
HTML & CSS: A SitePoint Anthology - 1

February 2016

ECMAScript 2015
A SitePoint Anthology

#1

2 - HTML & CSS: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology

Copyright © 2016 SitePoint Pty. Ltd.
Editor: James Hibbard
Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted.
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical articles or reviews.

Notice of Liability

The authors and publisher have made every effort to ensure the accuracy of the information herein
However, the information contained in this book is sold without warranty, either express or implied
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by the
software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names only
in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of the
trademark.

Published by SitePoint Pty. Ltd.
48 Cambridge Street Collingwood

VIC Australia 3066
Web: www.sitepoint.com

Email: books@sitepoint.com

HTML & CSS: A SitePoint Anthology - 3

Contents

Preface� 7

JavaScript: The State of Play� 8
JavaScript - So Hot Right Now!� 8
ES6 Is Now a Standard - Anything Else Is Experimentation� 9
A Pick 'n' Mix Offering Empowering Different Developers� 10
Working with ES6 Right Now� 15
ES6 Is Here, Get Used to It!� 16

Preparing for ECMAScript 6: let and const� 17
let� 17
const� 20
Conclusion� 21

Preparing for ECMAScript 6: New Function Syntax� 23
Arrow Functions� 24
Default Values for Parameters� 27
Rest Parameter� 29
Conclusion� 30

Preparing for ECMAScript 6: New Number Methods� 31
Number.isInteger()� 32
Number.isNaN()� 33
Number.isFinite()� 34
Number.isSafeInteger()� 36
Conclusion� 38

Preparing for ECMAScript 6: Set and WeakSet� 39
Set� 40
WeakSet� 44
Putting it all together� 44
Conclusion� 47

Preparing for ECMAScript 6: Map and WeakMap� 48
Map� 48
WeakMap� 52
Putting it all together� 53
Conclusion� 56

4 - HTML & CSS: A SitePoint Anthology

Preparing for ECMAScript 6: New String Methods� 57
String.prototype.startsWith()� 57
String.prototype.endsWith()� 59
String.prototype.includes()� 60
String.prototype.repeat()� 61
String.raw� 61
Conclusion� 62

Preparing for ECMAScript 6: New Array Methods� 63
Array.from()� 64
Array.prototype.find()� 65
Array.prototype.findIndex()� 66
Array.prototype.keys()� 66
Array.prototype.values()� 67
Array.prototype.fill()� 68
Conclusion� 69
Proxy Trap Types� 72
Proxy Example 1: Profiling� 73
Proxy Example 2: Two-Way Data Binding� 75
Further Examples� 76
Proxy Support� 77

Preparing for ECMAScript 6: Destructuring Assignment� 78
Easier Declaration� 82
Variable Value Swapping� 82
Default Function Parameters� 83
Returning Multiple Values from a Function� 84
For-of Iteration� 85
Regular Expression Handling� 86
Destructuring Assignment Support� 86

ECMAScript 2015: Generators and Iterators� 87
Iterators� 88
Generators� 90
Cool, So Can I Use This Now?� 91
Conclusions� 92

HTML & CSS: A SitePoint Anthology - 5

An Overview of JavaScript Promises� 93
Overview� 94
The API� 94
Chaining Promises� 96
Handling Errors� 97
Conclusion� 98

Writing AngularJS Apps Using ES6� 99
Setting up the Application for ES6� 100
Defining Controllers� 101
Defining Services� 104
Defining Directives� 105
Defining the Main Module and Config block� 107
Conclusion� 108
Creating the package.json File� 110
Set up the Gruntfile.js� 111
Let's Write Some ES6 Code� 112
Conclusion� 117

Asynchronous APIs Using the Fetch API and ES6 Generators� 125
Generators for Asynchronous Operations� 126
Using Generators with the Fetch API� 127
Long Polling� 127
Multiple Dependent Asynchronous Calls� 129
Conclusion� 131

Preparing for ECMAScript 6: Symbols and Their Uses� 132
Creating New Symbols� 133
What Can I Do With Them?� 133
Well-known Symbols� 135
The Global Registry� 136
Browser Support� 137
Conclusion� 137

Object-Oriented JavaScript — A Deep Dive into ES6 Classes� 138
Referring to the Current Object� 144
Static Properties and Methods� 144
Subclasses� 145
Inherit to Avoid Duplication� 146

6 - HTML & CSS: A SitePoint Anthology

Inherit to substitute subclasses� 150
More than Sugar� 152
Using New Features in Imaginative Ways� 153
Multiple Inheritance with Class Factories� 154
Conclusion� 155

ECMAScript 2015: A SitePoint Anthology - 7

Preface

Welcome to SitePoint’s ES2015 Anthology, a collection of the most useful and
interesting articles on ECMAScript 2015 (a.k.a ES6) recently published on sitepoint.
com, plus an exclusive article from everyone’s favorite developer evangelist, none
other than Microsoft’s Christian Heilmann.

As Christian states in his introduction, ES6 is now a ratified standard and brings a lot of new and
exciting features to the language we love. However, as is often the case, it can take browser vendors a
long time to implement these and you might be forgiven for asking yourself if ES6 is ready for the prime
time. Well, the good news is that it is. Browser support is surprisingly good and for those features not yet
implemented, you can use a polyfill, or a compiler such as Babel. If you want to check the current state
of play of a particular feature, we recommend the ECMAScript 6 compatibility table: https://kangax.
github.io/compat-table/es6/

I’d also like to touch on naming conventions. Is it ECMAScript 6, ES6, ECMAScript 2015, or ES2015? As
the following quote from Douglas Crockford shows, this isn’t the first time that naming has been an
issue for JavaScript:

	 JavaScript, aka Mocha, aka LiveScript, aka JScript, aka ECMAScript, is one 	
	 of the world’s most popular programming languages. ...

Throughout the anthology we have used ECMAScript 6 (ES6) and ECMAScript 2015 (ES2015) inter-
changeably. This is because up until recently, ECMAScript (the specification that defines the semantics,
syntax, and behavior of the JavaScript programming language) was versioned by ordinal number.
However, late into the ES6 specification timeline, suggestions surfaced that versioning should switch
to a year-based schema (to promote faster rolling release cycles). By this time, many developers were
already using the more succinct ES6, so ES2015 struggled to gain a proper hold. Going forward however,
I believe that year based versioning will prevail, as this is what the spec will be referred to throughout
the entire standardization process.

I hope that you enjoy this anthology and find it useful; this is the second of many such collections that
we’re planning to publish on a variety of topics. We’d very much welcome your feedback on this book,
as it will help us shape the series in the future.

https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://twitter.com/javascriptdaily/status/662020174837583872

8 - ECMAScript 2015: A SitePoint Anthology

JavaScript: The State of Play

DHTML, Ajax, HTML5… It seems that as a web
development community we're doomed to repeat
ourselves. We keep giving our current state of play a
hot new label and then turn it into hype. Right now is
not different. ES6, ES7, ES2015, ES2016 describes the
language we all need to write our work in now. Or
we'll be yesterday's news. Time to stop for a spot of tea
and see what the whole rush is about.

JavaScript – So Hot Right Now!

Here's what's going on. JavaScript is no longer a freak language but became the most coveted tech on the
web. This means more groups are looking at JavaScript. Each group then applies their own views of
what it should and shouldn't do. Some see it as not useful yet, as it creates errors in older browsers.
Others see it as a chance to change our ways of scripting into a more organized way of architecting our
code. Publication on the web is easy and immediate. That's why we end up with a lot of opinionated
advice and rushed "best practices". These can be intimidating and make us feel like we're falling behind.
That's not necessarily the case.

By Christian Heilmann
@codepo8

christianheilmann.com

https://www.christianheilmann.com/

ECMAScript 2015: A SitePoint Anthology - 9

The uses cases of JavaScript have changed over the last few years.
We now write full applications with it instead of just extending them.
We even write servers in it using Node.js. Our hardware changed.
We need to run our programs on low-end devices with a lot less
RAM than our computers.

This means that the language itself had to evolve. As the standard-
ization of the language was slow, we created a lot of interim
solutions. We had plugins, superset languages and polyfills.

One of the amazing and dangerous features of JavaScript is that you can fix almost everything with it.
That also includes the language itself. For years we simulated features of other languages like classes,
templating, type safety and block level scoping with libraries.

ES6 Is Now a Standard - Anything

Else Is Experimentation

ES6 now is a ratified standard that brings a lot of these features to the language itself. It has unit tests
that anyone who wants to support it can test against. That helps a lot with making it a baseline you can
work from.

Anything else around the ES* label is important, but less reliable R&D trying to define the next version of
the language. Many things will be proposed, a lot will be implemented in browsers and other tools. A lot
of these will be experimental in nature and incompatible with others. Many a great initial concept will be
discarded as a bad idea during this process.

That's OK. We need people to rock to boat to make it move forward. It is less useful though, when we get
entangled in minutiae. We don't all have to be clairvoyants of the technological future. We also have
work to deliver.

Web technology innovation works differently right now. We moved away from the one truth defined by
a standards body and then hopefully implemented by the industry. Nowadays we follow a more
nuanced and distributed way of innovating. Browsers and libraries try out things, find consensus and
the standards bodies then implement them.

“One of the amazing and
dangerous features of
JavaScript is that you
can fix almost every-
thing with it. That also
includes the language
itself.”

http://www.ecma-international.org/ecma-262/6.0/
https://github.com/tc39/test262

10 - ECMAScript 2015: A SitePoint Anthology

For us, as developers, we need to be aware of this. Working with a standard means we don't have to
worry about future breakage. If you work with the newest, hottest, browser-prefixed technologies, future
breakage is not a maybe — it is by design. Working with things you can trust doesn't make you less of a
developer, it takes all kinds of people to move the web forward. Those who deliver products that work
beautifully, behave well and lead to happy users have as much impact as those who are lucky enough to
make a prediction of the future that does come true.

A Pick 'n' Mix Offering Empowering

Different Developers

ES6 has evolved JavaScript into a language that has a lot of new features. These cater to the different
needs of a diverse group of developers. This doesn't mean that to be an ES6 user you need to know and
use them all. They aren't Pokémon. They are things that should make it easier for us as developers to do
our jobs.

Syntactic Sugar

Take for example the syntactic sugar that ES6 has added to the language. These features don't change the
language per se, but they enable more people to use it. It feels easier and more familiar and thus makes
us feel more confident. Many features came from other languages, libraries and JavaScript helper tools.
There was already a demand for them before they got added to the language. Crowd-pleasers, so to say.

I Had Strings but Now I'm Free

Strings in ES6 now also allow for literals. This is something we used libraries such as mustache for.
Using backticks instead of quotes, strings now become as powerful as they are in, for example, PHP:

var x = 3;

var y = 5;

var result = `${x} and ${y} together are ${x + y}`;

// "3 and 5 together are 8"

This doesn't give us all the functionality of templating engines, but it takes the headache out of some
string features. For example, strings can now span multiple lines. String concatenation has never been
fun:

http://mustache.github.io/

ECMAScript 2015: A SitePoint Anthology - 11

var lyrics = "I've got no strings " +

"To hold me down " +

"To make me fret, or make me frown " +

"I had strings " +

"But now I'm free " +

"There are no strings on me ";

With template literals this can now be:

var lyrics = `I've got no strings

To hold me down

To make me fret, or make me frown

I had strings

But now I'm free

There are no strings on me `;

The white space is part of the string and is kept as is. Another bonus is that you don't have to worry
about commenting out quotes in your string with a \ any longer. There is not much chance that you'll
need a backtick in your normal text. Both strings and arrays got a lot more convenience methods in ES6.
It is worth taking some time to familiarize yourself with them instead of resorting to your own looping
and regular expressions.

What's This? What's This?

Big confusion points in JavaScript are scoping, the keyword this and how it behaves with closures.
Here's a simple example taken from Kyle Simpson's Arrow This post:

function foo() {

 console.log('id:', this.id);

}

foo.call({id: 42});

// id is 42

No problems here. But as soon as you create a callback with an anonymous function (with, for example,
a timeout), the scope is different and this becomes undefined. It now refers to the callback function
which has no value assigned to this:

function foo() {

 setTimeout(function() {

http://blog.getify.com/arrow-this/

12 - ECMAScript 2015: A SitePoint Anthology

 console.log('id:', this.id);

 }, 100);

}

foo.call({id: 42});

// id is undefined

The clumsy workaround for this is to create another variable called self, which doesn't get overridden
by the anonymous function.

function foo() {

 var self = this;

 setTimeout(function() {

 console.log('id:', self.id);

 }, 100);

}

foo.call({id: 42});

// id is 42

Another way is to use the bind method:

function foo() {

 setTimeout(function() {

 console.log('id:', this.id);

 }.bind(this), 100);

}

foo.call({id: 42});

// id is 42

ES6 introduced arrow functions, which automatically do the binding for you:

function foo() {

 setTimeout(() => {

 console.log('id:', this.id);

 }, 100);

}

foo.call({id: 42});

// id is 42

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

ECMAScript 2015: A SitePoint Anthology - 13

In addition to fixing this, arrow functions also make our scripts much terser. The following creates an
array containing the lengths of the strings in another array. In ES5, we needed an anonymous function
and a return statement for this. In ES6, the arrow does all that for us.

var avengers = [

 'Iron Man',

 'Captain America',

 'Black Widow',

 'The Hulk',

 'Thor',

 'Hawkeye'

];

// ES5

var chars = avengers.map(function(s) {

 return s.length

});

// ES6

var chars2 = avengers.map(s => s.length);

Shorter and Leaner

ES6 is full of these simplifications. Other examples are spread and
rest, destructuring and having default values for function param-
eters. These help us write less code and avoid having to loop over
arrays and test for values by hand. This is handy, but you can also
get overboard with it. Let's use this power wisely.

Building to Scale

These days, we build massive applications with hundreds of thousands of lines in JavaScript. Whether
that's the right approach or not is irrelevant — it happens. We need to empower developers to do this
in a sensible fashion. Conventional wisdom for large systems is to write them in an object-oriented
way. You encapsulate functionality in distinct classes. To keep the memory footprint low, and to avoid
security issues, it is prudent to have type safety. Furthermore you need constants and scoped variables.
JavaScript had none of that, but ES6 offers some of it now.

“These days, we build
massive applications
with hundreds of thou-
sands of lines in JavaS-
cript. Whether that's the
right approach or not is
irrelevant — it happens.”

14 - ECMAScript 2015: A SitePoint Anthology

A Touch of Class

The prototypical inheritance of JavaScript has always been a thorn in the side of developers coming from
an object-oriented world. It didn't feel right. Now that ES6 has classes, this reads much simpler for many
developers out there.

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 toString() {

 return `(${this.x}, ${this.y})`;

 }

}

class ColorPoint extends Point {

 constructor(x, y, color) {

 super(x, y);

 this.color = color;

 }

 toString() {

 return super.toString() + ' in ' + this.color;

 }

}

Under the hood, nothing changes. Classes are constructor functions. If you run typeof on them you
get a function as the return.ES6 has not turned JavaScript into a class-based language. But it has made it
more accessible to developers who wouldn't have touched it otherwise. Everybody wins. You can now
approach large JavaScript based projects in an OO fashion and you don't need to understand how to
simulate classes in a prototypical language. Does this mean you now have to write everything as classes?
No, but it means that you can without having to resort to libraries.

Constants and Block-level Scoping

ES6 also introduced block-level scoping using the let keyword and constants using const. These have
an obvious technical benefit for JavaScript compilers as they can allocate memory once. It is also

ECMAScript 2015: A SitePoint Anthology - 15

considered a cleaner way of writing code. You tell a future maintainer what is fixed to a value and shall
not change. You also describe what is only limited to a certain block of code rather than being ready for
re-use and re-assignment.

Working with ES6 Right Now

I hope you are sold that ES6 offers quite a few conveniences. It also solves a lot of issues JavaScript had
in the past. But what's the state of play when it comes to using it right now?

Browser Support

The good news is that browsers support a lot of ES6 right now and are all on board with it. You can look
up the current state of play on the support grid at http://kangax.github.io/compat-table/es6/. The
current numbers are pretty impressive. Even Safari, which is less open than others in its roadmap, added
20% more features between versions 8 and 9.

If you want to be sure, you can feature test for the parts of ES6 you want to support. ES Feature Tests is a
library that makes this easy.

Transpiling in a Workflow

If you need to support older browsers, but you want to write your code using all the goodness of ES6,
you can use transpilation. This means converting your code into ES5 which more browsers understand.
Babel is the big player here. You can use it in a workflow, build process or even on your local machine in
your editor of choice. You can write cleaner, terser code without having to worry about browser support.

Superset Languages

Superset languages have features of the JavaScript of tomorrow.
They come with under-the-hood converters that create browser-un-
derstandable JavaScript. There were quite a few of those around,
but it now seems that the last one standing is TypeScript. Angular
2 uses TypeScript and so do other large frameworks such as Dojo.
The main argument for using it is that you can write your code in a
type-safe manner and you don't need to worry about transpilation.
Behind the scenes TypeScript converts your code into ES5 and,
when supported, ES6.

“If you need to support
older browsers, but you
want to write your code
using all the goodness
of ES6, you can use
transpilation.”

https://featuretests.io/
http://babeljs.io
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

16 - ECMAScript 2015: A SitePoint Anthology

ES6 Is Here, Get Used to It!

There is not much doubt that the future of the web belongs to ES6. It's cleaner and terser structure makes
it appealing, both to developers coming from other languages and current JavaScript developers. All
new APIs defined by browser vendors and standards bodies rely on promises. ES6 modules allow for
organized code libraries that load on demand. And these are features not supported in ES5.

This is a good time to draw a line in the sand and re-evaluate your way of writing JavaScript code. This
is never a bad thing. The web evolves and you should do so with it. You don't need to be part of the
break-neck invention cycle, but you can be the person to keep those who try to predict the future on
their toes by giving them data on how useful the different parts of the language are in day-to-day
delivery.

ES6: A SitePoint Anthology - 17

let const

Preparing for ECMAScript

6: let and const
If you're a frequent SitePoint reader, especially of the
JavaScript channel you've hopefully learned a lot
about the new features of ECMAScript 6 lately.

In this tutorial I'll introduce you to two new keywords: let and
const. They enhance JavaScript even more by filling the gap with
other languages and providing us a way to define block-scope
variables and constants. If you want to learn more about them, keep
reading.

let
Up to ECMAScript 5, JavaScript had only two types of scope: function scope and global scope.

This causes a lot of frustration and unexpected behavior for most developers coming from other lan-

By Aurelio De Rosa
@aurelioderosa
www.audero.it

http://www.sitepoint.com/javascript/
http://www.sitepoint.com/javascript/
http://www.audero.it/

18 - ES6: A SitePoint Anthology

“With ECMAScript 6 the
situation will change
with the availability of
block scope”

guages such as C, C++, or Java. The reason is that JavaScript lacks
block scope, which means a variable exists, and thus is only acces-
sible, within the block in which it's defined. A block is everything
inside an opening and closing curly bracket.

Let's take a look at the following example:

function foo() {

 var par = 1;

 if (par >= 0) {

 var bar = 2;

 console.log(par); // prints 1

 console.log(bar); // prints 2

 }

 console.log(par); // prints 1

 console.log(bar); // prints 2

}

foo();

After running this code, you'll see on the console the following output:

1

2

1

2

What most developers coming from cited languages would expect is that outside the if block you can't
access the bar variable. For example, running the equivalent code in C results in the error
'bar' undeclared at line ... which refers to the use of bar outside the if.

With ECMAScript 6 the situation will change with the availability of block scope. The ECMA organiza-
tion members knew that they could not change the behavior of the keyword var for the sake of back-
ward compatibility. So, they decided to introduce a new keyword
called let. The latter can be used to define variables limiting their
scope to the block in which they are declared.

In addition, unlike var, variables declared using let aren't hoisted.
If you reference a variable in a block before the let declaration for
that variable is encountered, this results in a ReferenceError.

“Up to ECMAScript 5,
JavaScript had only two
types of scope: function
scope and global scope.”

http://www.sitepoint.com/back-to-basics-javascript-hoisting/

ES6: A SitePoint Anthology - 19

But what does this mean in practice? Is it only good for newbies? Not at all!

To explain you why you'll love let consider the following code taken from my article 5 More JavaScript
Interview Exercises:

var nodes = document.getElementsByTagName('button');

for (var i = 0; i < nodes.length; i++) {

 nodes[i].addEventListener('click', function() {

 console.log('You clicked element #' + i);

 });

}

Here you can recognize a well-known issue that comes from variable declaration, their scope, and event
handlers. If you don't know what I'm talking about, go check the article I mentioned and than come back,
I'll wait here.

Back? Good! Thanks to let we can easily solve this issue by simply reassigning the value of i to a
support variable declared using let:

var nodes = document.getElementsByTagName('button');

for (var i = 0; i < nodes.length; i++) {

 let j = i;

 nodes[i].addEventListener('click', function() {

 console.log('You clicked element #' + j);

 });

}

Cool, isn't it?

Now the bad news. At the time of writing no browsers support this feature by default, which means that
this isn't really something you can use today unless you use a transpiler that will convert your code into
an equivalent source that is compatible with ECMAScript 5. In Chrome 38 and Opera 25, you can try
let by activating the "Experimental JavaScript features" flag but only if you run the code in strict mode.

Please note that even if a given browser supports let behind a flag, it might implement only a subset of the
specifications. For example, the browser might not be able to throw the ReferenceError where needed.

http://www.sitepoint.com/5-javascript-interview-exercises/
http://www.sitepoint.com/5-javascript-interview-exercises/
http://cjihrig.com/blog/javascripts-strict-mode-and-why-you-should-use-it/

20 - ES6: A SitePoint Anthology

A demo that shows the difference between var and let is shown below and is also available as a
JSFiddle:

<h1>Var</h1>

<button class="var">Click 1</button>

<button class="var">Click 2</button>

<button class="var">Click 3</button>

<h1>Let</h1>

<button class="let">Click 1</button>

<button class="let">Click 2</button>

<button class="let">Click 3</button>

'use strict';

var varNodes = document.getElementsByClassName('var');

for (var i = 0; i < varNodes.length; i++) {

 varNodes[i].addEventListener('click', function() {

 console.log('You clicked element #' + i);

 });

}

var letNodes = document.getElementsByClassName('let');

for (var i = 0; i < letNodes.length; i++) {

 let j = i;

 letNodes[i].addEventListener('click', function() {

 console.log('You clicked element #' + j);

 });

}

const
const addresses the common need of developers to associate a mnemonic name with a given value,
such that the value can't be changed (or in simpler terms, define a constant). For example, if you're work-
ing with math formulas, you may need to create a Math object. Inside this object you want to associate
the values of π and e with a mnemonic name. const allows you to achieve this goal. Using it you can
create a constant that can be global or local to the function in which it is declared.

http://jsfiddle.net/820f5rzd/
http://jsfiddle.net/820f5rzd/
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/E_%28mathematical_constant%29

ES6: A SitePoint Anthology - 21

Constants defined with const follow the same scope rules as variables but they can't be redeclared.
Constants also share a feature with variables declared using let in that they are block-scoped instead of
function-scoped (and thus they are not hoisted1). In case you try to access a constant before it's declared
you'll receive a ReferenceError.

In this case too, the support is heavily fractional and most browsers have implemented a subset of the
feature. In case you want to know in detail which browsers support const and which specific features
are implemented, you can take a look at this ECMAScript 6 compatibility table.

An example of use of const is shown below:

'use strict';

function foo() {

 const con1 = 3.141;

 if (con1 > 3) {

 const con2 = 1.414;

 console.log(con1); // prints 3.141

 console.log(con2); // prints 1.414

 }

 console.log(con1); // prints 3.141

 try {

 console.log(con2);

 } catch (ex) {

 console.log('Cannot access con2 outside its block');

 }

}

foo();

A demo of this code is available as a JSFiddle. Remember that different browsers may behave differently
based on the features supported.

Conclusion

In this tutorial I've introduced you to two new and very interesting features of JavaScript that are
available in the upcoming ECMAScript "Harmony" 6. I bet that most of you have encountered use cases
where the use of let and const would have been beneficial. Unfortunately, due to their poor support

http://kangax.github.io/compat-table/es6/#test-const
http://jsfiddle.net/mkzdLyrn/

22 - ES6: A SitePoint Anthology

among browsers you have to use a transpiler or you won't be able to take advantage of them. Hopefully
this will change soon and, anyway, this is what the future of JavaScript looks like.

ECMAScript 2015: A SitePoint Anthology - 23

Preparing for ECMAScript

6: New Function Syntax
In the book Secrets of the JavaScript Ninja by John
Resig and Bear Bibeault, the authors describe functions
as the most important concept of the language because
in JavaScript everything pivots around them. Func-
tions are very important indeed.

The new version of JavaScript adds even more features to them that
you'll love to use. In this tutorial you'll learn more about new
features that work with functions and that will enable you to write
even more powerful code.

If you want to know more about ECMAScript 6, I suggest you check out my articles about the String and
Array data types, and newly introduced Map and WeakMap data types.

By Aurelio De Rosa
@aurelioderosa
www.audero.it

https://www.manning.com/books/secrets-of-the-javascript-ninja
http://www.audero.it/

24 - ECMAScript 2015: A SitePoint Anthology

Arrow Functions

The first feature I want to cover is the arrow function. As the name
suggests, to use it we'll use an arrow (=>) that you might recognize
if you've ever worked with PHP. This feature comes in two forms
that integrate with the current function syntax. Keep in mind that by
using an arrow function you can replace anonymous functions only.
The two possible syntaxes are shown below:

// First syntax

([param] [, param]) => { statements }

// Second syntax

param => expression

The param placeholder represents the parameters of the function, while statements represents the
body of the function. expression represents any valid expression and it's a replacement for the right
part of the first syntax ({ statements }). In the first form you can place any number of parameters
between the parentheses, while the second is limited to one.

To understand what they look like, let's say that we have a set of numbers that we need to test for even
or oddness. In addition, we need to perform this test only once, so we don't need to define an isEven()
function and can use an anonymous function. Our function will return true if a number is even, and
false otherwise. This results in the code below:

var numbers = [10, 21, 15, 8];

// prints "[true, false, false, true]"

console.log(

 numbers.map(function(number) {

 return number % 2 === 0;

 })

);

This is a perfect example of why arrow functions are useful. As you can see, the anonymous function is
pretty simple and its body is made of a single statement. Nonetheless, to adhere to the current JavaScript
syntax, we have to type a lot of additional characters. Thanks to arrow functions we can avoid them and
write code like this:

“Keep in mind that by
using an arrow function
you can replace anony-
mous functions only.”

ECMAScript 2015: A SitePoint Anthology - 25

var numbers = [10, 21, 15, 8];

// prints "[true, false, false, true]"

console.log(

 numbers.map(number => number % 2 === 0)

);

Much shorter isn't it? In this case we can use the second, shorter syntax because the body of the function
is made of only one statement. In addition, the only statement we had is a return. In fact, with the
second syntax the result of the right expression is used as a return value.

If we want to use the arrow functions to replace functions with more statements, we can use the first
form. To see it in action, let's enhance our function to verify that the given parameter is actually a
number and that it's an integer. The resulting code is the following:

var numbers = [10, 15, false, 'test', {}];

// prints "[true, false, false, false, false]"

console.log(

 numbers.map(function(number) {

 // The parameter is a number and it's an integer

 if (typeof number !== 'number' || number % 1 !== 0) {

 return false;

 }

 return number % 2 === 0;

 })

);

We can make it shorter using the first form of arrow functions as shown below:

var numbers = [10, 15, false, 'test', {}];

// prints "[true, false, false, false, false]"

console.log(

 numbers.map(number => {

 // The parameter is a number and it's an integer

 if (typeof number !== 'number' || number % 1 !== 0) {

 return false;

26 - ECMAScript 2015: A SitePoint Anthology

 }

 return number % 2 === 0;

 })

);

A demo of this code is available as a JSFiddle.

Arrow functions aren't only great because they allow us to save a few keystrokes. Another important
feature is that they implicitly bind the this value of a function. Imagine that a given page has some
buttons and that the page has the following code:

var Utility = {

 fullname: 'Aurelio De Rosa',

 handler: function(elements) {

 for (var i = 0; i < elements.length; i++) {

 elements[i].addEventListener('click', function() {

 console.log(this.fullname);

 });

 }

 }

};

var buttons = document.getElementsByTagName('button');

Utility.handler(buttons);

Any time a button is pressed the string "Aurelio De Rosa" is printed on the console. However, when the
handler is attached in the for loop, the value of this won't be the Utility object anymore but it'll be
window. Therefore, the console will display undefined.

This is a common problem in JavaScript that we can solve in a lot of different ways. For example you
could store the reference to the Utility object using a variable (the classic var that = this
approach) or use the bind() function. However, thanks to the introduction of the arrow function, we
can fix the issue like this:

var Utility = {

 fullname: 'Aurelio De Rosa',

 handler: function(elements) {

 for (var i = 0; i < elements.length; i++) {

 elements[i].addEventListener('click', () => {

http://jsfiddle.net/kbpfs1L7/

ECMAScript 2015: A SitePoint Anthology - 27

 console.log(this.fullname);

 });

 }

 }

};

var buttons = document.getElementsByTagName('button');

Utility.handler(buttons);

A demo of this code is available as a JSFiddle.

This feature is currently only supported by Firefox 22+.

Default Values for Parameters

The new version of JavaScript has introduced another feature that PHP developers use extensively: the
ability to set a default value for parameters. The JavaScript version is even more powerful than the PHP
one because a default value used for a given parameter is available to the next parameters in the list.
Also, in JavaScript, parameters with default values can be followed by parameters without. In PHP this
is not possible. To assign a default value you have to place an equals sign right after the parameter name,
followed by the default value you want to assign, as you'd do in a classic assignment.

Default values are something that we have used several times in the past but in a different way. Ponder
the following code:

function Person(name, surname, gender) {

 // Set default values

 name = name || 'Aurelio';

 surname = surname || 'De Rosa';

 gender = gender || 'male';

 this.toString = function() {

 return 'My name is ' + name + ' ' + surname + ' and I am a ' + gender;

 }

};

// prints "My name is John Doe and I am a male"

console.log(new Person('John', 'Doe').toString());

http://jsfiddle.net/40Loe2hj/

28 - ECMAScript 2015: A SitePoint Anthology

// prints "My name is Aurelio De Rosa and I am a male"

console.log(new Person().toString());

Running this snippet of code works as expected, but the manual management of default values is really
boring. Furthermore, the approach used may have unexpected results because it tests for a falsy value
and then assigns a default. Let's say that one of the parameters was a number and an ideal default value
is 10 but zero is acceptable. Using the technique of the code above we could write:

param = param || 10;

In this case, because zero is a falsy value, 10 will be assigned to param which is really not what we want.
Of course it's possible to use other techniques but they require us to write even more code. Thanks to the
new features of ECMAScript 6 we can avoid issues like this and shorten the code as shown below:

function Person(name = 'Aurelio', surname = 'De Rosa', gender = 'male') {

 this.toString = function() {

 return 'My name is ' + name + ' ' + surname + ' and I am a ' + gender;

 }

};

// prints "My name is John Doe and I am a male"

console.log(new Person('John', 'Doe').toString());

// prints "My name is Aurelio De Rosa and I am a male"

console.log(new Person().toString());

This version is not only more concise but also more readable because the default values are set close to
the parameters. It worth noting that the default value is used also if the argument passed in is
undefined.

A demo of this code is available as a JSFiddle.

In the previous example we've only seen the basic use of this new feature. The next example shows how
we can have parameters without a default value after one that has a default one:

function prod(number1 = 1, number2) {

 return number1 * number2;

}

http://jsfiddle.net/gac7n8r0/

ECMAScript 2015: A SitePoint Anthology - 29

The final example shows a parameter whose default value depends on a previous parameter with a
default value:

function Person(name, surname, username = name + ' ' + surname) {

}

Like the previous feature this default value for a parameter is currently only supported by Firefox 15+.

Rest Parameter

The rest parameter is a special parameter that enables us to express
an arbitrary number of parameters in a function. It'll include all the
passed arguments that don't match a named parameter as elements
of an array (so not an array-like element). To define this parameter,
you have to place it as the last in the function's signature and
prepend three dots to it. The syntax for this parameter is reported
below:

function (...paramName) {

}

paramName can be any arbitrary name you want to assign to this special parameter.

Developers have simulated this feature for a long time using arguments and removing the named
parameters. To visualize the difference between the old approach and the new one, let's say that we
have a function that accepts some data about a person and prints it on the console. This function has two
mandatory parameters that represent the name and the surname of the person, and then any number of
additional parameters. In the old approach, such a function can be written as follows:

function presentation(name, surname) {

 var otherInfo = [].slice.call(arguments, 2);

 console.log('My name is ' + name + ' ' + surname);

 if (otherInfo.length > 0) {

 console.log('Other info: ' + otherInfo.join(', '));

 }

}

// prints "My name is John Doe"

“The rest parameter is a
special parameter that
enables us to express an
arbitrary number of pa-
rameters in a function.”

30 - ECMAScript 2015: A SitePoint Anthology

presentation('John', 'Doe');

// Prints "My name is Aurelio De Rosa"

// "Other info: male, Italian, Web developer"

presentation('Aurelio', 'De Rosa', 'male', 'Italian', 'Web developer');

Using the rest parameter we can get rid of the first statement of the function resulting in the code listed
below:

function presentation(name, surname, ...otherInfo) {

 console.log('My name is ' + name + ' ' + surname);

 if (otherInfo.length > 0) {

 console.log('Other info: ' + otherInfo.join(', '));

 }

}

// prints "My name is John Doe"

presentation('John', 'Doe');

// Prints "My name is Aurelio De Rosa"

// "Other info: male, Italian, Web developer"

presentation('Aurelio', 'De Rosa', 'male', 'Italian', 'Web developer');

A demo of this code is available as a JSFiddle.

This feature is currently only supported by Firefox 15+.

Conclusion

In this tutorial we've covered the new features introduced in ECMAScript 6 that work with functions.
They will allow us to write even more powerful and concise code. Due to the poor support of browsers
they aren't something that can you really use today, but you should be prepared because this is what the
future of JavaScript looks like.

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 31

By Aurelio De Rosa
@aurelioderosa
www.audero.it

Preparing for ECMAScript

6: New Number Methods
In this series about the new features of ECMAScript 6,
we've discussed new methods available for the String
and Array data types, but also new types of data like
Map and WeakMap.

In this article I'm going to introduce you to the new methods and
constants added to the Number data type. Some of the methods
covered, as we'll see, aren't new at all but they have been improved
and/or moved under the right object (for example isNaN()). As
always, we'll also put the new knowledge acquired into action with some examples. So, without further
ado, let's start.

http://www.audero.it/

32 - ECMAScript 2015: A SitePoint Anthology

Number.isInteger()
The first method I want to cover is Number.isInteger(). It's a new addition to JavaScript and this is
something you may have defined and used by yourself in the past. It determines whether the value
passed to the function is an integer or not. This method returns true if the passed value is an integer,
and false otherwise. The implementation of this method was pretty easy but it's still good to have it
natively. One of the possible solutions to recreate this function is:

Number.isInteger = Number.isInteger || function (number) {

 return typeof number === 'number' && number % 1 === 0;

};

For my fun, I tried to recreate this function and I ended up with a different approach:

Number.isInteger = Number.isInteger || function (number) {

 return typeof number === 'number' && Math.floor(number) === number;

};

Both these functions are good and useful but they don't respect the ECMAScript 6 specifications. So, if
you want to polyfill this method you need something a little bit more complex as we'll see in a few
moments. For the moment, let's start by discovering the syntax of Number.isInteger():

Number.isInteger(number)

The number argument represents the value you want to test.

Some examples of use of this method are shown below:

// prints "true"

console.log(Number.isInteger(19));

// prints "false"

console.log(Number.isInteger(3.5));

// prints "false"

console.log(Number.isInteger([1, 2, 3]));

A demo of this code is available as a JSFiddle.

http://jsfiddle.net/v3qf4xyb/

ECMAScript 2015: A SitePoint Anthology - 33

The method is supported by almost any modern browser and specifically by Firefox, Chrome, Opera,
and Safari. If you want to support Internet Explorer and some other browsers, you need a polyfill. One
that you can employ is available on the Mozilla Developer Network on the method's page and also
reported below for your convenience:

if (!Number.isInteger) {

 Number.isInteger = function isInteger (nVal) {

 return typeof nVal === "number" &&

 isFinite(nVal) && nVal > -9007199254740992 &&

 nVal < 9007199254740992 &&

 Math.floor(nVal) === nVal;

 };

}

Number.isNaN()
If you've written any JavaScript code in the past, this method should not be new to you. For a while now,
JavaScript has had a method called isNaN() that is exposed through the window object. This method
tests if a value is equal to NaN, in which case it returns true, or not, in which case false is returned.
The problem with window.isNaN() is that it has an issue in that it returns true also for values that
converted to a number will be NaN. To give you a concrete idea of this issue, all the following statements
return true:

// prints "true"

console.log(window.isNaN(0/0));

// prints "true"

console.log(window.isNaN('test'));

// prints "true"

console.log(window.isNaN(undefined));

// prints "true"

console.log(window.isNaN({prop: 'value'}));

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

34 - ECMAScript 2015: A SitePoint Anthology

What you might need is a method that returns true only if the NaN value is passed. That's why ECMAS-
cript 6 has introduced the Number.isNaN() method. Its syntax is pretty much what you'd expect:

Number.isNaN(value)

Where value is the value you want to test. Some example uses of this method are shown below:

// prints "true"

console.log(Number.isNaN(0/0));

// prints "true"

console.log(Number.isNaN(NaN));

// prints "false"

console.log(Number.isNaN(undefined));

// prints "false"

console.log(Number.isNaN({prop: 'value'}));

As you can see, testing the same values we obtain different results.

A demo of this code is available as a JSFiddle.

The method is currently only supported by Firefox, Chrome and Opera. If you want to support other
browsers, a very simple polyfill for this method is the following:

Number.isNaN = Number.isNaN || function (value) {

 return value !== value;

};

The reason why it works is because NaN is the only non-reflexive
value in JavaScript, which means that it is the only value that isn't
equal to itself.

Number.isFinite()
This method shares the same story as the previous one. In JavaScript
there is a method called window.isFinite() that tests if a value

“The reason why it
works is because NaN is
the only non-reflexive
value in JavaScript,
which means that it is
the only value that isn't
equal to itself.”

http://jsfiddle.net/s6ar9L11/

ECMAScript 2015: A SitePoint Anthology - 35

passed is a finite number or not. Unfortunately, it also returns true for values that converted to a number
will be a finite number. Examples of this issue are reported below:

// prints "true"

console.log(window.isFinite(10));

// prints "true"

console.log(window.isFinite(Number.MAX_VALUE));

// prints "true"

console.log(window.isFinite(null));

// prints "true"

console.log(window.isFinite([]));

For this reason, in ECMAScript 6 there is a method called isFinite() that belongs to Number. Its
syntax is the following:

Number.isFinite(value)

Where value is the value you want to test. If you test the same values from the previous snippet, you
can see that the results are different:

// prints "true"

console.log(Number.isFinite(10));

// prints "true"

console.log(Number.isFinite(Number.MAX_VALUE));

// prints "false"

console.log(Number.isFinite(null));

// prints "false"

console.log(Number.isFinite([]));

A demo of this code is available as a JSFiddle.

The method is currently only supported by Firefox, Chrome and Opera. You can find a polyfill for it on
the method's page on MDN.

http://jsfiddle.net/p35vtck8/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite

36 - ECMAScript 2015: A SitePoint Anthology

“The Number.isSafeInte-
ger() method is a
completely new addition
to the next version of
JavaScript.”

Number.isSafeInteger()
The Number.isSafeInteger() method is a completely new
addition to the next version of JavaScript. It tests whether the value
passed is a number that is a safe integer, in which case it returns
true. A safe integer is defined as an integer that satisfies both the
following conditions:

}} The number can be exactly represented as an IEEE-754
double precision number

}} The IEEE-754 representation of the number can't be the result of rounding any other integer to
fit the IEEE-754 representation

Based on this definition, the safe integers are all the integers from -(253 - 1) inclusive to 253 - 1 inclusive.
These values are important and we'll discuss them a bit more at the end of this section.

The syntax of this method is:

Number.isSafeInteger(value)

Where value is the value you want to test. A few example uses of this method are shown below:

// prints "true"

console.log(Number.isSafeInteger(5));

// prints "false"

console.log(Number.isSafeInteger('19'));

// prints "false"

console.log(Number.isSafeInteger(Math.pow(2, 53)));

// prints "true"

console.log(Number.isSafeInteger(Math.pow(2, 53) - 1));

A demo of this code is available as a JSFiddle.

The Number.isSafeInteger() method is supported by Firefox, Chrome and Opera. A polyfill for this
method, extracted from es6-shim by Paul Miller, is:

http://jsfiddle.net/7snmmz12/
https://github.com/paulmillr/es6-shim/
http://paulmillr.com

ECMAScript 2015: A SitePoint Anthology - 37

Number.isSafeInteger = Number.isSafeInteger || function (value) {

 return Number.isInteger(value) && Math.abs(value) <= Number.MAX_SAFE_INTEGER;

};

Note that this polyfill relies on the Number.isInteger() method discussed before, so you need to
polyfill the latter as well to use this one.

ECMAScript 6 "Harmony" also introduces two related constant values: Number.MAX_SAFE_INTEGER
and Number.MIN_SAFE_INTEGER. The former represents the maximum safe integer in JavaScript, that
is 253 - 1, while the latter the minimum safe integer which is -(253 - 1). As you might note, these are the
same values I cited earlier.

Number.parseInt() and Number.parseFloat()
The Number.parseInt() and Number.parseFloat() methods are covered in the same section
because, unlike other similar methods mentioned in this article, they already existed in previous version
of ECMAScript but aren't different from their old global version. So, you can use them in the same way
you've done so far and you can expect the same results. They have been added to Number because they
actually belonged to it from the very beginning.

For the sake of completeness I'm reporting their syntax:

// Signature of Number.parseInt

Number.parseInt(string, radix)

// Signature of Number.parseFloat

Number.parseFloat(string)

Where string represents the value you want to parse and radix is the radix you want to use to
convert string.

The following snippet shows a few example uses:

// Prints "-3"

console.log(Number.parseInt('-3'));

// Prints "4"

console.log(Number.parseInt('100', 2));

38 - ECMAScript 2015: A SitePoint Anthology

// Prints "NaN"

console.log(Number.parseInt('test'));

// Prints "NaN"

console.log(Number.parseInt({}));

// Prints "42.1"

console.log(Number.parseFloat('42.1'));

// Prints "NaN"

console.log(Number.parseFloat('test'));

// Prints "NaN"

console.log(Number.parseFloat({}));

A demo of this code is available as a JSFiddle.

These methods are currently implemented in Firefox, Chrome, and Opera. In case you want to polyfill
them, you can simply call their related global method as listed below:

// Polyfill Number.parseInt

Number.parseInt = Number.parseInt || function () {

 return window.parseInt.apply(window, arguments);

};

// Polyfill Number.parseFloat

Number.parseFloat = Number.parseFloat || function () {

 return window.parseFloat.apply(window, arguments);

};

Conclusion

In this tutorial we've covered the new methods and constants added in ECMAScript 6 that work with
the Number data type. It's worth noting that the new version of JavaScript also has added another
constant that I didn't mention so far. This constant is Number.EPSILON and represents the difference
between one and the smallest value greater than one that can be represented as a Number. With this last
note, we've concluded our journey for the Number data type.

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 39

Preparing for ECMAScript 6:

Set and WeakSet
In one of my recent articles titled Preparing for EC-
MAScript 6: Map and WeakMap, I introduced you to
two new data types available in ECMAScript 6: Map
and its weak counterpart WeakMap.

In this tutorial we're going to cover another duo of similar data
types called Set and WeakSet. They share a lot of similarities
with Map and WeakMap, especially when it comes to the methods
available. However, as we'll discuss here, they have different scopes.

As I've pointed out in all the previous articles discussing ECMAScript 6, if you want to polyfill what
we'll cover, you can employ es6-shim by Paul Miller.

By Aurelio De Rosa
@aurelioderosa
www.audero.it

http://www.sitepoint.com/introduction-grunt/
http://babeljs.io/docs/usage/options
http://www.audero.it/

40 - ECMAScript 2015: A SitePoint Anthology

Set
Like the name says, the Set data type represents a set of elements (a collection). As mathematical notion
suggests, this means that a set lets you store the same elements only once (e.g. the string "test" can't be
stored twice). Like other JavaScript data types, it isn't mandatory to store elements of the same type, so
in the same set you can store arrays, numbers, strings, and so on.

It's also worth noting that a single element in a set cannot be retrieved, for example using a get()
method. The reason is that an element has neither a key nor an index you can refer to in order to retrieve
it. But because you can verify that an element is contained in a given Set instance, you don't need a
get() method. For example, if you know the string "test" is contained in a set you don't need to retrieve
it, because you already have that value. It's still possible to retrieve all the elements stored, as you'll learn
in this tutorial.

"But when is this data type a good fit?" you may ask. Well, let's say that you need to store the IDs of some
elements. When it comes to these situations, you don't want duplicates. Under these circumstances and
in ECMAScript 5, most of you have probably used arrays or objects to store the elements. The problem
is that every time a new element comes in, you have to check that it hasn't been already added to avoid
duplicates. If you used an array, you'd have code like this:

var collection = [1, 2, 3, 4, 5];

var newElements = [4, 8, 10];

for (var i = 0; i < newElements.length; i++) {

 if (collection.indexOf(newElements[i]) === -1) {

 collection.push(newElements[i]);

 }

}

Using the Set data type, you can simplify the previous code as shown below:

var collection = new Set([1, 2, 3, 4, 5]);

var newElements = [4, 8, 10];

for (var i = 0; i < newElements.length; i++) {

 collection.add(newElements[i]);

}

ECMAScript 2015: A SitePoint Anthology - 41

Now that you know what Set is and when to use it, let's discuss the properties and the methods
exposed.

Set.prototype.size

The size property returns the number of elements in a Set instance. This is similar to the length of
the Array data type.

Set.prototype.constructor()

The constructor, as you might know, is used to instantiate new objects. It accepts an optional argument
called iterable that is an array or an iterable object whose elements will be added to the new set. A
basic example of use is shown below:

var array = [1, 2, "test", {a: 10}];

var set = new Set(array);

Set.prototype.add()

The add() method adds a new element to the set if it isn't already present; otherwise the element isn't
added. The signature of this method is the following:

Set.prototype.add(value)

where value is the element you want to store. This method modifies the set it's called upon but also
returns the new set, allowing for chaining. An example of how to use such feature is shown below:

var set = new Set();

set.add("test").add(1).add({});

This method is currently implemented in Firefox, Internet Explorer 11, Chrome 38 and Opera 25. In
versions of Chrome prior to 38 and Opera prior to 25 this method is supported behind the activation of
the flag "Enable Experimental JavaScript".

Set.prototype.delete()

In the same way we can add elements, we can also delete them from a set. To do that we can use the

42 - ECMAScript 2015: A SitePoint Anthology

delete() method. It accepts the value to delete and returns true if the element is successfully re-
moved or false otherwise. The signature of this method is shown below:

Set.prototype.delete(value)

value represents the element you want to delete.

This method is currently implemented in Firefox, Internet Explorer 11, Chrome 38 and Opera 25. In
versions of Chrome prior to 38 and Opera prior to 25 you have to activate the usual flag.

Set.prototype.has()

The has() method is one of the methods that the Set data type has in common with Map. It allows us
to verify if an element exists or not in the set. It returns true if the value is found or false otherwise.
The signature of this method is as follows:

Set.prototype.has(value)

where value is the value you want to search for.

This method is currently implemented in Firefox, Internet Explorer 11, Chrome 38 and Opera 25. In
versions of Chrome prior to 38 and Opera prior to 25 this method is supported behind the activation of
the flag "Enable Experimental JavaScript".

Set.prototype.clear()

The clear() method, like the one defined on Map, is a convenient way to remove all the elements from
a Set instance. The method doesn't have a return value (which means it returns undefined). The
signature of clear() is shown below:

Set.prototype.clear()

clear() is currently implemented in Firefox, Internet Explorer 11, Chrome 38 and Opera 25. In versions
of Chrome prior to 38 and Opera prior to 25 you have to activate the usual flag.

Set.prototype.forEach()

Another method in common with Map is forEach(). We can use it to iterate over the elements stored in
the set in insertion order. The signature of forEach() is the following:

ECMAScript 2015: A SitePoint Anthology - 43

Set.prototype.forEach(callback[, thisArg])

callback is a function to run on each of the elements in the set. The thisArg parameter is used to set
the context (this) of the callback. callback receives three parameters:

}} value: the value of the element processed
}} value: the value of the element processed
}} set: the Set object processed

As you can see, the value being processed is passed twice. The
reason is to keep the method consistent with the forEach()
implemented in Map and Array.

This method is supported by Firefox, Internet Explorer 11, Chrome
38 and Opera 25. In versions of Chrome prior to 38 and Opera prior to 25 you have to activate the usual
flag.

Set.prototype.entries()

The entries() method enables us to obtain an Iterator to loop though the set's elements. The
Iterator contains an array of value-value pairs for each element in the set, in insertion order. The
reason for this duplication is the same as before: to keep it consistent with the method of Map. The
signature of this method is:

Set.prototype.entries()

This method is currently supported by Firefox, Chrome 38 and Opera 25. In versions of Chrome prior to
38 and Opera prior to 25 you have to activate the usual flag.

Set.prototype.values()

Another method that belongs to this data type is values(). It returns an Iterator object containing
the values of the elements of the set, in insertion order. Its signature is the following:

Set.prototype.values()

This method is currently supported by Firefox, Chrome 38 and Opera 25. In versions of Chrome prior to
38 and Opera prior to 25 this method is supported behind the activation of the flag "Enable Experimental
JavaScript".

“As you can see, the
value being processed is
passed twice. The reason
is to keep the method
consistent with the
forEach() implemented
in Map and Array.“

44 - ECMAScript 2015: A SitePoint Anthology

Set.prototype.keys()

Curiously enough, Set has also a keys() method. It performs the same operation as values(), so I
won't describe it.

WeakSet
WeakSet is the weak counterpart to the Set data type. A WeakSet only accepts objects as its values.
This means that {}, function(){} (functions inherit from Object), and instances of your own classes
are allowed, but "test", 1, and other primitive data types are not.

The other important difference is that WeakSet objects don't prevent garbage collection if there aren't
any other references to an object stored (the reference is weak). Due to this difference, there aren't any
methods to retrieve values or more than one element at once such as Set.prototype.values() and
Set.prototype.entries(). In addition, similarly to WeakMap, there isn't a size property available.

As a final note, I want to highlight that Chrome 37 and Opera 24 support WeakSet and its methods
without a flag, while the same isn't true for Set. The newer version Chrome 38 and Opera 25 support
Set and its methods by default.

Putting it all together

Now that you've seen all the methods and properties of the Set and
the WeakSet data types, it's time to put them into action. In this
section I've developed two demos so that you can play with these
methods and have a better idea of their power. As you'll note, I
haven't used the Set.prototype.keys() method because I think
it's only good at confusing developers.

In the first demo I'll use a Set object and its methods except Set.prototype.keys().

// Creates a new Set object

var set = new Set();

// Defines an array will be stored in the set

var arr = [4, 1, 9];

// Adds a new Number to the set

“As you'll note, I haven't
used the Set.prototype.
keys() method because
I think it's only good at
confusing developers”

ECMAScript 2015: A SitePoint Anthology - 45

set.add(1);

// Adds a new String to the set

set.add('Aurelio De Rosa');

// Adds a new Object to the set

set.add({name: 'John Doe'});

// Adds a new Array element to the set

set.add(arr);

// Checks whether the string "test" is stored in the set. Prints "false"

console.log(set.has('test'));

// Checks whether the number "1" is stored in the set. Prints "true"

console.log(set.has(1));

// Retrieves the set size. Prints "4"

console.log(set.size);

// Deletes the object {name: 'Aurelio De Rosa'}. Prints "false" because even if it has

the same values and properties, it's a different object

console.log(set.delete({name: 'Aurelio De Rosa'}));

// Retrieves the set size. Prints "4"

console.log(set.size);

// Deletes the array arr. Prints "true" because it's the same array

console.log(set.delete(arr));

// Retrieves the set size. Prints "3"

console.log(set.size);

// Loops over each element of the set

set.forEach(function(value, samevalue, set) {

 // Prints the value twice

 console.log('Value ' + value + ' is the same as ' + samevalue);

});

var entries = set.entries();

var entry = entries.next();

// Loops over each element of the set

while (!entry.done) {

46 - ECMAScript 2015: A SitePoint Anthology

 // Prints both the value and the key

 console.log('Value ' + entry.value[1] + ' is the same as ' + entry.value[0]);

 entry = entries.next();

}

var values = set.values();

var value = values.next();

// Loops over each value of the set

while (!value.done) {

 // Prints the value

 console.log('Value: ' + value.value);

 value = values.next();

}

// Deletes all the elements in the set

set.clear();

// Retrieves the set size. Prints "0"

console.log(set.size);

A demo of this code is available as a JSFiddle.

In this second demo we'll see how we can work with a WeakSet object.

// Creates a new WeakSet object

var weakset = new WeakSet();

// Defines an object that will be stored in the set

var obj = {name: 'Aurelio De Rosa'};

// Adds an object to the set

weakset.add(obj);

// Adds a function to the set

weakset.add(function(){});

// Adds another object to the set

weakset.add({name: 'John Doe'});

// Checks whether the Object {name: 'John Doe'} exists in the weak set. Prints "false"

because despite the fact that the passed object and the stored one have the same values

and properties, they are different objects

http://www.sitepoint.com/?s=ecmascript+6

ECMAScript 2015: A SitePoint Anthology - 47

console.log(weakset.has({name: 'John Doe'}));

// Checks whether the Object obj exists in the weak set. Prints "true" because it's the

same object

console.log(weakset.has(obj));

// Deletes the obj element. Prints "true"

console.log(weakset.delete(obj));

// Deletes the function(){} element. Prints "false" because the passed function and the

stored one they are different functions (objects)

console.log(weakset.delete(function(){}));

// Deletes all the elements of the weak set

weakset.clear();

A demo of the previous code is available as a JSFiddle.

Conclusion

In this tutorial I covered the new Set and WeakSet data types. In addition to Map and WeakMap they
are the most interesting new types available in ECMAScript 6. I hope you enjoyed the article and
learned something interesting.

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

Preparing for ECMAScript

6: Map and WeakMap
If you're following this series about ECMAScript 6,
you've learned about some of the new methods avail-
able for the String and Array types. The new version
of JavaScript introduces several new data types too. In
this article we'll discuss Map and its weak counterpart
WeakMap.

Remember that if you want to polyfill what we'll cover in this
tutorial, you can employ es6-shim by Paul Miller.

Map
Maps are one of the most used data structures in programming. Maps are objects that associate a key to
a value, regardless of the type of the value (number, string, object, and so on). For those of you who are
not aware of maps, let's discuss a brief example. In a typical structured database table you associate an

By Aurelio De Rosa
@aurelioderosa
www.audero.it

48 - ECMAScript 2015: A SitePoint Anthology

https://github.com/paulmillr/es6-shim/
http://paulmillr.com
http://www.audero.it/

ECMAScript 2015: A SitePoint Anthology - 49

ID with each entry (a row of the table). So, you have something like:

ID 1 -> Aurelio De Rosa, Italy

ID 2 -> Colin Ihrig, USA

ID 3 -> John Doe, USA

In languages like Java and C# you have a class that allows you to instantiate maps. In other languages
like PHP you can create a map using an associative array. Prior to ECMAScript 6, JavaScript was one of
the languages to lack this data structure. Now, this data type exists and it's called Map.

JavaScript maps are really powerful because they allow the use of
any value (both objects and primitive values) either as a key or a
value. This is one of the most important differences compared to
maps created using the Object type. In fact, maps created using
an object literal only allow strings as their keys. In addition, as
we'll see in a moment, the Map type has a method to easily retrieve
the number of elements contained within it, while with objects
you have to loop over them manually, checking that the element
belongs to the object itself and it isn't inherited (using the good old
hasOwnProperty()).

Now that I've introduced you to this new data type, let's discover what are the properties and the
methods available.

Map.prototype.size

The size property returns the number of elements in the Map object. This is a nice addition, that I
mentioned in the previous section, because thanks to this, you don't have to count the elements by
yourself.

Map.prototype.constructor()

The Map object's constructor is used to instantiate new objects and accepts an optional argument called
iterable. The latter is an array or an iterable object whose elements are key/value pairs (two-element
arrays). Each of these elements will be added to the new map. For example, you could write:

var array = [['key1', 'value1'], ['key2', 100]];

var map = new Map(array);

“JavaScript maps are
really powerful because
they allow the use of
any value (both objects
and primitive values)
either as a key or a
value.“

Map.prototype.set()

The set() method is used to add a new element (key/value pair) to a map. If the key used already
exists, the value associated is replaced by the new one. Its signature is the following:

Map.prototype.set(key, value)

where key is the key you want to use and value is the value to store. This method modifies the map it's
called upon but also returns the new map.

This method is currently implemented in Firefox, Internet Explorer 11, and Chrome and Opera behind a
flag ("Enable Experimental JavaScript").

Map.prototype.get()

The get() method returns the value associated with the key provided. If the key isn't found, the
method returns undefined. The signature of the method is shown below, where key is the key you
want to use.

Map.prototype.get(key)

This method is currently implemented in Firefox, Internet Explorer 11, and Chrome and Opera behind a
flag ("Enable Experimental JavaScript").

Map.prototype.delete()

The delete() method removes the element associated with the provided key from the map. It returns
true if the element is successfully removed or false otherwise. The signature of this method is shown
below:

Map.prototype.delete(key)

key represents the key of the element you want to delete.

This method is currently implemented in Firefox, Internet Explorer 11, and Chrome and Opera (you
have to activate the usual flag).

50 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 51

Map.prototype.has()

has() is a method to verify if an element with the given key exists or not. It returns true if the key is
found or false otherwise. The signature of this method is shown below:

Map.prototype.has(key)

where key is the key you want to search.

This method is currently implemented in Firefox, Internet Explorer 11, and Chrome and Opera behind a
flag ("Enable Experimental JavaScript").

Map.prototype.clear()

The clear() method is a convenient way to remove all the elements from a Map object. The method
doesn't have a return value (which means it returns undefined). The signature of clear() is shown
below:

Map.prototype.clear()

clear() is currently implemented in Firefox, Internet Explorer 11, and Chrome and Opera behind the
usual flag.

Map.prototype.forEach()

Just as we can loop over arrays, executing a callback function using the forEach() method, the same is
possible with maps. The signature of forEach() is shown below:

Map.prototype.forEach(callback[, thisArg])

callback is the callback function to execute for each of the elements in the map, and thisArg is used
to set the context (this) of the callback. The method doesn't have a return value (which means it returns
undefined). callback receives three parameters that are:

}} value: the value of the element processed
}} key: the key of the element processed
}} map: the Map object being processed

This method is supported by Firefox, Internet Explorer 11, and Chrome and Opera behind a flag.

Map.prototype.entries()

entries() is a method of obtaining an Iterator object to iterate though the elements of the map. I've
already mentioned this type of object when talking about the new keys() method of the Array type. The
signature of this method is:

Map.prototype.entries()

This method is currently supported by Firefox, and Chrome and Opera behind a flag.

Map.prototype.keys()

The keys() method is very similar to entries() but it returns only the keys of the elements. Its
signature is the following:

Map.prototype.keys()

This method is currently supported by Firefox, and Chrome and Opera behind a flag.

Map.prototype.values()

Similar to keys() we have values(). It returns an Iterator object containing the values of the
elements of the map. Its signature is the following:

Map.prototype.values()

This method is currently supported by Firefox, and Chrome and Opera behind a flag.

WeakMap
WeakMap is very similar to Map but has few important differences.
The first is that a WeakMap only accepts objects as keys. This means
that {}, function(){} (remember that functions inherit from
Object), and instances of your own classes are allowed, but 'key',
10, and other primitive data types are not.

The other important difference is that WeakMap objects don't
prevent garbage collection if there aren't any other references to

“WeakMap is very
similar to Map but has
few important differ-
ences. The first is that a
WeakMap only accepts
objects as keys.”

52 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 53

an object which is acting as a key (the reference is weak). Due to this difference, there is no method to
retrieve keys (for example the Map.prototype.keys() method for Map) or more than one element at
once (like Map.prototype.values() and Map.prototype.entries()).

The reason is well explained by the Mozilla developer network (MDN):

WeakMap keys are not enumerable (i.e. there is no method giving you a list of the
keys). If they were, the list would depend on the state of garbage collection, intro-
ducing non-determinism.

As a further consequence of the previous point, there is no size property available.

It's also worth noting that Chrome 37 and Opera 24 (the latest stables at the time of writing) support
WeakMap and its methods without a flag, while the same isn't true for Map.

Putting it all together

So far you've learned all about the Map and the WeakMap data type and their methods. In this section
we'll put them in action so that you can have a better understanding of their power. In addition to
showing you some code, we'll also provide you with demos so that you can play with them live.

In the first demo we'll see a Map object and its methods in action.

// Creates a new Map object

var mapObj = new Map();

// Defines an object that will be used a key in the map

var objKey = {third: 'c'};

// Adds a new element having a String as its key and a String as its value

mapObj.set('first', 'a');

// Adds a new element having a Number as its key and an Array as its value

mapObj.set(2, ['b']);

// Adds a new element having an Object as its key and a Number as its value

mapObj.set(objKey, 3);

// Adds a new element having an Array as its key and a String as its value

mapObj.set(['crazy', 'stuff'], 'd');

// Checks whether an element having a key of "2" exists in the map. Prints "true"

console.log(mapObj.has(2));

// Checks whether an element having a key of "test" exists in the map. Prints "false"

console.log(mapObj.has('test'));

// Retrieves the element having key of "first". Prints "a"

console.log(mapObj.get('first'));

// Retrieves the element having key of "['crazy', 'stuff']". Prints "undefined" because

even if the value of this array are identical to the one used to set a value, they are

not the same array

console.log(mapObj.get(['crazy', 'stuff']));

// Retrieves the element having as a key the value of objKey. Prints "3" because it's

exactly the same object using to set the element

console.log(mapObj.get(objKey));

// Retrieves the element having key of "empty". Prints "undefined"

console.log(mapObj.get('empty'));

// Retrieves the map size. Prints "4"

console.log(mapObj.size);

// Deletes the element having key of "first". Prints "true"

console.log(mapObj.delete('first'));

// Retrieves the map size. Prints "3"

console.log(mapObj.size);

// Loops over each element of the map

mapObj.forEach(function(value, key, map) {

 // Prints both the value and the key

 console.log('Value ' + value + ' is associated to key ' + key);

});

var entries = mapObj.entries();

var entry = entries.next();

// Loops over each element of the map

while (!entry.done) {

54 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 55

 // Prints both the value and the key

 console.log('Value ' + entry.value[1] + ' is associated to key ' + entry.value[0]);

 entry = entries.next();

}

var values = mapObj.values();

var value = values.next();

// Loops over each value of the map

while (!value.done) {

 // Prints the value

 console.log('Value: ' + value.value);

 value = values.next();

}

var keys = mapObj.keys();

var key = keys.next();

// Loops over each key of the map

while(!key.done) {

 // Prints the key

 console.log('Key: ' + key.value);

 key = keys.next();

}

// Deletes all the elements of the map

mapObj.clear();

// Retrieves the map size. Prints "0"

console.log(mapObj.size);

A demo of this code is available as a JSFiddle.

In this second demo we'll see how we can work with a WeakMap object.

// Creates a new WeakMap object

var weakMapObj = new WeakMap();

// Defines an object that will be used a key in the map

var objKey1 = {a: 1};

// Defines another object that will be used a key in the map

var objKey2 = {b: 2};

http://jsfiddle.net/zzb2vkyo/

// Adds a new element having an Object as its key and a String as its value

weakMapObj.set(objKey1, 'first');

// Adds a new element having an Object as its key and a String as its value

weakMapObj.set(objKey2, 'second');

// Adds a new element having a Function as its key and a Number as its value

weakMapObj.set(function(){}, 3);

// Checks whether an element having as its key the value of objKey1 exists in the weak

map. Prints "true"

console.log(weakMapObj.has(objKey1));

// Retrieve the value of element associated with the key having the value of objKey1.

Prints "first"

console.log(weakMapObj.get(objKey1));

// Deletes the element having key of objKey1. Prints "true"

console.log(weakMapObj.delete(objKey1));

// Deletes all the elements of the weak map

weakMapObj.clear();

A demo of this code is available as a JSFiddle.

Conclusion

In this tutorial I covered the new Map and WeakMap data types. The former is a nice addition to the
language because most developers have simulated maps for a long time. Its weak counterpart isn't really
something you'll use a lot in your day job, but there are surely situations where it might be a good fit. To
reinforce the concepts discussed, I strongly encourage you to play with the demos provided. Have fun!

56 - ECMAScript 2015: A SitePoint Anthology

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 57

string.length

Preparing for ECMAScript

6: New String Methods
In my previous article, I introduced you to most of the
new methods available in ECMAScript 6 "Harmony"
that work with the Array type. In this tutorial you'll
learn about those that work with strings. We'll develop
several examples and mention the polyfills available
for them. Remember that if you want to polyfill them
all using a single library, you can employ es6-shim by
Paul Miller.

String.prototype.startsWith()
One of the most used functions in every modern programming language is the one to verify if a string
starts with a given substring. So far, JavaScript hasn't had such a function, so you had to write it yourself.
The following code shows how developers usually polyfilled it:

By Aurelio De Rosa
@aurelioderosa
www.audero.it

https://github.com/paulmillr/es6-shim/
http://paulmillr.com
http://www.audero.it/

58 - ECMAScript 2015: A SitePoint Anthology

“One of the most used
functions in every
modern programming
language is the one to
verify if a string starts
with a given substring.
So far, JavaScript hasn't
had such a function,
so you had to write it
yourself.”

if (typeof String.prototype.startsWith !== 'function') {

 String.prototype.startsWith = function(str) {

 return this.indexOf(str) === 0;

 };

}

Or, alternatively:

if (typeof String.prototype.startsWith !== 'function') {

 String.prototype.startsWith = function(str) {

 return this.substring(0, str.length) === str;

 };

}

These snippets are still valid, but they don't reproduce exactly what the newly available
String.prototype.startsWith() method does. The new method has the following syntax:

String.prototype.startsWith(searchString[, position]);

You can see that in addition to a substring, it accepts a second
argument. The searchString parameter specifies the substring
you want to verify is the start of the string. position indicates the
position at which to start the search.

The default value of position is 0. The methods returns true if
the string starts with the provided substring, and false otherwise.
Remember that the method is case sensitive, so "Hello" is different
from "hello".

An example usage of this method is shown below:

var str = 'hello!';

var result = str.startsWith('he');

// prints "true"

console.log(result);

ECMAScript 2015: A SitePoint Anthology - 59

// verify starting from the third character

result = str.startsWith('ll', 2);

// prints "true"

console.log(result);

A demo of this code is available as a JSFiddle.

The method is supported by Firefox 17+, and Chrome 35+ and Opera 22+ behind a flag ("Enable
Experimental JavaScript"). A polyfill for this method can be found in the method's page on MDN.
Another polyfill has also been developed by Mathias Bynens.

String.prototype.endsWith()
In addition to String.prototype.startsWith(), ECMAScript 6 introduces the String.
prototype.endsWith() method. It verifies that a string terminates with a given substring. The syntax
of this method, shown below, is very similar to String.prototype.startsWith():

String.prototype.endsWith(searchString[, position]);

As you can see, this method accepts the same parameters as String.prototype.startsWith(), and
also returns the same type of values.

A difference is that the position parameter lets you search within
the string as if the string were only this long. In other words, if
we have the string house and we call the method in this way
'house'.endsWith('us', 4), we obtain true because it's like
we actually had the string hous (note the missing "e").

An example use of this method is shown below:

var str = 'hello!';

var result = str.endsWith('lo!');

// prints "true"

console.log(result);

// verify as if the string was "hell"

“A difference is that the
position parameter
lets you search within
the string as if the string
were only this long.”

http://jsfiddle.net/fx98ck6j/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://github.com/mathiasbynens/String.prototype.startsWith

60 - ECMAScript 2015: A SitePoint Anthology

result = str.endsWith('lo!', 5);

// prints "false"

console.log(result);

A demo of this code is available as a JSFiddle.

The method is supported by Firefox 17+, and Chrome 35+ and Opera 22+ behind a flag ("Enable
Experimental JavaScript"). A polyfill for this method can be found in the method's page on MDN.
Another polyfill has been developed by Mathias Bynens.

String.prototype.includes()
While we're talking about verifying if one string is contained in another, let me introduce you to the
String.prototype.includes() method. It returns true if a string is contained in another, no
matter where, and false otherwise.

Its syntax is shown below:

String.prototype.includes(searchString[, position]);

The meaning of the parameters is the same as for String.prototype.startsWith(), so I won't
repeat them. An example use of this method is shown below:

var str = 'Hello everybody, my name is Aurelio De Rosa.';

var result = str.includes('Aurelio');

// prints "true"

console.log(result);

result = str.includes('Hello', 10);

// prints "false"

console.log(result);

A demo of this code is available as a JSFiddle.

String.prototype.includes() is currently supported by Firefox 17+, and Chrome 35+ and Opera

http://jsfiddle.net/p7g8L1fL/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://github.com/mathiasbynens/String.prototype.endsWith
http://jsfiddle.net/6rahtrwo/

ECMAScript 2015: A SitePoint Anthology - 61

22+ behind the usual flag. Just like the other methods discussed in this tutorial, you can find a polyfill
provided by Mathias Bynens (this guy knows how to do his job!) and another on the Mozilla Developer
Network.

String.prototype.repeat()
Let's now move on to another type of method. String.prototype.repeat() is a method that
returns a new string containing the same string it was called upon but repeated a specified number of
times. The syntax of this method is the following:

String.prototype.repeat(times);

The times parameter indicates the number of times the string must be repeated. If you pass zero you'll
obtain an empty string, while if you pass a negative number or infinity you'll obtain a RangeError.

An example use of this method is shown below:

var str = 'hello';

var result = str.repeat(3);

// prints "hellohellohello"

console.log(result);

result = str.repeat(0);

// prints ""

console.log(result);

A demo of this code is available as a JSFiddle.

This method is supported by Firefox 24+, and Chrome 35+ and Opera 22+ behind the usual flag. Two
polyfills for this method are the one developed by Mathias Bynens and another on the Mozilla Develop-
er Network.

String.raw
The last method I want to cover in this tutorial is String.raw. It's defined as a tag function of template

https://github.com/mathiasbynens/String.prototype.includes
https://github.com/mathiasbynens/String.prototype.includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
http://jsfiddle.net/4y9ewes4/
https://github.com/mathiasbynens/String.prototype.repeat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/repeat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/repeat

62 - ECMAScript 2015: A SitePoint Anthology

strings. It's interesting because its kind of a replacement for templating libraries, although I'm not 100%
sure it can scale enough to actually replace those libraries. However, the idea is basically the same as
we'll see in a moment. What it does is to compile a string and replace every placeholder with a provided
value.

Its syntax is the following (note the backticks):

String.raw`templateString`

The templateString parameter represents the string containing the template to process.

To better understand this concept, let's see a concrete example:

var name = 'Aurelio De Rosa';

var result = String.raw`Hello, my name is ${name}`;

// prints "Hello, my name is Aurelio De Rosa" because ${name}

// has been replaced with the value of the name variable

console.log(result);

Unfortunately at the time of this writing, String.raw isn't supported by any browser. For this reason,
I'm not including a demo for it.

Conclusion

In this tutorial you've learned about several new methods introduced in ECMAScript 6 that work with
strings. Other methods that we haven't covered are String.fromCodePoint(), String.prototype.code-
PointAt(), and String.prototype.normalize(). I hope you enjoyed the article and that you'll continue to
follow our channel to learn more about ECMAScript 6.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCodePoint
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/codePointAt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/codePointAt
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 63

Preparing for ECMAScript

6: New Array Methods
As developers, we constantly need to keep up with the
latest technologies (that's why you read SitePoint,
right?). If you're a JavaScript developer, it's your
responsibility to understand the features introduced in
new versions of the language.

The next version, known as ECMAScript 6, or Harmony, has been
under development for a few years. As of August 2014, it has been
stabilized. This means that no new features will be added to the
specification. It will be completed around the end of 2014, and will
start to go into the official publication process starting in March 2015,
but things are stable enough to start learning the new methods right
now.

In this article we'll discuss most of the new methods available in
ECMAScript 6 that work with the Array type. When dis-

“If you're a JavaScript
developer, it's your
responsibility to under-
stand the features intro-
duced in new versions of
the language.“

By Aurelio De Rosa
@aurelioderosa
www.audero.it

http://www.audero.it/

64 - ECMAScript 2015: A SitePoint Anthology

cussing them, you'll note that I'll write Array.method() when I describe a "class" method and
Array.prototype.method() when I outline an "instance" method.

We'll also see some example uses and mention several polyfills for them. Keep in mind that because
these methods are very recent, the examples will work only in a few browsers. If you need a polyfill-
them-all library, you can use es6-shim by Paul Miller.

Array.from()
The first method I want to mention is Array.from(). It creates a new Array instance from an ar-
ray-like or an iterable object. This method can be used to solve an old problem with array-like objects
that most developers solve using this code:

// typically arrayLike is arguments

var arr = [].slice.call(arryLike);

The syntax of Array.from() is shown below:

Array.from(arrayLike[, mapFn[, thisArg]])

The meaning of its parameters are:

}} arrayLike: An array-like or an iterable object
}} mapFn: A function to call on every element contained
}} thisArg: A value to use as the context (this) of the mapFn function

Now that we know its syntax and its parameters, let's see this method in action. In the code below we're
going to create a function that accepts a variable number of arguments, and returns an array containing
these elements doubled:

function double(arr) {

 return Array.from(arguments, function(elem) {

 return elem * 2;

 });

}

var result = double(1, 2, 3, 4);

https://github.com/paulmillr/es6-shim/
http://paulmillr.com

ECMAScript 2015: A SitePoint Anthology - 65

// prints [2, 4, 6, 8]

console.log(result);

A demo of this code is available as a JSFiddle.

This method is currently only supported in Firefox 32+, so if you want to employ it you need a polyfill.
There are a couple of polyfills to choose from: one is available on the method's page on MDN, while the
other has been written by Mathias Bynens and is called Array.from.

Array.prototype.find()
Another of the methods introduced is Array.prototype.find(). The syntax of this method is:

Array.prototype.find(callback[, thisArg])

As you can see, it accepts a callback function used to test the elements of the array and an optional
argument to set the context (this) of the callback function. The callback function receives three parame-
ters:

}} element: The current element
}} index: The index of the current element
}} array: The array you used to invoke the method

This method returns a value in the array if it satisfies the provided callback function, or undefined
otherwise. The callback is executed once for each element in the array until it finds one where a truthy
value is returned. If there is more than one element in the array that will return a truthy value, only the
first is returned.

An example usage is shown below:

var arr = [1, 2, 3, 4];

var result = arr.find(function(elem) {return elem > 2;});

// prints "3" because it's the first

// element greater than 2

console.log(result);

A demo of this code is available as a JSFiddle.

http://jsfiddle.net/st36efb0/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://github.com/mathiasbynens/Array.from
http://jsfiddle.net/kkLdq1tu/

66 - ECMAScript 2015: A SitePoint Anthology

This method has slightly better support, as it's implemented in Firefox 25+, and Chrome 35+ and Opera
22+ behind a flag ("Enable Experimental JavaScript"). If you need a polyfill, one is provided on the
method's page on MDN.

Array.prototype.findIndex()
A method that is very similar to the previous one is Array.prototype.findIndex(). It accepts the
same arguments but instead of returning the first element that satisfies the callback function, it returns
its index. If none of the elements return a truthy value, -1 is returned. An example usage of this method
is shown below.

var arr = [1, 2, 3, 4];

var result = arr.findIndex(function(elem) {return elem > 2;});

// prints "2" because is the index of the

// first element greater than 2

console.log(result);

A demo of this code is available as a JSFiddle.

This method is supported by Firefox 25+, and Chrome 35+ and Opera 22+ behind a flag ("Enable
Experimental JavaScript"). A polyfill for this method can be found on the method's page on MDN.

Array.prototype.keys()
Yet another method introduced in this new version of JavaScript is Array.prototype.keys(). This
method returns a new Array Iterator (not an array) containing the keys of the array's values. We'll
cover array iterators in an upcoming article, but if you want to learn more about them now, you can refer
to the specification or the MDN page.

The syntax of Array.prototype.keys() is shown below:

Array.prototype.keys()

An example of use is the following:

var arr = [1, 2, 3, 4];

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
http://jsfiddle.net/qusq48yu/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/keys

ECMAScript 2015: A SitePoint Anthology - 67

var iterator = arr.keys();

// prints "0, 1, 2, 3", one at a time, because the

// array contains four elements and these are their indexes

var index = iterator.next();

while(!index.done) {

 console.log(index.value);

 index = iterator.next();

}

A demo of this code is available as a JSFiddle.

Array.prototype.keys() is supported by Firefox 28+, and Chrome 35+ and Opera 22+ behind a flag.

Array.prototype.values()
In the same way we can retrieve the keys of an array, we can retrieve its values using Array.
prototype.values(). This method is similar to Array.prototype.keys() but the difference is
that it returns an Array Iterator containing the values of the array.

The syntax of this method is shown below:

Array.prototype.values()

An example use is shown below:

var arr = [1, 2, 3, 4];

var iterator = arr.values();

// prints "1, 2, 3, 4", one at a time, because the

// array contains these four elements

var index = iterator.next();

while(!index.done) {

 console.log(index.value);

 index = iterator.next();

}

A demo of this code is available as a JSFiddle.

http://jsfiddle.net/p7z7cugk/
http://jsfiddle.net/38pxo3fs/

68 - ECMAScript 2015: A SitePoint Anthology

The Array.prototype.values() method is supported by Chrome 35+ and Opera 22+ behind the
usual flag.

Array.prototype.fill()
If you have worked in the PHP world (like me), you will recall a
function named array_fill() that was missing in JavaS-
cript. In ECMAScript 6 this method is no longer missing.
Array.prototype.fill(), fills an array with a specified value
optionally from a start index to an end index (not included).

The syntax of this method is the following:

Array.prototype.fill(value[, start[, end]])

The default values for start and end are respectively 0 and the length of the array. These parameters
can also be negative. If start or end are negative, the positions are calculated starting from the end of
the array.

An example of use of this method is shown below:

var arr = new Array(6);

// This statement fills positions from 0 to 2

arr.fill(1, 0, 3);

// This statement fills positions from 3 up to the end of the array

arr.fill(2, 3);

// prints [1, 1, 1, 2, 2, 2]

console.log(arr);

A demo of this code is available as a JSFiddle.

This method is currently supported in Firefox 31+, and Chrome 37+ and Opera 24+ behind the usual flag.
As polyfills you can employ the one on the method's page on MDN, or the polyfill developed by Addy
Osmani.

“If you have worked in
the PHP world (like me),
you will recall a function
named array_fill()
that was missing in
JavaScript. In ECMAS-
cript 6 this method is no
longer missing.”

http://jsfiddle.net/f05z421j/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/fill
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 69

Conclusion

In this article we've discussed several of the new methods introduced in ECMAScript 6 that work with
arrays. Whether you find them useful or not, they are on their way. It's clear that these methods aren't
really ready for the prime time, but you still should keep an eye on them. Of course there is more in
ECMAScript 6 than what we've described in this article as we'll discover in the upcoming ones.

70 - ECMAScript 2015: A SitePoint Anthology

Preparing for ECMAScript 6:

Proxies
In computing terms, a proxy sits between you and the
thing you are communicating with. The term is most
often applied to a proxy server -- a device between the
web browser (Chrome, Firefox, Safari, Edge etc.) and
the web server (Apache, NGINX, IIS etc.) where a page
is located. The proxy server can modify requests and
responses. For example, it can increase efficiency by
caching regularly-accessed assets and serving them to
multiple users.

ES6 proxies sit between your code and an object. A proxy allows you
to perform meta-programming operations such as intercepting a call
to inspect or change an object's property.

The following terminology is used in relation to ES6 proxies:

“In computing terms, a
proxy sits between you
and the thing you are
communicating with.”

By Craig Buckler
@craigbuckler

craigbuckler.com

http://craigbuckler.com/

ECMAScript 2015: A SitePoint Anthology - 71

target : The original object the proxy will virtualize. This could be a JavaScript object such as the
jQuery library or native objects such as arrays or even another proxies.

handler: An object which implements the proxy's behavior using…

traps: Functions defined in the handler which provide access to the target when specific properties or
methods are called.

It's best explained with a simple example. We'll create a target object named target which has three
properties:

var target = {

 a: 1,

 b: 2,

 c: 3

};

We'll now create a handler object which intercepts all get operations. This returns the target's property
when it's available or 42 otherwise:

var handler = {

 get: function(target, name) {

 return (

 name in target ? target[name] : 42

);

 }

};

We now create a new Proxy by passing the target and handler objects. Our code can interact with the
proxy rather than accessing the target object directly:

var proxy = new Proxy(target, handler);

console.log(proxy.a); // 1

console.log(proxy.b); // 2

console.log(proxy.c); // 3

console.log(proxy.meaningOfLife); // 42

72 - ECMAScript 2015: A SitePoint Anthology

Let's expand the proxy handler further so it only permits single-character properties from a to z to be
set:

var handler = {

 get: function(target, name) {

 return (name in target ? target[name] : 42);

 },

 set: function(target, prop, value) {

 if (prop.length == 1 && prop >= 'a' && prop <= 'z') {

 target[prop] = value;

 return true;

 }

 else {

 throw new ReferenceError(prop + ' cannot be set');

 return false;

 }

 }

};

var proxy = new Proxy(target, handler);

proxy.a = 10;

proxy.b = 20;

proxy.ABC = 30;

// Exception: ReferenceError: ABC cannot be set

Proxy Trap Types

We've seen the get and set in action which are likely to be the most useful traps. However, there are
several other trap types you can use to supplement proxy handler code:

}} construct(target, argList) Traps the creation of a new object with the new operator.
}} get(target, property) Traps Object.get() and must return the property's value.
}} set(target, property, value) Traps Object.set() and must set the property value. Return 	

ECMAScript 2015: A SitePoint Anthology - 73

	 true if successful. In strict mode, returning false will throw a TypeError exception.
}} deleteProperty(target, property) Traps a delete operation on an objects property. Must return 	

	 either true or false.
}} apply(target, thisArg, argList) Traps object function calls.
}} has(target, property) Traps in operators and must return either true or false.
}} enumerate(target) Traps for ... in statements and must return an iterator object.
}} ownKeys(target) Traps Object.getOwnPropertyNames() and must return an enumerable 	

	 object.
}} getPrototypeOf(target) Traps Object.getPrototypeOf() and must return the prototype's 	

	 object or null.
}} setPrototypeOf(target, prototype) Traps Object.setPrototypeOf() to set the prototype 	

	 object -- no value is returned.
}} isExtensible(target) Traps Object.isExtensible() which determines whether an object 	

	 can have new properties added. Must return either true or false.
}} preventExtensions(target) Traps Object.preventExtensions() which prevents new 		

	 properties from being added to an object. Must return either true or false.
}} getOwnPropertyDescriptor(target, property) Traps 			

	 Object.getOwnPropertyDescriptor() which returns undefined or a property descrip	
	 tor object with attributes for value, writable, get, set, configurable and enumerable.

}} defineProperty(target, property, descriptor) Traps Object.defineProperty() which 		
	 defines or modifies an object property. Must return true if the target property was 	
	 successfully defined or false if not.

Proxy Example 1: Profiling

Proxies allow you to create generic wrappers for any object without
having to change the code within the target objects themselves.

In this example we'll create a profiling proxy which counts the
number of times a property is accessed. First, we require a
makeProfiler factory function which returns the Proxy object and
retains the count state:

// create a profiling Proxy

function makeProfiler(target) {

 var

 count = {},

 handler = {

“Proxies allow you to
create generic wrappers
for any object without
having to change the
code within the target
objects themselves.”

74 - ECMAScript 2015: A SitePoint Anthology

 get: function(target, name) {

 if (name in target) {

 count[name] = (count[name] || 0) + 1;

 return target[name];

 }

 }

 };

 return {

 proxy: new Proxy(target, handler),

 count: count

 }

};

We can now apply this proxy wrapper to any object or another proxy, e.g.

var myObject = {

 h: 'Hello',

 w: 'World'

};

// create a myObject proxy

var pObj = makeProfiler(myObject);

// access properties

console.log(pObj.proxy.h); // Hello

console.log(pObj.proxy.h); // Hello

console.log(pObj.proxy.w); // World

console.log(pObj.count.h); // 2

console.log(pObj.count.w); // 1

While this is a trivial example, imagine the effort involved if you had to perform property access counts
in several different objects without using proxies.

ECMAScript 2015: A SitePoint Anthology - 75

Proxy Example 2: Two-Way Data Binding

Data binding synchronizes objects. It's typically used in JavaScript MVC libraries to update an internal
object when the DOM changes and vice versa.

Presume we have an input field with an id of inputname:

<input type="text" id="inputname" value="" />

We also have a JavaScript object named myUser with an id property which references this input:

// internal state for #inputname field

var myUser = {

 id: 'inputname',

 name: ''

};

Our first objective is to update myUser.name when a user changes the input value. This can be
achieved with an onchange event handler on the field:

inputChange(myUser);

// bind input to object

function inputChange(myObject) {

 if (!myObject || !myObject.id) return;

 var input = document.getElementById(myObject.id);

 input.addEventListener('onchange', function(e) {

 myObject.name = input.value;

 });

}

Our next objective is to update the input field when we modify myUser.name within JavaScript code.
This is not as simple but proxies offer a solution:

76 - ECMAScript 2015: A SitePoint Anthology

// proxy handler

var inputHandler = {

 set: function(target, prop, newValue) {

 if (prop == 'name' && target.id) {

 // update object property

 target[prop] = newValue;

 // update input field value

 document.getElementById(target.id).value = newValue;

 return true;

 }

 else return false;

 }

}

// create proxy

var myUserProxy = new Proxy(myUser, inputHandler);

// set a new name

myUserProxy.name = 'Craig';

console.log(myUserProxy.name); // Craig

console.log(document.getElementById('inputname').value); // Craig

This is not be the most efficient data-binding option but proxies allow you to alter the behavior of many
existing objects without changing their code.

Further Examples

Hemanth.HM's article Negative Array Index in JavaScript suggests using proxies to implement negative
array indexes, e.g. arr[-1] returns the last element, arr[-2] returns the second-to-last element, etc.

http://h3manth.com/new/blog/2013/negative-array-index-in-javascript/

ECMAScript 2015: A SitePoint Anthology - 77

Nicholas C. Zakas' article Creating type-safe properties with ECMAScript 6 proxies illustrates how
proxies can be used to implement type safety by validating new values. In the example above, we could
verify myUserProxy.name was always set to a string and throw and error otherwise.

Proxy Support

The power of proxies may not be immediately obvious but they offer powerful meta-programming
opportunities. Brendan Eich, the creator of JavaScript, thinks Proxies are Awesome!

As of end 2015, basic proxy support is implemented in Edge and Firefox 18+ although not all traps can
be used. Experimental support is available in Node 4.0+ if you run Node with the
--harmony-proxies flag but use it at your own risk.

Unfortunately, it's not possible to polyfill or transpile ES6 proxy code using tools such as Babel because
they're powerful and have no ES5 equivalent. A little more waiting may be necessary

https://www.nczonline.net/blog/2014/04/29/creating-type-safe-properties-with-ecmascript-6-proxies/
https://www.youtube.com/watch?v=sClk6aB_CPk
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

78 - ECMAScript 2015: A SitePoint Anthology

Preparing for ECMAScript 6:

Destructuring Assignment
Destructuring assignment sounds complex. It reminds
me of object oriented terms such as encapsulation and
polymorphism — I'm convinced they were chosen to
make simple concepts appear more sophisticated!

In essence, ECMAScript 6 (ES2015) destructuring assignment allows
you to extract individual items from arrays or objects and place
them into variables using a shorthand syntax. Those coming from
PHP may have encountered the list() function which extracts arrays
into variables in one operation. ES6 takes it to another level.

Presume we have an array:

var myArray = ['a', 'b', 'c'];

We can extract these values by index in ES5:

By Craig Buckler
@craigbuckler

craigbuckler.com

http://php.net/manual/en/function.list.php
http://craigbuckler.com/

ECMAScript 2015: A SitePoint Anthology - 79

var

 one = myArray[0],

 two = myArray[1],

 three = myArray[2];

// one = 'a', two = 'b', three = 'c'

ES6 destructuring permits a simpler and less error-prone alternative:

var [one, two, three] = myArray;

// one = 'a', two = 'b', three = 'c'

You can ignore certain values, e.g.

var [one, , three] = myArray;

// one = 'a', three = 'c'

or use the spread operator (...) to extract remaining elements:

var [one, ...two] = myArray;

// one = 'a', two = ['b, 'c']

Destructuring also works on objects, e.g.

var myObject = {

 one: 'a',

 two: 'b',

 three: 'c'

};

// ES5 example

var

 one = myObject.one,

 two = myObject.two,

 three = myObject.three;

80 - ECMAScript 2015: A SitePoint Anthology

// one = 'a', two = 'b', three = 'c'

// ES6 destructuring example

var {one, two, three} = myObject;

// one = 'a', two = 'b', three = 'c'

In this example, the variable names one, two and three matched the object property names. We can
also assign properties to variables with any name, e.g.

var myObject = {

 one: 'a',

 two: 'b',

 three: 'c'

};

// ES6 destructuring example

var {one: first, two: second, three: third} = myObject;

// first = 'a', second = 'b', third = 'c'

More complex nested objects can also be referenced, e.g.

var meta = {

 title: 'Destructuring Assignment',

 authors: [

 {

 firstname: 'Craig',

 lastname: 'Buckler'

 }

],

 publisher: {

 name: 'SitePoint',

 url: 'http://www.sitepoint.com/'

 }

};

var {

 title: doc,

ECMAScript 2015: A SitePoint Anthology - 81

 authors: [{ firstname: name }],

 publisher: { url: web }

 } = meta;

/*

 doc = 'Destructuring Assignment'

 name = 'Craig'

 web = 'http://www.sitepoint.com/'

*/

This appears a little complicated but remember that in all destructuring assignments:

}} the left-hand side of the assignment is the destructuring target; the pattern which defines the 	
	 variables being assigned

}} the right-hand side of the assignment is the destructuring source; the array or object which 	
	 holds the data being extracted

There are a number of other caveats. First, you cannot start a statement with a curly brace because it
looks like a code block, e.g.

// THIS FAILS

{ a, b, c } = myObject;

You must either declare the variables, e.g.

// THIS WORKS

var { a, b, c } = myObject;

or use parenthesis if variables are already declared, e.g.

// THIS WORKS

({ a, b, c }) = myObject;

// SO DOES THIS!

({ a, b, c } = myObject);

You should also be wary of mixing declared and undeclared variables, e.g.

82 - ECMAScript 2015: A SitePoint Anthology

// THIS FAILS

var a;

var { a, b, c } = myObject;

// THIS WORKS

var a, b, c;

({ a, b, c }) = myObject;

That's the basics of destructuring. So when would it be useful? I'm glad you asked…

Easier Declaration

Variables can be declared without explicitly defining each value, e.g.

// ES5

var a = 'one', b = 'two', c = 'three';

// ES6

var [a, b, c] = ['one', 'two', 'three'];

Admittedly, the destructured version is longer. It's a little easier to
read although that may not be the case with more items.

Variable Value Swapping

Swapping values in ES5 requires a temporary third variable but it's
far simpler with destructuring:

var a = 1, b = 2;

// ES5 swap

var temp = a;

a = b;

b = temp;

// a = 2, b = 1

“Swapping values in ES5
requires a temporary
third variable but it's far
simpler with destructur-
ing”

ECMAScript 2015: A SitePoint Anthology - 83

// ES6 swap back

[a, b] = [b, a];

// a = 1, b = 2

You're not limited to two variables — any number of items can be rearranged, e.g.

// rotate left

[b, c, d, e, a] = [a, b, c, d, e];

Default Function Parameters

Presume we had a function to output our meta object:

var meta = {

 title: 'Destructuring Assignment',

 authors: [

 {

 firstname: 'Craig',

 lastname: 'Buckler'

 }

],

 publisher: {

 name: 'SitePoint',

 url: 'http://www.sitepoint.com/'

 }

};

prettyPrint(meta);

In ES5, it's necessary to parse this object to ensure appropriate defaults are available, e.g.

// ES5 default values

function prettyPrint(param) {

 param = param || {};

 var

84 - ECMAScript 2015: A SitePoint Anthology

 pubTitle = param.title || 'No title',

 pubName = (param.publisher && param.publisher.name) || 'No publisher';

 return pubTitle + ', ' + pubName;

}

In ES6 we can assign a default value to any parameter, e.g.

// ES6 default value

function prettyPrint(param = {}) {

but we can then use destructuring to extract values and assign defaults where necessary:

// ES6 destructured default value

function prettyPrint(

 {

 title: pubTitle = 'No title',

 publisher: { name: pubName = 'No publisher' }

 } = {}

) {

 return pubTitle + ', ' + pubName;

}

I'm not convinced this is easier to read but it is significantly shorter.

Returning Multiple Values from a Function

Functions can only return one value but that can be a complex object or multi-dimensional array.
Destructuring assignment makes this more practical, e.g.

function f() {

 return [1, 2, 3];

}

var [a, b, c] = f();

// a = 1, b = 2, c = 3

ECMAScript 2015: A SitePoint Anthology - 85

For-of Iteration

Consider an array of book information:

var books = [

 {

 title: 'Full Stack JavaScript',

 author: 'Colin Ihrig and Adam Bretz',

 url: 'http://www.sitepoint.com/store/full-stack-javascript-development-mean/'

 },

 {

 title: 'JavaScript: Novice to Ninja',

 author: 'Darren Jones',

 url: 'http://www.sitepoint.com/store/leaern-javascript-novice-to-ninja/'

 },

 {

 title: 'Jump Start CSS',

 author: 'Louis Lazaris',

 url: 'http://www.sitepoint.com/store/jump-start-css/'

 },

];

The ES6 for-of is similar to for-in except that it extracts each value rather than the index/key, e.g.

for (let b of books) {

 console.log(b.title + ' by ' + b.author + ': ' + b.url);

}

Destructuring assignment provides further enhancements, e.g.

for (let {title, author, url} of books) {

 console.log(title + ' by ' + author + ': ' + url);

}

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/for...of

86 - ECMAScript 2015: A SitePoint Anthology

Regular Expression Handling

Regular expressions functions such as match return an array of matched items which can form the
source of a destructuring assignment:

var [a, b, c, d] = 'one two three'.match(/\w+/g);

// a = 'one', b = 'two', c = 'three', d = undefined

Destructuring Assignment Support

Destructuring assignment may not revolutionize your development life but it could save some consider-
able typing effort!

As of end 2015, support for destructuring assignment is still incomplete. It's available in Firefox 34+ with
basic features in Safari 7.1+. Experimental support is available in Node 4.0+ if you run Node with the
--harmony-destructuring flag but it's best not to depend on it.

Until ES6 is generally available, compilers such as Babel and Traceur will translate ES6 destructuring
assignments to an ES5 equivalent.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://kangax.github.io/compat-table/es6/#test-destructuring
https://babeljs.io/
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 87

ECMAScript 2015:

Generators and Iterators
A few days ago ECMAScript 2015, also known as
ECMAScript 6 or ES6, was accepted as an official stan-
dard. Even though this event happened very recently,
there are already a number of features supported in
the latest versions of Chrome, Firefox, Safari, and Op-
era. If you're really itching for the ES6 goodness, you
can even use a number of well-supported transpilers
right now.

Two of the new features, generators and iterators, are set to change some of the ways we write specific
functions when it comes to some more complex front-end code. While they do play nicely with one
another, what they actually do can be a little confusing to some, so let's check them out.

By Byron Houwens
@bhouwen

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

88 - ECMAScript 2015: A SitePoint Anthology

Iterators

Iteration is a common practice in programming and is usually used to loop over a set of values, either
transforming each value, or using or saving it in some way for later.

In JavaScript we've always had for loops that look like this:

for (var i = 0; i < foo.length; i++) {

 // do something with i

}

But ES6 gives us an alternative:

for (var i of foo) {

 // do something with i

}

This is arguably way cleaner and easier to work with, and reminds
me languages like Python and Ruby. But there's something else
that's pretty important to note about this new kind of iteration: it
allows you to interact with elements of a data set directly.

Imagine that we want to find out if each number in an array is prime
or not. We could do this by coming up with a function that does
exactly that. It might look like this:

function isPrime(number) {

 if (number < 2) {

 return false;

 } else if (number === 2) {

 return true;

 }

 for (var i = 2; i < number; i++) {

 if (number % i === 0) {

 return false;

 break;

 }

 }

“This is arguably way
cleaner and easier to
work with, and reminds
me languages like Py-
thon and Ruby.”

ECMAScript 2015: A SitePoint Anthology - 89

 return true;

}

Not the best in the world, but it works. The next step would be to loop over our list of numbers and
check whether each one is prime with our shiny new function. It's pretty straightforward:

var possiblePrimes = [73, 6, 90, 19, 15];

var confirmedPrimes = [];

for (var i = 0; i < possiblePrimes.length; i++) {

 if (isPrime(possiblePrimes[i])) {

 confirmedPrimes.push(possiblePrimes[i]);

 }

}

// confirmedPrimes is now [73, 19]

Again, it works, but it's clunky and that clunkiness is largely down to the way JavaScript handles for
loops. With ES6, though, we're given an almost Pythonic option in the new iterator. So the previous for
loop could be written like this:

let possiblePrimes = [73, 6, 90, 19, 15];

let confirmedPrimes = [];

for (let i of possiblePrimes) {

 if (isPrime(i)) {

 confirmedPrimes.push(i);

 }

}

// confirmedPrimes is now [73, 19]

This is far cleaner, but the most striking bit of this is that for loop. The variable i now represents the
actual item in the array called possiblePrimes. So, we don't have to call it by index anymore. This
means that instead of calling possiblePrimes[i] in the loop, we can just call i.

Behind the scenes, this kind of iteration is making use of ES6's bright and shiny Symbol.iterator()

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator

90 - ECMAScript 2015: A SitePoint Anthology

“Behind the scenes, this
kind of iteration is
making use of ES6's
bright and shiny Symbol.
iterator() method.”

method. This bad boy is in charge of describing the iteration and,
when called, returns a JavaScript object containing the next value in
the loop and a done key that is either true or false depending on
whether or not the loop is finished.

In case you're interested in these sort of details, you can read more
about it on this fantastic blog post titled Iterators gonna iterate by
Jake Archibald. It'll also give you a good idea of what's going on
under the hood when we dive into the other side of this article: generators.

Generators

Generators, also called "iterator factories", are a new type of JavaScript function that creates specific
iterations. They give you special, self-defined ways to loop over stuff.

Okay, so what does all that mean? Let's look at an example. Let's say that we want a function that will
give us the next prime number every time we call it. Again, we'll use our isPrime function from before
to check if a number is prime:

function* getNextPrime() {

 let nextNumber = 2;

 while (true) {

 if (isPrime(nextNumber)) {

 yield nextNumber;

 }

 nextNumber++;

 }

}

If you're used to JavaScript, some of this stuff will look a bit like
voodoo, but it's actually not too bad. /We have that strange asterisk
after the keyword function, but all this does is to tell JavaScript
that we're defining a generator.

The other funky bit would be the yield keyword. This is actually
what a generator spits out when you call it. It's roughly equivalent
to return but it keeps the state of the function instead of rerunning

“If you're used to JavaS-
cript, some of this stuff
will look a bit like voo-
doo, but it's actually not
too bad.”

http://jakearchibald.com/2014/iterators-gonna-iterate/

ECMAScript 2015: A SitePoint Anthology - 91

everything whenever you call it. It "remembers" its place while running so the next time you call it, it
carries on where it left off.

This means that we can do this:

var nextPrime = getNextPrime();

And then call nextPrime whenever we want, you guessed it, the next prime:

console.log(nextPrime.next().value); // 2

console.log(nextPrime.next().value); // 3

console.log(nextPrime.next().value); // 5

console.log(nextPrime.next().value); // 7

You get the picture. You can also just call nextPrime.next(), which is useful in situations where your
generator isn't infinite, because it returns an object like this:

console.log(nextPrime.next());

// {value: 2, done: false}

Where that done key tells you whether the function has completed its task. In our case our function will
never finish, and could theoretically give us all prime numbers up to infinity (if we had that much
computer memory, of course).

Cool, So Can I Use This Now?

Although ECMAScript 2015 has been finalized, browser support for its features, particularly generators,
is not excellent. If you really want to use these and other new features, you can check out transpilers like
Babel and Traceur, which will convert your ECMAScript 2015 code into its equivalent (where possible)
ECMAScript 5 code.

There are also many online editors with support for ECMAScript 2015 or that specifically focus on it,
particularly Facebook's Regenerator and JS Bin. If you're just looking to play around and get a feel for
how JavaScript will be written in the near future, those are worth a look.

https://babeljs.io/
https://github.com/google/traceur-compiler
https://facebook.github.io/regenerator/
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

92 - ECMAScript 2015: A SitePoint Anthology

Conclusions

Iterator and generators give us quite a lot of new flexibility in our approach to JavaScript problems.
Iterators allow us a more Pythonic way of writing for loops, which means our code will look cleaner
and be easier to read.

Generator functions give us the ability to write functions that remember where they were when you last
saw them, and can pick up where they left off. They can also be infinite in terms of how much they
actually remember, which can come in really handy in certain situations.

Although browser support for these features isn't great yet, there are a number of transpilers and online
editors with enough support for you to get your hands dirty if you're keen. Anyway, I think we, as
developers using these new features, will really love what they have to offer.

ECMAScript 2015: A SitePoint Anthology - 93

An Overview of

JavaScript Promises

Well, this has come like a Christmas gift to all JavaS-
cript developers. You will be glad to know that prom-
ises are now a part of standard JavaScript. Chrome 32
beta has already implemented the basic promise API.
The concept of promises is not new to web development.

Many of us have already used promises in the form of several JS
libraries such as Q, when, RSVP.js, etc. Even jQuery has something
called a Deferred object which is similar to a promise. But having
native support for promises in JavaScript is really amazing. This
tutorial will cover the basics of promises and show how you can
leverage them in your JS development.

Note: This is still an experimental feature. Only Chrome 32 beta and
the latest Firefox nightly currently support it.

“A Promise object rep-
resents a value that may
not be available yet, but
will be resolved at some
point in the future. It
allows you to write asyn-
chronous code in a more
synchronous fashion.”

By Sandeep Panda
@Sandeepg33k

Hashnode

https://api.jquery.com/category/deferred-object/
https://hashnode.com/

94 - ECMAScript 2015: A SitePoint Anthology

Overview

A Promise object represents a value that may not be available yet, but will be resolved at some point in
the future. It allows you to write asynchronous code in a more synchronous fashion. For example, if you
use the promise API to make an asynchronous call to a remote web service you will create a Promise
object which represents the data that will be returned by the web service in future. The caveat being that
the actual data is not available yet. It will become available when the request completes and a response
comes back from the web service.

In the meantime the Promise object acts like a proxy to the actual data. Furthermore, you can attach
callbacks to the Promise object which will be called once the actual data is available.

The API

To get started, let's examine the following code which creates a new Promise object.

if (window.Promise) { // Check if the browser supports Promises

 var promise = new Promise(function(resolve, reject) {

 //asynchronous code goes here

 });

}

We start by instantiating a new Promise object and passing it a callback function. The callback takes
two arguments, resolve and reject, which are both functions. All your asynchronous code goes
inside that callback. If everything is successful, the promise is fulfilled by calling resolve(). In case of
an error, reject() is called with an Error object. This indicates that the promise is rejected.

Now let's build something simple which shows how promises are used. The following code makes an
asynchronous request to a web service that returns a random joke in JSON format. Let's examine how
promises are used here.

if (window.Promise) {

 console.log('Promise found');

 var promise = new Promise(function(resolve, reject) {

 var request = new XMLHttpRequest();

ECMAScript 2015: A SitePoint Anthology - 95

 request.open('GET', 'http://api.icndb.com/jokes/random');

 request.onload = function() {

 if (request.status == 200) {

 resolve(request.response); // we got data here, so resolve the Promise

 } else {

 reject(Error(request.statusText)); // status is not 200 OK, so reject

 }

 };

 request.onerror = function() {

 reject(Error('Error fetching data.')); // error occurred, reject the Promise

 };

 request.send(); //send the request

 });

 console.log('Asynchronous request made.');

 promise.then(function(data) {

 console.log('Got data! Promise fulfilled.');

 document.getElementsByTagName('body')[0].textContent = JSON.parse(data).value.joke;

 }, function(error) {

 console.log('Promise rejected.');

 console.log(error.message);

 });

} else {

 console.log('Promise not available');

}

In the previous code, the Promise constructor callback contains the asynchronous code used to get data
the from remote service. Here, we just create an Ajax request to http://api.icndb.com/jokes/random
which returns a random joke. When a JSON response is received from the remote server, it is passed to
resolve(). In case of any error, reject() is called with an Error object.

When we instantiate a Promise object we get a proxy to the data that will be available in future. In our
case we are expecting some data to be returned from the remote service at some point in future. So, how
do we know when the data becomes available? This is where the Promise.then() function is used.
This function takes two arguments: a success callback and a failure callback. These callbacks are called
when the Promise is settled (i.e. either fulfilled or rejected). If the promise was fulfilled, the success

http://api.icndb.com/jokes/random

96 - ECMAScript 2015: A SitePoint Anthology

callback will be fired with the actual data you passed to resolve(). If the promise was rejected, the
failure callback will be called. Whatever you passed to reject() will be passed as an argument to this
callback.

Try this Plunkr example. Simply refresh the page to view a new random joke. Also, open up your
browser console so that you can see the order in which the different parts of the code are executed. Note
that a promise can have three states:

}} pending (not fulfilled or rejected)
}} fulfilled
}} rejected

The Promise.status property, which is code-inaccessible and
private, gives information about these states. Once a promise is
rejected or fulfilled, this status gets permanently associated with it.
This means a promise can succeed or fail only once. If the promise
has already been fulfilled and later you attach a then() to it with
two callbacks, the success callback will be correctly called. So, in
the world of promises, we are not interested in knowing when the
promise is settled. We are only concerned with the final outcome of
the promise.

Chaining Promises

It is sometimes desirable to chain promises together. For instance, you might have multiple asynchro-
nous operations to be performed. When one operation gives you data, you will start doing some other
operation on that piece of data and so on. Promises can be chained together as demonstrated in the
following example.

function getPromise(url) {

 // return a Promise here

 // send an async request to the url as a part of promise

 // after getting the result, resolve the promise with it

}

var promise = getPromise('some url here');

promise.then(function(result) {

“It is sometimes desir-
able to chain promises
together. For instance,
you might have multiple
asynchronous operations
to be performed.”

http://plnkr.co/edit/ilf9xtDqrimWxZd77yLI?p=preview

ECMAScript 2015: A SitePoint Anthology - 97

 //we have our result here

 return getPromise(result); //return a promise here again

}).then(function(result) {

 //handle the final result

});

The tricky part is that when you return a simple value inside then(), the next then() is called with
that return value. But if you return a promise inside then(), the next then() waits on it and gets called
when that promise is settled.

Handling Errors

You already know the then() function takes two callbacks as arguments. The second one will be called
if the promise was rejected. But, we also have a catch() function which can be used to handle promise
rejection. Have a look at the following code:

promise.then(function(result) {

 console.log('Got data!', result);

}).catch(function(error) {

 console.log('Error occurred!', error);

});

This is equivalent to:

promise.then(function(result) {

 console.log('Got data!', result);

}).then(undefined, function(error) {

 console.log('Error occurred!', error);

});

Note that if the promise was rejected and then() does not have a failure callback, the control will move
forward to the next then() with a failure callback or the next catch(). Apart from explicit promise
rejection, catch() is also called when any exception is thrown from the Promise constructor callback.
So, you can also use catch() for logging purposes. Note that we could use try...catch to handle
errors, but that is not necessary with promises as any asynchronous or synchronous error is always
caught by catch().

98 - ECMAScript 2015: A SitePoint Anthology

Conclusion

This was just a brief introduction to JavaScript's new Promises API. Clearly it lets us write asynchronous
code very easily. We can proceed as usual without knowing what value is going to be returned from the
asynchronous code in the future. There is more to the API, which has not been covered here. To learn
more about Promises, browse the following resources, and stay tuned to SitePoint!

}} HTML5Rocks
}} Mozilla Developer Network

http://www.html5rocks.com/en/tutorials/es6/promises/
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 99

Writing AngularJS

Apps Using ES6
As many of you are aware, ECMAScript 6 is in its draft
state now and is expected to be finalized some time
this year. But it has already caught a lot of attention
in the community and browsers have already started
implementing it.

We also have a number of transpilers like Traceur, 6to5, and many others that convert ES6 code to ES5
compatible code. Community members have started playing around with ES6 and many of them are
blogging about what they learn. SitePoint's JavaScript channel also has a good number of articles
describing the different features of ES6.

It is possible to write any piece of everyday JavaScript using ES6. To do this, we need to be aware of the key
features of ES6 and know which piece fits where. In this article, we will see how we can use features of ES6
to build different pieces of an AngularJS application and load them using ES6 modules. We will do this by
building a simple online book shelf application and we will see how it is structured and written.

By Rabi Kiran
@SRavi_Kiran

http://www.sitepoint.com/?s=ECMAScript+6
https://twitter.com/sravi_kiran

As ever, code for this application can be found on our GitHub repository.

A Note on the Bookshelf Application

The sample BookShelf application contains following views:

}} Home page: Shows a list of active books. Books can be marked as read and moved to the
archive from this page

}} Add book page: Adds a new book to the shelf by accepting the title of the book and name of the
author. It doesn't allow a duplicate title

}} Archive page: Lists all archived books

Setting up the Application for ES6

As we will be using ES6 to write the front-end part of the application, we need a transpiler to make the
ES6 features understandable for all the browsers. We will be using the Traceur client-side library to
compile our ES6 script on the fly and run it in the browser. This library is available on bower. The sample
code has an entry for this library in bower.json.

On the home page of the application, we need to add a reference to this library and the following script:

traceur.options.experimental = true;

new traceur.WebPageTranscoder(document.location.href).run();

The app's JavaScript code is divided into multiple files. These files are loaded into the main file using the
ES6 module loader. As today's browsers can't understand ES6 modules, Traceur polyfills this feature for
us.

In the sample code, the bootstrap.js file is responsible for loading the main AngularJS module and
manually bootstraping the Angular app. We cannot use ng-app to bootstrap the application as the
modules are loaded asynchronously. This is the code contained in that file:

import { default as bookShelfModule} from './ES6/bookShelf.main';

angular.bootstrap(document, [bookShelfModule]);

Here, bookShelfModule is name of the AngularJS module containing all the pieces. We will see the
content of the bookShelf.main.js file later. The bootstrap.js file is loaded in the index.html
file using the following script tag:

100 - ECMAScript 2015: A SitePoint Anthology

https://github.com/sitepoint-editors/Angular-ES6-BookShelf
https://github.com/google/traceur-compiler/wiki/Getting-Started

ECMAScript 2015: A SitePoint Anthology - 101

<script type="module" src="ES6/bootstrap.js"></script>

Defining Controllers

AngularJS controllers can be defined in two ways:

1.	 Controllers using $scope
2.	 Using the controller as syntax

The second approach fits better with ES6, as we can define a class
and register it as a controller. The properties associated with an
instance of the class will be visible through the controller's alias.
In addition, the controller as syntax is comparatively less coupled
with $scope. If you are not aware, $scope will be removed from
the framework in Angular 2, so we can train our brains to be less
dependent on $scope from now on by using the controller as syntax.

Though classes in ES6 keep us away from the difficulty of dealing with prototypes, they don't support a
direct way of creating private fields. There are some indirect ways to create private fields in ES6. One of
them is to store the values using variables at module level and not including them in the export object.

We will use a WeakMap to store the private fields. The Reason behind choosing WeakMap is that those
entries that have objects as keys are removed once the object is garbage collected.

As stated above, the home page of the application loads and displays a list of active books. It depends on
a service to fetch data and to mark a book as read, or to move it to the archive. We will create this
service in the next section. So that the dependencies injected into controller's constructor are available in
instance methods, we need to store them in the WeakMaps. The home page's controller has two depen-
dencies: the service performing the Ajax operations and $timeout (used to show success messages and
hide them after a certain time). We also need a private init method to fetch all active books as soon as
the controller loads. So, we need three WeakMaps. Let's declare the WeakMaps as constants to prevent
any accidental re-assignment.

The following snippet creates these WeakMaps and the class HomeController:

const INIT = new WeakMap();

const SERVICE = new WeakMap();

“Though classes in ES6
keep us away from the
difficulty of dealing with
prototypes, they don't
support a direct way of
creating private fields.”

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakMap

const TIMEOUT = new WeakMap();

class HomeController{

 constructor($timeout, bookShelfSvc){

 SERVICE.set(this, bookShelfSvc);

 TIMEOUT.set(this, $timeout);

 INIT.set(this, () => {

 SERVICE.get(this).getActiveBooks().then(books => {

 this.books = books;

 });

 });

 INIT.get(this)();

 }

 markBookAsRead(bookId, isBookRead){

 return SERVICE.get(this).markBookRead(bookId, isBookRead)

 .then(() => {

 INIT.get(this)();

 this.readSuccess = true;

 this.readSuccessMessage = isBookRead ? "Book marked as read." : "Book marked as

unread.";

 TIMEOUT.get(this)(() => {

 this.readSuccess = false;

 }, 2500);

 });

 }

 addToArchive(bookId){

 return SERVICE.get(this).addToArchive(bookId)

 .then(() => {

 INIT.get(this)();

 this.archiveSuccess = true;

 TIMEOUT.get(this)(() => {

 this.archiveSuccess = false;

 }, 2500);

 });

 }

}

102 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 103

The above snippet uses following ES6 features:

}} Classes and WeakMaps, as already mentioned
}} The arrow function syntax to register callbacks. The this reference inside the arrow functions

is same as the this reference outside, which is the current instance of the class
}} The new syntax for creating a method and attaching it to an object without using the function

keyword

Let's apply dependency injection and register this class as a controller:

HomeController.$inject = ['$timeout', 'bookShelfSvc'];

export default HomeController;

As you see, there is no difference in the way that we applied dependency injection — it is same as the
way we do in ES5. We are exporting the HomeController class from this module.

Check the code of AddBookController and ArchiveController. They follow a similar structure.
The file bookShelf.controllers.js imports these controllers and registers them to a module. This
is the code from this file:

import HomeController from './HomeController';

import AddBookController from './AddBookController';

import ArchiveController from './ArchiveController';

var moduleName='bookShelf.controllers';

angular.module(moduleName, [])

 .controller('bookShelf.homeController', HomeController)

 .controller('bookShelf.addBookController', AddBookController)

 .controller('bookShelf.archiveController', ArchiveController);

export default moduleName;

The bookShelf.controllers module exports the name of the AngularJS module it created, so that
this can be imported into another module to create to create the main module.

Defining Services

 "Service" is an overloaded term in general and in Angular as well! The
three types of services used are: providers, services and factories. Out of
these, providers and services are created as instances of types, so we
can create classes for them. Factories are functions that return objects. I
can think of two approaches for creating a factory:

}} The same as in ES5, create a function which returns an object
}} A class with a static method which returns an instance of the same class. This class would

contain the fields that have to be exposed from the factory object

Let's use the second approach to define a factory. This factory is responsible for interacting with the
Express API and serving data to the controllers. The factory depends on Angular's $http service to
perform Ajax operations. As it has to be a private field in the class, we will define a WeakMap for it.

The following snippet creates the factory class and registers the static method as a factory:

var moduleName='bookShelf.services';

const HTTP = new WeakMap();

class BookShelfService

{

 constructor($http)

 {

 HTTP.set(this, $http);

 }

 getActiveBooks(){

 return HTTP.get(this).get('/api/activeBooks').then(result => result.data);

 }

 getArchivedBooks(){

 return HTTP.get(this).get('/api/archivedBooks').then(result => result.data);

 }

"Service" is an overload-
ed term in general and
in Angular as well! The
three types of services
used are: providers,
services and factories.

104 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 105

 markBookRead(bookId, isBookRead){

 return HTTP.get(this).put(`/api/markRead/${bookId}`, {bookId: bookId, read: is-

BookRead});

 }

 addToArchive(bookId){

 return HTTP.get(this).put(`/api/addToArchive/${bookId}`,{});

 }

 checkIfBookExists(title){

 return HTTP.get(this).get(`/api/bookExists/${title}`).then(result => result.data);

 }

 addBook(book){

 return HTTP.get(this).post('/api/books', book);

 }

 static bookShelfFactory($http){

 return new BookShelfService($http);

 }

}

BookShelfService.bookShelfFactory.$inject = ['$http'];

angular.module(moduleName, [])

 .factory('bookShelfSvc', BookShelfService.bookShelfFactory);

export default moduleName;

This snippet uses the following additional features of ES6 (in addition to classes and arrow functions):

}} A static member in the class
}} String templates to concatenate the values of variables into strings

Defining Directives

Defining a directive is similar to defining a factory, with one exception — we have to make an instance of
the directive available for later use inside the link function, because the link function is not called in
the context of the directive object. This means that the this reference inside the link function is not the

same as the directive object. We can make the object available through a static field.

We will be creating an attribute directive that validates the title of the book entered in the text box. It has
to call an API to check if the title exists already and invalidate the field if the title is found. For this task,
it needs the service we created in the previous section and $q for promises.

The following snippet creates a directive which it registers with a module.

var moduleName='bookShelf.directives';

const Q = new WeakMap();

const SERVICE = new WeakMap();

class UniqueBookTitle

{

 constructor($q, bookShelfSvc){

 this.require='ngModel'; //Properties of DDO have to be attached to the instance

through this reference

 this.restrict='A';

 Q.set(this, $q);

 SERVICE.set(this, bookShelfSvc);

 }

 link(scope, elem, attrs, ngModelController){

 ngModelController.$asyncValidators.uniqueBookTitle = function(value){

 return Q.get(UniqueBookTitle.instance)((resolve, reject) => {

 SERVICE.get(UniqueBookTitle.instance).checkIfBookExists(value).then(result => {

 if(result){

 reject();

 }

 else{

 resolve();

 }

 });

 });

 };

 }

106 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 107

 static directiveFactory($q, bookShelfSvc){

 UniqueBookTitle.instance =new UniqueBookTitle($q, bookShelfSvc);

 return UniqueBookTitle.instance;

 }

}

UniqueBookTitle.directiveFactory.$inject = ['$q', 'bookShelfSvc'];

angular.module(moduleName, [])

 .directive('uniqueBookTitle', UniqueBookTitle.directiveFactory);

export default moduleName;

Here, we could have used ES6's promise API, but that would involve calling $rootScope.$apply
after the promise produces a result. The good thing is that promise API in AngularJS 1.3 supports a
syntax similar to the ES6 promises.

Defining the Main Module and Config block

Now that we have modules containing the directives, controllers and services, let's load them into one
file and create the main module of the application. Let's begin by importing the modules.

import { default as controllersModuleName } from './bookShelf.controllers';

import { default as servicesModuleName } from './bookShelf.services';

import { default as directivesModuleName } from './bookShelf.directives';

The config block defines routes for the application. This can be a simple function as it doesn't have to
return any value.

function config($routeProvider){

 $routeProvider

 .when('/',{

 templateUrl:'templates/home.html',

 controller:'bookShelf.homeController',

 controllerAs:'vm'

 })

 .when('/addBook',{

 templateUrl:'templates/addBook.html',

https://docs.angularjs.org/api/ng/service/$q
https://docs.angularjs.org/api/ng/service/$q

 controller:'bookShelf.addBookController',

 controllerAs:'vm'

 })

 .when('/archive', {

 templateUrl:'templates/archive.html',

 controller:'bookShelf.archiveController',

 controllerAs:'vm'

 })

 .otherwise({redirectTo:'/'});

}

config.$inject = ['$routeProvider'];

Finally, let's define the main module and export its name. If you remember, this name is used in the
bootstrap.js file for manual bootstrapping.

var moduleName = 'bookShelf';

var app = angular.module(moduleName, ['ngRoute','ngMessages', servicesModuleName, con-

trollersModuleName, directivesModuleName])

 .config(config);

export default moduleName;

Conclusion

Hopefully this gives you an insight into using ES6 to write AngularJS apps. AngularJS 2.0 is being
written completely using ES6 and as web developers we need to be aware of the way we have to write
our code in the near future. ES6 solves many problems that have been bugging JavaScript programmers
for years and using it with AngularJS is a lot of fun!

And please remember, the sample code for this application can be found on our GitHub repository.

108 - ECMAScript 2015: A SitePoint Anthology

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 109

Setting up an ES6 Project

Using Babel and Browserify
The JavaScript world is changing and ES6 is rapidly
taking over. Many famous frameworks like AngularJS
2 and React Native have already started supporting
ES6. It's important that we are prepared for this
change. To do so, we need to start writing code that
uses ES6 even before the support for it lands in all
browsers.

In this article, I'll show you how to set up a project that integrates
Babel and Browserify to write modern code that can be executed by older browsers as well. Babel
compiles ES6 code into ES5 which is supported by many browsers, including old ones like Internet
Explorer 9. Browserify is a tool for writing code that follows the CommonJS pattern and packaging it to
be used in the browser.

By Ritesh Kumar
@ritz078

https://angular.io/
https://angular.io/
https://facebook.github.io/react-native/
https://babeljs.io/
http://browserify.org/

110 - ECMAScript 2015: A SitePoint Anthology

Creating the package.json File

First of all, let's see the folder structure of the demo we are going to make

/

|--dist/

 |----modules.js

|--modules/

 |----import.js

 |----index.js

|--Gruntfile.js

|--package.json

In the project's root folder, there are two files Gruntfile.js and package.json and two folders
modules and dist. The modules folder contains all the modules written in ES6 and the dist folder
contains the bundled and compiled ES5 JavaScript file. I have excluded .gitignore as it is just a utility
file which in no way affects the project.

Now, let's start by creating the package.json file. There are many fields in a typical package.json
file like description, version, author, and others, but in this project we're only using the important
ones.

The following is the content of the package.json file we'll use:

{

 "name": "browserify-babel-demo",

 "main": "dist/module.js",

 "devDependencies": {

 "grunt": "^0.4.5",

 "babelify": "^6.1.0",

 "grunt-browserify": "^3.8.0",

 "grunt-contrib-watch": "^0.6.1"

 }

}

As you can see from the file above, the modules used for this project are:

ECMAScript 2015: A SitePoint Anthology - 111

}} Grunt: A JavaScript task runner
}} grunt-browserify: The Browserify Grunt task
}} babelify: Babel transformer for Browserify
}} grunt-contrib-watch: A Grunt task to watch the JavaScript files for every change and then 		

	 optionally execute tasks. In our case, we'll run the browserify task on each change

All these modules are devDependencies as they are only needed in the development environment and
not when the client-side code is executed. The versions of the modules can be set according to need.

Now run npm install in the root folder of the project to install all the dependencies listed in the
package.json file. In case you're not familiar with npm, I suggest you to read this article to get started
with it.

Set up the Gruntfile.js

In this article I assume that you know what Grunt and a Gruntfile.js file are and how to work with
Grunt. In case you need a refresher, I suggest you to go through this article before moving forward.

JavaScript files containing code written in ES6 can have either .js or .es6 extension. Here, for simplifi-
cation purposes, we are using the .js extension for all the JavaScript files (even for those written in ES6).
The code written in Gruntfile.js is as shown below:

module.exports = function(grunt) {

 grunt.initConfig({

 browserify: {

 dist: {

 options: {

 transform: [

 ["babelify", {

 loose: "all"

 }]

]

 },

 files: {

 // if the source file has an extension of es6 then

 // we change the name of the source file accordingly.

 // The result file's extension is always .js

 "./dist/module.js": ["./modules/index.js"]

http://gruntjs.com/
https://github.com/jmreidy/grunt-browserify
https://github.com/babel/babelify
https://github.com/gruntjs/grunt-contrib-watch
http://www.sitepoint.com/beginners-guide-node-package-manager/
http://www.sitepoint.com/beginners-guide-node-package-manager/
http://gruntjs.com/
http://www.sitepoint.com/introduction-grunt/

112 - ECMAScript 2015: A SitePoint Anthology

 }

 }

 },

 watch: {

 scripts: {

 files: ["./modules/*.js"],

 tasks: ["browserify"]

 }

 }

 });

 grunt.loadNpmTasks("grunt-browserify");

 grunt.loadNpmTasks("grunt-contrib-watch");

 grunt.registerTask("default", ["watch"]);

 grunt.registerTask("build", ["browserify"]);

};

We have defined two Grunt tasks:

1.	 grunt default /grunt: When we run this command on the terminal inside the project
folder, this task starts watching all the JavaScript files included in the modules folder. For any
change detected, Grunt will execute the browserify task. The watch task keeps running until the
task is terminated. To terminate the task press Ctrl + C on the terminal.
2.	 grunt build: This task executes the browserify task once and stops.

Every time the browserify task executes, all the JavaScript code present inside the modules folder is
bundled into a single JavaScript file. Then the code goes through babelify (Babel transformer for
Browserify) which compiles that bundled ES6 code into ES5 code.

As seen in the above code, we have set loose: 'all' as an option for babelify as we want the ES5
code to be as close to the ES6 code that we are writing as possible. We don't want it to adhere strictly to
the specification because this will be more difficult for an ES6 beginner to debug. All the other options
provided by Babel can be found here.

Let's Write Some ES6 Code

This demo uses only a few features of ES6, such as import and export. So, if you want to have a deep
dive into ES6, I suggest you to go through the ES6 tutorials published here on SitePoint. You'll get an

http://babeljs.io/docs/usage/options
http://www.sitepoint.com/?s=ecmascript+6

ECMAScript 2015: A SitePoint Anthology - 113

idea of all the new and exciting features that ES6 will bring to the table.

In our demo we'll create two files, index.js and import.js, inside the modules folder. The former is
the main file of the project, while the latter contains all the functions and variables that are part of a
module. In other words, index.js will import all the functions and variables from the import.js file.

The code of the import.js file is listed below:

var sum = (a, b = 6) => (a + b);

var square = (b) => {

 return b * b;

};

var variable = 8;

class MyClass {

 constructor(credentials) {

	 this.name = credentials.name;

	 this.enrollmentNo = credentials.enrollmentNo

 }

 getName() {

 return this.name;

 }

}

export { sum, square, variable, MyClass };

The import.js file is a module that contains a variable, a class, and
function expressions (written using the arrow function). The func-
tions and the variables defined in a module are not visible outside
of the module unless we explicitly export them. You can do that by
using the export keyword. In the last line of import.js, we have
exported sum, square, variable and MyClass.

In the index.js file we import all the variables of the module by
using the import keyword. So, all these imported variables from import.js file become accessible in
the main file, i.e. index.js. In the code below, which lists the contents of the file index.js, you can
see how we are able to use the square() function or MyClass by importing the module that exports it.

“Since we are using
Browserify, we can also
import modules using
the CommonJS pattern
by using the require()
method.“

114 - ECMAScript 2015: A SitePoint Anthology

We can import functions, variables, and classes from as many files as we want.

import {sum, square, variable, MyClass} from './import';

// 25

console.log(square(5));

var cred = {

 name: 'Ritesh Kumar',

 enrollmentNo: 11115078

}

var x = new MyClass(cred);

//Ritesh Kumar

console.log(x.getName());

In case we are importing from a file that has a .es6 extension then we have to write the filename with
the extension in import. An example is shown in in the code snippet below:

// if file extension of the importing file is .js

// both of the following methods work

import { sum, square, variable, MyClass } from './import';

import { sum, square, variable, MyClass } from './import.js'

// if file extension of the importing file is .es6

// it's mandatory to add the extension

import { sum, square, variable, MyClass } from './import.es6';

Since we are using Browserify, we can also import modules using the CommonJS pattern by using the
require() method. For example, if we want to import jQuery as a module, we can use the following
code:

var $ = require('path/to/jquery');

$(window).click(function(){

 //do something

});

ECMAScript 2015: A SitePoint Anthology - 115

Babel can convert ES6 code to ES5, but it can't bundle the modules. So, we are using Browserify for
bundling the modules.

The power of ES6's import and export combined with the require() method, gives us the freedom
to organize all of the client-side code into modules and at the same time write the code using all the
power of the new version of JavaScript.

As soon as we run the grunt command on the terminal a few things will happen:

}} Browserify will bundle all the files into one
}} The bundled file is passed through babelify to transform the code into ES5
}} A file named module.js that can be executed in all modern browsers, including Internet 		

	 Explorer 9, is generated

To give you an idea of what the generated module.js file looks like, I'm including the resulting code
below:

(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="func-

tion"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find

module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].

call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return

n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)

s(r[o]);return s})({1:[function(require,module,exports){

"use strict";

exports.__esModule = true;

function _classCallCheck(instance, Constructor) { if (!(instance instanceof Construc-

tor)) { throw new TypeError("Cannot call a class as a function"); } }

var sum = function sum(a) {

 var b = arguments.length <= 1 || arguments[1] === undefined ? 6 : arguments[1];

 return a + b;

};

var square = function square(b) {

 return b * b;

};

116 - ECMAScript 2015: A SitePoint Anthology

var variable = 8;

var MyClass = (function () {

 function MyClass(credentials) {

 _classCallCheck(this, MyClass);

 this.name = credentials.name;

 this.enrollmentNo = credentials.enrollmentNo;

 }

 MyClass.prototype.getName = function getName() {

 return this.name;

 };

 return MyClass;

})();

exports.sum = sum;

exports.square = square;

exports.variable = variable;

exports.MyClass = MyClass;

},{}],2:[function(require,module,exports){

'use strict';

var _import = require('./import');

console.log(_import.square(5));

var cred = {

 name: 'Ritesh Kumar',

 enrollmentNo: 11115078

};

var x = new _import.MyClass(cred);

console.log(x.getName());

},{"./import":1}]},{},[2]);

ECMAScript 2015: A SitePoint Anthology - 117

This file can be then be used in your web pages just as a normal JavaScript file. If you want, you can also
use other Grunt tasks like grunt-uglify, grunt-rev, and many others on module.js. Once done, you're
ready to include module.js in the HTML page and the browser will load it.

<!-- Usage of the final bundled file in html -->

<script src="path/to/module.js"></script>

Conclusion

In this article we've seen how to write a project that has its JavaScript code written using the features
introduced by ES6. In addition, I covered how to configure Browserify and Babel as Grunt tasks using
grunt-browserify and babelify respectively. We created a demo project which demonstrated how this
setup works and the way in which ES6 code is compiled into ES5.

I hope that you have enjoyed the article. In case you want to play with this project, the code of the demo
project is available here.

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

118 - ECMAScript 2015: A SitePoint Anthology

Transpiling ES6 Modules

to AMD & CommonJS

Using Babel & Gulp
ECMAScript 6 (a.k.a ECMAScript 2015 or ES6), the
specification for next version of JavaScript has been
approved and browser vendors are hard at work
implementing it. Unlike the previous versions of EC-
MAScript, ES6 comes with a huge set of changes to the
language to make it a good fit for the scale at which it
is used today. SitePoint has a number of articles cover-
ing these features.

Although browsers haven't implemented all of the features yet, we can already take advantage of ES6
during development and convert it to a version that browser understands before shipping the appli-
cation. Babel and Traceur are two of the leading transpilers used for this purpose. Microsoft's typed

By Rabi Kiran
@SRavi_Kiran

http://www.infoq.com/news/2015/06/ecmascript-2015-es6
http://www.infoq.com/news/2015/06/ecmascript-2015-es6
http://www.sitepoint.com/?s=ECMAScript+6
https://kangax.github.io/compat-table/es6/
https://babeljs.io/
https://github.com/google/traceur-compiler
https://twitter.com/sravi_kiran

ECMAScript 2015: A SitePoint Anthology - 119

superset of JavaScript, TypeScript can also be used as an ES6 transpiler.

I covered how ES6 can be used today to write Angular 1.x applications in one of my previous articles. In
that article I used Traceur's on-the-fly transpiler to run the application. Although it works, it is always
better to transpile beforehand and reduce the amount of work to be done in the browser. In this article,
we will see how the same sample application can be transpiled to ES5 and the modules into either
CommonJS or, AMD using Babel to make it run on today's browsers. Though the sample is based on
Angular, the techniques of transpilation can be used with any valid ES6 code.

As ever, you can find the code to accompany this article on our GitHub repo.

The Importance of Modules

One of the key features in any language used to write large applications, is the ability to load different
pieces of the application in the form of modules. Modules not only help us keep the code cleaner but
they also play a role in reducing the usage of global scope. The contents of a module are not made
available to any other module unless the other module explicitly loads it.

The importance of modules is not limited to applications. Even large
JavaScript libraries can take advantage of the module system to
export their objects as modules and the applications using the
libraries import these modules as required. Angular 2 and Aurelia
have started using this feature.

If you'd like a quick primer on using modules in ES6, please read:
Understanding ES6 Modules

About the Sample Application

The subject of our sample application is a virtual book shelf. It consists of the following pages:

1.	 Home page: shows a list of active books that can be marked as read, or moved to the archive.
2.	 Add book page: adds a new book to the shelf by accepting title of the book and name of author.
It doesn't allow a duplicate titles.
3.	 Archive page: lists all archived books.

“One of the key features
in any language used to
write large applications,
is the ability to load
different pieces of the
application in the form
of modules.”

http://www.typescriptlang.org/
https://github.com/sitepoint-editors/Angular-ES6-BookShelf-Modules
http://aurelia.io/
http://www.sitepoint.com/understanding-es6-modules/

120 - ECMAScript 2015: A SitePoint Anthology

The application is built using AngularJS 1.3 and ES6. If you look at any of the files in the app folder, you
will see the keywords export and import used to export objects from the current module and to
import objects from other modules. Now, our job is to use Babel's Gulp tasks to convert these modules to
one of the existing module systems.

But I'm Not Using Angular. I Just Want to

Convert ES6 Modules to CommonJS/AMD

No worries! We got you covered. With a minor amount of tweaking the recipes demonstrated below can
be used in any project involving ES6 modules. Angular is quite unimportant here.

Converting to CommonJS

CommonJS is a module system defined by the CommonJS group. It is a synchronous module system, in
which the modules are loaded using the require function and exported using the exports property of
the module object. The module object is expected to be available in all modules by default.

Node.js uses this module system, so it defines the module object natively and makes it available to your
application. As browsers don't have this object defined, we need to use a utility called Browserify to fill
the gap.

Before we start, we will also need to install a few npm packages. These will enable us to use Babel and
Browserify in conjunction with Gulp to convert our ES6 modules to one of the common module formats
and package the application as a single file for the browser to consume.

}} gulp-babel — converts ES6 code into vanilla ES5
}} Browserify — lets you require('modules') in the browser by bundling up all of your

dependencies
}} vinyl-source-stream — handles the Browserify module directly, avoiding need for

gulp-browserify wrapper
}} vinyl-buffer — converts stream to a buffer (necessary for gulp-uglify which doesn't support

streams)
}} gulp-uglify — minifies files
}} del — lets you delete files and folders
}} gulp-rename — a plugin to let you rename files

https://www.npmjs.com/package/gulp-babel
http://wiki.commonjs.org/wiki/CommonJS
http://browserify.org/
https://www.npmjs.com/package/gulp-babel
https://www.npmjs.com/package/browserify
https://www.npmjs.com/package/vinyl-source-stream
https://www.npmjs.com/package/vinyl-buffer
https://www.npmjs.com/package/gulp-uglify
https://www.npmjs.com/package/del
https://www.npmjs.com/package/gulp-rename

ECMAScript 2015: A SitePoint Anthology - 121

You can get this lot by typing:

npm install gulp-babel browserify gulp-browserify vinyl-source-stream vinyl-buffer

gulp-uglify del gulp-rename --save-dev

Now let's start using these packages in our gulpfile.js. We need to write a task to take all ES6 files
and pass them to Babel. The default module system in Babel is CommonJS, so we don't need to send any
options to the babel function.

var babel = require('gulp-babel'),

 browserify = require('browserify'),

 source = require('vinyl-source-stream'),

 buffer = require('vinyl-buffer'),

 rename = require('gulp-rename'),

 uglify = require('gulp-uglify'),

 del = require('del');

gulp.task('clean-temp', function(){

 return del(['dest']);

});

gulp.task('es6-commonjs',['clean-temp'], function(){

 return gulp.src(['app/*.js','app/**/*.js'])

 .pipe(babel())

 .pipe(gulp.dest('dest/temp'));

});

Hopefully there is nothing too confusing here. We are declaring a
task named es6-commonjs which grabs any JavaScript files in
the app directory and any of its sub directories. It then pipes them
through Babel, which in turn converts the individual files to ES5
and CommonJS modules and copies the converted files into the
dest/temp folder. The es6-commonjs task has a dependency
named clean-temp, which will remove the dest directory and
any files in it, before the es6-commonjs task runs.

If you want to make the code more explicit and specify the module
system, you may modify usage of Babel as:

“Now we can create a
single bundled file from
these individual files
by applying Browserify
and then minifying the
output using the uglify
package.”

122 - ECMAScript 2015: A SitePoint Anthology

.pipe(babel({

 modules:"common"

}))

Now we can create a single bundled file from these individual files by applying Browserify and then
minifying the output using the uglify package. The following snippet shows this:

gulp.task('bundle-commonjs-clean', function(){

 return del(['es5/commonjs']);

});

gulp.task('commonjs-bundle',['bundle-commonjs-clean','es6-commonjs'], function(){

 return browserify(['dest/temp/bootstrap.js']).bundle()

 .pipe(source('app.js'))

 .pipe(buffer())

 .pipe(uglify())

 .pipe(rename('app.js'))

 .pipe(gulp.dest("es5/commonjs"));

});

The above task has two dependencies: the first is the bundle-commonjs-clean task, which will delete
the directory es5/commonjs, the second is the previously discussed es6-commonjs task. Once these
have run, the task places the combined and minified file app.js in the folder es5/commonjs. This file
can be referenced directly in index.html and the page can be viewed in a browser.

Finally, we can add a task to kick things off:

gulp.task('commonjs', ['commonjs-bundle']);

Converting to AMD

The Asynchronous Module Definition (AMD) system is, as the name suggests, an asynchronous module
loading system. It allows multiple dependent modules to load in parallel and it doesn't wait for one
module to be completely loaded before attempting to load other modules.

Require.js is the library used to work with AMD. RequireJS is available through Bower:

https://en.wikipedia.org/wiki/Asynchronous_module_definition
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

ECMAScript 2015: A SitePoint Anthology - 123

bower install requirejs --save

We also need the Gulp plugin for require.js to bundle the application. Install the gulp-requirejs npm
package for this.

npm install gulp-requirejs --save-dev

Now we need to write the tasks for converting the ES6 code to ES5 and AMD and then to bundle it using
RequireJS. The tasks are pretty much similar to the tasks created in the CommonJS section.

var requirejs = require('gulp-requirejs');

gulp.task('es6-amd',['clean-temp'], function(){

 return gulp.src(['app/*.js','app/**/*.js'])

 .pipe(babel({ modules:"amd" }))

 .pipe(gulp.dest('dest/temp'));

});

gulp.task('bundle-amd-clean', function(){

 return del(['es5/amd']);

});

gulp.task('amd-bundle',['bundle-amd-clean','es6-amd'], function(){

 return requirejs({

 name: 'bootstrap',

 baseUrl: 'dest/temp',

 out: 'app.js'

 })

 .pipe(uglify())

 .pipe(gulp.dest("es5/amd"));

});

gulp.task('amd', ['amd-bundle']);

To use the final script on index.html page, we need to add a reference to RequireJS, the generated
script and then load the bootstrap module. The bootstrap.js file inside app folder bootstraps the
AngularJS application, so we need to load it to kick start the AngularJS application.

124 - ECMAScript 2015: A SitePoint Anthology

<script src="bower_components/requirejs/require.js" ></script>

<script src="es5/amd/app.js"></script>

<script>

 (function(){

 require(['bootstrap']);

 }());

</script>

Conclusion

Modules are a long overdue feature in JavaScript. They will be arriving in ES6, but unfortunately, their
native browser support is currently poor. That does not however, mean that you cannot use them today.
In this tutorial I have demonstrated how to use Gulp, Babel and a variety of plugins to convert ES6
modules to the CommonJS and AMD format that you can run in your browser.

And as for ES6? ES6 has gained a lot of attention in the community since it was announced. It is already
used by several JavaScript libraries or, frameworks including Bootstrap's JavaScript plugins, Aurelia,
Angular 2 and several others. TypeScript has also added support for a handful number of ES6 features
including modules. Learning about and using ES6 today, will reduce the effort required to convert the
code in future.

ECMAScript 2015: A SitePoint Anthology - 125

Asynchronous APIs Using the

Fetch API and ES6 Generators
ECMAScript 6 (a.k.a. ECMAScript 2015 or ES6) brings
a number of new features to JavaScript which will
make the language a good fit for large applications.
One of these features is better support for asynchro-
nous programming using promises and generators.
Another is the addition of the Fetch API which aims
to replace XMLHttpRequest as the foundation of
communication with remote resources.

The Fetch API's methods return ES6 Promise objects, which can be used in conjunction with generators
to form the basis of complex asynchronous operations. This could be anything from a chain of asyn-
chronous operations, where each operation depends on the value returned by the previous one, to an
asynchronous call that has to be made repeatedly to a server to get the latest update.

In this article we will see how the Fetch API can be used in conjunction with generators to build asyn-

By Rabi Kiran
@SRavi_Kiran

http://www.ecma-international.org/ecma-262/6.0/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function%2a
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://twitter.com/sravi_kiran

126 - ECMAScript 2015: A SitePoint Anthology

chronous APIs. The Fetch API is currently supported in Chrome, Opera, Firefox and Android browsers.
We have a polyfill available from GitHub for unsupported browsers.

As ever, the code for this article can be found on our GitHub repository and there is a demo of the final
technique on CodePen.

Generators for Asynchronous Operations

Tip: If you need a refresher on what generators are and how they
work, check out: ECMAScript 2015: Generators and Iterators.

So how can we use generators to perform async operations? Well, if
we analyze the way generators work we will find the answer.

A generator function implementing an iterator has the following
structure:

function *myIterator(){

 while(condition){

 //calculate next value to return

 yield value;

 }

}

The yield keyword is responsible for returning a result and halting execution of the iterator function
until it is next invoked. It also keeps the state of the function instead of rerunning everything when next
you call it, effectively remembering the last place it left off.

We can re-imagine the above function without while loop as follows:

function *myIterator(){

 //calculate value 1

 yield value1;

 //calculate value 2

 yield value2;

 ...

“The yield keyword is
responsible for returning
a result and halting
execution of the iterator
function until it is next
invoked.”

http://caniuse.com/#search=Fetch
https://github.com/github/fetch
https://github.com/sitepoint-editors/FetchAPI-Generators
http://codepen.io/SitePoint/pen/gawNxe/
http://codepen.io/SitePoint/pen/gawNxe/

ECMAScript 2015: A SitePoint Anthology - 127

 //calculate value n

 yield valuen;

}

The behavior of the function will be identical in both of the above cases. The only reason for using the
yield keyword is to pause the execution of the function until the next iteration (which in itself seems
kind of asynchronous). And as the yield statement can return any value, we can also return promises
and make the function run multiple asynchronous calls.

Using Generators with the Fetch API

Tip: For a refresher on the Fetch API, check out: Introduction to the Fetch API

As mentioned earlier the Fetch API is intended to replace XMLHttpRequest. This new API provides
control over every part of an HTTP request and returns a promise that either resolves or rejects based on
the response from the server.

Long Polling

One of the use cases where the Fetch API and generators can be
used together is long polling. Long polling is a technique in which
a client keeps sending requests to a server until it gets a response.
Generators can be used in such a case to keep yielding responses
until the response contains data.

To mimic long polling, I included an Express REST API in the sample code that responds with weather
information of a city after five attempts. The following is the REST API:

var polls=0;

app.get('/api/currentWeather', function(request, response){

 console.log(polls, polls<5);

 if(polls < 5){

 console.log("sending...empty");

 polls++;

 response.send({});

 }

 else{

“One of the use cases
where the Fetch API and
generators can be used
together is long polling.”

http://www.sitepoint.com/introduction-to-the-fetch-api/
http://www.pubnub.com/blog/http-long-polling/
https://github.com/sitepoint-editors/FetchAPI-Generators/blob/master/server.js

128 - ECMAScript 2015: A SitePoint Anthology

 console.log("sending...object");

 response.send({

 temperature: 25,

 sky: "Partly cloudy",

 humid: true

 });

 polls = 0;

 }

});

Now, let's write a generator function that calls this API multiple times and returns a promise on every
iteration. Being on the client side, we don't know after how many iterations we will get data from the
server. So, this method will have an infinite loop pinging the server on every iteration and returning the
promise on every occasion. Following is the implementation of this method:

function *pollForWeatherInfo(){

 while(true){

 yield fetch('/api/currentWeather',{

 method: 'get'

 }).then(function(d){

 var json = d.json();

 return json;

 });

 }

}

We need a function to keep calling this function and checking if the value exists after the promise
resolves. It will be a recursive function that invokes the next iteration of the generator and only stops the
process when it finds a value returned from the generator. The following snippet shows the implementa-
tion of this method and a statement that calls this method:

function runPolling(generator){

 if(!generator){

 generator = pollForWeatherInfo();

 }

 var p = generator.next();

 p.value.then(function(d){

 if(!d.temperature){

 runPolling(generator);

ECMAScript 2015: A SitePoint Anthology - 129

 } else {

 console.log(d);

 }

 });

}

runPolling();

As we see here, the first call to the function runPolling creates the generator object. The next
method returns an object with a value property which in our case contains a promise returned by the
fetch method. When this promise resolves, it will either contain an empty object (returned if the polls
variable is below 5), or an object containing the desired information.

Next, we check for the temperature property of this object (which would indicate success). If it's not
present we pass the generator object back to the next function call (so as not to lose the state of the
generator) or we print the value of the object to the console.

To see this in action, grab the code from our repo, install the dependencies, start the server, then navigate
to http://localhost:8000. You should see the following results in the shell:

0 true

sending...empty

1 true

sending...empty

2 true

sending...empty

3 true

sending...empty

4 true

sending...empty

5 false

sending...object

And the object itself logged to the browser console.

Multiple Dependent Asynchronous Calls

Quite often, we need to implement multiple dependent asynchronous calls, where each successive
asynchronous operation depends on the value returned by the the preceding asynchronous operation.

https://github.com/sitepoint-editors/FetchAPI-Generators
http://localhost:8000

130 - ECMAScript 2015: A SitePoint Anthology

If we have a group of such operations and they have to be called multiple times, we can put them
together in a generator function and execute it whenever we need it.

To demonstrate this, I will be using GitHub's API. This API provides us access to basic information on
users, organizations and repos. We will use this API to get the list of contributors to a random repo of an
organization and display the fetched data on the screen.

For this we need to make calls to three different endpoints. These are the tasks to be performed:

}} Get details of the organization
}} If the organization exists, get the organization's repos
}} Get contributors to one of the organization's repos (selected at random)

Let's create a wrapper function around Fetch API to avoid repeating the code to create the headers and
build the request object.

function wrapperOnFetch(url){

 var headers = new Headers();

 headers.append('Accept', 'application/vnd.github.v3+json');

 var request = new Request(url, {headers: headers});

 return fetch(request).then(function(res){

 return res.json();

 });

}

The following function consumes the above function and yields a promise for each invocation:

function* gitHubDetails(orgName) {

 var baseUrl = "https://api.github.com/orgs/";

 var url = baseUrl + orgName;

 var reposUrl = yield wrapperOnFetch(url);

 var repoFullName = yield wrapperOnFetch(reposUrl);

 yield wrapperOnFetch(`https://api.github.com/repos/${repoFullName}/contributors`);

}

https://developer.github.com/v3/

ECMAScript 2015: A SitePoint Anthology - 131

Now, let's write a piece of logic to call the above function to get the generator and then use the values
obtained from the server to populate the UI. As every call to the generator's next method returns
a promise, we will have to chain these promises. The following is the skeleton of the code using the
generator returned by the above function:

var generator = gitHubDetails("aspnet");

generator.next().value.then(function (userData) {

 //Update UI

 return generator.next(userData.repos_url).value.then(function (reposData) {

 return reposData;

 });

}).then(function (reposData) {

 //Update UI

 return generator.next(reposData[randomIndex].full_name).value.then(function (selecte-

dRepoCommits) {

 //Update UI

 });

});

To see this in action, as detailed above, grab the code from our repo, install the dependencies, start the
server, then navigate to http://localhost:8000. Or just check out the demo on CodePen (try rerunning it).

Conclusion

In this article I have demonstrated how the Fetch API can be used in conjunction with generators to
build asynchronous APIs. ECMAScript 6 will bring a slew of new features to the language and looking
for inventive ways to combine them and harness their power can often bring outstanding results.

https://github.com/sitepoint-editors/FetchAPI-Generators
http://localhost:8000
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

Preparing for ECMAScript 6:

Symbols and Their Uses
While ES2015 has introduced many language features
that have been on developers' wish lists for some time,
there are some new features that are less well known
and understood, and the benefits of which are much
less clear.

One such feature is the symbol. The symbol is a new primitive type,
a unique token that is guaranteed never to clash with another
symbol.

In this sense, you could think of them as a kind of UUID (Universally Unique Identifier). Let's look at
how they work, and what we can do with them (Note: all examples in this article have been tested in the
latest versions of Chrome and Firefox for Linux, but the behavior may vary from browser to browser or
when using tools such as Firebug).

By Nilson Jacques
@nilsonjacques

132 - ECMAScript 2015: A SitePoint Anthology

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://twitter.com/nilsonjacques

ECMAScript 2015: A SitePoint Anthology - 133

Creating New Symbols

Creating new symbols is very straightforward and is simply a case of calling the Symbol function. Note
that this is a just a standard function and not an object constructor. Trying to call it with the new operator
will result in a TypeError. Every time you call the Symbol function, you will get a new and completely
unique value.

let foo = Symbol();

let bar = Symbol();

foo === bar

// <-- false

Symbols can also be created with a label, by passing a string as the first argument. The label does not
affect the value of the symbol, but is useful for debugging, and is shown if the symbol's toString()
method is called. It's possible to create multiple symbols with the same label, but there's no advantage to
doing so and this would probably just lead to confusion.

let foo = Symbol('baz');

let bar = Symbol('baz');

foo === bar

// <-- false

console.log(foo);

// <-- Symbol(baz)

What Can I Do With Them?

Symbols could often be a good replacement for strings or integers as class/module constants:

class Application {

 constructor(mode) {

 switch (mode) {

 case Application.DEV:

 // Set up app for development environment

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol

 break;

 case Application.PROD:

 // Set up app for production environment

 break;

 default:

 throw new Error('Invalid application mode: ' + mode);

 }

 }

}

Application.DEV = Symbol('dev');

Application.PROD = Symbol('prod');

// Example use

let app = new Application(Application.DEV);

String and integers are not unique values; values such as the number 2 or the string 'development', for
example, could also be in use elsewhere in the program for different purposes. Using symbols means we
can be more confident about the value being supplied.

Another interesting use of symbols is as object property keys. If you've ever used a JavaScript object as a
hashmap (an associative array in PHP terms, or dictionary in Python) you'll be familiar with getting/
setting properties using the bracket notation:

let data = [];

data['name'] = 'Ted Mosby';

data['nickname'] = 'Teddy Westside';

data['city'] = 'New York';

Using the bracket notation, we can also use a symbol as a property key. There are a couple of ad-
vantages to doing so: First, you can be sure that symbol-based keys will never clash, unlike string
keys, which might conflict with keys for existing properties or methods of an object. Second, they
won't be enumerated in for..in loops, and are ignored by functions such as Object.keys(),
Object.getOwnPropertyNames() and JSON.stringify(). This makes them ideal for properties
that you don't want to be included when serializing an object.

134 - ECMAScript 2015: A SitePoint Anthology

https://en.wikipedia.org/wiki/Hash_table

ECMAScript 2015: A SitePoint Anthology - 135

let user = {};

let email = Symbol();

user.name = 'Fred';

user.age = 30;

user[email] = 'fred@example.com';

Object.keys(user);

// <-- Array ["name", "age"]

Object.getOwnPropertyNames(user);

// <-- Array ["name", "age"]

JSON.stringify(user);

// <-- "{"name":"Fred","age":30}"

It is worth noting, however, that using symbols as keys does not guarantee privacy. There are some new
tools provided to allow you to access symbol-based property keys.

Object.getOwnPropertySymbols() returns an array of any symbol-based keys, while Reflect.
ownKeys() will return an array of all keys, including symbols.

Object.getOwnPropertySymbols(user);

// <-- Array [Symbol()]

Reflect.ownKeys(user)

// <-- Array ["name", "age", Symbol()]

Well-known Symbols

Because symbol-keyed properties are effectively invisible to pre-ES6
code, they are ideal for adding new functionality to JavaScript's
existing types without breaking backwards compatibility. The
so-called 'well-known' symbols are predefined properties of the
Symbol function that are used to customize the behavior of certain
language features, and are used to implement new functionality
such as iterators.

“Because symbol-keyed
properties are effectively
invisible to pre-ES6 code,
they are ideal for adding
new functionality to
JavaScript's existing types
without breaking back-
wards compatibility.”

Symbol.iterator is a well-known symbol which is used to assign a special method to objects which
allows them to be iterated over.

let band = ['Freddy', 'Brian', 'John', 'Roger'];

let iterator = band[Symbol.iterator]();

iterator.next().value;

// <-- { value: "Freddy", done: false }

iterator.next().value;

// <-- { value: "Brian", done: false }

iterator.next().value;

// <-- { value: "John", done: false }

iterator.next().value;

// <-- { value: "Roger", done: false }

iterator.next().value;

// <-- { value: undefined, done: true }

The built-in types String, Array, TypedArray, Map and Set all have a default Symbol.iterator
method which is called when an instance of one of these types is used in a for...of loop, or with the
spread operator. Browsers are also starting to use the Symbol.iterator key to allow DOM structures
such as NodeList and HTMLCollection to be iterated over in the same way.

The Global Registry

The specification also defines a runtime-wide symbol registry, which
means that you can store and retrieve symbols across different
execution contexts, such as between a document and an embedded
iframe or service worker.

Symbol.for(key) retrieves the symbol for a given key from the
registry. If a symbol does not exist for the key, a new one is returned.
As you might expect, subsequent calls for the same key will return
the same symbol.

Symbol.keyFor(symbol) allows you to retrieve the key for a given symbol. Calling the method with
a symbol that does not exist in the registry returns undefined.

“The specification also
defines a runtime-wide
symbol registry, which
means that you can store
and retrieve symbols
across different execu-
tion contexts”

136 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 137

let debbie = Symbol.for('user');

let mike = Symbol.for('user');

debbie === mike

// <-- true

Symbol.keyFor(debbie);

// <-- "user"

Use Cases

There are a couple of use cases where using symbols provides an advantage. One, which I touched on
earlier in the article, is when you want to add 'hidden' properties to objects that will not be included
when the object is serialized.

Library authors could also use symbols to safely augment client objects with properties or methods
without having to worry about overwriting existing keys (or having their keys overwritten by other
code). For example, widget components (such as date pickers) are often intialized with various options
and state that needs to be stored somewhere. Assigning the widget instance to a property of the DOM
element object is not ideal because that property could potentially clash with another key. Using a sym-
bol-based key neatly side-steps this issue and ensures that your widget instance will not be overwritten.
See the Mozilla Hacks blog post ES6 in Depth: Symbols for a more detailed exploration of this idea.

Browser Support

If you want to experiment with symbols, mainstream browser support is already quite good: https://
kangax.github.io/compat-table/es6/. As you can see, the current versions of Chrome, Firefox, Microsoft
Edge and Opera support the Symbol type natively, along with Android 5.1 and iOS 9 on mobile devices.
There are also polyfills available if you need to support older browsers.

Conclusion

Although the primary reason for the introduction of symbols seems to have been to facilitate adding new
functionality to the language without breaking existing code, they do have some interesting uses. It is
worthwhile for all developers to have at least a basic knowledge of them, and be familiar with the most
commonly used well-known symbols and their purpose.

https://hacks.mozilla.org/2015/06/es6-in-depth-symbols/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

Object-Oriented JavaScript — A

Deep Dive into ES6 Classes
Often we need to represent an idea or concept in our
programs—maybe a car engine, a computer file, a
router, or a temperature reading. Representing these
concepts directly in code comes in two parts: data
to represent the state and functions to represent the
behavior. Classes give us a convenient syntax to define
the state and behavior of objects that will represent our
concepts.

They make our code safer by guaranteeing an initialization function will be called, and they make it
easier to define a fixed set of functions that operate on that data and maintain valid state. If you can
think of something as a separate entity, it's likely you should define a class to represent that "thing" in
your program.

Consider this non-class code. How many errors can you find? How would you fix them?

By Jeffrey Mott

138 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 139

// set today to December 24

let today = {

 day: 12,

 month: 24,

};

let tomorrow = {

 year: today.year,

 month: today.month,

 day: today.day + 1,

};

let dayAfterTomorrow = {

 year: tomorrow.year,

 month: tomorrow.month,

 day: tomorrow.day + 1 <= 31 ? tomorrow.day + 1 : 1,

};

The date today isn't valid; there is no month 24. Also, today isn't fully initialized; it's missing the year.
It would be better if we had an initialization function that couldn't be forgotten. Notice also, that when
adding a day, we checked in one place if we went beyond 31 but missed that check in another place. It
would be better if we interacted with the data only through a small and fixed set of functions that each
maintain valid state.

Here's the corrected version that uses classes.

class SimpleDate {

 constructor(year, month, day) {

 // Check that (year, month, day) is a valid date

 // ...

 // If it is, use it to initialize "this" date

 this._year = year;

 this._month = month;

 this._day = day;

 }

 addDays(nDays) {

 // Increase "this" date by n days

 // ...

 }

 getDay() {

 return this._day;

 }

}

// "today" is guaranteed to be valid and fully initialized

let today = new SimpleDate(2000, 2, 28);

// Manipulating data only through a fixed set of functions ensures we maintain valid

state

today.addDays(1);

 JARGON TIP:

}} When a function is associated with a class or object, we call it a “method”
}} When an object is created from a class, that object is said to be an “instance” of the class.

Constructors

The constructor method is special, and it solves the first problem. Its job is to initialize an instance to
a valid state, and it will be called automatically so we can’t forget to initialize our objects.

Keep Data Private

We try to design our classes so that their state is guaranteed to be valid. We provide a constructor that
creates only valid values, and we design methods that also always leave behind only valid values. But
as long as we leave the data of our classes accessible to everyone, someone will mess it up. We protect
against this by keeping the data inaccessible except through the functions we supply.

 JARGON TIP: Keeping data private to protect it is called “encapsulation”.

140 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 141

Privacy with Conventions

Unfortunately, private object properties don't exist in JavaScript. We
have to fake them. The most common way to do that is to adhere
to a simple convention: If a property name is prefixed with an
underscore (or, less commonly, suffixed with an underscore), then it
should be treated as non-public. We used this approach in the earlier
code example. Generally this simple convention works, but the data
is technically still accessible to everyone, so we have to rely on our
own discipline to do the right thing.

Privacy with Privileged Methods

The next most common way to fake private object properties is to use ordinary variables in the construc-
tor, and capture them in closures. This trick gives us truly private data that is inaccessible to the outside.
But to make it work, our class's methods would themselves need to be defined in the constructor and
attached to the instance.

class SimpleDate {

 constructor(year, month, day) {

 // Check that (year, month, day) is a valid date

 // ...

 // If it is, use it to initialize "this" date's ordinary variables

 let _year = year;

 let _month = month;

 let _day = day;

 // Methods defined in the constructor capture variables in a closure

 this.addDays = function(nDays) {

 // Increase "this" date by n days

 // ...

 }

 this.getDay = function() {

 return _day;

 }

 }

}

“Unfortunately, private
object properties don't
exist in JavaScript. We
have to fake them”

Privacy with Symbols

Symbols are a new feature to JavaScript, and they give us another way to fake private object properties.
Instead of underscore property names, we could use unique symbol object keys, and our class
can capture those keys in a closure. But there's a leak. Another new feature to JavaScript is
Object.getOwnPropertySymbols, and it allows the outside to access the symbol keys we tried to
keep private.

let SimpleDate = (function() {

 let _yearKey = Symbol();

 let _monthKey = Symbol();

 let _dayKey = Symbol();

 class SimpleDate {

 constructor(year, month, day) {

 // Check that (year, month, day) is a valid date

 // ...

 // If it is, use it to initialize "this" date

 this[_yearKey] = year;

 this[_monthKey] = month;

 this[_dayKey] = day;

 }

 addDays(nDays) {

 // Increase "this" date by n days

 // ...

 }

 getDay() {

 return this[_dayKey];

 }

 }

 return SimpleDate;

}());

142 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 143

Privacy with Weak Maps

Weak maps are also a new feature to JavaScript. We can store private object properties in key/value pairs
using our instance as the key, and our class can capture those key/value maps in a closure.

let SimpleDate = (function() {

 let _years = new WeakMap();

 let _months = new WeakMap();

 let _days = new WeakMap();

 class SimpleDate {

 constructor(year, month, day) {

 // Check that (year, month, day) is a valid date

 // ...

 // If it is, use it to initialize "this" date

 _years.set(this, year);

 _months.set(this, month);

 _days.set(this, day);

 }

 addDays(nDays) {

 // Increase "this" date by n days

 // ...

 }

 getDay() {

 return _days.get(this);

 }

 }

 return SimpleDate;

}());

Other Access Modifiers

There are other levels of visibility besides "private" that you'll find in other languages, such as "protect-
ed", "internal", "package private", or "friend". JavaScript still doesn't give us a way to enforce those other
levels of visibility. If you need them, you'll have to rely on conventions and self discipline.

Referring to the Current Object

Look again at getDay(). It doesn't specify any parameters, so how
does it know the object for which it was called? When a function is
called as a method using the object.function notation, there
is an implicit argument that it uses to identify the object, and that
implicit argument is assigned to an implicit parameter named
this. To illustrate, here's how we would send the object argument
explicitly rather than implicitly.

// Get a reference to the "getDay" function

let getDay = SimpleDate.prototype.getDay;

getDay.call(today); // "this" will be "today"

getDay.call(tomorrow); // "this" will be "tomorrow"

tomorrow.getDay(); // same as last line, but "tomorrow" is passed implicitly

Static Properties and Methods

We have the option to define data and functions that are part of the class but not part of any instance of
that class. We call these static properties and static methods, respectively. There will only be one copy of
a static property rather than a new copy per instance.

class SimpleDate {

 static setDefaultDate(year, month, day) {

 // A static property can be referred to without mentioning an instance

 // Instead, it's defined on the class

 SimpleDate._defaultDate = new SimpleDate(year, month, day);

 }

 constructor(year, month, day) {

 // If constructing without arguments,

 // then initialize "this" date by copying the static default date

 if (arguments.length === 0) {

 this._year = SimpleDate._defaultDate._year;

“We have the option to
define data and functions
that are part of the class
but not part of any
instance of that class. We
call these static proper-
ties and static methods,
respectively.”

144 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 145

 this._month = SimpleDate._defaultDate._month;

 this._day = SimpleDate._defaultDate._day;

 return;

 }

 // Check that (year, month, day) is a valid date

 // ...

 // If it is, use it to initialize "this" date

 this._year = year;

 this._month = month;

 this._day = day;

 }

 addDays(nDays) {

 // Increase "this" date by n days

 // ...

 }

 getDay() {

 return this._day;

 }

}

SimpleDate.setDefaultDate(1970, 1, 1);

let defaultDate = new SimpleDate();

Subclasses

Often we find commonality between our classes—repeated code that we'd like to consolidate. Subclasses
let us incorporate another class's state and behavior into our own. This process is often called "inheri-
tance," and our subclass is said to "inherit" from a parent class, also called a superclass. Inheritance can
avoid duplication and simplify the implementation of a class that needs the same data and functions as
another class. Inheritance also allows us to substitute subclasses, relying only on the interface provided
by a common superclass.

http://stackoverflow.com/q/2866987/1136887

Inherit to Avoid Duplication

Consider this non-inheritance code.

class Employee {

 constructor(firstName, familyName) {

 this._firstName = firstName;

 this._familyName = familyName;

 }

 getFullName() {

 return `${this._firstName} ${this._familyName}`;

 }

}

class Manager {

 constructor(firstName, familyName) {

 this._firstName = firstName;

 this._familyName = familyName;

 this._managedEmployees = [];

 }

 getFullName() {

 return `${this._firstName} ${this._familyName}`;

 }

 addEmployee(employee) {

 this._managedEmployees.push(employee);

 }

}

The data properties _firstName and _familyName, and the method getFullName, are repeated
between our classes. We could eliminate that repetition by having our Manager class inherit from the
Employee class. When we do, the state and behavior of the Employee class—its data and functions—
will be incorporated into our Manager class.

Here's a version that uses inheritance. Notice the use of super.

146 - ECMAScript 2015: A SitePoint Anthology

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super

ECMAScript 2015: A SitePoint Anthology - 147

// Manager still works same as before but without repeated code

class Manager extends Employee {

 constructor(firstName, familyName) {

 super(firstName, familyName);

 this._managedEmployees = [];

 }

 addEmployee(employee) {

 this._managedEmployees.push(employee);

 }

}

IS-A and WORKS-LIKE-A

There are design principles to help you decide when inheritance is appropriate. Inheritance should
always model an IS-A and WORKS-LIKE-A relationship. That is, a manager "is a" and "works like a"
specific kind of employee, such that anywhere we operate on a superclass instance, we should be able to
substitute in a subclass instance, and everything should still just work. The difference between violating
and adhering to this principle can sometimes be subtle. A classic example of a subtle violation is a
Rectangle superclass and a Square subclass.

class Rectangle {

 set width(w) {

 this._width = w;

 }

 get width() {

 return this._width;

 }

 set height(h) {

 this._height = h;

 }

 get height() {

 return this._height;

 }

}

// A function that operates on an instance of Rectangle

function f(rectangle) {

 rectangle.width = 5;

 rectangle.height = 4;

 // Verify expected result

 if (rectangle.width * rectangle.height !== 20) {

 throw new Error("Expected the rectangle's area (width * height) to be 20");

 }

}

// A square IS-A rectangle... right?

class Square extends Rectangle {

 set width(w) {

 super.width = w;

 // Maintain square-ness

 super.height = w;

 }

 set height(h) {

 super.height = h;

 // Maintain square-ness

 super.width = h;

 }

}

// But can a rectangle be substituted by a square?

f(new Square()); // error

A square may be a rectangle mathematically, but a square doesn't work like a rectangle behaviorally.

This rule that any use of a superclass instance should be substitutable by a subclass instance is called the
Liskov Substitution Principle, and it's an important part of object oriented class design.

Beware Overuse

It's easy to find commonality everywhere, and the prospect of having a class that offers complete

148 - ECMAScript 2015: A SitePoint Anthology

https://en.wikipedia.org/wiki/Liskov_substitution_principle

ECMAScript 2015: A SitePoint Anthology - 149

functionality can be alluring, even for experienced developers. But there are disadvantages to inher-
itance too. Recall that we ensure valid state by manipulating data only through a small and fixed set
of functions. But when we inherit, we increase the list of functions that can directly manipulate the
data, and those additional functions are then also responsible for maintaining valid state. If too many
functions can directly manipulate the data, then that data becomes nearly as bad as global variables. Too
much inheritance creates monolithic classes that dilute encapsulation, are harder to make correct, and
harder to reuse. Instead, prefer to design minimal classes that embody just one concept.

Let's revisit the code duplication problem. Could we solve it without inheritance? An alternative
approach is to connect objects through references to represent a part-whole relationship. We call this

"composition".

Here's a version of the manager-employee relationship using composition rather than inheritance.

class Employee {

 constructor(firstName, familyName) {

 this._firstName = firstName;

 this._familyName = familyName;

 }

 getFullName() {

 return `${this._firstName} ${this._familyName}`;

 }

}

class Group {

 constructor(manager /* : Employee */) {

 this._manager = manager;

 this._managedEmployees = [];

 }

 addEmployee(employee) {

 this._managedEmployees.push(employee);

 }

}

Here, a manager isn't a separate class. Instead, a manager is an ordinary Employee instance that a
Group instance holds a reference to. If inheritance models the IS-A relationship, then composition
models the HAS-A relationship. That is, a group "has a" manager.

If either inheritance or composition can reasonably express our program concepts and relationships,
then prefer composition.

Inherit to substitute subclasses

Inheritance also allows different subclasses to be used interchange-
ably through the interface provided by a common superclass. A
function that expects a superclass instance as an argument can also
be passed a subclass instance without the function having to know
about any of the subclasses. Substituting classes that have a common
superclass is often called "polymorphism".

// This will be our common superclass

class Cache {

 get(key, defaultValue) {

 let value = this._doGet(key);

 if (value === undefined || value === null) {

 return defaultValue;

 }

 return value;

 }

 set(key, value) {

 if (key === undefined || key === null) {

 throw new Error('Invalid argument');

 }

 this._doSet(key, value);

 }

 // Must be overridden

 // _doGet()

 // _doSet()

}

// Subclasses define no new public methods

“Inheritance also allows
different subclasses to
be used interchangeably
through the interface
provided by a common
superclass.”

150 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 151

// The public interface is defined entirely in the superclass

class ArrayCache extends Cache {

 _doGet() {

 // ...

 }

 _doSet() {

 // ...

 }

}

class LocalStorageCache extends Cache {

 _doGet() {

 // ...

 }

 _doSet() {

 // ...

 }

}

// Functions can polymorphically operate on any cache by interacting through the super-

class interface

function compute(cache) {

 let cached = cache.get('result');

 if (!cached) {

 let result = // ...

 cache.set('result', result);

 }

 // ...

}

compute(new ArrayCache()); // use array cache through superclass interface

compute(new LocalStorageCache()); // use local storage cache through superclass inter-

face

More than Sugar

JavaScript's class syntax is often said to be syntactic sugar, and in a lot of ways it is, but there are also
real differences—things we can do with ES6 classes that we couldn't with ES5.

Static Properties Are Inherited

ES5 didn't let us create true inheritance between constructor functions. Object.create could create an
ordinary object but not a function object. We faked inheritance of static properties by manually copying
them. Now with ES6 classes, we get a real prototype link between a subclass constructor function and
the superclass constructor.

// ES5

function B() {}

B.f = function () {};

function D() {}

D.prototype = Object.create(B.prototype);

D.f(); // error

// ES6

class B {

 static f() {}

}

class D extends B {}

D.f(); // ok

Built-in Constructors Can Be Subclassed

Some objects are "exotic" and don't behave like ordinary objects. Arrays, for example, adjust their
length property to be greater than the largest integer index. In ES5, when we tried to subclass Array,
the new operator would allocate an ordinary object for our subclass, not the exotic object of our super-
class.

// ES5

function D() {

152 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 153

 Array.apply(this, arguments);

}

D.prototype = Object.create(Array.prototype);

var d = new D();

d[0] = 42;

d.length; // 0 - bad, no array exotic behavior

ES6 classes fixed this by changing when and by whom objects are allocated. In ES5, objects were
allocated before invoking the subclass constructor, and the subclass would pass that object to the super-
class constructor. Now with ES6 classes, objects are allocated before invoking the superclass constructor,
and the superclass makes that object available to the subclass constructor. This lets Array allocate an
exotic object even when we invoke new on our subclass.

// ES6

class D extends Array {}

let d = new D();

d[0] = 42;

d.length; // 1 - good, array exotic behavior

Miscellaneous

There's a small assortment of other, probably less significant differences. Class constructors can't be
function-called. This protects against forgetting to invoke constructors with new. Also, a class construc-
tor's prototype property can't be reassigned. This may help JavaScript engines optimize class objects.
And finally, class methods don't have a prototype property. This may save memory by eliminating
unnecessary objects.

Using New Features in Imaginative Ways

Many of the features described here and in other SitePoint articles are new to JavaScript, and the
community is experimenting right now to use those features in new and imaginative ways.

Multiple Inheritance with Proxies

One such experiment uses proxies, a new feature to JavaScript, to implement multiple inheritance.
JavaScript's prototype chain allows only single inheritance. Objects can delegate to only one other object.
Proxies give us a way to delegate property accesses to multiple other objects.

let transmitter = {

 transmit() {}

};

let receiver = {

 receive() {}

};

// Create a proxy object that intercepts property accesses and forwards to each parent,

// returning the first defined value it finds

let inheritsFromMultiple = new Proxy([transmitter, receiver], {

 get: function(proxyTarget, propertyKey) {

 const foundParent = proxyTarget.find(parent => parent[propertyKey] !== undefined);

 return foundParent && foundParent[propertyKey];

 }

});

inheritsFromMultiple.transmit(); // works

inheritsFromMultiple.receive(); // works

Can we expand this to work with classes? A class's prototype could be a proxy that forwards property
access to multiple other prototypes. The JavaScript community is working on this right now. Can you
figure it out? Join the discussion and share your ideas.

Multiple Inheritance with Class Factories

Another approach the JavaScript community has been experimenting with is generating classes on
demand that extend a variable superclass. Each class still has only a single parent, but we can chain
those parents in interesting ways.

154 - ECMAScript 2015: A SitePoint Anthology

ECMAScript 2015: A SitePoint Anthology - 155

function makeTransmitterClass(Superclass = Object) {

 return class Transmitter extends Superclass {

 transmit() {}

 };

}

function makeReceiverClass(Superclass = Object) {

 return class Receiver extends Superclass {

 receive() {}

 };

}

class InheritsFromMultiple extends makeTransmitterClass(makeReceiverClass()) {}

let inheritsFromMultiple = new InheritsFromMultiple();

inheritsFromMultiple.transmit(); // works

inheritsFromMultiple.receive(); // works

Are there other imaginative ways to use these features? Now's the time to leave your footprint in the
JavaScript world.

Conclusion

Hopefully this article has given you an insight into how classes work in ES6 and has demystified some
of the jargon surrounding them. Unfortunately, at the time of writing, support for classes isn't very good,
so you'll need to use a transpiler such as Babel if you want to give them a try.

http://stackoverflow.com/questions/31219420/are-variables-declared-with-let-or-const-not-hoisted-in-es6

	Preface
	JavaScript: The State of Play
	JavaScript - So Hot Right Now!
	ES6 Is Now a Standard - Anything Else Is Experimentation
	A Pick 'n' Mix Offering Empowering Different Developers
	Working with ES6 Right Now
	ES6 Is Here, Get Used to It!

	Preparing for ECMAScript 6: let and const
	let
	const
	Conclusion

	Preparing for ECMAScript 6: New Function Syntax
	Arrow Functions
	Default Values for Parameters
	Rest Parameter
	Conclusion

	Preparing for ECMAScript 6: New Number Methods
	Number.isInteger()
	Number.isNaN()
	Number.isFinite()
	Number.isSafeInteger()
	Conclusion

	Preparing for ECMAScript 6: Set and WeakSet
	Set
	WeakSet
	Putting it all together
	Conclusion

	Preparing for ECMAScript 6: Map and WeakMap
	Map
	WeakMap
	Putting it all together
	Conclusion

	Preparing for ECMAScript 6: New String Methods
	String.prototype.startsWith()
	String.prototype.endsWith()
	String.prototype.includes()
	String.prototype.repeat()
	String.raw
	Conclusion

	Preparing for ECMAScript 6: New Array Methods
	Array.from()
	Array.prototype.find()
	Array.prototype.findIndex()
	Array.prototype.keys()
	Array.prototype.values()
	Array.prototype.fill()
	Conclusion
	Proxy Trap Types
	Proxy Example 1: Profiling
	Proxy Example 2: Two-Way Data Binding
	Further Examples
	Proxy Support

	Preparing for ECMAScript 6: Destructuring Assignment
	Easier Declaration
	Variable Value Swapping
	Default Function Parameters
	Returning Multiple Values from a Function
	For-of Iteration
	Regular Expression Handling
	Destructuring Assignment Support

	ECMAScript 2015: Generators and Iterators
	Iterators
	Generators
	Cool, So Can I Use This Now?
	Conclusions

	An Overview of JavaScript Promises
	Overview
	The API
	Chaining Promises
	Handling Errors
	Conclusion

	Writing AngularJS Apps Using ES6
	Setting up the Application for ES6
	Defining Controllers
	Defining Services
	Defining Directives
	Defining the Main Module and Config block
	Conclusion
	Creating the package.json File
	Set up the Gruntfile.js
	Let's Write Some ES6 Code
	Conclusion

	Asynchronous APIs Using the Fetch API and ES6 Generators
	Generators for Asynchronous Operations
	Using Generators with the Fetch API
	Long Polling
	Multiple Dependent Asynchronous Calls
	Conclusion

	Preparing for ECMAScript 6: Symbols and Their Uses
	Creating New Symbols
	What Can I Do With Them?
	Well-known Symbols
	The Global Registry
	Browser Support
	Conclusion

	Object-Oriented JavaScript — A Deep Dive into ES6 Classes
	Referring to the Current Object
	Static Properties and Methods
	
Subclasses
	Inherit to Avoid Duplication
	Inherit to substitute subclasses
	More than Sugar
	Using New Features in Imaginative Ways
	Multiple Inheritance with Class Factories
	Conclusion

