

Summary of Contents
Preface .. xi

1. Getting the Lay of the Land ... 1

2. Putting CSS into Perspective .. 21

3. Digging Below the Surface .. 39

4. Validation and Backward Compatibility .. 61

5. Splashing Around a Bit of Color ... 75

6. Working with Fonts .. 95

7. Text Effects and the Cascade .. 111

8. Simple CSS Layout .. 149

9. Three-column Layouts .. 217

10. Fixed-width Layouts ... 259

A. CSS Miscellany ... 299

B. CSS Color Reference .. 307

C. CSS Property Reference ... 317

Recommended Resources ... 477

Index ... 485

HTML Utopia: Designing

Without Tables Using CSS

by Dan Shafer

and Rachel Andrew

HTML Utopia: Designing Without Tables Using CSS
by Dan Shafer and Rachel Andrew

Copyright © 2006 SitePoint Pty. Ltd.

Technical Director: Kevin Yank Editor: Georgina Laidlaw
Expert Reviewer: Richard Rutter Index Editor: Bill Johncocks
Managing Editor: Simon Mackie Cover Design: Jess Mason
Technical Editor: Craig Anderson Cover Layout: Alex Walker
Printing History: Latest Update: November 2006

First Edition: May 2003
Second Edition: April 2006

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 0-9752402-7-7

Printed and bound in the United States of America

mailto:business@sitepoint.com

About the Authors

Dan Shafer is a highly respected web design consultant. He cut his teeth as the first web
master and Director of Technology at Salon.com, then spent almost five years as the
Master Builder in CNET’s Builder.com division.

Dan gained widespread recognition as a respected commentator on the web design scene
when he hosted the annual Builder.com Live! conference in New Orleans. He has designed
and built more than 100 web sites and is regarded as an expert in web user experience
design and implementation.

The author of more than 50 previous titles on computers and technology, Dan lives in
Monterey, California, with his wife of almost 25 years, Carolyn, and their Shiitzu dog,
Albert Einstein.

Rachel Andrew is web developer and director of web solutions provider edgeofmyseat.com.
When not writing code, she writes about writing code and is the coauthor of several books
promoting the practical usage of web standards alongside other everyday tools and tech
nologies. Rachel takes a common sense, real world approach to web standards, with her
writing and teaching being based on the experiences she has in her own company every
day.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,
they can often be found wandering around the English countryside hunting for geocaches
and nice pubs that serve Sunday lunch and a good beer.

About the Expert Reviewer

Richard Rutter lives and works in Brighton, UK, where he is co-founder and Production
Director for web consultancy Clearleft.1 Richard has been designing and developing web
sites for nigh on ten years and regularly harps on about web standards, accessibility, and
mountain biking on his weblog.2

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals.

Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and community
forums.

1 http://www.clearleft.com
2 http://www.clagnut.com

http://www.clearleft.com
http://www.clagnut.com
http://www.sitepoint.com/
http:Salon.com
http:edgeofmyseat.com
http://www.clearleft.com
http://www.clagnut.com

This book is dedicated to One
Mind, in the knowing that It

is all there is.

—Dan Shafer

Table of Contents
Preface ... xi

Who Should Read this Book? ... xii

What’s in this Book? .. xii

The Book’s Web Site .. xv

The Code Archive ... xv

Updates and Errata ... xv

The SitePoint Forums ... xv

The SitePoint Newsletters ... xv

Your Feedback ... xvi

Acknowledgements .. xvi

1. Getting the Lay of the Land ... 1

CSS in Context .. 2

The Basic Purpose of CSS .. 3

Why Most—but Not All—Tables Are Bad ... 3

Tables Mean Long Load Times ... 4

Use of Transparent Images Slows us Down 4

Maintaining Tables is a Nightmare ... 5

Tables Cause Accessibility Issues ... 6

When it’s Okay to Use a Table .. 6

What is CSS, Really? ... 6

Parts of a CSS Rule .. 8

Types of CSS Rules .. 10

Which Properties can CSS Rules Affect? 11

Which Elements can CSS Affect? ... 11

Where can CSS Styles be Defined? .. 12

A Simple Example ... 14

Summary ... 19

2. Putting CSS into Perspective ... 21

What can CSS Do? .. 21

Color and CSS ... 22

Fonts and CSS ... 25

Dynamic Pseudo-classes and CSS ... 28

Images and CSS ... 29

Multiple Style Sheets, Users, and CSS .. 30

Advantages of CSS Design ... 31

Increased Stylistic Control .. 31

Centralized Design Information ... 32

Semantic Content Markup ... 33

HTML Utopia: Designing Without Tables Using CSS

Accessibility ... 34

Standards Compliance ... 36

Browser Support for CSS ... 37

Summary ... 37

3. Digging Below the Surface ... 39

Applying CSS to HTML Documents .. 40

Using Shorthand Properties .. 41

How Inheritance Works in CSS .. 42

Selectors and the Structure of CSS Rules .. 44

Universal Selector .. 44

Element Type Selector .. 45

Class Selector ... 45

ID Selector .. 46

Pseudo-element Selector ... 47

Pseudo-class Selector .. 48

Descendant Selector ... 50

Parent-child Selector .. 51

Adjacent Selector ... 52

Attribute Selectors ... 52

Selector Grouping .. 54

Expression Measurements .. 54

Absolute Values .. 56

Relative Values ... 57

CSS Comments .. 59

Summary ... 60

4. Validation and Backward Compatibility .. 61

Validating your CSS ... 61

Adjusting for Backward Compatibility .. 65

Browsers that Do Not Support CSS ... 66

Browsers with Poor or Badly Implemented CSS Support 66

Bugs in Modern Browsers ... 69

Keep the Quirks: DOCTYPE Switching .. 70

Summary ... 73

5. Splashing Around a Bit of Color .. 75

Who’s in Charge? .. 75

Color in CSS .. 77

How to Specify Colors ... 78

Selecting and Combining Colors ... 81

Setting body Color ... 82

Transparency, Color, and User Overrides 83

iv

Interesting Uses of Color .. 85

Warnings and Cautions .. 85

Coloring Alternate Rows and Adding Cell Borders in Data

Tables .. 87

Background Images .. 90

Summary ... 94

6. Working with Fonts .. 95

How CSS Deals with Fonts .. 95

The font-family Property ... 96

Generic Fonts ... 97

The font-size Property .. 99

HTML Sizes vs CSS Sizes .. 100

Variability across Browsers and Platforms 100

Relative to what? ... 101

Other Font Properties ... 103

The font-style Property ... 103

The font-variant Property ... 103

The font-weight Property ... 103

The font Shorthand Property .. 104

Standard and Nonstandard Font Families ... 106

Specifying Font Lists .. 107

Using Nonstandard and Downloadable Fonts 109

Summary ... 109

7. Text Effects and the Cascade ... 111

Using the span Element ... 112

Text Alignment as a Design Technique .. 113

Text Alignment in CSS vs HTML ... 114

Moving from Crowded to Airy Design Using Alignment 114

First-line Indentation ... 120

Horizontal and Vertical Spacing ... 122

The line-height Property ... 122

The letter-spacing and word-spacing Properties 125

Text Decorations .. 129

Styling Hyperlinks ... 131

Styling Lists with CSS .. 134

The list-style-type Property .. 134

The list-style-position Property .. 137

The list-style-image Property .. 139

Cascading and Inheritance ... 140

Basic Principles of Cascading .. 140

v

HTML Utopia: Designing Without Tables Using CSS

Sort Order ... 142

Specificity .. 144

Origin .. 146

Weight ... 147

Summary ... 147

8. Simple CSS Layout ... 149

The Layout .. 149

Creating the Document .. 151

The Header .. 153

The Main Content Section ... 153

The Sidebar ... 154

Positioning the Page Elements .. 157

The display Property .. 157

Absolute, Relative, and Positioning Contexts 158

The Box Model .. 162

Margin Properties .. 172

Margins, Padding, and Lists .. 175

Border Properties ... 178

Constructing the Layout .. 180

The Header Area .. 183

The Content Area .. 191

Repositioning the Sidebar .. 213

Summary ... 214

9. Three-column Layouts .. 217

Adding a Third Column ... 217

The Markup ... 218

Positioning the Sidebar .. 221

Adding a Footer ... 232

The float Property .. 236

How Does it Work? ... 239

Putting float into Practice in our Layout ... 240

Achieving Full-height Columns ... 244

The Content Order Problem ... 251

Other Layout Methods ... 255

Summary ... 256

10. Fixed-width Layouts .. 259

The Layout .. 260

Creating the Document .. 261

Centering the Content Area ... 264

The Header Area .. 267

vi

The Content .. 268

The Table ... 273

Multiple-column Fixed-width Layouts .. 281

Positioned Columns ... 282

Floated Columns .. 284

“Zoom” Layouts ... 288

Creating the Style Sheet ... 290

Attaching Alternate Style Sheets .. 295

Summary ... 297

A. CSS Miscellany ... 299

At-rules .. 299

Aural Style Sheets .. 303

CSS and JavaScript .. 305

B. CSS Color Reference ... 307

C. CSS Property Reference .. 317

border-bottom-color, border-left-color, border-right-color, border-top

border-bottom-style, border-left-style, border-right-style, border-top

border-bottom-width, border-left-width, border-right-width, border-

azimuth ... 318

background .. 318

background-attachment .. 319

background-color ... 320

background-image .. 321

background-position ... 322

background-position-x, background-position-y 324

background-repeat .. 325

behavior ... 326

border .. 327

border-bottom, border-left, border-right, border-top 328

color .. 329

style ... 330

top-width ... 330

border-collapse ... 331

border-color ... 332

border-spacing .. 334

border-style .. 334

border-width .. 337

bottom .. 338

caption-side ... 339

clear ... 339

vii

HTML Utopia: Designing Without Tables Using CSS

clip .. 340

color .. 341

content .. 342

counter-increment .. 345

counter-reset .. 347

cue .. 348

cue-after, cue-before ... 349

cursor .. 349

direction .. 352

display ... 354

elevation .. 358

empty-cells ... 358

filter .. 359

float ... 361

font ... 362

font-family ... 364

font-size ... 366

font-size-adjust .. 368

font-stretch .. 370

font-style ... 371

font-variant .. 372

font-weight .. 373

height .. 375

ime-mode ... 376

layout-flow ... 377

layout-grid ... 378

layout-grid-char .. 379

layout-grid-line ... 380

layout-grid-mode .. 381

layout-grid-type ... 382

left ... 383

letter-spacing .. 384

line-break ... 385

line-height ... 386

list-style ... 388

list-style-image ... 389

list-style-position .. 391

list-style-type ... 392

margin ... 394

margin-bottom, margin-left, margin-right, margin-top 395

marker-offset .. 396

marks .. 398

viii

max-height, min-height .. 399

max-width, min-width .. 400

-moz-border-radius ... 401

-moz-border-radius-bottomleft, -moz-border-radius-bottomright, -moz

border-radius-topleft, -moz-border-radius-topright 403

-moz-opacity .. 404

orphans ... 405

outline ... 406

outline-color .. 407

outline-style ... 408

outline-width ... 409

overflow ... 410

overflow-x, overflow-y .. 412

padding ... 413

padding-bottom, padding-left, padding-right, padding-top 415

page ... 416

page-break-after ... 417

page-break-before ... 418

page-break-inside ... 420

pause ... 421

pause-after, pause-before .. 422

pitch .. 422

pitch-range ... 424

play-during .. 424

position ... 426

quotes .. 427

richness ... 429

right .. 430

ruby-align .. 431

ruby-overhang .. 432

ruby-position ... 434

scrollbar-base-color ... 435

scrollbar-element-color ... 436

size .. 438

speak ... 439

speak-header .. 440

speak-numeral .. 441

speak-punctuation .. 441

speech-rate ... 442

stress ... 443

table-layout .. 444

text-align ... 445

ix

HTML Utopia: Designing Without Tables Using CSS

text-align-last ... 446

text-autospace .. 447

text-decoration ... 449

text-indent ... 450

text-justify ... 451

text-kashida-space .. 452

text-overflow .. 453

text-transform .. 454

text-underline-position ... 455

top ... 456

unicode-bidi ... 457

vertical-align .. 460

visibility ... 462

voice-family ... 463

volume ... 464

white-space .. 465

widows .. 467

width ... 468

word-break ... 469

word-spacing .. 470

word-wrap .. 471

writing-mode ... 472

z-index ... 473

zoom ... 474

Recommended Resources ... 477

Index ... 485

x

Preface

I’ve been around the Web for a while now—some might say I’ve been here from
the beginning. And one thing that always bothered me about the Web was its
inherent inability to disentangle content from presentation. The interconnected-
ness of it all meant that, to produce a web site, you needed not only to have
something to say, and some graphical design skills to make the presentation of
that message look good, but you also needed to be a bit of a programmer. Initially,
this “programming” was a pretty lightweight task: HTML markup, when all is
said and done, isn’t really programming. Still, it’s more than just writing words
and using a word processor to format them, or conceptualizing a display for a
page—digitally or otherwise.

It’s no surprise, then, that designers who had clear ideas about how they wanted
their web pages to look were frustrated by the need to create complex sets of
deeply nested tables even to approximate their visions. As designers created increas
ingly complex ideas, and web browsers diverged further and further from even
the merest semblance of compatibility, the Web threatened to collapse under its
own weight. Serious designers began lobbying for a complete break from HTML
to some new approach to the Web. Chaos reigned.

The Holy Grail of the Web, back then, was the notion that authors should write,
designers should design (and code HTML), and programmers should … well …
program. Those boundaries had not been clear in the first few years of the Web.

Then, along came Cascading Style Sheets (CSS), the subject of this book. The
governing forces of the Web, through the World Wide Web Consortium, better
known as the W3C,1 addressed the problem with the proposal that we divide
presentation instructions and the structural markup of content into two separate
kinds of files.

Things haven’t been the same since, thank goodness! Now we can (mostly) sep
arate what we say from the way it’s presented to the user in a browser. I wager
that most of today’s web developers are fairly comfortable with CSS, and would
be no more likely to think of embedding presentational instructions in their
HTML than they would to consider mixing 23 fonts on the same web or print
page.

1 http://www.w3.org/

http://www.w3.org/
http://www.w3.org/

Preface

Since CSS emerged, dozens of books have been written about it. So when Site-
Point approached me to write a CSS book, my first thought was, “Who needs
another CSS book?” But as they began to reveal their vision to me, it made sense.
It was indeed time for a book that took a different tack, based on the extensive
experience of the web design community.

This book is different from the rest in two fundamental ways.

First, it focuses on the question of how to use CSS to accomplish some of the
successes that web designers have spent significant amounts of time and energy
to create using nested tables. In other words, this book doesn’t try to start from
scratch and become a CSS tutorial. Instead, it’s a sort of introductory CSS design
guide.

Second, it starts at the outside and works its way in. Most, if not all, other CSS
books focus first on the little pieces: the attributes, values, and tags that comprise
the syntax of CSS. They then explain how to put those pieces together into a
web site.

This book begins by looking at how CSS should influence the overall design of
a site, and how to put the CSS framework in place before you begin to deal with
individual HTML elements and their styling.

Who Should Read this Book?
As I wrote this book, I had in mind web designers with at least a little experience
building sites, who are curious about how CSS can help them become more ef
fective designers. It’s aimed at the beginner to intermediate designer. I’ll assume
a strong grasp of HTML, but that’s about it.

What’s in this Book?
Chapter 1: Getting the Lay of the Land

This first chapter serves as a brief introduction to CSS and the main concepts
that we’ll discuss throughout the rest of the book. If you haven’t used CSS
at all before, or you want to ensure that you understand the concepts fully
before you get started, this chapter is a great place to start.

xii

What’s in this Book?

Chapter 2: Putting CSS into Perspective
In this chapter, we begin to use CSS in practical ways, and to discuss why
we might want to use CSS rather than old-style methods like font tags for
text styling, and tables for layout.

Chapter 3: Digging Below the Surface
Picking up the pace, we start to look in some depth at how CSS works. Here,
we consider the different ways in which we can add CSS to our documents,
we discuss CSS selectors and rules, and we investigate the various shorthand
properties that will help us streamline our CSS files. We’ll also come to grips
with the concept of inheritance. This chapter ensures that you understand
the terminology and syntax we’ll be using, which will make it easier for you
to follow examples in this book and elsewhere.

Chapter 4: Validation and Backward Compatibility
In this chapter, we discuss how we can validate our documents and style
sheets to ensure that they comply with the published specifications. We also
find out a bit about the practicalities of ensuring our sites’ backward compat
ibility with older browsers or devices.

Chapter 5: Splashing Around a Bit of Color
This chapter looks closely at the ways in which colors can be applied to text
and other objects, as well as to page backgrounds. It will discuss how to de
scribe colors, where to use them, and how to make them work together to
achieve specific effects.

Chapter 6: Working with Fonts
This chapter examines the question of how fonts can be used properly in
CSS-based web design. After an explanation of how CSS deals with fonts at
the most abstract level, we’ll look at the use of standard and nonstandard
fonts in web pages. Finally, we’ll discuss some guidelines for the selection of
font families and sizes for your page designs.

Chapter 7: Text Effects and the Cascade
This chapter builds on Chapter 6, where we looked at text in terms of fonts
and their related style properties. Here, we’ll explore a range of other ways
in which we can style text, and spend time looking at links and lists, in par
ticular.

Chapter 8: Simple CSS Layout
We start this chapter by creating a simple two-column layout. Along the way,
we discover how to use absolute and relative positioning techniques in CSS

xiii

Preface

layouts; how margins, padding, and borders work together; and how we can
put all of these techniques into practice by creating a fully functional two-
column layout.

Chapter 9: Three-column Layouts
Out first task in this chapter is to add a third column to the layout we created
in Chapter 8. We then discuss the issues that arise when we want to add a
footer that runs along the bottom of a multiple-column layout like ours.
Along the way, we’ll find out how to use the float property to create multi-
column layouts, and how to create full-length columns using CSS. We’ll also
consider some of the issues that surround these types of layouts.

Chapter 10: Fixed-width Layouts
In this last chapter, we’ll create a fixed-width layout that’s centered in the
user’s browser window. As we progress, we’ll look at techniques for styling
data tables effectively, and discuss one method by which you can enable your
users to choose a different layout if they find your fixed-width layout difficult
to read.

Appendix A: CSS Miscellany
This appendix provides a brief description of some of the more obscure parts
of CSS that weren’t covered in detail earlier in the book, including the “at
rules” and aural style sheets. It also introduces the concept of DHTML as a
launching point for further reading.

Appendix B: CSS Color Reference
This appendix provides a comprehensive list of all (official and unofficial)
color names in CSS, along with their hexadecimal and RGB equivalent values.

Appendix C: CSS Property Reference
This sizeable appendix contains a complete reference to all CSS properties
at the time of writing. It includes a practical example for each property (when
appropriate) and gives an indication of the level of support browsers provide
for that property.

Bibliography
The Recommended Resources listed here include books and web sites. The
bibliography is by no means exhaustive; it’s more of a list of our own favorite
references—resources that we, personally, have found helpful over the
years—than a reference to every resource on the topic.

xiv

The Book’s Web Site

The Book’s Web Site
Located at http://www.sitepoint.com/books/css2/, the web site supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in the book. It also includes a copy of the Footbag Freaks
web site,2 which we use as an example throughout the book. You can get it from
http://www.sitepoint.com/books/css2/code.php on the book’s web site.

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at
least one or two mistakes before the end of this one. The Errata page, at
http://www.sitepoint.com/books/css2/errata.php on the book’s web site, will always
have the latest information about known typographical and code errors, and ne
cessary updates for new browser releases and versions of the CSS standard.

The SitePoint Forums
If you’d like to communicate with us or anyone else on the SitePoint publishing
team about this book, you should join theSitePoint Forums.3 In fact, you should
join that community even if you don’t want to talk to us, because there are a lot
of fun and experienced web designers and developers hanging out there. It’s a
good way to learn new stuff, get questions answered (unless you really enjoy being
on the phone with some company’s tech support line for a couple of hours at a
time), and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

2 http://www.footbagfreaks.com/

3 http://www.sitepointforums.com/

xv

http://www.sitepoint.com/books/css2/
http://www.footbagfreaks.com/
http://www.footbagfreaks.com/
http://www.sitepoint.com/books/css2/code.php
http://www.sitepoint.com/books/css2/errata.php
http://www.sitepointforums.com/
http://www.footbagfreaks.com/
http://www.sitepointforums.com/

Preface

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of web development. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.
Whether you’re a freelance developer looking for tips to score that dream contract,
or a marketing major striving to keep abreast of changes to the major search en
gines, this is the newsletter for you. The SitePoint Design View is a monthly com
pilation of the best in web design. From new CSS layout methods to subtle
Photoshop techniques, SitePoint’s chief designer shares his years of experience
in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/

Your Feedback
If you can’t find your answer through the forums, or you wish to contact us for
any other reason, the best place to write is books@sitepoint.com. We have a
well-manned email support system set up to track your inquiries, and if our
support staff is unable to answer your question, it comes straight to us. Suggestions
for improvement—as well as notices of any mistakes you may find—are especially
welcome.

Acknowledgements
First and foremost I must acknowledge the author of the original edition of this
book, Dan Shafer, for the solid CSS tutorial that makes up the first half of the
book. His original work still stood as an excellent introduction to the subject al
most three years later, and updates were required simply due to the passing of
time and the evolution of browsers since the first edition of this book was pro
duced.

Thanks must also go to the team members at SitePoint—especially to Simon
Mackie—for their expertise and support in guiding this book to completion. Also,
thanks to expert reviewer Richard Rutter, who helped greatly in ensuring that
outdated advice was excised from the original manuscript, and that I didn’t add
any inaccuracies of my own!

Finally, and as always, thanks to Drew and Bethany for putting up with me and
supporting me through yet another book project. I love you both.

—Rachel Andrew

xvi

http://www.sitepoint.com/newsletter/
http:books@sitepoint.com

1 Getting the Lay of the Land

We can look at Cascading Style Sheets (CSS) from a number of contextual per
spectives. I prefer to view them as a correction to a fundamental mistake that
was made at the beginning of Web Time, back in the old days of the early 1990s,
when Tim Berners-Lee and the pioneering web builders first envisioned the be
ginnings of the Web.

What was that mistake?

To meet the requirements of the Web’s initially limited purpose (its original intent
was to allow a small number of nuclear physicists using disparate systems at
various locations to share vital experimental data), it was not necessary to separate
a page’s content (the information contained in the document) from its presenta
tion (the way that information is displayed). However, Berners-Lee didn’t envision
the massively popular, wildly commercialized, extensively morphed Web that
emerged from his core ideas in the early 1990s—I doubt that anyone could have.

So, the mistake was a lack of foresight, rather than an oversight. But it was a
mistake nonetheless.

Chapter 1: Getting the Lay of the Land

CSS in Context

Almost as soon as the Web became popularized by the emergence of early
graphical web browsers (such as the wildly popular Netscape Navigator), the de
signers of early web sites became aware of a problem. The method by which the
web browser displayed information stored in HTML files was not within the de
signers’ control. No, it was primarily the users who were in charge of how the
web pages they visited would appear on their systems.

While there were many, including myself, who thought this was A Good Thing,
designers were beside themselves with concern. From their perspective, this con
stituted a fundamental flaw. “Users don’t know anything about good design,”
they argued. If the designers couldn’t control with great accuracy things like colors,
fonts, and the precise, pixel-level positioning of every design element on the web
page, their creations could easily end up as ugly travesties in users’ browsers.
Most designers, accustomed to print and other fixed layouts that afforded them
complete control over what the user saw, found ways to bend the Web to their
will.

Lest I incur the ire of every designer reading this book, let me hasten to add that
I don’t think this was A Bad Thing. It is certainly the case that designers know
more about how content should be displayed for users than do the users them
selves. Things like spacing, color combinations, and other design elements affect
readability and usability. My point has much less to do with who should have
been in charge, than it does with the actions to which designers were more or
less forced to resort in order to achieve at least some measure of control.

Soon, expert designers discovered that they could use tables to gain significant
control over the presentation of content to users. By laying out tables within
tables within tables, they could position quite precisely any design element that
could be contained within a table cell. And that encompassed almost everything.

The first desktop publishing-style web page design tool, NetObjects Fusion, en
abled designers to lay out pages with a high degree of precision. It generated
complex, table-based HTML, which resulted in web pages that were as close as
possible to the designer’s original vision.

We never looked back.

But tables weren’t intended to be used as layout tools, so while they were effective,
they were also horribly inefficient. We’ll explore some of the shortcomings and
disadvantages of using tables for layout tasks a little later in this chapter; for now,

2

The Basic Purpose of CSS

just know that everyone, including the designers who used the techniques, under
stood pretty well how clumsy a solution they really were.

The Basic Purpose of CSS
After a brief series of skirmishes at the beginning of the Web’s development, the
question of who should control the overall appearance of a page or site ended
with the designers as victors. Users, after all, care more about usability, accessib
ility, and convenience than the nitty-gritty details of design techniques.

Yet designers found themselves hard-pressed to identify very good, standards-
compliant ways to provide their customers—and their customers’ users—with
great designs that were also effective and efficient. Thus, they were forced to rely
largely on tables.

However, as time passed and the use of tables to lay out web pages became in
creasingly complex, even the design community became uneasy. Maintaining a
web page that consists of a half-dozen or more deeply intertwined tables is a
nightmare. Most designers prefer not to deal with code—even simple HTML
markup—at such a level of detail.

Into the breach stepped the World Wide Web Consortium, better known as the
W3C,1 a body founded by Tim Berners-Lee to oversee the technical growth of
the Web. They saw that separating the content of a site from its presentation (or
appearance) would be the most logical solution. This would enable content ex
perts—writers, artists, photographers, and programmers—to provide the “stuff”
that people come to a site to see, read, or experience. It would also free the design
experts—artists, graphic designers, and typographers—to determine a site’s aes
thetics independently of its content.

The result was CSS.

Why Most—but Not All—Tables Are Bad
Why is the table not suited to being a design mechanism? There are numerous
reasons, but the ones we’re most concerned with in this context are:

❑ They result in load times that are longer than necessary.

1 http://www.w3.org/

3

http://www.w3.org/
http://www.w3.org/

Chapter 1: Getting the Lay of the Land

❑	 They encourage the use of inefficient “placeholder graphics” that further slow
performance.

❑	 Their maintenance can be a nightmare in which even minor changes break
the entire layout.

❑	 They can cause the page to become inaccessible to those who are not using a
graphical web browser.

Tables Mean Long Load Times
Most people don’t know that web browsers are deliberately designed to ensure
that each table downloads as a single entity. None of the material that’s contained
in a table will be displayed until all the contents of that table are downloaded to
the client machine and available for display.2

When the original, intended purpose of tables is taken into account, this makes
sense. Tables were designed to display … well, tables of data. Each cell contained
a value that was being compared to, or related with, the values of other cells in
the table. Isolated bits of data appearing quasi-randomly would not do; the table
was a single, integrated entity.

When designers began to rely on tables to contain all or most of the content of
a web page, they were also saddled with the consequences of this design decision.
In addition to the apparent delay that many users experience as a result of tables
displaying all at once, the sheer volume of HTML code that’s required to create
web page layouts with nested tables can also add load time due to the increased
page size. Table-based layouts almost certainly account for more user concern
over long page-load times than any other single factor.

Avoiding this significant load time would obviously be A Good Thing.

Use of Transparent Images Slows us Down
Even when using tables as layout mechanisms, designers could not quite attain
the detailed level of control they wanted over page design. Sometimes, for instance,
a designer might need a bit more breathing room around one part of a table
cell—something for which tables do not allow. This kind of precision was un
achievable.

2 Cascading Style Sheets Level 2 (CSS 2) includes a property called table-layout that alters this
behavior, with several important caveats. Refer to Appendix C for details.

4

Maintaining Tables is a Nightmare

Early on, someone came up with the notion of creating a transparent.gif image
file—a tiny GIF image that had no visible content. By creating table cells that
contained these transparent images, we could force extra vertical and horizontal
“space” into tables whose cells were designed to remain in close proximity to one
another.

The problem is that, given a table with dozens (or even hundreds) of these images,
and depending on a variety of other factors, the performance impact of transparent
GIFs on a web page can be significant. More importantly, though, this technique
often restricts the page to a fixed pixel size, and clutters the page with images
that are irrelevant to the meaning of the page content. This severely impacts the
ability of users with disabilities to make sense of table-based sites, as we’ll see
later.

Maintaining Tables is a Nightmare
The third reason why most tables are bad is that maintaining a complex array of
deeply nested tables is a nightmare. If you use tools such as Macromedia
Dreamweaver or Adobe GoLive to manage your sites and their designs, generally
you can ignore the messiness of the nested tables that make the design possible.
But even these tools are not foolproof, and when they “mess up” (to use a highly
technical term), amending the unsightly pages they create can be quite a challenge.

If you’re like most designers, and you wouldn’t be caught dead using an HTML-
generating tool because you feel you gain more control and understanding if you
hand-code everything, then you’ll be familiar with the maintenance problem.

The difficulty arises because, by necessity, tables have a fairly complex set of
tags—even if they aren’t embedded within other tables. And when we have nested
tables, well, we’ve got a clear case of the uglies, all right.

The situation is further complicated by the fact that, unlike programming editors,
HTML editors generally do not force or support the clean indentation of code.
So, finding the start and end points for a given table, row, or cell turns out to be
what software folks call a “non-trivial task.” While it’s true that a competent
HTML coder or designer could make this problem more tractable, it’s never really
solvable, no matter what we do.

5

Chapter 1: Getting the Lay of the Land

Tables Cause Accessibility Issues
The fourth reason why tables are bad lies in the way non-graphical browsers—such
as the screen readers used by many visually impaired users—read an HTML
document. When a text-only device reads the content of a site, it starts at the
top and works down the page line by line. When it comes to a table, it starts at
the first (top-left) cell, then continues along the top row, then moves to the
second row, and so on. In the case of a table that’s used correctly, for tabular
data, this is rarely a problem. However, where nested tables have been used to
display chunks of text in the desired layout, that content can become nonsensical
when read in this manner.

When it’s Okay to Use a Table
There’s one notable exception to the cardinal rule that Tables Are A Bad Thing.

If you have tabular data, and the appearance of that data is less important than
its appropriate display in connection with other portions of the same data set,
then a table is in order. If you have information that would best be displayed in
a spreadsheet such as Excel, you have tabular data.

In general (though, undoubtedly, there are exceptions to this rule as well), this
means that the use of tables should be confined to the presentation of numeric
or textual data, not graphics, multimedia data types, forms, or any other interact
ive user interface components.

What is CSS, Really?
Now that we’ve established that an important role of CSS in designers’ lives is
to free us from the drudgery of using tables for page layout, let’s take a look at
what CSS really is.

The most important word in the label “Cascading Style Sheets” is the middle
one: “style.” “Cascading” becomes important only when we get into fairly complex
style usage, while the word “sheet” is a tad misleading at times. So, even though
we mean Cascading Style Sheets in the broadest and most accurate sense, we’ll
focus not on the cascading or sheet-like nature of these beasts, but on their role
in determining the styles of our web pages and sites.

6

What is CSS, Really?

Styles are defined as rules. These rules tell any web browser that understands
them (i.e. any browser that supports CSS) how to display specific types of content
structures when it encounters these structures in delivering a web page to a user.
We call this visual display of a web page the way the browser renders the page.

To understand how styles affect the appearance of a web page, we need to under
stand what happens to a web page in the absence of any style rules.

Figure 1.1 shows how the browser displays a page when its author hasn’t specified
any style rules. Each browser has a default way of displaying web pages using its
own internal style sheet. So, a first-level heading enclosed in <h1> and </h1> tags
will be displayed using a relatively large font in black, because that’s dictated by
the browser’s style sheet. The “default” font that’s used may vary between
browsers, and can be affected by user-defined settings as well.

Figure 1.1. Normal browser page display behavior

7

Chapter 1: Getting the Lay of the Land

Figure 1.2. The browser displaying a page with a style rule in
effect

Figure 1.2 depicts what happens when the page’s author defines style rules. An
author-defined rule overrides the browser’s own internal style sheet rule for that
element, and the new style takes over. Even if the user has defined his or her own
settings for this element, those wishes usually will not be honored (though there
are some intriguing exceptions to this generality, which we’ll discuss much later
in this book).

Parts of a CSS Rule
Every style consists of one or more rules. Figure 1.3 shows a CSS rule with all
the parts labeled.

8

Parts of a CSS Rule

Figure 1.3. The parts of a CSS rule

Each rule has two parts:

1. a selector that defines the HTML element(s) to which the rule applies

2. a collection of one or more declarations, made up of a property and a value, 3

which describe the appearance of all the elements that match the selector

The property tells the browser which element is being defined. For example,
font-weight tells the browser that this declaration defines the weight of the
font. After the colon that separates the two parts of a declaration, we see a value
that will be applied to that property. If a value of bold followed the font-weight
property, it would make the weight of the font in that document bold. Each de
claration must be followed by a semicolon, with one exception: the semicolon
that follows the last property is optional and may be omitted. In this book,
though, we’ll always add the optional semicolon. I encourage you to adopt this
habit, as it’s much easier to train yourself always to add the semicolon than it is
to remember when it is and is not required. This approach also makes it easier
to add properties to an existing style rule.

Here are a few examples of increasingly complex CSS rules, with the parts iden
tified so that you can fix this syntax clearly in your mind. This is the only real
syntax issue you must understand in order to master CSS, so it’s important!

h1 {

 color: red;

}

3 Many books and articles about CSS get confused when it comes to this terminology, using these
terms interchangeably, or calling declarations “attributes.” In this book, I used the W3C-endorsed
terminology of “declarations,” “properties,” and “values.” I reserve the name “attributes” for attributes
of HTML tags.

9

Chapter 1: Getting the Lay of the Land

The selector, h1, indicates that this rule applies to all h1 headings in the document.
The property that’s being modified is color, which refers to the font color. The
value we want the color property to take on is red. Chapter 5 and Chapter 6
explore fonts and coloring in CSS in greater detail.

p {

 font-size: small;

 color: green;

}

The selector, p, indicates the style rule should be applied to all paragraphs in the
document. There are two declarations in the rule. The first, which sets the property
font-size, sets the size of the font in all paragraphs in the document to small.
See Chapter 3 for an explanation of this and other measurement issues in CSS.
The second property, color, is set to green. The result of this rule is that all
paragraphs in the document will appear in a green, “small” font.

p {

 font-family: 'New York', Times, serif;

}

Again, this rule deals with paragraphs, as is evidenced by the p selector. This
time, the selector affects the font family that is used to display text. The new
wrinkles in this example are that it includes a list of values for the font-family
property, and one of those values is enclosed in quotation marks.

The font-family property is one of a handful of CSS properties to which you
can assign a list of possible values, rather than a single, fixed value. When you
use a list, commas must separate its individual members. In this case, the font-
family value list tells the browser to use New York as the font if the user’s ma
chine has it installed. If not, it directs the browser to use Times. And if neither
of these fonts is available on the user’s system, the browser is told to default to
the font used for serif type. This subject is covered in more depth in Chapter 6.

Whenever a value in a list includes spaces (as is the case with the font named
“New York”), you must put that value into quotation marks. Many designers use
single quotation marks for a number of reasons, not least of which is that they’re
slightly easier to type, but you can use either single or double quotation marks.

Types of CSS Rules
We can categorize and think about CSS rules in several possible ways:

10

Which Properties can CSS Rules Affect?

❑	 First, we can think of the different types of properties that can be defined.
For example, different properties affect the color of elements, their positions
within the browser window, and so on.

❑	 We can also consider the types of elements that can be affected using CSS,
and specifically, how certain elements can be targeted.

❑	 Finally, there is the issue of where the style rules are defined.

Let’s take a brief look at each of these categorizations, so that you have a good
overview of the organization of CSS rules before you embark on a detailed study
of their use.

Which Properties can CSS Rules Affect?
CSS rules can include properties that affect virtually every aspect of the
presentation of information on a web site. A complete reference to these properties
is presented in Appendix C.

Which Elements can CSS Affect?
Stated another way, this question asks, “How, specifically, can a CSS rule target
a piece of information on a web page for special presentation?” CSS allows the
designer to affect all paragraphs, but how can you confine that impact to certain,
specific paragraphs? Is this even possible?

The answer is “yes.” Through various combinations of selector usage, the designer
can become quite specific indeed about the circumstances under which a style
rule is enforced. For example, you can assign rules so that they affect:

❑	 all elements of a specific type

❑	 all elements of a specific type that are assigned to a common group or class

❑	 all elements of a specific type that are contained within other elements of a
specific type

❑	 all elements of a specific type that are both contained within another specific
element type and assigned to a common group or class

❑	 all elements of a specific type only when they come immediately after an ele
ment of some other type

11

Chapter 1: Getting the Lay of the Land

❑	 only a specific element of a specific type that is assigned a unique ID

Chapter 3 includes a detailed discussion of all the CSS selectors you can use to
achieve these kinds of precision targeting.

Where can CSS Styles be Defined?
Finally, you can define CSS styles in any of three places:

❑	 inside the HTML (such style declarations are called inline declarations)

❑	 between <style> and </style> tags inside the head element (this is called
an embedded style sheet)

❑	 in an external CSS file, also called an external style sheet

Inline Declarations

You can style any element by listing style declarations inside that element’s style
attribute. These are referred to as inline declarations because they’re defined inline
as part of the document’s HTML. You can assign a style attribute to almost all
HTML elements. For example, to make a second-level heading within a document
appear in red text and all capital letters, you could code a line like this:

<h2 style="color: red; text-transform: uppercase;">An Unusual

 Heading</h2>

If you follow the advice in this book, you won’t use many inline declarations. As
we’ll see, separating content from presentation is one of the big advantages of
CSS, and embedding styles directly in HTML tags defeats that purpose. Inline
declarations are mainly useful for rapid prototyping—quickly applying style
properties to a particular element to experiment with an effect before giving the
properties a more permanent place in an embedded or external style sheet.

Embedded CSS

Specifying style properties in an embedded style sheet is an approach that’s often
used by beginning web designers and those just learning the techniques involved
in CSS design. It’s not my favorite method, but it does have the virtue of being
easy to deal with, so you’ll see it used from time to time in this book.

12

Where can CSS Styles be Defined?

To embed a style sheet in a web page, we place a style element in the head of
the document’s HTML and fill it with style rules, as shown here in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>CSS Style Sheet Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

<style type="text/css">

 h1, h2 {

 color: green;

 }

 h3 {

 color: blue;

 }

 </style>

 </head>

The CSS rules contained in the style block apply to all the designated parts of
the current document. In this case, the first rule directs the browser to display
all level one and two headings (h1, h2) in green. The second rule displays all
level three headings (h3) in blue.

Notice that each rule starts on a new line, and each declaration within the rule
appears indented within braces on its own line. Strictly speaking, this layout isn’t
required, but it’s a good rule of thumb that improves the readability of your code,
especially if you’re used to the look of JavaScript code.

External CSS

Finally, you can define CSS rules in a file that’s completely separate from the
web page. You can link to this file by including a link element in the head of
any web page on which you want to implement those styles.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>CSS Style Sheet Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <link rel="stylesheet" type="text/css" href="corpstyle.css" />

 </head>

13

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

Chapter 1: Getting the Lay of the Land

In this example, the file corpstyle.css contains a set of styles that have been
linked to this page. Here’s what the contents of this file might look like:

File: corpstyle.css

h1, h2 {

 color: green;

}

h3 {

 color: blue;

}

This is my preferred way to use CSS, for a number of reasons.

First, this is the least “locked-in” of the three basic methods designers can use to
insert styles into a web page. If you define an external style sheet file, you can
apply it to as many pages of your site as you want, simply by linking to the style
sheet from each page on which you want it used. Using external CSS also makes
your site a lot easier to maintain: changing the appearance of an element that
appears on every page of your site is a simple matter of modifying the shared
.css file. If you use embedded or—worse yet—inline styles, you’ll have to change
every single page on which the element appears.

Second, external style sheets are treated as separate files by the browser. When
the browser navigates to a new page that uses the same style sheet as a previous
page, that external style sheet will not be downloaded again. Therefore, pages
that use external styles are quicker to load.

Last, but not least, external style sheets are simply more professional. By using
them, you demonstrate an understanding of the importance of the separation of
content from presentation, and you make it much easier to discuss your style
sheets, share them with colleagues, analyze their effects, and work with them as
if they were a serious part of the site’s design, rather than an afterthought.

A Simple Example
Now that you have a basic overview of what CSS is all about, why it exists, and
why it’s an important technique for web designers to adopt, where’s the proof?
Let’s look at an example of a small but not overly simplistic web page (see Fig
ure 1.4).

14

A Simple Example

Figure 1.4. A sample web page demonstrating embedded styles

Here’s the HTML that will produce that page if we use embedded CSS. Don’t
let the complexity of the code intimidate you—by the end of Chapter 3 you
should be able to infer the meaning of most of it without my help. For now, you
can download the code archive from the book’s web site and marvel at the results
in your browser. The file is called ch1sample.html.

File: ch1sample.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Basic 3-Column Sample Page</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 body {

 background-color: teal;

 margin: 20px;

 padding: 0;

 font-size: 1.1em;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 }

 h1 {

15

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

Chapter 1: Getting the Lay of the Land

font-family: Verdana, Arial, Helvetica, sans-serif;

 margin: 0 0 15px 0;

 padding: 0;

 color: #888;

 }

 h2 {

 font-family: Verdana, Arial, Helvetica, sans-serif;

 margin: 0 0 5px 0;

 padding: 0;

 font-size: 1.1em;

 }

 p {

 font-family: Verdana, Arial, Helvetica, sans-serif;

 line-height: 1.1em;

 margin: 0 0 16px 0;

 padding: 0;

 }

 .content>p {

 margin: 0;

 }

 .content>p+p {

 text-indent: 30px;

 }

 a {

 color: teal;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-weight: 600;

 }

 a:link {

 color: teal;

 }

 a:visited {

 color: teal;

 }

 a:hover {

 background-color: #bbb;

 }

 /* All the content boxes belong to the content class. */

 .content {

 position: relative;

 width: auto;

 min-width: 120px;

 margin: 0 210px 20px 170px;

 border: 1px solid black;

 background-color: white;

 padding: 10px;

16

A Simple Example

z-index: 3;

 }

 #navleft {

 position: absolute;

 width: 128px;

 top: 20px;

 left: 20px;

 font-size: 0.9em;

 border: 1px dashed black;

 background-color: white;

 padding: 10px;

 z-index: 2;

 }

 #navleft ul {

 list-style: none;

 margin: 0;

 padding: 0;

 }

 #navright {

 position: absolute;

 width: 168px;

 top: 20px;

 right: 20px;

 border: 1px dashed black;

 background-color: #eee;

 padding: 10px;

 z-index: 1;

 }

 </style>

 </head>

 <body>

 <div class="content">

 <h1>Getting the Lay of the Land</h1>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,

 sed do eiusmod tempor incididunt ut labore et dolore

magna aliqua. Ut enim ad minim veniam, quis nostrud

 exercitation ullamco laboris nisi ut aliquip ex ea

 commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu

 fugiat nulla pariatur.</p>

 <p>Excepteur sint occaecat?</p>

 </div>

 <div class="content">

 <h2>CSS in Context</h2>

 <p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur

 aut odit aut fugit, sed quia consequuntur magni

17

Chapter 1: Getting the Lay of the Land

dolores eos qui ratione voluptatem sequi nesciunt.

 Neque porro quisquam est, qui dolorem ipsum quia dolor

 sit amet, consectetur, adipisci velit, sed quia non

 numquam eius modi tempora incidunt ut labore et dolore

 magnam aliquam quaerat voluptatem.</p>

 </div>

 <div class="content">

 <h2>Keep Adding Content</h2>

 <p>You can see that as you keep adding content to this page,

 it adds nicely boxed and centered material down the

 center of the page.</p>

 </div>

 <div id="navleft">

 <h2>Some Links</h2>

 <a href="http://www.rachelandrew.co.uk/"

 title="Rachel Andrew's personal site">Rachel

 Andrew

 <a href="http://www.sitepoint.com/"

 title="SitePoint Home Base">SitePoint Home

 <a href="http://www.sitepoint.com/forums"

 title="SitePoint Discussion Forums">SitePoint

 Forums

 <a href="http://www.mozilla.org/firefox"

 title="Firefox at The Mozilla Foundation">Firefox

 <a href="http://www.microsoft.com/ie"

 title="Internet Explorer at Microsoft's Site">Internet

 Explorer

 <a href="http://www.opera.com/"

 title="Opera Home Page">Opera

 <a href="http://www.apple.com/safari"

 title="Safari on Apple's Web Site">Safari

 </div>

 <div id="navright">

 <h2>Why CSS is Better</h2>

 <p>At vero eos et accusamus et iusto odio dignissimos

 ducimus qui blanditiis praesentium voluptatum deleniti

 atque corrupti quos dolores et quas molestias excepturi

 sint occaecati cupiditate non provident.</p>

 </div>

 </body>

</html>

18

Summary

Summary
You should now understand the historical and technological contexts in which
CSS has emerged, the major problems it is designed to solve, and how it works
on a superficial level. You also know why tables aren’t suited to being used as a
web page layout device, even though they have other perfectly valid uses.

In addition, you can identify both the parts of a CSS rule, and at least three ways
in which these rules can be applied to your web pages.

Chapter 2 drills more deeply into the prospective issues surrounding CSS. It
clears up some of the misconceptions you may have about this technology, and
describes some of the important issues you’ll have to take into consideration be
cause of the way web browsers work (or don’t) with CSS rules.

19

20

2 Putting CSS into Perspective

In Chapter 1, we took a 10,000-foot view of CSS. We began by looking at why
using tables for web page layout is generally a bad idea. Then, we examined the
types of CSS rules, and which aspects of a web page our style sheets could affect.

This chapter provides an overview of CSS’s place in the web development cosmos.
First, we’ll discuss what CSS can and can’t do for you. We’ll spend a little time
examining the advantages of CSS design, and see how using CSS can help you
to create better sites by doing things that old-style tables and spacer GIFs can’t
do.

After a quick look at how CSS interacts with the ever-shifting world of web
browsers, we’ll discover how we can create CSS that accommodates those browsers
that don’t provide full support for CSS standards, either because they predate
the standard, or they tried to support the standard but got it wrong.

What can CSS Do?
Recall from Chapter 1 that one of the key advantages of CSS is that it separates
the content of a web site from its appearance or presentation. This separation is im
portant because it allows us to create web sites that enable writers to create the
information the web site is intended to convey, while leaving the design of the
site—how it looks and how it behaves—to designers and programmers.

Chapter 2: Putting CSS into Perspective

It follows, then, that CSS would be useful for defining the appearance of a site,
but not necessarily for dictating its behavior.

However, like many such generalizations, this statement is true only most of the
time. Why? Because the dividing line between appearance and behavior is neces
sarily fuzzy.

For example, as we’ll see when we develop our layouts in the second part of this
book, CSS can be used effectively to create context-sensitive menus, along with
other elements of the interface with which your users will interact. You may be
familiar with menu designs whose interactivity relies heavily on JavaScript, or
some other scripting language, but we’ll learn some techniques that avoid scripting,
while allowing us to do some fairly creative things with navigation.

Later on, this book provides detailed instructions and examples of how you can
alter the appearance of colors, fonts, text, and graphics using CSS; the rest of
this section provides some ideas about the kinds of tasks for which you can use
CSS. My intention here is less to teach you how to do these things than it is to
whet your appetite and start you thinking about the possibilities …

Color and CSS
You can use style sheet rules to control the color of any HTML element that can
be displayed in color. The most common elements for which you’ll find yourself
setting the color are:

❑ text

❑ headings (which are really a special form of text)

❑ page backgrounds

❑ background colors of text and headings

This may not seem like much, but knowing when and how to apply color to these
elements—and, perhaps more importantly, how to combine the use of color in
interconnected elements—can really expand your web design capabilities.

22

Color and CSS

Figure 2.1. Black-and-white version of fall holiday page

The simple act of changing the color of all the text on a page, then providing a
colored background for that text, can turn a fairly ordinary-looking web page
(Figure 2.1) into one that has a completely different feel to it. Figure 2.2 shows
what the page in Figure 2.1 looks like if we simply choose colors appropriate to
a holiday theme—yellow text on a black background. Figure 2.3 shows the oppos
ite effect: black text on a yellow background. While you could argue that these
alternative layouts aren’t as readable as the black and white original in Figure 2.1,
you’d have to admit that the two variations are more interesting to look at.

Figure 2.2. Yellow-on-black version of fall holiday page

23

Chapter 2: Putting CSS into Perspective

Here’s the style rule that creates the effect in Figure 2.2. As you can see, it’s fairly
straightforward, yet the result of its use is certainly dramatic.

body {

 color: yellow;

 background-color: black;

}

As we’ll see in Chapter 5, naming the colors you want is just one of several ways
to define color in CSS.

Here’s the style rule that creates the effect in Figure 2.3. No surprises here: it’s
the opposite of the code that was used to generate the look in Figure 2.2.

body {

 color: black;

 background-color: yellow;

}

Figure 2.3. Black-on-yellow version of fall holiday page

Maybe you find the use of a starkly contrasting color for the entire background
of a page a bit overwhelming. Figure 2.4 shows another variation on the text
color theme. Here, we’ve provided yellow text on a black background only behind
the headings on the page. The rest of the page’s background color, and all non-
heading text, remains unchanged from the original design in Figure 2.1.

24

Fonts and CSS

Figure 2.4. Yellow-on-black headings on fall holiday page

Here’s the style rule that generates the heading effect shown in Figure 2.4.

h1, h2, h3, h4, h5, h6 {

 color: yellow;

 background-color: black;

}

Notice that we didn’t have to do anything fancy, like put the headings inside
<div> and </div> tags, or create a rectangular box around them. In the view of
the web browser, the heading is a block level element, which occupies the full
width of the space in which it resides, by default. So, if you give a heading a
background-color property, that property will apply to the entire horizontal
block that contains the heading.

CSS provides a range of other advantages to the color-conscious designer, but
we’ll leave those details to Chapter 5. Our purpose here is merely to touch upon
the variety of things you can expect to accomplish using CSS.

Fonts and CSS
In Chapter 1, we saw a number of examples that used fonts in CSS style rules.
From that exposure, you’re probably comfortable with defining the fonts in which
you want the body text and headings of various levels to be displayed.

You can apply fonts to smaller amounts of text by enclosing that text within
 and tags (a subject we’ll treat in detail in Chapter 9), then ap

25

Chapter 2: Putting CSS into Perspective

plying style properties to the span. You might use this approach, for example, to
highlight a sentence in the middle of a paragraph, as shown in Figure 2.5.

Figure 2.5. Highlighting an important sentence

To do this, we simply need to wrap the sentence in and tags,
then add a style rule for the new span. Note that these span elements should be
used sparingly, and that there are a number of issues to consider before you apply
these techniques—see Chapter 8 and Chapter 9 for all the details. Below is the
HTML that was used to create this effect.

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua

Ut enim ad minim veniam, quis nostrud

 exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat. Duis aute irure dolor in reprehenderit in

 voluptate velit esse cillum dolore eu fugiat nulla pariatur.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa

 qui officia deserunt mollit anim id est laborum.</p>

You can target a particular span by adding an id or class attribute (we’ll look
at this in more detail in Chapter 3), then adding the id or class to the selector,
as shown here:

.important {

 font-weight: bold;

 background-color: yellow;

 color: red;

}

One type of HTML text element to which it’s sometimes quite useful to apply
font rules is the list. We generally create lists in an effort to call specific attention
to several items that are related to one another, and using a font style to set the
list off even more clearly from the text can be a good technique. Figure 2.6 shows
a list that has been set in a font that contrasts with the main text of the page,

26

Fonts and CSS

and is bold. The list stands out from the page, calling attention to itself as being
particularly important.

Figure 2.6. Highlighting an important list

Once we’ve identified this list in HTML using an id attribute, we can style it by
adding a rule to our style sheet.

<ul id="partylist">

 children (at 7:30 p.m. in the downstairs kitchen)

 teens (at 9:30 p.m. in the youth room)

 adults (at 11:00 p.m. in the fellowship hall)

The rule now looks like this:

#partylist {

 font-family: 'Comic Sans MS', Arial, Helvetica, sans-serif;

 font-weight: bold;

 color: yellow;

 background-color: black;

}

27

Chapter 2: Putting CSS into Perspective

Dynamic Pseudo-classes and CSS
One of the more interesting effects that you can create with CSS involves the
use of the “hover” effect on text. By defining a CSS style rule that changes the
appearance of text when the user pauses the cursor over that text, you can create
an effect that looks a bit like animation.

Unfortunately, this effect works only on link text in Internet Explorer 6, although
in other browsers—such as Firefox and Internet Explorer 71—you can create this
effect on other elements. You can use the hover pseudo-class to determine what
will happen to a text link over which the user pauses the cursor, as shown here:

a:hover {

 background-color: blue;

 color: white;

 font-size: x-large;

}

Figure 2.7 shows what happens when the user positions the cursor over a link to
which this style rule is applied. While you can’t tell that the color of the text has
changed, you can easily see that the text is larger than the other links around it.

Figure 2.7. Applying a dynamic pseudo-class to a hovered link

This effect feels a bit like an animated graphic in a menu where the buttons are
programmed to change when the user’s mouse hovers over them—it’s a technique
that we’ll learn more about in Chapter 9.

Changing Text Size in :hover Styles

You may be tempted to change the size of the text in a link when the user
hovers their mouse over it—it does make very obvious to the user which link

1 At the time of writing, Internet Explorer 7 is still in beta testing, so no guarantees can be made of
its final functionality.

28

Images and CSS

they currently have selected. However, this is generally considered bad
practice, as changing the size of text in the middle of a document will typically
move other elements of the document around, potentially confusing the user.
It’s much better to use background and font colors to make such distinctions.

Images and CSS
Images are placed on a web page using the HTML tag. With CSS, we
can only affect relatively minor aspects of an image’s display, but that doesn’t
mean we can’t control anything interesting.

Like any other object in a web page, an image can always be enclosed inside a
div element and positioned arbitrarily on the page. We can also affect the border
around an image, as well as its alignment, again by embedding the image in a
div element, then using a style to alter the appearance of that containing div.

Figure 2.8 shows what would happen to an image placed alongside text on a page,
in the absence of any CSS instructions. The image appears at the left edge of the
page and it is aligned with one line of text, which shares its baseline with the
bottom of the image. Subsequent lines of text appear below the image.

Figure 2.8. An image and text to which CSS styles haven’t been
applied

One thing for which CSS is particularly helpful is forcing text to flow gracefully
around inline images. Using the float property (which is covered in detail in
Chapter 8), you can “float” an image on a page in such a way that the text placed
beside it will wrap around the image nicely. Figure 2.9 shows what happens if

29

Chapter 2: Putting CSS into Perspective

we position the image using the float property. Note how the text flows smoothly
around the side of, and then under, the image. This is almost certainly closer to
the design effect we want than the example shown in Figure 2.8.

Figure 2.9. Positioning an image and text with help of float

To do this to all the images in your site, add the following rule to your style sheet:

img {

 float: left;

}

Multiple Style Sheets, Users, and CSS
It is possible to define more than one style sheet for a given web page or site;
we’ll look at how alternate style sheets can be used in the course of creating
projects later in the book. Some modern browsers (such as Firefox and Opera)
allow the user to select from additional style sheets if they have been created.
These “alternate” style sheets can be used to display larger font sizes or higher
contrast designs for users who have specific accessibility needs.

With a bit of scripting, you can automate that selection process and create an
adaptable site that several different categories of users can experience appropri

30

Advantages of CSS Design

ately. We won’t be covering this kind of scripting in this book, but if you’re in
terested, Paul Sowden’s article, “Alternative Style: Working With Alternate Style
Sheets”, 2 on A List Apart is a great place to start.

Advantages of CSS Design
I’ve already touched on a number of the powerful features of, and reasons for,
using CSS for site layout. In this section, I’ll formalize those arguments and
present them all in one place. Not only do I hope to convince you of the merits
of CSS, but I aim to give you the tools to sell others on the technology.

In the cutthroat world of freelance web development, you will often be called
upon to explain why you will do a better job than other developers bidding on
the same project. If CSS layout is one of the tools in your web design arsenal,
the sites you build will benefit from the advantages presented here. Many of
these advantages go well beyond ease of development, and translate directly to
extra value for your clients. Let them know about this—it just might make the
difference between winning the contract and losing out to a designer who lives
and breathes table-based design.

Increased Stylistic Control
Perhaps the major selling point of CSS is that it lets you control many aspects
of the appearance of your site that simply cannot be controlled with pure HTML
(for example, creating hover effects on links). For a complete reference to the
style properties that can be controlled with CSS, see Appendix C.

In addition to the number of properties that it puts at your fingertips, CSS allows
you to apply those properties to the available HTML page elements more uni
formly than would be possible using other techniques. For instance, if you wanted
to use HTML to put a visible border around part of the page, you’d need to use
a table to do it, because pure HTML lets you add borders to tables only. Not
only does CSS give you greater control over the look of the border (it can be
solid, embossed, dotted, or dashed; thick or thin; any of a multitude of colors;
etc.), it lets you add a border to any page element—not just tables. The design
rationale behind CSS aims to give the designer as many options as possible, so,
generally speaking, a property can be applied at any point at which, potentially,
it could make sense to do so.

2 http://www.alistapart.com/articles/alternate/

31

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/

Chapter 2: Putting CSS into Perspective

CSS simply has more properties that can be applied to more page elements than
HTML has ever offered. If you had to choose between CSS and HTML as a
means for specifying the design of your site, and your decision was based solely
on which approach would afford you the most visual control, CSS would win
outright. Despite this, it is common practice to use HTML for design wherever
possible, and to resort to CSS whenever an effect is needed that HTML cannot
produce. While the appearance of sites designed with this rationale is just as good
as any others, by taking this approach to design, we miss out on all the other
advantages of CSS.

Centralized Design Information
As I’ve already explained, the best way to use CSS in the design of a web site is
to write one or more .css files to house all your style code, and then to link those
files to the appropriate pages with the HTML <link /> tag. This approach ensures
that everything to do with the look of your site can be found in one place, and is
not jumbled up with the content of your site.

The idea is that you should be able to change the content of your site without
affecting its look, and vice versa. In traditional web design, where HTML tags
and attributes are used to specify the way things look in the browser, the code
for these two aspects of your site are mixed together, so anyone who wants to
modify one of these must understand both, or risk breaking one while making
changes to the other. The look and the content of the site are said to be coupled.

This principle of keeping code that serves different purposes in different places
is known in the programming world as decoupling. If a site’s style and content
are decoupled, a web designer can modify the look of the site by editing the .css
file(s), while a content editor can add content to the site by editing the .html
files.

Even more significant than facilitating organization and teamwork, this separation
of code reduces code duplication. In HTML-based design, if you want the title
of every article on your site to display in a large, red font, you have to put
and tags around the text inside the relevant h1 element on every one of
your site’s article pages. With CSS-based design, you can specify the font prop
erties for every h1 element in one place, which saves on typing. And, should you
decide to change the appearance of these headings, you have only to modify the
.css file instead of each and every .html file, which saves your sanity! These
differences are illustrated in Figure 2.10.

32

Semantic Content Markup

Figure 2.10. Centralizing design code with CSS

If you look closely at Figure 2.10, you’ll see that, in addition to the organizational
advantages described above, the browser has less code to download. On heavily
designed sites, or sites with hundreds of pages or more, this reduced download
time can have a significant impact both on the user experience, as well as your
bandwidth costs.

Semantic Content Markup
When you use .css files to decouple the content from the appearance of your
site, as I’ve just described, a curious thing begins to happen to your HTML. Be
cause CSS affords you complete control over the appearance of page elements,
you begin to choose tags because they describe the structure and meaning of

33

Chapter 2: Putting CSS into Perspective

elements of the page, instead of how you want them to look. Stripped of most
or all of the presentational information, your HTML code is free to reflect the
semantics of your site’s content.

There are a number of reasons why this is a desirable state of affairs, key among
them the fact that decoupling content from design makes it very easy to find
things when you’re changing the content of your site. The easiest way to spot a
CSS-based site is to use the View Source feature in your browser—if you can make
sense of the code within ten seconds, chances are that you’re not dealing with a
site that uses table-based layout and other non-semantic HTML.

Your web site will be easier for potential visitors to find through search engines
if it’s marked up with semantic HTML, because the fewer presentational tags
the search engine has to wade through to analyze your site, the easier it will be
for it to index the content. As we’ll see, CSS lets you control the position of an
element in the browser window almost independently of its position in the HTML
document. So, if you have a newsletter subscription form, or some other lengthy
chunk of HTML that won’t mean a whole lot to a search engine, feel free to move
its code to the end of your HTML document and use CSS to ensure that it’s
displayed near the top of the browser window.

Increasingly supported by modern browsers is a feature of the HTML link ele
ment3 that lets you restrict a linked style sheet so that it affects a page only when
that page is displayed by a certain type of browser. For instance, you could link
three .css files to a page: one that defined the appearance of the page on a
desktop browser, another that dictated how the page will look when printed, and
yet another that controlled the display on mobile devices such as Internet-con
nected Personal Digital Assistants (PDAs). Only by using semantic markup, and
allowing the CSS to take care of the display properties, is this sort of content
repurposing possible.

Last, but certainly not least, are the vast accessibility improvements that a site
can gain by using semantic markup. We’ll discuss these in detail in the next sec
tion.

Accessibility
Should you ever have the opportunity to observe a visually impaired individual
browsing the Web, I highly recommend you do so. Alternatively, get yourself

3 Specifically, the media attribute.

34

Accessibility

some screen reader software, switch off your monitor, and see for yourself what
it’s like.

Web sites that use tables, images, and other non-semantic HTML for layout are
extremely difficult for visually impaired people to use. Their screen reader software
will typically read the page aloud, from top to bottom. It’s not unusual for a
modern, table-based web site to inflict 30 seconds or more of nonsense upon the
user before the actual content begins. An example of some of what a screen
reader would output for a table based site is shown below:

Table with one column and five rows, Table with three columns
and one row, Link, Graphic, slash logo underline main dot gif,
Table end, Table with two columns and one row, Link, Graphic,
slash nav underline about underline us dot gif, Link, Graphic,
slash nav underline site underline map dot gif, Table end, Table
end, Table with one column and twenty-six rows, Table with one
column and seventeen rows …

Now, if you think that sounds mildly annoying, imagine having to listen to it for
each and every page of the sites that you visit!

CSS-based design and semantic markup nearly eliminate this aural garbage, be
cause they ensure that every tag in the document has a structural meaning that’s
significant to the viewer (or listener). An aural browser ignores the visual
formatting properties defined in the CSS, so the user need not listen to them.

On a site that used semantic markup, for example, a visually impaired user would
never have to wonder if a word was bold because it was more important, or just
because it looked better that way. Elements that were displayed in bold for design
reasons would have that property assigned using CSS, and the aural browser
would never mention it. Elements that needed additional impact or emphasis
would be marked up using the semantically meaningful strong and em elements,
which are displayed, by default, as bold and italic text in visual browsers, yet also
convey meaning to a screen reader user, as they tell the device to emphasize the
phrase.

A complete set of guidelines exists for developers who are interested in making
their sites more accessible for users with disabilities. The Web Content Accessib
ility Guidelines 1.04 (WCAG) is recommended reading for all web developers,
with Guideline 35 focusing on the idea of avoiding presentational markup in favor

4 http://www.w3.org/TR/WCAG10/
5 http://www.w3.org/TR/WCAG10/#gl-structure-presentation

35

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/#gl-structure-presentation
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/#gl-structure-presentation

Chapter 2: Putting CSS into Perspective

of semantic markup. As we create projects later in this book, we’ll discuss some
of these issues more fully.

Standards Compliance
The WCAG isn’t the only specification that advocates the use of CSS for the
presentational properties of HTML documents. In fact, the latest HTML stand
ards6 themselves are written with this in mind.

The World Wide Web Consortium7 (W3C) is the body responsible for publishing
recommendations (de facto standards) relating to the Web. Here are some of the
W3C Recommendations that relate to using semantic markup and CSS:

HTML 48

The latest (and last) major revision of the HTML Recommendation marks
all non-semantic elements and attributes as deprecated. 9 The font element,
for example, is clearly marked as deprecated in this standard. Under the de
scription of deprecated elements, the Recommendation has this to say:

In general, authors should use style sheets to achieve stylistic
and formatting effects rather than HTML presentational at
tributes.

XHTML 1.010

XHTML is a reformulation of HTML 4 as an XML document type. It lets
you use HTML tags and attributes while enjoying the benefits of XML features
(including the ability to mix tag languages, custom tags, etc.).

This Recommendation includes the same tags and deprecations as HTML 4.

Web Content Accessibility Guidelines 1.011

As described in the section called “Accessibility”, the WCAG Recommendation
strongly recommends using CSS and semantic markup in web design to im
prove accessibility. I’ll let the Recommendation speak for itself:

6 http://www.w3.org/MarkUp/#recommendations

7 http://www.w3.org/

8 http://www.w3.org/TR/html4

9 A deprecated element or attribute is one that has been tagged for removal from the specification,

and which therefore should not be used. For a document to comply strictly with the specification, it

should not use any deprecated tags or attributes.

10 http://www.w3.org/TR/xhtml1/

11 http://www.w3.org/TR/WCAG10/

36

http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/
http://www.w3.org/TR/html4
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/
http://www.w3.org/TR/html4
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/WCAG10/

Browser Support for CSS

Misusing markup for a presentation effect (e.g. using a table
for layout or a header to change the font size) makes it diffi
cult for users with specialized software to understand the
organization of the page or to navigate through it. Further
more, using presentation markup, rather than structural
markup, to convey structure (e.g. constructing what looks
like a table of data with an HTML PRE element) makes it
difficult to render a page intelligibly to other devices.

Many web developers believe that strict standards compliance is an idealistic goal
that is rarely practical. One of the primary goals of this book is to demonstrate
that this is not true. Today’s browsers provide strong support for CSS and produce
more consistent results when they are fed standards-compliant code. While bugs
and compatibility issues still exist, they are no more insurmountable than the
bugs that face designers who rely on noncompliant code. In fact, once you have
valid, standards-compliant code, fixing bugs and compatibility problems can be
easier—as you have the starting points of a valid document and style sheet, and
just need to find out why the browser display differs—and a lot of help is available
on the Web to help you to do that.

Browser Support for CSS
At the time of writing, the browsers employed by the vast majority of web users
provide sufficient CSS support to make CSS layouts a viable and sensible choice.
The usage of really old browsers—such as Netscape 4—has dwindled to a point
where supporting them to the full (i.e. so that these users can access the complete
design and functionality of your site) is unnecessary. That said, it’s perfectly
possible to design sites so that your layout degrades gracefully in older browsers,
ensuring that no users are denied access to your content

Designing sites to meet web standards, and constructing them using CSS, should
enable you to communicate with more users: they’ll be able to access the content
whether they’re using the latest version of Firefox on a desktop computer, a PDA
or phone, an old version of Netscape, or a screen reader. We’ll explore some of
the ways in which we can optimize site access for various browsers in Chapter 4.

Summary
In this chapter, we explored the primary uses of CSS, and discussed the advantages
of designing sites using Cascading Style Sheets. Chapter 3 focuses on the “how”

37

Chapter 2: Putting CSS into Perspective

of CSS: we’ll see how rules are included in tags as inline style rules, embedded
in pages as embedded style sheets, and loaded from external style sheet files.
We’ll also investigate in more detail the various selectors and structures of CSS
rules, and the units and values you’ll use in all rules that require specific measure
ments.

38

3	 Digging Below the Surface

This chapter completes our look at the “mechanics” of CSS: the background you
need to have in order to work with the technology. It covers six major topics:

❑	 a quick review of the three methods we can use to assign CSS properties to
HTML documents

❑	 the use of shorthand properties to group the values for a related set of prop
erties within a single statement

❑	 the workings of the inheritance mechanism in style sheets

❑	 the structure of a style, including variations on the use of selectors to determine
with great precision exactly what is affected by a style

❑	 the units and values that can appear in styles to express sizes, locations, and
other properties, and how they’re used

❑	 CSS comments, which can be used to place human-readable notes in your
CSS code

Chapter 3: Digging Below the Surface

Applying CSS to HTML Documents

In Chapter 1, we discussed three methods for applying style sheet properties to
HTML documents. Let’s briefly review them here.

inline styles
We can use the style attribute, which is available for the vast majority of
HTML elements, to assign CSS properties directly to HTML elements.

<h1 style="font-family: Helvetica, Arial, sans-serif;

 color: blue;">Welcome</h1>

This method is best reserved for times when you want quickly to try out one
or more CSS properties to see how they affect an element. You should never
use this method in a practical web site, as it avoids almost every advantage
that CSS has to offer.

embedded styles
We can use the style element in the head portion of any HTML document
to declare CSS rules that apply to the elements of that page.

<style type="text/css">

h1, h2 {

 color: green;

}

h3 {

 color: blue;

}

</style>

This form of CSS offers many advantages over inline styles, but is still not
as flexible or powerful as external styles (discussed below). I recommend that
you reserve embedded styles for use when you’re certain that the styles you’re
creating will be useful only in the current page. Even then, the benefit of
separate code offered by external styles can make them a preferable option,
but embedded styles can be convenient for quick-and-dirty, single-page work.

external styles
We can use a <link /> tag in the head portion of any HTML document to
apply the CSS rules stored in an external file to the elements of that page.

<link rel="stylesheet" type="text/css" href="mystyles.css" />

40

Using Shorthand Properties

External styles are the recommended approach to applying CSS to HTML,
as this technique offers the full range of performance and productivity advant
ages that CSS can provide.

Using Shorthand Properties
Most properties take a single item as a value. When you define a property with
a collection of related values (e.g. a list of fonts for the font-family property),
the values are separated from one another by commas, and if any of the values
include embedded white space or reserved characters, such as colons, they may
need to be enclosed in quotation marks.

In addition, there’s a special set of properties called shorthand properties, which
let you use a single property declaration to assign values to a number of related
properties. This sounds more complicated than it is.

The best-known shorthand property is font. CSS beginners are usually accus
tomed to defining font properties one by one:

h1 {

 font-weight: bold;

 font-size: 90%;

 line-height: 1.8em;

 font-family: Helvetica, Arial, sans-serif;

}

But CSS provides a shorthand property, font, that allows this same rule to be
defined much more succinctly:

h1 {

 font: bold 90%/1.8em Helvetica, Arial, sans-serif;

}

You can do the same with properties such as padding:

h1 {

 padding-top: 10px;

 padding-right: 20px;

 padding-bottom: 10px;

 padding-left: 5px;

}

We could replace the above declaration with the following shorthand:

41

Chapter 3: Digging Below the Surface

h1 {

 padding: 10px 20px 10px 5px;

}

The values are specified in a clockwise order, starting at the top of the element:
from top, to right, to the bottom, then left.

All shorthand properties are identified in Appendix C.

How Inheritance Works in CSS
Before you can grasp the syntax and behavior of CSS rules, you need a basic
understanding of inheritance, and how it’s used in CSS.

Think of a family tree. Your great-grandfather is at the top of the tree, followed
by his children, including his only son (your grandfather). Below your grandfather
is your mother and her siblings, and then, beneath her, there’s you, your siblings,
and your children. Some of your features, such at the color of your hair and eyes,
would be inherited from your ancestors—perhaps you have your mother’s hair
color, but your grandfather’s eyes. Other features may not be passed on in this
way. Your son may be far taller than anyone else in the family.

Just as everyone in your family fits into your family tree, every element on an
HTML page belongs to the document’s inheritance tree. The root of that tree is
always the html element.1 Normally, the html element has only two direct des
cendants in the inheritance tree: head and body.

Figure 3.1 shows a simple HTML inheritance tree for a small document.

As you can see, the document has in its head the standard title and link ele
ments, the latter of which probably links to an external style sheet. It also includes
a meta element (most likely to set the document’s character set).

The body element has five children: an h1, an h2, a p element (labeled p1 so we
can refer to it easily), a div, and an unordered list (ul) element. The div element,
in turn, contains two paragraph elements, one of which has an emphasis (em)
element, while the other contains an anchor (a) element. The ul element includes
three list item (li) elements; one of these includes an emphasis (em) element,
while another contains the paragraph element labeled p4.

1 This is even true of documents written to older versions of the HTML standard, in which the html
element was not required.

42

How Inheritance Works in CSS

Figure 3.1. A simple HTML inheritance tree

Each element in an HTML document (with the exception of the root html ele
ment) has a parent element. This is the element that directly precedes it in the
tree. In Figure 3.1, p1 ’s parent is the body element. Likewise, p1 is said to be a
child of the body element.

Most elements in an HTML document will be descendants of more than one
element. For example, in Figure 3.1, the paragraph element p1 is a descendant of
the body and html elements. Similarly, the paragraph element p2 is a descendant
of the div, body, and html elements. This notion of element hierarchy is important
for two reasons:

❑	 The proper use of some of the CSS selectors you’ll work with will depend on
your understanding of the document hierarchy. There is, for example, an im
portant difference between a descendant selector and a parent-child selector.
These are explained in detail in the section called “Selectors and the Structure
of CSS Rules”, later in this chapter.

❑	 If you don’t supply a specific value for an element’s property, in many cases,
that element will take the value assigned to its parent. Consider the example
document shown in Figure 3.1. If the body element had a declaration for the
font-family property and p1 did not, p1 would inherit the body element’s
font-family. In contrast, setting the width property of an element will not
directly affect the width of its child elements. font-family is an inherited
property; width is not.

43

Chapter 3: Digging Below the Surface

The properties that are inherited—and those that are not—are indicated in
Appendix C. However, you can set any property to the special value inherit,
which will cause it to inherit the value assigned to its parent element.

This inheritance issue can become tricky when you’re dealing with fairly
complex documents. It’s particularly important when you’re starting with a
site that’s been defined using the traditional table layout approach, in which
style information is embedded in HTML tags. When a style sheet seems not
to function properly, you’ll often find that the problem lies in one of those
embedded styles from which another element is inheriting a value.

Selectors and the Structure of CSS Rules
In Chapter 1 we learned that every CSS style rule consists of two parts: a selector,
which defines the type(s) of HTML element(s) to which the style rule applies;
and a series of declarations, consisting of properties and values, that define the
style.

So far, we’ve seen only simplistic selectors. Typically, they’ve contained only one
element:

h1 {

 font-size: 120%;

 text-transform: capitalize;

}

We’ve encountered one or two instances where a single rule is designed to apply
to more than one kind of HTML element:

h1, h2, h3 {

 font-size: 120%;

 text-transform: capitalize;

}

In this section, we’ll take a look at all the different kinds of selectors that are
available to you in CSS.

Universal Selector
The universal selector matches every element in the document. It has very little
practical value by itself, but the universal selector can come in handy in specific

44

Element Type Selector

situations involving, for example, attribute selectors, which I’ll explain later in
this section.

In this example, all elements in the page are given a text color of red:

* {

 color: red;

}

Element Type Selector
The element type selector is the most common selector. It specifies one HTML
element type with no qualifiers. In the absence of other style rules that might
apply to the element type provided in the selector, this rule applies to all such
elements on the page.

In this example, we specify the text and background color of all hyperlinks in the
current document. They will appear as white text on a green background.

a {

 color: white;

 background-color: green;

}

Class Selector
To apply a style rule to a potentially arbitrary group of elements in a web page,
you’ll need to define a class in the style sheet, then identify the HTML elements
that belong to that class using the class attribute.

To define a class in a style sheet, you must precede the class name with a period.
No space is permitted between the period and the name of the class.

The following style sheet entry defines a class named special.

.special {

 font-family: Verdana, Helvetica, Arial, sans-serif;

}

Then, we add class="special" to the elements that we want to adopt this style.

<h1 class="special">A Special Heading</h1>

<p class="special">This is a special paragraph.</p>

45

Chapter 3: Digging Below the Surface

You can write your class so that it applies only to a particular type of element.
In the following example, we create the same special class, but this time it applies
only to paragraph elements.

p.special {

 font-family: Verdana, Helvetica, Arial, sans-serif;

}

If you define an element-specific class such as the p.special example above,
then associate that class (in this case, special) with an element of any other
type, the style rule simply does not apply to that element.

An HTML element can belong to multiple classes: simply list those classes (sep
arated by spaces) in the class attribute:

<p class="special exciting">Paragraph! Of! Stuff!</p>

ID Selector
An ID selector lets you target a single HTML element within a page. Like a class
selector, an ID selector must be defined in the style sheet and included explicitly
in the HTML tag. Use the # symbol to identify an ID selector in the style sheet,2

and the id attribute to give an element an ID. IDs must be unique within a
document; no two HTML elements in a single document should have the same
ID.

This style sheet rule defines a rule for an element with the ID unique:

#unique {

 font-size: 70%;

}

The code below uses the HTML id attribute to indicate the element that will be
affected by the rule above:

<h4 id="unique">This will be a very tiny headline</h4>

For example, if you had five <div class="sidebar"> items on your page, but
you wanted to style differently the one responsible for displaying your site’s
search box, you could do so like this:

2 Optionally, you can confine the ID’s use to an element of a specific type by preceding the # with
the HTML element’s tag name (e.g. div#searchbox). But, since you can have only one element
with the specific ID within a document, it seems silly to confine it to a specific element type.

46

Pseudo-element Selector

div.sidebar {

 border: 1px solid black;

 background-color: yellow;

}

#searchbox {

 background-color: orange;

}

The search box would then appear in your HTML as shown here:

<div id="searchbox" class="sidebar">

 <!-- HTML for search form -->

</div>

Now, since the div has id="searchbox" and class="sidebar" attributes, all
the sidebar declarations will be applied to the search box, but it will take its
background-color from the #searchbox rule. The guidelines for cascading
overlapping rules (discussed in Chapter 9), in combination with the ID selector,
let you avoid having to redefine all the sidebar properties in a special searchbox
class.

However, you could just as easily define a class and apply it to the exceptional
element (the search box, in this example). This approach is more flexible, although
perhaps not as efficient in terms of code space. For example, imagine you’ve
identified a class or other rule that applies to all level-three headings except one,
and you’ve used an ID selector for the exception. What do you do when a redesign
or content change requires one more such exception? The ID selector solution
breaks down immediately in that situation.

Pseudo-element Selector
This and all the remaining selectors in this section require a browser that supports
the CSS 2 specification, such as Firefox, Safari, Opera, or Internet Explorer 7.
Some features, such as the :hover pseudo-class, are supported by some older
browsers, but their implementations are not complete.

Pseudo-element selectors and pseudo-class selectors are unique among the CSS
selectors in that they have no equivalent HTML tag or attribute. That’s why they
use the prefix “pseudo” (meaning “false”).

So far, the CSS specification has defined only three pseudo-elements: first-
letter, first-line, and first-child. While the first two of these phrases
mean something to us humans, it’s ultimately up to each browser to interpret

47

Chapter 3: Digging Below the Surface

them when rendering HTML pages that use these pseudo-elements. For example,
does first-line mean “first sentence,” or does it mean the first physical line
that’s displayed—a value that changes as the user resizes the browser? The first-
child pseudo-element, on the other hand, is not browser-dependent. It refers to
the first descendant of the element to which it is applied, in accordance with the
HTML document hierarchy described in the section called “How Inheritance
Works in CSS”.

To define a pseudo-element selector for a style rule, precede the pseudo-element
name with a colon. Here’s an example:

p:first-letter {

 font-family: serif;

 font-size: 500%;

 float: left;

 color: gray;

}

This creates a drop-caps effect for the first letter in every paragraph on the page,
as shown in Figure 3.2. The first letter in each paragraph will be five times larger
than the usual type used in paragraphs. The float style property, which we discuss
in Chapter 8, ensures the remaining text in the paragraph wraps around the en
larged drop-cap correctly.

Figure 3.2. Creating a drop-caps effect using the first-letter
pseudo-element

Pseudo-class Selector
A pseudo-class selector is exactly like the pseudo-element selector, with one
exception. A pseudo-class selector applies to a whole element, but only under
certain conditions.

The current release of CSS 2 defines the following pseudo-classes:

48

Pseudo-class Selector

❑ hover

❑ active

❑ focus

❑ link

❑ visited

❑ lang

A style sheet, then, can define style rules for these pseudo-classes as shown in
the example below. You may remember that we’ve already seen a rule that uses
the hover pseudo-class.

a:hover {

 color: green;

}

All anchor tags will change color when the user mouses over them. As you can
see, this means the pseudo-class selector comes into play only when the user in
teracts with the affected element.

The lang pseudo-class3 refers to the setting of the lang attribute in an HTML
element. For example, you could use the lang attribute shown below to define
a paragraph in a document as being written in German:

<p lang="de">Deutsche Grammophon</p>

If you wanted, for example, to change the font family associated with all elements
in the document that were written in German, you could write a style rule like
this:

:lang(de) {

 font-family: spezialitat;

}

lang vs language

Be careful not to confuse this lang attribute with the deprecated language
attribute that used to be used to set the scripting language used in pages.

3 Be aware that browser support for the lang pseudo-class is still very scarce. It’s covered here mainly
for the sake of completeness.

49

Chapter 3: Digging Below the Surface

Descendant Selector
As we’ve discussed, all HTML elements (except the html element) are descendants
of at least one other HTML element. To apply a CSS style rule to an element
only when it’s a descendant of some other kind of element, we can use a descend
ant selector.

A descendant selector, such as the one shown in the following style rule, restricts
the applicability of the rule to elements that are descendants of other elements.
The scope of the descendant selector is determined by reading the rule from right
to left. Spaces separate the element types.

li em {

 color: green;

}

The style rule identifies that a color of green will be applied to any text contained
in an em, or emphasis, element only when the emphasized text is a descendant of
a list item.

In the fragment below, the first em element will be displayed in green characters;
the second will not, as it doesn’t appear within a list item.

 Item one

 Item two

<p>An italicized word.</p>

It’s important to note that the descendant relationship need not be an immediate
parent-child connection. Take this markup, for example:

<div class="sidebar">

 <p>If you have any questions, please call

 our office during business hours.</p>

</div>

The following style rule would apply to the anchor element even though it focuses
explicitly on a elements that are descendants of div elements. This is because,
in this case, the a element is the child of a paragraph that’s contained in a div
element.

50

Parent-child Selector

div a {

 font-style: italic;

}

Parent-child Selector
A parent-child selector causes a style rule to apply to element patterns that
match a specific sequence of parent and child elements. It is a special case of the
descendant selector that we discussed above. The key difference between the two
is that the pair of elements in a parent-child selector must be related directly to
one another in a strict inheritance sequence.

A parent-child relationship is specified in a selector with the “greater than” sign
(>).

Below is an example of a parent-child relationship.

body > p {

 font-weight: bold;

}

In the example below, this rule will only affect para2, as para1 and para3 are
not direct descendants of the body element.

<body>

 <div class="sidebar">

 <p id="para1">This is the sidebar.</p>

 </div>

 <p id="para2">Welcome to the web site! Here's a list:</p>

 <p id="para3">This is the first paragraph in the list. It's

 also the last.</p>

</body>

As of this writing, Internet Explorer for Windows (up to and including version
6) distinguishes itself by being the only major browser that does not support
parent-child selectors. Because of this, careful use of descendant selectors is far
more common, and the parent-child selector is often abused to specifically create
styles that do not apply to Internet Explorer for Windows.

51

Chapter 3: Digging Below the Surface

Adjacent Selector
Adjacency is not related to inheritance. Adjacency refers to the sequence in which
elements appear in an HTML document. As it happens, adjacent elements are
always siblings, but it’s their placement in the document, rather than their inher
itance relationship, that is the focus of this selector. This point is demonstrated
in the HTML fragment below:

<h1>This is important stuff!</h1>

<h2>First important item</h2>

<h2>Second important item</h2>

The first h2 heading is adjacent to the h1 heading, but the second h2 heading is
not adjacent to the h1 heading.

The adjacent selector uses the + sign as its connector, as shown here:

h1 + h2 {

 margin-top: 11px;

}

This style rule would put 11 extra pixels of space between the bottom of an h1
heading and an h2 heading that followed it immediately. It’s important to recog
nize that an h2 heading that follows a paragraph under an h1 heading would not
be affected.

As of this writing, Internet Explorer for Windows (up to and including version
6) remains the only major browser that does not support adjacent selectors, al
though support is planned for Internet Explorer version 7. Because of this, the
adjacent selector has not yet found widespread use in practical web design.

Attribute Selectors
The group of selectors I’m lumping together as attribute selectors are among
the most interesting of all the CSS selectors, because they almost feel like pro
gramming techniques. Each attribute selector declares that the rule with which
it is associated is applied only to elements that have a specific attribute defined,
or have that attribute defined with a specific value.

There are four levels of attribute matching:

[attribute]	 matches if the attribute attribute is defined at all for
the element(s)

52

Attribute Selectors

[attribute="value"]	 matches only if the attribute has a value of value

[attribute~="value"]	 matches only if the attribute is defined with a space-
separated list of values, one of which exactly matches
value

[attribute|="value"]	 matches only if the attribute is defined with a hy
phen-separated list of “words,” and the first of these
words begins with value

You might, for example, want to apply style properties to all single-line text input
boxes (<input type="text" />) in your document. Perhaps you want to set
their text and background colors to white and black, respectively. This style rule
would create that effect:

input[type="text"] {

 color: white;

 background-color: black;

}

The third variation of the attribute selector described above searches the values
assigned to an attribute, to see whether it contains the word you’ve specified (i.e.
a value in a space-separated list).

For example, during the development of a web site, various graphic designers
may have inserted some img elements with temporary placeholder alt attributes,
with the idea of returning to them later to finish them. You could call attention
to the existence of such tags with a style rule like this:

img[alt~="placeholder"] {

 border: 8px solid red;

}

This selector will find all img elements whose alt attributes contain the word
“placeholder,” and will put an eight-pixel red border around them. That ought
to be hard to miss!

The fourth variation really is useful only when you’re dealing with the lang at
tribute. Typically, the lang attribute takes on a value such as en or de. However,
it can also be used to define the regional dialect of the language being used: en-
us for American English, en-uk for British English, etc. This is when the [attrib
ute|="value"] selector comes into its own. It enables you to isolate the first
portion of the lang attribute, where the language that’s being used is defined.
The other portions of the hyphen-separated value are ignored.

53

Chapter 3: Digging Below the Surface

As you’ve probably come to expect by now, attribute selectors are not supported
by Internet Explorer for Windows versions 6 and earlier. As with other advanced
selector types, this has prevented the widespread adoption of attribute selectors,
despite their obvious usefulness.

Selector Grouping
To apply a style rule to elements of several different types in an HTML document,
we use selector grouping, separating with a comma the element types to which
the rule is to be applied.

Here’s a simple example of this type of selector:

h1, h2, h3 {

 font-family: Helvetica, Arial, sans-serif;

 color: green;

}

The elements in the selector list need not be of the same type or even the same
level of specificity. For example, the following style rule is perfectly legal. It applies
a specific style to level-two headings (h2) and to paragraphs whose class is defined
as special:

h2, p.special {

 font-size: 22px;

}

You may include a space between the comma-separated items, though this is not
necessary.

Expression Measurements
Most of the values we define in a CSS rule include measurements. These meas
urements tell the rule how tall or wide something is to be, so it follows that you’ll
most commonly use measurements when working with fonts, spacing, and posi
tioning.

There are two types of measurements: absolute and relative. An absolute meas
urement (e.g. setting a font-size to 18px, or 18 pixels) tells the browser to render
the affected content 18 pixels tall.4 Technically speaking, it tells the browser to

4 Again, if I wanted to be terribly precise, I would say that a pixel is actually a relative measurement,
because its meaning is relative to the display medium on which the page is produced. But, in this

54

Expression Measurements

use the specified font and scale its character height so that the font’s overall
height is 18 pixels. Chapter 8 includes an explanation of font height and width.

Relative measurements, on the other hand, instruct the browser to scale a value
by some percentage or multiple, relative to the size of the object before the scaling
takes place. The example below defines a style rule in which all fonts in paragraphs
on the page should be scaled to 150% of the size they would have been without
this style:

p {

 font-size: 150%;

}

If you knew that, in the absence of such an instruction, the text of all paragraphs
on the page displays at a size of 12 pixels, you could also accomplish the same
thing this way:

p {

 font-size: 18px;

}

Generally, you should use the relative sizing values whenever you can. This
technique works better than absolute sizing when the user has set preferences
for font sizes, and in situations in which multiple style sheets could be applied.
It’s also more accessible, as visually impaired users can more easily increase the
font size on the page by configuring their browsers’ preferences.

All length values (the term used by the CSS specification to describe any size
measurement, whether horizontal or vertical) consist of an optional sign (+ or
-), followed by a number (which may include a decimal point), followed by a
unit of measurement. No spaces are permitted between the number and the unit
of measurement.

context, “relative” means “relative to some other value in the style rule or in the HTML,” and in that
sense, pixels are absolute.

55

Chapter 3: Digging Below the Surface

Absolute Values

Table 3.1. Absolute values supported in style sheets

ExplanationStyle MeaningStyle
Abbreviation

Imperial unit of measure; 2.54 cen
timeters

inchin

centimetercm

millimetermm

1/72 inchpointpt

12 points, or one-sixth of an inchpicapc

One dot on the screen pixelpx

Table 3.1 shows the absolute values that are supported in CSS style sheets, and
where they’re not obvious, the values’ meanings.

When a length of zero is used, no unit of measurement is needed. 0px is the same
as 0. It doesn’t make sense to give a unit of measurement when the length is zero
units, because zero is the same distance in any unit of measurement.

Whenever you need to supply an absolute measurement for the size or position
of an element in a style sheet rule, you can use any of the above abbreviations
interchangeably. Each of the following rules should produce precisely the same
result:

font-size: 1in;

font-size: 2.54cm;

font-size: 25.4mm;

font-size: 72pt;

font-size: 6pc;

Pixels pose an entirely different set of issues. A pixel is one point on a screen that
can be on or off, displaying any color that is needed. If you set your monitor’s
display to a resolution of 800 pixels by 600 pixels, a pixel corresponds to 1/600
of the screen height. On a 15-inch display, the height is about 10.5 inches and

56

Relative Values

the width is a little more than 13 inches.5 A 12-pixel font display on that monitor
would turn out to be about 1/50 of the 10.5-inch height of the display, or just a
little more than one-fifth of an inch.

Many designers set their font sizes using pixels in the belief that this prevents
site users from increasing the font size using their browser settings, because Inter
net Explorer does not allow the resizing of text set in pixels. However, most other
browsers do allow the user to resize text set in pixels. A common issue arises with
sites whose designers haven’t realized that fonts set using pixels can be resized
in other browsers: often, the text will appear to expand out of fixed-size boxes.
From the point of view of accessibility, if users need a larger font size and have
increased the text size in their browsers accordingly, we should support this choice
regardless of which browser they’re using; thus, we should avoid setting text
heights using pixels. Creating designs that work well even if users have increased
the text size in their browsers is part of the process of designing for the Web.
The use of pixels to size text should be avoided.

Relative Values
Because of the problems posed by the use of any absolute value, the most flexible
way to approach measurements for style rules is to use relative units of measure
ment. Principally, these units are em and percentage, although some people prefer
to use the more obscure ex measurement. The em measurement is so named be
cause it refers to the width of an uppercase “M” in the given font, but in practice,
it’s equal to the font-size of the current font. The ex measurement is based on
the height of the lowercase “x” character in a font (more commonly known as
the x-height of the font) and is far less common than the em.

Both the em and the percentage generate font sizes based on the inherited or de
fault size of the font for the object to which they’re applied. In addition, ems and
percentages are 1:100 equivalent. A size of 1em is identical to a size of 100%.

This description begs the question, “What’s the default or inherited font size for
a particular HTML element?” The answer is: it depends.

Prior to the emergence of Opera 5 for Windows, browsers set the default values
for all fonts as part of their startup processes. Users had no control. The browsers

5 High school math would lead you to predict a nine- by 12-inch screen, but unfortunately, 15-inch
monitors don’t normally have a full 15 inches of diagonal screen space. Perhaps computer manufac
turers don’t study Pythagoras.

57

Chapter 3: Digging Below the Surface

defined a default, and web designers overrode the defaults willy-nilly, as they saw
fit. The user took what was presented.

Then, along came the idea of user choice—a development that, not surprisingly,
was facilitated by the emergence of CSS. Essentially, the developers of the Opera
browser created a local style sheet that users could modify and set their own de
faults to use. The Opera developers also defined a nice graphical user interface
through which users could set preferences for these styles.

This was great for users, but web designers found themselves in a quandary. If,
for example, you assumed that browsers were going to default body text to a 12
point font size6 (which was the de facto standard before the user-controlled
preferences era), you could set a style to apply a 1.25em scaling to the text and
get a 15-point font size for the text in question. It was nice and predictable.

But now, a 1.25em scaling applied to a font tells the browser to increase the size
of the font to 1.25 times (or 125% of) its default size. If the user has set up his
or her browser to show standard text at a height of 16 points, your 1.25em
transformation brings the size up to 20 points.

When you stop to think about it, though, that’s probably just fine. The user who
chooses a larger base font size probably needs to see bigger type. If you want type
that would otherwise be at 12 points to display at 14 for some good reason, then
it’s not unreasonable to expect that this new user will benefit in the same way
from seeing the font used in this particular situation increase from his or her
standard 16 points to 20.7

Most of the time, there’s not really a reason to muck around with the user’s set
tings for font sizes, so changing them arbitrarily isn’t a good idea. Before you
apply this kind of transformation to a segment of text in your web design, ask
yourself if it’s really necessary. My bet is that, nine times out of ten, you’ll find
it’s not.

I would be remiss if I didn’t point out that some pitfalls are inherent in the use
of relative font sizes. Under some circumstances, relative font values can combine
and multiply, producing bizarre results indeed.

6 Just in case you were wondering, pixel sizes and point sizes are not equivalent, and the ratio between
the two varies between browsers and operating systems. For example, the 12-point default font size
used by most Windows browsers was rendered at 16 pixels on that platform. 12pt is equivalent to
16px on Windows browsers.
7 If that’s not the case, you probably want to rethink your reason for boosting the font size in the
first place.

58

CSS Comments

For example, let’s say that you define style rules so that all text that’s bold is
displayed at 1.5em and all italic text is displayed at 1.5em, as shown below.

.bold {

 font-weight: bold;

 font-size: 1.5em;

}

.italic {

 font-style: italic;

 font-size: 1.5em;

}

In your document, these styles are used together in a number of different ways,
as shown in this markup:

<p>This is normal, this is bold,

 this is italic,

 this is bold and italic, and

 finally, this is bold,

 then italic.</p>

When you nest8 these styles, the resulting text will display at 2.25em (1.5em ×
1.5em). This problem arises with child elements, which inherit from their parent
container elements the computed values for measured properties, not the relative
values. This is relatively easy to avoid, but if you overlook it, the results can be
quite startling, as Figure 3.3 illustrates.

Figure 3.3. Relative measurements gone haywire

CSS Comments
You’re probably already familiar with the concept of comments in HTML:

<!-- this is an HTML comment -->

8 Nesting is the process of putting one element inside another. For example, we say that a span inside
another span is nested.

59

Chapter 3: Digging Below the Surface

Comments allow you to include explanations and reminders within your code.
These are ignored entirely by the browser, and typically are included solely for
the developer’s convenience. If you’ve ever had to make changes to code that
hasn’t been touched in a few months, I’m sure you can appreciate the value of a
few well-placed comments that remind you of how it all works.

CSS has its own syntax for comments. In HTML, a comment begins with <!-
and ends with -->. In CSS, a comment begins with /* and ends with */:

<style type="text/css">

 /* This rule makes all text red by default. We include

 paragraphs and table cells for older browsers that don't

 inherit properly. */

 body, p, td, th {

 color: red;

 }

</style>

If you know much JavaScript, you’ll recognize this syntax, which can be used to
create multiline comments in that language as well. However, unlike JavaScript,
CSS does not support the single-line double-slash (//) comment style.

Summary
This chapter ended our overview of CSS technology with a tour of some of the
syntactic and structural rules of CSS styles. Along the way, it explained the basic
ideas involved in HTML document inheritance.

In Chapter 4, we’ll see how you can check your pages to see if they meet the
W3C Recommendations. Passing such a check will help you ensure that your
pages will display as expected not only in current browsers, but in all future
browsers as well. We’ll also learn a few tricks to get your pages to display in a
usable way in older browsers.

60

4 Validation and Backward
Compatibility

This chapter discusses two related topics. It begins with a description of the use
of W3C and other CSS-validation tools and techniques to ensure that your CSS
designs create valid pages. As you migrate existing table-centered designs to CSS,
validation will be helpful in pointing out areas where you haven’t quite lived up
to CSS expectations.

The second part of the chapter focuses on some small changes you can make to
valid CSS pages so that they will display as correctly as possible in older or in
compatible browsers. It discusses the main types of browser problems that you
may encounter, how to use the @import rule to avoid some potential pitfalls, and
how to define a page’s DOCTYPE to gain more direct control over the rendering of
that page.

Validating your CSS
It’s vital that you validate all your external style sheets, as well as all your HTML
pages that use internal style sheets. It’s not just easy to do—it’s free. If you submit
a page (or multiple pages) to the W3C’s CSS validation service, and they pass,
you can put a nifty little icon like the one in Figure 4.1 on your page.

Chapter 4: Validation and Backward Compatibility

Figure 4.1. A Valid CSS badge

To submit a style sheet or HTML page for validation, just go to
http://jigsaw.w3.org/css-validator/. The page you’ll see looks like Figure 4.2.

Figure 4.2. The main page of the W3C’s CSS validator

Scroll down this page if necessary, and you’ll see that three options are available:
you can submit a URL for validation, upload a file from your computer for valid
ation, or enter some CSS to be validated.

The simplest way to validate your CSS is by entering a URL. You can enter the
URL of your CSS file, or the URL of any HTML page. In the latter case, the
validator will load and check any externally linked style sheets, in addition to
looking over the CSS contained within the HTML document itself.

If your CSS is contained in a file on your hard drive, the easiest way to validate
it is by uploading the file. The validator won’t be able to see any of the linked

62

http://jigsaw.w3.org/css-validator/

Validating your CSS

files on your hard drive, so you’ll have to upload all of the files that contain CSS
one by one.

The forms on the validator’s home page perform validation using the default
settings, but we can change these options by using one of the advanced interfaces,
which are linked from the bottom of each form. One of these advanced interfaces
is shown in Figure 4.3.

Figure 4.3. One of the W3C CSS validator’s advanced pages

The validation form contains three drop-down menus:

The first, labeled Warnings, determines how significant a mistake must be before
the validator includes it in the litany of warnings it produces as part of its report.
It has four options:

❑ All

❑ Normal report

❑ Most important

❑ No warnings

63

Chapter 4: Validation and Backward Compatibility

Warnings are not the same as errors. If your page contains CSS errors, it won’t
validate. But it’s possible for a page to validate and still contain markup that’s
either deprecated or used in inadvisable ways. For example, the CSS validator
warns you if you set the color of text and background elements within a block
to the same color. This doesn’t make the CSS wrong, but it can have an undesir
able effect when the page is rendered.

By default, this drop-down is set to “Normal report,” and unless you have some
experience or a specific reason to believe that level of warning won’t serve your
needs, I recommend you leave it at its default value.

The second drop-down on the page is labeled Profile. This setting determines the
CSS recommendation against which your page will be validated. It has eleven
choices:

❑ No special profile

❑ CSS version 1

❑ CSS version 2

❑ CSS version 2.1

❑ CSS version 3

❑ SVG

❑ SVG Basic

❑ SVG Tiny

❑ Mobile

❑ ATSC TV profile

❑ TV profile

The first few options are self-explanatory—they allow you to select the specific
version of the CSS standard to which you’re validating your markup. The other
options, such as SVG, mobile, and TV profile, refer to other uses of CSS, and can
be ignored for our purposes.

64

Adjusting for Backward Compatibility

By default, the validator sets this to CSS version 2. However, I would advise you
set it to CSS version 2.1, as it’s the latest version of CSS with widespread browser
support.

The final drop-down list, labelled Medium, lets you specify the media type for
which this style sheet is intended.

When you’ve set the options you require, click the Check or Submit button to
submit your CSS for validation. After a brief pause, the validator will let you
know if your page contains valid CSS. If so, it will provide you with a link to the
badge shown in Figure 4.1, so you can put the graphic on your page. Alternatively,
if the validator encounters errors in your CSS, it will tell you what you need to
fix in order to make your page’s CSS valid.

It’s important to note that if you’re validating your CSS from an HTML docu
ment, the validator must be working with a correct HTML page. Specifically,
what is called the “document parse tree” must be valid, or the CSS validator will
not be able to work as it should.

You’ll see a note to this effect on the CSS validation page, alongside a link to the
main W3C validation page on which you can submit the page for HTML valida
tion prior to using the CSS validator. Note that “valid” HTML requires the in
clusion of all of the document prologue elements, including DOCTYPE and a char
acter encoding label. If your page lacks either of these, you’ll be told that the
validator cannot proceed until these points are fixed.

Adjusting for Backward Compatibility
When we move on to create our CSS layouts, we’ll create CSS (and the related
XHTML) documents that validate and display correctly in the latest versions of
modern browsers. While even these modern browsers still have bugs and rendering
inconsistencies, these issues are more of a problem when you’re dealing with
slightly older browser versions, which may still be in common usage. As our de
velopment progresses, we’ll explore the various ways in which we can avoid cross-
browser issues altogether while building layouts; in this section, we’ll discuss
some of the techniques you can use to deal with existing cross-browser issues.

When you’re working to address existing cross-browser issues, you’re likely to
run into three separate scenarios:

❑ browsers that do not support CSS at all

65

Chapter 4: Validation and Backward Compatibility

❑	 browsers with poor or badly implemented CSS support

❑	 relatively modern or recent browsers that, while effectively rendering most
CSS, provide inconsistent support—or lack support entirely—for certain parts
of versions 1 and 2 of the CSS specification

Browsers that Do Not Support CSS
Of the major browsers, the following offer no CSS support whatsoever:

❑	 Opera (Version 3.5 and earlier)

❑	 Netscape Navigator (Version 3.x and earlier)

❑	 Internet Explorer (Version 2.x and earlier)

There are also text-only browsers—such as Lynx—that display only the text of
the page, ignoring both CSS and images.

In practice, the usage of browsers that do not support any CSS is minimal. For
anyone who uses one of these browsers, a CSS layout coupled with a semantic
document may well deliver a far better experience than a design that uses a mish
mash of presentational HTML and CSS: users will, at least, be able to access
content that’s structured in a meaningful way. Therefore, when it comes to
browsers that do not support CSS, we should be concerned that our content is
accessible to them.

Browsers with Poor or Badly Implemented CSS
Support

While browsers that don’t support CSS are not much of an issue, browsers that
support CSS, but in a strange or dysfunctional manner, are far more problematic.
The browser that caused the greatest number of problems in this area was Nets-
cape Navigator version 4.1 The problem with browsers that support CSS badly
is that, in such browsers, a perfectly well-built, valid page can render so badly
that it’s not readable by the user.

1 When we talk about Netscape 4, we mean all versions of Netscape Navigator that begin with 4:
from 4.0 to 4.8.

66

Browsers with Poor or Badly Implemented CSS Support

Many developers stopped worrying about Netscape 4 as its market share has
dwindled. However, it is possible to block this browser’s view of style sheets
completely, so that the Netscape 4 user sees the same display as users of browsers
that don’t support CSS at all.2

Two Ways to Block Netscape 4 from Style Sheets

There are two ways to prevent Netscape 4 from seeing the style sheets that are
applied to a particular page. Either of these approaches will cause the browser
simply to ignore all CSS-related information stored in the external style sheet,
and to display the page as it would routinely.

Using the @import at-rule

The first approach is to use a CSS at-rule called @import. 3 An at-rule is a special
kind of CSS directive (or command, if you prefer) that starts with an “at sign”
(@). These are used inside styles in a document or, less frequently, in externally
linked style sheets. Because Navigator 4 doesn’t understand these commands, it
ignores them.

To link an external style sheet called corpstyle.css to a page, we add a link
element to the head of the document, like this:

<link rel="stylesheet" type="text/css" href="corpstyle.css" />

But, to cause Netscape 4 to ignore this externally linked style sheet, we create
an embedded style sheet instead, and use an @import rule to reference the external
style sheet:

<style type="text/css">

 @import url(corpstyle.css);

</style>

Notice that the name of the style sheet is supplied as an argument to the url
operator.

Blocking Internet Explorer Version 4

While Netscape 4’s interpretation of the CSS specifications is the furthest
from the mark, Internet Explorer 4’s implementation isn’t too crash-hot,

2 It’s also possible to design your pages so that they function in Netscape 4, but we won’t be dealing

with that option in this book.

3 The other at-rules are described in Appendix A.

67

mailto:@import

Chapter 4: Validation and Backward Compatibility

either. You can use the @import trick to block a style sheet from Internet
Explorer 4, but you need to use a different form of the at-rule, as shown be
low.

<style type="text/css">

 @import "corpstyle.css";

</style>

Using the media Attribute

The other simple way to stop Netscape 4 from seeing a style sheet is to take ad
vantage of an error in the way the browser interprets the media attribute of the
link element. The media attribute is optional, and generally is not included, but
if it is, and if it contains a value other than screen, Netscape 4 ignores it. Here’s
an example of how we can use this error to our advantage:

<link rel="stylesheet" type="text/css" href="corpstyle.css"

 media="all" />

Generally, you should use all as the value for the media attribute if you want
Netscape 4 to ignore the style sheet. However, you may be more comfortable
using screen along with some other value, such as screen, print, which will
also have the desired effect on Netscape 4.

Identifying and Dealing with Problems

Just about the only way to identify CSS markup that will break your layout in
older browsers is to use a compatibility chart, and to go through your documents
in search of offending properties. You can find a comprehensive CSS property
reference, including browser compatibility information, in Appendix C. But, since
books tend to slip out of date faster than online information, here are some good
online references.

A good web browser compatibility chart can be found at Westciv’s web site.4

This company publishes a CSS editor and other web design tools, and maintains
this chart as a service to its customers and prospects. I’ve generally found the
data here to be current and accurate.

If you look down the Netscape 4 columns in either of the Westciv charts, or
peruse Appendix C, you’ll see the aspects of CSS design that tend to be problem
atic for Netscape 4.

4 http://www.westciv.com/style_master/academy/browser_support/

68

http://www.westciv.com/style_master/academy/browser_support/
http://www.westciv.com/style_master/academy/browser_support/

Bugs in Modern Browsers

Among the most pronounced areas of nonconformance are:

❑	 the cascade itself

❑	 font-variant

❑	 backgrounds (particularly positioning and attachment)

❑	 word and letter spacing

❑	 vertical-align

❑	 most of the box-related CSS properties, in particular, floats and margins (these
properties are discussed in Chapter 8)

❑	 much border-related control

❑	 list-style properties

Other less obvious errors abound, as well. For example, Netscape 4 incorrectly
causes an element to inherit the font size set in the parent element, rather than
the relative value, when relative units are used (see Chapter 7).

In general, I’d advise you to spend as little time as possible worrying about
Netscape 4 support, and very little energy trying to get your pages to display well
(let alone perfectly) in this flawed browser.

Bugs in Modern Browsers
Even if you feel that you can safely ignore these older browsers, you’ll find that
dealing with browser-related CSS bugs and inconsistencies is an inevitable part
of CSS design. Just as those of us who learned to design web sites using tables
had to learn “tricks” to get the nested tables to display in the way we wanted, so
too do we need to learn how to deal with a variety of cross-browser issues when
working with CSS.

The most prevalent browser currently in use is Internet Explorer 6, which is an
older browser than the latest versions of Firefox, Safari, and Opera, and its support
for CSS is lacking when compared to these newer browsers. A significant number
of people continue to use older versions of Internet Explorer—versions 5.0 and
5.5—which have additional problems where CSS is concerned. Therefore, a site
that validates and works well in the latest version of Safari on the Mac, or in

69

Chapter 4: Validation and Backward Compatibility

Firefox, may well display several problems when viewed in Internet Explorer.
Other browsers are not immune to strange bugs, either.

Sometimes, it’s possible to get around a bug or other issue by approaching the
layout from a slightly different angle. There are often several ways to achieve the
same visual result in CSS, and if you can make a change and get it to work con
sistently across all of your target browsers without resorting to CSS hacks, that’s
a far better end result than sticking with your original method and needing to
include a raft of hacks to get it to work in a particular browser. If you have a very
specific issue, you’ll probably find that a quick search on Google will turn up
some information about it, and often, a simple way to fix it.

If all attempts fail, and you’re left with a specific issue that you need to resolve
for one browser, you might consider using a CSS hack or filter to give that partic
ular browser the different rules it needs in order to display your layout effectively.
However, hacks should be seen as a last resort, and used as sparingly as possible.

My recommendation is that you should develop your site using a browser that’s
the closest to the specifications as possible. I tend to develop using Firefox, which
has frequent update releases and useful add-ons such as the Web Developer
Toolbar. By using a standards-compliant browser, you should end up with a layout
that works well and complies with the specification, leaving you free then to turn
your attention to other, less compliant browsers. And if, using this approach, you
find that you have a display issue, you have the assurance that you’re working
from a solid starting point: a layout that has valid CSS and works well in a browser
that’s known to be relatively standards compliant. Internet Explorer bugs are
very well documented, so if you stumble upon one of these, you’re likely to find
the answer by searching around, and trying out a few techniques.

In the course of developing the layouts in this book, we’ll use this method of
developing in Firefox first, then testing in other browsers. We’ll address the issues
of CSS hacks and browser discrepancies as we meet them.

Keep the Quirks: DOCTYPE Switching
Web pages that are coded to display in one of the earlier browsers may look
ugly—or fail to display at all—in later browsers that do support CSS. Badly
formed HTML, which earlier browsers forgave, breaks in newer browsers that
must render HTML more meticulously because of the strict rules that come with
standards like CSS. The opposite is also true, as we’ve seen. Pages designed to

70

Keep the Quirks: DOCTYPE Switching

display well in recent and new browsers may not display well, or may fail to display
at all, in older browsers.

Internet Explorer versions 5 (for Macintosh) and 6 (for Windows), Firefox and
Safari browsers support a technology called DOCTYPE Switching. Simply stated,
this technology allows these browsers to adapt their display characteristics based
on the document type declaration, or DOCTYPE declaration, at the beginning of a
web page.

I should point out that this DOCTYPE declaration has always been recommended
for inclusion in web pages. Most web designers have ignored the advice, and web
design tool manufacturers have failed to enforce it. As a result, updating all your
current web pages with a DOCTYPE declaration may be a bit of a task. If you’re
using a good editor or design tool, the burden won’t be too onerous.

A browser that supports DOCTYPE Switching gives the appearance of supporting
two different modes: a standards-compliant mode, called Strict mode, and a
“Quirks” mode. As you can probably guess, the former is more strict about its
interpretation of tags and CSS instructions than is the latter.

You can add a DOCTYPE declaration as the first statement in every web page you’ve
written. If the page uses style sheet rules, whether embedded, external, or both,
it is recommended that you provide a Strict DOCTYPE like this one for the HTML
4.0 standard:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

The equivalent DOCTYPE for the newer XHTML 1.0 standard is:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

If one or more pages on your site does not support CSS, but requires older-style
styling using embedded HTML tags, the following DOCTYPE statement will ensure
that most browsers that support DOCTYPE Switching will render the page cleanly
and correctly:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

If you prefer to adhere to the new XHTML 1.0 standard, this is the DOCTYPE
you want:

71

"http://www.w3.org/TR/html4/strict.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
"http://www.w3.org/TR/html4/loose.dtd">

Chapter 4: Validation and Backward Compatibility

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Notice that the second pair of DOCTYPE declarations refer to the “transitional”
versions of the two standards. The result is that browsers that support DOCTYPE
Switching technology act in Quirks mode, and again, display the documents
correctly even if there are standards compliance issues with the page’s HTML.

If you find that, when working with a valid document, you see layout differences
between modern browsers, one of the first things to check is that the page is
running in Strict mode on both browsers. Unfortunately, Internet Explorer requires
a little mangling of the DOCTYPE declaration before it will switch into Quirks
mode. In addition to specifying the transitional version of HTML 4.0, you must
leave out the URL portion of the DOCTYPE to enable Quirks mode:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Any HTML DOCTYPE that specifies a URL, and any XHTML DOCTYPE whatsoever,
will put Internet Explorer into standards-compliant mode, so if you do want it
to operate in Quirks mode, you must use this last DOCTYPE. For full details, consult
the article CSS Enhancements in Internet Explorer 65 on MSDN.

Most browsers (including Internet Explorer) will also go into Quirks mode if the
DOCTYPE declaration is missing; however, as both the HTML and XHTML
standards specify that this declaration is required, I don’t recommend that you
omit the DOCTYPE statement.

In this book, I’ve endeavoured to present 100% XHTML 1.0 compliant markup,
except where it was necessary to show code for older browsers. Every sample
document in this book begins the same way:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Page Title Here</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

As you can see, the DOCTYPE declaration on the first line will ensure that modern
browsers operate in standards-compliant mode.

5 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

72

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

Summary

XML DOCTYPE Switching Bug in Internet Explorer

XML purists may wonder why our XHTML documents don’t start with an
XML version declaration like this:

<?xml version="1.0" encoding="iso-8859-1"?>

Indeed, the XML standard prescribes that a document should begin with a
<?xml … ?> processing instruction, which is followed by the XHTML
DOCTYPE.

Unfortunately, when a document begins with <?xml … ?>, or anything
else—including white space—before the DOCTYPE, Internet Explorer version
6 does not see the DOCTYPE and lapses into Quirks mode. For this reason,
you must leave out the XML version declaration to get the best CSS support
from all browsers in wide use.

Thankfully, the XML standard allows you to omit the processing instruction
if you’re happy with the default settings—which, in the case of most XHTML
documents, we are.

Summary
In this chapter, we saw how to validate CSS and XHTML documents, and dis
cussed the issues surrounding browser support and backwards compatibility. This
chapter served as an introduction to the issues that we’ll encounter in the second
half of the book, as we create our CSS layouts.

73

74

5 Splashing Around a Bit of Color

In this chapter, we take a close look at color: we’ll explore the application of
color to text and other objects, and review page background colors. We’ll also
discuss how colors are described, where we can apply them, how we can use them
together to achieve specific effects, and a range of other techniques.

However, we begin this chapter with a discussion of one of the most basic of
color concepts. Good designers must understand the conflicts that can arise
between the way we believe a page should look, and the constraints placed on
that page’s appearance by users.

Who’s in Charge?
Under the rules of CSS, user settings trump designer specifications every time.
While it’s important to keep this in mind, this knowledge doesn’t give us any
insight into how to design a site with this rule in mind.

How can you build your site to look its best, regardless of users’ own settings?
You can’t!

Chapter 5: Splashing Around a Bit of Color

Figure 5.1. Firefox’s color preferences panel

Figure 5.2. Firefox’s font preferences panel

76

Color in CSS

It’s very easy for users to set their own browser preferences. All modern browsers
have simple preference-setting panels for colors and fonts; those of Firefox are
shown in Figure 5.1 and Figure 5.2.

The dialog in Figure 5.1 allows the user to set colors for pages’ backgrounds and
text, as well as the colors of visited and unvisited links. The dialog shown in
Figure 5.2 allows you to set the browser’s default font for serif, sans-serif, and
monospaced text. Both dialogs offer checkboxes that allow the user to stop web
pages’ design specifications from overriding their own preferred settings.

Many browsers also allow users to define their own style sheets, and tell the
browser to use these style sheets to override any styles it finds on incoming pages.

For example, let’s assume that a user has set the following style:

h1 {

 background-color: black;

 color: white;

}

Now, imagine that the user opens a page with the following style rule:

h1 {

 background-color: yellow;

 color: black;

 font-family: Helvetica, Arial, sans-serif;

}

In this situation, the page’s font-family will be used, but the page’s color and
background-color will be overridden by the user’s settings.

As you read all the information that follows in this part of the book, then, keep
in mind the caveat, “ … unless the user overrides your settings.” I won’t bore you
by reminding you of this rule repeatedly.

Color in CSS
Elements that can be displayed in colors defined through style rules are:

❑ backgrounds

❑ borders

77

Chapter 5: Splashing Around a Bit of Color

❑ text

❑ links

❑ outlines

I’ve listed that last one for the sake of completeness. Outlines are not supported
by the majority of browsers available today, so we won’t spend time discussing
them here. Refer to the outline property in Appendix C if you’re curious.

How to Specify Colors
We can use several methods to specify a color for any CSS property that accepts
color values:

❑ descriptive color names

❑ system color names

❑ RGB decimal values

❑ RGB hexadecimal values (including a three-character shorthand)

❑ RGB percentage values

The most human-readable way to specify colors in HTML is to use key words
that are reserved for describing those colors. Officially, only 16 descriptive color
names are supported in HTML and CSS,1 yet virtually all modern browsers
support a range of 140 color names first suggested by Netscape in the early days
of the Web.

These 140 colors, along with their RGB equivalents, can be found in Appendix B.
The 16 official descriptive color names are:

❑ black

❑ white

❑ aqua

1 Although the HTML and CSS specifications define 16 standard color names, the Web Content
Accessibility Guidelines 1.0 [http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors] published
by the W3C recommend that numerical values, not names, are used to define colors.

78

http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors
http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors
[http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors]

How to Specify Colors

❑ blue

❑ fuchsia

❑ gray

❑ green

❑ lime

❑ maroon

❑ navy

❑ olive

❑ purple

❑ red

❑ silver

❑ teal

❑ yellow

Whether or not you use the 124 other named colors is up to you. Given that
they are not officially supported in any W3C documentation, there is the potential
risk that some future browser may not support them. Also, the way in which
those colors render on some browsers and operating systems cannot easily be
determined, other than by detailed testing. Frankly, I don’t see much of a risk,
and I use these names a great deal. The descriptive color names give me some
idea of what I’m likely to see, even before I view my page in a browser.

In addition to those descriptive color names, there’s also a set of 28 system color
names. These names, such as AppWorkspace, correspond to different parts of the
graphical user interface (GUI) that’s presented by the operating system. The ac
tual color associated with each of these names is, therefore, operating system-
specific, and potentially is subject to user preferences. Using these color names,
you can create web interfaces that match users’ operating system GUIs. A complete
list of system color names is presented in Appendix B.

79

Chapter 5: Splashing Around a Bit of Color

Colors are rendered on computer monitors using combinations of three basic
colors—red, green, and blue—in various intensities. We can use these three colors
to define a seemingly endless range of other hues in two ways:

❑	 Use the rgb function to supply a set of three comma-separated values that
define the mix of the three basic colors.

❑	 Supply a hexadecimal value as a three- or six-character string. Such strings
are preceded by the pound sign, also known as the hash symbol (#).

For example, if you wanted to specify the color blue for a particular element in
a CSS style rule, you could do it in any of the following ways:

color: blue;

color: rgb(0, 0, 255);

color: rgb(0%, 0%, 100%);

color: #0000ff;

color: #00f;

Note that you can use the three-character hexadecimal approach only when the
six-character version consists of three matching pairs (i.e. #abc is equivalent to
#aabbcc).

You’ve probably figured out that the decimal and hexadecimal values in the above
represent the presence of no red, no green, and the maximum amount of blue.
Black is represented by the value #000000 (or, in shorthand, #000) and white is
represented by the value #ffffff (or, again in shorthand, #fff). If you prefer
the rgb function, black is rgb(0,0,0) and white is rgb(255,255,255) or
rgb(100%,100%,100%).

Sometimes, simply by looking at a color value—or, perhaps more easily, looking
at two color values side by side—we can figure out how to modify that color to
achieve a different effect. For example, if we’ve defined a color as #ff7f50, but
when we look at it, we decide it needs to be a bit more blue, we can just increase
the value of the last two digits to, say, #ff7f70.

The level of precision that hexadecimal specifications afford over combinations
of red, green, and blue is the reason why web designers with artistic backgrounds
tend to favor this approach.2 If you’re working in a graphics application, you
should be able to check the hexadecimal code of a given color within the design

2 There are over 16.7 million possible combinations of the 256 levels of red, green, and blue in CSS,
and therefore, over 16.7 million possible individual colors.

80

Selecting and Combining Colors

package, and use that code in your CSS. However, if you’re putting together a
simple web site in Notepad, you might find it easier to use color names.

Selecting and Combining Colors
The selection of color combinations that work well is a key part of a site’s
graphical design. If you’ve ever put a chartreuse background next to an image
with a dark-blue background, and then ran screaming for the exit when the page
displayed, you have some idea of the difficulty of the task.

The selection of colors becomes an important issue primarily in two situations:
when you have adjacent objects with colored backgrounds and you want to avoid
a clash, and when you have colored text on colored backgrounds and you want
to ensure readability.

A number of basic artistic principles are involved in selecting colors that comple
ment one another. Everything starts with the color wheel. The color wheel is
discussed at countless places on the Web, but the clearest and most concise ex
planation I’ve found was written by the makers of a program called Color Wheel
Pro™, in an article called “Color Theory Basics.3”

Essentially, we start with a color wheel that includes the range of colors from
which we want to choose. Colors that are adjacent to one another on the color
wheel are said to be “harmonious” colors that look good together. Choosing two
or three adjacent colors on a color wheel, and applying those colors to large areas
such as backgrounds and menus, can produce very pleasing aesthetic effects.

For greater vibrancy, we’ll want to select colors that are opposite one another on
the color wheel; such pairs of colors are said to be “complementary.” To find
more great color combinations for your designs, move an equilateral triangle
around the middle of a color wheel, and use combinations of the colors that lie
at the triangle’s corners.

Some graphics and web design programs include palettes and other interfaces to
allow you to select colors without knowing their RGB or hexadecimal codes.
These aids make it much easier to experiment with color combinations, and to
determine what works and what doesn’t.

Laying colored text over colored backgrounds can be especially problematic. A
process of trial and error can be incredibly time consuming, but often, the specific

3 http://www.color-wheel-pro.com/color-theory-basics.html

81

http://www.color-wheel-pro.com/color-theory-basics.html
http://www.color-wheel-pro.com/color-theory-basics.html

Chapter 5: Splashing Around a Bit of Color

effect we want isn’t achievable without some effort. However, help is available
on the Web! One of the best places I know of is Pixy’s Color Scheme Generator:4

click on the different colors in the color wheel to view color schemes based on
your selection.

This tool also features a drop-down list of different kinds of color blindness, each
of which corresponds to a filter. By selecting one, you can see how your chosen
scheme will look to people with that kind of color blindness. After playing with
this drop-down list, you’ll realize that there are many different types of color
blindness that can cause people to have difficulty distinguishing between colors.

As well as avoiding color combinations that cause content to become unreadable,
it’s important to ensure that your site is not designed so that the only way users
can understand certain information is by its color. For example, using different
colored icons without accompanying text labels might mean that some users can’t
distinguish the difference between those icons. Another service that shows how
your site looks to colorblind users is Vischeck.5

Discovering new color combinations that may defy conventional wisdom, but
work well together regardless, is one of the most interesting areas of creative ex
ploration in web design. Don’t limit yourself to the accepted combinations that
everyone uses.

Setting body Color
Often, you won’t define a color for the body element either inline or in a style
sheet rule. By default, most browsers will display black text on a white or gray
background, and for many layouts, that’s fine. However, be aware that users who
have set their browser’s default background colors to something other than white
will see your page in that color. To remind themselves to set page background
colors in CSS, many designers set their own browsers’ default backgrounds to
garish colors!

But, if you need to define a different color combination, you can define a color
for all the text that appears on a page using a style sheet entry like this:

body {

 color: red;

}

4 http://wellstyled.com/tools/colorscheme2/index-en.html

5 http://www.vischeck.com/

82

http://wellstyled.com/tools/colorscheme2/index-en.html
http://www.vischeck.com/
http://wellstyled.com/tools/colorscheme2/index-en.html
http://www.vischeck.com/

Transparency, Color, and User Overrides

I don’t recommend you use this approach exactly as shown above, even when
you wish to declare all the fonts on a page (or site) to be a specific color. Why?
Because, in CSS, there’s a fundamental rule from which you should never deviate:
if you set a foreground color, always set a background color, and vice versa. You can never
know whether or not the user has set a specific background color against which
your carefully chosen text color will look like mud. Or—worse yet—users may
have defined a background color that’s exactly the same as your foreground color.
In this case, they’ll see what appears to be a blank page.

So, if you decide to declare a foreground color using the color property, combine
it with a background-color declaration, as in this example:

body{

 color: white;

 background-color: maroon;

}

Note, too, that if you set a color property for the body element, it will apply to
all the elements that are nested inside that element (including headings, para
graphs, and lists, among other things), unless you override it (or your users’
preferences trump you).

Transparency, Color, and User Overrides
We can ensure that the background color of any HTML element is identical to
that of the page’s body. To do this, we declare its background-color as trans
parent:

#transbox {

 color: white;

 background-color: transparent;

}

In fact, the value of background-color is transparent by default; it is not inher
ited from the parent element. This ensures that an image background assigned
to an element will display continuously through child elements, rather than being
displayed again in alignment with each child.

Why would we explicitly declare a background color of transparent? Most
commonly, we’d use this approach in cases where we’ve declared a background-
color property for a particular type of HTML element (such as paragraphs), but
we have one or more specific types of paragraphs for which we want to display
transparent backgrounds.

83

Chapter 5: Splashing Around a Bit of Color

This issue of “default” background color gets sticky when users change their own
settings. For example, if a user defines a local style sheet, the settings in that style
sheet—including background colors—may override yours. Fortunately, very few
users change their browsers’ default settings, so your page settings will usually
win out, with browser defaults handling those elements for which you don’t
specify any styles. For example, the default background color for the body of a
page is white or gray. However, if you define the background color of the body
to be transparent, then all bets are off. As the W3C puts it in its CSS specification,
in such cases, “the rendering is undefined.”

Figure 5.3. Using color to create attention-getting cautions and
notes

84

Interesting Uses of Color

Interesting Uses of Color
Coloring text, backgrounds, and borders is all well and good—and not terribly
complicated—but other than aesthetic benefits, what does it give us? In this
section, I’ll outline three specific examples in which specific color combinations
are applied to produce useful results.

Warnings and Cautions
In online documentation, often it’s useful to call specific attention to pieces of
information that are of particular importance to the reader. Printed manuals,
generally produced in black-and-white, rely on typographic techniques—boxes,
bold or italic type, special fonts, and the like—to accomplish such attention-get
ting.

On a web page, where color can be used more freely, we can apply these typo
graphic techniques in combination with colored text and backgrounds to create
notices that grab readers’ attention more effectively than usually is possible in
print. Often, table-based layouts are used to create these kinds of effects. Let’s
see how we can take advantage of CSS rules to accomplish the same result, which
is shown in Figure 5.3.

The HTML for the page shown in Figure 5.3 looks like the markup below. I’ve
used bold to indicate where the style sheet for this page is invoked.

File: frammas.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>A Cautionary Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <link rel="stylesheet" href="frammas.css" type="text/css" />

 </head>

 <body>

 <h1>How to Fix a Frammas</h1>

 <p>So, you're the proud new owner of a Frammas. And you've

 been enjoying its many wonders and capabilities for some

 months now. Suddenly, your Frammas stops functioning. It

 won't fram and it won't mas. It just lies there on the

 table staring balefully up at you, accusing you of some

85

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 5: Splashing Around a Bit of Color

unspeakable offense which has caused it to lose its very

 identity.</p>

 <p>What do you do now?</p>

 <p>You fix it, that's what!</p>

 <div class="caution">

 <p>You must be very careful when approaching an apparently

 dead Frammas. These little toys like to 'play dead' and

 can startle you with a sudden 'resurrection.' Poke at

 the Frammas with a stick at least two meters long to be

 sure it really is dead.</p>

 </div>

 <p>Before you begin to attempt to fix your Frammas, we highly

 recommend that you disconnect it from its power

 source.</p>

 <div class="danger">

 <p>It is entirely possible to electrocute yourself if you

 fail to follow our instructions to the letter. This can

 result in your sudden death, leaving the poor Frammas

 orphaned. Please do be careful.</p>

 </div>

 <p>OK, now we're ready to go into the actual repair

 process.</p>

 </body>

</html>

As you can see, I’ve identified two classes: caution and danger. I used classes,
rather than identifiers, because it’s quite likely that I’ll have more than one in
stance of each of these kinds of notes in a document, and identifiers are limited
to one usage per page.

Here are the CSS definitions of the two classes:

File: frammas.css (excerpt)

.caution {

 text-align: center;

 font-weight: bold;

 background-color: gray;

 color: black;

 margin-left: 25%;

 margin-right: 25%;

 border: 1px solid red;

}

.danger {

 text-align: center;

 font-size: 1.2em;

86

Coloring Alternate Rows and Adding Cell Borders in Data Tables

font-weight: bold;

 background-color: red;

 color: white;

 margin-left: 25%;

 margin-right: 25%;

 border: 3px solid red;

}

There’s nothing new here. Each class defines a background and text color com
bination that’s designed to attract attention. Each is positioned so that it stands
out from the page. As you can see from this example, when we use CSS, the
HTML code becomes much easier to read and maintain than it would be if we
used nested tables to accomplish the same task.

Coloring Alternate Rows and Adding Cell Borders
in Data Tables

While we’re learning how to avoid the use of tables for page layout purposes, we
must remain appreciative of the situations in which tables are a perfectly legitimate
tool. Displaying tabular data is a task that should still be entrusted to HTML
tables.

However, we can make what might otherwise be fairly ordinary tables into more
readable and attractive page elements with the help of a little CSS. Figure 5.4
shows an admittedly stark example of a table presented in HTML. Obviously,
few of us would publish a web page with such a sparse table design, but it serves
as a good starting point for this discussion.

Figure 5.4. A starkly ordinary table design

87

Chapter 5: Splashing Around a Bit of Color

Among this table’s problems are its complete lack of borders, and the fact that
it’s hard to keep your place within the table rows as you read its contents. We
can address both issues with some simple CSS magic.6

Below is the HTML for a modified version of the above page; as you can see, I’ve
defined a couple of trivial CSS rules here. This is a case in which an external style
sheet is probably overkill, though it may still constitute good design practice.

File: table.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Coloring Rows in a Table</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 .odd {

 background-color: lightgrey;

 }

 .even {

 background-color: white;

 }

 table {

 border: 1px solid black;

 border-spacing: 0;

 }

 td {

 padding: 4px 6px;

 border: 1px solid black;

 }

 </style>

 </head>

 <body>

 <table>

 <tr class="odd">

 <td>Row 1, Cell 1</td>

 <td>Row 1, Cell 2</td>

 <td>Row 1, Cell 3</td>

 </tr>

 <tr class="even">

6 Actually, this example is somewhat contrived. For historical reasons, web browsers will display tables
with a one-pixel border by default, so Figure 5.4 actually represents a table that has had its default
borders removed, either with CSS or through the now-deprecated (but common) practice of setting
the border attribute of the table to 0.

88

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Coloring Alternate Rows and Adding Cell Borders in Data Tables

<td>Row 2, Cell 1</td>

 <td>Row 2, Cell 2</td>

 <td>Row 2, Cell 3</td>

 </tr>

 <tr class="odd">

 <td>Row 3, Cell 1</td>

 <td>Row 3, Cell 2</td>

 <td>Row 3, Cell 3</td>

 </tr>

 <tr class="even">

 <td>Row 4, Cell 1</td>

 <td>Row 4, Cell 2</td>

 <td>Row 4, Cell 3</td>

 </tr>

 <tr class="odd">

 <td>Row 5, Cell 1</td>

 <td>Row 5, Cell 2</td>

 <td>Row 5, Cell 3</td>

 </tr>

 <tr class="even">

 <td>Row 6, Cell 1</td>

 <td>Row 6, Cell 2</td>

 <td>Row 6, Cell 3</td>

 </tr>

 <tr class="odd">

 <td>Row 7, Cell 1</td>

 <td>Row 7, Cell 2</td>

 <td>Row 7, Cell 3</td>

 </tr>

 </table>

 </body>

</html>

I’ve simply defined two classes, odd and even, in an embedded style sheet, then
labeled alternate rows of the table to correspond to those styles. I’ve also defined
a basic style rule that surrounds the table in a one-pixel black border. Each cell
also has a one-pixel border applied; the net result is a two-pixel line between and
around every table cell. The results of our markup are shown in Figure 5.5.

Obviously, this display is much more readable, and while it isn’t a final solution,
it gives us a much more pleasant starting point from which to begin additional
work on the table.

89

Chapter 5: Splashing Around a Bit of Color

Figure 5.5. Coloring table rows alternately, and adding cell
borders, with CSS rules

With some of the less frequently used aspects of table definitions in HTML, such
as header (th and thead) and grouped columns (colgroup), you can create some
professional-looking and eminently readable tables of data. We’ll work on a more
complete and complex data table in the final chapter of this book.

Background Images
By now, you should feel fairly comfortable assigning background colors to elements
using the background-color property, so let’s move on to assigning background
images, which is done with the background-image property and the url function,
as this markup shows:

body {

 background-color: white;

 color: black;

 background-image: url(fish.jpg);

}

The url function can be used to specify any image file, similar to the way you’d
use the img element’s src attribute.

If you define a graphic as the background for a page—as we have in the example
above—that graphic will repeat, or tile, itself to fill up the entire browser viewport.
As you scroll through the document, the image will also scroll along. This is the
normal behavior of backgrounds, as Figure 5.6 illustrates.

90

Background Images

Figure 5.6. Normal background image behavior

Always Specify a Background Color with a Background
Image

Whenever you specify a background image which will appear underneath
other content, you should specify an appropriate background color. This
color will display while the image is loading, and will appear for site users
who have disabled images in their browsers.

However, you can use CSS to change both the tiling and scrolling characteristics
of images. You can define the graphic so that, rather than tiling, it simply appears
once, wherever you position it. More interestingly, you can instruct the back
ground graphic to remain in place while other objects that are placed on top of
it, including text, effectively scroll over it.

91

Chapter 5: Splashing Around a Bit of Color

Figure 5.7. Fixed background image displaying behind unscrolled
text

Figure 5.7 and Figure 5.8 show this effect as clearly as it can be shown on a “dead”
page. Figure 5.7 shows how the page looks before any scrolling takes place. You
can see that the picture of our happy fisherman is positioned in the lower right
of the page.

In Figure 5.8, the numbered list has scrolled down several items, but as you can
see, the fisherman image that serves as the background for this text remains firmly
fixed in place.

Here’s the CSS rule that produces the fixed background effect demonstrated in
Figure 5.7 and Figure 5.8:

body {

 background-color: #30293f;

 color: white;

 background-image: url(fisherman.jpg);

 background-repeat: no-repeat;

 background-attachment: fixed;

 background-position: right bottom;

}

92

Background Images

Figure 5.8. Scrolled text leaving fixed background image in place

The background-repeat: no-repeat declaration stops the background image
from tiling. Whenever this declaration is used in conjunction with a background-
image declaration, only one instance of the image will appear in the background.
Other values that background-repeat can take on are repeat, which is the default
value, and repeat-x and repeat-y, which repeat the image horizontally and
vertically respectively.

The background-attachment property controls whether or not the background
image scrolls with the content. By default, it’s set to scroll, but it can also be
set to fixed to achieve the effect we see with our fisherman image.

Finally, the background-position: right bottom declaration puts the image
in the bottom-right corner of the browser window. This property usually takes
two keyword values: the first value controls the horizontal position and can be
left, center, or right; the second value controls the vertical position, which
can be top, center, or bottom. The default value of the background position
property is left top.

You can use a percentage, instead of these keywords, for either value. In that
case, the first value determines the image’s horizontal position, where 0% places
the image right up against the left edge of the browser window, and 100% places

93

Chapter 5: Splashing Around a Bit of Color

it on the right edge. Accordingly, the second value determines the image’s vertical
position: 0% indicates the top of the window, and 100% indicates the bottom of
the browser window. These values aren’t limited to 0% or 100%—you can make
use of any value in between. For example, the following declaration would put
your background image in the lower-right quarter of your background, but it
wouldn’t be flush against the corner of the browser window.

background-position: 80% 80%;

As you can see, CSS gives us a lot of control over background images! All of these
properties can be set using the background shortcut property, which is covered
in Appendix C.

Summary
This chapter discussed how to use CSS rules to apply color to web pages. After
considering who controls the colors a web page ultimately displays—designer or
user—we learned how to specify colors in CSS. We then pondered the questions
of color selection and combination, specifically considering the ways in which
these decisions impact on colorblind users.

The chapter then focused on some practical applications of color: setting body
color, dealing with transparency, and using color to make tables easier to read
and elements like warnings and cautions more eye-catching and effective. Finally,
we discussed how CSS can be used to add background images to your document
and took a tour of the properties that can be used to exert a great deal of control
over them.

In Chapter 6, we’ll start looking at how we can spruce up our site even more by
using different fonts and applying effects to them.

94

6 Working with Fonts

This chapter examines the question of how to use fonts properly in CSS-based
web page design. After an explanation of how CSS deals with fonts, I’ll offer some
guidelines on choosing font families and sizes for your page designs.

How CSS Deals with Fonts
With the emergence of CSS, the HTML font element was deprecated in favor
of using style sheets, which provide a greater degree of control in a more manage
able format.

CSS provides great flexibility in our work with fonts. While HTML limits you
to working with only seven standard font sizes, CSS allows you to specify font
sizes in a number of different ways, providing a nearly unlimited range of sizes.
In addition, CSS formalizes the ability to define a fallback, or default, font that
can be used if none of the fonts you specify in a style rule are available on users’
machines. This capability existed with the deprecated tag in HTML, but
the list of defaults was never officially standardized.

With CSS, we also get the ability to change the weight of fonts (e.g. bold or
normal), alter their styles (e.g. italic or oblique), and even to declare a font to
display in small caps.

Chapter 6: Working with Fonts

The CSS properties you’ll work with in this chapter include:

❑ font-family

❑ font-size

❑ font-style

❑ font-variant

❑ font-weight

❑ font (shorthand property)

The font-family Property
A font family is simply a collection of fonts. The members of a font family vary
only by features such as weight and orientation. For example, the font family
Times contains fonts named Times Bold and Times Italic, both of which are
based on the font Times Roman.

The issue of applying font families to web pages is tangled up with the question
of using supported and/or unsupported fonts—a question to which an entire
section of this chapter is devoted. Here, I’ll cover font families briefly, but we’ll
explore the subject in much greater detail later in this chapter.

You can use the font-family property to assign a list of specific and generic font
families to any HTML block or element. Usually, we supply a list of specific
fonts—separated from one another by commas—and end the list with a generic
font that is to be used if none of the specified fonts are available. Here’s how
that looks:

font-family: Helvetica, Arial, sans-serif;

Font families are used in the order in which we list them in the rule. In the above
example, the browser will look to see if the user has Helvetica installed. If so, the
text affected by this style rule will be shown in Helvetica. If Helvetica isn’t present
on the user’s system, the browser will look for the next font, Arial. If it finds
Arial, it uses it. If it doesn’t find Arial, the browser uses whatever is defined as
the browser’s default sans-serif font.

96

Generic Fonts

Generic Fonts
It’s worth pausing here to discuss how the browser gets its default sans-serif font,
and other generic font settings. Every browser with CSS support has preset defaults
for the following generic font families:

❑ serif

❑ sans-serif

❑ monospace

❑ cursive

❑ fantasy

When the browser encounters one of these generic font families, it will match it
with an appropriate font. For example, a browser running on Windows may
substitute Times New Roman for serif, Arial for sans-serif, Courier New for
monospace, and so on.

In serif fonts, such as Times New Roman, a small decoration or tail is added to
the ends of many of the strokes that comprise each letter, helping to define those
strokes. Sans-serif fonts, such as Arial, have no such decorations. Typically, the
strokes of a sans-serif font are straight and of uniform width. In monospace fonts,
each letter of the alphabet is as wide as all the others, much like the effect that
old typewriters used to create. A cursive font is intended to mimic the connected-
character style of handwriting. A fantasy font is a more decorative or fancy style
of font.

Artistic views differ over which fonts look better on a web page. Many people
believe that serif fonts are easier to read because the small extenders along the
bottoms of the letters give the eye something to follow as users read across a line.
Others argue that a sans-serif font is easier to read on a computer monitor. Un
fortunately, a discussion of these issues is beyond the scope of this book.

Figure 6.1 shows a sample of each of the three most popular generic font families.
As you can see, they’re quite different from one another.

97

Chapter 6: Working with Fonts

Figure 6.1. Samples of serif, sans-serif, and monospace fonts

The user may be able to change these default fonts through preference settings
in the browser. If that’s the case, then all bets are off. Under such circumstances,
the generic specification of sans-serif can’t even guarantee that a sans-serif
font will be used. If the user has overridden the default value for sans-serif to
display a monospaced font, for example, they will see monospaced text wherever
a font-family: sans-serif; declaration takes effect.

Regardless of how the browser arrives at its default setting for a generic font, that
font will be used only when other fonts that appear before it in a list are not
available.

If the name of a font family that you want to specify contains embedded spaces,
you’ll need to enclose that family name in quotation marks, as shown here:

font-family: "New Century Schoolbook", Baskerville, serif;

Note that, while you’ll usually want to include fonts of the same type (serif,
sans-serif, monospaced, etc.) in your list, it’s not mandatory that you do so.
You can legally specify, for example, a list of specific font families that includes
a sans-serif family, a serif family, and uses monospace as the default. I’m not sure
why you’d want to do this, but it is possible.

What is fantasy?

It’s a good question, but one that doesn’t have an easy answer.

The current CSS Recommendations don’t describe what any of these generic
font families should look like, other than providing a simple example. That’s
not really a problem for serif, sans-serif, monospace, or to a lesser
extent, cursive, all of which are self-describing, but fantasy is described

98

The font-size Property

only as “decorative.”1 What this actually means is anyone’s guess, and the
makers of the various web browsers have taken some pretty wild guesses.
Internet Explorer tends to display fantasy text in a font similar to Blackad
der ITC (a font that comes as part of Microsoft’s Office package, and is very
difficult to read at small sizes). Firefox displays the text in Showcard Gothic
(another Microsoft Office font), which is dramatically different from Internet
Explorer’s choice. Safari displays Papyrus; though more common than the
others, this font also looks very different than either of them.

For now, it’s probably best to steer clear of using the fantasy generic font
family unless you’re sure you want a dramatic, decorative font and you’re
displaying the text in a large size.

The font-size Property
Setting font size is one of the most troublesome aspects of web design, because
browsers vary widely in the ways they understand and apply the key concepts
that determine how fonts will be sized for display. Before we explore this issue
any further, let’s take a look at the official definition of the ways in which you
can determine the size of a font on a web page.

You can specify the font size you wish to use by selecting from a collection of
seven constants:

❑ xx-small

❑ x-small

❑ small

❑ medium

❑ large

❑ x-large

❑ xx-large

These constants define what are referred to as absolute sizes, but as we’ll see, in
practice, absolute sizes are not “absolute” in the usual sense of that word. Another

1 This description was added to the CSS documentation in version 3, which is still a working draft
at the time of writing. This description could be improved in the future to provide more predictable
results for web designers.

99

Chapter 6: Working with Fonts

way to define absolute font sizes is to specify a length value in units, such as
pixels or points.

Relative font sizes can be defined in three ways: using the constants larger and
smaller; using the relative measurement of ems; or using a percentage value.

HTML Sizes vs CSS Sizes
In the days before CSS, designers often assigned font sizes using absolute or rel
ative values from one to seven. You could specify a size of +1 (meaning you
wanted the font to be one “level” higher than the default font size for that ele
ment), -1 (to create a font one “level” smaller than the default font size for that
element), or 1 (one of seven absolute values, with no sign).

The fact that there were seven such values in HTML, and there are now seven
absolute size constants in CSS, has led some people to conclude that there must
be a one-to-one correspondence between those two scales. In fact, there is no
connection between the two. Specifying in HTML will not
necessarily produce the same result as font-size: xx-large; in a CSS rule.

Variability across Browsers and Platforms
Unfortunately, the effect of these different absolute font sizes varies greatly from
one browser to the next, as shown in Figure 6.2. There, the same web page’s
contents are shown as rendered by a number of different browsers, browser ver
sions, and platforms.

Given such variability between browsers, platforms, and even versions of the
same browser, how in the world can you achieve anything like a predictable design
using fonts on your web pages?

The short answer is that there is no way to accomplish this, short of using
graphics or Adobe Acrobat PDF files to render and display your pages. It’s inev
itable that your pages will look somewhat different across these variable plat
form/browser/version combinations.

So, if you can’t achieve complete consistency, what’s the best way to approximate
it? As a first step, use CSS rules rather than the deprecated font element to
define the fonts in your designs. The W3C is always working on ways to overcome
the limitations in web page rendering, and given the CSS support that’s provided
in current browsers, we’re already moving closer to the ideal of accessible, yet
predictable, font sizes.

100

Relative to what?

Figure 6.2. Discrepancies between browsers using absolute size
constants to display text

Beware of Sizing Fonts Using Pixels

Using pixel measurements to set text size does result in a fairly consistent
experience across browsers, but unfortunately, using pixels to set font size
means that site visitors will be unable to resize the font using the browser
settings in Internet Explorer. Obviously, this is an accessibility issue. You
might like the look of tiny text—you may even find it perfectly readable—but
a user with poor eyesight may need to increase the text size to read it com
fortably. Therefore, it’s best to use a method of text sizing that enables users
of all browsers to resize text.

Relative to what?
When you use relative font sizes, such as ems or percentages, or the relative
constants larger and smaller, you need to understand the base measurement
to which they relate. In Chapter 3, we learned that em measurements tell the
browser to render text in a size that’s a multiple or fraction of that base measure
ment. Thus, a font-size setting of 1.5em tells the browser to blow up the font

101

Chapter 6: Working with Fonts

size to 1.5 times the base measurement, and a font size of 0.5em tells the browser
to shrink the font size to half the base measurement.

What is the base measurement?

In the case of text that’s contained directly in the body of a document, the base
measurement is the browser’s default font size. If the default setting for text in
a browser is, for example, 12 points, then a font-size setting of 1.5em produces
18-point type.

For text inside other elements, the base measurement used by relative font sizing
is the font-size of the element’s parent container, rather than the size of the
element’s default font, as you may have expected. You might, for example, expect
that if you define a particular class or instance of an h1 tag to have a font-size
of 1.5em, you’d end up with a heading that was one and a half times the size of
all other h1 headings. In reality, the font size will be 1.5 times that of the parent
element of the h1 in question. Figure 6.3 demonstrates this concept by showing
two headings, for both of which the document body is the parent element. The
top heading is a standard h1. The second is an h1 that’s been defined as having
a font-size of 1.5em. Not quite what you might expect, is it?

Figure 6.3. Relative font size produces unexpected results if you
make a wrong assumption

Figure 6.4 shows how defining a font-size of 1.5em in a span of text within an
h1 heading affects that span’s size. The word “Important” is 1.5 times as large
as the other words in the heading because the heading is the span’s parent ele
ment.

Figure 6.4. Using a relative font size inside an h1 element to
produce a predictable result

102

Other Font Properties

Other Font Properties

The font-style Property
The font-style property determines whether the text inside an element is
rendered in an italic, oblique, or roman (or normal) font style. For all practical
purposes, italic and oblique are identical.

Italics

If you’re interested in typography, it’s worth noting that if there’s an italic
font available in the font family, then it is used. Otherwise, the browser will
take the Roman font and slant it itself. Also, if oblique is specified, but only
an italic font is available, then the italic font is used, and vice versa.

The font-variant Property
In its current incarnation, the font-variant property has only one effect: it de
termines whether text should be displayed in small-caps format. In an ideal world,
font families would contain a small-caps font, and the browser would use that
font. Unfortunately, this is very, very rarely the case. Rather, current browsers
render lowercase letters as capital letters with a smaller size than that used for
the main font.

Figure 6.5 demonstrates the font-variant property set to a value of small-caps.
The only other value this property can take is normal.

Figure 6.5. Using the font-variant property with a setting of
small-caps

Note that in Internet Explorer prior to version 6, small-caps type is rendered as
all-caps, without any difference in character size.

The font-weight Property
In the context of CSS font control, weight refers to the boldness of the characters.
The font-weight property can take two types of values: relative and absolute.
Relative values are bolder and lighter. Absolute values range from 100 (lightest)

103

Chapter 6: Working with Fonts

to 900 (boldest) in 100-unit increments, and also include the shortcut names
normal (equivalent to 400) and bold (700). This set of values is actually more
fine-grained than any current browser can support. The Adobe OpenType™ font
standard does allow for nine levels of boldness in a font family; however, I have
yet to see a practical application of all these levels.

As is the case with other relative measurements in CSS properties, these relative
settings are based on the setting of the parent of the element affected. Because
neither browsers nor fonts support the full range of nine different settings for the
font-weight property, you’ll find that two or more adjacent values usually pro
duce identical output on the screen.

The font Shorthand Property
This shorthand property allows you to set multiple font-related properties in one
CSS declaration.

As with other CSS shorthand properties we’ve seen, values are separated from
one another by spaces, with commas used in multiple-value situations. Here’s an
example of a reasonably complex font description in CSS:

h3 {

 font: bolder small-caps 22px Arial, "Lucida Console", sans-serif;

}

Notice that the font size (22px) and the font family list are included in the
definition of the style in sequence at the end of the list of properties. You must
always include at least the font-size and the font-family property values, in
that order, as the final (or only) values in the font shorthand property.

The above CSS rule produces the output shown in Figure 6.6.

Figure 6.6. A heading produced by a style rule calling for 22-pixel
bolder small-caps font

Use of the font shorthand property involves a couple of intriguing subtleties that
are worth noting. First, you can add the line-height property to the font declar
ation by placing a forward slash (/), followed by an additional valid size or
number, after the setting for the font size. We’ll cover line-height in greater
detail in Chapter 7. Here’s an example:

104

The font Shorthand Property

p {

 font: small-caps 12px/2em Arial, "Lucida Console", sans-serif;

}

The bold type in the above code fragment instructs the browser to render para
graph text in a 12-pixel font and to set the line height to double the height of
the font. Figure 6.7 shows what a paragraph looks like without the added line-
height value. Figure 6.8 shows what it looks like when we add the two ems of
line height.

Figure 6.7. Font without the addition of line spacing

Figure 6.8. The same text with a 2em line-height property value

CSS 2 introduces the concept of a font constant that you can use when you’re
creating user interfaces and want to match user expectations based on their
browsers and operating systems. Theoretically, these constants will use the font
defined by the browser or operating system as the base from which they create
the appearance of the text to which they are applied. These constant values may
be assigned to the font shorthand property, as they represent a particular com
bination of values for all of the font properties. The constants are:

❑ caption

❑ icon

❑ menu

❑ message-box

❑ small-caption

❑ status-bar

105

Chapter 6: Working with Fonts

Before you use this feature, you’ll want to check the browser compatibility in
formation in Appendix C, as not all browsers support these constants.

Standard and Nonstandard Font Families
Earlier, when we discussed the font-family property, I indicated that a deeper
discussion of standard and nonstandard fonts was requisite to a complete under
standing of the issue of font families. This section provides that background.

What do we mean by standard fonts? There’s no CSS standard or specification
that determines which fonts will be available on a user’s system. Different fonts
are available, by default, to Macintosh and Windows users, and all users are free
to install or uninstall any fonts they choose.

However, some fonts are widely available on both platforms, along with alternat
ives that are sufficiently similar across those platforms to allow us to specify them
safely and predictably. Table 6.1 lists fonts that are available on Windows and
Macintosh systems, and are so similar that we can specify them as alternative
fonts in a font-family property, and receive fairly consistent results.

Table 6.1. Font commonality between Windows and Macintosh
platforms

MacintoshWindows Generic Font

Arial, Geneva, Helvetica, Hel
vetica Neue, Lucida Grande,
Tahoma, Trebuchet MS,
Verdana

Arial, Lucida Sans,
Trebuchet MS, Tahoma,
Verdana

sans-serif

Headline AImpactsans-serif

Courier New, Courier Courier Newmonospace

Times New Roman, Times,
Baskerville

Times New Roman,
Georgia, Palatino Lino
type

serif

Comic Sans MS, Chalkboard,
Marker Felt

Comic Sans MScursive

Headline AImpactsans-serif

Papyrus Papyrus fantasy

106

Specifying Font Lists

In addition to the fonts in Table 6.1, Microsoft once offered a free collection of
downloadable TrueType fonts from its web sites. Due to licensing issues, Microsoft
discontinued the collection’s availability, but thanks to a quirk in the original li
censing, it was determined that anyone who had legally downloaded these fonts
could redistribute them. As a result, they’re now available at
http://corefonts.sourceforge.net/. Additionally, these fonts are available in a form
that works on Unix and Linux machines. They are:

❑ Andale Mono

❑ Arial and Arial Black

❑ Comic Sans MS

❑ Courier New

❑ Georgia

❑ Impact

❑ Times New Roman

❑ Trebuchet MS

❑ Verdana

❑ Webdings

A significant percentage of the systems in use today have these fonts installed,
so they can be used, if not with absolute certainty, at least with some confidence.

Specifying Font Lists
As you know, when we define a font-family style rule, usually we supply not
one font, but a list of fonts separated by commas. Fonts that contain spaces must
be enclosed in quotation marks.

What exactly does the browser do with this list of font families? As explained in
the section called “The font-family Property”, it takes the first font family in
your list and looks for it on the user’s system. If it finds the first font, it uses it
to display the text that’s associated with the font-family property. If it fails to
find the first font, it moves to the second, then to the third, and so on.

107

http://corefonts.sourceforge.net/

Chapter 6: Working with Fonts

More specifically, the browser looks through the operating system’s collection of
fonts in search of the font families you specify. Some applications come with
their own fonts and store them in nonstandard places; those fonts will remain
invisible to the browser.

This left-to-right, sequential font family searching technique produces two basic
guidelines that affect the order in which you list font families in your styles.

First, you want to arrange the fonts in order from the most desirable to the least
desirable appearance of the text.

Second, you want the last font on the list to be the generic name for the style of
font family you’re using (usually serif, sans-serif, or monospace). This ensures
that even if none of the fonts you specify is found on the user’s system, at least
the appearance won’t be completely wrong.

As a rule, then, you won’t want to mix serif, sans-serif, monospace, cursive,
or fantasy fonts in a single CSS style rule. You’ll decide which type of font
family you want to use, then list one or more font families in order of preference.
Always end with the name of the generic font family that describes your choice
of generic style.

The following three CSS style rules are typical of the sequencing you’d likely
define:

p {

 font-family: "Courier New", Courier, monospace;

}

p {

 font-family: Georgia, "Times New Roman", serif;

}

p {

 font-family: Helvetica, Arial, sans-serif;

}

The specific font families you specify need not be those shown in the examples,
and the sequence is not locked in concrete. The point is that, in each case, I’ve
used font family names that specify a common style, then appended the generic
family style name to the end of the list of specific fonts.

108

Using Nonstandard and Downloadable Fonts

Using Nonstandard and Downloadable Fonts
As the user’s browser will always display the text you present, no matter how you
might mangle the font-family property’s value, it follows that you can supply
font family names that are unlikely to be installed on the user’s system. The
worst-case scenario is that text may display in a way you would not have specified.

For example, if you have an affinity for a particular font that’s not normally in
stalled on Windows machines, and for which there isn’t really a good Windows
equivalent, you can specify it, then design a sort of gradual degradation of the
appearance of the content when the font isn’t available.

Below, I’ve specified the Zapfino font that Apple includes on Macintosh; it isn’t
supplied with Windows, and is almost never installed there.

h1 {

 font-family: Zapfino, "Edwardian Script ITC", fantasy;

}

Figure 6.9 shows what the display looks like in Firefox on Mac when the Zapfino
font is available. On a Windows machine, this would display as Edwardian Script
ITC if that font was available, or, if it wasn’t, the default fantasy font, which
might not be quite as aesthetic (or ugly, depending on your opinion of the Zapfino
font), will display. This will be as close as you’re likely to come to matching the
font cross-platform.

Figure 6.9. Displaying the nonstandard, but specified, Zapfino
font on Macintosh

Summary
In this chapter we saw how CSS deals with fonts, before diving in to look closely
at the workings of the font-family and font-size properties. Specifically, we

109

Chapter 6: Working with Fonts

investigated the differences between absolute and relative sizing, and considered
the impacts these differing techniques could have on a page’s usability.

We reviewed a number of other font properties before taking a closer look at the
possibilities for specifying standard and nonstandard font families in CSS.

Chapter 7 moves beyond the issue of which fonts are used to display text, and
offers some additional CSS styles and other capabilities to make your text more
engaging and lively.

110

7 Text Effects and the Cascade

This chapter builds on the last, in which we looked at the fonts text can be dis
played in. Here, we’ll explore a range of other text characteristics, including:

❑ alignment

❑ first-line indentation

❑ horizontal and vertical spacing

❑ text decorations such as overline and strike-out

The browser treats hyperlinks differently from other text, and as such, we can
style them using a number of special techniques. Lists also present a particular
set of opportunities for text styling and presentation. We’ll be looking closely at
both hyperlinks and lists here.

The chapter concludes with a discussion of an important CSS concept: cascading.
I’ve largely ignored the “C” in CSS until now, mainly because its primary use is
to control the display of textual elements on the page.

We begin by delving into the span element, which I’ve touched on briefly in
previous chapters. As you’ll see, this element is very useful for dealing with seg
ments of text within larger text blocks.

Chapter 7: Text Effects and the Cascade

Using the span Element

Sometimes, you want to treat some text in a paragraph, or even a headline, dif
ferently from the text that surrounds it. For example, you might want to change
the font, or some font characteristic—such as size or color—of one or two words
in the midst of a paragraph. Obviously, you can’t create a new paragraph in the
existing paragraph without completely messing up the formatting of the page.
What’s the solution?

Enter: the span element. A span creates an inline collection of text to which styles
can be applied. A span is similar to a div, but is treated as an inline element,
instead of a block element, by default.

The span element is most useful for assigning special font properties, and some
of the more esoteric text decorations and effects we’ll discuss later in this chapter.
For example, Figure 7.1 shows a case in which the designer wanted to emphasize
a sentence by applying a highlighter effect.

Figure 7.1. Using the span element to highlight a sentence

Here’s the HTML for the page that produces that result. The style rule and span
element are shown in bold, so you can easily spot the important point in this
code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Demonstrating Element Usage</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

.change {

 background-color: yellow;

 color: maroon;

 font-weight: bold;

 }

112

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Text Alignment as a Design Technique

</style>

 </head>

 <body>

 <p>This text is going along quite swimmingly, but the designer

 decides that she wants some text to change.

She uses a <code>span</code> element

 to identify the text, and uses a style rule to create a

 highlighter effect.</p>

 </body>

</html>

As we’ll see through this chapter, the span element comes in quite handy when
you want to apply any kind of special formatting to fragments within larger
bodies of text. However, if you already have in your markup some other tag that
you could style to achieve the effect, you should use that existing tag rather than
adding spans for this single purpose.

For example, in the markup presented above, we used the code element to mark
up the word “span” to indicate that it was computer code. By default, the browser
displayed it in a monospace font, but we could use CSS to change the display to
just about anything we might want. If we wanted to emphasize some text, we
would have used a strong or an em element, and written a CSS rule for that ele
ment.

Text Alignment as a Design Technique
Professional artists and designers know that any design—be it a web page, print
ad, or painting—comprises negative and positive space. Positive space consists
of places in the design that are occupied by an object. On a web page, text,
graphics, forms, and other content and user interface elements make up positive
space. Negative space, on the other hand, is space that is empty, or not occupied
by any object.

Good design dictates that a balance should exist between positive and negative
space. We’re not about to get into this subject in detail, but suffice it to say that
pages that are “designed” as a lot of closely packed text content, with few (if any)
“breaks” for negative space, are pretty ugly and hard to use. Even text-only pages
can be made more inviting by the application of negative space. And one of the
best ways to create negative space on a web page is through the judicious use of
text alignment.

113

Chapter 7: Text Effects and the Cascade

Examples of text alignment have appeared in numerous places in this book.
Viewed at its most basic level, text alignment is hardly rocket science, so explan
ations of those examples have not been necessary. However, the time has come
for us to understand precisely how text alignment works in CSS.

Text Alignment in CSS vs HTML
In HTML, text alignment was typically handled using the center element and
the align attribute. Both are deprecated in HTML 4.0 as part of the move toward
CSS becoming the preferred presentation model.1

As we adopt CSS, we use the text-align property to describe the alignment of
text. The text-align property can take any of the following values:

❑ left

❑ center

❑ right

❑ justify

The default value is left. Support for the justify value is not required in the
W3C’s CSS Recommendations, and support for it is spotty in older browsers.
But you can use it with impunity, if not always with the intended effect, because
browsers that don’t support it generally resort to left alignment.

Moving from Crowded to Airy Design Using
Alignment

To see how you can use text-align to create more pleasing effects on your pages,
let’s look at an example. We’ll start with the simple page shown in Figure 7.2,
in which no alignment styles are included.

1 Actually, the align attribute is still permitted in HTML 4.0, but only within the context of table
cells.

114

Moving from Crowded to Airy Design Using Alignment

Figure 7.2. A simple text page layout with no alignment styles

Here’s the HTML that produced Figure 7.2:

File: tenkeys.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Text Layout Sample 1</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 </head>

 <body>

 <h1>Ten Keys to Optimum Performance</h1>

 <p>The careful analysis of more than 35,000 pages of

 self-improvement materials published in the past 100 years

 leads us to the conclusion that there are really only 10

 basic keys to optimum performance and success.</p>

 <h2>Energy - Committing to Peak Power</h2>

115

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 7: Text Effects and the Cascade

<p>There are no dead optimum performers, are there? To achieve

 even minimal performance, you have to be, act, and feel

 alive. If you don't have the energy to do whatever it

 takes, you'll never perform up to your true potential.</p>

 <h2>Mission - Living What's Most Important</h2>

 <p>Until you know what's important, you're spending the only

 life you have on things that simply don't matter. Lacking

 direction and purpose, you're powerless to make a real

 difference in your life. However, all self-imposed

 limitations are removed when you tap into the infinite

 power generated by 'working from your heart,' fulfilling

 a clearly defined mission.</p>

 <h2>Attitude - Transform Passion into Action</h2>

 <p>Even though you may have a passion for what's most

 important, until you also believe that you can make a real

 difference in your life and the lives of those around you,

 nothing's going to happen. Nothing is produced, nor even

 attempted, until you believe in yourself enough to

 transform your passion into action.</p>

 <h3>From "The Power of TQ" by Nine to Five Screen Gems

 Software, Inc. Reprinted by permission.</h3>

 </body>

</html>

There’s nothing too complicated here. Nor is there anything very interesting to
look at, even though the content itself might interest someone.

Now, let’s see what happens when we center the top headline, and move the
subheadings so they’re aligned to the right side of the page rather than the left.
The result is shown in Figure 7.3.

The style sheet rules that produce the effect in Figure 7.3 are pretty simple:

File: tenkeys.css

h1 {

 text-align: center;

}

h2 {

 text-align: right;

}

116

Moving from Crowded to Airy Design Using Alignment

Figure 7.3. Applying headline alignment to basic text layout

While the layout of the page is admittedly unorthodox, you have to admit that
it’s more interesting than what we started with. The “air,” or negative space,
created to the left of the subheadings is attention-getting.

117

Chapter 7: Text Effects and the Cascade

Figure 7.4. Centering text in paragraphs for a different effect

This page consists of headlines that are followed by associated paragraphs of
pithy advice. The whole scheme seems to lend itself to something more closely
resembling a promotional design. Let’s try centering the paragraph text. Now the
page looks like Figure 7.4.

The style sheet that generates Figure 7.4 is shown here:

File: tenkeys.css

h1 {

 text-align: center;

}

h2 {

 text-align: right;

}

p {

 text-align: center;

}

118

Moving from Crowded to Airy Design Using Alignment

Whether or not you like your paragraphs centered, you can probably see where
I’m heading with this concept. By altering the text-align property of text ele
ments on the page, we can create more negative space and more pleasing page
layouts—even if we don’t do anything else.

That said, I couldn’t resist making one last change that involves color, not
alignment. Figure 7.5 shows you what putting a background color behind the
heading text does for the additional negative space. I’ve used a yellow back
ground—though you can’t tell—but the fact that it’s a solid color produces the
same effect as negative space, while providing yet another way for us to guide
readers’ eyes to the content we want them to see: the main subheadings.

Figure 7.5. Adding a color background to subheadings to
emphasize negative space

Here’s the style sheet that creates the effect in Figure 7.5:

119

Chapter 7: Text Effects and the Cascade

File: tenkeys.css

h1 {

 text-align: center;

}

h2 {

 text-align: right;

 background-color: yellow;

}

p {

 text-align: center;

}

First-line Indentation
In the example in the previous section, I centered the text in the explanatory
paragraphs under each subheading. As I said at the time, that wasn’t necessarily
a great design, but it did demonstrate how alignment can produce “air” or negative
space. Another, perhaps more conventional, way to accomplish this objective
with blocks of text is to indent the first line of each paragraph.

The text-indent property controls the amount of extra left padding that’s applied
to the first line of a block of text. The property requires as its value a measurement
or percentage of the element width.

Let’s put text-indent to work. Replace the style rule for paragraphs in the above
CSS with a new one, like this:

File: tenkeys.css (excerpt)

p {
 text-indent: 2em;
}

The result will look like Figure 7.6.

120

First-line Indentation

Figure 7.6. Indenting the first line of text in each paragraph

Figure 7.7. Outdenting the first line of text in a paragraph

A variation on first-line indent is first-line outdent, also called a hanging indent,
where the first line is closer to the left margin than the rest of the paragraph. You
can see this effect in the first paragraph of Figure 7.7.

Here are the CSS rules that we add to the style sheet to accomplish the styling
shown in Figure 7.7:

File: tenkeys.css (excerpt)

p.outdent {
 padding-left: 2em;
 text-indent: -2em;
}

Here, I’ve assigned a left padding value of two ems to the entire paragraph, then
removed that padding from the first line by setting a negative text-indent of
the same amount.

121

Chapter 7: Text Effects and the Cascade

In the HTML, I’ve simply assigned the outdent class to the first paragraph of the
document:

File: tenkeys.html (excerpt)

<h1>Ten Keys to Optimum Performance</h1>

<p class="outdent">The careful analysis of more than 35,000 pages

 of self-improvement materials published in the past 100 years

 leads us to the conclusion that there are really only 10 basic

 keys to optimum performance and success.</p>

When you use a negative value for the text-indent property, you have to be
careful that the first line of text doesn’t end up falling outside the boundaries of
the browser window. In general, this means you need to assign a padding-left
of at least the same size as the negative indent you choose.

Horizontal and Vertical Spacing
CSS rules allow you to control spacing between lines, letters, and words. You can
use these properties to create interesting visual effects, to improve the readability
of text, or sometimes, to fit text into a tight spot.

The line-height Property
All elements in a web page are affected by a line-height property. This property
refers to the total distance between the baselines of two adjacent lines of text.
The baseline of a line of text is the imaginary horizontal line most letters sit
on—you can see this line clearly in the word “baseline” itself.

By default, browsers create a line-height that ensures the readability of vertically
adjacent lines or elements. For example, if the text in a paragraph is set in a 12
point font, the browser will usually provide one point of spacing above and an
other point of spacing below the line, creating a total line-height of 14 points.

When you explicitly set the line-height for an element such as a heading or
paragraph, you effectively tell the browser to increase or decrease the amount of
space between that line and those that are vertically adjacent to it. This space is
called leading (pronounced like “heading,” not like “reading”), a term that’s left
over from the days when type was set using molten lead formed into bars of type,
one for each line. Spacing was created by placing thin, blank slugs between the
lines.

122

The line-height Property

Leading can create additional negative space in a web page layout. Figure 7.8
shows how the page we’ve been working with looks if the following style rule is
applied:

File: tenkeys.css (excerpt)

p {
 text-indent: 2em;
 line-height: 1.5em;
}

This effectively creates text that is one and one-half line spaced.

Figure 7.8. Using the line-height property to create 1.5-line
spaced text

It’s important to realize that when you set the line-height property using a
relative measurement (such as an em value or percentage), that value is applied
on the basis of the current element’s font settings, not on those of the parent, as

123

Chapter 7: Text Effects and the Cascade

is the case with most other font control properties. Thus, if you have a paragraph
with a 12-pixel font that’s contained in a div with an 18-pixel font, for example,
a line-height value of two ems for the paragraph would produce an actual line
height of 24 pixels, not 36.

The line-height property is the first CSS property we’ve encountered that can
take a pure numerical argument, as in this example:

p {

 line-height: 1.5;

}

This has the same visual effect as would supplying a value of 1.5em, or a value
of 150%. The difference between a numeric value and a CSS measurement is
that a numeric value is inherited directly by child elements, which will apply it
to their own font sizes, while relative values cause the actual line height to be
inherited by children. This is easier to demonstrate than to explain.

Figure 7.9 shows two different paragraphs, set in large type, to dramatize the
different effects of numeric and relative line-height properties. The text in the
figure explains how each paragraph was formatted relative to the div container
of which it is part.

Figure 7.9. Relative versus numeric line-height property values

The first paragraph is contained in a div with a line-height of 2em. The para
graph therefore inherits the line height that results when you double the default

124

The letter-spacing and word-spacing Properties

line height produced by the div element’s font (in this case, the browser’s default
font size, which is usually 12 points). As the paragraph uses a larger font than
the div, the line spacing looks very crowded.

The second paragraph is contained in a div with a line-height of 2. Instead of
passing on the exact line height, the inherited value of 2 is used by the paragraph
to determine a line-height based on its own, larger font. This produces the
double-spaced effect we probably intended.

For this reason, it is generally best to stick to numeric values for the line-height
property, unless you know you’re striving for a really different vertical spacing
effect, and understand the consequences of using CSS measurement values.

The letter-spacing and word-spacing
Properties

The letter-spacing property defines the amount of space between the letters
in the text element to which it is applied. It can take an absolute or relative value,
and its default setting is normal.

Figure 7.10 shows an extreme example of letter-spacing created so you can
see the effect.

Figure 7.10. Using letter-spacing to define distance between
letters

Here’s the HTML page that generates Figure 7.10:

File: spacy.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Letter and Word Spacing</title>

 <meta http-equiv="Content-Type"

125

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 7: Text Effects and the Cascade

content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 .spacy {

 letter-spacing: 0.5em;

 }

 </style>

 </head>

 <body>

 <p class="spacy">All paragraphs identified with the class

 'spacy' on this page are set to 0.5 ems of letter spacing.

 You can see here the effect of that setting.</p>

 <p>This paragraph is not an instance of the class 'spacy' so

 it has default letter spacing.</p>

 </body>

</html>

Notice that the spacing between words is elongated as well, so the words continue
to appear as a grouping of letters that are closer together than the words are to
one another.

You can also apply negative values to the letter-spacing property to cause
letters to appear closer to one another.

One situation in which letter-spacing comes in particularly handy occurs where
a headline appears to have a bit too much inter-letter spacing. This often happens
with monospaced fonts, but it can be annoying or distracting with sans-serif fonts
as well. In Figure 7.11, this effect is put to good use. The top headline on the
page does not use any letter-spacing. Notice how the words containing the letters
“i” and “l” and “t,” in particular, look a little too “airy.” This is a characteristic
of monospaced fonts, but with the CSS letter-spacing property, you can
overcome this problem and continue to use this type of font where it’s most ap
propriate.

Figure 7.11. Using negative letter-spacing to tighten up
monospace fonts

126

The letter-spacing and word-spacing Properties

Here’s the HTML that produces the page in Figure 7.11. Notice that I defined
a class called “compress,” then applied it to one of the h1 heading elements:

File: compress.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Letter Spacing in Headlines</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 h1 {

 font-family: "Courier New", Courier, monospace;

 }

 .compress {

 letter-spacing: -0.05em;

 }

 </style>

 </head>

 <body>

 <h1>This Is a Little Too Spread Out</h1>

 <h1 class="compress">This Is a Little Bit Better</h1>

 </body>

</html>

As you can see, I decreased letter spacing only by a small amount (5% of the
width of a character) to achieve the desired result. You’ll need to experiment with
the effects of the letter-spacing property with various fonts and type sizes to
know what will work best in a given situation.

Another case in which letter-spacing is particularly effective is in creating a
different visual effect for a page heading. Figure 7.12 shows a heading that makes
effective use of letter spacing to create a graphically interesting effect without
the use of graphic tools.

Figure 7.12. Using letter-spacing to create an interesting visual
effect

127

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 7: Text Effects and the Cascade

The HTML that creates the effect shown in Figure 7.12 is simplicity itself:

File: joecool.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Cool Headline With Letter Spacing</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 h1.pageheading {

 font-family: 'Courier New', Courier, monospace;

 font-size: 18pt;

 letter-spacing: 0.7em;

 text-transform: lowercase;

 }

 </style>

 </head>

 <body>

 <h1 class="pageheading">Joe Cool's Web Hangout</h1>

 <p>The stretched-out headline above almost acts like a logo

 for Joe Cool's web site, but it is created without a graphics

 tool.

 </p>

 </body>

</html>

The word-spacing property determines the spacing between words. However,
versions of Internet Explorer earlier than 6 don’t support this property.2

Figure 7.13 depicts the effect a word-spacing setting of 1em has on an oversized
sentence.

Figure 7.13. The word-spacing property at work

2 Internet Explorer version 5 for the Macintosh does support this property, but its implementation
is buggy and results in word overlap in some circumstances.

128

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Text Decorations

Here’s the HTML that produces the page shown in Figure 7.13:

File: wordspacing.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Word-Spacing Demonstration</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 </head>

 <body>

 <p style="word-spacing: 1em; font-size: 2em;">Let's see what

 happens to the spacing between words in this paragraph,

 where I have set <code>word-spacing</code> to 1 em.</p>

 </body>

</html>

Text Decorations
The text-decoration property allows you to add any of four specific effects to
text:

❑ underline

❑ overline

❑ blink

❑ line-through

In addition, the text-decoration property can take a value of none, which can
be used in one specific situation I’ll discuss in a moment.

I’m going to ignore blinking and underlining as a text decoration. Many main
stream browsers ignore blinking text, because it fell into almost immediate disrep
ute when Netscape first introduced it as a nonstandard HTML tag. Blinking text
is widely considered annoying, amateurish, and the epitome of bad design. Un
derlining, on the other hand, is still widely supported by browsers, but that doesn’t
make it a good idea. Users are accustomed to seeing hyperlinks underlined. Un
derlining text that is not a hyperlink only creates confusion for the user.

129

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 7: Text Effects and the Cascade

Overlining can be used to create an interesting and potentially useful effect in
which a line appears above the text, extending to the full width of the text itself.
This makes it different from the top border line we learned about in Chapter 3.
Figure 7.14 shows the effect; the HTML that produces the effect follows.

Figure 7.14. Using overline on a headline

File: overline.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Showing Off Overlining</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 h1 {

 text-align: center;

 text-decoration: overline;

 }

 h2 {

 text-align: center;

 border-top: 1px solid black;

 }

 </style>

 </head>

 <body>

 <h1>This Headline is Overlined</h1>

 <h2>This Headline uses a Top Border</h2>

 </body>

</html>

The border over the second headline extends the full width of the page because
that marks the top of the box containing the headline. The top heading on the
page uses a text-decoration declaration with a value of overline to create a
decidedly different result.

130

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Styling Hyperlinks

Another value the text-decoration property can take is line-through. An ex
ample of this effect is shown in Figure 7.15.

Figure 7.15. Using the line-through value of the
text-decoration property

The del Element

This strikethrough effect is commonly used to indicate text that has been
deleted from a document as part of an edit. HTML includes the del element
for this purpose, and browsers will generally render it with a strikethrough
by default.

If you’re using a strikethrough effect to indicate that text has been deleted,
you should make use of the del element to preserve the semantic meaning
of your markup. If you’re using the strikethrough effect for some other
reason, you should avoid the del element and use a span, a div, or some
other semantically correct element.

Also, the ins element goes hand in hand with the del element, and is used
to mark up text that has been inserted into a document.

The last text-decoration value I’ll describe is none. Given that, unless told
otherwise, text doesn’t display any decoration, you might wonder why you’d ever
want to use this value. You can assign the none value to the text-decoration
property to turn off underlining of hyperlinks. This usage can be more or less
effective depending on whether the user has already turned off underlining of
hyperlinks as a browser preference. Most modern browsers offer this option and
many users take advantage of it.

Styling Hyperlinks
Hyperlinks are a special category of text used on a web page. Links are active
elements that create navigational points from which users can change their loca
tions to another point on the same page, another page on the same site, or another
site entirely. Links can, in fact, be used for many tasks if you call on the capabil
ities of JavaScript, but those uses are beyond the scope of this book.

131

Chapter 7: Text Effects and the Cascade

There are two ways to control the style of hyperlinks. You can treat links like
any other text for the purposes of styling their initial, static appearance. Or you
can take advantage of the four widely supported pseudo-classes to style the ap
pearance of links in the four different states in which they can exist. These four
states and their corresponding pseudo-classes are shown in Table 7.1.3

Table 7.1. The anchor pseudo-classes explained

Corresponding Hyperlink State Anchor Pseudo-class

not yet visiteda:link

visiteda:visited

cursor positioned over link but mouse not being
clicked

a:hover

being clicked on at the moment a:active

Although most links appear inline with text and take on the same basic charac
teristics (font family and size, for example) as the text in which they’re embedded,
hyperlinks are blue and underlined by default. Sometimes, you want to have
some links appear in a different font or color. In addition, site navigation links
can be presented more effectively if you style them differently from normal text
on the page. You can use all the normal text identification schemes to alter the
appearance of links. For example, you might define a class called, say, majorlink,
which creates a specialized font and color combination, and then define a link
as belonging to that class. Here’s how you’d do it:

Google

Figure 7.16 shows two separate hyperlinks. The top one is a normal link, displayed
when either the user or the style sheet has turned off underlining; the second is
an instance of the class majorlink, where I’ve identified a different font family,
size, background color, and text color.

Figure 7.16. Two hyperlinks with different formatting

3 While I’m discussing these pseudo-classes in conjunction with anchors, the CSS recommendation
allows :hover and :active to be applied to other types of HTML elements, as well. A fifth
pseudo-class, :focus, also exists. Unfortunately, none of these are supported by Internet Explorer
version 6; therefore they’re not commonly used.

132

Styling Hyperlinks

The anchor pseudo-classes can be used in style sheets to create specific designs
that are associated with each condition in which a hyperlink can be found. Here’s
a typical style sheet that provides for the special treatment of hyperlinks:

a:link {

 color: darkgreen;

 background-color: transparent;

}

a:visited {

 color: lightgreen;

 background-color: transparent;

}

a:hover {

 color: green;

 background-color: black;

}

a:active {

 color: black;

 background-color: green;

}

The order in which you declare each of these pseudo-classes is important because,
given the rules of cascading (which we’ll discuss in the final section of this
chapter), each of these sets of rules will be overridden by an earlier rule of the
same importance. Thus, if you declare a rule for a :hover pseudo-class before
you define a rule for the :link or :visited pseudo-classes, the color you choose
for :hover links will never appear, as all links are either visited or unvisited. In
the above code fragment, if you relocated the a:hover rule to the first position
in the list, it would never be used, because the subsequent :link or :visited
rule (whichever applied to the link in question) would override it. Some people
find it helpful to use the mnemonic “love–hate” to remember that the pseudo-
classes should be used in the order :link, :visited, :hover, and :active.

It is possible to specify two pseudo-classes in one rule. For example, you can apply
a special “hover” color to visited links with this rule:

a:visited:hover {

 color: blue;

 background-color: transparent;

}

You can turn off the underlining of all hyperlinks in a document with a single
style rule:

133

Chapter 7: Text Effects and the Cascade

a {

 text-decoration: none;

}

However, unless your link is otherwise very obviously a link—for example, it
appears in a navigation bar styled using CSS instead of images—it is not good
practice to remove underlines from links. Without underlines, it’s difficult to tell
the links from ordinary text.

Styling Lists with CSS
Lists in HTML begin with one of two tags: is used for an unordered or
bulleted list; denotes a numbered or ordered list.4 The items within each
of these lists are marked up with and tags.

Apart from headings and paragraphs, lists are probably the most commonly used
of the elements intended to present textual content to the web user. There are
three styling properties in CSS that apply only to lists:

❑ list-style-type

❑ list-style-position

❑ list-style-image

There is also a list-style shorthand property with which we can set multiple
properties for a list.

The list-style-type Property
The list-style-type property defines the kind of marker that is to be associated
with each item in the list. The property takes a constant value that’s chosen from
the options shown in Table 7.2 and Table 7.3.

4 There are other types of lists for glossary items or definitions, directories, and menus, but they’re
seldom used, so I’ve omitted them from this discussion. For the most part, they’re styled identically
to the two major kinds of lists we’ll discuss here.

134

The list-style-type Property

Table 7.2. Values for the list-style-type property and
unordered lists

MeaningConstant Value

open circle circle

filled circle (bullet) disc

filled square square

Table 7.3. Values for the list-style-type property and ordered
lists

MeaningConstant Value

1, 2, 3, 4, 5 …decimal

01, 02, 03, 04, 05 …decimal-leading-zero

a, b, c, d, e …lower-alpha

i, ii, iii, iv, v …lower-roman

A, B, C, D, E …upper-alpha

I, II, III, IV, V …upper-roman

There are a number of other possible values for the list-style-type property,
including those that define item markers in languages such as Hebrew, Armenian,
Japanese, and Chinese.

Figure 7.17. Nested lists to which the page author applied no CSS
rules

135

Chapter 7: Text Effects and the Cascade

By default, an unordered list displays with an item marker of a filled circle, or
bullet. In nested unordered lists, the item marker changes to an open circle for
the first level of indentation, and a square for the second level, as shown in Fig
ure 7.17.

What if you prefer to have the item marker be a square for the outermost list, a
bullet for the next one, and an open circle for the third? Apply a set of style sheet
rules like the ones below, and you can accomplish this objective quite easily:

ul {

 list-style-type: square;

}

ul ul {

 list-style-type: disc;

}

ul ul ul {

 list-style-type: circle;

}

Notice that I’ve used contextual selectors to define the three nesting levels of
lists and their associated styles. Figure 7.18 shows the result.

Figure 7.18. Applying list-style-type property to nested
unordered lists

136

The list-style-position Property

Figure 7.19. Nested ordered lists with a single CSS
list-style-type

Ordered lists appear more complex because of the wide variety of markers that
can be used, but essentially they’re the same as unordered lists. If you use CSS
to set the types of list item markers for a given kind of list, those same marker
types will be used for nested lists. For example, Figure 7.19 shows the effect of
assigning uppercase Roman numerals as the list-style-type on a set of nested
ordered lists.

Not very attractive or helpful, is it? Let’s fix it by applying some different
list-style-type values to nested lists with the CSS rules shown here:

ol {

 list-style-type: upper-roman;

}

ol ol {

 list-style-type: upper-alpha;

}

ol ol ol {

 list-style-type: decimal;

}

This results in the much-improved output shown in Figure 7.20.

The list-style-position Property
Both ordered and unordered lists are displayed so that their item markers align
vertically, and the text associated with each item is indented from the marker.
This gives a neat, orderly appearance and is almost always the right design choice.

137

Chapter 7: Text Effects and the Cascade

Figure 7.20. Nested ordered lists to which CSS styling has been
applied

CSS permits you to define a list in such a way that the item markers line up
vertically, but text in the line items wraps under each item marker as it returns
to the left margin. To create this effect, use the list-style-position property
and give it a value of inside. Figure 7.21 shows two lists, one of which uses the
default list-style-position value of outside, while the second has a value of
inside.

Figure 7.21. Two different settings for the list-style-position
property

Here’s the HTML that generates the page in Figure 7.21:

<ul style="list-style-position: outside;">

 This list uses the default <code>outside</code>setting for

 the <code>list-style-position</code> property. Thus, the

 item marker is outdented from the text, and appears to be

 outside the text area.

 This list uses the default <code>outside</code>setting for

 the <code>list-style-position</code> property. Thus, the

138

The list-style-image Property

item marker is outdented from the text, and appears to be

 outside the text area.

<ul style="list-style-position: inside;">

 This list sets a value of <code>inside</code> for the

 <code>list-style-position</code> property. As you can see,

 wrapped list item text appears immediately under the item

 marker.

 This list sets a value of <code>inside</code> for the

 <code>list-style-position</code> property. As you can see,

 wrapped list item text appears immediately under the item

 marker.

The list-style-image Property
You can replace the bullets in front of list items with any graphic image that the
browser is capable of rendering. This includes GIF, JPEG, and PNG images, at a
minimum.

The list-style-image property takes as a value a full or relative URL that points
to the image you wish to use. Figure 7.22 shows the use of an image as an item
marker in a list.

Figure 7.22. Using an image as an item marker with

list-style-image property setting

139

Chapter 7: Text Effects and the Cascade

Here’s the style sheet that creates the effect:

ul {

 list-style-image: url(images/ball.gif);

}

Notice that you must supply the image’s location as a URL in CSS format, which
requires that you use the url operator and provide the location in parentheses,
without using quotation marks. This URL can be a relative URL, as shown here,
or an absolute URL, which is the image’s full address.

Cascading and Inheritance
The “C” in CSS stands for “cascading.” Until now, we haven’t dealt with any
aspect of CSS that required an understanding of that term. However, now that
we’re dealing with relatively complex display-related issues, the time has come
to devote some serious attention to this topic.

Cascading is not confined to text components, objects, and elements. It applies
across the board to CSS usage on a web page. The reason why it’s often discussed
in conjunction with textual elements is because its impact is most apparent and
most easily demonstrable in this context.

Inheritance is related to cascading in terms of its impact, but the two terms have
quite different meanings.

Cascading addresses the question of how any given element will be displayed if
there are multiple style rules that could be applied to it. Inheritance addresses the
question of how any given element will be displayed if one or more of its properties
is defined in a style rule that applies to an ancestor element, but is omitted in
the element itself.

This sounds much more complicated than it usually is in practice. I’m going to
start by providing a couple of simple examples that will clearly demonstrate the
difference. Then, I’ll drill down more deeply into both of these subjects.

Basic Principles of Cascading
If you keep your use of CSS simple, you’ll rarely have a need to understand cas
cading on a deep level. For example, if you always use external style sheets, and
override the settings in those style sheets with embedded style rules only in spe

140

Basic Principles of Cascading

cific situations, you probably won’t need to spend a great deal of time ferreting
out the nuances in the cascading process.

But, when you begin to design pages of any complexity—and to use style sheets
across multiple pages and sites in the interests of efficiency and ease of mainten
ance—you will almost certainly run into situations where what you see isn’t what
you intended. If you’re designing complex pages and sites, you can take advantage
of the basic rules of cascading to apply CSS rules logically, consistently, and ef
fectively.

There are four basic factors involved in creating what is called the “cascade” in
CSS:

❑ weight

❑ origin

❑ specificity

❑ sort order

These factors are taken into account in the order in which I’ve listed them.

To sort out possible conflicts in style rules that could be applied to any element
in an HTML page, think of the browser as going through a set of decisions about
each element. This decision-making process follows this path, in precisely this
order:

1.	 Scan through the declarations that apply to the element and look for declar
ations that contain the keyword !important. Assign each of those declara
tions a greater weight than those without the symbol. This is the “weight”
factor referred to above.

!important is simply a keyword that you can add to a CSS declaration, as
shown in the example below, to make it override other declarations when
usually it wouldn’t:

div.warning {

 background-color: red !important;

}

We’ll see !important in action throughout this section.

141

Chapter 7: Text Effects and the Cascade

2.	 Within the declarations marked as !important, assign a greater weight to
those that come from the user’s style sheet (if there is one) than those that
come from the author’s style sheet. This is the “origin” factor referred to
above.

3.	 Within the declarations that are not marked !important, assign a greater
weight to those that come from the author’s style sheet than to those that
have come from the user’s style sheet. This is also the “origin” factor at work.

4.	 To resolve any remaining ties, examine each rule to see how narrowly it ap
plies to the specific element in question. If, for example, you have a paragraph
element of class warning, a declaration inside a style rule that applies to
paragraphs in general will be given less weight than one that applies to
paragraphs of the class warning. Rules declared inline (with the style attrib
ute in your markup) apply only to one element, and therefore always win
out at this stage. This is the “specificity” factor at work.

5.	 Finally, if any ties still remain after all the above steps, sort things out based
on the order in which the declarations are defined in the document, with
later declarations taking precedence over earlier ones. This is the “sort order”
factor referred to above.

At the end of all this processing, all applicable declarations are applied in the
order established above, with the property values that are assigned in declarations
of greater weight overriding those assigned in declarations of lesser weight.

Generally, you think about this process in the reverse order from that which the
browser uses. Most often, you have only to deal with the sort order issue on pages
of relatively low complexity. As designs and sites become more complex and your
use of style sheets becomes more involved, specificity will become the next major
concern for you. You’ll typically use !important very rarely, if ever. I’ll discuss
the cascading rules in the order in which you are most likely to think of them,
rather than in the order in which the browser uses them.

Sort Order
As you know, styles can be defined in three different places: an external style
sheet, an embedded style sheet, or an inline style attribute as part of a markup
tag for a particular HTML element. The sort order factor in the cascade ensures
that, regardless of whether a style sheet is embedded in the head of the document
or is loaded with a link element, it’s the order in which it appears that determines
its relative precedence.

142

Sort Order

For example, let’s say that you have an external style sheet called mylayout.css.
Among other rules, it has this entry:

h2 {

 color: green;

}

Within a particular document, you decide that you don’t want to use the normal
site-wide style of green second-level headings. So, you embed a style sheet (using
a style element in the document header); the following rule appears after the
link element that loads mylayout.css:

h2 {

 color: blue;

}

In this case, where I’ve used only one declaration, it’s pretty easy to see how
cascading works. The external style sheet declaration is overruled by the embedded
rule: h2 elements within the document will appear in blue.

It’s important to realize that the second rule doesn’t overrule the first because
it’s declared in an embedded style sheet—it overrules it because the embedded
style sheet comes after the linked style sheet. Move that style element above
the link element, and h2 elements will turn green again.

Usually, things are not quite so clean and obvious. Look back to the external
(green) style sheet rule above; let’s change our rules so we have something like
this:

h2 {

 color: green;

 background-color: transparent;

 margin-left: 10px;

 font-family: Arial, Helvetica, sans-serif;

 text-decoration: overline;

}

In an embedded style sheet in another document, assume we have a rule that
looks like this:

h2 {

 margin-left: 20px;

 text-decoration: none;

}

143

Chapter 7: Text Effects and the Cascade

Once again, let’s assume the embedded style sheet is declared after the linked
style sheet. In this case, any second-level heading in this specific document will
be displayed in green on a transparent background, offset from the left margin
by 20 pixels, using the font set identified in the external style sheet, with no
decoration.

One way of thinking about this process is that a style rule is like a waterfall. It
starts out with certain declarations (for color, background-color, left-margin,
font-family, and text-decoration, in the example). Then, that style sheet’s
rules fall like a waterfall cascading over rocks. When it encounters rocks with
declarations that have different values from those in the waterfall, the cascade
effect substitutes the new value for the old.

In resolving any conflict between two or more style rules that could apply to a
given element, and which are tied on the specificity, origin, and weight factors,
the rule declared last will be applied.

Specificity
Specificity refers to the issue of how closely a style rule’s selector describes a
particular element in your document. On one level, this is pretty easy to under
stand. As I mentioned earlier, when I listed the factors involved in the cascade
decision-making process, a style that applies to paragraph elements is less specific
to a paragraph of class warning than is a rule that specifically applies to paragraphs
of that class. In other words, given the following code fragment, the paragraph
will be displayed in red type on a white background rather than white type on a
blue background, despite the order of the rules. Remember, specificity has
greater impact in the cascade than sort order:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Warning</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 p.warning {

 color: red;

 background-color: white;

 }

 .warning {

 color: yellow;

144

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Specificity

background-color: red;

 }

 p {

 color: white;

 background-color: blue;

 }

 </style>

 </head>

 <body>

 <p class="warning">This is a warning paragraph.</p>

 </body>

</html>

The more closely the rule’s selector matches the element, the more specific it is,
and the more likely it is to be applied to that element.

But the CSS Recommendation that describes specificity does so in a generic way
that you may find useful to understand if you get into something really tricky,
with potentially conflicting style rules. Every selector in your style sheet is given
a specificity rating that’s calculated by the browser using a strict formula. That
formula can be expressed as follows:

(100 × IDCount) + (10 × OtherTypeCount) + NamedElements

In other words, the CSS-compliant browser looks at a rule selector and processes
it like this:

1.	 If it has one or more ID selectors (e.g. #critical), count those selectors and
multiply the count by 100.

2.	 If it has any other types of selectors (e.g. class name or pseudo-class), count
those selectors and multiply that count by ten. Do not count pseudo-ele
ments.

3.	 If it has any named elements (e.g. p or div), count those selectors.

4.	 Now add all the values together.

Table 7.4 provides examples of different types of selectors, and what their spe
cificity ratings would be.

145

Chapter 7: Text Effects and the Cascade

Table 7.4. Sample specificity ratings for CSS rule selectors

SpecificityNamesOthersIDsSelector

1100em

2200p em

10010.critical

11110a:hover

13310div p span.critical

100001#critical

101101p#critical

Style properties declared inline (with the style HTML attribute) have the highest
specificity, since they apply to one element and one element only. No property
declared elsewhere can overrule an inline style property based on specificity.

In resolving any conflict between two or more style rules that could apply to a
given element, and which are tied on the origin and weight factors, the rule with
higher specificity will be applied.

Note that the specificity number in the final column is not a definitive value. For
example, 11 classes will not outweigh one ID. It might be useful to think of this
specificity table as being similar to the Olympic medals table. A country with
one gold medal will always come higher up the table than a country with no gold
medals, but 11 silver ones.

Origin
The origin factor in the cascade resolves conflicts between rules declared by the
page author and rules declared by the user of the browser (e.g. in a user’s style
sheet). In general, any property setting assigned by the page author takes preced
ence over a conflicting property setting assigned by the user of the browser.

The exception to this occurs when the two conflicting property settings are as
signed greater weight with the !important modifier, as described below. In such
cases, the origin factor is reversed, and the user’s property setting takes precedence
over the page author’s. In effect, style properties that the user considers important
are more important than style rules that the page author considers important.

146

Weight

In resolving any conflict between two or more property settings that could apply
to a given element, and which are tied on the weight factor (i.e. they’re all marked
!important, or none are), the origin of the property decides which is applied.

Weight
If you give a declaration a weight that’s greater than usual by following it with
the key word !important, it will always override a contradictory setting in the
cascade that’s not marked !important. For example, you might decide that it is
really essential for all level-three headings to be blue and indented 20 pixels. If
so, you’d code a rule like this:

h3 {

 color: blue !important;

 margin-left: 20px !important;

}

If, in rendering your page, the browser encounters a situation where a specific
level-three heading has a different color setting (for example, because of the way
a grouped selector defines the layout), it will ignore that setting and make the
heading blue.

Recall that if you increase a declaration’s weight with the !important symbol,
and the user specifies a conflicting style to which he also applies an !important
symbol, the user’s declaration will trump yours, according to the origin factor
described above.

However, this doesn’t mean that you won’t find uses for !important. In the vast
majority of cases, the user doesn’t define or use a style sheet. In such instances,
your use of !important will ensure that if there are conflicts among the style
rules you’ve declared in various external style sheets, and perhaps also in an em
bedded style sheet, the one that is most crucial to your design will prevail.

Summary
This chapter demonstrated a number of techniques for using CSS styles to spruce
up the otherwise ordinary text on a web page. From the basic use of alignment,
indentation, and other techniques, the chapter demonstrated the use of positioning
to create shadowed text effects, and described how to manipulate the display of
lists as well.

147

Chapter 7: Text Effects and the Cascade

This chapter also provided a detailed description of the role of the cascade in
CSS. You now understand how to control the impact of style rules in complex
page designs, where display rules may be coming from multiple sources.

In Chapter 8 we’ll take a look at how to use CSS in relation to graphics on a web
page.

148

8 Simple CSS Layout

We now have some sound theory under our belts. The rest of this book will
concentrate on how you can put CSS into practice when developing your own
sites. Along the way, we’ll be learning how to lay out pages using CSS—moving
from simple layouts to more complex ones—and how you can combine some of
the concepts you’ve already read about to create great-looking sites.

This chapter will start with the creation of a simple two-column layout. Along
the way, we’ll discover how to use absolute and relative positioning, and see how
margins, padding, and borders work together. Then, we’ll get an understanding
of how all these tools can be used together in practice by creating a two-column
layout that uses many of the techniques we have discussed already in this book.

While the layout we’ll create in this chapter is a relatively simple one, it’s a
structure that’s used by many web sites; the layout we’ll develop here could easily
form the basis for a production site.

The Layout
Many web site designs start life as mock-ups in a graphics program. Our first ex
ample site is no exception: we have an example layout or “design comp” created
in Fireworks as a starting point.

Chapter 8: Simple CSS Layout

Figure 8.1. Creating the layout as an image file

Starting out with a visual like this enables us to think about the way we’re going
to build the site before we start to write any XHTML or CSS. It gives us the op
portunity to decide how best to approach this particular layout before we code
a single line.

This layout divides the page into three main sections: a header, which contains
the site logo and some main navigation; a main content area comprising a large
image above a list of news stories; and a sidebar, which presents some additional
items.

150

Creating the Document

Figure 8.2. Marking the main sections on the layout

This layout could be described as a two-column layout with a header area. Being
able to visualize a design as being a combination of its main sections eases the
process of deciding how to approach the page layout.

Creating the Document
Having decided what the basic components of our page will be, we can start work.
The first thing we’ll do is create an XHTML document that contains all of the
text elements we can see in our layout image, marked up using the correct XHTML
elements.

151

Chapter 8: Simple CSS Layout

Working this way might seem a little strange at first, particularly if you have
been used to working in a visual environment, such as Dreamweaver, and simply
concentrating on how the design looks. However, one of the advantages of using
CSS for layout is that we’re able to separate the structure of the page from its
appearance. This allows us to concentrate on building a good solid document as
the basis of our site, before adding the design using CSS.

We start out with the basic requirements for an XHTML Strict document. As
we’re going to use CSS for all of the presentational information on this site,
there’s no reason not to use a Strict DOCTYPE. The Transitional DOCTYPEs
(for both XHTML and HTML 4.01) allow you to use attributes and elements
that are now deprecated in the W3C Recommendations. The deprecated elements
and attributes are mainly used for presentation, and as we’re going to use
CSS—not XHTML—for presentation, we won’t need to use these anyway.

File: index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Footbag Freaks</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 </head>

 <body>

 </body>

</html>

Declaring the Character Set

In our pages, we’ve used the meta element with the http-equiv="Con
tent-Type" attribute to declare our document’s character set. This makes
it easy for browsers (and the W3C validator) to determine which character
set is being used in the document. If this information was missing, a browser
could misinterpret the characters in your page, which could see your pages
rendered as unintelligible garbage.

All of the examples in this book use ISO-8859-1 encoding, which is the de
fault for most popular text editors and programs such as Dreamweaver. If
you’re dealing with a different character set, such as Unicode, you’ll need to
change the meta elements accordingly.

152

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The Header

The Header
Let’s start to add the content of this page to our document. As we do so, we’ll
split it up into the various sections identified above, containing each page section
between <div> and </div> tags. We’ll give each div an id to identify that section;
we’ll use these ids to address each section and style it using CSS.

After the <body> tag, add the following markup:

File: index.html (excerpt)

<div id="header">

 <p>The Home of the Hack</p>

 Contact Us

 About Us

 Privacy Policy

 Sitemap

</div> <!-- header -->

We won’t worry about any image elements at this point, because there are nu
merous ways in which we can add images to the page using CSS; we’ll make the
decision as to the best way to add each image as we create our CSS. Thus, the
header area simply contains the tag line, “The Home of the Hack,” and a list that
includes the main navigation links.

The Main Content Section
The main content section comes next, contained in a div with an id of content:

File: index.html (excerpt)

<div id="content">

 <h2>Simon Says</h2>

 <p>Simon Mackie tells us how a change of shoes has given him new

 moves and a new outlook as the new season approaches.</p>

 <p>Read More</p>

 <h2>Recent Features</h2>

 <h3>Head for the Hills: Is Altitude Training the

 Answer?</h3>

 <p>Lachlan 'Super Toe' Donald</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

153

Chapter 8: Simple CSS Layout

ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super Tips</h3>

 <p>Jules 'Pony King' Szemere</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>The Complete Black Hat Hacker's Survival Guide</h3>

 <p>Mark 'Steel Tip' Harbottle</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>Five Tricks You Didn't Even Know You Knew</h3>

 <p>Simon 'Mack Daddy' Mackie</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

</div> <!-- content -->

This area will contain the large image with a text overlay that highlights a feature
story. Four news items will be listed below this.

The Sidebar
Finally, let’s add the sidebar, which contains a search box and some important
dates:

File: index.html (excerpt)

<div id="sidebar">
 <h3>Site Search</h3>
 <form method="post" action="" id="searchform">
 <div>
 <label for="keywords">Keywords</label>:

154

The Sidebar

<input type="text" name="keywords" id="keywords" />

 </div>

 <div>

 <input type="submit" name="btnSearch" id="btnSearch" />

 </div>

 </form>

 <h3>Coming Events</h3>

 10 Apr 06 -
Seattle Zone

 Qualifier

 13 Apr 06 -
World Cup - Round 8

 21 Apr 06 -
FootbagOOM 05 - NY

 28 Apr 06 -
WFPA AGM - Hong Kong

 3 May 06 -
World Cup - Round 9

 <h3>Move of the Month</h3>

 <h4>The Outer Stall</h4>

 <p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper

 quam. Sed cursus vestibulum leo.</p>

 <p>more</p>

</div> <!-- sidebar -->

This completes our markup for the homepage of the site. Save your page and
view it in your browser. The content of your document will display using the
default styles for the elements that we’ve used, as Figure 8.3 illustrates. It won’t
be pretty, but it should be easily readable!

Our last job before we start to add the CSS that will create the design we see in
the example graphic is to validate our markup. By validating the document at
this point, we’ll know that we’re adding CSS to a valid document: we won’t come
up against problems caused by existing invalid markup.

155

Chapter 8: Simple CSS Layout

Figure 8.3. Displaying the page after the content is added

156

Positioning the Page Elements

Positioning the Page Elements

We can now begin to create our style sheet. But, before we do, we need to take
a moment to understand some basic concepts that come into play when creating
layouts such as this (and many others): the display property, the concept of
positioning, and the CSS Box Model technique.

The display Property
Before we can move on to look at CSS positioning issues, we should take a quick
look at the display property, as it can have a significant impact on page layout.

The display property determines how a browser displays an element—whether
it treats it as a block, an inline text fragment, or something else. Although it can
be assigned any of 17 legal values, browser support realities confine the list to
six, only four of which are really important. For a full reference to display see
Appendix C.

The six possible values for the display property are:

❑ block

❑ inline

❑ list-item

❑ none

❑ table-footer-group

❑ table-header-group

The default value varies from element to element. Block elements such as p, h1,
and div default to block, while inline elements (those that would normally occur
within a section of text), such as strong, code, and span, default to inline. List
items default to list-item. Assigning non-default settings to elements can pro
duce interesting and useful effects. Later in this book, we’ll see how we can use
display: inline to cause a list to display horizontally.

If you supply a value of none, the element to which it applies will not display,
and the space it would normally occupy will be collapsed. This differentiates the

157

Chapter 8: Simple CSS Layout

display: none declaration from the visibility: hidden declaration, which is
commonly used to hide an element but preserve the space it would occupy if it
were visible.

Absolute, Relative, and Positioning Contexts
The CSS position property takes on a single, constant value that determines
how the block is positioned on the page. The two most frequently used values
are absolute and relative. Another value, static, is the default value for this
property; the fourth value, fixed, is not supported by Internet Explorer 6.

Positioning in CSS can be confusing because the points that are referenced to
guide a block’s placement on the page change in accordance with the positioning
context of the block. There’s no universal set of coordinates to guide placement,
even when you’re using the absolute positioning value. Each time a block is
positioned on the page with a position setting other than static, it creates for
its descendants a new positioning context in which the upper left corner of its
content area has the coordinates (0,0). So, if you use CSS to position an element
within that block, its position will be calculated relative to that new coordinate
system—its “positioning context.”

The best way to understand this concept is to look at a few simple, interrelated
examples. Let’s start with a blank page. In this context, the upper left corner of
the viewport—the viewable area of the browser window—is where the initial (0,0)
coordinates are located. Let’s place a simple piece of text in a div, as shown in
Figure 8.4.

Figure 8.4. The first line of text

158

Absolute, Relative, and Positioning Contexts

Here’s the HTML fragment that produces the result shown above. The CSS
properties top and left are used to position the div on the page, locating it 75
pixels from the top of the page, and indenting it from the left of the page by 125
pixels:

File: positioning.html (excerpt)

<div style="position: absolute; left: 125px; top: 75px;"
 class="big">

 This is the first line of text being positioned.
</div>

Now, put a second div inside the first one, as shown here:

File: positioning.html (excerpt)

<div style="position: absolute; left:125px; top: 75px;"

 class="big">

 This is the first line of text being positioned.

 <div style="position: absolute; left: 25px; top: 30px;"

 class="big">

 This is a second line.

 </div>

</div>

Figure 8.5. An element positioned inside a positioned block

The result is shown in Figure 8.5. Notice that the second line of text is indented
25 pixels from the left of the first line of text, because that first line sets the pos
itioning context for the second: it’s the parent element of the second line. Both
lines are positioned absolutely; however, the first line is positioned from the top

159

Chapter 8: Simple CSS Layout

and left of the viewport, and the second line is positioned absolutely from the
top and left of the first. Notice, too, that its font size is huge. Why? Take a look
at the style rule for the big class, and you’ll understand:

File: positioning.html (excerpt)

.big {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 2em;
 font-weight: bold;
}

As the second div is a child of the first, its font size is calculated relative to that
of the first div. The style rule defines the font as being of size two ems, which
instructs the browser to render the text at twice the size it would otherwise appear.
When that two em rule is applied to the first line, its size is doubled. But when
it is applied to the second line, the font size of the first line is doubled to calculate
that of the second.

We can correct this using an absolute font size constant:

File: positioning.html (excerpt)

.big {
 font-family: Helvetica, Arial, sans-serif;
 font-size: large;
 font-weight: bold;
}

The two divs should now share the same font size.

The page now has two div elements, one nested inside the other. Both use abso
lute positioning. Now, let’s add a third element—this time, a span element that
will be contained in the second div. Using relative positioning, the HTML looks
like this:

File: positioning.html (excerpt)

<div style="position: absolute; left: 125px; top: 75px;"

 class="big">

 This is the first line of text being positioned.

 <div style="position: absolute; left: 25px; top: 30px;">

 This is <span

 style="position: relative; left: 10px; top: 30px;">an

 example of a second line.

 </div>

</div>

160

Absolute, Relative, and Positioning Contexts

The result of this markup can be seen below. Notice that the words “an example
of,” which are contained in the span, appear below and slightly to the right of
their original position. Relative positioning is always based on the positioned element’s
original position on the page. In other words, the positioning context of an element
that uses relative positioning is provided by its default position. In this example,
the span is positioned as shown in Figure 8.6. It appears below and to the right
of where it would normally be if no positioning was applied—a case that’s illus
trated in Figure 8.7.

Figure 8.6. Example of relative positioning

Figure 8.7. The same example with the positioning removed

161

Chapter 8: Simple CSS Layout

Don’t worry if this concept still seems a bit confusing; we’ll be looking at how
these concepts work in practice as we create our layouts.

The Box Model
From the perspective of a style sheet, every item you deal with in an HTML page
can be viewed as existing inside a box. This fact is generally far more obvious
when you’re formatting large chunks of content, like the three main page areas
we’ve identified in our design. But it’s true even when you’re dealing with indi
vidual components of those elements, like headings, lists, list elements, and even
segments of text.

The basic CSS box model is shown in Figure 8.8.

Figure 8.8. The basic CSS box model

162

The Box Model

At the center of the CSS box model is the content itself. Don’t think of this
“content” as being the same as words or images that might comprise the content
of a news story or a set of links. “Content” describes any item that’s contained
within the area of the box.

Notice from the diagram that the visible width of the box is determined by adding
together the content width, the padding, and the border. The margin determines
the distance between each side of the visible box and adjacent elements. Similarly,
the visible height of the box is determined by adding the height of the content
to the padding and border settings. Once again, the margin determines how far
the box will be separated from adjacent objects vertically.

The width of each of these elements—margin, border, and padding—can be set
using four CSS properties (one for each side of the box), or a single shorthand
property. Border behavior is slightly more complicated because, in addition to
width, a border can have characteristics such as line style and color.

In this discussion, I’ll begin by explaining and demonstrating the use of padding
in some detail. Then, I’ll move on to a discussion of margins, which will be briefer,
as it’s so similar to padding. Finally, I’ll discuss borders.

For the next few sections, I’ll use a basic, single-box layout to demonstrate CSS
rule techniques. It starts out as the layout shown in Figure 8.9, with no padding,
border, or margin: the content is the same size as the box.

Figure 8.9. Starting point for the box model demonstration

I’ve given the h1 element a gray background so you can see more easily the impact
of the effects I’ll be demonstrating. The HTML below produces the page shown
in Figure 8.9:

163

Chapter 8: Simple CSS Layout

File: boxmodel.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Box Model Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 h1 {

 background-color: #c0c0c0;

 color: black;

 }

 </style>

 </head>

 <body>

 <h1>Help! I'm stuck in a box model!</h1>

 </body>

</html>

Throughout the rest of this discussion, I’ll be modifying only the style sheet in
formation, so I’ll reproduce only that section of the code, indicating any changes
in bold.

Pixels vs Percentages

As the box model deals with the display of content on the screen, the pixel is the
most commonly used of the absolute measurement units in CSS. However, if
you need to create a layout that takes up all of the available space, regardless of
how big the browser window is, it’s necessary to use the percentages rather than
pixels. Such layouts are characterized by their “stretchy” behavior—the page
elements expand and contract proportionately as the user resizes the browser
window.

Padding Properties

Four properties together define the padding around an object in a CSS rule:
padding-left, padding-right, padding-top, and padding-bottom.

Let’s change just one of the padding settings to get a feel for how this works.
Modify the style sheet in the sample file, so that it replicates the following frag
ment (remember that the new material is presented in bold text below):

164

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The Box Model

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding-left: 25px;

}

The result of this change is shown in Figure 8.10. Notice that the text now begins
25 pixels from the left side of the box, resulting in 25 pixels of blank, gray space
to the left of the text.

Figure 8.10. Demonstrating padding-left

As you’d expect, you can set the other padding sizes the same way, as this code
fragment shows:

File: boxmodel.html (excerpt)

h1 {

 background-color: #c0c0c0;

 color: black;

 padding-left: 25px;

padding-top: 15px;

padding-bottom: 30px;

padding-right: 20px;

}

165

Chapter 8: Simple CSS Layout

Figure 8.11. Defining all four padding properties

You can see the effects of these changes in Figure 8.11.

You may notice that the padding on the right-hand side appears not to have
worked. You asked for 20 pixels, but no matter how wide you stretch the window,
the gray area that defines the box containing our h1 element just goes on and on.

This is because padding-right creates a space between the right edge of the text
and the right edge of the heading, as represented by the gray box. The spacing
is difficult to see in this case, because the heading automatically spans the width
of the browser window, leaving plenty of room for the text to breathe on the
right-hand side. If you make the browser narrow enough, though, you can see
the padding take effect.

Figure 8.12. Demonstrating the effect of padding-right

Figure 8.12 demonstrates this principle. The first screenshot shows how the page
from Figure 8.11 looks if padding-right is set to 0 and the browser window is
resized so there is barely enough room for the text. The second screenshot shows
the same page with padding-right set to 20px. Because the box now incorporates
20 pixels of padding on the right-hand side, the text can no longer run all the

166

The Box Model

way to the right hand border of the gray box, and the end of the sentence is forced
onto the next line.

Because it’s often necessary to adjust padding around objects in HTML, the CSS
standards define a shorthand property that’s simply called padding. You can give
this property up to four values; Table 8.1 identifies how the properties will be
assigned in each case.

Table 8.1. Effects of multiple values on padding shorthand
property

Interpretation Number of
Values

Set all four padding values to this value.1

Set the top and bottom padding to the first value, and left and
right padding to the second.

2

Set the top padding to the first value, right and left to the second
value, and bottom to the third value.

3

Set the top padding to the first value, right padding to the
second, bottom padding to the third, and left padding to the
fourth value.

4

Remembering the Order

To remember the order in which these values are specified, simply recall that
they’re identified in clockwise order from the top, or remember the mnemonic
trouble (top, right, bottom, and left).

For example, the style rule above could be rewritten using the padding shorthand
property as follows:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding: 15px 20px 30px 25px;

}

To create equal top and bottom padding, and equal left and right padding, you
could use:

167

Chapter 8: Simple CSS Layout

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;
padding: 15px 25px;

}

Finally, to create equal padding on all four sides of the h1 element, you could
use this markup:

File: boxmodel.html (excerpt)

h1 {
 background-color: #c0c0c0;
 color: black;

padding: 25px;
}

What would happen if you used either ems or percentages for the padding values?
The two units have slightly different effects: the em unit scales the padding ac
cording to the size of the font of the content, while the percentage unit scales
the padding according to the width or height of the block that contains the ele
ment. To demonstrate these effects, let’s work with a new HTML page that dis
plays two headings against colored backgrounds on a page of a contrasting color.

Here’s the HTML for that demonstration page:

File: boxmodel2.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Box Model Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 body {

 background-color: #808080;

 color: black;

 }

 h1, h4 {

 background-color: #c0c0c0;

 color: black;

 }

 </style>

 </head>

168

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The Box Model

<body>

 <h1>Help! I'm stuck in a box model!</h1>

 <h4>But it's not too crowded if you're just a little old

 heading like me! In fact, it's kind of cozy in here.</h4>

 </body>

</html>

Notice that I’ve given the page a dark grey background, and I’ve added an h4
element, which I’ve styled in the same CSS rule as the h1 element.

This HTML page displays as shown in Figure 8.13.

Figure 8.13. Proportional padding page starting point

Now, let’s change the style sheet for this page so that it uses the padding property
to create a single-em padding space around the objects. The following code frag
ment will do the trick:

File: boxmodel2.html (excerpt)

body {
 background-color: #808080;

169

Chapter 8: Simple CSS Layout

color: black;

}

h1, h4 {

 background-color: #c0c0c0;

 color: black;

padding: 1em;

}

As you can see in Figure 8.14, the amount of padding that appears around the
two heading elements is proportional to the size of the font used in the elements
themselves.

em: a Height Measurement

Remember that one em is equal to the height of the font in use. Consequently,
much more space is placed around the h1 element than around the h4 ele
ment.

Let’s see what happens if we use a percentage, rather than an em, for the propor
tional padding value. Change the HTML so that the style sheet looks like this:

File: boxmodel2.html (excerpt)

body {

 background-color: #808080;

 color: black;

}

h1, h4 {

 background-color: #c0c0c0;

 color: black;

padding: 10%;

}

The result of this change can be seen in Figure 8.15. Wow! There’s a huge amount
of space around those elements. The browser has applied 10% of the width of
the page as padding on all four sides.

170

The Box Model

Figure 8.14. Using ems for proportional padding

Figure 8.15. Using percentage for proportional spacing

171

Chapter 8: Simple CSS Layout

I’ve been using a background color behind the text of these elements to make it
easy to see the effect of the different padding settings, but the background colors
aren’t required. Figure 8.16 uses the same HTML code as Figure 8.15; the only
difference is that I’ve removed the background colors from the body, h1, and h4
elements. As you can see, these elements maintain their relative spacing.

Figure 8.16. Demonstrating padding without colored backgrounds

Margin Properties
The difference between margins and padding is that margins exist outside the
boundaries of the object, while padding exists inside those boundaries. Figure 8.17
illustrates this difference according to the style sheet rules that are set in the code
fragment below. Margins are set in the same way as padding; the only difference
is the substitution of the word “margin” for the word “padding.”

body {

 background-color: #808080;

 color: black;

}

172

Margin Properties

h1 {

 background-color: #c0c0c0;

 color: black;

}

h2 {

 background-color: #c0c0c0;

 color: black;

 margin-left: 5%;

}

p {

 background-color: #c0c0c0;

 color: black;

 margin-left: 20%;

}

Figure 8.17. margin-left settings pushing the content and
background right

Notice that the second-level heading and the paragraph, both of which have
margin-left properties, are indented from the left edge of the browser. But,
unlike the example in which we set the padding-left property, the text and its
background color block are indented in this case. This is because the padding,
the color block, and the text are inside the content box, while the margin is outside
that box.

Next, let’s apply padding-left and margin-left settings to the code fragment:

body {

 background-color: #808080;

 color: black;

}

173

Chapter 8: Simple CSS Layout

h1 {

 background-color: #c0c0c0;

 color: black;

}

h2 {

 background-color: #c0c0c0;

 color: black;

 margin-left: 5%;

padding-left: 1em;

}

p {

 background: #c0c0c0;

 color: black;

 margin-left: 20%;

padding-left: 10%;

}

As you can see in Figure 8.18, the above markup has caused the margin to push
the HTML elements and their surrounding background color blocks to the right,
while the padding has moved the text to the right within the colored background
blocks.

Figure 8.18. Combining margin-left with padding-left

If you load the above HTML (from the file included in the code archive for this
book) and resize it, you’ll notice that the indentation of the paragraph and the
heading changes as the width of the window changes. That’s because we used
relative values of 20% for the margin and 10% for the padding. Both of these
values are calculated relative to the width of the containing block, which in this
case is the browser window. The bigger the browser window, the bigger the margin

174

Margins, Padding, and Lists

and padding on the paragraph. The padding on the heading doesn’t change, as
it’s specified in ems.

Margins, Padding, and Lists
By default, all visual browsers will apply a 50-pixel margin to the left edge of a
list. This allows room for the list item markers (bullets in the case of a bulleted
list; numbers in the case of an ordered list). Unfortunately, the CSS Specification
doesn’t say explicitly whether this space should be implemented as left margin
or left padding in the browser’s default style rules. However, the description of
the marker-offset property does imply that margin is the way to go.

Whatever the intent of the specification, Firefox and Safari apply a default pad
ding to the left side of lists, while most other browsers (including Internet Explorer
and Opera) use a margin. You can test this easily by applying a background-color
to an ol or ul element. On most browsers, the background will not cover the list
item markers; on Firefox and Safari, they will.

For this reason, whenever you apply your own left margin or padding value to a
list, you must be sure to specify both. If you applied only a margin, for example,
the default list indentation would display in Firefox, but be overridden on all
other browsers. If you applied a padding value only, the default 50-pixel margin
would display on Internet Explorer. Only by specifying both margin and padding
(usually by setting padding: 0 and using margin to do the job) can you ensure
consistent rendering across current browsers.

You can set vertical margins with the margin-top and margin-bottom properties.
Here’s another HTML page that demonstrates vertical margins:

File: boxmodel3.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Box Model Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 body {

 background-color: #808080;

 color: black;

 }

 h1 {

175

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 8: Simple CSS Layout

background-color: #c0c0c0;

 color: black;

 margin-bottom: 5cm;

 }

 h2 {

 background-color: #c0c0c0;

 color: black;

 margin-left: 5%;

 margin-top: 5cm;

 margin-bottom: 5cm;

 padding-left: 1em;

 }

 p {

 background: #c0c0c0;

 color: black;

 margin-left: 20%;

 padding-left: 10%;

 margin-top: 5cm;

 margin-bottom: 5cm;

 }

 </style>

 </head>

 <body>

 <h1>No top margin but a 5cm bottom margin</h1>

 <h2>Top and bottom margins are set to 5cm</h2>

 <p>A paragraph with top and bottom margins set to 5cm</p>

 </body>

</html>

This page renders as shown in Figure 8.19.

Unlike horizontal margins, vertical margins are not cumulative. If you have two
elements stacked one atop the other, like the h1 and h2 elements shown in Fig
ure 8.19, the vertical spacing between them will be the greater of the
margin-bottom setting of the top element, and the margin-top setting of the
bottom element. In this case, they are both 5cm, so the distance between the two
elements is 5cm (not 10cm, as you might have supposed). If I had defined the
margin-bottom of the h1 as 10cm, then the vertical distance separating the two
elements would have been 10cm. The containing block in this case is the body,
which is, for all practical purposes, the same as the browser window’s client area.

It is possible to use negative values for margin property settings. This comes in
handy when you’ve set a margin-left property for the body of an HTML page,
but you want to move an element closer to the left margin of the page. The fol
lowing HTML results in the display shown in Figure 8.20:

176

Margins, Padding, and Lists

Figure 8.19. Demonstrating vertical margins

File: boxmodel4.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Box Model Demo</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <style type="text/css">

 body {

 background-color: #808080;

 color: black;

 margin-left: 5cm;

 }

 h1 {

 background-color: #c0c0c0;

 color: black;

 margin-left: -3cm;

 }

 h2 {

 background-color: #c0c0c0;

 color: black;

 }

177

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 8: Simple CSS Layout

</style>

 </head>

 <body>

 <h1>The body's margin-left is 5cm, but mine is -3cm. </h1>

 <h2>I have no margin-left setting, so I use the body's 5cm

 setting.</h2>

 </body>

</html>

Figure 8.20. Negative margin setting in practice

As with the padding property, the margin shorthand property lets you set all
four margins with a single declaration, and interprets multiple values using the
rules shown in Table 8.1.

Border Properties
Border properties are more complex than padding and margin properties because
they affect not only the spacing between objects, but the appearance of that in
tervening space. A border can be, and usually is, visible. In most ways, managing
border properties is similar to the process for managing margins and padding,
but there are some key differences.

Borders have three types of properties: style, width, and color. By default, a bor
der’s style is set to none, its width to medium, 1 and its color to the text color of
the HTML element to which it is applied.

1 Netscape 4 sets a default border width of 0, so you can’t rely on the default value if you wish to
target that browser.

178

Border Properties

The border-style property can take any one of a range of constant values. The
available values are solid, dashed, dotted, double, groove, ridge, inset, outset,
hidden, and none.

The hidden value has the same effect as none, except when applied to table
layouts. Refer to the border-style property in Appendix C for further details.

W3C specifications largely leave the issue of the precise appearance of these
borders up to the browsers, so don’t be surprised if the results of using these
characteristics vary a bit from browser to browser, and platform to platform. But,
as is the case with default behaviors for other border settings, generally speaking,
the browsers treat this issue predictably and satisfactorily within reason.

The width of a border around an object can be set either with four individual
declarations, or with the border-width shorthand syntax. The four properties
are border-top-width, border-right-width, border-bottom-width, and
border-left-width. Each of these properties can be set with an absolute or rel
ative length unit (such as pixels, ems, percentages, or inches), or with one of three
descriptive settings: thin, medium, or thick.

If you use the descriptive settings of thin, medium, and thick, the results are
browser-dependent. However, they are fairly predictable and consistent across
browsers and operating systems, within a pixel or so for each of the three descript
ive settings.

Specific Border Measurements

If you wish to use specific measurements for border widths, you should use
pixels. This is the most meaningful unit of measurement for screen layouts,
which is where border-width is an important property.

You can control the colors associated with all four borders using the
border-top-color, border-right-color, border-bottom-color, and
border-left-color properties, or you can just use the border-color shorthand
property.

As we discovered in Chapter 5, you can supply a color argument in any of the
standard ways: using a hexadecimal RGB code (as in #ff9900), using a three-digit
hexadecimal RGB shortcut (as in #f90), via the rgb function (as in
rgb(102,153,0)), or using a standard color name (as in red).

The shorthand properties border-style, border-width, and border-color all
accept multiple values.

179

Chapter 8: Simple CSS Layout

There is one additional shorthand property that’s probably the most widely used.
The border property allows you to specify the style, width, and color of all four
borders of an object in a compact form. Since a border that’s uniform on all sides
is most often your desire, this is an efficient way to set border property values.

The following style rule will produce a uniform, three-pixel, solid, red border
around any element with a class="warning":

.warning {

 border: 3px solid red;

}

Constructing the Layout
Now that we have some background knowledge of the ways in which elements
behave when they’re positioned using CSS, we can put our learning into practice
with our first layout.

Create a new style sheet named styles.css and link it to the Footbag Freaks
document we created earlier by adding the following markup to the head of the
document:

File: index.html (excerpt)

<head>

 <title>Footbag Freaks</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="styles.css" />

</head>

The first element to which we’ll add CSS is the body element. The design has a
background image that starts with a pattern but gradually blends into a deep
blue. To create this effect on our page, we’ll apply the image as a tiled background,
and give the page a blue background color. This way, when the background image
finishes, it seamlessly merges into the blue page background.

Download Footbag Freaks

The Footbag Freaks web site, including all images, is available for download
as part of the code archive for this book.

180

Constructing the Layout

Let’s also set a font family and size, and set the margin and padding for the page
(the space between the edge of the viewport and your content) to 0, using the
markup below.

File: styles.css

body {

 margin: 0;

 padding: 0;

 background-color: #050845;

 color: white;

 background-image: url(img/bg.jpg);

 background-repeat: repeat-x;

 font: small Arial, Helvetica, Verdana, sans-serif;

}

Setting Freaks font-size

I’ve set the font-size on the body using the keyword small. As we create
the rest of the style sheet, I’ll use percentage font sizes to make the size of
each element a percentage of small.

Now, your background image should tile across the width of the page, as shown
in Figure 8.21.

Figure 8.21. The background image tiling across the width of the
page

181

Chapter 8: Simple CSS Layout

In our layout image, the content of the page is contained in an off-white box. To
create this box, we need to add another div in which we can wrap the content.
So, immediately after the opening <body> tag in your document, add the markup
shown in bold below:

File: index.html (excerpt)

<body>
<div id="wrapper">
 <div id="header">
 <p>The Home of the Hack</p>

Don’t forget to close this div immediately before the document’s closing </body>
tag, like so:

File: index.html (excerpt)

 <p>more</p>
 </div> <!-- main -->
</div> <!-- wrapper -->

</body>

Now, let’s add to the style sheet the rules that will give the box an off-white
background. We’ll also insert rules that add a margin to the wrapper area, creating
a space between the wrapper and the body element to let the background image
show through:

File: styles.css (excerpt)

#wrapper {
 background-color: #fdf8f2;
 color: black;
 margin: 30px 40px 30px 40px;
}

Figure 8.22 shows the results of our work. The margin has created a space that
lets the background show through, but the content inside the wrapper bumps
right up against the edge of the off-white area. We can create some extra space
here by adding padding to the #wrapper rule, as shown in the markup below.
The resulting display is shown in Figure 8.23.

File: styles.css (excerpt)

#wrapper {
 background-color: #fdf8f2;
 color: black;
 margin: 30px 40px 30px 40px;

182

The Header Area

padding: 10px;

}

Figure 8.22. The effect of the styled wrapper div

Figure 8.23. Extra padding creating space between the box’s edge
and its content

The Header Area
Let’s turn our attention to the header area of our layout, which contains the site
logo and main navigation. You’ll remember that when we created our HTML
document, we didn’t add any images: we were going to decide how best to include
our images as we developed the layout. But now, let’s add the logo image using
the img element. We’ll also include the site name as alt text for the image, so

183

Chapter 8: Simple CSS Layout

that users who are browsing the site with images turned off, and those with screen
readers, can read the name of the site.

In your document, insert the image directly below the opening header div, like
this:

File: index.html (excerpt)

<body>

 <div id="wrapper">

 <div id="header">

<img src="img/logo.gif" alt="Footbag Freaks" height="77"

 width="203" />

 <p>The home of the hack</p>

 Contact Us

 About Us

 Privacy Policy

 Sitemap

 </div> <!-- header -->

If you view the page in a browser, you should see the image in the top, left corner
of the off-white box.

The graphic for our page layout shows a thin, light-blue border that appears above
and below the site’s tagline and navigation. How will we create this effect? Let’s
contain the tagline and navigation in another div to which we can apply a top
and bottom border. Add the div like so:

File: index.html (excerpt)

<body>

 <div id="wrapper">

 <div id="header">

 <img src="img/logo.gif" alt="Footbag Freaks" height="77"

 width="203" />

<div id="header-bottom">

 <p>The home of the hack</p>

 Contact Us

 About Us

 Privacy Policy

 Sitemap

</div> <!-- header-bottom -->

 </div> <!-- header -->

184

The Header Area

We can now address #header-bottom as we add the top and bottom borders:

File: styles.css (excerpt)

#header-bottom {
 border-top: 1px solid #b9d2e3;
 border-bottom: 1px solid #b9d2e3;
}

To style the navigation list and tagline, we’ll use some simple text formatting
properties that should now be fairly familiar!

File: styles.css (excerpt)

#header-bottom ul {

 margin: 0;

 padding: 0;

}

#header-bottom li {

 display: inline;

}

#header-bottom a:link, #header-bottom a:visited {

 text-decoration: none;

 background-color: #fdf8f2;

 color: #050845;

}

#tagline {

 font-weight: bold;

 background-color: #fdf8f2;

 color: #050845;

 font-style: italic;

}

We also need to add an id attribute to the paragraph that contains our tagline:

File: index.html (excerpt)

<p id="tagline">The home of the hack</p>

185

Chapter 8: Simple CSS Layout

Figure 8.24. Styling navigation list items with display: inline

We set the margin and padding on the list within this area to 0, then set the li
element’s display property to inline, which will cause the list items to display
on the same line, rather than having each item display on a new line. Figure 8.24
shows this effect in action. We also styled the navigation links—again using the
dark blue and removing the underlines from them—and the tagline, which we
made bold, italic, and the same blue as our navigation items.

The problem with the display shown in Figure 8.24 is that it’s difficult to distin
guish the links in the navigation list from one another. The recommended solu
tion2 to this problem is to add a visible character—such as the pipe character
(|)—between each of the links, as I’ve done in the markup below:

File: index.html (excerpt)

 Contact Us |

 About Us |

 Privacy Policy |

 Sitemap

We can also set the color of the list items to dark blue (#050845), so that the
pipe character that sits outside of the anchor element will be blue, too. Our refined
header design is shown in Figure 8.25.

File: styles.css (excerpt)

#header-bottom li {
 display: inline;
background-color: #fdf8f2;

2 This recommendation was made as part of the Web Content Accessibility Guidelines (WCAG) 1.0.
The checkpoint that covers this specific issue can be seen at
http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-divide-links.

186

http://www.w3.org/TR/WCAG10/wai-pageauth.html#tech-divide-links

The Header Area

color: #050845;

}

Figure 8.25. After styling the text elements in the header area

The header is really starting to take shape now! Our next step is to move the
tagline and navigation up onto the same line. To do this, we’ll have to use a
property that, while we haven’t discussed it in detail yet, will become more im
portant to us as we progress through these layouts. That property is float.

The float Property

float is one of the most interesting and often-used CSS properties. It takes a
value of left, right, or none (though none, the default, is rarely used). float
forces the element to which it’s applied to display outside its natural position in
the containing box; a float value of left or right pushes the element to the
left or the right of its natural position, respectively. This property can be used
within any block element.

The float property is designed to replace the align attribute that’s associated
with the HTML img element, and has, for all practical purposes, precisely the
same effect. The align attribute is deprecated in favor of the float property in
recent releases of HTML Recommendations from the W3C. The following HTML
fragment uses the float property to produce the result shown in Figure 8.26:

<p><img src="logo.gif" alt="Footbag Freaks Logo"

 width="203" height="77"

 style="float: left; padding-right: 1em;" />The Footbag Freaks

 logo appears to the left of this paragraph. Depending on

 whether or not I use the CSS <code>float</code> property, I

 may see more than one line of text beside the logo. The CSS

 <code>float</code> property replaces the deprecated

 <code>align</code> attribute of the HTML <code>img</code>

 element and has an identical effect.</p>

187

Chapter 8: Simple CSS Layout

Figure 8.26. Achieving image-text alignment using the CSS float
property

The float property has one major advantage over the align attribute: float
can be applied to elements other than images, whereas application of the old
align attribute was limited to img, applet, and object elements.

No Dimensions? Declare a width

When using the float property on elements that don’t have well-defined
dimensions, you must include a width declaration in your CSS. An img is
an example of an element with well-defined dimensions, whereas a paragraph,
a heading, or a div doesn’t.

Using float in our Header

We’ll be exploring the float property in more detail in the next chapter, when
we create a layout that relies on float for the positioning of the page’s main
sections. However, at this point we can use our knowledge of float to align the
tagline and navigation correctly. The element that we’re going to float is the
tagline paragraph, so add the rules marked in bold below to your tagline rule:

File: styles.css (excerpt)

#tagline {

 font-weight: bold;

 background-color: #fdf8f2;

 color: #050845;

 font-style: italic;

margin: 0;

padding: 0 0 0 20px;

width: 300px;

float: left;

}

We set margin to 0 so that the paragraph’s default margin is removed. We then
add 20 pixels of left padding to move the tagline in from the left-hand side, and
give it a width of 300 pixels to provide a bit of space to its right, as is indicated
in the page’s original layout graphic. We then set the value of float to left, so

188

The Header Area

it sits to the left of the rest of the content, which in this case, is our navigation
list.

After making this change to the rules for the tagline paragraph, save your style
sheet and view your page in a browser. You should see the navigation display
alongside the tagline. These elements behave in exactly the same way as the
paragraph that wraps around the image in the example we discussed above. All
we need to do now is to align the list of navigation items to the right, and alter
the padding on the list to move it in slightly from the right-hand edge. Here’s
the markup you’ll need; the resulting display is depicted in Figure 8.27.

File: styles.css (excerpt)

#header-bottom ul {
 margin: 0;
padding: 0 30px 0 0;
text-align: right;

}

Figure 8.27. The display after floating the tagline and aligning
the navigation

If you've been working through this example in Internet Explorer 6, you may
already have noticed that things aren't going quite to plan. Sometimes, as if by
magic, the navigation list that's aligned to the right just seems to disappear, along
with part of the light blue borders above and below the list. Then, if you switch
to another window, the list magically reappears! Well, sometimes it does; other
times, it stays hidden.

If you've experienced this problem, welcome—you've stepped through the looking
glass into the wonderful world of Internet Explorer CSS bugs. This one is called
the peekaboo bug, as the content disappears and reappears in an almost completely
random fashion.

There are quite a few of these Internet Explorer CSS bugs, but the majority seem
to revolve around a mysterious, non-standard DOM property called hasLayout.
The galaxy of hasLayout bugs is vast and difficult to understand, but thankfully,

189

Chapter 8: Simple CSS Layout

these bugs aren't too tricky to squash. Usually, eradicating them is just a matter
of adding one of a number of inconsequential declarations to the style rules of
the element that's giving you trouble. For example, it can be as simple as adding
a height declaration to #header-bottom, as shown here:

File: styles.css (excerpt)

#header-bottom {
 border-top: 1px solid #b9d2e3;
 border-bottom: 1px solid #b9d2e3;
height: 1%;

}

This declaration is named the Holly Hack, after its inventor, Holly Bergevin.

Add this declaration to your style sheet, and voila! Problem solved. The height
declaration doesn't really affect the display of the page in any browser, as the
content of this div “overflows” its height, effectively correcting the height. Don't
worry if you don't understand what's going on here. All you need to know is that
when you add such declarations either to the element that's giving you trouble,
or its parent element, those declarations will often fix bizarre behavior in Internet
Explorer 6.

The final task that will complete the heading is to add the little footbag image
that displays to the right of the navigation in our layout image. First, add the
actual image to your document, beneath the navigation list. In the markup below,
I gave this image an empty alt attribute, so that nothing about this image would
be read out by a screen reader—this image is included for display purposes only.
I’ve also given the image an id of ball.

File: index.html (excerpt)

<div id="header">

 <img src="img/logo.gif" alt="Footbag Freaks" height="77"

 width="203" />

 <div id="header-bottom">

 <p id="tagline">The home of the hack</p>

 Contact Us |

 About Us |

 Privacy Policy |

 Sitemap

<img src="img/header-ball.gif" height="24" width="20" alt=""

 id="ball" />

190

The Content Area

</div> <!-- header-bottom -->

</div> <!-- header -->

Now, let’s use our first bit of absolute positioning in the CSS to get the image
to line up properly. We know the location at which the image should be positioned
relative to the top and right-hand sides of the document, as we know the height
of the logo and width of the margin on the wrapper div. The following CSS will
place the ball in the correct position at the end of the navigation:

#ball {

 position: absolute;

 top: 110px;

 right: 55px;

}

The header section is now complete! It’s displayed in Figure 8.28.

Figure 8.28. The completed header section of the layout

The Content Area
Let’s move on to create the look and feel of the main content area of the page.
The first thing we’ll do is contain the sidebar and content divs within another
div that has an id of main. This will help us to line up the sidebar and content
divs beneath the header. Add the opening <div id="main"> just after the
header’s closing </div>:

File: index.html (excerpt)

 <img src="img/header-ball.gif" height="24" width="20" alt=""
 id="ball" />

 </div> <!-- header-bottom -->
</div> <!-- header -->
<div id="main">

191

Chapter 8: Simple CSS Layout

<div id="content">

 <h2>Simon Says</h2>

Close this div immediately after the closing </div> tag of the sidebar div. In
the style sheet, give #main a margin-top of ten pixels to separate the content
and header areas, as shown in the snippet below. We’ll return to #main later, as
we create our layout.

File: styles.css (excerpt)

#main {
 margin-top: 10px;
}

Now, let’s create a rule for #content. Add the following set of declarations to
your style sheet:

File: styles.css (excerpt)

#content {

 margin: 0 240px 0 0;

 border: 1px solid #b9d2e3;

 background-color: white;

 color: black;

}

We set the top margin of #content to 0. Then, we add a 240-pixel right-hand
margin, leaving space for us to position our sidebar later.

We also give the box a solid, single-pixel border in the same blue we used for the
heading borders, and give it a background color of white.

The Main Feature

At the very top of the page is a “boxout”: an area that’s visually contained within
a box that highlights it. This particular boxout highlights the main feature article.
Let’s look at that now.

Create a container for the main feature area by adding a div with an id of
mainfeature; wrap it around the heading, paragraph, and link of the main feature:

File: index.html (excerpt)

<div id="content">
<div id="mainfeature">
 <h2>Simon Says</h2>
 <p>Simon Mackie tells us how a change of shoes has given him

192

The Content Area

new moves and a new outlook as the new season approaches.

 </p>

 <p>Read More</p>

</div> <!-- mainfeature -->

 <h2>Recent Features</h2>

Now you can style the main feature area in your style sheet:

File: styles.css (excerpt)

#mainfeature {

 background-image: url(img/mainimg.jpg);

 background-repeat: no-repeat;

 background-color: #112236;

 color: white;

 padding: 2em 2em 1em 200px;

}

Here, we add the background image, mainimg.jpg, and set it to no-repeat. But
if a user has the browser open to dimensions that are wider than the image, we
don’t want the exposed areas of the page to display white. To prevent this from
happening, we add a background color of #112236; this is the same color as the
far right-hand side of the image, so the image should appear to fade into the
background color seamlessly. We then set the text color to white and use padding
to position the text two ems from the top of the box, two ems from the right,
one em from the bottom, and 200 pixels from the left-hand side, so that it’s clear
of the image of the footbag player.

Next, we style the heading and the paragraphs within the boxout:

File: styles.css (excerpt)

#mainfeature h2 {

 margin: 0;

 font-weight: normal;

 font-size: 140%;

}

#mainfeature p {

 font-size: 110%;

}

Finally, we need to style the “Read More” link that leads readers to the full article.
Let’s start by adding a class="more" attribute to the paragraph element so that
we can target it with our style rules:

193

Chapter 8: Simple CSS Layout

File: index.html (excerpt)

<div id="mainfeature">

 <h2>Simon Says</h2>

 <p>Simon Mackie tells us how a change of shoes has given him new

 moves and a new outlook as the new season approaches.</p>

 <p class="more">Read More</p>

</div>

First, we remove the top margin from the paragraph that contains the link, to
decrease the space between it and the paragraph. Then, we set text-align to
right:

File: styles.css (excerpt)

#mainfeature p.more {

 margin-top: 0;

 text-align: right;

}

#mainfeature p.more a:link, #mainfeature p.more a:visited {

 color: white;

 background-image: url(img/more-bullet.gif);

 background-repeat: no-repeat;

 background-position: center left;

 padding-left: 14px;

}

We then style the link and visited pseudo-classes, changing their color to white
and adding the more-bullet.gif background image. We only want to see the
bullet once, so we set repeat to no-repeat, then position the background center
and left. This positions the image in the center of the link’s text. Finally, in order
to stop the text from displaying over the top of the background image, we set
padding-left to 14 pixels. The impact of these changes is shown in Figure 8.29.

If you load this page in Internet Explorer 6, you'll see that the peekaboo bug that
affected our right-aligned navigation bar has reared its ugly head once more, and
is randomly causing our feature area to display as a white rectangle. Again, it's
simple to fix this issue by adding the declaration height: 1% to our #mainfeature
rule.

194

The Content Area

Figure 8.29. After styling the main feature section

File: styles.css (excerpt)

#mainfeature {

 background-image: url(img/mainimg.jpg);

 background-repeat: no-repeat;

 background-color: #112236;

 color: white;

 padding: 2em 2em 1em 200px;

height: 1%;

}

Reload the page and the main feature area will display as reliably in Internet
Explorer as it does in Firefox, Opera, and Safari.

The Features List

Our layout is really starting to take shape now! Let’s spend some time styling the
main content on this page: the list of feature articles.

At the moment, the text inside the content area butts up against the border of
the box. I want to create some space between that border and the content. The
contents of the home page content div are enclosed in an unordered list, so one
option we have is to add a margin to that list and to the h2 above it. However,
another page might have a different kind of main content, so in order that all of
the pages can be dealt with in the same way, let’s add another div, which wraps
around the heading and features list, and give it a class of inner:

195

Chapter 8: Simple CSS Layout

File: index.html (excerpt)

<div id="content">

 <div id="mainfeature">

 <h2>Simon Says</h2>

 <p>Simon Mackie tells us how a change of shoes has given him

 new moves and a new outlook as the new season approaches.

 </p>

 <p class="more">Read More</p>

 </div> <!-- mainfeature -->

<div class="inner">

 <h2>Recent Features</h2>

 <h3>Head for the Hills: Is Altitude Training the

 Answer?</h3>

 <p>Lachlan 'Super Toe' Donald</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super Tips</h3>

 <p>Jules 'Pony King' Szemere</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>The Complete Black Hat Hacker's Survival Guide</h3>

 <p>Mark 'Steel Tip' Harbottle</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

 <h3>Five Tricks You Didn't Even Know You Knew</h3>

 <p>Simon 'Mack Daddy' Mackie</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit

 iaculis arcu.</p>

 <p>Full Story</p>

196

The Content Area

</div>

</div> <!-- content -->

To create some space between the features list and the border of the containing
box, let’s add a margin to #content .inner in the style sheet:

File: styles.css (excerpt)

#content .inner {
 margin: 10px 20px 10px 40px;
}

If you view your layout in the browser, you should see the space that this margin
creates. We can now address the content of this section.

First, let’s style the heading. In our layout image, the heading has a blue underline
that stretches across the entire width of the content—an effect we can create using
a bottom border. Let’s also add a small amount of padding to the bottom of the
h2, to insert some space between the text and this border:

File: styles.css (excerpt)

#content .inner h2 {

 color: #245185;

 padding-bottom: 0.2em;

 border-bottom: 1px solid #b9d2e3;

 font-size: 110%;

}

Next, let’s add a rule to remove the margin and list bullets from the list of feature
items. While we could simply create this rule for #content .inner ul, as there’s
only one list in this page’s layout, that approach might cause problems on other
pages whose content includes lists that are not like this special features list. So
let’s add a class="features" attribute to the ul element first, so we can style
this particular list—and others like it—without affecting any normal, non-feature
lists within page content:

File: index.html (excerpt)

<div class="inner">
 <h2>Recent Features</h2>
 <ul class="features">

File: styles.css (excerpt)

#content .inner ul.features {
 margin: 0;

197

Chapter 8: Simple CSS Layout

padding: 0;

 list-style: none;

}

Each feature has a level three heading; we’ll style these by increasing the font
size:

File: styles.css (excerpt)

#content .inner h3 {
 font-size: 130%;
}

Let’s also make each of these headings act as a link to the appropriate article on
the Footbag Freaks site. We can style the link and visited pseudo-classes, as
well:

File: index.html (excerpt)

 <h3>Head for the Hills: Is Altitude Training the

 Answer?</h3>

 <p>Lachlan 'Super Toe' Donald</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit iaculis

 arcu.</p>

 <p>Full Story</p>

 <h3>Hack up the Place: Freestylin' Super

 Tips</h3>

 <p>Jules 'Pony King' Szemere</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit iaculis

 arcu.</p>

 <p>Full Story</p>

File: styles.css (excerpt)

#content .inner h3 a:link, #content .inner h3 a:visited {
 color: #245185;
}

Finally, let’s style the page’s paragraph text by making it a dark gray and decreas
ing the font size to 90%:

198

The Content Area

File: styles.css (excerpt)

#content .inner p {
 color: #666666;
 font-size: 90%;
}

The Author Images

We want to display an image of the author alongside each feature article listing.
Add the image to each feature item, after the heading, like so:

File: index.html (excerpt)

 <h3>Head for the Hills: Is Altitude Training the

 Answer?</h3>

<img src="img/lachlan.jpg" alt="Lachlan Donald" height="48"

 width="35" />

 <p>Lachlan 'Super Toe' Donald</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

 ultrices posuere cubilia Curae; Praesent hendrerit iaculis

 arcu.</p>

 <p class="more">Full Story</p>

199

Chapter 8: Simple CSS Layout

Figure 8.30. Displaying author images in the document

This markup produces the display shown in Figure 8.30.

Let’s use the float: left declaration to move these author shots to the left of
the paragraph text. Note that we don’t need to include the image’s width here,
as each img already has a width defined.

File: styles.css (excerpt)

#content .inner .features li img {
 float: left;
 margin: 0 5px 5px 0;
}

Here, we’ve used a selector that will address only those images that are within
an li element with the class="features" attribute. This way, we avoid affecting
any other images that might be added to your content.

We’ve set the image to float left, and added a margin so that the text doesn’t sit
right next to the image—it has a little breathing room, as Figure 8.31 shows.

200

The Content Area

Figure 8.31. Floating the author image

In our layout graphic, author names appear in bold text, so let’s give the paragraph
surrounding the author name a class attribute with the value author, and use
a CSS rule to style it bold. We’re not doing this with any or tags
because we’re styling the author names purely for aesthetic reasons—not for any
structural purpose. By keeping the author name styles out of the page markup,
we’re sticking to our goal of separating content from presentation. And, since
we’re using CSS, if we want to change the way the author name displays in future,
we can simply edit the rules for the appropriate class, instead of finding every
page on which an author’s name is displayed and changing it there. Here’s the
change we need to make to the page markup, followed by the CSS rule that will
make all suitably marked-up author names bold:

File: index.html (excerpt)

<img src="img/lachlan.jpg" alt="Lachlan Donald" height="48"

 width="35" />

<p class="author">Lachlan 'Super Toe' Donald</p>

<p>Vestibulum ante ipsum primis in faucibus orci luctus et ultrices

 posuere cubilia Curae; Praesent hendrerit iaculis arcu.</p>

201

Chapter 8: Simple CSS Layout

File: styles.css (excerpt)

#content .inner p.author {
 font-weight: bold;
}

The final page element that we need to style for this section is the “Full Story”
links that appear beneath each feature. Add a class of more to each link’s
opening <p> tag, then add the following rules to your style sheet:

File: styles.css (excerpt)

#content .inner p.more{

 margin-top: 0;

 text-align: right;

}

#content .inner p.more a:link, #content .inner p.more a:visited {

 background-image: url(img/more-bullet.gif);

 background-repeat: no-repeat;

 background-position: center left;

 padding-left: 14px;

 font-size: 90%;

 color: #1e4c82;

}

As I’m sure you’ve noticed, this styling is very similar to that of the “Read More”
link within the feature article section at the top of the page.

Your layout should now look a lot like the original layout graphic. Our progress
is shown in Figure 8.32. The page is very close to completion: we have only the
sidebar left to style!

202

The Content Area

Figure 8.32. Displaying the page after styling the main content
area

203

Chapter 8: Simple CSS Layout

The Sidebar

Figure 8.33. The unstyled sidebar

The content of the sidebar is languishing beneath the main content area, as Fig
ure 8.33 illustrates. No rules have been applied to it, so it’s just sitting in its
natural location in the document.

Our first job is to move the sidebar from this position to the space we’ve created
for it on the right of the content area.

First, let’s see what happens if we position the sidebar using absolute positioning
from the top and right. Add the following rules to your style sheet:

File: styles.css (excerpt)

#sidebar {

 position: absolute;

 top: 0;

 right: 0;

 width: 220px;

 background-color: #256290;

204

The Content Area

color: white;

 margin: 0;

 padding: 0;

}

View your page in the browser. The sidebar is stuck to the top, right corner of
the viewport as in Figure 8.34.

Figure 8.34. Positioning the sidebar top and right

When we discussed absolute and relative positioning earlier, I explained that an
element is always positioned relative to its parent element’s position, and that
this concept was described as an element’s positioning context. In this case,
#sidebar doesn’t have a positioned parent element, so it takes the viewport as
its positioning context.

However, we do have an element that can be positioned to provide us with a
useful positioning context—the div with id="main".

Find #main in your style sheet and add the following declarations:

205

Chapter 8: Simple CSS Layout

File: styles.css (excerpt)

#main {

position: relative;

top:0;

left: 0;

width: 100%;

 margin-top: 10px;

}

The sidebar now takes #main as its parent, so it falls into place within the area
defined by the div with that id, as Figure 8.35 illustrates.

Figure 8.35. Positioning the sidebar to the top and right of a
relatively positioned container

With our sidebar now in position, we can start to style its contents. To start,
we’ll style the h3 headings that head the different sections of the sidebar:

File: styles.css (excerpt)

#sidebar h3 {
 font-size: 110%;
 background-image: url(img/sidebar-header-bg.jpg);

206

The Content Area

background-repeat: no-repeat;

 margin: 0;

 padding: 0.2em 0 0.2em 10px;

 font-weight: normal;

}

Here, we’re displaying a background image behind the heading to create the
gradient effect we saw in our design comp.

Good Looks in the Background

Using a background image behind a heading is a great way to make your
headings more attractive without resorting to using an image for the actual
heading text. Using an image to display headings makes your site more diffi
cult to maintain, as you need to manipulate those images every time you
want to make even minor changes.

Let’s have a closer look at the sections of content that display below each of the
headings in the sidebar. We need to add a div with a class of inner to each of
these, in order to create a little space and move the text content away from the
border. Add this div to each of the three sections, as shown here:

File: index.html (excerpt)

<div id="sidebar">

<div class="inner">

 <h3>Site Search</h3>

 <form method="post" action="" id="searchform">

 <div>

 <label for="keywords">Keywords</label>:

 <input type="text" name="keywords" id="keywords" />

 </div>

 <div>

 <input type="submit" name="btnSearch" id="btnSearch" />

 </div>

</form>

</div>

<div class="inner">

 <h3>Coming Events</h3>

 10 Apr 06 -
Seattle Zone

 Qualifier

 13 Apr 06 -
World Cup - Round 8

 21 Apr 06 -
FootbagOOM 05 - NY

 28 Apr 06 -
WFPA AGM - Hong

 Kong

207

Chapter 8: Simple CSS Layout

3 May 06 -
World Cup - Round 9

</div>

<div class="inner">

 <h3>Move of the Month</h3>

 <h4>The Outer Stall</h4>

 <p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper

 quam. Sed cursus vestibulum leo.</p>

 <p>more</p>

</div>

</div> <!-- sidebar -->

Now, let’s add ten pixels of padding to inner:

File: styles.css (excerpt)

#sidebar .inner {
 padding: 10px;
}

As you can see in Figure 8.36, the sidebar is starting to take shape.

Figure 8.36. The display after styling the headings and inner class

Now, let’s address the list of events.

208

The Content Area

File: styles.css (excerpt)

#sidebar ul {
 list-style-image: url(img/more-bullet.gif);
 margin-left: 0;
 padding-left: 20px;
}

In the markup above, we use the more-bullet.gif image as the list bullet, remove
the margin, and add left padding of 20 pixels in order to display the list in line
with the headings.

File: styles.css (excerpt)

#sidebar p, #sidebar li {
 font-size: 90%;
 line-height: 1.4em;
}

Next up, we decrease the font size of the paragraph and list item text by reducing
it to 90%. We also create a little more spacing between the lines with the help
of the line-height property.

File: styles.css (excerpt)

#sidebar ul a:link, #sidebar ul a:visited {
 color: white;
}

The links in the sidebar are white and underlined in the mock-up, so we set them
to white with the rule above.

Finally, let’s make all the dates in the event list bold. Add a span with
class="date" to each of the dates in the list, then style them using the selector
#sidebar .date, like this:

File: index.html (excerpt)

 10 Apr 06 -

 Seattle Zone Qualifier

 13 Apr 06 -
World

 Cup - Round 8

 21 Apr 06 -

 FootbagOOM 05 - NY

 28 Apr 06 -
WFPA

 AGM - Hong Kong

 3 May 06 -
World

209

Chapter 8: Simple CSS Layout

Cup - Round 9

File: styles.css (excerpt)

#sidebar .date {
 font-weight: bold;
}

The events in the sidebar now display as shown in Figure 8.37.

Figure 8.37. Displaying the styled events in the sidebar

The Form

It’s time to create some rules for the search form at the top of the sidebar. Add
class="text" to the input type="text" element, then create a rule for
#searchform .text that gives the text box a width of 196 pixels and a border.
Here’s the markup:

File: styles.css (excerpt)

#searchform .text {
 width: 196px;
 border: 1px solid #45bac0;
}

Apply the searchbutton class to the div that surrounds the submit button, and
add a rule for it to styles.css, setting text-align to right and adding a top
margin so the button doesn’t bump right up against the text box.

File: styles.css (excerpt)

#searchform .searchbutton {
 text-align: right;

210

The Content Area

margin-top: 4px;

}

Finally, let’s style the button itself, giving it a border the same color as the text
field, a background color that matches the blue used for the background of the
sidebar, and a text color of white, as defined in the rules below. You’ll also need
to add a class attribute with the value btn to the input element. The results of
your work should look like Figure 8.38.

File: styles.css (excerpt)

#searchform .btn {
 border: 1px solid #45bac0;
 background-color: #256290;
 color: white;
}

Figure 8.38. Displaying the styled site search

Move of the Month

The final element of the sidebar that we need to consider is the Move of the
Month section at its bottom. This section includes an image; we need to add this
to the document first. Insert it below the h4 and give it a class of motm-image:

File: index.html (excerpt)

<h3>Move of the Month</h3>

<h4>The Outer Stall</h4>

<img src="img/sidebar-player.gif"

 alt="player demonstrating the outer stall move" height="110"

 width="60" class="motm-image" />

<p>Eti bibendum mauris nec nulla. Nullam cursus ullamcorper quam.

 Sed cursus vestibulum leo.</p>

<p>more</p>

Let’s float this image to the right so that we can display the text to one side of
the image:

211

Chapter 8: Simple CSS Layout

File: styles.css (excerpt)

#sidebar .motm-image {
 float: right;
 margin: 0 30px 0 20px;
}

As you can see, we’ve also added left and right margins to the image. The very
last thing we need to do is to format the “more” link, which is very similar to the
“Read More” and “Full Story” links in the rest of the layout. However, unlike
those links, this link will normally appear next to a floated image. We want to
ensure that it doesn’t appear alongside the image: we want it always to display
below. So, as you can see in the markup below, we use the clear: right declar
ation to ensure there are no floated elements to the right of the image. We’ll also
need to add the more class to the paragraph that contains the link:

File: styles.css (excerpt)

#sidebar p.more {
 clear: right;
 margin: 0 30px 0 0;
 text-align: right;
}

We’ll be looking at clear in more detail in the next chapter. For now, note that
it can take the values of left (clearing a left float), right (clearing a right float),
and both (clearing both left and right floats). If you’re using floated elements in
your layouts, you’ll find this a useful property.

The final rules, below, should be familiar to you from the other “Read More”
and “Full Story” links:

File: styles.css (excerpt)

#sidebar p.more a:link, #sidebar p.more a:visited {

 color: white;

 background-image: url(img/more-bullet.gif);

 background-repeat: no-repeat;

 background-position: center left;

 padding-left: 14px;

}

This markup completes your two-column layout! The finished page display is
shown in Figure 8.39.

212

Repositioning the Sidebar

Figure 8.39. The completed two-column layout

Repositioning the Sidebar
We can really start to appreciate the flexibility of CSS layouts when we decide
to experiment! For instance, imagine that we want to see how this layout would
look if we positioned the sidebar on the left, rather than the right. To do this,
you’d need to make only two changes in your CSS.

First, locate the #content rule and change the values for margin: give it a 240
pixel left margin, rather than a 240-pixel right margin. Then, set the right margin
to 0:

213

Chapter 8: Simple CSS Layout

#content {

 margin: 0 0 0 240px;

 border: 1px solid #b9d2e3;

 background-color: white;

 color: black;

}

Now, find the #sidebar rule and change the positioning declaration right: 0
to left: 0:

File: styles.css (excerpt)

#sidebar {

 position: absolute;

 top: 0;

left: 0;

 width: 220px;

 background-color: #256290;

 color: white;

 margin: 0;

 padding: 0;

}

Save your style sheet and refresh the page in your browser. The sidebar will now
appear on the left-hand side of the content, as Figure 8.40 shows.

Summary
We’ve covered a lot in this chapter! We began with an unstyled XHTML docu
ment, and after learning a little bit about the theory of using CSS for layout—in
particular, absolute and relative positioning, margins, padding, and borders—we
began to create a two-column layout using an absolutely positioned sidebar.

You now have a complete page layout that uses CSS positioning; it’s the basic
layout used by many of the sites we see on the Web every day. This layout
method does have its limitations, though—we’ll discover those, and discuss some
alternative layouts, in the next chapter. However, if you need a two-column layout,
this structure is robust and can be used as the basis for countless attractive site
designs.

214

Summary

Figure 8.40. Repositioning the sidebar

215

216

9 Three-column Layouts

By the end of the last chapter, we’d developed a two-column layout in which we
used absolute positioning to create the sidebar column.

We’ll start this chapter by adding a third column to our existing layout. Then,
we’ll discuss the issues that arise when we want to add a footer that runs along
the bottoms of all the columns in a multi-column layout. Along the way, we’ll
find out how to use the float property to build multi-column layouts, and see
how to create full-length columns using CSS, again considering some of the issues
that can occur when we work with these types of layouts.

Adding a Third Column
The two-column layout we created in the last chapter looks great! However, in
the web projects you undertake, you may find that you have additional informa
tion that would display well in a third column, as illustrated in Figure 9.1.

Chapter 9: Three-column Layouts

Figure 9.1. Mockup of a three-column layout

At the end of the last chapter, I demonstrated how we could move the right
column to the left simply by creating a margin that was large enough for it on
the left-hand side, and positioning it there instead. We’ll be able to use exactly
the same technique to drop in our new left-hand column. Let’s look at that now.

The Markup
First, add the markup for this column directly below the closing tag of the sidebar
div and inside the wrapper and main divs.

218

The Markup

File: index.html (excerpt)

 <h3>Move of the Month</h3>

 <h4>The Outer Stall</h4>

 <img src="img/sidebar-player.gif"

 alt="player demonstrating the outer stall move"

 height="110" width="60" class="motm-image" />

 <p>Eti bibendum mauris nec nulla. Nullam cursus

 ullamcorper quam. Sed cursus vestibulum leo.</p>

 <p class="more">more</p>

 </div>

 </div> <!-- sidebar -->

<div id="sidebar2">

 <div class="inner">

<ul id="nav">

 Freestyle

 Tournaments

 Results

 Rules

 Blog

 FAQ

 Forums

 Organisations

 <h3>The BagBlog</h3>

 <div id="bloglatest">

 <h4>10 Apr 06</h4>

 <p>A New Season: On the Road

 Again</p>

 <p>Vestibulum ante ipsum primis in faucibus orci

 luctus et ultrices posuere cubilia Curae;

 Praesent henrerit iaculis arcu.</p>

 </div>

 <ul id="blog">

 5 Apr: Ouch... That Really

 Hurt

 3 Apr: Experimental Moves From

 Spain

 29 Mar: 5 Ways to Lighten Up

 Training

 <h3>Newsletter</h3>

 <p>To get all the latest news, tips, results and new

 footbag products sign up to our free

 newsletter.</p>

 <form method="post" action="" id="newsletterform">

 <div>

219

Chapter 9: Three-column Layouts

<input type="text" name="email"

 id="newsletter-email" value="email@here"

 class="text" />

 </div>

 <div class="searchbutton">

 <input type="submit" name="btnSubmit"

 id="newsletter-submit" value="SUBSCRIBE"

 class="btn" />

 </div>

 </form>

 </div>

 </div> <!-- sidebar2 -->

 </div> <!-- main -->

 </div> <!-- wrapper -->

 </body>

</html>

You can see that I’ve wrapped this section in a div with the id sidebar2; within
that is a div with a class of inner. I’ve also added some classes to the different
elements, so they’re ready for us to add the CSS. Once we add this markup, the
column will display below the main content area in the browser, as shown in
Figure 9.2.

220

Positioning the Sidebar

Figure 9.2. Viewing the page in the browser after adding the
sidebar2 div and contents

Positioning the Sidebar
We can now use CSS to position this sidebar and style its contents. Using the
CSS file for the two-column layout as a starting point, find the rules for #content.
Our first task is to create some space into which we can drop the sidebar.

Check your Sidebar’s Location

At the end of the last chapter, we showed how easy it was to move a column
that was on the right over to the left by changing only two CSS properties.
However, the layout we’re working toward here assumes that the sidebar sits
to the right of the content, so you may need to move it back.

File: styles.css (excerpt)

#content {
 margin: 0 240px 0 160px;
 border: 1px solid #b9d2e3;
 background-color: white;

221

Chapter 9: Three-column Layouts

color: black;

}

Change the value for the left margin from 0 to 160px, to create a 160-pixel left
margin on the content.

Now, create a rule for #sidebar2 to position it within the 160 pixel margin to
the left of the content area:

File: styles.css (excerpt)

#sidebar2 {
 position: absolute;
 top: 0;
 left: 0;
}

This will position the sidebar to the top and left of the relatively positioned div
with the id main, as Figure 9.3 illustrates.

Figure 9.3. After positioning the sidebar2

The content of sidebar2 now appears to overlap the content div, as you’d expect.

All we’re doing is placing the sidebars over a space created by content’s margins.

222

Positioning the Sidebar

If the sidebar is wider than that margin, it will continue to display over the top
of the content div. To prevent this overlap, we give sidebar2 a width value:

File: styles.css (excerpt)

#sidebar2 {

 position: absolute;

 top: 0;

 left: 0;

 width: 159px;

 border-top: 1px solid #b9d2e3;

 border-left: 1px solid #b9d2e3;

 border-bottom: 1px solid #b9d2e3;

 background-color: white;

 color: black;

 margin: 0;

 padding: 0;

}

I have also started to style this sidebar, giving it top, left, and bottom borders,
and a background color of white. Figure 9.4 shows our progress so far.

223

Chapter 9: Three-column Layouts

Figure 9.4. Giving sidebar2 a width so that it doesn’t overlap the
content

We can now style the individual elements within sidebar2.

File: styles.css (excerpt)

#sidebar2 .inner {
 margin: 10px;
}

#sidebar2 .inner selects the wrapper around the sidebar contents (those that
have a class of inner) and applies a ten-pixel margin between the contents of the
sidebar and its border.

File: styles.css (excerpt)

#sidebar2 p {

 font-size: 90%;

 color: #666666;

}

#sidebar2 a:link, #sidebar2 a:visited {

 color: #245185;

224

Positioning the Sidebar

font-weight: bold;

}

Let’s also create rules for the paragraphs within sidebar2, setting the text to 90%
and a dark gray color. We can also set the links within the sidebar2 div to be
blue and bold.

File: styles.css (excerpt)

#sidebar2 h3 {

 color: #245185;

 padding-bottom: 0.2em;

 border-bottom: 1px solid #b9d2e3;

 font-size: 110%;

}

The headings for the blog and newsletter are marked up as level three headings,
so we make these blue and give them a bottom border so that they look similar
to the text in these areas of the design. Figure 9.5 shows how these styles display.

Figure 9.5. After the text elements are styled

225

Chapter 9: Three-column Layouts

The Navigation

At the top of this sidebar is a list that contains navigation items. Let’s add some
specific rules to style these list items to fit with our design.

Set the list style to none to remove the bullets, then set margin and padding to
0 to line the list up with the paragraph text:

File: styles.css (excerpt)

#nav {
 list-style: none;
 margin: 0;
 padding: 0;
}

We’ll also add a bottom border to each list item, and apply padding to create
space between the items (and between each item and its border):

File: styles.css (excerpt)

#nav li {
 border-bottom: 1px solid #b9d2e3;
 padding: 0.4em 0 0.2em 0;
 font-size: 90%;
}

Finally, we can style the links, removing the underline from each, and setting its
weight to normal (previously, we set all links in sidebar2 to display in bold).
The results of this work are depicted in Figure 9.6.

File: styles.css (excerpt)

#nav li a:link, #nav li a:visited {
 text-decoration: none;
 color: #245185;
 font-weight: normal;
}

226

Positioning the Sidebar

Figure 9.6. Styling the navigation

The Blog

Next, we have the blog section of the page. This area contains a featured item,
which we’ve wrapped in a div with an id of bloglatest, and a list of the three
most recently posted blog items. These listings would link through to the full
blog entries on the completed site.

To style the date on the featured blog entry, we need to style the h4 within the
div bloglatest to make it orange:

File: styles.css (excerpt)

#bloglatest h4 {
 color: #ff4e00;
 font-size: 100%;
 font-weight: bold;
}

227

Chapter 9: Three-column Layouts

On our list of blog entries, let’s set margin to 0 and padding to 20 pixels. We’ll
also set the list bullets to use the more-bullet.gif image that we used elsewhere
in the layout:

File: styles.css (excerpt)

#blog {
 margin: 0;
 padding: 0 0 0 20px;
 list-style: url(img/more-bullet.gif);
}

Finally, we’ll style the list items. For each item, the date displays in orange; the
link to the article appears in blue next to it. As we’ve already styled links to display
in blue font, we can make the entire list item appear in orange: the links will still
be blue. Figure 9.7 shows the finished display.

File: styles.css (excerpt)

#blog li {

 font-size: 90%;

 padding-bottom: 0.5em;

 color: #ff4e00;

 font-weight: bold;

}

228

Positioning the Sidebar

Figure 9.7. The blog section of sidebar2

The Newsletter

The newsletter subscription form is the very last thing we need to consider in
this layout. First, let’s create a rule to address the text field.

Style the text field: create a rule with the selector #newsletterform .text, then
set the text field’s width to prevent it from spilling out of the sidebar into the
content area:

File: styles.css (excerpt)

#newsletterform .text {
 width: 135px;
 border: 1px solid #45bac0;
}

Next, add a rule for #newsletterform .searchbutton:

File: styles.css (excerpt)

#newsletterform .searchbutton {
 text-align: right;

229

Chapter 9: Three-column Layouts

margin-top: 4px;

}

Here, we create a rule that will be applied to the div that wraps the submit button.
This rule aligns the button to the right; we need to align the content of the but
ton’s parent to the right to achieve this.

Finally, let’s add a rule for #newsletterform .btn to the style sheet:

File: styles.css (excerpt)

#newsletterform .btn {

 border: 1px solid #45bac0;

 background-color: #256290;

 color: white;

 font-size: 80%;

}

These rules style the submit button, and are similar to those we created for the
search form in the other sidebar. Figure 9.8 shows our progress.

Figure 9.8. The newsletter subscription form

230

Positioning the Sidebar

Great work! We’ve completed a three-column layout that displays in Internet
Explorer 6 as illustrated in Figure 9.9. I tend to develop CSS layouts using Fire-
fox—one of the more standards-compliant browsers—then check that my design
displays as expected in Internet Explorer. But as you can see, this layout is relat
ively simple, and holds together well in IE6.

Figure 9.9. The completed three-column layout in IE 6 on Windows

This layout is a great choice for projects for which you need a basic three-column
layout with, or without, a header area. Absolute positioning provides good control
over the widths of the different columns, and makes it relatively easy to get

231

Chapter 9: Three-column Layouts

consistent results across browsers. However, there are times when this layout
isn’t the best choice. In the next section, we’ll take a look at the most common
problem designers experience with three-column layouts.

Adding a Footer
The layout we’ve created works really well … until you want to add a footer that
spans all three columns, that is. This variation on our layout is shown in the
mock-up in Figure 9.10.

If your center column is the longest of all three, then at first glance, adding the
footer seems pretty easy. To demonstrate, let’s add the following markup just
before the closing </div> tag of the wrapper div.

File: index.html (excerpt)

 </div> <!-- main -->

<div id="footer">

 <p>Copyright 2006 - All Rights Reserved</p>

 </div> <!-- footer -->

 </div> <!-- wrapper -->

 </body>

</html>

Add the following rules to your style sheet, to style the footer to match our design:

File: styles.css (excerpt)

#footer {

 width: 100%;

 border-top: 1px solid #b9d2e3;

 border-bottom: 1px solid #b9d2e3;

 margin-top: 10px;

}

#footer p {

 font-size: 90%;

 color: #256290;

 margin: 0;

 padding: 0.2em 0 0.2em 0;

}

So what’s the problem? As Figure 9.11 illustrates, the layout seems to work fine
in the browser!

232

Adding a Footer

Figure 9.10. The three-column layout with a footer

233

Chapter 9: Three-column Layouts

Figure 9.11. Adding a footer to the layout

Don’t be fooled: there is a problem here. To see it in action, remove a couple of
the articles from the content area so that that part of the page is shorter than the
sidebars. Reload the page in the browser, and you’ll see that the footer has moved
up the page to sit at the bottom of the main content area. But as Figure 9.12
shows, the sidebars now run over the top of our footer. Whoops!

234

Adding a Footer

Figure 9.12. The sidebars overlapping the footer

The footer appears beneath the sidebars because the sidebars are absolutely posi
tioned, so they’re outside of the flow of the document—that is, the sidebars don’t
appear immediately below the previous element as they would if they weren’t
positioned. The content is not positioned, so the footer naturally displays under
neath the content and the sidebars continue to display where they’ve been placed,
regardless of any other parts of the document. Once you’ve taken a page element
out of the document flow using position: absolute, that element will display
in complete disregard of other page elements: it will simply overlap them if they’re
in its way.

When you create a site, you can’t be certain that one column will always display
longer than another. If you want to use a footer as part of your layout, you’ll
need to take a different approach. However, before we can look at this new ap
proach, we’ll need to know a bit more about the float property.

235

Chapter 9: Three-column Layouts

The float Property
We discussed float briefly in the last chapter, where we used it to position ele
ments in the page header, and float images so that text would wrap around them.
In the next example, we’ll use float to create a multi-column layout. But before
we dive into rebuilding our layout using float, let’s look at a simple example
that will give us a more thorough understanding of how this property works.

The document we’ll use for this example, replicated below, contains the same
areas that we’ll include in the project site’s layout.

File: floatexample.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <link rel="stylesheet" type="text/css"

 href="floatexample.css" />

 <title>Floated column example</title>

 </head>

 <body>

 <div id="wrapper">

 <div id="header">

 <p>Header</p>

 </div>

 <div id="main">

 <div id="sidebar">

 <p>First Sidebar</p>

 </div>

 <div id="sidebar2">

 <p>Second Sidebar</p>

 </div>

 <div id="content">

 <p>Content</p>

 </div>

 </div>

 <div id="footer">

 <p>Footer</p>

 </div>

 </div>

 </body>

</html>

236

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The float Property

The first thing you might notice about this document is that the order of the
divs differs from the order we used in our positioned layout: here, the two sidebar
divs appear before the content div. However, all of the sections of the page are
included here. Before we apply any CSS, let’s see how this document displays in
the browser: Figure 9.13 illustrates.

Figure 9.13. Displaying the example file with no style sheet
attached

Now let’s create the style sheet floatexample.css, and add the following rules
to it:

File: floatexample.css

body {

 margin: 0;

 padding: 0;

 font: small Helvetica, Arial, sans-serif;

}

#header {

 margin: 0;

 padding: 0;

}

#main {

 margin-top: 10px;

}

#sidebar {

 float: right;

 width: 220px;

 border: 1px solid black;

 background-color: #dddddd;

}

#sidebar2 {

 float: left;

 width: 159px;

 border: 1px solid green;

237

Chapter 9: Three-column Layouts

background-color: #99ff99;

}

#content {

 border: 1px solid blue;

 background-color: #9999ff;

 margin: 0 240px 0 160px;

}

#footer {

 clear: both;

 border: 1px solid red;

 background-color: #ff9999;

}

Once you apply this style sheet, the page should display with three bordered
columns, a header, and a footer, as shown in Figure 9.14.

Figure 9.14. Displaying the page after the style sheet is added

As you can see, this display reflects the main constituents of our project site’s
layout: a header, two sidebars, a liquid content area that expands and contracts
depending on the width of the browser window, and a footer. Insert additional
content into any of these columns, and you’ll note that the footer always stays
below all three columns, as Figure 9.15 shows. In fact, it’s always located at the
bottom of the longest column.

238

How Does it Work?

Figure 9.15. It doesn’t matter how much text is in a column—the
footer stays beneath all three

How Does it Work?
When we discussed float in the last chapter, I explained that it causes the floated
content to move outside of its natural position in the containing box; non-floated
content that’s also in the box will wrap around the floated content.

In our layout, the two sidebars are floated to the left and right of the content
area, which effectively wraps around the two columns. In this instance, we don’t
want the content to appear to wrap around the sidebars, so we keep wide margins
on the content div, making it run down the center of the page even if the columns
are shorter than the content.

The final piece of the puzzle is the use of the clear property on the footer div,
which causes the footer always to display below the content and sidebars, without
overlapping any parts of the layout. As we saw in the last chapter, clear can
have a value of left, right, or both. Applying the clear: both declaration to
the footer will clear the left- and right-hand sidebars. The footer will naturally
clear the content div, as it’s still within the flow of the document.

239

Chapter 9: Three-column Layouts

Putting float into Practice in our Layout
Having looked at a simple example of how float works to create a multi-column
layout, we can adapt our layout to display three columns using float.

First, we need to adapt the document to place the sidebar sections above the
main content section.

File: index.html (excerpt)

<body>

 <div id="wrapper">

 <div id="header">

⋮
 </div> <!-- header -->

 <div id="main">

 <div id="sidebar">

⋮
 </div> <!-- sidebar -->

 <div id="sidebar2">

⋮
 </div> <!-- sidebar2 -->

 <div id="content">

⋮
 </div> <!-- content -->

 </div> <!-- main -->

 <div id="footer">

 <p>Copyright 2006 - All Rights Reserved</p>

 </div> <!-- footer -->

 </div> <!-- wrapper -->

</body>

Let’s take the floatexample.css file used in the example above as a starting
point, and simply copy and paste the rest of our rules into it. First, we’ll identify
the declarations that are used to position the parts of the page.

File: floatexample.css (excerpt)

#sidebar {

float: right;

 width: 220px;

 border: 1px solid black;

 background-color: #dddddd;

}

#sidebar2 {

float: left;

240

Putting float into Practice in our Layout

width: 159px;

 border: 1px solid green;

 background-color: #99ff99;

}

⋮
#footer {

clear: both;

 border: 1px solid red;

 background-color: #ff9999;

}

Next, we replace the existing positioning declarations in styles.css (the
position, top, left, and right properties) with the float and clear declara
tions.

File: styles.css (excerpt)

#sidebar {

float: right;

 width: 220px;

 background-color: #256290;

 margin: 0;

 padding: 0;

 color: white;

}

File: styles.css (excerpt)

#sidebar2 {

float: left;

 width: 159px;

 border-top: 1px solid #b9d2e3;

 border-left: 1px solid #b9d2e3;

 border-bottom: 1px solid #b9d2e3;

 background-color: white;

 color: black;

 margin: 0;

 padding: 0;

}

File: styles.css (excerpt)

#footer {
 width: 100%;
 border-top: 1px solid #b9d2e3;
 border-bottom: 1px solid #b9d2e3;
 margin-top: 10px;

241

Chapter 9: Three-column Layouts

clear: both;

}

Finally, remove the position, top, and left declarations from the #main rule.
Remember that the position: relative declaration was used to set the posi
tioning context for the sidebar—we can remove it now that the sidebars aren’t
making use of it.

File: styles.css (excerpt)

#main {
 margin-top: 10px;
 width: 100%;
}

You’ll now be able to see how these adjustments have moved the different portions
of our page into the correct locations. Figure 9.16 shows how our page looks now.

242

Putting float into Practice in our Layout

Figure 9.16. After using float to lay out the columns

You should finish up with a layout that looks the same as our original, absolutely
positioned layout. However, whether you increase the amount of content in the
sidebars, or decrease the amount of content in the center column, the footer will
always display below all three columns. Figure 9.17 shows the page display in IE.

243

Chapter 9: Three-column Layouts

Figure 9.17. The floated layout in Internet Explorer 6

Achieving Full-height Columns
The layout above doesn’t quite get us to the point identified by the original page
mockup, in which all of the columns were the same length regardless of the
amount of content each contained. With some layouts, that won’t be a problem,
but if full-length columns are your goal, here’s a method that will let you achieve
it.

244

Achieving Full-height Columns

To create this effect, we need to “fake” the appearance of full-length columns
using background images. The technique, popularized by Dan Cederholm’s article
“Faux Columns,1” basically relies on applying background images to divs in your
document, to create the appearance of columns. We’ll be applying this technique
twice: once to the div with id="main", to simulate the right column, and once
to a new div just inside the main div, to simulate the left column.

Create a background image that contains the blue of the right-hand sidebar, plus
a stripe of the cream background color and the single-pixel light-blue line, as
shown in Figure 9.18.

Figure 9.18. The background image containing our faux columns
for the layout’s right-hand side

In the CSS, find the #main selector and add this image to it as a background
image. Make sure the image repeats vertically by setting the background-repeat
property to repeat-y. To ensure that it sticks to the right-hand side of the area,
add the background-position: top right declaration.

#main {

 margin-top: 10px;

 width: 100%;

background-image: url(img/sidebarbg.gif);

background-position: top right;

background-repeat: repeat-y;

}

Next, we need to ensure that the div with id="main" is the full height of the
tallest of our three columns, as our background is applied to this div. Currently,
the div is only guaranteed to be as tall as our content div—the floated sidebars
have no bearing on its height, as is illustrated in Figure 9.19.

1 http://www.alistapart.com/articles/fauxcolumns/

245

http://www.alistapart.com/articles/fauxcolumns/
http://www.alistapart.com/articles/fauxcolumns/

Chapter 9: Three-column Layouts

Figure 9.19. The floated element has no effect on its parent’s
height

We can get around this issue by adding an empty div, to which clear: both is
applied, just before we close our id="main" div. This empty div will appear below
all of our columns, just like the footer div. But, as it’s inside our id="main" div,
it will ensure that this div is as tall as our tallest column, as Figure 9.20 illustrates.

246

Achieving Full-height Columns

Figure 9.20. Adding a clearing element to extend the parent
element’s height

To create this effect, add the following to index.html:

File: index.html (excerpt)

 </div> <!-- content -->
<div id="clearone"> </div>

</div> <!-- main -->

Add the following rule to your style sheet:

File: styles.css (excerpt)

#clearone {
 clear: both;
 height: 1px;
}

If you view the page in your browser now, you’ll see that the right-hand column
stretches down to the same level as the bottom of the longest column. The effect
is depicted in Figure 9.21.

247

Chapter 9: Three-column Layouts

Figure 9.21. After adding the background image to create the
right-hand column

For our left column, we’ll need to add another div to which we can apply our
background. Add a div with id="main2", as shown below:

File: index.html (excerpt)

<div id="main">

<div id="main2">

 <div id="sidebar">

⋮

 <div id="clearone"> </div>

</div> <!-- main2 -->

</div> <!-- main -->

Create another image, this time for the left column. It will be 161 pixels wide
and four pixels tall, and will have a one-pixel, light-blue line down both its left-
and right-hand edges.

Now, create the rule #main2, applying our new image as the background image.
Position it bottom and left, and make the background color of this area white.

248

Achieving Full-height Columns

File: styles.css (excerpt)

#main2 {
 background-image: url(img/leftbg.gif);
 background-position: bottom left;
 background-repeat: repeat-y;
}

If you view this page now, you’ll see that our full-length faux columns are almost
complete, as Figure 9.22 shows. However, the bottom of each of the columns
needs a little tidying up.

Figure 9.22. Our faux columns are almost complete

Edit the style sheet to remove the content div’s bottom border by replacing the
border property with border-top, border-right, and border-left declarations:

File: styles.css (excerpt)

#content {
 margin: 0 240px 0 160px;
border-top: 1px solid #b9d2e3;
border-right: 1px solid #b9d2e3;

249

Chapter 9: Three-column Layouts

border-left: 1px solid #b9d2e3;

 background-color: white;

 color: black;

}

Also remove the border from the bottom of the left-hand sidebar by removing
the border-bottom declaration from the #sidebar2 rule:

File: styles.css (excerpt)

#sidebar2 {

 float: left;

 width: 159px;

 border-top: 1px solid #b9d2e3;

 border-left: 1px solid #b9d2e3;

 background-color: white;

 color: black;

 margin: 0;

 padding: 0;

}

If you view your layout in the browser, you should find that your columns appear
to run the full length of the screen, as shown in Figure 9.23.

250

The Content Order Problem

Figure 9.23. Full-length columns

Admittedly, this effect does require some fiddling around in your graphics program
to prepare the background images so that they line up. However, once you’ve
created your images, the effect works very well.

The Content Order Problem
The floated layout we created above looks fantastic. However, the absolutely
positioned layout does have one point in its favor: in the markup for the absolutely

251

Chapter 9: Three-column Layouts

positioned version of our page, the columns can appear in any order we like. This
might not seem important to you, but it’s important to those who use browsers
that don’t support CSS, and users of screen readers. If we use the floated layout,
these people will have to wade through all of the content of the sidebars before
they get to the page’s main content, which sits at the bottom of our markup.

The effect is more marked if you remove the style sheet so that you can see the
markup for the content sections in order. Comment out the link to your style
sheet and reload the page: you’ll be able to see how much “junk” content occurs
before the main page content (Figure 9.24 illustrates). Now imagine that your
site displayed the same sidebar content on every page—it would be pretty tiresome
for site users to have to listen to a screen reader read out that same content for
every page of your site they visited!

Figure 9.24. Displaying the page without a style sheet

One solution to this problem is to implement a “skip navigation” link. This link
enables the user to skip over repeated or unimportant content in order to get to
the real meat of the page. To effect this solution, we simply link to an id that’s
located at the top of the page’s important content.

252

The Content Order Problem

To see this technique in action, add a link to the navigation list in the page’s
header:

File: index.html (excerpt)

 Contact Us |

 About Us |

 Privacy Policy |

 Sitemap |

Jump to content

Load the page in your browser and click the link, as shown in Figure 9.25. The
page will jump down a little, so that the top of the content div is as close as
possible to the top of the viewport.

Anchors Away

You might be used to achieving this effect using an <a> tag with a name at
tribute, but modern browsers now support linking directly to an element’s
id, which spares you having to insert additional and otherwise useless anchor
elements.

253

Chapter 9: Three-column Layouts

Figure 9.25. Clicking the link enables users to skip easily to the
main content

These links aren’t particularly useful for visitors who don’t use screen readers or
text-only browsers, though, and various methods have been devised to hide these
links so they’re available only via screen readers and browsers that don’t support
CSS. Unfortunately, due to the way that some screen readers interpret CSS and
JavaScript, these methods can be problematic. So, for optimum accessibility, it’s
recommended that you keep the link visible and locate it somewhere near the
top of the content. Some site owners, such as Molly Holzschlag,2 have devised
ways of partially hiding the links. On Molly’s site, pictured in Figure 9.26, the
link doesn’t appear until you hover your mouse over the area at the top of the
screen.

2 http://www.molly.com/

254

http://www.molly.com/
http://www.molly.com/

Other Layout Methods

Figure 9.26. The “skip to content” link on molly.com

Other Layout Methods
There are other methods of creating multiple-column layouts with a footer that
can allow you to order your source code more usefully. However, these techniques
tend to entail other compromises. For example, the Source Ordered Columns
example on Position is Everything,3 pictured in Figure 9.27, offers one alternative
layout method. The compromise is that all of the columns need to be liquid: they
must be set with percentage widths, rather than set with fixed widths that use
pixel values.

3 http://positioniseverything.net/ordered-floats.html

255

http://positioniseverything.net/ordered-floats.html
http://positioniseverything.net/ordered-floats.html
http://positioniseverything.net/ordered-floats.html

Chapter 9: Three-column Layouts

Figure 9.27. Source ordered columns on Position is Everything

Position is Everything is an excellent source of demos and new ideas for creating
CSS layouts. The site also offers an article called “In Search of the One True
Layout”, 4 which provides an example of a three-column layout with a footer that
behaves as required for the example above. However, it uses some complex
techniques and many browser hacks. As you continue to work with CSS and de
velop your confidence with this technology, these examples can be invaluable in
helping you to solve problems, but they’re also fun to experiment with in your
spare time.

Summary
In this chapter, we learned how to change an existing layout by adding another
column. Then, we added a footer to our layout and experienced first-hand the
problems footers can cause within an absolutely positioned layout. By recreating
the same layout from a slightly different starting point, we overcame these
problems and produced a layout that positioned elements in a very different
way—without needing to redevelop our style sheet from the ground up!

4 http://positioniseverything.net/articles/onetruelayout/

256

http://positioniseverything.net/articles/onetruelayout/
http://positioniseverything.net/articles/onetruelayout/
http://positioniseverything.net/articles/onetruelayout/

Summary

No doubt, you’ve already realized that there’s no single, ideal way to address the
problems posed by CSS layouts. Whenever you tackle a new design, you’ll need
to make a decision as to which type of layout best suits your needs. However, as
we saw in this chapter, in most cases it’s not too difficult to change your mind
later, and switch to a different layout method if you need to.

In the next chapter, we’ll look at another type of layout—the fixed-width lay
out—and consider some of the ways in which we can create these types of layouts.
Of course, we’ll also address the issues that you’re likely to encounter as you do
so.

257

258

10 Fixed-width Layouts

In the last two chapters, we’ve been creating layouts that we call liquid lay
outs—those that stretch to fit the size of the user’s browser window. This ap
proach gives the user control over the size at which they view the design, as it
allows them to resize their window. The other type of layout you may wish to
build is a fixed-width layout. In this type of layout, we fix the width of the
content area to a measurement that will allow the user to avoid scrolling horizont
ally on most screens.

In this chapter, we’ll create a fixed-width layout that’s centered in the user’s
browser window. Along the way, we’ll look at a few techniques that we can use
to style tables of data effectively, and we’ll discuss a method by which you can
enable your site visitors to use a different layout if they find your fixed-width
layout difficult to read.

Chapter 10: Fixed-width Layouts

The Layout
Figure 10.1. A mockup of the fixed-width layout

260

Creating the Document

We will start, as in the last chapters, with a mockup that our designer has created
in Fireworks; this is presented in Figure 10.1. As you can see, this layout doesn’t
have a great deal of content. If the table was stretched to the full width of the
page, it might look a little sparse and be difficult to read in a wide browser win
dow. This is a situation where we might choose to use a fixed-width layout.

Creating the Document
Once again, create an XHTML or HTML document and save it as fixed-
width.html. Ensure that all of the content in the document is marked up correctly,
then submit it to the W3C validator so you can be certain that the file doesn’t
contain any markup errors that will create problems when you start to add CSS.

A Tabular Layout

Although we discourage using tables for page layout purposes, remember
that using tables is perfectly valid—in fact, it’s recommended—for the display
of tabular data such as might be stored in a spreadsheet. The match schedule
shown in Figure 10.1 is tabular data, so a table is the best way to mark it
up.

File: fixedwidth.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Footbag Freaks</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <link rel="stylesheet" type="text/css"

 href="fixedwidth.css" />

 </head>

 <body>

 <div id="header">

 <img src="img/logo.gif" alt="Footbag Freaks" height="77"

 width="203" />

 <p>The Home of the Hack</p>

 </div> <!-- header -->

 <div id="content">

 <img src="img/player.gif" height="272" width="111"

 alt="World Cup 06 Melbourne" />

 <h1>Announcement</h1>

 <h2>2006 FOOTBAG WORLD CUP DRAW</h2>

 <p>Melbourne, Australia. July 21st - 27th</p>

261

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Chapter 10: Fixed-width Layouts

<p>Footbag Freaks is pleased to announce that the draw for

 the biggest and most prestigious event in global footbag

 is coming to Melbourne in July, 2006 with the staging of

 the Footbag World Cup.</p>

 <p>Seen as the pinnacle of achievement in the sport, the

 2006 World Cup will bring together over 200 of the

 world's premier footbag experts, with representative

 teams expected from over 40 nations. Entries will close

 on March 2, 2006. Tickets to the event will go on sale

 from January 1, 2006.</p>

 <table class="schedule" summary="Schedule of matches for the

 Footbag 2006 World Cup">

 <caption>Event Schedule</caption>

 <thead>

 <tr>

 <th scope="col">Match</th>

 <th scope="col">Scheduled</th>

 <th scope="col">Country</th>

 <th scope="col">Vs.</th>

 <th scope="col">Country</th>

 <th scope="col">Winner plays..</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th scope="row">Match 1</th>

 <td>July 21st :12:00pm</td>

 <td>England</td>

 <td>vs.</td>

 <td>New Zealand</td>

 <td>Winner of Match 12</td>

 </tr>

 <tr>

⋮
 <th scope="row">Match 12</th>

 <td>July 24th :7:00pm</td>

 <td>Mexico</td>

 <td>vs.</td>

 <td>Iceland</td>

 <td>Winner of Match 1</td>

 </tr>

 </tbody>

 </table>

 </div> <!-- content -->

 </body>

</html>

262

Creating the Document

Pay special attention to the table’s markup. This table has headings along its top
and down its left-hand side (the title of each match). These headings are marked
up using the th element, while the rest of the cells are marked up using td. We
also use the scope attribute on the headings to explain whether the heading de
scribes a column (scope="col") or a row (scope="row"). The heading area of
the table is wrapped in a thead element and the body in a tbody element. These
attributes are useful for describing the table correctly, but they’ll also come in
very handy when we come to apply CSS to the page.

I’ve added two divs to the document: one is wrapped around the header area
with the ID header, while the other is wrapped around the content whose ID is
content. Figure 10.2 shows how this unstyled layout displays in the browser.

263

Chapter 10: Fixed-width Layouts

Figure 10.2. The document before any CSS is applied

Centering the Content Area
The first thing we’ll do is center the layout and set its width. We need to insert
an additional div that wraps the entirety of the document’s content, so open
this new div after the opening <body> tag and close it before the closing </body>.
Give this div an ID of wrapper.

264

Centering the Content Area

File: fixedwidth.html (excerpt)

<body>

<div id="wrapper">

 <div id="header">

⋮

 </div> <!-- content -->

</div> <!-- wrapper -->

</body>

Now, create an external style sheet named fixedwidth.css and add the following
rules to it:

File: fixedwidth.css (excerpt)

body {

 margin: 0;

 padding: 0;

 text-align: center;

 min-width: 740px;

}

#wrapper {

 text-align: left;

 width: 740px;

 margin-left: auto;

 margin-right: auto;

}

This is all that you need to fix the page’s width and center its content. Let’s step
through these rules.

The first rule affects the body element. It sets the margin and padding to 0, and
the min-width of the layout to 740 pixels. It also sets the text-align property
to center.

We then add a rule for the new wrapper div that we just inserted into our docu
ment. Here, we set the right and left margins to auto and the width to 740 pixels.
The width value in both rules should be changed to reflect the width of your
layout. 740 pixels is a good width in that it will allow some of the background
to show through even if users’ monitors are set to a resolution of 800×600 pixels.

If you view your document in a browser you should see that the content is
centered in the browser window, and is 740 pixels wide.

Let’s add some more declarations to the body rule to insert the background image
and color that appears in our design mockup.

265

Chapter 10: Fixed-width Layouts

File: fixedwidth.css (excerpt)

body {

 margin: 0;

 padding: 0;

 text-align: center;

 min-width: 740px;

background-color: #050845;

color: white;

background-image: url(img/bg.jpg);

background-repeat: repeat-x;

font: small Arial, Helvetica, Verdana, sans-serif;

}

With this markup, we add a background color and image, as we did for our liquid
layouts. We also set the text to display in a small sans-serif font.

Currently, the background image will display across the whole page. Let’s use
the wrapper div to set the content area to display a lighter, more readable back
ground color, and have the background color display only around the content’s
edges.

File: fixedwidth.css (excerpt)

#wrapper {

 text-align: left;

 width: 740px;

 margin-left: auto;

 margin-right: auto;

background-color: #fdf8f2;

color: #01407a;

padding: 10px;

}

In the markup above, I’ve also added ten pixels of padding in order to create
some space between the edge of the wrapper div and the content. Figure 10.3
shows how the page looks now.

266

The Header Area

Figure 10.3. The design starting to take shape with the addition
of a background image

The Header Area
The header area in this layout is very simple—it contains just the logo and tagline.
The logo falls into its correct place by virtue of the natural flow of the document,
so let’s skip to styling the tagline beneath it using the following rule:

File: fixedwidth.css (excerpt)

#tagline {

 font-weight: bold;

 color: #050845;

 font-style: italic;

 margin: 0 0 0.5em 0;

 padding: 0 0 0 20px;

}

Note that you’ll need to add id="tagline" to the tagline’s opening <p> tag.

267

Chapter 10: Fixed-width Layouts

This markup sets the color to a deep blue, the font weight to bold, and its style
to italic. We add a bottom margin to provide some space below the tagline and
set left-hand padding to position it beneath the logo. Figure 10.4 shows the results
of our work on the header.

Figure 10.4. The styled header

The Content
With the header complete, let’s move on to style the content area of the page.
This area is already wrapped in a div with an ID of content. If you refer to the
design mockup, you’ll see that this section has a white background. A darker
border sets it out against the off-white background of the wrapper.

Let’s begin by creating a CSS rule for #content by adding the following to the
style sheet:

File: fixedwidth.css (excerpt)

#content {
 background-color: white;
 border: 1px solid #f0f0f0;
 padding: 0;
}

These rules should be fairly self-explanatory by now: we’ve given the div a white
background and a border that’s slightly darker than the background color of the
wrapper. We’ve also set the padding to zero. Because we added padding of ten
pixels to the wrapper, an area that’s ten pixels wide shows the darker color around
the div with id="content"—this is the effect that we are trying to reproduce
from the design mockup.

Next, let’s add some space between the content div and the border. We could
try to remember to apply a margin to every element within this area, but it’s
simpler just to add a new div within the content div and give it a class="inner"
attribute. We can then give #content .inner a 30-pixel margin to create that
space.

268

The Content

File: fixedwidth.css (excerpt)

#content .inner {
 margin: 30px;
}

We can now start to look at the contents of the content div. The first thing we
need to deal with is the World Cup ’06 image that sits at the top of the content
area. I inserted it there because I want to use float to position it to the right of
the content.

Add the following rule for #worldcuplogo. It sets float to right, and specifies
left and bottom margins for the logo, inserting space between it and the content
that will wrap around it:

File: fixedwidth.css (excerpt)

#worldcuplogo {
 float: right;
 margin: 0 0 20px 40px;
}

Once we add id="worldcuplogo" to the image in our XHTML, the logo will
display to the right of the layout, the content flowing around it as shown in Fig
ure 10.5.

269

Chapter 10: Fixed-width Layouts

Figure 10.5. Floating the logo image

The layout is really taking shape now. With the addition of some very simple
CSS, a few divs, and an id, we’re coming close to replicating the mockup layout
we started with. One of the things I enjoy about using CSS for layout is that it
gives us the ability to put together simple pages that look attractive very quickly.
When the need arises, you can create a news page or simple layout for an an
nouncement like this one in a very short space of time.

The heading “Announcement” is an h1 element. We can address it using a selector
that addresses any h1 elements that are contained within another element that
has the ID content.

File: fixedwidth.css (excerpt)

#content h1 {

 font-size: 120%;

 color: #01407a;

 padding: 0.3em 0 0.3em 30px;

 background-image: url(img/ball.gif);

 background-repeat: no-repeat;

270

The Content

background-position: left center;

 border-top: 1px solid #c5d6e2;

 border-bottom: 1px solid #c5d6e2;

}

Here, we’ve added as a background image the ball image that displays to the left
of the heading in our mockup. We want to display it just once—by default, it
would tile beneath the heading—so we set background-repeat to no-repeat.
We’re also using the background-position property to push the image to the
left and center it vertically.

To stop the heading from appearing on top of the image, we’ve added padding
of 30 pixels to the left of the heading. The top and bottom padding values apply
extra space between the heading and the borders. The current page display is
shown in Figure 10.6.

Figure 10.6. The heading with the background image

We can now spend some time on the h2 below the page header. The mockup
indicates that this second-level heading should display in a larger font than the

271

Chapter 10: Fixed-width Layouts

h1. The properties that we need to add to the #content h2 rule in order to achieve
this are fairly straightforward.

File: fixedwidth.css (excerpt)

#content h2 {

 font-size: 260%;

 font-weight: normal;

 font-family: Georgia, Times, "Times New Roman", serif;

 color: #032469;

 border-bottom: 1px solid #c5d6e2;

 margin: 1em 0 0 0;

}

We’ve specified a serif font for the second-level heading in an effort to match
the font used in the mockup. The rest of the text content that appears before the
Event Schedule table is marked up as paragraphs. The first thing I want to do is
to add a bit more space between the lines of text within those paragraphs. We
can do so with the help of the line-height property.

File: fixedwidth.css (excerpt)

#content p {
 line-height: 1.6em;
}

The text that appears directly below the h2 identifies the dates to which the article
is relevant. Add an id="dateline" attribute to this dateline’s opening <p> tag,
and create a CSS rule for it:

File: fixedwidth.css (excerpt)

#dateline {

 font-size: 160%;

 font-weight: normal;

 font-family: Georgia, Times, "Times New Roman", serif;

 color: #032469;

 margin: 0.3em 0 0 0;

}

The next paragraph of text displays in a bold font in the mockup. Let’s add
class="intro" to this text’s opening <p> tag, then style that class to create the
bold look:

272

The Table

File: fixedwidth.css (excerpt)

.intro {
 font-weight: bold;
}

Fantastic! We’ve styled all of the content on the page, with the exception of the
Event Schedule table. We’ll address that next, but first, let’s take a moment to
enjoy the fruits of our labors so far. View your work in a browser; the content
area should look a lot like Figure 10.7.

Figure 10.7. The styled content area

The Table
The finalsection of this layout is the Events Schedule table that’s used to display
the information about the matches that will be played during the tournament.
As we’ve already discussed, though tables should not be used for page design
layouts, they are the ideal way to mark up tabular data, like the kind of informa
tion you might find displayed in a spreadsheet. We have a nice chunk of tabular

273

Chapter 10: Fixed-width Layouts

data on this page, and we’ve already marked it up correctly using the various
table elements to ensure that the content can be styled easily.

Looking for Inspiration?

The designer of this layout has taken inspiration from the CSS Table Gallery.1

This is an excellent reference for those researching the different ways in
which tabular data can be presented.

Our unstyled table currently displays in a very usable and accessible manner, as
Figure 10.8 shows, but it’s not very attractive.

Figure 10.8. The unstyled table

We can start by addressing the table itself. The first thing we should do is ensure
that the table cannot move up next to the floated image if the content above it
becomes shorter than it is currently. To do so, we use the clear property, setting
its value to right.

File: fixedwidth.css (excerpt)

table.schedule {

 clear: right;

 width: 100%;

 line-height: 1.4em;

 border-collapse: collapse;

 border: 4px solid #adbbca;

 color: #4f6480;

 background: #f0f0f0;

}

1 http://icant.co.uk/csstablegallery/

274

http://icant.co.uk/csstablegallery/
http://icant.co.uk/csstablegallery/

The Table

As Figure 10.9 shows, we’ve also set the width to 100% and a line height of
1.4em. We’ve set a chunky border, as well as background and text colors.

Figure 10.9. After styling the table element

The border-collapse property, which is set to collapse, ensures that no space
appears between the table cells. Normally, some spacing does exist between cells
in a table. It’s controlled by the cellspacing attribute of the table element.

Now, you might think that we could set this cell spacing to zero, and solve the
problem that way. But even then, if we then set a four-pixel border on each table
cell, the borders will combine to produce an eight-pixel border between cells, but
a four-pixel border around the outside of the table. By setting border-collapse:
collapse, we ensure that this cell spacing disappears completely. The borders
“collapse” into each other, leaving us with the four-pixel border we intended.
This effect is illustrated in Figure 10.10.

Figure 10.10. Demonstration of cell spacing and the
border-collapse property

When I marked up the Event Schedule table, I used the caption element to add
the caption that reads “Event Schedule.” The caption element is the most appro
priate element in which to put our table description. Let’s now style the caption
so that it looks like the heading in the mockup.

275

Chapter 10: Fixed-width Layouts

File: fixedwidth.css (excerpt)

table.schedule caption {

 margin: 0;

 padding: 0;

 color: #032469;

 line-height: 2em;

 text-align: left;

 font-weight: bold;

}

When we created our document, we noted that it was appropriate to use the
thead and tbody elements to mark up the table. Now we can use those elements
to help us to apply CSS to the different sections of the Events Schedule. If we
create a rule for the selector table.schedule thead tr, we can set background
and text colors for the table’s header row.

File: fixedwidth.css (excerpt)

table.schedule thead tr {
 color: white;
 background: #5e7796;
}

As you can see in Figure 10.11, the table’s already starting to look a lot more
attractive, but we’ve got a long way to go before it looks as good as the mockup.

Figure 10.11. Using the thead element to create a blue heading
area

The next rule addresses the th element in thead. We do have other th elements
running down the left-hand side of the page. However, they won’t be affected
by these properties, which apply padding and a four-pixel border to the top,
header row of the table.

276

The Table

File: fixedwidth.css (excerpt)

table.schedule thead tr th {
 padding: 0.4em 0.6em 0.4em 0.6em;
 border: 4px solid #adbbca;
}

We now move on to the tbody, which contains the cells that comprise the body
of the table. We don’t want each individual cell to have borders all the way around
it—we just want the table’s rows to have top and bottom borders. To achieve
this effect, we can add a border to the tr element within tbody:

File: fixedwidth.css (excerpt)

table.schedule tbody tr {
 border: 4px solid #adbbca;
}

Then, we can style the th elements within tbody.

File: fixedwidth.css (excerpt)

table.schedule tbody th {
 padding: 0.6em;
 border: 4px solid #adbbca;
}

This should leave your page looking like the one shown in Figure 10.12.

277

Chapter 10: Fixed-width Layouts

Figure 10.12. Marking the table rows clearly

In the page mockup, the table looks stripey because of the way coloring is applied
to alternate table rows. As well as looking cool, this effect helps make the table
more readable. To achieve the striped effect, we’ll add a class called odd to altern
ate rows in our table. We’ll then be able to use that class to style those rows dif
ferently from their neighbors.

File: fixedwidth.html (excerpt)

<tr>

 <th scope="row">Match 1</th>

⋮

 <td>Winner of Match 12</td>

</tr>

<tr class="odd">

 <th scope="row">Match 2</th>

⋮

 <td>Winner of Match 11</td>

</tr>

<tr>

 <th scope="row">Match 3</th>

⋮

 <td>Winner of Match 10</td>

</tr>

<tr class="odd">

 <th scope="row">Match 4</th>

278

The Table

⋮
 <td>Winner of Match 9</td>

</tr>

First, we set a background color on the td elements within tbody. While working
on this element, I added some left padding to move the tds away from the border,
and line them up with the headings:

File: fixedwidth.css (excerpt)

table.schedule tbody td {
 background: #e9ecee;
 padding-left: 0.6em;
 border-bottom: 4px solid #ccc;
}

Now, let’s create a rule for the tr elements that have a class of odd. We can set
the background color on these rows:

File: fixedwidth.css (excerpt)

table.schedule tbody tr.odd {
 background: #c4cfdb;
}

Now we can address the td elements within the <tr class="odd"> and </tr>
tags, giving them a color and background color that match those in our mockup:

File: fixedwidth.css (excerpt)

table.schedule tbody tr.odd td {
 background: #f0f0f0;
 color: #4f6480;
}

If the selectors in these rules are starting to seem a bit confusing, just remember
to work from left to right:

1. We have a table with a class of schedule, which is table.schedule in the
CSS.

2. We then have the tbody element, which sits inside the table.

3. Then we have a tr element, to which we’ll add a class of odd.

4. There are td elements within those trs.

Figure 10.13 shows the results of our work.

279

Chapter 10: Fixed-width Layouts

Figure 10.13. After styling the odd rows

Finally, let’s style the links that appear in this table. There are two sets of links:
those in the row headings down the side of the table, and those associated with
the dates in the table cells.

First, we style the links within the th element:

File: fixedwidth.css (excerpt)

table.schedule tbody tr th a:link {

 font-weight: bold;

 color: #5e7796;

 text-decoration: underline;

}

table.schedule tbody tr th a:visited {

 font-weight: bold;

 color: #5e7796;

}

table.schedule tbody tr th a:hover {

 font-weight: bold;

 color: #5e7796;

 text-decoration: none;

}

We then complete our table by styling the links within the td element:

280

Multiple-column Fixed-width Layouts

File: fixedwidth.css (excerpt)

table.schedule tbody td a:link {

 color: #808000;

 text-decoration: underline;

}

table.schedule tbody td a:visited {

 color: #808000;

}

table.schedule tbody td a:hover {

 color: #808000;

 text-decoration: none;

}

Your table, and as a result, your layout, is now complete. It should look great—like
Figure 10.14.

Figure 10.14. The completed table

Multiple-column Fixed-width Layouts
The layout we’ve focused on in this chapter really contains just a single column
of content. It’s possible to create multiple-column fixed-width layouts in much
the same way as you created your multiple-column liquid layouts: by either pos
itioning or floating the columns.

281

Chapter 10: Fixed-width Layouts

Positioned Columns
To use absolute positioning to add a second column to this layout, we need first
to add the column—or sidebar—text to the page in its own div. Let’s add an ID
of extras just after the closing </div> tag of this div. On a real site, this sidebar
might contain advertising, or additional information about the matches or venue,
but for our purposes, dummy text will be fine.

In the natural flow of the document, this text displays below the white box, as
Figure 10.15 illustrates.

Figure 10.15. The sidebar div before any CSS is added

As with the liquid layouts we created previously, we need to wrap this sidebar
content inside two divs—one will provide our positioning context, while the
other will help us make room for the sidebar. Add the two divs as shown in the
code excerpt below: the content wrapper div wraps the content div, while the
div with the ID main wraps the divs with IDs content-wrapper and extras.

File: fixedwidth.html (excerpt)

 </div> <!-- header -->

<div id="main">
<div id="content-wrapper">
 <div id="content">
⋮

 </div> <!-- content -->
</div> <!-- content-wrapper -->

282

Positioned Columns

<div id="extras">

⋮

 </div> <!-- extras -->

</div> <!-- main -->

</div> <!-- wrapper -->

We can now add style rules for these divs. The content wrapper applies a 200
pixel left margin to the sidebar, while the main div provides its positioning con
text.

File: fixedwidth.css (excerpt)

#content-wrapper {

 margin: 0 0 0 200px;

}

#main {

 position: relative;

}

Refresh your page in the browser, and you should see that a space has been created
for the sidebar. Our next step is to position the column within this space. Simply
use the following CSS to position this sidebar from the top and left, or top and
right, of the browser’s viewport:

File: fixedwidth.css (excerpt)

#extras {

 position: absolute;

 top: 0;

 left: 0;

 width: 180px;

 background-color: white;

 border: 1px solid #f0f0f0;

}

This CSS positions the column and gives it the same white background color and
border that the content div displays. Figure 10.16 shows the finished product.

283

Chapter 10: Fixed-width Layouts

Figure 10.16. The completed layout with a positioned sidebar

Floated Columns
There are a number of reasons why you might want to use floated columns, rather
than positioned columns, in this layout. For example, if you want to add a footer
that will always remain beneath both the columns, floating the columns will enable
you to do that. You might want to wrap your content around the column, rather
than have the content take up only the column’s width. Again, floating the
columns makes this possible.

If you wish to float the sidebar, you’ll need to move it to occur just before the
<div id="content-wrapper"> tag.

File: fixedwidth.html (excerpt)

<div id="main">
<div id="extras">
⋮
</div> <!-- extras -->

 <div id="content-wrapper">

284

Floated Columns

Now, to float this column, all we need to do is replace the positioning declarations
in our #extras rule with a float: left declaration. Figure 10.17 shows the
impact of this markup.

File: fixedwidth.css (excerpt)

#extras {

 float: left;

 width: 180px;

 background-color: white;

 border: 1px solid #f0f0f0;

}

Figure 10.17. The floated column displaying as expected in Firefox

That’s all you need to do to float your sidebar column alongside your main content
column in Firefox. However, as Figure 10.18 illustrates, Internet Explorer 6 proves
a little more troublesome.

285

Chapter 10: Fixed-width Layouts

Figure 10.18. Internet Explorer 6 failing to display our world cup
image, and pushing the events schedule below the sidebar

As you can see in Figure 10.18, the world cup logo is no longer being displayed,
and our events schedule table has been pushed down below the bottom of the
sidebar. Occasionally, as you test your pages in Internet Explorer 6, you’ll en
counter bugs in its application of your CSS rules. Most of these problems have
been fixed in IE 7, but unfortunately, it will likely be some time before most users
upgrade to IE 7 and IE 6 can be ignored.

One of the most common causes of these bugs has to do with Internet Explorer’s
concept of “having layout,” which is discussed in the article “On Having Layout”. 2

A simple work-around for such bugs is to apply one of a number of declarations

2 http://www.satzansatz.de/cssd/onhavinglayout.html

286

http://www.satzansatz.de/cssd/onhavinglayout.html
http://www.satzansatz.de/cssd/onhavinglayout.html

Floated Columns

to one of the problematic element’s ancestors. In our case, adding display: in-
line-block3 to the #content rule fixes our problem, as Figure 10.19 shows.

File: fixedwidth.css (excerpt)

#content {

 background-color: white;

 border: 1px solid #f0f0f0;

 padding: 0;

display: inline-block;

}

A list of the properties that can be used, and a discussion of their side-effects, is
available in the “On Having Layout” article mentioned above.

Figure 10.19. The floated column displaying as desired in Internet
Explorer 6

3 Theoretically, this declaration changes the content div’s behavior when it’s adjacent to other ele
ments, but in this specific case, as it’s wrapped in the content wrapper div, it has no effect.

287

Chapter 10: Fixed-width Layouts

These examples have shown just how flexible a CSS layout can be. Instead of
needing to rebuild your nested table layout to add new columns, you can make
big changes to your layouts with just a few additional CSS properties.

“Zoom” Layouts
Before we wrap up this chapter, let’s spend a few moments discussing a technique
that can make your site much more usable to users with various accessibility
needs. That technique involves the provision of one or more alternate style sheets
that give a different look and feel to the site in order to address particular diffi
culties that some users experience as they work with the Web.

When we discuss accessibility, we often consider users who employ some kind
of text-only device—a screen reader that reads the content of the site aloud,
perhaps. By using semantic markup, and separating a document’s content and
structure from its presentation with CSS, we can do a lot to help these users to
understand and use our sites easily. However, these are not the only site users
who we can help by considering accessibility issues.

There are many more users who have “low vision”—they are not completely
blind, nor do they use screen readers, but they do need some help to be able to
see web site text. Many of these users have screen magnifiers that help to enlarge
on-screen elements to a size at which they can be read. As you might expect,
these users have very different requirements than those who use screen readers.
For instance, users with low vision can usually see the layout of your site, and
with the help of their magnifier, they may find diagrams, images, and other
visual elements useful. These users don’t want a text-only page—that would deny
them visual elements like images, which they can understand once they’re mag
nified. However, the problem with many layouts is that, once they are magnified,
columns of text disappear off the edge of users’ screens, never to be found again!

Since we know how to build site layouts using CSS, we can help these users by
creating an additional style sheet that’s tailored to their specific needs. These
kinds of style sheets have been called “zoom layouts,” as they’re specially designed
for people who magnify or zoom into web sites. The technique is detailed com
prehensively by web accessibility guru Joe Clark on his web site,4 but let’s take
a brief look at what we would need to do to create a zoom layout for our fixed-
width design.

4 http://www.joeclark.org/access/webaccess/zoom/

288

http://www.joeclark.org/access/webaccess/zoom/
http://www.joeclark.org/access/webaccess/zoom/

“Zoom” Layouts

Figure 10.20. The layout we're creating

Zoom layouts need to achieve the following:

❑	 Switch the text to a large font.

❑	 Change the colors used in the design to light text on a dark background, as
low-vision users find this easier to read.

289

Chapter 10: Fixed-width Layouts

❑	 Rearrange the content so that it all falls into one column. This way, there’s
no danger of users missing out on content that has disappeared off the edge
of the screen.

Let’s take the layout with the floated left-hand column, and create an alternate
“zoom layout” style sheet for it. The finished layout will look like Figure 10.20.
It’s not quite as pretty as our original layout, but it is a lot easier for the target
users to read.

Creating the Style Sheet
While you’re working on your alternate style sheet, it’s not a bad idea to link it
as the main style sheet attached to your document, so you can see your changes
easily. Take your existing style sheet and save it as zoom.css, then attach it to
your document. Now, disable your existing style sheet by wrapping it in a com
ment, as shown below.

File: fixedwidth.html (excerpt)

<head>

 <title>Footbag Freaks</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

<!--<link rel="stylesheet" type="text/css"

 href="fixedwidth.css" />-->

<link rel="stylesheet" type="text/css" href="zoom.css" />

</head>

We don’t want to use fixed widths in our zoom layout. As the text in a fixed-
width layout gets larger, one of two things will happen: either the text will become
too large for the fixed-width columns (imagine a very long word becoming longer
than the fixed-width column), or, if the column grows wider as the text gets larger,
the column will become wider than the screen itself, necessitating a horizontal
scroll bar.

First, edit the CSS rule for the body element to remove the min-width declaration
as well as the background image and color. In addition, make the base font size
large:

File: zoom.css (excerpt)

body {
 margin: 0;
 padding: 0;
 background-color: #333;

290

Creating the Style Sheet

color: white;

 font: large Arial, Helvetica, Verdana, sans-serif;

}

Then, delete everything but the padding property from the #wrapper rule.

Let’s make the header—which contains no text other than the tagline and the
image—into a white top banner for the page. To do this, add a CSS rule #header:

File: zoom.css (excerpt)

#header {
 background-color: white;
}

To make the content div the full width of the page, and to remove the pale
background color, delete the #content rule. We can also get rid of the #main and
#content-wrapper rules, as we used them only for positioning purposes.

Then, to move the sidebar above the page’s main content, remove the existing
declarations in the #extras rule, and style this div so it appears with a white
border:

File: zoom.css (excerpt)

#extras {
 border: 2px solid white;
 padding: 0.2em;
}

The rest of the changes that we need to make will affect the colors that are used
in the document, and remove some of the background image, margin, and padding
settings. My zoom.css file now contains the following rules:

File: zoom.css

body {

 margin: 0;

 padding: 0;

 background-color: #333;

 color: white;

 font:large Arial, Helvetica, Verdana, sans-serif;

}

#wrapper {

 padding: 10px;

}

#header {

 background-color: white;

291

Chapter 10: Fixed-width Layouts

}

#tagline {

 font-weight: bold;

 color: #050845;

 font-style: italic;

 margin: 0 0 0.5em 0;

 padding: 0 0 0 20px;

}

#extras {

 border: 2px solid white;

 padding: 0.2em;

}

#content .inner {

 margin: 30px;

}

#worldcuplogo {

 float: right;

 margin: 0 0 20px 40px;

 width: 111px;

}

#content h1 {

 font-size: 120%;

 color: #ccc;

}

#content h2 {

 font-size: 260%;

 font-weight: normal;

}

#content p {

 line-height: 1.6em;

 font-family: Georgia, Times, "Times New Roman", serif;

}

#dateline {

 font-size: 160%;

 font-weight: normal;

 font-family: Georgia, Times, "Times New Roman", serif;

}

.intro {

 font-weight: bold;

}

table.schedule {

 clear: right;

 width: 100%;

 line-height: 1.4em;

 border-collapse: collapse;

292

Creating the Style Sheet

border: 4px solid #ccc;

 color: white;

 background: #333;

}

table.schedule caption {

 margin: 0;

 padding: 0;

 color: white;

 line-height: 2em;

 text-align: left;

 font-weight: bold;

}

table.schedule thead tr {

 color: white;

 background: #333;

}

table.schedule thead tr th {

 padding: 0.4em 0.6em 0.4em 0.6em;

 border: 4px solid #ccc;

}

table.schedule tbody tr {

 border: 4px solid #ccc;

}

table.schedule tbody th {

 padding: 0.6em;

 border: 4px solid #ccc;

}

table.schedule tbody td {

 background: #333;

 padding-left: 0.6em;

 border-bottom: 4px solid #ccc;

}

table.schedule tbody tr.odd {

 background: #999;

}

table.schedule tbody tr.odd td {

 background: #666666;

 color: white;

}

table.schedule a:link {

 font-weight: bold;

 color: #fc0;

 text-decoration: underline;

}

table.schedule a:visited {

 font-weight: bold;

293

Chapter 10: Fixed-width Layouts

color: #fc0;

}

table.schedule a:hover {

 font-weight: bold;

 color: #fc0;

 text-decoration: none;

}

When the layout, styled with zoom.css, is displayed by the browser, it looks like
Figure 10.21.

294

Attaching Alternate Style Sheets

Figure 10.21. The finished “zoom” layout

Attaching Alternate Style Sheets
Many modern browsers, such as Firefox and Opera, already give users the ability
to select from multiple style sheets that are attached to a document, provided
the style sheets are linked correctly. To offer your users a choice of style sheets,
first uncomment your main style sheet to include it in the document once more,
and give the link element a title attribute with a value of default layout.

295

Chapter 10: Fixed-width Layouts

Then, move to the link element that refers to zoom.css. Change the rel attribute
to alternate stylesheet, and add zoom layout as its title:

<head>

 <title>Footbag Freaks</title>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1" />

 <link rel="stylesheet" type="text/css" href="fixedwidth.css"

title="default layout" />

 <link rel="alternate stylesheet" type="text/css" href="zoom.css"

title="zoom layout" />

</head>

In Firefox, which supports alternate style sheets, you’ll now be able to switch
between style sheets: simply select View > Page Style, then choose the style sheet
you want. The options you’re provided will reflect the names that you entered
as the title attributes of the linked style sheets, as Figure 10.22 shows.

Figure 10.22. Switching style sheets in Firefox

What about people whose browsers don’t offer this switching functionality? Well,
you can also implement your own “style switcher” to enable those users to switch
styles easily. While a discussion of how to build a switcher is beyond the scope
of this book, there are a number of ways to create this functionality using

296

Summary

JavaScript or a server-side language such as PHP or ASP. A popular JavaScript
method of switching style sheets is explained on A List Apart in the article “Al
ternative Style: Working With Alternate Style Sheets”5 by Paul Sowden.

Summary
In this chapter we’ve learned how to build fixed-width and centered layouts, but
I’ve also shown you how you can start to combine the techniques we’ve discussed
in this book to create many different kinds of layouts. CSS is a powerful tool
that can create for designers opportunities that would not have been easy to
achieve using a table-based layout. Consider, for example, the ease with which
we can create a zoom layout that’s tailored for users with low vision capabilities,
while still being able to provide a standard layout that meets our branding and
visual design aims.

By using the different layout concepts that we’ve discussed in these last three
chapters, along with the many different styling techniques we’ve explored in this
book, you’ll find that you can create a variety of layouts on which you might
wish to base your site designs. We have discussed here the basic building blocks
of CSS layout, and as you explore further and look at some of the examples
available on the Web, you’ll find that a good understanding of the basics will
stand you in good stead as you start to create more complex layouts using CSS.

5 http://www.alistapart.com/articles/alternate/

297

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/

298

Appendix A: CSS Miscellany

This appendix pulls together information about CSS that I thought was particu
larly interesting and potentially useful, but which didn’t fit the main flow of the
text. The operative word in the title of this appendix is “miscellaneous.” There’s
no particular order to the information here. The following list identifies the topics
covered in this appendix, shown in the order in which they’re presented:

❑ at-rules

❑ aural style sheets

❑ CSS and JavaScript

At-rules
The CSS 2 recommendation from the W3C defines a new type of CSS rule. It’s
called an “at-rule” because all the rules of this type start with an “at” symbol (@).
This type of rule is meant to be extensible. In other words, future editions of the
W3C recommendation, browser developers, and others may define new sets of
rules that begin with @.

For now, there are four groups of @ rules:

❑ @import

❑ @media

❑ @page

❑ @font-face

The @media rule allows you to define different output options for various media
in a single style sheet. Browser support is somewhat inconsistent, though it seems
to be getting better with each release. Right now, support for this rule is at least
usable in most modern browsers (the most notable exception being IE 5.2 on
Macintosh).

Initially, W3C defines that the following media types are valid for use with the
@media rule. However, you should note that the list is not guaranteed to be

Appendix A: CSS Miscellany

complete. As new technologies and display platforms emerge, more keywords will
undoubtedly be added.

❑ all

❑ aural (deprecated in CSS 2.1)

❑ braille

❑ embossed

❑ handheld

❑ print

❑ projection

❑ screen

❑ TTY

❑ TV

The purpose of all of these is largely self-explanatory, with the exception of em
bossed, which is intended to define output for a Braille printer. The following
HTML produces two decidedly different appearances, depending on whether
you’re viewing the page on your monitor or printing it out. It demonstrates the
syntax and use of the @media rule.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Demonstrating @media Rules</title>

 <style type="text/css">

 <!-

@media print {

 body {

 font-size: 12pt;

font-family: courier;

 }

 }

 @media screen {

300

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

At-rules

body {

 font-size: 36px;

 font-family: arial;

 }

 }

 @media screen, print {

 body {

 line-height: 1.2;

 }

 }

 -->

 </style>

</head>

<body>

 Let's see if this actually works and, if so, in which browsers.

 I've defined an @media rule for print that makes it print

 12-point Courier, but another @media rule that displays in

 36-pixel Arial on the screen. Both devices produce output with a

 line-height 120% of the default value.

</body>

</html>

Notice that it’s okay to define a single @media rule for application to multiple
media. In that case, the names of the media must be separated by commas. There
are two other ways to specify the medium to be used with a given style sheet or
rule. You can use the @import rule and supply the media type as a parameter, as
in this example:

@import url(bossvoice.css) aural;

This rule tells the browser to import the CSS style sheet called bossvoice.css,
and to apply it to aural output devices.

The second way to define a style’s medium is to use the media attribute of the
style tag, shown here:

<style type="text/css" media="projection">

body {

 color: blue;

 background-color: white;

}

</style>

301

Appendix A: CSS Miscellany

If you define a style sheet for a medium that understands the notion of a “page,”
you can use the @page at-rule to declare sizes, borders, page breaks, and the
presence or absence of crop marks on the output page.1

For example, to define an eight and a half-inch by 11-inch page with a half-inch
border all the way around, you would write an @page rule like this:

@page {

 size: 8.5in 11in;

 margin: 0.5in;

}

The size property can be given one of three constant values, in addition to the
specific size values shown earlier:

❑	 auto, which tells the browser to use the default page size for the browser ap
plication

❑	 landscape, where the larger dimension is the width

❑	 portrait, where the larger dimension is the height

The margin property is a shorthand for the following, more specific properties,
which may be specified individually:

❑	 margin-top

❑	 margin-right

❑	 margin-bottom

❑	 margin-left

You can also define special, overriding dimensions and margins for the first page
of a document, as well as separate dimensions for left- and right-hand pages using
the :first, :left, and :right pseudo-classes.

Here’s a set of @page rules that defines the layout for a document to be printed
on both sides, with a special setting for the front page:

1 The @page rule has some complexity associated with it, but I’m not going to attempt to cover that
here. If you’re curious, I suggest you go to the W3C page where the @page rule is defined.
[http://www.w3.org/TR/REC-CSS2/page.html#page-box]

302

http://www.w3.org/TR/REC-CSS2/page.html#page-box
[http://www.w3.org/TR/REC-CSS2/page.html#page-box]

Aural Style Sheets

@page {

 margin: 2cm; /* All margins set to 2cm */

}

@page:first {

 margin-top: 10cm; /* Top margin on first page 10cm */

}

/* 1cm larger margins near binding */

@page:left {

 margin-left: 3cm;

 margin-right: 4cm;

}

@page:right {

 margin-left: 4cm;

 margin-right: 3cm;

}

Under the CSS 2 Recommendation, you can control page breaks in paged output
as well. Page control is a very complex topic and one that is probably beyond not
only the scope of this discussion, but also the interest level of the vast majority
of web designers. So I’m not going to go into it here, except to say that if you
ever get into a position where you want or need to prepare a web page for printed
(or other paged) output, you can confidently state that you can control the page
break. The relevant properties are described in detail in Appendix B.

Aural Style Sheets
Many web designers agree that sound is a vastly under-utilized aspect of commu
nication on the Internet. Flash movies, streamed video, and podcasts are all ex
amples of ways in which sound is becoming a key part of the Web’s content.
However, opinions differ on how aural cues should be used to improve navigation
and user interfaces, particularly with regards to visually impaired users. In the
future, I anticipate that we’ll see far greater use of spoken language, background
music, and mixtures of voice and music to enliven the user experience and improve
the accessibility of web content, independent of screenreader software.

The CSS 2 Recommendation from the W3C defines a whole range of sound
(aural) presentation qualities that can be defined in CSS. Collectively, these make
up the components of an aural style sheet.

303

Appendix A: CSS Miscellany

Here’s a snippet of an aural style sheet, borrowed directly from the W3C’s web
page on aural style sheets:2

h1, h2, h3, h4, h5, h6 {

 voice-family: paul;

 stress: 20;

 richness: 90;

 cue-before: url(ping.au);

}

p.heidi {

 azimuth: center-left;

}

p.peter {

 azimuth: right;

}

p.goat {

 volume: x-soft;

}

Let’s go over this style sheet fragment, line by line.

All headings will be spoken using a voice-family called “paul.” A voice family is
much like a font family; it contains a collection of minor variations on a voice.
The headings will apply a stress value (determining the “contour” of a voice, i.e.
the degree of difference in inflection in various parts of the sentences) of 20,
which is pretty low.

The code defines a richness of 90, which is very high. Richness determines how
far a voice carries, and affects what we might think of as “loudness.” Before any
heading is pronounced, an “auditory icon” called ping.au will be played. You
can define cues to be played before and after any sound segment.

Any paragraph marked as an instance of the class “heidi” will appear to originate
from the listener’s left, in a vertical center of space. Paragraphs that are instances
of the class “peter” will come from the listener’s right side. All paragraphs spoken
by the “goat” voice will be extremely soft.

You get the idea. Again, a full treatment of this topic is beyond the scope of this
book, but I wanted you to gain something of an appreciation for the scope of
what can be done.

2 http://www.w3.org/TR/REC-CSS2/aural.html

304

http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/aural.html

CSS and JavaScript

With aural style rules, you can control the following characteristics of a voice or
the spoken presentation of the information on your web page:

❑ volume

❑ whether to speak words or spell them out

❑ pausing

❑ cue sounds before and after

❑ mixing (playing two sounds simultaneously)

❑ spatial location of the sound in three-dimensional space

❑ speech rate

❑ pitch and range of pitch

❑ stress

❑ richness

❑ how to speak punctuation (pronounce it or use it as pause cues)

❑ how to speak numerals (separate digits or numerical values)

The properties that control all of these factors are listed in Appendix C.

CSS and JavaScript
When you combine XHTML, JavaScript and CSS, you get something called
Dynamic HTML, or DHTML. Many people mistakenly believe that DHTML is
a technology. It’s not. It’s a term used to refer to the potential for high levels of
interactivity (dynamism) in pages generated using (X)HTML.

Many books have been written about DHTML including DHTML Utopia: Modern
Web Design using JavaScript and DOM, 3 which was written by Stuart Langridge
and published by SitePoint.

3 http://www.sitepoint.com/books/dhtml1/

305

http://www.sitepoint.com/books/dhtml1/
http://www.sitepoint.com/books/dhtml1/
http://www.sitepoint.com/books/dhtml1/

Appendix A: CSS Miscellany

I’ve omitted teaching you JavaScript or DHTML here because the subject is so
vast. This book is intended principally for beginning-to-intermediate web design
ers, not advanced folks using scripting and programming techniques.

Still, it’s important, as you begin to move beyond what’s in this book and develop
your skills as a web designer, that you have a basic appreciation of the potential
for DHTML. So let me provide a brief overview of the topic, just to whet your
appetite and perhaps forestall some of your budding questions about what is
possible.

At the core of DHTML is something called the Document Object Model, or
DOM. While the comparison is a bit simplistic, you can think of the DOM as a
specification or definition of the way you can refer to individual pieces of your
web pages. This, in turn, enables you to tell them to change something about
their display or behavior. JavaScript is the language that’s most often used to
write these instructions.

Essentially, each CSS property can be accessed and modified from a JavaScript.
Within the JavaScript code, you simply refer to the object by its ID or name,
identify the property whose value you wish to retrieve or change, and, if appro
priate, supply a new value. When the script is executed, the CSS modification
occurs.

For example, you could create a button on a web page that would hide some
particular piece of content (whose ID we’ll assume to be hereandgone). You
would define a JavaScript function called, for example, hideshow. It would look
something like this:

function hideShow() {

 document.getElementById("hereandgone").style.visibility="hidden";

}

Where you define the script, when and how it gets executed, and other similar
details are beyond the scope of our discussion here. The point is simply that you
can access and modify element styles in an HTML page, even after the page has
been rendered in the user’s browser using JavaScript. The syntax varies very little
from the example above, which is one of the reasons why the DOM has been
defined as it has. It seems cumbersome to have to type getelementById every
time you want to get an element’s style or other property, but the fact is that
since this operator is the same in every instance, you can quickly learn to handle
lots of different scripting situations with very little additional knowledge.

306

Appendix B: CSS Color Reference

As we discussed in detail in Chapter 7, there are five methods that specify color
values in CSS:

❑ descriptive color names

color: red;

❑ RGB hexadecimal values (including a three-character shorthand)

color: #ff0000;

color: #f00;

❑ RGB decimal values

color: rgb(255, 0, 0);

❑ RGB percentage values

color: rgb(100%, 0%, 0%);

❑ system color names

color: AppWorkspace;

This appendix provides a complete reference to the first three methods. The CSS
2 Recommendation1 prescribes a set of 17 descriptive color names, which are
presented in Table B.1. Netscape proposed an additional 124 color names, which
are supported by practically every graphical browser available today, and are
presented in Table B.2. Finally, CSS 2 also provides a set of 28 system color
names, which correspond to the colors used for different parts of the GUI
presented by the user’s operating system, and are presented in Table B.3. System
color names are supported in most current browsers, but older browsers typically
do not support them.

1 http://www.w3.org/TR/REC-CSS2/syndata.html#color-units

http://www.w3.org/TR/REC-CSS2/syndata.html#color-units
http://www.w3.org/TR/REC-CSS2/syndata.html#color-units
http://www.w3.org/TR/REC-CSS2/syndata.html#color-units

Appendix B: CSS Color Reference

Table B.1. Standard CSS color names

BlueGreen Red Hex EquivalentColor Name

2552550#00FFFFaqua

000#000000black

25500#0000FFblue

2550255#FF00FFfuchsia

128128128#808080gray

01280#008000green

02550#00FF00lime

00128#800000maroon

12800#000080navy

0128128#808000olive

1280128#800080purple

00255#FF0000red

192192192#C0C0C0silver

1281280#008080teal

255255255#FFFFFFwhite

0255255#FFFF00yellow

0156255#FFA500orange

308

Table B.2. Netscape extended color names

BlueGreen Red Hex EquivalentColor Name

255248240#F0F8FFaliceblue

215235250#FAEBD7antiquewhite

212255127#7FFFD4aquamarine

255255240#F0FFFFazure

220245245#F5F5DCbeige

196228255#FFE4C4bisque

205235255#FFEBCDblanchedalmond

22643138#8A2BE2blueviolet

4242165#A52A2Abrown

135184222#DEB887burlywood

16015895#5F9EA0cadetblue

0255127#7FFF00chartreuse

30105210#D2691Echocolate

80127255#FF7F50coral

237149100#6495EDcornflowerblue

220248255#FFF8DCcornsilk

6120220#DC143Dcrimson

2552550#00FFFFcyan

13900#00008Bdarkblue

1391390#008B8Bdarkcyan

11134139#B8860Bdarkgoldenrod

169169169#A9A9A9darkgray

01000#006400darkgreen

107183189#BDB76Bdarkkhaki

1390139#8B008Bdarkmagenta

4710785#556B2Fdarkolivegreen

0140255#FF8C00darkorange

20450153#9932CCdarkorchid

309

Appendix B: CSS Color Reference

BlueGreen Red Hex EquivalentColor Name

00139#8B0000darkred

122150233#E9967Adarksalmon

143188143#8FBC8Fdarkseagreen

1396172#483D8Bdarkslateblue

797947#2F4F4Fdarkslategray

2092060#00CED1darkturquoise

2110148#9400D3darkviolet

14720255#FF1493deeppink

2551910#00BFFFdeepskyblue

105105105#696969dimgray

25514430#1E90FFdodgerblue

3434178#B22222firebrick

240250255#FFFAF0floralwhite

3413934#228B22forestgreen

220220220#DCDCDCgainsboro

255248248#F8F8FFghostwhite

0215255#FFD700gold

32165218#DAA520goldenrod

47255173#ADFF2Fgreenyellow

240255240#F0FFF0honeydew

180105255#FF69B4hotpink

9292205#CD5C5Cindianred

130075#4B0082indigo

240255255#FFFFF0ivory

140230240#F0E68Ckhaki

250230230#E6E6FAlavender

245240255#FFF0F5lavenderblush

0252124#7CFC00lawngreen

205250255#FFFACDlemonchiffon

310

BlueGreen Red Hex EquivalentColor Name

230216173#ADD8E6lightblue

128128240#F08080lightcoral

255255224#E0FFFFlightcyan

210250250#FAFAD2lightgoldenrodyellow

144238144#90EE90lightgreen

211211211#D3D3D3lightgrey

193182255#FFB6C1lightpink

122160255#FFA07Alightsalmon

17017832#20B2AAlightseagreen

250206135#87CEFAlightskyblue

153136119#778899lightslategray

222196176#B0C4DElightsteelblue

224255255#FFFFE0lightyellow

5020550#32CD32limegreen

230240250#FAF0E6linen

2550255#FF00FFmagenta

170205102#66CDAAmediumaquamarine

20500#0000CDmediumblue

21185186#BA55D3mediumorchid

219112147#9370DBmediumpurple

11317960#3CB371mediumseagreen

238104123#7B68EEmediumslateblue

1542500#00FA9Amediumspringgreen

20420972#48D1CCmediumturquoise

13321199#C71585mediumvioletred

1122525#191970midnightblue

250255245#F5FFFAmintcream

225228255#FFE4E1mistyrose

181228255#FFE4B5moccasin

311

Appendix B: CSS Color Reference

BlueGreen Red Hex EquivalentColor Name

173222255#FFDEADnavajowhite

230245253#FDF5E6oldlace

107 142 35

152 251 152

205 133 63

65 105 225

255 245 238

4582160#A0522Dsienna

235206135#87CEEBskyblue

20590106#6A5ACDslateblue

144128112#708090slategray

250250255#FFFAFAsnow

1272550#00FF7Fspringgreen

olivedrab

palegreen

0165255#FFA500orange

069255#FF4500orangered

214112218#DA70D6orchid

170232238#EEE8AApalegoldenrod

peru

238238175#AFEEEEpaleturquoise

147112219#DB7093palevioletred

213239255#FFEFD5papayawhip

185218255#FFDAB9peachpuff

royalblue

203192255#FFC0CBpink

221160221#DDA0DDplum

230224176#B0E0E6powderblue

143143188#BC8F8Frosybrown

seashell

1969139#8B4513saddlebrown

114128250#FA8072salmon

96164244#F4A460sandybrown

8713946#2E8B57seagreen

#6B8E23

#98FB98

#CD853F

#4169E1

#FFF5EE

312

BlueGreen Red Hex EquivalentColor Name

steelblue #4682B4

tan #D2B48C

thistle #D8BFD8

tomato #FF6347

turquoise #40E0D0

violet #EE82EE

wheat #F5DEB3

245245245#F5F5F5whitesmoke

50205154#9ACD32yellowgreen

70

210

216

255

64

238

245

130 180

180 140

191 216

99 71

224 208

130 238

222 179

313

Appendix B: CSS Color Reference

Table B.3. Standard CSS system color names

DescriptionColor Name	

active window border color ActiveBorder

ActiveCaption active window caption color

ButtonHighlight	 highlight color for three-dimensional display ele
ments (edges facing light source)

background color of a multiple document inter-
face

AppWorkspace

desktop background color Background

face color for three-dimensional display elements ButtonFace

shadow color for three-dimensional display ele-
ments (edges opposite light source)

ButtonShadow	

text color on push buttonsButtonText

CaptionText text color in caption, size box, and scroll bar ar
row box

InactiveCaption	 inactive window caption color

grayed-out (disabled) text colorGrayText

background color for selected items in a control Highlight

text color for selected items in a control HighlightText

inactive window border color InactiveBorder

Scrollbar	 scroll bar background color

inactive caption text colorInactiveCaptionText

tooltip background color InfoBackground

tooltip text colorInfoText

menu background color Menu

menu text colorMenuText

dark shadow color for three-dimensional display
elements

ThreeDDarkShadow

face color for three-dimensional display elements ThreeDFace

highlight color for three-dimensional display ele
ments

ThreeDHighlight

light color for three-dimensional display elements ThreeDLightShadow

314

DescriptionColor Name

shadow color for three-dimensional display ele
ments

ThreeDShadow

window background color Window

window frame colorWindowFrame

text color in windowsWindowText

315

316

Appendix C: CSS Property
Reference

This appendix contains a complete reference to all CSS properties at the time of
this writing. This includes properties defined in the CSS11 and CSS 2.12 specific
ations, as well as browser-specific extensions to the CSS recommendations.

Where a browser-specific extension exposes the same functionality as a planned
feature in CSS3, which is currently a working draft, this is indicated with a refer
ence to the relevant draft.

A note on browser versions: compiling an exhaustive list of browser compatibility
in a field that is constantly changing would result in a printed resource that is
out-of-date immediately after going to print. The notes here on compatibility
should therefore be used as a guide, based on browser versions that were available
when going to print. Versions for Internet Explorer (Windows) are listed due to
the percentage of the population still persisting with older versions of IE. Version
7 was not available for download at the time this book went to print, so mentions
of that browser are based on tests using the Beta 2 release. Internet Explorer on
the Macintosh platform has been officially retired by Microsoft, and was not in
cluded in these tests.

For Mozilla browsers, testing was performed using the latest version of the two
primary browsers that share the Gecko rendering engine, namely Firefox 1.5.0.1
and Seamonkey 1.0 (formerly the Mozilla Application Suite). Other browsers
that use the Gecko engine (e.g. Netscape, Flock, Camino) can generally be relied
upon to support the same subset of CSS properties as those supported by Firefox
and Seamonkey.

Opera and Safari users also tend to update regularly, and the versions used for
testing this appendix were Opera 8.52 and Safari 2.0. The popular Konqueror
browser for Linux supports a similar subset of CSS properties as Safari. For a
continually updated and comprehensive list of CSS browser support, visit
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS).

1 http://www.w3.org/TR/REC-CSS1
2 http://www.w3.org/TR/CSS21/

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/CSS21/
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(CSS)
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/CSS21/

Appendix C: CSS Property Reference

azimuth
azimuth sets the direction in horizontal space from which sound originates when
the content is presented aurally (e.g. in a speaking browser for the blind).

For full details on this property, see the CSS 2.1 specification.3

Inherited: Yes

See also: elevation

Value

This property takes as its value an angle (-360deg to 360deg, where 0deg is in
front of the listener), or a descriptive constant (e.g. far-right behind).

Initial value: center

Compatibility

CSS Version: 2.1

The property is not yet supported by any browser.

Examples

The following style rule will cause all headings to be heard from the front-left of
the sound field:

h1, h2, h3, h4, h5, h6 {

 azimuth: -45deg;

}

background
This shorthand property allows you to set all the background properties of an
element with a single property declaration.

Inherited: No

3 http://www.w3.org/TR/REC-CSS2/aural.html#spatial-props

318

http://www.w3.org/TR/REC-CSS2/aural.html#spatial-props
http://www.w3.org/TR/REC-CSS2/aural.html#spatial-props

background-attachment

See also: background-attachment, background-color, background-image,
background-position, and background-repeat

Value

You can specify any of the values permitted by the five background- properties,
in any order, separated by spaces. If a property is not specified, its default is used.

Initial value: none

Compatibility

CSS Version: 1

The property is supported by Internet Explorer 4 or later, Opera, Safari, and all
Mozilla browsers.

Examples

This rule gives the page a fixed (non-scrolling) background image, which will
display over a solid white background:

body {

 background: #fff url(/images/texture.gif) fixed;

}

background-attachment
This property determines whether the background image assigned to an element
scrolls in synchronization with the element’s content, or remains fixed in relation
to the browser window. For example, if you wanted the top-left corner of your
page background image to remain in the top-left corner of the browser window,
even as the page was scrolled, you would set background-attachment to fixed.

Inherited: No

See also: background-image

Value

fixed or scroll

319

Appendix C: CSS Property Reference

Initial value: scroll

Compatibility

CSS Version: 1

The property is supported by Internet Explorer 4 or later, Opera, Safari and all
Mozilla browsers.

Internet Explorer for Windows, prior to version 7, and Opera browsers (up to
version 6), do not correctly support background-attachment: fixed on elements
other than body. Internet Explorer 7, Opera, Safari, and Mozilla browsers all get
this right.

Examples

This style rule applies a background image to the page, and specifies that the
image should not scroll with the page content:

body {

 background-image: url(/images/texture.gif);

 background-attachment: fixed;

}

background-color
This property sets the background color for an element.

Note that the default background color is transparent, so even though this
property is not inherited, nested elements will allow the background to show
through by default. The reason for this arrangement is to allow background images
to be displayed behind nested elements.

It is considered good practice always to specify a foreground color (with the color
property) whenever you specify a background color, and vice versa.

Inherited: No

See also: color

320

background-image

Value

The property takes any CSS color value (see Appendix B) or transparent.

Initial value: transparent

Compatibility

CSS Version: 1

This property works in all CSS-compatible browsers.

Example

This style rule fills blockquote tags of class warning with a tomato-red back
ground color:

blockquote.warning {

 background-color: #ff6347;

 border: 0 solid #ff6347;

}

background-image
This property sets the background image for an element. By default, element
backgrounds are transparent, so the background image will show through nested
elements, unless they have been assigned background colors or images of their
own.

The positioning and tiling of a background image may be customized with the
background-position and background-repeat properties, respectively.

Inherited: No

See also: background-attachment, background-color, background-position,
background-repeat

Value

The property takes as its value a URL or none. In CSS, URLs must be surrounded
by the url() wrapper, not quotes. See the examples below.

321

Appendix C: CSS Property Reference

Initial value: none

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers.

Example

These style rules demonstrate the assigning of background images with relative,
absolute, and fully qualified URLs, respectively:

body {

 background-image: url(../images/texture.gif);

}

body {

 background-image: url(/images/texture.gif);

}

body {

 background-image: url(http://www.mysite.com/images/texture.gif);

}

background-position
By default, an element’s background image (assigned with the background-image
property) is aligned so that its top and left edges are flush with the top and left
edges of the element (including any padding), respectively. With the
background-position property, you can assign a different position for the image.

Inherited: No

See also: background-image

Value

The property takes one position specifier, or two position specifiers separated by
a space.

322

background-position

Each of the position specifiers may be a CSS length measurement (pixels, points,
ems, etc.), a percentage, or one of the constants from Table C.1.

Table C.1. background-position constants

HorizontalVertical

left, center, righttop, center, bottom

If you specify only one measurement or percentage, it applies to the horizontal
position; the vertical position of the image will default to 50%. If you specify two
measurements or percentages, the first specifies the horizontal position, while
the second specifies the vertical. Negative measurements/percentages are allowed,
but are rarely useful.

If you specify only one constant, the other dimension defaults to center. The
order of constants is not significant.

You can mix length measurement types and percentages (i.e. specify vertical po
sition in one format, horizontal in another). However, you cannot mix
lengths/percentages with constants.

Percentages and constants differ from length measurements in the way they pos
ition the image. In an element that’s 500 pixels wide, a horizontal position of
center or 50% will center the image within the horizontal area of the element.
However, a horizontal position of 250px (or any equivalent length measurement)
positions the left edge of the image exactly 250 pixels from the left edge of the
element.

Initial value: 0 0

Compatibility

CSS Version: 2.1

The property works in Internet Explorer 4 or later, Opera, Safari, and Mozilla
browsers.

Examples

In this style rule, the background image is centered in the element area:

323

Appendix C: CSS Property Reference

body {

 background-position: center;

}

In both of these style rules, the background image is placed flush against the
bottom-right corner of the element:

body {

 background-position: 100% 100%;

}

body {

 background-position: bottom right;

}

In this style rule, the background image’s left edge will be positioned 20 pixels
from the left of the element, and the image will be centered vertically:

body {

 background-position: 20px;

}

In this style rule, the background image’s top edge is 20 pixels from the top of
the element, and the image will be centered horizontally across the element’s
width:

body {

 background-position: 50% 20px;

}

The following style rule is illegal, as it mixes a length measurement with a constant:

body {

 background-position: 20px center; /* This is illegal! */

}

background-position-x,
background-position-y

These nonstandard properties are supported only by Internet Explorer browsers,
and let you individually specify the two components of the background-position
property. These properties are most useful in Dynamic HTML scripting in an
Internet Explorer-only environment.

324

background-repeat

Inherited: No

See also: background-position

Value

Both of these properties support values specified in CSS lengths and percentages.
Additionally, background-position-x and background-position-y support
the horizontal and vertical position constants listed in Table C.1. Important
differences between positions specified with CSS length measurements and pos
itions specified with percentages or constants are described under
background-position.

Initial value: 0

Compatibility

CSS Version: n/a

The properties are supported by Internet Explorer 4 or later only.

Example

This style rule places the background image 20 pixels from the top, and centers
it horizontally on the page:

body {

 background-position-x: center;

 background-position-y: 20px;

}

background-repeat
By default, a background image, specified with the background-image property,
will repeat horizontally and vertically to fill the element (this is often referred to
as tiling). The background-repeat property lets you override that behavior with
your own preferences.

Inherited: No

See also: background-image, background-position

325

Appendix C: CSS Property Reference

Value

The property takes as a value repeat, no-repeat, repeat-x, or repeat-y.

The first two options are self-explanatory. repeat-x causes the image to repeat
only horizontally, effectively forming a horizontal band with the background
image. repeat-y causes the image to repeat only vertically, forming a vertical
band.

Initial value: repeat

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule uses background-repeat and background-position to create a
horizontal band 50 pixels below the top of the page:

body {

 background-repeat: repeat-x;

 background-position: 0 50px;

}

behavior
An Internet Explorer-only property, behavior lets you assign packaged Dynamic
HTML code to HTML elements in bulk. For a full description of the behaviors
feature in Internet Explorer, refer to the MSDN web site.4

Inherited: No

Value

The property takes a URL (specified with the CSS url() wrapper) or an object
ID.

4 http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

326

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp
http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

border

Initial value: none

Compatibility

CSS Version: n/a

Attached behaviors are supported by Internet Explorer 5 for Windows or later.
Other behavior types are supported by Internet Explorer 5.5 for Windows or
later.

Example

The following style rule applies the behavior defined in the draganddrop.htc
file to any element of class draganddrop:

.draganddrop {

 behavior: url(draganddrop.htc);

}

border
This is a shorthand property that lets you set the same width, color, and style
for all four borders of an element with a single property declaration. This property
sets up identical borders on all four sides, but can be followed by side-specific
border properties that modify them.

Inherited: No

See also: border-width, border-style, and border-color

Value

You can specify a border-width value, a border-style value, and a border-
color value, or any combination of the three, in any order, separated by spaces.

Initial value: none

Compatibility

CSS Version: 1

327

Appendix C: CSS Property Reference

The property works on all CSS-compatible browsers, with the same browser-
specific limitations as the individual border- properties.

Example

This style rule puts a dashed, yellow, single-pixel border around div tags of class
advertisement:

div.advertisement {

 border: dashed yellow 1px;

}

border-bottom, border-left, border-right,
border-top

These are shorthand properties that let you set the style, width, and color of the
border on a particular side of an element with single property declaration.

Inherited: No

See also: border-width, border-style, and border-color

Value

You can specify a border-width value, a border-style value, and a border-
color value, or any combination of the three, in any order, separated by spaces.

Initial value: none

Compatibility

CSS Version: 1

The properties work in all CSS-compatible browsers.

Example

Applies a single-pixel, dashed, blue border to the bottom of elements with a title
attribute:

328

border-bottom-color, border-left-color, border-right-color, border-top-color

[title] {

 border-bottom: dashed blue 1px;

}

Note that attribute selectors are not yet supported by many browsers.

border-bottom-color, border-left-color,
border-right-color, border-top-color

Each of these properties sets the color of the border along one side of an element.

Inherited: No

See also: border-color

Value

The properties take any CSS color value (see Appendix B).

Initial value: none

Compatibility

CSS Version: 2.1

The properties work in all CSS-compatible browsers.

Example
p.funky {

 border-style: solid;

 border-top-color: blue;

 border-right-color: yellow;

 border-bottom-color: #ff0000;

 border-left-color: #0f0;

}

329

Appendix C: CSS Property Reference

border-bottom-style, border-left-style,
border-right-style, border-top-style

Each of these properties sets the style of the border along one side of an element.

Inherited: No

See also: border-style

Value

Any of the constants allowed for border-style.

Initial value: none

Compatibility

CSS Version: 2.1

The properties work in all CSS-compatible browsers.

Example

This style rule puts double lines along the left and right, and single lines along
the top and bottom, of blockquote elements:

blockquote {

 border-top-style: solid;

 border-bottom-style: solid;

 border-left-style: double;

 border-right-style: double;

}

border-bottom-width, border-left-width,
border-right-width, border-top-width

Each of these properties sets the width of the border along one side of an element.

Inherited: No

330

border-collapse

See also: border-width

Value

The value of these properties can be thin, medium, thick, or any CSS length
measurement.

Initial value: medium

Compatibility

CSS Version: 1

The properties work in all CSS-compatible browsers.

Example

This style rule puts two-pixel borders along the left and right, and one-pixel bor
ders along the top and bottom, of blockquote elements:

blockquote {

 border-style: solid;

 border-top-width: 1px;

 border-bottom-width: 1px;

 border-left-width: 2px;

 border-right-width: 2px;

}

border-collapse
This property lets you choose between two systems that the browser can use to
define table borders.

The default system, which you can select with the value separate, is the familiar
“separate borders” system. Here, each table cell has its own borders, which are
separated from those of neighboring cells by the table’s cell spacing. The new
system, which you can select with the collapse value, gets rid of any cell spacing,
combines the borders of adjacent cells, and lets you assign borders to row and
column groups. For full details, refer to the CSS 2.1 specification.5

5 http://www.w3.org/TR/CSS21/tables.html#collapsing-borders

331

http://www.w3.org/TR/CSS21/tables.html#collapsing-borders
http://www.w3.org/TR/CSS21/tables.html#collapsing-borders

Appendix C: CSS Property Reference

Inherited: Yes

See also: empty-cells

Value

collapse or separate

Initial value: separate6

Compatibility

CSS Version: 2.1

This property works in Internet Explorer 5 or later for Windows, Opera, Safari,
and Mozilla browsers.

Example

This style rule sets tables of class data to use the collapsed border model:

table.data {

 border-collapse: collapse;

}

border-color
The border-color property sets the color of the border surrounding the selected
element(s).

The colors may be set individually for each side using the border-bottom-color,
border-left-color, border-right-color, and border-top-color properties.

Inherited: No

6 The initial value prescribed by the CSS 2 specification is actually collapse; however, all current
browsers’ default table rendering systems correspond to separate. Therefore, the CSS Working
Group has proposed changing the default value of this property to separate in a future version
of the CSS specification. This proposal may be found in the Errata for the CSS 2 specification.

332

border-color

Value

You can specify from one to four different color values (see Appendix B) to color
different sides of the element, as shown in Table C.2.

Table C.2. Effects of multiple values on border properties

Effect on Borders Number
of
Values

All four borders receive the value specified. 1

The top and bottom (horizontal) borders receive the first value; left
and right (vertical) borders receive the second.

2

The top border receives the first value, vertical borders receive the
second, and the bottom border receives the third.

3

The values are applied to top, right, bottom, and left borders, respect
ively.

4

Initial value: The color property of the element, which may be inherited if it’s
not explicitly specified.

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule puts blue borders on the top and bottom, and red borders on the
left and right sides, of blockquote elements:

blockquote {

 border-style: solid;

 border-color: blue red;

}

333

Appendix C: CSS Property Reference

border-spacing
This property is the CSS equivalent to the cellspacing attribute of the HTML
<table> tag. It lets you specify the spacing that will appear between cells in a
table. This property is ignored if border-collapse is set to collapse for the
table.

Inherited: Yes

See also: border-collapse

Value

The property takes a single CSS length measurement, or two lengths separated
by a space. A single value will be applied as both the horizontal and vertical
spacing between cells. Two values will be applied as horizontal and vertical spa
cing, respectively.

Initial value: 0

Compatibility

CSS Version: 2.1

The property is supported by Safari, Opera, and Mozilla browsers.

Example

This style rule sets spacing of five pixels between all table cells in tables of class
spacious:

table.spacious {

 border-spacing: 5px;

}

border-style
The border-style property sets the style of the border surrounding the selected
element(s).

334

border-style

The style may be set for each side individually, using the border-bottom-style,
border-left-style, border-right-style, and border-top-style properties.

Inherited: No

Value

The CSS specifications provide a set of constants for a range of border styles.
Table C.3 shows the available constants and the browsers that support them.

You can specify from one to four different style values to style each side of the
element differently, as shown in Table C.2.

The difference between none and hidden, though not visible in Table C.3, arises
in HTML tables where the border-collapse property is set to collapse. When
two cells share a border and one of them specifies a style of none for that border,
the other cell’s border style takes precedence and the border is drawn.

However, the hidden border style takes precedence over all other border styles;
therefore, if the first cell in the previous example specified a style of hidden, the
other cell’s border style would be ignored and no border would be drawn. See
the CSS 2 Specification7 for a full discussion of table border conflict resolution.

Initial value: none

7 http://www.w3.org/TR/REC-CSS2/tables.html#border-conflict-resolution

335

http://www.w3.org/TR/REC-CSS2/tables.html#border-conflict-resolution
http://www.w3.org/TR/REC-CSS2/tables.html#border-conflict-resolution

Appendix C: CSS Property Reference

Table C.3. CSS border style constants

SampleSupporting Browsers CSS SpecConstant

double CSS1 All CSS browsers

none CSS1 All CSS browsers

All CSS browsers CSS1groove

All CSS browsers CSS1inset

solid CSS1 All CSS browsers

All CSS browsers CSS1outset

All CSS browsers CSS1ridge

Mozilla, IE 5.5/Win+, Opera,
Safari

CSS1dashed

Mozilla, IE 5.5/Win+, Opera,
Safari

CSS1dotted

Mozilla, IE 5.5/Win+, Opera,
Safari

CSS 2hidden

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers. For specific compatibility
information, see above.

Note that in versions up to and including 6, Internet Explorer rendered a dotted
border identically to a dashed one. Internet Explorer 7 corrects this.

Example

This style rule makes any element of class fauxbutton look like a button by
giving it an outset border style, a light grey background, and black text:

336

border-width

.fauxbutton {

 border-style: outset;

 border-color: grey;

 border-width: medium;

 background: lightgrey;

 color: black;

}

border-width
The border-width property sets the width of the border surrounding the selected
element(s).

The widths for each side may be set individually using the border-bottom-width,
border-left-width, border-right-width, and border-top-width properties.

Inherited: No

Value

The property takes as a value thin, medium, thick, or any CSS length measure
ment.

You can specify from one to four different values to set different border widths
for each side of the element, as shown in Table C.2.

Initial value: medium

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule puts thick borders on the top and bottom, and thin borders on
the left and right sides of blockquote elements:

blockquote {

 border-style: solid;

 border-width: thick thin;

}

337

Appendix C: CSS Property Reference

bottom

This property lets you set the distance between the bottom edge of an absolute
positioned element (including its padding, border, and margin) and the bottom
edge of the positioning context in which it resides. The positioning context is the
padding area of the element’s nearest ancestor that has a position property value
other than static, or the body element.

For relative positioned elements, this property sets a relative offset from the
normal position of its bottom edge. So, a setting of 10px will shift the bottom
edge of the box up by ten pixels, and a setting of -10px will shift it down by the
same amount.

Inherited: No

See also: position, left, top, and right

Value

The property takes a CSS length measurement, a percentage value, or the auto
constant. Percentages are based on the height of the parent element. The auto
constant tells the browser to determine the position of the bottom edge itself,
based on whatever other constraints may exist on the size/position of the element.

Initial value: auto

Compatibility

CSS Version: 2.1

The property works in Internet Explorer 5 or later, Opera, Safari, and Mozilla
browsers.

Example

This style rule positions the element with ID menu at the bottom of the document:

#menu {

 position: absolute;

 bottom: 0;

 width: 100px;

338

caption-side

height: 200px;

}

caption-side
This property lets you specify the side of a table on which that table’s caption
(specified with the <caption> tag) should appear.

Inherited: Yes

Value

The property takes as a value either of the following constants: top, bottom.

Initial value: top

Compatibility

CSS Version: 2.1

The property works in Internet Explorer 5 for Macintosh, Opera, and Mozilla
browsers. Mozilla browsers also implement the unofficial values of left and
right.

Example

This style rule places captions at the bottom of all tables that occur within other
tables:

table table {

 caption-side: bottom;

}

clear
Setting a clear property on an element lets you specify that it should appear
below any floating elements that would normally cut into it. You can specify that
the element should be clear of left-floated elements, right-floated elements, or
both.

Inherited: No

339

Appendix C: CSS Property Reference

See also: float

Value

The property can take as its value left, right, none, or both.

Initial value: none

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule ensures that the element with ID footer will be clear of any
floating elements that appear above it in the page:

#footer {

 clear: both;

}

clip
This property clips (or crops) the visible region of the absolute- or fixed-positioned
element(s) to which it is applied. The element occupies the same amount of space
on the page as usual, but only the area specified by this property is displayed.

In contrast to the overflow property, this property affects only the visible area
of an element (including its padding, borders, etc.). The size and position of the
element are not affected by this property.

Inherited: No

See also: overflow

Value

The current CSS specification allows only for rectangular clipping regions. You
can specify such a region by wrapping four measurement values in the CSS rect()
wrapper, as follows:

340

color

clip: rect(top right bottom left);

For an element that’s x pixels wide and y pixels high, the default clipping region
(assuming it has no borders or padding to increase its rendered area) would be
rect(0px xpx ypx 0). To trim ten pixels from each side of the image, you’d
change this to rect(10px x-10px y-10px 10px), where you would calculate
and substitute the actual values of x-10 and y-10.

The default value, auto, lets the browser determine the area of the element to
draw, as usual.

Initial value: auto

Compatibility

CSS Version: 2.1

The property works in all CSS-compatible browsers.

Note that Opera browsers will clip only the rendered content of the element—not
its background. This is actually correct according to the CSS 2.1 specification,
although it does not match the established behavior of other browsers.

Example

This style rule will clip ten pixels from the left and right sides of the element with
ID logo, which is a 100 x 100-pixel image:

#logo {

 position: absolute;

 clip: rect(0px 90px 100px 10px);

}

color
This property sets the foreground (text) color of the element. It also defines the
default border color of the element.

In general, you should always specify a background color when you specify a
foreground color, and vice versa.

Inherited: Yes

341

Appendix C: CSS Property Reference

See also: background-color

Value

The property takes as its value any CSS color value (see Appendix B).

Initial value: black

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule sets paragraphs of class warning to have white text on a tomato-
red background:

p.warning {

 color: white;

 background-color: #ff6347;

}

content
Sometimes it makes sense to generate some text at the beginning or end of an
element as part of that element’s style. Termed generated content, this text is
not part of the HTML document, but is generated purely by the style sheet. The
CSS content property is intended for this purpose. You must apply it to the
:before or :after pseudo-elements, as shown in the examples below.

Inherited: No

See also: counter-increment, counter-reset, quotes

Value

The CSS 2.1 specification mandates a number of different generated content
formats, but not all of them are supported by current browsers. You can use any
combination of the following content formats by listing them one after the other,
separated by spaces.

342

content

"arbitrary string"
This format lets you place a string of text before or after the actual content
of the element. You cannot format this text by placing HTML code in the
string—the browser will display the tags as text. Instead, use CSS to style the
string, as in the examples below. The special code \A in the string produces
a line break (same effect as an HTML
 tag).

Browser support:

Partially supported by: Mozilla browsers (text is displayed but the \A code is
ignored)

Fully supported by: Opera

url(http://url.goes.here)
This format lets you place some external resource before or after the actual
content of the element. For example, if you supply a URL to an image, the
browser should place that image before/after the content of the element. If
you supply a URL to an HTML document, the browser should display the
contents of the document before/after the content of the element.

There are obvious complexities that come into play here, but since no browsers
support this format yet, any further discussion would be purely academic.

counter(name)

counter(name, style)

counters(name, string)

counters(name, string, style)

These formats let you generate numbered elements (for example, numbered
section headings) without having to resort to an ordered list () in the
HTML document. You must define, increment, and reset your counters when
appropriate using the counter-increment and counter-reset CSS properties,
then use one of the above formats to display the value of a counter where
desired.

counter(name) will display the value of the named counter in decimal format,
while counter(name, style) lets you specify the style in which to display
the counter value (you can use any style allowed by the list-style-type
CSS property). You can also define hierarchical counters to produce multiple-
level numbering (e.g. “Section 5.2.3”), the values of which you can output
with counters(name, string) or counters(name, string, style). The
string argument specifies the string that is used to separate the numbers,
and is typically a period (".").

343

Appendix C: CSS Property Reference

Browser support: Mozilla browsers, Opera

attr(attribute)

This format lets you output the value of an attribute of the element (e.g. the
title attribute of an <a> tag) before or after the actual content of the ele
ment.

Browser support: Mozilla browsers, Opera

open-quote

close-quote

These formats let you display opening or closing quotation marks, the exact
appearance of which is dictated by the CSS quotes property.

Browser support: Mozilla browsers, Opera

no-open-quote

no-close-quote

These formats let you put “fake” opening or closing quotes that don’t actually
display anything, but which still jump in and out of nesting levels defined in
the quotes property.

Browser support: Mozilla browsers

normal

This is the default setting of “no generated content.”

Initial value: "" (the empty string)

Compatibility

CSS Version: 2.1

Safari and Internet Explorer do not support the content property; refer to each
property above for other browser support.

Examples

This style rule puts the text “Note: ” in bold at the start of a paragraph of class
note:

p.note:before {

 content: "Note: ";

344

counter-increment

font-weight: bold;

}

These style rules put angle brackets (< >) around span elements of class tagname
using generated content and the quotes property:

span.tagname {

 quotes: "<" ">";

}

span.tagname:before {

 content: open-quote;

}

span.tagname:after {

 content: close-quote;

}

These style rules put quotation marks around <blockquote> elements. The third
style rule applies to blockquote elements that have a cite attribute, and modifies
the content property to close the quotation marks and display the source of the
citation on a new line:

blockquote:before {

 content: open-quote;

}

blockquote:after {

 content: close-quote;

}

blockquote[cite]:after {

 content: close-quote "\A from " attr(cite);

}

Unsupported by current browsers, these style rules should place a standard HTML
header and footer on the current page:

body:before {

 content: url(standardheader.html);

}

body:after {

 content: url(standardfooter.html);

}

counter-increment
This property increments or decrements a named counter (for display with the
content property) for each occurrence of the selected element(s).

345

Appendix C: CSS Property Reference

On nested elements, a hierarchical counter is automatically created, so that you
effectively have a separate counter at each level of the structure.

Inherited: No

See also: content, counter-reset

Value

The property takes as its value a counter name, optionally followed by a positive
or negative integer to indicate how much to increment (positive) or decrement
(negative) the counter. If you want to increment/decrement multiple counters
for a single element, you can separate their names (and optional integers) by
spaces.

The default value, none, is also supported, but is of little practical use.

Initial value: none

Compatibility

CSS Version: 2.1

The property is supported by Mozilla browsers and Opera.

Examples

This simple example will keep track of the number of h1 tags in the document,
and will output a chapter number at the start of each:

h1 {

 counter-increment: chapter;

}

h1:before {

 content: "Chapter " counter(chapter) " - ";

}

This example uses a counter to number div elements in the document, then
displays the counter value in the h1 tags appearing within them. Because the
counters() format is used to output the counter value, nested div elements will
be numbered hierarchically (e.g. “Division 2.1.3”):

346

counter-reset

div {

 counter-increment: division;

}

div > h1:before {

 content: "Division " counters(division,".") ": ";

}

counter-reset
This property sets a named counter (for display with the content property) to
a particular value each time the enclosing style rule is matched.

By default, the counter is reset to zero, but you can specify any value you like.

Inherited: No

See also: counter-increment

Value

The property takes a counter name, optionally followed by a positive or negative
integer that specifies the new value for the counter (the default is 0). If you want
to set multiple counters for a single element, you can separate their names (and
optional integers) by spaces.

The default value, none, is also supported, but is of little practical use.

Initial value: none

Compatibility

CSS Version: 2.1

The property is supported by Mozilla browsers and Opera.

Example

This example lets you use h1 elements to mark chapters, and h2 elements to mark
subsections and display hierarchical numbering on section headings:

h1 {

 counter-increment: chapter;

 counter-reset: section;

347

Appendix C: CSS Property Reference

}

h1:before {

 content: "Chapter " counter(chapter) " - ";

}

h2 {

 counter-increment: section;

}

h2:before {

 content: "Section " counter(chapter) "." counter(section) " - ";

}

cue
Sound cues are used by aural (speaking) browsers for the visually impaired as
“audio icons.” This is a shorthand property that lets you specify the cue-before
and cue-after properties with a single property declaration.

Inherited: No

See also: cue-before, cue-after

Value

The property takes one or two URLs (specified with CSS url() syntax) that
point to sound files. If one URL is provided, it is assigned to cue-before and
cue-after—the sound is played before and after the element. If two URLs are
provided, the first is assigned to cue-before and the second to cue-after.

Initial value: none

Compatibility

CSS Version: 2.1

The property is not supported by any currently available browser.

Example

This example plays ding.wav before and after each div element:

div {

 cue: url(/sounds/ding.wav);

}

348

cue-after, cue-before

cue-after, cue-before

Sound cues are used by aural (speaking) browsers for the visually impaired as
“audio icons.” cue-before and cue-after let you set cues to be played before
and after an element, respectively.

Inherited: No

See also: cue

Value

These properties take a URL, specified with CSS url() syntax, that points to a
sound file.

The default value, none, is also supported, but is of little practical use.

Initial value: none

Compatibility

CSS Version: 2.1

The properties are not supported by any currently available browser.

Example

This example plays ding.wav before each h1 element, with the exception of h1
elements of class silent:

h1 {

 cue-before: url(/sounds/ding.wav);

}

h1.silent {

 cue-before: none;

}

cursor
This property lets you modify the appearance of the mouse cursor when the
mouse hovers over a selected element.

349

Appendix C: CSS Property Reference

Inherited: Yes

Value

Table C.4 lists the different cursor values supported by the CSS 2.1 standard,
and the major browsers that support them. The special value auto is the default,
and lets the browser determine automatically what the cursor should look like.
The value default sets the cursor to its default appearance, as dictated by the
operating system.

The value url(url), which is currently supported only in Internet Explorer 6 for
Windows, lets you define your own cursor by pointing to a .cur (Windows
static cursor) or .ani (Windows animated cursor) file on your site. Presumably,
this property will support more standard image formats when it is implemented
in other browsers.

Table C.5 lists the additional, nonstandard cursors supported by various versions
of Internet Explorer. These cursors’ exact appearances may vary between browsers
and operating systems.

350

cursor

Table C.4. CSS 2.1 standard cursors

Appearance (in IE6)cursor Value

n/aauto

crosshair

default

e-resize

help

move

n-resize

ne-resize

nw-resize

pointer

s-resize

se-resize

sw-resize

text

n/aurl(url)

w-resize

wait

progress

351

Appendix C: CSS Property Reference

Table C.5. Internet Explorer-only cursors

Appearance (in IE6)cursor Value

all-scroll

col-resize

hand

no-drop

not-allowed

row-resize

vertical-text

Initial value: auto

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Example

The following style rule (which doesn’t work in browsers that don’t support at
tribute selectors) displays the pointer cursor when the mouse hovers over any
element with an onclick attribute.

[onclick] {

 cursor: pointer;

}

direction
Most western languages are written left-to-right (LTR). As you probably know,
many other languages (e.g. Hebrew) are written right-to-left (RTL). Documents

352

direction

written with the Unicode character set8 can contain text from both LTR and RTL
languages. The Unicode standard includes a complicated algorithm that should
be used for displaying such mixed text. It also defines special characters that let
you “group” text.

For example, consider the following imaginary string of text, where the lowercase
text represents LTR characters and the uppercase text represents RTL:

english1 HEBREW1 english2 HEBREW2 english3

Now, the obvious way to render this would be “english1 1WERBEH english2
2WERBEH english3,” but what happens if we add some HTML tags to the mix?

<p>english1 <q lang="he">HEBREW1 english2 HEBREW2</q> english3</p>

As you can see, the text beginning with HEBREW1 and ending with HEBREW2 is in
tended as an inline quotation in Hebrew, which just happens to contain an
English word. Since HEBREW1 and HEBREW2 belong to the same block of Hebrew
text, “HEBREW1” should be rendered from right to left, i.e. “1WERBEH.” Also,
as the quotation is in Hebrew, the sentence should be read from right-to-left, but
the English word must remain LTR. With this in mind, the complete paragraph
should be rendered as “english1 2WERBEH english2 1WERBEH english3.”

The HTML 4.0 standard (which forms the basis of XHTML 1.0) defines the dir
attribute and the bdo element to handle these complexities. To obtain the desired
rendering in an HTML4-compatible browser, the code should be:

<p>english1 <q lang="he" dir="rtl">HEBREW1 english2 HEBREW2</q>

 english3</p>

The dir attribute of the q element specifies the rendering order; the lang attribute
won’t have any actual visible effect. For full details on language and bidirectional
text rendering in HTML, refer to Section 8 of the HTML 4.0 standard.9

So, where does CSS come into play, you ask? Well, the direction property, in
combination with a unicode-bidi property setting of embed, performs the same
role as the HTML dir attribute. In combination with a unicode-bidi property
setting of bidi-override, direction has the same effect as the HTML bdo tag.
However, it is still considered best practice to include bidirectional text attributes
as part of the HTML code. The direction and unicode-bidi properties are in
tended for use in styling XML documents that do not have the benefit of HTML

8 http://www.unicode.org/
9 http://www.w3.org/TR/REC-html40/struct/dirlang.html

353

http://www.unicode.org/
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.unicode.org/
http://www.w3.org/TR/REC-html40/struct/dirlang.html

Appendix C: CSS Property Reference

4’s bidirectional text features. Since the focus of this book is on web development,
I’ll therefore refer you to the CSS 2.1 standard10 for full details on these proper
ties.

Inherited: Yes

See also: unicode-bidi

Value

The property takes either of ltr or rtl.

Initial value: ltr

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This style rule sets the text direction of an imaginary XML element named hebrew
to rtl. The unicode-bidi property is there to ensure that this setting will “group”
any elements within it according to this direction, even if hebrew is rendered as
an inline element:

hebrew {

 direction: rtl;

 unicode-bidi: embed;

}

display
In HTML, there are different types of elements. div and blockquote, for example,
are both block elements, while strong and em are both inline elements. For each
type of element, a browser supports a “display mode.” Essentially, all block ele
ments are displayed the same way, but with varying margins, padding, borders,
etc. as the default.

10 http://www.w3.org/TR/CSS21/visuren.html#direction

354

http://www.w3.org/TR/CSS21/visuren.html#direction
http://www.w3.org/TR/CSS21/visuren.html#direction

display

The display property lets you set the “display mode” for an element. For example,
you can set a hyperlink (a) to be displayed as a block instead of inline text.

The most common use for the display property is to show and hide portions of
an HTML document. Setting display to none causes the element not just to be
hidden (as with the visibility property), but not to occupy any space on the
page, either. Using Dynamic HTML to set this property in JavaScript event
handlers lets you create, for example, hierarchical menus that expand and collapse
to display submenus on the fly.

Inherited: No

See also: visibility

Value

block

CSS version: 1

Browser support: The value is supported by all CSS-compatible browsers.

The default display mode for p, div, ul, blockquote, and many others, block
causes the element to occupy a rectangular area of the page, stacked vertically
with its sibling elements, so that previous siblings are above it, and subsequent
siblings are below it.

inline

CSS version: 1

Browser support: The value is supported by all CSS-compatible browsers.

The default display mode for strong, u, a, code, and many others, this value
causes the element to flow “inline” as a string of text within the parent block,
possibly broken by word wrapping.

list-item

CSS version: 1

Browser support: This value is supported by all CSS-compatible browsers.

The default display mode for li elements, list-item causes the element to
be rendered as a list item. The list-style family of properties controls the
position and appearance of the list item marker (i.e. the bullet or number).

355

Appendix C: CSS Property Reference

none

CSS version: 1

Browser support: none is supported by all CSS-compatible browsers.

This display mode causes the element not to be rendered at all. The element
will not occupy any space on the page (unlike elements to which visibility:
hidden applies: this hides the element but reserves space for it on the page).

run-in

CSS version: 2

Browser support: This value is not supported by any currently available
browsers.

This display mode causes the element to appear as an inline element at the
start of the block immediately following it. If there is no block following a
run-in element, it is displayed as a normal block instead. The effect is illus
trated in Figure C.1.

Figure C.1. Effect of run-in display mode

table

inline-table

table-row

table-column

table-row-group

table-column-group

table-header-group

table-footer-group

table-cell

table-caption

CSS version: 2

Browser support: IE5 for Windows supports only table-header-group,
while IE5.5 for Windows adds support for table-footer-group. There is
no additional support in Internet Explorer versions 6 or 7.

356

display

Mozilla browsers support all of these except inline-table, table-caption,
table-column, and table-column-group.

These display modes let you display various elements as tables (or parts
thereof). The practical utility of these display modes is questionable, which
is why most browsers have yet to fully implement them. For full details, refer
to the CSS 2.1 Specification.11

inline-block

CSS version: 2.1

Browser support: Support exists in Internet Explorer 5.5 or later for Win
dows only.

This display lets you place a block inline with the content of its parent ele
ment.

Initial value: inline12

Compatibility

CSS Version: The property is supported in version 1 (many display modes were
added in CSS 2, with more coming in CSS3).

All CSS-compatible browsers support this property, but none yet supports the
full range of CSS 2 display modes. See above for full compatibility information.

Example

This style rule hides unordered list (ul) elements nested within an unordered list
of class menu. In a practical application, JavaScript code could be used to display
these submenus, by changing the display property to block, when the user clicks
one of the main menu items:

ul.menu ul {

 display: none;

}

11 http://www.w3.org/TR/CSS21/tables.html
12 Elements like p, div, blockquote, etc. have a default display value of block, and other
elements have their own default display values. These defaults come from the browser’s built-in
default style sheet, rather than from the CSS specification. If you were to create your own tag (which
you can do with XHTML), its display property would be inline by default.

357

http://www.w3.org/TR/CSS21/tables.html
http://www.w3.org/TR/CSS21/tables.html

Appendix C: CSS Property Reference

elevation
elevation is used by aural browsers (e.g. a speaking browser for the blind) to
set a position at an angle from a horizontal plane. It’s from this position that the
sound emanates when the content is presented aurally.

Inherited: Yes

See also: azimuth

Value

The property takes an angle (from -90deg to 90deg, where 90deg is directly above
the listener, -90deg is directly below, and 0deg is at the listener’s ear level), or a
descriptive constant (e.g. above) as its value.

Initial value: level

Compatibility

CSS Version: 2

The property is not yet supported by any browser.

Example

This style rule will cause all elements of class commandment to be heard from 80
degrees above the horizontal:

.commandment {

 elevation: 80deg;

}

empty-cells
This property lets you set whether or not empty table cells are displayed in a
table operating in “separate borders” mode (see border-collapse).

Inherited: Yes

See also: border-collapse

358

filter

Value

The value of this property can be show or hide. When it’s set to hide, empty
table cells, their borders, and their backgrounds are not drawn—the table back
ground is visible in their place.

Initial value: show13

Compatibility

CSS Version: 2

The property is supported by all CSS-compatible browsers.

Example

This style rule sets tables of class seethru to hide empty table cells:

table.seethru {

 border-collapse: separate;

 empty-cells: hide;

}

filter
Internet Explorer for Windows offers this property, which lets you apply static
special effects, and animated transitions, to any HTML element.

Inherited: No

Value

Internet Explorer 4 or later for Windows supports a set of 14 static filters and
two animated transition filters. Internet Explorer 5.5 or later supports a new filter
technology that offers all the filters supported by IE4 and a bunch more besides,
with a total of two procedural surface filters, 16 static effect filters, and 17 anim
ated transition filters.

Static filters offer effects such as translucent elements, drop shadows, glows, blurs,
flips, rotations, lighting, and distortions. Animated transition filters let you wrap

13 Mozilla browsers default to hide when running in “Quirks mode.”

359

Appendix C: CSS Property Reference

an element’s change from one appearance to another in an animated effect.
Available transitions include simple PowerPoint™-style wipes and slides, smooth
fades and gradient wipes, and a fanciful pixelation effect.

You need to apply animated transition filters with CSS, then trigger them with
JavaScript code, to see the animated effect.

Internet Explorer 4 filters have the following syntax:

filter: filter(param=value, ...)

Internet Explorer 5.5 filters look like this:

filter: progid:DXImageTransform.Microsoft.filter(param=value, ...)

You can apply filters in any sensible combination by specifying them one at a
time, separated by spaces, in the value of the filter property.

For complete documentation that covers all the available filters, and explains
how to use them in various ways, see Microsoft’s Introduction to Filters and
Transitions14 and its Visual Filters and Transitions Reference.15

Initial value: none

Compatibility

CSS Version: n/a

Internet Explorer 4 or later supports a basic set of filters and transitions. These
basic filters are superseded in Internet Explorer 5.5 by an entirely new set of filters,
but support for the original set is maintained for backwards compatibility.

Examples

This style rule uses the IE4 static filter dropShadow to show a shadow beneath
any element of class floating:

.floating {

 filter: dropShadow(color=#000000, offx=5, offy=5);

}

14 http://msdn.microsoft.com/workshop/author/filter/filters.asp
15 http://msdn.microsoft.com/workshop/author/filter/reference/reference.asp

360

http://msdn.microsoft.com/workshop/author/filter/filters.asp
http://msdn.microsoft.com/workshop/author/filter/filters.asp
http://msdn.microsoft.com/workshop/author/filter/reference/reference.asp
http://msdn.microsoft.com/workshop/author/filter/filters.asp
http://msdn.microsoft.com/workshop/author/filter/reference/reference.asp

float

In the following example, the style rule assigns the IE5.5 animated transition
filter Pixelate to the element with the ID toolbar. The JavaScript code then
assigns an event handler that is triggered when the page finishes loading. The
event handler enables the filter (it’s disabled in the CSS code), sets the starting
state for the transition with Apply(), makes the element visible (it’s hidden in
the CSS code), then plays the transition with Play().

<style type="text/css">

#toolbar {

 visibility: hidden;

 filter: progid:DXImageTransform.Microsoft.Pixelate(MaxSquare=50,

Duration=1, Enabled=false);

}

</style>

<script type="text/javascript" language="JavaScript">

window.onload = function() {

 var toolbar = document.getElementById('toolbar');

 toolbar.filters[0].enabled = true;

 toolbar.filters[0].Apply();

 toolbar.style.visibility='visible';

 toolbar.filters[0].Play();

}

</script>

float
When set to a value besides the default (none), this property causes the element
to float against the left or right margin of its parent element. A floated element
will not affect the placement of any of the blocks on the page, but the content
within those blocks (including other floated elements) will flow around it. The
clear property lets you create elements that will be displaced downwards to
prevent their content from flowing around floated elements.

Inherited: No

See also: clear

Value

The property can take values of left, right, or none.

Initial value: none

361

Appendix C: CSS Property Reference

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Example

This style rule sets images of class headshot to float against the left side of their
parent elements:

img.headshot {

 float: left;

}

font
This is a shorthand property that allows you to set many font properties of an
element with a single property declaration. With this one property, you can set
the values of font-style, font-variant, font-weight, font-size, line-height,
and font-family.

Unless you use one of the CSS 2 constants (described below), you must specify
a font-size and font-family. All the other properties are optional, and will be
reset to their initial values if they are not specified (overriding any previous de
clarations of equal or lesser precedence for their values). The properties
font-stretch and font-size-adjust are also reset to their default values by
this property, even though you don’t have the option of specifying your own
values.

Inherited: Yes

See also: The individual font properties, listed above.

Value

The syntax of this property is as follows:

font: [style] [variant] [weight] size [/ line-height] family

The values in square brackets are optional. The first three values—style, variant,
and weight—may be specified in any order, and can take values allowed for

362

font

font-style, font-variant, and font-weight, respectively. size is required, and
can take any font-size value. line-height must come right after size if it is specified,
can take any line-height value, and must be preceded by a slash (/). Finally,
the family value can take any font-family value.

As of CSS 2, an alternative syntax is available for this property:

font: constant

constant is one of the following constants, each of which corresponds to a full font
specification (family, size, weight, etc.):

❑ caption

❑ icon

❑ menu

❑ message-box

❑ small-caption

❑ status-bar

The fonts associated with these constants vary between browsers, operating sys
tems, and individual system configurations. The idea is that they should match
the fonts in use elsewhere on the system so that user interface elements of the
web page can be made to match up with equivalent elements in local applications.

Initial value: none

Compatibility

CSS Version: 1 (constants added in CSS 2)

All CSS-compatible browsers support this property to some extent—generally,
one that’s compatible with the limits of each browser’s support for individual
font properties.

Examples

This style rule uses all possible values to define a font for paragraph elements:

363

Appendix C: CSS Property Reference

p {

 normal normal normal 11pt/12pt Myriad, Helvetica, sans-serif;

}

This style rule applies the system caption font to caption elements:

caption {

 font: caption;

}

font-family
This property lets you set the typeface used to display text in an element. Like
the HTML font tag, this property lets you specify a list of fonts, each of which
will be tried in order.

If the first font is not available on the user’s system, or if a particular character
is not present in the font, the browser will check the second font in the list, and
so on. This per-character fallback method (which is specified only as of CSS 2
and, therefore, is not yet supported in all browsers) lets you create multilingual
content, then list a font for each language; the browser should pick and choose
characters from the fonts in the list, always giving preference to those listed first.

Any time you set this property, the font list should end with a generic font name
(see below), so that the browser will always have some idea of the type of font
you’re after.

Be aware that browsers will not fall back on fonts specified in lower-priority style
rules. For example, if you set paragraph elements to Verdana, sans-serif and
paragraphs of class note to Myriad, a user that does not have Myriad installed
will see paragraphs of class note displayed in the browser’s default font, not
Verdana. In this example, you should set paragraphs of class note to Myriad,
Verdana, sans-serif to achieve the desired effect.

Inherited: Yes

See also: font

Value

The property takes as its value a comma-separated list of font names. Font names
that contain spaces should be quoted (e.g. "Times New Roman").

364

font-family

In addition to actual font names, the list can contain any of the following generic
font names:

❑ serif

The browser selects a font with serifs.16

❑ sans-serif

The browser selects a font without serifs.

❑ cursive

The browser selects a handwritten font.

❑ fantasy

The browser selects an elaborate, stylized font.

❑ monospace

The browser selects a font in which all characters have the same dimensions
(suitable for showing code).

Since browsers always will be able to find a font for each of these generic font
names, it only makes sense for the last font in the font-family list to be one of
these.

Initial value: browser specific

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Example

This style rule assigns a very common set of fonts to the body of the document:

16 Serifs are those little horizontal flares that you see at the tops and bottoms of vertical lines in fonts
like Times New Roman.

365

Appendix C: CSS Property Reference

body {

 font-family: Verdana, Arial, Helvetica, sans-serif;

}

font-size
This property lets you set the size of the font displayed in an element.

You can choose from several different methods. You can select an absolute font
size, or specify the size relative to the font size of the parent element. If you
choose an absolute size, you can specify an exact CSS length (e.g. in pixels or
points), or a font size constant (e.g. small), which yields a fixed, browser-specific
size. If you choose a relative size, again you have the choice between a relative
length in units (e.g. in ems or a percentage), or a relative size constant (larger
or smaller).

Inherited: Yes, but in the case of relative measurements, the computed value is
inherited.

See also: font

Value

As outlined above, this property supports a range of different value formats:

absolute CSS measurements
a CSS length measurement in pixels (px), points (pt), picas (pi), centimeters
(cm), millimeters (mm), or inches (in)

absolute size constants
any of the following absolute size constants:

❑ xx-small

❑ x-small

❑ small

❑ medium

❑ large

366

font-size

❑ x-large

❑ xx-large

It’s up to the browser to determine the actual sizes of these constants; gener
ally, they’re smaller in Mac OS than in Windows browsers. The differences
between font sizes are also browser-specific, but the standard suggests a factor
of 20% between adjacent values (i.e. large is 20% bigger than medium).

relative CSS measurements
a relative CSS measurement, in ems (em), exes (ex), or percentages (%)

This will set the font size of an element relative to that of its parent element.

relative size constants
either of the following size constants:

❑ smaller

❑ larger

The amount by which to adjust the parent’s font size for the element is left
up to the browser, but the specification suggests a factor of 20%. According
to this suggestion, smaller is roughly equivalent to 80% or 0.8em, and larger
is roughly equivalent to 120% or 1.2em.

Initial value: medium (see compatibility note for Internet Explorer for Windows)

Compatibility

CSS Version: 1

All CSS-compatible browsers support this property.

In Internet Explorer for Windows (up to and including version 7), the initial
(default) font size is small instead of medium. In other words, Internet Explorer
takes a font-size setting of small to mean the user’s selected default font size.
Therefore, medium becomes one step larger than the default font size. IE corrects
this in standards-compliant mode,17 but if you intend to design for any previous
version with absolute font size constants, you’ll need to use a separate, browser-
specific style sheet.

17 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

367

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

Appendix C: CSS Property Reference

Examples

This style rule sets the default font size for all elements in the document to 11
points. Because font-size is inherited, all elements that don’t define their own
font-size should inherit this value:

body {

 font-size: 11pt;

}

However, in practice, many older browsers do not allow font properties to be
inherited by certain elements (tables, for example), so a more aggressive rule is
needed:

body, p, blockquote, li, td, th, pre {

 font-size: 11pt;

}

This style rule illustrates a common faux pas among inexperienced developers:

ul, ol {

 font-size: 80%;

}

Because the computed value of the font-size property is inherited, not only will
lists have a font 20% smaller than the body text, but lists nested within other
lists will have a font size 20% smaller than that! Similarly, the fonts in lists nested
two levels deep will be 20% smaller again (just over half the size of the body
text). To avoid this unwanted domino effect, you must add a second style rule
so that the lists inherit their parent’s font-size:

ul ul, ul ol, ol ul, ol ol {

 font-size: inherit;

}

font-size-adjust
If you’ve ever compared two different fonts at the same point size and thought
that one looked considerably smaller than the other, you’ve encountered the
reason for this property. Correctly setting this property lets the browser adjust
for font differences to preserve the apparent size if it needs to use a different font
than the one you specified (e.g. if the font you specified was not available on the
user’s system).

368

font-size-adjust

The apparent size of a font has more to do with the height of lowercase letters
(the x-height) than with the actual font size. At 100 points, Myriad Web has
an x-height of 48 points—lowercase letters are 48% as tall as the font size. This
ratio is called the aspect value of the font. So in other words, Myriad Web has
an aspect value of 0.48. However, Verdana has an aspect value of 0.58. If you
specified Myriad Web as your desired font, but the user’s browser substitutes
Verdana for it because Myriad Web is not available, the text will look larger be
cause of the substitute font’s higher aspect value.

If you set the font-size-adjust property to the aspect value of your preferred
font, the browser should be able to adjust the sizes of substitute fonts to give
them the x-height you want. This assumes the browser knows (or can detect) the
aspect value of the substitute font.

Inherited: Yes

See also: font

Value

The property takes as its value the aspect value of your preferred font. This is
used in combination with the font-size property to adjust the size of a substitute
font so that it’s displayed with the desired x-height. The special value none disables
font size adjustment for the element.

Initial value: none

Compatibility

CSS Version: 2

The property is not supported in any currently available browser.

Example

This style rule assigns a set of fonts to the body element and uses
font-size-adjust to ensure that whatever font is used, it will have the same x-
height as Myriad Web (the preferred font) at 11 points:

body {

 font-family: "Myriad Web", Verdana, Helvetica, sans-serif;

 font-size-adjust: 0.48; /* The aspect value of Myriad Web */

}

369

Appendix C: CSS Property Reference

font-stretch

Many font families (Futura comes to mind) not only have different weights (e.g.
normal, light, bold) and styles (e.g. normal, italic, oblique), but also different
densities (e.g. normal, condensed, extended). This property lets you select the
density of the font to be displayed in an element.

The CSS 2 specification makes no mention of whether a browser should artificially
condense or expand a font for which different density versions are not available;
however, since most browsers do this for other font properties (e.g. font-style,
font-weight, font-variant), this would not be an unreasonable expectation.
The property name certainly suggests that function.

Inherited: Yes

See also: font

Value

The property takes as its value one of 11 constants: nine are absolute, while two
are relative.

The absolute constants are:

❑ ultra-condensed

❑ extra-condensed

❑ condensed

❑ semi-condensed

❑ normal

❑ semi-expanded

❑ expanded

❑ extra-expanded

❑ ultra-expanded

370

font-style

The relative constants are:

❑ narrower

❑ wider

A relative constant takes the font-stretch value of the parent element and sets
the current element’s value to the next narrower or wider value, respectively.

Initial value: normal

Compatibility

CSS Version: 2

This property is not supported by any currently available browsers.

Example

This style rule sets any element of class languid to be displayed in an extra-ex
panded font:

.languid {

 font-stretch: extra-expanded;

}

font-style
This property lets you choose between the normal, italic, and oblique styles of a
font.

Inherited: Yes

See also: font

Value

normal, oblique, or italic.

Initial value: normal

371

Appendix C: CSS Property Reference

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Most browsers will artificially skew a normal font to create an italic style if none
is available. Additionally, most browsers will treat the oblique setting as a syn
onym for italic, rather than select or generate an actual oblique font style.

Example

The default style sheets employed by most browsers specify that emphasis (em)
elements should be displayed in an italic font. If you wanted to display emphasis
with an underline instead, you would have to make a point of setting the
font-style to normal:

em {

 font-style: normal;

 text-decoration: underline;

}

font-variant
This property lets you specify that the current element be rendered with a small-
caps version of the font assigned to it. In a small-caps font, the lowercase letters
look just like uppercase letters, but smaller.

The Latin alphabet (used by most Western languages) is actually the exception
in that it has uppercase and lowercase versions of each letter. Most other writing
systems in the world have a single case, and therefore are unaffected by this
property.

Inherited: Yes

See also: font

Value

The property takes a value of normal or small-caps.

Initial value: normal

372

font-weight

Compatibility

CSS Version: 1

This property is supported by most CSS-compatible browsers.

Internet Explorer for Windows (when not running in standards-compliant mode18)
displays the small-caps value as all-caps (i.e. all characters in the element are
capitalized). Internet Explorer 6 and later (in standards-compliant mode) artifi
cially shrinks the capitals corresponding to lowercase characters in the text to
simulate a small-caps font.

No currently available browsers actually will use the small-caps variant of a font
if one is available.

Example

This style rule displays all headings on the page in small-caps:

h1, h2, h3, h4, h5, h6 {

 font-variant: small-caps;

}

font-weight
This property sets the boldness of the font to be displayed in the element.

Inherited: Yes, but in the case of relative settings, the computed value is inherited.

See also: font

Value

The CSS specification defines the following absolute values:

❑ normal (equivalent to 400)

❑ bold (equivalent to 700)

❑ 100

18 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

373

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

Appendix C: CSS Property Reference

❑ 200

❑ 300

❑ 400

❑ 500

❑ 600

❑ 700

❑ 800

❑ 900

Also available are the following relative values:

❑ bolder

❑ lighter

According to the CSS 2 specification, bolder and lighter should select the
version of the font that is a degree bolder or lighter, respectively, than the font
inherited from the parent element.

Initial value: normal

Compatibility

CSS Version: 1

This property is supported by all CSS-compatible browsers.

In practice, most browsers only support normal and bold, mapping the numerical

and relative values to those two absolute settings.

Example

This style rule overrides the default style sheets of most browsers that specify
that strong elements should be rendered bold. On browsers that support more
than one level of boldness, such elements will be displayed bolder than the text

374

height

in the parent element. Thus, a strong element inside a heading that is rendered
bold will be rendered with even greater boldness:

strong {

 font-weight: bolder;

}

height
This property sets the height of the contents of a block or replaced element.19

This height does not include padding, borders, or margins.

If the contents of a block require more vertical space than the height you assign,
the behavior is defined by the overflow property.

Inherited: No

See also: max-height, min-height, overflow, width

Value

The property takes any CSS length value, a percentage of the parent element’s
height, or auto as its value.

Initial value: auto

Compatibility

CSS Version: 1

This property is supported in some form by all CSS-compatible browsers. Current,
standards-compliant browsers (Opera, Safari, and Mozilla browsers) support it
fully.

Internet Explorer for Windows (up to and including version 7) incorrectly includes
padding, borders, and margins in the height value. This is known as the box
model bug. IE corrects this in version 6 and later, when rendering in standards

19 A replaced element is any element whose appearance and dimensions are defined by an external
resource. Examples include images (img tags), plug-ins (object tags), and form fields (input and
select tags). You can also think of replaced elements as being any element that can be displayed
inline with text, and that acts as a single, big character for the purposes of wrapping and layout.

375

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

Appendix C: CSS Property Reference

compliant mode,20 but for all previous versions you’ll need to use a separate,
browser-specific style sheet or live with smaller boxes whenever borders, margins,
or padding come into play (which is almost always). A third alternative is com
monly known as the box model hack, 21 and exploits a more obscure bug in IE6’s
CSS support to work around the box model bug.

In Internet Explorer 4, this property is supported for a limited subset of block
elements (div is a safe bet).

Example

This style rule assigns a fixed height of 100 pixels to paragraphs within the element
with ID blurbs:

#blurbs p {

 height: 100px;

}

ime-mode
Chinese, Japanese, and Korean writing systems have more characters than can
fit on a typical keyboard. Windows deals with this with an Input Method Editor
(IME). When the IME is active, the user can type a few keyboard characters to
describe the actual character he or she wishes to insert, then choose it from a
popup list. When the IME is inactive, the actual keyboard characters are inserted
as typed.

This nonstandard property lets you set the default IME mode for a form field
(input or textarea)—active or inactive—or even disable the IME entirely for
that field.

Inherited: No

Value

Values for this property include active, auto, disabled, and inactive.

Initial value: auto

20 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

21 http://css-discuss.incutio.com/?page=BoxModelHack

376

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://css-discuss.incutio.com/?page=BoxModelHack
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://css-discuss.incutio.com/?page=BoxModelHack

layout-flow

Compatibility

CSS Version: n/a

The property is supported in Internet Explorer 5 for Windows or later only.

Example

This style rule sets the IME to inactive by default in input and textarea elements
of class latin:

input.latin, textarea.latin {

 ime-mode: inactive;

}

layout-flow
This nonstandard property lets you choose between two common layout methods
for text: left-to-right horizontal lines stacked top to bottom on the page (the
usual layout for western languages like English), and top-to-bottom vertical lines
stacked right to left on the page (the usual layout for East Asian languages like
Chinese).

This property has been deprecated in favour of the more flexible writing-mode
property.

Inherited: Yes

See also: writing-mode

Value

The property can take values of horizontal or vertical-ideographic.

Initial value: horizontal

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer for Windows version 5 or later
only.

377

Appendix C: CSS Property Reference

Example

This style rule sets the layout-flow of the body and all its children (unless oth
erwise specified) to the East Asian style:

body {

 layout-flow: vertical-ideographic;

}

layout-grid
East Asian writing systems generally call for character layout to be performed in
a grid. This nonstandard shorthand property lets you set all the properties asso
ciated with that grid in a single property declaration.

Inherited: Yes

See also: layout-grid-char, layout-grid-line, layout-grid-mode, and
layout-grid-type

Value

The format of this property is as follows:

layout-grid: [mode] [type] [line [char]]

The values in square brackets are optional, and have the following meanings:

❑ mode is a valid value for layout-grid-mode

❑ type is a valid value for layout-grid-type

❑ line is a valid value for layout-grid-line

❑ char is a valid value for layout-grid-char

Initial value: both loose none none

Compatibility

CSS Version: n/a

378

layout-grid-char

The property is compatible with Internet Explorer 5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.22

Example

This is a basic example of the layout-grid property in use:

div.fullgrid {

 layout-grid: both fixed 12px 12px;

}

layout-grid-char
East Asian writing systems generally call for character layout to be performed in
a grid. This property sets the character size enforced by that grid.

layout-grid-mode must be set to char or both for this property to have any ef
fect.

Inherited: Yes

See also: layout-grid

Value

This property can take a CSS length value, a percentage of the parent element’s
width, auto (use the largest character in the font as the grid size), or none
(character grid disabled).

Initial value: none

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer 5 or later for Windows only.

22 http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

379

http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

Appendix C: CSS Property Reference

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.23

Example

This style rule specifies that characters should be positioned according to a 12
point grid:

div.monospaced {

 layout-grid-char: 12pt;

}

layout-grid-line
East Asian writing systems generally call for character layout to be performed in
a grid. This property sets the line size enforced by that grid.

layout-grid-mode must be set to line or both for this property to have any ef
fect.

Inherited: Yes

See also: layout-grid and layout-grid-mode

Value

This property can take a CSS length value, a percentage of the parent element’s
height, auto (use the largest character in the font as the grid size), or none (line
grid disabled).

Initial value: none

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer 5 or later for Windows only.

23 http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

380

http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

layout-grid-mode

Equivalent functionality is planned for inclusion in CSS3, but the final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.24

Example

This style rule specifies that lines should be positioned according to a 12-point
grid:

div.monospaced {

 layout-grid-line: 12pt;

}

layout-grid-mode
East Asian writing systems generally call for character layout to be performed in
a grid. This property lets you set which character dimensions (character width
or line height) are regulated by the grid.

Inherited: Yes

See also: layout-grid, layout-grid-char, and layout-grid-line

Value

The property takes any one of the following constants:

❑ both

❑ char

❑ line

❑ none

Initial value: both

Compatibility

CSS Version: n/a

24 http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

381

http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

Appendix C: CSS Property Reference

The property is compatible with Internet Explorer 5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.25

Example

This style rule sets span elements with the attribute lang="jp" to display char
acters according to a 12-point grid, but leaves the line height alone:

span[lang=jp] {

 layout-grid-mode: char;

 layout-grid-char: 12pt;

}

Note that since Internet Explorer for Windows doesn’t currently support attribute
selectors, this style rule has no practical use.

layout-grid-type
East Asian writing systems generally call for character layout to be performed in
a grid. Different East Asian languages have different conventions as to which
characters should be aligned to the grid. This property lets you set the convention
to use.

For full details on this property, see the reference page at MSDN.26

Inherited: Yes

See also: layout-grid and layout-grid-mode

Value

The property takes any one of the following constants:

❑ fixed

❑ loose

25 http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
26 http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/layoutgridtype.asp

382

http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/layoutgridtype.asp
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/layoutgridtype.asp

left

❑ strict

Initial value: loose

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer 5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.27

Example

This style rule sets span elements with the attribute lang="jp" to use a strict
layout grid:

span[lang=jp] {

 layout-grid-type: strict;

}

Note that since Internet Explorer for Windows doesn’t currently support attribute
selectors, this style rule has no practical use.

left
This property lets you set the distance between the left edge of an absolute po
sitioned element (including its padding, border, and margin) and the left edge
of the positioning context in which it resides. The positioning context is the
padding area of the element’s nearest ancestor that has a position property value
other than static, or the body element.

For relative positioned elements, this property sets a relative offset from the
normal position of its left edge. So, a setting of 10px will shift the left edge of
the box ten pixels to the right, and a setting of -10px will shift it ten pixels to
the left.

Inherited: No

27 http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

383

http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid
http://www.w3.org/TR/2003/WD-css3-text-20030226/#document-grid

Appendix C: CSS Property Reference

See also: position, bottom, top, and right

Value

This property takes a CSS length measurement, a percentage value, or the auto
constant. Percentages are based on the width of the parent element. The auto
constant tells the browser to determine the position of the left edge itself, based
on whatever other constraints may exist on the size/position of the element.

Initial value: auto

Compatibility

CSS Version: 2

The property works in all CSS-compatible browsers.

Example

This style rule positions the element with ID menu 80% of the way from the left
edge of the window and gives it a width of 19.9%. We don’t use a full 20% for
the width to prevent some browsers from generating a horizontal scroll bar, due
to rounding errors:

#menu {

 position: absolute;

 left: 80%;

 width: 19.9%;

 height: 200px;

}

letter-spacing
This property lets you increase or decrease the amount of spacing between char
acters in an element.

Inherited: Yes

See also: word-spacing

384

line-break

Value

The property takes any CSS length, or normal, as its value. Percentages are not
allowed.

Positive lengths increase letter spacing by the specified amount, while negative
lengths decrease it. In most cases, it is preferable to specify the spacing in ems
(e.g. 0.5em), as this will preserve the relative spacing of letters, even if you change
the font size (one em is equal to the height of the current font).

Initial value: normal

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Examples

This style rule sets all elements of class spacy to display extra spacing one-half
the height of the font between each character:

.spacy {

 letter-spacing: 0.5em;

}

This style rule sets all elements of class crowded to display characters one-half
the font size closer together than usual:

.crowded {

 letter-spacing: -0.5em;

}

line-break
This nonstandard property controls line-breaking policy (Kinsoku) for Japanese
text.

By default, a relaxed line-breaking routine is used. This is the preferred method
for modern typography, especially where narrow columns may exist. With this
property, you can specify that a stricter, more traditional method is applied.

385

Appendix C: CSS Property Reference

Inherited: Yes

Value

The property takes a value of normal or strict.

Initial value: normal

Compatibility

CSS Version: n/a

The property is supported by Internet Explorer 5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, and early drafts indicate
that the property name and values will be the same as shown here. To follow the
work on this front, see the CSS Working Group web site.28

Example

This style rule will instruct the browser to use strict (traditional) line-breaking
rules for any element of class tradbreak:

.tradbreak {

 line-break: strict;

}

line-height
By default, the browser will determine the amount of vertical space allocated to
a line by simply taking the tallest element (or font). The line-height property
is used in this process; setting it lets you artificially increase, decrease, or arbitrarily
set the line height for an element. If more than one element appears on a line,
the one with the highest line-height property determines the rendered height
of the line.

Inherited: Yes, but see below for differences in inheritance rules based on the
value format.

See also: font and font-size

28 http://www.w3.org/TR/2003/WD-css3-text-20030226/#line-breaking

386

http://www.w3.org/TR/2003/WD-css3-text-20030226/#line-breaking
http://www.w3.org/TR/2003/WD-css3-text-20030226/#line-breaking

line-height

Value

This property supports any of the following formats for its value:

normal
This constant is the initial value of this property, and is equivalent to a
number setting somewhere between 1.0 and 1.2, according to the CSS 2.1
specification.

number
This is a number (e.g. 1.5), which is multiplied by the font size to get the
rendered height of the line. A setting of 1.0 will crowd the lines together as
closely as possible without overlapping characters, while a setting of 1.2 will
leave a more natural amount of space between the lines. The value inherited
by child elements will be this number, not the resultant line height, so a child
element with a larger font will leave a proportionally larger space between
lines.

length
This is a CSS absolute length (e.g. 50px). A setting in ems will look the same
as a number setting with the same face value, but child elements will inherit
the actual line height, rather than the proportion of the font size.

percentage
This constant is a percentage, which is multiplied by the font size to obtain
the displayed line height. As with a setting in ems, the rendered line height
may be proportional to the font size, but child elements inherit the absolute
height, rather than the relative percentage.

Initial value: normal

Compatibility

CSS Version: 1

The property is supported by all CSS-compatible browsers.

Example

This style rule sets all elements of class spacy to have line height that’s one and
a half times the font size:

387

Appendix C: CSS Property Reference

.spacy {

 line-height: 1.5;

}

Because a number value is used, child elements will also have line heights that
are one and a half times their font sizes. If a value of 150% or 1.5em was used here,
child elements would instead have the same line height as this element.

list-style
This shorthand property lets you set the three list-style properties with a
single property declaration.

All three elements are optional, but any property you do not specify will implicitly
be set to its initial value (overriding any value specified in a rule of lesser or equal
priority).

For this property to have any effect, the target element (or one of its descendants,
which will inherit this property) must have its display property set to list-
item. The recommended method for setting the list-style properties of a list
is to apply the properties to the list element so that the individual list items in
herit them.

Inherited: Yes

See also: list-style-image, list-style-position, and list-style-type.

Value

The syntax for this property is as follows:

list-style: [type] [position] [image]

Each of the three values is optional (as indicated by the square brackets); however,
at least one must appear. type is any valid value for list-style-type, position is
any valid value for list-style-position, and image is any valid value for
list-style-image. These three values may appear in any order.

If you specify both type and image, the type will be used when the image fails to
load.

Setting this property to none will set both list-style-image and
list-style-type to none.

388

list-style-image

Initial value: none

Compatibility

CSS Version: 1

This property is supported by all CSS-compatible browsers.

Examples

These style rules set an image for unordered lists and a Roman numeral format
for ordered lists:

ul {

 list-style: url(/images/bullet.gif);

}

ol {

 list-style: upper-roman;

}

Compare the rules above to the following:

ul {

 list-style-image: url(/images/bullet.gif);

}

ol {

 list-style-type: upper-roman;

}

If we had an ordered list (ol) nested inside an unordered list (ul), the first set
of rules above would have the intended effect of displaying Roman numerals for
the ordered list. However, the second set of rules would display images for all the
list elements—in both the ordered and unordered lists—because the nested,
ordered list would inherit the list-style-image property from the unordered
list. This doesn’t happen with the first set of style rules because list-style:
upper-roman implicitly sets the list-style-image property to none.

list-style-image
This property lets you assign an image to be displayed, instead of a standard
marker for list items. You can set this property for individual list items (li) if
needed; however, the recommended method for specifying an image for all ele

389

Appendix C: CSS Property Reference

ments in a list is to apply the property to the list element (ol, ul, etc.) and let
the list items inherit it.

You should usually specify a list-style-type value with your
list-style-image; the browser will use the list-style-type as a fallback if
the image fails to load.

Be aware of the fact that this property is inherited by descendant elements, in
cluding nested lists. See the discussion in the example for the list-style property
to learn how to avoid this pitfall.

Inherited: Yes

See also: list-style, list-style-type

Value

The property takes a CSS URL (using the url() wrapper), or none.

Initial value: none

Compatibility

CSS Version: 1

This property works in all CSS-compatible browsers.

Example

These style rules will set all unordered list (ul) elements to display an image as
a marker (with square as the fallback list-style-type). The second rule spe
cifically sets the list-style-image and list-style-type of ordered list elements
(ol) to prevent them from inheriting the properties of an unordered list in which
they may be nested:

ul {

 list-style-image: url(/images/bullet.gif);

 list-style-type: square;

}

ol {

 list-style-image: none;

 list-style-type: decimal;

}

390

list-style-position

list-style-position

As shown in Figure C.2, list-style-position controls whether or not the
markers for list elements hang in the margin of list items or appear within the
block.

Figure C.2. Effects of list-style-position

Inherited: Yes

See also: list-style

Value

The property takes a value of inside or outside.

Initial value: outside

Compatibility

CSS Version: 1

This property works in all CSS-compatible browsers.

Example

This style rule sets lists of class compact to display markers within the rectangular
block of the list item text and removes the associated left margin:

ul.compact, ol.compact {

 list-style-position: inside;

 margin-left: 0;

}

391

Appendix C: CSS Property Reference

list-style-type

This property lets you set the type of marker displayed alongside list items. This
may include actual list item (li) elements, or other elements whose display
properties are set to list-item. If an affected element also has a
list-style-image value other than none, this property defines the fallback
marker to display if the image cannot be loaded.

Inherited: Yes

See also: list-style, list-style-image

Value

A wide range of constants are available for this property.

The following “glyph” markers display a single symbol for all list items, and are
commonly used for unordered lists:

❑ circle

❑ disc

❑ square

The following “numbering” markers display a number in the chosen format for
each list item:

❑ decimal

❑ decimal-leading-zero

❑ lower-roman

❑ upper-roman

❑ hebrew

❑ georgian

❑ armenian

392

list-style-type

❑ cjk-ideographic

❑ hiragana

❑ katakana

❑ hiragana-iroha

❑ katakana-iroha

The following “alphabetic” markers display a letter in the chosen format for each
list item:

❑ lower-alpha or lower-latin

❑ upper-alpha or upper-latin

❑ lower-greek

The special constant none displays no marker at all.

Initial value: none 29

Compatibility

CSS Version: 1 (with multilingual constants added in CSS 2)

This property is supported by all CSS-compatible browsers; however, most support
only the CSS1 constants: circle, disc, square, lower-alpha, upper-alpha,
lower-roman, upper-roman, and none.

Example

This set of style rules sets top-level unordered lists to use square bullets, nested
unordered lists to use circle bullets, and doubly-nested unordered lists to use disc
bullets:

ul {

 list-style-type: square;

29 This initial value applies to generic elements. Web browsers generally use a default internal style
sheet that specifies a list-style-type of disc for unordered lists and decimal for ordered
lists. Most browsers also assign unique default types to nested lists.

393

Appendix C: CSS Property Reference

list-style-image: none;

}

ul ul {

 list-style-type: circle;

}

ul ul ul {

 list-style-type: disc;

}

margin
This property sets the size of the margins surrounding the selected element(s).

The size for each side may be set individually using the margin-bottom,
margin-left, margin-right, and margin-top properties.

Inherited: No

See also: margin-bottom, margin-left, margin-right, margin-top

Value

You can specify from one to four different values to set different margin sizes for
each side of the element, as shown in Table C.6.

Each value can be a CSS length (px, pt, em, etc.), a percentage of the parent ele
ment’s width (even for the top and bottom margins30), or the auto constant,
which tells the browser automatically to calculate and use a margin that will allow
the element to assume its default (or assigned) width.

30 This is true with one exception. When the parent element is the body, percentage values for top
and bottom margins are based on the document’s height instead. This exception does not apply to
borders or padding.

394

margin-bottom, margin-left, margin-right, margin-top

Table C.6. Effects of multiple values on margin property

Effect on margins Number
of
values

All four margins receive the value specified. 1

Top and bottom (horizontal) margins receive the first value; left and
right (vertical) margins receive the second.

2

Top margin receives the first value, vertical margins receive the second,
and bottom margin receives the third.

3

Values are applied to top, right, bottom, and left margins, respectively. 4

Initial value: 0

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule sets blockquote elements to be 80% of the width of their parent
block. The margin property leaves a ten-pixel margin above and below these ele
ments, and sets the left and right margins to auto so that the block will be
centered horizontally.

blockquote {

 width: 80%;

 margin: 10px auto;

}

margin-bottom, margin-left,
margin-right, margin-top

These properties let you set sizes of the individual margins around an element.

Inherited: No

395

Appendix C: CSS Property Reference

See also: margin

Value

Each value can be a CSS length (px, pt, em, etc.), a percentage of the parent ele
ment’s width (even for the top and bottom margins30), or the auto constant,
which tells the browser automatically to calculate and use a margin that will allow
the element to assume its default (or assigned) width.

Initial value: 031

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

These style rules modify the default margins, assigned by the browser to headings
and paragraphs, to make headings “stick to” the first paragraph that follows:

h1, h2, h3, h4, h5, h6 {

 margin-bottom: 0;

 margin-top: 12pt;

}

p {

 margin-top: 0;

 margin-bottom: 6px;

}

marker-offset
When a :before or :after pseudo-element has its display property set to
marker, it is rendered outside the main content box of the element, to the left
of the first line (:before), or to the right of the last line (:after) in left-to-right
writing systems. This property sets the distance between the two closest border
edges of the main content and the marker, as shown in Figure C.3.

31 This initial value is for generic elements. Browsers use an internal style sheet that defines default
margins for elements such as headings, paragraphs, block quotes, and list items.

396

marker-offset

Figure C.3. The effect of marker-offset

Note that the marker box has padding and borders, but no margins.

Inherited: No

See also: display

Value

The property takes any CSS length value (px, pt, em, etc.), or the auto constant,
which lets the browser choose the distance.

Initial value: auto

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

397

Appendix C: CSS Property Reference

Example

This style rules place stylistic quotation marks around blockquote elements. The
marker-offset property ensures that there will be five pixels of space between
the quotation marks and the content of the element (plus any padding that may
be added to the blockquote):

blockquote:before, blockquote:after {

 display: marker;

 marker-offset: 5px;

 content: '"';

 font-size: 150%;

 color: blue;

}

marks
This property, which can appear only within an @page at-rule (see the section
called “At-rules” in Appendix A) specifies whether crop marks, page alignment
crosses, or both should appear on the printed page.

Value

The property takes either the none constant, or crop, cross, or both (separated
by a space).

Initial value: none

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This at-rule specifies that pages should be printed with crop marks (to indicate
where the page should be cut) and crosses (to help in the alignment of pages):

@page {

 marks: crop cross;

}

398

max-height, min-height

max-height, min-height
Instead of setting a fixed height, it is sometimes useful to set limits on the height
of an element. These two properties let you set a maximum and/or minimum
height. The height of the element is calculated normally, and then these limits
are applied.

Remember to set the overflow property to hidden (or another appropriate value)
if you set a max-height; otherwise, the content will overflow the specified height,
even if the element does not.

Inherited: No

See also: height, max-width, min-width

Value

The property takes a CSS length (px, pt, em, etc.), a percentage of the parent
element’s content area height, or (in the case of max-height only) none.

Initial value:

❑ max-height: none

❑ min-height: 0

Compatibility

CSS Version: 2

This property is fully supported on Safari, Opera, and Mozilla browsers only.

Internet Explorer 6 and later supports min-height only, and then only on td,
th, and tr elements in fixed-layout tables (see table-layout). The CSS 2 spe
cification states that this property should not apply to table elements (this is
corrected when IE renders in standards-compliant mode32).

32 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

399

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

Appendix C: CSS Property Reference

Example

This style rule specifies that the element with ID sidemenu should have a height
between 200 and 1000 pixels, and should display a scroll bar if the content’s
height is greater than the maximum:

#sidemenu {

 min-height: 200px;

 max-height: 1000px;

 overflow: auto;

}

max-width, min-width
Instead of setting a fixed width, it is sometimes useful to set limits on the width
of an element. These two properties let you set a maximum and/or minimum
width. The width of the element is calculated normally, and then these limits are
applied.

Remember to set the overflow property to hidden (or another appropriate value)
if you set a max-width; otherwise, the content will overflow the specified width,
even if the element does not.

Inherited: No

See also: width, max-height, min-height

Value

The property takes a CSS length (px, pt, em, etc.), a percentage of the parent
element’s content area height, or (in the case of max-height only) none.

Initial value:

❑ max-height: none

❑ min-height: 0

Compatibility

CSS Version: 2

400

-moz-border-radius

This property is fully supported on Safari, Opera, and Mozilla browsers only.

Example

This style rule specifies that the element with ID topmenu should have a width
between 200 and 1000 pixels, and should display a scroll bar if the content’s
width is greater than the maximum:

#topmenu {

 min-width: 200px;

 max-width: 1000px;

 overflow: auto;

}

-moz-border-radius
Mozilla-based browsers support a number of nonstandard CSS properties that
were implemented for the skinning engines of those browsers. These properties
all begin with the prefix -moz- to indicate their nonstandard nature. Several of
these properties also are useful for general web site design, and have equivalents
in current drafts of future CSS standards.

-moz-border-radius is a shorthand property that lets you add rounded corners
to the border of an element by setting the radius to use for each of the corners
of the box. The content of the box is not clipped by these rounded corners, so
you’ll usually want to define an appropriate amount of padding to prevent over
laps. However, the background is clipped.

Inherited: No

See a l so : -moz-border-radius-bottomleft,
-moz-border-radius-bottomright, -moz-border-radius-topleft,
-moz-border-radius-topright

Value

You can specify from one to four values, separated by spaces, for this property.
Each value can be a CSS length value or a percentage of the width of the element
from 0% to 50%. The maximum corner radius will always be 50% of the maximum
dimension (width or height) of the element. The effects of specifying multiple
values are shown in Table C.7.

401

Appendix C: CSS Property Reference

Table C.7. Effects of multiple values on the margin property

Effect on margins Number
of
values

All four corners receive the value specified. 1

Top-left and bottom-right corners receive the first value; top-right and
bottom-left corners receive the second.

2

The top-left corner receives the first value, top-right and bottom-left
corners receive the second, and the bottom-right corner receives the
third.

3

Values are applied to top-left, top-right, bottom-right, and bottom-left
corners, respectively.

4

Initial value: 0

Compatibility

CSS Version: n/a

This property works in Mozilla-based browsers only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.33

Example

This style rule creates a circular element that’s 100 pixels in diameter:

.circle {

 border: 1px solid red;

 width: 100px;

 height: 100px;

 -moz-border-radius: 50%;

}

33 http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius

402

http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius
http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius
http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius

-moz-border-radius-bottomleft, -moz-border-radius-bottomright, -moz-border-radius-topleft,
-moz-border-radius-topright

-moz-border-radius-bottomleft,
-moz-border-radius-bottomright,
-moz-border-radius-topleft,
-moz-border-radius-topright

Mozilla-based browsers support a number of nonstandard CSS properties that
were implemented for the skinning engines of those browsers. These properties
all begin with the prefix -moz- to indicate their nonstandard nature. Several of
these properties also are useful for general web site design, and have equivalents
in current drafts of future CSS standards.

The -moz-border-radius-corner properties let you add rounded corners to the
border of an element by setting a radius for each of the corners of the box. The
content of the box is not clipped by these rounded corners, so you’ll usually want
to define an appropriate amount of padding to prevent overlaps. The background
is clipped, though.

Inherited: No

See also: -moz-border-radius

Value

The value can be a CSS length value, or a percentage of the width of the element
from 0% to 50%. The maximum corner radius will always be 50% of the maximum
dimension (width or height) of the element.

Initial value: 0

Compatibility

CSS Version: n/a

This property works in Mozilla-based browsers only.

403

Appendix C: CSS Property Reference

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.34

Example

This style rule creates an interesting rounded shape:

.roundthing {

 border: 1px solid red;

 width: 100px;

 height: 100px;

 -moz-border-radius-bottomleft: 25%;

 -moz-border-radius-bottomright: 50%;

 -moz-border-radius-topleft: 50%;

 -moz-border-radius-topright: 25%;

}

-moz-opacity
Mozilla-based browsers support a number of nonstandard CSS properties that
were implemented for the skinning engines of those browsers. These properties
all begin with the prefix -moz- to indicate their nonstandard nature. Several of
these properties also are useful for general web site design, and have equivalents
in current drafts of future CSS standards.

The -moz-opacity property lets you create translucent elements that allow ele
ments behind them partially to show through.

Inherited: No

See also: filter

Value

You can set the opacity as a decimal number between 0.0 (totally transparent)
and 1.0 (totally opaque), or as a percentage between 0% (transparent) and 100%
(opaque). You should generally use decimal numbers, as the draft CSS3 standard
does not currently allow for percentages.

Initial value: 1.0

34 http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius

404

http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius
http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius
http://www.w3.org/TR/2002/WD-css3-border-20021107/#the-border-radius

orphans

Compatibility

CSS Version: n/a

This property works in Mozilla-based browsers only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.35

Example

This style rule makes the element with ID sidebar 50% transparent:

#sidebar {

 -moz-opacity: 0.5;

}

orphans
This property affects the position of page breaks, when the user prints the page
from his or her browser. With this property, you can specify the minimum
number of lines in a block before a page break can occur.

For example, if a paragraph element had six lines and the page size called for a
page break to occur after the second line, an orphans setting of three would force
the page break to occur before the paragraph, so that the first three lines could
appear on the same page.

Inherited: Yes

See also: windows

Value

The property takes as its value a positive integer.

Initial value: 2

35 http://www.w3.org/TR/2003/WD-css3-color-20030214/#transparency

405

http://www.w3.org/TR/2003/WD-css3-color-20030214/#transparency
http://www.w3.org/TR/2003/WD-css3-color-20030214/#transparency
http://www.w3.org/TR/2003/WD-css3-color-20030214/#transparency

Appendix C: CSS Property Reference

Compatibility

CSS Version: 2

This property is currently supported only by Opera.

Example

This style rule indicates that at least four lines of a broken paragraph must appear
at the bottom of the page before a page break occurs:

p {

 orphans: 4;

}

outline
Outlines are very similar to borders; however, they do not occupy any space in
the CSS box model (i.e. turning off and on an element’s outline or changing its
outline width should not affect the position of that element, or any other elements
on the page). Additionally, an outline should follow the actual shape of the ele
ment’s content (e.g. hugging the jagged right edge of a left-aligned paragraph)
rather than forming a rectangular box around it. The outline of an inline element
that flows over several lines is closed at the starts and ends of lines, whereas the
border is not.

outline is a shorthand property that lets you set all three of the outline-related
properties for an element with a single property declaration.

Inherited: No

See also: border, outline-color, outline-style, outline-width

Value

The syntax for this property is as follows:

outline: [color] [style] [width]

color is any valid value for outline-color. style is any valid value for
outline-style.width is any valid value for outline-width.

406

outline-color

All three of the values are optional (as indicated by the square brackets), but you
must specify at least one. They can be specified in any order. Any unspecified
value causes the corresponding property to be set to its initial value.

Initial value: none

Compatibility

CSS Version: 2

Opera and Mozilla browsers support this property, and they render rectangular
outlines only, as opposed to the content-hugging style prescribed by the CSS 2
specification.

Example

This style rule makes use of the :focus pseudo-class to draw a medium, dashed,
red outline around any form element that has focus:

input:focus, select:focus, textarea:focus {

 outline: medium dashed red;

}

outline-color
Outlines are very similar to borders; however, they do not occupy any space in
the CSS box model (i.e. turning off and on an element’s outline or changing its
outline width should not affect the position of that element, or any other elements
on the page). Additionally, an outline should follow the actual shape of the ele
ment’s content (e.g. hugging the jagged right edge of a left-aligned paragraph)
rather than forming a rectangular box around it. The outline of an inline element
that flows over several lines is closed at the starts and ends of lines, whereas the
border is not.

The outline-color property sets the color of the outline drawn around the se
lected element(s).

Inherited: No

See also: border-color

407

Appendix C: CSS Property Reference

Value

The property takes any CSS color value, or invert, which will reverse the color(s)
of the background over which it is drawn.

Initial value: invert (black in current browsers)

Compatibility

CSS Version: 2

Opera and Mozilla browsers support this property, and they render only rectan
gular outlines, as opposed to the content-hugging style prescribed by the CSS 2
specification. Both of these browsers use an initial value of black, as they do not
support invert.

Example

This style rule puts red outlines around hyperlinks when the user hovers the
mouse over them:

a:hover {

 outline-style: solid;

 outline-color: red;

}

outline-style
Outlines are very similar to borders; however, they do not occupy any space in
the CSS box model (i.e. turning off and on an element’s outline or changing its
outline width should not affect the position of that element, or any other elements
on the page). Additionally, an outline should follow the actual shape of the ele
ment’s content (e.g. hugging the jagged right edge of a left-aligned paragraph)
rather than forming a rectangular box around it. The outline of an inline element
that flows over several lines is closed at the starts and ends of lines, whereas the
border is not.

The outline-style property sets the style of the outline drawn around the se
lected element(s).

Inherited: No

408

outline-width

See also: border-style

Value

This property accepts the same set of constants as border-style (see Table C.3),
with the exception of hidden.

Initial value: none

Compatibility

CSS Version: 2

Opera and Mozilla browsers support this property, and they render rectangular
outlines only, as opposed to the content-hugging style prescribed by the CSS 2
specification.

Example

This style rule adds an outline of style inset around active hyperlinks:

a:active {

 outline-style: inset;

 outline-color: grey;

 outline-width: medium;

}

outline-width
Outlines are very similar to borders; however, they do not occupy any space in
the CSS box model (i.e. turning off and on an element’s outline or changing its
outline width should not affect the position of that element, or any other elements
on the page). Additionally, an outline should follow the actual shape of the ele
ment’s content (e.g. hugging the jagged right edge of a left-aligned paragraph)
rather than forming a rectangular box around it. The outline of an inline element
that flows over several lines is closed at the starts and ends of lines, whereas the
border is not.

The outline-width property sets the width of the outline drawn around the se
lected element(s).

Inherited: No

409

Appendix C: CSS Property Reference

See also: border-width

Value

The property takes thin, medium, thick, or any CSS length measurement as its
value.

Initial value: medium

Compatibility

CSS Version: 2

Opera and Mozilla browsers support this property, and they render rectangular
outlines only, as opposed to the content-hugging style prescribed by the CSS 2
specification.

Example

This style rule adds a three-pixel outline of style outset around hyperlinks when
the user hovers the mouse over them:

a:hover {

 outline-style: outset;

 outline-color: grey;

 outline-width: 3px;

}

overflow
This property lets you control how the browser treats an element when it is not
big enough to hold all of its content. In practice, this situation occurs only when
you have assigned a fixed or maximum width and/or height for the element. Most
often, content will overflow the height of the element, because inline content
will reflow to accommodate limited width; however, if an element contains chil
dren with their own fixed widths, they can overflow the width as well.

When you apply the overflow property to an element whose dimensions cause
part of its contents to be cropped, the size of the element is cropped for layout
purposes, too. Decorations such as borders are applied to the element after
cropping has taken place. This is quite different from the clip property, which

410

overflow

affects only the visible area of the element, and which crops borders and other
decorations along with the element content.

Inherited: No

See also: clip, height, text-overflow, max-width, max-height, width

Value

This property can be set to any of these four constant values:

auto
This setting causes scroll bars to appear when needed, to allow the content
of the element to be scrolled within the defined width/height limits. Be aware
that the scroll bars themselves will occupy a browser-specific amount of space
within the element area.

hidden
This setting hides any overflowing content. Affected content will be invisible
and inaccessible to the user.

scroll
This setting behaves just like auto, except that horizontal and vertical scroll
bars are displayed, whether they are needed or not. This lends predictability
to the appearance of the block, when you’re not sure whether the scroll bars
will be needed or not.

visible
This setting specifies that content that overflows the assigned boundaries of
the element should be rendered anyway. The overflowing content should be
drawn outside the visible box (its background and borders).

Initial value: visible

Compatibility

CSS Version: 2

This property works on all CSS-compatible browsers.

Internet Explorer for Windows (up to and including version 6 in standards-
compliant mode) incorrectly expands the size of the box to accommodate over
flowing content when this property is set to visible, rather than drawing the

411

Appendix C: CSS Property Reference

content outside the bounds of the box. This has been corrected in Internet Ex
plorer 7.

Example

This style rule assigns a width and height to the element with ID mainmenu, but
allows scroll bars to be added, if necessary, to make overflowing content accessible:

#mainmenu {

 width: 150px;

 height: 400px;

 overflow: auto;

}

overflow-x, overflow-y
These nonstandard properties work the same as the overflow property, except
that they apply to one dimension only. overflow-x controls how/if content that
overflows the horizontal limits of the element is rendered; overflow-y controls
the content protruding from the vertical limits.

Inherited: No

See also: overflow

Value

Each of these properties can take any one of the constant values supported by
the overflow property.

Initial value: visible

Compatibility

CSS Version: n/a

These properties work with Mozilla browsers and Internet Explorer for Windows
version 5 or later.

412

padding

Equivalent functionality is planned for inclusion in CSS3, but final property
values may differ. To follow the work on this front, see the CSS Working Group
web site.36

Example

This style rule assigns a width and height to the element with ID mainmenu, and
allows a vertical scroll bar to be added if the content is too high to fit within the
allocated 400 pixels. Content that does not fit horizontally will be visibly clipped:

#mainmenu {

 width: 150px;

 height: 400px;

 overflow-x: hidden;

 overflow-y: auto;

}

padding
This shorthand property sets the size of the padding on all four sides of the selec
ted element(s) with a single property declaration. Padding is extra space added
around the content—but within the borders—of an element. Any background
color or image assigned to an element will also fill the padding area of that ele
ment.

Padding may be set individually for each side of an element using
padding-bottom, padding-left, padding-right, and padding-top properties.

Inherited: No

See also: padding-bottom, padding-left, padding-right, padding-top

Value

You can specify from one to four different values to set different padding sizes
for each side of the element, as Table C.8 indicates.

Each value can be a CSS length (px, pt, em, etc.), or a percentage of the parent
element’s width—even for the top and bottom padding settings.

36 http://www.w3.org/TR/2002/WD-css3-box-20021024/#the-overflow-x

413

http://www.w3.org/TR/2002/WD-css3-box-20021024/#the-overflow-x
http://www.w3.org/TR/2002/WD-css3-box-20021024/#the-overflow-x
http://www.w3.org/TR/2002/WD-css3-box-20021024/#the-overflow-x

Appendix C: CSS Property Reference

Table C.8. Effects of multiple values on padding property

Effect on paddingNumber
of
values

All four sides receive the value specified. 1

Top and bottom (horizontal) padding settings receive the first value;
left and right (vertical) padding settings receive the second.

2

Top padding receives the first value, vertical padding settings receive
the second, and bottom padding receives the third.

3

Values are applied to top, right, bottom, and left padding settings,
respectively.

4

Initial value: 0

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Examples

This style rule adds a thin border and red background around elements of class
warning. It also adds five pixels of padding on the top and bottom, and ten pixels
of padding on the left and right, between the content and the borders, allowing
the content to breathe a little:

.warning {

 border: 1px solid;

 background-color: red;

 padding: 5px 10px;

}

This style rule sets a padding of three pixels around all cells in tables of class
spacy. This is the CSS equivalent of cellpadding="3" in the <table> tag:

table.spacy td, table.spacy th {

 padding: 3px;

}

414

padding-bottom, padding-left, padding-right, padding-top

padding-bottom, padding-left,
padding-right, padding-top

These properties let you set the individual padding sizes around an element.
Padding is extra space added around the content—but within the borders—of an
element. Any background color or image assigned to an element will also fill the
padding area of the element.

Inherited: No

See also: padding

Value

Each value can be a CSS length (px, pt, em, etc.), or a percentage of the parent
element’s width (even for the top and bottom padding settings).

Initial value: 0

Compatibility

CSS Version: 1

The property works in all CSS-compatible browsers.

Example

This style rule adds a thin border and red background around elements of class
warning. It also adds five pixels of padding on the top and bottom and ten pixels
of padding on the left and right, between the content and the borders, allowing
the content to breathe a little:

.warning {

 border: 1px solid;

 background-color: red;

 padding-top: 5px;

 padding-bottom: 5px;

 padding-left: 10px;

 padding-right: 10px;

}

415

Appendix C: CSS Property Reference

See the example for the padding property to see how this same effect can be
achieved with less typing.

page
The @page at-rule can be given an identifier so that you can declare different
page types for use by a site when printing. For example, this style rule sets up a
page type named mylandscape:

@page mylandscape {

 size: 11in 8.5in;

 margin: 1in;

 marks: crop;

}

The page property lets you assign a named page type to selected elements. Those
elements will then be printed on the specified page type.

Inherited: Yes

Value

page takes as its value an identifier assigned to an @page rule declared elsewhere,
or auto.

Initial value: auto

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This style rule ensures that all div elements of class overhead are rendered on a
page of type mylandscape (as declared above), and are followed by a page break:

div.overhead {

 page: mylandscape;

 page-break-after: always;

}

416

page-break-after

page-break-after

When printing a web page, the browser simply places page breaks wherever they
need to occur to ensure that all printed pages are as full as possible, by default.
This property affords you greater control over the placement of page breaks
during printing by letting you manually add or suppress a page break after a
given element.

Inherited: No

See also: orphans, page-break-before, page-break-inside, widows

Value

This property can take any of the following values:

always

The browser will always put a page break after the selected element(s).

avoid

The browser will try to avoid placing a page break after the selected ele
ment(s).

The practical effect of this setting is to keep an element on the same page as
the next sibling element.

auto

The browser will put a page break after the selected element(s) if it ended at
the bottom of a page.

left

The browser will always put one or two page breaks after the selected ele
ment(s) so that the next element begins at the top of a left-hand (i.e. even-
numbered) page in double-sided printing.

right

The browser will always put one or two page breaks after the selected ele
ment(s) so that the next element begins at the top of a right-hand (i.e. odd-
numbered) page in double-sided printing.

Initial value: auto

417

Appendix C: CSS Property Reference

Compatibility

CSS Version: 2

This property works in Internet Explorer 4 or later, Opera, and Mozilla browsers.
All of these browsers treat left and right the same as always.

The avoid value is not directly supported by Internet Explorer for Windows;
however, if you use JavaScript to set the property to an empty string (""), it will
have the same effect.

Example

This style rule keeps every heading on the same page as the first element that
follows it, whenever possible:

h1, h2, h3, h4, h5, h6 {

 page-break-after: avoid;

}

page-break-before
When printing a web page, the browser simply places page breaks wherever they
need to occur to ensure that all printed pages are as full as possible, by default.
This property affords you greater control over the placement of page breaks
during printing by letting you manually add or suppress a page break before a
given element.

Inherited: No

See also: orphans, page-break-after, page-break-inside, widows

Value

This property can take any of the following values:

always

The browser will always put a page break before the selected element(s).

avoid

The browser will try to avoid placing a page break before the selected ele
ment(s).

418

page-break-before

The practical effect of this setting is to keep an element on the same page as
the previous sibling element.

auto

The browser will put a page break before the selected element(s) if the previ
ous element ended at the bottom of a page.

left

The browser will always put one or two page breaks before the selected ele
ment(s) so that they begin at the top of a left-hand (i.e. even-numbered) page
in double-sided printing.

right

The browser will always put one or two page breaks before the selected ele
ment(s) so that they begin at the top of a right-hand (i.e. odd-numbered)
page in double-sided printing.

Initial value: auto

Compatibility

CSS Version: 2

This property works in Internet Explorer 4 or later, Opera, and Mozilla browsers.
All of these browsers treat left and right the same as always.

The avoid value is not directly supported by Internet Explorer for Windows;
however, if you use JavaScript to set the property to an empty string (""), it will
have the same effect.

Example

This style rule adds the necessary page breaks to place all div elements of class
section at the top of a right-hand page:

div.section {

 page-break-before: right;

}

419

Appendix C: CSS Property Reference

page-break-inside

When printing a web page, the browser simply places page breaks where they
need to occur to ensure that all printed pages are as full as possible, by default.
This property affords you greater control over the placement of page breaks
during printing by letting you manually prevent page breaks from occurring in
the middle of selected elements.

Inherited: Yes

See also: orphans, page-break-after, page-break-before, widows

Value

This property can take any of the following values:

avoid

The browser will try to avoid placing a page break within the selected ele
ment(s).

The practical effect of this setting is to keep all of an element on one page.

auto

The browser will put a page break within the selected element(s) if the bottom
of a page is reached while rendering it.

Initial value: auto

Compatibility

CSS Version: 2

Currently Opera is the only browser to implement this.

Example

This style rule keeps pre elements of class programlisting on one page
whenever possible:

pre.programlisting {

 page-break-inside: avoid;

}

420

pause

pause

Pauses are used by aural (speaking) browsers for the visually impaired to provide
clues to document structure. This is a shorthand property that lets you specify
the pause-before and pause-after properties with a single property declaration.

Inherited: No

See also: pause-before, pause-after, speech-rate

Value

This property takes one or two time values, each of which is a floating-point
number followed by either s (seconds) or ms (milliseconds), or a percentage of
the average word time (which is 1/rate, where rate is the value of the element’s
speech-rate property).

If one value is specified, it is applied to both the pause-before and pause-after
properties. If two values are specified, the first is applied to pause-before, the
second to pause-after.

Initial value: Browser-specific

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example pauses for half the length of the average word before and after each
div element:

div {

 pause: 50%;

}

421

Appendix C: CSS Property Reference

pause-after, pause-before
Pauses are used by aural (speaking) browsers for the visually impaired to provide
clues to document structure. pause-before and pause-after let you set the
amount of time to pause before and after an element, respectively.

Inherited: No

See also: pause, speech-rate

Value

Each of these properties takes a time value, which is a floating-point number
followed by either s (seconds) or ms (milliseconds), or a percentage of the average
word time (which is 1/rate, where rate is the value of the element’s speech-rate
property).

Initial value: Browser-specific

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example pauses for half the length of the average word before each h1 ele
ment, with the exception of h1 elements of class minor:

h1 {

 pause-before: 50%;

}

h1.minor {

 pause-before: none;

}

pitch
For use by aural (speaking) browsers for the visually impaired, this property sets
the average pitch (frequency) of the voice that reads a selected element’s content

422

pitch

aloud. Typical male voices are around 120 Hz, while female voices average about
210 Hz.

Inherited: Yes

See also: pitch-range, richness, stress, voice-family, volume

Value

The property takes a frequency in Hertz (Hz) or kiloHertz (kHz), or any of the
following constants, as its value:

❑ x-low

❑ low

❑ medium

❑ high

❑ x-high

The actual frequencies that correspond to these constants depend on the
voice-family property in use.

Initial value: medium

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to speak elements of class ominous in a low
pitch:

.ominous {

 pitch: low;

}

423

Appendix C: CSS Property Reference

pitch-range
For use by aural (speaking) browsers for the visually impaired, this property
controls the amount of pitch variation (which affects the perceived level of anim
ation and excitement) in the voice that reads a selected element’s content aloud.

Inherited: Yes

See also: pitch, richness, stress, voice-family, volume

Value

The property takes any integer between 0 and 100, where 0 is a complete mono
tone, 50 is an average speaking voice, and 100 is extremely animated.

Initial value: 50

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to speak elements of class ominous with an
added level of animation:

.ominous {

 pitch-range: 75;

}

play-during
Intended for use by aural browsers for the visually impaired, this property could
have at least one practical use in mainstream browsers: providing a standard way
to add background sounds to a page. In aural browsers, this property sets the
sound played in the background while the contents of a selected element are read
aloud.

Inherited: No

424

play-during

See also: cue

Value

Values for this property can take the following format:

play-during: url(uri) [mix] [repeat]

uri is the relative or absolute URL of the sound file you wish to have played
during the reading of this element. The optional keyword mix, when present,
causes the element’s background sound to be mixed with the background sound
of its parent element, instead of replacing it. The optional keyword repeat, when
present, causes the sound to be played repeatedly, if its duration is less than the
reading of the element content.

Alternatively, this property may be set to either of the following constants:

❑ auto

❑ none

auto allows the parent element’s play-during sound to continue playing while
the element is read (as opposed to setting this value to inherit, which would
cause it to start again from the beginning). none suppresses the parent element’s
play-during sound during the reading of the element, allowing it to resume af
terward.

Initial value: auto

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example plays dirge.wav in the background of a div element of class epi
taph:

div.epitaph {

 play-during: url(/sounds/dirge.wav) repeat;

}

425

Appendix C: CSS Property Reference

position

This property sets the method used to position an element on the page.

Inherited: No

See also: bottom, left, right, top, z-index

Value

This property may be set to any of the following constant values:

static
The element is laid out according to normal document flow. The bottom,
left, right, and top properties have no effect. This is the default.

absolute
The element can be precisely positioned within the positioning context in
which it resides. In other words, a (top,left) position of (0,0) will place the
element against the top-left corner of the nearest ancestor that has a position
setting other than static, or against the top-left corner of the body element
if there is no such ancestor.

Absolute positioned elements do not occupy any space in the normal docu
ment flow.

fixed
This setting lets you position the element as with absolute, but when the
page is scrolled, the element maintains its position in the window instead of
scrolling with the rest of the page.

relative
The element can be positioned relative to where it would appear if it were
positioned normally, with static. In other words, a (top,left) position of
(50,-30) will place the element 50 pixels below and 30 pixels to the left of
where it would appear if its position were left up to the browser.

Relative positioned elements still occupy the space they would be assigned
if they were not positioned to begin with. This may sound like a pain, but it
comes in handy in some common page layout situations.

426

quotes

One use of relative is to let an element act as a positioning context for one
or more absolute positioned child elements, without moving it from its
normal place in the document flow.

Initial value: static

Compatibility

CSS Version: 2

This property works in all CSS-compatible browsers; however, the fixed property
is supported correctly only by Mozilla, Opera, Safari, and Internet Explorer 7.
Internet Explorer 6 (in quirks and standards-compliant mode) treats fixed exactly
like absolute.

Example

This style rule places the element with ID logo 30 pixels from the top and right
edges of the browser window (assuming the element is in the body’s positioning
context), and keeps it there even when the user scrolls the document:

#logo {

 position: fixed;

 top: 30px;

 right: 30px;

}

The chapters of this book that deal with page layout also contain plenty of ex
amples with which you may experiment.

quotes
The content property of :before and :after pseudo-elements lets you specify
generated content that should appear before and/or after any element. Generated
content is presentational text that is rendered on the page but does not form part
of the HTML document. Among the types of content that can be generated are
quotation marks. The quotes property lets you define the format of those quotes.

Since you can have quotes within quotes, this property lets you set the quotes’
appearance at each nesting level.

Inherited: Yes

427

Appendix C: CSS Property Reference

See also: content

Value

The property takes as a value a space-separated list of pairs of quote strings (see
example below), or none. If pairs of strings are provided, the first pair will be used
for the first (outermost) level of quotes, the second pair will be used for the first
level of nested quotes, and so on. If the none constant is specified, the open-
quote and close-quote elements of the content property will not generate any
content.

The CSS 2 specification does not cover how quotes should be rendered when
they appear at a nesting level for which quote strings are not provided; presumably,
the final pair of quote strings would be used for all deeper nesting levels as well.

Initial value: A browser-specific series of quote strings.

Compatibility

CSS Version: 2

The best support for this property is provided by recent Mozilla browsers; how
ever, older browsers (including Netscape 6 and Firefox 1.0.7) support this prop
erty, though the first pair of quote strings you specify are applied to all nesting
levels. This is rectified in Firefox 1.5 and Seamonkey 1.0.

Opera also supports this property reasonably well; however, a bug in version 7
of that browser does affect this feature. If you specify quote strings for n nesting
levels, then any quoted elements at nesting level n+1 or deeper will have the
close-quote string of the deepest specified nesting level as its open-quote string,
and double quotes (") for its close-quote string.

Internet Explorer 5 for Macintosh supports the open-quote and close-quote
elements of the content property, but it chooses the quote strings itself, ignoring
this property.

Internet Explorer for Windows (up to and including version 7 in standards-
compliant mode) does not support generated quotes.

428

richness

Example

This example uses double quotes for the first (outermost) level of quotes, then
single quotes for the second level (and presumably for all deeper levels). This
setting is applied to the body element (it is inherited by all nested elements),
then quotes are added to blockquote and q (inline quote) elements:

body {

 quotes: '"' '"' "'" "'";

}

blockquote:before, q:before {

 content: open-quote;

}

blockquote:after, q:after {

 content:close-quote;

}

richness
For use by aural (speaking) browsers for the visually impaired, this property
controls richness/smoothness in the voice that reads a selected element’s content
aloud (which affects the degree to which the sound “carries”).

Inherited: Yes

See also: pitch, pitch-range, stress, voice-family, volume

Value

The property takes any integer between 0 and 100, where 0 is a soft, mellifluous
voice, 50 is an average speaking voice, and 100 is a strident voice.

Initial value: 50

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

429

Appendix C: CSS Property Reference

Example

This example causes aural browsers to speak elements of class ominous more
softly than usual:

.ominous {

 richness: 30;

}

right
This property lets you set the distance between the right edge of an absolute
positioned element (including its padding, border, and margin) and the right
edge of the positioning context in which it resides. The positioning context is the
padding area of the element’s nearest ancestor that has a position property value
other than static, or the body element.

For relative positioned elements, this property sets a relative offset from the
normal position of its bottom edge. So a setting of 10px will shift the right edge
of the box ten pixels to the left, and a setting of -10px will shift it right by the
same amount.

Inherited: No

See also: position, bottom, left, and top

Value

This property takes a CSS length measurement, a percentage value, or the auto
constant. Percentages are based on the width of the parent element. The auto
constant tells the browser to determine the position of the right edge itself, based
on whatever other constraints may exist on the size/position of the element.

Initial value: auto

Compatibility

CSS Version: 2

The property works in all CSS-compatible browsers.

430

ruby-align

Often, the same effect can be achieved by setting the left property of a box.
Since left is supported by more browsers than right, this should be done
whenever possible.

Example

This style rule positions the element with ID menu against the right edge of the
document (assuming it is in the body’s positioning context):

#menu {

 position: absolute;

 right: 0;

 width: 100px;

 height: 200px;

}

ruby-align
Ruby text is a new addition in the XHTML 1.1 recommendation and is described
by the Ruby Annotation Recommendation37 of the W3C. Commonly used in
Japan and China, ruby text generally appears in a smaller font that overlays the
main text as a pronunciation guide, or to provide some other explanatory annota
tion. It has no relation to the Ruby programming language, other than the fact
that they both originated in Japan.

This property sets how the ruby text is aligned with the base text.

Inherited: No

See also: ruby-overhang, ruby-position

Value

This property accepts any of the following constants:

❑ auto

❑ center

❑ distribute-letter

37 http://www.w3.org/TR/2001/REC-ruby-20010531/

431

http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/2001/REC-ruby-20010531/

Appendix C: CSS Property Reference

❑ distribute-space

❑ left

❑ line-edge

❑ right

For the meanings of each of these constants, see the CSS3 Ruby module working
draft38 and the Microsoft Internet Explorer documentation for this property.39

Initial value: auto

Compatibility

CSS Version: n/a

This property is supported only in Internet Explorer for Windows version 5 or
later. In that browser, this property must be applied to the ruby element that
contains the ruby text (rt) element for which you wish to set the alignment.

Equivalent functionality is planned for inclusion in CSS3, and the current
working draft suggests that this property will be as documented here. To follow
the work on this front, see the CSS Working Group web site.40

Example

This style rule centers ruby text over the base text:

ruby {

 ruby-align: center;

}

ruby-overhang
Ruby text is a new addition in the XHTML 1.1 recommendation and is described
by the Ruby Annotation Recommendation41 of the W3C. Commonly used in
Japan and China, ruby text generally appears in a smaller font that overlays the

38 http://www.w3.org/TR/css3-ruby/
39 http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
40 http://www.w3.org/TR/css3-ruby/
41 http://www.w3.org/TR/2001/REC-ruby-20010531/

432

http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/css3-ruby/
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/2001/REC-ruby-20010531/

ruby-overhang

main text as a pronunciation guide, or to provide some other explanatory annota

tion.

This property controls whether ruby text is allowed to extend over adjacent text

or whitespace, if it is longer than the base text it annotates.

Inherited: No

See also: ruby-align, ruby-position

Value

This property accepts any of the following constants:

❑ auto

❑ none

❑ whitespace

For the meanings of each of these constants, see the CSS3 Ruby module working
draft42 and the Microsoft Internet Explorer documentation for this property.43

Initial value: auto

Compatibility

CSS Version: n/a

This property is supported only in Internet Explorer for Windows version 5 or
later. In that browser, this property must be applied to the ruby element that
contains the ruby text (rt) element for which you wish to set the alignment.

Equivalent functionality is planned for inclusion in CSS3, and the current
working draft suggests that this property will be as documented here. To follow
the work on this front, see the CSS Working Group web site.44

42 http://www.w3.org/TR/css3-ruby/
43 http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
44 http://www.w3.org/TR/css3-ruby/

433

http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/

Appendix C: CSS Property Reference

Example

This style rule allows ruby text to overhang whitespace adjacent to the base text
only:

ruby {

 ruby-overhang: whitespace;

}

ruby-position
Ruby text is a new addition in the XHTML 1.1 recommendation and is described
by the Ruby Annotation Recommendation45 of the W3C. Commonly used in
Japan and China, ruby text generally appears in a smaller font that overlays the
main text as a pronunciation guide, or to provide some other explanatory annota
tion.

This property controls where the ruby text is positioned in relation to its base
text.

Inherited: No

See also: ruby-align, ruby-overhang

Value

In Internet Explorer for Windows version 5 or later, this property accepts the
following constants:

❑ above

❑ inline

However, the current working draft of CSS3 proposes the following values:

❑ after

❑ before

❑ right

45 http://www.w3.org/TR/2001/REC-ruby-20010531/

434

http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/2001/REC-ruby-20010531/

scrollbar-base-color

For the meanings of each of these sets of constants, see the Microsoft Internet
Explorer documentation for this property46 and the CSS3 Ruby module working
draft,47 respectively.

Initial value:

❑ Internet Explorer: above

❑ CSS3 draft: before

Compatibility

CSS Version: n/a

This property is supported only in Internet Explorer for Windows version 5 or
later. In that browser, this property must be applied to the ruby element that
contains the ruby text (rt) element for which you wish to set the alignment.

Equivalent functionality is planned for inclusion in CSS3, but the proposed
property values differ from those supported by Internet Explorer for Windows.
To follow the work on this front, see the CSS Working Group web site.48

Example

This style rule places ruby text inline with, instead of above, the base text in In
ternet Explorer for Windows:

ruby {

 ruby-position: inline;

}

scrollbar-base-color
This nonstandard property is provided by Internet Explorer for Windows version
5.5 or later to let the page designer control the overall color of the scroll bar(s)
associated with an element. The browser will use the specified color as a basis
for choosing the actual colors of all the parts of the scroll bars.

46 http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp

47 http://www.w3.org/TR/css3-ruby/

48 http://www.w3.org/TR/css3-ruby/

435

http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/rubyalign.asp
http://www.w3.org/TR/css3-ruby/
http://www.w3.org/TR/css3-ruby/

Appendix C: CSS Property Reference

The colors of individual parts of the scroll bars can be controlled precisely with
the scrollbar-element-color properties.

Inherited: Yes

See also: scrollbar-element-color

Value

The property takes any CSS color value. See Appendix B.

Initial value: depends on user configuration

Compatibility

CSS Version: n/a

This nonstandard property works only in Internet Explorer for Windows version
5.5 or later.

Example

This style rule sets the overall scroll bar color to blue on textarea elements:

textarea {

 scrollbar-base-color: blue;

}

scrollbar-element-color
This collection of nonstandard properties is provided by Internet Explorer for
Windows version 5.5 or later to let the page designer control the colors of various
parts of the scroll bar(s) associated with an element. The actual property names,
along with their meanings, are listed in Table C.9.

436

scrollbar-element-color

Table C.9. Internet Explorer scrollbar properties

Affected area(s) Property

outer top and left edges of the scroll bar buttons and thumb scrollbar
3dLight-color

up and down arrows in the scroll bar buttons scrollbar-arrow
color

outer right and bottom edges of the scroll bar buttons and
thumb

scrollbar-dark-
Shadow-color

interior areas of the scroll bar buttons and thumb scrollbar-face
color

inner top and left edges of the scroll bar buttons and thumb scrollbar-high
light-color

inner right and bottom edges of the scroll bar buttons and
thumb

scrollbar-shadow
color

background of the scroll bar, outside the scroll bar buttons
and thumb

scrollbar-track
color

Inherited: Yes

See also: scrollbar-base-color

Value

The property takes any CSS color value. See Appendix B.

Initial values: depend on user configuration

Compatibility

CSS Version: n/a

These nonstandard properties work only in Internet Explorer for Windows version
5.5 or later.

Example

This style rule removes the three-dimensional appearance of the scroll bars around
textarea elements, displaying them in flat black and white instead:

437

Appendix C: CSS Property Reference

textarea {

 scrollbar-3dLight-color: black;

 scrollbar-arrow-color: black;

 scrollbar-darkShadow-color: black;

 scrollbar-face-color: white;

 scrollbar-highlight-color: white;

 scrollbar-shadow-color: white;

 scrollbar-track-color: black;

}

size
This property, which can appear only within an @page at-rule (see the section
called “At-rules” in Appendix A), lets you control the page size and/or orientation
as needed.

Value

This property can take a number of constants, or specific page measurements.

Supported constants are:

❑ auto

❑ landscape

❑ portrait

auto tells the browser to use a page size/orientation equal to the printer settings,
while landscape and portrait force the browser to rotate the page as necessary
to print in the specified orientation on the printer’s paper size.

Alternatively, you can specify an exact page size with either one or two CSS
length values (separated by spaces). If only one value is specified, it is used as
both the width and height; otherwise, the first value is the page width and the
second is the page height.

Initial value: auto

Compatibility

CSS Version: 2

438

speak

The property is not supported by any currently available browser.

Example

This style rule specifies that the page should be printed in landscape orientation
on a Letter-sized (8.5-inch by 11-inch) page:

@page {

 size: 11in 8.5in;

}

speak
For use by aural (speaking) browsers for the visually impaired, this property
controls if and how an element’s content should be read aloud.

Inherited: Yes

See also: speak-header, speak-numeral, speak-punctuation

Value

This property accepts any of the following constants:

❑ none: The element’s content is not read.

❑ normal: The element’s content is read normally.

❑ spell-out: The element’s content is spelled out one character at a time.

Initial value: normal

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This example causes aural browsers to spell out abbr and acronym elements:

439

Appendix C: CSS Property Reference

abbr, acronym {

 speak: spell-out;

}

speak-header
For use by aural (speaking) browsers for the visually impaired, this property
controls how table headers are read. As the browser reads out the contents of
each cell in the table, it can either read all the headers for a cell before that cell’s
contents, or it may read only those headers that are different from the headers
of the previously-read cell.

Inherited: Yes

See also: speak, speak-numeral, speak-punctuation

Value

This property accepts any of the following constants:

❑	 always: For each cell, all the headers that apply to it are read first.

❑	 once: For each cell, only headers that are different from the previously-read
cell are read.

Initial value: once

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This example causes aural browsers to read all the headers that apply to each cell
in a table of class matrix:

table.matrix {

 speak-header: always;

}

440

speak-numeral

speak-numeral
For use by aural (speaking) browsers for the visually impaired, this property
controls how numbers are read. A number may be read either as a series of digits
(e.g. “one, two, three”) or as a whole number (e.g. “one hundred twenty-three”).

Inherited: Yes

See also: speak, speak-header, speak-punctuation

Value

This property accepts any of the following constants:

❑ digits: The number is read as a series of digits.

❑ continuous: The number is read as a whole number.

Initial value: continuous

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to read numbers occurring in any element of
class binary as a series of digits:

.binary {

 speak-numeral: digits;

}

speak-punctuation
For use by aural (speaking) browsers for the visually impaired, this property
controls how punctuation is read. Punctuation may either be read aloud (e.g.
“period”), or represented by pauses in the reading of surrounding text.

441

Appendix C: CSS Property Reference

Inherited: Yes

See also: speak, speak-header, speak-numeral

Value

This property accepts any of the following constants:

❑ code: Punctuation is read aloud.

❑ none: Punctuation is implied by natural pauses.

Initial value: none

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This example causes aural browsers to read aloud punctuation occurring in any
element of class spokenpunct:

.spokenpunct {

 speak-punctuation: code;

}

speech-rate
For use by aural (speaking) browsers for the visually impaired, this property
controls how quickly (or slowly) the content of an element is read.

Inherited: Yes

See also: pause

Value

You can specify the exact speech rate in words per minute as a positive, floating-
point number.

442

stress

This property also accepts any of the constants in Table C.10.

Table C.10. speech-rate constants

EffectConstant

80 words per minute x-slow

120 words per minute slow

180 to 120 words per minute medium

300 words per minute fast

500 words per minute x-fast

the inherited rate minus 40 words per minute slower

the inherited rate plus 40 words per minute faster

Initial value: medium

Compatibility

CSS Version: 2

This property is not supported by any currently available browser.

Example

This example causes aural browsers to read elements of class ominous more slowly
than usual:

.ominous {

 speech-rate: slower;

}

stress
For use by aural (speaking) browsers for the visually impaired, this property
controls stress in the voice that reads a selected element’s content aloud. In
English, for example, every sentence usually contains particular words that are
emphasized more heavily than others. This property controls how great the dif
ference is between emphasized and non-emphasized passages.

Inherited: Yes

443

Appendix C: CSS Property Reference

See also: pitch, pitch-range, richness, voice-family, volume

Value

The property takes any integer between 0 and 100; 50 is an average level of stress.

Initial value: 50

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to speak elements of class ominous with
greater stress than usual:

.ominous {

 stress: 75;

}

table-layout
This property lets you accelerate table rendering by allowing it to take a shortcut
in calculating the column sizes. When table-layout is set to fixed, the browser
considers only the cells in the first row when determining the table’s cell widths
(and the table’s overall width). This allows the browser to render the table one
row at a time, instead of having to wait for the full table to load before being able
to display any of it.

Be aware that wider content in subsequent table rows will be wrapped to the
column widths set by the first row when the fixed table layout mode is used: the
cell size will not increase to accommodate the data.

Inherited: No

See also: max-height, min-height

444

text-align

Value

auto or fixed

Initial value: auto

Compatibility

CSS Version: 2

This property is supported by all CSS-compatible browsers.

Example

This style rule sets tables of class thumbnails to the quicker, fixed layout mode:

table.thumbnails {

 table-layout: fixed;

}

text-align
This property sets the horizontal alignment of text and other inline content
within a block element.

If you’re looking for a way to set the horizontal alignment of a block (e.g. to
center it on the page), you should instead use the margin-left, margin-right,
left, and right properties to achieve the desired effect (e.g. you can center a
block horizontally by setting its left and right margins to auto).

Inherited: Yes

See also: text-align-last, vertical-align

Value

This property supports the following constant values:

❑ center

❑ justify

445

Appendix C: CSS Property Reference

❑ left

❑ right

center, left, and right are self-explanatory. justify should be familiar to users
of word processors; it causes the words on each line to be spaced so that each
line starts and ends against the edge of the content box, with the exception of
the last line.

Initial value: Depends on the language of the browser and/or the element

Compatibility

CSS Version: 1

This property is supported by all CSS-compatible browsers.

In older browsers (most version 4 browsers), justify behaves the same as left;

however, this is allowable under the CSS 2.1 standard.

Example

This style rule will justify text within the body and all child elements, unless
otherwise specified (thanks to inheritance):

body {

 text-align: justify;

}

text-align-last
This nonstandard property, supported by Internet Explorer for Windows version
5.5 or later, lets you specifically set the alignment of the last line of text within

a block element whose text-align property is set to justify.

This property is ignored when the text-align property is not set to justify.

Inherited: Yes

See also: text-align

446

text-autospace

Value

This property supports the following constant values:

❑ auto

❑ center

❑ justify

❑ left

❑ right

auto allows the last line to reflect the alignment set by the text-align property.

Initial value: auto

Compatibility

CSS Version: n/a

The property is supported only by Internet Explorer for Windows version 5.5 or
later.

Example

This style rule causes the last line of a blockquote element to be right-aligned:

blockquote {

 text-align: justify;

 text-align-last: right;

}

text-autospace
This property lets you choose between a number of methods for increasing the
space between ideographic characters (in Asian languages) and non-ideographic
characters (non-Asian languages).

Inherited: No

447

Appendix C: CSS Property Reference

Value

This property accepts any of the following constant values:

❑	 ideograph-alpha: extra space between ideographic and non-ideographic
characters

❑	 ideograph-numeric: extra space between ideographic and numeric characters

❑	 ideograph-parenthesis: extra space between ideographic characters and
parentheses

❑	 ideograph-space: extra space between ideographic characters and whitespace

❑ none: no extra space

Initial value: none

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer 5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, but combinations of
the above values will likely be allowed. To follow the work on this front, see the
CSS Working Group web site.49

Example

This style rule adds extra spacing between ideographic and non-ideographic
characters in paragraphs of class mixed:

p.mixed {

 text-autospace: ideograph-alpha;

}

49 http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-autospace-prop

448

http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-autospace-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-autospace-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-autospace-prop

text-decoration

text-decoration

This property lets you add one or more “decorations” to the text within an ele
ment. Decorations include overlining, underlining, striking through, and blinking.

Although this property is not inherited, specifying it on an element will apply
the decoration through the whole element, including any child elements.

Inherited: No

Value

This property can be set to none to remove any decoration specified in a lower-
priority rule (e.g. to remove the underline applied to hyperlinks in the default
style sheets of visual browsers).

Otherwise, it can take any space-delimited combination of the following constants:

❑ blink50

❑ line-through

❑ overline

❑ underline

Initial value: none

Compatibility

CSS Version: 1

This property works in all CSS-compatible browsers; however, the blink decora
tion type is (mercifully) not supported in Internet Explorer browsers.

Example

This style rule removes the underline from hyperlinks in the document and re
places it with a dashed bottom border:

50 The author begs you not to use this.

449

Appendix C: CSS Property Reference

a:link, a:visited {

 text-decoration: none;

 border-bottom: 1px solid dashed;

}

text-indent
This property sets the indent applied to the first line of a block element (and its
children, thanks to inheritance).

A negative value will result in a hanging indent, with the text of the first line
protruding from the content area of the block. You will usually want to balance
a negative text-indent with a positive padding-left value of the same or
greater size to keep all the text within the border of the block.

Inherited: Yes

See also: padding

Value

The property takes any CSS length value (px, pt, em, etc.), or a percentage of the
parent element’s width.

Initial value: 0

Compatibility

CSS Version: 1

This property is supported by all CSS-compatible browsers.

Example

This style rule creates a one-centimeter hanging indent on all paragraphs by using
a negative text-indent in combination with a padding-left value of the same
size:

p {

 text-indent: -1cm;

 padding-left: 1cm;

}

450

text-justify

text-justify
This nonstandard property, supported by Internet Explorer for Windows version
5 or later, controls the algorithm used to calculate spacing in blocks with
text-align set to justify. This property is designed for use with Asian languages
where “words” do not necessarily occur, and therefore the adaptive word spacing
usually associated with justified text does not have a clear meaning.

Inherited: Yes

See also: text-align, text-kashida-space

Value

This property will accept any one of the following constant values:

❑	 auto: allows the browser to choose which algorithm to use

❑	 distribute: increases letter spacing and word spacing by the same amount

❑	 distribute-all-lines: same as distribute, but also applies to the last line

❑	 inter-cluster: same as distribute, but does not add space between char
acters of Southeast Asian grapheme clusters

❑	 inter-ideograph: same as distribute, but does not add space between non-
Chinese/Japanese/Korean characters

❑	 inter-word: the familiar method for Latin languages like English; adds only
space between words

❑	 kashida: uses elongated strokes in Arabic characters to justify text

❑	 newspaper: same as distribute, but preference is given to inter-word spacing
over inter-character spacing

Initial value: auto

Compatibility

CSS Version: n/a

451

Appendix C: CSS Property Reference

The property is available in Internet Explorer 5 or later for Windows only. The
kashida mode is supported only by version 5.5 or later.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.51

Example

This style rule specifies the newspaper justification mode for div elements of
class column:

div.column {

 text-align: justify;

 text-justify: newspaper;

}

text-kashida-space
This nonstandard property, supported by Internet Explorer for Windows version
5.5 or later, controls the degree to which the browser relies on kashida expansion
to achieve justified alignment. This property is designed for use with Arabic lan
guages, where certain horizontal lines in the script can be extended to lengthen
words.

For this property to have a useful effect, affected elements must have their
text-align property set to justify, and their text-justify property set to a
mode that allows kashida expansion (auto, distribute, kashida, or newspaper).

Inherited: Yes

See also: text-align, text-justify

Value

The property takes as its value a percentage ratio between kashida expansion and
whitespace expansion, where 100% will result in only kashida expansion and 0%
will result in only whitespace expansion.

Initial value: 0%

51 http://www.w3.org/TR/2003/WD-css3-text-20030226/#justification-prop

452

http://www.w3.org/TR/2003/WD-css3-text-20030226/#justification-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#justification-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#justification-prop

text-overflow

Compatibility

CSS Version: n/a

This property is supported by Internet Explorer 5.5 or later for Windows only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.52

Example

This style rule specifies that for every two units of whitespace that are added,
one unit of kashida expansion is added:

div.column {

 text-align: justify;

 text-kashida-space: 33%;

}

text-overflow
This nonstandard property, supported by Internet Explorer 6 or later, lets you
handle text that is clipped by the width of an element more elegantly. The portion
of the string that would normally overflow the edge of the box is replaced with
an ellipsis (…).

The element must have its overflow property set to something other than visible
(although hidden is the only value that really makes sense) for this property to
have any effect.

Note that this property affects only text that is clipped by the width of the element
(or the height in vertical writing systems), either because word-wrapping is disabled
with the white-space property, or because a long word or other non-wrappable
text segment is too long to fit in the box.

Inherited: No

See also: overflow, white-space, width

52 http://www.w3.org/TR/2003/WD-css3-text-20030226/#kashida-prop

453

http://www.w3.org/TR/2003/WD-css3-text-20030226/#kashida-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#kashida-prop
http://www.w3.org/TR/2003/WD-css3-text-20030226/#kashida-prop

Appendix C: CSS Property Reference

Value

This property can be set to either of these two constants:

❑ clip

❑ ellipsis

Initial value: clip

Compatibility

CSS Version: n/a

The property is supported in Internet Explorer for Windows version 6 or later
only.

Example

This style rule specifies that text within divs of class summary should not be
wrapped, and that text that does not fit within the div should be shown with an
ellipsis:

.summary {

 width: 500px;

 white-space: nowrap;

 overflow: hidden;

 text-overflow: ellipsis;

}

text-transform
This property causes the text of selected element(s) to be case-modified for display.
Text can be displayed capitalized, uppercase, or lowercase.

Inherited: Yes

Value

This property may be assigned any one of the following constant values:

❑ capitalize: The first letter of each word is displayed in uppercase.

454

text-underline-position

❑ lowercase: All characters in the text are displayed in lowercase.

❑ uppercase: All characters in the text are displayed in uppercase.

❑ none: The text is displayed unmodified.

Initial value: none

Compatibility

CSS Version: 1

This property is supported by all CSS-compatible browsers.

Example

This style rule displays all headings in capitalized text (the first letter of each
word is capitalized):

h1, h2, h3, h4, h5, h6 {

 text-transform: capitalize;

}

text-underline-position
This nonstandard property, supported by Internet Explorer for Windows version
5.5 or later, controls whether underlines are drawn above or below text inside
the selected element(s). This property is designed for use with Asian languages
and other vertical writing systems.

For this property to have a visible effect, an affected element (or one of its chil
dren) must have its text-decoration property set to underline.

Inherited: Yes

See also: text-decoration

Value

This property will accept either of these three constant values:

455

Appendix C: CSS Property Reference

❑	 auto or auto-pos: The underline is drawn above the text if the language is
set to ja (Japanese) and writing-mode is set to tb-rl.

❑	 above: The underline is drawn above the text.

❑	 below: The underline is drawn below the text.

Initial value:

❑	 Internet Explorer 6 or later: auto

❑	 Internet Explorer 5.5: below

Compatibility

CSS Version: n/a

The property is compatible with Internet Explorer for Windows version 5.5 or
later only. The auto and auto-pos values are supported only in version 6 or later.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.53

Example

This style rule specifies that underlines should always be drawn below the text,
even in vertical, Japanese text:

body {

 text-underline-position: below;

}

top
This property lets you set the distance between the top edge of an absolute po
sitioned element (including its padding, border, and margin)54 and the top edge
of the positioning context in which it resides. The positioning context is the

53 http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-decoration-other
54 The CSS 2 specification contains an error that suggests that the padding, border, and margin of
the positioned element should not be considered. This has been acknowledged as a mistake by the
CSS Working Group in the Errata document for CSS 2.

456

http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-decoration-other
http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-decoration-other
http://www.w3.org/TR/2003/WD-css3-text-20030226/#text-decoration-other

unicode-bidi

padding area of the element’s nearest ancestor that has a position property value
other than static, or the body element.

For relative positioned elements, this property sets a relative offset from the
normal position of its top edge. So, a setting of 10px will shift the top edge of
the box ten pixels downward, and a setting of -10px will shift it ten pixels upward.

Inherited: No

See also: position, bottom, left, and right

Value

The property takes a CSS length measurement, a percentage value, or the auto
constant. Percentages are based on the height of the parent element. The auto
constant tells the browser to determine the position of the top edge itself, based
on whatever other constraints may exist on the size/position of the element.

Initial value: auto

Compatibility

CSS Version: 2

The property is supported by all CSS-compatible browsers.

Example

This style rule positions the element with ID menu ten pixels from the top edge
of the window:

#menu {

 position: absolute;

 top: 10px;

}

unicode-bidi
Most western languages are written left-to-right (LTR). As you probably know,
many other languages (e.g. Hebrew) are written right-to-left (RTL). Documents

457

Appendix C: CSS Property Reference

written with the Unicode character set55 can contain text from both LTR and
RTL languages. The Unicode standard includes a complicated algorithm that
should be used for displaying such mixed text. It also defines special characters
that let you “group” text.

For example, consider the following imaginary string of text, where the lowercase
text represents LTR characters and the uppercase text represents RTL:

english1 HEBREW1 english2 HEBREW2 english3

Now, the obvious way to render this would be “english1 1WERBEH english2
2WERBEH english3,” but what if we add some HTML tags to the mix?

<p>english1 <q>HEBREW1 english2 HEBREW2</q> english3</p>

As you can see, the text beginning with HEBREW1 and ending with HEBREW2 is in
tended as an inline quotation in Hebrew, which just happens to contain an
English word. Since HEBREW1 and HEBREW2 belong to the same block of Hebrew
text, “2WERBEH” should be rendered to the left of “1WERBEH”. With this in
mind, the complete paragraph should be rendered as “english1 2WERBEH eng
lish2 1WERBEH english3.”

The HTML 4.0 standard (along with XHTML 1.0) defines the dir attribute and
the bdo element to handle these complexities. To obtain the desired rendering
in an HTML4-compatible browser, the code should be:

<p>english1 <q lang="he" dir="rtl">HEBREW1 english2 HEBREW2</q>

 english3</p>

The dir attribute of the q tag is what specifies the rendering order; the lang at
tribute won’t have any actual visible effect. For full details on language and bid
irectional text rendering in HTML, refer to Section 8 of the HTML 4.0 standard.56

So, where does CSS come into play, you ask? Well, the direction property, in
combination with a unicode-bidi property setting of embed, performs the same
role as the HTML dir attribute. In combination with a unicode-bidi property
setting of bidi-override, direction has the same effect as the HTML bdo tag.
However, it’s still considered best practice to include bidirectional text attributes
as part of the HTML code. The direction and unicode-bidi properties are in
tended for use in styling XML documents that do not have the benefit of HTML
4’s bidirectional text features. Since the focus of this book is on web development,

55 http://www.unicode.org/
56 http://www.w3.org/TR/REC-html40/struct/dirlang.html

458

http://www.unicode.org/
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.unicode.org/
http://www.w3.org/TR/REC-html40/struct/dirlang.html

unicode-bidi

I’ll therefore refer you to the CSS 2.1 standard57 for full details on these proper
ties.

Inherited: No

See also: direction

Value

This property will accept any one of these three constant values:

❑	 normal: The element is treated normally for purposes of bidirectional text
rendering; LTR text is rendered LTR and RTL text is rendered RTL. The
direction property has no effect on the element.

❑	 embed: The element behaves as an embedded sequence of LTR or RTL text,
as set by the direction property. This is equivalent to setting the HTML
dir property on the element.

❑	 bidi-override: All text inside the element, whether LTR or RTL, is rendered
in the direction set by the direction property. This is equivalent to using an
HTML bdo tag with the equivalent dir attribute value.

Initial value: normal

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This style rule sets the text direction of an imaginary XML element named hebrew
to rtl. The unicode-bidi property setting in this case ensures that all text
within the hebrew element (even text that would normally be displayed LTR ac
cording to the Unicode standard) will be displayed RTL.

hebrew {

 direction: rtl;

57 http://www.w3.org/TR/CSS21/visuren.html#direction

459

http://www.w3.org/TR/CSS21/visuren.html#direction
http://www.w3.org/TR/CSS21/visuren.html#direction

Appendix C: CSS Property Reference

unicode-bidi: bidi-override;

}

vertical-align
This property sets the vertical alignment of text and other inline content with
respect to either its parent element’s font, or the line in which it appears.

This value also lets you set the vertical alignment of content within table cells.

Inherited: No

See also: text-align

Value

This property supports a range of constant values as well as CSS measurements
and percentages.

The majority of the supported constants for this property align text and other
inline content with respect to the parent element’s font:

baseline

The baseline58 of the content will line up with the baseline of the parent
element’s font. If the content has no baseline (e.g. an image), then the bottom
of the content is lined up with the baseline of the parent element’s font.

middle

The content is aligned so that its vertical midpoint lines up with a point that
is half the parent element font’s x-height59 above the parent element’s
baseline.

sub

The content is aligned so that its baseline is positioned some distance below
the parent element’s baseline; this is suitable for subscript text. Usually, you’ll
want to set a smaller font-size property for the content as well.

58 The baseline is the imaginary line on which text is written. The bottoms of letters rest on the

baseline, with descenders extending below it.

59 The x-height is the height of lowercase letters in a font.

460

vertical-align

super

The content is aligned so that its baseline is positioned some distance above
the parent element’s baseline, which is suitable for superscript text. You will
usually want to set a smaller font-size property for the content as well.

text-bottom

The content is aligned so that its bottom lines up with the bottom of the
parent element’s font. This position is independent of the actual line height.

text-top

The content is aligned so that its top lines up with the top of the parent ele
ment’s font. This position is independent of the actual line height.

As with the above constants, setting the vertical position with a numerical value
gives a position relative to the parent element’s font:

length
A CSS length (px, pt, em, etc.) shifts the content’s baseline—or bottom, if
no baseline exists—up or down from the parent element’s baseline for positive
or negative values, respectively.

percentage
A percentage (e.g. 50%) shifts the content’s baseline—or bottom, if no baseline
exists—up or down from the parent element’s baseline by a percentage of the
element’s line-height property for positive or negative values, respectively.

Finally, two additional constants let you set the content’s vertical position with
respect to the line in which the content appears. This may be considerably differ
ent from the parent element’s font (e.g. if the line contains a tall image that in
creases the overall line height).

bottom

The content is aligned so that its bottom (not its baseline) rests against the
bottom of the line area.

top

The content is aligned so that its top rests against the top of the line area.

When applied to table cells, this property does not support sub, super, text-
bottom, or text-top—all of these behave like baseline. The constants bottom,
middle, and top refer to the cell box, while baseline ensures that the first line
of each cell shares the same baseline as the other cells in the same row.

461

Appendix C: CSS Property Reference

Initial value: baseline

Compatibility

CSS Version: 1 (the length value format was added in CSS 2)

This property is supported by all CSS-compatible browsers.

Internet Explorer for Windows supports only baseline, sub, and super in version
5 or earlier. Version 5.5 or later supports the other constants, but only on HTML
elements that support the valign attribute (i.e. table cells). Internet Explorer for
Windows does not support setting length or percentage values for this property.

Example

This style rule will align content within table header cells (th) to the vertical
middle of the cell:

th {

 vertical-align: middle;

}

visibility
This property lets you set whether an element is visible or not. When an element
is invisible, it is not displayed at all; however, it still occupies the same space on
the page that it would occupy if it were visible. To hide an element so that it
does not occupy any space on the page, set the display property to none instead.

Inherited: Yes

See also: display

Value

This property will accept any one of the following constant values:

❑	 collapse: When applied to a row (tr), row group (thead, tbody, tfoot),
column (col), or column group (colgroup) element, this setting causes the
row(s) or column(s) to be visibly removed from the table, allowing the table
to shrink accordingly. For other elements, this setting has the same effect as
hidden.

462

voice-family

❑ hidden: The element is not visible, but still occupies space in the document.

❑ visible: The element is displayed as normal.

Initial value: visible

Compatibility

CSS Version: 2

All CSS-compatible browsers support this property, but none yet support the
collapse value.

Example

This style rule hides elements with class active. Using dynamic HTML, these
elements could be shown in response to some user event:

.active {

 visibility: hidden;

}

voice-family
For use by aural (speaking) browsers for the visually impaired, this property
controls the voice family used to read the content of the element. A voice family
embodies the vocal attributes of a particular character, and is the aural analogue
to the font-family property.

Inherited: Yes

See also: pitch, pitch-range, richness, stress, volume

Value

A comma-separated list of voice names. Voice names that contain spaces should
be quoted (e.g. "Albert Einstein").

In addition to actual voice names, the list can contain any of the following gen
eric voice names:

❑ male

463

Appendix C: CSS Property Reference

❑ female

❑ child

Since browsers will always be able to find a voice for each of these generic voice
names, it only makes sense for the last name in the voice-family list to be one
of these.

Initial value: browser specific

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to speak elements of class ominous in the
voice of Igor, or in any male voice if the Igor voice family is not supported:

.ominous {

 voice-family: igor, male;

}

volume
For use by aural (speaking) browsers for the visually impaired, this property sets
the median volume (loudness) of the voice that reads a selected element’s content
aloud.

Inherited: Yes

See also: pitch, pitch-range, richness, stress, voice-family

Value

An absolute volume between 0 and 100 (inclusive), a percentage of the inherited
volume, or one of the following constants:

❑ silent: no sound at all

464

white-space

❑ x-soft: the lowest perceptible volume, the same as 0

❑ soft: equivalent to 25

❑ medium: equivalent to 50

❑ loud: equivalent to 75

❑ x-loud: the maximum comfortable volume, the same as 100

Initial value: medium

Compatibility

CSS Version: 2

The property is not supported by any currently available browser.

Example

This example causes aural browsers to speak elements of class ominous in a soft
voice:

.ominous {

 volume: soft;

}

white-space
Experienced HTML designers will be accustomed to the fact that whitespace in
HTML source code (sequences spaces, tabs, and line breaks) is collapsed to a
single space character in the rendered output, and that line breaks occur only
due to normal word wrapping performed by the browser or due to a hard break
(
) tag. Non-breaking space characters (), the nowrap attribute in
table tags, and the HTML <pre> tag can be used to work around this behavior,
when necessary.

The white-space property lets you assign the special properties of these work
arounds to other document elements so that the document code need not reflect
the intended formatting.

Inherited: Yes

465

Appendix C: CSS Property Reference

Value

This property will accept any one of the following constant values:

❑	 normal: Content is rendered with the default HTML behavior. Whitespace
is collapsed and word wrapping is performed.

❑	 nowrap: Whitespace is collapsed as with normal, but word wrapping does not
occur. Line breaks will occur only when specified with
 tags or when
present in generated content (see content).

❑	 pre: Whitespace is not collapsed and word wrapping does not occur. This
type of rendering is the default for <pre> tags, except the font-family of the
element is not set to monospace.

❑	 pre-wrap: This value prevents user agents from collapsing sequences of
whitespace.

❑ pre-line: This value directs user agents to collapse sequences of whitespace.

Initial value: normal

Compatibility

CSS Version: 1

CSS Version: 2.1 (pre-wrap and pre-line values)

This property is supported in Opera, Safari, and Mozilla browsers.

Internet Explorer for Windows supports this property as of version 5.5; however,

the pre value is supported only in version 6 and later, and then only when running
in standards-compliant mode.60

None of these browsers support the pre-line and pre-wrap values introduced
in CSS 2.1.

Example

This style rule will preserve whitespace and suppress word wrapping on div ele
ments of class screen:

60 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

466

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

widows

div.screen {

 white-space: pre;

}

widows
This property affects the position of page breaks when the user prints the page
from his or her browser. With this property, you can specify the minimum
number of lines that must remain in a block following a page break.

For example, if a paragraph element had six lines and the page size called for a
page break to occur after the fourth line, then an widows setting of 3 would force
the page break to occur before the paragraph so that the last three lines could ap
pear on the same page.

Inherited: Yes

See also: orphans

Value

A positive integer.

Initial value: 2

Compatibility

CSS Version: 2

This property is currently only supported by Opera.

Example

This style rule indicates that page breaks must allow at least four lines of a broken
paragraph to appear at the top of the next page after the break occurs:

p {

 widows: 4;

}

467

Appendix C: CSS Property Reference

width
This property sets the width of the contents of a block or replaced element.61

This width does not include padding, borders, or margins.

If the contents of a block require more horizontal space than the width you assign,
the behavior is defined by the overflow property.

Inherited: No

See also: height, max-width, min-width, overflow, text-overflow

Value

The property takes any CSS length value, a percentage of the parent element’s
width, or auto.

Initial value: auto

Compatibility

CSS Version: 1

This property is supported in some form by all CSS-compatible browsers. Current,
standards-compliant browsers (Opera, Safari, Mozilla) support it fully.

Internet Explorer for Windows (up to and including version 7) incorrectly includes
padding, borders, and margins in the width value. This is known as the box
model bug. IE corrects this in version 6 and later when in standards-compliant
mode,62 but for all previous versions you’ll need to use a separate, browser-spe
cific style sheet or live with smaller boxes whenever borders, margins, or padding
come into play (which is almost always). A third alternative is commonly known
as the box model hack, 63 which exploits a more obscure bug in IE6’s CSS support
to work around the box model bug.

61 A replaced element is any element whose appearance and dimensions are defined by an external
resource. Examples include images (img tags), plug-ins (object tags), and form fields (input and
select tags). Another way to think of replaced elements is as any element that can be displayed
inline with text and that acts as a single, big character for the purposes of wrapping and layout.
62 http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
63 http://css-discuss.incutio.com/?page=BoxModelHack

468

http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://css-discuss.incutio.com/?page=BoxModelHack
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp
http://css-discuss.incutio.com/?page=BoxModelHack

word-break

In Internet Explorer 4, this property is supported only for a limited subset of
block elements (div is a safe bet).

Example

This style rule assigns a fixed width of 100 pixels to paragraphs within the element
with ID blurbs:

#blurbs p {

 width: 100px;

}

word-break
This nonstandard property, supported by Internet Explorer for Windows version
5 or later, lets you specify different word wrapping behavior for Chinese/Japan
ese/Korean (CJK) scripts than for other writing systems.

Inherited: Yes

Value

This property will accept any one of the following constant values:

❑	 break-all: allows both CJK and non-CJK words to be broken by word
wrapping at any point; ideal for CJK text containing non-CJK fragments

❑	 keep-all: prevents both CJK and non-CJK words from being broken by word
wrapping; ideal for non-CJK text containing CJK fragments

❑	 normal: allows CJK words to be broken by word wrapping at any point, but
prevents non-CJK words from being broken in the same way

Initial value: normal

Compatibility

CSS Version: n/a

The property is supported by Internet Explorer 5 or later for Windows only.

469

Appendix C: CSS Property Reference

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.64

Example

This style rule sets the entire document to prevent arbitrary breaking of words
in CJK and non-CJK text, in anticipation of the document being primarily non-
CJK:

body {

 word-break: keep-all;

}

word-spacing
This property lets you increase or decrease the amount of spacing between words
in an element.

Inherited: Yes

See also: letter-spacing

Value

The property takes any CSS length, or normal. Percentages are not allowed.

Positive lengths increase word spacing by the specified amount, while negative
lengths decrease it. In most cases, it is preferable to specify the spacing in ems
(e.g. 0.5em), as this will preserve the relative spacing of words even if you change
the font size (one em is equal to the height of the current font).

Initial value: normal

Compatibility

CSS Version: 1

This property is supported by Internet Explorer for Windows version 6 or later,
Safari, Opera, and Mozilla browsers.

64 http://www.w3.org/TR/2003/WD-css3-text-20030226/#wordbreak-props

470

http://www.w3.org/TR/2003/WD-css3-text-20030226/#wordbreak-props
http://www.w3.org/TR/2003/WD-css3-text-20030226/#wordbreak-props
http://www.w3.org/TR/2003/WD-css3-text-20030226/#wordbreak-props

word-wrap

Examples

This style rule sets all elements of class spacy to have extra spacing to half of the
font’s height between each word:

.spacy {

 word-spacing: 0.5em;

}

This style rule sets all elements of class crowded to display words to half the font
size closer together than usual:

.crowded {

 word-spacing: -0.5em;

}

word-wrap
This nonstandard property, supported by Internet Explorer for Windows version
5.5 or later, lets you specify whether words that are too long to fit within the
assigned width of an element should overflow that width (the default behavior),
or be wrapped to the next line at the edge of the box.

Inherited: Yes

See also: width, text-overflow

Value

break-word or normal

Initial value: normal

Compatibility

CSS Version: n/a

The property is supported by Internet Explorer 5.5 for Windows or later only.

471

Appendix C: CSS Property Reference

Example

This style rule allows long words throughout the document to be wrapped forcibly
if they overflow the assigned width of their containers:

body {

 word-wrap: break-word;

}

writing-mode
This nonstandard property lets you choose between two common layout methods
for text: left-to-right horizontal lines stacked from top to bottom on the page
(the usual layout for western languages like English), and top-to-bottom vertical
lines stacked from right to left on the page (the usual layout for East Asian lan
guages like Chinese).

For scripts not designed to be displayed this way (e.g. Latin script as used in
English text), the tb-rl setting rotates the text 90 degrees clockwise so that it
can be read vertically.

Inherited: Yes

See also: layout-flow

Value

lr-tb or tb-rl

Initial value: lr-tb

Compatibility

CSS Version: n/a

The property is supported by Internet Explorer 5.5 for Windows or later only.

Equivalent functionality is planned for inclusion in CSS3, but final property
names and values are likely to differ. To follow the work on this front, see the
CSS Working Group web site.65

65 http://www.w3.org/TR/2003/WD-css3-text-20030226/#Progression

472

http://www.w3.org/TR/2003/WD-css3-text-20030226/#Progression
http://www.w3.org/TR/2003/WD-css3-text-20030226/#Progression
http://www.w3.org/TR/2003/WD-css3-text-20030226/#Progression

z-index

Example

This style rule sets the writing-mode of the body and all its children (unless
otherwise specified) to the East Asian style:

body {

 writing-mode: tb-rl;

}

z-index
For any element for which the position property is other than static, this
property sets the stacking order relative to other positioned elements within the
same stacking context. 66

Non-positioned elements are always beneath all positioned elements in the same
stacking context; they effectively have a z-index of 0. Elements in the same
stacking context with the same z-index are stacked in the order they appear in
the document, with later elements overlaying earlier ones.

Inherited: No

See also: position

Value

A positive integer, or the auto constant. The higher the integer, the higher the
element’s position in the stacking order.

The auto constant causes the element to behave as if it had a z-index of 0, except
that it does not create a new stacking context.

Initial value: auto

Compatibility

CSS Version: 2

This property works in all CSS-compatible browsers.

66 The stacking context of any element is the closest positioned ancestor whose z-index property
is set.

473

Appendix C: CSS Property Reference

Example

This style rule positions the element with ID mainmenu near the top-left of the
browser window and with a z-index value that causes it to hover over other
elements of lower z-index values:

#mainmenu {

 position: absolute;

 top: 10px;

 left: 10px;

 width: 100px;

 height: 300px;

 z-index: 10;

}

zoom
This nonstandard property, supported by Internet Explorer for Windows version
5.5 or later, lets you magnify or reduce the size of an element and all its contents.

Inherited: No

Value

The property takes as its value the magnification factor, either as a floating point
number (1.0 is the normal size) or as a percentage (100% is the normal size), or
the constant value normal.

Initial value: normal

Compatibility

CSS Version: n/a

This property is supported by Internet Explorer for Windows version 5.5 or later
only.

Example

This style rule sets all images in the document to appear at half their normal size:

474

zoom

img {

 zoom: 50%;

}

475

476

Recommended Resources

This bibliography provides you with links to, and comments on, some of the
better reference sources—online and off—that I’ve encountered in my adventures
with CSS.

I’m absolutely certain that I’ve left out a lot of great stuff here. The universe of
CSS information is too large for one person to know about, and certainly too
vast for a single appendix in a book. What I’ve provided here is a list of the best
books and web sites I’ve personally encountered and used. Each is accompanied
by a brief commentary to help you decide which resources will best suit your
needs in a given design situation.

The resources appear in no particular order.

Books
DHTML Utopia: Modern Web Design Using JavaScript & DOM1, 1st Edition
By Stuart Langridge. Published by SitePoint. ISBN: 0-9579218–9–6.

Stuart started out as a SitePoint blogger, and how he managed to fit the
writing of this—which is arguably among the most entertaining and
educational books on DHTML—around blogging and his day job is any
one’s guess. As the publishers comment, the book, “doesn’t cover old-
style, browser-specific DHTML. Modern DHTML, as presented in this
book, utilizes web standards, separates the code from the markup, and
degrades gracefully.” This is a practical, hands-on, tutorial-style title that
shows you how to implement slick DHTML functionality for browsers
that can handle it, without causing problems in browsers that can’t. It’s
essential reading for those who want to use DHTML creatively and ef
fectively.

Eric Meyer on CSS: Mastering the Language of Web Design
By Eric N. Meyer. Published by New Riders. ISBN: 0-7357-1245-X.

Meyer is among the best-known CSS authorities on the planet. This slick,
oversized, highly illustrated book is an absolute treasure-trove of teachings
about CSS beyond the basics. The text consists of 13 separate projects

1 http://www.sitepoint.com/books/dhtml1/

http://www.sitepoint.com/books/dhtml1/
http://www.sitepoint.com/books/dhtml1/

Recommended Resources

through which Meyer walks the reader step by step. Meyer leads readers
carefully and precisely from converting an existing page to CSS, through
styling for print, and applying CSS to HTML forms. Learn to create an
online greeting card, a multi-column layout, unusually shaped designs,
and translucent-looking scrolling areas atop fixed backgrounds.

Each chapter concludes with several challenges that stretch your skills as
you attempt to build on what Meyer has taught in the chapter.

The only criticism I have of this book is its rather weak index, which re
duces its value as a reference. But read through any of the projects and
work them out on the screen, and I guarantee you’ll learn something—no
matter how sophisticated a CSS designer you might be!

By the way, if you buy this book, be sure to check out the companion
web site2 (mentioned later in this appendix). There are errors in the first
printed edition that you’ll need to be aware of if you’re to avoid total
confusion at some points.

The CSS Anthology: 101 Essential Tips, Tricks & Hacks
By Rachel Andrew. Published by SitePoint. ISBN: 0-9579218–8–8.

Rachel’s first book for SitePoint, The CSS Anthology3 was designed to
provide a natural progression for readers of HTML Utopia. It provides
solutions to common (and some not-so-common!) CSS problems in an
easy-to-use question-and-answer format that has made it a favorite of
web designers and interface developers around the world. More than 100
tutorials are provided for experienced CSS developers who want to hone
their skills and take their CSS capabilities to the next level. But it’s just
as well-suited to relative newcomers to CSS who want to ensure they
have all the answers—and the right ones at that!

Useful Web Sites and Pages
The usual caveats about things moving around on the Web apply here. I’ve
provided the URL for each site or page that was accurate and current as this book
went into production. But there can be no guarantees as to their accuracy beyond
that point.

2 http://www.ericmeyeroncss.com/

3 http://www.sitepoint.com/books/cssant1/

478

http://www.ericmeyeroncss.com/
http://www.ericmeyeroncss.com/
http://www.sitepoint.com/books/cssant1/
http://www.ericmeyeroncss.com/
http://www.sitepoint.com/books/cssant1/

Unfortunately, much of the CSS-related content you’ll find by searching the
Web is likely out of date before you see it. There was a flurry of articles in
1998–1999 when CSS was new, but very few sites (our own
http://www.sitepoint.com/ is one exception) have continued their CSS coverage,
or ever extended beyond basics.

A List Apart

http://www.alistapart.org/

A List Apart has been a cornerstone of the web design community’s online
world since its inception. The brainchild of Jeffrey Zeldman, this site is
chock-full of intriguing information. Zeldman shows exactly how to do
things, often by redesigning parts of his own site.

A really awesome repository of articles by many of the best designers and
thinkers, this really is a list apart.

HTML Utopia! Design Web Sites Without Tables Parts 1 and 2

http://www.sitepoint.com/article.php/379

This inspirational two-parter was largely responsible for the decision to
write this book, and to treat the topic of CSS the way I have. It’s a nice,
condensed introduction to the issues in this book, and can serve as a
decent refresher when you just want to remind yourself why you’re going
through all this!

Style Sheet Reference Guide

http://www.webreview.com/style/

This is the most comprehensive table of CSS compatibility analysis that
I know of. It lists virtually every property and feature of CSS 1 and CSS
2, and indicates whether or not the feature is supported. The front page
(which appears at the URL above) lets you select which chart you want
to look at and work with.

I use this site extensively, because it’s so accurate and complete that if I
have any question at all about whether a particular CSS trick I’m about
to try will work in most browsers, the answer is literally two or three
clicks away.

The AnyBrowser Campaign Site Design Guide

479

http://www.sitepoint.com/
http://www.alistapart.org/
http://www.sitepoint.com/article.php/379
http://www.webreview.com/style/

Recommended Resources

http://www.anybrowser.org/campaign/abdesign3.html

This is one of the sites I love to support and visit. It’s part of the “View
able With Any Browser” Campaign that was launched to encourage web
designers and developers to be sure that their sites actually work in all
the major browsers. It encourages the use of standards, and discourages
relying on browser-specific tricks and techniques.

The page has a ton of links to places where you can validate, check, and
get advice about conformance with standards and specifications. It’s a
good place to remind yourself how best to design web pages using CSS
to ensure maximum accessibility.

glish.com: CSS Layout Techniques

http://glish.com/css/

This site provides a brisk, chatty overview of CSS. The best feature is
the list of resources included here. Although maintenance of the site has
long since stopped, it nonetheless offers a wealth of information that
you’ll find useful.

The Layout Reservoir at BlueRobot

http://bluerobot.com/web/layouts/default.asp

This site is primarily a code repository for two- and three-column layouts,
and provides some helpful information about centering elements in CSS.

Little Boxes at the Noodle Incident

http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html

I find it helpful sometimes to sort of stumble through a series of design
mishaps and blind alleys with someone who’s already been there and
done that. This site is a bit like that. The UI is clean and well planned,
and each page gives you useful information about a specific approach to
a box layout design problem, how the author approached it, what worked,
what didn’t, and how he ultimately solved it.

CSS, Cascading Style Sheets, HTML, Web Site Tips at Websitetips.com

http://www.websitetips.com/css/index.shtml

480

http://www.anybrowser.org/campaign/abdesign3.html
http://glish.com/css/
http://bluerobot.com/web/layouts/default.asp
http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html
http://www.websitetips.com/css/index.shtml

This is a fine repository of links with some commentary. This resource
lists lots of sites and other references that I haven’t included in this ap
pendix. It may be a good idea to pop over to this site if you need some
information about CSS that you don’t find in this book, or you want
more examples to clarify your understanding.

Complexspiral Demo

http://www.meyerweb.com/eric/css/edge/complexspiral/demo.html

This is a sub-site of Eric Meyer’s, but it deserves its own entry because
it was, as far as I can tell, the first place on the Web to teach the fixed-
background trick that has become de rigeur on many modern sites. It’s
also an attractive design, and Eric gives you all the information and code
you need to adapt the technique to your own use.

Accessibility Features of CSS

http://www.w3.org/TR/CSS-access

Even though the entire W3C set of CSS sites is useful (and cited later),
this page is particularly helpful when you’re dealing with an accessibility
issue and want to know what, if anything, CSS can do to help you make
your site more accessible. Contrasted with most W3C recommendations
(which are dry, hard to read, and terse to a fault), this discussion is
readable and helpful.

Eric Meyer on CSS

http://www.ericmeyeroncss.com/

This site is the supplemental/support site for Eric’s book of the same title.
It offers errata (very helpful; some of the stuff that slipped through the
cracks of the editing and production process are embarrassingly wrong),
as well as some information that didn’t fit into the book.

Real World Style

http://realworldstyle.com/

A very nice, cleanly designed, and helpful site by Mark Newhouse that’s
full of tips, insights, opinions, and other goodies. Be sure also to follow
the links to his blog, where he holds forth regularly on CSS-related topics.

481

http://www.meyerweb.com/eric/css/edge/complexspiral/demo.html
http://www.w3.org/TR/CSS-access
http://www.ericmeyeroncss.com/
http://realworldstyle.com/

Recommended Resources

This is one of my favorites. I visit it often.

NYPL: Style Guide

http://www.nypl.org/styleguide/

The esteemed New York Public Library’s site, where styles and rules
about the use of XHTML and CSS are linked. Every once in a while, I’ll
wonder about the proper way to do something (as opposed to the tech
nically correct way) and when I do, this site has been quite useful.

W3C Recommendation for Cascading Style Sheets, level 1
W3C Recommendation for Cascading Style Sheets, level 2

http://www.w3.org/TR/REC-CSS1

http://www.w3.org/TR/REC-CSS2

These are the definitive sites that explain exactly how CSS is supposed
to work. The W3C’s recommendations appear here in their entirety, are
searchable, and are well-organized, too. The main idea is that browser
manufacturers understand and consider these recommendations, then
make their browsers behave correctly. But, as a friend of mine likes to
say: “In theory, there’s no difference between theory and practice, but
in practice, there is.”

Still, it’s a good idea to be familiar with the contents of these pages and
at least to know your way around them.

W3C CSS Validation Service

http://jigsaw.w3.org/css-validator/

This is the site for the validation service I talk about in Chapter 4.

A CSS-based "Frames" Simulation

http://css.nu/exp/nf-illustration.html

The site is slightly mislabeled. It actually explains how to use CSS to
avoid the frames/tables that would otherwise be necessary to create
modern layouts. It offers some suggestions and tidbits I didn’t find easily
elsewhere, and it’s quite entertaining.

482

http://www.nypl.org/styleguide/
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS2
http://jigsaw.w3.org/css-validator/
http://css.nu/exp/nf-illustration.html

Fancy Paragraphs with CSS

http://www.sitepoint.com/article.php/942

This article on SitePoint offers good explanations and insights into some
of the topics I cover in Chapter 7. Examples are clear, large, bold, and
presented in color, so there’s value in reading them even if you feel you
understand the topic well.

CSS is Easy!

http://www.sitepoint.com/article.php/309

A SitePoint article that offers a quasi-interactive tutorial in CSS. You
might find this useful primarily because the author explains things in
very small steps, doling out the information carefully.

What is Liquid Design?

http://www.sitepoint.com/article.php/951

A well-organized SitePoint article that teaches the basics of using CSS
and tables for liquid (aka “stretchy”) design. I found its primary value to
be in the clarity with which you could see the distinction between using
tables and CSS for this kind of project.

Introduction to CSS Shorthand

http://www.sitepoint.com/article.php/966

As you’ve learned in the course of this book, many groups of related CSS
styles have a shorthand identifier that collects all the individual properties
into a single one. For example, font is shorthand for font-family, font-
size, font-weight, and other related properties.

This brief article discusses shorthand in CSS, and how to use it properly.

483

http://www.sitepoint.com/article.php/942
http://www.sitepoint.com/article.php/309
http://www.sitepoint.com/article.php/951
http://www.sitepoint.com/article.php/966

484

Index
Symbols
#

hexadecimal string prefix, 80

ID selector symbol, 46

+ adjacent selector connector, 52

/* */ comment delimiters, 60

> parent-child selector, 51

A
<a> elements and skip navigation, 253

abbreviated size units, 56

abbreviations, absolute sizing, 56

absolute measurements, 54, 56

font sizes, 99, 160, 366

absolute positioning

document flow and, 235

Footbag Freaks homepage, 191, 204

multi-column, fixed-width layouts,

282

text, 158

three-column layout example, 231

accessibility

alternate style sheets, 30, 288

Braille printers, 300

pixel sizing and, 57, 101

relative sizing and, 55

semantic markup and, 34, 288

tabular layouts and, 6

transparent gifs and, 5

“zoom” layouts, 288

adjacent selectors, 52

Adobe Acrobat, 100

Adobe GoLive, 5

Adobe OpenType standard, 104

align attribute, 114, 187

alignment

of headings, 117

of list items, 197, 209, 226

of text, 113–120, 187

alphabets, non-Roman

Arabic, 452

Asian languages, 447, 451, 455

East Asian, 377, 382, 472

Hebrew, 352, 457

alternate style sheets, 30

attaching, 295

semantic markup and, 34

“zoom” layouts, 288

alternating table rows, coloring, 88, 90,

279

anchors (see links)

animation

pseudo-class simulation of, 28

transitions filters, 359

asterisk, universal selector, 44

at-rules, 67, 68, 299–303

attention-getting color, 85

attribute selectors, 52

attributes, terminology and, 9

aural style sheets, 303–305

(see also screen readers)

author images, Footbag Freaks, 199

B
background colors, 23

background images with, 91

fixed-width layouts, 266

Footbag Freaks web site, 182

headings, 119

highlighting alternate table rows, 88,

279

revealing box model effects, 163,

173, 175

setting <body> color and, 82

text readability and, 81

Index

background images

fading into background color, 193

fixed-width layouts, 265

Footbag Freaks link styling, 194, 228

full-height columns using, 245, 248

gradient effects, 207

revealing with margins, 182

background property, CSS, 318

background-attachment property, CSS,

93, 319

background-color property, CSS, 320

block level elements, 25

combining with color setting, 83

transparent setting, 83

background-image property, CSS, 90–

94, 321

background-position property, CSS,

322, 324

placing images, 93, 245, 271

background-repeat property, CSS, 93,

245, 271, 325

backward compatibility, 65–70

blinking, 129

block level elements

applying background color, 25

display property defaults, 157

positioning context and, 158

blocking browser access, 67, 68

blog section, Footbag Freaks, 227

<body> elements

centering content, 265

color settings, 82

inheritance and, 42

bold text, 103, 272

border properties, 327–337

full-height columns, 249

border property, CSS, 180, 249

border-collapse property, CSS, 275,

331

border-color property, CSS, 179, 332

borders

adding to elements, 31

border properties, 178

Footbag Freaks header, 184, 185

overlining contrasted with, 130

padding and margins compared to,

178

rounded corners, 403

table styling, 88

border-style property, CSS, 179, 334

border-width property, CSS, 179, 337

Box Model, CSS, 162

boxouts, 192

Braille printers, 300

browser compatibility

backward compatibility, 65–70

font constants, 106

browser defaults

display styles, 7, 393

font settings, 77

font sizes, 57, 102

browser preferences, 77, 98

browser support

alternate style sheets, 295

color specifications, 307

CSS, 37, 66, 69

CSS properties, 317

CSS version 2.1, 65

CSS, IE6 bugs, 286

non-supporting browsers, 66

pseudo-classes and elements, 28, 47

browser window area

centering layouts in, 259, 264

padding-right property and, 166

percentage sizing and, 174

browsers

(see also Firefox; Internet Explorer;

Netscape Navigator; Opera)

absolute font sizes, 100

absolute positioning and consistent

rendering, 231

DOCTYPE switching, 70

hiding styling from older, 67, 68

486

list marker offsets, 175

Quirks mode, 70

rendering borders, 179

rendering listed fonts, 107

standards compliance, 70

browser-specific extensions, 317

bulleted lists, 134, 136, 175, 194

buttons, styling, 211, 230

C
<caption> elements, 275

cascading behavior, 140–147

pseudo-classes, 133

cautions, color coding, 85

<center> elements, 114

centered content, 259, 264

centered text, 116

character encoding, 65, 152

child elements, floated, 245

class attributes

identifying elements, 45

 elements, 26

class selectors, 45, 86

specificity rating, 145

classes, multiple, 46

clear property, CSS, 339

full-length columns, 246

link display, 212

use with footers, 239

use with tables, 274

code archive, xv

code decoupling, 32

code duplication, 32

<code> elements, 113

colon prefix, pseudo-element selectors,

48

color, 75–94, 307–315

(see also background colors)

attention-getting color, 85

CSS color reference, 307–315

CSS effects with, 22–25

elements that can be colored, 77

methods of specifying, 78–81, 179,

307

readability and, 87, 278, 289

selecting and combining colors, 81

specific uses of, 85–90

color blindness, 82

color property, CSS, 341

background-color setting and, 83,

320

syntax illustrating, 10

comma separators

elements in selector groups, 54

property value lists, 10, 96, 107

shorthand property values, 41, 104

comments, CSS

HTML comments and, 59

temporarily disabling styling, 290

complementary colors, 81

constants

border styles, 335

font sizes, 99, 100, 101, 105

list-style-type property, 134

content areas

centering, 259, 264

Footbag Freaks markup, 153

liquid content with a footer, 238

skip navigation and, 252

styling, 191–213, 268–273

wrapping round floated columns,

284

content order problem, 251

content overflows, 410, 453

content repurposing (see alternate style

sheets)
coordinates (see positioning in CSS)
CSS (Cascading Style Sheets)

alternate style sheets, 30

browser support, 37, 65, 66, 69

color effects, 22–25

color reference, 307–315

487

Index

design advantages, 31–37

effects possible with, 21–31

example styled page, 14

expression measurements, 54–59

font effects, 25–27

image effects, 29–30

inheritance, 42

JavaScript and, 305–306

positioning elements, 157–180

properties, full list, 317–475

pseudo-classes, 28, 132

rule syntax, 6, 8–10

simple two-column layout, 149–214

standards compliance and, 36

three-column layout, 217–257

validation, 61–65

CSS 2

at-rules, 299

descriptive color names, 308

font constant, 105

pseudo-classes and pseudo-elements,

47, 48

system color names, 315

table-layout property, 4

CSS Box Model, 162

CSS Table Gallery, 274

CSS3 status, 317

D
date information, 209, 227

declarations, CSS rules, 9

cascading behavior, 142, 143

inline declarations, 12, 40, 142, 146

 elements, 131

deprecated attributes, 187

deprecated elements, 36, 95, 114

descendant elements, 43

descendant selectors, 50

descriptive settings

border-width, 179

color names, 78, 308

design mock-ups, 149, 218, 232, 261

designs (see example web sites)

DHTML, 305–306

disabilities, users with, 300

(see also accessibility)

color blindness, 82

display property, CSS, 354

horizontal list items, 186

IE6 bug work-around, 287

layout effects, 157

<div> elements

empty <div>s, 246

image styling and positioning, 29

line-height property and, 124

margins for, 268, 282

positional context and, 205

 compared to, 112

wrapper <div>s, 263, 264, 265,

266, 282

DOCTYPE declarations, 65, 71, 72,

152

DOCTYPE switching, 70–73

document flow, 235, 239

DOM (Document Object Model), 306

download times (see load times)

downloadable fonts, 107, 109

Dreamweaver, Macromedia, 5

drop-caps effects, 48

dynamic effects, 305

(see also animation)

E
element type selectors, 45

elements, HTML

applicability of CSS properties, 31

deprecated elements, 36, 95, 114

hierarchical relationships, 43

selective targeting in CSS, 11

elements, XHTML

alternatives for hiding, 158

color display, 77

488

display property defaults, 157, 354

float property applicability, 188

hiding, 462

positioning using CSS, 157–180

replaced elements, 468

selective targeting, 200

table definition, 90

element-specific classes, 46

 elements, 35, 113

em measurements, 57

padding property values, 168

text sizes, 100, 123, 160

embedded style sheets, 12, 40

example styled page, 14

hiding from non-supporting

browsers, 67

empty <div>s, 246

English language variants, 53

event diaries, 209

example web sites

(see also Footbag Freaks web site)

fixed-width layouts, 259–288

Halloween party page, 23–29

simple two-column layout, 149–214

three-column layout, 217–257

external style sheets, 12, 13, 40

code decoupling and, 32

importance of validation, 61

semantic markup and, 33

F
fantasy fonts, 98

Faux Columns technique, 245

Firefox browser

color and font preference settings,

77

CSS property support, 317

use within this book, 70

Fireworks design mock-ups, 149, 261

first-* selectors, CSS 2, 47

fixed background images, 92, 93

fixed-width layouts, 259–288

multi-column, 281

float property, CSS, 187, 361

(see also clear property)

Footbag Freaks images, 200, 211,

269

positioning images, 29

text alignment, 187

three-column layouts, 236–244

floated columns, 239, 284

floated layouts and content order, 251

font constants, 105

 elements, 36, 95, 100

font property, CSS, 41, 104, 105, 362

font setting defaults, 77

font size defaults, 57

font-family property, CSS, 96–99, 364

font lists, 107

font property and, 104

standard and nonstandard fonts, 106

syntax illustrating, 10, 41

fonts, 95–110

CSS effects with, 25–27

nonstandard and downloadable, 109

font-size property, CSS, 99–102, 366

child elements, 160

ems and, 57

font property and, 104

Footbag Freaks web site, 181

syntax illustrating, 10

use with links, 28

font-style property, CSS, 103, 371

font-variant property, CSS, 103, 372

font-weight property, CSS, 103, 272,

373

Footbag Freaks web site

blog section, 227

content area styling, 191–213, 264,

268

download, 180

Events Schedule table styling, 273

fixed-width layouts, 259–288

489

Index

header area styling, 183–191, 267

layout, 149–151, 217–232

markup, 151–155, 218–221, 236

newsletter subscription form, 229

positioning elements, 157–180

repositioning the sidebar, 213–214

search form styling, 210

sidebar styling, 204

three-column version, 217–256

two-column version, 149–214

footers, 232, 236

forms

newsletter subscription, 229

search form, 210

forward slash, 104

full-height columns, 244–251

G
generated content, 342

generic font families, 97–99, 108

Macintosh and Windows, 106

GoLive, Adobe, 5

gradient background effects, 207

graphics (see images)

graphics program mock-ups, 149, 218

“greater than” sign, 51

GUI component standard colors, 315

H
hacks, 70

Halloween Party example page, 23–29

hanging indents, 121

harmonious colors, 81

<head> elements

embedded style sheets, 12, 13, 40

external style sheets, 13, 40

inheritance and, 42

header areas

Footbag Freaks markup, 153

styling, 183–191

styling fixed-width, 267

headings

alignment, 117

Footbag Freaks match schedule, 263

highlighting, 24, 119

letter-spacing property and, 126, 127

hexadecimal values

descriptive color equivalents, 308

Netscape extended colors, 313

specifying colors, 80, 179, 307

highlighting text

headings, 24, 119

mouseover effects, 28

table rows, 88, 90, 278

using , 112

horizontal navigation, 186–189

horizontal spacing, text, 125

hover pseudo-class, 28

HTML

(see also elements, HTML)

CSS validation requirements, 65

font size specification, 100

HTML 4 Recommendation, 36, 71

inheritance tree, 42

semantic markup, 33

text alignment, 114

http-equiv attribute, 152

hyperlinks (see links)

I

id attributes, 46

 element, 26

 element, 27

ID selectors, 46, 86

specificity rating, 145

images

adding a logo, 183, 269

avoiding use for text, 207

background, 90–94

CSS effects with, 29–30

Footbag Freaks authors, 199

as list item markers, 139, 209

490

text wrapping, 29

 elements, 29, 183

@import rule, 67, 68, 301

!important keyword, 141, 142, 146,

147

indentation of code, 5

indentation of first lines, 120, 450

inheritance in CSS, 42–44

adjacency distinguished from, 52

cascading distinguished from, 140

color settings, 83

font sizing and, 57, 368

numeric values, 124

inline declarations, 12, 40

cascading behavior, 142, 146

inline elements, 112, 157

<input> element styling, 53

<ins> elements, 131

Internet Explorer

at-rule support, 299

bugs, 70, 73

CSS support, 66, 69

floated column problem, 285

floated three-column page display,

243

hiding style sheets from IE4, 67

Macintosh version, 317

position: fixed in IE6, 158

pseudo-class support, 132

Quirks mode enabling, 72

small-caps format, 103

text resizing, 57

word-spacing property, 128

Internet Explorer for Windows

adjacent selectors, 52

attribute selectors, 54

layouts developed with Firefox, 231

parent-child selectors, 51

ISO-8859-1 encoding, 152

italic font styles, 103

J
JavaScript, 60, 131, 305–306

style switchers, 297

justified text, 114, 451

L
lang attribute, 49, 53

lang pseudo-class, 49

language attribute, 49

languages other than English

Arabic, 452

Asian languages, 447, 451, 455

East Asian, 377, 382, 472

Hebrew, 352, 457

layout tables (see tabular layouts)

layouts (see example web sites)

leading, 122

length values, 55

letter-spacing property, CSS, 125

 elements, 134, 186

line termination, CSS, 9

line-height property, CSS, 122, 123,

386

adding to font declarations, 104

creating space, 209, 272

line-through value, text-decoration, 131

<link> elements, 13, 40

alternate style sheets and, 34, 295

code decoupling and, 32

inheritance and, 42

media attribute, 34, 68

links

horizontal navigation separators, 186

skip navigation, 252

styling, 45, 131–134

styling, Footbag Freaks homepage,

193, 202, 226

styling, match schedule table, 280

turning off underlining, 131, 133,

226

liquid layouts, 259

491

Index

list items

alignment, 197, 209, 226

styling, Footbag Freaks navigation,

228

lists

applying margins, 175

font styles and, 26

styling, 134–140

list-style-image property, CSS, 139, 389

list-style-position property, CSS, 137,

391

list-style-type property, CSS, 134–138,

392

load times

decoupled code and, 33

external style sheets and, 14

tabular layouts and, 4

logos, 183, 269

M
Macintosh

fonts, 106, 109

Internet Explorer status, 317

Macromedia Dreamweaver, 5

Macromedia Fireworks, 149, 261

magnified views, 288

maintenance, ease of, 5, 14

margin property, CSS, 178, 394

@page rule and, 302

margins

applying to <div>s, 268, 282

applying to lists, 175

auto settings, 265

margin properties, 172

negative values, 176

padding compared to, 172

padding, borders and, 163

removing paragraph defaults, 188

vertical margins, 175

marker-offset property, CSS, 175, 396

media attribute

<link> element, 34, 68

<style> element, 301

@media rule, 299

media type output options, 299

Medium menu, W3C validator, 65

min-width property, CSS, 265, 400

monitors

color rendering, 80

pixel sizing and, 57

monospaced fonts, 97, 126

Mozilla-based browsers

(see also Firefox browser)

properties, 317, 401–405

multi-column layouts, 236

(see also three-column layouts; two-

column layouts)

fixed-width, 281

multiple style sheets (see alternate style

sheets)

N
name attribute, <a> tag, 253

navigation

horizontal navigation, 186

styling, three-column layout, 226

nesting

elements and color setting, 83

layout tables, 2, 4

quotes, 427

styles, 59

unordered lists, 136

NetObjects Fusion tool, 2

Netscape extended color names, 313

Netscape Navigator, 2

CSS support, 66

default border width, 178

hiding styling from Netscape 4, 67,

68

key nonconformance areas, 68

newsletter subscription form, 229

492

O
oblique font styles, 103

 elements, 134

opacity, 404

OpenType font standard, 104

Opera browser

CSS property support, 317

CSS support history, 66

font sizing, 57

operating system-specific colors, 79,

315

origin factor, cascading, 146

outdents, 121, 450

outline property, CSS, 78, 406

overlining, 130

P
padding

margins, borders and, 163, 172

padding properties, 164

padding property, CSS, 41, 413

Footbag Freaks styling, 182

multiple values and, 167

padding-left property, CSS, 122, 415

@page rule, 302, 398, 416, 438

page styling, 302, 405, 467

paragraphs

centering, 118

highlighting text within, 112

indenting first lines, 120

initial drop-caps, 48

removing default margins, 188

parent elements, 43

parent-child selectors, 51

PDF files, 100

percentage sizing

padding property values, 168

pixel sizing compared to, 164

text sizes, 57, 100, 123

period class name prefix, 45

pipe character, 186

pixel sizing, 56, 101

border widths, 179

percentages compared to, 164

point sizes and, 58

Pixy’s Color Scheme Generator, 82

placeholder graphics, 4, 53

plus sign, 52

position property, CSS, 158, 426

positioning context, CSS, 158

absolute positioning, 205, 282

relative positioning, 160

positioning in CSS, 157–180

(see also absolute positioning)

background images, 93

relative positioning, 161

repositioning sidebars, 213–214

positioning properties, replacing, 241,

242

printed output, 302, 417, 418, 420

@media rule, 300

Profile menu, W3C validator, 64

properties, CSS

(see also shorthand properties)

browser compatibility charts, 68

complete listing, 317–475

as declaration components, 9

inclusion in rules, 11

inherited properties, 43

JavaScript manipulation, 306

with multiple values, 10, 41

uniform application, 31

working with fonts, 96

proportional spacing

(see also em measurements; percent

age sizing)

padding property values, 168

prototyping, 12

pseudo-class selectors, 48, 145

pseudo-classes, CSS, 132

dynamic effects with, 28

Footbag Freaks link styling, 194, 198

493

Index

overriding, 133

pseudo-element selectors, 47

Q
Quirks mode, 70–73

quotation marks

CSS property values, 10, 41, 98

font lists, 107

generated content, 344

R
readability of code, 5

readability of tables, 87, 278

readability of text, 81, 122, 261, 289

relative measurements, 55, 57, 367

font sizes, 100, 101

font weights, 104

line-height property and, 123

Netscape 4 bug, 69

relative positioning, 161

absolute positioning within, 206

positional context and, 160

rendering process, 7, 100

RGB color values, 307

descriptive color equivalents, 308

Netscape extended colors, 313

rgb function, 80, 179

Ruby text, 431–435

rules, CSS, 7

categories, 10

conflict resolution, 141

controlling color, 24, 25

font preferences, 108

measurements, 54–59

nesting, 59

order of selectors, 279

parts of, 8–10

selectors types, 44–54

styling precedence among, 8, 75, 77,

142

S
sans-serif fonts, 97

scope attribute, <th> element, 263

screen readers, 6

floated layouts and, 252

hiding skip navigation, 254

semantic markup and, 35

scrolling backgrounds, 90, 91

search engines, 34

search form, Footbag Freaks, 210

selectors, CSS

adding class or id attributes, 26

combining ID and class selectors, 47

document hierarchies and, 43

element targeting possibilities, 11

grouping, 54

as rule components, 9, 44–54

specificity rating, 145

understanding, 279

semantic markup, 33, 131, 288

semicolon rule separators, 9

separating content from presentation,

1, 3, 201

accessibility and, 288

code decoupling, 32

CSS role, 21

style declarations and, 12, 14

serif fonts, 97, 365

shorthand properties, 41, 104

background property, 318

border properties, 179, 180, 327

font property, 362

list-style property, 388

margin property, 178, 394

outline property, 406

padding property, 41, 167, 413

sidebars

aligning with content, 191

fixed-width layout, 282

Footbag Freaks markup, 154

overlapping footers, 235

494

repositioning, 213–214

styling, 204

three-column layout, 220

size property, CSS, 302, 438

“skip navigation” links, 252, 254

small-caps format, 103, 372

sort order and cascading, 142

sound on the Web, 303

spacer GIFs, 5, 21

spaces

quoting values containing, 10, 41,

98, 107

shorthand property separator, 104

white-space property, 465

spacing

(see also margins)

positive and negative space, 113

text, horizontal and vertical, 122–

129

 elements, 25, 112

nesting styles, 59

relative font sizing, 102

relative positioning, 160

specificity factor, cascading, 144–146

spreadsheets and table use, 6, 261, 273

src attribute, background image equival

ent, 90

standard fonts, 106

standards compliance, 36, 70

standards-compliant mode, 71

Strict DOCTYPEs, 71, 152

strikethrough effects, 131

 elements, 35, 113

style attributes (see inline declarations)

<style> elements, 12, 13, 40

style switchers, 296

styling

(see also CSS)

browser default, 7, 393

CSS and control over, 31

hiding from older browsers, 67, 68

location of style definitions, 12, 40

skip navigation, 252

styling rule (see rules, CSS)

system color names, 79, 315

T
table cells, collapsing borders, 275, 331

table headings (see <th> elements;

<thead> elements)

table rows

coloring alternate, 88, 90, 278

setting colors, 276

table-layout property, CSS, 4, 444

tables

CSS Table Gallery, 274

empty-cells property, 358

in fixed-width layout, 273

Footbag Freaks match schedule, 261

legitimate use of, 6

styling for readability, 87

tabular layouts

design rationale for, 2

drawbacks of, 3–6

inheritance problems, 44

nested tables, 5, 6

screen readers and, 35

tagline styling, 188, 267

<tbody> elements, 263, 276

text

alignment, 113–120

colors and readability, 81

direction property, 353

generated content, 342

resizing, 289

spacings, 122–129, 272

text effects

cascading and, 111–148

using elements, 112

text sizes

(see also font sizes; font-size property)

text wrapping, 29, 138

495

Index

text-align property, CSS, 114, 265, 445

text-decoration property, CSS, 129,

449

text-indent property, CSS, 120, 450

text-only browsers, 6, 66

(see also screen readers)

<th> elements, 90, 263, 276

<thead> elements, 263, 276

three-column layout example, 217–257

display in IE6, 231

full-height columns, 244–251

markup with a footer, 236

unstyled display, 237

using float, 240

tiled background images, 90, 91, 180

tiling behavior

background images, 181

transitional DOCTYPEs, 72

translucent elements, 404

transparent backgrounds, 83, 320

transparent GIFs, 5, 21

TrueType fonts, 107

two-column layouts, 149–214

fixed-width layouts, 282

U
 elements, 134, 197

(see also lists)

underlining, 129, 131, 133

Unicode, 152, 353, 458

units of measurement, 54–59

universal selectors, 44

url function, 90

url operator, 67, 140

user settings, 77, 98

V

validation

CSS, 61–65

Footbag Freaks markup, 155

vertical margins, 175

vertical spacing, text, 122

View Source feature, 34

visibility: hidden and display: none,

158

visually impaired users, 34

voice-family property, CSS, 304, 463

W
W3C (World Wide Web Consortium)

CSS development role, 3

CSS validation service, 61–65

semantic markup and, 36

Warnings menu, W3C validator, 63

warnings, color coding, 85

WCAG (Web Content Accessibility

Guidelines 1.0), 35, 36, 78, 186

Web Developer Toolbar, 70

weight factor, cascading, 147

width property, CSS, 468

float property and, 188

preventing overlap, 223, 229

Windows platforms

(see also Internet Explorer for Win

dows)

standard fonts, 106

word-spacing property, CSS, 128, 470

wrapper <div>s, 182, 224, 263, 264,

265, 266, 282

X

x-height values, 57

XHTML

(see also DOCTYPE declarations;

elements, XHTML)

Dynamic HTML and, 305–306

XHTML 1.0 Recommendation, 36, 71

use in this book, 72

XHTML 1.1 Recommendation, 431–

435

496

Z
Zapfino font, 109

“zoom” layouts, 288

497

	HTML Utopia: Designing Without Tables Using CSS
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Getting the Lay of the Land
	CSS in Context
	The Basic Purpose of CSS
	Why Most—but Not All—Tables Are Bad
	Tables Mean Long Load Times
	Use of Transparent Images Slows us Down
	Maintaining Tables is a Nightmare
	Tables Cause Accessibility Issues
	When it’s Okay to Use a Table

	What is CSS, Really?
	Parts of a CSS Rule
	Types of CSS Rules
	Which Properties can CSS Rules Affect?
	Which Elements can CSS Affect?
	Where can CSS Styles be Defined?
	Inline Declarations
	Embedded CSS
	External CSS

	A Simple Example
	Summary

	Putting CSS into Perspective
	What can CSS Do?
	Color and CSS
	Fonts and CSS
	Dynamic Pseudo-classes and CSS
	Images and CSS
	Multiple Style Sheets, Users, and CSS

	Advantages of CSS Design
	Increased Stylistic Control
	Centralized Design Information
	Semantic Content Markup
	Accessibility
	Standards Compliance

	Browser Support for CSS
	Summary

	Digging Below the Surface
	Applying CSS to HTML Documents
	Using Shorthand Properties
	How Inheritance Works in CSS
	Selectors and the Structure of CSS Rules
	Universal Selector
	Element Type Selector
	Class Selector
	ID Selector
	Pseudo-element Selector
	Pseudo-class Selector
	Descendant Selector
	Parent-child Selector
	Adjacent Selector
	Attribute Selectors
	Selector Grouping

	Expression Measurements
	Absolute Values
	Relative Values

	CSS Comments
	Summary

	Validation and Backward Compatibility
	Validating your CSS
	Adjusting for Backward Compatibility
	Browsers that Do Not Support CSS
	Browsers with Poor or Badly Implemented CSS Support
	Two Ways to Block Netscape 4 from Style Sheets
	Using the @import at-rule
	Using the media Attribute

	Identifying and Dealing with Problems

	Bugs in Modern Browsers

	Keep the Quirks: DOCTYPE Switching
	Summary

	Splashing Around a Bit of Color
	Who’s in Charge?
	Color in CSS
	How to Specify Colors
	Selecting and Combining Colors
	Setting body Color
	Transparency, Color, and User Overrides

	Interesting Uses of Color
	Warnings and Cautions
	Coloring Alternate Rows and Adding Cell Borders in Data Tables

	Background Images
	Summary

	Working with Fonts
	How CSS Deals with Fonts
	The font-family Property
	Generic Fonts

	The font-size Property
	HTML Sizes vs CSS Sizes
	Variability across Browsers and Platforms
	Relative to what?

	Other Font Properties
	The font-style Property
	The font-variant Property
	The font-weight Property

	The font Shorthand Property
	Standard and Nonstandard Font Families
	Specifying Font Lists
	Using Nonstandard and Downloadable Fonts

	Summary

	Text Effects and the Cascade
	Using the span Element
	Text Alignment as a Design Technique
	Text Alignment in CSS vs HTML
	Moving from Crowded to Airy Design Using Alignment

	First-line Indentation
	Horizontal and Vertical Spacing
	The line-height Property
	The letter-spacing and word-spacing Properties

	Text Decorations
	Styling Hyperlinks
	Styling Lists with CSS
	The list-style-type Property
	The list-style-position Property
	The list-style-image Property

	Cascading and Inheritance
	Basic Principles of Cascading
	Sort Order
	Specificity
	Origin
	Weight

	Summary

	Simple CSS Layout
	The Layout
	Creating the Document
	The Header
	The Main Content Section
	The Sidebar

	Positioning the Page Elements
	The display Property
	Absolute, Relative, and Positioning Contexts
	The Box Model
	Pixels vs Percentages
	Padding Properties

	Margin Properties
	Margins, Padding, and Lists
	Border Properties

	Constructing the Layout
	The Header Area
	The float Property
	Using float in our Header

	The Content Area
	The Main Feature
	The Features List
	The Author Images

	The Sidebar
	The Form
	Move of the Month

	Repositioning the Sidebar

	Summary

	Three-column Layouts
	Adding a Third Column
	The Markup
	Positioning the Sidebar
	The Navigation
	The Blog
	The Newsletter

	Adding a Footer
	The float Property
	How Does it Work?

	Putting float into Practice in our Layout
	Achieving Full-height Columns
	The Content Order Problem
	Other Layout Methods

	Summary

	Fixed-width Layouts
	The Layout
	Creating the Document
	Centering the Content Area
	The Header Area

	The Content
	The Table
	Multiple-column Fixed-width Layouts
	Positioned Columns
	Floated Columns

	“Zoom” Layouts
	Creating the Style Sheet
	Attaching Alternate Style Sheets

	Summary

	Appendix A: CSS Miscellany
	At-rules
	Aural Style Sheets
	CSS and JavaScript

	Appendix B: CSS Color Reference
	Appendix C: CSS Property Reference
	azimuth
	background
	background-attachment
	background-color
	background-image
	background-position
	background-position-x, background-position-y
	background-repeat
	behavior
	border
	border-bottom, border-left, border-right, border-top
	border-bottom-color, border-left-color, border-right-color, border-top-color
	border-bottom-style, border-left-style, border-right-style, border-top-style
	border-bottom-width, border-left-width, border-right-width, border-top-width
	border-collapse
	border-color
	border-spacing
	border-style
	border-width
	bottom
	caption-side
	clear
	clip
	color
	content
	counter-increment
	counter-reset
	cue
	cue-after, cue-before
	cursor
	direction
	display
	elevation
	empty-cells
	filter
	float
	font
	font-family
	font-size
	font-size-adjust
	font-stretch
	font-style
	font-variant
	font-weight
	height
	ime-mode
	layout-flow
	layout-grid
	layout-grid-char
	layout-grid-line
	layout-grid-mode
	layout-grid-type
	left
	letter-spacing
	line-break
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin
	margin-bottom, margin-left, margin-right, margin-top
	marker-offset
	marks
	max-height, min-height
	max-width, min-width
	-moz-border-radius
	-moz-border-radius-bottomleft, -moz-border-radius-bottomright, -moz-border-radius-topleft, -moz-border-radius-topright
	-moz-opacity
	orphans
	outline
	outline-color
	outline-style
	outline-width
	overflow
	overflow-x, overflow-y
	padding
	padding-bottom, padding-left, padding-right, padding-top
	page
	page-break-after
	page-break-before
	page-break-inside
	pause
	pause-after, pause-before
	pitch
	pitch-range
	play-during
	position
	quotes
	richness
	right
	ruby-align
	ruby-overhang
	ruby-position
	scrollbar-base-color
	scrollbar-element-color
	size
	speak
	speak-header
	speak-numeral
	speak-punctuation
	speech-rate
	stress
	table-layout
	text-align
	text-align-last
	text-autospace
	text-decoration
	text-indent
	text-justify
	text-kashida-space
	text-overflow
	text-transform
	text-underline-position
	top
	unicode-bidi
	vertical-align
	visibility
	voice-family
	volume
	white-space
	widows
	width
	word-break
	word-spacing
	word-wrap
	writing-mode
	z-index
	zoom

	Recommended Resources
	Index

