

Summary of Contents
Introduction .. ix
1. What are Web Standards? .. 1
2. Site Planning and Setting up for Development 19
3. XHTML and Semantics ... 45
4. Constructing the Document ... 73
5. CSS and Dreamweaver ... 101
6. Constructing the Layout with CSS ... 127
7. Accessibility ... 185
8. Building the Site .. 225
9. Forms and Third-party Services .. 259
10. Alternate Style Sheets .. 289
Index ... 323

Build Your Own Standards
Compliant Website Using

Dreamweaver 8
by Rachel Andrews

Build Your Own Standards Compliant Website Using
Dreamweaver 8
by Rachel Andrews

Copyright © 2005 SitePoint Pty. Ltd.

Editor: Georgina LaidlawExpert Reviewer: Molly Holzschlag
Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Design: Alex WalkerTechnical Editor: Craig Anderson
Cover Illustration: Jess MasonTechnical Director: Kevin Yank

Printing History:
First Edition: September 2005

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-3-4
Printed and bound in the United States of America

About the Author

Rachel Andrew is Managing Director of Web solutions provider edgeofmyseat.com. When
not writing code, she writes about writing code, and is the coauthor or author of several
books promoting the practical usage of Web standards alongside other everyday tools and
technologies. Rachel takes a commonsense, real-world approach to Web standards, with
her writing and teaching being based on the experiences she has in her own company every
day. Rachel has been using Dreamweaver since the release of version 2, and is a member
of the Web Standards Project, working particularly to ensure standards support in authoring
tools such as Dreamweaver. Rachel is the author of The CSS Anthology: 101 Essential Tips,
Ticks & Hacks, also published by SitePoint.

Rachel lives in the UK with her partner Drew and daughter Bethany. When not working,
they can often be found wandering around the English countryside hunting for geocaches
and nice pubs that serve Sunday lunch and a good beer.

About the Expert Reviewer

Molly E. Holzschlag is a well-known Web standards advocate, instructor, and author.
Among her thirty-plus books is the recent The Zen of CSS Design, coauthored with Dave
Shea. The book artfully showcases the most progressive csszengarden.com designs. Molly
is an expert invited to the GEO working group at the World Wide Web Consortium
(W3C) and is a steering committee member of the Web Standards Project (WaSP). She
also serves as Advisory Board Member to the World Organization of Webmasters. A
popular and colorful individual, Molly maintains a blog at—where else?—http://molly.com/

About The Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint,
but is best known for his book, Build Your Own Database Driven Website Using PHP &
MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy
theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://molly.com/
http://www.sitepoint.com/

To Drew, who once told me
that I should use

Dreamweaver, and without
whom this journey would never

have been possible.

Table of Contents
Introduction .. ix

Who Should Read This Book? .. x
What’s In This Book? .. x
Further Reading .. xii
The Book’s Website .. xii

The Code Archive ... xii
Updates and Errata ... xiii

The SitePoint Forums .. xiii
The SitePoint Newsletters ... xiii
Your Feedback ... xiii
Acknowledgements .. xiv

1. What are Web Standards? .. 1
Web Standards Defined ... 1
Who Needs Web Standards? .. 2

Web Designers and Developers ... 3
Browser Manufacturers .. 5
Authoring Tool Manufacturers .. 5
Web Users ... 5

Using Web Standards ... 6
Creating a Valid XHTML Document .. 6
Validating your Document ... 9
Using Valid CSS ... 10
Validating for Accessibility ... 11
Applying a Semantic Document Structure 13
Separating Presentation from Document Structure 16

Summary ... 16

2. Site Planning and Setting up for Development 19
The Code Spark Site Design ... 19

Features of the Code Spark Website ... 19
Designing the Site .. 21

Structuring the Site .. 24
Dealing with Common Elements .. 24

Setting up a Web Server ... 28
Installing Apache ... 29
Testing SSI .. 33
Using IIS as your Local Web Server .. 35

Hosting your Site ... 35
Setting up Dreamweaver .. 36

Your Workspace ... 38
Setting Preferences ... 40

Summary ... 42

3. XHTML and Semantics ... 45
What is XHTML? .. 45

XML .. 45
XHTML .. 46

What Makes a Valid XHTML Document? .. 47
The DOCTYPE .. 47
The html Element .. 48
The head Element .. 49
The body Element .. 49

XHTML and HTML: the Differences ... 50
Quoting Attribute Values .. 50
Closing all Empty and Non-empty Elements 50
Avoiding Minimizing Attributes ... 51
Writing Elements and Attributes in Lowercase 51
Nesting Elements Properly ... 52
Using id Instead of name to Identify Elements 52

Why use XHTML? .. 53
Creating Clean Markup .. 53
Making Code Easier for Machines to Process 54
Boosting the Portability of Content .. 54
Allowing Integration with other XML Applications 54

XHTML in Dreamweaver ... 54
Creating New Pages .. 54
Converting Existing Pages ... 56

Semantic Markup .. 57
Using Elements Semantically .. 59
Semantic Markup and Text-Only Devices 66

Summary ... 72

4. Constructing the Document .. 73
The New XHTML Document .. 73
The Main Content Area ... 76

Linking to Other Tutorials ... 83
Displaying Browser Statistics .. 86

Other Page Elements .. 89
The Heading and Main Navigation .. 93

The Sidebar ... 95
Validating your XHTML .. 99

iv

Build Your Own Standards Compliant Website Using Dreamweaver 8

Validation in Dreamweaver ... 99
Summary ... 100

5. CSS and Dreamweaver ... 101
Why CSS? ... 101

CSS Basics .. 102
Your Basic Toolkit .. 106

Setting Preferences for CSS .. 106
The Page Properties Dialog Box .. 108
The CSS Panel ... 109
The Property Inspector ... 118
Editing CSS in Code View .. 120
Sample CSS Styles ... 121
CSS Page Designs .. 122
Design Time Style Sheets ... 123
The Style Rendering Toolbar .. 124
CSS "Layout Blocks" .. 124

Summary ... 126

6. Constructing the Layout with CSS ... 127
The Homepage Document ... 127
Defining the Basic Layout .. 128

The Header .. 129
The Content Area .. 132
The Navigation Area .. 133

Creating CSS Rules .. 133
The Body Area ... 133
Styling the Header div ... 137
The Top of the Header Area ... 140
The Accessibility Buttons ... 144
The Main Navigation ... 147
Styling the Navigation Links .. 149
The Properties Pane of the CSS Panel 153

The Content Area .. 154
The Content Sections .. 156
Using Dreamweaver Visual Aids ... 159
The Headings .. 160
The Contents of the Homepage Boxes 160
Styling Tables ... 164
The Browser Statistics Section .. 168

The Sidebar ... 170
The Search Box .. 173

v

The Topics List .. 174
The Articles Lists ... 176
Rounding Out the Sidebar .. 177

CSS Validation and Browser Testing ... 178
Validating the Code .. 178
Browser Testing .. 180

Summary ... 184

7. Accessibility ... 185
Will Considering Accessibility Stop us Creating Exciting
Designs? .. 186
Which Users Benefit? .. 186
Which Guidelines are we Working to? .. 187

The Web Accessibility Initiative (WAI) 187
WACG Checkpoint Priorities ... 187
Legislation ... 190

Dreamweaver Tools for Accessibility ... 192
Accessibility in Practice .. 193

Priority 1 ... 194
Priority 2 ... 205
Priority 3 .. 213

Accessibility Validation .. 219
The Dreamweaver Accessibility Validator 220
Cynthia Says: Online Validation ... 221

Summary ... 224

8. Building the Site .. 225
Creating the Includes ... 226

The First Include: head.html ... 226
The Second Include: top.html ... 228
The Final Include: bottom.html ... 230

Creating The Base Page .. 232
The Tutorial List Page .. 235

Creating the Lists ... 236
Adding to the CSS ... 237

An Example Tutorial Page ... 238
Adding CSS for the Tutorial Page ... 239
The Author Image .. 240
The Author Credit and Date .. 241
The Introduction Text .. 241
Inline Images ... 242
Quotes ... 243

vi

Build Your Own Standards Compliant Website Using Dreamweaver 8

Highlighting the Current Section in the Navigation Area 246
The Sitemap .. 249

Marking up the Sitemap .. 251
Styling the Sitemap with CSS .. 255

Summary ... 257

9. Forms and Third-party Services .. 259
The Contact Form .. 259

Marking up the Form ... 260
Laying out the Form with CSS ... 267
Client-side Validation Using Dreamweaver 270
Submitting the Form .. 275

Adding a Search Facility ... 276
Creating an Atomz Account ... 277
Adding the Search Form to Your Site .. 277
Editing the Atomz Templates .. 280

Summary ... 288

10. Alternate Style Sheets .. 289
Accessibility Controls ... 290

Text Resizing .. 290
Switching Style Sheets ... 299
A “Low Graphics” Layout ... 304

Media Types .. 316
Print Style Sheet .. 317

Final Tasks ... 320
Final Validation .. 321

Summary ... 321
Index ... 323

vii

viii

Introduction
Traditionally, visual tools like Dreamweaver have received a lot of bad press.
Ardent hand-coders point to various examples of terrible markup produced by
such tools as evidence for the claim that Visual Tools Are Bad. However, using
a visual tool can really help to reduce development time and, if you’re someone
who works in a visual way, such tools can inspire far more creativity than can a
text file full of markup.

For those working in a development team, tools such as Dreamweaver can become
invaluable, enabling designers and developers with different skillsets and abilities
to work together on a project without destroying each other’s work.

I started working with Dreamweaver when it was in version 2, and the product
has certainly grown and matured since those early days. Back then, we were at
a point at which the nonstandard versions of the markup used by each of the
major browsers—Netscape and Internet Explorer—differed so greatly that de-
velopers sometimes had to build two sites, and detect the browser version being
used before displaying the appropriate site to the visitor. Our layout tool was the
table, and Dreamweaver helped us to create nested table layouts populated by
spacer images as we tried to achieve the goal of having our design “look the same
in both browsers.”

Things have changed a lot since those days, and Dreamweaver has moved with
the times. The last few releases have steadily shifted from the assumption that
everyone creates sites using tables and font tags, towards a product that supports
and enhances the workflow of CSS developers, and those who are concerned
about Web standards and accessibility.

Whether, like me, you’re a longtime Dreamweaver customer who wants to know
how to use the latest version of Dreamweaver to build standards-compliant, ac-
cessible sites, or you’re a relative Dreamweaver novice, I hope you’ll find this
book useful.

By reading this book from cover to cover, you’ll use Dreamweaver 8 to build a
Website that validates to XHTML Strict, uses a CSS layout, and addresses the
challenges of accessibility every step of the way. While Dreamweaver 8 can assist
you in producing standards compliant Websites, any tool is only as good as the
person operating it. This book will help you to understand the different decisions
that need to be made, and how best to use Dreamweaver to reach your goals.

Through the process of building an example site that uses a realistic workflow
for development, Dreamweaver beginners and old hands alike should learn how
to create standards compliant Websites using Dreamweaver 8.

Who Should Read This Book?
This book is great for both Dreamweaver novices and more experienced users.

If you’re already a Dreamweaver user, but you want to expand your knowledge
and learn how to use Dreamweaver 8 to create sites that are accessible, standards
compliant, and use CSS for layout, this book is for you. In the coming pages,
we’ll look at all of the new tools included in this version of the product—tools
that make designing with CSS far easier than ever before.

If you’ve never used Dreamweaver, but you want or need to, this book will help
you to learn Dreamweaver the right way, without compromising accessibility or
standards-compliance. In it, we’ll work through the process of creating a Web-
site—building a document in XHTML Strict and styling it using CSS, before
moving on to building the site itself—and we’ll cover lots of Dreamweaver func-
tionality along the way.

What’s In This Book?
Chapter 1: What are Web Standards?

In this first chapter, we take a look at Web standards: what they are, why
they’re important, and who they’re designed to help. This chapter sets the
scene for the decisions we’ll be making throughout the rest of the book.

Chapter 2: Planning the Site and Setting up for Development
A successful project starts with good planning. In this chapter, we make some
major decisions about how we’ll develop our site, thinking specifically about
the layout and the structure of the site, and setting up our tools so we’re
ready to get started.

Chapter 3: XHTML and Semantics
This chapter discusses XHTML, clarifying how it differs from HTML, and
how we can work with it in Dreamweaver. We also discuss how best to
structure a document, using XHTML elements, to ensure that it is accessible
to all users.

x

Introduction

Chapter 4: Constructing the Document
Armed with a knowledge of XHTML, we put theory into practice in this
chapter, as we build a document that will become the homepage of our site.
We walk through the process of using Dreamweaver to create a document
that validates as XHTML Strict, and find out how to validate our markup
using Dreamweaver and other tools.

Chapter 5: CSS and Dreamweaver
In this chapter, we explore Dreamweaver’s Cascading Style Sheets (CSS)
tools. Dreamweaver 8 comes with some excellent new tools designed to im-
prove your CSS design workflow; the new unified CSS panel, and CSS div
visualisation are among the tools that are explained in this chapter.

Chapter 6: Constructing the Layout with CSS
Here, we use Dreamweaver’s powerful CSS tools to create a style sheet for
our document. By employing CSS, we can create a visual layout without
compromising the accessibility of the document that we developed in
Chapter 4.

Chapter 7: Accessibility
Dreamweaver contains many tools to help us create accessible Websites, and
we’ve been using them throughout the book. This chapter provides some
more information on the use of those tools, discusses the process of validating
documents for accessibility, and considers the ways in which users’ differing
needs can be met through good design.

Chapter 8: Building the Site
Now that we have a layout and a stylesheet, we can build the site. We create
a page design that we can use as a template for any internal pages that are
developed for the project, and utilize server-side includes as a means to reuse
common elements of the site.

Chapter 9: Forms and Third-party Services
Forms can present problems for many users, so, in this chapter, we’ll create
a form using a variety of the accessibility features that Dreamweaver offers.
And, as we integrate the Atomz search facility into our site, we learn firsthand
that using third-party solutions doesn’t always necessitate a compromise on
standards compliance.

Chapter 10: Alternate Style Sheets
This final chapter looks as the ways in which we can utilize the power of CSS
to provide visitors a variety of alternate style sheets with which to use the

xi

What’s In This Book?

site. We create a large-print style sheet, a low-images style sheet, and one
that displays only when the document is printed.

Further Reading
Although this book doesn’t assume knowledge of CSS, neither does it provide a
complete treatment of the subject. If the following chapters pique your interest
in CSS, and you’d like to learn more about it, there are a couple of other SitePoint
books that I can recommend.

HTML Utopia: Designing Without Tables Using CSS1 represents a thorough intro-
duction and complete guide to CSS. Like this book, HTML Utopia: Designing
Without Tables Using CSS walks you through the creation of a site design using
CSS, step by step. It also includes a comprehensive CSS reference that has made
it an invaluable desk reference for thousands of designers and developers.

The CSS Anthology: 101 Essential Tips, Tricks & Hacks2, my first book for SitePoint,
will teach you to achieve practical results quickly. This book was designed to give
readers fast, easy-to-follow answers to common questions: readers may jump
between the many solutions, picking up tidbits suited to their projects and their
needs.

The Book’s Website
Located at http://www.sitepoint.com/books/dreamweaver1, the Website supporting
this book will give you access to the following facilities.

The Code Archive
As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in this book.

1 http://www.sitepoint.com/books/css1/
2 http://www.sitepoint.com/books/cssant1/

xii

Introduction

http://www.sitepoint.com/books/css1/
http://www.sitepoint.com/books/cssant1/
http://www.sitepoint.com/books/dreamweaver1

Updates and Errata
The Errata page on the book’s Website will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about designing, developing, and producing Websites. If you
have a question about anything in this book, the best place to go for a quick an-
swer is http://www.sitepoint.com/forums/—SitePoint’s vibrant and knowledgeable
community.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of Web development. The long-running Site-
Point Tribune is a biweekly digest of the business and moneymaking aspects of
the Web. Whether you’re a freelance developer looking for tips to score that
dream contract, or a marketing major striving to keep abreast of changes to the
major search engines, this is the newsletter for you. The SitePoint Design View is
a monthly compilation of the best in Web design. From new CSS layout methods
to subtle PhotoShop techniques, SitePoint’s chief designer shares his years of
experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or you wish to contact me for
any other reason, the best place to write is books@sitepoint.com. We have a
well-manned email support system set up to track your inquiries, and if our
support staff is unable to answer your question, they send it straight to me.

xiii

Updates and Errata

http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/

Suggestions for improvement as well as notices of any mistakes you may find are
especially welcome.

Acknowledgements
I have been very fortunate to have a fantastic team working with me as I’ve
written this book. Thank you to the team at SitePoint—in particular, to Simon
Mackie—for making this book a reality. As always, it has been a pleasure working
with you.

Thanks also to my expert reviewer, Molly E. Holzschlag, whose insightful com-
ments have ensured that decisions made while writing this book have been
thoroughly thought through. Having a reviewer who I respect very much as an
author was, I believe, a great benefit to this project, and I thank Molly for her
support and encouragement, as well as her excellent eye for technical issues.

To those at Macromedia who have worked with The Web Standards Project,
who have listened, and who have worked to ensure that Dreamweaver has become
a tool that supports standards, thank you.

Finally, these few words that I add in my acknowledgements cannot possibly
convey how grateful I am to my family, to Drew and Bethany. For putting up
with my deadline-induced craziness once again, I thank you and love you both
very much.

xiv

Introduction

What are Web Standards?1
If you’ve bought this book, you probably already have an interest in the subject
of “Web standards,” and are curious about the application of standards in a site
that’s built with Dreamweaver. Perhaps you already have an understanding of
Web standards, but you’re not sure how to use Dreamweaver to create compliant
code. Or perhaps you’re a Dreamweaver user who wants to comply with Web
standards, use CSS more extensively, and produce more accessible documents.
Either way, this book has the answers you need: it will show you how work to
Web standards using Dreamweaver.

As we’ll discover in the course of this chapter, there are excellent commercial
reasons why sites should be developed to meet Web standards. The decision to
adopt Web standards shouldn’t be about jumping on a bandwagon, or keeping
up with the latest Web development fashion. It’s about producing good quality
work, and knowing that your development approach will benefit your clients or
employers as well as site visitors.

Web Standards Defined
As we’ll be concerned with Web standards throughout this book, let’s take a
moment to clarify exactly what we’re talking about.

Web standards are specifications that direct the use of development languages
on the Web, and are set by the World Wide Web Consortium (or W3C)1. These
specifications cover languages such as HTML, XHTML, and CSS, along with a
range of other languages, such as MathML, a markup language designed to rep-
resent mathematical equations, that you might come across if you have a specific
need. The W3C also publishes the Web Content Accessibility Guidelines
(WCAG)—recommendations that address the accessibility of Web pages—via
the Web Accessibility Initiative (WAI).

Get the Spec, Direct!

You can read these specifications and recommendations at the W3C site,
though they’re a little heavy going at times.

❑ HTML 4.01: http://www.w3.org/TR/html4/

❑ XHTML 1.0: http://www.w3.org/TR/xhtml1/

❑ CSS 1: http://www.w3.org/TR/CSS1/

❑ CSS 2.1: http://www.w3.org/TR/CSS21/

❑ WCAG 1.0: http://www.w3.org/TR/WAI-WEBCONTENT/

In this book, we’ll use the XHTML 1.0, CSS 1 and 2.1, and WCAG 1.0 specific-
ations and recommendations, although you’ll be glad to know that we won’t be
doing too much reading of the actual W3C documents themselves!

Who Needs Web Standards?
You might have a vague notion that Web standards are a good thing, but many
sites—including many big name sites—don’t comply with Web standards, and
they certainly seem to manage perfectly well. So why should we make the effort
to comply with Web standards? Are there any real benefits in doing so? Who
needs Web standards, and who needs to take notice of the W3C specifications
and recommendations?

1 http://www.w3.org

2

Chapter 1: What are Web Standards?

http://www.w3.org
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/WAI-WEBCONTENT/

Web Designers and Developers
At the top of the list of people who need to worry about Web standards are
people like us: the designers and developers who put together Websites. Will the
time we spend learning how to develop to Web standards pay off for us?

Cleaner Markup Makes Bug-fixing Quicker

If you validate your pages using W3C validators, at least you’ll know that invalid
markup is not the cause of any page display errors you might be experiencing.
Sometimes, the process of validating a page, and fixing the errors that are found,
can clear up display issues caused by elements not being closed correctly, or
misspelled tags.

Even if validating your document doesn’t fix the issue, at least you know that
the problem exists within a valid document. Once you know that the problem
isn’t an error, you can start looking at other issues, such as the differing imple-
mentations of CSS in various browsers.

Complying with Accessibility Requirements is Easier

If you create valid XHTML markup, and you ensure that your document is se-
mantically correct, and you separate your document’s content from its presenta-
tion (all of which we’ll discuss in this chapter), you’ll already have made consid-
erable progress on many of the accessibility checkpoints outlined in WCAG 1.0.
It’s also important to recognize that accessibility isn’t designed just for those
with disabilities. An accessible site is able to be read by many different devices,
including search engine indexers and “limited-resource” devices, such as mobile
phones and PDAs, which don’t have the processing power to cope with messy,
nonstandard markup.

Forward Compatibility

If you consider how your newly developed page looks in only a few current
browsers, how can you be sure that it will display well in the next new browser?
New browsers may display your pages badly, leaving you scrambling to find and
fix problems as complaints come in. If you rely on tags that are specific to certain
browsers, or have been removed from the specification entirely, you leave yourself
open to this problem.

3

Web Designers and Developers

Complying with Web standards won’t eradicate this problem completely; however,
standards compliance makes the serious failure of your design less likely, as
browser manufacturers now follow the standards, too. While they may occasionally
misinterpret some part of the specification, they’re unlikely to stop supporting
it altogether. If the worst does happen, and a new browser has a strange effect
on your standards-based Website, fixing it is likely to be easier than fixing a non-
compliant site. If you’re experiencing a problem, it will probably have affected
other standards-complaint sites. The great minds of the Web community will be
figuring out fixes and writing articles to explain their solutions. And, as we’ve
already discussed, bug fixing in a compliant document is far easier than in a non-
compliant document.

Easier Redesigns

Have you ever had to redesign a Website by ripping the text from it and starting
from scratch? Have you ever seen markup that was so littered with font tags and
tiny table cells that it was easier to just start over? I know I have, and it’s a slow
process that can chew up a good deal of the time and money dedicated to a site
redesign.

Separating the document’s content from its presentation won’t just give you a
warm glow of standards compliance: it means that the next time someone has to
redesign the site, they won’t need to copy all the text out of the Web documents.
All of the site text will have been marked up using semantic (X)HTML, and all
of the presentational information—the stuff the site owners want to change—will
be stored in a CSS file that can be replaced easily.

Some clients won’t even wait for a redesign before they start asking you to make
changes: they’ll wait until you’ve almost finished their mammoth site, then ask
you to “just switch that column from the left to the right.” With a standards
compliant site whose page layout is controlled by CSS, you can move page ele-
ments around easily, without needing to hack away at complex table structures
on many pages. This makes changes to page layouts comparatively simple.

The separation of structure from presentation can also make it easier to provide
added features, such as a high-contrast, low-graphics version of the site for visitors
who prefer to use the site that way. Why create separate text-only versions of all
your pages when you can simply swap out the style sheets?

4

Chapter 1: What are Web Standards?

Browser Manufacturers
The manufacturers of browsers that access the Websites we build do take notice
of Web standards. In the past, browser manufacturers added their own, proprietary
tags and attributes to the basic languages. But now, more than ever, they’re
working to comply with the standards, and, certainly with the newest browsers,
attempts are being made to display (X)HTML and CSS as described in the spe-
cifications.

Web browsers will, for the foreseeable future, attempt to render even the most
poorly marked up, invalid code, because if they didn’t, hundreds of thousands
of badly written sites would display as a complete mess—and the general public
would most probably blame the browser, not the Web designer. However, other
devices, which don’t have the rendering power of a desktop computer, rely far
more heavily on the standards compliance of the markup they encounter.

Authoring Tool Manufacturers
Authoring tool manufacturers—such as Macromedia, which creates Dream-
weaver—have to follow Web standards just as Web designers do, as, increasingly,
their customers demand that these authoring environments output valid markup.
Traditionally, visual development environments received bad press for creating
messy, invalid markup; however, newer versions of the leading visual development
environments have cited standards compliance and accessibility features as main
selling points. The manufacturers are definitely listening—and responding—to
the market’s demands.

Web Users
The users of the Websites we design also benefit from our adoption of Web
standards, even if they don’t realize it! Perhaps they unwittingly use sites that
specifically have been developed to display well in the most popular browser. If
those users switch to a different browser, they might find that they no longer
enjoy such a great online experience, as the proprietary markup used by those
sites won’t work in the new browser. A standards compliant site has a far greater
chance of working well across all browsers, both those that were in existence when
you developed the site, and the new browsers that will launch later in the site’s
lifetime.

5

Browser Manufacturers

In addition, a Website that’s developed in line with accessibility recommendations
is likely to be accessible to users who might find browsing the Web a frustrating
experience. The Web should offer opportunities for easier shopping, reading, and
research to visually impaired or otherwise disabled users. It shouldn’t frustrate
them with sites that use proprietary markup, or other techniques that effectively
lock out of the site anyone who doesn’t use a “regular” browser in a “regular”
way.

Using Web Standards
How do we ensure that we’re using these Web standards correctly? What does
it take to comply with the standards?

First, we need to conform to the specification. This means that we should use
only those elements and attributes that are included in the specification, avoiding
the proprietary elements introduced by browser manufacturers, such as Internet
Explorer’s <marquee> tag, and Netscape’s <blink> tag. We should also avoid
using elements that appeared in earlier specifications (such as HTML 3.2) and
have since been removed when we’re working on documents developed to a later
specification.

Creating a Valid XHTML Document
We’ll use XHTML throughout this book, so we’ll be working to the W3C’s
XHTML 1.0 Recommendation2 (in W3C parlance, a "recommendation" is a
specification). XHTML is basically the latest version of HTML, and was designed
to replace HTML as the markup language for Web pages. Though it’s a reformu-
lation of HTML as XML, XHTML is almost identical to HTML, apart from a
few small differences that we’ll discuss in Chapter 3.

You can create an XHTML document through Dreamweaver’s New Document
dialog (File > New…). Make sure Basic page is selected in the Category list, then
select HTML from the Basic page listing that appears, as shown in Figure 1.1. You
can then select one of the XHTML options from the Document Type (DTD) drop-
down list.

Clicking Create will create the new document. Switch to Code View, by clicking
the Code button at the top of the document window, to see exactly what’s included
in a simple XHTML document. This is illustrated in Figure 1.2.

2 http://www.w3.org/TR/xhtml1/

6

Chapter 1: What are Web Standards?

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/

Figure 1.1. Creating a new XHTML document in Dreamweaver.

Figure 1.2. Displaying the new XHTML document in Code View.

7

Creating a Valid XHTML Document

The first line of the document will look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This is called the document type declaration, or DOCTYPE. As you can easily
infer from its name, the DOCTYPE declares what your document is—which
(X)HTML specification you’re working to. In this example, we’re working to
XHTML 1.0 Transitional, Dreamweaver 8’s default. The Transitional part tells
us something else about the version of XHTML that we’re working with. XHTML
1.0 comes in three "flavors:" Strict, Transitional, and Frameset. Dreamweaver
uses the Transitional DOCTYPE by default, and Frameset if you insert frames
into the document.

XHTML Strict is, as you would expect, the strictest form of XHTML. An XHTML
Strict DOCTYPE looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

If you’re using a Strict DOCTYPE, you can’t use any deprecated elements (tags)
or attributes in the document; nor can you use frames. Deprecated elements are
those that have been flagged for removal in future versions of XHTML. Many
deprecated elements control the appearance of the page, performing the kinds
of functions that can be handled by CSS. The main difference between Strict
and Transitional DOCTYPEs is that, with the Strict DOCTYPE, you’re far more
limited in terms of the presentational attributes and elements you can include
in the document.

Using the Strict DOCTYPE in Dreamweaver

Dreamweaver isn’t quite as careful as it could be about adhering to the
standard. If you use the Strict DOCTYPE, take extra care to validate your
documents and replace any invalid attributes. Typically, it will be quite easy
to replace them with CSS.

The Frameset DOCTYPE supports the use of frames, and Dreamweaver will use
it automatically if you include any frames in your document. The Frameset page
will then reference at least two other HTML pages, which can use any DOCTYPE
they like. The Frameset DOCTYPE looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

8

Chapter 1: What are Web Standards?

HTML 4.01 offers the same three DOCTYPE flavors—Transitional, Strict and
Frameset—which work in exactly the same way as the above XHTML DOCTYPEs.
If you used one of these, you would need to mark up your document in HTML,
rather than XHTML. We’ll explore the differences between HTML and XHTML
later in this book, as we start to create our Website.

Validating your Document
How can you ensure that a document you’ve created in HTML or XHTML is
valid, and conforms to the specification? Run it through the W3C Validator3

shown in Figure 1.3.

To use the validator, you can enter the URL of the page you’d like validated (if
it’s live on the Web), or you can upload a file from your computer.

Figure 1.3. Using the W3C Validator.

3 http://validator.w3.org/

9

Validating your Document

http://validator.w3.org/

Once you’ve told the W3C Validator where to find your (X)HTML, click the
Check button. A page will display, announcing the joyful news that your page is
valid, or providing a list of errors that you can work through before you re-check
the page’s validity. If you’ve been working in Dreamweaver to create an XHTML
document, you should have very few errors to fix; however, later in this book,
we’ll look at some of the more common errors that can occur as we build Websites.

To help you ensure the validity of your pages during development, Dreamweaver
provides a built-in validator. To run the validator, select File > Check Page >
Validate Markup, or click the Validate Markup button. The validation results appear
at the bottom of the window. As shown in Figure 1.4, you can choose to validate
the current document, the entire local site, or selected files within the site.

Figure 1.4. The validator in Dreamweaver.

Though this validator provides a useful check as you go along, I always check my
documents at the W3C’s online validator prior to their publication online. The
Dreamweaver validator cannot validate any markup that’s generated dynamically
using a server-side language such as PHP or ASP. So, if you’re generating pages—or
parts of pages—in this way, you’ll definitely need to use the online validator after
uploading your pages.

Using Valid CSS
As we’ll discover when we build our site, CSS replaces all of the deprecated
presentational elements in HTML, as well as adding plenty of scope for interesting
design ideas that aren’t possible using HTML alone. CSS is also a Web standard,
and the W3C has developed specifications against which we can validate our
CSS code,4 just as we do for (X)HTML.

When it comes to CSS, you have three options for validation: point to a file on
a live server (either a CSS file, or an HTML page with embedded CSS), upload
a CSS file from your computer, or paste the CSS directly into a text area. As with

4 http://jigsaw.w3.org/css-validator/

10

Chapter 1: What are Web Standards?

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

the (X)HTML validator, the result will either be a congratulatory message, or a
list of errors for you to fix before revalidating your style sheet. Dreamweaver does
not offer a built-in CSS validator.

Validating for Accessibility
When designing a Website, designers and developers can become consumed by
the way the pages display in a Web browser, or range of browsers; we can forget
that, for many people, just getting the content is all that matters. Many Web
users employ some kind of assistive technology—such as a screen reader, which
reads the text of the page aloud—or have a disability that makes using the Web
in the way that most of us do, with a graphical display in a Web browser, very
difficult, if not impossible.

Through its Web Accessibility Initiative (WAI), the W3C offers recommendations
that we can follow to ensure that our sites are accessible to these users; therefore,
we should check that our sites comply with the WCAG 1.0 recommendations.
As we’ll see in Chapter 7 and Chapter 8, validating the accessibility of Web
documents is rather more tricky than checking your documents for valid
(X)HTML and CSS. “Yes” and “no” answers are not always provided for the
WCAG 1.0 recommendations’ different checkpoints.

Dreamweaver contains an accessibility validator, which can be run from the Re-
ports dialog (Site > Reports…), as shown in Figure 1.5. Check the Accessibility
checkbox and click Run.

Figure 1.5. Running an accessibility report from the Reports dialog.

11

Validating for Accessibility

The report that displays in the Results Panel will include notes such as, “Color
is not essential,” (which appears in Figure 1.6); this relates to a checkpoint that
advises that the use of color in the document should not be essential to users’
understanding of the page. You would fail this checkpoint if, for example, the
only way you communicated the status of an article on your site was through
color-coded icons. In this case, your pages wouldn’t be accessible to users who
could not differentiate between the colors. You would pass the checkpoint if you
used both color-coding and a textual status note. Of course, there’s no way for
an automatic validator to know which approach you’ve taken, so you need to
make your own, manual check and decide whether you pass or fail a checkpoint.
And, to do so in an informed way, you need to have an understanding of what
each point means.

That said, Dreamweaver can help: in the Reference tab of the Results Panel, you’ll
find the UsableNet Accessibility Reference depicted in Figure 1.6, which explains
the checkpoints and provides methods by which you can check whether your site
passes or fails each one. Right-click on any checkpoint and select More Info… to
display an explanation of that checkpoint.

Figure 1.6. The UsableNet Accessibility Reference displaying in
the Results tab of the Reference Panel.

There are also online accessibility validators, the most popular of which is
WebXACT5 (previously known as Bobby), and Cynthia Says6. These are accom-
panied by the same provisos as the Dreamweaver validator in that the results
these systems provide require interpretation: they cannot give you a "yes” or "no"
answer.

5 http://webxact.watchfire.com/
6 http://www.cynthiasays.com/

12

Chapter 1: What are Web Standards?

http://webxact.watchfire.com/
http://www.cynthiasays.com/

Applying a Semantic Document Structure
Implied in our adherence to Web and accessibility standards is the adoption of
semantic document structure. A semantic document uses HTML tags for their
meanings, not their appearance. For example, a semantic document would use
the <h1>, <h2>, and similar tags to mark up a page’s headings. If we didn’t want
to display the default appearance of these headings, we could easily change it
using CSS. Similarly, the use of an unordered list () tag to mark up a list of
links would be preferable to separating those links with line breaks. If we want
the list of links to appear without bullets, we can achieve the effect using CSS.

We will look at this issue in more depth in Chapter 3; however, here’s a simple
example. If I were to mark up a section of this chapter as an XHTML document,
I might end up with something that looks like Figure 1.7.

Figure 1.7. Marking up the chapter as XHTML.

The markup for the page could be something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

13

Applying a Semantic Document Structure

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<style type="text/css">
<!--
.heading {
 font-size: 24px;
 font-weight: bold;
}
-->
</style>
</head>

<body>
<p class="heading">Web Standards Defined</p>
<p>As we'll be concerned with Web standards throughout this book,
 let's take a moment to clarify exactly what we're talking
 about.</p>
<p>Web standards are specifications that direct the use of
 development languages on the Web, and are set by the
 World Wide Web Consortium (or
 W3C). These specifications cover languages such as HTML,
 XHTML, and CSS, along with a range of other languages, such as
 MathML, a markup language designed to represent mathematical
 equations, that you might come across if you have a specific
 need. The W3C also publishes the Web Content Accessibility
 Guidelines (WCAG)—recommendations that address the
 accessibility of Web pages—via the Web Accessibility
 Initiative (WAI).</p>
<p>You can read these specifications and recommendations at the
 W3C site, though they're a little heavy going at times.</p>
<p>HTML 4.01:
 http://www.w3.org/TR/html4/

 XHTML 1.0:
 http://www.w3.org/TR/xhtml1/

 CSS 1:
 http://www.w3.org/TR/CSS1

 CSS 2.1:
 http://www.w3.org/TR/CSS21/

 WCAG 1.0:
 http://www.w3.org/TR/WAI-WEBCONTENT/</p>
<p>In this book, we'll use the XHTML 1.0, CSS 1 and 2.1, and WCAG
 1.0 specifications and recommendations, although you'll be glad
 to know that we won't be doing too much reading of the actual

14

Chapter 1: What are Web Standards?

 W3C documents themselves!</p>
</body>
</html>

As so many designers are now comfortable with the use of CSS for styling text,
we often see text that’s marked up as a paragraph (i.e. it appears between <p>
and </p> tags), but is styled as a heading using CSS. To be semantically correct,
I should have used a h1 element (as that denotes a heading), then used CSS to
make it display as required.

Take a look at the list of URLs for the different W3C specifications: they’ve been
split onto separate lines using the
 tag. The correct way to structure these
links would have been as an unordered list. We could even indicate that this
content constitutes a note using a <div> tag:

<div class="note">
<p>You can read these specifications and recommendations at the
 W3C site, though they're a little heavy going at times.</p>

 HTML 4.01
 http://www.w3.org/TR/html4/
 XHTML 1.0
 http://www.w3.org/TR/xhtml1/
 CSS 1
 http://www.w3.org/TR/CSS1
 CSS 2.1
 http://www.w3.org/TR/CSS21/
 WCAG 1.0
 http://www.w3.org/TR/WAI-WEBCONTENT/

</div>

A document can be perfectly valid against its specification while structured in a
non-semantic manner. We need to use common sense and judgment to look at
our documents and decide whether we’re using the correct tags to mark up each
element on the page.

Thanks to CSS, the look and feel of the document need not be compromised by
our use of correct elements and adherence to semantic document structure.
However, marking up documents correctly is extremely beneficial when we start
to consider site visitors who don’t use traditional Web browsers to read content.
We’ll discuss this issue more throughout this book.

15

Applying a Semantic Document Structure

Separating Presentation from Document Structure
Another issue that’s implied by working to Web standards is that of separating
presentation from content. The content comprises the semantic document that
we discussed in the last section; the presentation is what makes it appear as it
does on a computer, projector, or printed page.

If you’re using a Transitional DOCTYPE, you can include in your document
many tags and attributes that do not describe what the different elements in the
document are, but instead, state how they should look. Presentational tags include
 and <center>, and can be replaced using CSS. Other attributes are used
for presentational elements such as borders: for example, .

Using such presentational elements can make it difficult to change the way ele-
ments look. Best practice Web development entails the separation of the structure
of a document from its presentational aspects. This separation is achieved by the
use of CSS, wherever possible, to dictate how the document should look. If you
want to validate against a Strict DOCTYPE, for the most part you’ll be required
to apply this separation, as the tags and attributes that are absent from the Strict
DOCTYPEs are largely presentational.

This separation of structure from presentation also underlies the recommendation
that tables not be used for page layout purposes. The <table> tag was initially
designed to describe tabular data, such as that found in a spreadsheet, not to
force page elements into certain locations on the page. If your page uses a table
to lay out page elements, you’ve mixed your structure and presentation—even
though the page may well validate to a Strict DOCTYPE.

Summary
In this chapter, we’ve learned what Web standards are, and explored the core
issues that we must consider if we want to develop Web pages to Web standards.
We’ve also looked at some of the reasons why Web standards are helpful to those
designing for the Web, and why investing time to understand this approach will
pay off in future.

As is the case with all visual development environments, Dreamweaver has not
achieved a reputation for creating clean markup. For many, however, developing
in a visual environment is a better way to work than hand-coding HTML and
CSS in a text editor. This book will discuss how you can use Dreamweaver to
ensure that your work is standards compliant, and addresses all of the issues we

16

Chapter 1: What are Web Standards?

mentioned in this chapter: valid markup and CSS, semantic document structure,
the separation of structure from presentation, and meeting accessibility recom-
mendations. Any tool—be it Notepad or Dreamweaver—is only as good as its
operator, so let’s move on and create a standards compliant Website using
Dreamweaver 8.

17

Summary

18

Site Planning and Setting up for
Development2

Before we dive in and start developing our site, we need to make some decisions
about how the site will look, how it will be hosted, and how it will be structured.
The Website we’ll build through the course of this book will be called Code Spark;
it will be a Web design resource site much like sitepoint.com. I have chosen this
as the subject matter for the site not because I assume that every reader wants
to build a Web design resource site, but because the concepts that we’ll explore
while creating this site are common to many other types of Website. The decisions
we’ll need to make during this project will parallel the kinds of options you’ll
have to consider around most of the sites you’ll build. Whether you follow this
book, creating the Code Spark resource site using the example graphics provided,
or using the techniques described here to develop your own project, is entirely
up to you.

The Code Spark Site Design

Features of the Code Spark Website
Before we can begin to design the layout of the site, we need to consider the site’s
features, so that we know exactly what we need to include in the layout. Code
Spark is a Web design and development tutorial site, so we’ll have to handle tu-

torials that explore design and development techniques, and articles that discuss
interesting developments in the area of Web design.

Tutorial Pages

The tutorials will comprise the majority of the site’s content, so we obviously
need a design that facilitates the formatting of this type of content. Tutorials
tend to include a number of screenshots—which might be quite wide—and code
samples, which need to be formatted so that the tutorial author’s line breaks are
preserved. We want to ensure that our article page allows for the display of such
page elements.

We’ll also want to make sure that, if readers like the tutorial they’re reading,
they’ll be able to find similar tutorials on the Code Spark site. Perhaps the easiest
way to do this is to add to the tutorial page a list of other articles written by that
author.

The Homepage

We’ll want to make the focus of Code Spark—Web design and development tu-
torials—obvious from the get-go, so we’ll present a number of regularly updated
feature tutorials on the homepage of the Website. This way, new visitors can
quickly and easily ascertain what the site’s about, and returning visitors can see
what’s new at a glance.

Site Navigation

Once we’ve prepared and published our tutorial content, we’re going to need to
give visitors various ways to find it. The subject of “Web design and development”
is fairly broad, so our content will need to be sensibly categorized. This way,
visitors can quickly access all the articles that discuss Dreamweaver, CSS, or PHP
development, for example. A tutorials index page, which displays the categories
list, along with a couple of sample tutorials, will give the user an immediate un-
derstanding of the information contained in the categories. Making a list of these
categories available on every page of the site helps to reinforce the content cat-
egories in the minds of users, and gives them quick, easy access to the latest tu-
torials on the topics in which they’re most interested.

A list of the most popular and highly rated tutorials is a good way to allow the
cream of your Website to rise to the top. By making it easy for users to find your
site’s best content from the homepage, your visitors will be more likely to read
those tutorials and come away with a good impression of Code Spark—perhaps

20

Chapter 2: Site Planning and Setting up for Development

even telling their friends about it. A sitemap is also very useful to visitors: it’s a
well-known tool that allows users to quickly get a feel for the way the Code Spark
content is organized, and gives them a direct pathway to the tutorials that interest
them.

Now, navigating the site by browsing its carefully thought-out categories might
be good for users who are looking to improve their CSS skills, for example. But
if a user needs a tutorial on a specific topic—such as building a CSS-based three-
column page layout—that person’s going to want a faster way to locate it. By
providing a search field, you make it very easy for users to quickly find specific
tutorials, a task that—as you’d know if you’ve ever had to visit a huge site like
Microsoft’s Developer Network (MSDN)—can otherwise be very difficult indeed.

As we’re concerned with accessibility, we want to add features that will help vis-
itors use the site, such as a style sheet switcher that allows users to increase and
decrease the font size, and a list of keyboard shortcuts that they can use to nav-
igate the site. We’ll also need to provide a page that explains what the Website’s
all about, and a way for visitors to get in touch with the people who run the site.

Bearing all of the above in mind, we can make a list of the important features
that our site requires. It needs:

❑ Navigation to the main parts of the site: the tutorial index, information about
the site and the people who run it, the contact page, and the sitemap

❑ A list of the tutorial categories

❑ A search facility

❑ A featured tutorials display on the homepage

❑ A large area for the presentation of article content on individual tutorial pages

Designing the Site
Once you’ve created a list of key elements, you can come up with a page layout
either on paper or in a graphics application. To begin the Code Spark project
site, let’s take a look at a design created in Fireworks by SitePoint’s Alex Walker,
and pictured in Figure 2.1, so we can discuss the implementation of a layout that
makes use of graphics, while still adhering to Web standards.

21

Designing the Site

Figure 2.1. Alex’s homepage design, incorporating our
requirements.

This design incorporates each of the elements we identified as being required on
the homepage:

Our main navigation displays along the top.

Category links and a "reader favorites" section appear down the right-hand
side.
The search field is also on the right.

Our accessibility controls appear in the top-right corner.

The featured tutorials make up the main content area.

This process of thinking through the elements that you want to include before
you come up with a layout will save you struggling find space later for extra ele-
ments that you hadn’t expected to use.

The site’s tutorial page layout shown in Figure 2.2 includes a large content area,
allowing us to easily publish articles that contain images and blocks of example
code.

22

Chapter 2: Site Planning and Setting up for Development

Figure 2.2. The tutorial page layout, showing the content area.

Whether you’re at the homepage, an article page, or any other location on the
site, a number of consistent page elements are present: the header, which includes
the Code Spark logo, the top navigation, and accessibility features that we’ll
discuss later; and the bar to the right of the page, which contains the search box,
along with elements that change depending on where you are located within the
site. This sidebar provides quick, easy access to tutorial topics.

The content area on the homepage will contain two columns in which we’ll
highlight the latest articles and tutorials posted on the site. When users click
through from this display to an article page, the article content fills the complete
width of this main content area. Ours will be a liquid layout: one that stretches
to fill the users’ browser windows, regardless of their screen resolutions.

Liquid or Fixed Width?

A fixed width layout (one that doesn’t grow and shrink with the size of the
browser window) needs to be narrow enough to ensure that users with low
screen resolutions don’t have to scroll sideways to read the site’s content. In
practice, this fact means that we really need to design for users operating at

23

Designing the Site

a resolution of 800 x 600 pixels, unless we know that the majority of our
target users will have a resolution of at least 1024 x 768 pixels. Designers
often use fixed width layouts because they find it easier to position graphically
intense designs within a known page width.

For a content rich site, however, using a liquid layout (one that expands
and shrinks with the browser window’s size) can be a good design choice.
Of course, you should always check your work at a resolution of 800 x 600
pixels to ensure that a horizontal scrollbar doesn’t appear at this resolution,
and that the columns are not ridiculously narrow, but users with higher
screen resolutions will have greater flexibility in the ways they view the site.

Structuring the Site
Now that we have a site design, we can begin to think about how we’ll put the
site together, and the technologies we’ll use to do so. Once again, some time
spent planning will help to make the site’s development more streamlined once
we begin.

Dealing with Common Elements
We’ve already identified some common page elements in our design; some of
these elements are present on every page, while other elements are present on
some—but not all—pages. We can use the fact that we have these common ele-
ments in the site design to make development easier.

The "Copy, Paste, Copy, Paste" Technique

In developing a site, you might work by creating a new document, writing the
XHTML code, applying your CSS, and then, when you’re ready to create a new
page, simply copying and pasting into the new document all of the common ele-
ments that appeared in the last document. In this way, all of your site’s files
contain potentially large amounts of markup—and possibly images—that are
duplicated on each page.

This isn’t too much of a problem, until you decide to change a graphic in the
header, and have to open up every page of the site to copy and paste in the new
logo markup. The use of CSS does reduce the need to copy and paste common
elements between files—much of this information can be found in the CSS file
that controls the site’s pages—however, there are still many elements that need
to appear in the individual page document. As such, when you create pages in

24

Chapter 2: Site Planning and Setting up for Development

this way, some copying and pasting is inevitable. Finally, you must upload all of
the altered pages to the Website in order to have the revised logo display.

Dreamweaver Templates

If you have any experience in Dreamweaver, you may be aware of Dreamweaver
Templates. A template is basically a normal HTML page that Dreamweaver can
use as a basis from which to create new pages. You mark one or more regions of
the template as being editable, optional, or repeating. These will be the only areas
that Dreamweaver will allow you to update in pages based on that template; the
rest are locked by Dreamweaver, as shown in Figure 2.3.

Figure 2.3. A page based on a Dreamweaver template with a
single editable region.

Dreamweaver locks parts of the page by placing special HTML comments in your
markup. These comments indicate which areas are locked, and which are editable,
as shown below.

 <h1>Code Spark Notice</h1>
 <!-- TemplateBeginEditable name="EditRegion3" -->
 <p>This is where the text of the notice will appear. </p>
 <!-- TemplateEndEditable -->
 <p>© 2005 Code Spark</p>

The really useful aspect of using Dreamweaver Templates is that if you change
any part of the main template, Dreamweaver will ask whether or not you want

25

Dealing with Common Elements

it to update all other pages based on this template, saving you the time and hassle
of copying and pasting the changes across your site.

Templates help us avoid copying and pasting common elements, which is great.
However, it can’t help us overcome the task of having to re-upload all the changed
Website files, which we have to do whether we use Dreamweaver Templates or
some other design approach. And of course, Dreamweaver Templates don’t benefit
designers who don’t use Dreamweaver: it’s the only program that knows how to
handle these templates.

Server Side Includes (SSI)

Our third option for the management of repeated sections of markup is to make
use of use Server Side Includes (SSI). SSI allows you to merge two or more
files before your page is presented to the browser. The include file, or include,
is simply a file into which the repeated section of code has been copied. It isn’t
a complete XHTML document in itself: it’s just a part of your complete document.

To create an include, simply copy the repeated content from the original file, and
save it as a new file. Then, include that file in the main document using the fol-
lowing line:

<!--#include file="newfile.html" -->

As an example, you might have an XHTML document that looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<title>Code Spark Notice</title>
</head>
<body>
<h1>Code Spark Notice</h1>
<p>This is where the text of the notice will appear.</p>
<p>© 2005 Code Spark</p>
</body>
</html>

The content from the top of this document all the way down to the <h1> heading
is common to all pages of the Website, as is the content from the copyright notice

26

Chapter 2: Site Planning and Setting up for Development

onwards. We could divide this page into three parts: the top, the bottom and the
middle—the middle being the only part that will change.

By copying the top and bottom parts of the document into top.html and bot-
tom.html, respectively, we can replace them in the original document with the
include information.

<!--#include file="top.html" -->
<p>This is where the text of the notice will appear.</p>
<!--#include file="bottom.html" -->

Once this file has been uploaded to a Web server (we’ll set one up later in this
chapter), anyone who views the page with a Web browser will see the file exactly
as it was before you employed SSI. The Web server intercepts the #include file
code in our HTML, and replaces it with the specified file, as shown in Figure 2.4.

Figure 2.4. Creating a complete document from three files using
Server Side Includes.

27

Dealing with Common Elements

To create new files that contain the same top section, we simply add the appro-
priate include line to each page on which we want the top section to display.
Then, if we want to change the logo, we simply edit it within the top.html file,
and re-upload that file. All of the pages that include top.html will automatically
show the new logo.

Server Side Includes are an incredibly useful way to create documents that are
easy to maintain, and, given that our tutorial site is likely to become quite large
as we add new tutorials, SSI represents a good choice for us. After all, we don’t
want to have to copy and paste our changes, then re-upload all our files every
time we make a change to a section; nor do we want to lock anyone who works
on the site into using Dreamweaver. If the site was a brochure site that had only
a few pages and wasn’t expected to develop any further than that, you might
decide against using SSI. However, having maintained a number of large sites
over the years, I know that—in the case of Code Spark, at least—SSI will save
us a lot of time and energy later on.

Dreamweaver understands includes: when you load a page that contains an include
directive, it will display the part of the document that’s contained in the SSI.
However, you need to open the include file directly in order to make any changes
to it. We’ll look at how we can work with Dreamweaver and SSI when we move
on to build our site.

Using Built-In Functions to Include Files

If you’re building a site using PHP, ASP.NET, or some other server-side
language, you may be able to use that language’s built-in functions to include
files. These methods tend to offer better error handling features, but you’re
unlikely to need these features if your content is static.

In PHP, you can make use of include, require, include_once or re-
quire_once.1 In ASP, Server.Execute is similar, but not quite the same.

Setting up a Web Server
Since we’re building what could potentially become a large static content site,
we’ll employ SSI to reuse the code for the common parts of each page. If we want
to test and view the site complete with all the included portions of each page,
we’ll need to run a local Web server. In this instance, “Web server” refers to the
software that responds to browser requests by sending back Web pages. This

1See http://www.php.net/manual/en/language.control-structures.php for more information.

28

Chapter 2: Site Planning and Setting up for Development

http://www.php.net/manual/en/language.control-structures.php

software is responsible for the heavy lifting involved in SSI: intercepting #include
commands in HTML files, and replacing them with the specified files. The term
“Web Server” can also be used to refer to the computer that hosts a Website.

You may already have Apache or IIS installed if you perform any server-side Web
development in languages such as PHP, Perl, or ASP. If you’re unsure whether
or not you have a Web server installed, try typing http://localhost/ into your
Web browser: this will request the default page from your local Web server, if
one is running. Both Apache and IIS install a test page; if you see such a page,
it will be pretty obvious which Web server you’re running. If you see only an error
message complaining that localhost could not be found, you may need to install
a Web server.

If you’re running Apache, you may want to skip to the section called “Testing
SSI ” below; if you’re using IIS, skip straight to the section called “Using IIS as
your Local Web Server”. If you’re not already running a local Web server, we
can set up the Apache Web server in order to process our includes. Apache is
available for all major platforms, and is free to download and use.

Installing Apache
Apache is used on almost 70% of the Web servers that run sites on the Internet.2

If you’ve ever used shared hosting on a Linux server, it’s likely that your site was
running on Apache. The Apache Web server is an Open Source project that’s
free to download and install, with installers provided for most operating systems.

2Statistics according to http://news.netcraft.com/

29

Installing Apache

http://news.netcraft.com/

Windows

Figure 2.5. Downloading the Apache installer.

To install Apache on Windows, go to http://httpd.apache.org/, click on Download,
and grab the "Win32 Binary (Self Extracting)" version, as shown in Figure 2.5.
I’ll be using Apache 1.3 throughout this discussion, but the instructions are more
or less the same for Apache 2, if you wish to use that instead.

Locate and run the downloaded executable file, and progress through the setup
questions by clicking Next. Don’t worry if you don’t understand the options
presented; they’re not important in the case of our simple testing server.

Installing Apache Alongside IIS

You can use IIS to serve Web pages with server-side includes—a job it does
perfectly well—but if you want to install Apache on a computer that already
has IIS, use these instructions3 to do so.

3 http://www.evolt.org/article/Recap_IIS_and_Apache_together/18/1700/

30

Chapter 2: Site Planning and Setting up for Development

http://httpd.apache.org/
http://www.evolt.org/article/Recap_IIS_and_Apache_together/18/1700/

If you type http://localhost/ into your Web browser following a successful
installation, Apache’s test page will display (localhost, as mentioned before, refers
to your computer). By default, Apache will look in the directory C:\Program
Files\Apache Group\Apache\htdocs\ to find files to serve. To change this set-
ting, we need to edit httpd.conf, the main Apache configuration file. From the
Start menu, select All Programs > Apache HTTP Server > Configure Apache Server
> Edit the Apache httpd.conf Configuration File to open this file in Notepad. Find
the line that starts with DocumentRoot, as shown in Figure 2.6.

Figure 2.6. Editing httpd.conf in Notepad

This snippet tells the server where your Website files are stored. Let’s change
this location to one that’s more easily accessed. Create a folder on your C: drive
called Apache Sites, then change the line in httpd.conf as follows:

#
DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this
directory, but symbolic links and aliases may be used to point
to other locations.
#
DocumentRoot "C:/Apache Sites"

31

Installing Apache

Back up Before you Edit!

Before you edit httpd.conf, make a backup copy of the file so that if it all
goes wrong, and Apache fails to start, you have a copy of the original file
with which you can replace the edited file. httpd.conf can be found in
C:\Program Files\Apache Group\Apache\conf.

The original directory will also be referenced later in the file, in a section that
looks like this:

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "C:/Program Files/Apache Group/Apache/htdocs">

Change this to:

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "C:/Apache Sites">

Security Matters!

Resist the temptation to reuse an existing folder to host your Website,
or—even worse—to set DocumentRoot to C:/. Remember: the outside world
may be able to gain access to the directory you set up for your Website; you
don’t want strangers to be able to download or modify your personal files!

In order for Apache to take notice of any changes to httpd.conf, we need to re-
start it. In Windows XP, you can do so from the Services Management console,
which can be opened by selecting Services from the Administrative Tools menu, or
by selecting Run… from the Start menu and typing services.msc into the dialog
that appears. To restart Apache, locate Apache in the list of services, right-click
on it, and select Restart.

Mac OS X

If you’re running Mac OS X, you’re in luck! Apache is already installed: you
simply need to start it up. To do so, access System Preferences, select Sharing,
and start up Personal Web Sharing. You should then be able to enter http://loc-
alhost/ in your browser to view the Apache test page. On the Mac, this page is
served from /Library/WebServer/Documents/—a location to which you may or
may not have access, depending on the way your user profile is set up. Fortunately,

32

Chapter 2: Site Planning and Setting up for Development

Apache on the Mac is also configured to give each user his or her own Web space
at http://localhost/~username/. The files for this directory are located in the
Sites folder of your home directory.

Testing SSI
Before we complete this part of the setup procedure, we need to check that SSI
works properly on our system. To do this, we’ll create a very simple Web page
that contains an include. Create the following two files in your text editor:

File: hello.html

<p>Hello, World!</p>

File: ssi_test.shtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Testing SSI</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
</head>
<body>
<!--#include file="hello.html" -->
</body>
</html>

You should now be able to open a browser, type

http://localhost/ssi_test.shtml

into the address bar, and see "Hello, World!" display on the Web page as in Fig-
ure 2.7.

Enabling SSI

If you see a blank page, or the code from ssi_test.shtml, you need to tweak
your Apache configuration to enable SSI. Open your httpd.conf file, and look
to see if the following lines are present and uncommented.

AddType text/html .shtml
AddHandler server-parsed .shtml

33

Testing SSI

Figure 2.7. Confirming that SSI works correctly.

Got a Comment?

In httpd.conf, lines beginning with # are ignored by Apache. These are
comments. These lines provide you with the ability to add notes to the file,
or disable certain options without deleting them. For example, the following
options are disabled in httpd.conf. To re-enable them, we’d remove the
from the start of each line.

AddType text/html .shtml
AddHandler server-parsed .shtml

If these lines are not present in the file, add them: they ensure that files with the
extension .shtml are parsed by the server. Next, locate the following section:

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "C:/Apache Sites">

#
This may also be "None", "All", or any combination of "Indexes",
"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".
#
Note that "MultiViews" must be named *explicitly* ---
"Options All" doesn't give it to you.
#
 Options Indexes FollowSymLinks MultiViews

In the Options line, add Includes to the list to enable SSI for that directory:

 Options Indexes FollowSymLinks MultiViews Includes

34

Chapter 2: Site Planning and Setting up for Development

You should also check that the following line is not commented out:

AddModule mod_include.c

You’ll need to restart Apache in order for the server to take notice of your changes.
Once you’ve done so, re-test your page in the browser.

SSI Default on Mac OS X

The default installation of Apache on Mac OS X should have SSI enabled.
If it doesn’t, or you need to edit httpd.conf for some other reason, you
may need to log in as an administrative user.

Using IIS as your Local Web Server
If you already have IIS installed and set up as your local Web server, you should
be able to use the .shtml extension to parse files that contain SSI directives. To
test SSI, create the hello.html and ssi_test.shtml files as described in the
previous section, and save them to the directory C:\Inetpub\wwwroot. Run the
test by loading http://localhost/ssi_test.shtml in your browser.

If your test include page doesn’t work, you’ll need to check that pages with the
.shtml extension are being parsed. To do this, open the IIS Management Console
(Control Panel > Administrative Tools > Internet Information Services). Right-click
on your Website and select Properties. Select the Home Directory tab in the Default
Web Site Properties dialog, then click the Configuration button.

Check that .shtml is listed under Extension and that its executable path ends in
ssinc.dll, as shown in Figure 2.8.

Hosting your Site
The site that we’ll create should be able to be hosted on any standard hosting
account that allows the use of Server Side Includes. This requirement should be
covered by even the most basic packages of most shared hosting accounts. How-
ever, if you already have a hosting account and want to check that SSI is available,
simply upload the test pages we created earlier to test our own servers. If those
pages work, SSI is available to you.

35

Using IIS as your Local Web Server

Figure 2.8. Checking that .shtml is being parsed to enable includes
on IIS.

Setting up Dreamweaver
Now that your server is set up and ready, let’s create a directory for the Code
Spark Website. Go to the Web server’s root folder (C:\Apache Files for Apache;
C:\Inetpub\wwwroot for IIS) and create a folder called codespark. This folder
will be accessible as http://localhost/codespark/.

Now, we’re ready to set up Dreamweaver and begin development on the site.
Open Dreamweaver, and select Site > New Site…. This should open the Site
Definition wizard. In the first screen, name your site codespark and enter its
URL: http://localhost/codespark.

After clicking Next, you’ll be asked if you want to work with a server-side language.
You do not need to use server-side technology to create the site in this book, as

36

Chapter 2: Site Planning and Setting up for Development

we’re using Server Side Includes, but the server technologies Dreamweaver is
asking about here are those it uses to work with database-driven Websites in
ASP, PHP, ASP.NET, JSP, and ColdFusion. Select No in this dialog, and move
on.

In the next screen, select the radio button labeled Edit directly on server using
local network, then browse for the site directory that you have created.

Figure 2.9. The wizard displaying a summary.

37

Setting up Dreamweaver

Following this step, the wizard completes, providing a summary of the details of
your site’s creation similar to that shown in Figure 2.9. If it all seems fine, click
Done to create the site and open it in Dreamweaver.

Your Workspace
Depending on the selection that you made when you installed Dreamweaver,
you should now be presented with a large gray screen with panels positioned
either on its left (as shown in Figure 2.10) or its right.

Figure 2.10. The Dreamweaver 8 Workspace.

When the panels appear on the right, Dreamweaver is in “Designer” Workspace
layout; when the panels are on the left, it’s in “Coder” layout. You can choose
whichever view you prefer by selecting Window > Workspace Layout > Coder or
Designer. The Dual Screen option can be handy for those with a dual screen setup.

38

Chapter 2: Site Planning and Setting up for Development

Figure 2.11. Changing the Workspace.

I tend to work with the panels on the left, so the screenshots in this book will
show that configuration; however, the way you like to arrange your Workspace
is a personal choice: it won’t make any difference to the project.

Dreamweaver Panels Explained

If you’re new to Dreamweaver, you’ll find that you soon pick up the different
panel and toolbar purposes as we use them. Each time we use a new panel
or tool I’ll explain how to locate it and use its basic functionality. All panels
can be opened and closed from the Window menu. Each panel is grouped
with other panels that do similar things. You can switch between them using
the tabs at the top of the panel group, as shown in Figure 2.12 below.

39

Your Workspace

Figure 2.12. The Assets Panel is part of the Files Panel group.

Setting Preferences
You can make many changes to the way that Dreamweaver operates by setting
your own preferences. There are certain preferences that it’s important to set
correctly when you’re developing a site to Web standards, so, before we create
our first page, let’s make sure we’re starting out with these essential preferences
in place.

Open the Preferences dialog (Edit > Preferences) and select the General category
to display the information shown in Figure 2.13. Make sure that:

1. Allow Multiple Consecutive Spaces is unchecked. If this option is checked, it
will allow you to insert a series of non-breaking spaces () each time
you press space more than once. If you need to add more space to your
layout, it’s best to do so with CSS, to ensure that Dreamweaver isn’t working
against you!

2. Use and instead of and <i> is checked. and <i>
are prime examples of presentational markup: they don’t convey the reason
why an element is bold or italicized, just the fact that it is styled as such.
 and tell the browser (or Web indexer, screen reader, or any
other program that wants to parse the site) that the text is emphasized or
strongly emphasized. This is another example of the semantic document

40

Chapter 2: Site Planning and Setting up for Development

structure we discussed in Chapter 1. We will discuss screen readers, and the
way they read out text, in more detail in Chapter 7 and Chapter 8.

3. Use CSS instead of HTML tags is checked. This one’s fairly self-explanatory:
we don’t want Dreamweaver inserting any tags for us!

Figure 2.13. Setting General preferences.

Select the Accessibility category, under Show Attributes when Inserting, and check
all four checkboxes, as shown in Figure 2.14. This means that, when you enter
any of these elements, Dreamweaver will display additional dialogs that prompt
you to enter the accessibility attributes for those elements. This makes it less
likely that you will forget to enter these important attributes as you create a
document.

41

Setting Preferences

Figure 2.14. Setting Accessibility preferences.

There are lots of other preferences, but most relate to the way you work with the
product: they don’t affect the actual documents that you’re working on in the
same way as the preferences we’ve discussed here. If you find that something
about the development environment is annoying you, however, check your pref-
erences: there may be a way to modify the program’s behavior to suit you.

Summary
In the course of this chapter we’ve made some key decisions about how we’ll
proceed with the development of this site. We’ve decided on the elements that
we want to include in our site, and we’ve come up with a layout that contains
all those elements. We have considered the best way to build our site in order to
manage the common elements that will display on every page of the site, and,
because the site could become very large as we add articles and tutorials, we’ve
decided to use Server Side Includes (SSI) to manage these common elements. In
order to do so—and be able to test the site locally—we installed a Web server

42

Chapter 2: Site Planning and Setting up for Development

and checked that SSI works. Finally, we created the site in Dreamweaver, and
set up the preferences we need in order to get a head start on the path to devel-
oping a standards compliant Website.

Making these kinds of decisions at the start, and setting our systems up on the
basis of these decisions, means that you can begin the development process with
a clear understanding of where you’re heading, and what you hope to achieve.
It’s important to consider how the site will grow and develop. You can’t preempt
everything that might possibly happen, but, when planning the development, if
you consider how the site might be likely to evolve over the next year, these ex-
pectations can support your decision-making process. For example, we might not
have made the decision to use SSI if the site was never going to be any more than
a three-page brochure site, as the issues of copying and pasting and re-uploading
content would not have existed for that type of project.

In the next chapter, we’ll look at XHTML. We’ll discover how it’s different than
the HTML you may already have used, and how Dreamweaver can help you to
use XHTML in a site’s development.

43

Summary

44

XHTML and Semantics3
Dreamweaver MX was the first version of Macromedia Dreamweaver to provide
support for those working in XHTML—a development that reflected the fact
that many developers have moved from HTML to XHTML. In this chapter, we’ll
explore XHTML in some depth. We’ll understand why it’s different from HTML,
why we might want to use it in preference to HTML, and how we could go about
doing so.

In this chapter, we’ll see not only how valid XHTML is written, but also, how to
structure an XHTML document correctly in order that our content is accessible
to all users.

What is XHTML?
XHTML is basically the union of two languages: HTML and XML. You’re
probably already familiar with HTML, but XML may need a brief introduction.

XML
Extensible Markup Language (XML) is a general-purpose language for structuring
data in a way that’s easy for both humans and computers to read, as shown here:

<?xml version="1.0" encoding="iso-8859-1"?>
<orders date="March 31 2006" xmlns="http://myshop.com/orders.dtd">
 <order productID="52478">
 <description>Dreamweaver 8 (OS X)</description>
 <recipient>
 <name>Sally Smith</name>
 <address>
 <street>474 Smith St.</street>
 <city>Collingwood</city>
 <state>Victoria</state>
 <zipCode>3068</zipCode>
 <country>Australia</country>
 </address>
 </recipient>
 </order>
 <order productID="52477">
 <description>Dreamweaver 8 (Windows)</description>
 <recipient>
 <name>John Jameson</name>
 <address>
 <street>Level 5, 142 Park Avenue</street>
 <city>New York</city>
 <state>New York</state>
 <zipCode>10167</zipCode>
 <country>United States</country>
 </address>
 </recipient>
 </order>
</orders>

We can see that this code comprises a list of two orders made on March 31,
2006: one for Dreamweaver 8 for Mac OS X (to be delivered to Sally Smith in
Australia), and the other for Dreamweaver 8 for Windows (to be delivered to
John Jameson in New York).

The actual tags that are used here aren’t part of XML; XML defines only how
the tags are written. It’s up to the entities that create and consume these files to
agree on the actual tags that are used. In this way, we can define lots of useful
languages within XML; XHTML is one of these.

XHTML
XHTML came into being as a recommendation that was released by the W3C
on January 26, 2000. XHTML represented a reformulation of HTML—the ori-

46

Chapter 3: XHTML and Semantics

ginal language of Websites—into an XML application designed to meet the future
needs of the Web. Indeed, XHTML can be regarded as the latest version of
HTML, as no further HTML specifications will be developed or released.

As XHTML is a reformulation of HTML, rather than a completely new markup
language, it will seem very familiar to anyone who has already used HTML. There
are very few differences between XHTML and HTML, which makes life easy for
the Web developer who wishes to work in XHTML. We will discuss these differ-
ences in this chapter, and see why we might want to use XHTML over HTML.

What Makes a Valid XHTML Document?
In order to create a valid XHTML document right from the start, we need to in-
clude certain elements in that document before we begin marking up content.
We’re fortunate in that Dreamweaver will give us a valid XHTML document as
a starting point, if we use File > New… to open the New Document dialog, then
select Basic Page, HTML, and then select one of the XHTML 1.0 document types
from the Document Type (DTD) drop-down list. The default selection is XHTML
1.0 Transitional, which will create a page containing the following markup.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
</head>

<body>
</body>
</html>

The DOCTYPE
A valid XHTML document must use an XHTML DOCTYPE. We discussed
DOCTYPEs in Chapter 1; you’ll remember that this line identifies the specification
to which the document is written. The XHTML Transitional DOCTYPE is:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

47

What Makes a Valid XHTML Document?

Using the XML Declaration

Sometimes, you’ll see an XML Declaration, like the one shown below, as
the first line of an XHTML document.

<?xml version="1.0" encoding="UTF-8"?>

This XML Declaration, which declares that the document is XML, is recom-
mended but not required. This line was inserted by Dreamweaver MX.
However, Dreamweaver 8 doesn’t insert the XML Declaration, as it has the
unfortunate effect of switching Internet Explorer 6 into "Quirks Mode"—a
special mode that disregards Web standards in favor of Internet Explorer 5’s
nonstandard rules.

The html Element
<html xmlns="http://www.w3.org/1999/xhtml">

The html element is known as the root element of the document. To be a valid
XHTML document, this element needs to include the xmlns="ht-
tp://www.w3.org/1999/xhtml" part; this attribute, part of XML, states that the
elements in the document comply with the XHTML standard, by default.

XML Namespaces

The actual tags used in an XML document can be defined by one or more
document type definitions, or DTDs (these are different from the DOC-
TYPEs, document type declarations, that we discussed earlier). DTDs can be
linked into an XML document using the xmlns attribute.1 Each DTD is
given a "namespace," which forms a prefix for the tags that are part of that
DTD. One DTD may be given the "default namespace" (which has no prefix),
but other DTDs used in the document require unique prefixes.

For example, if we wanted to add some XML from our order list to an
XHTML document, we could add a namespace to our document like so:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ord="http://myshop.com/orders.dtd">

1Strictly speaking, xmlns attributes do not need to point to a DTD, as evidenced by the URL used
to identify the XHTML namespace (http://www.w3.org/1999/xhtml). XML actually allows
any text string to identify an XML namespace. Using the public URL of the relevant DTD is simply
a useful convention to use for custom XML document types. None of this really matters for our
purposes, however.

48

Chapter 3: XHTML and Semantics

Within the XHTML document, we could then use the ord: prefix to indicate
that the element is from the order list DTD:

<h2>Orders Placed</h2>
<ord:orders>
 <ord:order productID="52478">
 <ord:description>Dreamweaver 8 (OS X)</description>
 <ord:recipient>
 <ord:name>Sally Smith</ord:name>
 <ord:address>
 <ord:street>474 Smith St.</ord:street>
 <ord:city>Collingwood</ord:city>
 <ord:state>Victoria</ord:state>
 <ord:zipCode>3068</ord:zipCode>
 <ord:country>Australia</ord:country>
 </ord:address>
 </ord:recipient>
 </ord:order>
</ord:orders>

The head Element
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
</head>

The head element contains the title element, which gives the page a title. In
the snippet above, you can see that Dreamweaver has inserted “Untitled Docu-
ment” by default: there are many thousands of documents on the Web titled
“Untitled Document” because their authors forgot to change the documents’
titles!

In the head of the document we can also see a <meta> tag. This <meta> tag declares
the Content-Type of the document, as well as the character encoding used.

The body Element
<body>
</body>

49

The head Element

Here’s the body element, into which you’ll place all of the content that you wish
to make available to your site’s visitors.

XHTML and HTML: the Differences
There are only a few rules to keep in mind when using XHTML instead of HTML.
Although we’ll use Dreamweaver to write our XHTML—and can rely on the
program to do a pretty good job of it—it’s worth understanding the differences
between the two languages. It’s inevitable that, sometimes, you’ll need to hand-
code markup, or edit markup you’ve copied from other sources in order to make
it XHTML compliant.

Quoting Attribute Values
In HTML, it’s perfectly valid not to quote attribute values. For example, the
following image markup is valid HTML:

To make this valid XHTML, you need to insert quotes around the attribute values,
height="400" width="200". Dreamweaver writes both HTML and XHTML
with quoted attribute values; however, you might find that markup you’ve copied
from other sources contains these unquoted HTML values.

Closing all Empty and Non-empty Elements
As you’d probably expect, a non-empty element is any element that contains
something—for example, text, scripts or other data content—between a start and
end tag. p and li are examples of non-empty elements. In HTML, we aren’t re-
quired to close these elements, so the following list is valid HTML.

 List item one
 List item two
 List item three

However, this would constitute invalid XHTML, as the li element has not been
closed. This issue has been rectified in the valid XHTML markup below:

 List item one

50

Chapter 3: XHTML and Semantics

 List item two
 List item three

What about elements such as hr, img, and br? These empty elements must also
be closed. In XML, you can do this with <hr></hr>, or by using XML’s shorthand
notation, <hr/>. Unfortunately, older browsers would likely balk at such odd
markup. As you might have guessed, the clever folks who put together XHTML
came up with a solution to this problem: use the shorthand notation, but insert
a space between the element’s name and the closing slash (<hr />). This still
represents valid XML, so XHTML-aware browsers won’t have a problem with it,
and older browsers see the closing slash as an unrecognized attribute.

Avoiding Minimizing Attributes
HTML supported minimizing attributes, or leaving out an attribute’s value when
it’s not required. Consider this example of attribute minimization:

<input type="checkbox" checked>

Above, the attribute checked indicates that the checkbox should be checked
when it displays on the page. XML doesn’t support minimizing attributes in the
same way HTML does, so to achieve this using valid XHTML, we need to give
these attributes a value:

<input type="checkbox" checked="checked" />

Here, the value of the attribute becomes the same as its name. This is the case
for several attributes that are minimized in HTML:

❑ selected="selected"

❑ disabled="disabled"

❑ readonly="readonly"

Writing Elements and Attributes in Lowercase
XHTML requires that all tags and attributes be written in lowercase. HTML is
not case-sensitive: we could even use a mixture of upper- and lowercase with that
language. Yet XML is case sensitive, so XHTML requires the use of lowercase
tags, as illustrated in the below example.

51

Avoiding Minimizing Attributes

<p>This line is <em class="formal">valid XHTML</p>
<p>This line is <STRONG STYLE="text-transform: uppercase;">
 not valid XHTML</p>

Nesting Elements Properly
Web browsers are generally very tolerant of errors in HTML, but less tolerant of
errors in XHTML. The following example constitutes invalid HTML and XHTML,
but would generally display as the author (probably) intended:

<p>This text is emphasized</p>

In HTML, tags must be nested correctly; that is, the last tag that was opened
must be the first tag that’s closed. This requirement becomes even more important
when we start to use XML, and to mark up our document for meaning. Thus,
we need to edit the above to nest our tags correctly:

<p>This text is emphasized</p>

Using id Instead of name to Identify Elements
HTML allows us to use the name attribute to identify particular elements on the
page. name could be used for a number of purposes: to reference an element using
JavaScript, to name a form element so that it could be collected once the form
had been submitted, and more. Here’s name in action:

<form method="post" action="/cgi-bin/search.cgi">

 <input type="text" name="searchField">
 <input type="submit" value="Search">
</form>

In XHTML, we must use the id attribute instead:

<form method="post" action="/cgi-bin/search.cgi">

 <input type="text" id="searchField" name="searchField" />
 <input type="submit" value="Search" />
</form>

Have a close look at that, and note that I’ve left the name attribute on the <input>
tag. Form fields are the one place where the name attribute is still kosher; however,
it isn’t used to identify these elements in the document: it’s used to supply the

52

Chapter 3: XHTML and Semantics

variable name under which the field’s value will be submitted. In XHTML Strict,
that’s the only purpose for which the name attribute may be legally used.

Dreamweaver will add both name and id attributes to a given element (giving
both attributes the same values) in an XHTML Transitional document.

The id Must be Unique

Unlike names, elements’ id attributes must be unique: there cannot be more
than one element with a particular id in any given document.

Why use XHTML?
We’ve explored the differences between XHTML and HTML, and we now have
a clearer understanding of each language. But the fact remains that we can create
a standards compliant, accessible and semantic Website that validates to HTML
4.01 if we want to. Why should we consider moving to XHTML?

Creating Clean Markup
HTML allows developers to write markup in a very flexible manner. It isn’t very
strict with the application of rules such as closing tags like <p>. For example,
consider the following:

<p>This is a paragraph.
<p>This is another.

HTML allows this markup, rather than demanding that the closing </p> tag be
used to mark up the end of the paragraph, like so:

<p>This is a paragraph.</p>
<p>This is another.</p>

HTML allows the creation of simpler, but more ambiguous markup, whereas in
XHTML every opening tag must be matched by its closing tag. While it might
seem like quite a good idea to take a flexible approach to markup, which enables
people with little technical expertise to easily create documents for the Web, this
approach can also cause a number of problems, particularly where these untidily
marked-up documents are to be read by devices that don’t have the processing
power of a desktop computer.

53

Why use XHTML?

Making Code Easier for Machines to Process
XHTML is easier than HTML for a computer to process because XHTML does
not permit the flexibility allowed by HTML. This means that documents marked
up using XHTML are more easily read or displayed by devices other than a con-
ventional Web browser—devices such as screen readers, Web-enabled phones,
Braille readers, and search engines.

Boosting the Portability of Content
The content that you’ve marked up within your Web page is valuable in its own
right; in the future, you might want to reuse it in a different format. If that content
was marked up using HTML—even valid HTML—it would be more difficult to
reuse the content in another application than if it was marked up in XHTML.
XHTML’s rigorous conformance to XML rules means that it’s far easier to
transform an XHTML document into some other format. This would be very
useful if you had decided to rebuild your site with a database-driven back-end,
for example, and needed to get all that marked-up content into the new database.

Allowing Integration with other XML Applications
XHTML allows the incorporation of tags from other XML applications such as
MathML, SMIL (Synchronized Multimedia Integration Language), and SVG
(Scalable Vector Graphics). This might not seem particularly useful right now,
unless you have a very specialized requirement, but XHTML’s integration capab-
ilities are likely to become more important in the future.

XHTML in Dreamweaver
Having read through all the do’s and don’ts in the previous sections, you’ll be
glad to know that we’ll be letting Dreamweaver write most of the XHTML markup
for us. Now, let’s take a look at the tools Dreamweaver provides to help us write
valid XHTML documents.

Creating New Pages
We have already seen that Dreamweaver can create new pages either in HTML
or XHTML. Once Dreamweaver recognizes that your page has an XHTML
DOCTYPE, it will insert elements using the correct XHTML syntax, rather than

54

Chapter 3: XHTML and Semantics

HTML. You can confirm whether or not Dreamweaver is working in XHTML
by looking to see if (XHTML) displays in the title bar, as shown in Figure 3.1.

Figure 3.1. Dreamweaver displaying XHTML in the title bar.

In Design View, type Shift-Enter to insert a line break. Switch into Code View
to have a look at the markup that was entered. Dreamweaver will have inserted
the correct
 tag instead of HTML’s
. Try adding an image: you’ll note
that Dreamweaver closes the image tag correctly. There is little difference between
the way we work with Dreamweaver in HTML, and in XHTML. As long as
Dreamweaver knows which type of document we’re working on, it will write the
correct markup for us.

Creating a Frameset

If you need to create a frameset, Dreamweaver will help you to use the correct
DOCTYPE.

In your new XHTML document, create a frameset with a top frame using the
Insert Frames button—as shown in Figure 3.2, you’ll find it in the Layout panel
of the Insert toolbar.

Figure 3.2. Creating a frameset in Dreamweaver.

55

Creating New Pages

Your existing page will become the bottom frame, while a new top frame is created
within a frameset. If you look at the source of the individual frames, they should
use an XHTML Transitional DOCTYPE.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Now, take a look at the containing frame. This frame should have a XHTML
Frameset DOCTYPE, as illustrated in the code below, and in Figure 3.3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Figure 3.3. Creating a frameset document in Dreamweaver.

Converting Existing Pages
Once you start working in XHTML, you might like to convert some of your older
sites to XHTML. Perhaps you’ll need to convert some content marked up with
HTML into XHTML format, in order to integrate it with your site. Dreamweaver
has a “Convert to XHTML” capability that can make this process very easy.

To convert a document, first open it in Dreamweaver, then select File > Convert.
Finally, select the specification to which you’d like to convert your document.
You’ll need to convert framesets and each framed page individually.

Dreamweaver will do its best to apply the rules of XHTML we discussed previ-
ously, but there are likely to be some problems if the original markup wasn’t Web
standards compliant. You’ll need to step through the document and fix these issues
yourself. If this seems like a tedious thing to have to do, remember that avoiding
such issues is one of the reasons we’re using Web standards compliant XHTML:

56

Chapter 3: XHTML and Semantics

we’re very unlikely to have to go through this rigmarole again. You can, of course,
have Dreamweaver find these problems using its built-in markup validator.

The Dreamweaver Validator

As we discussed in Chapter 1, the document validation process allows you to
confirm that your markup complies with the particular specification you’ve chosen
to work to.

Validate your document by selecting File > Check Page > Validate Markup. If the
document is constructed using valid XHTML, a message to that effect will display
in the Results Panel. If the document is invalid, you’ll see a list of errors and the
numbers of the lines on which those errors appear, like the one shown in Fig-
ure 3.4. These errors are likely to arise from some of the points we discussed
above; for example, “Expected end of tag ‘img’” means that an image tag in the
document requires a closing /> to make it valid XHTML.

Figure 3.4. Displaying errors in the Results Panel after the XHTML
document is validated.

Viewing Line Numbers

When working in Code View, you can turn on line numbering in order to
make tracking down any problematic lines of code easier. Line numbering
can be turned on and off via the View > Code View Options > Line Num-
bers menu item. You can also double-click the line in the Results Panel to
jump to that line in your document, which will be highlighted.

Semantic Markup
As we’ve already agreed, we’re not concerned simply with writing valid XHTML:
we want also to create semantic documents. Semantics is the study of meaning,
so a document with semantic markup is a document that contains tags that at-
tempt to convey the meaning of the text. For example, an <h1> tag is used to in-

57

Semantic Markup

dicate a top-level heading, while the and tags are used to mark lists of
items in no particular order. If we use semantic markup, the browser can not
only read and display (or, in the case of a screen reader, read aloud) the contents
of the page, but knows to display or speak the elements in the appropriate format.
As we’ve seen, when it comes to writing valid XHTML, Dreamweaver will do
most of the hard work for us, but when it comes to creating properly structured
documents, we need to take a proactive approach ourselves.

One of the biggest issues I experience when working in a visual environment such
as Dreamweaver is that it’s very easy to become engrossed in how things look,
and completely forget about the markup that Dreamweaver generates. For ex-
ample, it’s very easy for me to decide I want to indent some text a few inches
from the left-hand side of the screen. The problem is that I can end up with the
following markup:

<blockquote>
 <blockquote>
 <blockquote>
 <p>My indented text</p>
 </blockquote>
 </blockquote>
</blockquote>

This obviously isn’t great from a semantic perspective: my indented text is not
a quote, and it’s certainly not a quote of a quote of a quote!

Making sure our Website looks great in a Web browser is, of course, very import-
ant, but it isn’t the whole story. Some of our users might not be able to see any
part of our design because they’re using screen readers or text-only devices. Yet,
by taking some care as we create our Web documents, we can give these users
an excellent experience without compromising the site’s look and feel for other
users.

Removing CSS Style Rendering

Dreamweaver 8 makes it easy to see what your document will look like
without styling when you’re working in Design View. The Style Rendering
toolbar can be opened by selecting View > Toolbars > Style Rendering.
The Toggle Displaying of CSS Styles button switches the CSS in your doc-
ument on and off, as shown in Figure 3.5.

58

Chapter 3: XHTML and Semantics

Figure 3.5. Toggling CSS style rendering.

Using Elements Semantically
In this section, we’ll take a look at some of the most common elements in
XHTML, and see how to use them in Dreamweaver. This is not an exhaustive
list, but aims to provide some examples of the more common mistakes that can
be made, particularly when we’re using a tool such as Dreamweaver.

Throughout this chapter, I use the terms “should” and “shouldn’t” in the manner
in which they’re used in the W3C specifications2, in order to show that these
issues affect the Web standards that we’re trying to meet. Each XHTML element
should be used in a particular way. Of course, in practice, decisions have to be
made as to the types of elements we’ll use and the best way to use them; we’ll
be looking closely at these decisions as we build our site. This chapter explains
specifically what the standards tell us; using the type of terminology that’s em-
ployed by the specifications themselves helps to reinforce the fact that the inform-
ation provided here isn’t personal opinion—it’s the standard!

Headings

XHTML provides six heading levels. These headings can be thought of as being
similar to the headings that might be presented in a book:

<h1>Introduction</h1>
<h1>Starters</h1>
 <h2>Soups</h2>
 <h3>Vegetable Soup</h3>
 <h3>Pea and Ham Soup</h3>
 <h3>Minestrone</h3>
 <h2>Other Starters</h2>
<h1>Mains</h1>
 <h2>Beef</h2>

2 http://www.ietf.org/rfc/rfc2119.txt

59

Using Elements Semantically

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

 <h2>Chicken</h2>
 <h2>Vegetarian</h2>
<h1>Deserts</h1>
 <h2>Cakes</h2>
 <h2>Biscuits</h2>

Using Dreamweaver, we can create a heading by selecting the text we wish to
style as a heading, then selecting the desired heading level in the Property Inspect-
or, as shown in Figure 3.6.

Figure 3.6. Creating a level one heading in Dreamweaver.

We should use a heading style whenever the text in question logically comprises
a heading. We shouldn’t use a heading when we simply want large text: use CSS
to create that effect.

We should not “fake” headings by styling a paragraph or other element with CSS
so that it looks like a heading, but is semantically a paragraph. Pages on which
a heading is not distinguished as such can be rendered—or spoken—by the browser
in ways that we did not intend, which in turn can cause confusion among users.
We’ll discuss this in more detail a little later.

Where possible, we should also avoid using an image at a point at which a
heading would logically belong in a document. If we used an image, users with
screen readers or other text-only devices would not perceive that heading as in-
tended.

Lists

XHTML places three different types of list at your disposal; lists should be used
whenever your content logically comprises a list of items.

The unordered list style usually displays in browsers as a bulleted list; however,
you can use CSS to change the bullets’ appearance, or even to change the list to
run horizontally across the screen, rather than vertically. You create an unordered

60

Chapter 3: XHTML and Semantics

list in Dreamweaver using the Property Inspector’s Unordered List icon, shown
in Figure 3.7.

Figure 3.7. Creating an unordered list.

An unordered list is marked up as follows:

 250 grams (9 ounces) Plain Flour
 1 teaspoon Baking Powder
 50 grams (2 ounces) Butter
 1 egg
 Half a Cup of Milk

The ordered list format should be used whenever the order of the items in the
list is important. You can create an ordered list in Dreamweaver using the Property
Inspector’s Ordered List icon, as shown in Figure 3.8.

Figure 3.8. Creating an ordered list.

If, after you create an ordered list, you switch into Code View, you’ll see the
following markup.

 Preheat the oven to 200 degrees Celsius (400 degrees
 Fahrenheit)
 Put the flour, baking powder and sugar in a mixing bowl,
 then rub in the margarine until the mixture resembles
 breadcrumbs.
 Beat the egg and add it, with the milk, to the rest of the

61

Using Elements Semantically

 ingredients. Beat into a dough.
 Turn the dough out onto a floured surface and knead it
 briefly.
 But into a greased tray and bake for 45 minutes.

The element indicates that this is an ordered list. By default, a browser will
display these lists as shown in Figure 3.9, but you can use CSS to change the
display of any list.

Figure 3.9. Displaying an unordered list and an ordered list.

Correct Structure for Nested Lists

In both ordered and unordered lists, there is the potential to create nested
lists—lists within lists. In such instances, the sublist must be nested inside a
list item element of the parent list, as shown in the following example:

 List item one

62

Chapter 3: XHTML and Semantics

 List item two

 Sub item one
 Sub item two

 List item three

The last type of list is useful if you have list of terms and definitions to mark up;
it’s called a definition list. You can create a definition list in Dreamweaver using
the Insert toolbar’s Text panel. To create the list, click the dl button, as shown
in Figure 3.10.

Figure 3.10. Creating a definition list using the Insert toolbar.

The first item that you type into your definition list will become the first term;
hitting Enter will move you forward a line to create the definition for that term.
Hitting Enter once more will create the second definition, and so on.

You’ll end up with markup that looks something like this:

<dl>
 <dt>Cardamom</dt>
 <dd>An Indian spice from the ginger family.</dd>
 <dt>Caster Sugar</dt>
 <dd>Super fine sugar.</dd>
</dl>

63

Using Elements Semantically

Figure 3.11. Displaying a definition list.

By default, this markup will display in the browser, and in Dreamweaver, as
shown in Figure 3.11. Again, you can change this display using CSS.

Creating Paragraphs and Line Breaks

The difference between a line break and a paragraph is a common source of
confusion. A tried and true way of discerning the difference involves marking up
a couple of verses of lyrics from a favorite song:

<p>
It's time to play the music,

It's time to light the lights,

It's time to meet the Muppets on the Muppet Show tonight!
</p>
<p>
It's time to put on make up,

It's time to dress up right,

It's time to raise the curtain on the Muppet Show tonight!
</p>

The paragraph tags tie the verse together. The line break tags are used to mark
the end of each line of the verse.

To create a paragraph in Dreamweaver, hit Enter; to create a
 tag, hit
Shift-Enter. Whenever you use
, consider whether it’s the most appropriate
element. Would you perhaps be better to create additional space using CSS, or

64

Chapter 3: XHTML and Semantics

using a paragraph? Maybe the content should really be marked up as a list, as in
the example above.

Make sure you don’t use line breaks within a paragraph to simulate a list! While
this markup might display like an ordered list of items in a Web browser, a screen
reader would not be able to present the content as intended:

<p>
 1. Preheat the oven to 200 degrees Celsius (400 degrees
 Fahrenheit)

 2. Put the flour, baking powder and sugar in a mixing bowl,
 then rub in the margarine until the mixture resembles
 breadcrumbs.

 3. Beat the egg and add it, with the milk, to the rest of the
 ingredients. Beat into a dough.

 4. Turn the dough out onto a floured surface and knead it
 briefly.

 5. But into a greased tray and bake for 45 minutes.
</p>

Showing Emphasis

We often show emphasis in printed text by making specific words bold or italic.
This approach lets the reader understand the emphasis we’ve placed on particular
words: we’re not just making them bold or italic for the sake of it. For example,
the first time we’ve used a new or important term in this book, we’ve bolded that
term. We use bold formatting to emphasize these new words to the reader: to
flag them as words you’ll need to remember.

When we set our preferences back in Chapter 2, we set the checkbox Use
and in place of and <i> in the preferences dialog. Doing this means
that the B (for bold) button in the Property Inspector will insert the strong ele-
ment, and the I (for italics) button will insert the em element, like so:

Make sure that you preheat the oven. Cooking at
the correct temperature is really important.

By default, most Web browsers will display as bold text and as
italicized text. This is why many Web designers incorrectly consider these tags
equivalent to and <i>, which are purely presentational and don’t provide
much meaning. Like almost all tags, the appearance of and can
be changed using CSS.

65

Using Elements Semantically

What’s the Difference Between and ?

The W3C and most of the HTML documentation describes these elements
only as "emphasis" and "strong emphasis," which isn’t much use. Think of
 as a loud, slow voice, and as a raised tone of voice.

Indenting and the blockquote Element

Dreamweaver’s Property Inspector is home to the Text Indent icon shown in Fig-
ure 3.12. The only time you should use this icon is to indent text that’s a quote.

Figure 3.12. Using the Text Indent icon.

This icon inserts a blockquote element, which is why it’s used to mark up quote
text. We saw this button’s effects in a previous example. In most browsers, this
will indent the text slightly to more clearly differentiate the quote from surround-
ing text.

If you simply want to create an indentation effect on a section of text, the correct
way to do so is to use CSS to create padding to the left and right of the element:
don’t use a structural tag such as <blockquote>.

Semantic Markup and Text-Only Devices
In Chapter 1, I marked up a part of this book to demonstrate semantic markup.
First, I marked it up in a non-semantic manner, my only concern being how it
looked. Then, I took the same document and marked it up semantically so that
the content structure made sense without the CSS. To get firsthand experience
at how difficult it is to understand a document that’s written in a non-semantic
manner, have a look at such a document in a text-only browser. One easily ob-
tainable, text-only browser is Lynx. You can download versions for Mac,
Unix/Linux, and Windows at no cost.

66

Chapter 3: XHTML and Semantics

Windows Install

To install Lynx on Windows, you need to download a copy of the Lynx installer
for Windows3. Install Lynx onto your system using the product’s installer, then
run it from the Start menu, or from the Lynx icon on the desktop (if you allowed
the installer to create one). On launch, a window that looks something like Fig-
ure 3.13 displays.

Figure 3.13. Launching Lynx for Windows.

3 http://www.csant.info/lynx.htm

67

Semantic Markup and Text-Only Devices

http://www.csant.info/lynx.htm
http://www.csant.info/lynx.htm

Mac Install

Figure 3.14. Running Lynx on Mac OS X.

Mac OS X users can also download Lynx:4 just double-click the downloaded file
and follow the instructions. To run Lynx, you may need to open the Terminal
application to get access to the command line. Terminal is in the Utilities
folder located in your Applications folder. Figure 3.14 shows the browser in
action on the Mac platform.

Linux

Most Linux or other UNIX users will probably find that Lynx is already installed
on their system. If not, a quick Web search should uncover packages developed
for your system.

4 http://osxgnu.org/

68

Chapter 3: XHTML and Semantics

http://osxgnu.org/

Using Lynx

Lynx works identically on Windows, Mac, and Linux machines. To use Lynx,
you need to learn some simple commands. First of all, to visit a Website, type g.

Lynx will then present a field into which you can type the URL of the site you
want to visit, like that shown in Figure 3.15.

Figure 3.15. Opening a Web page using Lynx.

Hit Enter to have Lynx access this URL. If the site you’re trying to visit uses
cookies, Lynx will ask if you wish to allow the cookie; type Y for yes, or N for
no, A to always accept cookies from the site, or V to never accept cookies from
this site. If you press H while in Lynx, the Lynx help system appears. You can
navigate this in the same way you’d navigate a Website.

Once you’ve loaded a page in Lynx, you can use the arrow keys to navigate it.
The up and down arrow keys will let you jump from link to link, from the left to
the right—and from top to bottom—of the page. Hit the right arrow key to follow
the link you’re currently on; the left arrow key will take you back to the previous
page.

The up and down arrow keys will select any form fields in the page, too. Select
a text field by typing into it. Toggle check boxes and radio buttons by hitting
Enter when the desired option is selected. To view the options in a drop-down
list, select it, hit Enter, then use the up and down arrows to scroll through the
listed items. Hit Enter again to use the selected option. Buttons are "clicked"
when you hit the Enter key.

You can use Lynx to view local files, which is useful in development. If you’re
running a local Web server, such as Apache or IIS, you can point Lynx to internal
localhost URLs; however, Lynx will also read an HTML file if you pass it the
location, for example, c:\web\myfile.html.

Lynx Spacing Snafu

Lynx has trouble with pathnames that contain spaces. Replace any spaces
in a file path with %20 to load the file.

69

Semantic Markup and Text-Only Devices

If I view my non-semantic document in Lynx, the display for which is shown in
Figure 3.16, I see that every element looks just like a paragraph: it’s readable,
but no emphasis is placed on any of the sections, so it’s not obvious that the
heading, “What are Web standards?” is in fact a heading. Imagine reading this
entire chapter without any structural clues as to which section is which—this is
the effect that text browser users have to endure when reading documents that
have not been marked up correctly.

Figure 3.16. Displaying non-semantic markup in Lynx.

This problem is accentuated for screen reader users. The markup of page headings,
lists, and other elements lets the screen reader know to read each section of
content in a voice that’s appropriate to those particular elements, just as you
would if you were to read a page aloud. You’d normally emphasize a heading,

70

Chapter 3: XHTML and Semantics

leave appropriate pauses between list items, and so on. A screen reader can do
this too, provided it knows what the elements are; the only way it can know is
if the page elements have been marked up correctly.

Figure 3.17 depicts this same document marked up using a level one heading
(<h1>) for the document’s heading, and a list to display the Web links. As you
can see, Lynx now understands that the heading is a heading, and deals with it
as such; Lynx demonstrates that the list is a list by applying an asterisk to each
bullet point.

Figure 3.17. Displaying semantic markup in Lynx.

71

Semantic Markup and Text-Only Devices

Lynx Preview

If you don’t have Lynx installed, and you just want a quick preview of a site
in a text-only device, use the online Lynx Viewer.5

Summary
In this chapter, we discussed XHTML, including what it is, and why we might
want to use it. We also explored the basics of working in XHTML using Dream-
weaver.

We spent some time discussing semantics, and saw how we could create a docu-
ment that could be understood by everyone—even those using devices that don’t
show the design visually. In the next chapter, we’ll put this theory to practical
use as we build a layout for our project Website.

5 http://www.delorie.com/web/lynxview.html

72

Chapter 3: XHTML and Semantics

http://www.delorie.com/web/lynxview.html

Constructing the Document4
If you’re like most people, you probably design a Website by considering how it
should look, then moving graphic elements around—either by hand-coding the
HTML and CSS, or using Dreamweaver—until the page “looks” the way you
want it to.

In this chapter, we’re going to take a completely different approach to page design.
First, we’ll consider how the document should be structured in order to make it
valid, accessible, and semantic. Then, in Chapter 6, we’ll make the document
display as we want it to using CSS.

In this chapter, we’ll structure the content of our homepage using XHTML; this
will give us a framework for our site.

The New XHTML Document
In this chapter we are going to develop our document using the XHTML Strict
DOCTYPE. XHTML Transitional allows you to use deprecated elements and
attributes; most of these are presentational in nature. Using XHTML Strict helps
us to remember that presentation belongs in CSS, not in the document: it’s a
good way to ensure that our site is compliant with Web standards.

There are, however, a few reasons why you might want to use XHTML Trans-
itional:

❑ The site is going to be maintained by someone who’s using Dreamweaver,
but won’t know to remove the presentational attributes inserted by Dream-
weaver, which are not valid in XHTML Strict.

❑ You’re using a Content Management System—or other third-party code—that
will validate to the Transitional DOCTYPE, but contains attributes that aren’t
permitted in Strict.

❑ You have a specific need to get the layout working in very old browsers, such
as Netscape 4. To do so, you’re going to use certain presentational attributes
(such as border="0" on images), as those browsers provide limited CSS sup-
port.

That said, the choice to work to XHTML Strict doesn’t have to be your final
decision. If you aim for Strict, then realize that some third-party feature is going
to require the Transitional DOCTYPE be used, you can always change the
DOCTYPE declaration to suit. Developing to the Strict DOCTYPE wherever
possible will ensure that you remember to keep presentation in the CSS, where
it belongs!

Create a new XHTML document in Dreamweaver by selecting File > New…. In
the New Document dialog, select Basic Page and HTML, then choose XHTML 1.0
Strict from the Document Type drop-down, as shown in Figure 4.1. Click Create
to create the new XHTML page, and then save this page to the Code Spark site,
as homepage-layout.html.

This should give you a blank page in Design View. If you switch into Code View
using the buttons above the document window, you’ll see your basic XHTML
document, as illustrated in Figure 4.2.

This page will become our homepage document. But for now, we’re going to
concentrate on creating a semantic and standards compliant document that will
form a sound basis for the design and structure of the site.

74

Chapter 4: Constructing the Document

Figure 4.1. Creating a new XHTML page in Dreamweaver.

Figure 4.2. Viewing the code of our basic XHTML document.

75

The New XHTML Document

The Main Content Area
Let’s start by working on the main part of this document: the page content. On
the homepage, the content includes the featured tutorial abstracts, recent tutorials,
browser statistics, and other content shown in Figure 4.3. We’ll focus our attention
on the area that has not been grayed out in this image.

Figure 4.3. Concentrating on the homepage main content area.

Using Design View in Dreamweaver, type Latest ideas into homepage-lay-
out.html. This will be the main heading on the homepage itself, so it should be
marked up as a level one heading. We can do this in Dreamweaver by selecting
the heading text, then choosing Heading 1 from the Property Inspector, as illus-
trated in Figure 4.4.

76

Chapter 4: Constructing the Document

Figure 4.4. Creating a level one heading using the Property
Inspector.

We have six blocks of content on the homepage. The top four contain details of
the latest tutorials on the site, and all have the same structure: a heading (which
is linked to the tutorial), the author’s name and the tutorial’s date of publication,
a picture of the author, and some text about the tutorial itself. We can create
these elements now.

In Design View, hit Enter and add the following text:

ASP is from Mars – PHP is from Venus

Select this text, and make it a level two heading by selecting Heading 2 in the
Property Inspector. While the text is still selected, type # into the Property In-
spector’s Link field. This will turn the text into a link, which you can amend to
point to the actual tutorial later. Hit Enter to create a new paragraph and type:
Julian Carroll Jan 15, 2005

The image of the author can now be added. To insert an image using Dream-
weaver, click the Images button from the toolbar, as shown in Figure 4.5.

77

The Main Content Area

Figure 4.5. Selecting the Images button on the Common panel of
the Insert toolbar.

When you click the Images button, a dialog will open to allow you to browse
your computer for the author image. Once you’ve found it, click OK.

All Images are Provided!

All the images we used to build this site are available as part of this book’s
code archive. If you haven’t done so already, go and grab it from site-
point.com.

At this point, the Accessibility Attributes dialog, shown in Figure 4.6, should
open. This dialog appears if you told Dreamweaver to display accessibility attrib-
utes for images within your Preferences. We did this when we set up Dreamweaver
in Chapter 2.

Type some alternate text into the box provided by the Accessibility Attributes
dialog. This text should clearly describe the image for users who are browsing the
site with images turned off, or with a device that cannot display images. As our
image includes some text (“Julian—PHP & MySQL”) we should to add this in-
formation to the alternate text attribute, as you can see in Figure 4.6. I’ve added
the following text:

Photo of Julian – PHP and MySQL

Figure 4.6. Adding the image tag’s accessibility attributes.

78

Chapter 4: Constructing the Document

Finally, let’s add a couple of short paragraphs of text to explain the tutorial. At
this point, I’ve added some dummy placeholder text to fill the space. Our page
now displays in Dreamweaver as shown in Figure 4.7.

Figure 4.7. Displaying the document in Dreamweaver.

Download Mock Latin Now!

The dummy text we are using is the standard ‘mock Latin’ used by designers
to fill out mockups. You can download some mock Latin of your very own.1

Switch into Code View to see how our XHTML is shaping up. At this point, the
document should contain the following markup and content:

File: homepage-layout.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Code Spark layout</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />

1 http://www.lipsum.com/

79

The Main Content Area

http://www.lipsum.com/

</head>

<body>
<h1>Latest ideas </h1>
<h2>ASP is from Mars - PHP is from Venus</h2>
<p>Julian Carroll Jan 15, 2005</p>
<p><img src="img/julian.jpg" alt="Photo of Julian - PHP and MySQL"
 width="104" height="135" /> </p>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque
 ipsa quae ab illo inventore veritatis et quasi architecto beatae
 vitae dicta sunt explicabo.</p>
<p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut
 odit aut fugit.</p>
</body>
</html>

Split that Screen!

If you have enough screen real estate, it can be helpful to work in Dream-
weaver’s Split Screen View as you create the XHTML document. The Split
Screen feature allows you to see the Design and Code Views simultaneously.
To switch into Split Screen View, click the Split button above the document
window. As shown in Figure 4.8, you’ll be able to watch the creation of your
markup in Code View as you add elements to the page in Design View.

80

Chapter 4: Constructing the Document

Figure 4.8. Working in Split Screen View.

We need to add three sections just like this one for the other featured tutorials.
Follow the steps above to add these sections, working from left to right, and top
to bottom. Once you’ve done so, your document should contain the following
markup:

File: homepage-layout.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Code Spark layout</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
</head>

81

The Main Content Area

<body>
<h1>Latest ideas </h1>
<h2>ASP is from Mars - PHP is from Venus</h2>
<p>Julian Carroll Jan 15, 2005</p>
<p><img src="img/julian.jpg" alt="Photo of Julian - PHP and MySQL"
 width="104" height="135" /> </p>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque
 ipsa quae ab illo inventore veritatis et quasi architecto beatae
 vitae dicta sunt explicabo.</p>
<p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut
 odit aut fugit.</p>
<h2>IIS Security - Tightening the .NET</h2>
<p>Brigitte Walker Jan 11,2005</p>
<p><img src="img/brigitte.jpg" alt="Photo of Brigitte - ASP and
 .NET" width="104" height="135" /> </p>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
 quae ab illo inventore veritatis et quasi architecto beatae
 vitae dicta sunt explicabo.</p>
<p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut
 odit aut fugit.</p>
<h2>CSS: Designing with Style, not class</h2>
<p>Georgina Laidlaw Jan 7, 2005</p>
<p><img src="img/georgina.jpg" alt="Photo of Georgina -
 CSS Design" width="104" height="135" /> </p>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
 quae ab illo inventore veritatis et quasi architecto beatae
 vitae dicta sunt explicabo.</p>
<p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut
 odit aut fugit.</p>
<h2>Java - Servlets yourself right</h2>
<p>Thomas Rutter Jan 3, 2005</p>
<p><img src="img/tom.jpg" alt="Photo of Tom - JSP and Servlets"
 width="104" height="135" /> </p>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
 quae ab illo inventore veritatis et quasi architecto beatae
 vitae dicta sunt explicabo.</p>
<p>Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut
 odit aut fugit.</p>
</body>
</html>

82

Chapter 4: Constructing the Document

Linking to Other Tutorials
The bottom two sections of the homepage contain slightly different content.
They too have headings, but one contains links to other tutorials on the site,
while the other displays the latest information about the Web browsers that vis-
itors are using to view the site. First, let’s consider the section that contains links
to tutorials. The layout for this section is shown in Figure 4.9.

Figure 4.9. Viewing the layout for the links section.

The “Recent Tutorials” section is laid out in a tabular format, with headings at
the top of each column, and the data arranged in the cells that follow. As this is
tabular data, it’s appropriate to use a table to structure this information in a se-
mantic manner.

First, in Design View, add the RSS button image with the alternative text, RSS.
Hit Enter, and type Recent Tutorials; make this into a level two heading using
the Property Inspector, and hit Enter once again.

Now, let’s insert a table. To do this in Dreamweaver, open the Layout Panel of
the Insert toolbar, and click the Table button, as shown in Figure 4.10.

Figure 4.10. Clicking the Table button on the Insert toolbar.

83

Linking to Other Tutorials

Dreamweaver’s Insert Toolbar

You probably already noticed the drop-down list on the Insert toolbar: this
lets you switch between different sets of tools. Dreamweaver calls these sets
of tools "panels." You can instead display the different panels as tabs by se-
lecting Show as tabs from this drop-down list.

The Table dialog, shown in Figure 4.11, will open. This enables you to set the
features of the table that you are about to insert. Give your table seven rows and
two columns. Under the Header section, select Top to convert the cells in the top
row of the table into th elements: table headings.

Figure 4.11. The Table dialog.

We can also add a summary here. The summary will not display on-screen in a
regular graphical browser, but provides screen reader users with additional inform-
ation about the table, to help them put it into context. This and the caption fields
are particularly important if the context of the table is vague because of the way
the page has been laid out. In our document, however, it should be easy to under-
stand the content of the table.

84

Chapter 4: Constructing the Document

Click the OK button in this dialog to insert a table into your document. Now,
enter the tabular data into the cells: start with the headings “Title” and “Pub-
lished” in the top row, then fill in the rest of the tutorials and their publication
dates, as shown in Figure 4.12.

Figure 4.12. Viewing the table in Design View.

Make each of the tutorial titles into a link by selecting the title and entering a #
into the Link field of the Property Inspector, just as you did for the tutorial
headings. Once you’ve done this, switch into Code View to review the markup
for this section. It should look like this:

<h2>Recent Tutorials</h2>
<table width="100%" border="0" summary="This table shows the most
 recent tutorials posted on the site and their publication
 date.">
 <tr>
 <th scope="col">Title</th>
 <th scope="col">Published</th>
 </tr>
 <tr>
 <td>CSS forms - Massive feedback distortion?
 </td>
 <td>26-12-2005</td>
 </tr>
 <tr>
 <td>Buttons & Dials - Java Controls Explained
 </td>
 <td>23-12-2005</td>
 </tr>
 <tr>
 <td>Graphic Violence - Crazy Graphs with PHP
 </td>

85

Linking to Other Tutorials

 <td>19-12-2005</td>
 </tr>
 <tr>
 <td>Making the .NET Framework Work</td>
 <td>16-12-2005</td>
 </tr>
 <tr>
 <td>CSS: Designing with Style, not Class
 </td>
 <td>12-12-2005</td>
 </tr>
 <tr>
 <td>JavaScript's Presentational Presence</td>
 <td>9-12-2005</td>
 </tr>
</table>

Displaying Browser Statistics
The final section of this main content area displays browser statistics. This content
is shown in the Fireworks design in Figure 4.13.

Figure 4.13 comprises a heading and a pie chart, and illustrates market share for
different types of browsers. A text description is provided, along with a legend
for the diagram.

To start, add the heading. Then, insert the image; don’t forget to add an alt at-
tribute that clearly explains what the image is. There’s no need to describe the
data in the chart: the text below the chart helps with that.

Making Table Data Accessible

A chart is a great way to display a lot of data succinctly, but it isn’t very ac-
cessible. To rectify this, you can present the chart’s data on a separate page,
and use the img element’s longdesc attribute to link to it. We’ll take a
look at longdesc in more detail in Chapter 7.

86

Chapter 4: Constructing the Document

Figure 4.13. Designing the browser statistics display for the
homepage.

We can now add the list. We create lists using the Unordered List button in
Dreamweaver’s Property Inspector, shown in Figure 4.14. Type the first list item
into the document as if you were entering a new paragraph, then click the Un-
ordered List button on the Property Inspector. When you hit Enter, a new list
item will be created.

87

Displaying Browser Statistics

Figure 4.14. Creating an unordered list.

Once you’ve created all the items in the list, hit Enter twice to close the list and
create a new paragraph. Now, enter the two paragraphs of text that accompany
this section. That’s it! The code for this final section of the homepage’s content
area is now complete:

<h2>Browser Stats - December - 04</h2>
<p><img src="img/browser_chart.gif" alt="Pie chart showing
 browser statistics for Dec 2004" width="180" height="180" />
</p>

 IE6 Win (72%)
 Firefox/Moz (19%)
 IE5+ Win (<5%)
 Safari (2%)
 Opera (<1%)
 Other (<1%)

<p>December saw Firefox's market share jump 1% across all major
 site categories presumably on the back of it's 1.0 launch push.
 Increases of as much as 3% were observed in some
 technically-oriented categories.</p>
<p>Overall, though IE6 continued the gradual decrease in market
 share it has endured since it held 92% in November 2003, it
 still enjoys 4 times greater usage than any other browser.</p>

If you view the page in a browser, you’ll see all of the content displayed as in
Figure 4.15 below: our logical headings, paragraphs, tables, and lists are presented
in the browser’s default display style.

88

Chapter 4: Constructing the Document

Figure 4.15. Displaying the document in Firefox 1.0.

Other Page Elements
Now that we’ve completed the structure of the main content area of the homepage,
it’s time to move on to consider the rest of the page. We have the heading area,
which contains the logo and tagline, site controls that help users to change the
text size, and the main navigation. We must also consider the content that displays
in our layout’s sidebar: a search form, as well as quick links to the various topics
and other items of interest on the site.

Before we decide where to place these elements within our document, let’s take
a moment to think about how site visitors are going to use these pages. Users
who have a regular Web browser will see the full layout and, using CSS, we will
be able to position all the page elements to make the site as usable as possible.
It doesn’t really matter to these users just where in the document the page ele-
ments are located, as they will see the full page design. However, for users of text-
only devices, the locations of the various content elements within the actual
XHTML document is very important.

89

Other Page Elements

Our homepage will be displayed or read aloud by a text-only browser or screen
reader in the order in which the content appears in the actual XHTML document,
starting with the title. Currently, our document contains only the page content,
so, after the title, a screen reader would start to read the first element on the
page: our “Latest ideas” heading, as depicted in Figure 4.16.

Figure 4.16. Displaying the document in the text-only Lynx
browser.

The page’s heading section helps orient users by providing information about
the site itself—the logo and tagline—as well as quick access to the site’s main
navigation, including the sitemap, as shown in Figure 4.17.

90

Chapter 4: Constructing the Document

Figure 4.17. The heading area, including main navigation.

Easing Text-only Navigation

A sitemap is very useful to visitors who use text-only browsers: it gives them
a quick way to jump from page to page without having to follow the complic-
ated navigational structures that, while easy to use in a graphical browser,
can be much slower to use via other methods. Remember: to users of screen
readers, or those who must tab through Web documents using their keyboard,
Web pages are linear documents. A visitor using a screen reader, for example,
has to wait for the Web page to be read aloud in order to get to the link they
want. A sitemap can save time and frustration for these visitors—as well as
those using regular browsers.

As the heading area contains information that will help users to understand the
site—and to get around it—it seems logical that we should place this element at
the top of the document, before the homepage’s main content.

The information that appears in the sidebar, depicted in Figure 4.18, is less im-
portant in terms of its ability to help users immediately understand and access
the site. As a list of tutorials and information, it could also become quite lengthy.

If we placed this element before the homepage’s main content, users of screen
readers would need to listen to all this information before they reached the main
content; this would start to get rather dull after the first page! For this reason,
let’s add this section after the page’s main content, at the bottom of the current
document. We can then position it alongside our main content using CSS.

91

Other Page Elements

Figure 4.18. The sidebar.

92

Chapter 4: Constructing the Document

The Heading and Main Navigation
Now that we’ve decided where in the document we’re going to place the rest of
the page elements, we can start to add our heading area.

Return to your document and, in Dreamweaver’s Design View, place your cursor
just before the “Latest ideas” heading. Switch to Code View to make sure the
cursor is outside the h1 element. Switch back to Design View and insert the Code
Spark logo (logo.gif), remembering to add appropriate alternate text. Beside
the image, type the tagline Inspiration for Coders; this should sit beside the
bottom of the Code Spark logo.

Next, we’ll add our accessibility controls. Hit Enter and type Page Controls.
Our page controls are no more than a list of links, so we’ll add them to the page
as an unordered list. Click the Unordered list button to insert the first list item,
then insert the first accessibility control image, control_larger.gif. Next, make
the image into a link: select the image and type # into the Link field in the Property
Inspector. Hit Enter to insert the next item, and repeat the process for the other
controls (control_smaller.gif, control_low_graphics.gif and control_de-
fault_style.gif).

93

The Heading and Main Navigation

Figure 4.19. Creating the heading area of the page.

When you peruse your document in Design View, it should look like the display
shown in Figure 4.19. Don’t worry that it looks a bit untidy right now; we’ll use
CSS to transform this content later on.

Our final task is to add to this heading area the main navigation, which will link
to the Tutorials, About, Contact and Sitemap pages. Once again, the navigation
comprises an unordered list of links, so go ahead and add them to the document.

94

Chapter 4: Constructing the Document

Switching into Code View, we can see the markup that constitutes the heading
section:

File: homepage-layout.html (excerpt)

<p><img src="img/logo.gif" alt="Code Spark" width="290"
 height="160" />Inspiration for Coders </p>
<p>Page Controls</p>

 <img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35"
 border="0" />
 <img src="img/control_smaller.gif"
 alt="Decrease Text Size" width="43" height="35"
 border="0" />
 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35"
 border="0" />
 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35"
 border="0" />

 Tutorials
 About
 Contact
 Sitemap

The Sidebar
The final section that we’ll add to the document is the sidebar, which, as we’ve
already decided, will be placed beneath the main content in the structure of our
document.

In Design View, place your cursor at the bottom of your main content text, be-
neath the section about browser statistics. The first part of the sidebar is a search
box, so add a level three heading that reads “Search this Site.”

To create the search box, add a form element using the Forms Panel of the Insert
toolbar, as shown in Figure 4.20. The form will appear as a dotted red outline.

95

The Sidebar

Figure 4.20. Adding a form.

Insert a text field into your form. When you do so, the Input Tag Accessibility
Attributes dialog shown in Figure 4.21 will open, to help you add the correct at-
tributes to the element.

Figure 4.21. The Input Tag Accessibility Attributes dialog.

Our original design didn’t include a label for the search field, but I’m going to
throw one in: it’ll help when we come to validate our site for accessibility purposes.
In Figure 4.21 above, I added the label Search keywords and selected the Wrap
with label tag option.

Click OK to insert your text input and label. In the Property Inspector, change
the name of the input field to keywords. I also added a
 after the label
Search Keywords, and before the search box. Shift-Enter creates a
 in
Dreamweaver.

96

Chapter 4: Constructing the Document

Now, insert a button using the Insert toolbar. This button doesn’t need a label,
so select the No label tag option before you click OK. Select the button, then use
the Property Inspector to change the value to Search, as shown in Figure 4.22.

Figure 4.22. Changing the value of the button to “Search.”

If you check Code View, the markup for the form we just added should look
something like this:

File: homepage-layout.html (excerpt)

<h3>Search this Site</h3>
<form name="form1" id="form1" method="post" action="">
 <label>Search keywords

 <input name="keywords" type="text" id="keywords" />
 </label>
 <input type="submit" name="Submit" value="Search" />
</form>

Add another heading—“Tutorial Topics”—as a level three heading, and mark up
the main sections of the site using an unordered list. Make the text in the list
items into dummy links, as these will eventually link to the actual sections of the
site:

❑ PHP & MySQL

❑ CSS Design

❑ JavaScript & DHTML

❑ ASP & .NET

97

The Sidebar

❑ JSP & Servlets

Figure 4.23. Viewing the sidebar section after the search feature
and three lists are added.

We can now add another heading. Insert “Reader Favorites” as a level three
heading and, again, use a list with dummy links to mark up the favorite tutorials

98

Chapter 4: Constructing the Document

presented on the site. Figure 4.23 shows this section in Design View after the
three lists are added.

Validating your XHTML
We’ve completed our basic XHTML document. Later, we’ll need to add to this
document some grouping elements that will enable us to style the document.
However, by first considering how the content should be structured, we’ve done
a lot to ensure that our document is semantically structured, and accessible at
its most basic level. The final task we should undertake is to validate our document
to ensure that it constitutes correct XHTML.

Validation in Dreamweaver
To validate your document, click the Validate markup button at the top of the
document window, and select Validate Current Document, as shown in Figure 4.24.

Figure 4.24. Validating the current document.

If you’re lucky, the message “No Errors or Warnings Found” will display in the
panel. However, while Dreamweaver will let you create a document with an
XHTML Strict DOCTYPE, it sometimes misses required elements, or adds attrib-
utes that are not allowed by this DOCTYPE. Luckily, these are pretty easy to
find and remove: any problems are listed in the Results Panel after Dreamweaver’s
validator is run, as shown in Figure 4.25.

One of the errors you’re likely to see reads as follows:

The tag:"label" is not allowed within: "form" It is only allowed
within: a, abbr, acronym, address, b, …

99

Validating your XHTML

Figure 4.25. Reviewing errors presented in the Results panel.

This error indicates that the label element needs to be contained within some
other element (not just form). XHTML Strict—as the name implies—is very strict
about which elements can be contained within which other elements. We can
address this issue by wrapping the whole section in <p> and </p> tags, like so:

File: homepage-layout-strict.html (excerpt)

<p><label>Search keywords

 <input name="keywords" type="text" id="keywords" />
 <input type="submit" name="Submit" value="Search" />
 </label></p>

Now, revalidate your document to see if it’s error-free. If not, step through the
list of errors, and fix them one by one. Pretty soon, your work should be free of
errors, and ready to roll! Save the file as homepage-layout-strict.html.

The more you work with Dreamweaver, the more you’ll start to understand its
eccentricities, and the better you’ll become at correcting its markup. XHTML
can become quite complex at times, and Dreamweaver 8 does a fairly good job
of getting the markup right most of the time, so do try and cut it some slack.

Summary
In this chapter, we’ve taken what might be seen as a slightly unconventional way
of beginning our page layout. We concentrated almost solely on the structure of
the document, and how the actual content is to be marked up, bearing in mind
our goal of standards compliance.

In the next two chapters, we’ll move on to look at CSS. We’ll see how we can
take this structured, valid document and use CSS to create a visually attractive
layout without compromising its accessibility or semantic structure.

100

Chapter 4: Constructing the Document

CSS and Dreamweaver5
Now that we’ve written a well-structured XHTML document, we’ll be able to
use CSS throughout the remainder of this book to style text, lay out our site, and
create effects that wouldn’t be possible using HTML alone. Whether you’re a
CSS beginner or a seasoned developer, you’ll find that Dreamweaver’s tools can
make CSS development easier. As we’re about to see, Dreamweaver 8 offers a
huge amount of CSS functionality. As you use it, you’ll soon work out which
tools best suit your way of working.

This chapter starts with an overview of CSS, then goes on to explain how we can
use Dreamweaver to make working with CSS easier. If you’ve already used CSS,
but you’re new to Dreamweaver’s CSS tools, you might want to skip over the
first section and get straight into the details of working with CSS in Dreamweaver.

Why CSS?
If you’re a longtime Dreamweaver user, you’re probably used to styling text with
the Property Inspector. Dreamweaver has always allowed us to select text and
apply a font, size, or color to it easily. Prior to the release of Dreamweaver MX
2004, HTML tags were used to achieve these styles, but in the latest
versions of the program, the Properties Inspector applies styles using CSS. Though
functional, Dreamweaver’s application of styles is not necessarily the best way
to implement CSS in your site. We’ll see why a little later in this chapter.

That Dreamweaver has chosen to use CSS instead of tags to style text is
indicative of the way in which most Web designers and developers now work.
 is one of a number of elements that, while originally developed to control
style and layout, have since been deprecated in the HTML specification in favor
of the use of style sheets.

CSS offers many benefits over HTML when it comes to styling your pages:

❑ It supports increased accessibility: styling tags and attributes are no longer
needed, which makes the HTML easier for alternative devices to read.

❑ Alternative large print or high-contrast style sheets may be provided for users
with specific disabilities; users can even apply their own style sheets to a page.

❑ Smaller file sizes are produced, as one file is able to control the look and feel
of many pages.

❑ Development time is reduced, and the maintenance burden is eased; CSS
makes site-wide changes as easy as changing one property in one CSS file.

CSS Basics
In this chapter—and throughout the rest of this book—we’ll be using basic CSS
terminology. If you’re not already familiar with CSS, this section is for you: here,
I’ll run through the basics of CSS. The beauty of working with Dreamweaver is
that you really can learn how to use CSS as you go along, so I’ll not spend too
much time on this discussion. If you already have an understanding of basic CSS,
feel free to skip to the section called “Your Basic Toolkit”, where we look at the
specific CSS functionality available in Dreamweaver 8.

How to Use CSS

When you use tags to style a chunk of text, you end up with something
that looks like this:

<h1>Hello World!</h1>

In its simplest form, CSS can be applied to text via the style attribute, which
is set on the HTML element that you wish to style, like so:

<h1 style="color: #336699; font-size: 130%">Hello World!</h1>

102

Chapter 5: CSS and Dreamweaver

This is called an inline style. The CSS within the style attribute will apply only
to this h1 element—not to anything else on the page—in much the same way
that a font element would apply only to the content found within the element’s
opening and closing tags.

When we discussed the benefits of CSS earlier, I explained how you can use CSS
to set up styles that are applied to every instance of an element on a page, or
throughout a site. To do this, we need to move our CSS out of the element’s tag,
and instead create the definition either in the header of the document—an em-
bedded style sheet—or in a separate file that’s referenced from all pages of the
site as a linked or imported style sheet.

To create an embedded style sheet we simply add the CSS property definitions
and the element’s tag name (or selector) to the head of the document; we place
this information between <style> tags, which lets the browser know that it’s
dealing with CSS. The styles will then be applied to every instance of the specified
element within the document.

As an example, here’s the XHTML document hello.html, which uses an embed-
ded style sheet:

File: hello.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Example embedded style sheet</title>
<style type="text/css" media="all">
h1 {
 font-size: 130%;
 color: #336699;
}
</style>
</head>
<body>
<h1>Hello World!</h1>
<p>It’s a lovely day.</p>
<h1>Notice the Big, Colored Headings?</h1>
<p>That’s because this page contains an embedded style sheet!</p>
</body>
</html>

To create a linked style sheet, place the rules into a separate file (without any
<style> tags surrounding them), then add a link to the head of the document.

103

CSS Basics

Consider this style sheet, mystyles.css, which is ready to be linked from another
file:

File: mystyles.css

h1 {
 font-size: 130%;
 color: #336699;
}

Here’s the head of hello.html, which links to the mystyles.css style sheet:

File: hello.html (excerpt)

<head>
<title>Example linked style sheet</title>
<link rel="stylesheet" href="mystyles.css" type="text/css" />
</head>

Importing an external style sheet is very similar to this linking approach. However,
instead of using a <link> tag, we use <style> tags, placing an @import statement
between them. Here’s the head section of hello.html again, this time referencing
an imported style sheet:

File: hello.html (excerpt)

<head>
<title>Example imported style sheet</title>
<style type="text/css">
@import url("mystyles.css");
</style>
</head>

Styles in linked or imported style sheets will apply to elements in any of the pages
from which they’re referenced, which means that, to change the color of your h1
element, you need only change it in one style sheet file.

Tags

As we’ve already seen, we can create for any given HTML element styles that
will then redefine how the browser displays that element. In comparison to
tags, using embedded or external style sheets removes a huge amount of
presentational markup from your pages, making them easier to maintain and to
keep consistent across the site.

104

Chapter 5: CSS and Dreamweaver

Media Types

We can also change the way elements appear when they’re printed by specifying
the media type to which a particular style sheet applies. Consider this example:

<style type="text/css">
p {
 font-family: Verdana, Arial, sans-serif;
}
</style>
<style type="text/css" media="print">
p {
 font-family: Times, serif;
}
</style>

This markup will cause <p> tags to be printed in Times, but to display on-screen
in Verdana.

You can also specify a media type when you’re linking or importing style sheets.

<link rel="stylesheet" href="mystyles.css" type="text/css"
 media="all" />
<link rel="stylesheet" href="printstyles.css" type="text/css"
 media="print" />
<style type="text/css">
@import url("screen.css") screen;
</style>

Dreamweaver includes support for screen, print, handheld, projection and TV
media types, allowing you to develop Websites that are accessible from a large
number of devices.

Classes

Changing the way elements look isn’t the only application of CSS. Sometimes,
you might want to style a particular HTML element differently than other ele-
ments of the same type. In such cases, you can create a CSS class to be applied
to the elements that you want to change. Consider this class:

.hilite {
 background-color: #F7F2C3;
}

You could apply the hilite class to any element on the page, like so:

105

CSS Basics

<p class="hilite">Hello world</p>

Only the elements to which the class is applied will adopt this style. Note that
you create a CSS class rule in the much same way that you’d create a rule for an
element, with the exception that the selector must begin with a period.

We’ll be returning to these concepts as we use Dreamweaver throughout the rest
of this book.

Your Basic Toolkit
In this section, we’ll look at the tools available for working with CSS in Dream-
weaver 8, and see how they’re used in practice. We’ll refer back to these tools as
we apply them in later chapters.

Setting Preferences for CSS
To launch the Preferences dialog, select Edit > Preferences. Select the CSS Styles
category, as illustrated in Figure 5.1.

You can use shorthand or longhand syntax to write your CSS: it’s really a question
of personal preference. Shorthand CSS looks like this:

h1 {
 font: bold 10pt/12pt Verdana
}

Here’s the same rule in longhand CSS:

h1 {
 font-weight: bold;
 font-size: 10pt;
 line-height: 12pt;
 font-family: Verdana;
}

If you already prefer one syntax over the other, you can select and use those styles
accordingly. In this book, I’ll use shorthand syntax.

106

Chapter 5: CSS and Dreamweaver

Figure 5.1. The CSS Styles Category of the Preferences dialog.

Possibly more important to note are the Use shorthand if original used shorthand
and Use shorthand according to settings above options. If you’re opening and
editing existing CSS documents in Dreamweaver, you will most likely want
Dreamweaver to avoid changing that code unless you make changes yourself. By
checking the first radio button, Dreamweaver will honor the way in which the
style sheet you open was written.

This screen’s Open CSS files when modified checkbox allows you to keep an eye
on the CSS code that the software adds to your style sheet.

You can also choose how to work with and edit your CSS files in Dreamweaver.
By default, if you double-click a rule or property in the CSS panel, Dreamweaver
will open the CSS Rule Definition dialog so that you can edit the style rules. If
you would prefer to edit the CSS in the Properties pane of the CSS panel, then
select the Edit using Properties pane option. If you’d rather Dreamweaver opened
the CSS file in Code View, select the Edit using code view option.

107

Setting Preferences for CSS

The Page Properties Dialog Box
Once you open a new document, you can launch the Page Properties dialog by
selecting Modify > Page Properties, or by clicking the Page Properties button on
the Property Inspector. The dialog is shown in Figure 5.2.

Figure 5.2. The Page Properties dialog.

If you’ve used previous versions of Dreamweaver, the Page Properties dialog will
be familiar to you. Since the release of Dreamweaver MX, this dialog has inserted
CSS, instead of using the now deprecated attributes of the body element, to
control basic page styling information.

The first category in this dialog—Appearance—enables you to set the basic font
for the page, as well as its size and color. You can also set a background color
and image for the page, and control how that background repeats. The boxes
underneath for the left, right, top and bottom margins affect the space between
the edge of the browser window and that of your layout. Play with these settings
on a document to see their effects both in Design View, and in the code.

108

Chapter 5: CSS and Dreamweaver

Other categories enable you to set styles for links and headings; whether you do
so here, or later in the development of your style sheet, is entirely up to you.

The CSS Panel
Much of your work with CSS is done through the CSS Panel, shown in Figure 5.3.
In Dreamweaver 8, this panel has been revised to provide a single, unified location
in which you can work with CSS in Dreamweaver.

Figure 5.3. The New CSS Panel in Dreamweaver 8

Any styles you have defined, whether in an external style sheet or in the head of
your document, will appear in the CSS panel.

109

The CSS Panel

Creating a New CSS Rule

Figure 5.4. The New CSS Rule button.

To create a new CSS rule, click the New CSS Rule button shown in Figure 5.4 at
the bottom of the CSS Panel.

If, in the dialog that appears, you select Tag under Selector Type, you can then
make a selection from a list of element names in the drop-down list at the top
of the box. Figure 5.5 shows the selection of the h1 element through this menu.

Figure 5.5. Selecting the h1 element.

At the bottom of the dialog, you can choose whether to define the style in an
existing style sheet (if one is already attached to the document), or in a new style
sheet file (in which case you will be asked to save the file). Alternatively, you can

110

Chapter 5: CSS and Dreamweaver

create it for this document only, which will put the CSS into the head of the
document.

You can also create a class using this dialog: simply choose the Class selector type,
then type a class name into the text input box at the top of the dialog. You’ll
notice that there’s a third selector type: Advanced. We’ll discuss the usage of
these selectors in the next chapter.

Whatever selector you use, clicking OK will launch the CSS Rule Definition dialog,
shown in Figure 5.6.

Figure 5.6. The CSS Rule Definition dialog.

This dialog enables you to set the different properties for the selector you’ve
chosen. We’ll explore the various properties in coming chapters, as we create our
CSS design. One of the best ways to find out what a property does is to try it
out, so do have a play around and create a few styles to see how this dialog works.

After setting the styles that you want for your selector, click OK to create the
style, which will appear in the CSS Panel.

111

The CSS Panel

Editing a CSS Style

To edit a style that you have created either in Dreamweaver, or by hand or in
another application, select it in the CSS Panel, then click the Edit Style button,
as shown in Figure 5.7.

Figure 5.7. Clicking the Edit Style button.

Unless you have set a different method (either through Code View or in the
Properties pane), the CSS Rule Definition dialog will open again. The dialog will
be populated with the values for this style, allowing you to view and make changes
to them. Double-clicking on the rule will either reopen the CSS Rule Definition
dialog, switch focus to the Properties pane, or jump to the spot in the code where
the rule is defined, depending on the preference you have set.

Viewing All or Current Styles

Use the Mode buttons at the top of the CSS Panel, as shown in Figure 5.8, to
view all of the styles in your document, or just the current styles—those that
apply to the element you’ve selected in the document window.

112

Chapter 5: CSS and Dreamweaver

Figure 5.8. Select to view All Styles or just those that apply to the
selected element.

Once you have defined some CSS style rules in your document, you can use the
extra functionality of Dreamweaver’s CSS Panel to make working with CSS
easier and faster.

The CSS Properties Pane

At the bottom of the CSS Panel, you’ll find the new CSS Properties Pane. This
powerful tool helps speed up CSS development by giving you quick access to the
CSS rules and properties that are already defined in your document. If you’re in
All Mode, clicking on any CSS rule in the top pane will display its properties in
the CSS Properties Pane. As Figure 5.9 shows, you can edit the properties directly
in that pane.

Figure 5.9. Editing a CSS rule in the Properties Pane.

113

The CSS Panel

The About Pane

In Current Mode, the top part of the CSS Panel displays the CSS properties that
apply to the current selection. If you click on any of these properties, the About
Pane, illustrated in Figure 5.10, will identify the rule in which this property is
set, and where that rule is defined. This can be very handy if you’re working on
a page that uses a lot of different style sheets, and you’re trying to figure out why
your headings are green.

Figure 5.10. The About Pane.

Below the About Pane, the CSS Properties Pane will let you view or edit the
properties for the selected rule.

Attaching a Style Sheet

You can use the CSS Panel to attach an external style sheet to a document. If
you’ve created an embedded style sheet with the CSS Panel or Page Properties
dialog, you can move it into an external style sheet for reuse in other pages. Switch
into Code View and select all of the CSS between the <style> and </style>
tags, as shown in Figure 5.11. Copy this to the clipboard.

Figure 5.11. Selecting the CSS Styles.

114

Chapter 5: CSS and Dreamweaver

In Dreamweaver, select File > New. In the New Document dialog shown in Fig-
ure 5.12, select Basic page, then CSS.

Figure 5.12. Creating a new CSS file.

115

The CSS Panel

Figure 5.13. The CSS file style.css.

You now have a blank CSS document; paste into this file the CSS styles you
copied from your HTML document, and save the file as style.css, as illustrated
in Figure 5.13.

Return to your HTML page; delete the <style> and </style> tags and everything
between them. Switch back to Design View. We can now attach our new style
sheet using the CSS Panel. To do so, click the Attach Style Sheet button shown
at the bottom of the CSS Panel in Figure 5.14.

Figure 5.14. Attaching the style sheet.

The Attach External Style Sheet dialog will open as shown in Figure 5.15; browse
for the file style.css. You can add this style sheet using the link or import

116

Chapter 5: CSS and Dreamweaver

methods. We briefly discussed these methods earlier, and will return to them in
the next chapter, but for now, it doesn’t matter too much which approach you
choose.

Figure 5.15. Using the Attach External Style Sheet dialog.

If you select Link, Dreamweaver will add the following line to the head of your
document:

<link href="style.css" rel="stylesheet" type="text/css" />

Select Import, and you will end up with the following:

<style type="text/css">
<!--
@import url("style.css");
-->
</style>

Whichever method you use to attach your style sheet, once you’ve done so, you
should see your style sheet and rules appear in the All Mode of the CSS Panel.
To add new CSS rules to this style sheet, select the style sheet from the Define
in drop-down list, as shown in Figure 5.16. You can add style rules to the embed-
ded style sheet by selecting This document only.

117

The CSS Panel

Figure 5.16. Defining a new style in the styles.css style sheet.

The Property Inspector
In Dreamweaver MX 2004 and above, the Property Inspector, shown in Fig-
ure 5.17, uses CSS by default, instead of tags. You’ll likely find that you
use the Property Inspector a great deal as you work in Dreamweaver, as it provides
convenient control over element properties as you work on them.

Figure 5.17. The Property Inspector.

If you type some text into the document window, you can style it using the
Property Inspector. You can choose whether an element is a paragraph or a
heading using the Format drop-down list, as shown in Figure 5.18; buttons allow
you to style the text as a list. These choices affect the structural markup of your
document: they don’t add any CSS to it.

118

Chapter 5: CSS and Dreamweaver

Figure 5.18. Creating a level one heading using the Property
Inspector.

However, if you decide to change the font, size, or color of an element, the
Property Inspector will apply those changes using CSS, and inserting the appro-
priate rules into the head of the document. This can be very useful for "mocking
up" pages: whenever you want to create new pages for your design, simply select
all the newly created styles and place them into an external style sheet, as we did
earlier.

If you’ve already defined CSS rules for a document, the Property Inspector will
allow you to view the CSS for any of the elements in that document. Select an
element in the document window, then click CSS; the CSS for that element will
display in the CSS Panel’s Current Mode. If the CSS Panel is already in Current
Mode, the CSS button will be grayed out. The CSS will automatically display in
the CSS Panel as you select elements within the document.

Selecting Styles

A very useful feature of the Property Inspector is the Style drop-down list, which
allows you to apply the CSS classes you’ve created to specific page elements. The
classes defined in a document’s embedded or external style sheets are located;
they’re then added to the Property Inspector’s Style drop-down list, complete
with a preview of how text will display once the style is applied. To apply one of
these classes, select the element you wish to style through the document window,
then select the appropriate class from the Style menu. This process is depicted in
Figure 5.19.

Figure 5.19. Applying a class from the Property Inspector.

119

The Property Inspector

At the bottom of the list of classes is the Attach Style entry—another shortcut to
add a linked or imported style sheet to the current document.

Editing CSS in Code View
Another way to edit CSS is via Code View, through which you can edit the CSS
code itself. You can obviously type CSS directly into your style sheet via Code
View, but additional help is also available here.

Open your style sheet in Code View and start to type a CSS property in one of
your selectors. After you type a few letters, a list of properties will display; the
property that’s most likely to match the attribute name you’ve typed will be
highlighted, as shown in Figure 5.20. You can select this property, or continue
to type. This helpful feature is called “code hinting.”

Figure 5.20. Editing CSS in Code View.

Once you’ve typed a property’s full name, and finished it with a colon, Dream-
weaver will again come to your aid with a list of suggested values for the property

120

Chapter 5: CSS and Dreamweaver

(or a color picker if you’re setting a color). You can press Escape to dismiss the
list; Ctrl-Space will make the list reappear.

Sample CSS Styles
Dreamweaver 8 comes with some sample style sheets that range from simple
starting points (defining some of the most commonly used elements in a docu-
ment), to full CSS layouts.

You can use the CSS Panel to attach a sample style sheet to your document. In-
stead of browsing for your own style sheet, click the sample style sheets link at
the bottom of the Attach External Style Sheet dialog, as shown in Figure 5.21.

Figure 5.21. The Attach External Style Sheet dialog.

121

Sample CSS Styles

Figure 5.22. Choosing a sample style sheet.

The Sample Style Sheets dialog, shown in Figure 5.22, displays a list of available
style sheets, along with a preview window that lets you see what’s included in
each style sheet.

To attach a style sheet to your page, use the Browse button at the bottom of the
dialog to select the directory to which you’d like to save the style sheet, then
click OK. The style sheet will be saved to the directory you identified, and will
be linked to your document. You can also preview how your document will look
once the style sheet is applied by clicking the Preview button on the right side of
the dialog. This Preview functionality won’t make any permanent changes to
your document.

CSS Page Designs
Dreamweaver also contains some starting-point page designs that provide basic
CSS layouts. To use a CSS Page Design, select File > New > Page Designs (CSS).
After you’ve looked through the previews, and you’ve decided which one you’d
like to use, click Create. You’ll be prompted to save the file; after you’ve done so,

122

Chapter 5: CSS and Dreamweaver

you can edit the design to suit your needs. Changing the created design does not
alter the Page Design in Dreamweaver itself, so you can always start over again,
or use the same design as a starting point for several different layouts.

Design Time Style Sheets
The Design Time Style Sheets feature allows you to apply at "design time" (that
is, while you’re working on the site in Dreamweaver) a CSS file that will not be
attached to the document when it is live. This might seem like a strange thing
to do, but, as we’ll discover later, Design Time Style Sheets can be a very useful
feature when you’re working with print or other alternative style sheets.

This feature seems rather hidden away in Dreamweaver; to access it, select Text
> CSS Styles > Design Time… or right-click within the CSS Panel and select Design-
time…. The dialog shown in Figure 5.23 will appear.

Figure 5.23. The Design Time Style Sheets dialog.

Clicking on the + symbol will allow you to browse for style sheets associated
with your site, and select those that you’d like to Show only at design time (in the
top box) or Hide at design time (in the bottom box). We’ll be looking at this feature
in more depth a little later on.

123

Design Time Style Sheets

The Style Rendering Toolbar
The Style Rendering toolbar lets you see how your design will look following the
application of alternative style sheets that are designed to display the document
effectively in different media types, such as in print, on handheld devices, or on
Web TV.

Once you’ve created a style sheet for a given media type, you can use the Style
Rendering toolbar to see how your document will display once that style sheet
is applied. Open the toolbar by selecting View > Toolbars > Style Rendering; it
displays above the document window, as shown in Figure 5.24.

Figure 5.24. Displaying the Style Rendering toolbar.

You can use the toolbar’s buttons to toggle through screen, print, handheld,
projection, and TV style sheets, should you have defined them all. The button
on the far right enables you to view your document without the application of
styles from any of the attached style sheets: you can review the structure of the
document without any CSS at all.

CSS "Layout Blocks"
In its last few iterations, Dreamweaver has referred to any absolutely positioned
element as a Layer, and Dreamweaver 8 retains this terminology: absolutely po-
sitioned elements appear in the Layers Pane of the CSS Panel. This approach
makes more functionality available for working with elements positioned in
other ways; we’ll explore this functionality in Chapter 6.

Dreamweaver 8 refers to positioned elements as Layout Blocks, and highlights
these in your document so that you can easily select and edit the content that’s
contained within a positioned element, as shown in Figure 5.25. If you hold your
mouse over a Layout Block, its outline will be highlighted; you can click this
outline to select the whole block. Content may be added to the block in the same
way you’d normally add content to a document in Dreamweaver.

124

Chapter 5: CSS and Dreamweaver

Figure 5.25. Selecting a Layout Block.

CSS Layout Visual Aids

Dreamweaver provides visual aids to help you to understand your layouts, and
to see how the differently positioned elements work together. To turn on the
Visual Aids, select View > Visual Aids, then select all items in the list that begins
with CSS Layout…. If you turn on the background colors, as shown in Figure 5.26,
you’ll immediately see a clear representation of the way in which the different
elements of your document have been positioned with CSS.

Figure 5.26. Layout blocks displaying with background colors
turned on.

125

CSS "Layout Blocks"

Summary
This chapter has provided a broad overview of the Dreamweaver tools that can
help you as you develop documents with CSS. If you’re new to Dreamweaver,
and this all seems very confusing, don’t worry! You’ll find that, as we start to
work with this functionality, it becomes more understandable. You’ll also get a
feel for the tools that you like to use—those that suit your workflow.

As is often the case with Dreamweaver, there are several routes by which you can
achieve the same end result. Part of the process of becoming comfortable with
the product is identifying which tools you find helpful, and which ones you don’t
want to use—there’s no “right” or “wrong.”

126

Chapter 5: CSS and Dreamweaver

Constructing the Layout with CSS6
In this chapter, we’ll use Dreamweaver’s CSS tools to develop a CSS layout for
the document we created in Chapter 4.

While Dreamweaver offers good CSS support, be aware that some elements don’t
display in Dreamweaver exactly as they will in the browser. Don’t get caught in
a trap of trying to design for Dreamweaver! Check your work regularly in your
browser as you move through the steps explained here—this will help you to
identify and understand the differences that are inherent in the program.

Later in this chapter, we’ll see how you can test your work in various browsers,
and validate those CSS files.

The Homepage Document
We start this chapter where we left off in Chapter 4: with the basic, barebones
homepage document shown in Figure 6.1.

Figure 6.1. Displaying the unstyled homepage document in a Web
browser.

We created this document using semantic XHTML, having considered which
XHTML elements would best describe each part of the page content. This provides
a solid framework on which we can now base our design.

We will need to add to this document—we’ll need to put containers around the
main sections of the page so that we can position them easily with CSS—but
we’ll take care to do so in a way that doesn’t compromise the structure and ac-
cessibility of the document.

Defining the Basic Layout
Our layout comprises three sections: the heading area with the logo, accessibility
links, and main navigation; the main content area; and a sidebar containing sub-
navigation and search. Our first task will be to set up the basic areas of the page

128

Chapter 6: Constructing the Layout with CSS

in the markup; then, we’ll use CSS to position these sections so that they display
roughly in the locations in which we want them to appear, instead of displaying
one after the other as they do now.

Open the document homepage-layout-strict.html in Dreamweaver. This is
the XHTML document that we converted to XHTML Strict at the end of
Chapter 4.

The Header
Let’s start by creating a container around our header area. The container will allow
us to create style rules specifically for this area, and address it separately from
other parts of the document.

We can define a given area of our document by wrapping it in <div> tags. The
div can then be given a class or an ID, which allows us to style that part of the
document using CSS. A class is normally applied when we want to apply a given
style rule to multiple elements of the page; an ID can only be used for one tag
in any given page. Since we’re only going to have one header, we’ll give this div
an ID, rather than a class.

To wrap all the elements that belong to the header area in a div, switch to Design
View and select the header section: the logo, accessibility images, and main nav-
igation list. Now, switch to the Layout panel of the Insert toolbar, and click the
Insert Div Tag button.

129

The Header

Figure 6.2. Selecting all of the page elements that belong to the
header.

Once you’ve clicked the Insert Div Tag button, the Insert Div Tag dialog, shown
in Figure 6.3, will appear. The Insert drop-down list contains a list of all the places
in which the div can be inserted, including Wrap around selection, which can be
used if some content or element is selected in the document. Select Wrap around
selection from the Insert drop-down, and type header into the ID field to give the
div an ID of header. Click OK to insert the div.

130

Chapter 6: Constructing the Layout with CSS

Figure 6.3. The Insert Div Tag dialog.

Classes, IDs, and the Insert Div Tag Dialog

If you have already created CSS rules for any classes or unused IDs, they
will appear in the Class and ID drop-down lists, so you can choose to select
them when you insert a div. IDs can only be used once per document, so,
once you’ve used an ID, it won’t show up in the list. Classes can be used
multiple times, so they will always be displayed here, ready to be selected.

A dotted line should now surround the area that will become the header. If you
switch into Code View, you can see the opening <div> right before the logo’s
<p> tag, and the closing </div> tag after the close of the navigation list, similar
to that shown below:

File: homepage-layout-strict.html (excerpt)

<div id="header">
 <p><img src="img/logo.gif" alt="Code Spark" width="290"
 height="160" />Inspiration for Coders </p>
 <p>Page Controls</p>

 <img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35" />

 <img src="img/control_smaller.gif"
 alt="Decrease Text Size" width="43" height="35" />

 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />
 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

131

The Header

 Tutorials
 About
 Contact
 Sitemap

</div>

The Content Area
We’re now going to mark up the part of the page that contains our content. Select
everything from the heading “Latest ideas” to the end of the browser statistics
section just above the search box. You can do this by clicking at the start of the
selection, scrolling to the end the selection, then holding down Shift as you click
at the end of the selection. Click the Insert Div Tag button, again selecting Wrap
around selection. This time, type content into the ID box. Click OK and the
dotted line should appear around the area of the page that you had selected, as
shown in Figure 6.4.

Figure 6.4. The dotted lines show the areas of the divs.

On your Selection

It’s not always easy to select content accurately in Dreamweaver’s Design
View—often, tags that you don’t want to include are selected, while some
desired tags are left out. One way to check whether the correct tags are selec-
ted is to use the tag selector at the bottom of the document window, but an
accurate and quick way to ensure that you have all the content and tags you
need is briefly to switch into Code View: your selection will be highlighted
there.

132

Chapter 6: Constructing the Layout with CSS

The Navigation Area
The final container that we’ll insert at this point will wrap the navigation area
of the page. Select everything from the search box down to the end of the page.
Then, use the Insert Div Tag button to wrap this selection in a div with the ID
nav.

You have now marked out the three main areas of the page using divs; this will
form the foundation of our layout. We can now move on to style these areas with
CSS.

Creating CSS Rules
We are going to start by adding to the body element some style rules that will
affect the document as a whole. After that, we’ll move on to style the individual
areas of the page that we’ve marked out.

The Body Area
Locate the CSS Panel and click the New CSS Rule button, as shown in Figure 6.5,
to open the New CSS Rule dialog.

Figure 6.5. Clicking the New CSS Rule button in the CSS Styles
Panel.

133

The Navigation Area

We’ll start by creating some styles for the <body> tag; these styles will be saved
into a new style sheet file that will become our site’s main CSS file. In the section
Selector Type, choose the Tag radio button and select body from the Tag drop-
down list. Finally, in the Define in section, select (New Style Sheet File). The dialog
should look like the one shown in Figure 6.6.

Figure 6.6. Creating a CSS rule for the body.

Because you’ve chosen to define this CSS rule in a new style sheet file, Dream-
weaver will prompt you to save the file when you click OK. In the Save Style
Sheet File As dialog, click the Create New Folder button and create a new folder
named inc (for includes). Save the style sheet as main.css in that folder. Once
you’ve saved your style sheet, the CSS Rule Definition dialog will open and you
can begin to create styles for the <body> tag. First, select the Background category
and give the page a white (#FFFFFF) background color, as illustrated in Figure 6.7.

Controlling Color

Don’t forget to set the background and text colors for your pages. If you
don’t, your pages may display very strangely for users who have their default
backgrounds set to unusual colors: your page’s background will default to
the colors those users have set.

134

Chapter 6: Constructing the Layout with CSS

Figure 6.7. Applying styles to the body element to give the page
a white background.

Next, select the Type category. Here, we can set our text color to black (#000000),
and set a base font size of 1em, as depicted in Figure 6.8.

Font Size Setting Secrets

A common method used to set font sizes is to use pixels (px) or points (pt).
However, this approach can prevent your site visitors from resizing page text
in their browsers. The method I typically use is to set a base size of 1em,
then size individual elements, such as <p> and <h1>, as percentages (%) or
ems (em) relative to this base size. This helps ensure that all elements scale
in relation to each other.

135

The Body Area

Figure 6.8. Setting the font color and size for the body.

Finally, access the Box category, and set the padding and margins on the body
to 0 pixels, as shown in Figure 6.9. This will ensure that your layout sits flush
against the edge of the browser window, and doesn’t display the default padding
or margins that the browser applies. Leave Same for all checked: this will apply
the margin and padding to the top, right, bottom and left of the body element.

Click OK to apply these CSS rules to your style sheet, and see the effect on your
document. The only noticeable difference at this point is that your logo image
and text should display flush with the left edge of the document window in
Dreamweaver. If you switch into Code View, you’ll see that Dreamweaver has
added this link to the style sheet in the head of your document:

File: homepage-layout-strict.html (excerpt)

<link href="inc/main.css" rel="stylesheet" type="text/css" />

136

Chapter 6: Constructing the Layout with CSS

Figure 6.9. Setting margin and padding to 0.

Open the style sheet main.css in Dreamweaver, and you should see that your
work in the CSS Rule Definition dialog has produced the following CSS for the
<body> element.

File: inc/main.css (excerpt)

body {
 font-size: 1em;
 color: #000000;
 background-color: #FFFFFF;
 margin: 0px;
 padding: 0px;
}

Styling the Header div
Now, let’s use CSS to style the "header" area that we wrapped with a <div> tag,
as well as some of the elements within it.

137

Styling the Header div

Figure 6.10. Creating a new CSS rule for the “header” div header.

In the CSS Panel, click the New CSS Rule button to bring up the New CSS Rule
dialog that appears in Figure 6.10. Choose Advanced as the Selector Type, then
type #header into the Selector field. The # lets CSS know that "header" is an ID;
otherwise, CSS would try to apply this rule to all <header> tags (of which XHTML
contains none). Finally, choose to define the rule in main.css: the style sheet
that we just created.

Click OK, and the CSS Rule Definition dialog shown in Figure 6.11 will appear.
In the Box category, give the header div a width of 100%.

It’s common practice to temporarily give a div a background color so that we
can make sure that the new CSS rule applies to the element we expect it to. If
you like, go to the Background category, set the background color to #FFFF66,
and click OK to create the CSS rule. The header area becomes yellow, meaning
that the style has taken effect. You’ll want to remove this background color again
before proceeding any further, so make sure the CSS Panel is in All mode and
select the #header rule in the All Rules list. Right-click on the background-color
line under Properties for "#header" and select Delete to remove that property
definition.

Now, we’re going to concentrate on the elements inside the header div, position-
ing them so that they start to resemble our layout image. Our first step will be
to position the logo so that the rest of the header area can be aligned with it.

Create a new CSS rule in Dreamweaver. Once again, choose the Advanced Selector
Type and type #logo into the Selector field.

138

Chapter 6: Constructing the Layout with CSS

Within the CSS Rule Definition dialog, switch to the Positioning category, which
is illustrated in Figure 6.12. Select absolute from the Type drop-down, and place
the logo in the top left-hand corner by setting Top to 0 pixels and Left to 0 pixels.

Figure 6.11. Giving the header a width of 100%.

Figure 6.12. Positioning the logo.

139

Styling the Header div

Click OK to close the dialog. You won’t see any change right away, because we
still need to give the logo the ID we’ve just created. Click on the image and then,
using the Tag Selector at the bottom of the document window, right-click on the
 tag. Select Set ID and then select logo, as in Figure 6.13.

Figure 6.13. Applying the ID to the logo.

Once you have applied your ID to the logo, it should jump up to the top left
corner of the document. Dreamweaver will also highlight the image; this is part
of Dreamweaver’s Layer visualization feature set, which is designed to help you
see where absolutely positioned elements are located within the document.

The Top of the Header Area
Next, we’ll create a style for the top part of the header, which will match up with
the top half of the logo image. Create another CSS rule using the Advanced Se-
lector Type and the Selector #header-top.

1. In the Background category, give this rule a background color of #E9ECE4 to
match that of the logo image.

2. In the Block category, set Vertical Alignment to bottom, which will align the
content of this element to the bottom of its content area.

3. In the Box category, set the height of the area to 65 pixels.

Click OK. We now need to add a div with the ID header-top to the document.
This will create the lighter colored stripe in the header, and will contain the
tagline, “Inspiration for coders,” as well as the accessibility buttons. To do so,
you’ll need to switch into Code View, for a couple of reasons: firstly because,
when you view the page in Design View, the logo is positioned over some of the
elements that you’ll need to select, and secondly, because Dreamweaver may

140

Chapter 6: Constructing the Layout with CSS

have added some additional paragraph tags that you’ll need to remove before
you continue.

Find the logo image in the code; if <p> and </p> tags wrap the image and the
tagline, remove them. This section of code should look like this:

File: homepage-layout-strict.html (excerpt)

 <img src="img/logo.gif" alt="Code Spark" width="290"
 height="160" id="logo" />Inspiration for Coders
 <p>Page Controls</p>

 <img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35" />

 <img src="img/control_smaller.gif"
 alt="Decrease Text Size" width="43" height="35" />

 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />

 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

Select the code from the point immediately before the tag through to the
end of the tag, then click the Insert Div Tag button in the toolbar. This
command works in Code View in the same way that it does in Design View.
When the Insert Div Tag dialog appears, as shown in Figure 6.14, select the ID
header-top from the drop-down, click OK, and return to Design View.

Figure 6.14. Accessing the Insert Div Tag dialog in Code View.

141

The Top of the Header Area

Design View may start to look strange in at this point; we’re manipulating one
part of the document using CSS, while leaving others untouched. Don’t worry:
things will look better as we continue.

The header-top div contains the tagline and accessibility buttons. We’ll start
by working on the tagline, which is currently hiding behind the logo image. Let’s
use CSS to position it within the header, where it can be seen. Create a new CSS
rule, this time choosing to create a Class, and name it .tagline, as depicted in
Figure 6.15.

Figure 6.15. Creating a CSS class named .tagline.

Now, complete the following steps within the CSS Rule Definition dialog, as
depicted in Figure 6.16:

1. In the Box category, give the class a top padding of 2 ems, making sure that
you uncheck the Same for all checkbox.

2. While you’re in the Box category, set the top, right and bottom margins to
0, and set the left margin to 300 pixels. This will ensure that the tagline
doesn’t overlap the logo image.

3. Still in the Box category, set Float to left to move this element to the left of
the page.

4. In the Type category, select Verdana, Arial, Helvetica, sans-serif from the Font
drop-down. This instructs the browser to display the text in Verdana, or, if
Verdana isn’t available, one of the alternative fonts listed. Note that "sans-
serif" is not actually a font, but a way for us to instruct any browser to display
its default sans-serif font.

142

Chapter 6: Constructing the Layout with CSS

5. Also in the Type category, set Size to 100%, Weight to bold, Style to italic,
and Color to #3C582F.

6. Click OK to create the rule.

Figure 6.16. Setting the type properties for the tagline.

Making Whitespace with Padding and Margins

If you’re just starting out with CSS, you may get confused as to the difference
between "padding" and "margins." They both seem to do the same thing:
create whitespace around an element. However, there is a subtle difference,
and understanding it will help you to deal with your own complex CSS lay-
outs.

❑ Padding is the space between the content of the element and its border.
You can think of padding as being "inside" the element.

❑ Margin is the minimum space between the element’s border and the
border of the nearest element on each side, so margin can be thought of
as being "outside" the element.

143

The Top of the Header Area

A good way of visualizing this is to create an element with some padding, a
border, and some margin, and to then set a background color for that element.
You should see the padding display as the colored area inside the border,
while the margin is the uncolored area outside the border, as shown in Fig-
ure 6.17.

Figure 6.17. Displaying padding inside the border.

To apply the tagline rule we’ve just created, switch to Code View. As the tagline
is still hidden under the logo, we’ll need to add the class to the code by hand.
We’ll use a tag to apply this class to the text. You can use a tag
whenever you want to style some text that’s part of a larger block of text, such
as a phrase or a sentence within a paragraph.

So, find the tagline, and edit the code to produce the following:

File: homepage-layout-strict.html (excerpt)

 <div id="header-top"><img src="img/logo.gif" alt="Code Spark"
 width="290" height="160" id="logo" />
 Inspiration for Coders
 <p>Page Controls</p>

Switch back to Design View, and the tagline should display to the right of the
logo image.

The Accessibility Buttons
The final part of the top section of the heading includes the accessibility buttons.
Create a new CSS rule with the Advanced Selector Type and the Selector #controls.
Then, access the CSS Rule Definition dialog:

1. In the Type category, select Verdana, Arial, Helvetica, sans-serif from the Font
drop-down. Set the size to 70%, and the color to #72746D.

144

Chapter 6: Constructing the Layout with CSS

2. In the Block category, select right from the Text align drop-down to align the
controls to the right of the display.

3. In the Box category, set the top margin to 0.2 ems and the right margin to
60 pixels, and select right from the Float drop-down. This will move the
controls to the right of the page, while giving them a margin of 60 pixels, so
that they’re not up against the edge of the window.

Click OK. In Code View, select the section of markup that deals with the access-
ibility buttons:

File: homepage-layout-strict.html (excerpt)

<p>Page Controls</p>

 <img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35" />

 <img src="img/control_smaller.gif"
 alt="Decrease Text Size" width="43" height="35" />

 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />
 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

Use the Insert Div Tag button to wrap this section in a div with the controls ID.

If you view your page in Design View, you can see that our positioning of the
page elements is coming together. By using the CSS float property to float the
tagline and controls left and right respectively, we have enabled them to display
at opposite ends of the header space that remained after we added the logo: the
300 pixels of left margin that we placed on the tagline moves this element clear
of the logo.

In Design View, the page controls should be outlined with a dashed line, as
Dreamweaver now recognizes these as a single positioned element. If you click
on the dashed line, the right margin we added will display as a crosshatched area,
as shown in Figure 6.18.

145

The Accessibility Buttons

Figure 6.18. The margin on the controls div.

The last thing that we need to do with this top part of the header is to have the
accessibility buttons display horizontally, rather than looking like a bulleted list.

Create a new CSS rule with the Advanced Selector #controls ul, which will style
any tag inside the controls div. This is called a descendant selector, and
is the most common type of contextual selector. Give this rule a margin and
padding of 0 pixels on all sides within the Box category; then, do exactly the same
for #header p. Next, create a CSS rule for #controls li. In the Block category,
select inline from the Display drop-down, as shown in Figure 6.19.

Figure 6.19. Selecting inline form the Display drop-down.

A Note on Syntax

We’ll use syntax similar to #controls li throughout this chapter. This
selector applies styles to any li element that’s contained within an element
that has the ID of controls. However, it won’t affect other li elements
found elsewhere within the document.

Click OK, and your accessibility buttons should display on a single line. Did you
notice that we didn’t need to assign an ID to the div, as we have previously? We
had already applied the ID controls to a div in the page, and the last three
styles dealt with any ul, p or li elements located inside the controls element,
so the styles are applied without our needing to apply any additional markup.

146

Chapter 6: Constructing the Layout with CSS

Your layout should look similar to Figure 6.20 at this point.

Figure 6.20. The layout after the top heading area is styled.

Have a look at that layout in a browser, too: Dreamweaver displays CSS fairly
well, but there will likely be differences between the Dreamweaver display and
the document’s appearance in a Web browser. You should check your work in a
browser regularly; we’ll discuss browser support for CSS towards the end of this
chapter.

The Main Navigation
We can now finish off the header by styling its bottom portions, including the
main navigation: that’s currently hiding somewhere behind the logo.

Create a new CSS rule with the selector #header-bottom. Give this rule a back-
ground color of #D9DDCF and a height of 31 pixels to match the bottom part of
the logo. Click OK.

As you’ve probably realized, we’ll need to wrap the contents of the bottom part
of the header with a div. In Code View, select the list that contains the main
navigation, including the and tags, click the Insert Div Tag button and
select the #header-bottom ID, as shown in Figure 6.21.

147

The Main Navigation

Figure 6.21. Wrapping the main navigation.

We can now address the unordered list that’s being used for the main navigational
elements. As with the accessibility buttons, we’ll want to display these list items
horizontally, rather than as a list in the default style of the browser.

First, we need to style the ul element itself. As before, we can address this ul by
using a selector that defines a CSS rule for every ul within header-bottom; this
saves us from adding unnecessary markup to the document. Create a new CSS
rule for the selector #header-bottom ul.

In the Box category, give this element a margin of 0 pixels; then set the padding
to 5 pixels on the top, 320 pixel on the left, and 0 pixels on the right and bottom,
as shown in Figure 6.22. The left padding will push the navigation elements
along, giving them clearance from the logo image.

Figure 6.22. Using padding to clear the navigation links from the
image.

Now, create a new CSS rule for #header-bottom li.

148

Chapter 6: Constructing the Layout with CSS

Under Type, set the Font to Verdana, Arial, Helvetica, sans-serif; set the Size to
90%, the Weight to bold, and the Style to italic. Under Block, set Display to inline,
which will cause the list to display horizontally. Under Box, give the li a right
margin of 2.4 ems. This will space the links out across the display. Click OK. Your
list of navigation links should now display horizontally within the bottom part
of the header.

Styling the Navigation Links
Next, let’s tidy up the header by changing the color of our navigational links. To
do this, we’ll style the pseudo-classes of the links. Links have a number of states
that can be styled, including link (a link to a page that you haven’t visited yet),
visited (a link to a page you have visited), hover (which occurs when you mouse
over the link), and active (which occurs when you click on the link, but before
the browser loads the next page). Since more than one of these may apply at
once, you don’t have to style all of them to style a link; in this case, we need to
style just the two mutually exclusive states: link and visited.

Let’s start with link. Create a new CSS rule in Dreamweaver, select Advanced
as the Selector Type and enter the Selector #header-bottom li a:link, as illus-
trated in Figure 6.23. This will style any a element in its link state (a:link)
within any li element that is inside header-bottom; the style won’t affect any
other links on the site.

Figure 6.23. Styling the header navigational links.

In the CSS Rule Definition dialog, select the Type category, give the links a color
of #3C582F, and check the none checkbox in Decoration, as shown in Figure 6.24:
this removes the underline that most browsers display on links.

149

Styling the Navigation Links

Figure 6.24. Setting text-decoration to none.

The Question of Link Usability

In this case, the links are quite obviously a navigation element, so, even
though we’ve removed the links’ underlines, people should still instantly re-
cognize them as links. It’s a bad idea, from a usability viewpoint, to remove
the underlines from non-navigational links, and to rely on some other feature
to differentiate those links from the rest of the text. Many people find it
difficult to differentiate between colors, and may not see the links at all; al-
ternatively, they may think the links are simply highlighted text. The con-
vention of using underlines to identify links is widely understood.

After clicking OK to create this style, repeat the process for #header-bottom li
a:visited.

We’ll finish off the header by removing the blue borders around the accessibility
buttons. Before the advent of CSS, you may have done this by adding border="0"
to every tag in the document, but with CSS we can quickly and easily
remove these blue borders from every linked image in the document.

Create a new CSS rule, select Tag as the Selector Type, and find img in the Tag
drop-down list. In the CSS Rule Definition dialog, choose the Border category
and set Width to 0 pixels. This will turn off the blue borders. At this point, shown
in Figure 6.25, you should begin to see the layout taking shape.

150

Chapter 6: Constructing the Layout with CSS

Figure 6.25. The layout displaying in Firefox.

Although we have added to the document by way of wrapping certain sections
in divs and spans, and giving them IDs and classes, we have not in any way af-
fected the basic semantic structure of the document: how it will be read out in a
screen reader, or displayed on a text-only device.

At this point, your style sheet should look something like the code shown below.
If you’re using longhand, rather than shorthand styles, it might be somewhat
lengthier!

File: inc/main.css

body {
 font-size: 1em;
 color: #000000;
 background: #FFFFFF;
 margin: 0px;
 padding: 0px;
}
#header {
 width: 100%;
}
#logo {
 position: absolute;
 left: 0px;
 top: 0px;
}
#header-top {
 background: #E9ECE4;
 vertical-align: bottom;
 height: 65px;
}
.tagline {
 margin: 0px 0px 0px 300px;
 float: left;

151

Styling the Navigation Links

 padding-top: 2em;
 font: italic bold 100% Verdana, Arial, Helvetica, sans-serif;
 color: #3C582F;
}
#controls {
 font: 70% Verdana, Arial, Helvetica, sans-serif;
 color: #72746D;
 text-align: right;
 float: right;
 margin-top: 0.2em;
 margin-right: 60px;
}
#controls ul {
 margin: 0px;
 padding: 0px;
}
#controls p {
 margin: 0px;
 padding: 0px;
}
#controls li {
 display: inline;
}
#header-bottom {
 background: #D9DDCF;
 height: 31px;
}
#header-bottom ul {
 margin: 0px;
 padding: 5px 0px 0px 320px;
}
#header-bottom li {
 font: italic bold 90% Verdana, Arial, Helvetica, sans-serif;
 display: inline;
 margin-right: 2.4em;
}
#header-bottom li a:link {
 color: #3C582F;
 text-decoration: none;
}
#header-bottom li a:visited {
 color: #3C582F;
 text-decoration: none;
}
img {

152

Chapter 6: Constructing the Layout with CSS

 border: 0px;
}

You should be able to identify the different selectors, and see how Dreamweaver
has created the style sheet using the values you’ve entered into the CSS dialogs.
If you make any changes directly to the style sheet file itself, Dreamweaver will
recognize them.

The Properties Pane of the CSS Panel
You can also edit your CSS using the Properties Pane of the new unified CSS
Panel in Dreamweaver 8, as shown in Figure 6.26. As you created your layout,
you may have noticed the CSS rules that you created were displayed in the top
half of the CSS Panel. If it’s not already selected, select All at the top of the CSS
Panel. A list of the CSS rules that you created as you styled the header area
should appear in the top part of the CSS Panel. If you select any of these rules,
the properties that make up that rule will display in the bottom half of the panel.

If you edit any of the properties in the panel, that change will immediately be
reflected in Design View, and in your CSS file; you can also add new properties
via this panel. The Properties Pane is a very useful tool for editing CSS, particu-
larly when you’ve already created CSS rules, and you just want to try tweaking
colors, margins, or padding: the Properties Pane lets you avoid opening up the
CSS Rule Definition dialog.

153

The Properties Pane of the CSS Panel

Figure 6.26. The Properties Pane of the CSS Panel.

The Content Area
It’s now time to start creating rules for the main content area of the page, which
we’ve already wrapped in a div with an ID of content. Back in Design View,
create another new CSS rule just as you did for #header, naming this one #con-
tent.

In the CSS Rule Definition dialog, choose the Box category. Under Margin, deselect
the Same for all checkbox, and set a top margin of 80 pixels, to provide 80 pixels
of space between the top of the content and the bottom of the header. Give it a
right margin of 320 pixels, which will leave space for the navigation menu, and
a left margin of 40 pixels, to provide 40 pixels of space between the content and
the left-hand edge of the browser window. These measurements are applied to
the dialog in Figure 6.27.

Select the Type category and select Verdana, Arial, Helvetica, sans-serif as the font,
giving it a size of 80%. When you click OK, this change will take effect immedi-
ately, as we’ve already got a div with the ID content. If you select the content
div in Design View by clicking on its dotted border, as shown in Figure 6.28,

154

Chapter 6: Constructing the Layout with CSS

the content area is outlined, and the margins that we created display clearly as
crosshatched areas.

Figure 6.27. Setting the margins for #content.

Figure 6.28. content selected in Design View

155

The Content Area

The Content Sections
The page content is divided into article boxes, as shown in Figure 6.29. Our next
job is to create these blocks of content; then, we’ll style their contents.

Figure 6.29. Four of the six article boxes.

Using the Advanced Selector Type, create a new CSS rule for the selector #content
.homepage-box. This descendant selector will apply to anything with the class
homepage-box inside a div with the ID content. In the Box category, set the
value of Float to left and set a width of 49%. In the Border category, uncheck all
of the Same for all checkboxes, and add a solid, 1 pixel top border with a light
green color of #8A9877. Click OK. We now need to apply the class to the blocks
on our homepage.

Select the contents of the first box from the heading, "ASP is from Mars - PHP
is from Venus," right down to the end of the paragraph before the next heading.

156

Chapter 6: Constructing the Layout with CSS

If you do this in Design View, flick into Code View to make sure you’ve selected
all of the tags.

Click the Insert Div Tag button, and from the Class drop-down select homepage-
box, as shown in Figure 6.30.

Figure 6.30. Inserting a div tag with the class homepage-box.

Click OK to wrap the selection in a div tag. Now, select the next box’s contents
and repeat the process. As we have created a class for our homepage boxes, we
can apply it multiple times to as many boxes as we have; if we’d used an ID, we
could only apply it once. Continue to apply this class to each of the six sections
of the homepage content.

Once that’s done, in Design View you should see that you have two columns of
content within the content area. We have achieved this by using the CSS float
property. Floating the boxes left in a confined area with a width of 49%1 means
that we can fit two boxes into the full width of the content area, as shown in
Figure 6.31.

If you open the page in a browser, you’ll see that our layout is coming along
nicely! But, if you resize the window, you may well spot a small problem with
this layout. Sometimes the boxes will seem to jump around: sometimes only one
will display on a line, while at other times, three or four may display.

1Why not 50%? Some current browsers like to round up fractional pixel dimensions, so 50% plus
50% can sometimes mean more than 100%, which would break our layout.

157

The Content Sections

Figure 6.31. Viewing the floated article boxes.

We can cure this browser bug by adding an empty div between the rows of
homepage boxes (i.e. after every two boxes). Adding unnecessary markup does
constitute a hack that we’ll use to get the browser to behave exactly as we want
it to; however, importantly, this additional code will not damage the accessibility
of our carefully crafted document: divs and spans are generally ignored by altern-
ative devices. This empty div is assigned the clear CSS property to make sure
that no more content appears in the current row.

When using floats, you’ll often need to do this clearing of the next element. In
fact, we’ll need to do so again later, when we style some more of the content. So,
let’s make a reusable clear class.

The Clear Effect

You don’t always need to add a redundant element in order to get the
clearing effect: sometimes, you can instead add the clear property to the
CSS rules for the element that follows the floated section.

Create a new CSS rule with a class selector of .clear, and in the Box section of
the CSS Rule Definition dialog, set Clear to both.

158

Chapter 6: Constructing the Layout with CSS

Then, back in your document, switch into Code View. Place your cursor after
the closing div of the second homepage box, and before the opening div of the
third.

Click the Insert Div Tag button, select the class clear, ensure that At Insertion point
is selected, and click OK. Dreamweaver will insert the tag along with some dummy
text. Delete this text, so that all you’re left with is the following:

File: homepage-layout-strict.html (excerpt)

<div class="clear"></div>

Repeat this process in between the fourth and fifth homepage boxes. The problem
of the boxes jumping about should now be resolved in all browsers.

Using Dreamweaver Visual Aids
To help see how these boxes relate to each other, you can switch on Dream-
weaver’s CSS Layout Background visual aid. To turn it on or off, select View >
Visual Aids > CSS Layout Backgrounds. This displays each element with a different
background color, as shown in Figure 6.32—not the prettiest of effects, but very
helpful in visualizing how your CSS is positioning the various page elements.

Figure 6.32. CSS Layout Backgrounds turned on.

159

Using Dreamweaver Visual Aids

With a basic structure in place for this section, we can concentrate on how we
want the elements to look.

The Headings
Let’s style the headings that appear on this page. Here, we have a level one
heading, “Latest Ideas,” as well as level two and three headings contained within
the boxes. We’ll start with the level one heading, creating a new CSS rule using
the selector #content h1; this rule will style all h1 elements within the content
div.

1. In the Type category, set Weight to bold, Style to italic, Size to 120% and the
Color to #3C582F.

2. In the Block category, set Text align to right.

3. In the Box category, set the bottom padding to 0.2 ems. Set all other padding
to 0 pixels, and all of the margins to 0 pixels as well (you can use the Same
for all checkbox if you wish).

Click OK, and the styles should automatically apply.

To style the level two headings, create a new CSS rule for #content h2.

1. In the Type category, set the value of Weight to bold, Size to 120%, and Color
to #3C582F.

2. In the Box category, set Padding to Top 0 pixels, Right 0 pixels, Bottom 0.1
ems and Left 0 pixels. Set Margin to Top 1.5 ems, Right 0.5 ems, Bottom 0
pixels, and Left 0.5 ems.

Our linked headings now display with the default link color. We can now create
for links a style that will affect any links within the content div, including these
headings. To do so, create a CSS rule for the selector #content a:link and
simply set the color to #3C582F in the Type category. Repeat for #content
a:visited. Finally, create a CSS rule for the selector #content h3. In the Type
category, set the Size to 100%, the Color to #000000, and click OK.

The Contents of the Homepage Boxes
Our boxes contain various elements that need to be styled with CSS. I’m going
to start with the boxes that detail the latest articles; I want the author picture to

160

Chapter 6: Constructing the Layout with CSS

display alongside the text about the author, instead of above it. We can achieve
this using the float property.

Create a new CSS rule for the selector #content .homepage-box .author-pic:

1. In the Box category, set the value of Float to left.

2. Set your Margins: the right margin to 20 pixels, and the left to 4 pixels.

3. Set Width to 104 pixels.

Having created this class, we need to apply it to the author images. Select the
first of the four author images, and use the Property Inspector to apply the class,
as shown in Figure 6.33.

Figure 6.33. Using the Property Inspector to apply the class
author-pic.

Apply this class to all four of the author images.

The article boxes are really starting to take shape now, but the article text doesn’t
look so great: the text of an article on the left runs right up to the article on the
right. Let’s add a margin to the right-hand edge of any paragraph within a
homepage box. Create a new CSS rule for the selector #content .homepage-box
p, and in the Box category, apply a right margin of 20 pixels. To highlight the
author credit and article date, let’s establish a separate class. Create a new CSS
rule for #content p.authorcredit.

1. In the Type category, set a Color of #8A9877.

2. In the Block category, set the value of Text align to right.

161

The Contents of the Homepage Boxes

Apply this class to the author credits by selecting each credit and, using the
Property Inspector as illustrated in Figure 6.34, applying the authorcredit class
to it. Make sure you select the entire author credit: you can do this by clicking
the <p> in the Tag Selector at the bottom of the document window.

Figure 6.34. Applying the authorcredit class to the author credit
line.

In our original page design, the date appears in slightly smaller text than the au-
thor name. We can achieve this tweak by creating a class for the date and applying
it with the help of a span. Create a new CSS rule for the selector .authorcredit
.date, then:

1. In Type, set the Font Size to 80%.

2. In Block, set Vertical Alignment to top.

3. In Box, set the left Margin to 1 em.

Click OK, then select the date text in the first article box. One way to apply this
class using a span is to right-click on the selection, and choose Quick Tag Editor….
This process is depicted in Figure 6.35.

162

Chapter 6: Constructing the Layout with CSS

Figure 6.35. Selecting Quick Tag Editor….

A box will open; here, you can enter the opening tag of the element that you wish
to wrap around the selection. Into this box, type , as shown
in Figure 6.36.

You can either repeat this process to apply the date class to the other article
dates on the page, or take a handy shortcut: after selecting each date, simply select
date from the Style menu in the Property Inspector. Automatically, Dreamweaver
will create for you the span required to apply the class.

163

The Contents of the Homepage Boxes

Figure 6.36. Using the Quick Tag Editor to add a span to the date.

Styling Tables
We have a table that displays a list of the latest articles in one of our article boxes.
We can use CSS to style these tables so that they look like those used in the
design layout, as shown in Figure 6.37.

Figure 6.37. The tables as shown in the layout being created.

The “Recent Tutorials” header has already been styled, along with the other level
two headings on the page. In order to make this section look like the example in
the layout, we need to add a button that can eventually be used to link to an
RSS feed.

Place the cursor just before the leading R in “Recent Tutorials,” and hit Enter
to create a line above the header. This new line will be created as a heading, so
use the Property Inspector to make it a paragraph. Insert into this line the rss.gif
button image using the Insert Image button in the toolbar; the results are shown
in Figure 6.38.

164

Chapter 6: Constructing the Layout with CSS

Figure 6.38. The rss.gif image appearing.

To position this button to the right of the heading, we can float it right. Create
a new CSS rule, choose the Advanced selector type, and type a selector of
.homepage-box .rss. In the Box category, simply set Float to right, and the Width
to 40 pixels; then click OK.

In Design View, select the <p> tag that wraps the RSS image, and apply the rss
class to it. The RSS image should now display to the right of the heading.

Let’s now style any tables that appear within these content boxes. Create a new
CSS rule for the selector #content .homepage-box table. This selector specifies
any table located inside any element with the class homepage-box that appears
inside an element with the ID content. In the Box category, apply a width of
98% and a top margin of 1 em, to allow some space between this element and
the one above it. Click OK.

We also want to add to this selector a property that cannot be added through
the CSS dialog. To add it, select the newly created #content .homepage-box
table selector in the All Rules list of the CSS Panel; the rule’s properties will be
listed. Click Add Property, and type border-collapse into the drop-down list
that appears. In the Value field to the right, select collapse from the drop-down
list. This property will remove the space between the cells in the table when they
display in the browser. Save and close main.css.

We can now style the column headings: the <th> tags. Create a new CSS rule
for #content .homepage-box th.

165

Styling Tables

1. Under Type, set Color to #72746D, and Size to 70%.

2. Under Background, set the background color to #EAEAE2.

Click OK: the above changes should take effect immediately, styling the table’s
header row. We can now create some basic rules for the td elements within these
tables. Create a new CSS rule for #content .homepage-box td.

1. Under Type, set Size to 90%.

2. Under Box, set the top padding to 0.3 ems and the bottom padding to 0.3
ems, so that space appears between the text and the border of the cell.

Click OK to see the rule applied.

In this design, we wish to style alternating rows to have a background color, which
makes the table easier to read. We can add this row color by creating a special
class for every second row. Create a new CSS rule for the selector #content
.homepage-box tr.even. The tr.even part of this selector restricts this style
rule to tr elements with the class even. Under Background, specify a background
color of #F4F4F0.

Apply this class to the even rows of both tables by selecting the <tr> tag using
the Tag Selector at the bottom of the document window, and applying the class
using the Style drop-down in the Property Inspector. At this point, you should
have a table that looks something like Figure 6.39.

Figure 6.39. The tables after styling the alternate row colors.

Our final step will be to add the small images that appear to the left of each row;
we’ll do so using specially designed classes. First, let’s create a basic bullet class.

166

Chapter 6: Constructing the Layout with CSS

Create a new CSS rule for the selector #content .homepage-box td.bullet.

1. In the Background category, browse for a background image by clicking the
Browse button. Select tbl_bullet.gif from the code archive.

2. Also in the Background category, select no repeat from the Repeat drop-down,
and set Horizontal position to 3 pixels.

3. In the Box category, set Padding left to 28 pixels. This will move the text
along so that it does not display on top of the background image we’ve just
added.

Apply this class to the first cell in each row of the table by selecting the <td>
using the Tag Inspector, and setting the class using the Property Inspector.

After applying the class to all the rows, you’ll probably notice that on the even
rows, the white background color of the bullet will display as shown in Figure 6.40.

Figure 6.40. The bullet’s white background showing on even rows.

With such a pale background color, you could probably fix this issue simply by
recreating the bullet with a transparent background in your graphics application.
However, if your table rows had very different background colors (for example,
white and deep blue) you would probably need to create images for each row.

Rather than applying different classes to the td in each row, we can use the fact
that the even tr already has a different class applied to display a different image
(with the correct background color) in even rows.

Create a new CSS rule for #content .homepage-box tr.even td.bullet.

1. In Background, select the image for the backgrounds of the even rows:
tbl_bullet_even.gif. Once again, set this to no repeat, and set its Horizontal
position to 3 pixels.

2. While you’re in Background, set the background color to #F4F4F0.

167

Styling Tables

3. In the Box category, set the left padding to 28 pixels. This will move the text
along so that it doesn’t overlap the background image we just added.

Click OK. This style will apply automatically because the complex selector that
we’re using for this rule relies on the classes we have already set up in the docu-
ment: we have defined it for any td with a class of bullet within a tr with a
class of even.

The Browser Statistics Section
The end is almost in sight! We just need to style the section of the content area
that displays browser statistics, as illustrated in Figure 6.41.

Figure 6.41. The browser stats section of our design layout.

168

Chapter 6: Constructing the Layout with CSS

The heading should already be styled, as we’ve styled all h2 headings within
content. So, the first thing we’ll want to do is to move the pie chart image to
display to the right of the list. We do this using the float property.

1. Create a new CSS rule for #content .homepage-box .browser-stats-image.

2. In the Box category, set the value of Float to right and give it a top margin of
10 pixels, a bottom margin of 20 pixels, and a width of 180 pixels.

3. Click OK.

4. Apply the browser-stats-image class by selecting the pie chart image and
using the class drop-down in the Property Inspector.

After applying this class, you’ll note that the paragraph below the list moves up
to display alongside the image, because the image has been floated.

To stop this from happening, we can use the clear CSS property. Create a new
CSS rule for the selector #content .homepage-box .browser-stats-discussion,
and under Box set Clear to right. Click OK. Then, to apply the rule, select the two
paragraphs of discussion following the list (switch into Code View if necessary
to ensure that you’ve got both pairs of <p> and </p> tags fully selected), and
then click the Insert Div Tag button in the Layout section of the Insert Toolbar.
With Wrap around selection selected, pick browser-stats-discussion from the Class
drop-down list. Our discussion paragraphs will now clear the image, to begin on
a new line below it.

To style the list, create a new CSS rule for the selector #content .homepage-
box .browser-stats-list, and, under Type, set Weight to bold. Click OK, then
select the tag within the Tag Selector and apply the new
browser-stats-list class. Each of the list’s bullet points has a different colored
block as its bullet: these correspond to the colors on the pie chart. To create this
effect, we will need to establish a class for each browser represented in the stats,
and apply those classes to the individual tags.

1. Start with the IE6 list item, creating a new CSS rule for the selector #content
.homepage-box .browser-stats-list li.ie6.

2. In the List category, browse for the bullet image ie6-bullet.gif.

3. Click OK.

4. Select the first list item and apply the ie6 class.

169

The Browser Statistics Section

5. Repeat for the rest of the list items: match moz with moz-bullet.gif; ie5
with ie5-bullet.gif; opera with opera-bullet.gif; safari with safari-
bullet.gif; and other with otherbrowser-bullet.gif.

The results are shown in Figure 6.42.

Figure 6.42. The tables and browser stats in Firefox.

The Sidebar
We can now move on to the final section of our layout: the sidebar. In Design
View, you can clearly see that the content leaves a margin down the right-hand
side of the page. We’re going to position the sidebar within this space.

Create a new CSS rule with the advanced selector #nav. In the CSS Rule Defini-
tion dialog, select the Positioning category. Set Type to absolute, and set Width to
266 pixels—the width of the sidebar. In the Placement section, set Top to 120
pixels, and Right to 10 pixels, which will position the navigation bar into the
space left by the margin of the content area, as shown in Figure 6.43.

170

Chapter 6: Constructing the Layout with CSS

Figure 6.43. Setting the position for nav.

Select the Background category. We’re going to add the top image of this panel
using a background image. Select the image nav_top.gif, then set Repeat to no
repeat and the background color to #EAEAE2. Click OK.

A background with a curved top should appear on the sidebar, as shown in Fig-
ure 6.44. The curved top is achieved by the background image, which is a simple
curved rectangle top with a color that’s the same as the background.

The sidebar is split into sections, each of which has a heading. To create these
sections, make a new CSS rule for #nav .section.

1. In Background, select the background image nav_headings.gif and set Repeat
to no repeat.

2. In Box, set top padding to 20 pixels and top margin to 30 pixels.

3. Click OK.

171

The Sidebar

Figure 6.44. The sidebar after the background color and image
are added.

We’ll use the Insert Div Tag button to apply this class. Switch to Code View and
select the search section, from the heading “Search this site,” down to and includ-
ing the closing </form> tag. Click the Insert Div Tag button and select the class
section to wrap the selection in a div with the class of section.

Repeat this for the other sections of the sidebar. The background image bar
should display roughly underneath the level three headings.

We can now style the headings by creating a new CSS rule for #nav h3.

1. Under Type, set Size to 120%, Font to Verdana, Arial, Helvetica, sans-serif, and
Color to #3C582F.

2. Under Block, set Text align to center.

3. Under Box, set padding to 0 pixels, top margin to 0.2 ems, and bottom
margin to 2 ems.

4. Click OK.

We now need to look at some more specific styles for the different sections of
the sidebar. Let’s look at the search box first.

172

Chapter 6: Constructing the Layout with CSS

The Search Box
Create a new CSS rule for #nav p to style the p element that wraps our search
form field and its label.

No <p>?

If you chose to create the design using the XHTML Transitional layout, you
might not have a paragraph element wrapping your text box and its label.
Add one now to follow these steps as they are described.

We need only create one property for this rule: go to the Box category and set
the left margin to 35 pixels, then click OK.

Next, create a new CSS rule for #nav label, to style the label of the search box.

1. In the Type category, set Size to 70%, Font to Verdana, Arial, Helvetica, sans-
serif, Weight to bold and Color to #3C582F.

2. Click OK.

The last thing that we need to do in this area is to make a new CSS rule for #nav
.searchtxt. This will style the form field itself.

1. In the Type category, set Font to Verdana, Arial, Helvetica, sans-serif.

2. In the Box category, set Width to 120 pixels.

3. In the Border category, apply a solid, 1 pixel border with a color of #7F9DB9.

4. Click OK.

Figure 6.45. The search section of the sidebar after styling the
form.

173

The Search Box

Select the search form field and apply the searchtxt class using the Property
Inspector. Your results should replicate those shown in Figure 6.45.

The Topics List
The next thing we need to do is to style the list of topics. This is the section that
appears after the search box, giving users a quick route to the topics of their
choice.

1. Create a new CSS rule named #nav ul.topics.

2. In the Box category, set Padding to 0 pixels, the right margin to 20 pixels,
and the left margin to 35 pixels.

3. In the List category, set Type to none to remove the bullets from the list.

4. Click OK.

5. Apply the topics class to the topics list by selecting the tag using the
Tag Selector, then applying the class with the Property Inspector.

Let’s style the individual li elements within this list.

1. Create a new CSS rule named #nav ul.topics li.

2. Under Type, set Font to Verdana, Arial, Helvetica, sans-serif, Size to 90%, and
Color to #3C582F.

3. Under Background, set the background color to #D9DDCF. Browse for the image
nav-topics-bullet.gif, set Repeat to no repeat, set Horizontal position to
4 pixels, and Vertical position to center.

4. Under Box, set top padding to 0.2 ems, right padding to 0.4 ems, bottom
padding to 0.3 ems, and left padding to 26 pixels.

5. Under Border, the top and left borders should be 1 pixel, solid, with a color
of #EAEAE2; the right and bottom borders should be 1 pixel, solid, with a
color of #72746D.

6. Click OK to create the list styles shown in Figure 6.46.

174

Chapter 6: Constructing the Layout with CSS

Figure 6.46. The border settings for the list items.

The final step with this list is to style the links within it. Create a new CSS rule
for the selector #nav ul.topics li a:link.

1. Set Weight to bold, Color to #3C582F, and Text decoration to none.

2. Click OK.

Repeat this for #nav ul.topics li a:visited. The results should display as
shown in Figure 6.47.

175

The Topics List

Figure 6.47. The completed topics list.

The Articles Lists
The remaining lists are in a simpler format, so we can create our styles, then
simply apply the class to the list.

1. Create a new CSS rule for #nav ul.list.

2. In the Box category, set the padding to 0 pixels, the right margin to 20 pixels,
and the left margin to 60 pixels.

3. In the List category, browse for the image nav-list-bullet.gif.

4. Click OK.

5. Select each of the tags of the lists and apply the list class.

6. Create a new CSS rule for #nav ul.list a:link.

7. In the Type category select Font Verdana, Arial, Helvetica, sans-serif; set Size
to 80% and Color to #3C582F.

8. Click OK.

9. Repeat the links styling for #nav ul.list a:visited.

176

Chapter 6: Constructing the Layout with CSS

Rounding Out the Sidebar
The very final step for our sidebar is to add the bottom, curved image. To do
this, place your cursor outside of the final </div> tag that matches the last
opening <div class="section">. This should be the </div> that immediately
follows the last . You may need to switch into Code View to do this, as you
don’t want the image to end up inside a list item.

Insert an image and browse for nav_bottom.gif. In the Image Tag Accessibility
dialog that displays, select <empty> for Alternate text: this is a layout image,2 so
screen reader and text browser users don’t need to know that it’s there. Leave
Long description as it is, and click OK.

If you preview this page in Internet Explorer and take a look at the bottom of
the sidebar, you should see part of the background color showing through the
curved bottom image, as in Figure 6.48.

Figure 6.48. The background color showing below the image.

We can solve this problem by setting the image to display as a block level element.
To do this, create a new CSS rule for the selector .displayblock. The only thing
we need to do in this rule is go to the Block category and set the value of Display
to block. Click OK, select the bottom image and apply the displayblock class to
it.

2Yes, this is an example of non-semantic markup. The image will exist in the HTML document for
no reason other than to provide decoration when the document displays in visual browsers. The draft
CSS3 specification allows for multiple backgrounds for a single element, which would allow us to
achieve this effect with purely semantic markup, but as of this writing, Safari is the only browser to
support this specification. In the meantime, we’ll do our best to prevent this presentational markup
from impacting the document’s accessibility.

177

Rounding Out the Sidebar

If you now refresh your page in the browser, you’ll find that the line of background
color has disappeared.

CSS Validation and Browser Testing
Your layout is now complete! You should hopefully see something like the
screenshot in Figure 6.49 in Dreamweaver. The next step is to check your work
in a variety of browsers, and to validate the markup and the CSS to make sure
you haven’t introduced any problems.

Figure 6.49. The completed layout.

Validating the Code
The first step is to validate your XHTML document. We checked the basic doc-
ument at the end of the last chapter, before we began work on the CSS, but it is
possible that we have introduced a problem, perhaps incorrectly nesting a div,
or making use of a deprecated element. Validate the document as you did in
Chapter 4. If errors are returned, locate and fix them.

178

Chapter 6: Constructing the Layout with CSS

The next step is to validate the CSS. Unfortunately, Dreamweaver does not have
an inbuilt CSS validator, but we can use the W3C’s online validator3. As our file
is not online as yet, the easiest way to validate it is simply to paste its contents
into the box on the validation page. Open main.css, copy the entire contents of
the file to the clipboard, and paste them into the large text box in the validator
section Validate by direct input, as shown in Figure 6.50.

Figure 6.50. The CSS Validator.

Click the Check button, and the validator will return a page that indicates
whether or not your CSS is valid. As we have used Dreamweaver to write almost
all of our CSS, the validator should return, “No error or warning found”. If it
does, you have a valid CSS document.

3 http://jigsaw.w3.org/css-validator/

179

Validating the Code

http://jigsaw.w3.org/css-validator/

Browser Testing
As I’ve built this site, I’ve been checking my work in the Firefox Web browser.4

This is a good browser to use for checking, as it is one of the most standards-
compliant browsers available. Just as we are working to comply with standards,
browser manufacturers look to the standards when they write their browsers.
Newer browsers, such as Firefox and the latest versions of Internet Explorer,
Netscape and Opera, generally have better standards support than their prede-
cessors, although Internet Explorer 6 still leaves much to be desired. As we are
working to Web standards, we can be more confident that a newer browser will
display our work correctly.

At the time of writing, far more people use Internet Explorer than any other
browser: obviously, we can’t ignore them. Bugs with Internet Explorer’s interpret-
ation of CSS tend to be well-documented, as everyone has to deal with them. By
working in a standards compliant browser, then validating your CSS and markup,
you stand a good chance of being able to solve any problems quickly and easily.
You should be able to perform a quick Web search on any Internet Explorer
problems you encounter, and find a fix. If you work to have your page display
correctly in Internet Explorer first and foremost, you may well find your site is
almost impossible to get working without error in any other browser!

Checking our layout in IE6 didn’t give me any nasty surprises. There are a few
slight differences, but nothing looks wrong. I also have various other browsers
installed on my Windows computer, so I can have a look at the site in Netscape
7 and Opera 7, as well. These displays are shown in Figure 6.51. If you have access
to a Mac, check the site in Safari, the browser of choice for many Mac OS X
users.

4 http://www.mozilla.org/products/firefox/

180

Chapter 6: Constructing the Layout with CSS

http://www.mozilla.org/products/firefox/

Figure 6.51. The site as displayed in Opera, Netscape and Internet
Explorer 6 on Windows.

Get a Different Perspective

If you don’t have access to other browsers or operating systems, an excellent
way to check the display of sites in a range of browsers is through Websites
such as Browsercam,5 which offers a great number of broswers, and
Browsershots,6 which offers mainly Linux and Mac OS X-based browsers.

Since the site looks good in newer browsers, you might decide to consider a couple
of dinosaurs: Internet Explorer 5.01 and 5.5. These old browsers are still used

5 http://www.browsercam.com/
6 http://browsershots.org/

181

Browser Testing

http://www.browsercam.com/
http://browsershots.org/

by many people, though their CSS support is very spotty. Previously, users
couldn’t run more than one version of IE on their computers, which meant that
testing Websites for use on older versions of IE was very difficult. Thankfully, a
workaround has been found: you can now download and install older versions
of Internet Explorer7 alongside your current version.

On viewing our site in IE 5.5, I see immediately that there’s a problem. If you
look at the screenshot in Figure 6.52, you’ll see that the homepage boxes are
displayed one after the other, instead of appearing in two columns.

Figure 6.52. The homepage as rendered by Internet Explorer 5.5.

7 http://www.skyzyx.com/downloads/

182

Chapter 6: Constructing the Layout with CSS

http://www.skyzyx.com/downloads/
http://www.skyzyx.com/downloads/

You might think that, for a site aimed at Web designers who are likely to have
the most up-to-date browsers, this doesn’t really matter. However, the bug that
causes this problem is very common, so let’s have a look at how we can deal with
it.

Fixing the Site for IE 5.x

The bug arises because IE 5.5 doesn’t respect the width of the container in which
the homepage box divs sit: it thinks that the 49% width of the homepage box is
49% of the browser, not 49% of the content div. We could fix this for IE 5.5 by
giving content a width of 100%, but that would cause the page to be too wide
in standards compliant browsers.

What we can do to fix the problem is to use a CSS “filter” that will only apply
100% width on content if the browser is Internet Explorer 5 or 5.5. To do this,
open your main.css style sheet and find the #content rule (which should be
near the top).

Add the following CSS code below the existing rule:

File: inc/main.css (excerpt)

/* Hack for IE5.* which misinterprets the width */
* #content {
 width: 100%;
 w\idth: auto;
}
/* end hack */

A CSS filter is a technique that you can use to hide certain CSS rules or properties
from older browsers. It relies on the older browser not implementing some feature
of CSS (in this case, the fact that the browser is supposed to interpret \i as i).
When Internet Explorer 5 reads the above rule, it understands the width: 100%;
property, but ignores w\idth: auto; because it doesn’t understand the slash.
Other browsers that do understand the slash will see both width properties, and
the second one will override the first.

Have any Comments?

The note between the /* and */ is a comment in the CSS file; it serves to
remind us later on why this code is included. It’s a good idea to comment
any CSS hacks and filters you use so that, when you come back to the code
at a later date, you know what you’ve done and why.

183

Browser Testing

Save the style sheet and check the page again in Internet Explorer 5; it should
now render very similarly to other browsers. If you check the page in your other
browsers, you’ll see that nothing has changed.

There really isn’t enough space here to go into a lot of detail about fixing browser
incompatibilities. For a detailed look at how to troubleshoot CSS, you might like
to read over Chapter 7, Browser and Device Support, of my book, The CSS Anthology:
101 Tips, Tricks, & Hacks, also published by SitePoint.

Summary
This has been a long chapter covering a lot of ground. If you were new to CSS
or CSS positioning at the start of this book, I hope this chapter has demonstrated
the power of working with CSS to create a page layout, and given you some un-
derstanding of how the different properties can be used to change the page display
without compromising the document’s structure.

The layout that we have created in this chapter will be used as the basis of the
site; the heading and sidebar are common to the other pages on the site. While
we will be creating additional CSS as needed for other pages, we have now done
the bulk of the work that’s required to create our layout.

184

Chapter 6: Constructing the Layout with CSS

Accessibility7
We’ve already explored accessibility in some detail, but we haven’t yet looked at
what it means to build an accessible site. In meeting our objectives, it’s important
that we develop the site in adherence to the appropriate accessibility guidelines.
In this chapter, we’ll expand on what we’ve already discussed, and look more
closely at the guidelines.

Many people argue that building accessible sites is difficult, expensive, and not
something with which average Web designers should concern themselves. But
the fact remains that making accessible sites is a very easy way to communicate
your message to an audience that often finds it difficult to get hold of quality
information. Imagine you owned a traditional, bricks-and-mortar gift store. If
you wanted to make your products accessible to all potential customers, you
might create wider aisles, and add ramps and elevators, so that visitors with re-
stricted mobility could move around the store easily. Visually impaired shoppers
would need to have your products described to them, so that they could under-
stand what they were buying.

The online gift shop makes viewing products far easier for users with limited
mobility. By considering users who, because of the difficulty they experience using
a mouse, navigate using their keyboards, we can ensure that even those with
greatly limited mobility can move through our store and select products. By en-
suring that our document is easily read by screen readers, we can offer an excellent
experience to visually impaired users, providing full product descriptions for those

who cannot see images clearly, and thereby delivering a better shopping experience
than may be achieved in a physical store.

In this chapter, we’ll find out more about the different types of users who access
our site, and consider how accessibility benefits them. We’ll then look at the
Web Content Accessibility Guidelines in detail: this document, created by an
initiative within the W3C, represents the “standard” to which we work when
considering accessibility. We need to understand what the guidelines mean, so
that we’re able to put them into practice as we develop Websites that are to re-
main accessible in the future.

Will Considering Accessibility Stop us
Creating Exciting Designs?

It’s a common misconception that an accessible Website is one that displays large
text on a plain background, and is completely devoid of imagery. This is not the
case at all. In fact, in the course of our work to date, we’ve already taken large
steps toward the creation of an accessible site. For example, we’ve used standards-
compliant, structurally semantic XHTML, and we’ve kept our visual formatting
to the CSS style sheet, ensuring that our images and styles don’t affect the se-
mantic structure of the document itself. This approach, along with the creation
of an easy-to-understand interface that doesn’t require the perception of color
or images in order to be navigated, is sufficient to comply with the most basic
level of accessibility: WCAG Level A.

Which Users Benefit?
When considering accessibility, we often think of visually impaired users and, in
particular, those who use screen readers: devices that read aloud the text that
displays on the Web page. However, these are not the only users who will benefit
from accessible design, nor are they the only visitors we should consider as we
develop an accessible site.

Visually impaired users can have any of a range of specific needs. They may need
to use a screen reader; they might view the site using software that allows them
to zoom in on certain sections of the display; they could simply want to make
the site’s text larger using their browsers’ settings. A user who is unable to distin-
guish between colors might otherwise have perfectly good sight. This user’s re-
quirements will be very different from those with other visual impairments.

186

Chapter 7: Accessibility

Web users may experience a variety of mobility problems: if they have difficulty
using a mouse they may, instead, navigate the Web using their keyboards or
other devices. If you assume that everyone can point and click, your site will be
inaccessible to these users. Similarly, if your site uses sound, you should consider
the needs of deaf users: is the audio content you offer also provided in a text-
based format?

Finally, we must consider users with a variety of cognitive disabilities. To help
visitors with dyslexia, or disabilities that make it difficult to understand a complex
Website, we should make design decisions that make the site as easy to understand
as possible.

Which Guidelines are we Working to?
We’re Web designers and developers, not disability experts. How are we supposed
to create sites that can be accessible to all these diverse groups? Thankfully, we
don’t have to work out a solution alone. The guidelines issued by the W3C, and
governments around the world, provide guidance as to how we can create access-
ible sites. A host of additional assistance is available freely on the Web, and is
built into Dreamweaver 8.

The Web Accessibility Initiative (WAI)
The WAI is a group within the W3C that creates the Web Content Accessibility
Guidelines (WCAG) that we’ll follow here. The latest version of these guidelines
is WCAG 1.0, although, at the time of writing, version 2.0 of the guidelines is
in working draft format.

The guidelines have been developed to provide clear specifications for the creation
of accessible Websites. The current specification contains fourteen guidelines
that deal with specific issues relating to a variety of disabilities. These guidelines
are accompanied by checkpoints that allow us to confirm whether or not our sites
conform to each of the specifications. Later in this chapter, we’ll work through
these checkpoints to see which apply to our site, and whether our work conforms
to the specifications.

WACG Checkpoint Priorities
Each checkpoint in the WCAG has been assigned a priority level of 1, 2 or 3.
These priority levels help us to understand how important that checkpoint is,

187

Which Guidelines are we Working to?

and can be used to measure the “conformance level” of a document. There are
three conformance levels: A, Double-A (AA) and Triple-A (AAA). Let’s look at
them in more detail now.

Priority 1

A Web content developer must satisfy this checkpoint. Otherwise,
one or more groups will find it impossible to access information
in the document. Satisfying this checkpoint is a basic requirement
for some groups to be able to use Web documents.

—WCAG 1.01

These Priority 1 checkpoints identify the basic, fundamental steps you should
take to ensure that most people can access your site. As we’ll see, most of these
issues are very simple to address but, in meeting the specification, you do a lot
to create an accessible site. If your site satisfies all Priority 1 checkpoints, you’re
able to claim Level A conformance with the WCAG, and you can display the
Level A logo, shown in Figure 7.1, on your site.

Figure 7.1. The WAI Level A logo.

Priority 2

A Web content developer should satisfy this checkpoint. Other-
wise, one or more groups will find it difficult to access information
in the document. Satisfying this checkpoint will remove signific-
ant barriers to accessing Web documents.

—WCAG 1.02

Conforming to the Priority 1 and 2 checkpoints is an excellent aim and should
be possible, particularly for new sites that you’ve designed with accessibility in
mind. Complying with these checkpoints will make your site far more accessible;
it will also see you achieve Level Double-A conformance, the logo for which ap-
pears in Figure 7.2.

1 http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
2 http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-2

188

Chapter 7: Accessibility

http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-1
http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-2

Figure 7.2. The WAI Level Double-A logo.

Priority 3

A Web content developer may address this checkpoint. Otherwise,
one or more groups will find it somewhat difficult to access in-
formation in the document. Satisfying this checkpoint will im-
prove access to Web documents.

—WCAG 1.03

The Priority 3 guidelines include some checkpoints that are more difficult to
address, as well as some that are relevant only to relatively small groups of people.
It is always worth the effort to meet all of the relevant checkpoints, but these
guidelines are, to the WAI, of lesser importance than those in the first two groups.
If you address all Priority 1, 2 and 3 checkpoints, you’ll have reached Level-AAA
conformance. You can display the WAI’s Level-AAA conformance badge, shown
in Figure 7.3, on your site.

Figure 7.3. The WAI Level Triple-A logo.

Administering the Logo

You will sometimes see variations of the above logos displayed on Websites;
for example, accessibility validator Bobby has its own set of logos, and indi-
vidual designers sometimes make their own logos to fit in with the style of
the Website. These logos essentially mean the same thing: that the site has
achieved the level of conformance stated on the logo.

Anyone can download and use the logos if they believe that their work meets
the required standard of conformance. No “officials” make checks on sites
that use the logos, so they should not be considered a badge of approval from
the W3C, or any other organization. However, use of the logos does show
that the site owner or designer has considered accessibility issues in the

3 http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-3

189

WACG Checkpoint Priorities

http://www.w3.org/TR/WAI-WEBCONTENT/#wc-priority-3

process of designing the site, and reassures the visitor that they’ll more than
likely be able to access the site’s content.

Legislation
In addition to the WAI guidelines, many countries have now created legislation
that covers Website accessibility. If you’re building a site for the government of
a country that has such legislation in place, you should investigate that legislation
to ascertain which sections and requirements apply to you. For example, in the
USA, the “Section 508” legislation deals with Websites that are developed for,
or purchased by government bodies, and states that such sites should be accessible
to those with disabilities. Section 508 lists 16 rules to which Websites must
conform:4

1194.22 Web-based intranet and internet information and ap-
plications.

(a) A text equivalent for every non-text element shall be provided
(e.g., via "alt", "longdesc", or in element content).

(b) Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

(c) Web pages shall be designed so that all information conveyed
with color is also available without color, for example from context
or markup.

(d) Documents shall be organized so they are readable without
requiring an associated style sheet.

(e) Redundant text links shall be provided for each active region
of a server-side image map.

(f) Client-side image maps shall be provided instead of server-
side image maps except where the regions cannot be defined with
an available geometric shape.

(g) Row and column headers shall be identified for data tables.

4 http://www.section508.gov/index.cfm?FuseAction=Content&ID=12#Web

190

Chapter 7: Accessibility

http://www.section508.gov/index.cfm?FuseAction=Content&ID=12#Web
http://www.section508.gov/index.cfm?FuseAction=Content&ID=12#Web

(h) Markup shall be used to associate data cells and header cells
for data tables that have two or more logical levels of row or
column headers.

(i) Frames shall be titled with text that facilitates frame identific-
ation and navigation.

(j) Pages shall be designed to avoid causing the screen to flicker
with a frequency greater than 2 Hz and lower than 55 Hz.

(k) A text-only page, with equivalent information or functionality,
shall be provided to make a web site comply with the provisions
of this part, when compliance cannot be accomplished in any
other way. The content of the text-only page shall be updated
whenever the primary page changes.

(l) When pages utilize scripting languages to display content, or
to create interface elements, the information provided by the
script shall be identified with functional text that can be read by
assistive technology.

(m) When a web page requires that an applet, plug-in or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet that
complies with §1194.21(a) through (l).

(n) When electronic forms are designed to be completed on-line,
the form shall allow people using assistive technology to access
the information, field elements, and functionality required for
completion and submission of the form, including all directions
and cues.

(o) A method shall be provided that permits users to skip repet-
itive navigation links.

(p) When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

As we’ll see when we work through the WCAG checkpoints later in this chapter,
the Section 508 rules a–k are covered by the WACG Priority 1 checkpoints; rules
l–p are covered in the Priority 2 and 3 checkpoints. Where countries or organiz-
ations have implemented accessibility guidelines, they tend to have based them
on the WCAG 1.0, so if you have followed these official specifications, you should

191

Legislation

have covered most, if not all, of a government’s requirements. Of course, it’s always
worthwhile to check that you haven’t missed any requirements that are specific
to your particular situation.

Dreamweaver Tools for Accessibility
We’ve already used some of the Accessibility features that are built into Dream-
weaver 8. When setting up our site, we set the Accessibility Preferences dialog,
depicted in Figure 7.4, to show accessibility attributes when we inserted Forms,
Frames, Media and Images.

Figure 7.4. The Accessibility category in Preferences.

With these preferences set, we are reminded by Dreamweaver to add alternate
text for images and media objects, forms and frames. In Chapter 4, we used the
Accessibility attributes dialog for the image tag as we inserted images into our
document.

192

Chapter 7: Accessibility

Dreamweaver includes an accessibility validator, which we will be using later in
this chapter as we validate our site for accessibility. In case you don’t understand
any of the points raised by the validator, Dreamweaver also includes in the Ref-
erence panel the UsableNet Accessibility Reference shown in Figure 7.5 , so that
you can look up from within Dreamweaver any checkpoints that you find confus-
ing.

Figure 7.5. The UsableNet Accessibility Reference.

Accessibility in Practice
As we now know a bit about the standards to which we’re trying to work, and
the kinds of problems we’re hoping to prevent, let’s turn to our site and see if we
can meet the WCAG 1.0 checkpoints. I’m going to work through them in priority
order; you can find the complete list on the W3C Website.5

In this discussion, I’ve concentrated more heavily on those checkpoints that affect
our site. Some checkpoints deal with multimedia elements or scripting that we
haven’t used, and we’d need to write another book to fully explain how to make
such elements accessible! Instead, I’ve explained those checkpoints briefly so
that, if you’re working on a site that includes such elements, you’ll know that
you need to ensure their accessibility.

Heated debate rages over whether or not some of the Priority 3 checkpoints are
a good idea, and how they can best be achieved. The devices that people use to
access the Web change constantly with advances in technology, so it’s important
to keep up-to-date with the evolving ideas and research in this area. Notes that
accompany many of the checkpoints state that those checkpoints are to be fol-
lowed until user agents support some particular feature, and that, in the future,
the checkpoint might not be necessary. If this is the case, a future version of the
guidelines may not include those checkpoints.

5 http://www.w3.org/TR/WCAG10/checkpoint-list.html

193

Accessibility in Practice

http://www.w3.org/TR/WCAG10/checkpoint-list.html

Priority 1
The following checkpoints fall within Priority 1, and should be met to ensure the
Level-A basic level of conformance.

General Issues

1.1 Provide a text equivalent for every non-text element.
Non-text elements include images, Flash movies, video, audio files, Java ap-
plets, and so on. If you’ve set the accessibility preferences in Dreamweaver
correctly, every time you insert an image, you should be prompted to enter
alternate text by the dialog shown in Figure 7.6.

Figure 7.6. The Image Tag Accessibility Attributes dialog.

When you insert an image, you can enter a text description of that image
into the Alternate text field of the dialog. This text will then be used to generate
the img element’s alt attribute. We haven’t used Flash or any other elements
that utilize the <object> tag; however, had we done so, a similar dialog would
prompt us to insert the alternate text for each of those objects.

The Long description field provides us the opportunity to insert a link to some
other page that describes the image. If you published a complex graph or
chart image, for example, you might use this longdesc attribute to link to a
page that explained the data in textual form. This would eliminate the need
to include a lengthy, complicated explanation on the main page.

We can use Dreamweaver to check whether any of our images are lacking
the alt attribute: open the Reports dialog from Site > Reports…, check Missing
Alt Text, and click Run, as shown in Figure 7.7.

194

Chapter 7: Accessibility

Figure 7.7. Running a Report for Missing Alt Text.

Any images that lack alternate text are listed in the Results Panel as warnings,
which is handy if you’re trying to make a large, existing site accessible: you
can run the report over the entire local site, then simply go through the pages,
adding alternate text as appropriate.

Where an image is used purely for layout purposes—the bottom of a rounded
rectangle, for example—you can add an empty alternate text attribute, which
tells screen readers and text browsers to ignore the image. Here’s how it ap-
pears in the code:

If your site contained an audio or video file, you’d need to provide a text
equivalent—for example, a transcript—of that content.

2.1 Ensure that all information that’s conveyed with color is also available
without color, for example, from context or markup.

This checkpoint ensures that your site can be understood by users who do
not see the colors you’ve used in your design—perhaps because they’re using
a text-only device or screen reader—and those who have trouble distinguishing
between colors due to color blindness.

195

Priority 1

Imagine if, in your online store, you used a red rectangular button icon to
denote products that were out of stock, and a green rectangular button icon
to identify in-stock products. Without a text alternative to these buttons,
color-blind users and those with other forms of visual impairment could
easily become confused. By inserting a text label next to the icon, you can
retain the visual representation of stock levels—which may be helpful to some
users—while ensuring that users who don’t see the image, or don’t differentiate
between the colors, know which products are in or out of stock.

One potentially problematic use of color in our own design is in the chart
that displays browser statistics. If we explained which part of the chart relates
to each browser using only the colored icons beside the browser name, those
who could not perceive the icons could not interpret the chart. We have,
however, added percentage figures in text beside the name of each browser,
as you can see in Figure 7.8. So, even if users don’t see the chart, they can
access the information about browser usage.

Figure 7.8. The browser statistics list presents the figures in
text as well as visually, through the graph.

4.1 Clearly identify changes in the natural language of a document’s text
and any text equivalents (e.g. captions).

If our document contains more than one language, we should specify changes
in the language used as those changes occur within the document. To do this,
we insert as the lang attribute of the containing element a value that repres-
ents the code for the language being used. This enables screen readers to
speak the text using the correct pronunciation.

196

Chapter 7: Accessibility

<p lang="en">Do you speak English?</p>
<p lang="fr">Parlez-vous Français?</p>
<p lang="de">Sprechen Sie Deutsches?</p>

A comprehensive list of language codes is available online.6 We don’t need
to worry about this checkpoint in our design.

6.1 Organize documents so they may be read without style sheets. For ex-
ample, when an HTML document is rendered without associated style
sheets, it must still be possible to read the document.

As we’ve already discussed, text-only devices ignore the style sheet and deal
with only the document markup. We have been considering this checkpoint
right from the start of this book, and our method of creating the semantically
structured document first, then adding the style, will, we hope, have ensured
that our document is completely understandable without the style sheet.

To make sure this is the case, simply remove the style sheet and view your
site in a regular browser; alternatively, you could use a text-only browser such
as Lynx to view the site. You might see something like the display shown in
Figure 7.9.

Figure 7.9. Viewing the site in Lynx.

6 http://www.oasis-open.org/cover/iso639a.html

197

Priority 1

http://www.oasis-open.org/cover/iso639a.html

You can also view your design without CSS in Dreamweaver, Select View >
Style Rendering > View Styles to turn CSS on and off.

6.2 Ensure that equivalents for dynamic content are updated when the
dynamic content changes.

“Dynamic content” refers to any content that changes over time, or changes
with a different input. Search results, live stock-price applets, and graphs
automatically generated from a database, are all examples of dynamic content.
This checkpoint assures that any text-equivalent content on your site is an
up-to-date reflection of the site’s dynamic content.

For example, if the browser usage chart was generated on the server, we’d
need to ensure that the percentages displayed beside it were updated
whenever the chart was updated. Alternatively, the page that was linked to
in that image’s longdesc could include a dynamically generated table of the
data displayed in the chart. A stock ticker’s alternative text could link to a
simple page that displayed the stock prices that were current at the time the
page was loaded. However, since the image we’ve used is static, this checkpoint
will not be an issue for our static Website.

7.1 Until user agents allow users to control flickering, avoid causing the
screen to flicker.

Flickering is a problem to many users: those with poor vision, people with
epilepsy, and even those—like this author—who suffer from migraine with
visual disturbances. If I encounter any page that displays with rapid move-
ment, I close the browser immediately! Rapidly moving page elements can
also be confusing to users with cognitive disabilities.

Flickering could be caused by Flash, JavaScript, blinking or scrolling text, or
by a movie playing on the page. None of these is a problem for the site that
we’re building.

14.1 Use the clearest and simplest language appropriate for a site’s content.
This checkpoint relates not to our design, but to the content of the site. We
should use simple, easily understood language wherever possible. For a tech-
nical site such as the one we’re building, we’re obviously going to use technical
language. This is fine: it’s appropriate for our site. However, for a site such
as a medical information site aimed at the general public, or a public library
Website, it would be very important to use language that didn’t confuse
users. This would allow users with disabilities such as dyslexia to more easily
understand the information; it would also help users whose first language is
not the language in which the site content is written.

198

Chapter 7: Accessibility

Even on a technical site such as ours, consideration should be given to the
language used. Many Web developers speak English as a second language,
and the majority of the site’s tutorials will communicate complex concepts
that will be new to many users. Trying to communicate as clearly as possible
will benefit everyone.

Image Maps

Image maps are images in which different parts of the image are made into ‘hot
spots’ that can be linked to another document. To comply with checkpoint 1.1,
you must identify each of the image map’s linked areas with alternate text.
Dreamweaver enables you to add this alt attribute in the Property Inspector
after you’ve created a hot spot on an image map, as shown in Figure 7.10.

Figure 7.10. The Property Inspector showing the alt attribute for
a hot spot.

Some of the checkpoints in Priority 1 deal specifically with image maps.

1.2 Provide redundant text links for each active region of a server-side
image map.

Dreamweaver uses client-side—not server-side—image maps. However, if
you’re working on a site that contains a server-side image map, you should
add to the document text links that mirror the links within the image map.

9.1 Provide client-side image maps instead of server-side image maps, except
where the regions cannot be defined with an available geometric shape.

This checkpoint indicates that client-side image maps are more accessible
that server-side image maps and should be used whenever possible.

Tables

5.1 For data tables, identify row and column headers.
When using tables to present data—such as that which could be displayed
in a spreadsheet—we must ensure that the heading cells for each of the
columns or rows are marked up as headings: we shouldn’t just rely on CSS
to show the user that these are headings.

199

Priority 1

Dreamweaver helps us to comply with this checkpoint. When we use the
Table dialog shown in Figure 7.11, we can define whether we want the table
to have no heading cells, headings on the left, headings along the top, or
headings both on the left-hand side and on the top. When the table is created,
it will make these elements ths rather than tds.

Figure 7.11. The Insert Table dialog.

We used the Table dialog to mark up the headings when we created our Re-
cent Tutorials table. If we view the markup for this table, we can see that the
th element has been used to define the table’s headings.

File: homepage-layout-strict.html (excerpt)

<table width="100%" border="0" summary="This table shows the
 most recent tutorials posted on the site and their
 publication date.">
 <tr>

<th scope="col">Title</th>
 <th scope="col">Published</th>
 </tr>

200

Chapter 7: Accessibility

 <tr>
 <td class="bullet">CSS forms - Massive
 feedback distortion?</td>
 <td>26-12-2005</td>
 </tr>
 <tr class="even">
 <td class="bullet">Buttons & Dials -
 Java Controls Explained</td>
 <td>23-12-2005</td>
 </tr>
 …
 </tr>
</table>

5.2 For data tables that have two or more logical levels of row or column
headers, use markup to associate data cells and header cells.

The th elements in the above markup include the attribute scope, which has
a value of col, indicating that these are column headings. Screen readers will
know that the data in the column below each heading should be associated
with that heading. To identify a row heading on the left-hand side of the
table, we would use scope="row".

<table summary="Distances between selected cities in
 kilometers">
 <tr>
 <th scope="col"></th>
 <th scope="col">Berlin, Germany</th>
 <th scope="col">London, England</th>
 <th scope="col">New York, USA</th>
 <th scope="col">Melbourne, Australia</th>
 <th scope="col">Tokyo, Japan</th>
 </tr>
 <tr>
 <th scope="row">Berlin, Germany</th>
 <td></td>
 <td>919 kilometers</td>
 <td>6387 kilometers</td>
 <td>16000 kilometers</td>
 <td>8936 kilometers</td>
 </tr>
 <tr>
 <th scope="row">London, England</th>
 <td>919 kilometers </td>
 <td> </td>
 <td>5580 kilometers </td>
 <td>16936 kilometers </td>

201

Priority 1

 <td>9581 kilometers </td>
 </tr>
 <tr>
 <th scope="row">New York, USA</th>
 <td>6387 kilometers</td>
 <td>5580 kilometers</td>
 <td></td>
 <td>16710 kilometers</td>
 <td>10871 kilometers</td>
 </tr>
 <tr>
 <th scope="row">Melbourne, Australia</th>
 <td>16000 kilometers</td>
 <td>16936 kilometers</td>
 <td>16710 kilometers</td>
 <td></td>
 <td>8210 kilometers</td>
 </tr>
 <tr>
 <th scope="row">Tokyo, Japan</th>
 <td>8936 kilometers</td>
 <td>9581 kilometers</td>
 <td>10871 kilometers</td>
 <td>8210 kilometers</td>
 <td></td>
 </tr>
</table>

This markup assists screen reader users: it ensures that, as the table is read
to them, these users can understand which heading is associated with the cell
content of the table. As we can see, the table in our document complies with
this checkpoint.

Frames

12.1 Title each frame to facilitate frame identification and navigation.
Frames cause obvious issues for accessibility: users of text-only devices can
view only one frame at a time, which can make navigation difficult; frames
also make it difficult for users to bookmark an interesting page in the Website.
We have avoided using frames in our layout, so we don’t need to worry about
this checkpoint.

If you use frames in a document, you must take extra steps to ensure that
users of devices that don’t see all these frames as a single document under-

202

Chapter 7: Accessibility

stand what’s contained in each frame. Give each frame a descriptive title to
help users identify that frame. If you have the accessibility preferences for
frames turned on in your preferences, and you insert a frame into a document,
Dreamweaver will display a dialog that will allow you to give that frame a
title. The dialog is pictured in Figure 7.12

Figure 7.12. Using the Frame Tag Accessibility Attributes dialog.

Applets and Scripts

6.3 Ensure that pages are usable when scripts, applets, or other program-
matic objects are turned off or not supported. If this is not possible, provide
equivalent information on an alternative accessible page.

If you’re using JavaScript on your site, make sure the site works when
JavaScript is turned off. Many sites require the user to have JavaScript enabled
in order to launch popup windows, or even to use links. This is a problem
for visitors who use screen readers or other text-only devices, because these
devices don’t support JavaScript. It will also cause a problem for the large
number of people who turn off JavaScript in their browser. We should take
a similar approach to dealing with Java applets, which can be accessible in
themselves, but are not available to all users.

JavaScript and Java applets aren’t necessarily bad ideas—we can develop a
perfectly accessible site that uses JavaScript and Java applets—but we should
always ensure that all the content of our sites, including information displayed
in popup windows and applets, is accessible to users for whom such features
are disabled.

203

Priority 1

We haven’t used any JavaScript on our site so far; however, as we further
develop the site, this is something we’ll need to bear in mind.

Multimedia

1.3 Until user agents can automatically read aloud the text equivalent of
a visual track, provide an auditory description of the important information
of the visual track of a multimedia presentation.
1.4 For any time-based multimedia presentation (e.g., a movie or anima-
tion), synchronize equivalent alternatives (e.g., captions or auditory de-
scriptions of the visual track) with the presentation.

These two checkpoints deal with the display of multimedia presentations on
Web pages, so they don’t apply to our site. However, if you’re working on a
site that contains multimedia elements—for example, a video tutorial—you’ll
need to consider how you’ll make that information accessible to people who
cannot hear the sound track, or cannot see the movie. For instance, you might
decide to add captions, like subtitles, to a movie, or insert an audio track to
describe the content that’s being shown.

Text-only Versions

11.4 If, after best efforts, you cannot create an accessible page, provide a
link to an alternative page that uses W3C technologies, is accessible, has
equivalent information (or functionality), and is updated as often as the
inaccessible (original) page.

Many site owners simply create an alternative “text-only” version of their
site, and assume that this means they’ve complied with accessibility require-
ments. This checkpoint states that this approach should be used only as a
last resort. If you do develop a text-only version, you should ensure that the
content of that version is kept up-to-date as any changes are made to the
original page.

Creating a text-only version of a static Website means a lot of additional
work. It’s not the ideal scenario, because we’re dealing with people who have
numerous types of disabilities. Many of these users have no requirement for
a plain text version of the site: they just need to be able to increase the text
size, or understand the site despite the fact that it’s difficult to tell the colors
of the display apart. These users will benefit from your page design just as
much as will every other user. Making their only option a plain text version
degrades their experience of your site, and discriminates against them by re-
quiring them to use a poorer version of the site.

204

Chapter 7: Accessibility

You might want to offer “low graphics” or “high contrast” alternative style
sheets for users to select as their needs dictate. This solution only works if
you have an accessible site to begin with, as it doesn’t affect the structure of
the site: you’re just replacing the style sheet with a version that’s more com-
fortable for certain visitors.

The provision of alternative style sheets shouldn’t be confused with offering
a separate, text-only version of each page as a nod to accessibility. This ap-
proach should be avoided as much as possible, and used only as a last resort,
perhaps to temporarily apply a degree of accessibility to a legacy site until it
can be redesigned.

In the final chapter of this book, we’ll create a “low graphics” version of our
style sheet. Users will be able to switch to this style sheet, which will allow
them to view the same XHTML pages without graphics and background
colors.

Priority 2
The following are Priority 2 checkpoints. Many of them address the semantic
structure of your documents and should be familiar to you, as we discussed the
correct use of elements to structure your document back in Chapter 4. If you can
comply with these checkpoints, and those listed previously under Priority 1,
you’ll be able to claim Level Double-A conformance.

General

2.2 Ensure that foreground and background color combinations provide
sufficient contrast when viewed by someone having color deficits or when
viewed on a black and white screen.

This checkpoint requires us to ensure that colors have sufficient contrast to
enable users who confuse certain colors, or cannot distinguish between certain
colors, to read the text and understand the images presented on our sites.

3.1 When an appropriate markup language exists, use markup rather than
images to convey information.

This checkpoint advocates that we should use markup, rather than using an
image or animation, to describe information wherever possible. For instance,
imagine that you need to show a complicated mathematical equation in a
document. You might think that the best way to show this clearly would be
to display it as an image, but this would make the information inaccessible
to anyone who could not see that image. A better way to deal with it would

205

Priority 2

be to use MathML—a markup language that’s used to describe mathematical
structures. Unfortunately, MathML is not supported by Internet Explorer,
and many other browsers, without additional software, so you may decide
it’s not practical to use the language. We haven’t used images in a way that’s
covered by this checkpoint, so we can move on.

3.2 Create documents that validate to published formal grammars.
“Formal grammar” is a term that’s borrowed from computer science, and
basically refers to the specification of a programming language, such as
XHTML. If your document is validated by the W3C markup validator, you
have passed this checkpoint.

3.3 Use style sheets to control layout and presentation.
To pass this checkpoint, we need to use style sheets, rather than presentational
elements, to create the layout, look, and feel of our pages. We’ve used CSS
to style our text and create the layout of our site, so we can be confident that
we’ve satisfied this checkpoint.

3.4 Use relative rather than absolute units in markup language attribute
values and style sheet property values.

Within CSS, we can use many different units of measurement, including
ems, pixels, and percentages. These units can be broken into two categories:
absolute units and relative units. Absolute units should be avoided when
building sites for accessibility.

Relative Units
Relative units are measured in relation to some other feature of the page
or device on which the element is displayed. The relative units are:

em 1 em is equivalent to the size of the font on the screen. 2 em is
double the size of that font, while 0.5 em is half the size of the font.

ex An ex corresponds to the height of the “x” character in the current
font.

px A pixel measurement references the number of pixels on the screen.
This unit should only be used to specify sizes in relation to images
and other non-scalable elements.

% This unit assigns the size of the element in question as a percentage
of something else. For example, font-size: 120%; would make the
font size 120% of its usual value.

206

Chapter 7: Accessibility

Absolute Units
Absolute unit measurements are those that do not change, regardless of
the device they’re displayed on. These are:

❑ Inches (in)

❑ Centimeters (cm)

❑ Millimeters (mm)

❑ Points (pt)

❑ Picas (pc)

Avoid Using px for font-size

Many modern browsers enable users to resize text that has been sized
using pixel measurements in the style sheet. Unfortunately, though, In-
ternet Explorer does not, so we should not set font-size using pixels.
If we look at the #content rule, we can see that the size is set to 80%.

File: inc/main.css (excerpt)

#content {
 margin-top: 80px;
 margin-right: 320px;
 margin-left: 40px;
 font: 80% Verdana, Arial, Helvetica, sans-serif;
}

This means that the font will respect users’ text size settings, even if
they’re using Internet Explorer.

3.5 Use header elements to convey document structure and use them ac-
cording to specification.
3.6 Mark up lists and list items properly.
3.7 Mark up quotations. Do not use quotation markup for formatting effects
such as indentation.

These checkpoints deal with semantic document structure, as we discussed
in Chapter 4. The first point advocates the use of heading elements (h1–h6)
instead of using CSS alone: don’t just make the text look like a heading, make
it a heading.

The second checkpoint considers the use of the ul, ol and dl elements to
mark up lists. The third checkpoint explains the appropriate use of the

207

Priority 2

blockquote element. Consider it the W3C’s way of telling you to not use
Dreamweaver’s Text Indent button, shown in Figure 7.13, to indent text.

Figure 7.13. Indenting text the wrong way, according to the
WCAG 1.0.

As we’ve built our document on good semantic foundations, we pass this
checkpoint easily.

6.5 Ensure that dynamic content is accessible or provide an alternative
presentation or page.

Dynamic content that’s usually generated through user interaction with a
script, or typically requires users to have a particular client-side technology
installed, should also be accessible if the user cannot interact with the script,
or doesn’t have that technology installed.

For example, you might use JavaScript to allow users to drill down through
information in a list or tree-view menu. You should provide users who don’t
have JavaScript enabled with a display in which all the information levels are
expanded, or use a server-side technology to achieve the same effect. This
would probably require a page reload, but might provide a more accessible
solution overall.

7.2 Until user agents allow users to control blinking, avoid causing content
to blink (i.e., change presentation at a regular rate, such as turning on and
off).

This checkpoint is fairly straightforward: to pass it, check that none of your
page elements is blinking, and make sure you’ve avoided using the Netscape-
proprietary blink element or text-decoration: blink in your CSS. If
blinking text is to be created by a script, ensure that the user has the ability
to turn the script off, or—better yet—change the script to stop it blinking.
We haven’t used anything on our page that could cause this type of problem,
so our page passes this checkpoint.

208

Chapter 7: Accessibility

7.4 Until user agents provide the ability to stop the refresh, do not create
periodically auto-refreshing pages.
7.5 Until user agents provide the ability to stop auto-redirect, do not use
markup to redirect pages automatically. Instead, configure the server to
perform redirects.

Some sites use an auto-refresh or auto-redirect function to update content
from the server. For example, Web cam sites, sites that commence downloads
automatically, and sites that detail rapidly changing information such as
stock market data might use this kind of technology. However, users who
read slowly, due to poor eyesight or disabilities such as dyslexia, may find
that the screen refreshes before they have had a chance to read through the
content. Therefore, if you have a page that behaves like this, you should
provide a way for the user to stop the refresh, or to load a version of the page
that does not refresh. This checkpoint is not an issue with our site, though,
so we pass it.

10.1 Until user agents allow users to turn off spawned windows, do not
cause popups or other windows to appear and do not change the current
window without informing the user.

Popup windows can confuse users, as the focus suddenly and unexpectedly
changes to a new window. If you absolutely must use a popup window, inform
the user within the link text for that window that following the link will cause
a new window to be launched. This advice is valid for popup windows regard-
less of how they’re launched, whether it’s with JavaScript, or via the target
attribute. We’re not using any popup windows, so we pass this checkpoint.

11.1 Use W3C technologies when they are available and appropriate for
a task and use the latest versions when supported.
11.2 Avoid deprecated features of W3C technologies.

When the W3C creates a new specification, it considers accessibility issues,
and new features are built into the specifications to assist users of various
kinds of devices. Updates to these specifications usually include refinements,
such as the deprecation of HTML’s presentational features in favor of CSS.
Over time, new browsers will most likely start to use these newer features,
adding value to the presentation of your document. To pass these checkpoints,
you should use HTML 4.01 Strict or XHTML 1.0 Strict, and have validated
your document to ensure that it meets the specification.

12.3 Divide large blocks of information into more manageable groups
where natural and appropriate.

This checkpoint looks at the content and information on your site: informa-
tion is more easily understood when it’s broken into chunks. This rule of

209

Priority 2

thumb also applies to large complex forms on which grouping—for example,
by wrapping sections of the form with <fieldset> tags—can help users un-
derstand the different sections of the form.

13.1 Clearly identify the target of each link.
Any text that links to another document on your site, or elsewhere, should
clearly explain where the link will take users who click on it. This information
should make sense when read out of context, as users may “tab” through the
links to navigate a page. Phrases such as “click here” should be avoided; as
the example below shows, this text doesn’t describe the target content at all.

To help ensure accessibility,
click here to validate
your page.

Read out of context, the above link simply says, “click here.” We could rewrite
the link as follows:

To help ensure accessibility,
validate your page.

This link text is understandable, and communicates successfully when read
on its own. We’ll need to be mindful of this checkpoint whenever we add
content to the site.

13.2 Provide metadata to add semantic information to pages and sites.
Metadata is data that describes data; in the context of a Website, this includes
the page title, the DOCTYPE, and some of the data included in meta and
link elements. As each of our pages will have a title, they will pass this
checkpoint. However, we could also use the meta tag to add information—such
as keywords and the author’s name—to the document.

13.3 Provide information about the general layout of a site (e.g., a sitemap
or table of contents).

A sitemap helps users to understand the layout of the site. Sitemaps are also
particularly useful for users of screen readers and text-only devices, as they
provide a quick way to jump directly to relevant pages of the site without
having to move through a few irrelevant pages in order to navigate to the
destination content.

Our site has a sitemap link, and we’ll be creating a sitemap in Chapter 8.
Once we’ve done so, we will pass this checkpoint.

210

Chapter 7: Accessibility

13.4 Use navigation mechanisms in a consistent manner.
Inconsistent navigation is confusing for many users, not just those you might
consider to have a disability. Choosing a navigational structure that’s easy
to understand, and then sticking to it, makes it easier for everyone to get
round your site. Try not to add pages that are outside this structure.

Tables

5.3 Do not use tables for layout unless the table makes sense when linear-
ized. Otherwise, if the table does not make sense, provide an alternative
equivalent (which may be a linearized version).

Screen readers “linearize” tables: they read the content line-by-line, starting
at the top left-hand corner, and moving across the table, in the same order
in which the content appears in the markup. This is a logical way in which
to deal with data tables, but it becomes completely confusing if tables are
used for layout purposes.

If we read our Recent Tutorials table in this left-to-right, top-to-bottom
manner, we can see that it makes sense. As we’re not using tables to create
layout, it’s easy for us to pass this checkpoint: our only table makes sense
when linearized.

5.4 If a table is used for layout, do not use any structural markup for the
purpose of visual formatting.

This checkpoint doesn’t apply to us, as we haven’t used tables for layout. If
you do use tables to lay out a site, you should keep them as clean as possible,
and assign all visual formatting—such as column widths, borders, and back-
ground colors—to the stylesheet. This will help you to keep the layout as
accessible as possible, and give you the best chance to attain Double-A con-
formance with a simple table-based layout.

Frames

12.2 Describe the purpose of frames and how frames relate to each other
if it is not obvious by frame titles alone.

If it’s impossible to describe the frame’s purpose using the frame’s title at-
tribute, you could use the longdesc attribute to provide additional informa-
tion about the frame on a separate page. Here’s an example:

<frame src="myframe.html" title="Organization structure"
 longdesc="orgdesc.html"/>

211

Priority 2

Forms

10.2 Until user agents support explicit associations between labels and
form controls, for all form controls with implicitly associated labels, ensure
that the label is properly positioned.
12.4 Associate labels explicitly with their controls.

There are two methods by which we can explicitly associate a label with a
form field: we can use the label element’s for attribute, or we can wrap the
form field in a <label> tag, as shown below:

<label for="firstname">First Name</label> <input type="text"
 id="firstname" />
<label>Family Name <input type="text id="familyname" /></label>

If you’ve set the forms accessibility preference in Dreamweaver, you’ll be
prompted for form labels, and you’ll be asked how you want to associate the
label with the field: Wrap with label tag, Attach label tag using ‘for’ attribute,
or No label tag. Provided you selected the Wrap with label tag option (as we
did when we built the search form in Chapter 4), your label will be explicitly
associated with, and positioned with, your form control.

Applets and Scripts

6.4 For scripts and applets, ensure that event handlers are input device-
independent.
9.2 Ensure that any element that has its own interface can be operated in
a device-independent manner.
9.3 For scripts, specify logical event handlers rather than device-dependent
event handlers.

These checkpoints require that any script or other element on the page can
be used regardless of the type of device with which the visitor has accessed
the page. Many developers assume that everyone uses a mouse and can point
and click. This is not always the case, so be sure to make any scripts, Flash
objects, applets, and other elements usable by visitors using other devices.

7.3 Until user agents allow users to freeze moving content, avoid movement
in pages.

Movement in Web pages can be distracting for many users, and should be
avoided. This includes scrolling text and banners, and other animations that
cannot be stopped by the user. If you must use moving content, provide an
easy and obvious way for users to turn it off.

212

Chapter 7: Accessibility

8.1 Make programmatic elements such as scripts and applets directly ac-
cessible or compatible with assistive technologies

Our site doesn’t use any scripts or applets that would be inaccessible; however,
it is possible to make multimedia content, such as Java applets or Flash, ac-
cessible. You would need to do so in order to achieve level Double-A conform-
ance for a site that used any of these elements.

Priority 3
The Priority 3 checkpoints are the strictest accessibility checkpoints, and some
propose considerable compliance hurdles for some sites. Complying with all of
these checkpoints, as well as those from the previous two levels, enables you to
achieve Triple-A conformance. Even if you decide not to go for Triple-A compli-
ance, it’s wise to look through these checkpoints: complying with any of them
will be helpful to some users, and you might just find that you’re able to satisfy
a couple of the checkpoints with relative ease.

General

4.2 Specify the expansion of each abbreviation or acronym in a document
where it first occurs.

XHTML provides elements for the description of acronyms and abbreviations;
this approach assists users who may be unfamiliar with the acronym or abbre-
viation. The abbr element should be used for abbreviations, while the acronym
element is designed for use with acronyms.

Within our site, we’re likely to use many acronyms and abbreviations, so we
should try to use the correct markup to describe them, at least upon their
first appearance within a document. You can add definitions in Design View
by selecting the acronym or abbreviation, then right-clicking and choosing
Quick Tag Editor… from the context menu. You can then type in the tag and
the title attribute, as shown in Figure 7.14.

213

Priority 3

Figure 7.14. Using the Quick Tag Editor to add the abbr
element.

abbr vs acronym

What constitutes the correct use of abbr and acronym? It’s a conten-
tious issue, but the general standard is to use acronym for abbreviations
that are pronounced as a word—such as “NATO” or “NASA”—and abbr
for everything else.

4.3 Identify the primary natural language of a document.
Identifying the primary language of a document helps screen readers to pro-
nounce the text in the document correctly. You can identify the language in
the markup by adding the lang attribute to the html element, as follows:

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

9.4 Create a logical tab order through links, form controls, and objects.
Users of your site who navigate using their keyboards, rather than a mouse,
can use the Tab key to move through the links, form controls, and other
items on your site. This is called “tabbing” through the page, and all major
browsers support this functionality. Normally, links and form controls will
be visited in the order in which they appear in the markup, but this may
seem illogical in some cases—especially if you’ve positioned elements using
CSS. You can check the logic by tabbing through your page in a Web browser
yourself. If the order of links is illogical, you can use the tabindex attribute
to force a more logical order, as shown here:

<label>Search: <input type="text" name="search" id="search"
tabindex="1" /></label>

<input type="reset" tabindex="3" />
<input type="submit" tabindex="2" />

Items will be visited in the numeric order of their tabindexes, from the
lowest tabindex value to the highest. In the above example, the text box is
visited first, followed by the submit button, and finally, the reset button.

214

Chapter 7: Accessibility

9.5 Provide keyboard shortcuts to important links (including those in client-
side image maps), form controls, and groups of form controls.

It’s possible to create keyboard shortcuts that allow users to jump straight
to different page elements; these shortcuts are called access keys. We can
assign an access key to an element using the accesskey attribute, like so:

SitePoint

The above link can be activated by pressing Alt-S in Windows browsers.

Debate has flared around the question of whether or not access keys are ac-
tually helpful to users. The main problem with the creation of access keys is
that many browsers and operating systems have already mapped certain key
combinations; in creating your own access keys, you might inadvertently use
a combination that’s already used by another application, causing considerable
user confusion.

10.5 Until user agents (including assistive technologies) render adjacent
links distinctly, include non-link, printable characters (surrounded by
spaces) between adjacent links.

This checkpoint relates to links that are positioned next to each other in the
document, and may not be recognizable as separate links when viewed using
a screen reader or other device. A common situation in which this problem
could arise is in a navigation bar whose a elements have been styled with
CSS; this styling is not applied if the end-user has disabled CSS, and, there-
fore, the adjacent links cannot be distinguished.

Figure 7.15. Failing to distinguish adjacent links.

We’ve circumvented this problem in our site by marking up our navigation
as list items. If you didn’t want to use list markup, the other option would
be to place a non-linked character, such as a ‘>’ or ‘|’, between each link.

11.3 Provide information so that users may receive documents according
to their preferences (e.g., language, content type, etc.)

This checkpoint suggests a large number of steps that can be taken to aid
accessibility, for example, providing an alternative aural style sheet that details
how the text in your document should be spoken, or providing alternate
language versions. The suitability of the various options will depend on the

215

Priority 3

type of site you’re developing. However, offering users content in the most
accessible format is a goal that we should all strive to achieve.

13.5 Provide navigation bars to highlight and give access to the navigation
mechanism.

Each of the site’s pages should have a consistently placed navigation bar to
help users access information on the site, and understand how to return to
pages they’ve already visited. We have created a navigation bar for our site,
and intend to use it on all pages.

13.6 Group related links, identify the group (for user agents), and, until
user agents do so, provide a way to bypass the group.

This checkpoint relates to the “skip navigation” links that are included on
some sites. By grouping the links for the site’s navigation, for example, it is
possible to provide a mechanism that skips over these links. This is helpful
for screen-reader users who would otherwise have to hear the entire navigation
bar again on every page of a given site. As the bulk of our navigation links
are at the end of our markup, this isn’t too much of a concern for our site.

13.7 If search functions are provided, enable different types of searches
for different skill levels and preferences.

Adding help capabilities to your search function will assist users in under-
standing how to use it. Describing how to use operators such as AND and
OR will help people to understand how to get the best results out of their
search. Searching may prove difficult for users, for example, who have a
cognitive disability that makes spelling difficult. You could go so far as to
add spell checking to the search function, or to provide a list of common
searches. This checkpoint focuses on making it easy for users to search the
information your site provides.

13.8 Place distinguishing information at the beginning of headings, para-
graphs, lists, etc.

Screen readers read through the content of a document from top to bottom.
If you can explain what a section of information is about early in that section,
this will help screen reader users to know whether they want to read through
all of that information. If you can describe the content accurately in a heading
or short introductory paragraph, this will help not just screen-reader users,
but anyone who finds reading slow or difficult. Your users can quickly move
on to other content if they realize the current information is not helpful.

216

Chapter 7: Accessibility

13.9 Provide information about document collections (i.e., documents
comprising multiple pages).

In cases where a document spans multiple pages, using “previous” and “next”
links can help users to understand where they’re located within the document,
and how to get to the next page. Placing these links in helpful locations—at
both the top and bottom of the document—can help ensure that users can
move between pages easily. The site map is another place where documents
can be displayed to reflect their groupings.

13.10 Provide a means to skip over multi-line ASCII art.
“ASCII art” uses a collection of characters to simulate an image. Screen
readers have no way of knowing what ASCII art is: they try to read out the
characters, which is obviously very annoying for the user! If you use ASCII
art anywhere, provide a means for screen-reader users to skip over your art-
work.

14.2 Supplement text with graphic or auditory presentations where they
will facilitate comprehension of the page.

Additional images or other content will help some users to more completely
understand the page. As well as ensuring that blind users can understand the
content of images, you might also consider inserting extra images or other
content to assist other users to understand your pages. For those with cognit-
ive disabilities, a visual representation of a concept may be easier to grasp
than a text description. Here, once again, we need to consider the different
types of disabilities that people have if we are to create usable solutions that
actually help them to use our sites.

14.3 Create a style of presentation that’s consistent across pages.
By creating a consistent look and feel across pages, you can help users to
understand how they can use your site. Navigation and sub-navigation should
remain in the same place and work in a consistent way. In creating our site’s
navigation, we’ve aimed to provide a consistent navigational structure and,
as long as we maintain this structure on the other pages of the site, we’ll pass
this checkpoint.

Image Maps

1.5 Until user agents render text equivalents for client-side image map
links, provide redundant text links for each active region of a client-side
image map.

Some devices may not describe the different areas of a client-side image map
correctly. Therefore, you can help these users if, in addition to the map, you

217

Priority 3

also provide links to the different sections of the map. We haven’t used any
image maps in this site, so we pass this checkpoint.

Tables

5.5 Provide summaries for tables.
The table element has a summary attribute that can be used to summarize
the information in a table. This attribute helps screen-reader users to under-
stand the context of the table, and whether the information is relevant to
them. Summaries are not displayed on-screen in browsers. As shown in Fig-
ure 7.16, Dreamweaver reminds you to add the summary attribute when you
insert a table.

Figure 7.16. Adding the summary attribute in the Table dialog.

Once inserted, the summary displays in the markup as an attribute of the
table element:

218

Chapter 7: Accessibility

<table summary="This table contains information about browser
 usage during 2004">

5.6 Provide abbreviations for header labels.
We have already discussed table headings and their value in helping people
to understand the data in a table. However, if the heading is very long, and
a screen reader reads it repeatedly for each cell to which that heading applies,
users could become frustrated very quickly. You can specify an abbreviated
form of a heading using the abbr attribute of the th element, as shown below:

<th abbr="2004" scope="row">Financial year 2004</th>

10.3 Until user agents (including assistive technologies) render side-by-
side text correctly, provide a linear text alternative (on the current page or
some other) for all tables that lay out text in parallel, word-wrapped
columns.

This checkpoint again deals with situations in which tables are used for layout.
If you use a table to split a page into columns, some screen readers may read
the first line of the text in the first column, then the first line of the text in
the next column, and so on, rather than reading all the text in the first column,
then all the text in the second. Obviously, this would make your document
totally incomprehensible. To pass this checkpoint, you either need to use
CSS for layout (as we have done in the Code Spark project), or provide an
alternative version.

Forms

10.4 Until user agents handle empty controls correctly, include default,
place-holding characters in edit boxes and text areas.

Some older devices require that placeholder text be inserted into every form
field, which is why this checkpoint exists. Modern browsers, screen readers,
and other user agents can handle empty form fields. There is some debate as
to whether placeholder text is helpful or causes more of a problem: the user
needs to remove placeholder text before they enter content into the field.

Accessibility Validation
After working through the checkpoints, I’m fairly happy that our site, in its current
form, could achieve Level Double-A conformance. This is fairly good given that,
while we’ve considered accessibility issues as we’ve built and structured the site,
we haven’t really studied the issues in depth. However, before we consider putting

219

Accessibility Validation

a Double-A badge on the site, we should check the site by validating its accessib-
ility.

As you’ve probably realized, validating a site for accessibility isn’t like validating
its markup: many of the checkpoints don’t apply to all sites, while others only
apply in certain circumstances. To claim a level of conformance, you need to look
at each checkpoint and decide:

1. Does this checkpoint apply?

2. If it applies, have I done what is needed?

For the majority of the WCAG checkpoints, the most that any accessibility val-
idator will be able to do is remind you to check for issues that might apply to
your site: the final decision will be yours. Validators are useful, however, as they
highlight the points that might apply, so that you can pay special attention to
those issues.

The Dreamweaver Accessibility Validator
The simplest check is to use the Dreamweaver accessibility validator, which is
available from the Results Panel: select the Site Reports tab, and click the green
arrow. In the Reports dialog, shown in Figure 7.17, select Accessibility, and click
Run.

Figure 7.17. Running an accessibility report.

220

Chapter 7: Accessibility

The report will appear in the Results Panel, as shown in Figure 7.18. Don’t worry
that a lot of points have been listed: they’re not errors like those you might see
in an XHTML validation report. They’re issues you need to check for, and decide
if they apply to your situation.

Figure 7.18. Viewing the accessibility report in the Results panel.

Double-clicking on any line in this report will take you to the corresponding line
of your document in Code View. Most of the lines that appeared in the report
when I ran the validator on our site simply asked us to check whether the alt
attribute we had provided for an image was appropriate. Double-clicking on “Non
spacer IMG with equivalent ALT” jumps directly to the line at which the
tag is located. I find the Dreamweaver validator is useful for dealing with small
documents, but for a large document or site, I tend to use an online validation
service.

Cynthia Says: Online Validation
Cynthia Says is an online validator that doesn’t offer a page upload facility, so
you will need to publish your document to the Internet in order to use this service.
Once you’ve done that, visit the Cynthia Says Portal,7 scroll down the page, and
you’ll find a form that allows you to check the page’s accessibility. See Figure 7.19.

Using the Web Developer Toolbar

If you use the Firefox Web browser, you can download and install the Web
Developer Toolbar extension.8 This includes handy links to validate your
page with Cynthia Says, as well as useful functionality that allows you to
disable JavaScript, images, and CSS.

7 http://www.contentquality.com/
8 http://chrispederick.com/work/firefox/webdeveloper/

221

Cynthia Says: Online Validation

http://www.contentquality.com/
http://chrispederick.com/work/firefox/webdeveloper/
http://chrispederick.com/work/firefox/webdeveloper/

Figure 7.19. Using the Cynthia Says online validator.

You can ask Cynthia to produce a report only for WCAG Priority 1, for Priority
1 and 2, or for Priority 1, 2, and 3 checkpoints. When you click Test your site, a
report that contains all of the checkpoints that we’ve discussed in this chapter,
as shown in Figure 7.20, will be returned.

The checkpoints are accompanied by a list of the rules Cynthia Says uses to check
your documents. A Passed column is also displayed, which provides “yes” or “no”
answers if the check is one that can be done automatically, and an Other column
for those checkpoints for which “yes” or “no” answers are inappropriate. If these
columns are left blank, the check needs to be done manually.

222

Chapter 7: Accessibility

Figure 7.20. Reviewing the Cynthia Says report for our document.

By using the Cynthia Says checklist, along with the information in this chapter,
you should be able to make your own decisions on the manual checks that are
required, and decide whether you feel that the site has attained level Double-A
conformance. As it stands, I think this page does achieve Double-A; the only
“No” we receive on the Cynthia report is in the Priority 2 section in relation to
form field labels: Failure - INPUT Element, of Type TEXT, at Line: 165,
Column: 7 in FORM Element at Line: 162, Column: 5. This input element
is our submit button, which does not need a label, as screen readers will read out
the value of the button.

The report has also noted that the page contains “sitemap” link text, indicating
that we have a sitemap. We haven’t built this yet, but if we assume that we will
build it, we will pass this checkpoint.

223

Cynthia Says: Online Validation

In the next chapter, we’ll look at adding to our site some of the features we’ve
already discussed—features that will bring us closer to Triple-A conformance as
we build our site.

Summary
This chapter has explained what accessibility means, discussed the specific types
of users we can help by making our document accessible, and investigated how
we can go about following in practice the guidelines laid down by the W3C. The
fact that our document meets Level Double-A conformance without any big issues
shows that accessibility doesn’t have to be a difficult thing to achieve. It just
takes a bit of thought to ensure that choices you make as you build your site
don’t make it difficult for your visitors to access your pages.

After performing these checks on a few sites, it will become second nature to you
to consider these issues; after all, most of them are simply common sense, once
you think about the different types of users who might want to access your site.
Considering accessibility will benefit all of your users, and by going through the
process of checking your site for the above issues, you are carefully considering
how people will use your site, and how to make it easier for them. People you
might consider as having a “disability” won’t be the only ones who will benefit
from the care you’ve taken: all users benefit from clear navigation and well-con-
ceived site structure and content.

224

Chapter 7: Accessibility

Building the Site8
By now, you should have an accessible, valid XHTML document complete with
a valid style sheet. We can use this document as the basis for the rest of the site,
knowing that we have a standards compliant framework from which we can build
the rest of our pages. As we create new pages, we can be confident that, generally,
the site is accessible and standards compliant. We need only worry about the
new elements that we add to each page.

In this chapter, we’ll lay out the main pages we need for this site:

❑ The homepage

❑ The tutorial list page

❑ An example tutorial page

❑ A sitemap

By the end of this chapter, you should be able to create as many new pages for
your site as you need, and understand the techniques that are used to create a
site using server-side includes.

Creating the Includes
Our first job will be to take the page that we’ve built and place its reusable parts
into separate files, called include files, or just includes. These include files will
be included on each individual page by the server before the page is served to the
browser, so you’ll need to view them through the Web server we set up in
Chapter 2. If you didn’t set up the server then, you’ll need to do it now in order
to follow the examples we discuss here.

We are going to create three includes from our layout file. The first will contain
the DOCTYPE and everything above the title element. All our pages will have
unique titles—something that’s important for accessibility and for search engine
optimization—so we’ll leave the title out of the include, instead specifying it in
each page. The second include will start just after the <body> tag, and will contain
the banner and top navigation section. The third will contain the sidebar and
the end of the document.

To begin, save your homepage-layout-strict.html file as index.shtml in the
root of your site folder: access File > Save As…, and select Server-Side Includes
from the Save as type drop-down. We will be working in this file as we create our
includes.

The First Include: head.html
Open index.shtml in Code View and select everything from the beginning of
the DOCTYPE down to <head>. Copy this code.

Create a new file in Dreamweaver by selecting File > New…. In the New Docu-
ment dialog, select Other from the Category list, then Text from the Other list.
Click OK. This process creates an empty file. Paste into it the code that you copied
from index.shtml, and save this new document in the inc directory as head.html.
The contents of head.html should be as follows:

File: inc/head.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

226

Chapter 8: Building the Site

Back in index.shtml, we can replace the code we’ve just saved into head.html.
Delete the code from index.shtml, and select Insert > Server Side Include. The
Select File dialog will appear. Browse for inc/head.html, as shown in Figure 8.1.

Figure 8.1. Selecting the head.html file.

In the Relative to drop-down list, make sure Document is selected. Then, click OK.
The following line should be inserted into your document:

File: index.shtml (excerpt)

<!--#include file="inc/head.html" -->

This instructs the Web server to insert the file inc/head.html at this point in
the document, before it sends the document to the user’s browser.

227

The First Include: head.html

The Second Include: top.html
The next include file that we need to create is the file that contains the top part
of the document: the header div and its content, as well as some of the markup
within the head of the document.

Select and copy everything from <div id="header"> down to and including
<div id="content">, as depicted in Figure 8.2.

Figure 8.2. Selecting the markup for the top include.

Create a new text file and paste into it the code you’ve copied. Save this file as
top.html. This file should contain the following code:

File: inc/top.html

<div id="header">
 <div id="header-top">
 <img src="img/logo.gif" alt="Code Spark"
 width="290" height="160" id="logo" />
 Inspiration for Coders
 <div id="controls">
 <p>Page Controls</p>

228

Chapter 8: Building the Site

 <img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35" />

 <img src="img/control_smaller.gif"
 alt="Decrease Text Size" width="43" height="35" />

 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />
 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

 </div>
 </div>
 <div id="header-bottom">

 Tutorials
 About
 Contact
 Sitemap

 </div>
</div>
<div id="content">

Back in index.shtml, delete all of the markup that you’ve just pasted into
top.html, and insert a server-side include as before. This time, however, select
top.html and insert it just after the <body> tag. At this point, the first few lines
of index.shtml should appear as follows:

File: index.shtml (excerpt)

<!--#include file="inc/head.html" -->
<title>Code Spark layout</title>

<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<link href="inc/main.css" rel="stylesheet" type="text/css" />
</head>
<body>
<!--#include file="inc/top.html" -->
 <h1>Latest ideas </h1>

229

The Second Include: top.html

Figure 8.3. Dreamweaver includes the files and displays them as
they will display in the browser.

If you switch back into Design View, you should see that the parts that you have
copied out of index.shtml are still displayed; Figure 8.3 illustrates this. This
occurs because Dreamweaver understands the server-side includes in the file and
automatically includes the files when displaying the document. If you view the
file locally (by selecting File > Open File… in your Web browser, or by double-
clicking the file in Windows Explorer), you’ll see that the header of the page is
missing and that most of the page is missing its CSS rules. This occurs because
you’re not viewing the file through the Web server, which is responsible for
handling the server-side includes.

The Final Include: bottom.html
The last file that we need to create and include in our document will contain the
sidebar and the end of the document. Select everything from the closing </div>
tag in the content area right down to the final </html> tag in the document.
Copy this content into a new file, and save it as bottom.html. The file should
contain the following code.

230

Chapter 8: Building the Site

File: inc/bottom.html

</div>
<div id="nav">
 <div class="section">
 <h3>Search this Site</h3>
 <form id="form1" method="post" action="">
 <p><label>Search keywords

 <input name="keywords" type="text" class="searchtxt"
 id="keywords" />
 <input type="submit" name="Submit" value="Search" />
 </label></p>
 </form>
 </div>
 <div class="section">
 <h3>Tutorial Topics</h3>
 <ul class="topics">
 PHP & MySQL
 CSS Design
 JavaScript & DHTML
 ASP & .NET
 JSP & Servlets

 </div>
 <div class="section">
 <h3>Reader Favorites</h3>
 <ul class="list">
 Longus Imitaris
 Tu Urbanus Vero Scurra
 Lingua Factiosi, inertes opera
 Mufrius, Non Magister
 Omnis Oratio Moribus Consonet
 Quales Illic Homunculi
 Omnium Mensarum Assecula

 </div>
 <img src="img/nav-bottom.gif" alt="" width="266"
 height="63" class="displayblock" />
</div>
</body>
</html>

Delete this code from index.shtml and insert a server-side include in its place.
Save your document and check that it still displays as a complete page in
Dreamweaver. Now, try viewing the page from your Web server by entering the
address http://localhost/codespark/index.shtml into your Web browser.

231

The Final Include: bottom.html

You should see the complete page as you do in Dreamweaver; its display through
Firefox is illustrated in Figure 8.4. If you right-click on the page and select View
Source, all of the code will display, as the server includes all the files before it
sends the page to the browser.

Figure 8.4. The index.shtml page view in Firefox.

Creating The Base Page
The index.shtml page that we have created will become the homepage of the
site. Our next step is to create a document that will serve as a starting point for
the rest of the site’s pages. These pages will be less complex than the homepage,
but, as we discussed when we created the layout, they will all display the header
and sidebar sections that are contained in our include files; the difference will be
the content that’s kept within the content div.

The basic page layout is shown in Figure 8.5; we can use this as a starting point
for all the pages of the site.

This page constitutes a base framework: every time you want to create a new
page, you’ll be able to do so simply by saving this framework under a new file-

232

Chapter 8: Building the Site

name. All of the include files will be in the right spots, ready for you to add your
content.

Figure 8.5. The base page layout for an article.

Save index.shtml as base.shtml. Switch into Code View and delete all the code
between the includes top.shtml and bottom.shtml. Insert a placeholder para-
graph between the two includes:

File: base.shtml (excerpt)

<p>Content here</p>

You should now have a document that contains the following:

File: base.shtml

<!--#include file="inc/head.html" -->
<title>Code Spark layout</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<link href="inc/main.css" rel="stylesheet" type="text/css" />
</head>

233

Creating The Base Page

<body>
<!--#include file="inc/top.html" -->
<p>Content here</p>
<!--#include file="inc/bottom.html" -->

The Importance of Placeholder Text

This placeholder text gives you something to select and replace with your
content in Dreamweaver’s Design View. If you haven’t inserted any content
between the two includes, it becomes very difficult to start adding content.

Save the page and view it in Design View. You should see the framework of the
page, as shown in Figure 8.6.

Figure 8.6. The base page file.

From this point forward, when we create a new page, we will simply save this
base.shtml page with a new filename, then add to it.

234

Chapter 8: Building the Site

The Tutorial List Page
Save base.shtml as tutorials.shtml using File > Save As…. This page will dis-
play a list of all of the tutorials on the site, under appropriate category headings.
To start with, we’ll set the title of the page to reflect its contents. Page titles are
important when it comes to having your site indexed by search engines—as well
as for accessibility purposes—as they explain what the page is about. A good title
for this page would be "Code Spark tutorials – the very best ASP, PHP, JSP and
CSS tutorials." Place this text between the existing <title> and </title> tags.

Next, start the content of the page with a level one heading that reads, "Tutorials,"
followed by a paragraph that introduces the tutorial section of the Website.

We want to display all of the tutorials under tutorial topic headings. The Sidebar
contains a list of these headings:

❑ PHP & MySQL

❑ CSS Design

❑ JavaScript & DHTML

❑ ASP & .NET

❑ JSP & Servlets

Add these to the page as level two headings, as shown in Figure 8.7.

235

The Tutorial List Page

Figure 8.7. The tutorial headings.

The headings have taken on the rules created for them in the style sheet, as the
style sheet is attached to the page in the top.html include.

Creating the Lists
Under each heading, add a list of the tutorials that are presented within that
category, using the Property Inspector to mark the titles up as an unordered list.
Each tutorial title will form a link to the actual tutorial page; you can make these
null links (i.e., links that don’t go anywhere) for now by entering a # in the Link
field of the Property Inspector, as shown in Figure 8.8.

Figure 8.8. Creating a null link.

Continue until you have two or three tutorials listed under each heading.

236

Chapter 8: Building the Site

Make a Mockup

Even if you are going to store your tutorials in a database and list them on
the page using PHP, ASP, or another server-side language, creating the page
initially as a static page containing dummy data can simplify the process of
sorting out the design. By the time you come to writing the server-side code,
you don’t have to worry about how the page will look, because you already
will have created all the CSS rules, and worked out how the page will display.

Often, when I’m creating an application for a client, I’ll mock up the look
and feel of the site’s main pages as static HTML pages. This way, I can
quickly show the pages to the client, and they can understand how the site
will look—and what will appear on each main page—before I begin any time-
consuming development work.

Adding to the CSS
We have now marked up our basic tutorial listing page. As we have already created
some basic styles, it doesn’t look too plain; however, it might be nice to style the
tutorials lists.

In Dreamweaver, create a new CSS rule using the CSS Panel. Create class selector,
.tutorial-list, as shown in Figure 8.9. Define it in our existing style sheet,
main.css.

Figure 8.9. Creating a new class named tutorial-list.

In the CSS Rule Definition dialog, go to List category and browse for the bullet
image tutorial-list-bullet.gif. Click OK to create the class.

You will need to apply the class to the lists in order for the new bullet image to
display. Select the tag of the first list using the Tag Selector at the bottom
of the document window. In the Property Inspector, select from the Style drop-

237

Adding to the CSS

down the tutorial-list class that you just created. The selected list should display
with images instead of the plain bullets, as shown in Figure 8.10. Select each list
in turn and apply the same class to it: because we have used a class for this pur-
pose, rather than an ID, we can apply it multiple times throughout the one doc-
ument.

Figure 8.10. The tutorial lists.

An Example Tutorial Page
The next page we will create is an example tutorial page. The one I’m going to
create is a CSS tutorial that’s linked from the front page. If you’re creating all
your tutorials as static pages, you could use this example page as a starting point
and create as many pages as you need from it. If, on the other hand, you’re
working with server-side code, you could place your dynamic data into this ex-
ample page.

We will start, as we did with the last page, by adding all of the content to the
page, so that we can see what we have. We’ll then add the necessary CSS classes
to create the look and feel that we want.

Open base.shtml and save it as tutorial1.shtml. Delete the placeholder con-
tent. The first thing on our tutorials page is the breadcrumb trail that shows users
where they’re located within the structure of the site:

Home > Tutorials > CSS Design > CSS: Designing with Style, not
Class

Add this as the first item within the content area of the page. The first three
elements will need to link back to the homepage, the tutorials list page, and the

238

Chapter 8: Building the Site

CSS tutorials list page (if you’re creating one), respectively. The final item iden-
tifies the page that the user is currently on: it doesn’t need to be linked. The
finished trail is shown in Figure 8.11.

Figure 8.11. The breadcrumb trail.

Now add the title of the article as a level one heading. We’ve already created a
style rule for level one headings, so the text will be aligned to the right.

Below the heading, insert the author image; use the same image that we used for
this author on the homepage: georgina.jpg. Don’t forget to add the alt attribute
that describes the image. Next to the image, add the author’s name, Georgina
Laidlaw, and a publication date for the article. Finally, add a few paragraphs of
dummy article text. You now have the basic elements of an article page.

Adding CSS for the Tutorial Page
Let’s use CSS to style the tutorial page, starting with the first item that we added
to the page. Create a new CSS rule for the class selector .breadcrumbs in
main.css.

Let’s add a 1 pixel border to the bottom of the breadcrumbs in order to visually
separate them from the rest of the content. In the Border category, uncheck the
Same for all checkboxes and create a bottom border that’s solid, with a 1 pixel
width, and a color of #3C582F.

In the Type category, set Size to 90% to make the breadcrumb text slightly smaller
than that of the main content. Set Line height to 2 ems to provide some space
between the bottom border and the breadcrumb text. In the Block category, set
Text align to right, then click OK. In order for these rules to display, you need to

239

Adding CSS for the Tutorial Page

apply the breadcrumbs class to the paragraph that wraps the breadcrumb trail.
So, select the <p> and, in the Property Inspector, apply the class using the Style
selection box.

Level One Heading

The heading on the page has aligned right, and has taken on the styles we set for
level one headings (h1) when we created the initial layout. But, for these tutorial
pages, I’d like the heading to be left-aligned and a little larger.

We can create differently styled headings by creating a class to be applied to
specific headings. That way, any heading to which no class is applied will take
on the default h1 style, but headings to which a different class is applied will also
use the style properties specified for that class.

Create a new CSS rule. This time, create an Advanced selector #content
h1.tutorial. This class will only be applied to level one headings that have a
class of tutorial inside an element with the content ID. Under Block, set Text
Align to left. Under Type, set Style to normal, and Size to 160%. Now, apply the
tutorial class to the heading.

The Author Image
The author image should display to the left of the author credit, date of publica-
tion, and the tutorial’s introduction. To achieve this, we need to float the picture
left, which will allow the rest of the content to wrap it.

Create for this class a new CSS class rule, .tutorial-author. In Box, set the
Width to 104 pixels, and set Float to left, right margin to 10 pixels, and bottom
margin to 10 pixels. Click OK, select the image, and apply the tutorial-author
class. The results of this work are shown in Figure 8.12.

240

Chapter 8: Building the Site

Figure 8.12. The layout after the new class tutorial-author is
applied.

The Author Credit and Date
The tutorial page is really starting to come together now! Preview it in the browser
by typing http://localhost/codespark/tutorial1.shtml into the address
bar, but make sure you select File > Save All first, so that all the changes you’ve
made to the Web page and the style sheet are saved.

Next, let’s style the author credit. Create a new CSS rule for the selector .tutori-
al-credit. In the Box category, set right margin to 3 ems and click OK. Apply
this class to the author’s name (in this case, Georgina Laidlaw) by highlighting
the text and selecting tutorial-credit from the Style drop-down list. This will wrap
the author name in a span with the class tutorial-credit, supplying some space
between the name and the date.

The Introduction Text
In our mockup image for this page, the first paragraph of text for the tutorial is
bold. Now, we could simply select this and click the B button on the Property
Inspector, which would wrap the text in tags. However, from the point

241

The Author Credit and Date

of view of semantics, this wouldn’t be the correct thing to do, as strong implies
that the text has a special meaning: that it should be strongly emphasized. As we
only want the text to look bold, rather than to have any special meaning, we’ll
use CSS to create the bold effect.

Create a new CSS rule for the selector .tutorial-intro. In the Type category,
under Weight, select bold. Click OK, then select the paragraph that wraps the in-
troduction text, and apply the tutorial-intro class to it.

A Hidden Advantage of CSS

An additional advantage to styling this introduction with CSS is that if, in
the future, you wanted the introduction to appear in a box, or to display as
a different color, or in some other format, you have already added a class to
it: it’s easy to create a new look for that class without having to edit every
page.

Inline Images
We have now styled the basic tutorial layout. However, there are a couple of extra
page elements that might appear in some tutorials; let’s create CSS for these
cases, so that the styles are there, ready to be applied. The first case is an inline
image that displays within the text—perhaps a screenshot or figure.

As we saw when we dealt with the author image, the way to get text to flow
around an image is to float that image left or right. When you insert the image,
you need to insert it at the start of the text that you want to wrap around it.
Normally, the text will line up with the bottom of the image, and there will be a
large amount of whitespace on either side of the image. Insert the image css-
tutorial-img.gif into the middle of a paragraph, and see for yourself.

Create for the image a CSS rule with selector .tutorial-image. In the Box cat-
egory, set Float to left, and give the image a right margin of 10 pixels and a bottom
margin of 10 pixels. If you’d rather have the image on the right and the text
wrapping to the left, float the image right and apply the margin to the left and
bottom. Click OK, then apply the class to your image.

Standardize Image Sizes

In some older browsers, floated elements need to have a defined width, so
it’s a good idea—wherever possible—to make all of your tutorial images the
same width. Then, you only need the one class to deal with them!

242

Chapter 8: Building the Site

Quotes
Another element we might like to have in our tutorial is a pull quote: a short
quote taken from the tutorial and highlighted. Pull quotes can be used to draw
the reader into the article and encourage them to read it, or to highlight important
issues that the author wants the reader to remember. Just like an image, the quote
will display inline within a paragraph of the article, as depicted in Figure 8.13.

Figure 8.13. Displaying the pull quote.

To insert your quote, add it as an additional paragraph above the paragraph in
which you would like it to float.

The correct XHTML or HTML element to use to mark up a quote is blockquote.
You can apply this element from the Property Inspector; however, be aware that
Dreamweaver confusingly calls it "Indent Text," which describes precisely what
it should not be used for!

Don’t use Blockquote to Indent!

In the "bad old days," Web designers would often use the blockquote ele-
ment to indent text on their pages, because browsers render the blockquote
text as indented by default. If you want to indent text on your page, you
should be using CSS to do so!

Select the quote and click the Indent Text button on the Property Inspector to
add the blockquote element. If you switch into Code View, you’ll find that it
has wrapped the <p> and </p> tags <blockquote> and </blockquote> tags. In
Design View, your quote will appear indented from the left margin.

To create the pull quote effect we want, we can use CSS to style the blockquote.
We have a choice here: we can either style all blockquotes in the style of our
pull quote, or we can apply a class to only those quotes that we want to display
in this way. I think it’s quite likely that I’d want to use blockquotes in articles

243

Quotes

for other reasons—perhaps in quoting an expert on a certain topic—so I’m going
to leave the basic blockquote alone, and create a pullquote class for these special
quotes.

Create a new CSS rule in Dreamweaver for the selector .pullquote. In the Type
category, set Font size to 120%, Weight to bold and the Color to #FFFFFF. In the
Background category, set the background color to #3C582F.

In the Box category, set Width to 160 pixels, Float to right, and assign bottom and
left margins of 10 pixels. Then, set the top and right margins to 0 pixels to remove
the default margin from this element. Add padding of Top 0.2 ems, Right 0.5 ems,
Bottom 0.2 ems, and Left 0.2 ems.

Click OK to create the class, and apply it by selecting the blockquote and using
the Property Inspector to select the newly created pullquote class. Our pull quote
displays as shown in Figure 8.14.

Figure 8.14. The pull quote displaying in Dreamweaver after the
class is applied.

Adding the Quote Mark Images

In our mockup layout we have quote marks within the pull quote’s green back-
ground. As we don’t know how tall the box will be—the quote could be any
length, or the user might resize the text in the browser, causing it to expand—we
can’t simply have one green background image with quotes in it as the background
of the box; we need to create the background in a way that will allow the box to
resize. To do this, we’ll use two background images: one for the top-left quotation
mark, and one for the quotation mark in the bottom-right. An element can only
have one background image, so we’ll need to make use of both the blockquote
element and the p that’s inside it.

244

Chapter 8: Building the Site

First, edit the .pullquote rule we applied to the blockquote element. In the
Background category, browse for the quote-bottom.gif background image. Set
Repeat to no-repeat, Horizontal Position to right, and Vertical Position to bottom.
Click OK to add the bottom quote image to the bottom-right of the quote box,
as shown in Figure 8.15.

Figure 8.15. The pull quote style taking shape.

To add the top quote, create a new CSS rule for .pullquote p using the Advanced
selector type. This will select any paragraph within any blockquote element to
which the pullquote class is applied. In the Background category, browse for the
background image quote-top.gif, and set Repeat to no-repeat. This image will
be positioned from the top and left of the element. In order that we have some
space before the text starts, we can tweak the padding and margins on the p
within the blockquote. In the Box category, set Margin on all sides to 0 pixels,
then set the Padding to Top 6 pixels, Right 4 pixels, Bottom 6 pixels, Left 8 pixels.
You can tweak these values until you’re happy with the amount of spacing between
the edge of the box and the text. Click OK, and these rules will automatically be
applied to the paragraph within the blockquote. You should end up with some-
thing like the display shown in Figure 8.16.

Figure 8.16. The final pull quote displaying in Firefox.

245

Quotes

Highlighting the Current Section in the
Navigation Area

In our original layout image, the current tutorial section was highlighted, as shown
in Figure 8.17, to help users identify where they were located within the site.

Figure 8.17. Highlighting the current section.

Unfortunately, as we’ve placed all of the sidebar in an included file, we can’t
change it for each individual page in order to highlight the current page or section.
However, we can achieve this highlighting effect using pure CSS and some very
longwinded selectors!

In your tutorial1.shtml file, switch into Code View and find the opening
<body> tag. Edit this tag so that it reads as follows:

File: tutorial1.shtml (excerpt)

<body id="topic-css">

We are giving the body tag an ID that relates to the section of the site that it’s
in: if it were in the PHP section, the ID would be topic-php. Open bottom.html
in Code View, and find the unordered list that displays the tutorial topics.

File: inc/bottom.html (excerpt)

<ul class="topics">
 PHP & MySQL
 CSS Design

246

Chapter 8: Building the Site

 JavaScript & DHTML
 ASP & .NET
 JSP & Servlets

Add the following classes to each li element. This class should have the same
name as its corresponding ID in the body element.

File: inc/bottom.html (excerpt)

<ul class="topics">
 <li class="topic-php">
 PHP & MySQL
 <li class="topic-css">
 CSS Design
 <li class="topic-javascript">
 JavaScript & DHTML
 <li class="topic-asp">
 ASP & .NET
 <li class="topic-jsp">
 JSP & Servlets

Includes Save Time!

As bottom.html is the navigation included on every page, we only need
change one file to have our change reflected on every page that includes this
file. Using includes can save a great deal of time, as you only need to change
and upload one file to make a change to the site’s navigation.

Save bottom.html and open main.css, your style sheet file. You could add these
selectors via the CSS Panel, but as the selectors are rather longwinded, and the
rule itself is quite simple, it’s easier to add these rules to the style sheet directly.

Scroll through main.css until you find the following rule:

File: inc/main.css (excerpt)

#nav ul.topics li {
 font: 90% Verdana, Arial, Helvetica, sans-serif;
 color: #3C582F;
 background: #D9DDCF url(../img/nav-topics-bullet.gif) no-repeat
 4px center;
 padding: 0.2em 0.4em 0.3em 26px;
 border-top: 1px solid #EAEAE2;
 border-right: 1px solid #72746D;
 border-bottom: 1px solid #72746D;

247

Highlighting the Current Section in the Navigation Area

 border-left: 1px solid #EAEAE2;
}

Among other things, this rule adds the green bullet image to the topic list. Below
this, add the following:

File: inc/main.css (excerpt)

#topic-css ul.topics li.topic-css {
 background-image: url(../img/nav-topics-bullet-hilite.gif);
}

This rule will overwrite the "CSS Design" menu item’s green bullet point with an
orange one on all the CSS tutorial pages; however, it will leave the green bullet
displaying on the other tutorial pages, as shown in Figure 8.17. The rule works
because the selector starts with the #topic-css ID selector, so the rule will only
apply when the body element has the topic-css ID.

We’ll also need to add style rules for the other menu items, but, thankfully, we
don’t need to repeat ourselves too much: we can just add extra selectors to the
same rule, separating them with commas.

File: inc/main.css (excerpt)

#topic-css ul.topics li.topic-css, #topic-php ul.topics
 li.topic-php, #topic-asp ul.topics li.topic-asp,
 #topic-javascript ul.topics li.topic-javascript,
 #topic-jsp ul.topics li.topic-jsp {
 background-image: url(../img/nav-topics-bullet-hilite.gif);
}

Server-Side Language Tip

If you’re using a server-side language to build your site, you could instead
create a class named nav-hilite, then apply that class dynamically to the
correct li element.

You have now completed your tutorial page! You can use this as a basis to create
all of your static tutorial pages, or as a template to pull in dynamic content if
you’re working with databased content.

Don’t Forget to Validate!

Before you go on to create more pages based on this one, don’t forget to
validate the page! Unfortunately, because we’re using server-side includes,
the Dreamweaver validator will be confused by this page: it will think that

248

Chapter 8: Building the Site

you’ve forgotten to use the html and head elements, as they are located in
the include files. One way around this would be to upload the file to a Web
server, and enter the live URL into the W3C validator. However, if you aren’t
in a position to upload all of your files yet, a quick way to validate offline
pages is to use Firefox and the Web Developer Toolbar,1 which provide a
handy method for validating your markup without having to upload the
document. This solution is shown in action in Figure 8.18.

Figure 8.18. Validating local HTML in Firefox.

This toolbar provides all kinds of useful little tools. The one we’re interested
in, Validate Local HTML, basically uploads the HTML to the W3C HTML
Validator Website and presents the results in a new tab in Firefox. This is
also useful if you’re creating pages that use server-side scripts on a local Web
server, as the output of the scripts are sent to the validator.

The Sitemap
The pages that we have created so far should provide a useful starting point for
most of the other pages that you might want to create for the site. You can, of
course, add to main.css more CSS rules to style any additional elements you
need for your pages. In the next chapter, we’ll look at creating forms—including
building a contact form for the site—and we’ll see how you can ensure that your
forms are accessible and attractive. However, to complete this chapter, we will
look at a very useful and helpful inclusion on any site: a sitemap.

It’s easy for Website users to become confused, or to be unsure of where to find
the particular content they’re after, especially on large sites with complex navig-
ational structures. A sitemap, linked from all of the pages of your site, gives users
an easy way to inform and orient themselves; it also provides Web crawlers such
as Google a good way to find (and index!) all the content on your site.

1 http://chrispederick.com/work/firefox/webdeveloper/

249

The Sitemap

http://chrispederick.com/work/firefox/webdeveloper/

The sitemap is generally a tree-like structure with at least two levels—often more.
In our site, the top-level navigation is as follows:

❑ Tutorials

❑ About

❑ Contact

Under Tutorials, we have these main topic headings:

❑ PHP & MySQL

❑ CSS Design

❑ JavaScript & DHTML

❑ ASP & .NET

❑ JSP & Servlets

Under each of these topic headings, we have the list of tutorials. There are three
levels in the structure of this part of the site, which is depicted in Figure 8.19.

250

Chapter 8: Building the Site

Figure 8.19. The Code Spark sitemap.

Just as we displayed our tutorials in a list on the tutorials page, we can use lists
to mark up our sitemap. To describe the different levels of navigation, we can
nest one list inside another: the tutorial topics will comprise a list that’s nested
inside the main sitemap list, and the tutorials for each topic will be nested inside
the list for that topic.

Marking up the Sitemap
Create a new page from base.shtml and save it as sitemap.shtml. Set the page’s
title to Sitemap, and add Sitemap as a level one heading. Enter the top level
navigation as an unordered list, making each item a link, as shown in Figure 8.20.

251

Marking up the Sitemap

Figure 8.20. Marking up the top level of the sitemap as a list.

Position the cursor at the end of the text that reads, "Tutorials," and hit Enter
to create a new list item below it. We want this item to be the first item of a list
that’s nested inside the Tutorials li element. To do this in Dreamweaver, hit
the Tab key. The list item will move in, and will appear with a style of bullet
that’s different from the main list item, as shown in Figure 8.21. Add the tutorial
topics to this list.

Figure 8.21. Marking up the second level of the sitemap as a
nested list.

Repeat the process to add the third level to the sitemap, placing the cursor after
“PHP & MySQL,” hitting Enter to create a new list item, and then hitting Tab
to move to a new, nested list in which you can add the tutorials for the PHP &

252

Chapter 8: Building the Site

MySQL topic category. You should end up with the structure shown in Fig-
ure 8.22.

Figure 8.22. Marking up the sitemap as nested lists.

The code should look like this:

File: sitemap.shtml (excerpt)

 Tutorials

 PHP & MySQL

 Graphic Violence - Crazy Graphs with
 PHP

253

Marking up the Sitemap

 ASP is from Mars, PHP is from
 Venus

 CSS Design

 CSS Forms - Massive feedback
 distortion?
 CSS: Designing with
 Style, not Class

 JavaScript & DHTML

 JavaScript's Presentational
 Presence

 ASP & .NET

 Making the .NET Framework
 Work
 IIS Security - Tightening the
 .NET

 JSP & Servlets

 Buttons & Dials - Java Controls
 Explained
 Java - Servlets yourself
 right

 About
 Contact

If you look at the markup that Dreamweaver has generated, you’ll see that the
nested lists are located inside the parent li element, before the closing
tag.

254

Chapter 8: Building the Site

Styling the Sitemap with CSS
Now that we have created the structure for our sitemap, we can make it look
more attractive using CSS.

First, create a new CSS rule for the selector .sitemap. In the Box category, set
Margin and Padding to 0 pixels. In the List category, set Type to none. Click OK
and apply the sitemap class to the outermost list’s tag: select the first
in the tag selector, then select the class from the Style drop-down in the Property
Inspector. This will remove the outer list’s default margin and padding, as well
as its bullets, as shown in Figure 8.23.

Figure 8.23. Using the Property Inspector to apply the sitemap
class to the sitemap.

255

Styling the Sitemap with CSS

Now, create a new CSS rule using the Advanced selector .sitemap li. This style
will only apply to li elements within the sitemap.

In the Border category add a solid, 1 pixel bottom border with a color of #E4FDCC.
To space out the main list items, add a bottom padding of 0.5 ems, and a bottom
margin of 0.6 ems, in the Box category. Click OK; this style rule will apply auto-
matically to all li elements with the sitemap. You’ll see that the rule you’ve just
created has been applied to the nested li elements as well as those in the outer-
most list. Next, let’s create rules for those nested items in order to style them
differently.

Create a new CSS rule with the selector .sitemap li ul li. This will address
the nested li elements, not those in the outermost list.

Set the bottom border style to none, to prevent the parent’s border from displaying
on these items. Let’s use a bullet image that’s similar to the one in the topics list
for this level of the sitemap. In the List category, browse for the sitemap-
level2.gif file. Also, adjust the spacing for this nested list by setting the top
margin to 0.2 ems and the bottom padding to 0.2 ems. Click OK, and the second
and third level lists will take on the new style illustrated in Figure 8.24.

Figure 8.24. Styling the second level lists.

256

Chapter 8: Building the Site

Finally, let’s style the last level of the sitemap. We’ll use for the third level the
image that we used on the tutorial.shtml page. So, create a new CSS rule with
the selector .sitemap li ul ul li; this will address the third level lists. All
that’s needed here is to browse for the small icon we used for the tutorial list
(tutorial-list-bullet.gif). Select it, and click OK; the sitemap is complete,
as shown in Figure 8.25.

Figure 8.25. Displaying the completed sitemap in the browser.

Summary
In this chapter, we explored how to take a basic page layout and, using XHTML
and CSS, turn it into the basis of a Website. The techniques used in this chapter
can just as easily be used with a dynamic, database-driven site as they can with
a static Website.

Once we have created our layout and the includes for the common parts of the
document, we can use this to rapidly develop our site, only creating new CSS
rules for new elements that we need to add to specific pages. As we know that

257

Summary

we have a valid, accessible framework for our document, we can add new pages
quickly. We need only check that the page elements we add to the content area
validate, and that we bear accessibility in mind as we continue to build the site.

258

Chapter 8: Building the Site

Forms and Third-party Services9
Now that we’ve created the main pages of our site, we can start to look at some
additional elements, most of which are common to many sites online today.

As Web professionals move away from creating "brochureware," towards dynamic,
interactive sites, they tend to require forms in order to gather user input. In this
chapter, we’ll use Dreamweaver to create an accessible form, which will become
the contact page of our site. We’ll also discuss how we can utilize a third-party
service—the site search service from Atomz—on the site.

The Contact Form
Create a new page from base.shtml in Dreamweaver. Save this page as con-
tact.shtml—this page will contain our site’s contact form. A contact form gives
users an easy way to ask questions, or provide feedback about the site, and, if
well-designed, ensures that the site owner can get in touch with the user as re-
quired. If we plan it well, we can use our form to ensure that, when making con-
tact, users send in all the information we require in order to respond to their
messages.

Our form will contain the following fields:

❑ A drop-down list through which the user can identify the reason they’re con-
tacting us. This will also help ensure that the message is delivered to the right
person.

❑ Name

❑ Email address

❑ Phone number

❑ Comment or query

Avoid too many Mandatory Fields

It might be tempting to include a lot of fields in the form, and to force the
user to complete them all before the form can be submitted. However, this
might just put people off contacting you—users may not fill in the form at
all.

So, for example, if you don’t require users’ addresses, don’t make this a re-
quired field; even better, leave it off the form entirely. If you do need specific
information—for instance, you need users’ addresses because they’re request-
ing that a brochure be mailed to them—be sure to let users know why you’re
collecting this information. If you have a formal privacy policy, include a
link to it here.

Marking up the Form
We’ll start by marking up the form; we’ll use CSS to style later. You might pre-
viously have used a table to lay out a form like this, so that all the fields and their
labels lined up nicely. We can achieve this effect in a far more accessible way if
we use CSS for layout, and keep the markup simple and semantically meaningful.

Make sure Dreamweaver’s Form Accessibility Features
are Enabled

Before you start to work on your form, open the Preferences dialog (Edit >
Preferences) and, under the Accessibility category, ensure that Form objects
is checked. With this preference selected, Dreamweaver will present dialogs
into which you can enter form attributes to make your forms more accessible
to all users. The dialogs act as a helpful reminder, and provide an easy way
to add these attributes in Dreamweaver.

260

Chapter 9: Forms and Third-party Services

Insert a form into contact.shtml using the Forms pane of the Insert toolbar,
then on the Text pane click the Paragraph button to create a paragraph inside the
form. Now let’s add a text field for the user’s name: back in the Forms pane of
the Insert toolbar, click the Text Field button, as shown in Figure 9.1.

Figure 9.1. Inserting a Text Field using the Insert toolbar.

As we have form accessibility turned on, before the field is added to the document,
the Input Tag Accessibility Attributes dialog displays. In the Label field, type
Name; under Style, select the Attach label tag using ‘for’ attribute radio button; and
for Position, select the Before form item radio button, as illustrated in Figure 9.2.

Figure 9.2. Adding accessibility attributes.

Click OK: the text field and its label will be added to your document. Select the
text field and, in the Property Inspector, change the name of the field to fullname.
If you change the name of a form element in Dreamweaver, it will change both

261

Marking up the Form

the name and the id of the field. Switch into Code View and find the form element
that you’ve just added; it’ll look something like this:

File: contact.shtml (excerpt)

 <p>
 <label for="textfield">Name</label>
 <input type="text" name="fullname" id="fullname" />
 </p>

The label element is tied to a form field by its for attribute, which is supposed
to match the input element’s id attribute. As you can see from the code above,
Dreamweaver has changed the id of the input element, but not the label ele-
ment’s for attribute, so we need to change it to <label for="fullname">
ourselves. Unfortunately, you’ll have to go through this process for every form
element that you add.

Create a new paragraph by hitting Enter in Design View, and repeat the above
process to add fields to accept the users’ email addresses and telephone numbers.
Also, add a paragraph of text just above the form, like that shown in Figure 9.3.

Figure 9.3. Viewing the form after the three text fields are added.

In Code View, your page should look like this:

File: contact.shtml (excerpt)

<p>Use this form to tell us what you think of the site, report
 a technical problem, or ask a question.<p>
<form id="form1" name="form1" method="post" action="">
 <p>

262

Chapter 9: Forms and Third-party Services

 <label for="fullname">Name</label>
 <input type="text" name="fullname" id="fullname" />
 </p>
 <p>
 <label for="email">Email</label>
 <input type="text" name="email" id="email" />
 </p>
 <p>
 <label for="phone">Phone</label>
 <input type="text" name="phone" id="phone" />
 </p>
</form>

Adding a Menu

Now, let’s add a menu (or drop down list) to the form, so that users can identify
the reasons for their enquiries. You could also use this tool to direct users’ queries
to the appropriate team members.

Click the List/Menu button on the Insert toolbar to insert a list. Once again, the
Accessibility Attributes dialog displays, allowing you to add a label for the element:
call it Select subject. This label should be positioned before the form field.

What about Access Keys?

If you’re using access keys , you could create an access key for this particular
form element; however, there’s limited value in adding an access key for
every form element, as most keyboard users prefer to use the Tab key to
move around a form. In addition, access keys can be confusing if they’re not
carefully thought through: your access keys may clash with some other
browser or operating system combination, and assigning access keys to every
form field increases the likelihood of such a clash occurring.

Select the menu in Design View and, in the Property Inspector, set its name to
subject. Don’t forget to switch to Code View and update the label element’s
for attribute, too. Switch back to the Property Inspector and click the List Values
button to launch the List Values dialog, shown in Figure 9.4. In this dialog, Item
Label refers to the text users will see for each item, and Value identifies the value
that corresponds to that label, which will be posted to the server when the form
is submitted. The server-side script could read this value and use it to determine
which staff member should receive the message.

263

Marking up the Form

Add a list of possible subject lines, starting with Select subject, the Value field
for which should be left empty. Use the + button to add entries to the list;
Table 9.1 provides a number of example item labels and values.

Table 9.1. Assigning Values to Item Labels

ValueItem Label

Select subject

generalGeneral enquiry

websiteWebsite problem

editorialEditorial

pressPress and publicity

advertisingAdvertising

Figure 9.4. Adding possible message subject lines through the List
Values dialog.

Click OK to insert these items into your menu. In Design View, you’ll notice that
the menu displays the Press and publicity option by default. To change this default,
go to the Property Inspector and select Select subject from the Initial Selection list.

Next, we need to provide a large text box into which users can add their queries
or comments. To add this field, first press Enter to create another paragraph,
and then click the Textarea button on the Insert toolbar. Add a label that reads
Message through the Accessibility Attributes dialog, and set the textarea’s name
to message in the Property Inspector. In order to constitute valid XHTML, a
textarea element must have values for its cols and rows attributes. In Dream-
weaver, these values can be inserted via the Property Inspector, as shown in Fig-
ure 9.5. The values are Char width, which I’ve set to 50, and Num Lines, which

264

Chapter 9: Forms and Third-party Services

I’ve set to 10. You can alter the size of the field using CSS, but setting these
values will ensure that the textarea doesn’t collapse if users’ browsers fail to
provide CSS support.

Figure 9.5. Setting values for the textarea.

Finally, add a submit button to the form by typing Enter to create yet another
new paragraph, then clicking the Button button on the Insert toolbar. It’s not
necessary to label your submit button, so select the No label tag option in the
Accessibility Options dialog. However, make sure that the button’s value—the
text that displays on the button—makes it obvious that the button will submit
the form. Leaving the value to read Submit makes this clear.

Figure 9.6 shows how the edited form displays in a browser.

265

Marking up the Form

Figure 9.6. Viewing the form after the form elements are added.

We’ve added all the form elements we require, but, at this point, the form looks
quite plain: we haven’t styled it at all. The various form controls are placed on
the page immediately following each label, making the form look untidy. Let’s
use some CSS to tidy things up a bit!

Don’t Forget to Validate!

Before you start work on the form’s CSS, it’s a good idea to validate your
form to confirm the validity of the markup you added using Dreamweaver.
The validator will also tell you if you’ve included any labels that have a for
attribute that doesn’t match a field—this will help you spot if any such cases
have slipped past.

266

Chapter 9: Forms and Third-party Services

Laying out the Form with CSS
Switch into Code View and have a look at the markup that Dreamweaver inserted
as you created your form.

File: contact.shtml (excerpt)

<form id="form2" method="post" action="">
 <p>
 <label for="fullname">Name</label>
 <input type="text" name="fullname" id="fullname" />
 </p>
 <p>
 <label for="email">Email</label>
 <input type="text" name="email" id="email" />
 </p>
 <p>
 <label for="phone">Phone</label>
 <input type="text" name="phone" id="phone" />
 </p>
 <p>
 <label for="subject">Select subject</label>
 <select name="subject" id="subject">
 <option selected="selected">Select subject</option>
 <option value="general">General enquiry</option>
 <option value="website">Website problem</option>
 <option value="editorial">Editorial</option>
 <option value="press">Press and publicity</option>
 <option value="advertising">Advertising</option>
 </select>
 </p>
 <p>
 <label for="message">Message</label>
 <textarea name="message" cols="50" rows="10" id="message">
 </textarea>
 </p>
 <p>
 <input name="submit" type="submit" id="submit"
 value="Submit" />
 </p>
</form>

Each field is wrapped in <p> and </p> tags and, other than the submit button,
each has a label, followed by the form field itself. Let’s make all of the form
fields line up neatly by floating the labels left, and giving them a specified width.

267

Laying out the Form with CSS

Switch back into Design View and create a New CSS Rule. Select Advanced, and
type the selector .contactform p, which will address paragraph elements within
elements that have a class of contactform. The dialog for this rule is shown in
Figure 9.7.

Figure 9.7. Creating a New CSS Rule for .contactform p

In the Box category, set the value of Clear to left. This will ensure that when we
start a new line, it won’t move up alongside the floated input element on the
previous line—it’s a technique that we used when we created the initial homepage
layout. Set Margin to 0 pixels and, under Padding, set Top to 5 pixels, and Right,
Bottom, and Left to 0 pixels. Now, select the form, and apply to it the class
contactform; this should have the effect of reducing the space between the lines.

To line up the form fields, create a New CSS Rule and select Advanced. Give this
rule the selector .contactform p label. We’re now addressing the label ele-
ments within this form. In the Box category, set Width to 20% and the value of
Float to left. I have also, in the Type category, set Weight to bold to make the labels
display in bold type. Click OK: the form fields should line up neatly, and
Dreamweaver should have created the following CSS:

File: inc/main.css (excerpt)

.contactform p {
 margin: 0px;
 padding: 5px 0px 0px;
 clear: left;
}
.contactform p label {
 float: left;
 width: 20%;
 font-weight: bold;
}

268

Chapter 9: Forms and Third-party Services

Styling Form Fields

We can also use CSS to style the form fields, and make them more attractive.
Create a New CSS Rule, select Advanced and enter the selector .contactform
.text. Set background color to #F5F6F2. In the Box category set Padding to 2
pixels and Width to 280 pixels. Finally, in the Border category, give these fields
a solid, 1 pixel border using color #3C582F. Apply the text class to the textboxes
and text area.

Our form is beginning to take shape! However, the Submit button is looking a
little bit lost at the far bottom-left of the form. It might be a better idea to line
it up with the form fields. To do this, we will add a left margin to the <p> that
contains the button.

Create a New CSS Rule, select Advanced, and enter the selector .contactform
p.submit. In the Box category under Margin, set Left to 20%. Click OK to close
the dialog. Select the p element that wraps the Submit button and, using the
Property Inspector, apply the class submit. The Submit button will now line up
to the left-hand edge of the form fields. We can also style the button itself, as
it’s now within a p element with a class of submit; we can create a selector named
.contactform p.submit input to style the button. In the form shown in Fig-
ure 9.8, I’ve set the Type color to #FFFFFF and the background color in Background
to #3C582F.

Keeping Your Buttons Looking Like Buttons

As you’re styling the Submit button, be aware that if you make it look too
little like a button, your users may not realize that they should click it! If
you decide to style your buttons, make sure they still look button-like when
you’ve finished!

Styling Buttons On Safari

In its current version, the Safari browser on Mac OS X doesn’t allow too
much modification of a button’s appearance, as OS X gives them its own
unique look and feel. There are plans to add button-styling support to Safari,
but such changes appear to be a little ways off at the time of writing.

269

Laying out the Form with CSS

Figure 9.8. Viewing the completed form styled with CSS.

Our styled form is now complete, and looks much nicer and neater than it did
before, as Figure 9.8 illustrates.

Client-side Validation Using Dreamweaver
When creating a form, you often want to ensure that your site visitors complete
certain fields. After all, if they request that you contact them, but don’t leave a
valid email address or telephone number, you aren’t going to be able to help
them. So, it’s a good idea to check that the form has been filled out properly
before allowing its submission to the server. One of the Dreamweaver’s built-in
Behaviors can add simple JavaScript validation to your forms.

270

Chapter 9: Forms and Third-party Services

The Validate Form Behavior

First, open the Behaviors panel by selecting Window > Behaviors. In Design View,
select your form, then click on the + button in the Behaviors panel to show the
list of available behaviors. Select Validate Form.

The Validate Form dialog will display. The Named fields box should display a list
of all of the form elements in the page, including the keywords text field that’s
in the search form. Select the fullname field from this list, and check the Required
checkbox to indicate that this field must be completed for the form to submit
successfully. Also, ensure that the radio button next to Accept is set to Any-
thing—this means that users can enter anything they like into this field.

Next, select the email field from the Named fields list, make this field required,
and select the Email address radio button. When the form is submitted, the script
will do a basic check to see if the value looks like an email address. Let’s also
make sure that people enter something into the message box; at the end of the
list, select message, and make this a required field.

Click OK to apply the behavior. Now, if you view your form in a Web browser,
and click the Submit button without completing the fields, a JavaScript alert, like
that shown in Figure 9.9, will appear, identifying the fields that need to be com-
pleted.

Figure 9.9. The JavaScript alert.

Back in Dreamweaver, switch into Code View to take a look at the markup that
Dreamweaver added to your document in order to create this behavior.

File: contact.shtml

<!--#include file="inc/head.html" -->
<title>Contact Us</title>

271

Client-side Validation Using Dreamweaver

<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<link href="inc/main.css" rel="stylesheet" type="text/css" />
<script type="text/JavaScript">
<!--
function MM_findObj(n, d) { //v4.01
 var p,i,x; if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.
 frames.length) {
 d=parent.frames[n.substring(p+1)].document; n=n.substring(0,
 p);}
 if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;
 i++) x=d.forms[i][n];
 for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.
 layers[i].document);
 if(!x && d.getElementById) x=d.getElementById(n); return x;
}

function MM_validateForm() { //v4.0
 var i,p,q,nm,test,num,min,max,errors='',args=MM_validateForm.
 arguments;
 for (i=0; i<(args.length-2); i+=3) { test=args[i+2]; val=
 MM_findObj(args[i]);
 if (val) { nm=val.name; if ((val=val.value)!="") {
 if (test.indexOf('isEmail')!=-1) { p=val.indexOf('@');
 if (p<1 || p==(val.length-1)) errors+='- '+nm+' must
 contain an e-mail address.\n';
 } else if (test!='R') { num = parseFloat(val);
 if (isNaN(val)) errors+='- '+nm+' must contain a number.
 \n';
 if (test.indexOf('inRange') != -1) { p=test.indexOf(':');
 min=test.substring(8,p); max=test.substring(p+1);
 if (num<min || max<num) errors+='- '+nm+' must contain
 a number between '+min+' and '+max+'.\n';
 } } } else if (test.charAt(0) == 'R') errors += '- '+nm+' is
 required.\n'; }
 } if (errors) alert('The following error(s) occurred:\n'+
 errors);
 document.MM_returnValue = (errors == '');
}
//-->
</script>
</head>

<body>
<!--#include file="inc/top.html" -->
 <h1>Contact Us</h1>

272

Chapter 9: Forms and Third-party Services

 <p>Use this form to tell us what you think of the site, report
 a technical problem, or ask a question.</p>
 <form action="" method="post" name="form2" class="contactform"
 id="form2" onsubmit="MM_validateForm('fullname','','R',
 'email','','RisEmail','message','','R');return document.
 MM_returnValue">
 <p>
 <label for="fullname">Name</label>
 <input name="fullname" type="text" class="text"
 id="fullname" />
 </p>
 <p>
 <label for="email">Email</label>
 <input name="email" type="text" class="text" id="email" />
 </p>
 <p>
 <label for="phone">Phone</label>
 <input name="phone" type="text" class="text" id="phone" />
 </p>
 <p>
 <label for="subject">Select subject</label>
 <select name="subject" id="subject">
 <option>Select subject</option>
 <option value="general">General enquiry</option>
 <option value="website">Website problem</option>
 <option value="editorial">Editorial</option>
 <option value="press">Press and publicity</option>
 <option value="advertising">Advertising</option>
 </select>
 </p>
 <p>
 <label for="message">Message</label>
 <textarea name="message" cols="50" rows="10" class="text"
 id="message"></textarea>
 </p>
 <p class="submit">
 <input name="btnSubmit" type="submit" id="btnSubmit"
 value="Submit" />
 </p>
 </form>
<!--#include file="inc/bottom.html" -->

As you can see, Dreamweaver added a lot of code! This code comprises Dream-
weaver’s standard form validation functions—they’ll appear on any page to which
we add this behavior. As we might want to use this behavior elsewhere in the
site, let’s move the JavaScript from the head of the document to an external file.

273

Client-side Validation Using Dreamweaver

This will trim the file size of the page, and also allows us to start thinking of our
scripts as reusable components.

To move the JavaScript to an external file, select everything between the opening
<script type="text/JavaScript"> and the closing </script> tags; you can
ignore the HTML comment tags that surround it. Copy this code to the clipboard.
It should contain the code shown here:

File: inc/functions.js

function MM_findObj(n, d) { //v4.01
 var p,i,x; if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.
 frames.length) {
 d=parent.frames[n.substring(p+1)].document; n=n.substring(0,
 p);}
 if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;
 i++) x=d.forms[i][n];
 for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.
 layers[i].document);
 if(!x && d.getElementById) x=d.getElementById(n); return x;
}

function MM_validateForm() { //v4.0
 var i,p,q,nm,test,num,min,max,errors='',args=MM_validateForm.
 arguments;
 for (i=0; i<(args.length-2); i+=3) { test=args[i+2]; val=
 MM_findObj(args[i]);
 if (val) { nm=val.name; if ((val=val.value)!="") {
 if (test.indexOf('isEmail')!=-1) { p=val.indexOf('@');
 if (p<1 || p==(val.length-1)) errors+='- '+nm+' must
 contain an e-mail address.\n';
 } else if (test!='R') { num = parseFloat(val);
 if (isNaN(val)) errors+='- '+nm+' must contain a number.
 \n';
 if (test.indexOf('inRange') != -1) { p=test.indexOf(':');
 min=test.substring(8,p); max=test.substring(p+1);
 if (num<min || max<num) errors+='- '+nm+' must contain
 a number between '+min+' and '+max+'.\n';
 } } } else if (test.charAt(0) == 'R') errors += '- '+nm+' is
 required.\n'; }
 } if (errors) alert('The following error(s) occurred:\n'+
 errors);
 document.MM_returnValue = (errors == '');
}

274

Chapter 9: Forms and Third-party Services

In Dreamweaver’s New Document dialog, select Basic Page, then choose JavaScript
and click Create. Paste the copied functions into this document, and save it in
the inc directory as function.js. Back in contact.shtml, delete all of the
JavaScript that you pasted into functions.js, along with the HTML comments,
leaving yourself with this:

File: contact.shtml (excerpt)

<script type="text/JavaScript"></script>

Edit this line to reference the external JavaScript file, like so:

File: contact.shtml (excerpt)

<script type="text/JavaScript" src="inc/functions.js"></script>

Save the document, and go back to your Web browser: you should find that the
validation works as it did before, though the page doesn’t contain all that script.
If you want to use this behavior on another page, make sure that you include the
JavaScript functions file before you apply the Dreamweaver behavior. Dream-
weaver should notice that you already have this code in your page, and will add
to the form the code that causes the behavior to run when the form is submitted.

You can also add other JavaScript functions to this same file—either before or
after the validation functions—which means that you can include on your pages
just one file that contains all the required JavaScript.

Validation Using JavaScript

Validating forms using JavaScript can be a helpful way to remind users which
fields they should complete. However, if it’s important to your business that
the data is complete, you should also check it using a server-side script before
you process the form. If the user doesn’t have JavaScript, or has turned off
JavaScript, this simple validation technique won’t work, and the incomplete
form may be posted. The simple client-side check does save the user having
to wait for the server to perform its own check, though, so it’s always a useful
step to take, even if you use server-side form validation.

Submitting the Form
We now have a form that’s ready to be submitted to a processing script. This
will require some server-side scripting, which is outside the scope of this book.
However, a number of excellent form-to-email scripts are available, so, rather
than leave you to hunt on your own, I’ll mention some of the most popular: one
of these should be suitable for your server platform.

275

Submitting the Form

Perl/CGI If your hosting account gives you the ability to run CGI scripts, they
may already have a form-to-email script installed for you: check with
your hosting provider. One of the most popular is FormMail, which
is available from http://www.scriptarchive.com/formmail.html.

ASP If your Website is hosted on a Windows Server that offers ASP, a
script based on FormMail, but written in ASP,1 might be just what
you need. It comes with instructions that are very easy to follow,
too.

PHP A large number of email scripts are available for PHP, but there is
one that acts in a similar way to those mentioned above.2

To implement any of the above scripts, you will need to download the files, upload
them to your own server, and follow the implementation instructions provided.
The scripts tend to require hidden fields to be placed in the form, which you can
do using Dreamweaver and the Forms pane of the Insert toolbar. You will then
need to make the action of your form refer to the URL of the processing script
you’re using.

These scripts also have basic server-side validation built-in, which checks that
the form fields have been completed even if the user has turned JavaScript off.

Adding a Search Facility
We’ve already added a search form to our basic template; in this section, we’ll
use a third-party search application in order to provide a search facility on our
site. The third-party application we’ll use is the Atomz Express Search, which is
free for sites that are under 750 pages in size. To make use of Atomz, the search
form on our site needs to send its queries to the Atomz Website, where all of the
work is done. The real advantage of Atomz is that you can customize the search
result pages so they look like they’re part of your Website, even though they’re
hosted on Atomz.com.

You will need to upload the site we’ve developed to your server—even though it
isn’t complete—in order to make the search function: Atomz will need to index
your site in order to display search results.

1 http://www.brainjar.com/asp/formmail/
2 http://www.dtheatre.com/scripts/formmail.php

276

Chapter 9: Forms and Third-party Services

http://www.scriptarchive.com/formmail.html
http://www.brainjar.com/asp/formmail/
http://www.dtheatre.com/scripts/formmail.php

Creating an Atomz Account
To begin, go to http://www.atomz.com/applications/search/trial.htm, and sign up.
The sign-up process requires you to enter your email address. Atomz will then
send you a password and link, to confirm your email address. Once you return
to the site and log in, you’ll need to provide your complete contact details. You’ll
then be able to enter the main control area, where you can start to create a search
facility for your site.

Once you’ve entered all of your contact details, click the link to create a new ac-
count, and proceed through the pages to create an Atomz Express Search account.
With your Atomz login, you can create free or paid accounts for multiple sites.
You’ll need to enter the details of each Website, including its URL (which should
be the URL to which you intend to upload your site’s files), your time zone, the
“category” into which the site is best grouped, and an estimate of how many
pages the site contains. After verifying your details, Atomz will begin to index or
catalog your site. Don’t worry that there isn’t much to index for the time being;
you can request that it re-index the site at any time. In fact, you can set the ap-
plication to index your site daily, to pick up any changes.

Adding the Search Form to Your Site
Now that you’ve created an account for your site, you can change the search
form so that it sends searches to Atomz.

Click on the HTML link in the menu that displays when you’re logged into the
Atomz Website. This will take you to a page that contains the HTML for the
Standard Search Form. The page also contains an Advanced Search Form, but
we’re only interested in the Standard Search Form for now. The Atomz standard
search form code is:

<!-- Atomz Search HTML for Code Spark -->
<form method="get" action="http://search.atomz.com/search/">
<input size="15" name="sp-q">

<input type="submit" value="Search">
<input type="hidden" name="sp-a" value="sp12345678">
<input type="hidden" name="sp-p" value="all">
<input type="hidden" name="sp-f" value="ISO-8859-1">
</form>

You could simply cut and paste this code into your site, but the code is presented
in HTML (rather than the XHTML we need), and we already have a search form

277

Creating an Atomz Account

http://www.atomz.com/applications/search/trial.htm

in our site. So, instead of using the Atomz form, we shall simply edit our existing
XHTML search form to include the fields from the Atomz form.

In Dreamweaver, open the include file bottom.html, which contains our search
form. Select the form element and, using the Property Inspector, set the form’s
Method to GET and set Action to match the Atomz search form’s action by entering
http://search.atomz.com/search/. These steps are shown in Figure 9.10.

Figure 9.10. Setting the action for the search form.

Now, select the Search keywords text field. In the Atomz search form, the text
field has the name sp-q, so rename your keywords field sp-q. Don’t worry about
the size attribute in the Atomz search form HTML. This is a presentational at-
tribute that defines the size at which the text field appears; we’ve already sized
the text field with CSS.

Three hidden fields appear in the Atomz search form HTML: sp-a, sp-p, and
sp-f.

❑ sp-a is the unique code that identifies your site. Use the value from your ex-
ample HTML, not the one in this book.

❑ sp-p can have a value of all or any. If it’s set to all, the results must contain
all of the keywords; if it’s set to any, the results can contain any of the entered
keywords.

278

Chapter 9: Forms and Third-party Services

❑ sp-f is the character encoding of the page on which the search form appears.
This should match the character encoding set in the meta element that controls
the page’s Content-Type. For example, if you have the following Content-
Type, this attribute should have the value iso-8859–1.

<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />

Add these hidden fields to the search form using the Hidden Field button in the
Insert toolbar. Hidden fields will appear in Dreamweaver’s Design View as small
yellow H icons. If you select a hidden field in Design View, you can edit its name
and value in the Property Inspector. Once you’ve added the three hidden fields,
you should have a form that, in Code View, looks like the following:

File: inc/bottom.html (excerpt)

<form id="form1" action="http://search.atomz.com/search/"
 method="get">
 <p><label>Search keywords

 <input name="sp-q" type="text" class="searchtxt"
 id="sp-q" />
 <input type="submit" name="Submit" value="Search" />
 </label>
 <input name="sp-a" type="hidden" id="sp-a"
 value="sp12345678" />
 <input name="sp-p" type="hidden" id="sp-p" value="all" />
 <input name="sp-f" type="hidden" id="sp-f"
 value="iso-8859-1" />
 </p>
</form>

Assuming that you’ve uploaded your files, and that the Atomz application has
been able to index them, and that you’ve added the hidden fields correctly, you
should be able to run a basic search on your site. If you haven’t added links to
the content pages of your site, all that will appear in the index is your homepage.
Search for a word that you know appears on the homepage, in order to see some
results. Atomz’s indexing works by following links that point to other pages in
your site: if no links exist, Atomz won’t know how to find the other pages of the
site. As this search is part of a free Express Search Account, Atomz has included
some "sponsored links" to other sites, as you can see in Figure 9.11. To remove
these, you’ll have to upgrade to Atomz’s paid service.

279

Adding the Search Form to Your Site

Figure 9.11. Viewing the default Atomz search results page.

Editing the Atomz Templates
One of the reasons I’ve chosen Atomz as our search provider is that the search
results pages it presents are easily customizable: you can make them look like
part of your own site. This gives users a seamless experience as they switch
between your site and the Atomz site.

Customization is provided by Atomz templates. Log in to the Atomz Website,
click the Templates link in the left menu, then click Template Editor to see the
page shown in Figure 9.12.

We can change our site template into an Atomz template very easily; we just
need to make a few minor alterations.

280

Chapter 9: Forms and Third-party Services

Figure 9.12. The Atomz Search Template Editor.

Hopefully, you still have a copy of homepage-layout-strict.html, the document
that we used to create our layout before we cut the site up into separate includes.
If not, grab it from the code archive. Open that document now, and save it as
atomz-template.html. Change the page title to Code Spark search results
– powered by Atomz.

Switch into Code View and replace the meta element that sets the Content-Type
with the special Atomz tag, <SEARCH-HTML-META-CHARSET charset=1>. Take
care to not add an XML-style / in an attempt to indicate that this is an empty
element. Atomz will not recognize the element if you do.

The head of this page will also contain a link to your CSS style sheet. As this
page will be hosted on the Atomz server, you need to make sure that the link to
the style sheet is a link back to your own server. Change the link element’s href
attribute to reference the CSS file as a full URL, such as http://www.yourdo-
main.com/codespark/inc/main.css. You also need to change all of the images’
src attributes in the same way. When you’re done, the start of your page should
look something like the following:

File: atomz-template.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

281

Editing the Atomz Templates

<title>Code Spark search results - powered by Atomz</title>
<SEARCH-HTML-META-CHARSET charset=1>
<link href="http://www.yourdomain.com/codespark/inc/main.css"
 rel="stylesheet" type="text/css" />
</head>
<body>
<div id="header">
 <div id="header-top">
 <img src="http://www.yourdomain.com/codespark/img/logo.gif"
 alt="Code Spark" width="290" height="160" id="logo" />
 Inspiration for Coders
 <div id="controls">
 <p>Page Controls</p>

 <img src="http://www.yourdomain.com/
codespark/img/control_larger.gif" alt="Increase Text Size"
 width="43" height="35" />

 <img src="http://www.yourdomain.com/
codespark/img/control_smaller.gif" alt="Decrease Text Size"
 width="43" height="35" />

 <img src="http://www.yourdomain.com/
codespark/img/control_low_graphics.gif" alt="Low Graphics"
 width="43" height="35" />
 <img src="http://www.yourdomain.com/
codespark/img/control_default_style.gif" alt="Default Style"
 width="43" height="35" />

 </div>
 </div>

In your template file, clear the content div by deleting everything from just after
<div id="content"> to the point just before the corresponding </div> (which
occurs immediately before <div id="nav">); this will give us the search results
area. We’ll add the code that inserts the results here shortly.

Next, copy the updated search form from bottom.html, and paste it into this
new page, so that any searches that are started from this page will work as well.
You can also choose to remove the reader favorites from this page if you wish:
we won’t have an easy way to keep the list on this page up-to-date, other than
manually updating the template, which won’t be an acceptable solution if this
Website is to be updated from a database. To delete this section, simply select
everything including the <div class="section"> tag, and its corresponding
</div> closing tag, and delete it.

282

Chapter 9: Forms and Third-party Services

The markup for your Atomz template should now look something like that shown
below.

File: atomz-template.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Code Spark search results - powered by Atomz</title>
<SEARCH-HTML-META-CHARSET charset="1">
<link href="http://www.yourdomain.com/codespark/inc/main.css"
 rel="stylesheet" type="text/css" />
</head>
<body>
<div id="header">
 <div id="header-top">
 <img src="http://www.yourdomain.com/codespark/img/logo.gif"
 alt="Code Spark" width="290" height="160" id="logo" />
 Inspiration for Coders
 <div id="controls">
 <p>Page Controls</p>

 <img src="http://www.yourdomain.com/
codespark/img/control_larger.gif" alt="Increase Text Size"
 width="43" height="35" />

 <img src="http://www.yourdomain.com/
codespark/img/control_smaller.gif" alt="Decrease Text Size"
 width="43" height="35" />

 <img src="http://www.yourdomain.com/
codespark/img/control_low_graphics.gif" alt="Low Graphics"
 width="43" height="35" />
 <img src="http://www.yourdomain.com/
codespark/img/control_default_style.gif" alt="Default Style"
 width="43" height="35" />

 </div>
 </div>
 <div id="header-bottom">

 Tutorials

 About

 Contact

283

Editing the Atomz Templates

 Sitemap

 </div>
</div>
<div id="content">
</div>
<div id="nav">
 <div class="section">
 <h3>Search this Site</h3>
 <form action="http://search.atomz.com/search/" method="get"
 name="form1" id="form1">
 <p><label>Search keywords

 <input name="sp-q" type="text" class="searchtxt"
 id="sp-q" />
 <input type="submit" name="Submit" value="Search" />
 </label>
 <input name="sp-a" type="hidden" id="sp-a"
 value="sp12345678" />
 <input name="sp-p" type="hidden" id="sp-p" value="all" />
 <input name="sp-f" type="hidden" id="sp-f"
 value="iso-8859-1" />
 </p>
 </form>
 </div>
 <div class="section">
 <h3>Tutorial Topics</h3>
 <ul class="topics">
 PHP &
 MySQL
 CSS Design

 JavaScript
 & DHTML
 ASP &
 .NET
 JSP &
 Servlets

 </div>
 <img src="http://www.yourdomain.com/codespark/img/nav-bottom.gif"
 alt="" width="266" height="63" class="displayblock" />
 </div>

284

Chapter 9: Forms and Third-party Services

</body>
</html>

Adding the Atomz Search Code

We’ve built the shell of our search results pages. Now, it’s time to fill it in.

Back on the Atomz page, return to the Templates screen and click Template Recipe.
Here, you’ll see the search results display code, as shown in Figure 9.13, ready
to be copied and pasted into your template.

Figure 9.13. Viewing the Template Recipe page.

We don’t actually need all of this code: the bottom section creates a search form,
which we already have in our template. So, copy the markup from the beginning
down to a point just before the <!-- Put up the next form. --> comment.

Paste this code inside the content div in your page. That div should now contain
the following code:

File: atomz-template.html (excerpt)

<!-- Atomz Search results section.-->

<!-- Show heading and Atomz logo graphic. -->

285

Editing the Atomz Templates

<SEARCH-IF-RESULTS>
SEARCH RESULTS <SEARCH-LOWER> - <SEARCH-UPPER>
of <SEARCH-TOTAL> total results for <SEARCH-QUERY>

</SEARCH-IF-RESULTS>
<SEARCH-IF-NOT-RESULTS>
SEARCH RESULTS for <SEARCH-QUERY>

</SEARCH-IF-NOT-RESULTS>
<SEARCH-LOGO>

<!-- Display Results. -->
<SEARCH-RESULTS LENGTH=160>
<p><SEARCH-LINK><SEARCH-TITLE LENGTH=160></SEARCH-LINK>

<SEARCH-IF-SHOW-SUMMARIES>
<SEARCH-IF-CONTEXT LENGTH=240><SEARCH-CONTEXT>

 </SEARCH-IF-CONTEXT>
<SEARCH-URL>

</SEARCH-IF-SHOW-SUMMARIES>
</SEARCH-RESULTS>

<!-- If no results, show a message. -->
<SEARCH-IF-NOT-RESULTS><p>
Sorry, no matches were found containing <SEARCH-QUERY>.
</SEARCH-IF-NOT-RESULTS>
<!-- Show By Score, By Date links, Show/Hide Summaries links. -->
<SEARCH-IF-RESULTS><p>
<SEARCH-IF-SORT-BY-DATE>
<SEARCH-SORT-BY-SCORE COUNT=10>Sort By Score
 </SEARCH-SORT-BY-SCORE>
</SEARCH-IF-SORT-BY-DATE>
<SEARCH-IF-SORT-BY-SCORE>
<SEARCH-SORT-BY-DATE COUNT=10>Sort By Date
 </SEARCH-SORT-BY-DATE>
</SEARCH-IF-SORT-BY-SCORE>
 |
<SEARCH-IF-SHOW-SUMMARIES>
<SEARCH-HIDE-SUMMARIES COUNT=20>Hide Summaries
 </SEARCH-HIDE-SUMMARIES>
</SEARCH-IF-SHOW-SUMMARIES>
<SEARCH-IF-HIDE-SUMMARIES>
<SEARCH-SHOW-SUMMARIES COUNT=10>Show Summaries
 </SEARCH-SHOW-SUMMARIES>
</SEARCH-IF-HIDE-SUMMARIES>

</SEARCH-IF-RESULTS>

<!-- Display Prev & Next links. -->

286

Chapter 9: Forms and Third-party Services

<SEARCH-IF-RESULTS>
<SEARCH-IF-PREV-COUNT>
<SEARCH-PREV>Prev <SEARCH-PREV-COUNT></SEARCH-PREV>
<SEARCH-IF-NEXT-COUNT> | </SEARCH-IF-NEXT-COUNT>
</SEARCH-IF-PREV-COUNT>
<SEARCH-IF-NEXT-COUNT>
<SEARCH-NEXT>Next <SEARCH-NEXT-COUNT></SEARCH-NEXT>

</SEARCH-IF-NEXT-COUNT><p>
</SEARCH-IF-RESULTS>

Save your page. You may have noticed that the Atomz code contains some
HTML—in its use of
, rather than
, for example. Quickly tidy up this
markup by changing HTML tags to XHTML in Code View.

Adding the Template to Atomz

We can now add our template to Atomz. Go back to the Template page, and click
on Template Editor. Delete all the markup in the editor: this markup comprises
the default template that we’ll replace with our new template. Now, copy all of
the markup from atomz-template.html and paste it into the Template Editor.

At the top of the editor, click the Test tab. On this screen, enter a keyword that
will return some results, and click Search. A new page will open and, in it, the
search results should display in your own template, as shown in Figure 9.14.

Figure 9.14. Displaying search results in the Code Spark template.

287

Editing the Atomz Templates

The Problem with Third-party Services

If you look at the source of the search result page in your browser, you will
see that, while your template and the results over which you have control
are valid XHTML, the sponsored links that Atomz has inserted are not valid,
nor are they semantically correct. Unfortunately, as with any third-party
service, there isn’t anything that we can do to change this. If you find yourself
in this situation, all you can do is ensure that the parts of the site or template
that you do have control over are valid and accessible. And don’t be afraid
to drop the third-party services a line to ask if they are going to update their
markup any time soon!

Once you’re happy with your template, click Publish Changes to publish the
template, making it the template in which the results of any searches from your
site will display.

Don’t forget to update your template if your site template changes. As we haven’t
linked up the entire site yet, we’ll need to go back and update the links to other
parts of the site as they are created. As you upload content, you’ll also need to
manually re-index the site, or set it to be indexed regularly. You can do this by
selecting Index from the Atomz menu that’s presented when you’re logged into
your account.

Summary
This chapter has discussed two ways in which you can apply additional function-
ality to your site. Forms can collect information from users for a variety of reasons,
from simple contact purposes to complex ordering facilities and, as part of more
advanced solutions, can be driven by server-side script. If you want to add server-
side functionality to your site, you can write it yourself; use Dreamweaver Server
Behaviors for ASP, PHP, ASP.NET, JSP or ColdFusion; install third-party scripts
such as FormMail; or you can make use of remotely hosted third-party solutions
such as Atomz.

Third-party solutions can improve the functionality of your site without requiring
you to spend a lot of money, or learn a server-side language. However, they can
force you to make some compromises in terms of validation and accessibility.
Use these services with care and, in cases in which you must accept that a page
won’t validate because of a third-party tool you’ve had to use, don’t use that
limitation as an excuse to allow the rest of your template to be invalid or inaccess-
ible!

288

Chapter 9: Forms and Third-party Services

Alternate Style Sheets10
Over the last few chapters, we’ve put together the skeleton of our site and, in the
process, you’ve learned the techniques required to build a standards compliant
Website using Dreamweaver 8. In this final chapter, we’ll explore the additional
power that lies at your fingertips now that you’ve created a site using semantic
markup and CSS: the power to create different style sheets that can be used to
help particular users view the site.

By creating different style sheets, we can accommodate site visitors with many
different needs. A visually stunning, graphically heavy site can be very difficult
to view on a PDA or when printed. But, using alternate style sheets, we can
provide low-graphics versions, or special versions of pages that can be used when
the document is printed.

Throughout this chapter, we’ll be working on the file tutorial1.shtml (the
sample tutorial page we created in Chapter 8), adding style sheets and JavaScript
to this document. At the end of the chapter, we’ll move this additional markup
to head.html, so that the functionality is available on every page of the site.

Accessibility Controls
The header of our layout contains accessibility controls designed to enable users
to resize the displayed text and view a text-only version of the site. Our next step
is to implement these controls for our users.

Text Resizing
Although we’ve sized our fonts in such a way that users can resize the text using
the settings in their browsers, providing some means of resizing the text right
there on the Web page can be particularly helpful for some users.

As users increase the size of the text in their browsers, however, parts of our
carefully constructed layout can start to break, despite our best efforts to create
a robust design. For example, open the Code Spark homepage in Internet Explorer
and select View > Text Size > Largest. While every element of the page still works,
parts of the layout have gone awry: the headings in the navigation bar on the
right, for example.

Creating a Style Sheet for Text Sizing

Currently, all of the site’s style information is stored in one large style sheet. This
isn’t a problem: Dreamweaver enables us to manage long lists of style rules with
ease. However, because we’re going to change the font sizes, we’ll remove all the
information that relates to text sizing from our main style sheet, and place it in
a separate style sheet. Then, to change the text size, we simply need to create a
style sheet with larger font sizes, and use it to replace the existing text styles.

Text Sizing Alternatives

We could just create a new style sheet that contained only font sizing inform-
ation, and insert it after the existing style sheet, so that the new styles could
override the existing ones. However, putting the styles that relate to font
sizes in a separate file at this point makes it easy for us to see what needs to
be changed; otherwise, we’d have to dig through the entire document to find
the appropriate markup. This approach will also potentially be useful if we
decide to offer a low graphics, large-text option: in this case, we can simply
combine our low graphics and large-text style sheets.

290

Chapter 10: Alternate Style Sheets

In Dreamweaver, open the New Document dialog (File > New) and choose Basic
Page, then select CSS. Save the newly created, empty style sheet in the inc folder
as text-regular.css.

Open the tutorial1.shtml file and, using the CSS panel, click Attach Style Sheet.
Browse for the file text-regular.css and click OK to add it to tutorial1.shtml
along with your existing style sheet, main.css.

Removing the Font Sizing from the Main Style Sheet

We now need to shift all the text styles out of the main style sheet and into our
new text-regular.css style sheet. Open main.css in Dreamweaver’s Code
View.

The first rule we see is that for body, which contains the property font-size:
1em:

File: inc/main.css (excerpt)

body {
font-size: 1em;

 color: #000000;
 background: #FFFFFF;
 margin: 0px;
 padding: 0px;
}

We’ll want to remove this property from main.css and add it to the new style
sheet, so, in text-regular.css, add the following rule:

File: inc/text-regular.css (excerpt)

body {
 font-size: 1em;
}

Now that we’ve put this property into our new style sheet, we can delete it from
main.css, leaving the following rule:

File: inc/main.css (excerpt)

body {
 color: #000000;
 background: #FFFFFF;
 margin: 0px;
 padding: 0px;
}

291

Text Resizing

The next rule that deals with font sizing has the selector #content:

File: inc/main.css (excerpt)

#content {
 margin-top: 80px;
 margin-right: 320px;
 margin-left: 40px;
font: 80% Verdana, Arial, Helvetica, sans-serif;

}

In this rule, Dreamweaver has added the shorthand font property, which sizes
the font and sets the font face. We’ll have to split this shorthand property into
its longhand equivalent. In text-regular.css, add:

File: inc/text-regular.css (excerpt)

#content {
 font-size: 80%;
}

Go back to main.css and change the font property to a font-family property,
leaving the following rule:

File: inc/main.css (excerpt)

#content {
 margin-top: 80px;
 margin-right: 320px;
 margin-left: 40px;
font-family: Verdana, Arial, Helvetica, sans-serif;

}

We’ll need to do the same to the .tagline rule:

File: inc/main.css (excerpt)

.tagline {
 margin: 0px 0px 0px 300px;
 float: left;
 padding-top: 2em;
font: italic bold 100% Verdana, Arial, Helvetica, sans-serif;

 color: #3C582F;
}

Create a .tagline rule in text-regular.css and add the font-size: 100%
property to it. Now, we need to modify the rule in main.css: we’ll need to replace
the font property with the properties font-style, font-weight, and
font-family, like so:

292

Chapter 10: Alternate Style Sheets

File: inc/main.css (excerpt)

.tagline {
 margin: 0px 0px 0px 300px;
 float: left;
 padding-top: 2em;
font-style: italic;

 font-weight: bold;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #3C582F;
}

Continue this process through the style sheet, adding each font sizing rule to
text-regular.css, and removing it from main.css. This might seem like a
daunting task if you don’t feel comfortable editing CSS by hand, but don’t worry:
it’s surprisingly simple once you get the hang of the way the font property works.
You should soon end up with the following rules in text-regular.css:

File: inc/text-regular.css

body {
 font-size: 1em;
}
#content {
 font-size: 80%;
}
.tagline {
 font-size: 100%;
}
#controls {
 font-size: 70%;
}
#header-bottom li {
 font-size: 90%;
}
#content h1 {
 font-size: 120%;
}
#content h2 {
 font-size: 120%;
}
#content h3 {
 font-size: 100%;
}
.credit .date {
 font-size: 80%;
}

293

Text Resizing

#content .homepage-box th {
 font-size: 70%;
}
#content .homepage-box td {
 font-size: 90%;
}
#nav h3 {
 font-size: 120%;
}
#nav label {
 font-size: 70%;
}
#nav ul.topics li {
 font-size: 90%;
}
#nav ul.list a:link {
 font-size: 80%
}
#nav ul.list a:visited {
 font-size: 80%
}
p.breadcrumbs {
 font-size: 90%;
}
#content h1.tutorial {
 font-size: 160%;
}
.pullquote {
 font-size: 120%;
}

View your pages now: they should still look exactly the same as they did before.
We haven’t changed any of the CSS properties that are applied to the document;
we’ve just moved some of these properties around a little.

Creating the Large-text Style Sheet

We can now create the large-text style sheet. Open text-regular.css and save
it as text-large.css. As you know, we’ve set a font size for the body. And all
the other page elements calculate their size, as percentages, from this rule. So
the first thing we’ll do is to bump up the body font size from 1em to 1.5em.

294

Chapter 10: Alternate Style Sheets

File: inc/text-large.css (excerpt)

body {
 font-size: 1.5em;
}

This will have the effect of increasing the size of all of the text on the page. We
can use some handy Dreamweaver functionality to see exactly how this will affect
our page.

Design Time Style Sheets

While we’re working on an alternate style sheet, it’s nice to be able to see the
effect that our work has on the look of the page. We could do this by replacing
the link to text-regular.css with a link to text-large.css, and switching it
back later. However, Dreamweaver offers a useful tool to help us here: Design
Time Style Sheets.

Design Time Style Sheets enable you to get Dreamweaver to apply one or more
style sheets to your document while you’re working in Dreamweaver (that is, at
“design time”), but not in the browser or when the site is uploaded. To see what
our site looks like when the large-text style sheet is applied, we can make that
style sheet a Design Time Style Sheet.

Open tutorial1.shtml in Design View, right click in the CSS panel and select
Design-time…, as shown in Figure 10.1.

Figure 10.1. Launching the Design Time Style Sheets dialog.

295

Text Resizing

In the Design Time Style Sheets dialog, click the + button above the Show only at
Design Time box, and browse for text-large.css. Add text-regular.css to
the Hide at Design Time box in the same way, to hide this style sheet at design
time. Click OK: your page should take on the large-text styles.

Processing One Page at a Time

If you want this to take effect on multiple pages, you’ll need to perform this
process on each page.

Click OK to save the Design Time Style Sheet settings. In Design View, you
should see the page take on the larger text size, as shown in Figure 10.2.

Figure 10.2. Displaying the large font size.

If you view this page in the browser, the text size will not have changed: this style
sheet is only applied when you view the page in Dreamweaver. It will now be
easy for us to work on this style sheet, as we can see our changes in Design View.

As you can see in the above screenshot, increasing all of the page text by a large
amount has caused some of the layout elements to become misplaced, much like
the display we’d see if we set the text size to Largest in Internet Explorer. With
some layouts, we might only need to change the base font size to create a large-
text effect, but with a more complex layout such as ours, we’ll need to do a bit
more tweaking. Now that we’ve got text-large.css, however, the tweaking will
be a simple matter of altering the percentages in that file.

296

Chapter 10: Alternate Style Sheets

If you look in the CSS panel, as shown in Figure 10.3 you’ll see that our text-
large.css style sheet’s listing is followed by the word "design", which shows that
it’s a Design Time Style Sheet. You can edit any of this document’s rules by se-
lecting them in the CSS panel, and clicking Edit Style….

Figure 10.3. The CSS panel, showing the linked and Design Time
Style Sheets.

Let’s reduce the font size of the menu items in the sidebar. From the CSS panel,
select the #nav ul.topics li rule in the Design Time Style Sheet text-
large.css, and click the Edit Style… button. In the CSS Rule Definition dialog,
change the font size from 90% to 80%, as shown in Figure 10.4.

Figure 10.4. Editing the font size to 80%.

Click OK: the size of these list items should decrease slightly.

Editing CSS Rules Using the Properties Pane

Instead of using the CSS Rule Definition dialog, we can edit properties through
the Properties pane, which comprises the bottom part of Dreamweaver 8’s new

297

Text Resizing

unified CSS panel. We will use this pane to edit the size of headings in the side
navigation.

In the CSS panel, find the selector #nav h3 and click on it, as shown in Figure 10.5.
The properties that have been set for this rule will appear in the bottom portion
of the panel. In this case, only the font-size property has been set. Click on the
value, and you’ll find that it becomes two editable drop down lists: one for a
number and another for the unit. In this case, the lists display 120 and %. We
can either type in the new size—100—and leave the percentage sign as-is, or we
can select and entirely different method of sizing. Let’s go ahead and reduce it
from 120% to 100%.

Figure 10.5. Editing #nav h3 using the Properties Pane.

Click away from the panel to confirm the change, and the size of the heading
text should decrease. Next, let’s reduce the size of the “Inspiration for Coders”
tagline by editing the font-size of the .tagline rule to 80%.

298

Chapter 10: Alternate Style Sheets

Quickly Tweaking Values

Using the Properties pane is an excellent way to quickly edit values in your
style sheet. It can be very useful when you’re creating a new style sheet from
an existing one: all of the rules have already been created, and you simply
need to tweak the different properties and their values.

Finally, let’s reduce the size of the top navigation links. Create a new CSS rule
in text-large.css for the selector #header-bottom li, and set the font size to
70%.

Switching Style Sheets
Once we’re happy with the new, large-text style sheet, we need to add a tool that
allows users to switch between style sheets. In some browsers, such as Firefox,
the functionality to switch between alternate style sheets is built-in. All we have
to do in such cases is to make sure that we’ve added the correct attributes to the
link element that refers to these style sheets.

Selecting Alternate Style Sheets in the Browser

To enable our large-text style sheet to be selected using the browser, we need to
add it to the head of our document. First, we’ll need to remove the page’s design
time style sheets settings: right-click in the CSS panel, select Design-time… and
remove text-large.css from the list of style sheets shown at design time and
remove text-regular.css from the list of style sheets to be hidden at design
time. Now, click Attach Style Sheet… in the CSS panel, and add text-large.css
to the page as a link. Switch to Code View and find the three style sheet link
elements. Edit the link to text-large.css, so that the rel attribute has a value
of alternate stylesheet, and add a title attribute with a value of Large
Text. You will also need to give the regular text style sheet a title: add
title="Medium Text" to the link element.

The medium-text style sheet is now applied by default when the page loads.
However, because we’ve made the large text style sheet an alternate style sheet,
those browsers that support style sheet switching will see it and allow the user
to switch to it. In Firefox, users can switch style sheets by selecting View > Page
Style, then making a selection from the listed style sheets, as illustrated in Fig-
ure 10.6. The style sheets are listed with the names we gave to their title attrib-
utes.

299

Switching Style Sheets

Figure 10.6. Switching styles in Firefox.

Switching Styles with JavaScript

Not all browsers enable style sheet switching as Firefox does, and even in cases
where site visitors use a browser that does allow style sheet switching, those users
may not be aware of the functionality. For these reasons, we’ll offer the switching
functionality through the accessibility controls on our site. To do so, we’ll make
use of a technique described in an article written by Paul Sowden for A List
Apart.1 The method uses JavaScript to switch between style sheets, and works
in tandem with the browser switching technique so that visitors can use either
method to switch style sheets.

The article explains in detail how the various functions work, so if you use plan
to use this method in one of your own projects, it’s worth reading the entire article.
For our purposes, however, you’ll simply need to add the functions that are created
in the article to an external JavaScript file, link that file to your document, and
call in the appropriate functions when the user clicks your switching buttons. To

1 http://www.alistapart.com/articles/alternate

300

Chapter 10: Alternate Style Sheets

http://www.alistapart.com/articles/alternate
http://www.alistapart.com/articles/alternate

function correctly, the style sheets that are linked to the document need to have
been added using the alternate style sheet method explained above.

We already have an external JavaScript file—functions.js—which we created
when we added client-side form validation in Chapter 9. Open this file, and paste
in the JavaScript that’s available for download as part of the ALA article.2

Giving Credit where it’s Due

Even if the third-party code that you use doesn’t require you to credit the
author, it’s a good idea to leave a comment in the file that identifies where
the code came from. If another developer was to maintain the site in the
future, they could then easily find the article from which you took the code
if they had a problem with that code, or wanted to edit it.

Your functions.js file should now contain the following JavaScript functions:

File: inc/functions.js

// JavaScript Document
function MM_findObj(n, d) { //v4.01
 var p,i,x; if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.
 frames.length) {
 d=parent.frames[n.substring(p+1)].document; n=n.substring(0,
 p);}
 if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;
 i++) x=d.forms[i][n];
 for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.
 layers[i].document);
 if(!x && d.getElementById) x=d.getElementById(n); return x;
}
function MM_validateForm() { //v4.0
 var i,p,q,nm,test,num,min,max,errors='',args=MM_validateForm.
 arguments;
 for (i=0; i<(args.length-2); i+=3) { test=args[i+2]; val=
 MM_findObj(args[i]);
 if (val) { nm=val.name; if ((val=val.value)!="") {
 if (test.indexOf('isEmail')!=-1) { p=val.indexOf('@');
 if (p<1 || p==(val.length-1)) errors+='- '+nm+' must
 contain an e-mail address.\n';
 } else if (test!='R') { num = parseFloat(val);
 if (isNaN(val)) errors+='- '+nm+' must contain a number.
 \n';
 if (test.indexOf('inRange') != -1) { p=test.indexOf(':');

2 http://www.alistapart.com/d/alternate/styleswitcher.js

301

Switching Style Sheets

http://www.alistapart.com/d/alternate/styleswitcher.js

 min=test.substring(8,p); max=test.substring(p+1);
 if (num<min || max<num) errors+='- '+nm+' must contain
 a number between '+min+' and '+max+'.\n';
 } } } else if (test.charAt(0) == 'R') errors += '- '+nm+' is
 required.\n'; }
 } if (errors) alert('The following error(s) occurred:\n'+
 errors);
 document.MM_returnValue = (errors == '');
}
// Style Sheet Switcher functions written by Paul Sowden for an
// article on A List Apart -
// http://www.alistapart.com/articles/alternate
function setActiveStyleSheet(title) {
 var i, a, main;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 &&
 a.getAttribute("title")) {
 a.disabled = true;
 if(a.getAttribute("title") == title) a.disabled = false;
 }
 }
}
function getActiveStyleSheet() {
 var i, a;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 &&
 a.getAttribute("title") && !a.disabled) return
 a.getAttribute("title");
 }
 return null;
}

function getPreferredStyleSheet() {
 var i, a;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("rel").indexOf("alt") == -1
 && a.getAttribute("title")
) return a.getAttribute("title");
 }
 return null;
}
function createCookie(name,value,days) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime()+(days*24*60*60*1000));

302

Chapter 10: Alternate Style Sheets

 var expires = "; expires="+date.toGMTString();
 }
 else expires = "";
 document.cookie = name+"="+value+expires+"; path=/";
}
function readCookie(name) {
 var nameEQ = name + "=";
 var ca = document.cookie.split(';');
 for(var i=0;i < ca.length;i++) {
 var c = ca[i];
 while (c.charAt(0)==' ') c = c.substring(1,c.length);
 if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length,
 c.length);
 }
 return null;
}

window.onload = function(e) {
 var cookie = readCookie("style");
 var title = cookie ? cookie : getPreferredStyleSheet();
 setActiveStyleSheet(title);
}

window.onunload = function(e) {
 var title = getActiveStyleSheet();
 createCookie("style", title, 365);
}

var cookie = readCookie("style");
var title = cookie ? cookie : getPreferredStyleSheet();
setActiveStyleSheet(title);

Next, include functions.js in tutorial1.shtml by inserting the following
markup just below the style sheet links:

File: tutorial1.shtml (excerpt)

<script type="text/JavaScript" src="inc/functions.js"></script>

All we need to do now is update the control buttons so that they call the style
sheet switching functions using the onclick attribute. Open top.html in Code
View and locate the page controls. Add an onclick attribute to the first two a
elements, and set them as shown in the code below:

303

Switching Style Sheets

File: inc/top.html (excerpt)

<p>Page Controls</p>

 <a href="#"

onclick="setActiveStyleSheet('Large Text'); return false;">
 <img src="img/control_larger.gif" alt="Increase Text Size"
 width="43" height="35" />
 <a href="#"

onclick="setActiveStyleSheet('Medium Text'); return false;">
 <img src="img/control_smaller.gif" alt="Decrease Text Size"
 width="43" height="35" />
 <img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />
 <img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

Save the file and load tutorial1.shtml in your browser. You should now be
able to increase and decrease the text size using the buttons shown in Figure 10.7.

Figure 10.7. Switching style sheets using JavaScript.

A “Low Graphics” Layout
For some users, a low graphics, frills-free version of your documents might be
useful. These users may include people who find text difficult to read when it’s
presented on a background color, and need high contrast, and those who access
your site using a handheld device: big navigation bars and large images can make
a site very hard to read on a tiny screen.

When we think of a text-only style sheet, we might think of simply removing
CSS completely; after all, this will display the page’s text content without any
styling. However, in the case of users who can see CSS, but need—or prefer—a
plainer environment for reading articles, an approach that avoids CSS entirely

304

Chapter 10: Alternate Style Sheets

won’t make the site very usable. A better alternative is to create for the site what
is essentially an alternate layout that cuts down on images and background colors.

As a starting point, open main.css and save it as textonly.css. We can use this
style sheet as a basis for our text-only style sheet by editing the properties, just
as we did when we created the large-text style sheet. Add textonly.css as a
Design Time Style Sheet for tutorial1.shtml, and use the same dialog to hide
main.css.

The Header Area

Let’s start by removing some of the colors and images from the header area. In
the CSS panel, find the #logo rule in textonly.css. In the Properties pane, you
should see the properties that have been set for the #logo rule, as shown in Fig-
ure 10.8.

Figure 10.8. Viewing the properties set for #logo.

Click the Add Property link beneath the existing properties. In the drop-down list
that appears, select display. Once you’ve made your selection, another drop-down

305

A “Low Graphics” Layout

list appears, which contains all the valid values for this property; select none from
this list, as shown in Figure 10.9.

Figure 10.9. Setting display to none in the Properties Pane.

This should have the effect of making the logo disappear when we view the page
in Design View.

Now, select the #header-top rule in the CSS panel, and enter the background
color #FFFFFF (white). Once you click on the existing color in the Properties pane,
it will become an editable text field. Repeat this process for #header-bottom.

Replacing the Logo with Text

As we’ve hidden the logo, we now find that the page no longer displays the name
of our Website. In this situation, it’s a good idea to replace the logo with some
text whenever the text-only style sheet is in use. To do this, we need to add to
the page the text that will display in place of the logo, and, in our main style
sheet, hide this text, as the logo will display when that style sheet is used.

Open top.html in Code View, and after the logo, add the text Code Spark
wrapped in and tags, with a class of logotext:

File: inc/top.html (excerpt)

<div id="header">
 <div id="header-top">
 <img src="img/logo.gif" alt="Code Spark"
 width="290" height="160" id="logo" />

Code Spark
 Inspiration for Coders

Save your changes to top.html, and return to tutorial1.shtml to see the new
text displaying at the top of the document window, as it does in Figure 10.10.

306

Chapter 10: Alternate Style Sheets

The text will have pushed some other page elements around; let’s change that
now.

Figure 10.10. Viewing the page tutorial1.shtml after the Code
Spark text is added.

In the CSS panel, add a new CSS rule for #header-top .logotext to tex-
tonly.css. Click OK and, in the CSS Rule Definition dialog, use the Type category
to set the font to Verdana, Arial, Helvetica, sans-serif with a color of
#3C582F and weight of bold. Then, in the Positioning category, set Type to absolute,
Top to 10 pixels and Left to 10 pixels. Click OK; the Code Spark text should now
display in approximately the same place where the logo appeared previously.

If we view this layout in the browser, we find that the header is pushed out of
shape by the addition of the span element. Remember that this page still uses
main.css; text-only.css is applied to the page only in Dreamweaver’s design
time style sheet. The logo remains visible in main.css, so we can simply hide the
span element in that style sheet.

To edit main.css through the CSS panel, we need to open a page to which the
textonly.css Design Time Style Sheet is not applied. Take your pick, then in
main.css, create a new CSS Rule. Choose the Advanced Selector Type and set
the selector to #header-top .textonly. This time, all we need to do is set the
Display property—which can be found in the Block category—to none. Once this
is done, the logo image will display when the main.css style sheet is in use, while
the text heading appears when textonly.css is in use.

307

A “Low Graphics” Layout

Alternative Style Sheets: Exclusive or Cumulative?

Though it would be easy to miss, we have just made an important design
decision: for textonly.css to work correctly (i.e. to display the alternate
logo text), the default style sheet (main.css) must be disabled. Otherwise,
main.css will hide the logo text, rendering the positioning properties in
textonly.css useless.

Sadly, browsers that offer style sheet switching features don’t work this way.
Rather, they keep the default style sheet(s) like main.css perpetually active,
and simply switch between the different alternate style sheets that have been
provided. Although we’ll shortly adjust our style sheet switching JavaScript
code to provide the exclusive behavior we require, this does mean that the
style sheet switching features provided by some browsers will not work on
our site.

The alternative, which you may wish to consider in your own work, is to
write all of your alternative style sheets such that they override the properties
in your default style sheet as required. In the current example, this would
mean adding the property display: inline; to our #header-top
.logotext rule in textoly.css, which would make visible the logo re-
placement text that was hidden in main.css. You might think that sounds
pretty simple, but if we were to extend this approach to the entirety of even
this simple site, the style sheets would become quite convoluted in their in-
teractions.

Instead, we’ll elect to keep our style sheets simple, and add complexity to
the JavaScript code that enables and disables them. As we’ll see, this approach
has other benefits that we’d forfeit if we limited ourselves to what the built-
in style sheet switching features of some browsers can provide.

The Sidebar

The sidebar uses several images in its display. Our challenge is to remove the
images while keeping the sidebar looking like a navigation element.

In the CSS panel, scroll down and find the #nav .section rule in textonly.css.
This rule displays the background image behind the headings. Right-click on the
background property, and select Delete to remove it, as shown in Figure 10.11.

308

Chapter 10: Alternate Style Sheets

Figure 10.11. Deleting the background image from #nav .section.

Then, find the rule for #nav and repeat this procedure to delete the background
image. While editing #nav, add a 1-pixel, dotted, left-hand border to provide a
sense of separation between the sidebar and the main content once the images
have been removed. You can do this via the CSS Rule Definition dialog, or using
the longhand border-left-style, border-left-size and border-left-color
properties in the Properties panel. This should leave us with the bottom part of
the curved box, which is actually an image that has been inserted into the page.
To hide this image, we can add a new CSS rule with the selector #nav img and,
in the Block category, set Display to none.

Other changes you can make to the sidebar include:

❑ Set the text-align property of #nav h3 to left, and add a 0.5 em left margin
(you can do this by adding 0.5em to the end of the existing margin property
value; the four numbers will define the top, right, bottom, and left margins,
respectively).

309

A “Low Graphics” Layout

❑ For #nav ul.topics, reduce margin-left to 10 pixels.

❑ For #nav ul.topics li, change the background color to white and delete
the borders.

❑ For #nav ul.list, delete the list-style image and reduce margin-left to
30 pixels.

The Main Content

Next, let’s tackle the removal of images from the main content area. Depending
on your site and your requirements, you may wish to remove the images that
appear in the content area, if they’re included for decorative purposes only; al-
ternatively, you may make the decision to include some of the smaller images
from the site.

As images that appear within the body of our tutorials are likely to help users
understand the articles, I’ve decided to leave these in this style sheet, and to re-
move only the unnecessary images such as the author photo. To remove the author
photograph, find the .tutorial-author rule in the CSS panel, and set display
to none.

Within the articles’ content, we styled blockquotes with images and dark back-
ground colors. Let’s use simpler styling in the text-only style sheet. Find the
.pullquote rule in the CSS panel, delete the background property, set color to
#000000 (black) and add a 1-pixel gray border, as shown in Figure 10.12. We’re
left with the top quotation mark image; select the .pullquote p rule and delete
the background property there.

Figure 10.12. Restyling the pullquotes.

310

Chapter 10: Alternate Style Sheets

Other Pages

We now need to check the other pages of the site to identify any other changes
that may be required when this style sheet is in use. You’ll need to apply tex-
tonly.css as a Design Time Style Sheet to each of the pages that you work on.

The homepage, with its two column layout in the content area, would be difficult
to use on a small screen. So, in our basic, low-graphics style sheet, we’ll display
these blocks as a single column to make the page easier to use.

Find the #content .homepage-box rule, delete the float property, then set
width to 100%. To hide the author photo, find the #content .homepage-box
.author-pic rule and set display to none. The homepage boxes should now
take up the full width of the screen, as is the case in Figure 10.13.

Figure 10.13. The homepage boxes using the text-only style sheet.

You can continue to work on your low-graphics style sheet until you’re happy
with the results, moving as far from the original layout as you like! If you set the
display property for any rules to none, in order to hide elements in the page,
you can also remove any other properties that are set for those rules: they can’t
take effect because the elements effectively have been deleted. I won’t list the
full textonly.css code here, as it’s far too long, but you can find this file in the
book’s code archive.

311

A “Low Graphics” Layout

Modifying the JavaScript to Enable Multiple Style Sheets
to be Enabled/Disabled

Now we have normal- and large-text style sheets, and regular- and low-graphics
style sheets. We could decide to allow them to be used in combination: users
could elect to see large or small text with either the graphics-intensive layout or
the basic, low-graphics layout. Importantly, we want to be able to offer these
options and still have a good looking, usable Website. To step away from the
usual “default style sheets plus one selectable alternative style sheet” system
supported by many browsers as well as our current script, instead adopting a
system of choosing from two sets of mutually exclusive style sheets, we’ll need
to make some changes to the JavaScript.

Using a Server-side Language

If you have access to a server-side language such as ASP or PHP, this process
becomes much simpler: all you need to do is write out links to the selected
style sheets using your server-side language. Employing a server-side language
also means that your style sheet switching functionality won’t rely on the
users’ having JavaScript enabled. The CSS-Discuss Wiki offers some links
to various server-side methods.3.

To start, open each of the pages on your site and make sure to clear any Design
Time Style Sheets settings that you have applied to them. It’s time to make these
style sheets work as intended outside of Dreamweaver’s design view. Next, open
top.html and locate the Page Controls section. Currently, the function that’s
called by the onclick event handler accepts one parameter: the style sheet’s title.
We need to add a parameter that indicates whether it is a text or a layout style
sheet that is being selected, so that the script can disable any other style sheet
of that type that is currently active. We also need to add similar onclick event
handlers to our low graphics and default layout buttons.

File: inc/top.html (excerpt)

 <a href="#"
 onclick="setActiveStyleSheet('Large Text','text');
 return false;"><img src="img/control_larger.gif"
 alt="Increase Text Size" width="43" height="35" />
 <a href="#"
 onclick="setActiveStyleSheet('Medium Text','text');
 return false;"><img src="img/control_smaller.gif"

3 http://css-discuss.incutio.com/?page=StyleSwitching

312

Chapter 10: Alternate Style Sheets

http://css-discuss.incutio.com/?page=StyleSwitching
http://css-discuss.incutio.com/?page=StyleSwitching

 alt="Decrease Text Size" width="43" height="35" />
 <a href="#"

onclick="setActiveStyleSheet('Low Graphics','layout');
 return false;"><img src="img/control_low_graphics.gif"
 alt="Low Graphics" width="43" height="35" />
 <a href="#"

onclick="setActiveStyleSheet('Default Style','layout');
 return false;"><img src="img/control_default_style.gif"
 alt="Default Style" width="43" height="35" />

Now, open tutorial1.shtml and add textonly.css as another alternate style
sheet. Don’t forget to give main.css a title of Default Style, to match the
text used in the code above. We also need to identify the style sheets by group:
we can do so by adding a class attribute to each link element that has a value
of text or layout, depending on whether the style sheet affects text or layout.
The following style sheets should now be linked from the top of your document,
with classes applied:

File: tutorial1.shtml (excerpt)

<!--#include file="inc/head.html" -->
<title>Code Spark layout</title>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<script type="text/JavaScript" src="inc/functions.js"></script>
<link href="inc/main.css" rel="stylesheet" type="text/css"
 title="Default Style" class="layout" />
<link href="inc/text-regular.css" rel="stylesheet" type="text/css"
 title="Medium Text" class="text" />
<link href="inc/text-large.css" rel="alternate stylesheet"
 type="text/css" title="Large Text" class="text" />
<link href="inc/textonly.css" rel="alternate stylesheet"
 type="text/css" title="Low Graphics" class="layout" />
</head>

The changes we’ll made to the JavaScript code enable it to check to see which
class of style sheet the user is selecting. The changes are highlighted below:

File: inc/functions.js (excerpt)

// Style Sheet Switcher functions written by Paul Sowden for an
// article on A List Apart -
// http://www.alistapart.com/articles/alternate
function setActiveStyleSheet(title,theClass) {
 var i, a, main;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {

313

A “Low Graphics” Layout

 if(a.getAttribute("rel").indexOf("style") != -1 &&
 a.getAttribute("title")

&& a.className==theClass) {
 a.disabled = true;
 if(a.getAttribute("title") == title) a.disabled = false;
 }
 }
}
function getActiveStyleSheet(theClass) {
 var i, a;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1 &&
 a.getAttribute("title") &&

a.className == theClass &&
 !a.disabled) return
 a.getAttribute("title");
 }
 return null;
}

function getPreferredStyleSheet(theClass) {
 var i, a;
 for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("rel").indexOf("alt") == -1
 && a.getAttribute("title")

&& a.className == theClass
) return a.getAttribute("title");
 }
 return null;
}
function createCookie(name,value,days) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime()+(days*24*60*60*1000));
 var expires = "; expires="+date.toGMTString();
 }
 else expires = "";
 document.cookie = name+"="+value+expires+"; path=/";
}
function readCookie(name) {
 var nameEQ = name + "=";
 var ca = document.cookie.split(';');
 for(var i=0;i < ca.length;i++) {
 var c = ca[i];
 while (c.charAt(0)==' ') c = c.substring(1,c.length);

314

Chapter 10: Alternate Style Sheets

 if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length,
 c.length);
 }
 return null;
}

window.onload = function(e) {
// get text style cookie

 var cookie = readCookie("text");
 var title = cookie ? cookie : getPreferredStyleSheet("text");
 setActiveStyleSheet(title, "text");
 // get layout style cookie
 var cookie = readCookie("layout");
 var title = cookie ? cookie : getPreferredStyleSheet("layout");
 setActiveStyleSheet(title, "layout");
}

window.onunload = function(e) {
var title = getActiveStyleSheet("text");

 createCookie("text", title, 365);
 var title = getActiveStyleSheet("layout");
 createCookie("layout", title, 365);
}

window.onload();

You should now be able to swap style sheets with any combination of layout and
text size. You could use these techniques to create any number of style sheets,
giving site users real choices about how they view your content. Figure 10.14
shows the low-graphics style sheet in action.

315

A “Low Graphics” Layout

Figure 10.14. Viewing the low-graphics layout in Firefox.

Media Types
Another use of alternate style sheets is to provide different displays suited to the
various types of devices that may access our site. When you attach a style sheet
in Dreamweaver, you may notice the Media drop-down list in the Attach External
Style Sheet dialog. Shown in Figure 10.15, the menu enables you to set your
style sheet for:

all All devices

aural Screen readers

braille Braille readers, which convert the text on screen to Braille

handheld Handheld devices

print To be used when the document is printed

316

Chapter 10: Alternate Style Sheets

projection For projection purposes

screen Regular computer screens

tty Fixed-width devices

tv Web TV

Figure 10.15. Viewing the Media drop-down in the Attach External
Stylesheet dialog.

Support for these media types is still limited in most devices, so they are not as
useful now as they may become in the future. However, there is one media type
that is well supported in browsers, and can be very useful in your day-to-day de-
velopment of Websites: the print media type.

Print Style Sheet
If users want to print any of our articles, it will be helpful if they can do so without
printing all of the navigation elements and images that appear on the page. We
can create a separate print style sheet to be used when the document is printed.

Open main.css and save the style sheet as print.css. Attach the style sheet by
clicking on the Attach Style Sheet button in the CSS panel, browse for print.css,
and select the print media type from the Media drop-down list, as shown in Fig-
ure 10.16.

317

Print Style Sheet

Figure 10.16. Selecting the print media type.

Save the document. To view the print style sheet as we work on it, we could add
it as a Design Time Style Sheet, but Dreamweaver 8 has a new toolbar specially
developed to help us work with different style sheets for different media types:
the Style Rendering toolbar. Open this toolbar by selecting View > Toolbars >
Style Rendering. When the toolbar opens, select the printer icon for the print
media type, as shown in Figure 10.17.

Figure 10.17. Using the Style Rendering toolbar.

Editing the print.css Style Sheet

Expand print.css in the CSS panel and find the #header selector. In the Prop-
erties pane, add a display property, and set its value to none. This will hide the
header area when the document is printed. You can now delete from print.css
any rules that reference elements inside the header.

Now, select #nav, and again set display to none to hide the sidebar. Once again,
you can remove from this style sheet any rules that apply to elements within the
sidebar.

318

Chapter 10: Alternate Style Sheets

The breadcrumb navigation is another page element that isn’t useful in a printed
document, so locate the p.breadcrumbs rule and set display to none.

#content has a very wide right margin to allow space for the sidebar that won’t
appear in the print document; we can edit this rule to reduce the margin to 80
pixels. You should be able to see all these changes take place in Dreamweaver as
you make them using the Style Rendering toolbar.

As with the text-only style sheet, a simpler treatment of the pull quote would be
suitable for the print style sheet. In Figure 10.18, I’ve deleted the background
image and made the text color black.

Figure 10.18. Viewing the print style sheet in Dreamweaver.

Once you’re happy with the print style sheet, save it and reload the tutorial page
in your browser. If you print the page, or access your browser’s print preview
feature, you should see the print.css-styled document shown in Figure 10.19.
The print.css file is available in the code archive.

319

Print Style Sheet

Figure 10.19. Viewing the page in print preview.

Final Tasks
Throughout this chapter, we’ve been working to add functionality to one of our
documents: tutorial1.shtml. The style sheets we’ve created will need to be
added to every page of the site if the style switching is to work properly. The
easiest way to do this is to move the style sheets from tutorial1.shtml and add
them to head.html. This file is included in all of your documents, so doing this
will ensure that your style sheets are available to every page.

A Technical Hitch

We didn’t include the style sheets in the head document from the outset
because some of the Design Time Style Sheets functionality we used in this
chapter doesn’t work very well when the style sheets aren’t linked within
the file that’s being worked on. However, once you’ve finished the design
phase, moving these style sheets isn’t a problem.

Once we’ve moved the style sheets, our head.html include contains the following:

320

Chapter 10: Alternate Style Sheets

File: inc/head.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
 <script type="text/JavaScript" src="inc/functions.js"></script>
 <link href="inc/main.css" rel="stylesheet" type="text/css"
 title="Default Style" class="layout" media="all" />
 <link href="inc/text-regular.css" rel="stylesheet"
 type="text/css" title="Medium Text" class="text" />
 <link href="inc/text-large.css" rel="alternate stylesheet"
 type="text/css" title="Large Text" class="text" />
 <link href="inc/textonly.css" rel="alternate stylesheet"
 type="text/css" title="Low Graphics" class="layout" />
 <link href="inc/print.css" rel="stylesheet" type="text/css"
 media="print" />

Now that you’ve moved the link to main.css and the meta element into an in-
clude, you’ll need to go through each of your pages and remove them.

Final Validation
Once you’ve uploaded your files to your Web server, go to each page and validate
it using the W3C online validator. You should check all your CSS files, as well.
Whenever you make changes to any documents or includes, remember to reval-
idate after you upload those files, just to ensure that no errors have crept in.

Summary
In this chapter we’ve looked at a few different ways in which alternate style sheets
can be used to make your site more interesting and usable for different types of
site visitor. As we’ve seen here, style sheet switching does not have to be a gim-
mick, nor a way to showcase different designs: it can be a way of adding useful
functionality to the site. Of course, switching layouts for fun is perfectly justifiable
on some sites, and a great way to showcase your design skills on a portfolio site.

This chapter also gave us the chance to look at some functionality—new in
Dreamweaver 8—that assists you in working with alternate style sheets. There
are several ways of working with CSS in Dreamweaver: use the techniques that
you find most helpful to your workflow.

321

Final Validation

I hope that, by following this project, you’ve gained an understanding of how
you can develop sites to Web standards using Dreamweaver 8. A knowledge of
what you’re doing in your markup, and your CSS, is important if you want to
fully understand what you’re doing and why. However, Dreamweaver 8 can help
you to create standards-compliant, accessible documents. With a little care and
the right preferences, using a visual tool shouldn’t stand in the way of your devel-
oping a standards compliant Website.

322

Chapter 10: Alternate Style Sheets

Index
A
A List Apart Website, 300, 313
abbreviations, 213, 219
About Pane, CSS Panel, 114
absolute positioning, 124, 138, 307
absolute units and accessibility, 206
access keys, 215, 263
accessibility, 185–224

applets and scripts, 203, 212
benefits, 185–186
chart data, 86
Code Spark Website and, 193–219
color and, 12, 195, 205
CSS advantages, 102
design impact of, 186
divs and spans, 158
Dreamweaver 8 tools, 192
forms, 212, 219, 261
frames, 202, 211
guidelines, standards and legislation,

3, 187–192
layout images and, 177
multimedia content, 204
tables, 199
validation, 11, 219–224
WCAG priority levels, 187

Accessibility Attributes dialog, 78, 96,
261, 263

accessibility buttons, Code Spark, 144,
146

head.html script for, 312
implementation, 290, 303

Accessibility category, 41, 260
Accessibility Preferences, 192
acronyms, 213
Allow Multiple Consecutive Spaces

option, 40
alternate style sheets, 4, 205, 289–322

accessibility and, 215
adding to head.html, 320
Design Time Style Sheets dialog,

123
media types, 316
print styles, 105, 317
Style Rendering toolbar, 124
switching in the browser, 299
switching using JavaScript, 300
text resizing, 290–304
text-only versions, 304–316

alternate text
Accessibility Attributes dialog, 78
dynamic content and, 198, 208
ignoring layout images, 177
image map “hot spots”, 199
non-text elements, 194
replacing logos with, 306

Apache Web server, 29, 33
applets and accessibility, 203, 212
article boxes, 156
articles list styling, 176
ASCII art, 217
assistive technologies, 11
Atomz Express Search application, 276
Attach External Style Sheet dialog,

116, 316
Attach Style Sheet dialog, 291
attributes

case sensitivity in XHTML, 51
id and name, 52
minimization, 51
quoting attribute values, 50

audio content, 195
authoring tools, 5
auto-redirection, 209
auto-refreshing pages, 209

B
background colors

accessibility and, 205
alternating table rows, 166
deleting, 310
highlighting current navigation sec-

tion, 246
importance of controlling, 134
problem in IE, 177
removing for text-only versions, 306
setting in CSS Rule Definition, 134
setting in Page Properties, 108
temporary, checking styling with,

138
visual aids, 125, 159

background images, 171, 244, 308
base page layout, Code Spark, 232
Behaviors Panel, 271
block level display, 177
blockquote element, 58, 66, 207, 243,

310
Bobby accessibility validator (see

WebXACT)
body element, 49

adding styling rules, 133
IDs as navigation links, 246

border-collapse property, 165
boxes, homepage

IE5.5 display problem, 183
styling with CSS, 160

 tags and semantic markup, 15
breadcrumb trails, 238–239

hiding, in print style sheets, 319
browser statistics display, Code Spark,

86, 168–169
browsers

checking CSS display in, 127, 147,
180

new, compatibility with, 3
non-compliant code display, 5
older, CSS filter for, 183

older, empty element workaround,
51

older, image sizing for, 242
older, Transitional DOCTYPE and,

74
proprietary markup elements, 6
style sheet switching in, 299
testing through Websites, 181

bug fixes, 3
bullet styling, 166, 169, 238, 248
buttons

inserting, 97
styling, 269

C
Cascading Style Sheets (see CSS)
case sensitivity, XHTML, 51
charts and accessibility, 86, 196
classes, CSS

applying, with the Property Inspect-
or, 119

choice between IDs and, 129, 131
creating, 111, 142
restricting styling through, 105

clear property, CSS, 169, 268
empty div hack use, 158

code hinting, 120
Code Spark Website project

accessibility assessment, 193–219
accessibility validation, 222
Atomz search implementation, 277
base page creation, 232
browser statistics, 86, 168
building the site, 225–257
contact form example, 259–276
content area markup, 76–89
CSS rule creation, 133
Dreamweaver setup, 36
header area design, 91
header area markup, 93–99
homepage box content styling, 160

324

Index

homepage content markup, 79
homepage design, 76
homepage links to tutorials, 83
homepage unstyled, 128
hosting, 35
layout definition stage, 127–133
markup validation, 99
navigation, 20
search results display, 287
sidebar design, 91
sidebar markup, 95
site design, 19–24
site design and markup, 73–100
site structure and common elements,

24–28
sitemap, 249–257
styling common areas, 133–154
styling tables, 164
styling the content area, 154–170
styling the sidebar, 170–178
styling the tutorial list, 237
tutorial list creation, 235
tutorial page example, 238–248
Web server setup, 28–35

Code View
editing CSS in, 120
Insert Div Tag dialog, 141

“Coder” Workspace layout, 38
color

(see also background colors)
avoiding essential color, 12, 195
contrast and, 205
highlighting current selections, 248
importance of controlling, 134
list item bullets, 169, 248

column headings (see <th> tags)
column layout, 311
comments, CSS, 183
comments, httpd.conf, 34
common elements, 24
conformance levels, WAI, 188

consistent look and feel, 217
contact form example, 259–276

markup, 260
styled appearance, 270
styling, 267
unstyled appearance, 266

containers for styling areas, 129
content

portability of, 54
separation from presentation, 4, 16
subdividing for accessibility, 209

content areas
creating a container, 132
markup for Code Spark homepage,

76–89
print style sheet margins, 319
styling with CSS, 154
text-only version, 310

Content Management Systems, 74
contrast, 205
CSS (Cascading Style Sheets), 102–106

(see also CSS toolkit, Dreamweaver)
advantages, 102, 242
contact form styling, 267
CSS 1 specification, 2
CSS 2.1 specification, 2
Dreamweaver preference setting, 41
semantic markup requirements and,

15
syntax, 106
validation, 10, 179
viewing unstyled rendering, 58, 198

CSS filters, 183
CSS Layout Background option, 159
CSS Page Designs, 122
CSS Panel, 109–118

(see also New CSS Rule dialog; Prop-
erties Pane)

About Pane, 114
attaching style sheets, 114, 121
Design Time Style Sheets, 295

325

Design Time style sheets, 297
Edit Style button, 112
Layers Pane, 124
Mode buttons, 112

CSS Rule Definition dialog , 111, 134
Properties Pane alternative, 153
setting the type, 142

CSS Rule Definition Dialog
Properties Pane alternative, 297

CSS toolkit, Dreamweaver, 106–125
CSS Panel, 109–118
display limitations, 127, 147
Dreamweaver versions, 106, 109
editing options, 107
Page Properties dialog, 108
Preferences dialog, 106
Property Inspector, 118

CSS-Discuss Wiki, 312
current position highlighting, 246
current styles, opting to view, 112
Cynthia Says validator, 12, 221

D
definition list creation, 63
deprecated elements, 6, 209

presentational function of, 16
XHTML Strict and, 8

descendant selectors, 146, 156
Design Time Style Sheets, 123, 295–

297, 320
Design View

checking accuracy of content selec-
tion, 132

creating a container, 129
placeholder text use, 234
removing CSS styling, 58

“Designer” Workspace layout, 38
device types

accessibility and, 3
alternate style sheets, 105
alternate style sheets and, 316

applets and scripts and, 212
non-compliant code display, 5
text-only versions and, 304
XHTML advantages for, 54

disability types and accessibility, 186
display property, Block category, 305,

307, 310
<div> tags

creating a container, 129
empty div hack, 158
semantic markup example, 15

DOCTYPE declarations, 47
(see also XHTML 1.0)
Dreamweaver default, 8
Dreamweaver XHTML support and,

54
HTML 4.01, 9

Document Type Definitions (DTDs),
6, 48

duplicated markup, 24
dynamic content

accessibility and, 208
markup validation, 10
static mockups for, 237
updating alt text, 198

E
Edit Style button, CSS Panel, 112
elements, XHTML

case sensitivity, 51
closure requirements, 50
nesting requirements, 52

 tags, 66
email scripts, 276
embedded style sheets, 103, 114
emphasis with and ,

65
empty alt attributes, 195
empty div hack, 158
empty elements, 51

326

Index

error display (see Results Panel)
external style sheet attachment, 114

(see also imported style sheets)

F
fieldset element, 210
Firefox browser

include file view, 231
local markup validation with, 249
style sheet switching in, 299
suitability for testing, 180
unstyled Code Spark homepage in,

89
Web Developer Toolbar, 221, 249

Fireworks designs, 21, 86
fixed width layouts, 23
float property

contact form example, 268
positioning header elements, 145
positioning images, 160, 165, 169,

240, 242
resizing problem with floated boxes,

157
font sizes

(see also text resizing)
allowing user changes, 21
unit choice and resizing, 135, 295–

296
 tags alternative, 101
fonts

setting in Page Properties, 108
setting in the Rule Definition dialog,

142
for attribute, label element, 262–263
form controls, keyboard shortcuts, 215
form elements, changing name and id,

262–263
forms

accessibility, 210, 212, 219
contact form example, 259–276
form processing scripts, 275

input validation, 270
required fields, 260, 271
styling form fields, 173, 269

Forms pane, Insert toolbar, 261
forward compatibility, 3
frames

accessibility and, 202, 211
creating framesets in Dreamweaver,

55
XHTML Strict and, 8

H
<h1> tags

(see also headings)
creating with the Property Inspector,

60
Lynx browser and, 71
styling in Code Spark, 160, 240

hacks
empty div hack, 158
IE5.5 display problem, 183

head element, 49, 103
header area

(see also accessibility buttons)
adding alternate style sheets to

head.html, 320
adding the main navigation, 94
creating a container, 129
design, 91
hiding, in print style sheets, 318
markup, 93–99
styling the main navigation, 147
styling with CSS, 137, 140
text-only versions, 305

headings
(see also <h1> tags)
creating with the Property Inspector,

59, 77, 119
positioning distinguishing informa-

tion, 216
semantic markup, 13, 15

327

styling by level, 160
WCAG guidelines and, 207

hidden fields, Atomz HTML, 278
highlighting

current list item selection, 248
current navigation section, 246

homepage box styling, 160, 183
homepage, Code Spark

content area markup, 76–89
creating base pages from, 232
design, 20, 76
markup, 79
recent tutorial links, 83
view of unstyled page, 89, 128

HTML
Atomz search form code, 277, 287
differences from XHTML, 50–53
Dreamweaver conversion to

XHTML, 56
XHTML relationship to, 6

HTML 4.01 recommendation, 2
HTML 4.01 recommendations, 9
html element, XHTML, 48
httpd.conf file, 31–32, 34
hyperlinks (see links)

I
id attributes, 52
IDs, CSS

choice between classes and, 129, 131
identifying with the # prefix, 138
linking to navigation, 246

IIS (Internet Information Services) (see
Web servers)

image maps, 199, 217
keyboard shortcuts, 215

Image Tag Accessibility dialog, 177
images

inline, 242
inserting author images, 239
inserting using Dreamweaver, 77

linking from Atomz templates, 281
longdesc attribute and, 194
"low graphics" layouts, 304
multiple background images, 244
positioning, 160, 165, 169, 242
sizing for older browsers, 242
styling author images, 240
styling bullet points, 166, 238
text-only versions, 310
using as text, 60, 205

imported style sheets, 103–104, 117
include files, 26

alternate style sheets, 313, 320
bottom.html, 230
built-in functions and, 28
creating, 226–232
functions.js, 303
head.html, 226
local visibility, 230
separating JavaScript into, 274–275
testing server support, 33, 35
time savings, 247
top.html, 228
viewing from a Web server, 231

Indent Text button, Property Inspector,
208, 243

indexing, Atomz search facility, 276,
288

inline styles, 103
Input Tag Accessibility Attributes dia-

log, 96
Insert Div Tag dialog, 130, 141
Insert Frames button, 55
Insert Image button, 164
Insert toolbar

definition lists and, 63
form processing scripts, 276
Forms pane, 261
inserting a search box, 95
inserting buttons, 97
inserting images, 78
inserting selection lists, 263

328

Index

inserting tables, 83
inserting textareas, 264

Internet Explorer
background color problem, 177
Code Spark display in IE5.5, 183
Code Spark display in IE6, 181
CSS bugs, 180
problems with XML Declarations,

48
text resizing, 207

J
JavaScript

accessibility, 203
form input validation, 270
removing to an include file, 274–275
style sheet switching with, 300

K
keyboard navigation, 214–215

L
label element

associated with the form element,
212

for attribute, 262–263
XHTML 1.0 Strict requirements,

100
languages, accessibility issues, 196,

198, 214–215
large-text style sheets, 294–299
Layer visualization feature set, 140
Layers Pane, CSS Panel, 124
layout blocks, 124
layout examples, CSS Page Designs,

122
layout options, 23, 311
Layout panel, Design View, 129
layout tables, 16, 219
legislation, 190

line breaks

 tags and semantic markup, 15
paragraphs and, 64

line numbering display, 57
linked style sheets, 103, 117
links

(see also navigation)
converting text into, 77, 85
homepage to recent tutorials, 83
identifying targets, 210
next and previous pages, 217
null links, 236
semantic markup, 13, 15
separating adjacent links, 215
styling Code Spark navigation, 149,

160
styling navigation, 175
usability and underlining, 150

Linux, 68
liquid layouts, 24
list items

coloring bullets, 169, 248
displaying horizontally, 146, 148
nested lists, 62, 251, 256
topics list styling, 174

List Values dialog, 263
lists

Lynx browser and, 71
positioning distinguishing informa-

tion, 216
simulating with line breaks, 65
WCAG guidelines and, 207
XHTML list types, 60

logos
positioning within the header, 138
removing for text-only versions, 305
replacing with text, 306

longdesc attribute, 86, 194, 211
longhand CSS, 106

329

"low graphics" layouts (see text-only
versions)

Lynx browser, 66–72, 90, 197
Lynx Viewer, 72

M
Mac OS X

Lynx browser installation, 68
starting Apache under, 32

machine processing of documents, 54
maintenance advantages of CSS, 102,

104
mandatory fields, 260, 271
margins

distinguished from padding, 143
setting, for body element, 136
styling unlabeled boxes, 269

MathML language, 206
media type specification, 105, 316–317
menu, 263
metadata, 210
minimizing attributes, 51
“mocking up" pages, 119
Mode buttons, CSS Panel, 112
movement and accessibility, 212

avoiding blinking, 208
avoiding flickering, 198

multimedia content, 194, 204, 213

N
name attributes, 52
navigation

(see also links)
consistency and accessibility, 211,

217
grouping links, 216
markup, 94

navigation areas
creating a container, 133
deleting background images, 308
hiding, in print style sheets, 317

highlighting current section, 246
horizontal button display, 148
styling sidebars, 170–178
styling the main navigation, 147

navigation bar positioning, 216
nested lists

correct structure, 62
CSS selector for, 256
sitemap use, 251–252

nesting elements, 52
Netscape 7 browser, 181
New CSS Rule dialog, 110, 133, 138,

268
New Document dialog, 6, 74, 226
NMS FormMail Script, 276
non-breaking spaces, 40

O
online validators, 221
Opera 7 browser, 181
ordered list creation, 61

P
<p> tags

addition of, by Dreamweaver, 141
including, when applying rules, 162,

240
semantic markup requirements and,

15
styling wrapping elements, 173

padding
distinguished from margins, 143
separating elements using, 148
setting, for body element, 136

page design approach, Code Spark, 73
Page Properties dialog box, 108
page redirection, 209
page refreshing, 209
pages, links to next and previous, 217
panels, Dreamweaver, 39

330

Index

paragraph element (see <p> tags)
paragraphs

creating in Dreamweaver, 64
line breaks distinguished from, 64
positioning distinguishing informa-

tion, 216
PHP language (see server-side languages)
pie chart images, Code Spark, 169
placeholder text, 79, 219, 233
popup windows, 209
portability and XHTML, 54
Preferences dialog, 40, 106
presentation, separation from content,

4, 16
previewing style sheets, 122
print style sheets, 105, 317
priority 1, WCAG

checkpoints, 194–205
definition, 188

priority 2, WCAG
checkpoints, 205–213
definition, 188

priority 3, WCAG
checkpoints, 213–219
definition, 189

Properties Pane, CSS Panel, 113, 153,
297

Property Inspector
creating a search form, 278
creating headings, 59, 77, 119
creating null links, 236
creating ordered lists, 61
creating unordered lists, 60, 63, 87
image map “hot spots”, 199
Page Properties dialog, 108
styling with, 101, 118–120
text indenting, 208, 243
turning text into links, 77, 85

proprietary markup elements, 6
pseudo-classes, 149

Q
Quick tag editor, 162, 214
Quirks Mode, IE6, 48
quotes

(see also blockquote element)
adding quote mark images, 244
pull quotes and blockquotes, 243
pull quotes in alternate style sheets,

310, 319
WCAG guidelines and, 207

quoting attribute values, 50

R
recent tutorials, Code Spark links, 83
redesign and standards compliance, 4
relative units and accessibility, 206
repeated code and include files, 24, 26
Reports dialog (see Results Panel)
required fields, 260, 271
resizing text, 135, 206
resizing windows, 157
Results Panel

accessibility validation, 12, 221
alternate text checking, 195
markup validation, 57, 99

S
Sample Style Sheets dialog, 122
Save as type drop-down menu, 226
Save Style Sheet File As dialog, 134
scope attribute, 201
screen readers, 11

JavaScript and, 203
semantic markup and, 58, 70
table summaries for, 84
tables and, 202, 211

scripts
(see also JavaScript)
accessibility, 203, 212
form processing, 275

331

search boxes
creating, 95
styling, 173

Search button, Code Spark sidebar, 97
search engines

accessibility and site indexing, 3
page titles and site indexing, 235
sitemaps and site indexing, 249

search form accessibility, 212
search functions

accessibility, 216
third-party service for, 276–288

“Section 508” legislation, 190
security, Website hosting, 32
Select File dialog, 227
selectors, contextual, 146, 156
semantic document structure, 13, 57

Lynx browser and, 70
WCAG guidelines and, 205

server-side form validation, 275
server-side image maps, 199
server-side includes (see include files)
server-side languages

Dreamweaver setup prompt, 36
form processing scripts, 275
highlighting current selections, 248
include files and, 28
style sheet switching with, 312

shorthand CSS, 106
.shtml files, 35
sidebars

adding a curved image, 177
altering font sizes, 297
bottom.html include file, 230
design, 91
markup for Code Spark, 95
styling, 170–178
text-only version, 308

Site Definition wizard, 36
sitemaps, 249–257

styling with CSS, 255
usefulness, 91

WCAG guidelines and, 210
“skip navigation” links, 216
Sowden, Paul, 300, 313
spaces

Allow Multiple Consecutive Spaces
option, 40

creating whitespace, 143
in Lynx pathnames, 69

 tags, 144, 162, 306
Split Screen View, 80
standards compliance (see Web Stand-

ards)
 tags

CSS alternative, 241
 tags and, 66

style attribute, HTML, 102
Style drop-down list, Property Inspect-

or, 119
Style Rendering Toolbar, 58, 124, 318
style sheet switching, 21, 299–304
style sheets

(see also alternate style sheets; CSS)
extracting font sizes, 291
 tags and, 102
linking from Atomz templates, 281
main.css, after header styling, 151
print.css editing, 318
readability of unstyled documents,

197
samples supplied with Dreamweaver,

121
text-large.css, 294–299
text-regular.css, 291
types of, 103
WCAG guidelines and, 206

<style> tags, 104
styling effect visualization, 138
submit buttons, 265, 269
summaries for tables, 84, 218

332

Index

T
tabindex attribute and tab order, 214
Table dialog, 200, 218
tables

accessibility requirements, 199, 211,
218

alternating row colors, 166
inserting using Dreamweaver, 83
styling, 164
summaries for, 84, 218
use for layout, 16, 219

Tag drop-down list, 110, 134
tagline styling, 140, 298
templates, Atomz, 287

customizing search results, 280
sample markup, 283
"Template Recipe" page, 285
updating, 288

templates, Dreamweaver, 25
text

(see also alternate text)
bolding with CSS, 241
converting into links, 77, 85
indenting, 58, 66, 208, 243
using images as, 60, 205
wrapping round images, 160, 240,

242
text color, 134
text decoration, 149
text field insertion, 261
text resizing, 135, 206, 290–304
text selection with tags, 144,

162
textareas, 264
text-only devices

(see also screen readers)
frames and, 202
importance of content location, 89
Lynx browser, 66–72
semantic markup and, 58
sitemap usefulness, 91

text-only versions, 4, 204
Code Spark Website, 304–316

<th> tags
abbreviations, 219
accessibility and, 200
styling, 165
Table dialog, 84

third-party services, 276–288
problems, 288

title bar XHTML display, 55
toggling style rendering, 58, 198
toolbars (see Insert toolbar; Style Ren-

dering toolbar; Web Developer
Toolbar)

tools, CSS (see CSS toolkit)
topics list styling, 174
tutorial pages, Code Spark

author credit and date, 241
design, 20
example, 238–248
inline images, 242
introductory text, 241
layout, 23
pull quotes, 243
styling with CSS, 239
validation, 249

tutorials, Code Spark
homepage featured tutorials, 81
homepage links to, 83
sitemap listing, 251–252
tutorial list page, 235–238

U
 tags

(see also list items)
semantic markup, 13, 15
topics list styling, 174

underlining for links, 149
unordered lists

(see also tags)

333

creating with the Property Inspector,
60, 87

navigation as, 94
usability and link underlining, 150

(see also accessibility)
UsableNet Accessibility Reference, 12,

193
user benefits

accessibility, 186
Web standards, 5

V
Validate Form dialog, 271
validation

accessibility, 219–224
accessibility, built into Dreamweaver,

11, 193, 220
accessibility, online, 12, 221
CSS, 10, 179
form input, 270, 276
forms input, 275
markup, alternate style sheets, 321
markup, and bug fixes, 3
markup, built into Dreamweaver,

10, 57, 99
markup, dynamically generated, 10
markup, for contact form, 266
markup, in Code Spark, 178
markup, using the W3C Validator,

9
markup, WCAG guidelines and, 206
markup, with include files, 249

validity of XHTML documents, 47–50
vertical alignment setting, 140
Visual Aids, 125, 159
visual development environments, 5

W
W3C (World Wide Web Consortium)

(see also Web Accessibility Initiative)

accessibility of approved technolo-
gies, 209

markup validator from, 3, 9
Web standards and, 2, 6, 59
XHTML and, 46

Walker, Alex, 21
WCAG (Web Content Accessibility

Guidelines)
checkpoint priority levels, 187
status, 187
WCAG 1.0 specification, 2–3, 11

Web Accessibility Initiative (WAI), 2,
11, 187

conformance levels, 188
Web Developer Toolbar, 221, 249
Web servers

Apache, 29, 33
IIS (Internet Information Services),

35
include file instructions to, 227
setting up, 28–35

Web standards
compliance requirements, 6–16
defined, 1
semantic document structure, 13
usefulness of, 2–6

Website project (see Code Spark Web-
site project)

Website redesign, 4
WebXACT (Bobby) accessibility valid-

ator, 12, 189
whitespace, padding and margins, 143
Windows

ASP form processing, 276
installing Apache under, 30
Lynx browser installation, 67

workspace layouts, Dreamweaver 8, 38

X
XHTML

(see also validation, markup)

334

Index

accuracy of Dreamweaver markup,
100

advantages, 53–54
differences from HTML, 50–53
Dreamweaver conversion of HTML,

56
Dreamweaver tools, 54–57
origins and status, 45
validity requirements, 47–50

XHTML 1.0 Frameset, 8, 56
XHTML 1.0 recommendation, 2

creating XHTML in Dreamweaver,
6

DOCTYPE declarations, 8
example markup, 13

XHTML 1.0 Strict
Code Spark site use, 73
Dreamweaver page creation, 75
label element requirements, 100
restrictions, 8

XHTML 1.0 Transitional
as Dreamweaver default, 8, 47
paragraph element wrapping, 173
reasons to use, 74

XML (Extensible Markup Language)
and XHTML, 45, 54

XML Declarations, 48
XML Namespaces, 48

335

	Build Your Own Standards Compliant Website Using Dreamweaver 8
	Table of Contents
	Introduction
	Who Should Read This Book?
	What’s In This Book?
	Further Reading
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	What are Web Standards?
	Web Standards Defined
	Who Needs Web Standards?
	Web Designers and Developers
	Cleaner Markup Makes Bug-fixing Quicker
	Complying with Accessibility Requirements is Easier
	Forward Compatibility
	Easier Redesigns

	Browser Manufacturers
	Authoring Tool Manufacturers
	Web Users

	Using Web Standards
	Creating a Valid XHTML Document
	Validating your Document
	Using Valid CSS
	Validating for Accessibility
	Applying a Semantic Document Structure
	Separating Presentation from Document Structure

	Summary

	Site Planning and Setting up for Development
	The Code Spark Site Design
	Features of the Code Spark Website
	Tutorial Pages
	The Homepage
	Site Navigation

	Designing the Site

	Structuring the Site
	Dealing with Common Elements
	The "Copy, Paste, Copy, Paste" Technique
	Dreamweaver Templates
	Server Side Includes (SSI)

	Setting up a Web Server
	Installing Apache
	Windows
	Mac OS X

	Testing SSI
	Enabling SSI

	Using IIS as your Local Web Server

	Hosting your Site
	Setting up Dreamweaver
	Your Workspace
	Setting Preferences

	Summary

	XHTML and Semantics
	What is XHTML?
	XML
	XHTML

	What Makes a Valid XHTML Document?
	The DOCTYPE
	The html Element
	The head Element
	The body Element

	XHTML and HTML: the Differences
	Quoting Attribute Values
	Closing all Empty and Non-empty Elements
	Avoiding Minimizing Attributes
	Writing Elements and Attributes in Lowercase
	Nesting Elements Properly
	Using id Instead of name to Identify Elements

	Why use XHTML?
	Creating Clean Markup
	Making Code Easier for Machines to Process
	Boosting the Portability of Content
	Allowing Integration with other XML Applications

	XHTML in Dreamweaver
	Creating New Pages
	Creating a Frameset

	Converting Existing Pages
	The Dreamweaver Validator

	Semantic Markup
	Using Elements Semantically
	Headings
	Lists
	Creating Paragraphs and Line Breaks
	Showing Emphasis
	Indenting and the blockquote Element

	Semantic Markup and Text-Only Devices
	Windows Install
	Mac Install
	Linux
	Using Lynx

	Summary

	Constructing the Document
	The New XHTML Document
	The Main Content Area
	Linking to Other Tutorials
	Displaying Browser Statistics

	Other Page Elements
	The Heading and Main Navigation
	The Sidebar

	Validating your XHTML
	Validation in Dreamweaver

	Summary

	CSS and Dreamweaver
	Why CSS?
	CSS Basics
	How to Use CSS
	Tags
	Media Types
	Classes

	Your Basic Toolkit
	Setting Preferences for CSS
	The Page Properties Dialog Box
	The CSS Panel
	Creating a New CSS Rule
	Editing a CSS Style
	Viewing All or Current Styles
	The CSS Properties Pane
	The About Pane
	Attaching a Style Sheet

	The Property Inspector
	Selecting Styles

	Editing CSS in Code View
	Sample CSS Styles
	CSS Page Designs
	Design Time Style Sheets
	The Style Rendering Toolbar
	CSS "Layout Blocks"
	CSS Layout Visual Aids

	Summary

	Constructing the Layout with CSS
	The Homepage Document
	Defining the Basic Layout
	The Header
	The Content Area
	The Navigation Area

	Creating CSS Rules
	The Body Area
	Styling the Header div
	The Top of the Header Area
	The Accessibility Buttons
	The Main Navigation
	Styling the Navigation Links
	The Properties Pane of the CSS Panel

	The Content Area
	The Content Sections
	Using Dreamweaver Visual Aids
	The Headings
	The Contents of the Homepage Boxes
	Styling Tables
	The Browser Statistics Section

	The Sidebar
	The Search Box
	The Topics List
	The Articles Lists
	Rounding Out the Sidebar

	CSS Validation and Browser Testing
	Validating the Code
	Browser Testing
	Fixing the Site for IE 5.x

	Summary

	Accessibility
	Will Considering Accessibility Stop us Creating Exciting Designs?
	Which Users Benefit?
	Which Guidelines are we Working to?
	The Web Accessibility Initiative (WAI)
	WACG Checkpoint Priorities
	Priority 1
	Priority 2
	Priority 3

	Legislation

	Dreamweaver Tools for Accessibility
	Accessibility in Practice
	Priority 1
	General Issues
	Image Maps
	Tables
	Frames
	Applets and Scripts
	Multimedia
	Text-only Versions

	Priority 2
	General
	Tables
	Frames
	Forms
	Applets and Scripts

	Priority 3
	General
	Image Maps
	Tables
	Forms

	Accessibility Validation
	The Dreamweaver Accessibility Validator
	Cynthia Says: Online Validation

	Summary

	Building the Site
	Creating the Includes
	The First Include: head.html
	The Second Include: top.html
	The Final Include: bottom.html

	Creating The Base Page
	The Tutorial List Page
	Creating the Lists
	Adding to the CSS

	An Example Tutorial Page
	Adding CSS for the Tutorial Page
	Level One Heading

	The Author Image
	The Author Credit and Date
	The Introduction Text
	Inline Images
	Quotes
	Adding the Quote Mark Images

	Highlighting the Current Section in the Navigation Area
	The Sitemap
	Marking up the Sitemap
	Styling the Sitemap with CSS

	Summary

	Forms and Third-party Services
	The Contact Form
	Marking up the Form
	Adding a Menu

	Laying out the Form with CSS
	Styling Form Fields

	Client-side Validation Using Dreamweaver
	The Validate Form Behavior

	Submitting the Form

	Adding a Search Facility
	Creating an Atomz Account
	Adding the Search Form to Your Site
	Editing the Atomz Templates
	Adding the Atomz Search Code
	Adding the Template to Atomz

	Summary

	Alternate Style Sheets
	Accessibility Controls
	Text Resizing
	Creating a Style Sheet for Text Sizing
	Removing the Font Sizing from the Main Style Sheet
	Creating the Large-text Style Sheet
	Design Time Style Sheets
	Editing CSS Rules Using the Properties Pane

	Switching Style Sheets
	Selecting Alternate Style Sheets in the Browser
	Switching Styles with JavaScript

	A “Low Graphics” Layout
	The Header Area
	Replacing the Logo with Text
	The Sidebar
	The Main Content
	Other Pages
	Modifying the JavaScript to Enable Multiple Style Sheets to be Enabled/Disabled

	Media Types
	Print Style Sheet
	Editing the print.css Style Sheet

	Final Tasks
	Final Validation

	Summary

	Index

