

Summary of Contents

Preface . xi

1. Planning . 1

2. Designing . 27

3. Structure . 43

4. Styling . 75

5. Enhancing . 119

Index . 147

iv

Fancy Form Design
by Jina Bolton, Tim Connell, and Derek Featherstone

Copyright © 2009 SitePoint Pty. Ltd.

Technical Editor: Raena Jackson Armitage Chief Technical Officer: Kevin Yank

Editor: Kelly Steele Indexer: Fred Brown

Managing Editor: Chris Wyness Cover Design: Alex Walker

Reviewer: Avi Miller

Printing History:

First Edition: October 2009

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages caused either directly or indirectly by the instructions contained in this book, or by the software

or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street

Collingwood, Victoria, Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-4-9

Printed and bound in Canada

mailto:business@sitepoint.com
http:www.sitepoint.com

v

About the Authors

Jina Bolton is a designer at Crush + Lovely in San Francisco and speaks at conferences around

the world. She co-authored The Art and Science of CSS (Melbourne: SitePoint, 2007) and

has also written articles for web industry-related publications. Jina digs sushi and robots—so

you’ll find her at http://sushiandrobots.com.

Tim Connell lives and breathes the Web and can often be found atop a soapbox talking about

users, accessibility, and sexy techniques. Tim is a technical consultant for Squiz

(http://squiz.net), a leading enterprise content management company, and a developer with

Fresh Interface (http://freshinterface.net). Outside of the Web, Tim likes to enjoy good com

pany at the local watering hole. Tim lives in Sydney, Australia.

Engaging, surprising, and inspiring, Derek Featherstone is an internationally known authority

on accessibility and web development. As founder of Further Ahead (http://furtherahead.com),

he has been a user experience and accessibility consultant in demand since 1999, and regularly

wows audiences with practical demonstrations of creative solutions to accessibility issues.

He is the Group Lead of the influential Web Standards Project and blogs at

http://boxofchocolates.ca.

About the Technical Editor

Raena Jackson Armitage made her way to SitePoint via a circuitous route involving web de

velopment, training, and speaking. A lifelong Mac fangirl, she’s written for The Mac Observer

and About This Particular Macintosh. Raena loves knitting, reading, and riding her bike

around Melbourne in search of the perfect all-day breakfast. Raena’s personal web site is at

http://raena.net.

About the Chief Technical Officer

As Chief Technical Officer for SitePoint, Kevin Yank oversees all of its technical publications—

books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint, but is

best known for his book, Build Your Own Database Driven Website Using PHP & MySQL.

Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy theatre and

flying light aircraft.

http:http://raena.net
http:http://boxofchocolates.ca
http:http://furtherahead.com
http:http://freshinterface.net
http:http://squiz.net
http:http://sushiandrobots.com

vi

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. You can visit http://sitepoint.com to access our books, newsletters, articles,

and community forums.

http:http://sitepoint.com

To God, first and foremost. To

Jason, Dad, and the rest of my

family. To my amazing friends

both online and in “real life.” To

my co-workers at Crush + Lovely

who have become great friends. I

love you all so much.

—Jina

Thanks to all the top people in my

life: there are many of you, and

you know who you are.

—Tim

For my wife Kathryn, and our

wonderful children Kaitlyn, Kyla,

and Kampbell. Without you, none

of this would matter.

—Derek

Table of Contents

Preface . xi

Who Should Read This Book? . xi

What’s Covered in This Book? . xii

The SitePoint Forums . xiii

This Book’s Web Site . xiii

The SitePoint Newsletters . xiii

The SitePoint Podcast . xiv

Your Feedback . xiv

Conventions Used in This Book . xv

Acknowledgements . xviii

Chapter 1 Planning . 1

The Elements of Forms . 2

Research and Finding Inspiration . 12

Interaction Design . 16

Chapter 2 Designing . 27

Grid and Typography . 27

Color . 31

Imagery . 33

Summary . 41

Chapter 3 Structure . 43

The Structure of a Form . 44

Instructions, Errors, and Advisory Text . 55

x

The Final Markup . 58

Conclusion . 74

Chapter 4 Styling . 75

Stuff to Consider . 76

Preparing Your Canvas . 77

Reset Styles . 78

Fieldsets and Legends . 81

Form Questions . 83

Putting It All Together . 96

Chapter 5 Enhancing . 119

Fancier Form Widgets . 120

Back to Our Forms . 132

Conclusion . 146

Index . 147

Preface

Think about all the web sites you use each day. Perhaps you have a blog, or at least

like to comment on blogs. You might use social networks like Facebook to keep in

touch with friends, or a web-based email service like Yahoo or Google. Perhaps you

have some favorite forums you like to visit, or a photo-sharing site where you can

upload your happy snaps. Maybe you bought a product online recently, or reviewed

one. What do all these activities have in common? Forms!

Every day, people use forms for all kinds of activities—they’re some of the most

interactive parts of any site. Effective, beautiful forms make for happy visitors who

find it easy to interact with your site and come back for a second helping. Poorly

designed forms annoy and frustrate users, and might even merit a quick trip to the

browser’s Back button.

Yet, despite their obvious importance and ubiquity, many web developers find the

task of creating forms to be boring, difficult, frustrating, or time-consuming. The

truth is that the secret to creating beautiful, user-friendly, engaging forms—and

having a good time while you’re at it—is no secret at all. Like everything else, it’s

easy once you know how.

This book is full of tips, techniques, and practical examples to help you build

breathtaking, beautiful forms. We’ll guide you through the whole process, from the

initial research and planning stages, all the way through to designing, building, and

enhancing your form.

By the time you reach the end of this book, you’ll be able to jump into your next

forms project with confidence. What’s more, your forms will be more than just

good—they’ll be downright fancy.

Who Should Read This Book?
Perhaps you’re an experienced web developer who’s already built some forms, but

found the results were less than ideal. Perhaps you’re just starting out on your web

development career. You might be an interface designer, a HTML and CSS coder,

a JavaScript guru, or a bit of all three. If you’re involved with any part of the form

creation process, this book is for you.

xii

What’s Covered in This Book?

Chapter One: Planning

A great form must start with a great plan. We’ll discuss some of the gadgets,

widgets, and goodies that are available to you. Then, we’ll examine how thorough

research creates a strong foundation for your forms: use cases and scenarios,

paper prototyping, visitor profiles, and more all come together to help you build

a solid picture of what your forms ought to be like.

Chapter Two: Designing

Naturally, a beautiful visual design for your forms will wow your visitors. But

a truly effective design is one that enhances usability as well as aesthetics. In

this chapter, we examine how a grid system, color, typography, icons, and tex

tures come together to create a pleasing and easy to use design for your forms.

Chapter Three: Structure

A strong skeleton for your form is essential, and that skeleton is made of seman

tic, structural HTML. We look into best-practice methods you can use today in

your sites that emphasize usability, accessibility, and meaningful code.

Chapter Four: Styling

Veteran form developers can tell many a tale of browser bugs, strange inconsis

tencies, and irritating behavior. In this chapter we examine some proven CSS

tricks and techniques for form layout that will mesh perfectly with our clean,

semantic HTML, and match your form’s design perfectly to the rest of your site.

Chapter Five: Enhancing

Careful use of JavaScript can make the difference between “Gee, that’s a nice

form,” and “Wow, that’s actually fun to use!” The techniques we describe in

this chapter cover functional enhancements such as client-side validation and

password strength testing, as well as aesthetic changes like customized pull-

down menus and checkboxes.

xiii

The SitePoint Forums

The SitePoint Forums1 are discussion forums where you can ask questions about

anything related to web design, development, hosting, and online marketing. You

may, of course, answer questions, too. That’s how a discussion forum site

works—some people ask, some people answer—and most people do a bit of both.

Sharing your knowledge benefits others and strengthens the community. A lot of

interesting and experienced web designers and developers hang out there. It’s a

good way to learn new stuff, have questions answered in a hurry, and just have fun.

The Design Your Site forum has subforums devoted to every facet of web design—

HTML and CSS advice, graphics tips, accessibility and usability, and even site re

views and critiques.2 It’s free to sign up, and it takes just a few minutes.

This Book’s Web Site
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site will always have the latest information about known typographical errors and

updates. You’ll find the book’s web site at http://www.sitepoint.com/books/forms1/.

If you find a problem, you’ll also be able to report it here.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as the SitePoint Design View, the SitePoint Tribune, and the SitePoint Tech Times,

to name a few. In them, you’ll read about the latest news, product releases, trends,

tips, and techniques for all aspects of web development. Sign up to one or more

SitePoint newsletters at http://www.sitepoint.com/newsletter/.

1 http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/forums/forumdisplay.php?f=40

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=40
http://www.sitepoint.com/forums
http://www.sitepoint.com/newsletter
http://www.sitepoint.com/books/forms1

xiv

The SitePoint Podcast

Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. They discuss the latest web industry topics,

present guest speakers, and interview some of the best minds in the industry. You

can catch up on the latest and previous podcasts at

http://www.sitepoint.com/podcast/ or subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write to is books@sitepoint.com. We have

a well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

mailto:books@sitepoint.com
http://www.sitepoint.com/podcast

xv

Conventions Used in This Book

You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items:

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xvi

Markup Samples
Any code—HTML, CSS, or JavaScript—will be displayed using a fixed-width font

like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the markup forms part of the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {

 background-color: #CCC;

 border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

⋮
return new_variable;

}

xvii

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

xviii

Acknowledgements
Jina Bolton
Thank-you to the people of SitePoint for the opportunity to work on this

book—particularly Raena who was patient, gave great feedback, and is also fun to

follow on Twitter. Thanks to Derek for his expertise and for being a pleasure to

work with. It's been an honor co-authoring a book with you. Thanks to Tim for

helping shift this book out the door! Thanks to my co-workers at Crush + Lovely

who have been amazing and understanding, and even gave me business hours to

work on this book! And, of course, thanks to the rest of all my family and friends

who have helped me along the way.

Tim Connell
Thank-you to my wonderful friends and family for all of your support and encour

agement—especially to Mum, for being my mum; to Jerome, for making me smile

and think at exactly the right moments; to Heather and Corine for being the most

brilliant friends and business partners a guy could ask for, and to Squiz and the

many inspirational people I work with. Thanks also to my amazing co-authors Derek

and Jina; to Raena and the SitePoint crew; to Avi Miller for the feedback, and to

everyone else who read, wrote, or pondered over the words in this book.

Derek Featherstone
First and foremost, thank-you to all of my family for accepting my geekiness and

my love for the Web and trying to make it a better place. You don't always get what

I'm doing, but you DO always let me be me, and for that I'm truly grateful. Thanks

to my co-authors Jina and Tim for their hard work on this book, and the SitePoint

crew for getting me involved. Finally, huge thanks go to my co-workers Jeff Smith

and Joanna Briggs for all their support and assistance with this and everything we

do. I'm proud that you're part of the team. Finally, thanks to Carolyn Wood who,

in addition to being my friend, inspires me to be a better writer.

Chapter1

Planning
Forms—maybe you love them, maybe you think they’re … well … boring. Either

way, forms are an essential part of web design and development. From small login

forms to detailed administration panels, forms are one of the most important inter

active elements of your web site or application. They’re the carriers of data and—if

you’ll pardon the courier’s cliché—should be handled with care.

The way you develop your forms can greatly impact various concerns:

■	 Usability—are your forms easy to understand and simple to use?
■	 Accessibility—are your forms available to people who are accessing your site in

a non-traditional manner?
■	 Error prevention—do your forms help ensure that the information you’re collect

ing is free of problems?

Creating good forms can be a complicated process for both designers and developers.

There are a lot of factors that go into creating a form—planning, designing, structuring

(with markup), styling (with CSS), and enhancing (with JavaScript)—it’s a lot of

work! But this work is worth it in the end: an error-free, accessible, and user-friendly

form is a happy form, leading to happy users.

Fancy Form Design2

Throughout this book, we’ll be guiding you through a start-to-finish workflow. We’ll

start with devising our forms, move on to working through markup and styling, and

then laying on some JavaScript to enhance and support your forms.

The Elements of Forms
It’s important to understand the various elements that make up a form, so that you’re

aware of what’s available to you. Let’s first look at some of the basic default elements.

Then, we’ll take a look at some examples of more advanced features that are possible

through progressive enhancement with JavaScript.

Basic Elements
HTML provides for a number of form elements, each designed to accept various

types of content. Whether it’s booking a flight or ordering groceries online, chances

are you can create a functional form with just these basic elements.

Text Fields
Text fields, like the fields in Figure 1.1, allow

the user to type in whatever they like. It’s pos

sible to specify a maximum length, otherwise

any text can be entered.

Figure 1.1. Input fields used for names

Radio Buttons
Sometimes, you need to limit the user’s input to

a set of predetermined values. Radio buttons

provide an ideal solution if one choice only must

be made by the user. These are often presented
Figure 1.2. Radio buttons based on gender as small round buttons beside each option, as seen

in Figure 1.2.

3Planning

Checkboxes

Checkboxes are another format for predeter

mined values, but allow for multiple values to

be selected. You could use checkboxes to allow

a person to choose several items. In Figure 1.3,

we can see a series of checkboxes allowing a Figure 1.3. Multiple choices with checkboxes
user to specify which vehicles they own. Most

browsers present checkboxes as squares; selected checkboxes have a tick or cross

inside.

Labels
Labels are essential elements that tell you what the

field represents. Most browsers make the space occu

pied by the label a clickable area, which helps increase

the usability of the form; so rather than having to focus

on a single, tiny button, a user can aim for the general
Figure 1.4. Labels are clickable too!

area of its name. In Figure 1.4, we’re clicking the

checkboxes we saw in Figure 1.3; clicking the name

will select the box.

Textareas

Figure 1.5. A textarea as shown in Safari, with resizing handle

Textareas permit the user to type text, just like input fields, but they allow multiple

lines of text to be entered. They can even scroll to accommodate content that exceeds

the given width and height. In some browsers, such as Apple’s Safari, these can

even be resized by the user.

Fancy Form Design4

Select Menus
Select menus are yet another way to display predetermined values; this time, they’re

arranged as a menu. The benefit to using these over radio buttons or checkboxes is

that they save on space, particularly if you have an extensive list of options. However,

they’re a little harder to use in terms of ergonomics (in that the user needs to hold

down the button and drag simultaneously). If you only have a couple of choices, it

might be best to just use radio buttons or checkboxes.

Figure 1.6. A drop-down select menu, closed (left) and open (center), and a select list (right)

Select menus come in two forms: drop-downs and select lists. Drop-downs, as

shown in Figure 1.6, are employed when the user may select only one of the choices.

Select lists, like the one to the right of Figure 1.6, are used when the reader can

make multiple selections.

The options contained within a select menu may also be grouped, as shown in

Figure 1.7.

Figure 1.7. Option groups

5Planning

File Upload
File upload fields are used for … well, uploading

files. Perhaps you’re uploading some photos to

your favorite social network, adding a PDF attach

ment to an online job application, or sharing a Figure 1.8. The file upload field on a Mac

snippet of code on a forum. Pressing the button to

select a file will open your operating system’s file chooser; from here, you pick the

file you want to use.

Fieldsets and Legends
Fieldsets and legends are very helpful for or

ganizing forms, especially if they’re lengthy

forms. They’re a way to group related fields

together, which can enhance accessibility and

usability. The fieldset is the element that con

tains the group; below, in Figure 1.9, it’s rep

resented by the gray line around the fields. The

legend is the text shown at the top of that

fieldset: Personalia.

Buttons
Last, but certainly not least, we’ll need a button to submit the

Figure 1.9. Fields contained within a fieldset

form, like the one in Figure 1.10. Most browsers present these

in a manner that suggests they’re clickable—a raised or rounded

effect, or sometimes both, as shown in Figure 1.10. Figure 1.10. Click Me!

Enhanced Elements
While the basic form elements we just covered can handle most kinds of forms,

progressive enhancements (typically implemented with JavaScript) can help make

certain tasks easier, clearer, or more efficient. The best fancy form elements are

unobtrusive, meaning that there’s a way to use the form when JavaScript is unavail

able in the browser. Let’s look at some examples of enhanced form elements.

Fancy Form Design6

Split Buttons with Menus

Figure 1.11. Amazon’s Wish List button, above, with menu, below

Split buttons are becoming increasingly popular. The button itself will perform a

certain action, such as adding an item to a cart; however, a part of the button—often

indicated by a segregated area on the right with a downward arrow—will trigger a

drop-down menu with other options relating to that action. An example of this can

be found with Amazon’s1 Add to Wish List buttons, shown in Figure 1.11. Clicking

the main part of the button will add an item to your Wish List, while clicking the

arrow at the right edge will reveal a box with further options.

1 http://amazon.com/

http://amazon.com/
http:http://amazon.com

7Planning

Sliders
Sliders can be used to indicate a number or

range. These normally take the form of one

control that moves across a bar to indicate the

desired amount or value, or with two controls

indicating minimum and maximum values, such

as time or quantity.

My favorite use for a range slider is at Kayak,2

where a slider is used to help you choose accept

able flight times when booking a flight. As you

can see in Figure 1.12, this widget uses two

handles on the slider’s range bar so that you can

indicate a start and end time for your flight’s departure and return.

Toggle Switches
A toggle switch can be used for two either/or choices: for example, on/off, true/false,

or public/private. Brightkite,3 a location-based social network, uses this feature to

allow members to quickly switch profiles from public to private and vice versa; this

is handy for situations in which you want to quickly and temporarily make your

profile public (like when you’re attending a conference). In Figure 1.13, you’ll see

Brightkite’s toggle in action.

Figure 1.12. Time ranges for flights on Kayak

Figure 1.13. Now you see me, now you don’t

2 http://kayak.com/
3 http://brightkite.com/

http://kayak.com/
http://brightkite.com/
http:http://brightkite.com
http:http://kayak.com

Fancy Form Design8

Auto-completion
Auto-completion is an ideal way to help the user complete fields quicker; it also

helps avoid multiple spellings or variations of one specific entry. An example of

this can be found in Facebook’s profile editor,4 when filling out your hometown.

As you type, a menu appears below the text box displaying a list of possible matches

for the city or town you’ve begun typing. This helps avoid misspellings on the city

name or the wrong selection. For example, as seen in Figure 1.14, there are a number

of towns named Nashville, so it’s important to ensure that you select the right one.

Figure 1.14. Which Nashville?

4 http://facebook.com/

http://facebook.com/
http:http://facebook.com

9Planning

Date Pickers
Date pickers make choosing a date easier,

especially when it might be far off into

the future. The ability to see exactly

which day of the week a certain date will

fall on helps when booking trips or mak

ing appointments. Date pickers normally

take the form of a calendar. In Fig

ure 1.15, a screenshot from Dopplr,5 we

can see an example of a calendar-style

date picker being used for an upcoming

trip.

Color Pickers
Color pickers are usually found in web

applications that allow you to customize

your site experience or your profile. Some users are unfamiliar with hexadecimal

color code—the system used in web development to specify color—or they may

lack the tools to help them find that information. Color pickers enable these users

to select the color they want, though a good color picker still provides the ability

to enter a hex code.

Figure 1.16 shows Virb’s6 color picker in action.

Figure 1.15. Selecting an upcoming date on Dopplr

Figure 1.16. Virb’s color picker, with hex code entry field at the top of the window

5 http://dopplr.com/
6 http://virb.com/

http://dopplr.com/
http://virb.com/
http:http://virb.com
http:http://dopplr.com

Fancy Form Design10

Advanced File Uploaders
An advanced file uploader can help make uploading multiple files faster and easier.

This feature is often found on social networking sites that have photo albums.

Flickr’s file uploader—shown in Figure 1.17—permits multiple uploads, shows the

upload progress of each file, and indicates the size of the files.

Figure 1.17. The Flickr uploader

Rich Text Editors
Rich text editors enhance the good old textarea by allowing content to be formatted

and styled easily. This is commonly found on blogging and content management

web sites. In WordPress, the text entry field—shown in Figure 1.18—allows a user

to construct a blog post in a familiar, intuitive editor. To the right, there’s an HTML

tab, so that HTML-savvy users can switch to this mode to view or edit the markup.

11 Planning

Figure 1.18. WordPress’s rich text editor

Drag and Drop
Draggable items provide an intuitive way to reorder objects in a list or move items

in and out of a target area. In Panic’s T-shirt store,7 seen in Figure 1.19, customers

can pick up T-shirts and drop them into the cart area at the bottom of the screen.

Figure 1.19. Panic’s shopping cart

7 http://panic.com/goods/

http://panic.com/goods/
http://panic.com/goods

Fancy Form Design12

… And More!
As designers and developers explore what’s possible with form enhancement, new

methods and techniques appear. As you use the Web, keep an eye out for unusual

or innovative uses of form elements. When you spot a form that impresses you, it

can be useful to take notes or a screenshot; savvy designers and developers keep a

collection of interesting and innovative stuff for later reference. To start your own

file, use a scrapbooking-style application like Evernote,8 a service like Flickr,9 or

even just a collection of screenshots in a folder on your hard drive.

Interaction Patterns

Jargon time! An interaction pattern is a way to describe a particular widget,

function, or interactive element, describing the particular problems they solve

and the rationale for using a given pattern.

Some keen collectors of interaction patterns make their collections available on

the Web. At Welie.com,10 you’ll find dozens of different types of menus, widgets,

and other interactive elements. The Yahoo Developer Network’s Design Pattern

Library11 contains many patterns shown as videos, which makes it easy to under

stand how the interaction occurs. UI-Patterns12 is a newer site with a small, but

growing, collection. UI Pattern Factory13 is based on a similar idea, with a growing

collection of screenshots pulled from Flickr.

Research and Finding Inspiration
Before you dive into building your form, it’s important to do your homework first.

Forms are powerful, but without proper planning and design, they can make tasks

overbearing or difficult. It’s also good to look around for inspiration, for both the

interaction and visual aspects of form design.

8 http://evernote.com/

9 http://flickr.com/

10 http://welie.com/

11 http://developer.yahoo.com/ypatterns/

12 http://ui-patterns.com/

13 http://uipatternfactory.com/

http://evernote.com/
http://flickr.com/
http://welie.com/
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/
http://ui-patterns.com/
http://uipatternfactory.com/
http:http://uipatternfactory.com
http:http://ui-patterns.com
http://developer.yahoo.com/ypatterns
http:http://welie.com
http:http://flickr.com
http:http://evernote.com

13Planning

For this book, we’ll be building a fictional social networking site, Fit and Awesome,

for people that are into health and fitness. Members of the Fit and Awesome com

munity will be able to store their statistics and training journals on the site, and

share their fitness goals and activities with other members. Naturally, a site like

this will require a number of different forms and widgets—there’s plenty to sink

our teeth into here!

Perform a Competitive Audit
Take a look at what web sites and applications similar to yours are doing. It’s an

ideal way to understand what’s successful in other sites or to work out what fails

to perform. If you’re designing a social network, check out other social networks.

How do different companies handle editing a profile? Or privacy settings? If you’re

working on an ecommerce web site, take a look at some of the successful competitors.

Is their checkout process quick and easy, or is it tedious? Do you find yourself en

tering the same information over and over again?

As you’re looking at competitors, take note of issues you come across as you try to

use their product, as well as what works well. This information will be helpful in

your brainstorming process. Look for possible areas of innovation while still consid

ering established conventions; examine the reasons why a technique is effective or

not.

In Figure 1.20, I’ve collected the registration forms for four different

sites—Gimme20,14 Fitness Magazine,15 Fitness.com,16 and SELF Magazine.17 Each

form has different features, questions, and interface elements, all of which are useful

to consider.

14 http://gimme20.com/
15 http://fitnessmagazine.com/
16 http://fitness.com/
17 http://self.com/

http://gimme20.com/
http://fitnessmagazine.com/
http://fitness.com/
http://self.com/
http:http://self.com
http:http://fitness.com
http:http://fitnessmagazine.com
http:http://gimme20.com

Fancy Form Design14

Figure 1.20. The registration screens for Gimme20, SELF, Fitness.com, and Fitness Magazine

Use Software as Inspiration
Desktop software can be a worthwhile place to look for inspiration. These days,

more and more web applications are beginning to look and feel like software. This

can be good or bad—a poorly chosen desktop widget could confuse a user, and there

http:Fitness.com

15Planning

are some interactions that just work better on the desktop than in a browser. When

you’re thinking about including a desktop-like widget in your site, try to be sure

that you’ve chosen it because it’s the right tool for the job, rather than because it’s

fashionable in desktop applications. Consider whether it’s necessary. If you could

do without it, chances are that you should leave it out.

Figure 1.21 shows the view size menu in Mi

crosoft Word for the Mac; in many ways it re

sembles a regular select menu, which is hardly

notable, but the range of choices and the order

in which they’re arranged could be a useful

technique to emulate or improve upon.

Shown below, in Figure 1.22, Coda’s new site

panel uses a series of collapsible sections to

help a user make more sense of the various re

quirements. The form itself occupies only a

small amount of space, and makes use of a
Figure 1.21. Microsoft Word’s view size menu

scroll bar at the right. These are both suitable

ways to help make sense of a larger form.

Figure 1.22. Coda’s new site panel, with collapsible sections

Fancy Form Design16

Interaction Design
Interaction design is the process of defining your interface’s behavior. For form

design, I can’t stress enough how important it is. Having a solid, user-centered plan

for your forms’ designs is the best way to ensure that they’re a success. This is where

the design helps support a relationship between the form and the user.

Defining the Goal
An important part of planning any project is to define what’s required. Writing up

documentation, defining task flows, and performing testing may seem a dull, unex

citing venture. However, some attention to detail can greatly improve and inform

your design process; with a solid idea of what your forms ought to achieve, it’s

easier to create the solution that best fits the needs of your users. Fancy effects and

graphics can make a form look and feel beautiful, but if it fails to provide the solution

needed, then the design falls flat.

Creating documentation to describe the expected behavior of a system is an important

task, and the resulting material is quite handy when you’re working with others or

for a client. This type of document is formally known as a functional specification.

Identify the Users
Who’s going to be using these forms? Are the users tech savvy? Will they benefit

from the fancy, progressive enhancements you’re thinking about employing or will

that actually be a hindrance for them? Some designers go as far as to create user

personas, fictitious characters that help a designer define the needs and abilities of

the kinds of people who’ll use the site.18 For my part, I prefer talking to real people

that fit into the target audience. The following table contains a mini profile of four

real people whose interests and abilities we’ll use as a benchmark when we plan

and build our forms.

18 For a discussion of user personas and how to create your own, visit

http://www.hhs.gov/usability/analyze/personas.html

http://www.hhs.gov/usability/analyze/personas.html

17Planning

ProfilePersona

Fitness Interests: Triathlons, cycle trainers Derek Featherstone

Technical Level: Very comfortable with the Web

Fitness Interests: Gym, casual cycling, WiiFit Jina Bolton

Technical Level: Very comfortable with the Web

Fitness Interests: Casual cycling, tennis, gymKelly Steele

Technical Level: Moderately comfortable with the Web

Fitness Interests: Basketball, golfMathew Walker

Technical Level: New to the Web

Identify Use Cases and Scenarios
While considering the people that will be using your forms, you should think about

the various use cases that go along with them: so as well as defining the people

who’ll use your site and their goals, this is about how they can reach those goals

using the forms on your site.

Use cases help you answer a number of important questions. What do you (or your

client) require? How will the form’s data be used? For registering an account on a

social network, will members be required to fill the form out in its entirety, or can

they just fill out the basics and complete it at a later time? What information should

remain public? Should certain kinds of information be kept private? Why would

someone register in the first place, and what’s important to them?

Fancy Form Design18

Understand Platforms and Devices
You might be using the latest version of Safari on your nice big MacBook Air, but

another user filling out the form could be an everyday commuter browsing on their

Blackberry.

When you’re planning a form, it’s important to consider all the platforms and devices

that may be used for your forms, or you might cause a lot of heartache! For instance,

I use Yelp19 for looking up restaurants, and occasionally I submit reviews. I would

love to write these reviews as soon as I’ve left the restaurant, but I never do. Why?

Because the form is horribly annoying and tedious to use on my iPhone.

Below, we’ve specified a number of browsers which we’ll use to test and refine our

form design.

Desktop Safari 3, Firefox 2, Internet Explorer 6+ (limited functionality)

Mobile Generic mobile CSS, iPhone-specific

Define Task Flows
Now that you’ve given some careful

consideration to the users, use cases,

and platforms, you should now have

enough information to plot out the

steps needed to complete each

form—a task flow. It’s also time to

think about alternate paths and error

cases. Sketch it out visually, so that

you have a clear idea of what your

process looks like; Figure 1.23 shows

us an example of a task flow diagram

for a sign-up and login form.

Figure 1.23. A task flow example for signing up or logging in

19 http://yelp.com/

http://yelp.com/
http:http://yelp.com

19Planning

By this stage you should have a fairly solid idea of what’s required in your form.

It’s now time to put pen to paper!

Paper Prototyping
Creating a paper prototype of your form is a quick and easy way to hash out your

ideas and issues at the beginning of the form development process. Draw your forms

on paper: keep it fast, lightweight, and simple, sketching out a basic idea of how

each form would look. You can even use a quick and cheap option like a stack of

sticky notes; if you use a note for each object in your form, it’s easy to experiment

with different arrangements. Use this hand-drawn form to assess how your form

looks so far. It’s amazing how much more clearer your decisions about form questions

become when you see them in front of you.

Try the prototype out on your peers—they might see stuff you missed. If it’s okay

to show your forms to the public at this stage, perhaps you could head over to the

closest café and try them out on some complete strangers after buying them a cup

of coffee.

For a great, detailed introduction to paper prototyping, check out Shawn Medero’s

article in A List Apart.20

Wireframing
Now that you’ve completed your planning, it’s time to start designing. Begin with

rough diagrams or wireframes before obsessing over the shiny buttons. What we’re

focusing on right now is the layout. The diagrams you’ll see over the next few pages,

from Figure 1.24 to Figure 1.29, are wireframes for our example site.

Notice that they’re plain, clean, and simple—there’s no need for a lot of detail or

intricate design work here. Right now, we’re only hashing out the basic flow and

general layout.

20 http://alistapart.com/articles/paperprototyping

http://alistapart.com/articles/paperprototyping
http://alistapart.com/articles/paperprototyping
http://alistapart.com/articles/paperprototyping

Fancy Form Design20

Figure 1.24. Sign Up wireframe

21 Planning

Figure 1.25. Advanced Search wireframe

Figure 1.26. Change Password wireframe

Fancy Form Design22

Figure 1.27. Edit Profile wireframe

23Planning

Figure 1.28. Feedback wireframe

Fancy Form Design24

Figure 1.29. Privacy Settings wireframe

25Planning

Summary
In this chapter we’ve explored the many elements of forms and why it’s vital to

develop your forms with an eye to usability, accessibility, and error-free data. We’ve

looked at some of the basic elements like radio buttons, form fields, and select

menus, and explored some of the enhanced features available like sliders and color

pickers. We’ve covered the importance of research; talked about methods for

drawing inspiration for your form creation; and looked at the process of interaction

design, which involves specifications, prototypes, and wireframes.

Believe it or not, you’re already halfway there to your goal of creating seriously

fancy forms! You might be wondering how that’s possible, as you’ve barely started

this book. Well, proper planning is that important, and will save you a lot of head

aches later. Trust me on this!

Now that we have a firm idea of the general contents and layout of the form, it’s

time to design the interface.

Chapter2
Designing
In Chapter 1, we focused on the planning phase of fancy form design. With the in

teraction nailed down, we’ve actually begun the design process for the forms. Now,

we’re going to look at the visual design side of form design.

Visual design can either enhance or detract from usability, depending on its imple

mentation. It’s important to know how to use visual design in a way that enhances

the form’s usability, as well as making it aesthetically pleasing. In this chapter, we’ll

take a look at:

■ grid and typography
■ color
■ imagery

Grid and Typography
When we created the wireframes for the form, we’d already begun the process of

thinking about our form’s layout. Now, we can tighten the grid and think about

proportions and layout patterns, creating a structure for the visual design of our

form. Then, we can tune our typography so that our form is legible and clear.

Fancy Form Design28

Grid Systems
The grid is one of the most fundamental elements of graphic design. It provides a

solid foundation for placement of elements within the design of our forms. Using

consistent grid systems throughout your web site or application is good for brand

stewardship and usability, as well as organization.1

For Fit and Awesome, we’ll use Figure 2.1 for our forms.

Figure 2.1. A grid system

1 Some company brands have guidelines that go beyond fonts, colors, and logos; grid patterns are an

ideal way to have a united and organized look and feel across materials, whether it’s pages in a brochure,

billboard ads, or in our case, forms used on a web site.

29Designing

■ The top section is the form’s header, which will display the form’s title.
■ Directly beneath the header is room for an introductory paragraph, if required.
■ Then, the form is broken into three columns:

1. The first column is where we’ll place our main labels for our form elements.

2. The second column is where we’ll place those form elements (inputs,

textareas, select menus, and so on).

3. The third column is blank for now, but can be used for messages or other

contextual elements, like icons.
■ Below the columns is an area for controls or buttons.

Of course, like any system there’ll almost certainly be exceptions to the rule: it’s

okay to break out of the grid from time to time, as the design and interactivity of a

form can change based on your goals and those of your users. We’ve kept our grid

system quite simple to allow plenty of flexibility.

Type
A form that’s easy to read is likely to be a form that’s easy to use. This is especially

important for forms that have multiple sections or steps, so that users avoid feeling

overwhelmed or lost. Figure 2.2 shows our Sign Up form with elements placed

within a grid system—but with poor typography, it’s difficult to read. Since every

bit of text looks more or less the same, it’s harder to scan through the text.

Figure 2.2. Poor typography makes this form difficult for the eye

Fancy Form Design30

Let’s improve on it. In Figure 2.3, we’ve added various weights, sizes, and shades

to our text to provide contrast and a hierarchy. There’s also more space around each

form question. With these simple adjustments, the form already feels a little more

organized and is easier to read.

Figure 2.3. Much better!

Naturally, we can improve this further with some additional color.

31 Designing

Color

Color is, of course, a great way to make our forms look more interesting, but there’s

more to it than that. While grid systems help us organize the placement of elements,

color systems can help emphasize an item’s importance or meaning, making for a

much more usable interaction. An example would be using color to indicate an error

state, or to highlight a required field.

Highlighting Calls to Action
A call to action is a phrase used in interaction design that refers to the action you’d

like your user to take. In the case of a form, the call to action often concerns the

user entering some details or clicking a button in order to complete a particular

task.

Primary calls to action associated with a form may include an Add to Cart button,

a Sign In button, or a Post Entry button. It’s a good idea to use noticeable, bold colors

for these types of buttons. Secondary calls, such as a Cancel button, can use subtler,

muted tones, to show that they’re of less importance.

In Figure 2.4, we see an example of this used at West Elm,2 an ecommerce site that

sells furniture and home décor. The primary call to action here is to encourage users

to add a product to the shopping bag, so the Add to Shopping Bag button uses a

darker gray. It stands out more than Add to My Project, which uses a lighter shade.

Figure 2.4. West Elm’s calls to action

2 http://westelm.com/

http://westelm.com/
http:http://westelm.com

Fancy Form Design32

While shades of gray are capable of doing the trick, we’d like to use some green for

the primary call to action in our forms for two reasons: the color will make the

button more obvious, and it will complement the overall color scheme of the rest

of our site.

Figure 2.5. Preview and Save buttons

In our Edit Profile form, saving the form is our primary call to action, so we’ve used

green to ensure that it stands out more than the light gray-shaded preview button.

The Message of Color
When choosing colors, be aware of the message that each color may convey. Greens

connote a positive tone—they send the message that it’s okay to proceed, or that an

action you performed was successful. Reds can signal a negative outcome: highlight

ing an error, or advising that your action may cause an undesired effect, such as

canceling an activity or deleting a profile.

While color helps add hierarchy and meaning, it’s important to remember that color

is just one of many methods for indicating a message. Some users are unable to see

color; they may be color-blind or visually-impaired, or they may use a device that

only displays in grayscale, such as Amazon’s Kindle ebook reader. Use a mix of

icons, color, or text to indicate the fields that need attention. Some forms will explain

the errors and omissions at the top of the form as text, as well as beside the fields.

33Designing

In Figure 2.6, red is an appropriate color to indicate fields that were filled out incor

rectly. Yet, there’s also a message above the form which explains the problem, so

that the meaning of the problem is clear regardless of whether the user comprehends

the color red, or not.

Figure 2.6. A message explains the problem, while a border highlights the incorrect field

Imagery
Imagery can add a nice touch to your forms, enhancing the design. More importantly,

imagery can be used to provide additional context, such as highlighting an error or

a required field in the form.

Iconography
Icons can be a highly effective visual indicator. Let’s think again of our error message

shown above, in Figure 2.6; this is an ideal place for an icon, and helps to further

emphasize the error field. We’ll place the icon to the right, which you can see below

in Figure 2.7.

Figure 2.7. Adding an icon to the error message

Background Patterns and Textures
Subtle background patterns and textures help add volume and depth to a form.

While it may seem a purely aesthetic consideration, textures that add dimension

to a form can go a long way to improving its usability. Rather than being merely a

bunch of flat rectangles, these form elements seem to lift from the page—they feel

more authentic because their interactive nature is emphasized.

Fancy Form Design34

Here’s our Sign Up form so far, in Figure 2.8. Our typography changes have helped

lift the text, and the color on the Create Profile button is an improvement, but

overall this is hardly a fancy form!

Figure 2.8. Our simple form is still a little drab

35Designing

Now, let’s add some depth and texture to the form. As seen in Figure 2.9, gradients

and shadows provide definition: the fields are set off with a light gray background,

making each field more distinctive. It’s also a useful way to associate text with rel

evant sections, as seen under the birth date fields. Adding a raised effect to the

Create Profile button helps to emphasize this important element, too. Overall, it’s

a much friendlier, more usable form!

Figure 2.9. Gradients, shadows, and texture help this form pop!

Fancy Form Design36

Let’s take a look at the rest of our forms with the new grid, typography, color, and

image styles applied, seen in Figure 2.10 through to Figure 2.14.

Figure 2.10. Advanced Search

Figure 2.11. Change Password

37Designing

Figure 2.12. Edit Profile

Fancy Form Design38

Figure 2.13. Feedback

39Designing

Figure 2.14. Privacy Settings

Fancy Form Design40

Figure 2.15 shows a detail from our Sign Up form, this time showing the error state

and informative message.

Figure 2.15. Oops!

41 Designing

Summary

In this chapter we discussed the value of strong visual design: as well as adding to

the aesthetic appeal of forms, it should also enhance the usability experience for

users. We looked at how well-structured grid systems and clear typography are ne

cessary for layout and legibility. We examined how color can be employed to great

effect, especially when used to highlight a primary call to action, but also that it’s

important to be mindful of what different colors can signify. Alongside this, we

established that color should always be used in conjunction with other indicators,

as some users—for various reasons—are unable to view color. Finally, we looked

at how imagery such as iconography or background patterns and textures can be

implemented to create further volume and depth.

With elegant and creative use of typography, grid, color, and imagery, your forms

should have a much fancier experience—planned out well, and designed to be hot

stuff, too! We’re now ready to move on to the next step: structuring the form with

markup.

Chapter3

Structure
We now need to address how to organize forms. We've spent time in the last chapter

looking at ways of visually organizing things so that they make sense and display

visual hierarchy, rhythm, grouping, and consistency. And we created that grid for

a reason, right? Establishing those visual characteristics for the way the forms are

laid out makes it easier to understand—at least for those of us that can see it. What

do we do, then, for those that may be blind, for example, or using an alternative

device to access your site? How do we translate that into information that’s mean

ingful for those unable to see our gorgeous, fancy form design? The answer is

simple—we go right back to structure.

There is no set structure for forms; no formula that will fit all scenarios. A form that

works well in a popular social networking site might be quite inappropriate for a

company’s payroll interface. Yet form consistency and predictability is one of the

hallmarks for good interaction design.

How do we reconcile this? An approach such as the one we’re using here in this

book—a form grid with set widths and positions for each form field—is a useful

tool in the real world as well. However, like any system, there’ll always be exceptions

Fancy Form Design44

to the rule: as the requirements of a form change along with the goals and needs of

the user and the site owner, we often find we need to step outside the grid.

Let's take a look at the forms that we’ve been working with so far. In Chapter 2, we

produced forms for each of the following tasks:

■	 Sign Up
■	 Advanced Search
■	 Password Utilities (a tool for forgotten passwords, and a tool to change your

password)
■	 Edit Profile
■	 Feedback
■	 Privacy Settings

In addition to the forms themselves, we must pay careful attention to the variety of

messages that we need to provide to users—advice and instructions, orientation

information, and status messages that indicate error or success states. We need to

ensure that we mark these up in a way that’s accessible to all users—this can be

easy to overlook if we forget to think about structure first. We have strong visuals

for these forms, but when we're implementing that vision we need to think structure

first, and that brings us right to the heart of the lingua franca of the Web: HTML.

The Structure of a Form
A lot depends on the HTML we use to construct our forms: it has to be flexible,

providing enough structure for our CSS to hook into so that we can implement our

design, yet sympathetic to accessibility issues. Surprisingly, navigating these issues

only requires minimal, but careful, consideration.

Understanding the form Element
The foundation of any form is the form element. It wraps around the set of form

fields that hold the data you wish to submit, and specifies two important points for

the form element’s attributes:

<form method="post" action="form-processor.php">

45Structure

The method attribute contains one of two values, post or get. When sending a form

using the get method, all of the data for the form is passed as part of the URL. When

sent using the post method, the data is sent in the background, without being ex

posed at all in the URL. For this reason, post is generally the preferred method of

sending form data. Meanwhile, the action attribute contains the URL for the back-

end script that will process the form.

When get Has a Place

There is one instance where using the get method is better than using post and

that’s with search forms. The get method passes the search query parameters as

part of the URL and enables the search form user to bookmark the results page

and return at a later date. The user can also use the browser’s back and forward

buttons without the confusing “Resend form data?” browser warnings.

Form elements really are that simple! There are other attributes for the form element,

though these are more rarely used. For a complete reference listing of attributes for

the form element, see the SitePoint HTML Reference.1 You can also read the World

Wide Web Consortium’s specification.2

While the form element is required, it’s hardly the most exciting part of your form.

Let’s look at the elements that comprise the contents of your form.

Groups and Labels: fieldset, legend, and label
Basic form structure is provided by three elements that HTML provides: fieldset,

legend, and label. These elements work together to group related fields. This

paradigm comes from a long history of GUI design—long before the rise of the Web.

If you look at almost any dialog box from any piece of software, you’ll find the

desktop application equivalent of a fieldset and legend.

1 http://reference.sitepoint.com/html/form/
2 http://www.w3.org/TR/html4/interact/forms.html#edef-FORM

http://reference.sitepoint.com/html/form/
http://www.w3.org/TR/html4/interact/forms.html#edef-FORM
http://www.w3.org/TR/html4/interact/forms.html#edef-FORM
http://www.w3.org/TR/html4/interact/forms.html#edef-FORM
http://reference.sitepoint.com/html/form

Fancy Form Design46

In Figure 3.1, we can see an example of this concept from a Firefox preferences

pane. Here you can see three sections on the active tab: Accessibility, Browsing, and

System Defaults.

Figure 3.1. Tabs in the Firefox preferences dialog

If we were creating a similar layout in HTML, there would be three fieldset ele

ments wrapped around each of the groups of checkboxes, as well as around the

Check Now button. Accessibility, Browsing, and System Defaults would be the equivalent

of the legend in HTML.

Fieldsets and legends are certainly optional, and in some cases might even be overkill

for simple forms. In fact, most forms are unlikely to need them. However, they’re a

potentially useful tool for increasing the accessibility of our forms. Visually, we can

see that each set of checkboxes in that dialog are separate groups, because of the

way they’re arranged. However, the use of that group heading—the legend, in HTML

47Structure

terms—provides additional context to say what each set of options is for. And that’s

precisely the context that legend provides in an HTML form.

Let’s take a look at this in one of our forms, the Change Password form. It’s shown

below, unstyled, in Figure 3.2.

Figure 3.2. Our unstyled Change Password form

It might seem quite reasonable to say that the text Change Password should be en

closed in a legend element, found within a fieldset containing those fields. The

markup for that might look a little like this:

<fieldset>

<legend>Change Password</legend>

⋮ change password form fields

</fieldset>

This structure makes perfect sense, and we’ve heard many times before that legends

and fieldsets are useful for accessibility. So this should be accessible, right? Oh,

if only it were that simple. This is a case of how a well-intentioned tweak done for

accessibility reasons may be unhelpful, and might even make it worse.

Here's why: a screen reader, such as JAWS, announces the legend text before each

field label as the user tabs through the page. When a user working with JAWS inter

acts with this form, they'll hear the text of the legend, then the label, then the type

of field.

How would that sound for this form? For the current password field they'd hear the

screen reader say “Change Password, Your Current password, password.” When

they move to the new password field and the confirm password field they’ll hear

Fancy Form Design48

“Change Password, Your New password, password” and “Change Password, Confirm

password, password,” respectively. It’s as if we were playing a trick on the screen

reader to see how many times can we prompt it to say “password.” Technically

accessible—it uses all the right elements—but a real pain to listen to.

The use of fieldset and legend is complicated further by the fact that screen

readers differ across settings regarding whether they’ll announce the text of the

legend by default. JAWS, generally accepted as the most popular screen reader,

does announce it by default, but Window-Eyes does not. For this simple form, the

use of the legend element is likely to be overkill. There are enough cues in the labels

of the form fields to give us enough context to understand what the fields are.

Combine that with the point that password fields are announced by the screen

reader, and there is more than enough information for a user to understand what

they’re supposed to do with that form.

We still need a title for the form, so rather than legend, we’ll use an h1 element.

The change in our markup, shown in Figure 3.3, is simple:

<h1>Change Password</h1>

<fieldset>

⋮ change password form fields

</fieldset>

Figure 3.3. The Change Password form without the legend

49Structure

Let’s use this knowledge to think about a different form: the Sign Up form we showed

in the previous chapter. While we’re wisely omitting the legend from the fieldset

surrounding the form (can you imagine how annoying that would be?), adding

fieldset and legend elements to sections within the form is worth exploring.

The birth date fields, shown unstyled in Figure 3.4, would indeed benefit from

grouping. When we think about what it would sound like to a screen reader user,

it becomes fairly clear that the extra information provided by using the legend is

much less repetitive and annoying here than the legends on the Change Password

form.

Figure 3.4. Sign Up form Birth date section

The markup for this form section will look similar to this:

<fieldset>

 <legend>Birth date</legend>

 <label for="dob_month">Month</label>

 <select name="dob_month" id="dob_month">

 <option> - Month - </option>

⋮ months …

 </select>

 <label for="dob_day">Day</label>

 <select name="dob_day" id="dob_day">

 <option> - Day - </option>

⋮ days …

 </select>

 <label for="dob_year">Year</label>

 <select name="dob_year" id="dob_year">

 <option> - Year - </option>

⋮ years …

 </select>

Fancy Form Design50

<em class="note">This is hidden by default

from your profile.

</fieldset>

This technique will also be useful on the Edit Profile form.

There’s another important aspect of our form design that we’ll need to address,

however: label usage. Consider the Advanced Search form shown in Figure 3.5.

This form consists of two select elements, and contains a text box for the search

terms.

Figure 3.5. Advanced Search form

Both of the select elements will have an appropriate label on them in approximately

the same way as the following markup:

<label for="words">Search for</label>

<select id="words" name="words">

 <option>All of these words</option>

 <option>Any of these words</option>

</select>

<input type="text" name="keywords" value="" id="keywords"/>

<label for="searchin">Search in</label>

<select id="searchin" name="searchin">

 <option>People</option>

 <option>Places</option>

 <option>Sports</option>

</select>

51 Structure

Did you notice the odd one out? The text field for search terms, with an id of terms,

has no label of its own in the design. It’s clear from looking at the design that the

text field’s purpose is implied because it’s grouped with the select above it. But

without a visual cue, how can you tell?

It’s hardly a good idea to leave the label out for this field. Without a label, assistive

technology like a screen reader will need to guess what the field is about; when the

user tabs to the field, it has to announce something to the user. In the absence of a

label, many screen readers will grab text near the field, sometimes with the unfor

tunate consequence that irrelevant, unrelated text is interpreted as the label for the

form field.

So how do we solve this issue? The easiest solution is to use a label for every form

field. In the case of our Advanced Search form, it would be simple enough to add in

a label for the middle field for search terms. If the designer in you cringes from the

idea of adding more visual clutter, have no fear—CSS allows us to hide the label in

a number of ways. One popular technique is to use CSS to position the label a long

way to the left of the field—so far left that it disappears beyond the left-most

boundary of the page. You’ll find a discussion of this method, and other text hiding

techniques, at WebAIM.3

If using a label is simply impractical, most screen readers do also announce the

title attribute on a form element. This is particularly useful if, for example, your

fields are arranged in a table. When browsing a table, a screen reader will ordinarily

announce the contents of the table’s headings—the th element—as the user moves

through each table cell. However, when a screen reader is in forms mode, those

table headers are ignored; in this case, use the title attribute as a fallback. It’s

hardly an ideal option—a label is still best—but it at least provides some text for

screen readers. You can find out more about this technique in Jim Thatcher’s access

ible forms tutorial.4

3 http://www.webaim.org/techniques/css/invisiblecontent/
4 http://jimthatcher.com/webcourse8.htm

http://www.webaim.org/techniques/css/invisiblecontent/
http://jimthatcher.com/webcourse8.htm
http://jimthatcher.com/webcourse8.htm
http://jimthatcher.com/webcourse8.htm
http://www.webaim.org/techniques/css/invisiblecontent

Fancy Form Design52

Form Fields
The choices you have for form fields are fairly standard: text fields, password fields,

radio buttons, checkboxes, drop-down lists (select elements), textareas, hidden

fields, and buttons. The humble <input/> tag does the heavy lifting for most of

those field types by simply changing its type attribute. In addition, the

<textarea></textarea> and <select></select> tags, with one or more

<option></option> tags, are also used. Forms are basically just a collection of these

kinds of fields that are interrelated. Where it becomes fancy is in the way that we

bring them together to create a whole, interactive experience.

In every form field element there are two essential attributes, id and name. The id

attribute can be used as an identifier by CSS and JavaScript, but it’s also required

by the for attribute on your labels; it’s what connects the labels to the form fields.

The name attribute is submitted along with the form, so that the field value can be

identified from other field values. Consider the following excerpt from the Sign Up

form:

ch03/sign-up.html (excerpt)

<label for="email">Your email address</label>

<input type="text" name="email" id="email"/>

The email field is a text field, with the name email and the id email. The label is

linked to the field because the for attribute value, email, matched the field’s id

value. When this form is submitted the data from this field will be represented as

follows: email=email_value.

Of course, the id attribute must remain unique across all elements, but there are

situations where more than one form field element can share the same name. One

example is the use of radio buttons. Each radio button is implemented using a sep

arate <input/> tag with the type value radio, and they’re grouped by their name

attribute. All the radio buttons with the name value are considered a group and only

one button can be selected from a group. We’ll make use of this feature in our Privacy

Settings form.

Since this form is constructed as an HTML data table, we’ll also take the opportunity

to use the title attribute on each field, to ensure that our screen reader users will

53Structure

hear text at each field. The following code excerpt from that form demonstrates the

use of the name and title attributes:

ch03/privacy-settings.html (excerpt)

⋮
<tr>

 <th>Gender</th>

 <td class="private">

 <input type="radio" name="gender" id="gender-private"

value="private" title="Gender: private" checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="gender" id="gender-contacts"

value="contacts" title="Gender: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="gender" id="gender-public"

value="public" title="Gender: public"/>

 </td>

</tr>

⋮

These radio buttons represent the chosen level of privacy for your gender informa

tion, where one of three levels can be selected: private, contacts, and public;

private is checked by default. Even though they each have a unique id value, all

three radio buttons share the same name: gender, which means the browser will

only allow one of these three to be selected at any time. Notice also that they’re

placed in separate table cells; it’s unnecessary for radio buttons to be grouped close

together in your markup in order to function, they only have to share the same name.

If the above form was submitted, the data from this field would be represented like

so: gender=private.

There are a few other attributes of form fields that we have at our disposal: tabindex,

accesskey, readonly, and disabled attributes are available for form fields, and all

have a history of being used and abused in web forms.

tabindex specifies the order in which form fields take focus when a user tabs through

the form. It’s still available to use, though the more savvy practitioners have dropped

it. Instead, I’d advise you to simply rely on the source order of your form to specify

its natural flow. Following the general flow of the source is adequate for most forms.

Fancy Form Design54

accesskey has a long history of being used, and overused, in forms. The accesskey

attribute provides a shortcut key that either activates or places the focus on the

corresponding form field—the exact behavior depends on the browser. This tech

nique, too, has fallen out of favor for a number of reasons: the difficulties of stand

ardizing on a set of accesskeys, the lack of a mechanism to reliably override and/or

redefine the keystrokes that the author specified, and the possibility that your

choices may conflict with existing browser or other assistive technology keystrokes.

disabled and read-only form elements are visible but are unable to be edited, so

are generally rendered in a fashion that suggest that they’re faded or made gray.

Using JavaScript, you can make these kinds of fields editable again—for example,

you might choose to disable a particular form field until a previous question has

been answered.

For more information about the different types of form fields see the SitePoint HTML

Reference,5 or, if you’re adventurous, refer to the W3C’s form documentation.6 A

great overview of creating forms is found in the SitePoint title Build Your Own Web

Site the Right Way Using HTML & CSS (Melbourne: SitePoint, 2008) by Ian Lloyd—be

sure to check it out if you're looking to understand all the basics!

Form Layout
Although not strictly the job of HTML, you may need to use additional markup to

help you create the variety of form grid layouts required for your CSS to hook into.

My preference is to use the generic div for defining a row of the form:

<div>

 <label for="email">Your email address</label>

 <input id="email" type="text" name="email" value=""/>

</div>

Individuals may advocate the use of list markup by suggesting that each form label

and field pair is part of an ordered or unordered list's list item (li), or even that the

label should be a dt and the field should be a dd of a definition list (dl). Others still

may suggest that a table should be used when the form is a representation of tabular

5 http://reference.sitepoint.com/html/elements-form/
6 http://www.w3.org/TR/html4/interact/forms.html

http://reference.sitepoint.com/html/elements-form/
http://reference.sitepoint.com/html/elements-form/
http://www.w3.org/TR/html4/interact/forms.html
http://www.w3.org/TR/html4/interact/forms.html
http://reference.sitepoint.com/html/elements-form

55Structure

data. If you build forms long enough, you too can enjoy these debates of semantic

purity with others in the industry and colleagues at work! Actually, we do use an

HTML table in one of our forms: the Privacy Settings form. A table is appropriate in

this situation because those settings represent a two-dimensional option matrix.

Instructions, Errors, and Advisory Text
It’s a rare form that requires no explanation. Most of the forms you’ll make will re

quire instructions, error text, and advisory text. How do we let the user know that

certain fields are required? How do we help them understand what format an email

address should be? How do we let them know that an error has occurred?

Required Fields
From time to time, you’ll create a form where only some of the information is re

quired, while other fields are optional. The easiest way to deal with required fields

is to only ask for the data that’s required. Eliminate all optional fields and your

problem is solved—a simple statement saying all fields are required. Oh, if only it

were that easy! We do need to provide some indication of required fields. So, with

that in mind, what are our options?

Over the years certain conventions have become standard in web interfaces. In many

cases, it seems that an asterisk is a fairly common way to denote a necessary field.

Putting the asterisk on the page is the easy part. Where do we put it, though? And

what do we do when required fields are skipped? Where should our error messages

go? And how does an asterisk actually mean required, anyway? Let's take an in-

depth look at what some best-practice markup should be for a few of these scenarios.

In cases where the asterisk will simply sit beside the text, it’s clear that we should

just include the asterisk in the label. It’s the most semantically appropriate way to

provide this information, and it helps screen reader users and potentially other

users of assistive technology.

But what should we do when the design requires the asterisk be shown on the right-

hand side of the field itself, rather than just to the right of the label? The fields in

Figure 3.6 represent this kind of construction.

Fancy Form Design56

Figure 3.6. Required fields indicated with an asterisk

When we think about this design in terms of a typical form grid, the asterisk is in

a third column, sitting outside of where the form field’s label is. Here’s the problem:

when the asterisk sits outside of the label it will remain unread by a screen reader,

so a vital piece of information is omitted. Hence, we must ensure that the asterisk

is contained within the label.

The solution lies in some creative use of markup and styles (we’ll look more closely

at the CSS techniques to achieve this in the next chapter):

<label for="username">Username

<abbr title="Required field">*</abbr>

</label>

<input id="uname" type="text" name="uname" value=""/>

Placing the asterisk as part of the label ensures that it will be read out by a screen

reader when its user interacts with the form. The use of the abbr element is also a

nice semantic touch—after all, in the case of our form, the * really is an abbreviation

for Required Field. Armed with this knowledge, we can now extend this pattern to

ensure that we communicate error messages and advisory content to all users in a

similar fashion.

The design of our Sign Up form, shown again in Figure 3.7, now includes three

components that indicate an error has occurred: a red border around the troublesome

field, an icon next to the field, and a message above the form to explain what the

errors are.

57Structure

Figure 3.7. Errors are indicated with highlighting, an icon, and text

The markup for the field might look like this:

<label for="email">

 Your email address

</label>

<input id="email" type="text" name="email" value=""/>

You can see above that we’ve used an img element here. It’s equally possible to add

a class to the label, and then add that image as a background using CSS. But beware,

this can cause more problems than it solves:

Fancy Form Design58

■	 Some browsers are unable to magnify background images when the page is

zoomed in.
■	 In a Windows environment with the High Contrast setting on, background images

are omitted.
■	 If CSS is off, this important, meaningful indicator is lost.

Using an img element to place the icon in the HTML itself counters all of these issues

and establishes iconography as part of the content, rather than the presentation. In

doing so we can ensure that the importance of that icon in communication is con

veyed, regardless of the technology that the site visitor is using for their experience.7

The Final Markup
Taking into consideration all the points we’ve raised in this chapter we can now

produce the HTML for our forms. All of our forms will use this basic structure:

<h1>Form Heading</h1>

<form action="#" method="post">

 <fieldset>

 <p>Introductory paragraph</p>

⋮ form body …

 </fieldset>

</form>

We’ll wrap all the form fields within a fieldset element, but avoid adding a legend.

The form heading is placed before the opening <form> tag, and if required, an intro

ductory paragraph can be added using a p element.

Within the form body we’ll use div elements to separate the individual fields—in

a sense making “rows”—like so:

7 For more information about wrongly chosen background images—I’ve griped about this earlier—check

out Naughty or Nice? CSS Background Images, located at

http://24ways.org/2005/naughty-or-nice-css-background-images

http://24ways.org/2005/naughty-or-nice-css-background-images

59Structure

<div>

 <label for="id">field label</label>

⋮ field …

</div>

An exception to this will be our Privacy Settings form, where we’ll use an HTML

table.

There are cases where we’ll use a fieldset and legend element within our main

form body to indicate a subsection of the form, like so:

<fieldset>

⋮ form body …

 <div>

 <fieldset>

 <legend>subsection name</legend>

⋮ subsection fields …

 </fieldset>

</div>

⋮ form body …
</fieldset>

In situations where a field is required we indicate the requirement like so:

<div>

 <label for="id">field label

 <abbr title="Required field">*</abbr>

 </label>

⋮ field …

</div>

To indicate a validation error we’ll use the follow markup:

<div>

 <label for="id">field label

 </label>

⋮ field …

</div>

Fancy Form Design60

The last element of all our forms will be the form submit control. This will be placed

at the end of the form body, within a div element that has a class value of controls,

like so:

⋮ form body …
 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="submit button text"/>

 </div>

 </fieldset>

</form>

Here are our completed forms:

61 Structure

Sign Up form

ch03/sign-up.html (excerpt)

<h1>Sign Up</h1>

<p class="log-in">Already a member? Log in.</p>

<form action="#" method="post">

 <fieldset>

 <p class="introduction">Hi there! We're excited to have you as

a part of our community. To get started, please create an

account.</p>

 <p class="note">Fields marked with an asterisk (<abbr title=

 "Required field">*</abbr>) are required.</p>

 <!-- Email -->

 <div>

 <label for="email">Your email address

 <abbr title="Required field">*</abbr></label>

 <input type="text" name="email" id="email"/>

 </div>

 <!-- Password -->

 <div>

 <label for="password">Create Password

 <abbr title="Required field">*</abbr></label>

 <input type="password" name="password" id="password"/>

 </div>

 <!-- Password Confirmation -->

 <div>

 <label for="password_confirmation">Confirm Password

 <abbr title="Required field">*</abbr></label>

 <input type="password" name="password_confirmation"

id="password_confirmation"/>

 </div>

 <!-- Profile Link -->

 <div id="field-profile-link">

 <label for="profile_link">Your profile link

 <abbr title="Required field">*</abbr></label>

 fitandawesome.com/

 <input type="text" name="profile_link" id="profile_link"/>

 </div>

 <!-- DOB -->

Fancy Form Design62

<fieldset id="section-dob" class="group">

 <legend>Birth date</legend>

 <!-- Month -->

 <div>

 <label for="dob_month">Month</label>

 <select name="dob_month" id="dob_month">

 <option value=""> - Month - </option>

⋮ months
 </select>

 </div>

 <!-- Day -->

 <div>

 <label for="dob_day">Day</label>

 <select name="dob_day" id="dob_day">

 <option value=""> - Day - </option>

 <option value="1">1</option>

⋮ days
 </select>

 </div>

 <!-- Year -->

 <div>

 <label for="dob_year">Year</label>

 <select name="dob_year" id="dob_year">

 <option value=""> - Year - </option>

 <option value="2004">2004</option>

⋮ years
 </select>

 </div>

 <em class="note">This is hidden by default from your

profile.

 </fieldset>

 <!-- Terms of Service -->

 <div id="field-agree-tos">

 <label for="agree_tos">

 <input type="checkbox" id="agree_tos"

name="agree_tos" value="yes"/>

 I have read and agree to the Terms

of Service.

 </label>

63Structure

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="Create Profile"/>

 </div>

 </fieldset>

</form>

Fancy Form Design64

Advanced Search form

ch03/advanced-search.html (excerpt)

<h1>Advanced Search</h1>

<form action="#" method="get">

 <fieldset>

 <!-- Search for: -->

 <div>

 <label for="words">Search for</label>

 <select id="words" name="words">

 <option>All of these words</option>

 <option>Any of these words</option>

 </select>

 <input type="text" name="keywords" value="" id="keywords"/>

 </div>

 <!-- Search in -->

 <div>

 <label for="searchin">Search in</label>

 <select id="searchin" name="searchin">

 <option>People</option>

 <option>Places</option>

 <option>Sports</option>

 </select>

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="Search"/>

 </div>

 </fieldset>

</form>

65Structure

Change Password form

ch03/change-password.html (excerpt)

<h1>Change Password</h1>

<form action="#" method="get">

 <fieldset>

 <!-- Current -->

 <div>

 <label for="current">Current password</label>

 <input type="password" name="current" value=""

id="current"/>

 </div>

 <!-- New -->

 <div>

 <label for="new">New password</label>

 <input type="password" name="new" value="" id="new"/>

 </div>

 <!-- Confirm -->

 <div>

 <label for="confirm">Confirm password</label>

 <input type="password" name="confirm" value=""

id="confirm"/>

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="Change password"/>

 </div>

 </fieldset>

</form>

Fancy Form Design66

Edit Profile form

ch03/edit-profile.html (excerpt)

<h1>Edit Profile</h1>

<form action="#" method="post">

 <fieldset>

 <!-- photo -->

 <div>

 <label for="your_photo">Your profile photo</label>

 <input type="file" name="your_photo" value=""

id="your_photo"/>

 </div>

 <!-- first name -->

 <div>

 <label for="firstname">First name</label>

 <input type="text" name="firstname" value=""

id="firstname"/>

 </div>

 <!-- last name -->

 <div>

 <label for="lastname">Last name</label>

 <input type="text" name="lastname" value=""

id="lastname"/>

 </div>

 <!-- gender -->

 <div>

 <fieldset id="gender" class="">

 <legend>Gender</legend>

 <label for="female">Female</label>

<input type="radio" name="gender" value="female"

id="female"/>

 <label for="male">Male</label>

<input type="radio" name="gender" value="male"

id="male"/>

 </fieldset>

</div>

 <!-- DOB -->

 <fieldset id="section-dob" class="group">

 <legend>Birth date</legend>

 <!-- Month -->

67Structure

<div>

 <label for="dob_month">Month</label>

 <select name="dob_month" id="dob_month">

 <option value=""> - Month - </option>

⋮ months

 </select>

 </div>

 <!-- Day -->

 <div>

 <label for="dob_day">Day</label>

 <select name="dob_day" id="dob_day">

 <option value=""> - Day - </option>

 <option value="1">1</option>

⋮ days
 </select>

 </div>

 <!-- Year -->

 <div>

 <label for="dob_year">Year</label>

 <select name="dob_year" id="dob_year">

 <option value=""> - Year - </option>

 <option value="2004">2004</option>

⋮ years
 </select>

 </div>

 <em class="note">This is hidden by default from your

profile.

 </fieldset>

 <!-- about you -->

 <div>

 <label for="about_you">About you</label>

<textarea name="about_you" id="about_you" cols="30"

rows="6"></textarea>

 </div>

 <!-- website url -->

 <div>

 <label for="website_url">Website URL</label>

 <input type="text" name="website_url" value=""

id="website_url"/>

Fancy Form Design68

</div>

 <!-- website name -->

 <div>

 <label for="website_name">Website name</label>

 <input type="text" name="website_url" value=""

id="website_name"/>

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="Create Profile"/>

 </div>

 </fieldset>

</form>

69Structure

Feedback form

ch03/feedback.html (excerpt)

<h1>Feedback</h1>

<form action="#" method="post">

 <fieldset>

 <p class="introduction">Tell us what you think about the site.

What is working for you? What would you like to see

inproved? Your opinion is very valuable to us. All

fields are required.</p>

 <!-- Your Name -->

 <div>

 <label for="name">Your name

<abbr title="Required field">*</abbr>

 </label>

 <input type="text" name="name" id="name"/>

 </div>

 <!-- Email -->

 <div>

 <label for="email">Your email address</label>

 <input type="text" name="email" id="email"/>

 </div>

 <!-- Password -->

 <div>

 <label for="comment">Your comments</label>

 <textarea name="comment" id="comment" cols="30" rows="6">

 </textarea>

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

value="Submit Feedback"/>

 </div>

 </fieldset>

</form>

Fancy Form Design70

Privacy Settings form

ch03/privacy-settings.html (excerpt)

<h1>

 Privacy Settings

</h1>

<form action="#" method="get">

 <fieldset>

 <p class="introduction">

 We understand that your health and fitness is personal. We

 respect your privacy. Please let us know what you would

like to be visible.

 </p>

 <table summary="Profile visibility settings">

 <thead>

 <tr>

 <th scope="row"></th>

 <th abbr="Keep private" class="private" scope="col">

 Private

 </th>

 <th abbr="Show only to contacts" class="contacts"

scope="col">

 Contacts

 </th>

 <th abbr="Show publicly" class="public" scope="col">

 Public

 </th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th scope="row">

 Gender

 </th>

 <td class="private">

 <input type="radio" name="gender"

id="gender-private" value="private"

title="Gender: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="gender"

id="gender-contacts" value="contacts"

71 Structure

title="Gender: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="gender"

id="gender-public" value="public"

title="Gender: public"/>

 </td>

 </tr>

 <tr>

 <th scope="row">

 Birth day and month

 </th>

 <td class="private">

 <input type="radio" name="dob_date"

id="dob-date-private" value="private"

title="Birth day: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="dob_date"

id="dob-date-contacts" value="contacts"

title="Birth day: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="dob_date"

id="dob-date-public" value="public"

title="Birth day: public"/>

 </td>

 </tr>

 <tr>

 <th scope="row">

 Birth year

 </th>

 <td class="private">

 <input type="radio" name="dob_year"

id="dob-year-private" value="private"

title="Birth year: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="dob_year"

id="dob-year-contacts" value="contacts"

title="Birth year: contacts"/>

 </td>

Fancy Form Design72

<td class="public">

 <input type="radio" name="dob_year"

id="dob-year-public" value="public"

title="Birth year: public"/>

 </td>

 </tr>

 <tr>

 <th scope="row">

 Location

 </th>

 <td class="private">

 <input type="radio" name="location"

id="location-private" value="private"

title="Location: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="location"

id="location-contacts" value="contacts"

title="Location: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="location"

id="location-public" value="public"

title="Location: public"/>

 </td>

 </tr>

 <tr class="with-note">

 <th scope="row">

 Fitness journal entries

 </th>

 <td class="private">

 <input type="radio" name="entries"

id="entries-private" value="private"

title="Journal: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="entries"

id="entries-contacts" value="contacts"

title="Journal: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="entries"

73Structure

id="entries-public" value="public"

title="Journal: public"/>

 </td>

 </tr>

 <tr>

 <th scope="row"></th>

 <td colspan="3" class="note">

 This can be changed on a post-by-post basis.

 </td>

 </tr>

 <tr class="with-note">

 <th scope="row">

 Your photos

 </th>

 <td class="private">

 <input type="radio" name="photos"

id="photos-private" value="private"

title="Notes: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="photos"

id="photos-contacts" value="contacts"

title="Notes: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="photos"

id="photos-public" value="public"

title="Notes: public"/>

 </td>

 </tr>

 <tr>

 <th scope="row"></th>

 <td colspan="3" class="note">

 This can be changed on a post-by-post basis.

 </td>

 </tr>

 <tr>

 <th scope="row">

 Your fitness stats

 </th>

 <td class="private">

 <input type="radio" name="stats"

id="stats-private" value="private"

Fancy Form Design74

title="Stats: private"

 checked="checked"/>

 </td>

 <td class="contacts">

 <input type="radio" name="stats"

id="stats-contacts" value="contacts"

title="Stats: contacts"/>

 </td>

 <td class="public">

 <input type="radio" name="stats"

id="stats-public" value="public"

title="Stats: public"/>

 </td>

 </tr>

 </tbody>

 </table>

 <div class="controls">

 <input id="submit" name="submit" type="submit"

 value="Update Settings"/>

 </div>

 </fieldset>

</form>

Conclusion
I know you’re more than ready to dive into creating your form’s layout and visual

design, but the time we’ve spent here considering the HTML structure of our form

is time well spent. We’ve carefully considered our use of fieldset, legend, and

label elements, how to build a structure that will support our layout requirements,

and how we’ll communicate field information and errors.

The solid HTML foundation we established in this chapter will ensure that your

beautiful forms are also functional and accessible to all of your web site visitors.

The final two chapters will see your forms take shape, so what are you waiting for?

Chapter4

Styling
Almost every new front-end web developer I’ve ever spoken to seems to draw the

same conclusion I did when beginning to learn CSS: forms are very, very tricky to

style! There are a lot of complex elements involved here. We have text input boxes

of two varieties (the input fields and the textareas). There are select menus of two

varieties: single item select menus and multiple item select menus. We have radio

buttons, checkboxes, labels, fieldsets, legends, buttons … all sorts of components

that can require a lot more effort than your typical paragraph or heading—especially

if the design is highly customized. And to top it all off, it seems that every single

browser renders these elements completely differently!

Making form elements appear consistent in every browser is, in my opinion, one

of the most challenging CSS problems to solve. So how do you achieve this?

Well, the first question to ask is: do you really need to achieve this? Yes, this is a

book called Fancy Form Design, and why would we deter you from anything other

than fancy-looking forms? But we do want you to understand certain implications

first before diving in—and it’s important to remember that even if you’re stuck with

the native styles of your browser, you can still achieve a fairly fancy form.

Fancy Form Design76

Stuff to Consider

By now, after all this planning, designing, and construction, you’re probably anxious

to start styling. Usability and technical considerations are definitely important, and

should be in your mind throughout the entire process; that means we need to think

about those issues now, as well as in your initial phases.

There are both technical and usability concerns that should be carefully considered

and thought-out when styling form elements.

The first aspect to consider is your audience. What do they expect? Are they a really

tech-savvy audience? Great—bust out the fancy stuff! Your spiffy, trend-setting,

super-customized form widget from the future will probably ooh and aah them to

your amusement and satisfaction! What if your audience is less technically inclined,

or has a broader range of skill levels? Well … you might want to tone it down a bit.

Of course, some of these issues should have already been considered in the planning

and designing phase; however, we’ve found that certain factors only surface when

you start building the forms.

Then, on the technical side: how feasible is it to bring your design to life, really?

Yes, you may have seen some pretty effect or technique used elsewhere, but is it

worth going to the trouble if a certain feature is ridiculously laborious to build?

Sometimes it’s worth altering the original design or concept a bit to make develop

ment that much easier—or at least modifying your expectations. Your lovely CSS

effects might look stunning in Firefox 3, but if it is impossible to recreate them in

Internet Explorer 6, you are probably justified in providing a slightly less fancy ex

perience to users of that browser.

But we can certainly try to create a usable experience in as many browsers as pos

sible, without handicapping the experience in other browsers. This is the key factor

to remember as you continue on in this book. Of course, we want fanciness, but

we’re practical.

77Styling

Preparing Your Canvas

A common approach adopted by modern web developers is to begin with a consistent

(as possible) canvas across browsers (as distinct from the canvas element in HTML).

Some developers disagree with this for various reasons—all legitimate, but it’s an

approach we prefer to take. The motivation here is that while some developers

might think of a default web page (with no explicit CSS applied to it in any way)

as “unstyled,” it actually is styled. That’s because browsers have their own built-in

style sheets that determine how even the default appearance of HTML elements

will appear.

If you think about the body element, for example, it’s common practice to set the

margin and padding to zero so that there’s no gap around the edge of the viewport.

What we’re doing here is overriding the styles that the browser has automatically

integrated into its engine that puts that gap there in the first place. Each browser

has its own way of displaying defaults because each browser has its own integrated

and unique style sheet.

When creating a consistent canvas, you may also potentially be overriding user style

sheets. Some users will create their own default style sheet that they import or set

within the browser so that elements appear the way they prefer. While you may

find it preferable (from a designer’s perspective) to override a user’s style sheet to

achieve the desired appearance, keep in mind that some of those styles may be there

for accessibility reasons. Be considerate of the user’s needs.

Here are a couple of approaches to co-exist happily with user style sheets:

1. Use what’s known as a CSS signature in your markup—add an id to your body

element, such as #fit-and-awesome, which gives a stylesheet-savvy user a hook

to control your site’s appearance in their custom styles. This technique’s name

was coined by Eric Meyer.1

2. Avoid using the !important declaration, which can wreak havoc on a user’s

custom styles.

1 http://archivist.incutio.com/viewlist/css-discuss/13291

http://archivist.incutio.com/viewlist/css-discuss/13291
http://archivist.incutio.com/viewlist/css-discuss/13291

Fancy Form Design78

Reset Styles
When we talk about resetting styles, we mean that we’re using a set of declarations

to override (reset) the browser’s built-in style sheet, and then add styles back.

Because developers differ in their opinion on what should be reset or stay intact,

there have been a few implementations of a CSS reset released. Here are some of

the common ones used currently.

The Global Whitespace Reset
The global whitespace reset, documented by Andrew Krespanis,2 was a technique

previously used in all my projects until about a couple years ago. This small and

simple snippet removes the margin and padding on all elements—every single ele

ment on the page, both inline and block level. It’s short and it’s sweet, as seen below:

* {

 padding: 0;

 margin: 0;

}

Some people prefer it because it’s very quick and convenient: it enables you to avoid

declaring each and every element that ought to have the whitespace removed.

However, some developers avoid it out of concern that it may cause usability issues,

particularly in regards to browser UI elements.3

Tantek Çelik’s undohtml.css
Tantek’s undohtml.css4 was one of the first reset style sheets we encountered that

took care of more than just margins and padding.

We like this approach because it includes typical behaviors we find ourselves doing

in our own development work, plus Tantek also took the time to explain what the

rules are for. If you were to use this, you might consider removing his comments

for optimization—of course, you should leave his Creative Commons license intact!

2 http://leftjustified.net/journal/2004/10/19/global-ws-reset/
3 http://www.kurafire.net/log/archive/2005/07/26/starting-css-revisited
4 http://tantek.com/log/2004/09.html#d06t2354

http://leftjustified.net/journal/2004/10/19/global-ws-reset/
http://www.kurafire.net/log/archive/2005/07/26/starting-css-revisited
http://www.kurafire.net/log/archive/2005/07/26/starting-css-revisited
http://tantek.com/log/2004/09.html#d06t2354
http://tantek.com/log/2004/09.html#d06t2354
http://www.kurafire.net/log/archive/2005/07/26/starting-css-revisited
http://leftjustified.net/journal/2004/10/19/global-ws-reset

79Styling

Yahoo UI Library’s Reset CSS
Yahoo has produced its own Reset CSS file5 that’s also included in the Yahoo CSS

library. There’s even a hosted version of the file so that you can import or link dir

ectly to it. It’s well-commented and reasonably thorough.

Eric Meyer’s Reset CSS
Eric Meyer created a reset style sheet6 that has since been integrated into many of

today’s CSS frameworks—the most commonly known example would be the

seemingly controversial BluePrint CSS framework.7 We’ll be using a customized

version of this reset style sheet.

Meyer’s reset style sheet wipes out all margins, padding, borders, and outlines of

essentially every HTML element, with the exception of form elements. This latter

exception is motivated by the previously mentioned notion that resetting margins

and padding on form elements can cause usability problems.

Here’s the customized reset style sheet we’ll be using for the rest of this book, which

includes much of Meyer’s work, and introduces some additional handy defaults

that suit our design:

ch04/css/reset.css (excerpt)

html, body, blockquote, pre, abbr, acronym, address, code,

em, img, dl, dt, dd, ol, ul, li,

fieldset, form, label, legend,

table, caption, tbody, tfoot, thead, tr, th, td {

 margin: 0;

 padding: 0;

 border: 0;

 vertical-align: baseline;

}

5 http://developer.yahoo.com/yui/reset/

6 http://meyerweb.com/eric/tools/css/reset/

7 CSS frameworks are certainly a polarizing topic—for an example of some hot debate, see Jeff Croft’s

post, What’s So Bad About CSS Frameworks, and the attendant discussion at

http://jeffcroft.com/blog/2007/nov/17/whats-not-love-about-css-frameworks/

http://developer.yahoo.com/yui/reset/
http://meyerweb.com/eric/tools/css/reset/
http://jeffcroft.com/blog/2007/nov/17/whats-not-love-about-css-frameworks
http://meyerweb.com/eric/tools/css/reset
http://developer.yahoo.com/yui/reset

Fancy Form Design80

ul {

 list-style: none;

}

table { border-collapse: separate; border-spacing: 0; }

caption, th, td { text-align: left; font-weight: normal; }

table, td, th { vertical-align: middle; }

blockquote:before, blockquote:after, q:before, q:after

{ content: ""; }

blockquote, q { quotes: "" ""; }

a img { border: none; }

Build a Framework

As developers grow in skill, patterns begin to emerge. Take a look at the interfaces

you’ve styled in the past, and you’ll no doubt see patterns to your work. This is

particularly true for the world of forms—there are only so many ways a form can

be laid out, and the more forms you create, the more you’ll feel a little déjà vu

surrounding the process.

Why not put together a collection of snippets to form your very own framework

to speed up your styling? Coupled with the perfect markup for forms, such

frameworks can make for rapid styling, allowing you to concentrate on making

those forms even fancier. You’ll soon find yourself with more time to spend on

planning, designing, and enhancing your form.

As you make your way through this chapter, feel free to grab a copy of the code

archive to peruse, admire, criticize, and adapt the examples. Use them as a basis

for your very own framework of layouts and styles. Once you have your own

framework, hold it close and never let it go.

81 Styling

Fieldsets and Legends

Some of the trickiest form elements to style are the fieldset and legend. Each

browser brings its own ideas to the table, with wildly varying results that can prove

to be downright frustrating. Adjusting the size, color, and font of legends will nor

mally behave as expected—that is, just like adjusting text on any other element; but

as soon as positioning and layout enter the picture, the story changes. Below, in

Figure 4.1, you’ll see a fairly standard example of how a browser renders a fieldset

and legend.

Figure 4.1. Your garden variety fieldset and legend

The good news is that with a little trickery and wit, we can tame those pesky ele

ments: enter an inventive use of the span element. Wrap that baby around the text

within your legend, and suddenly, your misbehaving legend element becomes a

model citizen once more:

<fieldset>

 <legend>My legend</legend>

⋮ fields …

<fieldset>

Clutter and Semantics

Some developers believe that adding a span here and there to simplify your

styling efforts is quite undesirable, as they’re semantically meaningless. Unfortu

nately, the variance in browser behavior can mean you have very little choice. If

you’re anti-span, one way to have your cake and eat it too is to embrace progressive

enhancement and include that markup with a little JavaScript. In the ever-popular

jQuery, you’d add it like so:

$('legend').wrapInner('');

Fancy Form Design82

Thinking of our own forms, we previously decided that we would use a heading in

place of a legend for the main title of each form. This is both a solid semantic de

cision and a great way to make styling much simpler; however, there are still many

situations when a legend element ought to be used. It’s reasonably easy to ensure

that they’re styled to look like a heading.

Back in Figure 4.1, we saw a typical default styling of a legend and fieldset

combination. This is fine for many forms, but we’ll need to push the boundaries a

little. Let’s style up that legend to look more like a heading.

The key action we’re performing here is to remove all borders from the fieldset

so that our legend butts up against the left. A little absolute positioning also goes

a long way to ensuring that we escape the general confines of default legend styling:

fieldset {

 border: none;

 position: relative;

 padding: 70px 0 0;

}

fieldset legend span {

 border-bottom: 1px solid #fff;

 display: block;

 font-size: 2.25em;

 line-height: 1.1;

 margin: 20px 0;

 padding-bottom: 20px;

 position: absolute;

 width: 560px;

}

Keen observers may have noticed that our markup for the Sign Up form shown in

Chapter 4 included a nested fieldset, which contains the three fields that comprise

the Birth Date question. Let’s revisit and style that one later on in the chapter once

we have our general layout sorted.

83Styling

Form Questions

The star of the show is finally here—it’s time to style those form elements. With

our well-structured, semantic markup, it’s possible to lay out our form questions

in many fancy ways. Here are some handy techniques to try.

Top-aligned Labels

Figure 4.2. These labels are aligned above the fields

Top-aligned labels, such as those seen in Figure 4.2, can make for great form read

ability. When aligning labels and form elements from top to bottom in one line, the

user can easily cast their eyes down and through the form. This is because there is

little resistance in eye movement, minimizing that left-to-right darting movement

required to read a columned layout.

Many designers resist top-aligned labels to try to save on space and create an illusion

of a shorter, less daunting form. While many simpler forms benefit from economical

use of space, on longer or more complex forms, it’s hard to resist the benefits of top-

aligned labels. Such forms often feature longer questions, which can make it difficult

to squeeze all that text into a column to the left, and can require wide input fields

for answers.

Fancy Form Design84

If it is a top-aligned label you need, here is some CSS to accomplish exactly that:

label {

 display: block;

}

input,

textarea,

select {

 display: block;

}

Simple.

Side-by-side Labels
Perhaps you want to make that form appear shorter and less daunting, and generally

a little more appealing. One way to do that is to align your labels to the left, and

your fields to the right—like the ones in our mockups for Fit and Awesome. It’s a

common arrangement for shorter forms, and a simple way to accomplish this is

through negative margins.

When Floats Don’t Float Your Boat

Floats are by no means the only way to arrange elements side by side. We have

used negative margins over floats in the above code to avoid common cross-browser

issues. Check out Smashing Magazine’s Definitive Guide to Negative Margins8

for a good overview of how this technique works.

Another interesting option here is to try out a CSS table layout, using CSS’s table

display options. Find out about CSS table display at the W3C,9 or pick up the

book, Everything You Know About CSS is Wrong! written by Kevin Yank and

Rachel Andrew (Melbourne: SitePoint, 2008).

Here, we'll apply a margin to the left of our rows and pull the label over with a

negative margin:

8 http://www.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-negative-margins/
9 http://www.w3.org/TR/CSS2/tables.html

http://www.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-negative-margins/
http://www.w3.org/TR/CSS2/tables.html
http://www.w3.org/TR/CSS2/tables.html
http://www.smashingmagazine.com/2009/07/27/the-definitive-guide-to-using-negative-margins

85Styling

fieldset div {

 margin: 0 0 10px 160px;

}

fieldset div label {

 line-height: 1.1;

 margin: 5px 20px 0 -160px;

 width: 140px;

 float: left;

}

fieldset div input,

fieldset div textarea,

fieldset div select {

 display: block;

 line-height: 1;

}

It can be quite pleasing to have your form’s labels right-justified and inputs left-

justified, so that there’s a nice vertical rhythm. It’s as simple as adding a text-align

declaration to the label elements in our code above:

fieldset div label {

⋮
text-align: right;

}

The Trouble with Widgets
With our general structure in place, it’s time to deal with the finer details of our

form styling: the form widgets themselves.

We already know that each browser and operating system brings its own little flair

to the game. In Figure 4.3 through to Figure 4.6, we can see some examples of how

form elements can appear in just a few browsers and operating systems.

Fancy Form Design86

Figure 4.3. Glossy Mac-style widgets, as seen in Safari

Figure 4.4. Still glossy, but slightly different in Firefox 3 for the Mac

87Styling

Figure 4.5. Widgets in Internet Explorer 7: rather blue

Figure 4.6. Widgets in Internet Explorer 8: same size, different color

Fancy Form Design88

The short version of the story is that there are no specifications for form element

styling, and as a result browser manufacturers generally style their elements to re

semble interface widgets from the native operating system. Some call it a consistent

operating system experience—others call it downright frustrating!

The Good News is …
Feeling concerned by all that talk of browser inconsistency? Here’s a good news

story to make us all feel a little cheerier. In most cases, as soon as one applies a

border to a text input or textarea, the browser-imposed native styling of these

elements will disappear. Below is a quick recipe for some simple, clean text fields:

input,

textarea {

 border: 1px solid #666666;

 padding: 5px;

 width: 220px;

}

textarea {

 height: 140px;

}

And in Figure 4.7, here’s the result:

Figure 4.7. Some tidy textareas

89Styling

Unexpected Side Effects

When styling input elements broadly, as above, remember to undo those changes

for checkboxes and radio buttons—otherwise they’ll acquire some unattractive

borders, as Figure 4.8 attests.

Figure 4.8. Whoops …

If you’re placing your boxes and radio buttons into a list, try overriding the effect

with a border: none declaration, like this:

ul li input {

 border: none;

}

You may also want to reset any margins, paddings, and backgrounds previously

applied to inputs as well.

Now that we’ve removed native browser styling, there are some fun effects we can

apply to these elements. Let’s explore some!

A Little Gradient Goes a Long Way
A subtle gradient can add some pop to flat and tedious textareas. Let’s add a small

repeating gradient along the width of our form elements, and lighten the border a

little to enhance our simplistic styling above:

Fancy Form Design90

input,

textarea {

⋮
background: url(css/images/bg-input-gradient.png) repeat-x 0 0;

}

Voilà! We can now see a little depth in those text entry fields, shown in Figure 4.9.

Figure 4.9. A little shadow adds depth

Visual Hints with Icons
Perhaps some iconography can help! Icons placed into the background of a text input

field can emphasize the purpose of the field, as well as add a touch of fun. Let’s

experiment with that—we’ll enhance a contact details form by adding icons to

represent a person, an email address, and a comment.

There are oodles of royalty-free

icons out there on the Web.

We’ve grabbed a set called

Web Application Icon Set from

over at WebAppers10 and

made a set of CSS sprites, de

picted in Figure 4.10.
Figure 4.10. Person, email, and comment icons in grayscale and color

10 http://www.webappers.com/2008/02/12/webappers-released-free-web-application-icons-set/

http://www.webappers.com/2008/02/12/webappers-released-free-web-application-icons-set/
http://www.webappers.com/2008/02/12/webappers-released-free-web-application-icons-set/
http://www.webappers.com/2008/02/12/webappers-released-free-web-application-icons-set

91 Styling

Sprites?

Sprites are a fantastic way to add some speed to the way background images work.

If you find you’re using numerous background images as icons, highlights, or

decorations, that normally means creating background image files for each one,

all of which must be requested separately by the browser. Using the sprites tech

nique, your background images are all combined into a single image, and CSS’s

background-position property is used to control which part of the image is

shown for each element. One larger image is faster for the user to download than

multiple individual images, since only one HTTP request is made by the browser.

Dave Shea’s article for A List Apart explains the technique in detail.11

Now, we’ll use the background-position property to reveal the appropriate portion

of the sprite as the background for each of the fields. The fields will also require

some padding to their left, so that there’s no overlap between the text and the image:

input#name,

input#email,

textarea#comment {

 background: url(css/images/bg-input-icons.png) no-repeat 3px 0;

 padding: 5px 5px 5px 30px;

}

input#email {

 background-position: 3px -30px;

}

textarea#comment {

 background-position: 3px -60px;

}

We can further enhance the form by adding a :focus state for active form elements.

The CSS below changes the border to a soft blue color, and switches the grayscale

icons out for a colored version. To do this, we simply swap the background’s posi

tion:

11 http://www.alistapart.com/articles/sprites

http://www.alistapart.com/articles/sprites
http://www.alistapart.com/articles/sprites

Fancy Form Design92

input:focus,

textarea:focus {

 border: 1px solid #26808c;

}

input#name:focus {

background-position: 3px -500px;

}

input#email:focus {

background-position: 3px -530px;

}

textarea#comment:focus {

background-position: 3px -560px;

}

Now you have colored icons, seen in Figure 4.11, when the field is active.

Figure 4.11. Our focused fields

The use of background images against text fields can make for some brilliant effects.

Here’s an example of how a grungy background can create the illusion of a rough,

scruffy search box, seen in Figure 4.12.

Figure 4.12. A grungy search box

93Styling

Daunting? Hardly! If you’ve been reading this chapter carefully, you already have

the skills to make this a reality.

This design is lacking in a visible label, but we need to include that for reasons of

accessibility, of course. Below is the markup we’ll use for the form:

<form action="#" method="get" id="search">

 <fieldset>

 <!-- Search -->

 <div id="field-search">

 <label for="name">Search</label>

 <input type="text" name="search" id="search"/>

 </div>

 <!-- Controls -->

 <div class="controls">

 <input id="submit" name="submit" type="submit"

 value="Search"/>

 </div>

 </fieldset>

</form>

We can hide our label using a spot of absolute positioning to move the text far, far

away from the edge of the screen:

div#field-search label {

 position: absolute;

 left: -999em;

 top: -999em;

}

The trick to creating the messy edges on the search field is to turn off all borders,

add a grubby background image, and add some padding so that the text is still clear.

Here’s the CSS to work our magic on the search field:

Fancy Form Design94

div#field-search input {

 background: #fff url(css/images/bg-input-search.png)

➥no-repeat 0 0;

 border: none;

 display: block;

 float: left;

 font: 14px/1 "Helvetica Neue", Helvetica, Arial, sans-serif;

 float: left;

 padding: 6px 10px 7px;

 width: 243px;

}

You’ll see that we’ve excluded a height declaration for this element. An important

gotcha to remember when tackling this technique is that adding height to a text

input element can yield unpredictable results across browsers; instead, simply

apply padding to the top and bottom of the element until the text inside lines up

to your taste. Using a height property for a textarea has no such issue, so there

are no worries in applying some height to them to achieve the perfect layout.

There are many inventive, stylistic effects you can create with some judicious use

of background images and borders. Go nuts, but remember that an effective form

must still be usable and readable. Your hours of blood, sweat, and tears will be

worth very little if your readers are unable to fill out the form easily.

Styling the Submit Button
So our users have made their way through a very nicely styled set of form ques

tions—those users who are also fancy form aficionados may have even oohed and

aahed—and are now making their way to the submit button. Then we’d best make

sure that our submit buttons are fancy too!

Submit buttons can generally be styled in much the same way as text fields, allowing

you to change the color, size, and font of text, as well as the borders and background

color. However, this can become a little boring, and sooner or later you will find

that you want to add some fanciness to those buttons. This will often call for image

replacement, particularly when your desired font is Web unfriendly, or there are

elements to the design such as rounded corners.

95Styling

As mentioned earlier in this chapter, there are currently no CSS standards regarding

how form widgets are styled, and our earlier image replacement techniques are no

match for stubborn browsers. Luckily, some amazingly determined individuals in

the Web development community have discovered an almost foolproof way of

styling submit buttons.

This method works by removing some of the default browser styling from buttons,

then setting a width and height for our button to match the size of the image we’d

like to use, with the overflow property set to hidden. Next, throw in some padding

on the top and left to match the height and width, and thanks to the overflow:

hidden declaration, the text is pushed outside of the visible area. Finally, all we

need to do is place the background image. Here’s how that CSS could look:

input#submit {

 border: none;

 width: widthpx;

 height: heightpx;

 background: url(images/mybutton.png) no-repeat 0 0;

 margin: 0;

 overflow: hidden;

 padding: widthpx 0 0 heightpx;

}

Camino Support: Missing in Action

This method is unsuitable if you need to support the Camino browser for the Mac.

Camino is overly touchy about its buttons; it will correctly cause the text to disap

pear on the submit button, but will show no love for your background image.

Some other browsers—mostly older browsers—will simply ignore your styling

and present a plain old button instead. That’s quite okay, as this behavior means

the button remains functional.

There’s also a type of input element available to us, image. Much like a regular img

element, you reference an image input like so:

<input type="image" src="images/submitbutton.png" alt="Submit"

value="submit"/>

Fancy Form Design96

I bet you’re wondering why we would tell you to use an image replacement here,

instead of a nice reliable image? Well, I’m glad you asked.

The challenge with using an image as a button is that Firefox will send the button’s

value when the form is submitted, unlike Internet Explorer and Opera. It’s possible

to work around this with a spot of JavaScript or some clever server-side sniffing,

but if you have a simple CSS-only way to deal with the issue, you can avoid all that.

And of course, in the spirit of separating presentation and structure, we think that

a spot of image replacement is the best solution. You can find an explanation of

this issue at QuirksMode.12

What about the others?

Radio buttons, checkboxes, and buttons—where are they? We’ve avoided these

deliberately; with CSS alone, styling any elements other than text inputs and

textareas is fraught with peril. We’ll learn about how a little JavaScript magic can

pave the way for fancier select menus, checkboxes, and radio buttons in the next

chapter. For now, we’ll stick with simple styles like borders, spacing, and control

over fonts.

For more information about the perils and limits of form element styling take a

stroll over to Roger Johansson’s excellent blog post, Styling form controls with

CSS, revisited13—as well as discussing the pitfalls of trying to style certain kinds

of form elements, it includes a whopping 224 screenshots of different browser

and operating system combinations.

Putting It All Together
Let’s put these techniques to the test by styling Fit and Awesome’s Sign Up form.

We’ve grabbed the Sign Up form’s markup from Chapter 3, and placed it inside an

HTML document. We’ve included our reset style sheet to tidy up any browser in

consistencies, and added a container div element for good measure—this will make

it easy to perform some tricks later.

12 http://www.quirksmode.org/bugreports/archives/2006/07/Namevalue_pairs_arent_submitted_for_im

age_submit_b.html
13 http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited/

http://www.quirksmode.org/bugreports/archives/2006/07/Namevalue_pairs_arent_submitted_for_image_submit_b.html
http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited/
http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited/
http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited
http://www.quirksmode.org/bugreports/archives/2006/07/Namevalue_pairs_arent_submitted_for_im

97Styling

Before we set up our design, let’s see what our document looks like in a browser so

far. In Figure 4.13, we can see our very plain form.

Figure 4.13. Our vanilla form: ho-hum

Fancy? Hardly. Quick, let’s create some visual structure, and add some light styling

and typography. At this point, we can also add a position of relative to our con

taining div so that it’s easy to move items about with absolute positioning:

ch04/css/fancyforms.css (excerpt)

html {

 background: #eee;

}

body {

 background: #eee url(images/bg-body.png);

 color: #333;

 font: 75%/1.3 "Helvetica Neue", Helvetica, Arial, sans-serif;

 padding: 20px;

}

Fancy Form Design98

#container {

 background: url(images/bg-form-btm.png) no-repeat 100% 100%;

 padding-bottom: 18px;

 width: 600px;

 position: relative;

}

#container-inner {

 background: #fff url(images/bg-form.gif) repeat-x;

 border: 1px solid #fff;

 border-color: #fff #fff #ababab;

 padding: 20px;

}

a {

 text-decoration: none;

 color: #26808c;

}

a:hover,

a:focus {

 text-decoration: underline;

}

p {

 margin: 1em 0;

 padding: 0;

}

strong {

 font-weight: bold;

}

h1 {

 border-bottom: 1px solid #fff;

 background: url(images/bg-ccc.gif) 0 100% repeat-x;

 color: #666666;

 font-size: 2.5em;

 font-weight: normal;

 line-height: 1;

 margin: 0 0 0.7em;

 padding: 0 0 28px;

}

99Styling

input,

textarea,

select {

 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

}

Already, we can see an improvement to the legibility of our form. Figure 4.14 shows

there’s now a bit more room to breathe! We’re in a good position to start layering

on some fanciness.

Figure 4.14. Better already!

Fancy Form Design100

The Login Link
Our design places the Login link text in the corner of the container, above the form’s

heading, but in the markup, the link actually sits below the heading. Moving that

out of the introductory text is quite simple: add a little absolute positioning and

background color, and that link moves up to the top right of our relatively positioned

container div.

While we’re thinking about the text at the top, we may as well style this as well:

ch04/css/fancyforms.css (excerpt)

#sign-up .log-in {

 background: #eaeaea;

 margin: 0;

 line-height: 1;

 padding: 10px 12px;

 position: absolute;

 right: 20px;

 top: 30px;

}

#sign-up .log-in a {

 font-weight: bold;

}

⋮
.introduction {

 font-size: 1.5em;

 line-height: 1.6;

 margin: 0 0 2em;

}

p.note {

 font-size: 1.25em;

 margin: -1.7em 0 1.25em;

}

In Figure 4.15, we see what the top of our form looks like now.

101 Styling

Figure 4.15. Nearly there!

Aligning to the Grid

Our design makes good use of a grid to align fields and their labels. We’ll start by

setting up the divisions which act as rows for our form. The div with the class

controls is the one which contains our submit button:

fieldset div {

 margin: 0 0 10px;

}

fieldset div.controls {

 margin: 25px 0 0;

 padding: 0;

}

Next, the labels. We’ll float these to the left and give them a width, so that there’s

room for the fields to settle to their right. While we’re at it, let’s add some typography:

ch04/css/fancyforms.css (excerpt)

fieldset div label {

 color: #666;

 float: left;

 display: block;

 font-size: 1.16em;

 font-weight: bold;

 line-height: 1.1;

 margin: 7px 0 0 -160px;

 width: 140px;

}

As mentioned in Chapter 3, the asterisks that represent a required field sit inside

an abbreviation element, abbr, which must be positioned to the right of the field.

Fancy Form Design102

The asterisks are also significantly larger than they would ordinarily appear, so

we’ll add some text sizing to suit:

ch04/css/fancyforms.css (excerpt)

fieldset abbr {

 color: #7b0101;

 font-size: 20px;

 font-weight: bold;

 line-height: 1;

 padding: 0 1px;

 vertical-align: middle;

}

fieldset label abbr {

 display: block;

 font-size: 23px;

 padding: 0;

 position: absolute;

 top: 10px;

 right: 60px;

 width: 16px;

}

Our design calls for a nice amount of breathing room for our fields, so we’ll specify

some of these broadly by using a selector to grab all the inputs that are a child of a

fieldset element, then overriding others to taste. The first input selector below

specifies a width and padding, but for file upload features we’d like to avoid that.

Instead, there’s a CSS3 attribute selector to reset the width, padding, and border on

file fields:14

ch04/css/fancyforms.css (excerpt)

fieldset div input,

fieldset div textarea,

fieldset div select {

 border-width: 1px;

 border-style: solid;

 border-color: #636d77 #a3b4c4 #c7d2de;

14 Read all about attribute selectors at the SitePoint CSS Reference:

http://reference.sitepoint.com/css/attributeselector

http://reference.sitepoint.com/css/attributeselector

103 Styling

color: #333;

 display: block;

 font-size: 14px;

 font-family: Arial, Helvetica, sans-serif;

 line-height: 1;

 margin: 0;

}

fieldset div input:focus,

fieldset div textarea:focus,

fieldset div select:focus {

 border-color: #636d77;

}

fieldset div input {

 padding: 6px 5px;

 width: 288px;

}

fieldset div select {

 padding: 0 0 0 3px;

 width: 291px;

}

fieldset div textarea {

 height: 89px;

 padding: 6px 5px;

 width: 288px;

}

fieldset div input[type=file] {

 background: none;

 border: inherit;

 padding: 0;

}

We will need to remove some of the styling on the inputs that are inside those un

ordered lists, though. Floating to the left and behaving like a block element is all

very well when you’re dealing with a nice big text field, but those little radio buttons

and checkboxes should return to being inline. Since those elements will always be

inside an unordered list, it’s easy to target them with some descendant selectors:

Fancy Form Design104

ch04/fancyforms.css (excerpt)

fieldset div ul {

 margin: 5px 0 0 0;

}

fieldset div ul li {

 margin: 0 0 5px;

 padding: 0;

}

fieldset div ul li label {

 display: inline;

 float: none;

 font-size: 1em;

 font-weight: normal;

 margin: 0;

 padding: 0;

}

fieldset div ul li input {

 background: none;

 border: none;

 display: inline;

 margin: 0 5px 0 0;

 padding: 0;

 width: auto;

}

Let’s see how that turned out. In Figure 4.16, we’re able to see that the inputs and

labels are beginning to line up quite well in accordance with our design comp. All

these styles are solid, generic styles that will suit all our forms. However, there are

a few specific parts of this form that require their own particular styles. We’ll look

at these next.

105 Styling

Figure 4.16. More gridlike

Fancy Form Design106

The Submit Button
The submit button for each of our forms is unique—a generic style is unable to

cover all our bases here. To create the submit button for the Sign Up form, we’ll use

the image replacement technique we discovered earlier in this chapter:

ch04/css/fancyforms.css (excerpt)

input#submit {

 border: none;

 cursor: pointer;

 float: right;

 background: url(images/ir-submit-create-profile.png)

➥ no-repeat 0 0;

 width: 136px;

 height: 32px;

 margin: 0;

 overflow: hidden;

 padding: 32px 0 0 136px;

}

The result can be seen below, in Figure 4.17.

Figure 4.17. Our very own unique submit button

Prefixed Field
The field which requests your preferred address for your Fit and Awesome profile

page is prefixed by the URL of the site. In the markup we have a span surrounding

the URL, with a class of profile-link-prefix. We’ll need to deal with those here:

107 Styling

ch04/css/fancyforms.css (excerpt)

#field-profile-link .profile-link-prefix {

 display: block;

 float: left;

 font-size: 1.16em;

 line-height: 1.1;

 margin: 9px 10px 0 0;

 text-align: right;

 width: 133px;

}

#field-profile-link input {

 width: 145px;

}

Birth Date Fieldset
With our Birth Date question using three elements for one answer—year, month,

and day—a little extra markup and styling prowess is required. The markup for

these three select fields is wrapped with a fieldset and a legend combination.

As we discovered in Chapter 3, the labels are required on each field to ensure that

our form is accessible, adhering to best practice. The challenge is to make this set

of elements blend in with the rest of the fields, as the design specifies. Here are the

three tasks we’ll need to undertake:

1. Make the surrounding fieldset’s legend appear in the left-hand column, and

style it like the other labels.

2. Hide the labels for the year, month, and day fields.

3. Adjust the widths and margins of each menu so they fit on one line.

In the following code we will do exactly that. Our fieldset to contain the date-of

birth fields has a class of group. We will adjust the margin for the date-of-birth

section, then style the span inside the legend to resemble our other fields’ labels,

using selectors that target the group class:

Fancy Form Design108

ch04/css/fancyforms.css (excerpt)

fieldset fieldset.group {

 color: #666;

 margin: 0 0 10px 155px;

 padding: 0;

}

fieldset fieldset.group legend span {

 background: none;

 border: none;

 display: block;

 font-size: 1.16em;

 font-weight: bold;

 line-height: 1.1;

 margin: 9px 20px 0 -155px;

 padding: 0;

 position: absolute;

 left: 0;

 width: 140px;

}

select Widths and Internet Explorer 6

Internet Explorer 6 will lop off text in a selectmenu if the text within the options

is wider than the width of the menu. It’s possible to work around this with some

JavaScript, but these can be a little tricky to make work. A more robust fix is to

try and choose a width that would accommodate all those options.

Each of the three fields is contained within a div to help us out with positioning.

We’ll sit those divs next to each other, specify some appropriate widths, and then

use some absolute positioning to place the labels far off the screen. To separate each

field we’ll also add a margin to the left of each div.

ch04/css/fancyforms.css (excerpt)

fieldset fieldset.group div {

 background: none;

 float: left;

 margin: 0 0 0 5px;

 padding-left: 0;

}

109 Styling

fieldset#section-dob div label {

 position: absolute;

 top: -999em;

}

fieldset#section-dob div select {

 width: 85px;

}

fieldset#section-dob div select#dob_month {

 width: 108px;

}

There’s a note attached to the field that needs some attention as well. Using clear:

left on the note will ensure it pops below the field, while a fat left margin will

help us align it in the area to the right:

ch04/css/fancyforms.css (excerpt)

fieldset#section-dob em.note {

 clear: left;

 display: block;

 font-style: normal;

 margin: 0 0 0.5em 5px;

}

Figure 4.18 shows the result of the styles we just applied.

Figure 4.18. A vast improvement

Fancy Form Design110

The Final Touch
There’s one last little touch—we need to include a soft gray background behind

each field. There are a few different techniques we could use here: one could wrap

each field or group of fields with a div to act as container element and set some

padding and background color, or it might even be possible to use borders. However,

it’d be extremely nice if we could avoid adding a bunch of presentational markup

to the form.

A more robust option for our purposes today is to use a background image that

contains white on the left and gray on the right, and apply that background to the

divs that form each “row” of our forms. This will do a fairly good impression of

resembling some well-constructed gray borders without adding even more elements

to our markup. Let’s give it a shot!

Here is the image in Photoshop that will be saved and repeated along the vertical

axis.

Figure 4.19. Our little background

We’ll slip that in as a background image, and add some padding to create an effect

that resembles a nice fat border:

111 Styling

ch04/css/fancyforms.css (excerpt)

fieldset div {

⋮

 background: url(images/bg-form-fieldset-div.png)

➥repeat-y 0 0;

 padding: 5px 5px 5px 0;

}

fieldset#section-dob {

⋮

 background: url(images/bg-form-fieldset-div.png)

➥repeat-y -155px 0;

 padding: 0;

}

The checkbox for the terms of service omits the gray background however, as does

the div that contains the submit button. On top of that, the date fields should exclude

the background image, otherwise the white at the left of the image will appear again

and spoil the illusion! We’ll override those like so:

ch04/css/fancyforms.css (excerpt)

#field-agree-tos {

 background: none;

}

fieldset#section-dob div {

 background: none;

}

fieldset div.controls {

 background: none;

}

Let’s see how the final result, shown overleaf in Figure 4.20, turned out.

Fancy Form Design112

Figure 4.20. That’s fancy!

The techniques we’ve covered here should also provide you with the skills you

need to complete most of the other forms. However, we have one outlier left to work

on …

113 Styling

A Straggler: The Privacy Settings Form

The Privacy Settings form, as seen in Figure 4.21, breaks all the rules set by our

other forms.

Figure 4.21. There’s always one, isn’t there?

This form is assembled with a semantic table of radio buttons. Our existing form

styling has yet to cover the particular needs of this form, so let’s add some more

Fancy Form Design114

CSS to account for this table. Instead of applying styling that directly styles the

Privacy Settings table, we’ll add a little extensibility to the mix by targeting tables

and their components that appear within fieldsets.

Firstly, let’s see what our table looks like before we begin. In Figure 4.22, we can

see that we already have a bit of basic styling thanks to the CSS we added earlier,

but the table itself is quite plain.

Figure 4.22. An unstyled privacy form

115 Styling

It’s relatively quick and simple to add a bit more structure to that, however: some

width takes care of that cramped feeling, while border-collapse and

border-spacing declarations will eliminate any unwanted space between cells.

ch04/css/fancyforms.css (excerpt)

fieldset table {

 border-collapse: collapse;

 border-spacing: none;

 width: 465px;

}

Next, let’s style the headings of our table to match the comp:

ch04/css/fancyforms.css (excerpt)

fieldset table thead th {

 color: #015;

 font-size: 1.16em;

 padding: 0 14px 8px;

}

fieldset table tbody th {

 color: #666;

 font-size: 1.16em;

 font-weight: bold;

 width: 155px;

}

A background, border and some padding on the table’s cells will create the appro

priate amount of space between each cell:

Fancy Form Design116

ch04/css/fancyforms.css (excerpt)

fieldset td {

 background: #f2f2f2;

 padding: 12px 28px;

}

fieldset tbody th,

fieldset td {

 border: 10px solid #fff;

 border-width: 0 0 10px;

 vertical-align: middle;

}

All, that is, except the rows with a note, which should be smaller:

ch04/css/fancyforms.css (excerpt)

fieldset tr.with-note td,

fieldset tr.with-note th {

 border: none;

}

All that is left for our table is to add a little polish by aligning each column evenly,

adding a little padding to those notes, and making sure that the inputs inside the

cells stop inheriting any margins or padding:

ch04/css/fancyforms.css (excerpt)

fieldset th.private,

fieldset td.private {

 text-align: left;

}

fieldset th.contacts,

fieldset td.contacts {

 text-align: center;

}

fieldset th.public,

fieldset td.public {

 text-align: right;

}

117 Styling

fieldset td input {

 margin: 0;

 padding: 0;

}

fieldset td.note {

 padding: 2px 10px 12px;

}

Finally, we’ll add the styling for the Submit button, in much the same way as we

did in the Sign Up form. You’ll find the finished article in the code archive.

Conclusion
Our forms are gradually becoming more like the lovely design we came up with

back in Chapter 1. We’ve learned some useful techniques here to create a graceful

and clutter-free interface from accessible, semantic markup. We’ve learned some

important skills for accommodating the requirements of our design while keeping

accessibility in mind.

Using the skills you’ve learned so far in this book, you should be ready to tackle a

number of fancy form challenges. But to make our form truly fancy, we’ll need to

take it one step further: it’s time to add some enhancements using JavaScript.

Chapter5
Enhancing
Old-school Spider-Man fans will be able to tell you that with great power comes

great responsibility.1 This is especially true when it comes to enhancing an interface

with the powerful tools of JavaScript.

JavaScript enables us to create beautiful visual effects, provide workarounds for

older browsers’ foibles, validate our users’ input, and even submit the form without

a new pageload—all wonderful additions to a truly fancy form. However, careless

or inconsiderate use of JavaScript can actually make your form harder to use, or

even completely unusable in some situations.

There are many examples of poorly implemented forms littered about the Web that

require the use of JavaScript to conduct the simplest of tasks. Unfortunately this is

to the detriment of those users without JavaScript support. Best practice, however,

dictates that JavaScript should only be used as an enhancement for the underlying

functionality provided by your markup and server-side scripts. When using Java-

Script to enhance your form, it’s beneficial to ask yourself the following questions:

Is it worthwhile attempting to fill the form out with JavaScript turned off? Does

1 Amazing Fantasy #15 (New York: Marvel Comics, 1965)

Fancy Form Design120

each element still function? Will the scripts on your server still catch any problems

with the form submission? You should able to answer these questions with a hearty

yes!

For ease of learning and battle-tested robustness, this chapter will make use of the

jQuery framework.2 While it does add a little extra weight to your forms, the use of

a JavaScript framework such as jQuery often proves to be faster than writing your

own code from scratch and already features plenty of support for multiple browsers.

Naturally, it’s possible to write your own customized JavaScript to deliver the same

enhancements or use a different JavaScript framework if you prefer. Whichever

method you choose, this chapter should give you some solid ideas about ways to

improve your forms.

Fancier Form Widgets
Chapter 4 revealed some helpful hints for styling elements within your forms. While

text inputs, textareas, and submit buttons will accept styling from CSS alone, other

elements such as select menus, radio buttons, and checkboxes will need a little

more elbow grease.

Select Menu Styling
Once upon a time, if your web site included a se

lect menu you were stuck with the native styling

of each browser. Those days are nearing an

end—the holy grail of select element styling is

near. As frameworks like jQuery mature, more op

tions for enhanced widget styling are popping up

all over the place.

In general, these plugins work by creating a second

widget that behaves as a proxy for the native select

field. The native field is then made invisible, and

all interactions with this proxy element are synchronized with the original select

menu. Since the proxy is made of regular HTML elements, they can be styled quite

easily.

Figure 5.1. A glossy, colorful select menu

2 http://jquery.com/

http://jquery.com/
http:http://jquery.com

121 Enhancing

Here are some of the menu styling jQuery plugins on offer out there:

■	 jQuery UI Selectmenu3 is a jQuery UI4 widget that throws in goodies such as

icons, styled option text, and more. It’s keyboard-accessible and comes bundled

with multiple themes to use right away, though, of course, it’s possible to create

your very own styles.

Since this plugin is dependent on jQuery UI, all of this appealing functionality

does come at a price in the form of a hefty performance hit. This plugin is awfully

hard to resist, though, with the promise of unlimited styling possibilities.

■	 A more lightweight alternative is a plugin called jQuery Custom Selectboxes.5

This plugin’s styling may require a little caressing before it looks stunning in all

browsers, but these foibles are relatively easy to work around with some CSS

prowess.

■	 Another smaller solution, the jQuery Selectbox plugin,6 is well worth considering.

This plugin is distinguished from other selectbox plugins by its extremely simple

markup—styling this is a breeze.

Checkbox and radio button styling
JavaScript makes short work of CSS’s limited support

for checkbox and radio button styling. As with select

menus, the usual practice here is to replace each

native checkbox or radio widget with a proxy ele

ment; then utilize the magic of CSS sprites—such as

those shown in Figure 5.2—to display beautiful

customized widgets. In each state—normal, focused,

selected, and selected with focus—the sprite is

moved to its rightful place.

Figure 5.2. Radio and checkbox sprites

3 http://wiki.jqueryui.com/Selectmenu

4 http://jqueryui.com/

5 http://info.wsisiz.edu.pl/~suszynsk/jQuery/demos/jquery-selectbox

6 http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement/

http://wiki.jqueryui.com/Selectmenu
http://jqueryui.com/
http://info.wsisiz.edu.pl/~suszynsk/jQuery/demos/jquery-selectbox
http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement/
http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement
http://info.wsisiz.edu.pl/~suszynsk/jQuery/demos/jquery-selectbox
http:http://jqueryui.com
http://wiki.jqueryui.com/Selectmenu

Fancy Form Design122

Here are a few plugins that will aid you in your quest for the perfect radio button:

1. The jQuery Custom Input plugin7 by the Filament Group can deliver some very

fancy radio buttons and checkboxes that are even keyboard-accessible. It works

by wrapping each input and label pair in a div, providing an easy method for

styling the entire item.

2. jQuery Geogoer VChecks8 works in a similar fashion, adding classes to list items

rather than divs. It’s often a good idea to use list items for groups of checkboxes

or radio buttons, so this plugin fits in nicely.

3. Many designers have been borrowing the iPhone’s interface aesthetic and adding

them to their sites. The jQuery iPhone-style Checkboxes plugin9 converts your

traditional checkboxes into modern, iPhone-style sliding switches.

Functional Enhancements
Of course, enhancements can be more than just aesthetic. Let’s explore some of the

functional enhancements that JavaScript can add to your forms.

Conditional Question Display
When there are multiple paths or questions dependent on other answers within a

form, it’s a good idea to only show those that are appropriate to the user. This helps

speed up the form completion process, assisting the user by presenting just the

relevant fields.

For instance, take an online store checkout page that offers a complementary gift

wrapping option. Because it’s an optional service, it makes sense to only show that

field if the customer specifies that the purchase is a gift. Otherwise, we can omit it.

Here’s some example markup for a fairly standard checkout page. We’ve eliminated

much of the surrounding markup for brevity’s sake, but you’ll find a complete

demonstration in the code archive:

7 http://filamentgroup.com/lab/accessible_custom_designed_checkbox_radio_button_in

puts_styled_css_jquery/
8 http://vaziuojam.lt/js/geogoer/jquery_plugins/vchecks/index.html
9 http://awardwinningfjords.com/2009/06/16/iphone-style-checkboxes.html

http://filamentgroup.com/lab/accessible_custom_designed_checkbox_radio_button_inputs_styled_css_jquery/
http://vaziuojam.lt/js/geogoer/jquery_plugins/vchecks/index.html
http://awardwinningfjords.com/2009/06/16/iphone-style-checkboxes.html
http://awardwinningfjords.com/2009/06/16/iphone-style-checkboxes.html
http://vaziuojam.lt/js/geogoer/jquery_plugins/vchecks/index.html
http://filamentgroup.com/lab/accessible_custom_designed_checkbox_radio_button_in

123Enhancing

examples/gift-wrap.html (excerpt)

<div>

 <input type="checkbox" id="gift-wrapping" name="gift-wrapping"

value="yes"/>

 <label for="gift-wrapping">

 This wine is a gift; please gift wrap for me

 </label>

</div>

<fieldset id="section-gift-wrapping">

 <legend>Gift Wrapping Details</legend>

 <p class="note">If you would like gift wrapping,

 please fill out the following:</p>

 <div>

 <label class="heading">Box Type</label>

 <input type="radio" id="gift-wrapping-type-wooden"

 name="gift-wrapping-type" value="wooden"/>

 <label for="gift-wrapping-type-wooden">

 Standard wooden case

 </label>

 <input type="radio" id="gift-wrapping-type-oak"

 name="gift-wrapping-type" value="oak"/>

 <label for="gift-wrapping-type-oak">

 Hand crafted oak box

 </label>

 <input type="radio" id="gift-wrapping-type-contemporary"

 name="gift-wrapping-type" value="contemporary"/>

 <label for="gift-wrapping-type-contemporary">

 Contemporary designer box by Ji Lu

 </label>

 <div>

Fancy Form Design124

<label for="gift-wrapping-message">

 Message

 </label>

 <textarea id="gift-wrapping-message"

name="gift-wrapping-message">

 </textarea>

 </div>

 </div>

</fieldset>

Stating the Obvious

You’ll see that we included an introductory message at the top of the conditional

sections. This is added to explain to the user why a section of the form has sud

denly made itself visible. It also ensures that those users without JavaScript can

still understand the purpose of the additional fields.

There are a couple of details we need to know about our form before we start our

script:

1. What part of the form is the conditional section to be displayed?

2. What question will determine its display—the dependent field?

For the example above, the part of the form that will be conditionally displayed is

the fieldset with an id of section-gift-wrapping. It’ll be revealed when the

checkbox titled gift-wrapping is checked. We’ll kick off our JavaScript like so:

examples/gift-wrap.html (excerpt)

$(document).ready(function() {

 var conditionalSection = $('#section-gift-wrapping'),

 var dependentField = $('input[name=gift-wrapping]');

Next, we need to bind a function to the change event, so that when the checkbox

is checked or unchecked, we can show or hide the section as appropriate. The first

part of our if statement below applies when the appropriate radio button is checked;

to be thorough, we also confirm the visibility of the conditional section. If that all

pans out, we’ll use jQuery’s built-in slideDown effect to reveal the section in a

graceful manner. Otherwise, we’ll hide the section with the slideUp effect:

125Enhancing

examples/gift-wrap.html (excerpt)

dependentField.bind('change', function() {

 if (dependentField.is(':checked') &&

➥conditionalSection.not(':visible')) {
 conditionalSection.slideDown();
 $(":input", conditionalSection).removeAttr("disabled");

 } else if (conditionalSection.is(':visible')) {

 conditionalSection.slideUp();

 $(":input", conditionalSection).attr("disabled", "disabled");

 }

 });

We also want the conditional section to be hidden when the form is first loaded,

so we’ll trigger the above function as soon as the page loads:

examples/gift-wrap.html (excerpt)

dependentField.trigger('change');

Now, it’s possible that a customer may fill out the gift field, then change their mind

and decide to keep that gift for themselves! So, in the event that the customer un

checks that box, we should make sure that the gift fields are disabled. Failing to do

so could mean that the values from these fields may be sent with the form once it’s

submitted, which may then result in some confusion. We’ll add some lines to our

if statement to add or remove the disabled attribute to the fields, as appropriate:

examples/gift-wrap.html (excerpt)

dependentField.bind('change', function() {

 if (dependentField.is(':checked') &&

➥conditionalSection.not(':visible')) {

 conditionalSection.slideDown();

$(":input", conditionalSection).attr("disabled", "disabled");

 } else if (conditionalSection.is(':visible')) {

 conditionalSection.slideUp();

$(":input", conditionalSection).removeAttr("disabled");

 }

 });

Some browser testing at this stage will reveal that the change event in Internet Ex

plorer is, of course, a little different to other browsers. Internet Explorer only initiates

Fancy Form Design126

the change event when an input loses focus—a user would have to use the tab key

or click another element before that section is revealed. In other browsers, the event

occurs as soon as a change is made. To help IE, we’ll fake that event by chaining a

blur and focus event whenever a dependent field is clicked:

examples/gift-wrap.html (excerpt)

if ($.browser.msie) {

 $(dependentField).click(function() {

 dependentField.blur().focus();

 });

 var label = $("label[for=" + dependentField.attr("id") + "]");

 $(label).click(function() {

 dependentField.blur().focus();

 });

}

All is in working order. Upon loading the form, the gift wrapping section is hidden

until the gift wrapping question is checked. You can see a working example, with

all the code, in the code archive for this book.

Convert Your Work to a Plugin

One-off scripts like this are all very well when you only have one issue to over

come, but if your site makes repeated use of a particular technique, it’s worth

converting your work into a reusable jQuery plugin. You’ll avoid having to write

the same code over again, and if you release it to the world, you’ll be helping

other developers in the same boat! For more information on putting together a

jQuery plugin, see the Learning jQuery site,10 which is full of tutorials and book

recommendations.

10 http://www.learningjquery.com/

http://www.learningjquery.com/
http:http://www.learningjquery.com

127Enhancing

Date Selectors
Does your form request a date for an

upcoming event or deadline? A date

picker that’s calendar-styled can

work wonders, both for usability and

for cleanly formatted data.

Dates can be written a number of

ways, which can be a little confusing

at times. For example, 2nd October,

2010 could be written as 02/10/2010

or 10/02/2010, or if you’re a fan of

hyphens, 02-10-2010, and so on.

Therefore, a mismatch between your Figure 5.3. A date chooser created with jQuery UI Datepicker

expected format and a user’s data is

possible.

Many web applications may ask the user to choose a date far into the future or past,

such as event calendars, flight booking services, or historical references. Have you

ever tried figuring out what date Sunday six weeks from now is without the aid of

a calendar?

Of course, you should try to encourage your users to enter the right format—Fit and

Awesome’s Sign Up and Profile forms use select menus to enforce the correct order.

However, there’s also a big usability benefit to be gained from choosing an intuitive

widget.

jQuery UI’s Datepicker,11 shown in Figure 5.3, is highly customizable and easy to

use. It does, however, come with a bit of additional bulk, since it relies on the jQuery

UI library. However, it is packed with features that make it difficult to say no

to—keyboard shortcuts to jump between months, plenty of ways to customize the

output, and more.

11 http://jqueryui.com/demos/datepicker/

http://jqueryui.com/demos/datepicker/
http://jqueryui.com/demos/datepicker

Fancy Form Design128

If a jQuery UI-based solution is a bit too heavy for your liking, look no further than

the lighter jQuery Datepicker plugin.12 Confused by the similar names? It’s because

this plugin was actually the foundation for the UI plugin, but has since deviated

down another path. Accordingly, many of the features are the same.

Password Strength Indicators
Password strength indicators have become quite the popular item in recent times.

They’re a good way to encourage your users to select passwords that are difficult

to crack, which adds a layer of protection for you and your users against hackers.

As more web sites include password strength indicators, the average user will be

prompted to make their passwords more secure on a regular basis. In this situation,

it’s definitely a good idea to annoy your users somewhat.

While we’re thinking about passwords, it’s beneficial to help your users by

providing a hint about how to make their passwords more secure. It’s also ideal to

inform them of any password strength requirements you may have, such as a min

imum password length or whether it must comprise numerals and punctuation.

A False Sense of Security

For a truly secure site, you’ll need more than just a password strength indicator.

Without encryption, password fields will be sent across the great divide as text

that can be intercepted by shady characters.

If you’re concerned about security—and you should be—always secure any Login

and Sign Up forms with a security protocol such as Secure Sockets Layer (SSL).

For more advice about the importance of securing information as it travels between

your site and the user, read the article Password Interception in a SSL/TLS
13Channel.

An example of an effective password strength indicator is the one Yahoo uses for

its Sign Up form, shown in Figure 5.4. There’s a note to explain minimum and

maximum password lengths, an explanation of unacceptable passwords, and an

indicator to show how strong the password is.

12 http://keith-wood.name/datepick.html
13 http://lasecwww.epfl.ch/memo/memo_ssl.shtml

http://keith-wood.name/datepick.html
http://lasecwww.epfl.ch/memo/memo_ssl.shtml
http://lasecwww.epfl.ch/memo/memo_ssl.shtml
http://lasecwww.epfl.ch/memo/memo_ssl.shtml
http://keith-wood.name/datepick.html

129Enhancing

Figure 5.4. Yahoo’s password strength indicator

■	 PassRoids password strength plugin14 provides easily styled output and a

number of sensible features, such as checking two password fields to see if they

match, offering instant feedback on an entered password, and even disabling

the submit button if the password is unacceptable.

■	 jQuery Password Strength Meter15 can compare the value of the username field

to a password, and present a message to the user if they match. This is a good

way to discourage the common practice of using one’s username as a password.

Autocomplete
As we learned back in Chapter 1, autocomplete fields are an efficient way to help

your users choose from a number of options. They generally work by presenting a

list of options as a user starts to enter text. As the user enters more text these options

are usually filtered appropriately offering more relevant options to the user. A user

should then be able to click the result that best matches.

Jörn Zaefferer’s autocomplete plugin16 is flexible, small, and highly configurable.

It produces semantic markup full of design hooks, presenting autocompletion options

within an unordered list.

Dylan Verheul’s autocomplete plugin17 is also easy to configure and light, with

many of the same features and benefits of the above plugin.

14 http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin
15 http://mypocket-technologies.com/jquery/password_strength/
16 http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
17 http://dyve.net/jquery/?autocomplete

http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin
http://mypocket-technologies.com/jquery/password_strength/
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
http://dyve.net/jquery/?autocomplete
http://dyve.net/jquery/?autocomplete
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete
http://mypocket-technologies.com/jquery/password_strength
http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin

Fancy Form Design130

Input Validation
No matter how usable a form is, users are still likely to input invalid information,

miss required fields, or misunderstand instructions. Client-side validation is a

method of validating a form submission that’s performed on the server and driven

by JavaScript. The instant assistance and feedback helps users correct problems

quickly, without waiting for the page to reload, and for the server to respond with

the errors.

Validation is indispensable in ensuring that users enter required fields and provide

information in the correct format. Here are a few key hints for validation to work

at its best:

1. Let users know when they enter invalid information as soon as possible to give

them the opportunity to fix things before they submit. If a user tries to select a

username that’s already taken, or their email address looks invalid, be kind and

let them know straight away.

2. Provide the user with a summary of errors—if any—once the form has been sub

mitted. A simple way to show this is to jump back up to the top of the form and

indicate the number of errors, along with a friendly message. If you wish, you

can go a step further, having each error within the list linking straight to the rel

evant field.

3. As we learned in Chapter 3, it’s important to indicate invalid fields with more

than one method. Combine text, color, and icons to cover all your bases.

4. As users correct errors, provide feedback to let them know that they’re now fixed.

Replacing grumpy error icons and red text with a friendly tick provides positive

reinforcement and will make for one happy user.

By following these practices you can limit frustrating experiences for users and help

them complete forms in less time. For more information on best practice for usability

and accessibility, read the W3C’s Web Content Accessibility Guidelines (WCAG)

about how to minimize errors.18

18 http://www.w3.org/WAI/WCAG20/quickref/20080430/

http://www.w3.org/WAI/WCAG20/quickref/20080430/
http://www.w3.org/WAI/WCAG20/quickref/20080430

131 Enhancing

Server-side Validation is Still Necessary

We’ve said it before and we’ll say it again: it’s impossible to rely completely on

JavaScript-driven functionality. You should ensure that the applications or scripts

on your server will still perform the same function.

How can we add this to our forms? Since we’re concentrating on jQuery, enter the

jQuery Validation plugin.19 Robust, mature, and extensible, it’s part of the daily

arsenal of many a developer. The plugin checks for conditions such as whether a

field is required, minimum or maximum character length, valid number ranges,

email formats, dates, and more. There’s a cornucopia of validation methods—take

a look at the validation plugin documentation for the complete collection. It’s even

possible to write custom methods with which you can perform your own validation

checks.

Submission with Ajax
Have you ever wanted to allow a form to be submitted without refreshing the entire

page? Doing so can work wonders for forms that appear outside a main content area,

such as a blog’s comment form, a contact function stashed in the footer of a page,

or a poll that appears within a side column—visitors can perform these activities

without leaving the page. We’ll do this using Ajax, a set of technologies and tech

niques for developing interfaces and functionality that more closely resemble the

smooth experience of a desktop application.20

The Fit and Awesome feedback form is the ideal candidate for this treatment. Since

we’re using jQuery, it’s easy for us to submit it using the built-in post. From reading

the documentation for the post function we need to pass three parameters:

■ url—the URL of the page to load
■ data—an object containing all of the form fields’ values
■ callback—a function to be executed once the form has been submitted

19 http://bassistance.de/jquery-plugins/jquery-plugin-validation/

20 Find out more about Ajax at the article which started it all, Ajax: A New Approach to Web Applications,

by Jesse James Garrett, at http://www.adaptivepath.com/ideas/essays/archives/000385.php

http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://bassistance.de/jquery-plugins/jquery-plugin-validation
http:application.20

Fancy Form Design132

The example code below binds a function to the submit event of the feedback form.

On submit this function will call jQuery’s post function, which submits the form

to a simple PHP script called feedback.php. Once submitted, the function will replace

the contents form with a message to say thank-you:

$("form").bind('submit', function() {

 var form = $(this),

 fields = {

 name : $('#name', form).val(),

 email : $('#email', form).val(),

 comment : $('#comment', form).val()

 },

 successMessage = '<h2>Thank You</h2>

➥<p>Thank you for your feedback! We appreciate it, and
➥will get back to you shortly!</p>';

 $.post(

 "feedback.php",

 fields,

 function() {

 form.replaceWith(successMessage);

 }

);

 return false;

});

The post function works nicely for simple forms like a feedback form, but falls

short of accounting for all errors, such as time out. If you do need to consider this

and other server-side errors you may want to use jQuery’s Ajax function, which

allows you to specify an action to take if this type of error is encountered.

Back to Our Forms
We’ve explored a number of fun options for JavaScript enhancement. Now, let’s see

how we can apply these to our Fit and Awesome forms!

For now, we’ll concentrate on our Sign Up form, since it’s the one we’re most famil

iar with from previous examples.

133Enhancing

Enter jQuery
Since we’ll be using jQuery, we'll need to add it to our code.

First, download a version of jQuery21—if you’re working from the code archive,

you’ll find it in the js folder. Then, reference it in the head of your HTML document,

like so:

<script type="text/javascript" src="js/jquery-1.3.2.min.js">

</script>

Cloud-hosted Frameworks

An alternative way to include jQuery in your projects is to use Google’s Ajax

Libraries API,22 which serves up the latest version of jQuery and other libraries

from Google’s speedy servers. You can find out more about the process from the

documentation.

The next step is to create a new JavaScript file, which we’ll call init.js., to contain

our declarations. We’ll reference that in the head of our document like so:

<script type="text/javascript" src="js/init.js"></script>

Password Strength Indicator
Like most sites, Fit and Awesome requires a username and password for any user

accounts. As the web site contains confidential information about the user, a pass

word strength indicator would go a long way to encouraging users to make their

accounts more secure.

The first step is to include and initiate the password strength plugin. For this ex

ample, we’ll use the PassRoids plugin23 discussed earlier—it’s light and easy to

use.

21 http://jquery.com
22 http://code.google.com/apis/ajaxlibs/
23 http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin

http://jquery.com
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin
http://thecreativeoutfit.com/index.php?view=jQuery-Password-Plugin
http://code.google.com/apis/ajaxlibs
http:http://jquery.com
http:src="js/jquery-1.3.2.min.js

Fancy Form Design134

It’s a waste of resources to fire up the plugin on every page when only one page has

the form. The jQuery getScript function allows us to choose to only call the plugin

when the Sign Up form, identified by sign-up, is present. We determine this through

the use of jQuery’s size function, which returns the number of elements in the

document that have this id:

ch05/js/init.js (excerpt)

$(document).ready(function() {

 if ($('#sign-up').size()) {

 $.getScript(

 'js/jquery.passroids.min.js',

 function() {

 $('form').passroids({

 main : "#password"

 });

 }

);

 }

});

The default output feels a little plain for our form,

so let’s add some sparkle by including a sliding

password meter. Four CSS sprites, shown in Fig

ure 5.5, symbolize four levels of strength.

This will be applied as a background image for each

strength level. We’ll also output a text message so

that this indicator makes sense without color.

While the output of the PassRoids plugin is nice and

simple, we’ll require a little extra markup for truly

fancy styling. Looking through the plugin, we can

find a line that outputs a string wrapped with a span:

jQuery('#psr_score').html('Strength: <span class=psr_'

➥+levels[strength]+'>'+levels[strength]+'');

Inserting an additional strong element to this string provides emphasis. We’ll also

wrap the span around the entire string:

Figure 5.5. Four levels of strength

http:js/jquery.passroids.min.js
http:ch05/js/init.js

135Enhancing

jQuery('#psr_score').html('<span class="psr_'

➥+levels[strength] + '">Strength: '

➥+ levels[strength] + '');

Now, all we need is to style the span. Below, we set a background image against all

four possible password strengths and reposition the image to reveal the appropriate

sprite:

ch05/css/fancyforms.css (excerpt)

#psr_score {

 background: transparent;

 display: block;

 margin: 0;

 padding: 0;

 width: 200px;

}

.psr_Weak,

.psr_Medium,

.psr_Strong,

.psr_Excellent {

 background: transparent url(images/bg-password-strength.png)

➥no-repeat 0 0;

 display: block;

 margin: 0.5em 0 0.2em 5px;

 padding: 10px 0 0;

}

.psr_Medium {

 background-position: 0 -50px;

}

.psr_Strong {

 background-position: 0 -100px;

}

Fancy Form Design136

.psr_Excellent {

 background-position: 0 -150px;

}

Your password fields should now be informing your users about their password

choices. Figure 5.6 shows the end result!

Figure 5.6. Our password strength indicator showing some muscle

Input Validation
We'll turn to jQuery’s validation plugin and set up some rules for our fields. The

method of doing so is quite straightforward; it looks lengthy, but it’s reasonably

easy to read.

We would like to validate the input when the user submits the form, and display

the errors in an unordered list above the group of fields. Each error item will be a

link to the appropriate field, so that it is easy to jump to the place where the error

occurred.

As the user corrects the errors, we’ll remove the red highlight from the troublesome

field, delete the item from the list of errors, and replace the error icon with a tick

to reassure them that it’s correct. This is quite a lot of work, but the end result will

be well worth it!

137Enhancing

We’ll start with our initialization block, in which we set up the rules for each field:

ch05/js/init.js (excerpt)

$('#sign-up form').validate({

rules : {

 'email' : {

 required : true,

 email: true

 },

 'password' : {

 required : true

 },

 'password_confirmation' : {

 required : true,

 equalTo : '#password'

 },

 'profile_link' : {

 required : true

 },

 'agree_tos' : {

 required : true

 }

 },

Next, we’ll continue this block with the messages to be shown whenever a field is

missed. email and password_confirmation have additional display messages if

the field contains content that’s incorrect. Finally, we’ll close the initialization

block:

http:ch05/js/init.js

Fancy Form Design138

ch05/js/init.js (excerpt)

 messages : {

 'email' : {

 required : 'Enter your email address',

 email : 'Enter a valid email address,

➥for example user@example.com'

 },

 'password' : {

 required : 'Ensure your passwords match'

 },

 'password_confirmation' : {

 required : 'Confirm your password',

 equalTo : 'Ensure your passwords match'

 },

 'profile_link' : {

 required : 'Enter a link for your profile'

 },

 'agree_tos' : {

 required : 'You must agree to the terms of service'

 }

 }

});

Now, we’ll override the plugin’s defaults to more closely reflect our own needs.

The code to perform this action begins by defining the elements we’ll use to construct

the list of problems, and then specifying the name of the class we’ll use for high

lighting a problematic field:

ch05/js/init.js (excerpt)

jQuery.validator.setDefaults({

 errorElement : 'a',

 wrapper : 'li',

 errorLabelContainer : '#form-messages ul',

 errorClass : 'error',

 focusInvalid: false,

 onfocusout: false,

http:ch05/js/init.js
mailto:user@example.com
http:ch05/js/init.js

139Enhancing

We need to define what will happen when the plugin highlights the fields. In this

case, we’re appending an error icon to the content of the label that relates to the

field. If an image with a class of icon is already there, we’ll replace that with our

error icon. Finally, we’ll add a class to the field, error, which will produce our

highlight:

ch05/js/init.js (excerpt)

highlight: function(element, errorClass) {

 var errorContainer = $(element).parents('div').eq(0);

 existingIcon = $('img.icon', errorContainer);

 if (existingIcon.size()) {

 existingIcon.replaceWith('<img src="images/icon-error.gif"

➥alt="error" class="icon"/>');
 } else {

 errorContainer.append('<img src="images/icon-error.gif"

➥alt="error" class="icon"/>');

 }

 $(element).addClass(errorClass);

},

When the user corrects a field, we’ll remove the class and replace the error icon

with an image of a green tick:

ch05/js/init.js (excerpt)

unhighlight: function(element, errorClass) {

 var errorContainer = $(element).parents('div').eq(0);

 if ($(':input.error', errorContainer).size() <= 1) {

 $('img.icon', errorContainer).replaceWith(

➥'<img src="images/icon-valid.gif" alt="Valid"
➥class="icon"/>');

 }

 $(element).removeClass(errorClass);

},

http:ch05/js/init.js
http:ch05/js/init.js

Fancy Form Design140

The next challenge is to populate the list of errors. Each error is linked to the appro

priate field, so that it’s easy to click and jump there.

We start by checking if there’s already an error container on the page, and counting

the number of errors we received. If there are any errors, we’ll add our error message

to the inside of the container. If the error message exists but there are no longer any

errors, we’ll update the container with a friendly message to inform the user that

everything is now in order:

ch05/js/init.js (excerpt)

showErrors: function(errorMap, errorList) {

var numErrors = this.numberOfInvalids();

 this.defaultShowErrors();

 if (!$('h2', errorContainer).size()) {

 errorContainer.prepend('<h2></h2>');

 }

 if (numErrors) {

 $('h2', errorContainer).html('Oops!

➥Your form contains ' + numErrors + " error" +
➥((numErrors == 1) ? '' : 's') + ':');

 $(this.currentForm).removeClass('valid');

 } else {

 $('h2', errorContainer).text('All errors have been corrected,

➥please continue');
 $(this.currentForm).addClass('valid');

 }

Fine so far!

http:ch05/js/init.js

141 Enhancing

Now to construct each of the links. When clicked, the links will scroll smoothly to

the problematic field:

ch05/js/init.js (excerpt)

$('a', errorContainer).each(function() {

 var el = $(this),

 fieldID = el.attr('htmlfor'),

 field = $('#' + fieldID);

 el.attr('href', '#' + fieldID);

 el.bind('click', function() {

 field.trigger('focus');

 $('html,body').animate(

{scrollTop: field.offset().top - 20}, 100

);

 return false;

 });

});

},

A submit handler is dropped in to deal with a successful submission. Since we’re

playing with an example here, this simply displays a message:

ch05/js/init.js (excerpt)

submitHandler: function(form) {

 $(form).hide();

 $('<p class="introduction">Thank you for signing up.

➥Please check your email for further instructions.</p>')
 .insertBefore(form)
 .show();

 $('html,body').animate(

{scrollTop: $("div#form-messages").offset().top}, 1000

);

}

http:ch05/js/init.js
http:ch05/js/init.js

Fancy Form Design142

What’s left? We still need to place that error container above our form, and reveal

it when an invalid submission occurs:

ch05/js/init.js

var errorContainer = $('<div id="form-messages">

➥</div>').hide();

errorContainer.insertBefore('fieldset div:first');

// Bind event to invalid form submission

$("form").bind("invalid-form.validate", function(e, validator) {

 errorContainer.show();

 $('html,body').animate(

{scrollTop: errorContainer.offset().top - 20}, 100

);

errorContainer.focus();

});

That should be just about it! You can test out the final result in your code archive.

Select Menu Styling
As it stands, our Sign Up form is almost pixel perfect when compared to the original

comp designed in Chapter 2. The only task left is to style the select menu widget

according to the design.

So far we’ve managed to avoid using the hefty jQuery UI core or any of its plugins

across our forms, and it’d be nice to keep our script overhead low—so let’s bring in

the jQuery Selectbox plugin.24

To ensure that we only load our plugin when it’s needed, we’ll turn to size and

getScript again. This time, we’re testing for the presence of any select element

that’s a descendant of a form element, and loading the appropriate plugin. Then,

the selectbox function works its magic on every select we find:

24 http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement/

http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement/
http://www.brainfault.com/2008/02/10/new-release-of-jquery-selectbox-replacement
http:ch05/js/init.js

143Enhancing

ch05/js/init.js (excerpt)

if ($('form select').size()) {

 $.getScript(

 'js/jquery.selectbox.min.js',

 function() {

 $('select).selectbox();

 }

);

}

The plugin’s default styling would suit our design quite nicely if the menus in our

design had square edges. But alas, our design instead sports some lovely rounded

corners. The simplest way of creating rounded corners with maximum cross-browser

compatibility is to use the sliding doors technique.

The sliding doors technique places a large background image on the element you

want styled, and on its parent element. Just like a sliding door, one of those images

is aligned to the left and the other to the right. As the width of the element increases,

the background of the parent element will slide out from underneath its child, which

creates the optical illusion of a flexible background image.

One large background image that’s positioned to the left or right will suffice: you’ll

see that in Figure 5.7.

Figure 5.7. One long menu background image

To employ the sliding doors technique an additional parent element is required.

Rather than hacking the plugin or adding more markup to our HTML, we’ll just

have jQuery do it for us. We’ll add that instruction to init.js:

http:js/jquery.selectbox.min.js
http:ch05/js/init.js

Fancy Form Design144

ch05/js/init.js (excerpt)

if ($('form select').size()) {

 $.getScript(

 'js/jquery.selectbox.min.js',

 function() {

 $('select').selectbox();

$('input.selectbox').each(function() {

 $(this).wrap('<span id="wrapper_' + $(this).attr('id') +

➥'" class="selectbox-input-wrapper">');
 });

 }

);

}

Since the CSS provided with the plugin is already close to what we want, we can

create a new version based on it that includes a sliding door background image.

The plugin replaces each regular menu with a div, which will contain the unordered

list that presents the items. A class is added to the item that’s selected and the item

that’s currently beneath the mouse. Let’s style these elements first:

ch05/css/fancyforms.css (excerpt)

div.selectbox-wrapper {

 border: 1px solid #ccc;

 background: #fff;

 float: none;

 margin: 0 0 0 5px;

 max-height: 150px;

 overflow: auto;

 padding: 0;

 position: absolute;

 width: auto;

 z-index: 100;

}

div.selectbox-wrapper ul {

 background: #fff;

 float: none;

 list-style-type: none;

 margin: 0px;

 padding: 0px;

}

http:js/jquery.selectbox.min.js
http:ch05/js/init.js

145Enhancing

div.selectbox-wrapper ul li {

 cursor: pointer;

 display: block;

 list-style-type: none;

 margin: 0;

 padding: 2px 5px;

}

div.selectbox-wrapper ul li.selected {

background-color: #EAF2FB;

}

div.selectbox-wrapper ul li.current {

background-color: #CDD8E4;

}

Now to add the sliding door effect. The CSS to add the background to our select

box and wrapper is shown below:

ch05/css/fancyforms.css (excerpt)

.selectbox-input-wrapper {

 background: url(images/ui-form-select.png) no-repeat 0 0;

 display: block;

 margin: 0 5px 0 0;

 padding: 0 0 0 10px;

 width: 293px;

}

.selectbox {

 background: url(images/ui-form-select.png) no-repeat 100% 0;

 border: none;

 display: block;

 margin: 0 -5px 0 0;

 padding: 5px 0;

 cursor: pointer;

 width : 288px;

}

Because we have some specific styles for the date-of-birth positioning, we had to

update them to accommodate our desired layout.

Fancy Form Design146

Now our styling, shown in Figure 5.8, matches the original comp.

Figure 5.8. Our completed select menu style

Other Forms
You’ll find complete examples of each form in the code archive, along with the

JavaScript and source files. Feel free to use these as a basis for your own experiments.

Pull them apart, pick out the juicy bits, mash them back together.

Beware, however, of adding too much eye candy. While we all love a little ooh and

ahh in our lives, there’s a fine line between graceful, groovy enhancement and

outright annoyance. Use these newfound tools wisely, and you’ll be sure to wow

your visitors while ensuring a smooth, easy experience.

Conclusion
By now, you should be well-armed with the tools needed to create a variety of forms.

We’ve covered the process of building beautiful, functional, well-structured forms,

from the very first ideas all the way through to designing, building, and enhancing.

Along the way, we’ve covered the tips, tricks, and gotchas that comprise the fine

art of fancy form creation.

But there’s more to do. With your forms ready for action, you’re now able to start

showing them off to the world. Your first step should be to observe your users and

look for feedback. Conduct usability testing, run customer surveys, roll out your

betas and demos, and then refine your forms again. As you do, you’ll gain invaluable

knowledge about how your users respond to your efforts.

And what of the other forms Fit and Awesome will need? How will users enter

journal entries, record a new personal best, or plan out a training schedule? Well—we

think that if you’ve been reading this book carefully, you’ll already know how to

answer that question. You now have all the tools to plan and build these. But better

yet, we hope that you’re ready to start putting these skills into practice on your own

forms. We'll just have to wait to see what you come up with!

Index

A
accesskey attribute, 54

advanced search form example, 64

advisory text, 55

Ajax, submissions with, 131

aligning to grid, 101–104

Amazon’s Wish List button example, 6

audience expectations, 76

audits, competitive audits, 13

auto-completion

elements, 8

widgets, 129

B
background patterns and textures, 33

Birth Date fieldset, 107

boxes, checkboxes element, 3

Brightkite’s toggle example, 7

buttons

button element, 5

Preview and Save buttons example,

32

radio buttons element, 2

split button element, 6

submit button, 94, 106

Çelik’s undohtml.css, 78

calls to action, highlighting, 31

Camino browser, 95

canvas, styling, 77

change password form example, 65

checkbox element, 3, 121

client-side validation, 130

cloud-hosted frameworks, 133

Coda’s new site panel example, 15

color design, 31

color picker element, 9

competitive audits, 13

condition question display, 122–126

conventions, web interfaces, 55

CSS frameworks, 79

CSS signature, 77

D
date picker element, 9

date selectors, 127

design, 27–41

background patterns and textures, 33

color, 31

grid systems, 28

iconography, 33

interaction design, 16–24

typography, 29

desktop software as inspiration, 14

disabled attribute, 54

div element, 54, 101

Dopplr date picker example, 9

drag and drop, 11

drop-downs menus, 4

Dylan Verheul’s autocomplete plugin,

129

E
edit profile form example, 66

editors, rich text editors, 10

C

148

elements

(see also fields)

auto-completion of fields, 8

buttons, 5

checkboxes, 3, 121

color pickers, 9

date pickers, 9

div, 54, 101

drag and drop, 11

fieldsets, 5, 45–51, 81

file uploaders, 5, 10

form, 44

img, 57

labels, 3, 45–51, 83

legend, 5, 45–51, 81

radio buttons, 2, 121

rich text editors, 10

select menus, 4, 108

sliders, 7

span element, 81

split buttons, 6

structure of, 44–55

text fields, 2

textareas, 3

toggle switches, 7

Eric Meyer’s reset CSS, 79

errors

about, 55

adding icons to error messages ex

ample, 33

indicating in forms, 56

F
Facebook’s profile editor example, 8

feedback form example, 69

fields

(see also elements)

Birth Date fieldset, 107

prefixed field, 106

required, 55

text fields element, 2

fieldset element, 5, 45–51, 81

file upload element, 5, 10

Firefox preferences dialog example, 46

Firefox widgets example, 86

Flickr uploader example, 10

floats, 84

form element, 44

frameworks

cloud-hosted frameworks, 133

CSS, 79

jQuery, 120

functional specifications, 16

G
get method (form element), 45

global white space reset, 78

goals

design, 27

interaction design, 16

Google’s Ajax Libraries API, 133

gradients, styling, 89

grid systems

about, 28

aligning to, 101–104

H
highlighting calls to action, 31

HTML

form elements, 2–12

and form structure, 44

149

I
iconography

about, 33

styling icons, 90–96

id attribute, 52

img element, 57

input validation, 130, 136–146

instructions on form, 55

interaction design, 16–24

goals, 16

identifying users, 16

paper prototypes, 19

wireframes, 19

interaction patterns, 12

Internet Explorer

select menu, 108

widgets examples, 87

J
JavaScript, 119

Jörn Zaefferer’s autocomplete plugin, 129

jQuery, 120, 131, 133

jQuery Custom Input plugin, 122

jQuery Custom Selectboxes, 121

jQuery Geogoer VChecks, 122

jQuery iPhone-style Checkboxes plugin,

122

jQuery Password Strength Meter, 129

jQuery plugins, 126

jQuery Selectbox plugin, 121, 142

jQuery UI Selectmenu, 121

jQuery UI’s Datepicker, 127

jQuery’s validation plugin, 136

K
Kayak sliders example, 7

L
label element, 3, 45–51

side-by-side, 84

top-aligned, 83

legend element, 5, 45–51, 81

libraries

Google’s Ajax Libraries API, 133

Yahoo CSS library, 79

Yahoo Developer Network’s Design

Pattern Library, 12

Login link, 100

M
Mac-style widgets example, 85

method attribute (form element), 45

Meyer’s reset CSS, 79

Microsoft Word’s view size menu ex

ample, 15

P
Panic’s shopping cart example, 11

paper prototypes, 19

PassRoids plugin, 129, 133

password strength indicators, 128, 133

patterns, background, 33

personas, user personas, 16

planning, 1–25

elements, 2–12

interaction design, 16–24

research and inspiration, 12

platforms and interaction design, 18

post method (form element), 45

150

prefixed field, 106

privacy

(see also security)

privacy settings example, 24, 39, 53,

59, 70

styling, 113

prototypes, paper prototypes, 19

R
radio button element, 2, 121

read-only attribute, 54

registration forms, examples of, 13

required fields, 55

resetting styles, 78

rich text editors, 10

S
scenarios, 17

security, password strength indicators

(see also privacy)

select list, menus, 4

select menu element, 4, 108

server-side validation, 131

side-by-side labels, 84

sign up form example, 61

slider element, 7

sliding doors technique, 143

span element, 81

specifications, functional, 16

split button element, 6

sprites, 91

structure, 43–74

elements, 44–55

final markup, 58–74

instruction, errors and advisory text,

55

styling, 75–117

about, 75–77

aligning to grid, 101–104

Birth Date fieldset, 107

checkboxes and radio buttons, 121

fieldsets and legends, 81

form questions, 83–96

Login link, 100

prefixed field, 106

privacy, 113

resetting styles, 78

select menu, 120

submit button, 94, 106

submit button, 94, 106

switches, toggle switch element, 7

T
tabindex attribute, 53

Tantek Çelik’s undohtml.css, 78

task flows, 18

text

advisory text, 55

rich text editors, 10

text fields element, 2

textareas element, 3

textures, background, 33

toggle switch element, 7

top-aligned labels, 83

typography, 29

U
UI-Patterns, 12

undohtml.css, 78

uploading files, 5, 10

use cases, 17

user personas, 16

151

user style sheets, 77

users, identifying, 16

V

validating inputs, 130, 136–146

Verheul’s autocomplete plugin, 129

Virb’s color picker example, 9

W
web interfaces, conventions, 55

West Elm’s calls to action example, 31

widgets, 120–132

autocomplete, 129

checkboxes and radio buttons, 121

condition question display, 122–126

date selectors, 127

input validation, 130

jQuery UI Selectmenu, 121

password strength indicators, 128

select menu, 120

styling, 85

submission with Ajax, 131

wireframes, 19

WordPress’s rich text editor example, 10

Y
Yahoo CSS library, 79

Yahoo Developer Network’s Design Pat

tern Library, 12

Z
Zaefferer’s autocomplete plugin, 129

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

Provide working code for your web site

 Make learning easy and fun

ABOUT JASON BEAIRD

“Jason the Designer Man”, as one of his coworkers once called him, dual-majored in graphic

design and digital media at the University of Central Florida. When he’s not working on

websites, he enjoys disassembling electronics and using them in his artwork. Jason writes

about his adventures in design and technology on his personal site, jasongraphix.com

Tired of making web sites that work absolutely perfectly but just don’t, well, look very nice?
Then The Principles of Beautiful Web Design is for you. A simple, easy-to-follow guide,
illustrated with plenty of full-color examples, this book leads you through the process of
creating great designs from start to finish. Good design principles are not rocket science,
and using the information contained in this book you will create stunning web sites.

Understand the design process, from discovery to implementation
Understand what makes “good design”
Develop pleasing layouts using grids, the rule of thirds, balance, and symmetry
Use color effectively, develop color schemes and create a palette
Use textures: lines, points, shapes, volumes, and depth
Learn how good typography can make ordinary designs look great
Effective imagery: choosing, editing and placing images
Follow an example design from concept to completion
And lots more…

YOU DON’T NEED TO GO TO ART SCHOOL
TO DESIGN GREAT LOOKING WEB SITES!

USD $39.95

WEB DESIGN

CAD $51.95

ISBN-13: 978-0-9758419-6-9
ISBN-10: 0-9758419-6-3

Visit us on the Web at sitepoint.com or for sales and support, email books@sitepoint.com

cover-design1CMYK.indd 1

 - -

THE PRINCIPLES OF

BEAUTIFUL
WEB DESIGN

BY JASON BEAIRD

DESIGN BEAUTIFUL WEB SITES USING THIS SIMPLE STEP BY STEP GUIDE

0AN
TO
N
E�

0ANTONE�

12/22/2006 12:47:48 PM

D
E

S
IG

N

TH
E PR

IN
C

IPLES
 O

F B
EAU

TIFU
L W

EB
 D

ESIG
N

BEAIRD

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

Provide working code for your web site

 Make learning easy and fun

CSS-based design doesn’t need to be boring. The Art &
Science of CSS brings together a talented collection of
designers who will show you how to take the building blocks
of your web site’s design (such as headings, navigation, forms,
and more) and bring them to life with fully standards-compliant
CSS. This book helps you to design web sites that not only
work well across all browsers, are easy to maintain, and are
highly accessible, but are also visually stunning.

Create truly attention-grabbing headings.
Discover multiple ways to present images effectively.
Use background images to give your site zest.
Build usable and attractive navigation.
Design forms that are stylish and functional.
Learn how to break away from the square box cliché.
Create funky tables.
And lots more…

STANDARDS-BASED DESIGN IS DULL AND
PASSIONLESS, RIGHT? THINK AGAIN.

USD $39.95

WEB DESIGN

CAD $51.95

ISBN-13: 978-0-9758419-7-6
ISBN-10: 0-9758419-7-1

ALL CODE & GRAPHICS FILES AVAILABLE FOR DOWNLOAD

Backgrounds:
Learn innovative methods to use
background images.

Accessible CSS Form Layout
Use CSS to make attractive
forms without sacrificing
accessibility.

Fancy Corner Effects
“Bust out of the box” with
innovative and beautiful CSS
corner effects.

Visit us on the Web at sitepoint.com or for sales and support, email books@sitepoint.com

themaninblue.com

CAMERON
ADAMS

australianinfront.com.au

DAVID
JOHNSON

snook.ca

JONATHON
SNOOK

jinabolton.com

JINA
BOLTON

orderedlist.com

STEVE
SMITH

THE VISIONARY DESIGN TEAM

WHAT’S INSIDE?

cover-design1CMYK.indd 1

BY CAMERON ADAMS
JINA BOLTON

DAVID JOHNSON
STEVE SMITH

JONATHAN SNOOK

THE ART &
SCIENCE

OF CSS

CREATE INSPIRATIONAL STANDARDS-BASED WEB DESIGN

0ANTONE�

2/6/2007 6:24:48 PM

0AN
TO
N
E�

C
S

S

TH
E A

R
T &

 SC
IEN

C
E O

F C
S

S

ADAMS
SMITH
ET AL.

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

Provide working code for your web site

 Make learning easy and fun

ABOUT KEVIN YANK
Kevin Yank is a world-renowned
leader in web development. When
not writing best sellers, Kevin is
the Technical Director of sitepoint.
com and editor of the popular
SitePoint Tech Times newsletter.

ABOUT CAMERON ADAMS
Cameron Adams is an author of
multiple web development books
and is often referred to as a “Web
Technologist.” In addition to his
extensive JavaScript experience,
Cameron’s passions extend to
CSS, PHP, and graphic design.

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95

WEB DESIGN

CAD $51.95

ISBN-10: 0-9802858-0-1
ISBN-13: 978-0-9802858-0-2

START UNLEASHING THE AMAZING
POWER OF JAVASCRIPT

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

Packed with full-color examples, Simply JavaScript is a step-by-step introduction

to programming in JavaScript the right way. Learn how easy it is to use JavaScript

to solve real-world problems, build smarter forms, track user events (such as

mouse clicks and key strokes), and design eye-catching animations. Then move

into more powerful techniques using the DOM and Ajax.

Learn JavaScript’s built-in functions, methods, and properties.�

Easily integrate JavaScript in your web site.�

Use JavaScript to validate form entries and interact with your users.�

Understand how to respond to user events.�

Create animations that bring your web site to life.�

Start programming using the DOM and Ajax.�

Y
& AD

$=IAOKJ,AREJ

javascript1.indd 1

0AN
TO
N
E�

0ANTONE�

EVERYTHING YOU NEED TO LEARN JAVASCRIPT FROM SCRATCH

SIMPLY
JAVASCRIPT

BY KEVIN YANK
& CAMERON ADAMS

JA
VA

S
C

R
IP

T

S
IM

P
LY

 JA
VA

S
C

R
IP

T

ANK

5/28/2007 11:40:54 AM

AMS

	Fancy Form Design
	Table of Contents
	Preface
	Who Should Read This Book?
	What’s Covered in This Book?
	The SitePoint Forums
	This Book’s Web Site
	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Conventions Used in This Book
	Tips, Notes, and Warnings
	Markup Samples

	Acknowledgements
	Jina Bolton
	Tim Connell
	Derek Featherstone

	Planning
	The Elements of Forms
	Basic Elements
	Text Fields
	Radio Buttons
	Checkboxes
	Labels
	Textareas
	Select Menus
	File Upload
	Fieldsets and Legends
	Buttons

	Enhanced Elements
	Split Buttons with Menus
	Sliders
	Toggle Switches
	Auto-completion
	Date Pickers
	Color Pickers
	Advanced File Uploaders
	Rich Text Editors
	Drag and Drop
	… And More!

	Research and Finding Inspiration
	Perform a Competitive Audit
	Use Software as Inspiration

	Interaction Design
	Defining the Goal
	Identify the Users
	Identify Use Cases and Scenarios
	Understand Platforms and Devices
	Define Task Flows

	Paper Prototyping
	Wireframing
	Summary

	Designing
	Grid and Typography
	Grid Systems
	Type

	Color
	Highlighting Calls to Action
	The Message of Color

	Imagery
	Iconography
	Background Patterns and Textures

	Summary

	Structure
	The Structure of a Form
	Understanding the form Element
	Groups and Labels: fieldset, legend, and label
	Form Fields
	Form Layout

	Instructions, Errors, and Advisory Text
	Required Fields

	The Final Markup
	Conclusion

	Styling
	Stuff to Consider
	Preparing Your Canvas
	Reset Styles
	The Global Whitespace Reset
	Tantek Çelik’s undohtml.css
	Yahoo UI Library’s Reset CSS
	Eric Meyer’s Reset CSS

	Fieldsets and Legends
	Form Questions
	Top-aligned Labels
	Side-by-side Labels
	The Trouble with Widgets
	The Good News is …
	A Little Gradient Goes a Long Way
	Visual Hints with Icons
	Styling the Submit Button

	Putting It All Together
	The Login Link
	Aligning to the Grid
	The Submit Button
	Prefixed Field
	Birth Date Fieldset
	The Final Touch
	A Straggler: The Privacy Settings Form
	Conclusion

	Enhancing
	Fancier Form Widgets
	Select Menu Styling
	Checkbox and radio button styling
	Functional Enhancements
	Conditional Question Display

	Date Selectors
	Password Strength Indicators
	Autocomplete
	Input Validation
	Submission with Ajax

	Back to Our Forms
	Enter jQuery
	Password Strength Indicator
	Input Validation
	Select Menu Styling
	Other Forms

	Conclusion

	Index

