local is not defined"

It appears that we’re unable to access the variable local outside of the function. It

turns out, however, that we can gain access to it outside of its function using a

closure.

The Ninja Training Temple
Imagine a temple where people go to train to be a ninja. When they enter the temple,

new ninjas learn how to use weapons. Once they have mastered these skills, they

move into the inner sanctum to learn about the skills of stealth. A person who has

never entered the temple has neither the weapons nor stealth skills. A ninja who

is inside the temple but not the inner sanctum only knows about the weapon skills.

Once ninjas enters the inner sanctum they learn the stealth skills and still have the

weapons skills. This can be represented by the following function:

function temple(){
 var weapons = "Katana, Bo, Shuriken, Yuri";

 function innerSanctum(){
 var stealth = "Cho Ho, Shinobi-Iri, Henso-Jutsu";

303Functional JavaScript

 }

}

Outside the temple function, the weapons and stealth variables are unable to be

accessed. Inside the temple() function, the weapons variable can be accessed, and

inside the innerSanctum() function, both the weapons and the stealth variable

can be accessed.

A ninja who leaves the temple will still have all the skills that were learned there

and be able to use them outside the temple. This is the concept of a closure: if a

value or function is returned from a function, it maintains the references to the

scope in which it was created. In the example, we can return the innerSanctum()

function that has access to the weapons and stealth variables:

function temple(){
 var weapons = "Katana, Bo, Shuriken, Yuri";

 function innerSanctum(){
 var stealth = "Cho Ho, Shinobi-Iri, Henso-Jutsu";
 return "Ninja Skills " + weapons + " " + stealth;
 }

 return innerSanctum();

}

When the temple() function is called, it can be assigned to a ninja variable that

will have access to the information contained in the weapons and stealth variables

outside the temple() function:

ninja = temple();
<< "Ninja Skills Katana, Bo, Shuriken, Yuri Cho Ho, Shinobi-Iri,
➥Henso-Jutsu"

The ninja variable represents a closure, as it has access to the variables that were

created inside the temple() function.

JavaScript: Novice to Ninja304

A Basic Closure Example
A simple closure involves returning the value of a variable that was created inside

the function’s scope to make it available outside the function:

function closure(){
 var inside = "I was created inside the function";
 return inside;
}

The value of the inside variable is unavailable outside the closure() function:

inside;
<< Error: "inside is not defined"

But we can create a closure by invoking the closure() function, which will return

the value of inside and make it available outside the function:

outside = closure();
<< "I was created inside the function"

Returning a Function
A function can form a closure that maintains access to all the variables created in

the original function’s scope by returning a function instead of a single value:

function closure() {
 var a = 1.8;
 var b = 32;
 return function(c){
 return c * a + b;
 }
}

Now a new function can be created by invoking this function and assigning the return

value to a variable:

305Functional JavaScript

toFahrenheit = closure();

This new function can then be invoked with its own argument, but the values of a

and b from the original function are still remembered:

toFahrenheit(30);
<< 86

A Counter Example
Closures not only maintain the value of a variable from another function; this value

can also be subsequently changed. It can be used to create a counter() function

that starts a count using the variable i. It then returns a function that uses a closure

to trap the value of i, which can then be incremented every time the new function

is invoked. The reference to the variable i that is defined in the original function

is maintained in the new function via a closure:

function counter(start){
 i = start;
 return function() {
 return i++;
 }
}

var count = counter(1); // start a counter at 1
count();
<< 1
count();
<< 2

A Functional Example
It’s also possible to create a closure around the arguments provided to a function.

This allows us to create a generic function that can be used to then return more

specific functions based on its arguments. For example, consider this generic mul-

tiplier() function:

JavaScript: Novice to Ninja306

function multiplier(x){
 return function(y){
 return x*y;
 }
}

This function returns another function that traps the argument x in a closure, which

is then used in the returned function. It can be used to create another function:

doubler = multiplier(2);

This creates a new function called doubler() that takes a parameter that’s multiplied

by the argument provided to the multiplier() function—which was 2 in this

case—making a function that multiplies its argument by two:

doubler(10);
<< 20

This makes the multiplier() function a generic abstraction that can be used to

build more specific abstractions, such as a tripler() function:

tripler = multiplier(3);

tripler(10);
<< 30

arguments Object Cannot Be Trapped in a Closure

The arguments object cannot be trapped in a closure and returned in a function

as it is not available inside nested functions. Hence, the following would fail:

function multiplier(){
 return function(x){
 return x * arguments[0]; // arguments is not available
➥in this nested function
 }
}

This can be fixed by using another closure:

307Functional JavaScript

function multiplier(){
 var args = arguments; // the variable args will be
➥available in the return function
 return function(x){
 return x * args[0];
 }
}

Check out this useful video about closures on Learnable.2

Immediately Invoked Function Expressions
An Immediately Invoked Function Expression (or IIFE, pronounced “iffy”) is a

function that, as the name suggests, is invoked as soon as it’s defined. This is easily

achieved by placing parentheses at the end of the function definition (remember

that we use parentheses to invoke a function). The function also has to be made

into an expression, which is done by placing the whole declaration inside paren-

theses, as can be seen in this example:

(function(){
 var temp = "world";
 console.log("Hello " + temp);

}());
<< "Hello world"

IIFEs are a useful way of performing a task while keeping any variables wrapped

up within the scope of the function. This means that the global namespace is not

polluted with lots of variable names.

Temporary Variables
There is no way to remove a variable from a scope once it’s been declared. If a

variable is only required temporarily, it may cause confusion if it’s still available

later in the code. Even worse, the name of the variable may clash with another piece

of code (an external JavaScript library, for example) resulting in errors. Placing any

code that uses the temporary variable inside an IIFE will ensure that it’s only

2 https://learnable.com/hub/play/63

JavaScript: Novice to Ninja308

https://learnable.com/hub/play/63

available while the IIFE is invoked, and then it will disappear. The example that

follows uses an IIFE to swap the value of two global variables, a and b. This process

requires the use of a temporary variable, called temp, which only exists while the

IIFE is invoked:

a = 1;
b = 2;
(function(){
 var temp = a;
 a = b;
 b = temp;
}());

console.log(a);
<< 2

console.log(b);
<< 1

console.log(temp);
<< Error: "temp is not defined"

Mimicking Block Scope
In most other languages, a variable has scope inside a code block―that’s what’s

known as block scope. But this does not happen in JavaScript; variables only have

a limited scope inside functions. This means that when a temporary variable is

created inside an if block or a for loop, the variable will still be available outside

of that block:

var list = [1,2,3];
for (var i = 0, max = list.length ; i < max ; i++){
 console.log(list[i]);
}
console.log(i); // i is still available outside the for block
<< 1
<< 2
<< 3
<< 3

The solution to this is to place the for block inside an IIFE to mimic block scope:

309Functional JavaScript

var list = [1,2,3];
(function(){for (var i = 0, max = list.length ; i < max ; i++){
 console.log(list[i]);
}}());
console.log(i); // i is not available outside the for block
<< 1
<< 2
<< 3
<< Error: "i is not defined"

Using let for Block Scoping

The next version of ECMAScript supports block scoping if the let keyword is

used instead of var. This has already been implemented in many modern browsers.

Try the following example to see if it works in your browser:

var list = [1,2,3];
for (let i = 0, max = list.length ; i < max ; i++){
 console.log(list[i]);
}
console.log(i); // i is not available outside the for block

Initialization Code
An IIFE can be used to set up any initialization code that there’ll be no need for

again. Because the code is only run once, there’s no need to create any reusable,

named functions, and all the variables will also be temporary. An IIFE will be in-

voked once and can set up any variables, objects, and event handlers when the page

loads. The following example logs a welcome message to the console and then

eliminates all the temporary variables that are used in putting the message together:

(function() {
 var name = "Bart"; // This might be obtained from a cookie in
➥reality
 var days = ["Sunday","Monday","Tuesday","Wednesday","Thursday",
➥"Friday","Saturday"];
 date = new Date();
 today = days[date.getDay()];
 console.log("Welcome back " + name + ". Today is " + today);

JavaScript: Novice to Ninja310

})();
<< "Welcome back Bart. Today is Sunday"

Safe Use of Strict Mode
In the last chapter we discussed using strict mode to avoid any sloppy coding

practices. One of the problems with simply placing "use strict" at the beginning

of a file is that it will enforce strict mode on all the JavaScript in the file, and if

you’re using other people’s code, there’s no guarantee that they’ve coded in strict

mode.

To avoid this, the recommended way to use strict mode is to place all your code

inside an IIFE, like so:

(function() {
 "use strict";

 // All your code would go inside this function

 }());

This ensures that only your code inside the IIFE is forced to use strict mode.

Creating Self-contained Modules
An IIFE can be used to enclose a block of code inside its own private scope. This

effectively creates a self-contained module that will not interfere with any other

part of the program. Using IIFEs in this way means that code can be added or re-

moved in a modular fashion. The example shows two modules, A and B, that are

able to run code independently of each other:

(function() {
// Module A
 var name = "Module A";
 console.log("Hello from " + name);
}());

(function() {
// Module B
 var name = "Module B";

311Functional JavaScript

 console.log("Hello from " + name);
}());

<< "Hello from Module A"
 "Hello from Module B

Notice that both modules include a variable called name, but the modules don’t in-

terfere with each other. This is a useful approach for separating parts of a program

into discrete modules, especially for testing purposes.

Functions that Define and Rewrite
Themselves

The dynamic nature of JavaScript means that a function is able to not only call itself,

but define itself, and even redefine itself. This is done by assigning a variable to an

anonymous function that has the same name as the function.

Consider the following function:

function party(){
 console.log("Wow this is amazing!");
 party = function(){
 console.log("Been there, got the T-Shirt");
 }
}

This logs a message in the console, then redefines itself to log a different message

in the console. When the function has been called once, it will be as if it was defined

like this:

function party() {
 console.log("Been there, got the T-Shirt");
}

Every time the function is called after the first time, it will log the message "Been

there, got the T-Shirt":

JavaScript: Novice to Ninja312

party();
<< "Wow this is amazing!"

party();
<< "Been there, got the T-Shirt"

party();
<< "Been there, got the T-Shirt"

If the function is also assigned to another variable, then this variable will maintain

the original function definition and not be rewritten. This is because the rewriting

depends on the name of the function. You can see an example of this if we create

variable called beachParty that is assigned to the party() function before it is

called for the first time and redefined:

function party(){
 console.log("Wow this is amazing!");
 party = function(){
 console.log("Been there, got the T-Shirt");
 }
}

var beachParty = party; // note that the party function is not
➥ invoked

beachParty(); // the party() function has now been redefined, even
➥though it hasn't been called explicitly
<< "Wow this is amazing!"

party();
<< "Been there, got the T-Shirt"

beachParty(); // but this function hasn't been redefined
<< "Wow this is amazing!"

313Functional JavaScript

beachParty(); // no matter how many times this is called it will
➥remain the same
<< "Wow this is amazing!"

Properties Will Be Lost

If any properties have previously been set on the function, these will be lost when

the function redefines itself. In the previous example, we can set a test property

and see that it no longer exists after the function has been invoked and redefined:

function party() {
 console.log("Wow this is amazing!");
 party = function(){
 console.log("Been there, got the T-Shirt");
 }
}

party.music = "Classical Jazz"; // set a property of the
➥function

party();
<< "Wow this is amazing!"

party.music; // function has now been redefined, so the
➥property doesn't exist
<< undefined

Init-Time Branching
This technique can be used with the feature detection that we discussed in the last

chapter to create functions that rewrite themselves, known as init-time branching.

This enables the functions to work more effectively in the browser, and avoid

checking for features every time they’re invoked.

Let’s take the example of our fictional unicorn method that’s yet to have full support

in all browsers. In the last chapter, we looked at how we can use feature detection

to check if this object is supported. Now we can go one step further: instead of just

running the relevant code, we can rewrite the function so that it only runs the rel-

evant code without the need to check for support every time it’s called:

JavaScript: Novice to Ninja314

function ride(){

 if (window.unicorn) {
 ridePony = function(){
 return "Riding on a unicorn is great fun!";
 }
 } else {
 ridePony = function(){
 return "Riding on a standard pony is only okay";
 }
 }
 return ride();
}

After we’ve checked whether the window.unicorn object exists (by checking to see

if it’s truthy), we’ve rewritten the ride() function according to the outcome. Right

at the end of the function, we call it again so that the rewritten function is now in-

voked and the relevant value returned. The downside is that the function is invoked

twice the first time it’s used, although it becomes more efficient each subsequent

time it’s invoked. Let’s take a look at how it works:

ride(); // the function rewrites itself, then calls itself
<< "Riding on a bog standard horse is only okay"

Once the function has been invoked once, it’s rewritten based on the browser’s

capabilities. We can check this by inspecting the function without invoking it:

ride;
<< function (){
 return "Riding on a bog standard horse is only okay"
 }

This is a very useful pattern to initialize functions the first time they’re called, op-

timizing them for the browser in use.

Recursive Functions
A recursive function is one that invokes itself until a certain condition is met. It is

a useful tool to use when iterative processes are involved. A common example is a

function that calculates the factorial3 of a number:
3 http://en.wikipedia.org/wiki/Factorial

315Functional JavaScript

http://en.wikipedia.org/wiki/Factorial

function factorial(n) {
 if (n === 0) {
 return 1
 } else {
 return n * factorial(n - 1);
 }
}

This function will return 1 if 0 is provided as an argument (0 factorial is 1), otherwise

it will multiply the argument by the result of invoking itself with an argument of

one less. The function will continue to invoke itself until finally the argument is 0

and 1 is returned. This will result in a multiplication of 1, 2, 3 and all the numbers

up to the original argument.

Another example from the world of mathematics is the Collatz conjecture.4 This is

a problem that is simple to state, but, so far, has not been solved. It involves taking

any positive integer and following these rules:

■ if the number is even, divide it by two
■ if the number is odd, multiply it by three and add one

For example, if we start with the number 18, we would have the following sequence:

18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...

As you can see, the sequence becomes stuck in a loop at the end, cycling through

“4,2,1”. The Collatz conjecture states that every positive integer will create a se-

quence that finishes in this loop. This has been verified for all numbers up to 5 ×

2⁶⁰, but there is no proof that it will continue to be true for all the integers higher

than this. To test the conjecture, we can write a function that uses recursion to keep

invoking the function until it reaches a value of 1 (because we want our function

to avoid being stuck in a recursive loop at the end!):

function collatz(n,sequence) {
 var sequence = sequence || [n]; // the sequence should be an array
➥or start with first value
 if (n%2 === 0) {// n is even
 m = n/2;

4 http://en.wikipedia.org/wiki/Collatz_conjecture

JavaScript: Novice to Ninja316

http://en.wikipedia.org/wiki/Collatz_conjecture

 } else { // n is odd
 m = 3*n + 1;
 }
 sequence.push(m); // add the current value to the sequence
 if (m === 1) { // sequence has reached the end
 return "Sequence took " + sequence.length + " steps";
 } else { // carry on by invoking the sequence again
 return collatz(m,sequence);
 }
}

collatz(18);
<< "Sequence took 21 steps. It was 18,9,28,14,7,22,11,34,17,52,26,13
➥,40,20,10,5,16,8,4,2,1"

Have a go at using the function and see if you can find a value above 5 × 2⁶⁰ that

doesn’t end in the loop—you’ll be famous if you do!

Currying
Currying is a process that involves the partial application of functions. It’s amed

after the logician Haskell Curry5—not the spicy food—just like the programming

language Haskell is. His work on a paper by Moses Schönfinkel lead to the develop-

ment of this programming technique.

A function is said to be curried when not all arguments have been supplied to the

function, so it returns another function that retains the arguments given and expects

the remaining arguments. Here is a multiplier function that expects two arguments

and multiplies those numbers together. If only one argument is provided, it returns

a function that expects only one argument and will multiply it by the argument

supplied to the first function:

function multiplier(x,y) {
 if (y === undefined) {
 return function(z) {
 return x * z;
 }
 } else {

5 http://en.wikipedia.org/wiki/Haskell_Curry

317Functional JavaScript

http://en.wikipedia.org/wiki/Haskell_Curry

 return x * y;
 }
}

This function uses a closure to trap the first variable, x, inside a new function that’s

returned. This new function can then be used to provide the second argument. If

both arguments are provided, the function simply multiplies them together:

multiplier(3,5);
<< 15

Let’s have a look at what happens if only the first argument is passed to this function:

quadrupler = multiplier(4);
<< function (z){
 return x * z;
 }

We can see that a new function is returned that keeps the value of x that was

provided to the multiplier() function:

quadrupler(5);
<< 20

Because the first call to a curried function returns another function, we can invoke

the whole function by passing each argument in separate pairs of parentheses:

multiplier(8)(11);
<< 88

This works because multiplier(8) returns a function, and we’re immediately

passing the argument 11 to that function.

Curring allows you to turn a single function into a series of functions instead. This

is useful if you find that you’re constantly calling a function with the same argument.

For example, if you were frequently using the same value in the multiplier()

function to calculate a tax rate of 22%:

JavaScript: Novice to Ninja318

tax = multiplier(0.22,400); // calculate tax on 400
<< 88

If you found yourself doing this often, it would make sense to create a new curried

function using 0.22 as the first argument:

calcTax = multiplier(0.22);
<< function (z){
 return x * z;
 }

calcTax(400);
<< 88

By currying the multiplier() function, we’ve created a new function, calcTax(),

that is simpler to use.

A General Curry Function
In the last example, we hard coded the multiplier() function so that it could be

curried. It’s possible to use a curry() function to take any function and allow it to

be partially applied. The curry function is the following:

function curry(func) {
 var fixedArgs = [].slice.call(arguments,1);
 return function() {
 args = fixedArgs.concat([].slice.call(arguments))
 return func.apply(null, args);
 };
}

This can now be applied to a more standard divider() function that returns the

result of dividing its two arguments:

function divider(x,y) {
 return x/y;
}

319Functional JavaScript

divider(10,5);
<< 2

The curry() function can be used to create a more specific function that finds the

reciprocal of numbers:

reciprocal = curry(divider,1);
<< function () {
 args = fixedArgs.concat([].slice.call(arguments))
 return func.apply(null, args);
 }

reciprocal(2);
<< 0.5

Quiz Ninja Project
Let’s use the random() function that we created in this chapter to improve our quiz,

so that the questions are chosen at random rather than just asking them in the order

in which they appear in the array. Our first task is to add the random() function to

our function definitions. It can go before or after the play() function:

//// function definitions ////

function random(a,b,callback) {
 if(b===undefined) {
 // if only one argument is supplied, assume the lower limit is 1
 b = a, a = 1;
 }
 var result = Math.floor((b-a+1) * Math.random()) + a;
 if(typeof callback === "function") {
 result = callback(result);
 }
 return result;
}

Next, we need to update the quiz object that contains the questions so that it includes

an asked property. This will be set to false initially, but will change to true after

a question has been asked. This enables us to avoid asking the same question twice:

JavaScript: Novice to Ninja320

quiz = {
"name":"Super Hero Name Quiz",
"description":"How many super heroes can you name?",
"question":"What is the real name of ",
"questions": [
{ "question": "Superman", "answer": "Clarke Kent", "asked": false },
{ "question": "Batman", "answer": "Bruce Wayne", "asked": false },
{ "question": "Wonder Woman", "answer": "Dianna Prince", "asked":
➥false }
]
}

You might like to add some extra questions to the questions array as well, as it

will make the game more interesting to have more than three options!

Because we’re no longer working through the questions one at a time, instead of

using i to track which question we are asking, we’ll use a variable called question

to store the current question object. This means that we need to replace the following

line:

var i = 0;

with this line that declares the question variable:

var question; // current question

This line only declares the question variable; it is set in the chooseQuestion()

function that we’ll update next:

function chooseQuestion() {
 console.log("chooseQuestion() called");
 var questions = quiz.questions.filter(function(question){
 return question.asked === false;
 });
 // set the current question
 question = questions[random(questions.length) - 1];
 ask(question);
}

Here we’re using the filter() array method to return another array containing only

the questions that have a value of false for their asked property, so they are yet to

321Functional JavaScript

be asked. The random() function is then used to select a random number between

1 and the length of this array. We then subtract 1 from this value and use it as the

index to select the question to ask by assigning it to the question variable. This is

then passed to the ask() function as an argument.

The ask() function also needs updating, so that it provides a number of options for

the player to select instead of just an input field for the player to fill in. This makes

the ask() function quite a bit longer than it was before. It needs to be changed as

follows:

function ask(question) {
 console.log("ask() invoked");
 // set the question.asked property to true so it's not asked again
 question.asked = true;
 update($form,quiz.question + question.question + "?");
 // create an array to put the different options in and a button
➥variable
 var options = [], button;
 var option1 = chooseOption();
 options.push(option1.answer);
 var option2 = chooseOption();
 options.push(option2.answer);
 // add the actual answer at a random place in the options array
 options.splice(random(0,2),0,question.answer);
 // loop through each option and display it as a button
 options.forEach(function(name) {
 button = document.createElement("button");
 button.value = name;
 button.textContent = name;
 $form.appendChild(button);
 });

 // choose an option from all the possible answers but without
➥choosing the same option twice
 function chooseOption() {
 var option = quiz.questions[random(quiz.questions.length) - 1];
 // check to see if the option chosen is the current question or
➥already one of the options, if it is then recursively call this
➥function until it isn't
 if(option === question || options.indexOf(option.answer) !==
➥-1) {
 return chooseOption();
 }

JavaScript: Novice to Ninja322

 return option;
 }
}

In the code, we first set the asked property of the question to true to stop the

question from being asked again later in the game. We then create an empty array

called options to store the different options that will be presented to the player.

Two options are chosen using the nested function called chooseOption(). This

uses the random() function to pick a question at random from all the questions, and

then checks to see if that question has already been chosen (and therefore already

in the options array) or is currently being asked. If either of these are true, the

function calls itself again and does this recursively until it eventually returns a

valid option. After two options have been chosen, the actual question is inserted

into the options array at a random place. This is done using the splice() array

method with the return value of the random() function given as an argument.

The function then loops through each question held in the options array and creates

a button element with a value attribute that corresponds to its answer property.

Each button is then appended to the form as a child element, so three buttons will

be presented to the player, one of which will present the correct answer.

The answer will be submitted when the player clicks on one of the buttons contained

in the form. This means that we need to change the event listener to listen for click

events instead of the submit event. Change the code for the event listener to the

following:

// add event listener to form for when it's submitted
$form.addEventListener('click', function(event) {
 check(event.target.value);
 }, false);

Because the event listener is attached to the form, we can use the target property

to identify which button was clicked. The value property corresponds to the answer

given by the player, so this is given as an argument to the check() function, which

will check to see if this is the correct answer.

In the check() function, the following line should be changed:

323Functional JavaScript

if(answer === quiz.questions[i].answer){

It needs to be modified as the question that was asked is now stored in the question

variable, so we only need to check its answer property as follows:

if(answer === question.answer){

Since we are no longer using the variable i to keep track of the question being asked,

we can also remove this line from the check() function:

i++;

Our last task is to remove the input and submit button from the form in the index.htm

file as these are no longer used, so our form should look like this:

<form id="answer">
</form>

Have a go at playing the game by opening index.htm in a browser. The quiz now has

a very different feel to it, and should look a little like the screenshot shown in Fig-

ure 11.1.

Figure 11.1. Quiz with random questions

JavaScript: Novice to Ninja324

The random() function has allowed us to provide options from which to choose,

making the game much easier to play by not requiring any typing. It also means that

each game produces questions in a different order (although it’s a limited range,

given that we only have three questions!)

Summary
In this chapter, we have learned the following:

■ Functional programming involves breaking processes down into steps that can

be applied as a series of functions.

■ Functions can return other functions.

■ Functions have built-in properties such as length, but can have custom properties

added.

■ All functions have call() and apply() methods that can be used to apply the

function to different objects.

■ A callback is a function that’s provided as an argument to another function. They

can be used to create event-driven asynchronous code that enables a program

to continue running while waiting for an event to happen.

■ A closure is the process of keeping a reference to a variable available outside

the scope of the function it was originally defined in.

■ Immediately Invoked Function Expressions or IIFEs are functions that are en-

closed in parentheses and immediately followed by double parentheses so that

they’re invoked. They are useful for setting default values.

■ Functions are able to dynamically redefine themselves in the body of the function,

depending on certain conditions.

■ A recursive function will keep invoking itself until a certain condition is met.

■ Currying or partial application is the process of applying one argument at a time

to a function. A new function is returned until all the arguments have been used.

In the next chapter, we’ll be looking at the principles of object-oriented programming

in JavaScript.

325Functional JavaScript

Chapter12
Object-oriented Programming in

JavaScript
Object-oriented programming (OOP for short) is a style of programming that involves

separating the code into objects that have properties and methods. Sound familiar?

JavaScript obviously supports objects, as we saw in Chapter 5, so it also supports

an object-oriented style of programming. In this chapter, we’ll look at what object-

oriented programming is and how to implement it in JavaScript.

In this chapter, we’ll cover the following topics:

■ an introduction to OOP

■ constructor functions

■ prototypes

■ public and private methods

■ inheritance

■ creating objects from objects

■ adding methods to built-in objects

■ mixins

■ chaining functions

■ this and that

■ borrowing methods from prototypes

■ our project―create questions in an OOP way

Object-oriented Programming
Object-oriented programming is often used to model representations of objects in

the real world. There are three main concepts in OOP: encapsulation, polymorphism,

and inheritance. I’m going to use my juicer to illustrate how each of these concepts

can be applied in a programming environment, since the juicer can be considered

an object. It’s a wonderful machine that makes fresh juice for me every morning.

The juicer has properties such as speed and capacity, and also has methods or actions

it can perform, such as juicing, switching on, and switching off.

Encapsulation
When I use my juicer, I put the fruit into the machine, press the “on” button and

out comes the juice. I haven’t a clue how it does it—only that it makes a very loud

noise! This demonstrates the concept of encapsulation: the inner workings are kept

hidden inside the object and only the essential functionalities are exposed to the

end user, such as the “on” button. In OOP, this involves keeping all the programming

logic inside an object and making methods available to implement the functionality,

without the outside world needing to know how it’s done.

Polymorphism
My juicer uses the same plug socket as other appliances in my kitchen. I can also

place various types of fruit into it and it still juices them. These two examples

demonstrate the concept of polymorphism: the same process can be used for altern-

JavaScript: Novice to Ninja328

ative objects. In OOP, this means that different objects can have the same method,

but they implement it in their own way.

Inheritance
I’d really like the next model up from my juicer, as it can deal with more types of

fruit and it’s a bit quieter. Even though it has these extra features, I’m sure that inside

it uses many of the same parts that my juicer has. This demonstrates the concept

of inheritance: taking the features of one object and then adding some new features.

In OOP, this means that we can take an object that already exists and inherit all its

properties and methods. We can then improve on its functionality by adding new

properties and methods.

Classes
Many object-oriented languages, such as Java and Ruby, are known as classical

languages. This is because they use the concept of classes to define a blueprint for

an object. Objects are then created as an instance of that class and inherit all the

properties and methods of the class. In my juicer example, the juicer class would

represent the design of the juicer, and each juicer that’s made on the production

line would be instances of that class.

JavaScript doesn’t use classes (although ECMAScript 6 will support them), but it

does use the concept of object prototypes, which can be used as a blueprint for

creating other objects. JavaScript is said to have a prototypal inheritance model. In

the juicer example, this might involve building an actual prototype juicer and then

using this prototype as the basis for making all the other juicers. The juicers based

on the prototype would be able to do everything the prototype could do, with some

being able to do even more.

Constructor Functions
In the objects chapter earlier in the book, we saw that it was possible to create new

objects using the object literal notation. At the end of the chapter we created a dice

object:

var dice = {
 sides: 6;

329Object-oriented Programming in JavaScript

 roll: function () {
 return Math.floor(this.sides * Math.random() + 1)
 }
}

Another way to create objects is to use a constructor function, which is a function

that returns an instance of an object that’s defined in the function when it’s invoked

with the new operator. These are useful because they can be used to create instances

of objects over and over again. This is similar to writing a class in a classical pro-

gramming language.

Here is the dice example rewritten as a constructor function:

var Dice = function(){
 "use strict";
 this.sides = 6;
 this.roll = function() {
 return Math.floor(this.sides * Math.random() + 1)
 }
}

By convention, the names of constructor functions are capitalized, which is the

convention used for classes in classical programming languages. A constructor

function works in a similar way to a class, as it can be used to create lots of instances

of the same object with all the properties encapsulated inside. The keyword this

is used to represent the object that will be returned by the constructor function. In

the previous example, we use it to set the sides property to 6 and create a method

called roll. Each new object that’s created using this constructor function will in-

herit these properties and methods.

To create an instance of the Dice object, invoke the constructor function using the

new operator:

JavaScript: Novice to Ninja330

var red = new Dice();
<< {"roll": function () {
 return Math.floor(this.sides * Math.random() + 1)
 }, "sides": 6}

The function returned an object that was assigned to the variable red, which is said

to be an instance of the Dice constructor function. We can confirm this using the

instanceof operator:

red instanceof Dice
<< true

This means that it will have a sides property and roll() method:

red.sides;
<< 6

red.roll();
<< 4

Use new

Make sure that you use the new operator when employing a constructor function

to instantiate a new object. Otherwise, you’ll actually just call the function itself,

and will assign the variable to the return value of the function (which is usually

undefined):

var yellow = Dice();
<< undefined

yellow.sides
<< Error: "yellow is undefined"

This can also have the unfortunate side effect of assigning all the properties and

methods to the global object if strict mode isn’t used:

331Object-oriented Programming in JavaScript

window.sides
<< 6

One way around this is to add the following line to the beginning of a constructor

function (in this example, the constructor function is called Constructor):

if((!this instanceof Constructor)) {
 return new Constructor;
}

This checks to see if this (the object that will eventually be returned) is an in-

stance of the Constructor. If it isn’t, it just invokes the constructor function

again, but this time using the new operator.

Be wary that this method will rectify any mistakes where the new keyword has

not been used, but it won’t help to identify where the sloppy programming

happened. An alternative would be to throw an error if this happens in-

stead—which is what happens if strict mode is used and new isn’t used.

Built-n Constructor Functions

JavaScript contains a number of built-in constructor functions such as Object,

Array, and Function that can be used to create objects, arrays, and functions

instead of literals.

The easiest way to create a new object is to use the literal syntax:

literal = {};
<< {}

It is possible to use the Object constructor function:

constructedObject = new Object();
<< {}

A literal is still considered to be an instance of the Object constructor:

literal instanceof Object;
<< true

Similarly, the easiest way to create an array is to use the literal syntax like so:

JavaScript: Novice to Ninja332

var literalArray = [1,2,3];
<< [1, 2, 3]

But an alternative is to use the Array constructor function:

constructedArray = new Array(1,2,3);
<< [1, 2, 3]

Array constructor functions exhibit some strange behavior regarding the arguments

supplied, however. If only one argument is given, it doesn’t create an array with

that argument as the first element as you might expect; it sets the array’s length

property instead!

new Array(5); // you might expect [5]
<< [undefined, undefined, undefined, undefined, undefined]

This results in an error being thrown if a floating point decimal number is provided

as an argument because the length of an array must be an integer:

new Array(2.5);
<< Error: "invalid array length"

This behaviour is another reason why it is much better to use array literals when

creating arrays.

All objects have a constructor property that returns the constructor function that

created it:

red.constructor
<< Dice(sides)

When an object literal is used to create a new object, we can see that in the back-

ground the Object constructor function is being used:

var objectLiteral = {};
<< {}
objectLiteral.constructor;

333Object-oriented Programming in JavaScript

<< function Object() {
 [native code]
 }

This can be used to instantiate a copy of an object, without having to reference the

actual constructor function directly. For example, if we wanted to make another

instance like the red dice, but if the name if its constructor was unknown, we could

use the following:

var green = new red.constructor(10); // create a new Dice instance

green.instanceOf Dice
<< true

Prototypal Inheritance
JavaScript uses a prototypal inheritance model. To see how this works, let’s make

a constructor function for creating turtles:

var Turtle = function(name) {
 this.name = name;
 this.sayHi = function() {
 return "Hi dude, my name is " + this.name;
 }
}

This can then be used to create a new turtle instance:

var leo = new Turtle("Leonardo");
<< {"name": "Leonardo", "sayHi": function () {
 return "Hi dude, my name is " + this.name;
 }}

The variable leo points to an instance of the Turtle constructor. It has a name

property and a sayHi() method that refers to the name property:

JavaScript: Novice to Ninja334

leo.name;
<< "Leonardo"

leo.sayHi();
<< "Hi dude, my name is Leonardo"

The Prototype Object
In the last chapter we saw that functions have properties and methods. All functions

have a prototype property that returns an object, which is initially empty:

Turtle.prototype;
<< {}

When a new instance of the the Turtle object is instantiated using the new operator,

all the properties and methods of the prototype will be added to the new instance.

Since the prototype is just an object, we can add new properties by assignment:

Turtle.prototype.weapon = "Hands";
<< "Hands"

We can also add a method to the prototype object in a similar way:

Turtle.prototype.attack = function(){
 return this.name + " hits you with his " + this.weapon;
 }
<< function (){
 return this.name + " hits you with his " + this.weapon;
 }

Now if we create a new Turtle instance, we can see that it inherits the weapon

property and attack() method from the Turtle.prototype object, as well as receiv-

ing the name property and sayHi() method from from the constructor function:

var raph = new Turtle("Raphael");
raph.name;
<< "Raphael"

raph.sayHi();
<< "Hi dude, my name is Raphael"

335Object-oriented Programming in JavaScript

raph.weapon; // inherited from the prototype
<< "Hands"

raph.attack() // inherited from the prototype
<< "Raphael hits you with his Hands"

Notice that there’s a reference to this.name in the prototype attack() method, and

when the instance calls the attack() method, it uses the instance’s name property.

This is because this in the prototype object always refers to the instance that actually

calls the method.

Finding Out the Prototype
There are a number of ways to find the prototype of an object. One way is to go via

the constructor function’s prototype property:

raph.constructor.prototype;
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "weapon": "Hands"}

Another way is to use the Object.getPrototypeOf()method, which takes the object

as a parameter:

Object.getPrototypeOf(raph);
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "weapon": "Hands"}

Many JavaScript engines also support the secret __proto__ property. This is known

as dunder proto, which is short for “double underscore proto.” It is not an official

standard, but it’s supported in most modern browsers and is expected to be stand-

ardized in the next version of JavaScript:

JavaScript: Novice to Ninja336

raph.__proto__
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "weapon": "Hands"}

Every object also has a isPrototypeOf() method that returns a Boolean to check if

it’s the prototype of an instance:

Turtle.prototype.isPrototypeOf(raph)
<< true

Own Properties and Prototype Properties
In the previous example, the object raph had a name property that it inherited from

the constructor function and a weapon property that it inherited from the prototype

property. The object raph has access to both these properties, but the name property

is considered to be its own property while the weapon property is inherited from

the prototype object. Every object has a hasOwnProperty() method that can be used

to check if a method is its own property, or is inherited from the prototype:

raph.hasOwnProperty('name');
<< true

raph.hasOwnProperty('weapon');
<< false

So what’s the difference between own properties and prototype properties? Prototype

properties are shared by every instance of the Turtle constructor function. This

means that they’ll all have a weapon property and it will always be the same value.

If we create another instance of the Turtle constructor, we’ll see that it also inherits

a weapon property that has the same value of "Hands":

var don = new Turtle("Donatello");
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "name": "Donatello", "sayHi": function () {
 return "Hi dude, my name is " + this.name;
 }, "weapon": "Hands"

337Object-oriented Programming in JavaScript

don.weapon;
<< "Hands"

Every time an instance of the Turtle constructor function calls the weapon property,

it will return "Hands". This value is the same for all the instances and only exists

in one place―as a property of the prototype object. This means that it only exists

in memory in one place, which is more efficient than each instance having its own

value. This is particularly useful for any properties that are the same.

The Prototype Is Live!
The prototype object is live, so if a new property or method is added to the proto-

type, any instances of it will inherit the new properties and methods automatically,

even if that instance has already been created. For example, we saw that the raph

object had a weapon property and attack() method that it inherited from the pro-

totype object. But the leo object that we created before we added these to the pro-

totype will also gain access to them as well:

leo.weapon;
<< "Hands"

leo.attack();
<< "Leonardo hits you with his Hands"

If we now change the value of the prototype’s weapon property, this will be reflected

in all instances of the Turtle constructor:

Turtle.prototype.weapon = "Feet";
<< "Feet"

leo.attack();
<< "Leonardo hits you with his Feet"

raph.attack();
<< "Raphael hits you with his Feet"

JavaScript: Novice to Ninja338

don.attack();
<< "Donatello hits you with his Feet"

Redefining the Prototype

It is possible to completely redefine the prototype object by assigning it to a new

object literal:

Turtle.prototype = {
 attack = function() {
 return this.name + " tickles you until you cry with
➥laughter";
 }
}

If you redefine the prototype, any child objects will retain the old properties and

methods without receiving any new ones.

You should avoid redefining the prototype after any instances have been created,

otherwise these instances will behave differently to any instances that are created

later. Any properties and methods should be added to the prototype by assignment.

The fact that the prototype is live means that all properties and methods added

will be shared with all instances.

It is sometimes seen as a good idea to overwrite the prototype immediately after

its creation, to add lots of properties in one go. But this also causes unexpected

problems, as the prototype will lose its link to the constructor function:

Turtle.prototype.constructor
<< undefined

If you do use this method, be sure to reset the prototype’s constructor function

immediately after overwriting the prototype object:

Turtle.prototype.constructor = Turtle;

Adding multiple properties and methods at once can be made easier using a

mixin function, which is covered later in the chapter.

339Object-oriented Programming in JavaScript

Overwriting Prototype Properties
An instance object can overwrite any properties or methods inherited from its pro-

totype by simply assigning a new value to it. For example, we can give our turtles

their own weapons:

leo.weapon = "Katana Blades";
<< "Katana Blades";

raph.weapon = "Sai";
<< "Sai"

don.weapon = "Bo Staff";
<< "Bo Staff"

These will then become an “own property” of the instance and take precedence

over the same prototype property:

leo.attack();
<< "Leonardo hits you with his Katana Blades"

When a property or method is called, the JavaScript engine will check to see if an

object has its own property or method. If it does, it will use that one; otherwise, it

will use the prototype’s instead.

What Should the Prototype Be Used For?
The prototype can be used to add any new properties and methods after the con-

structor function has been defined. It should be used to define any properties that

will remain the same for every instance of the constructor. The weapon example

was unsuitable because all the turtles use a different weapon (we just needed it to

demonstrate overwriting!). They do, however, like the same food—pizza! This makes

a good candidate for a prototype property:

Turtle.prototype.food = "Pizza";

Methods are likely to be the same for all instances of a constructor, so all methods

should be part of the prototype object rather than the constructor function itself:

JavaScript: Novice to Ninja340

Turtle.prototype.eat = function() {
 return "Mmm, this " + this.food + " tastes great!";
}

Default Values in Prototype Objects Are Shallow

Be careful when using the prototype to set default values. They are shallow,1 so

any changes to an array or object made by an instance will be reflected in the

prototype and therefore shared between all instances.

A golden rule to remember is: Never use arrays or objects as a default value in

prototype objects.

An alternative would be to set the default value using the method of providing

default values to functions that we saw in Chapter 4. For example, the default

value of the food property could be set as "pizza" in the constructor function:

var Turtle = function(name,food) {
 this.name = name;
 this.food = food || "pizza";
}

To summarize, the following points should be considered when using constructor

functions and prototype objects to create instances:

■ Create a constructor function that deals with any initialization.

■ Add any shared properties that remain constant and any shared methods to the

prototype object.

■ Add any individual properties to the instance by assignment (a mixin could be

used for this, as we’ll see later).

■ Any extra methods and properties can be added to the prototype later, and will

be added to all instances.

■ Be careful when overwriting the prototype object completely―the constructor

class needs to be reset.

1 There’s more about shallow and deep copies later in the chapter.

341Object-oriented Programming in JavaScript

To demonstrate, let’s create another Turtle instance. Use the constructor function

to initialize an instance:

var mike = new Turtle("Michelangelo");

Verify that the new instance has inherited properties and methods from the prototype

object:

mike.eat();
<< "Mmm, this Pizza tastes great!"

Augment the instance with individual properties:

mike.weapon = "Nunchuks";
<< "Nunchuks"

Public and Private Methods
By default, an object’s methods are public in JavaScript. Methods and properties

are said to be public because they can be queried directly and changed by assign-

ment.The dynamic nature of the language means that an object’s properties and

methods can be changed after it has been created.

The name and weapon properties of our example object are said to be public:

raph.weapon
<< "Sai"

We can use the concept of variable scope to keep properties private and prevent

them from being changed. A getter method can then be used to return their values.

In this example, the Turtle() constructor function is modified to include a private

_color property:

function Turtle(name,color) {

 this.name = name;
 this.sayHi = function() {
 return "Hi dude, my name is " + this.name;
 }

JavaScript: Novice to Ninja342

 // This property will only available inside the constructor
➥function
 var _color = color;

 this.getName = function() {
 return _name;
 }

 this.getColor = function() {
 return _color;
 }

}

Now it’s impossible to change the values of _color, but they can be accessed using

the getter methods:

raph.getColor();
<< "Red"

You could also add a setter method to allow private properties to be changed in a

controlled way. This means that you can stop certain assignments from being made

by screening the data before any changes are made to a property:

this.setColor = function(color) {
 if(typeof color === "string"){
 return _color = color;
 } else {
 throw new Error("Color must be a string");
 }
 }

raph.setColor("Pink");
<< "Pink";

343Object-oriented Programming in JavaScript

raph.getColor();
<< "Pink"

Inheritance
The examples we’ve seen so far have all demonstrated inheritance by inheriting

properties and methods from the prototype object. But the prototype object also has

its own prototype object, which has its own prototype object ... and so on, creating

a chain of inheritance.

The Prototype Chain
We can see an example of a prototype chain by looking at the prototype of the mike

instance that we created in the last section, using the __proto__ property:

mike.__proto__
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "eat": function () {
 return "Mmm, this " + this.food + " tastes great!";
 }, "food": "Pizza"}

All objects have constructor functions, so we can look at what is the constructor

function of the prototype object. As you’d expect, it’s the Turtle() constructor

function:

mike.__proto__.constructor === Turtle;
<< true

The prototype of the prototype is an apparently empty object literal (although it’s

actually not empty, as we’ll see later):

mike.__proto__.__proto__
<< {}

The constructor for this is the built-in Object() constructor function:

JavaScript: Novice to Ninja344

mike.__proto__.constructor
<< function Object() {
 [native code]
 }

If we try find the next prototype, we receive null:

mike.__proto__.__proto__.__proto__
<< null

This demonstrates that all prototype chains end at the Object constructor function.

The Object Constructor Function
As we saw in the last example, all objects inherit from the Object() constructor

function’s prototype object.

When an object calls a method, the JavaScript engine will check to see if the object

has that method. If it doesn’t, it will check if the object’s prototype has the method.

If not, it will check whether the prototype’s prototype has it. This continues until

it reaches the Object constructor function’s prototype, from which all objects in

JavaScript inherit. If the Object prototype is without the method, an error will be

returned saying the object doesn’t exist:

window.unicorn;
<< Error: "window.unicorn is not a function"

But in the prototype chain example, the Object prototype was displayed as an

empty object, so it has no methods—right? Er, actually, that’s not the case.

The Object prototype object actually has a large number of methods that are inher-

ited by all objects. The reason why the prototype appears as an empty object literal

is because all of its methods are not enumerable.

Enumerable Properties
Properties that are not enumerable will not show up if you use a for-in loop to

loop through an object’s properties and methods. There is a method called proper-

tyIsEnumerable() that every object has (because it’s a method of the Object proto-

345Object-oriented Programming in JavaScript

type) that can be used to check if a property is enumerable. We can see in the fol-

lowing example that the eat() method we created earlier is enumerable (in fact,

all properties and methods that are created by assignment are enumerable):

Turtle.prototype.propertyIsEnumerable("eat");
<< true

All objects inherit a toString() method from the Object prototype, but as it’s not

enumerable, it won’t show up in any objects:

Object.prototype.propertyIsEnumerable("toString");
<< false

In fact, the propertyIsEnumerable() method can be used to show that it isn’t, itself,

enumerable:

Object.prototype.propertyIsEnumerable("propertyIsEnumerable");
<< false

Good practice is for all built-in methods to be non-enumerable and any user-defined

methods to be made enumerable. This is so that all the built-in methods don’t keep

showing up when looking at an object’s methods, but user-defined methods are

easy to spot.

Polymorphism
The Object constructor function prototype has a toString() method that’s made

available to all objects; however, different objects implement the method in different

ways. Calling it on an array object will return each value in a comma-separated

string:

[1,2,3].toString()
<< "1,2,3"

Calling it on a primitive number value will return a string containing that number:

JavaScript: Novice to Ninja346

2..toString; // remember 2 dot operators for integers!
<< "2"

Primitive Object Wrappers

The number, string, and Boolean primitive types that we met way back in Chapter

2 [14] have their own corresponding constructor functions: Number, String, and

Boolean respectively.

Rather bizarrely, though, these constructors don’t produce primitive values:

new Number(2); // the return value looks like a primitive
<< 2;

typeof Number(2); // but it's actually an object!
<< "object"

Similarly, primitive values are not instances of these constructor functions:

2 instanceof Number;
<< false

In fact, the two things are not strictly equal:

Number(2) === 2;
<< false

Primitives are actually without their own methods. The primitive wrapper objects

Number, String, and Boolean are used in the background to provide primitive

values with methods. When a method is called on a primitive value, JavaScript

creates a wrapper object for the primitive, which converts it into an object and

then calls the method on the object. This means that it is possible to call methods

on primitives such as we saw in Chapter 2:

2..toExponential(); // remember 2 dots to call methods on
➥integers!
<< "2e+0"

In the background, something similar to this is happening:

347Object-oriented Programming in JavaScript

new Number(2).toExponential();
<< "2e+0"

Even custom objects that we’ve created have a toString() method:

mike.toString();
<< "[object Object]"

It may convey little information, but it does return a string representation of the

object.

The toString()method is used by a number of built-in functions in the background.

It can be used without fear of causing an error because every object has the method,

as it’s inherited from the Object prototype object.

One example of a function that uses the toString() method is the alert(). If an

object is given as an argument to the alert function that isn’t a string, it will call

toString() on that object in the background and display the returned string. For

example, the code:

alert([1,2,3]);

will display an alert dialog like the one shown in Figure 12.1.

JavaScript: Novice to Ninja348

Figure 12.1. alert() uses toString()

It’s often a useful exercise to override the toString() method using the prototype

object, so that something more meaningful is displayed. For example, we could edit

the Turtle() prototype object so that it’s more descriptive:

Turtle.prototype.toString = function() {
 return "A turtle called " + this.name;
}

mike.toString();
<< "A turtle called Michelangelo"

The toString() method is a good demonstration of polymorphism, since different

objects have the same method but implement it differently. The advantage of this

is that higher-level functions are able to call a single method, even though it may

be implemented in various ways.

349Object-oriented Programming in JavaScript

Property Attributes and Descriptors
We’ve already seen that all objects are collections of key-value paired properties.

It turns out that each property has a number of attributes that provide information

about the property. These attributes are stored in a property descriptor, which is

an object that contains values of each attribute.

All object properties have the following attributes stored in a property descriptor:

■ value - this is the value of the property and is undefined by default

■ writable ― this Boolean value shows whether a property can be changed or

not, and is false by default

■ enumerable ― this Boolean value shows whether a property will show up when

the object is displayed in a for in loop, and is false by default

■ configurable ― this Boolean value shows whether you can delete a property

or change any of its attributes, and is false by default

So far, we’ve just set properties by assignment, which only allows you to set the

value attribute of the property. It’s also possible to set each of the property attributes

by using a property descriptor. For example, the following object has a property

name:

var don = { color: "purple" }

The property descriptor for this property might look like this:

{ value: "purple", writable: true, enumerable: true,
➥configurable: true }

We’ve already seen how to add more properties by assignment:

leo.color = "blue";

The disadvantage with this is that it can only be used to set the value attribute of

the property. Any property set by assignment will have attributes of writable,

enumerable, and configurable set as true (note that these are the exact opposite

of the default values for those attributes).

JavaScript: Novice to Ninja350

Getting and Setting Property Descriptors
The Object() function has a number of methods for getting and defining property

descriptors. We can see these values using the Object.getOwnPropertyDescriptor()

method:

Object.getOwnPropertyDescriptor(leo,'color');
<< {"configurable": true, "enumerable": true, "value": "blue",
➥"writable": true}

We can add properties to an object using the Object.defineProperty() method.

This provides more fine-grained control when adding new properties as it allows

each attribute to be set. The first argument is the object to which you want to add

the property, followed by a property descriptor containing the attributes you want

to set. Any attributes left out will take the default values:

Object.defineProperty(mike, 'color', { value: "orange",
➥writable: false, enumerable: true });
➥// configurable will be false by default
<< {"attack": function (){
 return this.name + " hits you with his " + this.weapon;
 }, "color": "orange", "eat": function () {
 return "Mmm, this " + this.food + " tastes great!";
}, "food": "Pizza", "name": "Michelangelo", "sayHi": function () {
 return "Hi dude, my name is " + this.name;
 }, "weapon": "Nunchuks"}

As you can see, the object is returned with the the new property added.

Getters and Setters
Every object property descriptor can also have get() and set() methods, which

can be used to control how a property is set using assignment and which value is

returned. For example, if we create an empty object and then add a new property

to it, we can include get() and set() methods like so:

example = {}; // initialize an empty object literal

Object.defineProperty(example, 'sillyString', {
 get: function() {

351Object-oriented Programming in JavaScript

 return "Craaazy!";
 },
 set: function(value) {
 return value;
 }
 });

To test this out, we can assign a string to the sillyString property:

example.sillyString = "Hello";
<< "Hello"

This uses the set() method of the property descriptor. The argument of this is the

value that’s assigned to the property. In the example this value is simply returned,

implying that the value of the sillyString() property has been set to the string

"Hello". We can check the value using the dot notation:

example.sillyString;
<< "Craaazy!"

This calls the get() method, which ignores the value returned by the set() method

and returns the string "Craaazy!", regardless of the value that was assigned to the

property.

These methods give you much more power in controlling the way property assign-

ment works; however, they should be used sparingly and with care, as changing

the expected behavior of an assignment has the potential to cause a lot of confusion.

The get and set property descriptors are particularly useful for controlling the

getting and setting of properties in constructor functions. In the example that follows,

the Dice() constructor function has been rewritten so that sides is now a private

variable. We can then use the sides property to create a get function that will return

a description of the number of sides, rather than just the actual number and a set

function that prohibits a non-positive number of sides to be set:

var Dice = function() {
 "use strict";
 var sides = 6;

JavaScript: Novice to Ninja352

 Object.defineProperty(this, 'sides', {
 get: function() {
 return "This dice has " + sides + " sides";
 },
 set: function(value) {
 if(value > 0) {
 sides = value;
 return sides;
 } else {
 throw new Error("The number of sides must be positive");
 }
 }
 });

 this.roll = function() {
 return Math.floor(sides * Math.random() + 1)
 }
}

The number of sides can now be assigned in the usual way, but it will act a little

differently:

var yellow = new Dice(6);

yellow.sides;
<< "This dice has 6 sides"

yellow.sides = 10;
<< 10

yellow.sides;
<< "This dice has 10 sides"

yellow.sides = 0;
<< Error: "The number of sides must be positive"

Creating Objects from Objects
It’s possible to avoid using constructor functions altogether and just use objects to

create more objects. The Object constructor function has a method called create

that can be used to create an object, using the object that is provided as an argument

353Object-oriented Programming in JavaScript

as a prototype. For example, we can create a Human object that will form the basis

for other Human objects. This is simply created as an object literal:

var Human = {
 arms: 2,
 legs: 2,
 walk: function() { console.log("Walking"); }
}
<< {"arms": 2, "legs": 2, "walk": function ()
➥{ console.log("Walking"); }}

This will act as a prototype for all other Human objects. Its name is capitalized as it

acts in a similar way to a class in classical programming languages, and it’s only

used to create Human objects. It should follow the same rules for prototype objects

that we saw earlier―it will contain all the methods that Human objects uses, as well

as any properties that won’t change very often. In this case, the properties are arms

and legs, and the method is walk().

We can create an instance of the Human prototype object using the Object.create()

method:

lois = Object.create(Human);
<< {"arms": 2, "legs": 2, "walk": function ()
➥{ console.log("Walking"); }}

Extra properties can then be added to each instance using assignment:

lois.name = "Lois Lane";
<< "Lois Lane"

lois.job = "Reporter";
<< "Reporter"

An alternative way is to add a second argument to the Object.create() method

containing properties that are to be added to the new object:

JavaScript: Novice to Ninja354

jimmy = Object.create(Human, { name: { value: "Jimmy Olsen",
➥ enumerable: true }, job: { value: "Photographer",
➥enumerable: true } });
<< {"arms": 2, "job": "Photographer", "legs": 2, "name": "Jimmy
➥ Olsen", "walk": function () { console.log("Walking"); }}

This method is a little unwieldy as the properties have to be added using property

descriptors, making the syntax awkward and overall verbose. It’s often easier to

create the object and then add each new property one by one. This can be made

quicker using the mixin() method that is covered later.

Object-based Inheritance
The Human object can also act like a “super-class” and become the prototype of an-

other prototype object called Superhuman. This will have all the properties and

methods that the Human object has, but with some extra methods:

Superhuman = Object.create(Human);
<< {"arms": 2, "legs": 2, "walk": function ()
➥{ console.log("Walking"); }}

Superhuman.change = function() {
 return this.realName + " goes into a phone box and comes out as "
➥ + this.name;
}
<< function () {
 return this.realName + " goes into a phone box and comes out as "
➥ + this.name;
}

This method relies on the name and realName properties. It can be a good idea to

create default values in the prototype so that the method will still work. In this case,

we can use names that prompt some real data to be added:

355Object-oriented Programming in JavaScript

Superhuman.name = "Name Needed";
<< "Name Needed"

Superhuman.realName = "Real Name Needed";
<< "Real Name Needed"

Now we can use the Superhuman object as a prototype to create lots of unique Super-

human objects:

superman = Object.create(Superhuman);
<< {"arms": 2, "change": function () {
 return this.realName + " goes into a phone box and comes out
➥as " + this.name;
 }, "legs": 2, "name": "Name Needed", "realName": "Real Name
➥Needed", "walk": function () { console.log("Walking"); }}

Once a Superhuman object has been created, we can add specific properties by as-

signment:

superman.name = "Superman";
superman.realName = "Clarke Kent";

This method of adding custom properties is certainly more long-winded than using

a constructor function, where the initial values are passed as an argument to the

constructor function. This can be fixed by adding an init() method to the Super-

human object that accepts initialization properties:

Superhuman.init = function(name, realName){
 this.name = name;
 this.realName = realName;
 this.init = undefined; // this line removes the init function, so
➥it can only be called once
 return this;
}

Now a new object can easily be created and initialized:

batman = Object.create(Superhuman);
batman.init("Batman","Bruce Wayne");

JavaScript: Novice to Ninja356

batman.name;
<< "Batman"

batman.realName;
<< "Bruce Wayne"

A new object can also be created and initialized in a single line using chaining (a

technique that will be explained in more detail later in the chapter):

aquaman = Object.create(Superhuman).init("Aquaman", "Arthur Curry");
<< "arms": 2, "change": function () {
 return this.realName + " goes into a phone box and comes out as
➥" + this.name;
 }, "init": undefined, "legs": 2, "name": "Aquaman", "realName":
➥"Arthur Curry", "walk": function () { console.log("Walking"); }}

Object Prototype Chain
Creating objects from objects will create a prototype chain.

Every time a new object is created using the Object.create() method, the new

object inherits all the properties and methods from the parent object, which becomes

the new object’s prototype. For example, we can see that the prototype object of the

superman object is the Superhuman object using this code:

Object.getPrototypeOf(superman) === Superhuman;
<< true

And we can also see that the prototype of the Superhuman object is the Human object:

Object.getPrototypeOf(Superhuman) === Human
<< true

Additionally, we can verify that the Superhuman object is the prototype of any other

objects created using it:

357Object-oriented Programming in JavaScript

Superhuman.isPrototypeOf(batman);
<< true

instanceof Will Fail Here

The instanceof operator will not work when objects have been created this

way. It only works when using constructor functions to create objects.

This gives the following chain of inheritance:

superman -> inherits from -> Superhuman -> inherits from -> Human

Because of this chain, the superman object has all the properties and methods of

the Human and Superhuman objects:

superman.walk();
<< "Walking"

superman.change();
<< "Clarke Kent goes into a phone box and comes out as Superman"

These Objects Are Live!

Remember that the Human and SuperHuman objects are live prototypes. Any

changes made to them will be reflected in other objects created this way.

Adding Methods to Built-in Objects
It is possible to add more methods to the prototype of JavaScript’s built-in ob-

jects—such as Number, String, and Array—to add more functionality. This practice

is known as monkey-patching, but it is mostly frowned upon in the JavaScript

community, despite it being an incredibly powerful technique2.

As an example, we can add isOdd() and isEven() methods to the Number wrapper

object’s prototype. These methods will then be available to number primitives:

2 The Ruby programming community, on the other hand, generally embrace monkey-patching, so it is

quite common in Ruby code examples.

JavaScript: Novice to Ninja358

Number.prototype.isEven = function() {
 return this%2 === 0;
}

Number.prototype.isOdd = function() {
 return this%2 === 1;
}

We can try a few more examples to check that these work:

42.isEven();
<< true

765234.isOdd();
<< false

Arrays are powerful objects, but seem to have some basic methods missing in

JavaScript that are found in other languages. We can add a first() and last()

methods that return the first and last items in the array:

Array.prototype.first = function() {
 return this[0];
 }

Array.prototype.last = function() {
 return this[this.length -1];
}

Again, we can check that these work with a couple of examples:

var jla = ["Superman", "Batman", "Wonder Woman", "Flash",
➥ "Aquaman"];

jla.first();
<< "Superman"

jla.last();
<< "Aquaman"

Another handy method that arrays lack is the delete() method. There is the delete

operator that we met in Chapter 3, but the way this works is not very intuitive as it

leaves a value of null in place of the item that’s removed. In that chapter, we saw

359Object-oriented Programming in JavaScript

that it is possible to remove an item completely from an array using the splice()

method. We can use this to create a new method called delete() that removes an

item from the array at the index provided:

Array.prototype.delete = function(i) {
 return self.splice(i,1);
}

A useful example of monkey-patching is to add support for methods that are part

of the specification, but not supported natively in some browsers. An example is

the trim() method, which is a method of the String prototype object, so all strings

should inherit it. It removes all whitespace from the beginning and the end of strings,

but unfortunately this method is not implemented in Internet Explorer version 8 or

below. This can be rectified using this polyfill code:

String.prototype.trim = String.prototype.trim || function() {
 return this.replace(/^\s+|\s+$/,'');
}

" hello ".trim();
<< "hello"

While monkey-patching built-in objects can seem a good way to add extra or missing

functionality, it can also add unexpected behavior. You should think very carefully

before monkey-patching any of the built-in object constructor prototypes. Further

problems could occur if the method you’ve added is then implemented natively in

the language.

If you do decide to do it, the suggested way is to check for built-in methods first

and then try to mimic the built-in functionality from the specification. This can

still be problematic, though, if the specification changes and is different from your

implementation. Remember also that you can never guarantee that a method won’t

be implemented at some point in the future.

Mixins
A mixin method is a way of adding properties and methods of some objects to an-

other object without using inheritance. It allows more complex objects to be created

by “mixing” basic objects together. Below is a basic mixin method that is added as

JavaScript: Novice to Ninja360

a property of the Object.prototype object. This means that every object will inherit

this method and be able to use it to augment itself with the properties and methods

from other objects:

Object.defineProperty(Object.prototype, 'mixin', {
 enumerable: false,
 writable: false,
 configurable: false,
 value: function(object) {
 for (var property in object) {
 if (object.hasOwnProperty(property)) {
 this[property] = object[property];
 }
 }
 return this;
 }
});

This appears to work as expected:

a = {};
<< {}

b = { name: "JavaScript" };
<< { name: "JavaScript" }

a.mixin(b);
<< { name: "JavaScript" };

There is a problem with this method, however. If any of the properties being mixed

in are arrays or nested objects, only a shallow copy is made, which can cause a

variety of issues (see note).

Shallow and Deep Copies

When objects are copied by assignment, they are only copied by reference. This

means that another object is not actually created in memory; the new reference

will just point to the old object. Any changes that are made to either objects will

affect both of them. Arrays and functions are objects, so whenever they’re copied

by assignment they will just point to the same object, and when one changes

they’ll all change. This is known as making a shallow copy of an object. A deep

361Object-oriented Programming in JavaScript

or hard copy will create a completely new object that has all the same properties

as the old object. The difference is that when a hard copy is changed the original

remains the same, but when a shallow copy is changed so will the original.

This affects our mixin function when we try to copy a property that is an array or

object, as can be seen in this example:

a = {};
b = { myArray: [1,2,3] };

a.mixin(b);
<< { myArray: [1,2,3] }

a now has a reference to the myArray property in the b object, rather than its own

copy. Any changes made to either object will affect them both:

b.myArray.push(4);
<< 4

b.myArray;
<< [1,2,3,4]

a.myArray; // This has also changed
<< [1,2,3,4]

There is a simple way to sidestep that only a shallow copy is made. The mixin

method is used to copy objects, so if a property is an array or nested object, we just

call the mixin method recursively on it to copy its properties one at a time instead

of using assignment. To do this, we’ll change our code so that it checks to see if the

property being copied is an object. If it is, the mixin method is called again on that

property:

Object.defineProperty(Object.prototype, 'mixin', {
enumerable: false,
writable: false,
configurable: false,
value: function() {

for (var i = 0, max = arguments.length ; i < max ; i++) {
 if(typeof arguments[i] === "object") {
 var object = arguments[i];

JavaScript: Novice to Ninja362

 for (var property in object) {
 if (object.hasOwnProperty(property)) {
 if (typeof object[property] === "object") {
 this[property] = (object[property].constructor === Array)
➥ ? [] : {};
 this[property].mixin(object[property]);
 } else {
 var description = Object.getOwnPropertyDescriptor(object,
➥property);
 Object.defineProperty(this,property, description);
 }
 }
 }
 }
}
return this;

}
});

Let’s test this to see if it makes a deep copy:

a = {};
<< {}

b = { test: [1,2] };
<< { test: [1,2] }

c = { nest: { d: "nested" } };
<< { nest: { d: "nested" } }

a.mixin(b,c);
<< {"nest": {"d": "nested"}, "test": [1, 2]}

b.test.push(3);
<< 3

a.test
<< [1, 2]

b.test;
<< [1, 2, 3]

It works as expected―the changes only affect the object they are acted on.

363Object-oriented Programming in JavaScript

The mixin() method is a particularly powerful way of dealing with objects, and

has a number of uses.

Using Mixins to Add Properties
One use for the mixin() method is to add a large number of properties to an object

all at once. For example, we can instantiate a new Superhuman object and then add

all its individual properties in one go, instead of one at a time as we did earlier,

while avoiding having to use the more verbose property descriptor notation:

wonderwoman = Object.create(Superhuman);
<< {"arms": 2, "change": function () {
 return this.realName + " goes into a phone box and comes out as "
➥ + this.name;
}, "legs": 2, "walk": function () { console.log("Walking"); }}

Instead of assigning each property, one at a time:

wonderwoman.name = "Wonder Woman";
<< "Wonder Woman"

wonderwoman.realName = "Diana Prince";
<< "Diana Prince"

We can just mix in an object literal and add both properties at once:

wonderwoman.mixin({ name: "Wonder Woman", realName: "Diana Prince"
➥});
<< {"arms": 2, "change": function () {
 return this.realName + " goes into a phone box and comes out as "
➥+ this.name;
}, "legs": 2, "name": "Wonder Woman", "realName": "Diana Prince",
➥"walk": function () { console.log("Walking"); }}

Using Mixins to Create a copy() Method
Another use of the mixin() method is to create a copy() method that is used to

make an exact, deep copy of an object. This is added to the Object prototype object

so that it’s inherited by all objects. It uses the Object.create() method to create a

new object that inherits from the same prototype as the object calling the method.

JavaScript: Novice to Ninja364

The mixin() method is then used to add all the properties and methods of the object

calling the method to the new object, which is then returned:

Object.defineProperty(Object.prototype, 'copy', {
 enumerable: false,
 writable: false,
 configurable: false,
 value: function() {
 var object = Object.create(Object.getPrototypeOf(this));
 object.mixin(this);
 return object;
 }
 })

Now we can create a clone of superman:

var bizarro = superman.copy();

bizarro.name = "Bizarro";
<< "Bizarro";

bizzaro.realName = "Subject B-0";
<< "Subject B-0"

Note that this is a deep copy and isn’t copied by reference, so any subsequent

changes to the superman or bizzaro objects will not affect the other.

Using the Mixin Method to Add Modular Functionality
The prototypal inheritance model allows us to add functionality to objects by inher-

iting properties and methods from other objects. While this is useful, it can be un-

desirable to create a chain of inheritance―sometimes we just want to add properties

and methods without linking the two objects together. The mixin() method lets us

encapsulate properties and methods in an object, and then add them to other objects

without the overhead of an inheritance chain being created.

One way to think about the difference between inheritance from prototype objects

and inheritance from mixin objects is to consider whether an object is something

or whether it has something. For example, a tank is a vehicle, so it might inherit

from a Vehicle prototype object. The tank has a gun, so this functionality could be

added using a gun mixin object. This gives us extra flexibility since other objects

365Object-oriented Programming in JavaScript

might also use a gun but not be a vehicle, such as a soldier object, for example.

The soldier object might inherit from a Human prototype object but also have the

gun mixin.

We can use this idea to add super powers to our superhero objects used earlier. All

the superheroes are superhuman, so they inherited any common traits from a Super-

human prototype object. But they also have super-powers, and each superhero has

a different mix of powers. This is a perfect use case for mixin objects: we can create

some super-power mixin objects that can then be added to any of our super hero

objects as required:

flight = {
 fly: function() {
 console.log(Up, up and away! " + this.name + " soars through the
➥air!");
 return this;
 }
}

superSpeed = {
 move: function() {
 console.log(this.name + " can move faster than a speeding
➥bullet!");
 return this;
 }
}

xRayVision = {
 xray: function() {
 console.log(this.name + " can see right through you!");
 return this;
 }
}

Now the relevant super powers can be added in a modular fashion to each of the

super hero objects using the mixin() method:

superman.mixin(flight,superSpeed,xRayVision);

wonderwoman.mixin(flight,superSpeed);

superman.xray();

JavaScript: Novice to Ninja366

<< "Superman can see right through you!"

wonderwoman.fly();
<< "Up, up and away! Wonder Woman soars through the air!"

Chaining Functions
If a method returns this, its methods can be chained together to form a sequence

of method calls that are called one after the other. For example, the superman object

can call all three of the super-power methods that were mixed in earlier at once:

superman.fly().move().xRayVision();
<< "Up, up and away! Superman soars through the air!"
 "Superman can move faster than a speeding bullet!"
 "Superman can see right through you!"

This is a technique that is commonly used by a number of JavaScript libraries, most

notably jQuery. It helps to make code more concise by keeping multiple method

calls on the same line, and with some clever method naming it can make the calls

read almost like a sentence; the Jasmine testing library makes use of this.

A big drawback with this technique is that it can make code more difficult to debug.

If an error is reported as occurring on a particular line, there is no way of knowing

which method caused the error, since there are multiple method calls on that line.

It’s worth keeping in mind that if a method lacks a meaningful return value, it might

as well return this so that chaining is possible.

This and That
We saw earlier that the value of this points to the object calling a method. It allows

us to create generalised methods that refer to properties specific to a particular object.

Be aware of a certain problem when a function is nested inside another function,

which can often happen when using methods in objects, especially ones that accept

callback functions. The problem is that the value of this loses its scope and points

to the global object inside a nested function, as can be seen in this example:

367Object-oriented Programming in JavaScript

superman.allies = [batman,wonderwoman,aquaman]

superman.findFriends = function(){
 this.allies.forEach(function(friend) {
 console.log(friend.name + " is friends with " + this.name);
 }
);
}

<< "Batman is friends with "
 "Wonder Woman is friends with "
 "Aquaman is friends with "

It fails to produce the expected output because this.name is actually referencing

the name property of the global window object, which in this case is empty so nothing

is displayed. If strict mode is used, an exception would be thrown (this is a good

example of how a silent fail may not be immediately spotted).

There are a couple of solutions to this problem.

Use that = this
A simple solution is to set the variable that to equal this before the nested function,

and then refer to that in the nested function instead of this. Here is the example

again, using that:

superman.findFriends = function(){
 that = this;
 this.allies.forEach(function(friend) {
 console.log(friend.name + " is friends with " + that.name);
 }
);
}

superman.findFriends();
<< "Batman is friends with Superman"
 "Wonder Woman is friends with Superman"
 "Aquaman is friends with Superman"

You might also see self or _this used to maintain scope in the same way.

JavaScript: Novice to Ninja368

Use bind(this)
The bind() method is a method for all functions and is used to set the value of this

in the function. If this is provided as an argument to bind() while it’s still in scope,

any reference to this inside the nested function will be bound to the object calling

the original method:

superman.findFriends = function() {
 this.allies.forEach(function(friend) {
 console.log(friend.name + " is friends with " + this.name);
 }.bind(this)
);
}

superman.findFriends();
<< "Batman is friends with Superman"
 "Wonder Woman is friends with Superman"
 "Aquaman is friends with Superman"

Borrowing Methods from Prototypes
It is possible to borrow methods from objects without having to inherit all their

properties and methods. This is done by making a reference to the function that

you want to borrow (that is, without parentheses so that it isn’t invoked).

For example, the batman object does not have any of the super-power methods that

the superman object has, but we can create a reference to them that can then be used

by another object. For example, we can create a fly() function by referencing the

superman object’s fly method:

fly = superman.fly;
<< function () {
 return "Up, up and away! " + this.name + " soars through the
➥air!"
 }

This method can now be called on another object using the call method that all

functions have:

369Object-oriented Programming in JavaScript

fly.call(batman);
<< "Up, up and away! Batman soars through the air!"

Borrowing Array Methods
One of the most common uses of borrowing methods is from arrays. There are many

array-like objects in JavaScript, such as the arguments object that’s available in

functions and the node lists that many of the DOM methods return. These act like

arrays but are missing a lot of the methods arrays have—often it would be convenient

if they had them.

For example, the arguments object can use the slice method from the Array con-

structor’s prototype by assigning a variable that points to it:

slice = Array.prototype.slice;

This method can then be called on the arguments object using the call method:

slice.call(arguments, 1, 3)

The call method takes the object that the function is to be applied to as its first

argument, and then the usual arguments come afterwards.

This can also be done directly from an array literal like so:

[].slice.call(arguments, 1, 3)

If you are finding that you need to call a lot of array methods on an array-like object,

it might be worth turning it into an array using the slice method with no arguments:

Array.prototype.slice.call(arguments);
<<

This will return the arguments object as an array (since the slice() method returns

an array).

JavaScript: Novice to Ninja370

Quiz Ninja Project
For the quiz project, we’re going to replace the main play() function of the quiz

with a Game() constructor function that will create a new Game instance every time

it’s invoked with the new operator. This will allow us to apply in our quiz some of

the principles of OOP covered in this chapter.

The Game() constructor function is very similar to the first part of the play()

function:

function Game(quiz){
 this.questions = quiz.questions;
 this.phrase = quiz.question;
 this.score = 0; // initialize score
 update($score,this.score);
 // initialize timer and set up an interval that counts down
 this.time = 20;
 update($timer,this.time);
 this.interval = window.setInterval(this.countDown.bind(this) ,
➥1000);
 // hide button and show form
 hide($start);
 show($form);
 // add event listener to form for when it's submitted
 $form.addEventListener('click', function(event) {
 event.preventDefault();
 this.check(event.target.value);
 }.bind(this), false);
 this.chooseQuestion();
}

The main differences between the Game() constructor function and the play()

function are:

■ The variables score and time become this.score and this.time as they are

properties of the Game instance.

■ The variable interval changes to this.interval and the call to the countDown()

function becomes a call to the this.countDown() method. It also has to be bound

to the this object (otherwise the value of this in the this.countDown() method

will be the window object).

371Object-oriented Programming in JavaScript

■ The event listener also needs to be bound to this so that it can call the

this.check() method; otherwise the value of this will be the form element.

The nested functions that were inside the play() function now become methods

of the Game.prototype object. Most of these methods are the same as their equivalent

functions in the previous chapter, except that the variables that are properties of

the instance need this placing in front of them, such as this.questions, this.score

and this.time. The method calls also need this placing in front of them as they

are methods of the Game instance such as this.gameOver():

// Method definitions
Game.prototype.chooseQuestion = function() {
 console.log("chooseQuestion() called");
 var questions = this.questions.filter(function(question){
 return question.asked === false;
 });
 // set the current question
 this.question = questions[random(questions.length) - 1];
 this.ask(this.question);
 }

In the Game.prototype.ask() method we need to create a temporary variable called

quiz that is set equal to this. This allows us to refer to the Game object as quiz inside

the nested chooseOption() function because the value of this changes to the window

object inside nested functions.

Game.prototype.ask = function(question) {
 console.log("ask() called");
 var quiz = this;
 // set the question.asked property to true so it's not asked again
 question.asked = true;
 update($question,this.phrase + question.question + "?");
 // clear the previous options
 $form.innerHTML = "";
 // create an array to put the different options in and a button
➥variable
 var options = [], button;
 var option1 = chooseOption();
 options.push(option1.answer);
 var option2 = chooseOption();
 options.push(option2.answer);
 // add the actual answer at a random place in the options array

JavaScript: Novice to Ninja372

 options.splice(random(0,2),0,this.question.answer);
 // loop through each option and display it as a button
 options.forEach(function(name) {
 button = document.createElement("button");
 button.value = name;
 button.textContent = name;
 $form.appendChild(button);
 });

 // choose an option from all the possible answers but without
➥choosing the answer or the same option twice
 function chooseOption() {
 var option = quiz.questions[random(quiz.questions.length) - 1];
 // check to see if the option chosen is the current question or
➥already one of the options, if it is then recursively call this
➥function until it isn't
 if(option === question || options.indexOf(option.answer)
➥!== -1) {
 return chooseOption();
 }
 return option;
 }

}

Game.prototype.check = function(answer) {
 console.log("check() called");
 if(answer === this.question.answer){
 update($feedback,"Correct!","correct");
 // increase score by 1
 this.score++;
 update($score,this.score)
 } else {
 update($feedback,"Wrong!","wrong");
 }
 this.chooseQuestion();
}

Game.prototype.countDown = function() {
// this is called every second and decreases the time
 // decrease time by 1
 this.time--;
 // update the time displayed
 update($timer,this.time);
 // the game is over if the timer has reached 0

373Object-oriented Programming in JavaScript

 if(this.time <= 0) {
 this.gameOver();
 }
}

Game.prototype.gameOver = function() {
 console.log("gameOver() invoked");
 // inform the player that the game has finished and tell them how
➥many points they have scored
 update($question,"Game Over, you scored " + this.score + " points"
➥);
 // stop the countdown interval
 window.clearInterval(this.interval);
 hide($form);
 show($start);
}

Finally, we need to change the event listener for the start button to create a new

instance of the Game constructor function—instead of calling the play() function—as

follows:

// Event listeners
$start.addEventListener('click', function() { new Game(test) } ,
➥ false);

If you have a go at playing the quiz by opening index.htm in your browser, you’ll

notice that nothing has changed in the way the game plays. We’ve made some very

big changes to the code, though, as we have made the design much more object-

oriented.

Summary
In this chapter, we have demonstrated that JavaScript supports the three main

concepts of object-oriented programming: encapsulation, polymorphism, and inher-

itance. We have looked at using constructor functions to create multiple instances

of objects, as well as using objects to create more objects. We have also seen how

to use mixins to add modular functionality to objects.

The key points of the chapter are summarized here:

JavaScript: Novice to Ninja374

■ Object-oriented programming (OOP) is a way of programming that uses objects

as building blocks.

■ The main concepts of OOP are encapsulation, polymorphism, and inheritance.

■ Constructor functions can be used to create instances of objects.

■ Inside a constructor function, the keyword this refers to the object returned by

the function.

■ All instances of a constructor function inherit all the properties and methods of

its prototype object.

■ The prototype object is live, so new properties and methods can be added to

existing instances.

■ The prototype chain is used to find an available method. If an object lacks a

method, JavaScript will check whether its prototype has the method; if not, it

will check that function’s prototype until it finds the method or reaches the Ob-

ject constructor function.

■ Private properties and methods can be created by defining variables using var

and defining a function inside a constructor function. These can be made public

using getter and setter functions.

■ Monkey-patching is the process of adding methods to built-in objects by aug-

menting their prototype objects. This should be done with caution as it can cause

unexpected behavior in the way built-in objects work.

■ A mixin method can be used to add properties and methods from other objects

without creating an inheritance chain.

■ Methods can be changed together and called in sequence if they return a reference

to this.

■ Polymorphism is when the same method is used by two unique objects in differ-

ent ways.

■ The value of this is not retained inside nested functions, which can cause errors.

This can be worked around by using that = this or using the bind(this)

method.

375Object-oriented Programming in JavaScript

■ Methods can be borrowed from objects.

In the next chapter, we’ll be looking at how to send and receive data using JavaScript.

JavaScript: Novice to Ninja376

Chapter13
Ajax
Ajax is a technique that allows web pages to communicate asynchronously with a

server and dynamically updates web pages without reloading. This enables data to

be sent and received in the background, as well as portions of a page to be updated

in response to user events, while the rest of the program continues to run.

The use of Ajax revolutionized how websites worked and ushered in a new age of

web applications. Web pages were no longer static, but dynamic applications.

In this chapter, we’ll cover the following topics:

■ clients and servers

■ a brief history of Ajax

■ communicating with the server using the XMLHttpRequest object

■ receiving data with Ajax

■ sending data with Ajax

■ form data

■ Ajax timeouts

■ JSON with padding

■ our project―obtain questions using Ajax

Clients and Servers
The web of computers known as the Internet can be separated into two parts: clients

and servers. A client, such as a web browser, will request a resource (usually a web

page) from a server, which processes the request and sends back a response to the

client.

JavaScript was originally designed as a client-side scripting language, meaning that

it ran locally in the browser, adding dynamic features to the web page that was re-

turned from the server. Ajax means that JavaScript can be used to request resources

from a server on behalf of the client. The resources requested are usually JSON data

or small fragments of text or HTML rather than a whole web page.

Consequently, a server is required when requesting resources using Ajax. Typically

this involves using a server-side language such as PHP, Ruby, Node.js, or .NET to

serve the data response following an Ajax request (usually from a back-end database).

To practice using Ajax, you can either set up a local development server on your

own computer, or request the files from an external website that uses cross-origin

resource sharing (CORS) in order to avoid the same-origin policy that browsers en-

force. All the examples in this chapter can be run without having to set up a local

development server, although it may be worth looking into if you wish to do a lot

of Ajax or server-side development.

The Same-origin Policy and CORS

The same-origin policy in browsers stops any data being transferred from a domain

that is different from the page making the request. This policy is enforced by all

modern browsers and is to stop any malicious JavaScript being run from an external

source. The problem is that the APIs of many websites rely on data being trans-

ferred across domains.

JavaScript: Novice to Ninja378

Cross-origin resource sharing (CORS)1 is a solution to this problem as it allows

resources to be requested from another website outside the original domain. The

CORS standard works by using HTTP headers to indicate which domains can re-

ceive data. A website can have the necessary information in its headers to allow

external sites access to its API data. Most modern browsers support this method

and respect the restrictions specified in the headers.

A Brief History of Ajax
When the World Wide Web started, web pages contained static content. Any changes

to the content on the page required a full page reload, often resulting in the screen

going blank while the new page loaded. Remember, this was back in the 90s when

dial-up modems were the norm.

In 1999, Microsoft implemented the XMLHTTP ActiveX control in Internet Explorer

5. It was developed initially for the Outlook web client, and allowed data to be sent

asynchronously in the background using JavaScript. Other browsers implemented

this technique, although it remained a relatively unknown feature and was rarely

used.

Asynchronous loading techniques started to be noticed when Google launched

Gmail and Google Maps in 2004 and 2005 respectively. These web applications

used asynchronous loading techniques to enhance the user experience by changing

the parts of the page without a full refresh. This gave them a much snappier and

responsive quality that felt more like a desktop application.

The term “Ajax” was coined by Jesse James Garrett in 2005 in the article “Ajax: A

New Approach to Web Applications,”2 where he referred to techniques being used

by Google in its recent web applications. Ajax was a neat acronym that referred to

the different parts of the process being used: Asynchronous JavaScript and XML:

Asynchronous When a request for data is sent, the program doesn’t have to stop

and wait for the response. It can carry on running, waiting for an

event to fire when a response is received. By using callbacks to

1 http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
2 https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/es-

says/archives/000385.php

379Ajax

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php

manage this, programs are able to run in an efficient way, avoiding

lag as data is transferred back and forth.

JavaScript JavaScript has always been considered a “front-end” language not

used to communicate with the server. Ajax enables JavaScript to

be used to send requests and receive responses from a server, al-

lowing content to be updated in real time.

XML When the term Ajax was originally coined, XML documents were

often used to return data. Many different types of data can be sent,

but by far the most commonly used in Ajax nowadays is JSON,

which is more lightweight and easier to parse than XML. (Al-

though it has never really taken off, the term Ajaj is sometimes

used to describe the technique.)3 JSON also has the advantage of

being natively supported in JavaScript, so you can deal with

JavaScript objects rather than having to parse XML files using

DOM methods.

Ajax use really started to take off. Now users could see new content on web pages

without having to refresh the page. Shopping baskets could be updated in the

background, partial page content could be loaded seamlessly, and photo galleries

could dynamically load images.

Today, it’s unusual for Ajax not to be used when a partial web page update is re-

quired. The explosion in the use of public APIs also means that Ajax is used more

then ever to transport data back and forth between sites.

What is an API?

An application programming interface (API) is a collection of methods that allow

external access to another program or service. Many websites allow controlled

access to their data via public APIs. This means that developers are able to interact

with the data and create mashups of third-party services. A weather site, for ex-

ample, might have an API that provides methods that return information about

the weather in a given location, such as temperature, wind speed, and so on. This

can then be used to display local weather data on a web page. The information

that’s returned by APIs is often serialized as JSON. Since the data is being provided

3 http://en.wikipedia.org/wiki/AJAJ

JavaScript: Novice to Ninja380

http://en.wikipedia.org/wiki/AJAJ
http://en.wikipedia.org/wiki/AJAJ

by an external site, CORS will have to be enabled in order to access information

from an API. Some services may also require authentication in order to access

their APIs.

The XMLHttpRequest Object
The XMLHttpRequest object was finally standardized by the WHATWG and W3C

as part of the HTML5 specification, despite it originally being implemented by Mi-

crosoft many years earlier and already available in most browsers.

XMLHttpRequest2 was a draft API specification intended to extend the original

XMLHttpRequest object. It added some useful features such as CORS and form data

(covered later in this chapter). Since the end of 2011, the specifications were merged

and are now simply known as XMLHttpRequest.

XMLHttpRequest is a constructor function that returns an object with methods for

sending and receiving data. Older versions of Internet Explorer (before version 7)

implemented this using an ActiveX object, but all modern browsers now support

it natively.

To create a new XMLHttpRequest object, use the following code:

var xhr = new XMLHttpRequest();

readystate
The XMLHttpRequest object has a property called readystate. This is an integer

value that corresponds to the status of the request:

0: UNSENT the open() method has yet to be called

1: OPENED after the open() method, but before the send()

method has been called

2: HEADERS_RECEIVED the send() method has been called and the HTTP

headers and status code have been received

3: LOADING the response is in the process of being received

4: DONE the full response has been received

381Ajax

As the request progresses, this value is updated and the onreadystatechange event

fires. The first task is to attach a callback function to the onreadystatechange event.

This is the function that will be called every time the status of the response changes:

xhr.onreadystatechange = processResponse;

processResponse is the name of a callback function (without any parentheses as

we don’t want to call it at this point!). It can be called anything you like and can

even be an anonymous function.

Opening the Request
Next we need to call the open() method. This method sets up the request and takes

three parameters:

■ The first parameter is the HTTP verb, which will be used to send the response.

There are a number of HTTP verbs, but the most common are GET for retrieving

data and POST for sending data.

HTTP Verbs

The Web is built upon the Hypertext Transfer Protocol, or HTTP. When a client

(usually a browser) makes a request to a server, it contains information about

which HTTP verb to use. HTTP verbs are the language of HTTP and tell the

server what type of request is being made, which determines how it will deal

with the request.

The five most commonly used verbs when dealing with resources on the Web

are:
■ GET requests to retrieve resources
■ POST requests, usually used to create a resource but can actually perform

any task
■ PUT requests to upsert, which means insert a resource or update it entirely
■ PATCH requests to make partial updates to a resource
■ DELETE requests to delete a resources

By default, a link in a web page will make a GET request and a form will send

a POST request. When sending an Ajax request, the HTTP verb needs to be

given explicitly as an argument to the open() method.

JavaScript: Novice to Ninja382

■ The second parameter is the URL address to which we are sending the request.

■ The last parameter is whether or not the request is to be sent asynchronously.

This is almost exclusively set to true, as setting it to false can cause numerous

problems:

xhr.open("GET", "path/to/resource", true);

Avoid Synchronous Requests

It is possible to make a synchronous request using Ajax, but it should be avoided.

If the response takes a long time, everything running in that browser tab will be

blocked. This means that the browser menus, rendering, and downloads will all

be stopped until the Ajax response is received―not a nice user experience!

Sending the Request
The last step is to actually send the request using the send() method:

xhr.send();

The send() method accepts any data that is to be sent with the request. If the request

is a GET request, this can be left empty because we are requesting data rather than

sending it. If the request is a POST request, the data can be sent in the form of a

key=value query string, like so:

xhr.send("name=Superman");

Or a JSON string can be used:

xhr.send("name:Superman");

Receiving the Response
Once the request has been sent, the program can continue doing some other task

while it waits for a response. Every time the the response status changes, the on-

readystatechange event will fire and the callback function that we set up earlier

will be called. This function can be used to process the response:

383Ajax

function processResponse() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 // do something with the response
 }
}

Inside the callback function, we check to see if the request has completed. When

this happens, the readyState property will have a value of 4 and the HTTP status

is 200 (in other words, the request was okay). We can then place any code we want

to run inside the code block.

No Callback is Needed if the Request is Made Synchronously

A callback function is unnecessary if the request is made synchronously; that is,

by setting the third parameter of the open() method to false. The code will

pause after the send() method until the response is received, so any code can

simply be placed after the send() method.

The XMLHttpRequest object has a number of properties that can be used to process

the response:

■ The status property returns the HTTP status code.4 This will usually be 200 if

the response was successful, 201 if a resource was created, or 204 when the re-

quest is successful but no content is returned.

■ The response property returns the response sent back from the server. This can

be text, HTML, JSON, a document, or a file.

■ The responseText property returns a string representation of the response or

null if nothing is returned. This can then be inserted into the document using

the innerHTML property of an element or parsed into a JavaScript object if it’s a

JSON string.

■ The responseXML property returns a document object that can then be parsed

using the DOM methods that we saw in Chapter 6.

■ The responseType property returns a string indicating the type of data contained

in the response.

4 http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

JavaScript: Novice to Ninja384

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Watch Out for Cookies

Each Ajax request is still a full HTTP request, so they will also download the

cookies associated with that request. Even though cookies have a size limit they

soon add up, causing each Ajax request to end up being larger than expected,

making them slower and more cumbersome to deal with.

Receiving Information
To demonstrate how to update a page using Ajax, we’ll need to set up a demonstra-

tion page. Create a file called ajax.htm that contains the following code:

ajax.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Ajax Example</title>
</head>
<body>
 <button id="text">Request Text</button>
 <button id="html">Request HTML</button>
 <button id="api">Request API</button>
 <div id="output">
 Ajax response will appear here
 </div>
 <script src="scripts.js"></script>
</body>
</html>

This is a standard HTML5 web page that contains three buttons and a div element.

Each button will be used to make a different type of Ajax request. The first will re-

quest a text file, the second will require an HTML file, and the third will request

some JSON from an external API. The div with an id of "output" will be where

we’ll insert the response we receive from the Ajax request.

Ajax requests are usually made to files stored on a server, so we’ll use a plain text

file and an HTML file that are stored on SitePoint’s Amazon Web Service (AWS)

servers. These are to mimic files that would usually be stored on the same server

as the website. If you’ve set up a local development server, you could create the

385Ajax

files and serve them from your local server. The text file called hello.txt contains

this string:

hello.txt

Hello Ajax!

The HTML file is called hello.htm and contains the following:

hello.htm

<h1>Hello Ajax!</h1>

For the external API we’ll use the site JSON Test,5 which provides a testing service

for JSON data. The URL http://ip.jsontest.com/ will return the IP address of

the computer being used in JSON format.

Enabling CORS

The files stored on SitePoint’s AWS servers and the JSON Test website allow

CORS by setting Access-Control-Allow-Origin to '*' in the HTTP header.

Hence, any domain can request data from its website using Ajax. In a real-world

application, the files being requested will normally be hosted on the same server

as the site requesting them, so CORS would be unnecessary.

Now we need a JavaScript file. This should be called scripts.js and can be saved in

the same directory as the other files. It contains this code:

scripts.js (excerpt)

var text = document.getElementById("text");
var html = document.getElementById("html");
var api = document.getElementById("api");

It assigns a variable to each of the three buttons in the HTML file. Next, we’ll add

some code that will assign an event handler to each button:

5 http://www.jsontest.com/

JavaScript: Novice to Ninja386

http://www.jsontest.com/

scripts.js (excerpt)

text.addEventListener("click", function(){ request("https://s3.amazo
➥naws.com/sitepoint-book-content/jsninja/hello.txt") }, false);
html.addEventListener("click", function(){ request("https://s3.amazo
➥naws.com/sitepoint-book-content/jsninja/hello.htm") }, false);
api.addEventListener("click", function(){ request("http://ip.jsonte
➥st.com/") }, false);

This calls the request() function when the button is clicked. This function is where

the Ajax request will happen. It accepts a URL as a parameter, which is where the

request is sent. Let’s add this function to the end of the file:

scripts.js (excerpt)

function request(url) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 document.getElementById("output").innerHTML = xhr.
➥responseText;
 }
 }

 xhr.open("GET", url, true);
 xhr.send();
 document.getElementById("output").innerHTML = "Waiting for
➥ response ...";
}

Inside this function, we create a new XMLHttpRequest object and then assign an

anonymous function to the onreadystatchange property. This checks the readyState

property to see if the request is complete (when the readyState property is 4). Once

complete it replaces the inner HTML of the output div with the response text. The

open()method sets up an asynchronous GET request to the URL provided (depend-

ing on which button was pressed) and then the request is sent. Last of all, we update

the output div with a message saying “Waiting for response ...”. This demon-

strates the asynchronous nature of an Ajax request because it will be shown before

the response. The text and HTML files take very little time to be shown after they’re

downloaded the first time as they are cached by the browser, but the external API

always takes a while before its response is returned. The “Waiting” message

demonstrates that other code can run while we wait for the response.

387Ajax

Loading Spinners

In the previous example we displayed a message to say we were waiting for a re-

sponse. It is common for sites to use spinners (or egg timers in the old days!) to

indicate that the site is waiting for something to happen. Ajax Load6 and Preload-

ers.net7 are both good resources for creating a spinner graphic to be used on your

site.

Let’s try this out. Open ajax.htm in a browser and try pressing the buttons. You

should see a similar sight to the screenshot in Figure 13.1.

Figure 13.1. A working Ajax example

Sending Information
We can also use Ajax to send information, usually as a JSON string. Back in Chapter

8, we created a form for entering information about a superhero. When the form

was submitted the data was converted into a JSON string, which was then shown

in an alert dialog. Using Ajax, this string could be saved to a database or sent to an

external web API for processing.

Unfortunately, we’re without a database to save this information to, but there’s a

very handy website that can be used for testing Ajax requests and responses, called

Reqres.8 It will accept a request containing JSON data and return a response that

6 http://www.ajaxload.info/
7 http://preloaders.net/
8 http://reqr.es/

JavaScript: Novice to Ninja388

http://www.ajaxload.info/
http://preloaders.net/
http://preloaders.net/
http://reqr.es/

mimics making a save to a database, although it doesn’t actually save any of the

data that you send. We’ll use it here to demonstrate the techniques.

The main difference when sending information is that the open() method’s first

argument needs to be the HTTP POST method, and the JSON string will be provided

as an argument to the send() method.

To implement this in our superhero form example, all we do is change the last line

of the makeHero() function from:

alert(JSON.stringify(hero));

to:

scripts.js (excerpt)

send(JSON.stringify(hero));

Now we add the send() function to the scripts.js file:

scripts.js (excerpt)

function send(hero) {
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "http://reqr.es/api/users", true);
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.onreadystatechange = function(){
 if (xhr.readyState === 4 && xhr.status === 201) {
 console.log(xhr.responseText);
 }
 };
 xhr.send(hero);
}

Now if you open up the hero.htm file, fill in some form details about a superhero

and submit it, you should receive a response from the Reqres website in the console

similar to the one that follows. It indicates that the data has been saved as the re-

turned object with the extra properties id and createdAt that have been added by

a database (in reality, the data hasn’t been saved, and these properties have just

been added for demonstration purposes):

389Ajax

<< "{"name":"Superman","realName":"Clarke Kent","powers":["Flight",
➥"Strength","Super Speed"],"type":"Hero","city":"Metropolis",
➥"origin":"Born as Kal-El on the planet Krypton, before being ...",
➥"age":"28","id":"242","createdAt":"2014-11-02T15:38:02.116Z"}"

Most forms will have an action attribute that specifies the URL to use if the form

is sent without using Ajax. It will also have a method attribute that will specify the

HTTP verb to use. These methods are available as properties of the form object, so

the open() method can be generalized to work for any form as:

xhr.open(form.method, form.action, true);

FormData
One of the most useful additions to the XMLHttpRequest2 specification is the

FormData interface. This is supported in all modern browsers and Internet Explorer

from version 10 onwards, and makes it much easier to submit information in forms

using Ajax.

A FormData instance is created using a constructor function:

data = new FormData();

If a form is passed to this constructor function as an argument, the form data instance

will serialize all the data automatically, ready to be sent using Ajax. This is what

the makeHero() function did in our last example, but it tooltook a lot of repetitive

lines of code. The FormData interface helps to reduce the amount of code needed

when submitting forms.

We can use this to cut down the size of our hero page. Edit the scripts.js file so that

it contains the following:

scripts.js (excerpt)

var form = document.forms.hero;
form.addEventListener("submit", submitHero, false);

function submitHero(event) {
 event.preventDefault();
 var form = event.target;

JavaScript: Novice to Ninja390

 var data = new FormData(form);
 var xhr = new XMLHttpRequest();
 xhr.open("POST", form.action, true);
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.onreadystatechange = function(){
 if (xhr.readyState === 4 && xhr.status === 201) {
 console.log(xhr.responseText);
 }
 };
 xhr.send(data);
}

We now require a function named submitHero(), which is called when the form

is submitted. In this function we grab a reference to the form using the event.target

property (since it was the form that was submitted) and create a new instance of

the FormData() constructor function, providing the form as an argument. This does

all the hard work for us; after this, we submit the form using Ajax as before, but

provide the form data instances (stored in the data variable) as an argument of the

send() method.

It’s also possible to add data to the form data instance as key-value pairs using the

append() method:

data = new FormData(); // no form provided as an argument creates an
➥empty form data instance

data.append("height", 75);

The FormData interface interface really comes into its own when a form contains

files to upload. This was a notoriously difficult task in the past, often requiring the

use of Flash or another third-party browser plugin to handle the upload process.

The FormData instance will automatically create the necessary settings required

and take care of all the hard work if any file uploads are present in the form.

You can find more information about the FormData interface in this SitePoint article

by Craig Buckler9 and on the Mozilla Developer Network.10

9 http://www.sitepoint.com/easier-ajax-html5-formdata-interface/
10 https://developer.mozilla.org/en-US/docs/Web/API/FormData

391Ajax

http://www.sitepoint.com/easier-ajax-html5-formdata-interface/
http://www.sitepoint.com/easier-ajax-html5-formdata-interface/
https://developer.mozilla.org/en-US/docs/Web/API/FormData

Ajax Timeouts
Ajax requests can take different amounts of time for a response, depending on the

server to which the request is made. This is why it’s important to ensure the request

is made asynchronously, so that the browser avoids being locked up while waiting

for the response. But what if the server is down and the response never comes back?

The XMLHttpRequest object has a timeout property for setting the amount of time

to wait for a response. This is measured in milliseconds and is set to 0 by default,

which indicates no timeout period.

For example, to set a timeout of five seconds the following code can be used:

xhr.timeout = 5000;

If a response is not received after the specified amount of time, the request is auto-

matically terminated. Alternatively, a function can be assigned to the ontimeout

property that will be called when the request times out:

xhr.ontimeout = funciton() {
 console.log("request timed out");
}

Note that both these properties need to be set before the xhr.send() method is

called.

JSON With Padding
JSONP or JSON with padding is a very common technique of transporting data as

it allows the same-origin policy to be bypassed without using CORS. It involves

sending a JSON string wrapped in a callback function that is then injected into a

<script> tag. The same-origin policy doesn’t apply to <script> tags, and because

the callback function has already been defined in the domain requesting the data,

all the data wrapped in the function will be available in that domain by referencing

the callback function.

JavaScript: Novice to Ninja392

The Server Must Support JSONP

The server responding to the request must support JSONP requests and return a

callback function. The technique will fail to work if normal JSON data is returned.

JSONP in Action
To demonstrate using JSONP, we’ll create another small web page. In a new folder,

create a file called jsonp.htm and add the following HTML code:

jsonp.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>JSONP Example</title>
</head>
<body>
 <button id="send">Request Text</button>
 <div id="output">
 Ajax response will appear here
 </div>
 <script src="scripts.js"></script>
</body>
</html>

This is similar to our earlier example FormData interface, but there is just one button

that will make the JSONP request. To process this, we’ll create a JavaScript file

called scripts.js that’s saved in the same directory as jsonp.htm and contains this

code:

scripts.js (excerpt)

var send = document.getElementById("send");
send.addEventListener("click", update , false);

This gives us a reference to the button and then adds an event listener that will call

the update() function when the button is clicked. This function, which makes the

JSONP request, needs adding to the bottom of the scripts.js file:

393Ajax

scripts.js (excerpt)

function update() {
 var script = document.createElement("script");
 script.src = " http://echo.jsontest.com/name/superman/?callback=
➥process";
 document.getElementsByTagName("head")[0].appendChild(script);
}

This uses DOM methods to create a new script element. We then add the URL

from which we’ll be requesting the JSONP. In this example we’re using the JSON

Test site again, this time using its echo feature that returns a JavaScript object based

on the URL provided. In this case, adding "/name/superman" results in this object

being returned:

{
 name: superman
}

Notice at the end of the URL specified is the string ?callback=process. This identifies

the name of the callback that we want called when the data is returned. In this case,

a function called process() will be invoked, so let’s add this function to the bottom

of scripts.js:

scripts.js (excerpt)

function process(response) {
 document.getElementById("output").innerHTML = response.name;
}

This callback function is automatically given the response data as an argument. We

can then process the data in any way we like inside the function. In this case, we

simply want to display the value of the name property in the output div.

Open jsonp.htm in a browser and try pressing the button. If everything is working

properly, you should see a similar display to the screenshot shown in Figure 13.2.

JavaScript: Novice to Ninja394

Figure 13.2. A JSONP example

Quiz Ninja Project
We can use Ajax to fetch the questions from a server, instead of keeping them in an

object inside our JavaScript file. First of all, we remove the object stored in the quiz

variable at the start of the scripts.js file and transfer the information into a separate

file. This information has to be in the JSON format, so the properties need to be

strings. The file is saved on SitePoint’s S3 account and can be found at the following

URL (it also contains lots more questions than the three we’ve been using so far):

https://s3.amazonaws.com/sitepoint-book-content/jsninja/quiz.json

To access this JSON data, we need a function that will create an Ajax request to

fetch the data. Add the following function just after the "use strict" line in the

scripts.js file:

// gets the question JSON file using Ajax
function getQuiz() {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function(){
 if (xhr.readyState === 4 && xhr.status == 200) {
 var quiz = JSON.parse(xhr.responseText);
 new Game(quiz);
 }
 };
 xhr.open("GET", "https://s3.amazonaws.com/sitepoint-book-content/
➥jsninja/quiz.json", true);
 xhr.overrideMimeType("application/json");

395Ajax

 xhr.send();
 update($question, "Waiting for questions...");
}

This function creates a new XMLHttpRequest object and then uses the JSON.parse()

method to convert the JSON data in the response into a native JavaScript object.

This object is then given as an argument to the Game() constructor function that we

created in the last chapter to launch the game. After this, we use the open() method

to request the data, the overrideMimeType() method to say that we’re expecting

JSON data to be returned, and the send() method to actually send the request. We

then place a message in the question section to say that we’re waiting for the

questions to load.

The only thing to change now is our event listener that’s attached to the start button

so that it calls the getQuestions() function when clicked:

// Event listeners
$start.addEventListener('click', getQuiz , false);

Keeping the quiz data in a separate file and loading it using Ajax is beneficial as it

keeps the question data separate from the actual application logic. It means that it’s

much easier to edit all in one place. It also means that we could potentially create

lots of different JSON quiz files that could be linked to, enabling a variety of quizzes

to be played.

Summary
In this chapter, we have seen how it’s possible to use Ajax to update pages and ex-

change data asynchronously. This is a powerful feature that has transformed the

way JavaScript is used.

In this chapter, we’ve learned the following:

■ Ajax is a technique for sending and receiving data asynchronously in the back-

ground.

■ The data can be sent in many forms, but it is usually inJSON.

JavaScript: Novice to Ninja396

■ Ajax can be used for making partial page updates without having to do a full

page reload.

■ Ajax can be used for communicating with external APIs.

■ Ajax requests are made using instances of the XMLHttpRequest object.

■ Requests can receive data using a GET request or send data using a POST request.

■ JSONP or JSON with Padding is a technique used to bypass the same-origin

policy. It wraps the response data in a JavaScript callback function that is dy-

namically inserted the markup.

In the next chapter, we’ll look at the new features in the HTML5 specification and

how to implement them.

397Ajax

Chapter14
HTML5 APIs
HTML5 is the latest iteration of the Hypertext Markup Language used to create web

pages. This version goes beyond the actual markup language, however, and brings

together a number of related technologies such as CSS and JavaScript. We’ve already

seen in Chapter 8 some of the new form elements as well as the validation API that

has been introduced. In this chapter, we’ll be looking at some of the other APIs that

have been made available in HTML5.

In this chapter, we’ll cover the following topics:

■ the development of HTML5 and the JavaScript APIs

■ the data- attribute

■ HTML5 APIs―local storage, geolocation, web workers, and multimedia

■ drawing shapes with canvas

■ shims and polyfills―how to make the most of HTML5 APIs, even when they’re

without browser support

The Development of HTML5
WHATWG
At the turn of the millennium, HTML was at version 4 and the World Wide Web

Consortium (W3C)1, the standards body that oversees the World Wide Web, decided

that the future was in using XHTML, an extensible version of HTML. Version 1 of

XHTML had been made a standard and development of version 2 was underway.

A big problem with version 2 was that it would not be backwardly compatible with

previous versions of HTML or XHTML. Because of this potential to “break the Web,”

the Web Hypertext Application Technology Working Group (WHATWG)2 was set

up by Apple, the Mozilla Foundation, and Opera Software in 2004 to develop a new

version of HTML—one that made the most of the latest technologies while still being

backwardly compatible. The pragmatic aim of WHATWG was to create a future-

proof version of HTML that would also work in today’s browsers, rather than being

just a dream for the future (which is what XHTML version 2 turned out to be). New

elements were introduced as well as new APIs for displaying media, such as play-

ingvideos natively in the browser, which would have previously required a plugin

such as Flash.

Working Together
In 2009, the W3C dropped development of XHTML 2.0 and officially endorsed

HTML5. The W3C and WHATWG now work together in developing the HTML5

specification, although there are still some differences―the W3C are developing

HTML5 as a "fixed" standard that will be frozen once the candidate recommendation

is accepted. After this, the next version of HTML (presumably version 6) will be

developed.

In contrast, WHATWG are working at developing HTML as a "living" standard with

a specification in a constant state of evolution, so there are no specific versions. It’s

highly likely that W3C will base future versions of HTML on the state of the

WHATWG HTML specification at the time.

1 http://www.w3.org/
2 https://whatwg.org/

JavaScript: Novice to Ninja400

http://www.w3.org/
http://www.w3.org/
https://whatwg.org/

In 2011, the W3C unveiled the official HTML5 logo. It was accompanied by a big

explosion of interest as vendors such as Apple started using the term HTML5 to

describe its latest web applications.

Adoption
Because browser vendors such as Apple, Mozilla, and Opera were part of the

WHATWG, many of HTML5’s features were implemented relatively quickly and it

was soon being used in real-world applications. The speed of adoption in the wild

has meant that it has become the de facto standard used to create all modern websites

and applications.

Modules
A big feature of the HTML5 specification is that it is separated into modules. This

allows different features to be developed at different paces and then implemented

without having to wait for other features to be completed. It also means that when

a previously unforeseen development occurs, a new module can be created to cater

for it. Modules can be at different stages of maturity, from ideas to full implement-

ation. A useful site that checks to see if a specific feature can be used is Can I Use

________ ?3

You can find out more about the HTML5 standard by reading Jump Start HTML5

Basics4 by Tiffany Brown.

The data- Attribute
The data- attribute is a way of embedding data in a web page using custom attributes

that are ignored by the browser. They’re also private to a page, so shouldn’t be used

by an external service: their sole purpose is to be used by a JavaScript program. This

means that they are perfect for adding data to be used either by an external API or

as a hook that the program utilizes to access a particular element on the page.

The names of these attributes can be decided by the developer, but they must use

the following format:

■ start with data-

3 http://caniuse.com/
4 http://www.sitepoint.com/store/jump-start-html5-basics/

401HTML5 APIs

http://caniuse.com/
http://caniuse.com/
http://www.sitepoint.com/store/jump-start-html5-basics/
http://www.sitepoint.com/store/jump-start-html5-basics/

■ contain only lowercase letters
■ include an optional string value

Examples could be:

data-toppings="ham & pineapple"
data-hero="true"
data-dropdown
data-user="DAZ"
data-max-length="32"

The information contained in the attributes can be used to identify particular ele-

ments; for example, all the elements with an attribute of data-calendar could be

identified as calendar widgets. The values of the attributes can also be used to filter

different elements; for example, we could find all the elements that have a data-

rating value of 3 or more.

Each element has a dataset property that can be used to access any data- attributes

it contains. Here’s an example of some markup:

<div id="pizza" data-toppings="cheese, tomato, mushroom">
Vegetable Deluxe Pizza
</div>

The data-toppings attribute can be accessed using the following code:

var pizza = document.getElementById("pizza");
var toppings = pizza.dataset.toppings;
<< "cheese, tomato, mushroom"

Notice that the data- prefix is dropped. To access the attribute, toppings is used

as if it’s a property of the dataset object. If a data- attribute’s name contains hy-

phens, they are replaced with camel-case notation, so data-max-length would be

accessed using maxLength.

Browser Support

The support for the data- attribute is generally very good in modern browsers ...

even Internet Explorer 8 has partial support! Some older browsers are unable to

understand the dataset property, however, but any data- attribute can be found

JavaScript: Novice to Ninja402

using the standard getAttributemethod. So the previous code could be replaced

with the following if you still need to support older browsers:

var toppings = pizza.getAttribute("data-toppings");

The restriction of only using a string value can be overcome by encoding any

JavaScript object or value as a JSON string and then performing type-conversion

later as required.

Data attributes provide a convenient way of adding data directly into the HTML

markup, enabling a richer user experience. More information is available at Site-

Point.5

HTML5 APIs
The HTML5 specification contains a number of APIs that help to gain access to the

hardware, such as cameras, batteries, geolocation, and the graphics card. Hardware

evolves quickly and APIs are frequently introduced to give developers access and

control new features that appear in the latest devices.

In this section, we’ll look at some of the more popular APIs that are already suppor-

ted in most modern browsers; however, due to the ever-changing nature of most

APIs, it is still best practice to use object-detection tests before using any of the API

methods.

HTML5 Web Storage
The Web Storage API provides a key-value store on the client’s computer that is

similar to using cookies but has fewer restrictions, more storage capacity, and is

generally easier to use. This makes it perfect for storing information about users, as

well as storing application-specific information that can then be used during future

sessions. It’s supported in all modern browsers from Internet Explorer version 8

upwards, and each domain has its own separate storage area.

The Web Storage API has some crucial differences with cookies:

5 http://www.sitepoint.com/use-html5-data-attributes/

403HTML5 APIs

http://www.sitepoint.com/use-html5-data-attributes/
http://www.sitepoint.com/use-html5-data-attributes/

■ information stored is not shared with the server on every request

■ information is available in multiple windows of the browser (but only if the

domain is the same)

■ storage capacity limit is much larger than the 4KB limit for cookies6

If a browser supports the Web Storage API the window object will have a property

called localStorage, which is a native object with a number of properties and

methods used to store data. The information is saved in the form of key-value pairs

and the values can only be strings. There is also a sessionStorage object that works

in the same way, although the data is only saved for the current session.

Here is a basic example of storing information. To save a value locally, use:

if(window.localStorage) {
 localStorage.setItem(name, "Walter White");
}

This will illustrate that it’s being saved locally. Try completely closing your browser,

reopening the console, and entering the same line of code:

if(window.localStorage) {
 localStorage.getItem(name);
}
<< "Walter White"

To remove an entry from local storage use the removeItem method:

if(localStorage.name) {
 localStorage.removeItem(name);
}

Alternatively, this can be done by simply using assignment:

if(window.localStorage) {
 localStorage.name = "Jesse Pinkman";
}

6 There is no actual limit in the specification, but most browsers have a limit set at 5GB per domain.

JavaScript: Novice to Ninja404

if(window.localStorage) {
 console.log(localStorage.name);
}
<< "Jesse Pinkman";

if(window.localStorage) {
 delete localStorage.name;
}

To completely remove everything stored in local storage, use the clear() method:

if(window.localStorage) {
 localStorage.clear();
}

Every time a value is saved to local storage, a storage event is fired. Note that this

event is only fired on any other windows or tabs from the same domain, and only

if the value of the item being saved changes. The event object sent by the event

listener to the callback has a number of properties that provide information about

the updated item:

■ key tells us the key of the item that changed

■ newValue tells us the new value to which it has been changed

■ oldValue tells us the previous value before it was changed

■ storageArea tells us if it is stored in local or session storage

The following piece of code will add an event listener that logs information about

any changes to the Web Storage:

addEventListener('storage', function(event) {
 console.log("The " + event.key + " was updated from " +
➥event.oldValue + " to " + event.newValue " and saved in
➥" + event.storageArea) }, false);

That only strings can be saved might seem like a restriction at first, but by using

JSON, we can store any JavaScript object in local storage. For example, we could

405HTML5 APIs

save the superhero object that we created in the form in Chapter 8 by adding the

following line of code to the to the end of the makeHero() function:

if(window.localStorage) {
 localStorage.setItem(hero.name, JSON.stringify(hero);
}

This will save the hero object as a JSON string using the name of the hero as the

key. To retrieve the superhero as a JavaScript object:

if(window.localStorage) {
 superman = JSON.parse(localStorage.getItem("superman"));
}

The Web Storage API provides a useful way of storing various types of information

on a user’s computer without the restriction of cookies. More information about it

is available at SitePoint.7

Geolocation
The Geolocation API is used to obtain the geographical position of the device. This

means it can be used to find the user’s exact location and then link to nearby places

or measure the speed at which the user is moving. Because of privacy concerns,

permission to use this has to be granted by the user first.

If geolocation is available it will be a property of the navigator object that we met

in Chapter 9. This property has a method called getCurrentPosition() that will

return a position object to a specified function, called youAreHere() in the example:

if(navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(youAreHere);
}

The position object passed to the youAreHere() function has a coords property

with a latitude and longitude property, which together give the coordinates of

the device. These coordinates can then be used in conjunction with other applica-

7 http://www.sitepoint.com/an-overview-of-the-web-storage-api/

JavaScript: Novice to Ninja406

http://www.sitepoint.com/an-overview-of-the-web-storage-api/

tions or web services (such as a mapping service) to obtain the user’s exact location.

In this example, we simply show an alert dialog that displays the user’s coordinates:

function youAreHere(position) {
 alert("Latitude: " + position.coords.latitude + ", Longitude:
➥ position.coords.longitude);
}

The position object has several other properties that can be used to find out inform-

ation about the location and movement of the device:

■ position.speed property returns the ground speed of the device in meters per

second

■ position.altitude property returns an estimate of the device’s altitude in

meters above the WGS848 ellipsoid, which is a standard measurement for the

center of the Earth

■ position.heading property returns the direction the device is moving in as a

bearing in degrees, measured clockwise from North

■ position.timestamp property returns the time that the position information

was recorded

The position object also has properties that calculate the accuracy of the measure-

ments. These can be useful as sometimes you only need to know the town or city

users are in, while at other times you may need their exact position. position.ac-

curacy property returns the accuracy of the latitude and longitude properties in

meters. The lower the returned value the more accurate the measurements are, as

is the case for the position.altitudeAccuracy property, which returns the accuracy

of the altitude property in meters.

In addition, the geolocation object has a watchPosition() method that will call

a callback function every time the position of the device is updated. This method

returns an ID that can be used to reference the position being watched:

8 http://en.wikipedia.org/wiki/World_Geodetic_System

407HTML5 APIs

http://en.wikipedia.org/wiki/World_Geodetic_System

if(navigator.geolocation) {
 var id = navigator.geolocation.watchPosition(youAreHere);
}

The clearWatch() method can be used to stop the callback being called, using the

ID of the watch as an argument:

navigator.geolocation.clearWatch(id);

The Geolocation API provides a useful interface for adding location-based informa-

tion to a website or application. More information can be found at the Mozilla De-

veloper Network.9

Web Workers
We saw in earlier chapters that JavaScript is a single-threaded language, meaning

that only one process can run at one time. Web workers allow processes to be run

in the background, adding support for concurrency in JavaScript. The idea is that

any processes that could take a long time are carried out in the background, so a

website will continue to function without fear of the dreaded “script has become

unresponsive” message that occurs when a script runs for too long, shown in Fig-

ure 14.1.

Figure 14.1. An unresponsive script

To get started, use the Worker() constructor function to create a new worker:

var worker = new Worker('task.js');

9 https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

JavaScript: Novice to Ninja408

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

This function takes the name of another JavaScript file as an argument. In the ex-

ample, this is a file called task.js. If this file exists, it will be downloaded asynchron-

ously. The worker will only start once the file has finished downloading completely.

If the file doesn’t exist, it will fail silently.

The variable that’s assigned to the constructor function (worker in our example)

can now be used to refer to the worker in the main program. In the worker script

(task.js), the keyword self is used to refer to the worker.

Web workers use the concept of messages to communicate back and forth between

the main script and worker script. The postMessage() method can be used to send

a message and start the worker working. The argument to this method can send any

data to the web worker. To post a message to the worker, the following code is used

inside the main script:

worker.postMessage("Hello");

To post a message from the worker, the following is used in the worker script:

self.postMessage("Finished");

When a message is posted, a message event is fired, so they can be dealt with using

an event listener. The data sent with the message as an argument is stored in the

data property of the event object that’s passed to the callback function. The follow-

ing example would log any data returned from the worker to the console:

worker.addEventListener('message', function(event) {
 console.log(event.data);
}, false);

When a worker has completed its task, it can be stopped using the terminate()

method from within the main script:

worker.terminate();

Or using the close() method from inside the worker script:

409HTML5 APIs

self.close();

A Factorizing Example
Back in Chapter 10, we created a function that found the factors of a given number.

This works well, but can take a long time to find the factors of large numbers. If it

was used in a website, it would stop any other code from running while it calculated

the factors. To demonstrate this, save the following code in a file called factors.htm:

factors.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Factorizor</title>
</head>
<body>
 <button id="rainbow">Change Color</button>
 <form>
 <label for="number">Enter a Number to Factorize:</label>
 <input type="number" name="number" min=1 value="20">
 <button type="submit">Submit</button>
 </form>
 <div id="output"></div>
<script src="js/scripts.js"></script>
</body>
</html>

This web page has a button that will change the background color of the page and

an input field where a number can be entered. The factors will be displayed inside

the output div. To get this working, create a folder called js in the same directory

as factors.htm; then add a file called scripts.js that contains the following:

js/scripts.htm (excerpt)

var button = document.getElementById("rainbow");

var rainbow = ["red","orange","yellow","green","blue","indigo",
➥"violet"];

function change() {
 document.body.style.background = rainbow[Math.floor(7*

JavaScript: Novice to Ninja410

➥Math.random())];
}
button.addEventListener("click", change);

This first piece of code was covered way back in Chapter 1 and uses an event

listener to change the background color if the button is clicked. We also need to

factorize the number entered in the form, so add this code to the end of scripts.js:

js/scripts.htm (excerpt, incomplete)

var form = document.forms[0];
form.addEventListener("submit", factorize, false);

function factorize(event) {

 event.preventDefault(); // prevent the form from being submitted

 var number = Number(form.number.value);
 var factors = String(factorsOf(number));
 document.getElementById("output").innerHTML = factors;

}

function factorsOf(n) {

 if (n < 0) {
 throw new RangeError("Argument Error: Number must be positive");
 }

 if (Math.floor(n) !== n) {
 throw new RangeError("Argument Error: Number must be an
➥integer");
 }

 var factors = [];
 for (var i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
 }
 return factors.sort(function(a,b) { return a > b; });
}

411HTML5 APIs

This uses the same factorsof() function from Chapter 9 and adds a submit event

listener to the form. When the form is submitted, it will find the factors of the

number in the input field and then place the result inside the output div.

This works well, even coping with some large numbers, as can be seen in the

screenshot in Figure 14.2.

Figure 14.2. Our Factorizor in action

But if you enter a sizable number (around 18–20 digits), it takes longer to process

the answer and the browser will display a warning, as shown in Figure 14.3.

Figure 14.3. Factorizing an extremely large number

JavaScript: Novice to Ninja412

To make matters worse, it’s impossible to click on the Change Color button while

the factors are being calculated―the whole program freezes until the operation is

complete. The good news is that we can use web workers to solve this problem.

First of all we create a new file called factors.js that’s saved inside the js folder. Re-

move the factorsOf() function from the scripts.js file and add it into this file. We’ll

be adding more to this file later, but first we need to edit the factorize() function

in the scripts.js file so that it contains the following:

js/factors.js (excerpt)

function factorize(event) {

 event.preventDefault(); // prevent the form from being submitted

 var number = form.number.value;

 if(Worker) {
 worker = new Worker("link/to/file/factors.js");

 worker.postMessage(number);

 worker.addEventListener('message', function(event) {
 document.getElementById("output").textValue = event.data;
 }, false);

 }

}

After checking whether web workers are supported, it adds a new web worker. It

then uses the postMessage() method to send a message to the worker, which is the

number that we want to factorize. When the number has been factorized the worker

will send a message back to say it has finished.

To deal with this, we set up an event listener that will fire when a message is re-

ceived back from the worker. The information sent from the worker is stored in the

data property of the event object, so we use the textValue property to insert the

data into the output div.

Now we go back to the factors.js file and add this event listener code to the end of

the file:

413HTML5 APIs

js/factors.js (excerpt)

self.addEventListener('message', function(event) {

 var factors = String(factorsOf(Number(event.data)));
 self.postMessage(factors);
 self.close();

}, false);

This will fire when the worker receives a message, occurring when the form is

submitted. The number to be factorized is stored in the event.data property. We

use the factorsOf() function to find the factors of the number; then convert it into

a string and send a message back containing the answer. We then use the close()

method to terminate the worker, since its work is done.

Now if we test the code out, it will still take a long time to factorize a long number,

but the page will not freeze. You can also continue to change the background color

while the factors are being calculated in the background.

Use a Server

The file containing the worker code is expected to be hosted on a server. This is

the best option, but if you want to run an example locally you need to turn off the

same origin policy10 setting in the browser.

Shared Web Workers
The examples we have seen so far are known as dedicated web workers. These are

linked to the script that loaded the worker and are unable to be used by another

script. You can also create shared web workers that allow lots of different scripts

on the same domain to access the same worker object. Read more about shared web

workers at SitePoint.11

Web workers allow computationally complex operations to be performed in a sep-

arate thread, meaning that the flow of a program won’t suffer interruptions and an

application will not freeze or hang. They are a useful feature that help to keep sites

10 https://developer.mozilla.org/en-US/docs/Same-origin_policy_for_file:_URIs
11 http://www.sitepoint.com/javascript-shared-web-workers-html5/

JavaScript: Novice to Ninja414

https://developer.mozilla.org/en-US/docs/Same-origin_policy_for_file:_URIs
http://www.sitepoint.com/javascript-shared-web-workers-html5/
http://www.sitepoint.com/javascript-shared-web-workers-html5/

responsive, even when complicated operations are being carried out. You can find

more information about them at the Mozilla Developer Network.12

Multimedia
Before HTML5 it was notoriously difficult to display audio and video in browsers,

and plugins such as Flash often had to be used. HTML5 introduced the <audio>

and <video> tags used to insert audio and video clips into a web page. It also intro-

duced a Media API for controlling the playback of the clips using JavaScript.

An audio clip can be inserted into a page with the <audio> tag, using the src attribute

to point to the audio file:

<audio src="/song.mp3" controls>
 Your browser does not support the audio element.
</audio>

A video clip can be inserted with the <video> tag, using the src attribute to point

to the movie file:

<video src="http://movie.mp4" controls>
 Your browser does not support the video element.
</video>

Any content inside the <audio> or <video> tags will only display if the browser

does not support them; hence, it can be used to display a message to users of older

browsers without support for these features. The controls attribute can be added

(without any value) and will display the browser’s native controls, such as play,

pause, and volume control, as can be seen in the screenshot in Figure 14.4.

12 https://developer.mozilla.org/en-US/docs/Web/Guide/Performance/Using_web_workers

415HTML5 APIs

https://developer.mozilla.org/en-US/docs/Web/Guide/Performance/Using_web_workers

Figure 14.4. Browser video controls

The audio or video element can be referenced by a variable using one of the document

methods we saw in Chapter 6:

video = document.getElementsByTagName("video")[0];

Audio and video elements have a number of properties and methods to control the

playback of the clip.

The play() method will start the clip playing from its current position:

video.play();

The pause() method will pause the clip at its current position:

video.pause();

The volume property is a number that can be used to set the audio volume:

video.volume = 90;

The muted property is a Boolean value that can be used to mute the audio:

JavaScript: Novice to Ninja416

video.muted = true;

The currentTime property is a number value that can be used to jump to another

part of the clip:

video.currentTime += 10; // jumps forward 10 seconds

The playbackRate property is used to fast-forward or rewind the clip by changing

its value. A value of 1 is playback at normal speed:

video.playbackRate = 8; // fast-forward at 8 times as fast

The loop property is a Boolean value that can be set to true to make the clip repeat

in a loop:

video.loop = true;

The duration property can be used to see how long the clip lasts:

video.duration;
<< 52.209

Audio and video clips also have a number of events that will fire when they occur,

including:

■ the play event, which fires when the clip starts and when it resumes after a

pause

■ the pause event, which fires when the clip is paused

■ the volumechange event, which fires when the volume is changed

These events allow you to respond to any interactions the user has with the video.

For example, the following event listener can be added to check whether the user

has paused the video:

417HTML5 APIs

video.addEventListener("pause", function(event) {
 console.log("video has been paused"); }, false)

The audio and video elements bring native support for multimedia into the browser,

and the API gives developers full control of the playback of audio tracks and video

clips. You can learn much more about handling multimedia in HTML5 by reading

Jump Start HTML5: Multimedia by Tiffany Brown.13

Other APIs
The list of APIs is constantly growing, and include APIs for accessing a device’s

camera, using WebSockets for multiple simultaneous connections, uploading files,

accessing the battery status, handling push notifications, building drag and drop

functionality, creating 3D effects with WebGL, and many more! A comprehensive

list of HTML5 APIs can be found at the Mozilla Developer Network14.

You can also read more about HTML5 standards and APIs in these SitePoint books:

■ Jump Start HTML5 by Tiffany Brown, Kerry Butters, and Sandeep Panda15

■ HTML5 and CSS3 for the Real World by Alexis Goldstein, Louis Lazaris, and

Estelle Weyl16

■ Jump Start HTML5: APIs by Sandeep Panda17

Drawing with Canvas
The canvas element was introduced to allow graphics to be drawn onto a web page

in real time using JavaScript. A canvas element is a rectangular element on the web

page. It has a coordinate system that starts at (0,0) in the top-left corner. To add a

canvas element to a page, the <canvas> tag is used specifying a height and width.

Anything placed inside the tag will only display if the canvas element is unsuppor-

ted:

13 http://www.sitepoint.com/store/jump-start-html5-multimedia/
14 https://developer.mozilla.org/en-US/docs/WebAP
15 https://learnable.com/books/jump-start-html5
16 https://learnable.com/books/html5-css3-for-the-real-world
17 http://www.sitepoint.com/store/jump-start-html5-apis/

JavaScript: Novice to Ninja418

http://www.sitepoint.com/store/jump-start-html5-multimedia/
https://developer.mozilla.org/en-US/docs/WebAP
https://learnable.com/books/jump-start-html5
https://learnable.com/books/html5-css3-for-the-real-world
https://learnable.com/books/html5-css3-for-the-real-world
http://www.sitepoint.com/store/jump-start-html5-apis/

<canvas id="canvas" width="200" height="100">Sorry, but your
➥browswer does not support the canvas element</canvas>

This canvas can now be accessed in a JavaScript program using the document.getEle-

mentById() method:

var canvas = document.getElementById("canvas");

The next step is to access the context of the canvas. This is an object that contains

all the methods used to draw onto the canvas. At the moment there’s only a two-

dimensional context, although there are plans to implement a three-dimensional

context in the future. The getContext() method is used to access the context:

var context = canvas.getContext("2d");

Now we have a reference to the context, we can access its methods and draw onto

the canvas. The fill and stroke colors can be changed by assigning a CSS color to

the fillStyle and strokeStyle properties respectively:

context.fillStyle = "#0000cc"; // a blue fill color
context.strokeStyle = "#ccc"; // a gray stroke color

These colors will be utilized for everything that’s drawn onto the canvas until they’re

changed.

The lineWidth property can be used to set the width of any line strokes drawn onto

the canvas. It defaults to one pixel and remains the same until it’s changed:

context.lineWidth = 4;

The fillRect() method can draw a filled-in rectangle. The first two parameters

are the coordinates of the top-left corner, the third parameter is the width, and the

last parameter is the height. The following produces a filled-in blue rectangle in

the top-left corner of the canvas at coordinates (10,10) that is 100 pixels wide and

50 pixels high:

419HTML5 APIs

context.fillRect(10,10,100,50);

The strokeRect() method works in the same way, but produces a rectangle that is

not filled in. This will draw the outline of a rectangle underneath the last one:

context.strokeRect(10,100,100,50);

Straight lines can be drawn employing the moveTo() and lineTo() methods. These

methods can be used together to produce a path. Nothing will actually be drawn

onto the canvas until the stroke() method is called. The following example will

draw a thick red T shape onto the canvas by moving to the coordinates (150,50),

then drawing a horizontal line 30 pixels long, and finally moving to the middle of

that line and drawing a vertical line 40 pixels long:

context.beginPath();
context.moveTo(130, 50);
context.lineTo(180, 50);
context.moveTo(155, 50);
context.lineTo(155, 90);
context.strokeStyle = "#c00";
context.lineWidth = 15;
context.stroke();

The arc() method can be used to draw an arc of a given radius from a particular

point. The first two parameters are the coordinates of the center of the arc; the next

parameter is the radius, followed by the start angle, then the finish angle (note that

these are measured in radians). The last parameter is a Boolean value that says

whether the arc should be drawn counter-clockwise. The following example will

draw a yellow circle of radius 30 pixels at center (200,200), since Math.PI * 2

represents a full turn:

context.arc(200, 200, 30, 0, Math.PI * 2, false);
context.strokeStyle = "#ff0";
context.lineWidth = 4;
context.stroke();

The fillText() method is used to write text onto the canvas. The first parameter

is the text to be displayed, while the next two parameters are the x and y coordinates

respectively. The font property can be used to set the font style used, otherwise

JavaScript: Novice to Ninja420

the style is inherited from the canvas element’s CSS setting (note that it needs to

be changed before the fillText() method is used to draw the text). The following

example will draw the text “Hello” in green at coordinates (20,50), as shown in

Figure 14.5.

context.fillStyle = "#0c0"; // a blue fill color
context.font = "bold 26px sans-serif";
context.fillText("Hello", 20, 200);

Figure 14.5. Drawing on a canvas

This is only a short introduction to what the canvas element can do. It is being used

more and more in websites to draw data charts that are updated in real-time, as well

421HTML5 APIs

as to animate HTML5 games. Much more information can be found in the excellent

Jump Start HTML5: Canvas and SVG by Kerry Butters.18

Shims and Polyfills
HTML5 APIs progress at a rapid rate―new APIs are constantly being introduced

and existing APIs often change. Modern browsers are very quick to update and im-

plement many of the changes, but you can’t always guarantee that users will have

the most up-to-date browser. This is where a shim or a polyfill comes in handy.

These are libraries of code that allow you to use the APIs as usual; they then fill in

the necessary code that not provided natively by the user’s browser.

The terms shim and polyfill are often used interchangeably. The main difference

between them is that a shim is a piece of code that adds some missing functionality

to a browser, although the implementation method may be differ slightly from the

standard API. A polyfill is a shim that achieves the same functionality while also

using the API commands that would be used if the feature was supported natively.

This means that as a ninja developer, your code can use the APIs as normal and it

should work as expected in older browsers. The advantage here is that the same set

of standard API commands can be used―you don’t need to write additional code

to deal with different levels of support. And when users update their browsers, the

transition will be seamless as their experience will remain the same. Once you are

confident that enough users have up-to-date browsers, you can remove the polyfill

code without having to update any actual JavaScript code.

A comprehensive list of shims and polyfills is maintained by the Modernizr team.19

Quiz Ninja Project
We’re going to use the Web Storage API to store the high score of the game. This

will be stored locally even after the browser has been closed, so players can keep a

record of their best attempt and try to beat it. To do this, we first add an extra

paragraph to the header to show the high score. Add the following line between the

score and timer paragraphs in the <header> element in index.htm:

18 http://www.sitepoint.com/store/jump-start-html5-canvas-svg/
19 https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

JavaScript: Novice to Ninja422

http://www.sitepoint.com/store/jump-start-html5-canvas-svg/
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

<p id="hiScore"></p>

Now we need to write a method of the Game.prototype object to update the high

score. Add the following to the end of the Game constructor function::

Game.prototype.hiScore = function() {
 if(window.localStorage) {
 // the value held in localStorage is initally null so make it 0
 var hi = localStorage.getItem("hiScore") || 0;
 // check if the hi-score has been beaten and display a message
➥if it has
 if(this.score > hi || hi === 0) {
 localStorage.setItem("hiScore", this.score);
 }
 return localStorage.getItem("hiScore");
 }
}

This function checks to see if window.localStorage is supported first. If it is, it

sets a local variable called hiScore to the value that’s stored inside the object under

the key hiScore. If a high score is yet to be set already, it will be null, so we’ll ini-

tialize it to 0 in this case. Next, we check to see if the score that’s provided as an

argument to the function is bigger than the current high score that we just retrieved.

If it is, we show a message to congratulate the player, and also update the value

stored in localStorage using the setItem() method.

Have a go at playing it by opening up index.htm, as shown in Figure 14.6, and try

to get a new high score.

423HTML5 APIs

Figure 14.6. Our quiz with high scores

Summary
In this chapter, we’ve learned the following:

■ HTML5 is the latest incarnation of the Hypertext Markup Language. It covers a

variety of technologies, including several APIs that are accessible using JavaScript.

■ data- attributes help to embed custom data into a web page that can then be

used to enhance the user experience with JavaScript.

■ The Web Storage API allows key-value pairs to be stored on the user’s device in

a similar way to cookies, but without the same storage restrictions.

■ The Geolocation API allows you to access the geographic coordinates of the

user’s device, as long as the user gives permission.

■ The Web Worker API can be used to perform computationally intensive tasks

in the background, which helps to avoid websites becoming unresponsive.

JavaScript: Novice to Ninja424

■ The <audio> and <video> elements can be employed to embed audio tracks and

video clips in a web page. They also have aMedia API that can help control the

playback using JavaScript.

■ The canvas element can be used to dynamically draw geometric shapes, fonts,

and images on a web page in real-time using JavaScript.

■ A shim or polyfill is a piece of code that adds support of missing features to

older browsers.

In the next chapter, we’ll cover how to organize and optimize your code.

425HTML5 APIs

Chapter15
Organizing Your Code
As you build more and more complex JavaScript projects, you’ll find the amount

of code you are using increases into hundreds and then thousands of lines. This

can be difficult to manage without some sort of organizing. The first step is to break

the code into separate files, but this presents its own problems, such as how to in-

clude all the files on a web page and which code to put in which files. Indeed, how

do you ensure that a file has access to the code in another file?

Just as real-life ninjas have lots of nifty weapons such as nunchakus and shuriken

stars, there are lots of cool tools that a JavaScript ninja can use to help organize code

and make it run more efficiently. In this chapter, we’ll look at the various frameworks

and tools that can be employed to improve the quality of your code. In turn it will

make it more organized and easier to maintain, promoting reuse. We’ll also look at

how to make your applications ready for production.

In this chapter, we’ll cover the following topics:

■ frameworks

■ using modules

■ MVC libraries such as Backbone.js, AngularJS, and CanJS

■ template libraries such as Mustache, Jade, Underscore, Handlebars, EJS, and

Hogan

■ optimizing your code with minification

■ build processes using Grunt and Gulp

■ our project―create a build process, employ templates, and use MVC architecture

Frameworks
A framework is a library of JavaScript code that provides several methods that make

it easier to achieve common tasks. JavaScript is an extremely flexible language that

can accomplish most programming tasks ... but not all undertakings are as easy to

do as they should be. A framework will abstract functionality into easier-to-use

functions and methods. These can then be used to achieve common assignments

without having to use lots of repetitive code.

DOM Manipulation Example
A good example of how frameworks can help save time is in DOM manipulation.

The DOM API provides all the tools required to manipulate the DOM, but some can

be verbose and take several lines of code to attain even the most basic of tasks.

For example, if we wanted to add a class to a paragraph element stored in the variable

para, then append another paragraph on the end, we could do it using the following:

para.classList.add("important");
var newPara = document.createElement("p");
newPara.textContent = "Another Paragraph";
para.appendChild(newPara);

Yet by using the jQuery framework, we can achieve the same result using a single

line of code:

JavaScript: Novice to Ninja428

$(para).addClass("important").append("<p>Another Paragraph</p>");

So you can see how using a framework can reduce the amount of code you have to

write, as well as making common tasks easier to implement.

jQuery
jQuery is the most popular of all the JavaScript frameworks used today, as seen in

these statistics on W3Techs1 and Built With.2 It is used in a huge number of com-

mercial websites and has a plugin system that makes it easy to build common web

page elements, such as a lightbox or carousel widget.

jQuery was released in 2006, originally as a DOM manipulation framework. It has

grown into a bigger framework today that now provides methods for selecting nodes

and traversing the DOM, animation effects, Ajax, and events. It also has its own

testing framework: QUnit3.

jQuery is a very powerful and polished framework that provides a considerable

number of useful methods. It has become so popular that many online tutorials as-

sume that you’re using jQuery rather than just JavaScript. You can learn more about

jQuery by reading the excellent jQuery: Novice to Ninja: New Kicks and Tricks4 by

Earle Castledine and Craig Sharkie.5

The $ Symbol

The jQuery framework uses the $ symbol as a global namespace object. It is actually

a convenient alias for the the global jQuery object of which all jQuery’s methods

are methods. This prevents the global scope from being polluted with any of

jQuery’s methods. Other frameworks use the $ sign in a a similar way since only

a single character is needed to access any methods; however, this can cause

method name clashes if more than one of them are used in the same project.

1 http://w3techs.com/technologies/overview/javascript_library/all
2 http://trends.builtwith.com/javascript/jQuery
3 http://qunitjs.com/
4 http://www.sitepoint.com/store/jquery-novice-to-ninja-new-kicks-and-tricks/
5 http://www.sitepoint.com/store/jquery-novice-to-ninja-new-kicks-and-tricks/

429Organizing Your Code

http://w3techs.com/technologies/overview/javascript_library/all
http://trends.builtwith.com/javascript/jQuery
http://qunitjs.com/
http://www.sitepoint.com/store/jquery-novice-to-ninja-new-kicks-and-tricks/
http://www.sitepoint.com/store/jquery-novice-to-ninja-new-kicks-and-tricks/
http://www.sitepoint.com/store/jquery-novice-to-ninja-new-kicks-and-tricks/

Advantages and Disadvantages of Frameworks
A big advantage of utilizing a popular library is that it will be used by lots of people

and thoroughly tested. It will probably have been optimized and battle-tested for

nearly every eventuality. Using a framework means that you can be confident that

your code will be as bullet-proof as possible in many browsers. In addition, there

will usually be lots of online documentation and a strong community ready to help

out if you become stuck. The popularity of frameworks often means that others will

have encountered the same problem as you, often making it easy to find a solution

by searching on the Internet.

There are some disadvantages to using frameworks, however. You need to include

the code for the framework as well as your own code. This increases the amount of

code that needs to be downloaded by a website, which in some cases can cause

performance issues. Thankfully, most modern frameworks are relatively small once

server-side optimizations are made (such as gzip compression), minimizing any

latency issues. Another problem with frameworks is that it might fail to implement

the functionality in the precise way that you want it to perform. This might not be

a problem, but sometimes you’ll have to get your hands dirty and write your own

functions in order to achieve the functionality for which you are looking. Using a

framework can also make your code slower than using plain vanilla JavaScript. This

is because there are often more lines of code in using the abstracted functions in a

framework rather than writing a direct implementation in just JavaScript, which is

“closer to the metal,” so to speak. These speed differences can be barely noticeable,

although there are occasions when using a framework is a poor choice for some

operations. Using plain JavaScript can be significantly faster than a framework, as

seen in these examples in this post by Craig Buckler.6

The debate about whether to use a framework or not is a big one that stretches back

to the start of programming and refuses to go away. Indeed, there has been a move-

ment towards using plain JavaScript in recent years. Additionally, the Vanilla JS7

website showcases plain JavaScript as if it were a framework, highlighting that many

tasks can be accomplished with a similar amount of code but much better perform-

ance.

6 http://www.sitepoint.com/jquery-vs-raw-javascript-1-dom-forms/
7 http://vanilla-js.com/

JavaScript: Novice to Ninja430

http://www.sitepoint.com/jquery-vs-raw-javascript-1-dom-forms/
http://vanilla-js.com/

You only need to look at any professionally produced website to see that some sort

of framework has been used in its production. Frameworks are often the pragmatic

choice to complete a project in a realistic time frame, especially when working in

a large team. They can also be useful in supporting older browsers, and when per-

formance isn’t the most important factor (when prototyping sites, for example).

When to Use a Framework
It can be helpful to use a framework, but you should certainly question whether it’s

worth the extra work. You have to learn the framework’s notation, which can either

be similar or very different to standard JavaScript. Every framework you use will

add to the total file size that’s downloaded so you need to assess whether the extra

overhead is worth it.

It’s also advisable to consider that the popularity of frameworks is in a constant

state of flux, meaning they can be "here today, gone tomorrow." Some of the most

popular frameworks of the past have fallen out of favor and lost support, even dis-

continued. This can potentially cause problems if you’ve relied on one particular

framework in most of your projects.

Many frameworks have become monolithic, with a plethora of methods that try to

do everything. An example of this is jQuery; while it is a useful framework, it

provides lots of features that are often unnecessary. If you find that you’re not using

many of the methods a framework offers, you should consider using a lighter altern-

ative that only focuses on solving one problem (some suggestions are given below).

And if you’re only using a handful of methods, maybe avoid using a framework al-

together and try using plain old JavaScript. You could even package useful functions

you have created together and produce your own personal framework.

Some Useful Frameworks
It is certainly worth considering using a framework to make some common tasks

easier. Below is a list of popular frameworks and the tasks with which they can assist:

■ Query selectors: Qwery,8 jQuery9

8 https://github.com/ded/qwery
9 http://jquery.com/

431Organizing Your Code

https://github.com/ded/qwery
http://jquery.com/

■ DOM manipulation: jQuery,10 Bonzo11

■ Cookie handling: Jar,12 CookieJS,13 Easy Cookie14

■ Testing: Jasmine,15 Mocha,16 QUnit17

■ Events: Hammer18 (touch events only), Bean19

■ Ajax: reqwest,20 jQuery,21 Bull,22 MicroAjax23

■ Animation and graphics: KineticJS,24 Move.js,25 jsAnim,26 Raphael27

■ Functional programming: underscore28

In addition, JSDB29 is a website that features a large number of high-quality JavaScript

libraries and frameworks, while MicroJS30 is a high-quality repository of small

JavaScript libraries that focus on specific tasks.

Be careful not to rely on a framework and find that you’re learning the framework

rather than the language. A framework should not be used because of a lack of un-

derstanding JavaScript; instead, it should be used to speed up JavaScript develop-

10 http://jquery.com/
11 https://github.com/ded/bonzo
12 https://github.com/amccollum/jar
13 http://www.codephun.com/cookiejs-small-javascript-cookie-framework/
14 http://pablotron.org/software/easy_cookie/
15 http://jasmine.github.io/
16 http://mochajs.org/
17 http://qunitjs.com/
18 http://hammerjs.github.io/
19 https://github.com/fat/bean
20 https://github.com/ded/reqwest
21 http://jquery.com/
22 http://sourceforge.net/projects/bull/
23 https://code.google.com/p/microajax/
24 http://kineticjs.com/
25 http://visionmedia.github.io/move.js/
26 http://jsanim.com/
27 http://raphaeljs.com/
28 http://underscorejs.org/
29 http://www.jsdb.io/
30 http://microjs.com/

JavaScript: Novice to Ninja432

http://jquery.com/
https://github.com/ded/bonzo
https://github.com/amccollum/jar
http://www.codephun.com/cookiejs-small-javascript-cookie-framework/
http://pablotron.org/software/easy_cookie/
http://jasmine.github.io/
http://mochajs.org/
http://qunitjs.com/
http://hammerjs.github.io/
https://github.com/fat/bean
https://github.com/ded/reqwest
http://jquery.com/
http://sourceforge.net/projects/bull/
https://code.google.com/p/microajax/
http://kineticjs.com/
http://visionmedia.github.io/move.js/
http://jsanim.com/
http://raphaeljs.com/
http://underscorejs.org/
http://www.jsdb.io/
http://microjs.com/

ment by making it easier to complete common tasks. Using a library can sometimes

make your code more sloppy; it’s easy, for example, to write short jQuery expressions

that look concise but are spectacularly inefficient. And even if you do choose to

use a framework or library, remember that a ninja should always be inquisitive as

to how things work. In fact, reading a framework’s source code is a great way of

learning some powerful JavaScript programming techniques.

Modules
A module is a self-contained piece of code that provides functions and methods

that can then be used in other files. This helps to keep code organized in separate,

reusable files, which improves code maintainability. The code in a module should

have a single purpose and group together functions with distinct functionality. For

example, you might keep any functions used for Ajax in their own module. This

could then be used in any projects where Ajax was required. Keeping code modular

helps to make it more loosely coupled and interchangeable, meaning you can easily

swap one module for another without affecting other parts of a project. Indeed,

small single-purpose modules are the exact opposite of large monolithic frameworks

as they enable developers to use only the modules that are needed, avoiding any

wasted code.

Tightly And Loosely Coupled

The coupling of code refers to how dependent cetain elements or modules of code

are on each other. Two pieces of code are said to be tightly coupled if one relies

on the other to run. This often occurs if a piece of code makes hard coded refer-

ences to another piece of code, requiring it to be used. This will often mean that

changes to one piece of code will necessitate changes in the other. On the other

hand, two pieces of code are said to loosely coupled if one piece of code can be

easily substituted by another without affecting the final outcome. This is often

achieved by referring to common methods (often provided in an API) that are used

by many different pieces of code. It is considered good design to keep code as

loosely coupled as possible as this allows for the most flexibilty in developing

sytems of code as different modules can be used independently and in a variety

of different applications, rather than being restricted to a single use-case.

When you start to use more and more modules, you’ll find that some modules depend

on other modules to work. These are known as dependencies. Dependency manage-

433Organizing Your Code

ment is the process of ensuring that all the dependencies a module requires are met.

This can be difficult to do manually once a project becomes large.

JavaScript lacks a built-in way of creating modules,31 but it is possible to create

modules using the tools that JavaScript provides. A popular way of doing this is

using Christian Heilmann’s Revealing Module pattern32. This uses an IIFE to return

the module as an object that’s stored in a global variable. This keeps the module in

its own private namespace (the variable it is assigned to), which helps stop any

methods from clashing with other methods having the same name.

For example, we could create a Stats module based on the sum(), mean(), and

standardDeviation() functions we created in Chapter 11:

var Stats = (function() {
 "use strict";

 // square and sum are private functions
 function square(x) {
 return x * x;
 }

 function sum(array, callback) {
 if (typeof callback === "function") {
 array = array.map(callback);
 }
 return array.reduce(function(a,b) { return a + b; });
 }

 function mean(array) {
 return sum(array) / array.length;
 }

 function sd(array) {
 return sum(array,square) / array.length - square(mean(array));
 }

 // public functions are exported as methods of an object
 return {
 mean: mean,

31 This will change in the next version, see Chapter 16.
32 http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-

world/

JavaScript: Novice to Ninja434

http://christianheilmann.com/2007/08/22/again-with-the-module-pattern-reveal-something-to-the-world/

 standardDeviation: sd
 };
}());

This function will return an object that’s assigned to the variable Stats. It has two

public methods, mean() and standardDeviation(). The module also has two private

functions, square() and sum(), that are not returned, so are not publicly available

to the module (they are just used internally by other methods). The public methods

are called using the Stats object:

Stats.mean([1,2,3]);
<< 2

Stats.standardDeviation([1,2,3]);
<< 0.666666666666667

To use a module in a web page, include the file in which it’s saved in script tags

on the page:

<script src="stats.js"></script>
<script src="scripts.js"></script>

Two standard ways of implementing JavaScript modules have emerged: the Com-

monJS Module pattern and the Asynchronous Module Definition pattern. Unfortu-

nately, these patterns are incompatible with each other. An example of each follows,

where they are both capable of keeping modules in their own namespace, and adding

multiple methods as well as submodules and dependencies on other modules.

CommonJS Modules
CommonJS Modules have a compact syntax that is designed for synchronous loading.

It is how modules are implemented in Node.js.

A module is created in a separate file and the module.exports method is used to

make any functions available to other files. For example, we could create a module

for the random() function that we created in Chapter 11 by first placing the following

code in a file called random.js:

435Organizing Your Code

module.exports = function(a,b) {
 if(b===undefined) b = a, a = 1; // if only one argument is
➥supplied, assume the lower limit is 1
 return Math.floor((b-a+1) * Math.random()) + a;
}

This is simply the random() function written as an anonymous function that’s as-

signed to module.exports as if it was a variable.

To use the module, it needs to then be required inside the main scripts.js file. This

is done using the require() method, and takes the file that contains the module as

an argument and returns the function that was exported:

var random = require('./random');

The function that was exported in the module is now assigned to the variable random,

which is then used to call the function:

random(6);
<< 4

Asynchronous Module Definitions
Asynchronous Module Definitions (AMD) modules are most commonly used by

RequireJS,33 which is a file and module loader designed for use in the browser. The

AMD module syntax is slightly more complicated than the CommonJS module, but

it’s designed to support asynchronous loading of any modules and their dependen-

cies.

AMD modules are written in a separate file and provided as an argument to the

define() function. The following code is an example of how the random() function

would be defined as an AMD module in a file called random.js:

define({
 random: function (a, b) {
 if (b===undefined) b = a, a = 1; // if only one argument
➥is supplied, assume the lower limit is 1

33 http://requirejs.org/

JavaScript: Novice to Ninja436

http://requirejs.org/

 return Math.floor((b - a + 1) * Math.random()) + a;
 }
 });

The same process is used to require the module as in the Common JS Module syntax.

This code would be placed in the main scripts.js file:

var random = require('./random');

To use Require.js, you only need to use a single <script> tag in your HTML file:

<script data-main="js/scripts.js" src="lib/require.js"></script>

This uses a data- attribute to specify the name of the main JavaScript file to be

loaded first. Inside this script you can configure Require.js and also use the re-

quireJS() function to require any modules:

requirejs.config({
 //Any configuration goes in here
});

requirejs(['jquery', 'random']);

Package Managers
As modules have become more widely used in JavaScript, there’s been a need for

tools to manage them. Package managers help to organize code into modules. They

can also handle dependency management between modules.

Browserify
A tool that uses the CommonJS Module pattern is Browserify.34 It can be used to

package your own modules or third-party modules downloaded and installed using

the Node Package Manager (npm). It creates a single bundle file requiring all the

necessary modules, including any dependencies. This means that you can organize

all your code into separate modules, but only need add one bundle file in your

HTML file:

34 http://browserify.org/

437Organizing Your Code

http://browserify.org/

<script src="bundle.js"></script>

npm packages normally require Node.js to run, but Browserify can also be used to

compile npm packages into code that runs in a browser. Any of the popular libraries

of code available as npm packages can be used in web-based projects. Note that to

do this, you’ll need to install Node.js and the npm package manager on your own

machine.

Node Package Manager

If you install Node.js35 (which is increasingly useful to do as a modern JavaScript

developer), the Node Package Manager will be included in the installation. This

is thepackage manager for installing modules written in Node.js. It includes a

huge number of modules that can be used for a variety of tasks.

Browserify makes it much easier to use popular frameworks such as jQuery. Instead

of downloading the framework code and then adding a script tag in the HTML file,

all you need to do is install jQuery on your system using npm and the following

line in a terminal:

npm install jquery

Then it can be included in any project by using a require statement at the start of

any file that uses jQuery. For example, the following line will include the jQuery

library in the bundle file that Browserify creates:

var $ = require('jquery');

More information about getting started with Browserify can be found in this post

by Patrick Catanzariti.36

Bower
Bower is a package manager,37 developed by Twitter, that can be used for managing

versions of libraries employed in a project. Installed Bower using npm:

35 http://nodejs.org/download/
36 http://www.sitepoint.com/getting-started-browserify
37 http://bower.io/

JavaScript: Novice to Ninja438

http://nodejs.org/download/
http://www.sitepoint.com/getting-started-browserify
http://www.sitepoint.com/getting-started-browserify
http://bower.io/

bower install jquery

You can also install a specific version of a package:

bower install jquery#1.11.1

And keep these packages up to date:

bower update

All Bower packages have a bower.json specification file that outlines the package’s

dependencies; for example, the backbone package depends on the underscore

package. So if you were to install Backbone, Bower will automatically install Under-

score as a dependency.

Ender
Ender38 is a package manager created by Dustin Diaz that can install packages and

manage dependencies. It lets you select just the packages you require and then mix

and match them into a custom-built framework containing only the functionality

needed. All the methods from the different frameworks and modules are all put

together under the $ namespace, so any methods can be called using the $ notation,

just like using jQuery.

Ender is also installed using npm, so it requires Node.js to run. Once it has been

installed, you can use it to build a normal and minified file containing all the

modules and frameworks you specify; these will all be installed locally along with

any dependencies.

MVC Libraries
Model-View-Controller (MVC) is a design pattern that’s been used for a long time

in server-side languages. It is a common way of designing software and used by

server-side frameworks such as Ruby on Rails and Django. In recent years it has

been used in JavaScript code to make it easier to organize large-scale web applica-

tions.

38 http://enderjs.com/

439Organizing Your Code

http://enderjs.com/

MVC separates an application into three distinct, independent components that

interact with each other, as shown in Figure 15.1:

■ Models are objects that implement the functionality for creating, reading, updat-

ing, and deleting (known as CRUD tasks), specific pieces of information about

the application, as well as any other associated logic and behavior. In a to-do

list application, for example, there would be a task model providing methods

to access all the information about the tasks such as names, due dates, and

completed tasks. This data will often be stored in a database or some other con-

tainer.

■ Views provide a visual representation of the model showing all the relevant in-

formation. In a web application, this would be the HTML displayed on a web

page. Views also provide a way for users to interact with an application, usually

via forms. In a to-do list application, the views would display the tasks as an

HTML list with check boxes that a user could tick to say a task had been com-

pleted.

■ Controllers link models and views together by communicating between them.

They respond to events, which are usually inputs from a user (entering some

data into a form, for example), process the information, and then update the

model and view accordingly. In a to-do list application, the controller functions

would respond to the event of a user clicking on a check box and then inform

the model that a task had been completed. The model would then update the

information about that task.

JavaScript: Novice to Ninja440

Figure 15.1. The MVC architecture

MV*

It is quite common to see the acronym MV* used to describe JavaScript frameworks,

rather than MVC. This is because many JavaScript implementations do not strictly

follow the controller pattern. Sometimes controller code is mixed into the views,

and sometimes other patterns are used such as Model-View-Presenter (MVP),

Model-View-ViewModel (MVVM), and Angular, which calls itself a Model-View-

Whatever (MVW) framework. These tend to be only slight variations on the MVC

pattern, but for simplicity MV* is used as a catch-all term.

A Quick List Example
Here’s an example of how the MVC architecture can be implemented using JavaS-

cript. It will be a simple list creator that allows the user to add items to a list by

entering them into a form field.

To start, create a folder called MVC and save the following as list.htm:

441Organizing Your Code

list.htm

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>MVC List</title>
</head>
<body>
 <form id="input">
 <label for="name">Name:</label>
 <input type="text" name="name" autofocus required >
 <button type="submit">Submit</button>
 </form>
 <ul id="list">
 <script src="js/scripts.js"></script>
</body>
</html>

This is a basic HTML5 web page containing a form with a single input field for en-

tering a list item. It also contains an empty element in which to place the list

items. Now we need to create the JavaScript file. Create a file called scripts.js inside

a folder called js.

In JavaScript, a model is often represented by a constructor function that can create

new instances of an object. This will keep track of any properties the list item has,

as well as any methods. In this example, we’ll create an Item() constructor function

that only has a name property provided as an argument to the constructor function.

Add this code to scripts.js:

js/scripts.js (excerpt)

"use strict"

function Item(name) {
 this.name = name;
}

Each new list item that is created will be an instance of this constructor function.

Next we’ll create a controller object. This will be responsible for adding an event

listener to the form to see when the user adds information. When this happens, it

JavaScript: Novice to Ninja442

will create a new instance of the model and then render the updated view. Add the

following code to scripts.js:

js/scripts.js (excerpt)

controller = {
 watch: function(form) {
 form.addEventListener("submit", function(event){
 event.preventDefault(); // prevent the form from being
➥submitted
 this.add(form.name.value);
 }.bind(this), false); // binding this to the controller instead
➥of the form
 },

 add: function(name) {
 var item = new Item(name);
 view.render(item);
 }
}

After this we create a view object with a render() method. This is used to produce

an HTML fragment that shows the instance’s name (from the name property stored

in the model). It is dynamically inserted into the list using DOM API methods. Add

the following code to the scripts.js file:

js/scripts.js (excerpt)

view = {
 render: function(item) {
 var list = document.getElementById("list");
 var li = document.createElement("li");
 li.textContent = item.name;
 list.appendChild(li);
 }
}

Finally, we have to call the watch() method of the controller. This keeps an eye on

the form and checks when it is submitted. Add the following line to the end of the

scripts.js file:

443Organizing Your Code

js/scripts.js (excerpt)

controller.watch(document.getElementById("input"));

Open up list.htm in your browser and have a go at adding some items to the list. It

should look a little like the screenshot shown in Figure 15.2.

Figure 15.2. An MVC to-do list

This is just a small and simple example of the MVC pattern to give an idea of how

it works. In reality the model would contain many more properties and methods;

the controller would also contain more methods for editing and deleting instances

of the model. There’s also likely to be more views to display the different states of

the model, and there would need to be more robust code used in order for the con-

troller to monitor the changes that may happen in the views. Most MVC implement-

ations also tend to be more generalized in their implementation and avoid hard

coding details about which elements are being updated on the page (such as the

reference to the "list" id in the example). Despite this, I hope the example

demonstrates how to separate code into the three distinct components of MVC.

JavaScript: Novice to Ninja444

Saving Data

Most web applications will need some form of persistence to save the information

held in the models in order to maintain state. This could be done using the Web

Storage API that we covered in the last chapter. Another option that’s often used

in real-world applications is to send a JSON representation of the model to a back-

end database using Ajax whenever a model changes.

MVC Frameworks
MVC can take a lot of code to implement, and many frameworks have emerged that

take care of much of the setup code for you. One of the main features of MVC

frameworks is data binding, which is the process of linking the model and view

together. As a result, a large amount of boilerplate controller code is not needed as

the framework takes care of it all in the background for you. One-way data binding

is when a change in the model will automatically result in the view being updated,

and two-way data binding is when a change in the view automatically updates the

model.

These methods are often accessed by a user via routes using the hashtag notation.

The controller will look for anything after a hashtag in a URL for information about

what to do. For example, the URL http://ninjatasks.com/user/23#add might be used

to add a task, whereas the URL http://ninjatasks.com/user/23#edit-task32 would

be used to edit the task with an id of 32.

The views are simply web pages written in HTML, although it is common to use

templating languages so that dynamic data can be inserted into the page (more about

these in the section that follows):

■ Ember39 is a framework designed to make building large web applications easier.

It does this by using common conventions that avoid the need for lots of set-up

code, though it can become more difficult if you don’t follow these conventions.

■ AngularJS40 is a powerful framework by Google to make creating dynamic web

applications easier. This is done by extending the HTML language using custom

ng- attributes.

39 http://emberjs.com/
40 https://angularjs.org/

445Organizing Your Code

http://emberjs.com/
https://angularjs.org/

■ CanJS41 is a fast and lightweight framework that supports live data-binding.

■ Backbone.js42 is a lightweight MVC framework created by Jeremy Ashkenas. It

is less opinionated about how to perform tasks, making it quite flexible, but it

often requires more code to achieve what could be done in a few lines in other

frameworks.

The website TodoMVC43 has lots of examples of to-do list applications written in

many of the popular MVC frameworks.

Templates
Many MVC frameworks use templating languages to insert dynamic data into the

page. Templating languages can be written in HTML or another language, such as

markdown, that compiles into HTML. They can be whole web pages, but are often

just partials—parts of a page. This means that the application can update part of

the page without having to make a request to the server, saving an HTTP request.

This is usually done by dynamically inserting the fragment of HTML into the DOM.

Templating languages allow HTML to be separated from the JavaScript program,

making maintenance easier because they are no longer tightly coupled. The templates

are often stored in separate files or inside their own script tags, so they can be reused

and quickly edited in one place if changes need to be made. It also means that in-

serting large strings of HTML into a document (which can have adverse effects on

performance) is avoided. All that is needed is a reference to the relevant file that

contains the template.

Templating languages often have a mechanism for inserting dynamic data into the

HTML. These tend to fall into two camps: placing dynamic code inside curly braces

(the “mustache” symbol) or inside the special <% %> tags made popular by Embedded

Ruby (ERB).

For example, Mustache and Handlebars would use this to insert the value of the

variable name into a heading tag:

41 http://canjs.com/
42 http://backbonejs.org/
43 http://todomvc.com/

JavaScript: Novice to Ninja446

http://canjs.com/
http://backbonejs.org/
http://todomvc.com/

<h1>Hello {{ name }}</h1>

Underscore and EJS, on the other hand, would use the following to achieve the

same result:

<h1>Hello <%= name %></h1>

Templating languages also enable you to insert basic programming logic into views,

allowing you to conditionally show different messages or use loops to show multiple

pieces of similar code.

For example, say we wanted to display the following array of to-do objects:

var tasks = [
 { name: "Get Milk" },
 { name: "Go for a run" },
 { name: "Finish writing last chapter" },
 { name: "Phone bank" },
 { name: "Email Craig" }
]

Mustache implements “logic-less” templates that don’t require any lines of logic to

be explicitly written in JavaScript; instead, it is inferred from the context. This is

how it would iterate over the task array to display a list of tasks:

{{#tasks}}
 {{name}}
{{/task}}

EJS uses more explicit JavaScript coding to achieve the same result. Each line of

JavaScript code is placed inside the special <% %> tags. If any values need to be

evaluated, they are placed inside <%= %> instead:

<% tasks.forEach(function(task) { %>
<%= task.name %>

447Organizing Your Code

<% }); %>

<% } %>>

Both of these templates would return this HTML code:

 Get Milk
 Go for a run
 Finish writing last chapter
 Phone bank
 Email Craig

There are a number of popular templating languages to choose from, a selection of

some of the most popular are shown in the list below:

■ Handlebars44

■ Jade45

■ Underscore46

■ EJS47

■ Hogan48

■ Mustache49

■ Nunjucks50

■ React51

Web Components

The W3C are working on developing a standard called Web Components that at-

tempts to extend HTML and introduce new features such as templates, custom

tags, the ability to import HTML partials, and a shadow DOM. The idea is to use

44 http://handlebarsjs.com/
45 https://github.com/jadejs/jade
46 http://underscorejs.org/
47 http://www.embeddedjs.com/
48 https://github.com/twitter/hogan.js
49 https://github.com/janl/mustache.js
50 http://mozilla.github.io/nunjucks/
51 http://facebook.github.io/react/

JavaScript: Novice to Ninja448

http://handlebarsjs.com/
https://github.com/jadejs/jade
http://underscorejs.org/
http://www.embeddedjs.com/
https://github.com/twitter/hogan.js
https://github.com/janl/mustache.js
http://mozilla.github.io/nunjucks/
http://facebook.github.io/react/

it to develop modular and self-contained components that can be reused in different

applications. An example of implementing these standards is the Polymer project,52

allowing anything from small widgets to a full application to be developed. Web

Components is a fast moving area of development that is likely to be used much

more in developing web applications.

Minification
Minification is the process of removing any unnecessary characters from your code

to reduce the file size. This includes all comments, whitespace, and other characters

that are superfluous.

Tools are available to do this, known as minifiers. Some popular choices include:

■ YUI Compressor53

■ Google’s Closure54

■ UglifyJS55

These tools can also change variable and function names to single letters. This is

often referred to as code obfuscation as it can make the code more difficult to read.

They will also try to employ optimizations to make the code run faster. For example,

here is the Stats module that we created earlier in the chapter after it is minified

using UglifyJS:

var Stats=function(){function e(e){return e*e}function t(e,t){if(typ
➥eof t==="function"){e=e.map(t)}return e.reduce(function(e,t){retur
➥n e+t})}function n(e){return t(e)/e.length}function r(r){return t(
➥r,e)/r.length-e(n(r))}return{mean:n,standardDeviation:r}}()

As you can see, it is significantly smaller in size, but much more difficult to read

and make sense of!

Minifying your code can have a major effect on the overall size of your files, making

them download and run faster. It also means that your code can use descriptive

naming conventions and be well-commented, as these will be stripped away by the

52 https://www.polymer-project.org/
53 https://www.npmjs.org/package/yui
54 https://developers.google.com/closure/compiler/
55 https://github.com/mishoo/UglifyJS

449Organizing Your Code

https://www.polymer-project.org/
https://www.npmjs.org/package/yui
https://developers.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS

minifier tools. As a general rule, you should aim to use well-commented and de-

scriptive code in development and minified code in production (since there is no

need for end users to read comments).

Files can also be compressed on the server using a file-compression tool such as

gzip, which can have a dramatic effect reducing the file size. Using both minification

and compression in production means that JavaScript files are a mere fraction of

their original size, making them much quicker to download.

Task Runners
A task runner is a piece of software that automates tasks that can be tiresome to

carry out by hand. These include the following tasks:

■ minifying code

■ linting

■ testing code

■ compiling modules into a single file

■ compiling CSS preprocessor files (such as Sass, Less, or Stylus) into standard

CSS files

Grunt
Probably the most popular task runner at the time of writing is Grunt.56 It can be

used for a variety of tasks and has a plugin system, so many common tasks are

already available to use as plugins. Grunt needs Node.js to run and is installed using

npm with this line of code:

npm install grunt -g

Note that the -g flag is used to install Grunt globally, makings it available in all

projects on your system. It can be run using grunt rather than node grunt.

56 http://gruntjs.com/

JavaScript: Novice to Ninja450

http://gruntjs.com/

npm will also require a package.json file. This is a configuration file that lists all the

npm packages required to run the task, including Grunt itself. A basic package.json

file can be created using the npm init command. Here is an example of a package.json

file:

{
 "name": "ninja project",
 "version": "1.0.0",
 "devDependencies": {
 "grunt": "~0.4.5",
 "grunt-contrib-uglify": "~0.5.0"
 }
}

A Grunt file is then needed to create a custom task. This contains all the configura-

tion for the task to be completed and is always saved as Gruntfile.js. The following

example shows a Grunt file that can be used to create a default task; this will

minify any JavaScript files in the src folder and output the minified files into the js

folder.

It uses the uglify plugin57 to minify the code. All Grunt files are placed inside a

wrapper function that uses the CommonJS Module exports syntax:

module.exports = function(grunt) {
 // configuration goes at the start
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 uglify: {
 build: {
 src: 'src/*.js', // where to find the JavaScript files to
➥minify
 dest: 'js/' // where to put the minified files
 }
 }
 // These methods will load and register the tasks to do
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.registerTask('default', ['uglify']);

};

57 https://www.npmjs.org/package/grunt-contrib-uglify

451Organizing Your Code

https://www.npmjs.org/package/grunt-contrib-uglify

To run the default task, simply enter the following command in a terminal:

grunt

Gulp
Gulp58is another task runner that appeared more recently than Grunt, but is gaining

in popularity. gulp also requires Node.js to run and is installed using npm. It also

has its own plugin system, although there are fewer plugins available than for Grunt.

Gulp uses a package.json file and a Gulp file (which is always saved as gulpfile.js) to

create tasks, but it uses a different notation to the Grunt file. Gulp uses code to ac-

complish tasks, rather than configuration as Grunt does. Gulp works by using the

concept of streams of data provided from files that are piped from one plugin to the

next, where the end result is piped to a given destination. For example, the minific-

ation plugin will take a stream of files from the src folder and pipe them into the

minifier, which will then pipe the minified code into a folder called js. This means

it can run faster than Grunt, as intermediary files don’t need to be created.

Gulp tries to keep its plugins streamlined so that they only complete a single task.

As a result more plugins are often needed to accomplish a set of tasks. Gulp also

has the ability to watch files using the gulp.watch() method. This will watch a file

or collection of files and run a function whenever a file changes. This can be useful

if you want to, for example, automatically run tests as soon as any file changes to

quickly spot any errors.

The following is an example of a Gulp file that can be used to minify a group of

files. It uses the gulp-minify plugin, which uses UglifyJS to minify any JavaScript

files that are in the src directory:

var gulp = require('gulp'), // requires gulp
 minify = require('gulp-minify'); // loads the minify plugin

var
 source = 'src/*', // this specifies where the source files are
 dest = 'js/'; // this specifies the destination of the output

gulp.task('default', function(){

58 http://gulpjs.com/

JavaScript: Novice to Ninja452

http://gulpjs.com/

 gulp.src(source) // the stream to read
 .pipe(minify()) // pipe the stream to the minify plugin
 .pipe(gulp.dest('./js/')); // where the stream is written to
});

To run this default task, enter the following command in a terminal:

gulp

At the time of writing, Grunt is the most popular task runner and has more docu-

mentation and plugins available. Gulp is gaining popularity due to its leaner and

more concise syntax. Additionally, there are alternatives available, such as Broccoli59

and Brunch,60 and there are sure to be more popping up in the future.

Deploying JavaScript
When it comes to deploying your JavaScript program, it’s time to think about optim-

izing the code. If you’ve used multiple external libraries and lots of modules, you

might have a large number of files that need to be included in your HTML file. One

way of doing this is to simply include a different <script> tag for each JavaScript

file; however, this is not optimal for a number of reasons:

■ the scripts must be included in the correct order
■ each file represents a separate request to the server
■ the files will be large

The solution is to combine all the scripts into a single minified and compressed

file. There are a number ways to achieve this, some of which we have already looked

at in this chapter. You can use a package manager such as Bower, Ender, or

Browserify to deal with dependency management; Browserify will also bundle

everything together into a single file for you. Alternatively, you can use Grunt or

Gulp to automate the process of bundling the files together and minifying them at

the same time. There are a number of options that will do this for you on the server

side as well.

59 https://github.com/broccolijs/broccoli
60 http://brunch.io/

453Organizing Your Code

https://github.com/broccolijs/broccoli
http://brunch.io/

Once you’ve combined all the files into a single file, then minified and compressed

it, adding it to the HTML file is the next step. The optimal position for the <script>

tag is right at the end of the page just before the closing <body> tag, which we have

used in all our examples:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Ninja JavaScript</title>
 </head>
 <body>

 ...

 <script src="js/scripts.js"></script>
 </body>
</html>

This will ensure that the page has finished loading before the JavaScript code is

processed.

If you have a large amount of JavaScript (even after minification), there are further

optimizations that can be made such as lazy loading and preloading. Lazy loading

is the process of loading just the critical code that will be needed right away, then

loading any other code later by dynamically inserting another script tag into the

DOM. Preloading is the process of loading any code that might be required on future

pages. This way, the code will have already been downloaded by the time the user

visits the relevant page.

Quiz Ninja Project
We’ll now put some of the ideas we’ve learned in this chapter into practice in our

quiz project. Our first task is to move all the view logic into a self-contained module

using an IIFE. This includes all the variables that refer to elements (those with names

that start with the $ symbol) and the update(), hide(), and show() functions. We’ll

move all of these into an anonymous IIFE that returns an object assigned to the

global variable view. Add the following code to the beginning of the scripts.js file

(right after the "use strict" declaration):

JavaScript: Novice to Ninja454

var view = (function () {
 function update(element,content,klass) {
 var p = element.firstChild || document.createElement("p");
 p.textContent = content;
 element.appendChild(p);
 if(klass) {
 p.className = klass;
 }
 }

 function hide(element) {
 element.style.display = "none";
 }

 function show(element) {
 element.style.display = "block";
 }

 return {
 question: document.getElementById("question"),
 score: document.getElementById("score"),
 feedback: document.getElementById("feedback"),
 start: document.getElementById("start"),
 form: document.getElementById("answer"),
 timer: document.getElementById("timer"),
 hiScore: document.getElementById("hiScore"),
 update: update,
 hide: hide,
 show: show
 }
}());

This defines the functions and then returns an object that has references to the DOM

elements as its properties and the function definitions as its methods.

Everything to do with the view is now self-contained. To access the form element,

we would now use view.form and to call the update() function we’d use

view.update(). We now need to go through the rest of our code and update it to

use these new names, which requires making the following changes:

■ update becomes view.update

■ hide becomes view.hide

455Organizing Your Code

■ show becomes view.show

■ all the $ symbols become view. (for example, $timer becomes view.timer)

By separating the view logic into a separate module, we are moving towards an

MVC-style structure. The Game object acts as the model and the event handlers act

as controllers that take care of all the different interactions with the player.

Deployment
The final task we’ll do with our quiz game is prepare it for deployment. This will

involve removing the console.log statements and minifying the code. To make

this easier, we’ll use a Gulp task to automate the process.

In order to use Gulp, you’ll need to install Node.js. Then use npm to install Gulp

via the terminal as follows:

$ npm install --g gulp

From your project folder, you must then initialize the project using:

$ npm init

You will be prompted for parameters such as the project name, version, author, and

so on. Hit return to accept the defaults. Your folder will now contain a package.json

file that defines which dependencies you require. First, you must install a local

version of Gulp as a development dependency:

$ npm install --save-dev gulp

Next, you’ll to install the necessary Gulp plugins. These are the gulp-strip-debug

plugin to remove any console.log() statements and the gulp-uglify plugin to

minify the code. To install these, enter the following commands in a terminal

prompt:

$ npm install --save-dev gulp-strip-debug gulp-uglify

Gulp and the plugins will now be shown in the devDependencies section of your

package.json file:

JavaScript: Novice to Ninja456

{
 "name": "Quiz Ninja",
 "version": "1.0.0",
 "description": "My first JavaScript project",
 "main": "index.html",
 "devDependencies": {
 "gulp": "^3.8.10",
 "gulp-strip-debug": "^1.0.1",
 "gulp-uglify": "^1.0.1"
 }
}

You’ll also have a node_modules folder where Gulp and the plugins have been in-

stalled.

Sharing Your Project

Our node_modules folder only contains development dependencies, so it need not

be distributed with the code. If you’re using Git, you could add node_modules/ to

the .gitignore file.

If you want to pass the project to another developer, just ensure that the

package.json file is included. The developer could then install all project depend-

encies using:

$ npm install

The main JavaScript files that are written in development should be moved into a

new folder named src. The Gulp task will take the JavaScript file in this folder and

pipe them through the stripdebug and uglify plugins before saving the output in

the js folder.

We now need to create the Gulp file that will run the task. Create a file called

gulpfile.js that contains the following lines of code and save it in the same directory

as index.htm:

var
 gulp = require('gulp'),
 stripdebug = require('gulp-strip-debug'),
 uglify = require('gulp-uglify');

457Organizing Your Code

var
 source = 'src/*',
 dest = 'js/';

// strip debugging and minify JS
gulp.task('js', function() {
 return gulp.src(source)
 .pipe(stripdebug())
 .pipe(uglify())
 .pipe(gulp.dest(dest));
});

// default task
gulp.task('default', ['js'], function() {

 // watch for javascript changes
 gulp.watch(source, ['js']);

});

This file contains two tasks: the js task and the default task. The js task will use

the stripdebug plugin to remove the debugging console.log commands, and then

use the uglify plugin to minify the code. Run this task using this terminal command:

$ gulp js

After running the task, you should find a file called scripts.js inside the js folder.

The contents of this file should contain the minified code and be smaller in size

than the original file.

There is also the default task. This runs our js task and then watches for any file

updates. If a file is added, removed, or modified in the src folder, the js task is run

again. Run the default task using the following command:

$ gulp

More plugins and tasks can be added to gulpfile.js. For example, if our project

JavaScript was contained in several separate, smaller files, we could use a Gulp task

to concatenate together, or we could add a CSS preprocessor such as Sass to compile

SCSS to normal CSS. You can even write a Gulp task that would watch for changes

JavaScript: Novice to Ninja458

to the files, and run a JS Lint test on it whenever these changes signalled any mistakes

made in the code.

Although we haven’t changed the functionality of the quiz game in this chapter,

we have made it more modular and therefore easier to maintain in the future, as

well as optimizing the file size, ready for deployment. These are both important

tasks to consider when writing JavaScript that will be deployed to a server.

Summary
In this chapter, we have learned the following:

■ A framework is a JavaScript library of code that provides methods to make

common tasks easier to achieve.

■ Frameworks can make programming much easier, but you should think carefully

about whether you require a framework and which one is best for your needs.

■ A module is a self-contained piece of code that provides functions and methods

that can then be used in other files.

■ JavaScript does not support modules, but there are patterns available that can

mimic them.

■ CommonJS Modules and AMD modules are two popular module patterns.

CommonJS modules are used by npm while AMD Modules are used by RequireJS.

■ Browserify and Bower are two popular package managers that can be used to

install modules and frameworks, as well as manage dependencies.

■ The MVC pattern is used to organize code into distinct sections that are respons-

ible for different elements of an application.

■ Template files can be used to separate view code from JavaScript; they also enable

dynamic code and programming logic to be inserted into the markup.

■ Minification is the process of removing any redundant characters from the code

in order to reduce its file size.

■ Files can be compressed on the server using the gzip compression tool.

459Organizing Your Code

■ A task runner can be used to automate common tasks such as minifying code,

running tests, and concatenating multiple files into one.

■ Grunt and Gulp are two of the most popular task runners whose approaches

slightly differ, but which both have a large amount of plugins for automating

common tasks.

■ Before code is deployed it should be concatenated into a single file, minified,

and compressed. The script tag should be placed just before the closing </body>

tag to ensure that all elements on the page have loaded before the script runs.

In the next chapter, we’ll be looking at some of the features in the next version of

JavaScript, as well as some ideas of what you can build using JavaScript.

JavaScript: Novice to Ninja460

Chapter16
Next Steps
We are nearing the end of the road to becoming a JavaScript ninja. But as one journey

finishes, a new one begins. Now it’s time to level up your JavaScript ninja skills. In

this final chapter, we’re going to see what’s in store in the next version of JavaScript.

We’ll also look at how to be a better programmer, as well as offer some ideas of what

to do with your newfound JavaScript programming skills.

In this chapter, we’ll cover the following topics:

■ ECMA6 and Harmony
■ key ninja skills
■ project ideas for JavaScript development

What’s Next: ECMA6, Harmony
The next version of ECMAScript will be version 6. The code name “Harmony” is

used to describe the features that are likely to appear in either version 6 or 7 of

ECMAScript. This section introduces some of the exciting new features under dis-

cussion that will help to make JavaScript a more powerful and expressive language.

Block Scope
The let and const key words are being introduced as an alternative to using var

to declare variables.

let works in a similar way to var, but it has block scope, so the variable will only

exist inside the block it was created in:

if(a < 10) {
 var b = 2;
 let c = 3;
}
// b exists here, but c doesn't

const works in a similar way, but is used for declaring constant values. Once a

value is declared using const, it cannot be redefined or changed:

const PI = Math.PI;

Most modern browsers already support these keywords, so it’s possible to try using

them today.

Classes
Harmony includes a new notation for declaring classes in JavaScript. It actually

works in the background in the same way as creating a constructor function and

prototype object, such as we saw in Chapter 12, but the syntax has been changed

so that it looks more like a classical language. It is hoped that this will reassure

programmers who come from a classical language background, as they are often

confused by the lack of classes in JavaScript.

Here’s an example of how the Turtle example from Chapter 12 would look:

var Turtle = function(name) {
 this.name = name;
 this.sayHi = function() {
 return "Hi dude, my name is " + this.name;
 }
}

JavaScript: Novice to Ninja462

Turtle.prototype.attack = function(){
 return this.name + " hits you with his " + this.weapon;
 }

Harmony will introduce a class definition that would look like the following:

class Turtle {
 constructor(name) {
 this.name = name;
 }

 sayHi() {
 return "Hi dude, my name is " + this.name;
 }

 attack() {
 return this.name + " hits you with his " + this.weapon;
 }
}

Inside the class definition, there’s a constructor method where all the initialization

code goes. Instead of assigning methods to the prototype object, they can simply be

listed inside the class definition. The advantage here is that all the code is kept in

one place, rather than having to use a separate prototype object.

Inheritance will also be supported using the extends keyword. Back in Chapter 12,

we created a Superhuman object that inherited all the properties from the Human object.

This can be achieved in Harmony using the following code:

class Superhuman extends Human {
 // Superhuman specific properties and methods go here
}

Syntactic Sugar

Harmony is not implementing anything different from what already exists in

previous versions of ECMAScript in terms of supporting classes. All that’s changing

is the notation used to implement them. This is known as syntactic sugar, as it

allows us to write an existing piece of code in a nicer, more succinct way.

463Next Steps

Arrow Notation
Harmony will introduce a new arrow notation that can be used as syntactic sugar

to write anonymous callbacks more concisely. For example, the following code uses

the map() method and a callback function to square each value in an array:

[1,2,3].map(function(x) { return x * x });

This can be written using the arrow notation:

[1,2,3].map(x => x * x);

Instead of needing the function keyword, all that’s required is to place the paramet-

ers before the => symbol, followed by the return value of the callback.

The arrow notation also fixes the scope problem associated with the keyword this

(discussed in Chapter 12). Any nested functions that are written using the arrow

notation will keep the scope of this.

Default Parameters
Harmony will allow default parameters to be specified in a function definition. This

means that the following workaround that we covered in Chapter 4 using the ||

operator will be unnecessary:

function hello(name) {
 var name = name || "JavaScript";
 return "Hello " + name;
}

Instead, we can save the line of code at the beginning of the function and set the

default value when the parameter is defined by assigning a value inside the paren-

theses:

function hello(name = "JavaScript") {
 return "Hello " + name;
}

Now if no argument is provided, the default value will be used:

JavaScript: Novice to Ninja464

hello("Ninja");
<< "Hello Ninja"

hello();
<< "Hello JavaScript"

Promises
Harmony will introduce a new notation for using promises. The increase in the use

of asynchronous programming in JavaScript has meant that more and more callbacks

are used. This can result in messy and confusing “spaghetti code” when more than

one callback is used in the same function. A promise is used to call a piece of

asynchronous code without having to use multiple callbacks. Promises don't do

anything that can't already be achieved using callbacks, but they aim to simplify

the process and avoid the convoluted code that can result from using multiple

callbacks.

A promise deals with these phases of an operation’s execution:

■ pending―the operation hasn’t failed or been fulfilled
■ fulfilled―the operation was successful
■ failed―the operation didn’t work

These phases allow you to specify which code to run for each part of the operation.

A promise is created using a constructor function. This takes a function called an

executor as an argument where it's possible to state the conditions for success and

failure:

var promise = new Promise(
 function (resolve, reject) {
 ...
 if (...) { // condition for success goes here
 resolve(value); // success
 } else {

465Next Steps

 reject(reason); // failure
 }
 });

Now the promise is stored in a variable—called promise in this case—where it’s

possible to call methods on the promise. The then() method gives a readable way

of specifying what needs to be done once the operation is successful:

promise.then(
 function (value) {
 // success code here
 }
);

The catch() method is used to specify what to do if the operation fails:

promise.catch(
 function (reason) {
 // failure code here
 }
);

Generators
Harmony will also introduce support for generators. These are special functions

used to produce iterators that maintain the state of a value.1

To define a generator function, an asterisk symbol (*) is placed after the function

declaration, like so:

function* exampleGenerator() {

}

Calling a generator function doesn’t actually run any of the code in the function; it

returns a new generator object. This can then be used to implement an iterator. For

example, we can create a generator to produce a Fibonacci-style number series (a

1 We used a closure to create an iterator function in Chapter 11.

JavaScript: Novice to Ninja466

sequence that starts with two numbers and the next number is obtained by adding

the two previous numbers together) using the following code:

function* fibonacci(a,b) {
 let [prev,current] = [a,b];
 for (;;) {
 [prev, current] = [current, prev + current];
 yield current;
 }
}

The code starts by initializing an array with the first two values of the sequence,

which are provided as arguments to the function. A for loop is then used without

any conditions (hence the ;; inside the parentheses) as none are needed; the loop

will continue indefinitely every time the iterator’s next() method is called. Inside

this loop is where the next value is calculated by adding the previous two values

together.

Generator functions employ the special yield keyword that is used to return a value.

The difference between the yield and the return keywords is that by using yield,

the state of the value returned is remembered the next time yield is called. Hence,

the current value in the Fibonacci sequence will be stored for use later.

To create a generator object based on this function, we simply assign a variable to

the function:

let sequence = fibonacci(1,1);

The generator object is now stored in the sequence variable. It inherits a method

called next(), which is then used to obtain the next value produced by the yield

command:

sequence.next();
<< 2

sequence.next();
<< 3

467Next Steps

sequence.next();
<< 5

It’s also possible to iterate over the generator:

for (n of sequence) {
 // stop the sequence after it reaches 100
 if (n > 10)
 break;
 console.log(n);
}
<< 8
<< 13
<< 21
<< 34
<< 55
<< 89

Note that the sequence continued from the last value that had been produced using

the next() method. This is because a generator will maintain its state throughout

the life of a program.

Modules Using Export and Import
Harmony will support modules natively. The main implementation of modules so

far has been in CommonJS and RequireJS; the notation used by Harmony tries to

use the best features of both these approaches. The notation uses named exports to

highlight anything in a library that’s to be exported. This is done by placing the

keyword export in front of any declaration. For example, if we had a script called

average.js containing the sum() and mean() functions that we wrote in Chapter

11, we could declare these functions as named exports:

export function sum(array, callback) {
 if(typeof callback === "function") {
 array = array.map(callback);
 }
 return array.reduce(function(a,b) { return a + b });
}

JavaScript: Novice to Ninja468

export function mean(array) {
 return sum(array)/array.length;
}

To then import this in the main scripts.js file, you’d add this line of code:

import { sum, mean } from averages;

Now the sum() and mean() functions can be used in the scripts.js file.

Everything in a module file can be imported using this notation:

import * as averages from 'averages';

This will then import all the functions from the averages.js file and they’ll be given

a namespace of averages. So, the mean function could be used as follows:

averages.mean([2,6,10]);

Ready to Use Today
Certain browsers have already started implementing the new features in Harmony,

although it might be some time before they’re all fully supported. It is possible to

implement these features now using a transpiler, which converts code written in

ECMAScript 6 into JavaScript code to work in modern browsers. One example of a

transpiler is the Google project Traceur,2 which supports many features of

ECMAScript 6 and generates code that runs reasonably well on modern browsers.

If you're using Node.js to run any JavaScript, it is possible to add the --harmony

flag to get support for most of the new features.

The ECMAScript 6 compatibility table3 contains up-to-date information about which

features have been implemented in different browsers and transpilers.

The next version of JavaScript promises to deliver some powerful new features, so

it is worth learning about them now—even using them in some cases—so that you’re

comfortable using them when they’re part of the main language. You can find out

2 https://github.com/google/traceur-compiler
3 http://kangax.github.io/compat-table/es6/

469Next Steps

https://github.com/google/traceur-compiler
http://kangax.github.io/compat-table/es6/

more about this by reading the excellent Preparing for ECMAScript 6 series by

Aurelio De Rosa4 on SitePoint and the book Understanding ECMAScript 6 by

Nicholas C. Zakas.5

Ninja Skills
At this stage of the book, you should be well on your way to becoming a proficient

JavaScript programmer. But a Ninja programmer needs to do more. A Ninja program-

mer doesn’t just know the language, they have further skills that set them apart from

regular programmers. This section outlines a few key skills that are well worth

mastering to help take your programming to the next level.

Version Control
Version control software allows you to track all the changes that are made to your

code, because every version of your code is kept and can be recalled at any time.

Many people use a crude form of version control by saving different versions of

code with different file names such as projectV1.js, projectV2.js, projectV3.js ... and so

on. This is a reasonable method, but it can be error-prone. (If you’ve used this

method before, how many times have you forgotten to change the name before

saving?) It also doesn’t offer the same benefits that can be gained by using a source

control management tool.

One of the most popular source control management tools is Git,6 written by Linus

Torvalds, the creator of Linux. Git enables you to roll back to a previous version of

your code. You can also branch your code to test new features without changing

the current stable codebase. Git is a distributed source control system, which means

that many people can fork a piece of code, develop it independently, then merge

any of their changes back into the main codebase.

Git uses the command line to issue commands, but there are a large number of GUI

front ends that can be installed to give a visual representation of the code.

Source control is invaluable if you’re working in a team, as it means that different

developers can work on the same piece of code without worrying about causing

4 http://www.sitepoint.com/preparing-ecmascript-6-map-weakmap/
5 https://leanpub.com/understandinges6/read/
6 http://git-scm.com/

JavaScript: Novice to Ninja470

http://www.sitepoint.com/preparing-ecmascript-6-map-weakmap/
http://www.sitepoint.com/preparing-ecmascript-6-map-weakmap/
https://leanpub.com/understandinges6/read/
https://leanpub.com/understandinges6/read/
http://git-scm.com/

any errors in the main codebase. If any mistakes do accidentally end up in the main

codebase, they can easily be rectified by rolling back to the last stable version.

There are a number of online services that can host Git repositories, including Git-

Hub,7 Kiln,8 Bitbucket,9 and Codeplane.10 They can be used to host an online Git

repository that can then be forked by other developers, making it particularly useful

for team projects. Some of these services make all the code public and so they are

often used by open source projects to host source code; others keep the code private,

and are used to host personal or business projects.

As a ninja JavaScript developer, your life will be made much easier by integrating

Git into your everyday workflow. To get started with Git, a very useful mini book

is Git Fundamentals, available on Learnable.11

Keep Your Knowledge Up to Date
The world of JavaScript is fast-moving and, if anything, it’s getting faster. You need

to ensure that you keep up to date with recent developments and best practices.

Here are some suggestions of how you can keep your knowledge current:

■ subscribe to blogs such as SitePoint’s JavaScript channel12

■ write your own blog

■ follow other JavaScript developers on Twitter

■ attend conferences or local meetups

■ read magazine articles

■ contribute to an open-source project

■ join a local or online user group

7 https://github.com/
8 https://www.fogcreek.com/kiln/
9 https://bitbucket.org/
10 https://codeplane.com/
11 https://learnable.com/books/git-fundamentals
12 http://www.sitepoint.com/javascript/

471Next Steps

https://github.com/
https://github.com/
https://www.fogcreek.com/kiln/
https://bitbucket.org/
https://codeplane.com/
https://learnable.com/books/git-fundamentals
http://www.sitepoint.com/javascript/

■ sign up for the SitePoint newsletter, Versioning.13

■ read books on more advanced topics such as Functional JavaScript by Michael

Fogus14 and Human JavaScript by Henrik Joreteg15

Use Common JavaScript Coding Patterns
A pattern is a piece of code that solves a common problem and represents best

practice. In the time that JavaScript has existed, a number of patterns have emerged

that help to write maintainable code that’s proven to work. In JavaScript develop-

ment, a pattern is the generally accepted way of achieving a specific goal, often be-

cause it’s the best way of doing it.

Another advantage of using standard coding practices is that it makes sharing code

between developers a cinch. If you use the same style and terminology, developers

will find it much easier to follow your code. Patterns often have names attached to

them (for example, the IIFE pattern that we've seen previously). This makes it

easier to discuss different patterns, since the name can be referred to explicitly.

An antipattern is a piece of code that’s accepted bad practice. It generally causes

more problems than it solves and should be avoided.

As you write more JavaScript, it’s a good idea to try and follow as many patterns as

possible. They’ll save you from having to reinvent the wheel and help you to write

reusable code that is easier for others to read. A good resource for learning more

about JavaScript patterns is Learning JavaScript Design Patterns by Addy Osmani.16

Build Things
You can learn all the theory you want, but the only way you’ll actually develop

your coding style it to go out and build things. By putting ideas into practice and

solving real problems, you’ll really start to get a feel for the language. There is

nothing better for improving your technique than writing code. So get writing! In

the next section, there are some ideas for what you can build.

13 http://www.sitepoint.com/versioning/
14 http://shop.oreilly.com/product/0636920028857.do
15 http://humanjavascript.com/
16 http://addyosmani.com/resources/essentialjsdesignpatterns/book/

JavaScript: Novice to Ninja472

http://www.sitepoint.com/versioning/
http://shop.oreilly.com/product/0636920028857.do
http://shop.oreilly.com/product/0636920028857.do
http://humanjavascript.com/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

JavaScript Development Ideas
Now that you’ve learned how to program in JavaScript, you might be thinking what

next? You need a project! But what? In this section, we’ll look at what you can do

with your newly acquired programming skills.

JavaScript has evolved so much in recent years. It’s no longer considered to be just

an easy scripting language used to add a drop-down menu and a few effects to a

web page, although it is still perfectly fine to use it for this.

The following ideas are intended to get your creative juices flowing and, I trust,

spark an idea for a project. It is by no means a complete list of what you can do with

JavaScript—the possibilities are endless and only limited by your imagination.

HTML5 Game Development
The advent of HTML5 has heralded a massive growth in online games written in

JavaScript and using other HTML5 technologies. Previously, most online games

were written using Flash as JavaScript was considered too slow. The adoption of

Canvas as well as faster JavaScript engines now means that HTML5 games can

compete with native applications. The development of WebGL and browser GPUs

means that fast, rendered 3D games in the browser are now a realistic possibility.

For the launch of Internet Explorer 9, Microsoft teamed up with Zepto labs to create

a brilliant version of Cut the Rope17 that could run in a browser using only HTML5

technologies. This is a terrific example of what can be done, but games need not be

overly complex; the success of Flappy Bird18 shows that a good idea that’s well

implemented can be incredibly popular. There are lots of examples of different

styles of game at js13kGames,19 an annual competition where all the games must

be written in 13 kilobytes or less (including all the code, graphics, and sounds!).

There are many libraries that help to write HTML5 game code. A couple of excellent

ones are Jaws20 and Phaser.21

17 http://www.cuttherope.net/
18 http://flappybird.io/
19 http://js13kgames.com/
20 http://jawsjs.com/
21 http://phaser.io/

473Next Steps

http://www.cuttherope.net/
http://flappybird.io/
http://js13kgames.com/
http://jawsjs.com/
http://phaser.io/

If you’re interested in writing an HTML5 game, you can find lots of useful informa-

tion at the HTML5 Game Development website.22

Single-page Web Applications
A single-page web application is an application that, as the name suggests, runs on

a single web page in a browser. The idea is to create a seamless experience as users

navigate around the application and avoid the feeling that they are moving from

one page to another. This is frequently achieved by preloading data in the back-

ground. The data might be stored in a back-end database and retrieved as JSON using

Ajax, or it may be stored locally using the Local Storage API. An MVC framework

will often be used to ensure that the interface is updated quickly. Many applications

are now using the single-page web application model, a good example of which is

the Strike to-do list app.23

App Development
Firefox OS is an ambitious project launched by the Mozilla Foundation that aims

to create an open-source mobile operating system solely using web technologies to

create applications.24 This means that JavaScript is the primary programming lan-

guage used to write the software for any Firefox OS devices. If you have an idea for

a smartphone or tablet app, you already have the tools needed to produce one. Just

create your app using HTML, CSS, and JavaScript and then test it using the Firefox

OS simulator in a browser.25 You can then submit your app to the Firefox Market-

place,26 where users of the operating system will be able to install it on their devices.

If you want to develop an app for Firefox OS, a good place to start is by reading this

“Firefox OS Application Primer” by Preetish Panda,27 as well as the official docu-

mentation on the Mozilla Developer Network.28

Android and iOS don’t use JavaScript as their native programming language; how-

ever, it’s still possible to build an application using HTML5 technologies and

22 http://www.html5gamedevelopment.com/
23 http://www.strikeapp.com/
24 There are some extra APIs available for interfacing with the phone’s hardware and services.
25 https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
26 https://marketplace.firefox.com/
27 http://www.sitepoint.com/firefox-os-application-primer/
28 https://developer.mozilla.org/en-US/Firefox_OS

JavaScript: Novice to Ninja474

http://www.html5gamedevelopment.com/
http://www.strikeapp.com/
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
https://marketplace.firefox.com/
https://marketplace.firefox.com/
http://www.sitepoint.com/firefox-os-application-primer/
https://developer.mozilla.org/en-US/Firefox_OS
https://developer.mozilla.org/en-US/Firefox_OS

JavaScript and then use a conversion tool such as CocoonJS,29 Cordova,30 or

PhoneGap.31 These will convert an HTML5 application into native code that can

be run on the Android and iOS platforms. So you can build using just HTML5

technologies and JavaScript, but then deploy on multiple devices.

Node.js Development
JavaScript has been traditionally thought of as a front-end programming language

used for client-side programming in the browser. That all changed when Node.js

was released and transformed the JavaScript landscape. Node.js means that JavaScript

can be run without using a browser, so JavaScript can now be used to write server-

side code or command-line tools that interact with the file system.

As a JavaScript ninja, you’ll probably install Node anyway to use the many tools

that will make your life easier (such as Grunt, which we saw in the previous chapter).

Node.js can be used to write your own tools that help to automate your workflow,

or to build server-side applications (such as full stack), scalable web applications,

dynamic websites that link to back-end databases, and web API services. Node.js

is increasingly being used to develop large-scale websites and applications, with

companies such as PayPal, Groupon, and Yahoo using it to deliver parts of their

sites.

Due to the asynchronous nature of JavaScript, Node.js has a number of advantages

over traditional server-side languages such as PHP, Python, and Ruby. It’s ideally

suited for real-time update applications with lots of concurrent users as it’s able to

quickly deal with requests in a non-blocking way.

If you want to learn more about Node.js, why not take a look at Jump Start Node.js

by Don Nguyen.32

And There’s More!
And it doesn’t stop there―JavaScript is becoming the language of choice for com-

municating with devices via APIs provided by the manufacturers. The so-called

29 https://www.ludei.com/cocoonjs/
30 http://cordova.apache.org/
31 http://phonegap.com/
32 http://www.sitepoint.com/store/jump-start-node-js/

475Next Steps

https://www.ludei.com/cocoonjs/
http://cordova.apache.org/
http://phonegap.com/
http://www.sitepoint.com/store/jump-start-node-js/
http://www.sitepoint.com/store/jump-start-node-js/

“Internet of Things33” includes a range of devices, from watches and virtual-reality

headgear to home automation devices and even robots! Knowledge of JavaScript

will enable you to program an ever-growing list of electronic devices.

This brilliant article34 by Patrick Catanzariti lists a large number of devices that use

JavaScript as their scripting language.

Summary
In this chapter, we’ve learned the following:

■ The next version of ECMAScript is version 6, which is codenamed Harmony. It

introduces several exciting new features that will help to make JavaScript even

more expressive and easier to use.

■ A ninja JavaScript developer should use version control such as Git to keep any

projects.

■ A ninja JavaScript developer’s knowledge can be kept up to date by subscribing

to mailing lists, attending talks and conferences, following developers on Twitter,

and reading books and blog posts.

■ A ninja JavaScript developer should use common JavaScript coding patterns

that are proven best practice. This also makes it easier to communicate about

code.

■ A ninja JavaScript developer should write lots of code and build things!

■ There are many different uses for JavaScript, such as HTML5 games, server-side

development using Node JS, app development for Firefox OS, and building

single-page web applications.

■ JavaScript is increasingly being used as a scripting language for the Internet of

Things (IoT), meaning it can be used to program a variety of devices.

And that brings us to the end of our journey! I hope you have enjoyed learning

JavaScript and will continue to develop your skills in the future.

33 http://en.wikipedia.org/wiki/Internet_of_Things
34 http://www.sitepoint.com/javascript-beyond-web-2014/

JavaScript: Novice to Ninja476

http://en.wikipedia.org/wiki/Internet_of_Things
http://www.sitepoint.com/javascript-beyond-web-2014/

JavaScript has moved beyond its humble beginnings as a basic scripting language

for adding effects to web pages. It now occupies a unique position as a powerful

language that can be used to program on the client-side and the server-side. JavaS-

cript is now becoming increasingly available on several other platforms, extending

its reach beyond the Web. The future certainly seems bright for the language as it

offers various opportunities to interact with technology. The only limit to what you

can do is your imagination. So what are you waiting for? Get programming, ninja!

477Next Steps

	JavaScript: Novice to Ninja
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to Take Your Learning Further?

	Hello JavaScript
	Programming
	JavaScript
	The History of JavaScript
	The Browser Wars
	Web 2.0
	Standards
	HTML5
	Node.js
	The Future of JavaScript

	A Ninja Programming Environment
	JavaScript Version
	Text Editors
	Browser Console
	Chrome
	Safari
	Internet Explorer
	FireFox
	Alternatives

	Your First JavaScript Program
	JavaScript in the Browser
	Three Layers of the Web

	Unobtrusive JavaScript
	Graceful Degradation and Progressive Enhancement
	Your Second JavaScript Program
	The Project: Quiz Ninja
	Chapter Summary

	Programming Basics
	Comments
	JavaScript Grammar
	Data Types
	Strings
	Variables
	Reserved Words
	Assignment
	String Properties and Methods

	Numbers
	Octal and Hexadecimal Numbers
	Exponential Notation
	Number Methods
	Arithmetic Operations
	Changing Variables
	Incrementing Values
	Infinity
	NaN
	Type Coercion
	Converting Between Strings and Numbers
	Converting Strings to Numbers
	Converting Numbers to Strings
	Parsing Numbers

	Undefined
	Null
	Booleans
	Logical Operators
	! (Logical NOT)
	&& (Logical AND)
	|| (Logical OR)
	Lazy Evaluation

	Bitwise Operators
	Bitwise NOT
	Bitwise AND
	Bitwise OR
	Bitwise XOR
	Bitwise Shift Operators

	Comparison
	Equality
	Soft Equality
	Hard Equality
	Inequality
	Greater Than and Less Than

	Quiz Ninja Project
	Summary

	Arrays, Logic, and Loops
	Arrays
	Stacks of Pizza
	Adding Values to Arrays
	Creating Array Literals
	Removing Values from Arrays

	Array Properties and Methods
	Pop, Push, Shift, and Unshift
	Merging Arrays
	The join() Method
	Slicing and Splicing
	Reverse
	Sort
	Finding if a Value is in an Array
	Multidimensional Arrays

	Logic
	if Statements
	else Statements
	Ternary Operator
	switch Statements

	Loops
	while Loops
	Infinite Loops
	do ... while Loops
	for Loops
	Nested for Loops
	Looping over Arrays

	Quiz Ninja Project
	Summary

	Functions
	Defining a Function
	Function Declarations
	Function Expressions
	Function() Constructors
	Invoking a Function

	Return Values
	Parameters and Arguments
	The arguments Variable
	Default Arguments

	Scope
	Global Scope
	Local Scope

	Hoisting
	Variable Hoisting
	Function Hoisting

	Callbacks
	Sorting Arrays
	Improving the mean() Function

	Array Iterators
	forEach()
	map()
	reduce()
	Using map() and reduce() Together
	filter()

	Quiz Ninja Project
	Summary

	Objects
	Object Literals
	A Super Example

	Creating Objects
	Accessing Properties
	Calling Methods
	Checking if Properties or Methods Exist
	Finding all the Properties of an Object
	Adding Properties
	Changing Properties
	Removing Properties
	Nested Objects
	Objects as Parameters to Functions

	Built-in Objects
	JSON
	The Math Object
	Mathematical Constants
	Mathematical Operations
	Trigonometric Functions
	Random Numbers
	Experimental Methods

	The Date Object
	Constructor Function
	Getter Methods
	Setter Methods

	The RegExp Object
	Creating Regular Expressions
	RegExp Methods
	Basic Regular Expressions
	Character Groups
	Regular Expression Properties
	Special Characters
	Modifiers
	A Practical Example
	String Methods

	Roll the Dice!
	Quiz Ninja Project
	Summary

	The Document Object Model
	The Document Object Model
	What is the Document Object Model?
	History of the DOM

	An Example Web Page
	Getting Elements
	Legacy DOM Shortcut Methods
	Getting an Element by Its ID
	Get Elements by Their Tag Name
	Get Elements by Their Class Name
	Query Selectors

	Navigating the DOM Tree
	Finding the Value of a Node
	Getting and Setting Attributes
	Getting an Element’s Attributes
	Setting an Element’s Attributes

	Classes of an Element
	The className Property
	The classList Property

	Updating the DOM by Creating Dynamic Markup
	Creating an Element
	Creating a Text Node
	Appending Nodes
	Putting It All Together in a Function
	Adding Elements to the Page
	Remove Elements from a Page
	Replacing Elements on a Page
	innerHTML

	Live Collections
	Updating CSS
	Camel Case Properties
	Disappearing Act
	Checking Style Properties
	Use with Caution

	Quiz Ninja Project
	Adding Some Style

	Summary

	Events
	Event Listeners
	Inline Event Handlers
	Older Event Handlers
	Event Listeners

	Example Code
	The Event Object
	Types of Event
	The Event Target
	Coordinates of an Event
	Which Mouse Button Was Pressed?

	Types of Events
	Mouse Events
	Keyboard Events
	Modifier Keys
	Touch Events
	Touch Event Properties

	Removing Event Listeners
	Stopping Default Behavior
	Event Propagation
	Bubbling
	Capturing
	Stopping the Bubbling Phase
	Event Delegation

	Quiz Ninja Project
	Summary

	Forms
	Forms
	A Searching Example
	Accessing Form Elements
	Form Properties and Methods
	Form Events
	Submitting a Form
	Retrieving and Changing Values from a Form

	Form Controls
	Input Fields
	Text Input Fields
	Password Input Fields
	Checkbox Input Fields
	Radio Button Input Fields
	Hidden Input Fields
	File Input Fields
	Select Drop-down List
	Text Areas
	Buttons

	I Need a Hero!
	Form Validation
	Quiz Ninja Project
	Summary

	The Window Object
	The Browser Object Model
	Going Global
	Dialogs

	Browser Information
	Which Browser?
	Location, Location, Location

	The Browser History
	Controlling Windows
	Screen Information
	The Document Object
	document.write()
	Cookies
	Creating Cookies
	Changing Cookie Values
	Reading Cookies
	Cookie Expiry Dates
	The Path and Domain of Cookies
	Secure Cookies
	Deleting Cookies

	Timing Functions
	Animation
	requestAnimationFrame

	Quiz Ninja Project
	Summary

	Testing and Debugging
	Errors, Exceptions, and Warnings
	The Importance of Testing and Debugging
	Strict Mode
	Linting Tools

	Feature Detection
	Debugging in the Browser
	The Trusty Alert
	Using the Console
	Debugging Tools

	Error Objects
	Throwing Exceptions

	Exception Handling
	try, catch, and finally

	Tests
	Test-driven Development
	Testing Frameworks
	Jasmine
	Crunching Some Numbers

	Quiz Ninja Project
	Summary

	Functional JavaScript
	What is Functional Programming?
	Functions that Return Functions

	Function Properties and Methods
	Call and Apply Methods
	Custom Properties

	Callbacks
	Event-driven Asynchronous Programming
	Generalized Functions

	Closures
	Function Scope
	The Ninja Training Temple
	A Basic Closure Example
	Returning a Function
	A Counter Example
	A Functional Example

	Immediately Invoked Function Expressions
	Temporary Variables
	Mimicking Block Scope
	Initialization Code
	Safe Use of Strict Mode
	Creating Self-contained Modules

	Functions that Define and Rewrite Themselves
	Init-Time Branching

	Recursive Functions
	Currying
	A General Curry Function

	Quiz Ninja Project
	Summary

	Object-oriented Programming in JavaScript
	Object-oriented Programming
	Encapsulation
	Polymorphism
	Inheritance
	Classes

	Constructor Functions
	Prototypal Inheritance
	The Prototype Object
	Finding Out the Prototype
	Own Properties and Prototype Properties
	The Prototype Is Live!
	Overwriting Prototype Properties
	What Should the Prototype Be Used For?

	Public and Private Methods
	Inheritance
	The Prototype Chain

	The Object Constructor Function
	Enumerable Properties
	Polymorphism
	Property Attributes and Descriptors
	Getting and Setting Property Descriptors
	Getters and Setters

	Creating Objects from Objects
	Object-based Inheritance
	Object Prototype Chain

	Adding Methods to Built-in Objects
	Mixins
	Using Mixins to Add Properties
	Using Mixins to Create a copy() Method
	Using the Mixin Method to Add Modular Functionality

	Chaining Functions
	This and That
	Use that = this
	Use bind(this)

	Borrowing Methods from Prototypes
	Borrowing Array Methods

	Quiz Ninja Project
	Summary

	Ajax
	Clients and Servers
	A Brief History of Ajax
	The XMLHttpRequest Object
	readystate
	Opening the Request
	Sending the Request
	Receiving the Response

	Receiving Information
	Sending Information
	FormData
	Ajax Timeouts
	JSON With Padding
	JSONP in Action

	Quiz Ninja Project
	Summary

	HTML5 APIs
	The Development of HTML5
	WHATWG
	Working Together
	Adoption
	Modules

	The data- Attribute
	HTML5 APIs
	HTML5 Web Storage
	Geolocation
	Web Workers
	A Factorizing Example
	Shared Web Workers

	Multimedia
	Other APIs

	Drawing with Canvas
	Shims and Polyfills
	Quiz Ninja Project
	Summary

	Organizing Your Code
	Frameworks
	DOM Manipulation Example
	jQuery
	Advantages and Disadvantages of Frameworks
	When to Use a Framework
	Some Useful Frameworks

	Modules
	CommonJS Modules
	Asynchronous Module Definitions

	Package Managers
	Browserify
	Bower
	Ender

	MVC Libraries
	A Quick List Example
	MVC Frameworks

	Templates
	Minification
	Task Runners
	Grunt
	Gulp

	Deploying JavaScript
	Quiz Ninja Project
	Deployment

	Summary

	Next Steps
	What’s Next: ECMA6, Harmony
	Block Scope
	Classes
	Arrow Notation
	Default Parameters
	Promises
	Generators
	Modules Using Export and Import
	Ready to Use Today

	Ninja Skills
	Version Control
	Keep Your Knowledge Up to Date
	Use Common JavaScript Coding Patterns
	Build Things

	JavaScript Development Ideas
	HTML5 Game Development
	Single-page Web Applications
	App Development
	Node.js Development
	And There’s More!

	Summary

