
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

Everything You Know About CSS Is Wrong! is an eye-opening
exposé on CSS as we know it today. You’ll discover a fresh approach
to coding Cascading Style Sheets where old hacks and workarounds
are just a distant memory.

You’ll learn how to start taking full advantage of the very latest CSS
techniques while still catering for older browsers and discover what’s
put the final nail in the HTML table-based layout coffin.

CSS was conceived in an age when web site design was simple; its
creators never anticipated the intricacy of designs that it would be
asked to deliver today.

Clever designers figured out ways to make CSS do what they
needed, but by using techniques so convoluted it became
unpredictable and difficult to master. CSS just became too hard...

The good news is, that’s all about to change, and this book will
show you how!

YOUR AUTHORS

SPECIAL CONTRIBUTIONS FROM CSS SUPERSTARS...

Kevin Yank is a
world-renowned
leader in web
development.
When not writing
best sellers,
Kevin is the
Technical

Director of sitepoint.com and
editor of the popular SitePoint
Tech Times newsletter.

Rachel Andrew is
a director of Web
solutions provider
edgeofmyseat.
com. Rachel
takes a common
sense, real world
approach to web

standards, with her writing and
teaching being based on the
experiences she has in her own
company every day.

edgeofmyseat.com

RACHEL
ANDREW

sitepoint.com

KEVIN
YANK

PA
N

TO
N

E
 2955 C

PA
N

TO
N

E
 O

range 021 C

C
M

Y
K

 100, 45, 0, 37
C

M
Y

K
 O

, 53, 100, 0

B
lack 100%

B
lack 50%

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $29.95

WEB DESIGN

CAD $29.95

ISBN: 978-0-9804552-2-9

THE PROBLEM WITH CSS IS IT’S TOO HARD.
THE GOOD NEWS IS, THAT’S ALL ABOUT TO CHANGE.

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

CHANGE THE WAY YOU USE CSS FOREVER!

boxofchocolates.ca

DEREK
FEATHERSTONE

snook.ca

JONATHON
SNOOK

themaninblue.com

CAMERON
ADAMS

stuffandnonsense.co.uk

ANDY
CLARKE

EVERYTHING
YOU KNOW
ABOUT CSS
IS WRONG!

BY RACHEL ANDREW
& KEVIN YANK

C
S

S
E

VE
R

YTH
IN

G
 YO

U
 K

N
O

W
 A

B
O

U
T C

S
S

 IS
 W

R
O

N
G

!

ANDREW
& YANK

everything1.indd 1 9/10/2008 11:13:24 AM

Summary of Contents

Preface . xi

1. The Problem with CSS . 1

2. CSS Table Layout . 15

3. CSS Table Solutions . 43

4. Considering Older Browsers . 69

5. The Road Ahead . 95

Index . 113

EVERYTHING
YOU KNOW

ABOUT CSS IS
WRONG!

BY RACHEL ANDREW
& KEVIN YANK

iv

Everything You Know About CSS Is Wrong!
by Rachel Andrew and Kevin Yank

Copyright © 2008 SitePoint Pty. Ltd.

Managing Editor: Chris Wyness Editor: Hilary Reynolds

Technical Editor: Andrew Tetlaw Index Editor: Russell Brooks

Technical Director: Kevin Yank Cover Design: Alex Walker

Printing History:

First Edition: October 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street

 Collingwood VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9804552-2-9

Printed and bound in Canada

mailto:business@sitepoint.com

v

About Rachel Andrew

Rachel Andrew is a web developer and the director of web solutions provider

edgeofmyseat.com. When not writing code, she writes about writing code and is the coauthor

of several books promoting the practical usage of web standards alongside other everyday

tools and technologies. Rachel takes a common-sense, real-world approach to web standards,

with her writing and teaching being based on the experiences she has in her own company

every day.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,

they can often be found wandering around the English countryside hunting for geocaches

and nice pubs that serve Sunday lunch and a good beer.

About Kevin Yank

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for his book Build Your Own Database Driven Website Using

PHP & MySQL, now in its third edition, Kevin also writes the SitePointTech Times, a free

weekly email newsletter that goes out to over 150,000 subscribers worldwide.

When he isn’t speaking at a conference or visiting friends and family in Canada, Kevin lives

in Melbourne, Australia; he enjoys flying light aircraft and performing improvised comedy

theater with Impro Melbourne. His personal blog, Yes, I’m Canadian, can be found at

http://yesimcanadian.com/.

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. Before that,

he worked as a high school English teacher, an English teacher in Japan, a window cleaner,

a car washer, a kitchen hand, and a furniture salesman. He is dedicated to making the world

a better place through the technical editing of SitePoint books and kits. He is also a busy

father of five, enjoys coffee, and often neglects his blog at http://tetlaw.id.au/.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

http:edgeofmyseat.com
http://yesimcanadian.com/
http://tetlaw.id.au/
http://www.sitepoint.com/

Table of Contents

Preface . xi

Who Should Read This Book? . xii

What’s in This Book? . xii

The Book’s Web Site . xiii

The Code Archive . xiii

Updates and Errata . xiii

The SitePoint Forums . xiii

The SitePoint Newsletters . xiv

Your Feedback . xiv

Conventions Used in This Book . xiv

Code Samples . xiv

Tips, Notes, and Warnings . xvi

Acknowledgments . xvi

Chapter 1 The Problem with CSS 1

The Grid’s the Thing . 2

Tables Do the Trick . 5

CSS and the Browser Wars . 6

Early Browser Support for CSS . 7

The Version 4 Browsers . 8

Internet Explorer 6 and the Long Sleep . 9

Internet Explorer 8 Changes the Game . 10

Our Part of the Bargain . 13

Chapter 2 CSS Table Layout . 15

Using Current Layout Techniques . 16

viii

Absolute Positioning . 17

Floated Layout . 25

Using CSS Tables . 29

How Does This Work? . 31

Anonymous Table Elements . 33

Other Useful Table Properties . 37

Making a Perfect Grid . 37

Putting Principles into Practice . 41

Chapter 3 CSS Table Solutions . 43

Can CSS tables be used to create flexible layouts? 43

Can CSS tables be nested? . 45

How can I position elements within a table cell? 48

Do CSS tables support the colspan and rowspan attributes? 55

What’s going wrong with these anonymous table elements? 60

Do I have to change the source order? . 64

Is the source order really a problem? . 66

What about older browsers? . 68

Chapter 4 Considering Older Browsers 69

Support for CSS Tables . 69

To Hell with Bad Browsers . 71

History Repeats . 72

Option 1: Ignore Older Browsers . 73

Option 2: Provide a Simplified Layout . 76

Adding a Style Sheet for IE6 and 7 . 76

Option 3: Reproduce Your Layout with Older Techniques 82

But Why Not Stick with Floated Layouts? . 89

Now It’s Our Turn . 89

ix

Premium Design Elements . 90

Greater Ease of Development . 93

Moving Forward . 94

Chapter 5 The Road Ahead . 95

CSS3 Multi-column Layout Module . 96

Multiple Equal-width Columns . 101

Other Multi-column Layout Properties . 102

CSS3 Grid Positioning Module . 104

The grid-columns and grid-rows Properties 104

Creating a Grid with Columns and Column-gap Properties 105

Positioning Elements on the Grid: the gr Value 106

CSS3 Template Layout Module . 107

Setting up the Template . 107

Positioning Elements into the Slots . 108

Everything You Know about CSS Is Wrong . 111

Index . 113

Preface

It’s been over ten years since I first started to build web sites. Ten years isn’t a long

period of time, but when it comes to the Web and web browsers, much water has

passed under the bridge in the last decade. I can remember when Netscape 4 and

Internet Explorer 4 brought us exciting new ways to embellish our web pages. I can

also remember, all too clearly, the pain of trying to support Netscape 4 as the rest

of the Web moved on.

Our current situation with Internet Explorer 6 reminds me of those days of wanting

to move forward and use CSS for layout while also trying to support the ailing

Netscape 4. On the one hand, we know that there is still a significant number of

users using Internet Explorer 6; on the other, we know how much more potential

we could have, and how much easier our lives would be, if we weren’t forced to

patch up our sites with alternate style sheets to cope with that dinosaur.

In this book, we take a good look at what’s just around the corner with the impending

launch of Internet Explorer 8. The layout methods that I’ll demonstrate in this book

aren’t new; they have been included in browsers such as Safari, Firefox, and Opera

for a good while. However, the launch of Internet Explorer 8 will tip the balance in

favor of these under-utilized techniques. Now is the perfect time to take stock of

the current methods considered best practice for CSS layout, and determine how

they can be improved upon.

Updating and refining the techniques we use to build web sites is part of the business

of working on the Web, wherever you stand on the utility of CSS tables. This book

is an opinionated book, written to inspire debate and experimentation in a time of

change and development.

With the long-awaited launch of Internet Explorer 8 not far away, it is time for us

all to rediscover CSS.

xii

Who Should Read This Book?

This is not your average book about CSS. This book is aimed at web designers and

developers who:

■	 need to work with CSS layouts—from those just beginning to those who possess

a good working knowledge of CSS layout techniques

■	 have a desire to stay ahead and keep their CSS knowledge fresh and relevant

■	 want to explore the future possibilities provided by increasing levels of CSS

compatibility in modern browsers

For these web professionals, this book should be required reading.

What’s in This Book?
Chapter 1: The Problem with CSS

Chapter 1 sets the scene for what will be a milestone for CSS compatibility in

browsers: the arrival of Internet Explorer 8. Here, we explore the current prob

lems with CSS layout techniques, as well as the mismatch between what design

ers want and what CSS provides.

Chapter 2: CSS Table Layout

Chapter 2 is all about CSS layout techniques. We first explain the current tech

niques that use absolute positioning and floated elements, and the complexity

involved in getting them to work reliably. We then introduce CSS tables, spend

some time exploring how CSS tables work, and provide some examples of how

easily they can be used to create a grid-based layout. This is the chapter that

will put the final nail in the coffin of HTML table-based layouts.

Chapter 3: CSS Table Solutions

In this chapter, we test the limits of what CSS tables can do, explore the edge

cases, and deliver concrete solutions. After your initiation into the science of

CSS tables, you will probably be bursting with those “But, how do I…” ques

tions—this chapter seeks to answer them for you.

xiii

Chapter 4: Considering Older Browsers

Is the use of CSS tables an unreachable Utopian dream? This chapter will con

vince you that CSS table-based layouts are ready for prime time by providing

practical solutions for supporting IE6 and 7.

Chapter 5: The Road Ahead

While CSS tables can be used today, what’s around the corner? CSS3 will provide

a substantial increase in layout control, and this chapter is a preview of what’s

to come. We take a detailed look at three CSS3 modules for layout control: the

multi-column layout module, the grid-positioning module, and the template

layout module.

The Book’s Web Site
Located at http://www.sitepoint.com/books/csswrong1/, the web site that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.1

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site (http://www.sitepoint.com/books/csswrong1/errata.php) will always have the

latest information about known typographical and code errors.

The SitePoint Forums
If you’d like to communicate with us or anyone else on the SitePoint publishing

team about this book, you should join SitePoint’s online community.2 The CSS

1 http://www.sitepoint.com/books/csswrong1/code.php
2 http://www.sitepoint.com/forums/

http://www.sitepoint.com/books/csswrong1/code.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/books/csswrong1/
(http://www.sitepoint.com/books/csswrong1/errata.php)
http://www.sitepoint.com/books/csswrong1/code.php
http://www.sitepoint.com/forums/

xiv

forum, in particular, can offer an abundance of information beyond the solutions

in this book.3

In fact, you should join that community even if you don’t want to talk to us, because

a lot of fun and experienced web designers and developers hang out there. It’s a

good way to learn new stuff, get questions answered in a hurry, and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, inclu

ding The SitePoint Tribune and The SitePoint Tech Times. Reading them will keep

you up to date on the latest news, product releases, trends, tips, and techniques for

all aspects of web development. Sign up to one or more SitePoint newsletters at

http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write to is books@sitepoint.com. We have a well-

staffed email support system set up to track your inquiries, and if our support team

members are unable to answer your question, they’ll send it straight to us. Sugges

tions for improvements, as well as notices of any mistakes you may find, are espe

cially welcome.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

3 http://www.sitepoint.com/forums/forumdisplay.php?f=53

http://www.sitepoint.com/forums/forumdisplay.php?f=53
http://www.sitepoint.com/forums/forumdisplay.php?f=53
http://www.sitepoint.com/newsletter/
http:books@sitepoint.com
http://www.sitepoint.com/forums/forumdisplay.php?f=53

xv

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

⋮
return new_variable;

}

xvi

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Acknowledgments
Thanks to the team at SitePoint, and particularly Kevin Yank for his contributions

to this book. In the course of writing this book, I have become even more aware of

how much we lowly web developers owe to those who write the specifications and

build the browsers. So thanks to those unsung heroes, in particular the people

within browser companies who really do understand web standards and work to

produce the best browsers possible. Finally, as always, grateful thanks to my long-

suffering family for enduring yet another book project.

Chapter1
The Problem with CSS
I’m a visionary. I’m ahead of my time. Trouble is, I’m only about an hour and a half

ahead.

—George Carlin

The problem with CSS is that CSS is too hard.

There. We got that out of the way easily enough, didn’t we? You can skip to Chapter 2

now.

Okay, maybe that was a little unfair. For the most part, Cascading Style Sheets (CSS)

technology is beautiful in its elegance and simplicity. It gives web designers a lan

guage in which to describe a consistent visual treatment that can be applied to a

single page, an entire site, or even a whole bunch of sites. Yes, CSS was ahead of

its time when it was first created, but it didn’t stay that way for long.

As CSS was conceived in an age when the design of most web sites still looked

quite plain, its creators couldn’t anticipate the richness and intricacy of the designs

that it would eventually be asked to describe. And so the Web marched inexorably

on, while CSS struggled to catch up. Clever designers figured out ways to make CSS

Everything You Know About CSS Is Wrong! 2

do what they needed it to do, but these techniques were so convoluted that they

quickly became difficult for the rest of us to master.

These techniques were also quite fragile. Since they employed CSS features in cre

ative and unexpected ways, their use tended to expose the subtle inconsistencies

and limitations of the CSS support in each of the major browsers. Today, even the

most experienced designers routinely see their sites break in new and unpredictable

ways as a result of a subtle change in content, or a new browser release.

For the creative elite who came up with these often mind-bending techniques, CSS

can offer a thrilling and constantly surprising landscape in which to work. But for

beginners learning to design their first web sites, today’s CSS can be shockingly

difficult to work with. CSS is just too hard.

The good news is, that’s all about to change.

Whether you consider yourself a CSS layout expert, have previously tried to learn

CSS layout techniques and given up in frustration, or are only just exploring CSS

for the first time, everything you know about CSS is wrong.

The Grid’s the Thing
For better or worse, most web design is based around two-dimensional (2D) grids.

Talented designers have ways of making these grid-based designs look less “boxy,”

but with very few exceptions, the grid is always underneath the frills and furbelows.

Unfortunately, CSS was not designed to describe 2D grids. Rather, CSS assumes

that every page will be made up of a vertical stack of blocks, piled one on top of

another, each containing either another stack of blocks, or text (called inline content)

wrapped to fit inside the block.

Take Figure 1.1, the SitePoint homepage. This page is divided into a header, a

footer, and the body content. Each of these components is a block; if a given block

doesn’t occupy the full width of the browser window, whatever space is left over

will appear as empty whitespace to either side. This example shows the kind of

one-dimensional layout that CSS was designed to describe; if that’s all there was

to the layout of the site, well, CSS would be perfectly equipped to describe it, and

I wouldn’t be writing this book!

3The Problem with CSS

Figure 1.1. sitepoint.com as a one-dimensional layout

Of course, that isn’t all there is to the layout of sitepoint.com, nor is a vertical stack

of blocks an adequate model for describing almost any web page designed in the

past decade. Invariably, when designing a site, you want to arrange blocks side by

side.

Let’s look more closely at the structure of the SitePoint homepage. In Figure 1.2,

you can see the grid that describes the layout of the page. In particular, notice the

number of blocks that sit alongside another block. Every single one represents an

element of the page that will require the designer to employ some degree of trickery

to make CSS do something it wasn’t designed to do.

http:sitepoint.com

Everything You Know About CSS Is Wrong! 4

Figure 1.2. sitepoint.com’s two-dimensional layout revealed

When many designers sit down to lay out a new web site, one of the first steps they

will take is to draw a grid. Try visiting a few of your favorite sites—play a little

“spot the grid.” It’s usually not difficult to see.

Shortly after early browsers like Internet Explorer 3 added support for CSS, it became

abundantly clear to designers that CSS wasn’t up to the task of building the 2D grids

needed to achieve the rich layouts they wanted. Good old HTML, however, offered

a feature that obviously could do the job: HTML tables.

5The Problem with CSS

Tables Do the Trick

Designers seized on the HTML table element as a page layout tool. Rather than

reserving it for its designated purpose—the display of spreadsheet-like tables of

data—designers found that they could stick the blocks of their pages into table cells,

forming the two-dimensional grids they craved.

By the time the table element made it into the official HTML specification with

HTML 3.2 in 1997,1 it was already being used extensively as a page layout device,

having been included in web browsers since Netscape 1.1 and Internet Explorer 1.

See Figure 1.3 for an example of an early tables tutorial.

Figure 1.3. Tables tutorials on the popular Webmonkey site

The HTML language, originally conceived to describe the structure of academic

documents, was now being used as a page layout language—a usage for which it

1 http://www.w3.org/TR/REC-html32

http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html32

Everything You Know About CSS Is Wrong! 6

was entirely unsuited. Nevertheless, it worked; at the time, this was more than could

be said for page layout with CSS.

While designers plied their trade with HTML tables, the Web’s brightest minds

understood that something had to change. The Web had the potential to be presented

and navigated not just by the large monitors of desktop computers, but on portable

devices with smaller screens, in non-visual browsers designed for visually disabled

people, and by search engines and other computer programs that crawl the Web for

information. But that potential would never be realized as long as HTML elements

like table were being used to achieve visual layout tasks, rather than to provide

meaningful information that could be conveyed by non-visual browsers.

Within the design community, many clever designers also saw this potential.

Through years of experimentation, they found ways to make CSS reach beyond its

limited sphere. As we’ll see in Chapter 2, it turns out that features like absolute

positioning and floated blocks can be employed to force blocks to sit alongside

other blocks—a purpose never envisioned by its creators.

These techniques have formed the basis of many books about CSS, including several

of my own previous titles, such as HTML Utopia: Designing Without Tables Using

CSS, 2nd Edition.2 Although these features have been tried and tested, and are in

use on most professionally-designed sites today, I wouldn’t describe them as stable,

predictable, or easy to use.

But now there’s a new arrival in the world of CSS—it’s about to render those books

obsolete, and transform the arcane art of CSS layout into a simple discipline easy

enough for almost anyone to adopt.

CSS and the Browser Wars
So what kept designers from embracing CSS page layout for so many years? Well,

it wasn’t the initial shortcomings of CSS. It was the inability for CSS to grow fast

enough to keep up with the needs of web designers.

More specifically, the state of CSS support in web browsers hadn’t kept up.

2 http://www.sitepoint.com/books/css2/

http://www.sitepoint.com/books/css2/
http://www.sitepoint.com/books/css2/
http://www.sitepoint.com/books/css2/

7The Problem with CSS

Even more specifically, Internet Explorer dropped the ball by resting on its laurels

while the other major browsers continued their work to improve the layout capabil

ities of CSS.

Early Browser Support for CSS
Internet Explorer 3, released on August 14, 1996, was the first commercial browser

with any support for the fledgling CSS specification.3 Microsoft released a CSS

Gallery, pictured in Figure 1.4, in order to show off some of the new layout control

enabled by CSS.

Figure 1.4. A page in the CSS Gallery, showing CSS support in IE3

In retrospect, it’s extraordinary just how quickly developments were taking place

at this point. Microsoft announced that CSS would be part of Internet Explorer 3

even while discussions were still underway as to which style sheet language should

be used on the Web. Furthermore, Microsoft had an implementation of the language

3 http://www.w3.org/Style/CSS/msie/

http://www.w3.org/Style/CSS/msie/
http://www.w3.org/Style/CSS/msie/

Everything You Know About CSS Is Wrong! 8

in its browser before the official recommendation was published by the World Wide

Web Consortium (W3C).

At first, Microsoft’s main competitor, Netscape, took a wait-and-see attitude towards

CSS, and focused instead on extending HTML, adding new tags with each release

of the browser. For example, Netscape submitted its proposal for frames to the W3C

in September 1995, but then implemented the idea in the browser before any real

discussion had taken place about the addition.

This continual flow of innovation and drive to push features into browsers was

stimulating the Web’s development, and enhancing the agency of page authors and

designers. However, the addition of features to a web browser actually entailed

changing the path of the Web itself, and two browser vendors attempting to go about

it in different ways promised trouble.

The year 1997 saw the launch of the version 4 browsers … and the start of the

browser wars.

The Version 4 Browsers
Netscape 4 was released in June 1997, with Internet Explorer 4’s arrival lagging

slightly behind in October. Both browsers offered reasonable support for the CSS1

specification, at least where styling text was concerned, and developers were able

to begin working with CSS. Developer adoption of the most basic parts of CSS was

relatively quick, not least because both Netscape and Internet Explorer 4 included

support for Dynamic HTML (DHTML)—using JavaScript to manipulate the Document

Object Model of a page and CSS.

Netscape’s legacy as an early web browser was beginning to show. Microsoft had

rebuilt its rendering engine for IE4—using the Trident engine, which continues to

be used in browsers up to and including IE8—whereas Netscape was adding CSS

and DHTML support on top of the existing browser codebase. This meant that as

developers pushed the limits of CSS in the version 4 browsers, numerous strange

bugs started to emerge.

Internet Explorer began to attract market share away from Netscape; the release of

IE5 in 1999, with much-improved CSS support, cemented this trend. By early 2000,

IE had pulled ahead to claim over 50% of the browser market share.

9The Problem with CSS

Internet Explorer 6 and the Long Sleep
Internet Explorer 6 was released in August 2001, and, with the dominance estab

lished by IE5—and the general lack of interest in the new Gecko-based Netscape

6—Microsoft’s ultimate victory was guaranteed in the browser wars.

Internet Explorer 6 was a good browser in its day. Its CSS support was mature

enough for persistent designers to be able to achieve most page layout tasks, if they

pushed the support to its limits. There were some peculiar bugs, but for those of us

who had battled with Netscape 4 for years, they seemed fairly trivial. Microsoft had

even released a version of Internet Explorer 5 for the Macintosh, which featured a

brand new rendering engine with dramatically better CSS support than any previous

Microsoft browser. Meanwhile, the W3C was working to define additions to CSS

that promised to make page layout a cinch. The future was bright.

The problem was what Microsoft did—or didn’t do—next. Having produced a

browser that made web developers relatively happy, which let them do most of the

things they thought they needed to do at the time, and having effectively won the

browser wars, Microsoft shut down its browser development and reallocated the

team members to other projects. Internet Explorer fell asleep.

Once IE’s hibernation became apparent, many of us thought that the general popu

lation would start moving to other browsers. Firefox, based on Mozilla, had come

onto the scene, and was more lightweight and robust than Netscape had ever man

aged. Opera had developed a browser with excellent CSS support and many other

features, such as the first tabbed browsing interface. However, the general population

saw that blue “e” as the Internet. Microsoft had created Internet Explorer simply as

part of the operating system—the part that accessed the Internet—to the point that,

even now, many regular web users are surprised to learn that there are other browser

options.

Disappointed by Internet Explorer’s stagnation, the web development community

took to alternative browsers such as Firefox, and was quick to point out where IE6

was lacking. As Firefox, Apple’s newly developed Safari, and that scrappy upstart

Opera improved their browsers with every release, adding the unimplemented parts

of CSS2.1 and fixing problematic bugs, the knowledge that IE6 wasn’t being improved

to offer the same degree of standards compliance became more and more frustrating

to web designers everywhere.

Everything You Know About CSS Is Wrong! 10

Firefox began to draw closer to Microsoft in the market share race, reaching around

11% market share by July 2007, and showed no signs of slowing down. This increase

was partly due to evangelism from the web community, and a strong marketing

campaign, but also because of the growing number of security problems reported

with Internet Explorer 6. To gain that amount of market share, Firefox’s popularity

had obviously spread beyond the web design community. Microsoft responded by

announcing in February 2005 that a new version of Internet Explorer was to be re

leased. The first beta version of IE7 became available in July 2005—almost four

years after the release of Internet Explorer 6.

Internet Explorer 8 Changes the Game
Microsoft’s announcement that it had resumed development of Internet Explorer

attracted the attention of a grassroots organization formed in support of web stan

dards: the Web Standards Project.4 This standards body saw the opportunity to

lobby Microsoft to include the CSS features needed to make page layout achievable

by anyone, not just persistent experts. Thus, April 12, 2005, saw the birth of the

Acid2 test.5

This test was designed to test CSS1 compliance in browsers, as did the original

Acid Test.6 The original Acid Test had been successful in demonstrating the limit

ations of the browsers of the time, and demonstrating what would be possible if

those limitations were removed. This time, the focus was on CSS2. Håkon Wium

Lie—the test author (and CTO of Opera software)—challenged Microsoft via a ZDNet

article7 to release Internet Explorer 7 as a browser that reached the tested standards.

At that time, no browser fully satisfied the demands of this test, but Internet Explorer

was by far the worst off, results-wise. By the end of that year, Safari, Opera, and the

Linux/KDE browser Konqueror had released versions supporting Acid2.

Internet Explorer 7 was finally released on October 18, 2007—without support for

the features tested by Acid2. Acid2 support was too great a leap for Microsoft to

make in a single release, but it had made significant progress. Some of the truly

4 http://www.webstandards.org/
5 http://www.webstandards.org/action/acid2/
6 http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
7 http://news.zdnet.com/2100-9588_22-5620423.html

http://www.webstandards.org/
http://www.webstandards.org/action/acid2/
http://www.webstandards.org/action/acid2/
http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
http://news.zdnet.com/2100-9588_22-5620423.html
http://news.zdnet.com/2100-9588_22-5620423.html
http://www.webstandards.org/
http://www.webstandards.org/action/acid2/
http://www.w3.org/Style/CSS/Test/CSS1/current/test5526c.htm
http://news.zdnet.com/2100-9588_22-5620423.html

11 The Problem with CSS

bizarre bugs had been fixed, and some useful CSS properties from the CSS2.1 spe

cification were now present in the browser. Whether you love or hate the browser,

the IE7 release meant Microsoft was back in the game—with a browser that made

an attempt to support web standards in a meaningful way.

Meanwhile, developers were actively promoting browsers such as Firefox on their

personal sites. Designers would often add little touches viewable only in favored

non-IE browsers. The question on everybody’s lips was that if Internet Explorer

went back to sleep—now that IE7 had been launched and dealt with some of the

biggest criticisms leveled at IE6—would we ever be able to enjoy some of the inno

vations made possible by a fuller implementation of CSS2.1, never mind CSS3?

Thankfully, the web community didn’t have too long to wait after the release of IE7

before it became apparent that there was another version of Internet Explorer in

development. In December 2007, the existence of Internet Explorer 8 was confirmed

on the IEBlog.8 On December 19, a post to the IEBlog9 confirmed that IE8 rendered

the Acid2 test correctly, letting web developers everywhere know that the CSS2

properties we had long wished for would finally be part of Internet Explorer 8.

Once the first beta of Internet Explorer 8 was made available in March 2008, we

were all able to see it for ourselves—the smiling face of an Acid2 test pass, shown

in Figure 1.5!

8 http://blogs.msdn.com/ie/archive/2007/12/05/internet-explorer-8.aspx
9 http://blogs.msdn.com/ie/archive/2007/12/19/internet-explorer-8-and-acid2-a-milestone.aspx

http://blogs.msdn.com/ie/archive/2007/12/05/internet-explorer-8.aspx
http://blogs.msdn.com/ie/archive/2007/12/05/internet-explorer-8.aspx
http://blogs.msdn.com/ie/archive/2007/12/19/internet-explorer-8-and-acid2-a-milestone.aspx
http://blogs.msdn.com/ie/archive/2007/12/05/internet-explorer-8.aspx
http://blogs.msdn.com/ie/archive/2007/12/19/internet-explorer-8-and-acid2-a-milestone.aspx

Everything You Know About CSS Is Wrong! 12

Figure 1.5. Internet Explorer 8 rendering the Acid2 test correctly

An Internet Explorer that offers near-full support for CSS2 opens up vast possibilities.

Until now, designers who build sites for mainstream users have had to steer clear

of CSS2 features that could make page layout stable, predictable, and a whole lot

easier, just because Internet Explorer didn’t support them. IE8 is a complete game-

changer.

13The Problem with CSS

Over the last five or six years, we’ve seen many of

the handcrafted CSS layouts and templates that we’ve

created for clients transformed back into table-based

layouts for one primary reason: the only people who

get CSS are those that already know it. Invariably,

HTML tables creep back into applications and web

sites because their grid is easy to understand and

doesn’t require what may seem to be endless hours

of fussing about to get things looking just right.

Don’t get me wrong, CSS has helped improve the

accessibility of an incredible number of sites and applications. But using something simpler,

easier to understand, and that is designed specifically for the layout of a page or application

can go a long way towards removing the perceived need for HTML tables for layout. When

this happens, we all win, including people with accessibility needs.10

—Derek Featherstone11

Our Part of the Bargain
For years, we in the web design community have bemoaned the state of CSS support

in Internet Explorer, and the limited (and, in many cases, buggy) set of tools it gave

us. Page layout with CSS was a black art that rarely worked perfectly, predictably,

or reliably, even for its most experienced practitioners.

After Internet Explorer’s long sleep, Microsoft has finally responded with a browser

that passes the Acid2 test, providing us with all the tools we’ve been demanding.

With the imminent release of IE8, Microsoft has fulfilled its part of the bargain; now

it’s time to fulfil ours.

It’s time for us to abandon the arcane CSS layout techniques we worked so hard to

develop while Internet Explorer lay dormant. It’s time for us all to learn and begin

using the new CSS, lest Internet Explorer decide the time is right for another nap.

It’s time to embrace new ways of web design practice, seizing the new features that

IE8 now joins the other major browsers in supporting. It’s time for us to show the

10 Photo courtesy of Aaron Gustafson, 2007
11 http://boxofchocolates.ca/

http://boxofchocolates.ca/
http://boxofchocolates.ca/

Everything You Know About CSS Is Wrong! 14

beginners who are just now learning to design web pages for the first time that CSS

isn’t too hard anymore.

In the next chapter, I’ll show you exactly how one particular CSS feature new in

IE8 suddenly makes the most common CSS page layout tasks a piece of cake.

Chapter2
CSS Table Layout
When released, Internet Explorer 8 will support many new values for the CSS

display property, including the table-related values: table, table-row, and table-

cell—and it’s the last major browser to come on board with this support. This event

will mark the end of complex CSS layout techniques, and will be the final nail in

the coffin of using HTML tables for layout. Finally, producing table-like grid layouts

using CSS will be quick and easy.

Applying table-related display property values to web page elements causes the

elements to mimic the display characteristics of their HTML table equivalents. In

this chapter, I’ll demonstrate how this will have a huge impact on the way we use

CSS for web page layouts. However, before we can understand why CSS tables will

be so useful to us, we need to have a quick look at current popular CSS layout

methods and the problems we have with them.

Everything You Know About CSS Is Wrong! 16

Using Current Layout Techniques

As mentioned in Chapter 1, in order to coerce what effectively consists of a vertical

stack of block elements into a grid-like layout, CSS authors have used absolute po

sitioning or floating to force blocks to sit alongside each other. These techniques,

while thoroughly tested in all modern browsers, are complex and not without

problems. So let’s have a quick review of how to build a simple three-column lay

out—such as the one shown in Figure 2.1—using current techniques.

Figure 2.1. The layout we want to create

Here’s an excerpt of the XHTML markup we’ll be using to create this web page for

the Tidmouth Zoo and Animal Park, showing the major structural elements:

17CSS Table Layout

3col-absolute.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>

⋮ HTML head content…
 </head>
 <body>
 <div id="wrapper">
 <div id="header">

⋮ top graphic banner…
 </div>
 <div id="main">
 <div id="content">

⋮ main article content…
 </div>
 <div id="nav">

⋮ navigation column content…
 </div>
 <div id="extras">

⋮ news headlines column content…
 </div>

 </div>
 <div id="footer">

⋮ page footer content…
 </div>

 </div>
 </body>
</html>

You’ll be able to view the complete code and all supporting files for the page by

downloading the code archive for this book from the SitePoint web site.1

Absolute Positioning
The first technique is to use absolute positioning. This is one of the more common

layout techniques used today, and probably the easiest to implement. This layout

works by making space for the two narrower columns, giving the main content area

a large left margin, then positioning the two columns on top of the margin. We’ll

1 http://www.sitepoint.com/books/csswrong1/

http://www.sitepoint.com/books/csswrong1/
http://www.sitepoint.com/books/csswrong1/

Everything You Know About CSS Is Wrong! 18

focus on the CSS required for the layout of the major structural elements, but the

complete CSS is available in the code archive.

We begin by setting a width for the wrapper div element, setting a height and

background width for the header div, and defining the appearance of the footer

div:

3col-absolute.css (excerpt)

#wrapper {
 position: relative;
 text-align: left;
 width: 760px;
 margin-right: auto;
 margin-left: auto;
}
#header {
 height: 180px;
 background-image: url(images/header.jpg);
 background-repeat: no-repeat;
 padding-bottom: 10px;
}
#footer {
 border-top: 2px solid #d7ad7b;
 background-color: #e7dbcd;
 font-size: 80%;
 padding: 0.2em 10px 0.2em 0;
 text-align: right;
}

The main div is the parent element for our main content area and the two narrow

columns. First, we’ll relatively position the main div and then give the content div

a left margin wide enough to fit the two other columns:

3col-absolute.css (excerpt)

#main {
 position: relative;
}
#content {
 margin-left: 380px;
}

19CSS Table Layout

If we check out the layout in a browser, we’ll see Figure 2.2—the content column

is sitting nicely over to the right-hand side, leaving a 380px left margin, which is

where we’ll place the other two columns.

Figure 2.2. Content column with space left for other columns

Everything You Know About CSS Is Wrong! 20

The final step is to absolutely position the two remaining columns within the space

provided by the content div’s left margin:

3col-absolute.css (excerpt)

#nav {
 position: absolute;
 top: 0;
 left: 0;
 width: 180px;
 background-color: #e7dbcd;
}
#extras {
 position: absolute;
 top: 0;
 left: 190px;
 width: 180px;
}

An absolutely positioned element is positioned relative to its closest positioned

ancestor. In our case, the main div has been relatively positioned, so our two columns

are positioned relative to its position in the page layout. Figure 2.3 shows how the

absolutely positioned three-column layout appears in Firefox.

Problems with This Technique
As you can see in Figure 2.3, the background color of the nav column only extends

as far as the content allows, whereas our original design calls for a full-length

column.

We can circumvent this issue by adding a background image to the container element

of the columns. This technique is described as faux columns, popularized in a well-

known Alistapart article by Dan Cederholm.2

2 http://www.alistapart.com/articles/fauxcolumns

http://www.alistapart.com/articles/fauxcolumns
http://www.alistapart.com/articles/fauxcolumns

21 CSS Table Layout

Figure 2.3. The absolutely positioned layout in Firefox

In the case of our web page, the main div wraps all three columns, so we can add

a background image to that element and position the image to appear behind the

nav column—giving the appearance of a full-height column. The image also includes

the dotted border that appears along the right-hand edge of the extras column. We

achieve this effect in CSS by positioning the image shown in Figure 2.4 as a back

ground image that repeats vertically.

Figure 2.4. The background image

Everything You Know About CSS Is Wrong! 22

All we need to do is add a couple of extra declarations to our style sheet:

3col-absolute.css (excerpt)

#main {
 position: relative;
background-image: url(images/main-bg.gif);
background-repeat: repeat-y;

}

The result is the full-height column shown in Figure 2.5.

Figure 2.5. The finished absolutely positioned layout in Firefox

While all seems fine with the current layout, another problem arises if the content

in the content column ends up shorter than the content of the nav column. As

demonstrated in Figure 2.6, the footer will end up displaying across the content of

all the columns instead of at the bottom of the page.

23CSS Table Layout

The reason for this problem is that absolutely positioning an element will remove

it from the document flow. In our layout above, we’ve removed the two left-hand

columns from the document flow and placed them on top of the other elements.

The content and footer elements remain within the document flow, and are posi

tioned by the browser under the content div.

Figure 2.6. The footer problem

To combat this problem, you can add a top margin to the footer element, or bottom

padding to the content element, to ensure the footer is an appropriate distance

from the content. Neither of these options are particularly desirable; ideally, we’d

like our footer to sit neatly under our content. However, beggars can’t be choosers;

if you can’t guarantee the amount of content in the main content column, you may

need to consider these approaches.

Finally, if you view this layout in Internet Explorer 6, you’ll notice a big problem.

The nav and extras columns aren’t positioned correctly, as you can see in Figure 2.7.

Everything You Know About CSS Is Wrong! 24

Figure 2.7. Layout problem in IE6

If we add the following width declaration to our style sheet, IE6 will be able to

display our layout correctly:

3col-absolute.css (excerpt)

#main {
 position: relative;
width: 100%;

 background-image: url(images/main-bg.gif);
 background-repeat: repeat-y;
}

The above width declaration is in fact redundant, as we’ve also specified widths

for all the columns; however, in this situation, it’s a safe way to correct the layout

in IE6 without affecting the layout in any other browser.

25CSS Table Layout

A Note on Internet Explorer and hasLayout

In Internet Explorer 6 and 7, applying a width declaration to an element causes

the element to “gain a layout.” It’s far beyond the scope of this book to explain

what gaining a layout means and why it’s important in Internet Explorer—to put

it in a nutshell, it means the main div will look after the layout of its child ele

ments if it has a layout.

When an element has a layout, IE6 and 7’s magical hasLayout property is set to

true. There are other ways to trigger this property, including valid actions such

as setting a height or floating the element, as well as those that involve adding

IE-specific properties that don’t validate, such as setting the zoom property to 1.

If the concept of hasLayout is new to you, you might like to have a look at The

SitePoint CSS Reference3—you’ll find IE6 and 7 bugs far easier to deal with, once

you understand the concept.

Floated Layout
The alternative to absolute positioning is a floated layout; by using the CSS float

property, we can cause the column div elements to float alongside each other. We

only need to make these few small changes to our CSS to turn our absolutely posi

tioned layout into a floated layout:

3col-float.css (excerpt)

#nav {
float: left;

 margin-right: 10px;
 width: 180px;
 background-color: #e7dbcd;
}
#extras {
float: left;

 width: 180px;
}
#content {
float: right;

 width: 380px;
}

3 http://reference.sitepoint.com/css/haslayout

http://reference.sitepoint.com/css/haslayout
http://reference.sitepoint.com/css/haslayout
http://reference.sitepoint.com/css/haslayout

Everything You Know About CSS Is Wrong! 26

Using the CSS float property, we’ve specified that the nav and extras columns

will be floated to the left-hand side, while the content column will be floated to

the right-hand side.

Problems with This Technique
If we test the layout after making those changes, we discover the disaster pictured

in Figure 2.8.

Figure 2.8. Floated layout disaster

The biggest problem with floated layouts is the need to clear the floated elements,

to stop elements following a floated element from wrapping around the floated

element. As our columns are now floated—removing them from the document

flow—the main div, having no other content, has no height or width. Consequently,

the background image is no longer visible and the content of the footer is wrapping

around the contents of the columns as it is supposed to do, being a non-floated

27CSS Table Layout

element. There’s more detailed information about floating and clearing in the Site-

Point CSS Reference.4

There are various methods of clearing, but one of the most simple, reliable, and

commonly used methods is to put a redundant div element under the columns that

need to be cleared. First, we add an empty div element with a class value of clear

just before the closing tag of the main div:

3col-float.html (excerpt)

<div id="main">
⋮
<div class="clear"> </div>

</div>

Next we add a CSS rule for the clear class:

3col-float.css (excerpt)

.clear {
 clear: both;
}

The value both clears all the columns, whether floated left or right. Simply clearing

the footer would solve the footer problem but still leave our background missing.

This method enables us to add a footer and have it sit below whichever of the three

columns is the longest, as shown in Figure 2.9.

Adding bits of redundant markup isn’t too much of a problem when you simply

need to clear the three main columns of a layout. However, when using this tech

nique on lots of small areas of a layout, this extra markup does add up to create a

page that’s larger, more complicated, and harder to maintain than what’s ideal.

4 http://reference.sitepoint.com/css/floatclear/

http://reference.sitepoint.com/css/floatclear/
http://reference.sitepoint.com/css/floatclear/
http://reference.sitepoint.com/css/floatclear/

Everything You Know About CSS Is Wrong! 28

Figure 2.9. Floated layout disaster averted

For those interested in other options for clearing CSS floats without extra markup,

a useful rundown of these techniques can be found on Robert Nyman’s blog.5

However, these other techniques can be complicated and have their limitations;

this pragmatist has found that often the most robust method is the one outlined

above—even if it does add a bit of “weight” to the page.

All this talk about clearing floats has also obscured the fact that the background

image is still required to achieve a full-height column background, just as it was

with the absolutely positioned layout. Also, we still require our width declaration

for the main div element to make the layout work in IE6.

As we’ve seen, the current methods of laying out pages do have their problems.

Developers can negotiate many of the problems by combining the two outlined

5 http://www.robertnyman.com/2007/04/12/how-to-clear-css-floats-without-extra-markup-different

techniques-explained/

http://www.robertnyman.com/2007/04/12/how-to-clear-css-floats-without-extra-markup-different-techniques-explained/
http://www.robertnyman.com/2007/04/12/how-to-clear-css-floats-without-extra-markup-different-

29CSS Table Layout

methods in one layout—perhaps by using a floated main layout, but employing

positioning for internal elements. However, just to achieve the relatively simple

and common layout of three columns with a footer does require a good understanding

of CSS positioning and the issues involved.

It’s no wonder that there’s a very vocal contingent within the web design community

who have maintained throughout the rise of CSS-based layout that sticking with

HTML tables is the easiest way to lay out a web page—just for the luxury of being

able to set a background image on a column and have it extend all of the way down

the page!

What is needed is a CSS technique that provides the simplicity of grid layouts with

HTML tables, without having to use table markup.

Using CSS Tables
CSS tables solve all the layout issues we’ve explored here regarding positioning

and backgrounds in modern browsers. Specifying the value table for the display

property of an element allows you to display the element and its descendants as

though they’re table elements. The main benefit of CSS table-based layouts is the

ability to easily define the boundaries of a cell so that we can add backgrounds and

so on to it—without the semantic problems of marking up non-tabular content as a

HTML table in the document.

Before we dive in and discover how this works, let’s create an instant demonstration.

First, we make a few small changes to our markup:

3col-csstable.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>

⋮ HTML head content…
 </head>
 <body>
 <div id="wrapper">
 <div id="header"></div>
 <div id="main">
 <div id="nav">

Everything You Know About CSS Is Wrong! 30

⋮ navigation column content…
 </div>

 <div id="extras">

⋮ news headlines column content…
 </div>

 <div id="content">

⋮ main article content…
 </div>

 </div>

 </div>

 </body>

</html>

We’ve rearranged the HTML source so that the source order matches the content

display order. The nav column comes first, followed by the extras column, and

then the content column.

We also need to apply the following CSS modifications:

3col-csstable.css (excerpt)

#main {
display: table;

 border-collapse: collapse;
}
#nav {
display: table-cell;

 width: 180px;
 background-color: #e7dbcd;
}
#extras {
display: table-cell;

 width: 180px;
 padding-left: 10px;
 border-right: 1px dotted #d7ad7b;
}
#content {
display: table-cell;

 width: 380px;
 padding-left: 10px;
}

31 CSS Table Layout

The fresh CSS table-based layout that we’ve just created will display correctly in

Internet Explorer 8 as well as in Firefox, Safari, and Opera; Figure 2.10 shows how

it looks in IE8.

Figure 2.10. The CSS table-based layout in Internet Explorer 8

Our three-column equal-height layout is achieved without having to resort to tricks

like faux columns using background images, worrying about positioning, or having

to clear floats—revolutionary!

How Does This Work?
The display property allows you to specify a range of table-related values in order

to make elements display as though they were table elements. The available display

values are:

table makes the element behave like a table element

Everything You Know About CSS Is Wrong! 32

table-row	 makes the element behave like a table row (tr) element

table-cell	 makes the element behave like a table cell (td) element

table-row-group	 makes the element behave like a table body row group

(tbody) element

table-header-group	 makes the element behave like a table header row group

(thead) element

table-footer-group	 makes the element behave like a table footer row group

(tfoot) element

table-caption	 makes the element behave like a table caption element

table-column	 makes the element behave like a table column (col) ele

ment

table-column-group	 makes the element behave like a table column group

(colgroup) element

Hang on … Aren’t Tables for Layout Wrong?

Perhaps you’re feeling slightly uncomfortable about the example we’ve just

seen—after all, haven’t web standards advocates like myself been insisting for

years that you shouldn’t be using tables for layout?

The table element in HTML is a semantic structure: it describes what data is.

Therefore, you should only use the table element if the data you are marking up

is tabular—for example, a table of financial information. If it would normally be

stored in a spreadsheet on your computer, it probably needs marking up as a table

in HTML.

The table value of the display property, on the other hand, is simply an indi

cation of how something should look in the browser—it has no semantic meaning.

Using a table element for your layout tells a user-agent, “This data is tabular.”

Using a bunch of divs that have the display property set to table and table-

cell says nothing to that user-agent other than asking it to render them visually

in a certain way, if it’s capable of doing so.

33CSS Table Layout

Of course, we should also take care not to use display: table; on a bunch of

div elements when what we really have is tabular data!

Our simple example above makes our layout behave as if it were a single row table

with three cells; it doesn’t take much imagination to realize the potential of this

technique for creating complex grid layouts with ease.

Anonymous Table Elements
CSS tables happily abide by the normal rules of table layout, which enables an ex

tremely powerful feature of CSS table layouts: missing table elements are created

anonymously by the browser. The CSS2.1 specification states:6

Document languages other than HTML may not contain all the ele

ments in the CSS 2.1 table model. In these cases, the “missing”

elements must be assumed in order for the table model to work.

Any table element will automatically generate necessary anonymous

table objects around itself, consisting of at least three nested objects

corresponding to a “table”/“inline-table” element, a “table-row”

element, and a “table-cell” element.

What this means is that if we use display: table-cell; without first containing

the cell in a block set to display: table-row;, the row will be implied—the browser

will act as though the declared row is actually there.

Let’s use a simple example to investigate this feature: the three-cell grid layout

shown in Figure 2.11. We’ll look at three different HTML markup samples that will

result in the same visual layout.

6 http://www.w3.org/TR/CSS21/tables.html#anonymous-boxes

http://www.w3.org/TR/CSS21/tables.html#anonymous-boxes
http://www.w3.org/TR/CSS21/tables.html#anonymous-boxes

Everything You Know About CSS Is Wrong! 34

Figure 2.11. A simple grid layout

First, here’s a sample of markup that can be used to generate the three-cell layout:

<div class="container">

 <div class="row">

 <div class="cell">CELL A</div>

 <div class="cell">CELL B</div>

 <div class="cell">CELL C</div>

 </div>

</div>

A set of nested div elements may not seem so very exciting, but hang in there, we’re

building to something. The CSS is also very simple:

.container {

 display: table;

}

.row {

 display: table-row;

}

.cell {

 display: table-cell;

 width: 100px;

 height: 100px;

 border: 1px solid blue;

 padding: 1em;

}

The CSS above sets the element with a class of container to display: table, an

element with a class of row to display: table-row, and an element with a class

35CSS Table Layout

of cell to display: table-cell, as well as giving it a border and a height and

width.

This HTML markup above explicitly creates elements for the table and row surroun

ding the three cells, using all of the CSS classes that we’ve created. However, we

can reduce the markup, removing the row div element like so:

<div class="row">

 <div class="cell">CELL A</div>

 <div class="cell">CELL B</div>

 <div class="cell">CELL C</div>

</div>

Even though the above markup is missing the element representing the table row,

the row will be created by the browser as an anonymous box. We can reduce the

markup even further:

<div class="cell">CELL A</div>

<div class="cell">CELL B</div>

<div class="cell">CELL C</div>

The above markup is missing the elements representing the table row and the table;

these are both created as anonymous boxes by the browser. Even with the elements

missing in markup, the end product, shown in Figure 2.11, is the same.

Rules for the Creation of Anonymous Table Elements
These anonymous boxes are not created by magic, and they won’t automatically

make up for any deficiencies in your HTML code. To be able to take full advantage

of anonymous table elements, you’d best become familiar with the rules for their

creation. If a layout calls for an implied element, the browser will create an anony

mous box and set its CSS display property to one of table, table-row, or table-

cell, depending on the context.

If you have an element that has been set to display: table-cell; but its immediate

parent (the containing element) is not set to table-row, an anonymous box set to

table-row will be created to enclose the cell and any subsequent adjacent sibling

elements that are also set to table-cell, until it encounters an element not set to

Everything You Know About CSS Is Wrong! 36

table-cell, so they’ll all end up in the same row. This is the case with the following

markup:

<div class="cell">CELL A</div>

<div class="cell">CELL B</div>

<div class="cell">CELL C</div>

<div>Not a cell</div>

The three div elements above that have a class of cell are set to display: table-

cell; and will appear side by side as though they’re in a single row table; the last

div element won’t be included in the row, because it isn’t set to display: table-

cell;.

If an element is set to display: table-row; while its parent element isn’t set to

table (or table-row-group), an anonymous box set to display: table; will be

created to enclose the row, and any subsequent adjacent sibling elements will be

set to display: table-row. Also, if the element with display set to table-row

lacks an element set to table-cell directly within it, an anonymous box set to

table-cellwill be created to enclose all the elements within the table-row element.

Consider the following markup:

<div class="row">ROW A</div>

<div class="row">ROW B</div>

<div>Not a row</div>

The two div elements above with a class of row are set to display: table-row;

and will appear one under the other as though they’re rows in the same single-

column table. The last div element won’t be included in the implied table.

Similarly, if an element is set to any of the other display values that match elements

which would naturally exist directly inside a parent table element such as table-

row-group, table-header-group, table-footer-group, table-column, table-

column-group, and table-caption, but does not have a parent set to display:

table;, an anonymous box set to table will be created to enclose the element and

any subsequent adjacent sibling elements with suitable display values.

37CSS Table Layout

Other Useful Table Properties
When using CSS tables, because the elements conform to the normal rules for table

layout, you can also apply other table-related CSS properties. Here’s a few that can

come in handy:

table-layout

Setting the table-layout to fixed tells the browser that the table should render

with the fixed algorithm for formatting the cell widths. This is useful in a fixed-

width layout, such as the one we created earlier.7

border-collapse

Just as with regular HTML tables, you can use the border-collapse property

to specify that your table layout elements use collapsed (with the value collapse)

or separated (with the value separate) borders between the cell elements.

border-spacing

If you specify the value separate for the border-collapse property, you can

then use the border-spacing property to specify the width of the space between

the cell element borders.

Making a Perfect Grid
Making a grid of equal height elements has always been a challenge using traditional

CSS layout techniques, but it’s something to which CSS tables are well suited. For

example, if we want to create an image gallery comprising a grid of images with

captions, such as the one shown in Figure 2.12, using a CSS table renders the task

simple.

7 You can read more about how the table layout algorithms work in the SitePoint CSS reference, available

at http://reference.sitepoint.com/css/tableformatting.

http://reference.sitepoint.com/css/tableformatting

Everything You Know About CSS Is Wrong! 38

Figure 2.12. The gallery grid demo in Internet Explorer 8

The markup for our gallery is as follows:

csstable-grid.html (excerpt)

<div class="grid">
 <div class="row">
 <div class="image">

 <p>A lily in the gardens of The Vyne Country House</p>

 </div>
 <div class="image">

 <p>Fuchsia plant in my garden</p>

 </div>
 </div>
 <div class="row">
 <div class="image">

39CSS Table Layout

<img src="images/photo2.jpg"

alt="A crazy looking Allium flower" />

 <p>A crazy looking flower</p>

 </div>

 <div class="image">

 <img src="images/photo4.jpg"

alt="A Robin sitting on a fence" />

 <p>This robin has been visiting our garden over the summer.

 He is very friendly and doesn't seem to be too worried

 about sharing the garden with us.</p>

 </div>

 </div>

</div>

Each gallery image cell is comprised of an img element and a caption in a p element

contained within a div element with a class of image. Each row is contained

within a div element within a class of row, and the whole gallery is contained

within a div with a class of grid.

The CSS required to lay out our grid is simple:

csstable-grid.css (excerpt)

.grid {
 display: table;
 border-spacing: 4px;
}
.row {
 display: table-row;
}
.image {
 display: table-cell;
 width: 240px;
 background-color: #000;
 border: 8px solid #000;
 vertical-align: top;
 text-align: center;
}
.image p {
 color: #fff;
 font-size: 85%;

Everything You Know About CSS Is Wrong! 40

text-align: left;

 padding-top: 8px;

}

The above CSS is fairly straightforward, but you might notice how we’ve made use

of the border-spacing property to control the spacing of our gallery image cells.

Making a grid layout couldn’t be easier—and we’ve avoided any headaches over

equal heights or fragile layouts made with floated elements.

Essentially, most of what we do with CSS layout

nowadays is a total hack. We’re using floats, and

absolute positioning, and negative margins, and any

other tricks we happen to stumble upon to produce

basic designs. Designs that have been essential to

visual design for as long as designers can remem

ber—columns, sidebars, pullquotes. Basic layout.

Lining this up with that.

Even though the use of HTML tables for layout was

a shortsighted and misguided move, it did match the

way that we lay out our pages more logically. And,

visually, they are a better match for the layout of

pages than using a bunch of nested floats. The only

problem is, they’re evil. That’s why I can’t wait to use CSS table layout for laying out content.

Because it’s not a hack. Because it does what we want in a logical way; in a way that it was

intended for us to use.

Taking a look at the CSS I employed to lay out forms in a consistent manner, I could have

avoided a whole bunch of headaches if CSS table layout was available. The rigid structure

of forms—titles, columns, fields—is a perfect match for a grid structure—a table structure—so

why can’t we lay it out in a table-like manner? I know that many people have succumbed to

using HTML tables out of the frustrations involved in wrangling the CSS for a form. So I, for

one, can’t wait to see how CSS table layout will transform the way we approach page layout

on the Web.

—Cameron Adams8

8 http://www.themaninblue.com/

http://www.themaninblue.com/
http://www.themaninblue.com/

41 CSS Table Layout

Putting Principles into Practice

This chapter has presented a basic primer to the usage of the table-related values

of the CSS display property—finally, a source of relief for all those struggling to

construct reliable grid-based layouts using CSS! We began by examining the current

layout options of absolute positioning and floated elements, and the many issues

to consider when implementing them. We then had an introduction to the

straightforward approach to layout provided by CSS tables. We explored the various

table-related display values available, looked at the nature of anonymous table

elements, and discovered some other useful CSS table properties.

The next step is up to you—with any luck, you have realized the potential CSS

tables provide for creating grid layouts, and are now bursting with curiosity! Using

the knowledge gained in this chapter, you’re all set up to begin experimenting with

your own CSS table layouts and create new techniques.

Now, we’ll move on to consider some of the most common questions about CSS

table layouts in the next chapter, and provide concrete solutions.

Chapter3
CSS Table Solutions
As we’ve seen in the previous chapter, using table display properties offers a whole

new bag of tricks to the designer. This approach can simplify CSS layout and allow

exciting new opportunities. If questions are now springing into your mind, this

chapter will help to provide some answers and help you on your way to understand

ing the potential of CSS table layouts.

Can CSS tables be used to create
flexible layouts?
The examples we’ve seen so far have been concerned with fixed-width layouts. We

can also use CSS tables to create the flexible layouts—columns that resize to the

width of the user’s screen—often referred to as liquid layouts.

If we set the containing div to 100%, the table will take up the whole width of the

parent—in the case of a liquid layout, the parent will be the viewport. In a multi-

column layout, we can then set our side columns to have either a fixed width in

pixels, ems, or a percentage width, but leave the main column without a specified

width so that it expands to fill the rest of the space.

Everything You Know About CSS Is Wrong! 44

A few simple changes can turn our fixed-width layout into a liquid layout with two

fixed sidebars and a variable-width main content area:

3col-csstable-liquid.css (excerpt)

#wrapper {
⋮
width: 100%;

}
#header {
 height: 180px;
 background-image: url(images/header.jpg);
 background-repeat: no-repeat;
margin-bottom: 10px;
background-color: #d5b87e;

}
#main {
 display: table;
 border-collapse: collapse;
width: 100%;

}
#content {
 display: table-cell;
padding: 0 50px 0 10px;

}

This exercise will create the liquid three-column layout shown in Figure 3.1. To

achieve the main structure of this layout, I simply set the wrapper div element to

100%, the width for the main div element to 100%, and removed the width property

on the content cell—everything else was just tweaking to improve the page’s appear

ance as its width became variable.

45CSS Table Solutions

Figure 3.1. A liquid three-column CSS table layout in Opera 9.5

Can CSS tables be nested?
Table display with CSS isn’t only useful for complete page layouts; it can also help

with the layout of smaller elements within larger layouts. Let’s take a look at an

example of nesting a CSS table.

We now want to convert the extras column into a promotional box in the middle

of the content area, to achieve the result shown in Figure 3.2.

Everything You Know About CSS Is Wrong! 46

Figure 3.2. Nested CSS tables in Safari 3.1

We could attempt to do this with floated elements. However, using floats to create

a two-column box with borders and matching column heights is tricky. With CSS

tables, though, this task is as simple as it ought to be!

I’ve removed the middle extras column from the markup and increased the width

of the content area in our CSS, in order to convert it to a two-column layout. Here’s

the markup for the new promo block:

47CSS Table Solutions

nested-csstable.html (excerpt)

<div class="promo">
 <div class="arrivals">
 <h3>New arrivals!</h3>
 <p>Meet our new arrivals - our baby rhino and giraffe are

 drawing the crowds this season.</p>
 </div>
 <div class="news">
 <h3>Latest news</h3>

 Sed nec erat sed sem molestie congue.

Cras lacus sapien,
 ultrices ac…

 Aliquam egestas arcu a massa. In hendrerit

 odio eget lectus…

 </div>
</div>

With the above markup added to the source within the main column, all we need

to do is apply the following CSS:

nested-csstable.css (excerpt)

.promo {
 display: table;
 width: 560px;
 border: 2px solid #5a3811;
 border-collapse: collapse;
 margin-bottom: 1em;
}
.promo .arrivals {
 width: 160px;
 display: table-cell;
 border: 2px solid #5a3811;
 padding: 10px;
 background-color: #e7dbcd;
}

Everything You Know About CSS Is Wrong! 48

.promo .news {

 width: 340px;

 display: table-cell;

 border: 2px solid #5a3811;

 padding: 10px;

}

.promo h3 {

 font-size: 110%;

 font-weight: normal;

 color: #5a3811;

}

.promo ul {

 list-style: none;

}

.promo p, .promo li {

 font-size: 75%;

}

This small two-column box works in exactly the same way as the main layout. We

set the promo div element to display: table; and the two div containers, news

and arrivals, to display: table-cell;. We’re then free to add any borders and

background colors that we like.

That’s all there is to it! We’ve achieved a two-column promotional nested block

element without having to worry about creating pretend equal-height columns using

background images, or clearing floats.

How can I position elements
within a table cell?
A common practice when dealing with positioning within a block element is to

create a new positioning context by setting the position property of the block ele

ment to relative. This allows us to position elements within the block, relative to

its top, right, bottom, or left.

However, when setting position: relative; on an element that also has a table-

related display value specified, the positioning is ignored. This behavior has pre

49CSS Table Solutions

viously been documented by Alastair Campbell,1 who points out in his article that

the CSS 2.1 spec is not clear on what browsers should do when an element displaying

as a table element is relatively positioned:2

The effect of position: relative on table-row-group, table-

header-group, table-footer-group, table-row, table-column

group, table-column, table-cell, and table-caption elements is

undefined.

This behavior is, in my opinion, the biggest problem with using CSS tables for layout.

Let’s say, for example, that we position an “All news items” link at the bottom-right

corner of the promo box that we developed in the section called “Can CSS tables

be nested?”, as depicted in Figure 3.3.

Figure 3.3. Correctly positioned “All news items” link

In this situation, I would commonly add position: relative to the containing

box in order to create a new positioning context, and then use absolute positioning

to place the link in the bottom-right corner. However, in the case of CSS tables, the

containing element is one that displays as a table cell and the relative positioning

has no effect; it doesn’t create the required positioning context.

1 http://alastairc.ac/2006/06/css-tables-verses-layout-tables/
2 http://www.w3.org/TR/CSS21/visuren.html#positioning-scheme

http://alastairc.ac/2006/06/css-tables-verses-layout-tables/
http://www.w3.org/TR/CSS21/visuren.html#positioning-scheme
http://alastairc.ac/2006/06/css-tables-verses-layout-tables/
http://www.w3.org/TR/CSS21/visuren.html#positioning-scheme

Everything You Know About CSS Is Wrong! 50

Here’s the markup for our promotions box with the added “All news items” link:

csstable-position-01.html (excerpt)

<div class="promo">
 <div class="arrivals">
 <h1>New arrivals!</h1>
 <p>Meet our new arrivals - our baby rhino and giraffe are

 drawing the crowds this season.</p>
 </div>
 <div class="news">
 <h1>Latest news</h1>

 Sed nec erat sed sem molestie congue.

Cras lacus sapien,
 ultrices ac...

 Aliquam egestas arcu a massa. In hendrerit

 odio eget lectus...

<li id="allnewslink">
 All news items

 </div>
</div>

Our CSS hasn’t changed much since the section called “Can CSS tables be nested?”,

the only difference being that we’ve added a rule for the new link:

csstable-position-01.css (excerpt)

#allnewslink {
 position: absolute;
 bottom: 0;
 right: 0;
 padding: 0;
}

Predictably, our new link appears at the bottom-right of the viewport as shown in

Figure 3.4. If the positioning context is not provided by the containing block element,

our absolutely positioned link will either be:

51 CSS Table Solutions

■	 positioned at the bottom right of the nearest positioned ancestor element—the

next parent, or the parent’s parent (and so on) of the containing block that has

position set to absolute or relative

■	 positioned at the bottom right of the viewport

There’s no straightforward approach to fixing this problem using CSS tables, but

we can take one of two simple approaches to provide a positioning context: add a

positioned child block element to the cell, or wrap the table in a positioned element.

Figure 3.4. The link is positioned relative to the viewport and not the cell

To be able to add a child block element, we must be able to specify the height and

width of the element. Let’s first add the child element to our markup:

csstable-position-02.html (excerpt)

<div class="promo">
 <div class="arrivals">
 <h1>New arrivals!</h1>
 <p>Meet our new arrivals - our baby rhino and giraffe are

 drawing the crowds this season.</p>
 </div>
 <div class="news">

<div class="news-inner">
 <h1>Latest news</h1>

 Sed nec erat sed sem molestie congue.

Cras lacus sapien,

Everything You Know About CSS Is Wrong! 52

ultrices ac...

 Aliquam egestas arcu a massa. In hendrerit

 odio eget lectus...

 <li id="allnewslink">

 All news items

</div>

 </div>

</div>

A small modification to our CSS and the position of the link is corrected:

csstable-position-02.css (excerpt)

.promo .news {
 width: 340px;
height: 125px;

 display: table-cell;
 border: 2px solid #5a3811;
}
.promo .news-inner {
 position: relative;
 width: 340px;
 height: 125px;
 padding: 10px;
}

In the above CSS, we’ve had to do a little tweaking. We created a new rule for the

news-inner div element with the all-important position: relative; declaration,

specified a height and width matching the height and width of the cell, and moved

the padding declaration from the cell element to the new child element. The result

is the one depicted previously in Figure 3.3.

Since we’ve been able to specify a height for the inner child element, we can position

the link at the bottom of the cell, but what if we can’t predict how many news items

will appear in that list on any given day? If we can’t predict the height of the element,

we can make a slight adjustment to the CSS:

53CSS Table Solutions

csstable-position-02.css (excerpt)

.promo .news-inner {
 position: relative;
 width: 340px;
min-height: 125px;

 padding: 10px;
}

Instead of specifying a height, we’ve changed the property to min-height. This

change will allow the height of the cell to grow and maintain the position of the

link.

To support a flexible-height table, we can also try another approach: wrapping the

table. Let’s change the markup in such a way that the whole layout is wrapped in

a block element (and add a few more news items while we’re at it):

csstable-position-03.html (excerpt)

<div class="promo-outer">
 <div class="promo">
 <div class="arrivals">
 <h1>New arrivals!</h1>
 <p>Meet our new arrivals - our baby rhino and giraffe are

 drawing the crowds this season.</p>
 </div>
 <div class="news">
 <h1>Latest news</h1>

⋮ existing news items…
Sed nec erat sed sem molestie congue.

Cras lacus sapien,
 ultrices ac...

 Aliquam egestas arcu a massa. In hendrerit

 odio eget lectus...

 <li id="allnewslink">
 All news items

 </div>

 </div>
</div>

Everything You Know About CSS Is Wrong! 54

If we set the width of the promo-outer div element correctly, we’ll be able to use

it as the positioning element for our link. Here are the changes to the CSS:

csstable-position-03.css (excerpt)

.promo-outer {
 position: relative;
 width: 560px;
}
.promo .news {
 width: 340px;
 display: table-cell;
 border: 2px solid #5a3811;
padding: 10px 10px 20px 10px;

}
#allnewslink {
 position: absolute;
bottom: 2px;

 right: 12px;
 padding: 0;
}

Once again, all we’ve had to do is a little tweaking. We set the outer element width,

adjusted the padding of the news cell to allow some additional bottom padding to

provide space for the link, and adjusted the position of the link (making an allowance

for the two-pixel border on the cell). Thus our desired layout is achieved, no matter

how many news items appear in the list, as we can see in Figure 3.5.

55CSS Table Solutions

Figure 3.5. Flexible positioning for the “All news items” link

You’ve probably realized that both of the above approaches are situation-specif

ic—they’re not generic solutions. The lack of an available positioning context in

elements that have a table-related display value is a significant problem, which

will need to be solved on a case-by-case basis if it arises in your layouts.

Do CSS tables support the colspan and
rowspan attributes?
If you’ve had experience building layouts using HTML tables, you’ll be familiar

with the use of the colspan and rowspan attributes of the td element. These attributes

offer complex possibilities to a simple table, enabling cells to span columns and

rows.

CSS tables lack any concept of row or column spanning, making it trickier to use

one single layout structure than what might have been possible when using HTML

tables. However, similar layouts can be achieved by using nested CSS tables.

In this example, we use nested tables to simulate a three-column layout where the

two outer columns appear to span both rows of the table. Look at the markup; you

can see that the layout is basically a three-column table layout with a second table

nested within the middle column:

Everything You Know About CSS Is Wrong! 56

csstable-nested-layout.html (excerpt)

<div id="nav">LEFT</div>
<div id="content">
 <div class="row">
 <div class="inner-content">A</div>
 <div class="inner-content">B</div>

 </div>
 <div class="row">
 <div class="inner-content">C</div>
 <div class="inner-content">D</div>

 </div>
</div>
<div id="extras">RIGHT</div>

To transform the div elements in the above markup into columns, with the addition

of some padding and borders for clarity, we apply the following CSS:

csstable-nested-layout.css (excerpt)

#nav, #extras {
 display: table-cell;
 width: 100px;
 padding: 1em;
 border: 1px solid red;
}
#content {
 display: table-cell;
 padding: 1em;
 border: 1px solid red;
}
.row {
 display: table-row;
}
.inner-content {
 display: table-cell;
 width: 100px;
 height: 100px;
 padding: 1em;
 border: 1px dashed #666;
}

57CSS Table Solutions

The nav, content, and extras div elements become cells in the outer table; the div

elements with the class row become the rows of the inner table in the middle

column. The result is pictured in Figure 3.6.

Figure 3.6. Nested CSS tables

Also, you may have noticed how we took advantage of anonymous table elements

in the example above—there’s no element displaying as a table element for the inner

or outer table. We’ve been able to make use of anonymous table elements as we’ve

specified the widths of the cells. If we wanted a full-width table, however, we’d

have to add an element with display: table;, so that we could then apply a width

of 100%; we can’t specify any CSS for anonymous elements.

It’s also possible to simulate row and column spanning using absolute positioning

of table cells in many cases. In this example, we’ll make the second cell of the first

row of a table span both rows of the table (as if it had a rowspan of 2). First, let’s

take a look at the HTML code:

csstable-rowspan.html (excerpt)

<div class="tablewrapper">
 <div class="table">
 <div class="row">
 <div class="cell">
 Top left

 </div>
 <div class="rowspanned cell">

Everything You Know About CSS Is Wrong! 58

Center

 </div>

 <div class="cell">

 Top right

 </div>

 </div>

 <div class="row">

 <div class="cell">

 Bottom left

 </div>

 <div class="empty cell"></div>

 <div class="cell">

 Bottom right

 </div>

 </div>

 </div>

</div>

You’ll notice that we’ve wrapped our table div in an extra div with a class of

tablewrapper. This extra div is needed to provide a CSS positioning context—which

we create by giving it relative positioning:

csstable-rowspan.css (excerpt)

.tablewrapper {
 position: relative;
}

According to the CSS spec, we should be able to simply apply relative positioning

to the table div, but current browsers don’t seem to support this.

Now, we can use absolute positioning to control the size and position of the div

with class rowspanned cell:

csstable-rowspan.css (excerpt)

.cell.rowspanned {
 position: absolute;
 top: 0;
 bottom: 0;
 width: 100px;
}

59CSS Table Solutions

With the top and bottom properties both set to zero, the cell will stretch to fill the

full height of the table, simulating a row span. Depending on the needs of your

layout, you could use different values for top and bottom, or even set the cell’s

height directly to achieve other row-spanning layouts.

You also need to specify the width of the cell. Usually, the easiest way to do this

is just to set its width property, but depending what you know of the dimensions

of surrounding table cells, you could also do this by setting left and right.

Since the positioned cell doesn’t actually span multiple rows of the table, the table

must still contain a corresponding cell in each of the other rows. These cells are

simply empty placeholders, though; note the div with class empty cell in the

HTML code above. The function of this cell is to hold open the space that will be

occupied by the “spanned” cell, so we must ensure its width matches the width we

specified for the rowspanned cell:

.cell.empty {

 width: 100px;

}

And that’s all there is to it! To complete the style sheet for this example, we need

only set the appropriate display property values, and add some borders so we can

see what’s going on:

csstable-rowspan.css (excerpt)

.tablewrapper {
 position: relative;
}
.table {
 display: table;
}
.row {
 display: table-row;
}
.cell {
 border: 1px solid red;
 display: table-cell;
}
.cell.empty

Everything You Know About CSS Is Wrong! 60

{

 border: none;

 width: 100px;

}

.cell.rowspanned {

 position: absolute;

 top: 0;

 bottom: 0;

 width: 100px;

}

In essence, by using absolute positioning we are telling the browser, “Let me handle

the layout of this table cell—you take care of the rest.” The results can be seen in

Figure 3.7.

Figure 3.7. A cell with a simulated rowspan

What’s going wrong with these
anonymous table elements?
While anonymous table elements can be useful, they can also cause frustration—after

all, we have no control over them. Anonymous elements are predictable most of

the time, but you may find your expectations are not met and your layout is disrup

ted. For example, the browser might create an anonymous cell rather than the row

you were expecting.

If you’re having trouble getting your page layout to behave, you might like to play

it safe and create actual elements in place of anonymous elements. If we want to

61 CSS Table Solutions

play it safe with our Tidmouth Zoo layout, we add the div element that will act as

the table row:

<body>

 <div id="wrapper">

 <div id="header"></div>

 <div id="main">

<div class="inner">

 <div id="nav">

⋮ navigation column content…
 </div>

 <div id="extras">

⋮ news headlines column content…
 </div>

 <div id="content">

⋮ main article content…
 </div>

</div>

 </div>

 </div>

</body>

We then need to add one more rule to our CSS:

#main .inner {

 display: table-row;

}

Anonymous Elements in Firefox

A long-standing bug in Firefox3 that affects the creation of anonymous boxes can

mean that, in some circumstances, your display doesn’t load as expected, and can

also cause problems if you want to modify elements using JavaScript. You may

find that your layout loads with one column dropped below the others, but will

snap into position when you refresh the page. If this is the case, you may have to

add an actual element with display set to table-row or table-row-group

where an element would otherwise be implied.

3 https://bugzilla.mozilla.org/show_bug.cgi?id=148810

https://bugzilla.mozilla.org/show_bug.cgi?id=148810
https://bugzilla.mozilla.org/show_bug.cgi?id=148810

Everything You Know About CSS Is Wrong! 62

Another way that anonymous tabled elements might be confusing is if you have a

different number of cell elements in each row. Tables, of course, require the same

number of cells in each row; if not, the browser will attempt to display the table as

best it can; often a less than optimal result.

Consider the following markup for a simple three-row grid as an example:

<div id="head">TOP</div>

<div id="content">

 <div class="cell">A</div>

 <div class="cell">B</div>

 <div class="cell">C</div>

</div>

<div id="foot">BOTTOM</div>

We apply the following CSS to the above markup:

#head, #content, #foot {

 display: table-row;

 background-color: #ccc;

}

.cell {

 display: table-cell;

 width: 100px;

 height: 100px;

 border: 1px dashed #000;

 padding: 1em;

}

Our intention is to create a three-row display with three columns within the middle

row, but the result is something completely different, as Figure 3.8 shows.

63CSS Table Solutions

Figure 3.8. A problem with anonymous table elements

According to the section called “Rules for the Creation of Anonymous Table Ele

ments” in Chapter 2, if a row element has no child elements set to display as a table

cell, a single anonymous cell element will be created to contain all of the contents

of the row element. This means that our table has a single cell in the top and bottom

row, but three cells in between.

One possible solution is to add another element to the middle row to encompass

the three cells in that row and act as a nested table, like so:

<div id="head">TOP</div>

<div id="content">

<div class="content-wrap">

 <div class="cell">A</div>

 <div class="cell">B</div>

 <div class="cell">C</div>

</div>

</div>

<div id="foot">BOTTOM</div>

We then need to apply the following CSS:

.content-wrap {

 display: table;

}

Everything You Know About CSS Is Wrong! 64

The result of our changes can be seen in Figure 3.9. There are many other ways to

change the markup in order to provide enough layout context so that the browser

can display your layout as you intended, but I’ll leave it up to your experimentation!

Figure 3.9. Our layout is fixed

Making use of anonymous table elements is a great way to reduce the amount of

markup required for your layout—but make sure to test it to ensure that the anonym

ous elements are being created as you expect.

Do I have to change the source order?
If you’re arranging columns, your source order needs to match the order in which

you want your columns displayed. Our original three-column layout from Chapter 2

required us to move the nav and extras div elements before the content div in the

source, so that the columns would display in that order.

However, there is a situation where we can take advantage of the nature of table

layout and still be able to control the source order of your content. If your site places

navigation and other elements at the top of the page layout, and a footer at the bottom

of the page layout, you can make use of the display property values table-header

group and table-footer-group.

For example, consider the following hypothetical markup:

 <div id="content">

 <div id="article-body">

⋮ main page article body content…

65CSS Table Solutions

</div>

 <div id="article-supporting-info">

⋮ article supporting content…
 </div>

 </div>

 <div id="article-footer">

⋮ article footer content…
 </div>

 <div id="navigation">

⋮ web site navigation links…
 </div>

Our article content appears first in the source, followed by the article footer, and

then the site navigation. To make the navigation display above the article content

when our page is viewed in a browser, all we have to do is apply this CSS:

#content {

 display: table-row-group;

}

#article-body {

 display:table-cell;

}

#article-supporting-info {

 display:table-cell;

}

#footer {

 display:table-footer-group;

}

#navigation {

 display:table-header-group;

}

By treating the navigation div element as the table header, the content div as the

table body, and the footer div as the table footer, the browser will display the

elements in the order that we want. Some work will still be required within those

main structural elements—you may need nested CSS tables—but this solution is

useful if it suits your desired layout.

Everything You Know About CSS Is Wrong! 66

Is the source order really a problem?

Much of the debate since the beginnings of CSS layout has been concerned with

the subject of source order. The ability to order the source of your document in a

way that presents the main content before navigation and secondary content is

widely regarded to be beneficial in two main areas: search engine optimization

(SEO) and accessibility.

In terms of SEO, it’s often thought that putting your most important keyword-rich

content near the top of the document in the source will help it to be ranked higher

for those keywords. Regarding accessibility, a commonly held assumption is that

if a person is navigating your site using a screen reader and you have a large menu

that’s the same at the top of each page, it will be beneficial to organize the source

in such a way that the content is always the first area reached by a screen reader

user.

The truth is, however, that source order has little impact on either of those areas.

Of far more importance than source order is a proper heading structure: a properly

nested sequence of heading tags (<h1> to <h6>) to clearly identify the page topic

and sections.

Heading tags are automatically discovered and prioritized by search engines. A well

thought-out heading structure will allow your page content to be properly indexed.

Research presented by Roger Hudson, Russ Weakley, and Lisa Miller at the OZeWAI

Conference on 9th December, 2005, concluded that “the source order of a web page

is likely to be of little relevance to the majority of screen reader users.”4 In addition,

it confirmed the importance of structural labels and advocated the provision of skip

links—simple links at the top of a document that allow the user to jump to the main

content area, offering the choice of whether to go through the menu or to hop over

it. The official web site of the Web Standards Project5 uses skip links to great effect;

you can see one at the top of the screen pictured in Figure 3.10.

4 http://usability.com.au/resources/source-order.cfm
5 http://www.webstandards.org/

http://usability.com.au/resources/source-order.cfm
http://usability.com.au/resources/source-order.cfm
http://www.webstandards.org/
http://usability.com.au/resources/source-order.cfm
http://www.webstandards.org/

67CSS Table Solutions

Figure 3.10. Skip to content link on the Web Standards Project web site

Witnessing the browser market shift, it’s exciting to

see new ways to approach how we code a design.

Over the years, we’ve seen some creative ways to

pull off the effects that we’ve wanted, like columnar

layouts. Float-based designs, faux columns, absolute

positioning: they’ve all just been tricks. They’re illu

sions compared to what old-style tables gave us.

Thankfully, CSS table properties give us true

columns while maintaining the flexibility that CSS

gives us and the semantics that HTML offers.

Even though browsers like Firefox have supported them for years, we’ve been unable to truly

take advantage of them because of that elephant in the room: Internet Explorer. Luckily, IE8

will finally give us what we’ve wanted and maybe we’ll see some ingenious designs made

possible that would not have been possible before.

—Jonathan Snook6

6 http://snook.ca/jonathan/

http://snook.ca/jonathan/
http://snook.ca/jonathan/

Everything You Know About CSS Is Wrong! 68

What about older browsers?

Well, I’m glad you asked! In this chapter, we’ve addressed the most common ques

tions about CSS tables and looked at some of the ways they can make CSS layouts

easier to achieve. But, of course, there’s still the problem of what to do about Internet

Explorer 6 and 7; it’s an inescapable fact that, together, they represent a majority of

the browsers in use today.

Answering this question is the focus of the next chapter, where we’ll look at how

we can address the needs of older browsers that do not support CSS tables.

Chapter4
Considering Older Browsers
So far, we’ve discovered how CSS tables can simplify both CSS layout and enable

effects such as full-height columns, which we’re currently obliged to fake via fragile

and problematic hacks. Wouldn’t it be nice if, all of a sudden, you could stop using

those hacks and simply rely on CSS tables for all your layout work? Fantastic, you

say, but of course this can only be a utopian vision—Internet Explorer 6 and 7, as

the two major browser versions currently in use that do not support CSS tables,

make this dream impossible.

But the release of Internet Explorer 8, with full support for CSS tables, will change

all this. Exactly how it’ll change your life is the subject we’ll explore in this chapter.

As we’ll see, it is our responsibility as web professionals to go as far as we possibly

can in adopting these new CSS techniques, even if it means sacrificing some degree

of design fidelity in older browsers.

Support for CSS Tables
Table 4.1 shows current versions of browsers and their support for CSS tables. Aside

from Internet Explorer 8, which has not been released at the time of writing, I’ve

Everything You Know About CSS Is Wrong! 70

taken the list of browsers from the Yahoo Graded Browser Support list of A-Grade

browsers.1 These are the browsers that Yahoo has identified as covering 96% of its

users, and should be given full support in web design.

You, the Browser Support Matrix, and Your Clients

The Yahoo Graded Browser Support matrix is a great way to show clients the

range of browsers that are in use and that are worth investing time to support.

Supporting very old browsers fully—trying to give someone using Internet Explorer

5, for example, the same experience as someone using Internet Explorer 7—can

limit the design choices you can make, as well as being time-consuming and ex

pensive. Being able to point to the list that Yahoo uses to decide which browsers

to fully support can be very useful indeed. Remember to emphasize that Yahoo

is not locking out users of older browsers, but simply giving them a pared-down

experience.

Table 4.1. Chart showing support for CSS tables

SupportBrowser

SupportedFirefox 3

SupportedFirefox 2

SupportedIE 8.0

No SupportIE 7.0

No SupportIE 6.0

SupportedOpera 9.5

SupportedSafari 3

As you can see from this table, most browsers in common use have support for CSS

tables—unfortunately, the two browsers that do not, namely Internet Explorer 6 and

7, are still widely used.

How to deal with these two stragglers once Internet Explorer 8 hits the streets is a

question every web designer will have to answer on a project-by-project basis. It’s

also a question that we have faced before.

1 http://developer.yahoo.com/yui/articles/gbs/

http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs/

71 Considering Older Browsers

To Hell with Bad Browsers
In 2001, Jeffrey Zeldman, then leader of the Web Standards Project,2 published a

groundbreaking article on the A List Apart site: To Hell With Bad Browsers. 3 This

manifesto was to change the face of the Web for many of us authoring sites at the

time. Zeldman wrote:

For years, the goal of a Web that was accessible to all looked more

like an opium dream than reality. Then, in the year 2000, Microsoft,

Netscape, and Opera began delivering the goods. At last we can repay

their efforts by using these standards in our sites. We encourage

others to do the same.

The burden of moving the Web forward had shifted away from browser makers and

onto browser users and web designers. For progress to be made, users would have

to upgrade to newer browsers and designers would have to begin using the features

of those new browsers.

To encourage this direction, WaSP launched the Browser Upgrade Campaign, shown

in Figure 4.1, at the same time that Zeldman’s manifesto was published. The cam

paign advocated using one of two methods to let users know they should upgrade

their browsers. The “gentle” method involved displaying your page without style

information for users of old browsers such as Netscape 4, adding a suggestion at

the top of the page that users consider upgrading their browsers. The alternate

method was to actually block users of old browsers from accessing the site, redirec

ting them to a browser upgrade message—either on your own site or on the WaSP

web site.

2 http://webstandards.org/
3 http://www.alistapart.com/stories/tohell/

http://webstandards.org/
http://www.alistapart.com/stories/tohell/
http://webstandards.org/
http://www.alistapart.com/stories/tohell/

Everything You Know About CSS Is Wrong! 72

Figure 4.1. Redirection page for the Browser Upgrade Campaign

Like many other designers and developers at the time, I responded by publishing

my own site with a CSS layout and valid markup in April 2001.

History Repeats
With the imminent release of Internet Explorer 8, we find ourselves in the very

same position as we did back in 2001. The time for lobbying the browser makers to

improve their support for web standards is over—for now, they have done their

part. Now it’s our turn.

As I write this, efforts such as Save the Developers4 are already gearing up to encour

age users of IE6 and IE7 to upgrade their browsers. Building that awareness is one

part of the equation. The other is to give users a reason to upgrade, by using the

features only available in up-to-date browsers in our designs—CSS tables, for in

stance.

4 http://savethedevelopers.org/

http://savethedevelopers.org/
http://savethedevelopers.org/

73Considering Older Browsers

As in 2001, we have several ways we can approach this process of gentle persuasion,

and the most appropriate option will vary from project to project. Obviously, if we

wanted to make the biggest impact possible, we could simply block old, out-of-date

browsers from viewing our sites. That’s a rather extreme approach, though, and not

one you are likely to be able to justify, even on your own personal site—or not for

another couple of years, at least.

No, most likely you’ll want to let users of older browsers view some version of your

site; the question is, what version should you allow them to see? What are your

options?

Option 1: Ignore Older Browsers
The simplest option is to send older browsers—such as IE6 and IE7—the exact same

site that up-to-date browsers are allowed to see, CSS tables and all. This is the ap

proach we eventually hope to end up using in all our work, once the number of IE6

and IE7 users has dropped to a small enough fraction of our audience. Just as we

now consider ourselves free to ignore obsolete browsers such as Netscape 4, we will

one day be free to ignore IE7.

Chances are, however, that that day has not yet arrived.

The layout that we created in Chapter 2 looks like the screenshot in Figure 4.2 in

all browsers that support CSS tables.

Everything You Know About CSS Is Wrong! 74

Figure 4.2. The layout in supported browsers

However, if we make no provisions for Internet Explorer 6 and 7, we’ll see something

like Figure 4.3 in those older browsers.

What we can see in IE6 and IE7 are the three columns stacked vertically, one on

top of the other. As CSS tables aren’t supported by the browser, these browsers ignore

the instruction telling them to display the div elements as table cells. Therefore,

they display them in the default style for div elements: as blocks displayed one

after the other in source order.

75Considering Older Browsers

Figure 4.3. Vertical stack of elements in Internet Explorer 7

The page is usable enough, but it’s obviously broken. With the number of people

still using IE6 and IE7, this presentation is going to be a tough sell.

If you’re designing for yourself and nobody else, this is an option you might want

to consider—it’ll certainly save you some time, and if you’re looking to make a

point, this is the most visible way to do it. Be sure to use a script like that on offer

from the Save the Developers project,5 to let users know why the page doesn’t look

right in their outdated browser, though.

For most projects, however, you’ll probably need to consider making some provision

for older browsers.

5 http://savethedevelopers.org/

http://savethedevelopers.org/
http://savethedevelopers.org/

Everything You Know About CSS Is Wrong! 76

Option 2: Provide a Simplified Layout

The best option, in my opinion, is to spend a little extra time after you’ve finished

your CSS-table-based layout to build a simplified layout using only the layout fea

tures supported by older browsers.

A simplified layout like this has two benefits:

■	 It provides a lesser experience when compared with the site as viewed in an up-

to-date browser, but it doesn’t actually look broken. This approach allows the

appearance of your site to remain professional, but still gives your users a gentle

nudge to upgrade their browsers.

■	 The simplified layout allows you to save yourself all that time it would take to

achieve sophisticated designs using convoluted CSS layout techniques, such as

absolute positioning, floated layout, and faux columns.

Let’s see how this is done …

Adding a Style Sheet for IE6 and 7
For Internet Explorer 6 and 7 to display a simplified layout, we need to provide

them with some different styling information. One option is to use conditional

comments.

Conditional comments were introduced by Microsoft6 in order to give web de

velopers a way to target versions of Internet Explorer. While I have some misgivings

about the insertion of code for the browser within comments—which are supposed

to be ignored by the browser—they do provide a simple way to pass information

that will be ignored by other browsers and non-targeted versions of Internet Explorer.

For example, if we want to include a style sheet for only Internet Explorer 6—a

situation that is my most common use of conditional comments—we use the follow

ing markup:

6 http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx

http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx

77Considering Older Browsers

<!--[if IE 6]>

<link rel="stylesheet" type="text/css" href="ie6.css" />

<![endif]-->

We’d typically put this style sheet after the main style sheet in the document, then

overwrite any problematic CSS with rules for IE6 only in this special style sheet.

The cascade approach dictates that if two style sheets in the document have the

same selectors, the one that comes later in the document will be applied after the

rules in the earlier style sheet, and will have the last word on how elements are

displayed.

In this case, we want to add a style sheet for any version of Internet Explorer below

IE8, so we use this conditional comment in which lt IE8 means if less than IE8:

3col-csstable-ie7simplified.html (excerpt)

<!--[if lt IE 8]>
<link rel="stylesheet" type="text/css"

 href="3col-csstable-ie7simplified.css" />
<![endif]-->

This condition is ideal, as when Internet Explorer 9 comes out we can safely assume

it won’t have dropped support for CSS tables. Therefore, this condition will still

work—and it won’t accidentally catch a newer browser than was available at the

time of building the site. This block of code goes in the head of the document, after

the original style sheet, as shown in Figure 4.4.

Figure 4.4. The head of my document with the conditional comments in place

Everything You Know About CSS Is Wrong! 78

We create the new style sheet by saving the existing style sheet with a new name:

3col-csstable.oldbrowsers.css. The selectors in the existing style sheet provide a useful

starting point for our IE6 and 7 style sheet.

Now, we don’t need to preserve every selector in this style sheet; many of the existing

rules for styling text and simple aspects of the layout will work just fine in older

browsers—we only need to override the rules for the elements that are set to display

as tables, table rows, or table cells. So we can delete everything in the new style

sheet other than those rules, which leaves the following CSS:

#main {

 display: table;

 border-collapse: collapse;

}

#main .inner {

 display: table-row;

}

#nav {

 display: table-cell;

 width: 180px;

 background-color: #e7dbcd;

}

#extras {

 display: table-cell;

 padding-left: 10px;

 border-right: 1px dotted #d7ad7b;

 width: 180px;

}

#content {

 display: table-cell;

 width: 380px;

 padding-left: 10px;

}

Then, we merely edit these rules to make the changes needed for Internet Explorer

versions less than version 8. The first step is to empty the #main and #main .inner

rules:

79Considering Older Browsers

3col-csstable-ie7simplified.css (excerpt)

#main {
}
#main .inner {
}

We’ll leave these selectors in place as a reminder, in case we need to come back

and apply styles to the entire content area of the page. We don’t need them to create

our table and table row for now, though, so we can leave them as unstyled blocks

(the default for divs).

Now, since we don’t have a CSS table, we need to decide how we’ll lay out the div

elements nav, extras, and content. Each of these are CSS table cells in our table-

based layout, but what do we do with them in our simplified layout?

Back in the section called “The Grid’s the Thing” in Chapter 1, I explained that CSS

was originally designed with the idea that every page would be a vertical stack of

blocks. If we embrace this assumption in our simplified design, we should find the

CSS code required to describe it very easy to write. Let’s remove the display

property values for each of these elements—they’ll default to display: block—and

set their width property back to auto so they span the full width of the page:

3col-csstable-ie7simplified.css (excerpt)

#nav {
 width: auto;
}
#extras {
 width: auto;
 border-right: none;
 border-bottom: 1px dotted #d7ad7b;
}
#content {
 width: auto;
}

Since we’re stacking the blocks vertically instead of horizontally, we’ve also moved

the dotted border from the right side of the extras div to the bottom side. Figure 4.5

shows what the layout looks like in IE7 at this point.

Everything You Know About CSS Is Wrong! 80

Figure 4.5. The simplified layout so far

The page is now a vertical stack of blocks, but the contents of those blocks still look

as though they were designed to stack horizontally across the page. Let’s add a few

extra rules to our simplified layout style sheet to correct this issue.

It we look at the navigation menu, which in up-to-date browsers runs vertically

down the left side, we can see that displaying it as a vertical list really doesn’t work

in this layout. It would be nice to stack those menu items horizontally across the

page in our simplified layout, but again, we run into the problem that CSS wasn’t

designed to perform horizontal stacking of blocks.

We could fall back on our bag of tricks and use floats to perform the horizontal

stacking, but remember that it’s this kind of fragile hack we’re trying to avoid with

a simplified layout. Luckily, there is a much simpler option: display the list items

as inline elements, so they flow across the page naturally—no stacking required!

81 Considering Older Browsers

3col-csstable-ie7simplified.css (excerpt)

#nav {
 width: auto;
padding: 8px 0;

}
⋮
#nav li, #nav a:link, #nav a:visited {
 display: inline;
}

As the main style sheet has both the list items and the links within them displayed

as blocks, we need to set display: inline on the list items, as well as both visited

and unvisited links inside them. With a little extra padding on the nav div, we can

even make the thick border below each of the links fit nicely inside our simplified

layout.

The other aspect of the design that really isn’t working in this simplified layout is

the padding around the news items in extras. We can fix this easily with a final

style rule:

3col-csstable-ie7simplified.css (excerpt)

#extras .box {
 padding: 0;
}

And we’re done! Our completed, simplified layout is shown in Figure 4.6, as dis

played by Internet Explorer 7.

Everything You Know About CSS Is Wrong! 82

Figure 4.6. A simplified layout that looks decent in IE7, without resorting to CSS hackery

Option 3: Reproduce Your Layout
with Older Techniques
Sometimes you’ll have no choice but to support IE6 and 7 with the best design these

browsers are able to display. Either you’ll find yourself working for a client that

insists the site must look exactly the same in every browser that you support, or

you’ll be building a site for an audience that, for whatever reason, contains a large

segment of users with outdated browsers. Such situations should become less and

less common over time, but for now at least you must be prepared for them.

What you need to do is reproduce your table-based layout as closely as possible

using the features available in IE6 and 7. Again, we’ll start by adding a conditional

comment that adds an extra style sheet for versions of Internet Explorer older than

IE8:

83Considering Older Browsers

<!--[if lt IE 8]>

<link rel="stylesheet" type="text/css"

href="3col-csstable-oldbrowsers.css" />

<![endif]-->

And again, we’ll take as a starting point for 3col-csstable-oldbrowsers.css the rules

from 3col-csstable.css that create CSS tables:

#main {

 display: table;

 border-collapse: collapse;

}

#main .inner {

 display: table-row;

}

#nav {

 display: table-cell;

 width: 180px;

 background-color: #e7dbcd;

}

#extras {

 display: table-cell;

 padding-left: 10px;

 border-right: 1px dotted #d7ad7b;

 width: 180px;

}

#content {

 display: table-cell;

 width: 380px;

 padding-left: 10px;

}

Now we can modify each of these rules to produce the layout we want in Internet

Explorer 6 and 7:

3col-csstable-oldbrowsers.css (excerpt)

#main {
}
#main .inner {
}

Everything You Know About CSS Is Wrong! 84

Again, both the #main and #main .inner rules can be left empty, since the default

unadorned blocks produced by these div elements will work just fine for our pur

poses.

nav is the very first column containing the navigation:

3col-csstable-oldbrowsers.css (excerpt)

#nav {
float: left;

}

The width and background-color property values specified in the main style sheet

can be left alone, but for IE6 and 7 we must add float: left to make this block

into a column:

3col-csstable-oldbrowsers.css (excerpt)

#extras {
float: left;

}

This will float the div to the left side of the page and allow the next column to come

up alongside it. The same goes for the middle column, extras. Floating the box

causes it to gain a layout—setting Internet Explorer 6 and 7’s magical hasLayout

property to true. We made mention of this concept back in the section called “Ab

solute Positioning” in Chapter 2.

Finally, we float the final column left as well. We’ll also reduce the width of this

column slightly to ensure there’s room for it to float up against the other two

columns, and not be forced to display underneath:

3col-csstable-oldbrowsers.css (excerpt)

#content {
float: left;

 width: 370px;
}

85Considering Older Browsers

The final step is to set the footer div to clear: both to make sure it stays below

our floated columns:

3col-csstable-oldbrowsers.css (excerpt)

#footer {
clear: both;

}

The finished layout is shown in Figure 4.7.

Figure 4.7. The layout in Internet Explorer 7

The layout now looks reasonable in Internet Explorer 7; the columns are displaying

alongside each other and it all holds together pretty well. The background doesn’t

extend down to the footer as it does in the tables version, but this doesn’t prevent

someone from using the site.

Everything You Know About CSS Is Wrong! 86

If you wanted to add the background in for IE6 and IE7 users, it actually isn’t too

difficult in this case. We can simply add a background image such as that shown

in Figure 4.8 to one of the redundant wrapper divs, such as main.

Figure 4.8. The background image

3col-csstable-oldbrowsers.css (excerpt)

#main {
background-image: url(images/main-bg.gif);

 background-repeat: repeat-y;
}

This adds the background to the main div that contains all three columns and should

create the faux columns effect described in Chapter 2.

At the same time, add border-right: none to the rule for the extras to remove

the dotted right border, which is now replaced by the faux columns image:

3col-csstable-oldbrowsers.css (excerpt)

#extras {
 float: left;
border-right: none;

}

At this point, you won’t see the faux columns effect when you view the layout in

Internet Explorer 7. With all three columns floated, there’s no non-floated content

to hold open the main div, so it collapses down to nothing. Giving main a one-pixel

red border, as shown in Figure 4.9, enables you to see what has happened.

87Considering Older Browsers

Figure 4.9. The red line is the collapsed main div

Luckily, there’s a fairly easy fix. Simply float main as well, which will force it to

expand to contain the floated columns inside it:

3col-csstable-oldbrowsers.css (excerpt)

#main {
float: left;

 width: 100%;
 background-image: url(main-bg.gif);
 background-repeat: repeat-y;
}

The finished layout should now be displayed correctly in IE7, as shown in Fig

ure 4.10.

Everything You Know About CSS Is Wrong! 88

Figure 4.10. The layout in IE7 with the faux columns background in place

Here’s the finished style sheet for IE6 and 7:

3col-csstable-oldbrowsers.css (excerpt)

#main {
 float: left;
 width: 100%;
 background-image: url(images/main-bg.gif);
 background-repeat: repeat-y;
}
#main .inner {
}
#nav {
 float: left;
}
#extras {
 float: left;
 border-right: none;

89Considering Older Browsers

}

#content {

 float: left;

 width: 370px;

}

#footer {

 clear: both;

}

But Why Not Stick with Floated Layouts?
If you’re a professional web designer, perhaps you’re reading this chapter with a

certain degree of skepticism. Maybe most of your clients do insist on pixel-perfect

rendering in IE6 and 7, and will continue to do so for some time.

Having read the third option above, you might wonder why anyone would bother

using CSS tables, given they have to then create a fallback version using old-style

floated layout techniques. Why not just use the float-based layout techniques you

already know for all browsers?

This question really is the central issue of this book, so in this section we’ll explore

the reasons you should make the extra effort to adopt new layout techniques, rather

than sticking with what you know.

Now It’s Our Turn
For years, we’ve criticized Microsoft for holding back the Web by abandoning de

velopment of Internet Explorer while its competitors responded to our demands

and added the new CSS features. With Internet Explorer 8, Microsoft has caught

up. All the features we need to improve the Web with solid, reliable, and—most

importantly—easy-to-learn page layout techniques are now available across all the

major browsers.

If we don’t start using those features now, then who’s holding back the Web? The

users who haven’t upgraded their browsers? Until we build sites that take advantage

of the new features added to the latest browsers, how can we expect those users to

upgrade?

Everything You Know About CSS Is Wrong! 90

When we told Microsoft we needed it to improve Internet Explorer, we were making

a bargain with the software giant: “You improve the browser to make our lives

easier, and we’ll build the sites that take full advantage of it, giving your users a

reason to upgrade.” Microsoft has done its part; now it’s our turn.

Yes, embracing new CSS techniques while supporting older browsers involves some

extra work, but this is something we’ve done before, and the Web benefited greatly.

Back in 2001, web designers began to abandon HTML tables used for layout in favour

of then-nascent CSS layout techniques, which were made possible by improvements

in the newest browsers, including Internet Explorer 5.5. At the time, there were still

plenty of Netscape 4 users around, and designers were forced to create separate

versions of their sites for these users.

The designers of 2001 didn’t have the benefit of conditional comments to ease this

extra burden, but one by one they made the bold move to CSS layout. The result is

that the vast majority of sites designed today use CSS layout, and benefit from the

advantages it provides.

With the release of Internet Explorer 8, it’s 2001 all over again.

Premium Design Elements
If we want to benefit from advances in browser support, at some point we have to

decide that some browsers have limitations which mean they can’t benefit from the

full look and feel of the design we need to implement. That doesn’t mean cutting

those users off from being able to visit and use your site; it’s just that the design

isn’t going to look the same for those users.

As an example, let’s revisit the image gallery grid we developed in the section called

“Making a Perfect Grid” in Chapter 2, shown here in Figure 4.11.

91 Considering Older Browsers

Figure 4.11. The grid using display: table;

Remember how well CSS tables work here, as we can make all the boxes in each

row the same height, regardless of how much text is entered. To support Internet

Explorer 7, we can add a couple of rules to float the boxes instead of using the table

grid:

csstable-grid-ie.css

.row {
 clear: both;
}
.image {
 float: left;
 margin: 2px;
}

Everything You Know About CSS Is Wrong! 92

The issue here will be that the backgrounds aren’t as neat, but it degrades quite

well, as you can see in Figure 4.12.

Figure 4.12. IE7 with the floated version of the grid

There really isn’t a good way to emulate this type of layout without CSS tables. This

grid effect is something that has been elusive until the advent of CSS tables, which

is why you often see sites with captions spilling over the edges of boxes when the

browser’s text size is increased. The developer has assumed everyone has their text

set to the same size, and fixed the height of the boxes to create this effect.

93Considering Older Browsers

Greater Ease of Development
Floated and positioned CSS layout techniques have their problems, which can mean

quite a bit of testing in different browsers—even in up-to-date browsers. The stability

and reliability of table-based layouts was, for a long time, the main reason some

designers chose to stick with HTML tables for layout, rather than embracing newer

CSS techniques.

Using CSS tables for your layout will bring this stability to your CSS layout work.

You’ll waste a lot less time fixing mysterious bugs and inexplicable behavior in

even the latest browsers.

If you’re also able to use Option 1 (no fallback layout) or Option 2 (simplified fallback

layout) described above, your testing burden will be reduced in browsers that don’t

support CSS tables as well. But even if you must resort to Option 3, fixing squirrelly

layout bugs only in IE6 and 7 sure beats fixing bugs across the full range of browsers

in use today!

I’m sure that I’m not the only designer working with

CSS every day who experiences frustration over im

plementing my complex, grid-based layouts using

current CSS that works across browsers.

As grid-based layout has made its transition from

traditional media and onto the Web, often the only

ways to implement these layouts using CSS are to

add additional markup or to use a complicated mix

ture of CSS floats and positioning; neither of these

were intended to create the kind of rich, visual inter

faces that the modern Web demands.

While the (slow) work of the CSS working group includes new layout tools, these are some

years away from becoming available. The table-related values for the CSS display property

go some way to making my life happy, and as they’re being implemented in the next version

of Internet Explorer, they should make those other frustrated designers happier too.

—Andy Clarke7

7 http://www.stuffandnonsense.co.uk/

http://www.stuffandnonsense.co.uk/
http://www.stuffandnonsense.co.uk/

Everything You Know About CSS Is Wrong! 94

Moving Forward
In this chapter, we discussed several approaches for supporting older browsers

while embracing layout using CSS tables. Even though there are still a considerable

number of users relying on browsers that don’t support CSS tables, the time to begin

using this technology in production is right now.

Still, even if you’re excited about the new possibilities CSS tables bring to your

layouts, you’re bound to be amazed at what’s around the corner. In the next and final

chapter of this book, we’ll take a look at what the future might hold for CSS. Spe

cifically, we’ll be concerning ourselves with some of the CSS3 properties that stand

a good chance of eclipsing even CSS tables in adding creative freedom to the business

of web design.

Chapter5
The Road Ahead
Although it can seem as though browser development is moving at a glacial pace,

a lot has happened in the past decade. In this chapter, we’ll take a look at some of

the concepts that are part of the CSS3 draft specification, and those that browsers

have already implemented, giving us a chance to have a peek into the future of CSS.

The techniques described in this chapter are taken from working drafts of CSS3,

and any of these aspects could change substantially before becoming a final recom

mendation. What is clear, however, is that the W3C is looking at new ways to solve

the problems that exist in laying out our pages using CSS; some interesting proposals

are being developed to help ease those difficulties.

By way of a quick clarification, CSS3 is the next version of CSS, currently being

developed by the W3C. In any discussion surrounding CSS3, you’ll likely come

across references to the specification being “modularized.” All this means is that

the different parts of the specification have been split up into modules; for example,

one module for selectors, another for positioning, and so on. Breaking the specific

ation into modules allows different parts of the specification to progress and become

an official recommendation at different times.

Everything You Know About CSS Is Wrong! 96

Therefore, browser vendors can begin implementing completed modules more

quickly, without needing to wait for the entire specification to reach completion.

As we’ll see in this chapter, some modules are more advanced than others and even

have working implementations in browsers that we can try out. Other modules are

at a very early stage, so we can only describe what promises the current working

draft is making for them. I hope that you will agree, after reading this chapter, that

there are some very interesting innovations on the horizon for CSS!

CSS3 Multi-column Layout Module
First up, we’ll look at the eagerly anticipated opportunity for developers to create

newspaper-like columns in their layouts; I give you the CSS3 multi-column layout

module.1 In a multi-column layout, you have a single block of text that’s formatted

into multiple columns; the text flows down column one, then continues at the top

of column two, and so on. Currently, if you have a block of content that you’d like

to display in three even columns, you have to try to work out where to break the

content and start the next column. The locations of column breaks are very difficult

to predict when you’re not formatting each page by hand; for example, this is the

case with most database-driven web sites that generate pages dynamically.

With traditional layout techniques, we have to carefully tweak the column markup

to achieve the effect we want. Here’s some sample markup for a multi-column layout:

multi-column.html (excerpt)

<div class="wrapper">
 <div class="col1">
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Fusce porttitor porta magna. … Nullam
pulvinar nisl viverra risus dapibus cursus.</p>

 <p>Aliquam tristique tristique massa. … Donec vestibulum
elementum urna. Aenean convallis luctus lacus.</p>

 </div>
 <div class="col2">
 <p>Ut tincidunt turpis quis sem. … Sed pellentesque, neque

ac iaculis congue, sapien est convallis nibh, eget
posuere eros leo quis mauris.</p>

 </div>

1 http://www.w3.org/TR/css3-multicol/

http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/

97The Road Ahead

<div class="col3">

 <p>Sed ullamcorper, elit eget dignissim blandit, … Donec

eget massa. Nam eget est et nisl vestibulum iaculis.</p>

 </div>

</div>

In the above markup, we’ve had to manually place an even amount of text within

each column. Here’s the accompanying CSS:

multi-column.css (excerpt)

.wrapper {
 width: 80%;
}
.col1, .col2, .col3 {
 width: 30%;
 float: left;
 margin-right: 2%
}

We can achieve the effect shown in Figure 5.1 with careful tweaking of text in the

three div elements and application of the above CSS. However, if any of the content

changes we then have to reflow the whole thing; a less than satisfactory situation!

Everything You Know About CSS Is Wrong! 98

Figure 5.1. The effect after arranging the text by hand

The CSS3 multi-column module will allow you to divide a block of content into a

specified number of equal-height columns. All we need to recreate our example

above, as far as markup is concerned, is the following:

<div class="multi-wrapper">

 <p>Lorem ipsum dolor…</p>

 <p>Aliquam tristique…</p>

 <p>Ut tincidunt turpis…</p>

<p>Sed ullamcorper…</p>

</div>

In the above markup all we need is a parent block element, into which we then

place all the content paragraphs. The following CSS will create our columns:

.multi-wrapper {

 width: 80%;

 column-count: 3;

 column-gap: 1em;

}

99The Road Ahead

Specifying a column-count value for the containing div will automatically turn the

block of content into three equal-height columns. The column-gap property is used

to set the width of the gutter between columns. In the case of a fluid layout, resizing

the browser window will cause the columns to reflow; the browser works out the

size of the columns and where to break the content. If your page content is dynamic,

as long as the content is placed within the correct container, the browser will do

all the work for you.

Happily, we can put this module through its paces—it’s been implemented in

Mozilla Firefox since version 1.5 and Safari since version 3. In order to see it in

action, you’ll need to prefix the properties with a vendor extension identifier: –moz

for Mozilla Firefox, and –webkit- for Safari:

css3-multi-column.css (excerpt)

.multi-wrapper {
 width: 80%;
-moz-column-count: 3;

 -moz-column-gap: 1em;
 -webkit-column-count: 3;
 -webkit-column-gap: 1em;
 column-count: 3;
 column-gap: 1em;
}

If you open the example in Safari, you’ll see the contents formatted evenly into

three columns, as shown in Figure 5.2.

Everything You Know About CSS Is Wrong! 100

Figure 5.2. The columns as displayed in Safari 3.1

If you add more content or perhaps an image, the text will reflow to remain evenly

distributed across the columns, as you can see in Figure 5.3.

Figure 5.3. The content reflows automatically

101 The Road Ahead

Multiple Equal-width Columns
Another way to break your text into columns is to specify the width that you’d like

your columns to be; the browser will create more or fewer columns depending on

the amount of available space. All we need to do is a quick CSS modification:

css3-multi-column-width.css (excerpt)

.multi-wrapper {
 width: 80%;
-moz-column-width: 10em;

 -moz-column-gap: 1em;
-webkit-column-width: 10em;

 -webkit-column-gap: 1em;
column-width: 10em;

 column-gap: 1em;
}

The column-width property allows us to specify our desired column width—10em

in the above CSS excerpt. Figure 5.4 shows the result in Firefox: a four-column

layout. However, if we reduce the window size, the content is reformatted. Figure 5.5

demonstrates Firefox’s reduction of the content to two columns when we reduce

the width of the browser window.

Figure 5.4. This screen width fits four columns in Firefox 3

Everything You Know About CSS Is Wrong! 102

Figure 5.5. As we drag in the browser window, the content displays as two columns

Other Multi-column Layout Properties
The following list details the other properties defined in the CSS3 multi-column

layout module, along with their equivalent vendor specific extensions where appro

priate:

columns

This shortcut property allows the specification of the column-count and

column-width properties in one declaration.

column-rule-color

This property works like border-color and allows the color of the rule between

columns to be specified. You can also use -moz-column-rule-color in Firefox

3.1 and up, and -webkit-column-rule-color in Safari 3 and up.

column-rule-style

Like border-style, this property allows the style of the column rule to be spe

cified. You can also use -moz-column-rule-style in Firefox 3.1 and up, and

-webkit-column-rule-style in Safari 3 and up.

103 The Road Ahead

column-rule-width

Just like border-width, this property allows the specification of the column

rule width. -moz-column-rule-width is available in Firefox 3.1 and up, and

-webkit-column-rule-color in Safari 3 and up.

column-rule

This shorthand property acts in the same way as the border property, specifying

all the column rule properties in one declaration; for example, column-rule:

1px solid #000;. You can also use -moz-column-rule in Firefox 3.1 and up,

and -webkit-column-rule in Safari from version 3.

column-span

You can use this property to specify that an element should span two or more

columns.

column-balance

This property takes a value of balance or auto, and is used to specify that the

browser should try to balance the columns or fill them sequentially.

column-break-before and column-break-after

For paged media, these properties are used to specify where columns should

break when running onto another page. They take the values always, avoid,

and auto.

Using Vendor-specific Extensions

Many browser vendors have implemented extensions to the CSS Specification.

Vendor-specific extensions allow browser vendors to experiment with implemen

tations of parts of the specification that aren’t yet at Recommendation level, and

so are subject to change. The use of the dash (-moz- for the Mozilla Foundation,

-ms- for Microsoft, -o- for Opera, and -webkit- for the Webkit Open Source

Project used by Safari) is the W3C-recognized way for extensions to be implemen

ted. By using this method, a browser vendor can be sure that the CSS Specification

will never include a property with this name.

An excellent introduction to browser-specific extensions can be found in the

SitePoint CSS Reference.2

2 http://reference.sitepoint.com/css/vendorspecific/

http://reference.sitepoint.com/css/vendorspecific/
http://reference.sitepoint.com/css/vendorspecific/

Everything You Know About CSS Is Wrong! 104

CSS3 Grid Positioning Module

CSS properties that deal with the layout of items on a grid are encapsulated in the

CSS3 Grid Positioning Module.3 As grid-based layouts become ever more popular,

designers struggle to make CSS layouts behave within the constraints of a grid. As

we’ve seen in this book, having CSS tables in our toolkit will help us create grid-

based layouts right now; the Grid Positioning module, as well as the Template

Layout module we’ll look at next, really push layout control to the next level. Imagine

being able to define a grid for your page, then snap elements to that grid! This is

what the CSS3 Grid Positioning module is trying to make possible.

At the time of writing there are no current browser implementations of the CSS3

grid positioning module, so we have to take a look at the working draft to see what’s

being proposed.

The grid-columns and grid-rows Properties
The new properties introduced in this module are grid-columns and grid-rows.

These allow the designer to create an explicit grid within a containing ele

ment—which could be the body, or a div, or other element as required. So, if you

wanted a seven-column grid where each column is 10em wide, with a 1em gap

between the columns, you’d specify this using the following CSS rule:

body {

 grid-columns(10em,1em,10em,1em,10em,1em,10em,1em,10em,1em,10em,

 1em,10em;

}

The grid layout that would be created by the above CSS is depicted in Figure 5.6.

3 http://www.w3.org/TR/css3-grid/

http://www.w3.org/TR/css3-grid/
http://www.w3.org/TR/css3-grid/

105 The Road Ahead

Figure 5.6. Seven columns with gaps between them

Since this is a repeating pattern, we can also use the following notation instead of

specifying all of the columns individually:

body {

 grid-columns(10em,1em)[7];

}

The [7] in square brackets after the column values means “repeat this pattern seven

times.”

Likewise, grid-rows gives you the ability to specify the number of rows and their

heights in your grid.

Creating a Grid with Columns and Column-gap
Properties
According to the working draft, we could also create our grid using the columns

and column-gap properties, like so:

body {

columns: 7;

column-gap: 10px;

}

Everything You Know About CSS Is Wrong! 106

This CSS would give us a grid of seven columns with a ten-pixel gap between them,

and the columns would evenly stretch to the width of the container. In the case of

a body with no width applied, they’d evenly stretch if the window was resized.

Positioning Elements on the Grid: the gr Value
Of course, once you’ve created a grid, you’ll want to be able to position items along

the grid lines. This is where grid positioning really comes into its own.

The Grid Positioning Module introduces a new length value: gr. This unit of length

is to be used to specify how many grid units an element occupies. So the following

CSS would cause the element with an id of promo to span four grid units, and be

positioned one grid unit from the left:

#promo {

position: absolute;

left: 1gr;

 width: 4gr;

}

The result of this rule is shown in Figure 5.7. You’ll notice that the 4gr value for

the width of the element includes the columns we specified as gaps.

Figure 5.7. The diagram showing the position of the element

There are several illustrated examples in the current working draft for this module,

as well as further information about how it might be used. The working draft is

107 The Road Ahead

worth a read, if you’re interested in where CSS might be taking us in the future—and

it’s one of the more readable CSS3 documents.

CSS3 Template Layout Module
The CSS3 Template Module,4 previously referred to as the Advanced Layout Module,

introduces the concept of templates within CSS. It’s also an alternative layout

method to the Grid Positioning Module for positioning elements to a grid or other

layout. As with grid positioning, this module is still in an early stage of development,

and as such there are no current browser implementations. The specification is

likely to change prior to becoming a full W3C Recommendation.

The latest working draft of this module introduces the concept:

This specification is part of level 3 of CSS (“CSS3”) and contains

features to describe layouts at a high level, meant for tasks such as

the positioning and alignment of “widgets” in a graphical user inter

face or the layout grid for a page or a window, in particular when

the desired visual order is different from the order of the elements

in the source document.

The Template Layout Module aims to enable developers to create a template with

slots in which to place the different elements. So rather than absolute positioning,

which requires you to position elements using coordinates, you’d be able to com

mand “place the navigation into slot A, and the main content into slot B”—very

nice indeed, no?

Setting up the Template
Templates are created using the display property. Just as we saw with CSS tables,

layout templates can be used for the whole layout or just a smaller element within

a layout. For example, the following markup defines an unordered list with a class

of box:

4 http://www.w3.org/TR/css3-layout/

http://www.w3.org/TR/css3-layout/
http://www.w3.org/TR/css3-layout/

Everything You Know About CSS Is Wrong! 108

<ul class="box">

 List item One

 List item Two

 List item Three

We’d like to display the list as three columns, and we’ll use the template layout

properties to achieve this end. To set up the three-column template, we use the

display property with a value of "abc", a letter for each template slot. This is, I’m

sure you’ll agree, a bit of an odd departure from the usual use of the display prop

erty; however, each letter simply represents one slot in the template:

.box {

 display: "abc";

}

Positioning Elements into the Slots
This module uses the position property to place elements into the slots. A letter

that corresponds to the slot into which the element goes is used as the value for the

position property, instead of the current keyword values, such as absolute and

relative, that we’re used to. We’ll place our list items into their slots like so:

.box li {

 position: a;

}

.box li + li {

 position: b;

}

.box li + li + li{

 position: c;

}

The above CSS puts the first list item into slot a, the second into slot b, and the

third into slot c. The result is shown in Figure 5.8.

109 The Road Ahead

Figure 5.8. Positioning into slots

One important point to note about this module is that, unlike CSS tables, you’ll

have complete control over the source order of your markup. You could display

these list items in any order you like; the first item can go into slot b and the second

into slot c, for example.

CSS3 templates also allow far more complex grids to be defined. While each letter

specified in the string value for the display property represents a slot, you can

specify multiple strings to represent rows. Here’s a rule that specifies a grid of two

rows with three columns:

body {

 display: "abc"

 "def";

}

You can also specify slots that span columns or rows using repetition; here, we

specify that slot a should span three columns:

body {

 display: "aaa"

 "bcd";

}

CSS3 templates can be even more complex than that. We don’t have enough room

in this book to speculate on all the possibilities, but we’ll conclude this section

with an exciting example that demonstrates the real power of templates:

Everything You Know About CSS Is Wrong! 110

body {

 display: "a.b.c" /2em

 "a.d.e"

 5em 1em * 1em 10em;

}

Along with the letters, you can also include one or more dots (.) to indicate

whitespace—that no elements can be displayed, as we’ve done above. We’ve also

specified the height of the first row and the column widths. What the above rule

creates is a two-row, five-column grid. The first row has a height of 2em. The first

column is 5em wide and spans both rows; the second column is a 1em wide

whitespace column, as is the fourth column. The last column is 10em wide. The

central column has a flexible width, which is specified by an asterisk (*). This way,

we achieve a level of layout control previously unheard of with CSS.

Having a Virtual Go with JavaScript

As people start to get more interested in these modules, it’s likely that we’ll see

more attempts to emulate them using JavaScript, such as the ALMcss plugin

available from http://www.cesaracebal.com/research/thesis/almcss/.

If you like playing with these concepts, such emulators can certainly be a great

way to bring them to life—although I wouldn’t advise using them for production

work!

As with the grid positioning module, the template layout module is in an early stage

of development. The working draft contains more examples and up-to-date informa

tion as to how this module might eventually take shape. If you’re interested in CSS3,

do go and look at the examples in the working drafts; they are often far easier to

understand than you might expect, as they aim to describe how something would

work in practice. It may seem a bit complicated at first read, but a lot of that is be

cause working in this way is quite a mental shift after being used to pushing things

around using positioning and floating as we do currently.

If these examples have piqued your interest in the development of CSS3, a great

site to visit and add to your RSS reader is css3.info.5 This site contains up-to-the

5 http://www.css3.info/

http://www.css3.info/
http://www.cesaracebal.com/research/thesis/almcss/
http://www.css3.info/

111 The Road Ahead

minute information about the status of different modules, and the state of browser

support.

Everything You Know about CSS Is Wrong
So we come to the end of our look at how, in a sense, everything you know about

CSS is wrong. The support that Internet Explorer 8 will bring for CSS tables is just

the beginning. It’s an ironclad certainty that the way we lay out sites will

change—how fast that change happens remains to be seen. However, by keeping

your techniques up to date and not expecting life to remain the same, you can ensure

that you’re not left behind as techniques and support move on.

Recalling the history of CSS earlier in this book reminds me of just how brief is our

history. While we might feel that certain buggy browsers have been around and will

be around forever and ever, the reality is that “forever” is only a year or two away.

To be a web designer or developer, and to be good at what you do, means accepting

that change is rapid and constant. We all have to keep reading, keep trying out new

techniques, and be ready to start using them as soon as browser technology catches

up with us.

We all know how frustrating it can be when you have a project that really could do

with multi-column layout right now, or when you’re champing at the bit to be able

to lay page elements out to a grid! However, playing around with browser-specific

implementations can be fun, and keeps you right up to date with the new specific

ations. Reading working drafts and trying to figure out how implementations will

work might not be everyone’s idea of bedtime reading, but it brings you closer to

the work that’s being done to design the CSS of the future. Once we do start to see

browser implementations, rather than complaining about having to learn something

new, you’ll be among those crowing, “At last we can do this!”

Index

A
absolute positioning, 6, 17–25

accessibility, 66

Acid Test, 10

Acid2 test, 10, 11, 13

Advanced Layout Module, 107

ALMcss plugin, 110

anonymous table elements, 33–36, 60–

64

creation rules, 35–36

B
border-collapse (property), 37

border-spacing (property), 37

browsers (see web browsers)

C
Cascading Style Sheets (CSS) technology,

1

colspan, 55–60

column-balance (property), 103

column-break-after (property), 103

column-break-before (property), 103

column-count (property), 102

column-count value, 99

column-gap properties, 105–106

column-gap property, 99

column-rule (property), 103

column-rule-color (property), 102

column-rule-style (property), 102

column-rule-width (property), 103

columns

arranging, 64

columns and column-gap properties,

105–106

multi-column layout properties, 102–

103

multiple equal-width, 101–102

columns (property), 102

column-span (property), 103

column-width (property), 101, 102

CSS, 95

(see also CSS table layout)

and web browsers, 6–10, 68

display property, 15, 31, 32, 41

everything you know is wrong, 111

float property, 25

layout techniques, 15

nested tables, 45–48

page layout, 6–10, 32, 66, 93

table layouts, 43

tables, 29–37, 43–68, 69–73, 74, 76,

77, 89, 93, 94, 104, 109, 111

techniques, 90

technology, 1

version 4 browsers, 8

CSS Gallery, 7

CSS support in Internet Explorer, 13

CSS table layout, 15–41

absolute positioning, 17–25

technique problems, 20–25

floated layout, 25–29

technique problems, 26–29

making a perfect grid, 37–40

putting principles into practice, 41

114

using CSS tables, 29–36

using current layout techniques, 16–

29

CSS1, 10

CSS2, 10, 11, 12

CSS2.1, 9, 11

CSS3, 95–111

column-gap properties, 105–106

gr value, 106–107

grid positioning module, 104–107

grid with columns properties, 105–106

grid-columns properties, 104–105

grid-rows properties, 104–105

multi-column layout module, 96–103

multi-column layout properties, 102–

103

multiple equal-width columns, 101–

102

positioning elements in the slots, 108–

111

positioning elements on the grid, 106–

107

template layout module, 107–111

template setup, 107–108

D
Dynamic HTML (DHTML), 8

F
faux columns, 20

Firefox, 9, 10, 11, 99, 101

absolutely positioned layout in, 21

anonymous elemements in, 61

Firefox 2, 70

Firefox 3, 70

Firefox 3.1, 102

fixed-width layouts, 43

flexible layouts, 43–44

floated blocks, 6

floated layout (page layout), 25–29, 45

floated layouts, 89–93

G
gr value, 106–107

grid positioning module, CSS3, 104–107

grid with columns properties, 105–106

grid, positioning elements, 106–107

grid-based designs, 2

grid-based layouts, 104

grid-columns properties, 104–105

grid-rows properties, 104–105

grids, two-dimensional (2), 2–4

H
hasLayout, 25

HTML tables, 4, 5–6, 15, 29, 32, 55, 90

I

inline content, 2

Internet Explorer, 7, 9–10, 13–14, 25, 76,

89

and hasLayout, 25

Internet Explorer 3, 4, 7

Internet Explorer 4, 8

Internet Explorer 5, 8

for Macintosh, 9

Internet Explorer 6, 9–10, 23, 25, 69, 70,

73, 76, 82, 86, 89

Internet Explorer 7, 10, 25, 69, 70, 73,

76, 82, 85, 89

Internet Explorer 8, 10–12, 13, 15, 69,

70, 72, 89, 111

115

Internet Explorer 9, 77

J
JavaScript, 8, 61, 110

K
Konqueror, 10

L
layout (see page layout)

Linux/KDE, 10

liquid layouts, 43

M
Microsoft, 7, 9–12, 89

Mozilla, 9, 103

multi-column layout, 96–103

multi-column layout properties, 102–103

multiple equal-width columns, 101–102

N
navigating your site, 66

nested CSS tables, 45–48

Netscape, 8

Netscape 4, 8, 9, 73

Netscape 6, 9

O
Opera, 9, 10, 103

Opera 9.5, 70

P
page layout, 9, 10, 13, 15

absolute positioning, 17–25

adding a style sheet for IE6 and 7, 76–

82

and tables, 32

current techniques, 16–29

floated layout, 25–29, 89–93

multi-column layout module, 96–103

multi-column layout properties, 102–

103

reproducing with older techniques,

82–89

techniques, 93

use of HTML, 5

using older browsers, 76–82

R
rowspan, 55–60

S
Safari, 9, 10, 99

Safari 3, 70, 102

search engine optimization (SEO), 66

search engines, 66

site navigation, 66

source order, 66

style sheets

adding for IE6 and 7, 76–82

T
tabbed browsing interface, 9

table (display value), 31

table cell

positioning elements within, 48–55

table elements, 31, 32

anonymous, 33–36, 60–64

positioning, 48–55

table-caption (display value), 32

116

table-cell (display value), 32

table-column (display value), 32

table-column-group (display value), 32

table-footer-group (display value), 32, 64

table-header-group (display value), 32,

64

table-layout (property), 37

table-row (display value), 32

table-row-group (display value), 32

tables, 5–6

for layout, 5–6, 32

other useful properties, 37

using CSS, 29–37, 69–73, 74, 76, 77,

89, 93, 94, 104, 111

template layout module, CSS3, 107–111

positioning elements into the slots,

108–111

template setup, 107–108

V

vendor-specific extensions, 103

W
WaSP, 71

web browsers

and CSS, 6–10

Browser Upgrade Campaign, 71

development, 95

support, 70

vendor-specific extensions, 103

version 4 browsers, 8

web browsers, older, 68, 69–94

adding a style sheet for IE6 and 7, 76–

82

design elements, 90–92

ease of development, 93

floated layouts, 89–93

ignore obsolete, 73–75

reproduce layout with older tech

niques, 82–89

simplified layout, 76–82

support for CSS tables, 69–73

web design, 2, 6, 13, 89–93

(2D) grids, 2, 4

grid layouts, 15, 93

making a perfect grid, 37–40

Web Standards Project, 10

World Wide Web Consortium (W3C), 8,

9, 95, 103

Y
Yahoo Graded Browser Support, 70

	Everything You Know About CSS Is Wrong!
	Table of Contents
	Preface
	Who Should Read This Book?
	What’s in This Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Acknowledgments

	The Problem with CSS
	The Grid’s the Thing
	Tables Do the Trick
	CSS and the Browser Wars
	Early Browser Support for CSS
	The Version 4 Browsers
	Internet Explorer 6 and the Long Sleep

	Internet Explorer 8 Changes the Game
	Our Part of the Bargain

	CSS Table Layout
	Using Current Layout Techniques
	Absolute Positioning
	Problems with This Technique

	Floated Layout
	Problems with This Technique

	Using CSS Tables
	How Does This Work?
	Anonymous Table Elements
	Rules for the Creation of Anonymous Table Elements

	Other Useful Table Properties

	Making a Perfect Grid
	Putting Principles into Practice

	CSS Table Solutions
	Can CSS tables be used to create flexible layouts?
	Can CSS tables be nested?
	How can I position elements within a table cell?
	Do CSS tables support the colspan and rowspan attributes?
	What’s going wrong with these anonymous table elements?
	Do I have to change the source order?
	Is the source order really a problem?
	What about older browsers?

	Considering Older Browsers
	Support for CSS Tables
	To Hell with Bad Browsers
	History Repeats

	Option 1: Ignore Older Browsers
	Option 2: Provide a Simplified Layout
	Adding a Style Sheet for IE6 and 7

	Option 3: Reproduce Your Layout with Older Techniques
	But Why Not Stick with Floated Layouts?
	Now It’s Our Turn
	Premium Design Elements
	Greater Ease of Development

	Moving Forward

	The Road Ahead
	CSS3 Multi-column Layout Module
	Multiple Equal-width Columns
	Other Multi-column Layout Properties

	CSS3 Grid Positioning Module
	The grid-columns and grid-rows Properties
	Creating a Grid with Columns and Column-gap Properties
	Positioning Elements on the Grid: the gr Value

	CSS3 Template Layout Module
	Setting up the Template
	Positioning Elements into the Slots

	Everything You Know about CSS Is Wrong

	Index

