
PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

THE ULTIMATE ASP.NET BEGINNER’S GUIDE

4TH EDITION

BUILD YOUR OWN
ASP.NET 4

WEBSITE
BY CRISTIAN DARIE

WYATT BARNETT
& TIM POSEY

USING C# & VB

Summary of Contents

Foreword . xxi

Preface . xxiii

1. Introducing ASP.NET and the .NET Platform . 1

2. ASP.NET Basics . 27

3. VB and C# Programming Basics . 47

4. Constructing ASP.NET Web Pages . 97

5. Building Web Applications . 159

6. Using the Validation Controls . 235

7. Database Design and Development . 273

8. Speaking SQL . 317

9. ADO.NET . 363

10. Displaying Content Using Data Lists . 435

11. Managing Content Using GridView and DetailsView 463

12. Advanced Data Access . 507

13. Security and User Authentication . 569

14. Working with Files and Email . 615

15. Introduction to LINQ . 655

16. Introduction to MVC . 671

17. ASP.NET AJAX . 701

A. Web Control Reference . 723

B. Deploying ASP.NET Websites . 763

Index . 775

BUILD YOUR OWN
ASP.NET 4 WEBSITE

USING C# & VB
BY CRISTIAN DARIE
WYATT BARNETT

TIM POSEY
4TH EDITION

Build Your Own ASP.NET 4 Website Using C# & VB
by Cristian Darie, Wyatt Barnett, and Tim Posey

Copyright © 2011 SitePoint Pty. Ltd.

Editor: Sarah BroomhallExpert Reviewer: Pranav Rastogi

Index Editor: Michelle CombsProduct Editor: Simon Mackie

Cover Design: Alex WalkerTechnical Editor: Ricky Onsman

Latest Update: Fourth Edition: September

2011

Printing History:

First Edition: April 2004

Second Edition: October 2006

Third Edition: September 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9870908-6-7 (print)

ISBN 978-0-9871530-3-6 (ebook)

Printed and bound in the United States of America

iv

About the Authors

Cristian Darie is a software engineer with experience in a wide range of modern technologies,

and the author of numerous technical books, including the popular Beginning E-Commerce

series. He initially tasted programming success with a prize in his first programming contest

at the age of 12. From there, Cristian moved on to many other similar achievements, and is

now studying distributed application architectures for his PhD.

Wyatt Barnett leads the in-house development team for a major industry trade association

in Washington DC. When not slinging obscene amounts of C# and SQL at a few exceedingly

large monitors, he is most often spotted staring at HDTV and other forms of entertainment

in local watering holes.

Tim Posey is a long-time developer and a passionate educator. Armed with a B.S. in Computer

Science and an M.B.A. in Finance, he has traversed many industries, consulting for multiple

corporations in banking, insurance, energy, and various e-commerce industries. As a serial

entrepreneur, he mentors local startups and non-profit organizations. He serves as a senior

software engineer at a Fortune 1000 company and an Adjunct Professor of Finance for the

American Public University System. His favorite pastime is watching Alabama football. He

may be contacted at tim@timposey.net.

About the Technical Editor

Ricky Onsman is an Australian freelance web designer and jack of all trades. With a back-

ground in information and content services, he built his first website in 1994 for a disability

information service and has been messing about on the web ever since. He is the president

of the Web Industry Professionals Association.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

v

http://www.sitepoint.com/

To my family and friends.

—Cristian Darie

To my Father, whose guidance got

me this far.

—Wyatt Barnett

For LJ and Erin.

—Tim Posey

Table of Contents

Foreword . xxi

Preface . xxiii

Who Should Read This Book . xxiii

What’s in This Book . xxiv

Where to Find Help . xxviii

The SitePoint Forums . xxviii

The Book’s Website . xxviii

The SitePoint Newsletters . xxix

The SitePoint Podcast . xxix

Your Feedback . xxix

Acknowledgments . xxx

Conventions Used in This Book . xxx

Code Samples . xxx

Tips, Notes, and Warnings . xxxi

Chapter 1 Introducing ASP.NET and the .NET
Platform . 1

What is ASP.NET? . 2

Installing the Required Software . 5

Installing Visual Web Developer 2010 Express Edition 6

Installing SQL Server Management Studio Express 8

Writing Your First ASP.NET Page . 11

Getting Help . 25

Summary . 25

Chapter 2 ASP.NET Basics . 27

ASP.NET Page Structure . 28

Directives . 32

Code Declaration Blocks . 33

Code Render Blocks . 35

ASP.NET Server Controls . 37

Server-side Comments . 37

Literal Text and HTML Tags . 39

View State . 40

Working with Directives . 44

ASP.NET Languages . 45

Visual Basic . 46

C# . 46

Summary . 46

Chapter 3 VB and C# Programming Basics 47

Programming Basics . 47

Control Events and Subroutines . 48

Page Events . 53

Variables and Variable Declaration . 56

Arrays . 60

Functions . 63

Operators . 67

Conditional Logic . 69

Loops . 71

Object Oriented Programming Concepts . 77

Objects and Classes . 78

Properties . 80

Methods . 81

Classes . 82

x

Constructors . 82

Scope . 83

Events . 84

Understanding Inheritance . 84

Objects in .NET . 85

Namespaces . 87

Using Code-behind Files . 88

Summary . 94

Chapter 4 Constructing ASP.NET Web
Pages . 97

Web Forms . 98

HTML Server Controls . 99

Using the HTML Server Controls . 101

Web Server Controls . 107

Standard Web Server Controls . 109

List Controls . 117

Advanced Controls . 119

Web User Controls . 135

Creating a Web User Control . 136

Master Pages . 144

Using Cascading Style Sheets (CSS) . 149

Types of Styles and Style Sheets . 150

Summary . 157

Chapter 5 Building Web Applications 159

Introducing the Dorknozzle Project . 160

Using Visual Web Developer . 162

Meeting the Features . 163

xi

Executing Your Project . 172

Core Web Application Features . 175

Web.config . 176

Global.asax . 180

Using Application State . 182

Working with User Sessions . 191

Using the Cache Object . 192

Using Cookies . 195

Starting the Dorknozzle Project . 197

Preparing the Sitemap . 198

Using Themes, Skins, and Styles . 200

Building the Master Page . 206

Using the Master Page . 210

Extending Dorknozzle . 215

Debugging and Error Handling . 217

Debugging with Visual Web Developer . 218

Other Kinds of Errors . 224

Custom Errors . 226

Handling Exceptions Locally . 227

Summary . 232

Chapter 6 Using the Validation Controls 235

Client-side Validation and Server-side Validation 236

Introducing the ASP.NET Validation Controls . 236

Enforcing Validation on the Server . 240

Using Validation Controls . 246

RequiredFieldValidator . 247

CompareValidator . 248

RangeValidator . 251

ValidationSummary . 252

xii

RegularExpressionValidator . 254

CustomValidator . 258

Validation Groups . 261

Updating Dorknozzle . 266

Summary . 270

Chapter 7 Database Design and
Development . 273

What Is a Database? . 274

Creating Your First Database . 276

Creating a New Database Using Visual Web Developer 277

Creating a New Database Using SQL Server Management

Studio . 278

Creating Database Tables . 280

Data Types . 285

Column Properties . 287

Primary Keys . 288

Creating the Employees Table . 290

Creating the Remaining Tables . 293

Populating the Data Tables . 296

Relational Database Design Concepts . 299

Foreign Keys . 301

Using Database Diagrams . 304

Implementing Relationships in the Dorknozzle Database 308

Diagrams and Table Relationships . 312

Summary . 316

Chapter 8 Speaking SQL . 317

Reading Data from a Single Table . 318

xiii

Using the SELECT Statement . 321

Selecting Certain Fields . 324

Selecting Unique Data with DISTINCT . 326

Row Filtering with WHERE . 329

Selecting Ranges of Values with BETWEEN 330

Matching Patterns with LIKE . 331

Using the IN Operator . 332

Sorting Results Using ORDER BY . 333

Limiting the Number of Results with TOP 334

Reading Data from Multiple Tables . 335

Subqueries . 336

Table Joins . 337

Expressions and Operators . 338

Transact-SQL (T-SQL) Functions . 341

Arithmetic Functions . 342

String Functions . 343

Date and Time Functions . 346

Working with Groups of Values . 347

The COUNT Function . 348

Grouping Records Using GROUP BY . 349

Filtering Groups Using HAVING . 350

The SUM, AVG, MIN, and MAX Functions . 351

Updating Existing Data . 352

The INSERT Statement . 352

The UPDATE Statement . 353

The DELETE Statement . 354

Stored Procedures . 355

Summary . 360

xiv

Chapter 9 ADO.NET . 363

Introducing ADO.NET . 364

Importing the SqlClient Namespace . 366

Defining the Database Connection . 367

Preparing the Command . 368

Executing the Command . 369

Setting Up Database Authentication . 371

Reading the Data . 375

Using Parameters with Queries . 377

Bulletproofing Data Access Code . 385

Using the Repeater Control . 387

Creating the Dorknozzle Employee Directory . 393

More Data Binding . 398

Inserting Records . 405

Updating Records . 411

Deleting Records . 428

Using Stored Procedures . 431

Summary . 433

Chapter 10 Displaying Content Using Data
Lists . 435

DataList Basics . 436

Handling DataList Events . 440

Editing DataList Items and Using Templates . 448

DataList and Visual Web Developer . 457

Styling the DataList . 458

Summary . 461

xv

Chapter 11 Managing Content Using GridView
and DetailsView . 463

Using the GridView Control . 464

Customizing the GridView Columns . 471

Styling the GridView with Templates, Skins, and CSS 472

Selecting Grid Records . 477

Using the DetailsView Control . 482

Styling the DetailsView . 486

GridView and DetailsView Events . 488

Entering Edit Mode . 492

Using Templates . 496

Updating DetailsView Records . 500

Summary . 505

Chapter 12 Advanced Data Access 507

Using Data Source Controls . 508

Binding the GridView to a SqlDataSource 510

Binding the DetailsView to a SqlDataSource 519

Displaying Lists in DetailsView . 531

More on SqlDataSource . 534

Working with Data Sets and Data Tables . 535

What Is a Data Set Made From? . 538

Binding DataSets to Controls . 540

Implementing Paging . 546

Storing Data Sets in View State . 548

Implementing Sorting . 551

Filtering Data . 562

Updating a Database from a Modified DataSet 563

Summary . 567

xvi

Chapter 13 Security and User
Authentication . 569

Basic Security Guidelines . 570

Securing ASP.NET Applications . 572

Working with Forms Authentication . 574

ASP.NET Memberships and Roles . 588

Creating the Membership Data Structures 588

Using Your Database to Store Membership Data 590

Using the ASP.NET Web Site Configuration Tool 596

Creating Users and Roles . 599

Changing Password Strength Requirements 600

Securing Your Web Application . 603

Using the ASP.NET Login Controls . 605

Summary . 613

Chapter 14 Working with Files and Email 615

Writing and Reading Text Files . 616

Setting Up Permissions . 617

Writing Content to a Text File . 620

Reading Content from a Text File . 624

Accessing Directories and Directory Information 628

Working with Directory and File Paths . 632

Uploading Files . 635

Sending Email with ASP.NET . 639

Sending a Test Email . 641

Creating the Company Newsletters Page . 643

Summary . 653

xvii

Chapter 15 Introduction to LINQ 655

Extension Methods . 657

LINQ to SQL . 657

Updating Data . 661

Relationships . 662

Directly Executing Queries from the DataContext 663

Stored Procedures with LINQ-to-SQL . 664

Using ASP.NET and LINQ-to-SQL . 667

Chapter 16 Introduction to MVC 671

Summary . 698

Chapter 17 ASP.NET AJAX . 701

What is Ajax? . 702

ASP.NET AJAX . 703

Using the UpdatePanel Control . 704

Managing the ScriptManager Control . 708

Using Triggers to Update an UpdatePanel . 709

The ASP.NET AJAX Control Toolkit . 713

The ValidatorCalloutExtender Control Extender 715

Getting Started with Animation . 718

jQuery . 720

Summary . 721

Appendix A Web Control Reference 723

The WebControl Class . 723

Properties . 723

Methods . 724

Standard Web Controls . 725

xviii

AdRotator . 725

BulletedList . 725

Button . 726

Calendar . 727

CheckBox . 729

CheckBoxList . 729

DropDownList . 730

FileUpload . 731

HiddenField . 732

HyperLink . 732

Image . 732

ImageButton . 733

ImageMap . 733

Label . 734

LinkButton . 734

ListBox . 735

Literal . 736

MultiView . 736

Panel . 736

PlaceHolder . 737

RadioButton . 737

RadioButtonList . 738

TextBox . 739

Wizard . 740

Xml . 744

Validation Controls . 744

CompareValidator . 745

CustomValidator . 746

RangeValidator . 747

RegularExpressionValidator . 748

xix

RequiredFieldValidator . 748

ValidationSummary . 749

Navigation Web Controls . 750

SiteMapPath . 750

Menu . 751

TreeView . 756

Ajax Web Extensions . 760

ScriptManager . 760

Timer . 761

UpdatePanel . 761

UpdateProgress . 762

Appendix B Deploying ASP.NET Websites 763

ASP.NET Hosting Considerations . 763

Using Visual Web Developer Express to Deploy ASP.NET Websites 764

Deploying MVC Sites and Web Applications . 767

ASP.NET Deployment “Gotchas” . 769

Using the SQL Server Hosting Toolkit . 770

Dealing with SQL Security . 772

Index . 775

xx

Foreword
Before you go much further in reading this book, give yourself a small pat on the

back for investing the money, time and effort in learning ASP.NET. Perhaps it is a

new technology to you, or perhaps you are familiar with ASP or other programming

in .NET. Either way, it’s a great skill to add to your toolbox and increase your value

as a developer.

ASP.NET is useful in more ways than one. If you aren’t already a .NET developer,

it’s the gateway to learning the framework, and the languages that you can use to

program against it. The most common languages, and the ones covered in this book,

are C# and VB.NET. Skills in these languages and framework go way beyond web

development. You can use them for mobile development with Silverlight, which

uses the .NET framework for Windows Phone 7 Desktop development; or .NET on

Windows Power Desktop development with the Windows Presentation Foundation

(WPF), part of the .NET Framework Workflow development for business processes

using the Workflow Foundation (WF)—which is also part of the .NET Framework

Connected systems development using the Windows Communication Foundation

(WCF).

Beyond these, the skills continue to grow in relevance as the industry matures and

develops. Time invested in .NET development will reap benefits with cloud-scalable

applications using Windows Azure, as well as the new Windows 8 client applica-

tions. But you have to start somewhere, and starting with the web is a wise choice.

ASP.NET allows you to build dynamic websites, web applications and web services.

As a developer, you know and understand that there as many different types of web

application as there are web applications themselves, and you need a powerful and

flexible framework that will allow you to build them, without having to reinvent

the wheel each time.

ASP.NET is this framework, and with its Web Forms and Controls technologies,

you can use rapid development methodologies to get your application up and run-

ning quickly. Being fully standards-compliant, you can also make it beautiful using

CSS. Beyond this, particularly for professional, commercial applications, you’ll

need tools that allow database connectivity to be smart, secure, and efficient, and

ASP.NET with its ADO.NET technology provides this for you.

And of course it wouldn’t be Web 2.0 if you didn’t have the ability to use Ajax.

ASP.NET gives you simple but effective ways to use AJAX with server-side controls

that do a lot of the hard work of handling asynchronous page updates for you. Indeed,

server-side coding is something that you’ll do a lot of with ASP.NET. It’s amazing

how simple it can make writing distributed applications, where the server is smart

enough to manage sessions, connectivity, presentation and more on your behalf.

This book provides you with everything you need to know to skill up in ASP.NET

development with Web Forms technology. It’s a fantastic learning tool, written in

an approachable and informative way. I strongly recommend you pick up your copy

of this book, download the free Visual Web Developer Express tools, and start coding

in ASP.NET. You’ll be amazed at what you can build, quickly and easily.

Laurence Moroney, technologist and author

August 2011

xxii

Preface
Web development is very exciting. There’s nothing like the feeling you have after

you place your first dynamic web site online, and see your little toy in action while

other people are actually using it!

Web development with ASP.NET is particularly exciting. If you’ve never created a

dynamic web site before, I’m sure you’ll fall in love with this area of web develop-

ment. If you’ve worked with other server-side technologies, I expect you’ll be a little

shocked by the differences.

ASP.NET really is a unique technology, and it provides new and extremely efficient

ways to create web applications using the programming language with which you

feel most comfortable. Though it can take some time to learn, ASP.NET is simple

to use. Whether you want to create simple web forms, feature-rich shopping carts,

or even complex enterprise applications, ASP.NET can help you do it. All the tools

you’ll need to get up and running are immediately available and easy to install, and

require very little initial configuration.

This book will be your gentle introduction to the wonderful world of ASP.NET,

teaching you the foundations step by step. First, you’ll learn the theory; then, you’ll

put it into practice as we work through practical exercises together. Finally, we’ll

stretch your abilities by introducing the MVC Framework and other advanced topics.

To demonstrate some of the more complex functionality, and to put the theory into

a cohesive, realistic context, we’ll develop a project through the course of this book.

The project—an intranet site for a company named Dorknozzle—will allow us to

see the many components of .NET in action, and to understand through practice

exactly how .NET works in the real world.

We hope you’ll find reading this book an enjoyable experience that will significantly

help you with your future web development projects!

Who Should Read This Book
This book is aimed at beginner, intermediate, and advanced web designers looking

to make the leap into server-side programming with ASP.NET. We expect that you’ll

already feel comfortable with HTML, CSS, and a little knowlegable about database

design although we will cover quite a few databatse topics along the way. Developers

in open-source web development languages such as PHP, Java, or Ruby will make

an excellent transition to learning ASP.NET.

By the end of this book, you should be able to successfully download and install

Visual Web Developer 2010 Express Edition, and use it to create basic ASP.NET

pages. You’ll also learn how to install and run Microsoft SQL Server 2008 R2 Express

Edition, create database tables, and work with advanced, dynamic ASP.NET pages

that query, insert, update, and delete information within a database.

All examples provided in the book are written in both Visual Basic and C#, the two

most popular languages for creating ASP.NET websites. The examples start at begin-

ners’ level and proceed to more advanced levels. As such, no prior knowledge of

either language is required in order to read, understand, learn from, and apply the

knowledge provided in this book. Experience with other programming or scripting

languages (such as JavaScript) will certainly grease the wheels, though, and should

enable you to grasp fundamental programming concepts more quickly.

What’s in This Book
This book comprises the following chapters. Read them from beginning to end to

gain a complete understanding of the subject, or skip around if you feel you need

a refresher on a particular topic.

Chapter 1: Introducing ASP.NET

Before you can start building your database-driven web presence, you must

ensure that you have the right tools for the job. In this first chapter, you’ll install

Visual Web Developer 2010 Express Edition and Microsoft SQL Server 2008 R2

Express Edition. Finally, you’ll create a simple ASP.NET page to make sure that

everything’s running and properly configured.

Chapter 2: ASP.NET Basics

In this chapter, you’ll create your first useful ASP.NET page. We’ll explore all

the components that make up a typical ASP.NET page, including directives,

controls, and code. Then, we’ll walk through the process of deployment, focusing

specifically on allowing the user to view the processing of a simple ASP.NET

page through a web browser.

xxiv

Chapter 3: VB and C# Programming Basics

In this chapter, we’ll look at two of the programming languages that are used

to create ASP.NET pages: VB and C#. You’ll learn about the syntax of the two

languages as we explore the concepts of variables, data types, conditionals,

loops, arrays, functions, and more. Finally, we’ll see how these languages ac-

commodate object oriented programming principles by allowing you to work

with classes, methods, properties, inheritance, and so on.

Chapter 4: Constructing ASP.NET Web Pages

ASP.NET web pages are known as web forms, but, as we’ll see, the process of

building ASP.NET web forms is a lot like creating a castle with Lego bricks!

ASP.NET is bundled with hundreds of controls—including HTML controls,

web controls, and so on—that are designed for easy deployment within your

applications. This chapter will introduce you to these building blocks and show

how to lock them together. You’ll also learn about master pages, which are a

very exciting feature of ASP.NET.

Chapter 5: Building Web Applications

A web application is basically a group of web forms, controls, and other elements

that work together to achieve complex functionality. So it’s no surprise that

when we build web applications, we must consider more aspects than when

we build individual web forms. This chapter touches on those aspects. You’ll

configure your web application; learn how to use the application state, user

sessions, and cookies; explore the process for debugging errors in your project;

and more.

Chapter 6: Using the Validation Controls

This chapter introduces validation controls. With validation controls, Microsoft

basically eliminated the headache of fumbling through and configuring tired,

reused client-side validation scripts. First, you’ll learn how to implement user

input validation on both the client—and server sides—of your application using

Microsoft’s ready-made validation controls. Then, you’ll learn how to perform

more advanced validation using regular expressions and custom validators.

Chapter 7: Database Design and Development

Undoubtedly, one of the most important chapters in the book, Chapter 7 will

prepare you to work with databases in ASP.NET. We’ll cover the essentials

you’ll need to know in order to create a database using SQL Server 2008 R2

xxv

Express Edition. As well, you’ll begin to build the database for the Dorknozzle

intranet project.

Chapter 8: Speaking SQL

This chapter will teach you to speak the language of the database: Structured

Query Language, or SQL. After a gentle introduction to the basic concepts of

SQL, which will teach you how to write SELECT, INSERT, UPDATE, and DELETE

queries, we’ll move on to more advanced topics such as expressions, conditions,

and joins. Finally, we’ll take a look at how you can reuse queries quickly and

easily by writing stored procedures.

Chapter 9: ADO.NET

The next logical step in building database-driven web applications is to roll up

our sleeves and dirty our hands with a little ADO.NET—the technology that

facilitates communication between your web application and the database

server. This chapter explores the essentials of the technology, and will have

you reading database data directly from your web applications in just a few

short steps. You’ll then help begin the transition from working with static ap-

plications to those that are database driven.

Chapter 10: Displaying Content Using DataLists

Taking ADO.NET further, this chapter shows you how to utilize the DataList

control provided within the .NET Framework. DataLists play a crucial role in

simplifying the presentation of information with ASP.NET. In learning how to

present database data within your applications in a cleaner and more legible

format, you’ll gain an understanding of the concepts of data binding at a high

level.

Chapter 11: Managing Content Using GridView and DetailsView

This chapter explores two of the most powerful data presentation controls of

ASP.NET: GridView and DetailsView. GridView is a very dynamic control that

automates almost all tasks that involve displaying grids of data. DetailsView

completes the picture by offering the functionality needed to display the details

of a single grid item.

Chapter 12: Advanced Data Access

This chapter explores a few of the more advanced details involved in data access,

retrieval, and manipulation. We’ll start by looking at direct data access using

xxvi

ADO.NET’s data source controls. We’ll then compare this approach with that

of using data sets to access data in a disconnected fashion. In this section, you’ll

also learn to implement features such as paging, filtering, and sorting, using

custom code.

Chapter 13: Security and User Authentication

This chapter will show you how to secure your web applications with ASP.NET.

We’ll discuss the various security models available, including IIS, Forms,

Windows, and Windows Live ID, and explore the roles that the Web.config and

XML files can play. This chapter will also introduce you to the ASP.NET

membership model and login controls.

Chapter 14: Working with Files and Email

In this chapter, we’ll look at the task of accessing your server’s file system, in-

cluding drives, files, and the network. Next, I’ll will show you how to work

with file streams to create text files, write to text files, and read from text files

stored on your web server. Finally, you’ll gain first-hand experience in sending

emails using ASP.NET.

Chapter 15: Introduction to LINQ

Here we learn about LINQ, a language construct that allows us to query relational

data from different sources and interact with it just like any other object or class.

With LINQ we get access to compile-time syntax checking, the use of IntelliS-

ense, and the ability to access other data sources such as XML or just about any

custom data sources.

Chapter 16: Introduction to MVC

In this chapter we familiarise ourselves with the Model-View-Controller archi-

tecture to solve problems in software development and maintenance, separating

our business logic, user interface and control flow.

Chapter 17: ASP.NET AJAX

In our final chapter, you’ll learn all about the Ajax features that are built into

ASP.NET 4. We’ll spice up the Dorknozzle project with a few Ajax features

that’ll show how simple ASP.NET AJAX is to use. We’ll also explore the

ASP.NET AJAX Control Toolkit, and see how it can enhance existing features.

xxvii

Appendix A: Web Control Reference

Included in this book is a handy web control reference, which lists the most

common properties and methods of the most frequently used controls in

ASP.NET.

Appendix B: Deploying ASP.NET Websites

Here you’ll be shown, step by step, how to use Visual Web Developer and how

to move your website from your development environment to a web hosting

service and make it live on the Internet. It also covers tips for choosing a reliable

web host, ASP.NET deployment gotchas, and hints for using the SQL Server

Hosting Toolkit to migrate your database.

Where to Find Help
SitePoint had a thriving community of web designers and developers ready and

waiting to help you out if you run into trouble. We also manintain a list of known

errat for the book, which you can consult for the latest updates.

The SitePoint Forums
The SitePoint Forums are 1discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions too.

That’s how a forum site works—some people ask, some people answer, and most

people do a bit of both. Sharing your knowledge benefits others and strenghtens

the community. A lot of interesting and experienced web designers and developers

hang out there. It’s a good way to learn new stuff, have questions answered in a

hurry, and generally have a blast.

The Book’s Website
Located at http://www.sitepoint.com/books/aspnet4/, the website that supports this

book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains every line of example

source code printed in this book. If you want to cheat (or save yourself from carpal

1 http://www.sitepoint.com/forums/

xxviii

http://www.sitepoint.com/books/aspnet4/
http://www.sitepoint.com/forums/

tunnel syndrome), go ahead and download the archive. 2The archive contains one

folder for each chapter of this book. Each folder may contain a LearningASP folder

for the stand-alone examples in that chapter and a Dorknozzle folder for files associ-

ated with the Dorknozzle intranet application, the project that we’ll work on

throughout the book. Each folder will contain CS and VB subfolders, which contain

the C# and VB versions of all the code examples for that chapter. Incremental ver-

sions of each file are represented by a number in the file’s name.

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page 3on the book’s

website will always have the latest information about known typographical and

code errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ-

ing The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read about

the latest news, product releases, trends, tips, and techniques for all aspects of web

development. If nothing else, you’ll gain useful ASP.NET articles and tips, but if

you’re interested in learning other technologies, you’ll find them especially valuable.

You can subscribe at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. We discuss the latest web industry topics, present

guest speakers, and interview some of the best minds in the industry. You can catch

up on the latest and previous podcasts at http://www.sitepoint.com/podcast/, or

subscribe via iTunes.

Your Feedback
If you ‘re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

2 http://www.sitepoint.com/books/aspnet4/code.php
3 http://www.sitepoint.com/books/aspnet4/errata.php

xxix

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/podcast/
http://www.sitepoint.com/books/aspnet4/code.php
http://www.sitepoint.com/books/aspnet4/errata.php

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

Acknowledgments
I'd like to thank the many folks at SitePoint, including Tom, Ricky, Sarah, and Simon,

for giving me the opportunity for this book and helping to produce a magnificent

product. Special thanks to Pranav Rastogi from Microsoft for giving me detailed

technical insight into the many behind-the-scenes details and undocumented features

to help make this book a success. Finally, I would like to extend special thanks to

my wife for enduring many long nights of having to put our child to bed while I

worked on this project.

—Tim Posey

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

xxx

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

xxxi

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxxii

Chapter1
Introducing ASP.NET and
the .NET Platform
By now, ASP.NET is one of the most popular web development technologies on the

planet. The first version was released in 2002, and since then, Microsoft has contin-

ued the tradition of releasing a powerful web development framework that allows

web developers to do more with less. ASP.NET has experienced rapid growth among

the established corporate world, as well as becoming the choice for many freelance

developers. ASP.NET has many advantages, including a well-established IDE (Integ-

rated Development Environment) called Microsoft Visual Studio, and advanced

security and performance frameworks that handle many of the mundane tasks

automatically on the server side, freeing the developer to create more full-fledged

web applications and websites.

ASP.NET 4 is the latest iteration in the .NET framework, introducing many new

features that build upon its predecessor to improve performance, security, and in-

teroperability with the latest browsers. Best of all, it comes available with new de-

velopment tools, including Visual Web Developer 2010 Express Edition and SQL

Server 2008 R2 Express Edition, both of which are free! These tools enable the

rapid application development (RAD) of web applications.

The goal of this book is to enable you to use all these technologies together in order

to produce fantastic results. We’ll take you step by step through each task, showing

you how to get the most out of each technology and tool. Let’s begin!

What is ASP.NET?
ASP.NET is a sophisticated and powerful web development framework. If you’ve

never used ASP.NET before, it’s likely to take you some time and patience to grow

accustomed to it. Development with ASP.NET requires not only an understanding

of HTML and web design, but a firm grasp of the concepts of object oriented pro-

gramming and development. Fortunately, we believe you’ll find the benefits amply

reward the learning effort!

In the next few sections, we’ll introduce you to the basics of ASP.NET. We’ll walk

through the process of installing it on your web server, and look at a simple example

that demonstrates how ASP.NET pages are constructed. But first, let’s define what

ASP.NET actually is.

ASP.NET is a server-side technology for developing web applications based on the

Microsoft .NET Framework. Okay, let’s break that jargon-filled sentence down.

ASP.NET is a server-side technology. That is, it runs on the web server. Most web

designers cut their teeth learning client-side technologies such as HTML, JavaScript,

and Cascading Style Sheets (CSS). When a web browser requests a web page created

with only client-side technologies, the web server simply grabs the files that the

browser (or client) requests and sends them down the line. The client is entirely

responsible for reading the markup in those files and interpreting that markup to

display the page on the screen.

Server-side technologies such as ASP.NET, however, are a different story. Instead

of being interpreted by the client, server-side code (for example, the code in an

ASP.NET page) is interpreted by the web server. In the case of ASP.NET, the code

in the page is read by the server and used to generate the HTML, JavaScript, and

CSS, which is then sent to the browser. Since the processing of the ASP.NET code

occurs on the server, it’s called a server-side technology. As Figure 1.1 shows, the

Build Your Own ASP.NET 4 Website Using C# & VB2

client only sees the HTML, JavaScript, and CSS. The server is entirely responsible

for processing the server-side code.

Figure 1.1. A user interacting with a web application

User The transaction starts and ends with the user. The user operates the

web client software and interprets the results.

Web client This is the software program that the person uses to interact with

the web application. The client is usually a web browser, such as

Internet Explorer or Firefox.

Web server This is the software program located on the server. It processes re-

quests made by the web client.

ASP.NET is a technology for developing web applications. A web application is just

a fancy name for a dynamic website. A “website” can be thought of as a static page,

where the content rarely changes or is purely informational only. Your local dentist

or high school probably has a “website”. A web application is dynamic in nature,

and often considered to be a web version of standard desktop software. Google Mail

is an excellent example of a web application. Web applications usually (but not al-

3Introducing ASP.NET and the .NET Platform

ways) store information in a database, and allow visitors to the site to access and

change that information. Many different programming technologies and supported

languages have been developed to create web applications; PHP, JSP, Ruby on Rails,

CGI, and ColdFusion are just a few of the more popular ones. However, rather than

tying you to a specific technology and language, ASP.NET lets you write web ap-

plications in a variety of familiar programming. We will focus only on the two most

popular .NET languages, Visual Basic.NET (often referred to simply as VB.NET or

VB) and C# (pronounced “See-Sharp”).

ASP.NET uses the Microsoft .NET Framework. The .NET Framework collects all

the technologies needed for building Windows desktop applications, web applica-

tions, web services, and so on into a single package, and makes them available to

many programming languages. To say that ASP.NET uses the .NET Framework is

really a huge understatement. ASP.NET is essentially the web version of what the

.NET Framework is to the Windows desktop application world. For instance, if your

friend wrote a really neat encryption library using .NET for a Windows desktop

application, that code could be easily used within an ASP.NET web application

with almost little to no changes.

Even with all the jargon explained, you’re probably still wondering what makes

ASP.NET so good. The truth is that there are many server-side technologies around,

each of which has its own strengths and weaknesses. Yet ASP.NET has a few unique

features:

■ ASP.NET lets you write the server-side code using your favorite programming

language— or at least the one you prefer from the long list of supported languages.

The .NET Framework currently supports over 40 languages, and many of these

may be used to build ASP.NET websites.

■ ASP.NET pages are compiled, not interpreted. In ASP.NET’s predecessor, ASP

(“classic ASP”), pages were interpreted: every time a user requested a page, the

server would read the page’s code into memory, figure out how to execute the

code, and execute it. In ASP.NET, the server need only figure out how to execute

the code once. The code is compiled into efficient binary files, which can be run

very quickly, again and again, without the overhead involved in rereading the

page each time. This allows a big jump in performance, compared to the old

days of ASP.

Build Your Own ASP.NET 4 Website Using C# & VB4

■ ASP.NET has full access to the functionality of the .NET Framework. Support

for XML, web services, database interaction, email, regular expressions, and

many other technologies are built right into .NET, which saves you from having

to reinvent the wheel.

■ ASP.NET allows you to separate the server-side code in your pages from the

HTML layout. When you’re working with a team composed of programmers and

design specialists, this separation is a great help, as it lets programmers modify

the server-side code without stepping on the designers’ carefully crafted

HTML—and vice versa.

■ ASP.NET makes it easy to reuse common User Interface elements in many web

forms, as it allows us to save those components as independent web user controls.

During the course of this book, you’ll learn how to add powerful features to your

website, and reuse them in many places with a minimum of effort.

■ You can get excellent tools that assist in developing ASP.NET web applications.

Visual Studio 2010 Express is a powerful, free visual editor that includes features

such as a visual HTML editor, code autocompletion, code formatting, database

integration functionality, debugging, and more. In the course of this book, you’ll

learn how to use this tool to build the examples we discuss.

■ Security mechanisms such as membership roles and logins, as well as SQL In-

jection attack prevention, are automatically enabled out-of-the-box with an

ASP.NET web app.

Still with us? Great! It’s time to gather our tools and start building.

Installing the Required Software
If you’re going to learn ASP.NET, you first need to make sure you have all the ne-

cessary software components installed and working on your system. Let’s take care

of this before we move on.

Visual Web Developer 2010 Express Edition

This is a powerful, free web development environment for ASP.NET 4.0. It in-

cludes features such as a powerful code, HTML and CSS editor, project debug-

ging, IntelliSense (Microsoft’s code autocompletion technology), database integ-

ration with the ability to design databases and data structures visually, and

5Introducing ASP.NET and the .NET Platform

much more. You’re in for a lot of Visual Web Developer fun during the course

of this book.

.NET Framework 4 and the .NET Framework Software Development Kit (SDK)

As we’ve already discussed, the .NET Framework drives ASP.NET. You’re likely

to have the .NET Framework already, as it installs automatically through the

Windows Update service. Otherwise, it’ll be installed together with Visual

Studio.

Microsoft SQL Server 2008 R2 Express Edition

This is the free, but still fully functional, version of SQL Server 2008. This

software is a Relational Database Management System whose purpose is to store,

manage, and retrieve data as quickly and reliably as possible. You’ll learn how

to use SQL Server to store and manipulate the data for the DorkNozzle applica-

tion you’ll build in this book.

SQL Server Management Studio Express

Because the Express Edition of SQL Server doesn’t ship with any visual man-

agement tools, you can use this free tool, also developed by Microsoft, to access

your SQL Server 2008 database.

Installing Visual Web Developer 2010 Express Edition
Install Visual Web Developer 2010 Express Edition by following these simple steps:

1. Browse to http://www.microsoft.com/express/ and select Microsoft Visual Studio

2. Select the link for Visual Web Developer 2010 Express and click Install Now

3. On the Microsoft.com web page; click Install Now

4. .Execute the downloaded file, vwd.exe. This will begin the process for the Web

Platform Installer.

5. As part of the installation of Visual Web Developer, you will install SQL Server

2008 R2 Express edition, which is identified as a dependency and automatically

installed. The entire download is about 770MB.

Build Your Own ASP.NET 4 Website Using C# & VB6

http://www.microsoft.com/express/

Figure 1.2. Installing Visual Web Developer 2010 Express Edition

6. In the next setup screen, you’ll be asked to select the authentication mode for

SQL Server 2008 R2 Express Edition. Here we choose to use Windows Authen-

tication for simplicity going forward. Advanced users may choose to use mixed

mode to set up their own account management with SQL Server, however, this

book will assume the use of Windows Authentication mode.

7. The installer may prompt you to reboot your computer and possibly download

more updates depending on your computer configuration. Please follow the on-

screen instructions to ensure you have the latest versions.

8. Start Visual Web Developer to ensure it has installed correctly for you. Its welcome

screen should look like Figure 1.3

7Introducing ASP.NET and the .NET Platform

Figure 1.3. The start page of Visual Web Developer 2008 Express Edition

Installing SQL Server Management Studio Express
You’ve just installed Visual Web Developer and SQL Server 2008 R2 Express Edi-

tions. You won’t use SQL Server until later in the book when we discuss relational

databases, but we’ll install all the required software here so that when the time

comes, you’ll have the complete environment set up.

In order to use your SQL Server 2008 instance effectively, you’ll need an adminis-

tration tool to work with your databases. SQL Server Management Studio Express

is a free tool provided by Microsoft that allows you to manage your instance of SQL

Server 2008. To install it, follow these steps:

Build Your Own ASP.NET 4 Website Using C# & VB8

1. Navigate to http://www.microsoft.com/express (or by using your favorite web

search engine) and click the Download link under the SQL Server Management

Studio Express section.

2. Download the file. After the download completes, execute the file and follow the

steps to install the product. Be sure to choose the appropriate edition, whether

32-bit or 64-bit depending on your computer, with database tools. Be sure to

choose to do a full install and under Feature Selection you check all boxes.

Once it’s installed, SQL Server Manager Express can be accessed from Start > All

Programs > Microsoft SQL Server 2008 > SQL Server Management Studio Express. When

executed, it will first ask for your credentials, asFigure 1.4 illustrates.

Figure 1.4. Connecting to SQL Server

By default, when installed, SQL Server 2008 Express Edition will only accept con-

nections that use Windows Authentication, which means that you’ll use your

Windows user account to log into the SQL Server. Since you’re the user that installed

SQL Server 2008, you’ll already have full privileges to the SQL Server. Click Connect

to connect to your SQL Server 2008 instance.

9Introducing ASP.NET and the .NET Platform

http://www.microsoft.com/express

After you’re authenticated, you’ll be shown the interface in Figure 1.5, which offers

you many ways to interact with, and manage, your SQL Server 2008 instance.

SQL Server Management Studio lets you browse through the objects that reside on

your SQL Server, and even modify their settings. For example, you can change the

security settings of your server by right-clicking COMPUTER\SQLEXPRESS (where

COMPUTER is the name of your computer), choosing Properties, and selecting Security

from the panel, as shown in Figure 1.6. Here we’ve modified the Server authentication

mode to SQL Server and Windows Authentication mode. We’ll need this setting

a bit later in the book, but you can set it now if you want, and then click OK.

Figure 1.5. Managing your database server

Build Your Own ASP.NET 4 Website Using C# & VB10

Figure 1.6. Changing server settings with SQL Server Management Studio

That’s it. Your machine is now ready to build ASP.NET web projects and SQL

Server databases. Now the fun starts—it’s time to create your very first ASP.NET

page!

Writing Your First ASP.NET Page
For your first ASP.NET exercise, we’ll create the simple example shown in Figure 1.7.

We’ll go though the process of creating this page step by step.

11Introducing ASP.NET and the .NET Platform

Figure 1.7. An exciting preview of your first ASP.NET page!

To create this page in Visual Web Developer, you’ll need to follow a few simple

steps:

1. Start Visual Web Developer, and choose File > New Web Site (or hit the default

keyboard shortcut, Shift+Alt+N).

2. Choose ASP.NET Web Site for the template and File System for the location

type. This location type tells Visual Web Developer to create the project in a

physical folder on your disk, and execute that project using the integrated web

server.

3. Choose the language in which you prefer to code your pages. Although ASP.NET

allows you to code different pages inside a project in different languages, for the

sake of simplicity we’ll generally assume you work with a single language.

4. If you chose C# for the language, type C:\LearningASP\CS\ for the folder location

where you want to store the files for this exercise. If you prefer VB.NET, choose

C:\LearningASP\VB\. You can choose any location you like. Figure 1.8 shows

the C# version of the selection.

Build Your Own ASP.NET 4 Website Using C# & VB12

Figure 1.8. Starting a new ASP.NET Web Site project with Visual Web Developer

5. After clicking OK, Visual Web Developer will create the project along with several

files to ease your transition into the ASP.NET development world. Your project

will also come with a Site.master file, which represents a template applied to your

entire site automatically. Your Project contains an empty App_Data folder, a Scripts

folder which includes jQuery files, Styles which contains a basic Site.css stylesheet,

a basic Default.aspx file, and a basic configuration file, Web.config—see Figure 1.9.

We will discuss all of these files in Chapter 5, along with the purpose of the Ac-

count directory in detail. For now, let’s jump right in to create our first ASP.NET

web page.

13Introducing ASP.NET and the .NET Platform

Figure 1.9. Your new project in Visual Web Developer

You may notice that the HTML source is different than standard HTML. This is

normal. You should also notice that there are two content areas one for “Header

Content” and one for “Main Content”. Again, we will discuss templating and Master

Pages in just a bit, but let’s get immediately going. To do so, we can just overwrite

the sample file provided to us.

The main panel in the Visual Web Developer interface is the page editor, in which

you’ll see the HTML source of the Default.aspx web page. Edit the title of the page

to something more specific than Home Page, such as Welcome to Build Your Own

ASP.NET 4 Website!:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">

<title>Welcome to Build Your Own ASP.NET 4 Website!
 </title>
 </head>

Loading the Default.aspx page in a web browser now opens the sample page that

was created when Visual Web Developer created the project; this makes sense, since

we didn’t add any content to this page! Because we don’t care for any of the sample

page, we will simply modify the entire source code for the default.aspx page as fol-

lows:

Build Your Own ASP.NET 4 Website Using C# & VB14

 <body>
 <form id="form1" runat="server">
 <div>

<p>Hello there!</p>
 <p>
 The time is now:
 <asp:Label ID="myTimeLabel" runat="server" />
 </p>
 </div>
 </form>
 </body>
</html>

Although our little page isn’t yet finished (our work with the Label control isn’t

over), let’s execute the page to ensure we’re on the right track. Hit F5 or go to Debug

menu.

How a Web Server Control Works

You’ve just added a Web Server Control to the page by adding an <asp:Label/>

element to the page. You’ll learn all about Web Server Controls in Chapter 2, but

for now you need to learn how this simple control works so that you can under-

stand the exercise.

The Label control is one of the simplest controls in .NET, which lets you insert

dynamic content into the page. The asp: part of the tag name identifies it as a

built-in ASP.NET tag. ASP.NET comes with numerous built-in tags, and

<asp:Label/> is probably one of the most frequently used.

The runat="server" attribute value identifies the tag as something that needs

to be handled on the server. In other words, the web browser will never see the

<asp:Label/> tag; when the page is requested by the client, ASP.NET sees it

and converts it to regular HTML tags before the page is sent to the browser. It’s

up to us to write the code that will tell ASP.NET to replace this particular tag with

something meaningful to the user loading the page.

The first time you do this, Visual Web Developer will let you know that your project

isn’t configured for debugging, and it’ll offer to make the necessary change to the

configuration (Web.config) file for you—see Figure 1.10. Confirm the change by

clicking OK.

15Introducing ASP.NET and the .NET Platform

Figure 1.10. Enabling project debugging in Visual Web Developer

If Script Debugging is not enabled in Internet Explorer, you’ll get the dialog shown

in Figure 1.11. Check the Don’t show this dialog again checkbox, and click Yes.

Figure 1.11. Enabling script debugging in Internet Explorer

After all the notifications are out of the way, you should have a page like that in

Figure 1.12:

Figure 1.12. Executing your first ASP.NET web page

You can now close the Internet Explorer window. Visual Web Developer will

automatically detect this action and will cancel debugging mode, allowing you to

start editing the project again. Now let’s do something with that Label control.

Build Your Own ASP.NET 4 Website Using C# & VB16

Set Your Default Browser to Internet Explorer

When executing the project, the website is loaded in your system’s default web

browser. For the purposes of developing ASP.NET applications, we recommend

configuring Visual Web Developer to use Internet Explorer, even if this is not your

preferred web browser. We recommend Internet Explorer because it integrates

better with Visual Web Developer’s .NET and JavaScript debugging features. For

example, Visual Web Developer knows to automatically stop debugging the project

when the Internet Explorer window is closed. To change the default browser to

be used by Visual Web Developer, right-click the root node in Solution Explorer,

choose Browse With, select a browser from the Browsers tab, and click Set as Default.

For our first dynamic web page using ASP.NET, let’s write some code that will

display the current time inside the Label control. That mightn’t sound very exciting,

but it’s only for the purposes of this simple demonstration; don’t worry, we’ll reach

the good stuff before too long. To programmatically manipulate the Label control,

you’ll have to write some C# or VB.NET code, depending on the language you’ve

chosen when creating the project. As suggested earlier in this chapter, ASP.NET

allows web forms (.aspx pages) to contain C# or VB.NET code, or they can use sep-

arate files—named code-behind files—for storing this code. The Default.aspx file

that was generated for you when creating the project was generated with a code-

behind file, and we want to edit that file now. There are many ways in which you

can open that file. You can click the View Code icon at the top of the Solution Explorer

window, right-click the Default.aspx file in Solution Explorer and choose View Code,

or click the + symbol to expand the Default.aspx entry. No matter how you open this

file, it should look like Figure 1.13 if you’re using C#, or Figure 1.14 if you’re using

VB.NET.

17Introducing ASP.NET and the .NET Platform

Figure 1.13. Default.aspx.cs in Visual Web Developer

C#, VB.NET, and Visual Web Developer

You may be slightly alarmed, at first, by the fact that the code-behind file template

that Visual Web Developer generates for the Default.aspx file in a new project when

you’re using C# is completely different from the one it generates when you’re using

VB.NET. They’re based on the same platform and use the same data types and

features, so C# and VB.NET are fundamentally very similar. However, there are

still large differences between the languages’ syntax. VB.NET is frequently preferred

by beginners because its syntax is perceived to be easier to read and understand

than C#. While the differences can be intimidating initially, after we discuss their

details in Chapter 3, you’ll see that it can be relatively easy to understand both.

Build Your Own ASP.NET 4 Website Using C# & VB18

Figure 1.14. Default.aspx.vb in Visual Web Developer

Looking at Figure 1.13 and Figure 1.14 you can see that the C# version contains a

definition for a method called Page_Load, while the VB.NET version doesn’t. This

is the method that executes automatically when the project is executed, and we

want to use it to write the code that will display the current time inside the Label

control.

If you’re using VB.NET, you’ll need to generate the Page_Load method first. The

easiest way to have Visual Web Developer generate Page_Load for you is to open

Default.aspx—not its code-behind file—and switch to Design view (as shown in

Figure 1.15). If you double-click on an empty place on the form, an empty Page_Load

method will be created in the code-behind file for Default.aspx.

19Introducing ASP.NET and the .NET Platform

Figure 1.15. Default.aspx in Design view in Visual Web Developer

Now edit the Page_Load method so that it looks like this, selecting the version that

applies to your chosen language:

Visual Basic LearningASP\VB\Default.aspx.vb (excerpt)

Partial Class _Default
 Inherits System.Web.UI.Page
 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs)
 Handles Me.Load

Build Your Own ASP.NET 4 Website Using C# & VB20

 myTimeLabel.Text = DateTime.Now.ToString()
 End Sub
End Class

C# LearningASP\CS\Default.aspx.cs (excerpt)

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 myTimeLabel.Text = DateTime.Now.ToString();
 }
}

C# is Case Sensitive

C#, unlike VB, is case sensitive. If you type the case of a letter incorrectly, the

page won’t load. If these languages look complicated, don’t worry: you’ll learn

more about them in Chapter 3.

If you’ve never done any server-side programming before, the code may look a little

scary. But before we analyze it in detail, let’s load the page and test that it works

for real. To see your dynamically generated web page content in all its glory, hit F5

to execute the project again, and see the current date and time, as depicted in Fig-

ure 1.16.

Figure 1.16. Loading Default.aspx with a Label element with dynamically generated content

21Introducing ASP.NET and the .NET Platform

Both versions of the page achieve exactly the same thing. You can even save them

both, giving each a different filename, and test them separately. Alternatively, you

can create two Visual Web Developer projects—one for C# code, in

C:\LearningASP\CS, and one for VB.NET code, in C:\LearningASP\VB.

No Time?

If the time isn’t displayed in the page, chances are that you opened the file directly

in your browser instead of loading it through your web server. Because ASP.NET

is a server-side language, your web server needs to process the file before it’s sent

to your browser for display. If it doesn’t gain access to the file, the ASP.NET code

is never converted into HTML that your browser can understand, so make sure

you load the page by executing it in Visual Web Developer. Loading the page in

your browser directly from Windows Explorer will not execute the code, and

consequently the time won’t display.

So how does the code work? Let’s break down some of the elements that make up

the page. We’re defining a method called Page_Load, in both languages:

Visual Basic LearningASP\VB\Default.aspx.vb (excerpt)

 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs)
 Handles Me.Load

C# LearningASP\CS\Default.aspx.cs (excerpt)

 protected void Page_Load(object sender, EventArgs e)
 {

I won’t go into too much detail here. For now, all you need to know is that you can

write script fragments that are run in response to different events, such as a button

being clicked or an item being selected from a drop-down. What the first line of

code basically says is, “execute the following script whenever the page is loaded.”

Note that C# groups code into blocks with curly braces ({ and }), while Visual Basic

uses statements such as End Sub to mark the end of a particular code sequence. So,

the curly brace ({) in the C# code above marks the start of the script that will be

executed when the page loads for the first time.

Build Your Own ASP.NET 4 Website Using C# & VB22

Here’s the line that actually displays the time on the page:

Visual Basic LearningASP\VB\Default.aspx.vb (excerpt)

 myTimeLabel.Text = DateTime.Now.ToString()

C# LearningASP\CS\Default.aspx.cs (excerpt)

 myTimeLabel.Text = DateTime.Now.ToString();

As you can see, these .NET languages have much in common, because they’re both

built on the .NET Framework. In fact, the only difference between the ways the two

languages handle the above line is that C# ends lines of code with a semicolon (;).

In plain English, here’s what this line says:

Set the Text of myTimeLabel to the current date and time, expressed
as text

Note that myTimeLabel is the value we gave for the id attribute of the <asp:Label/>

tag where we want to show the time. So, myTimeLabel.Text, or the Text property

of myTimeLabel, refers to the text that will be displayed by the tag. DateTime is a

class that’s built into the .NET Framework; it lets you perform all sorts of useful

functions with dates and times. The .NET Framework has thousands of these classes,

which do countless handy things. The classes are collectively known as the .NET

Framework Class Library.

The DateTime class has a property called Now, which returns the current date and

time. This Now property has a method called ToString, which expresses that date

and time as text (a segment of text is called a string in programming circles). Classes,

properties, and methods: these are all important words in the vocabulary of any

programmer, and we’ll discuss them in more detail a little later in the book. For

now, all you need to take away from this discussion is that DateTime.Now.To-

String() will give you the current date and time as a text string, which you can

then tell your <asp:Label/> tag to display.

The rest of the script block simply ties up loose ends. The End Sub in the VB code,

and the } in the C# code, mark the end of the script that’s to be run when the page

is loaded:

23Introducing ASP.NET and the .NET Platform

Visual Basic LearningASP\VB\Default.aspx.vb (excerpt)

 End Sub

C# LearningASP\CS\Default.aspx.cs (excerpt)

 }

One final thing that’s worth investigating is the code that ASP.NET generated for

you. It’s clear by now that your web browser receives only HTML (no server-side

code!), so what kind of HTML was generated for that label? The answer is easy to

find! With the page displayed in your browser, you can use the browser’s View Source

feature to view the page’s HTML code. In the middle of the source, you’ll see

something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Welcome to Build Your Own ASP.NET 4 Web Site!
 </title>
 </head>
 <body>
 <form name="form1" method="post" action="Default.aspx"
 id="form1">
 <div>
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="…" />
 </div>
 <div>
 <p>Hello there!</p>
 <p>
 The time is now:
 5/13/2008 3:10:38 PM
 </p>
 </div>
 </form>
 </body>
</html>

Build Your Own ASP.NET 4 Website Using C# & VB24

Notice that all the ASP.NET code has gone? Even the <asp:Label/> tag has been

replaced by a tag (which has the same id attribute as the <asp:Label/> tag

we used) that contains the date and time. There’s a mysterious hidden input element

named __VIEWSTATE that is used by ASP.NET for certain purposes, but we’ll ignore

it for now. (Don’t worry, we’ll discuss it a bit later in the book!)

That’s how ASP.NET works. From the web browser’s point of view, there’s nothing

special about an ASP.NET page; it’s just plain HTML like any other. All the ASP.NET

code is run by your web server and converted to plain HTML that’s sent to the

browser. So far, so good, but the example above was fairly simple. The next chapter

will be a bit more challenging as we investigate some valuable programming con-

cepts.

Getting Help
As you develop ASP.NET web applications, you’ll undoubtedly have questions that

need answers, and problems that need to be solved. Help is at hand—Microsoft has

developed the ASP.NET support website.1 This portal provides useful information

for the ASP.NET community, such as news, downloads, articles, and discussion

forums. You can also ask questions of the experienced community members in the

SitePoint Forums.2

Summary
In this chapter, you learned about .NET, including the benefits of ASP.NET, and

that it’s a part of the .NET Framework.

First, we covered the components of ASP.NET. Then we explored the software that’s

required not only to use this book, but also in order to progress with ASP.NET de-

velopment.

You’ve gained a solid foundation in the basics of ASP.NET. The next chapter will

build on this knowledge as we begin to introduce you to ASP.NET in more detail,

covering page structure, the languages that you can use, various programming con-

cepts, and the finer points of form processing.

1 http://www.asp.net/
2 http://www.sitepoint.com/forums/

25Introducing ASP.NET and the .NET Platform

http://www.asp.net/
http://www.sitepoint.com/forums/

Chapter2
ASP.NET Basics
So far, you’ve learned what ASP.NET is, and what it can do. You’ve installed the

software you need to get going, and you even know how to create a simple ASP.NET

page. Don’t worry if it all seems a little bewildering right now: as this book pro-

gresses, you’ll learn how easy it is to use ASP.NET at more advanced levels.

As the next few chapters unfold, we’ll explore some more advanced topics, including

the use of controls and various programming techniques. But before you can begin

to develop applications with ASP.NET, you’ll need to understand the inner workings

of a typical ASP.NET page—with this knowledge, you’ll be able to identify the parts

of the ASP.NET page referenced in the examples we’ll discuss throughout this book.

So in this chapter, we’ll talk about some key mechanisms of an ASP.NET page,

specifically:

■ page structure
■ view state
■ namespaces
■ directives

We’ll also cover more of VB and C#, two of the “built-in” languages supported by

the .NET Framework: VB and C#. As this section progresses, we’ll explore the dif-

ferences and similarities between them, and form a clear idea of the power that they

provide for those creating ASP.NET applications.

So, what exactly makes up an ASP.NET page? The next few sections will give you

an in-depth understanding of the constructs of a typical ASP.NET page.

ASP.NET Page Structure
ASP.NET pages are simply text files that have the .aspx file name extension, and

can be placed on any web server equipped with ASP.NET.

When a client requests an ASP.NET page, the web server passes the page to the

ASP.NET runtime, a program that runs on the web server that’s responsible for

reading the page and compiling it into a .NET class. This class is then used to pro-

duce the HTML that’s sent back to the user. Each subsequent request for this page

avoids the compilation process: the .NET class can respond directly to the request,

producing the page’s HTML and sending it to the client until such time as the .aspx

file changes. This process is illustrated in Figure 2.1.

Build Your Own ASP.NET 4 Website Using C# & VB28

Figure 2.1. The life cycle of the ASP.NET page

An ASP.NET page consists of the following elements:

■ directives
■ code declaration blocks
■ code render blocks
■ ASP.NET server controls
■ server-side comments
■ literal text and HTML tags

For the purpose of examining all the elements that can make up an ASP.NET page,

we will not be using any code-behind files as we did in Chapter 1. Code-behind

files are useful for separating layout from code by breaking a web form into two

files, but here all we’re interested in seeing is all the pieces of a web form in one

place. This will make it easier to understand the structure of the web form.

The code below represents a version of the page you wrote in Chapter 1, which does

not use a code-behind file. You’ll notice the server-side script code now resides in

a script element:

29ASP.NET Basics

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs)
 myTimeLabel.Text = DateTime.Now.ToString()
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Welcome to Build Your Own ASP.NET 4 Web Site!</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <p>Hello there!</p>
 <p>
 The time is now:
 <%-- Display the current date and time --%>
 <asp:Label ID="myTimeLabel" runat="server" />
 </p>
 <p>
 <%-- Declare the title as string and set it --%>
 <% Dim Title As String = "This is generated by a code
 render block."%>
 <%= Title %>
 </p>
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\Hello.aspx (excerpt)

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Build Your Own ASP.NET 4 Website Using C# & VB30

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 myTimeLabel.Text = DateTime.Now.ToString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Welcome to Build Your Own ASP.NET 4 Web Site!</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <p>Hello there!</p>
 <p>
 The time is now:
 <%-- Display the current date and time --%>
 <asp:Label ID="myTimeLabel" runat="server" />
 </p>
 <p>
 <%-- Declare the title as string and set it --%>
 <% string Title = "This is generated by a code render
 block."; %>
 <%= Title %>
 </p>
 </div>
 </form>
 </body>
</html>

If you like, you can save this piece of code in a file named Hello.aspx within the

LearningASP\CS or LearningASP\VB directory you created in Chapter 1. You can open

a new file in Visual Web Developer by selecting Website > Add New Item…. Use a

Web Form template, and, since we are not using a code-behind file for this example,

you need to deselect the Place code in a separate file checkbox. Alternatively, you

can copy the file from the source code archive.

Executing the file (by hitting F5) should render the result shown in Figure 2.2.

31ASP.NET Basics

Figure 2.2. Sample page in action

This ASP.NET page contains examples of all the above components (except server-

side includes) that make up an ASP.NET page. You won’t often use every single

element in a given page, but it’s important that you’re familiar with these elements,

their purposes, and how and when it’s appropriate to use them.

Directives
The directives section is one of the most important parts of an ASP.NET page. Dir-

ectives control how a page is compiled, specify how a page is cached by web

browsers, aid debugging (error-fixing), and allow you to import classes to use

within your page’s code. Each directive starts with <%@. This is followed by the

directive name, plus any attributes and their corresponding values. The directive

then ends with %>.

There are many directives that you can use within your pages, and we’ll discuss

them in greater detail later. For the moment, however, know that the Import and

Page directives are the most useful for ASP.NET development. Looking at our sample

ASP.NET page, Hello.aspx, we can see that a Page directive was used at the top of

the page like so:

Build Your Own ASP.NET 4 Website Using C# & VB32

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<%@ Page Language="VB" %>

C# LearningASP\CS\Hello.aspx (excerpt)

<%@ Page Language="C#" %>

In this case, the Page directive specifies the language that’s to be used for the applic-

ation logic by setting the Language attribute. The value provided for this attribute,

which appears in quotes, specifies that we’re using either VB or C#. A whole range

of different directives is available; we’ll see a few more later in this chapter.

ASP.NET directives can appear anywhere on a page, but they’re commonly included

at its very beginning.

Code Declaration Blocks
In Chapter 3, we’ll talk more about code-behind pages and how they let us separate

our application logic from an ASP.NET page’s HTML. However, if you’re not

working with code-behind pages, you must use code declaration blocks to contain

all the application logic of your ASP.NET page. This application logic defines

variables, subroutines, functions, and more. In our sample page, we’ve placed the

code inside <script> tags with the runat="server" attribute, like so:

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<script runat="server">
 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs)
 'set the label text to the current time
 myTimeLabel.Text = DateTime.Now.ToString()
 End Sub
</script>

C# LearningASP\CS\Hello.aspx (excerpt)

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 //set the label text to the current time

33ASP.NET Basics

 myTimeLabel.Text = DateTime.Now.ToString();
 }
</script>

Comments in VB and C# Code
Both of these code snippets contain comments—explanatory text that will be ignored

by ASP.NET, but which serves to describe to us how the code works.

In VB code, a single quote or apostrophe (') indicates that the remainder of the line

is to be ignored as a comment, while in C# code, two slashes (//) achieve the same

end:

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

 'set the label text to the current time

C# LearningASP\CS\Hello.aspx (excerpt)

 //set the label text to the current time

C# code also lets us span a comment over multiple lines if we begin it with /* and

end it with */, as in this example:

/*set the label text
 to the current time */

<script> Tag Attributes
Before .NET emerged, ASP also supported such script tags using a runat="server"

attribute. However, they could only ever contain VBScript and, for a variety of

reasons, they failed to find favor among developers.

The <script runat="server"> tag accepts two other attributes: language and . We

can set the language that’s used in this code declaration block via the language at-

tribute:

Visual Basic

<script runat="server" language="VB">

Build Your Own ASP.NET 4 Website Using C# & VB34

C#

<script runat="server" language="C#">

If you don’t specify a language within the code declaration block, the ASP.NET

page will use the language provided by the language attribute of the Page directive.

Each page’s code must be written in a single language; for instance, it’s not possible

to mix VB and C# in the same page.

srcThe second attribute that’s available to us is src; this lets us specify an external

code file for use within the ASP.NET page:

Visual Basic

<script runat="server" language="VB" src="mycodefile.vb">

C#

<script runat="server" language="C#" src="mycodefile.cs">

We also can use these <script> blocks to write JavaScript code. This is especially

useful for making our web pages more dynamic.

Code Render Blocks
You can use code render blocks to define inline code or expressions that will execute

when a page is rendered. Code within a code render block is executed immediately

when it is encountered during page rendering. On the other hand, code within a

code declaration block (within <script> tags) is executed only when it is called or

triggered by user or page interactions. There are two types of code render

blocks—inline code, and inline expressions—both of which are typically written

within the body of the ASP.NET page.

Inline code render blocks execute one or more statements, and are placed directly

inside a page’s HTML between <% and %> delimiters. In our example, the following

is a code render block:

35ASP.NET Basics

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<% Dim Title As String = "This is generated by a code render
➥ block." %>

C# LearningASP\CS\Hello.aspx (excerpt)

<% string Title = "This is generated by a code render block."; %>

These code blocks simply declare a String variable called Title, and assign it the

value This is generated by a code render block.

Inline expression render blocks can be compared to Response.Write in classic

ASP. They start with <%= and end with %>, and are used to display the values of

variables and the results of methods on a page. In our example, an inline expression

appears immediately after our inline code block:

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<%= Title %>

C# LearningASP\CS\Hello.aspx (excerpt)

<%= Title %>

If you’re familiar with classic ASP, you’ll know what this code does: it simply out-

puts the value of the variable Title that we declared in the previous inline code

block.

As a new feature of the ASP.NET 4 release, you can also use code render blocks to

“HTML Encode” your output. Html encoding is a fancy term for ensuring your text

is output so it can be safely read by the browser instead of having it interpreted as

HTML code itself. For instance, if you wanted to put a less-than < or greater-than

sign >, these would automatically be interpreted by the browser as HTML tags. Html

encoding ensures the actual characters are displayed. Consider the following ex-

ample:

<%: "5 is > 3" %>

Build Your Own ASP.NET 4 Website Using C# & VB36

ASP.NET Server Controls
At the heart of any ASP.NET page lie server controls, which represent dynamic

elements with which your users can interact. There are three basic types of server

control: ASP.NET controls, HTML controls, and web user controls.

Usually, an ASP.NET control must reside within a <form runat="server"> tag in

order to function correctly. Controls offer the following advantages to ASP.NET

developers:

■ They give us the ability to access HTML elements easily from within our code:

we can change these elements’ characteristics, check their values, or even update

them dynamically from our server-side programming language of choice.

■ ASP.NET controls retain their properties thanks to a mechanism called view

state. We’ll be covering view state later in this chapter. For now, you need to

know that view state prevents users from losing the data they’ve entered into a

form once that form has been sent to the server for processing. When the response

comes back to the client, text box entries, drop-down list selections, and so on

are all retained through view state.

■ With ASP.NET controls, developers are able to separate a page’s presentational

elements (everything the user sees) from its application logic (the dynamic por-

tions of the ASP.NET page), so that each can be maintained separately.

■ Many ASP.NET controls can be “bound” to the data sources from which they

will extract data for display with minimal (if any) coding effort.

ASP.NET is all about controls, so we’ll be discussing them in greater detail as we

move through this book. In particular, Chapter 4 explains many of the controls that

ship with ASP.NET. For now, though, let’s continue our dissection of an ASP.NET

page.

Server-side Comments
Server-side comments allow you to include within the page comments or notes that

won’t be processed by ASP.NET. Traditional HTML uses the <!-- and --> character

sequences to delimit comments; any information included between these tags won’t

be displayed to the user. ASP.NET comments look very similar, but use the sequences

<%-- and --%>.

37ASP.NET Basics

Our ASP.NET example contains two server-side comment blocks, the first of which

is:

LearningASP\VB\Hello.aspx (excerpt)

<%-- Display the current date and time --%>

The difference between ASP.NET comments and HTML comments is that ASP.NET

comments are not sent to the client at all; HTML comments are, so they’re not suited

to commenting out ASP.NET code. Consider the following example:

C#

<!--
<% string Title = "This is generated by a code render block."; %>
<%= Title %>
-->

Here, it looks as though a developer has attempted to use an HTML comment to

stop a code render block from being executed. Unfortunately, HTML comments will

only hide information from the browser, not the ASP.NET runtime. So in this case,

although we won’t see anything in the browser that represents these two lines, they

will be processed by ASP.NET, and the value of the variable Title will be sent to

the browser inside an HTML comment, as shown here:

<!--

This is generated by a code render block.
-->

The code could be modified to use server-side comments very simply:

C#

<%--
<% string Title = "This is generated by a code render block."; %>
<%= Title %>
--%>

Build Your Own ASP.NET 4 Website Using C# & VB38

The ASP.NET runtime will ignore the contents of this comment, and the value of

the Title variable will not be output.

Literal Text and HTML Tags
The final elements of an ASP.NET page are plain old text and HTML. Generally,

you can’t do without these elements—after all, HTML allows the display of the in-

formation in your ASP.NET controls and code in a way that’s suitable for users and

their browsers. Let’s take a look at the literal text and HTML tags that were used to

produce the display in the Visual Basic version of our sample page (the text and

HTML in the C# version is identical):

Visual Basic LearningASP\VB\Hello.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs)
 myTimeLabel.Text = DateTime.Now.ToString()
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Welcome to Build Your Own ASP.NET 4 Web Site!</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <p>Hello there!</p>
 <p>
 The time is now:
 <%-- Display the current date and time --%>
 <asp:Label ID="myTimeLabel" runat="server" />

</p>
 <p>
 <%-- Declare the title as string and set it --%>
 <% Dim Title As String = "This is generated by a code
 render block."%>
 <%= Title %>

39ASP.NET Basics

</p>
 </div>
 </form>
 </body>
</html>

The bold code above highlights the fact that literal text and HTML tags provide the

structure for presenting our dynamic data. Without these elements, this page would

have no format, and the browser would be unable to understand it.

By now, you should have a clearer understanding of the structure of an ASP.NET

page. As you work through the examples in this book, you’ll begin to realize that,

in many cases, you won’t need to use all of these elements. For the most part, your

development will be modularized within code-behind files or code declaration

blocks, and all of the dynamic portions of your pages will be contained within code

render blocks or controls located inside a <form runat="server"> tag.

In the following sections, we’ll explore view state, discuss working with directives,

and shine a little light on the languages that can be used within ASP.NET.

View State
ASP.NET controls automatically retain their data when a page is sent to the server

in response to an event (such as a user clicking a button). Microsoft calls this per-

sistence of data view state. In the past, developers would’ve had to resort to hacks

to have the application remember the item a user had selected in a drop-down menu,

or store the content entered into a text box; typically, these hacks would have relied

on hidden form fields.

This is no longer the case. Once they’re submitted to the server for processing,

ASP.NET pages automatically retain all the information contained in text boxes and

drop-down lists, as well as radio button and checkbox selections. They even keep

track of dynamically generated tags, controls, and text. Consider the following code

written in the “ancient” ASP (not ASP.NET!) framework:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>

Build Your Own ASP.NET 4 Website Using C# & VB40

 <title>Sample Page using VBScript</title>
 </head>
 <body>
 <form method="post" action="sample.asp">
 <input type="text" name="nameTextBox"/>
 <input type="submit" name="submitButton"
 value="Click Me" />
 <%
 If Request.Form("nameTextBox") <> "" Then
 Response.Write(Request.Form("nameTextBox"))
 End If
 %>
 </form>
 </body>
</html>

Loading this page through an ASP-enabled web server (such as IIS) would reveal

that the view state is not automatically preserved. When the user submits the form,

the information that was typed into the text box is cleared, although it’s still available

in the Request.Form("nameTextBox") property. The equivalent page in ASP.NET

demonstrates this data persistence using view state:

Visual Basic LearningASP\VB\ViewState.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Sub Click(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text = nameTextBox.Text
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>View State Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:TextBox ID="nameTextBox" runat="server" />
 <asp:Button ID="submitButton" runat="server"

41ASP.NET Basics

 Text="Click Me" OnClick="Click" />
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
</body>
</html>

C# LearningASP\CS\ViewState.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void Click(Object s, EventArgs e)
 {
 messageLabel.Text = nameTextBox.Text;
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>View State Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:TextBox id="nameTextBox" runat="server" />
 <asp:Button id="submitButton" runat="server"
 Text="Click Me" OnClick="Click" />
 <asp:Label id="messageLabel" runat="server" />
 </div>
 </form>
</body>
</html>

In this case, the code uses ASP.NET controls with the runat="server" attribute.

As you can see in Figure 2.3, the text from the box appears on the page when the

button is clicked, but also notice that the data remains in the text box! The data in

this example is preserved by view state.

Build Your Own ASP.NET 4 Website Using C# & VB42

Figure 2.3. ASP.NET maintaining the state of the controls

You can see the benefits of view state already. But where’s all that information

stored?

ASP.NET pages maintain view state by encrypting the data within a hidden form

field. View the source of the page after you’ve submitted the form, and look for the

following code:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwUKLTEwNDY1Nzg0MQ9…0fMCR+FN5P6v5pkTQwNEl5xhBk" />

This is a standard HTML hidden form field. All information that’s relevant to the

view state of the page is stored within this hidden form field as an encrypted string.

View state is enabled for every page by default.Using view state comes with a slight

performance penalty due to the additional HTML being emitted by the server. If

you don’t intend to use view state, it is recommended that you disable it. To do

this, set the EnableViewState property of the Page directive to false:

<%@ Page EnableViewState="False" %>

Disabling View State, Control by Control

View state can also be disabled for particular controls in a page: simply set their

EnableViewState property to false. We’ll see working examples of this in the

following chapters.

43ASP.NET Basics

Another new feature in ASP.NET 4 is the ViewStateMode feature. This allows you

to turn off view state for an entire page, but allows for a control to override it.

ViewStateMode is enabled in the page directive, and it only works if

EnableViewState is set to true. If EnableViewState is set to false, all view state is

disabled, regardless of the setting of the ViewStateMode. ViewStateMode has three

settings—Inherit, Enabled, or Disabled. Consider the following code:

<%@ Page EnableViewState="True" ViewStateMode=”Disabled” %>
<asp:Label id=”messageLabel” runat=”server” ViewStateMode=”Enabled”
 />

<asp:Label id=”errorLabel” runat=”server” ViewStateMode=”Inherit” />
<asp:Label id=”copyrightLabel” runat=”server” ViewStateMode=➥

 ”Disabled” />

Because view state is enabled through the page directive (EnableViewState=”true”),

the ViewStateMode directive is allowed to be used. In our example, it is set to Dis-

abled. Therefore, all controls on the page will have their view states disabled unless

it is specifically overridden. The messageLabel control does just so, and it will have

view state. The next control, errorLabel, is chosen to inherit the settings of the

parent, which is the page’s directive of Disabled: therefore, it will not have view

state enabled. Inherit is also the default option of all controls if an option isn’t

specifically chosen. The final copyrightLabel control has its view state specifically

disabled. This allows finer control over your view state. You can now disable view

state for your entire page except for one control without having to change every

single control on your page. Speaking of page directives, it’s time to take a closer

look at these curious beasts!

Working with Directives
For the most part, ASP.NET pages resemble traditional HTML pages with a few

additions. In essence, just using the .aspx extension for an HTML file will ensure

that IIS passes the page to the .NET Framework for processing. However, before you

can work with certain, more advanced features, you’ll need to know how to use

directives.

We talked a little about directives and what they can do earlier in this chapter. You

learned that directives control how a page is created and cached, help with bug-

Build Your Own ASP.NET 4 Website Using C# & VB44

fixing, and allow us to import advanced functionality for use within our code. Three

of the most commonly used directives are:

Page

This directive defines page-specific attributes for the ASP.NET page, such as

the language used for server-side code. We’ve already seen this Page in use.

Import

The Import directive makes functionality that’s been defined elsewhere available

in a given page. The following example, for instance, imports functionality from

the System.Web.Mail namespace, which you could use to send email from a

page. Namespaces are simply .NET’s way of keeping all its functionality neatly

organized (we’ll see how they work in Chapter 3):

<%@ Import Namespace="System.Web.Mail" %>

You’ll become very familiar with this directive as you work through this book.

Register

This directive allows you to register a user control for use on your page. We’ll

cover Register in Chapter 4, but the directive looks something like this:

<%@ Register TagPrefix="uc" TagName="footer"
 Src="footer.ascx" %>

ASP.NET Languages
As we saw in the previous chapter, .NET supports many different languages. If

you’re used to writing ASP 2.0 or ASP 3.0, you may think the choice of VBScript

or JScript would be an obvious one. But, with ASP.NET, Microsoft did away with

VBScript, merging it with Visual Basic. ASP.NET’s support for C# is likely to find

favor with developers from other backgrounds. By the end of this section, you’ll

likely agree that the similarities between the two are astonishing—any differences

are minor and, in most cases, easy to figure out.

Traditional server technologies are much more constrained in terms of the develop-

ment languages they offer. For instance, old-style CGI scripts were typically written

with Perl or C/C++, JSP uses Java, Coldfusion uses CFML, and PHP is a technology

and a language rolled into one. .NET’s support for many different languages lets

45ASP.NET Basics

developers choose the ones they prefer. To keep things simple, this book will con-

sider the two most popular: VB and C#. You can choose the language that feels more

comfortable to you, or stick with your current favorite if you have one.

Visual Basic
The latest version of Visual Basic is the result of a dramatic overhaul of Microsoft’s

hugely popular Visual Basic language. With the inception of Rapid Application

Development (RAD) in the 1990s, Visual Basic became extremely popular, allowing

in-house teams and software development shops to bang out applications hand over

fist. The latest version of VB has many advantages over older versions, most notably

the fact that it has now became a fully object oriented language. At last, it can call

itself a true programming language that’s on a par with the likes of Java and C++.

Despite the changes, VB generally stays close to the structured, legible syntax that

has always made it so easy to read, use, and maintain.

C#
The official line is that Microsoft created C# in an attempt to produce a programming

language that coupled the simplicity of Visual Basic with the power and flexibility

of C++. However, there’s little doubt that its development was at least hurried along

by Microsoft’s legal disputes with Sun. After Microsoft’s treatment (some would

say abuse) of Sun’s Java programming language, Microsoft was forced to stop devel-

oping its own version of Java, and instead develop C# and another now defunct

language, J#. C# is currently one of the most popular in-demand languages by em-

ployers because the syntax is very much like what is taught in universities, as well

as being easy to pick up by C++ developers.

Summary
In this chapter, we started out by introducing key aspects of an ASP.NET page in-

cluding directives, code declaration blocks, code render blocks, includes, comments,

and controls. We took a closer look at the two most popular languages that ASP.NET

supports, which we’ll be using throughout this book. In the next chapter, we’ll

create a few more ASP.NET pages to demonstrate form processing techniques and

programming basics, before we turn our attention to the topic of object oriented

programming for the Web.

Build Your Own ASP.NET 4 Website Using C# & VB46

Chapter3
VB and C# Programming Basics
One of the great things about using ASP.NET is that we can pick and choose which

of the various .NET languages we like. In this chapter, we’ll look at the key program-

ming principles that will underpin our use of Visual Basic and C#. We’ll start by

discussing some of the fundamental concepts of programming ASP.NET web applic-

ations using these two languages. We’ll explore programming fundamentals such

as variables, arrays, functions, operators, conditionals, loops, and events, and work

through a quick introduction to object oriented programming (OOP). Next, we’ll

dive into namespaces and address the topic of classes—seeing how they’re exposed

through namespaces, and which ones you’ll use most often.

The final sections of the chapter cover some of the ideas underlying modern, effective

ASP.NET design, including code-behind and the value it provides by helping us

separate code from presentation. We finish with an examination of how object ori-

ented programming techniques impact upon the ASP.NET developer.

Programming Basics
One of the building blocks of an ASP.NET page is the application logic: the actual

programming code that allows the page to function. To get anywhere with ASP.NET,

you need to grasp the concept of events. Most ASP.NET pages will contain controls

such as text boxes, checkboxes, and lists. Each of these controls allow the user to

interact with the application in some way: checking checkboxes, scrolling through

lists, selecting list items, and so on. Whenever one of these actions is performed,

the control will raise an event. It’s by handling these events within our code that

we get ASP.NET pages to do what we want.

For example, imagine that a user clicks a button on an ASP.NET page. That button

(or, more specifically, the ASP.NET Button control) raises an event (in this case, it

will be the Click event). A method called an event handler executes automatically

when an event is raised—in this case, the event handler code performs a specific

action for that button. For instance, the Click event handler could save form data

to a file, or retrieve requested information from a database. Events really are the key

to ASP.NET programming, which is why we’ll start this chapter by taking a closer

look at them.

It wouldn’t be practical, or even necessary, to cover all aspects of VB and C# in this

book, so we’re going to discuss enough to get you started, and then complete this

chapter’s projects and samples using both languages. Moreover, the programming

concepts you’ll learn here will be more than adequate to complete the great majority

of day-to-day web development tasks using ASP.NET.

Control Events and Subroutines
As I just mentioned, an event (sometimes more than one) is raised, and handler

code is called, in response to a specific action on a particular control. For instance,

the code below creates a server-side button and label. Note the use of the OnClick

attribute on the Button control. If you want to test the code, save the file in the

LearningASP directory you’ve been using for the other examples. Here’s the VB ver-

sion:

Visual Basic LearningASP\VB\ClickEvent.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Public Sub button_Click(ByVal s As Object, ByVal e As EventArgs)

Build Your Own ASP.NET 4 Website Using C# & VB48

 messageLabel.Text = "Hello World"
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Click the Button</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="button" runat="server"

OnClick="button_Click" Text="Click Me" />
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

Here’s an excerpt from the C# version:

C# LearningASP\CS\ClickEvent.aspx (excerpt)

<%@ Page Language="C#" %>
⋮
<script runat="server">
 public void button_Click(Object s, EventArgs e)
 {
 messageLabel.Text = "Hello World";
 }
</script>
⋮

The HTML and ASP.NET elements in the page are the same for both the C# and VB

versions of the code, so I’ve shown only the differences in the code listing for the

C# version above. This approach will be used for the other examples in this chapter,

too. The complete C# version can be found in the code archive.

When the button’s clicked, it raises the Click event, and ASP.NET checks the but-

ton’s OnClick attribute to find the name of the handler subroutine for that event.

In the previous code, we instruct ASP.NET to call the button_Click routine. You’ll

see the code for the button_Click routine within the <script> code declaration

block:

49VB and C# Programming Basics

Visual Basic LearningASP\VB\ClickEvent.aspx (excerpt)

<script runat="server">
Public Sub button_Click(ByVal s As Object, ByVal e As EventArgs)

 messageLabel.Text = "Hello World"
 End Sub
</script>

C# LearningASP\CS\ClickEvent.aspx (excerpt)

<script runat="server">
public void button_Click(Object s, EventArgs e)

 {
 messageLabel.Text = "Hello World";
 }
</script>

This code simply sets a message to display on the Label element that we declared

with the button. So, when this page is run, and users click the button, they’ll see

the message “Hello World” appear next to it, as shown in Figure 3.1.

Figure 3.1. Handling the Click event

By now, you’ll be starting to come to grips with the idea of events, and the ways in

which they’re used to call particular subroutines. In fact, there are many events that

your controls can use, though some of them are found only on certain controls.

Build Your Own ASP.NET 4 Website Using C# & VB50

Here’s the complete set of attributes that the Button control supports for handling

events:

OnClick

As we’ve seen, the subroutine indicated by this attribute is called for the Click

event, which occurs when the user clicks the button.

OnCommand

As with OnClick, the subroutine indicated by this attribute is called when the

button is clicked.

OnLoad

The subroutine indicated by this attribute is called when the button is loaded

for the first time—usually when the page first loads.

OnInit

When the button is initialized, any subroutine given in this attribute will be

called.

OnPreRender

We can use this attribute to run code just before the button is rendered.

OnDisposed

The subroutine specified by this attribute is executed when the button is released

from memory.

OnDataBinding

This attribute fires when the button is bound to a data source.

Don’t worry too much about the details of all these events and when they occur;

we just want you to understand that a single control can produce a number of dif-

ferent events. In the case of the Button control, you’ll almost always be interested

in the Click event; the others are only useful in rather obscure circumstances.

When a control raises an event, the specified subroutine (if one is specified) is ex-

ecuted. Let’s take a look at the structure of a typical subroutine that interacts with

a web control:

51VB and C# Programming Basics

Visual Basic

Public Sub mySubName(s As Object, e As EventArgs)
 ⋮ subroutine code…
End Sub

C#

public void mySubName(Object s, EventArgs e)
{
 ⋮ subroutine code…
}

Let’s take a moment to break down all the components that make up a typical sub-

routine:

Public (Visual Basic)

public (C#)

This keyword defines the level of visibility the subroutine has in relation to the

rest of the page. There are a few different options to choose from, the most fre-

quently used being Public (for a global subroutine that can be used anywhere

within the entire page) and Private (for subroutines that are available for the

specific class only). We’ll analyze these options in more detail a bit later in the

chapter.

Sub (Visual Basic)

void (C#)

This keyword defines the chunk of code as a subroutine. A subroutine is a

named block of code that doesn’t return a result; thus, in C#, we use the void

keyword, which means exactly what the name says. We don’t need this in VB,

though, because the Sub keyword implies that no value is returned.

mySubName(…)

This part gives the name we’ve chosen for the subroutine. The parameters and

their data types are mentioned in the parentheses.

Build Your Own ASP.NET 4 Website Using C# & VB52

s As Object (Visual Basic)

Object s (C#)

When we write a subroutine that will function as an event handler, it must accept

two parameters. The first is a reference to the control that fired the event. Each

control has a particular type, such as Label or TextBox, but Object is a generic

type that can be used to reference any kind of object in .NET—even basic type,

such as numbers or strings. Here, we’re putting that Object in a variable named

s (again, we’ll talk more about variables later in this chapter). We can then use

that variable to access features and settings of the specific control from our

subroutine.

e As EventArgs (Visual Basic)

EventArgs e (C#)

This, the second parameter, contains certain information that’s specific to the

event that was raised. Note that, in many cases, you won’t need to use either of

these two parameters, so you don’t need to worry about them too much at this

stage.

As this chapter progresses, you’ll see how subroutines that are associated with

particular events by the appropriate attributes on controls can revolutionize the

way your user interacts with your application.

Page Events
Until now, we’ve considered only events that are raised by controls. However, there

is another type of event: the page event. Technically, a page is simply another type

of control, so its events follow the same principles as those of controls.

The idea is the same as for control events, except that here, it’s the page as a whole

that generates the events.1 You’ve already used one of these events: the Page_Load

event, which is fired when the page loads for the first time. Note that we don’t need

to associate handlers for page events as we did for control events; instead, we just

place our handler code inside a subroutine with a preset name.

The following list outlines the most frequently used page event subroutines:

1 Strictly speaking, a page is simply another type of control, so page events are actually control events.

But when you’re first learning ASP.NET, it can be helpful to think of page events as being different, es-

pecially since you don’t usually use OnEventName attributes to assign subroutines to handle them.

53VB and C# Programming Basics

Page_Init

called when the page is about to be initialized with its basic settings

Page_Load

called once the browser request has been processed, and all the controls in the

page have their updated values

Page_PreRender

called once all objects have reacted to the browser request and any resulting

events, but before any response has been sent to the browser

Page_UnLoad

called when the page is no longer needed by the server, and is ready to be dis-

carded

The order in which the events are listed above is also the order in which they’re

executed. In other words, the Page_Init event is the first event raised by the page,

followed by Page_Load, Page_PreRender, and finally Page_UnLoad.

The best way to illustrate how these events work is through an example. Create the

following PageEvents.aspx file in your LearningASP directory:

Visual Basic LearningASP\VB\PageEvents.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
Sub Page_Init(ByVal s As Object, ByVal e As EventArgs)

 messageLabel.Text = "1. Page_Init
"
 End Sub
 Sub Page_Load(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text += "2. Page_Load
"
 End Sub
 Sub Page_PreRender(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text += "3. Page_PreRender
"
 End Sub
 Sub Page_UnLoad(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text += "4. Page_UnLoad
"
 End Sub

Build Your Own ASP.NET 4 Website Using C# & VB54

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Page Events</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\PageEvents.aspx (excerpt)

<%@ Page Language="C#" %>
⋮
<script runat="server">
 void Page_Init(Object s, EventArgs e)
 {
 messageLabel.Text = "1. Page_Init
";
 }
 void Page_Load(Object s, EventArgs e)
 {
 messageLabel.Text += "2. Page_Load
";
 }
 void Page_PreRender(Object s, EventArgs e)
 {
 messageLabel.Text += "3. Page_PreRender
";
 }
 void Page_UnLoad(Object s, EventArgs e)
 {
 messageLabel.Text += "4. Page_UnLoad
";
 }
</script>
⋮

You can see that the event handlers (the functions that are executed to handle the

events) aren’t specifically defined anywhere. There’s no need to define them, because

these events are generated by default by the ASP.NET page, and their handlers have

the default names that we’ve used in the code (Page_Init, Page_Load, and so on).

As the page loads, it will generate a number of events. We’ve added a text message

55VB and C# Programming Basics

to the Label control within each event’s event handler; this will give us visual proof

that the events actually fire in order. No matter which version of the code you execute

(C# or VB), the output should look like Figure 3.2.

As you can see, Page_UnLoad doesn’t generate any output. Why not? At that point,

the HTML output has already been generated and sent to the browser.

Popular Page_Load

The event you’ll make the most use of in your code is Page_Load. However, in

certain situations the other events will be helpful as well. It’s also worth noting

that ASP.NET supports other events, which we haven’t covered here. You’ll only

need those when it comes to certain complex applications that aren’t within the

scope of this book.

Variables and Variable Declaration
Variables are fundamental to programming, and you’re almost certain to have come

across the term before. Basically, variables let you give a name, or identifier, to a

specific piece of data; we can then use that identifier to store, modify, and retrieve

the data in question.

VB and C# have access to the same basic data types, which are defined as foundation

classes of the .NET Framework. However, they can be named differently, as each

language defines its own aliases. There are many different kinds of data types, in-

cluding strings, integers (whole numbers), and floating point numbers (fractions or

decimals). Before you can use a variable in VB or C#, you must specify the types of

data it can contain using keywords such as Integer and Decimal, like this:

Visual Basic

Dim name As String
Dim age As Integer

C#

string name;
int age;

Build Your Own ASP.NET 4 Website Using C# & VB56

Figure 3.2. Handling ASP.NET events

These lines declare the types of data we want our variables to store, and are therefore

known as variable declarations. In VB, we use the keyword Dim, which is short for

“dimension,” while in C#, we simply precede the variable name with the appropriate

data type.

Sometimes, we want to set an initial value for variables that we declare; we can do

this using a process known as initialization, which simply involves declaring a

variable and setting its initial value:

Visual Basic

Dim carType As String = "BMW"

C#

string carType = "BMW";

We can declare and/or initialize a group of variables of the same type simultaneously

using a comma-delimited list. This practice isn’t recommended, though, as it makes

the code more difficult to read. I know you’re curious, so here’s how it would look:

Visual Basic

Dim carType As String, carColor As String = "blue"

C#

string carType, carColor = "blue";

57VB and C# Programming Basics

Table 3.1 lists the most useful data types available in VB and C#.

Table 3.1. Commonly Used Data Types

DescriptionC#VB

whole numbers in the range -2,147,483,648 to

2,147,483,647

intInteger

numbers up to 28 decimal places; this command is used

most often when dealing with costs of items

decimalDecimal

any text valuestringString

a single character (letter, number, or symbol)charChar

true or falseboolBoolean

a generic type that can be used to refer to objects of

any type

objectObject

You’ll encounter many other data types as you progress, but this list provides an

overview of the ones you’ll use most often.

Many Aliases Are Available

These data types are the VB- and C#-specific aliases for types of the .NET Frame-

work. For example, instead of Integer or int, you could use System.Int32 in any

.NET language; likewise, instead of Boolean or bool, you could use

System.Boolean, and so on.

To sum up, once you’ve declared a variable as a given type, it can only hold data

of that type: you can’t put a string into an integer variable, for instance. However,

there are frequently times when you’ll need to convert one data type to another.

Have a look at this code:

Visual Basic

Dim intX As Integer
Dim strY As String = "35"
intX = strY + 6

Build Your Own ASP.NET 4 Website Using C# & VB58

C#

int intX;
string strY = "35";
intX = strY + 6;

Now, you’d be forgiven for assuming that this could make sense—after all, the string

strY contains a number, so we may wish to add it to another number. Well, this

isn’t so simple for a computer!

VB performs some conversions for us. The VB version of the code will execute

without a hitch, because the string will be converted to a number before the math-

ematical operation is applied. C#, on the other hand, will throw an error, as it’s

more strict than VB about conversions.

As a rule of thumb, it’s better to stay on the safe side and avoid mixing types

wherever possible.

VB and VB and C#: Strongly Typed Languages

Both VB and C# are strongly typed languages, which means that they’re very strict

about data types. Many other languages—mostly scripting languages such as

JavaScript—are loosely typed, which means that they’re more flexible when it

comes to dealing with data types, but can cause unintended behaviour if you’re

not careful. For example, if you try to calculate the sum of a number and a string,

as we did in the previous code snippet, the JavaScript interpreter would make

the conversion for you automatically … but what does it convert? It would convert

the integer 6 into a string and join it with the string 35 to make 356—not what

you intended at all! At times, despite being a strongly typed language at heart, VB

does a bit of background work for you, which makes it slightly easier to work

with.

In .NET, you can (and sometimes need to) explicitly convert the string into an integer

before you’re able to add them up:

Visual Basic

Dim intX As Integer
Dim strY As String = "35"
intX = Int32.Parse(strY) + 6

59VB and C# Programming Basics

C#

int intX;
string strY = "35";
intX = Convert.ToInt32(strY) + 6;

Now, both of these examples can be executed successfully—the server ends up

adding two numbers, rather than a number and a string, which we tried initially,

because the string value is converted to a number value before the addition occurs.

This principle holds true whenever we’re mixing types in a single expression.

Arrays
Arrays are a special kind of variable that’s tailored for storing related items of the

same data type. Any one item in an array can be accessed using the array’s name,

followed by that item’s position in the array (its offset). Let’s create a sample page

to see how it’s done:

Visual Basic LearningASP\VB\Arrays.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Sub Page_Load()

Dim drinkList(4) As String
 drinkList(0) = "Water"
 drinkList(1) = "Juice"
 drinkList(2) = "Soda"
 drinkList(3) = "Milk"
 drinkLabel.Text = drinkList(1)
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Arrays</title>
 </head>
 <body>
 <form id="form1" runat="server">

Build Your Own ASP.NET 4 Website Using C# & VB60

 <div>
 <asp:Label ID="drinkLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\Arrays.aspx (excerpt)

<%@ Page Language="C#" %>
⋮
<script runat="server">
 void Page_Load()
 {
 string[] drinkList = new string[4];
 drinkList[0] = "Water";
 drinkList[1] = "Juice";
 drinkList[2] = "Soda";
 drinkList[3] = "Milk";
 drinkLabel.Text = drinkList[1];
 }
</script>
⋮

The results of this code are shown in Figure 3.3.

Figure 3.3. Reading an element from an array

61VB and C# Programming Basics

There are some important points to pick up from this code. First, notice how we

declare an array. In VB, it looks like a regular declaration for a string, except that

the number of items we want the array to contain is provided in parentheses after

the name:

Visual Basic LearningASP\VB\Arrays.aspx (excerpt)

Dim drinkList(4) As String

In C#, it’s a little different. First, we declare that drinkList is an array by following

the data type with two empty square brackets. We then use the new keyword to

specify that this is an array of four items:

C# LearningASP\CS\Arrays.aspx (excerpt)

string[] drinkList = new string[4];

A crucial point to realize here is that, in both C# and VB, these arrays are known

as zero-based arrays. In a zero-based array, the first item has position 0, the second

has position 1, and so on through to the last item, which has a position that’s one

less than the size of the array (3, in this case). So, we specify each item in our array

like this:

Visual Basic LearningASP\VB\Arrays.aspx (excerpt)

drinkList(0) = "Water"
drinkList(1) = "Juice"
drinkList(2) = "Soda"
drinkList(3) = "Milk"

C# LearningASP\CS\Arrays.aspx (excerpt)

drinkList[0] = "Water";
drinkList[1] = "Juice";
drinkList[2] = "Soda";
drinkList[3] = "Milk";

Note that C# uses square brackets for arrays, while VB uses standard parentheses.

We have to remember that arrays are zero-based when we set the label text to the

value of the second array item, as shown here:

Build Your Own ASP.NET 4 Website Using C# & VB62

Visual Basic LearningASP\VB\Arrays.aspx (excerpt)

drinkLabel.Text = drinkList(1)

C# LearningASP\CS\Arrays.aspx (excerpt)

drinkLabel.Text = drinkList[1];

To help this fact sink in, you might like to try changing this code to show the third

item in the list, instead of the second. Can you work out what change you’d need

to make? That’s right—you need only to change the number in the brackets to reflect

the new item’s position in the array (don’t forget to start at zero). In fact, it’s this

ability to select one item from a list using only its numerical location that makes

arrays so useful in programming. We’ll experience this benefit first-hand as we get

further into the book.

Functions
Functions are very similar to subroutines, but for one key difference: they return a

value. In VB, we declare a function using the Function keyword in place of Sub,

while in C#, we simply have to specify the return type in place of void. The following

code shows a simple example:

Visual Basic LearningASP\VB\Functions.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
Function getName() As String

 Return "John Doe"
 End Function

 Sub Page_Load(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text = getName()
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">

63VB and C# Programming Basics

 <title>ASP.NET Functions</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Label id="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\Functions.aspx (excerpt)

<%@ Page Language="C#" %>
⋮
<script runat="server">
 string getName()
 {
 return "John Doe";
 }

 void Page_Load()
 {
 messageLabel.Text = getName();
 }
</script>
⋮

When the page above is loaded in the browser, the Load event will be raised, causing

the Page_Load event handler to be called; in turn, it will call the getName function.

The getName function returns a simple string that we can assign to our label. Fig-

ure 3.4 shows the result in the browser.

Build Your Own ASP.NET 4 Website Using C# & VB64

Figure 3.4. Executing an ASP.NET function

In this simple example, we’re merely returning a fixed string, but the function could

just as easily retrieve the name from a database (or some other location). The point

is that, regardless of how the function gets its data, we call it in just the same way.

When we’re declaring our function, we must remember to specify the correct return

type. Take a look at this code:

Visual Basic

Function addUp(x As Integer, y As Integer) As Integer
 Return x + y
End Function

Sub Page_Load(s As Object, e As EventArgs)
 messageLabel.Text = addUp(5, 2).ToString()
End Sub

C#

int addUp(int x, int y)
{
 return x + y;
}

void Page_Load()

65VB and C# Programming Basics

{
 messageLabel.Text = addUp(5, 2).ToString();
}

You can easily adapt the previous example to use this new code so that you can see

the results in your browser—just replace the code inside the <script> tags within

Functions.aspx with the code above.

We can readily use the parameters inside the function or subroutine just by using

the names we gave them in the function declaration (here, we’ve chosen x and y,

but we could have selected any names).

The other difference between this function and the function declaration we had

before is that we now declare our function with a return type of Integer or int,

rather than String, because we want it to return a whole number.

When we call the new function, we simply have to specify the values for the required

parameters, and remember that the function will return a value with the type we

specified in the function definition. In this case, we have to convert the integer

value that the function returns to a string, so that we can assign it to the label.

The simplest way to convert an integer to a string is to append .ToString() to the

end of the variable name. In this case, we appended ToString to the function call

that returns an integer during execution. Converting numbers to strings is a very

common task in ASP.NET, so it’s good to get a handle on it early.

Build Your Own ASP.NET 4 Website Using C# & VB66

Converting Numbers to Strings

There are more ways to convert numbers to strings in .NET, as the following lines

of VB code illustrate:

Visual Basic

messageLabel.Text = addUp(5, 2).ToString()
messageLabel.Text = Convert.ToString(addUp(5, 2))

If you prefer C#, these lines of code perform the same operations as the VB code

above:

C#

messageLabel.Text = addUp(5, 2).ToString();
messageLabel.Text = Convert.ToString(addUp(5, 2));

Don’t be concerned if you’re a little confused by how these conversions work,

though—the syntax will become clear once we discuss object oriented concepts

later in this chapter.

Operators
Throwing around values with variables and functions isn’t very handy—unless you

can use them in some meaningful way. To do that, we need operators. An operator

is a symbol that has a certain meaning when it’s applied to a value. Don’t

worry—operators are nowhere near as scary as they sound! In fact, in the last ex-

ample, where our function added two numbers, we were using an operator: the

addition operator, or + symbol. Most of the other operators are just as well known,

although there are one or two that will probably be new to you. Table 3.2 outlines

the operators that you’ll use most often in your ASP.NET development.

Operators Abound!

The list of operators in Table 3.2 is far from complete. You can find detailed lists

of the differences between VB and C# operators on the Code Project website.2

2 http://www.codeproject.com/dotnet/vbnet_c__difference.asp

67VB and C# Programming Basics

http://www.codeproject.com/dotnet/vbnet_c__difference.asp

Table 3.2. Common ASP.NET Operators

DescriptionC#VB

greater than>>

greater than or equal to>=>=

less than<<

less than or equal to<=<=

not equal to!=<>

equals===

assigns a value to a variable==

or||OrElse

and&&AndAlso

concatenate strings+&

create an object or arraynewNew

multiply**

divide//

add++

subtract--

The following code uses some of these operators:

Visual Basic

If (user = "John" AndAlso itemsBought <> 0) Then
 messageLabel.Text = "Hello John! Do you want to proceed to " & _
 "checkout?"
End If

C#

if (user == "John" && itemsBought != 0)
{
 messageLabel.Text = "Hello John! Do you want to proceed to " +
 "checkout?";
}

Build Your Own ASP.NET 4 Website Using C# & VB68

Here, we use the equality, inequality (not equal to), and logical “and” operators in

an If statement to print a tailored message for a given user who has put a product

in his electronic shopping cart. Of particular note is the C# equality operator, ==,

which is used to compare two values to see if they’re equal. Don’t use a single equals

sign in C# unless you’re assigning a value to a variable; otherwise, your code will

have a very different meaning than you expect!

Breaking Long Lines of Code
Since the message string in the above example was too long to fit on one line in this

book, we used the string concatenation operator to combine two shorter strings on

separate lines to form the complete message: & in VB and + in C#. In VB, we also

had to break one line of code into two using the line continuation symbol (_), an

underscore at the end of the line to be continued). Since C# marks the end of each

command with a semicolon (;), you can split a single command over two lines in

this language without having to do anything special.

We’ll use these techniques throughout this book to present long lines of code

within our limited page width. Feel free to recombine the lines in your own code

if you like—there are no length limits on lines of VB and C# code.

Conditional Logic
As you develop ASP.NET applications, there will be many instances in which you’ll

need to perform an action only if a certain condition is met; for instance, if the user

has checked a certain checkbox, selected a certain item from a DropDownList control,

or typed a certain string into a TextBox control. We check for such occurrences using

conditionals—statements that execute different code branches based upon a specified

condition, the simplest of which is probably the If statement. This statement is

often used in conjunction with an Else statement, which specifies what should

happen if the condition is not met. So, for instance, we may wish to check whether

or not the name entered in a text box is Zak, redirecting the user to a welcome page

if it is, or to an error page if it’s not:

69VB and C# Programming Basics

Visual Basic

If (userName.Text = "Zak") Then
 Response.Redirect("JohnsPage.aspx")
Else
 Response.Redirect("ErrorPage.aspx")
End If

C#

if (userName.Text == "Zak")
{
 Response.Redirect("JohnsPage.aspx");
}
else
{
 Response.Redirect("ErrorPage.aspx");
}

Take Care with Case Sensitivity

Instructions are case sensitive in both C# and VB, so be sure to use if in C# code,

and If in VB code. On the other hand, variable and function names are case

sensitive only in C#. So, in C#, two variables called x and X would be considered

to be different; in VB, they would be considered to be the same variable.

Often, we want to check for many possibilities, and specify that our application

perform a particular action in each case. To achieve this, we use the Select Case

(VB) or switch (C#) construct, as follows:

Visual Basic

Select Case userName
Case "John"

 Response.Redirect("JohnsPage.aspx")
Case "Mark"

 Response.Redirect("MarksPage.aspx")
Case "Fred"

 Response.Redirect("FredsPage.aspx")

Build Your Own ASP.NET 4 Website Using C# & VB70

Case Else
 Response.Redirect("ErrorPage.aspx")
End Select

C#

switch (userName)
{
case "John":

 Response.Redirect("JohnsPage.aspx");
break;

case "Mark":
 Response.Redirect("MarksPage.aspx");

break;
case "Fred":

 Response.Redirect("FredsPage.aspx");
break;

default:
 Response.Redirect("ErrorPage.aspx");

break;
}

Loops
As you’ve just seen, an If statement causes a code block to execute once if the value

of its test expression is true. Loops, on the other hand, cause a code block to execute

repeatedly for as long as the test expression remains true. There are two basic kinds

of loop:

■ While loops, also called Do loops (which sounds like something Betty Boop might

say!)
■ For loops, including For Next and For Each

A While loop is the simplest form of loop; it makes a block of code repeat for as

long as a particular condition is true. Here’s an example:

71VB and C# Programming Basics

Visual Basic LearningASP\VB\Loops.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Sub Page_Load(ByVal s As Object, ByVal e As EventArgs)
 Dim counter As Integer = 0

Do While counter <= 10
 messageLabel.Text = counter.ToString()
 counter += 1
 Loop
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Loops</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Label id="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\Loops.aspx

<%@ Page Language="C#" %>
⋮
<script runat="server">
 void Page_Load()
 {
 int counter = 0;
 while (counter <= 10)
 {
 messageLabel.Text = counter.ToString();
 counter++;
 }

Build Your Own ASP.NET 4 Website Using C# & VB72

 }
</script>
⋮

If you load this page, you’ll get the result illustrated in Figure 3.5.

Figure 3.5. Results of a While loop

When you open the page, the label will be set to show the number 0, which will

increment to 1, then 2, all the way to 10. Of course, since all this happens in

Page_Load (that is, before any output is sent to the browser), you’ll only see the last

value assigned: 10.

These examples also demonstrate the use of two new operators: += (supported by

both VB and C#) and ++ (which is supported only by C# and is a shortcut for += 1).

The += operator adds the value on the left-hand side of the operator to the value on

the right-hand side of the operator, and then assigns the total to the variable on the

left-hand side of the operator. This operator is also available in C#, but all we want

to do here is increment a value by 1, and C# offers a more convenient operator for

that purpose: the ++ operator.

The above page demonstrates that the loop repeats until the condition is no longer

met. Try changing the code so that the counter variable is initialized to 20 instead

of 0. When you open the page now, you won’t see anything on the screen, because

the loop condition was never met.

73VB and C# Programming Basics

The other form of the While loop, called a Do While loop, checks whether or not

the condition has been met at the end of the code block, rather than at the beginning.

Here’s what the above loops would look like if we changed them into Do While

loops:

Visual Basic

Sub Page_Load(s As Object, e As EventArgs)
 Dim counter As Integer = 0
Do

 messageLabel.Text = counter.ToString()
 counter += 1
 Loop While counter <= 10
End Sub

C#

void Page_Load()
{
 int counter = 0;
do

 {
 messageLabel.Text = counter.ToString();
 counter++;
 }
 while (counter <= 10);
}

If you run this code, you’ll see it provides exactly the same output we obtained

when we tested the condition before the code block. However, we can see the crucial

difference if we change the code so that the counter variable is initialized to 20. In

this case, 20 will, in fact, be displayed, because the loop code is executed once before

the condition is even checked! There are some instances when this is just what we

want, so being able to place the condition at the end of the loop can be very handy.

A For loop is similar to a While loop, but we typically use it when we know in ad-

vance how many times we need it to execute. The following example displays the

count of items within a DropDownList control called productList:

Build Your Own ASP.NET 4 Website Using C# & VB74

Visual Basic

Dim i As Integer
For i = 1 To productList.Items.Count
 messageLabel.Text = i.ToString()
Next

C#

int i;
for (i = 1; i <= productList.Items.Count; i++)
{
 messageLabel.Text = i.ToString();
}

In VB, the loop syntax specifies the starting and ending values for our counter

variable within the For statement itself.

In C#, we assign a starting value (i = 1) along with a condition that will be tested

each time we move through the loop (i <= productList.Items.Count), and lastly,

we identify how the counter variable should be incremented after each loop (i++).

While this allows for some powerful variations on the theme in our C# code, it can

be confusing at first. In VB, the syntax is considerably simpler, but it can be a bit

limiting in exceptional cases.

The other type of For loop is For Each (foreach in C#), which loops through every

item within a collection. The following example loops through an array called

arrayName:

Visual Basic

For Each item In arrayName
 messageLabel.Text = item
Next

75VB and C# Programming Basics

C#

foreach (string item in arrayName)
{
 messageLabel.Text = item;
}

The important difference between a For loop and a For Each loop involves what

happens to the variable we supply to the loop. In a For loop, the variable (we sup-

plied i in the previous example) represents a counter—a number which starts at a

predefined initial value and is incremented until it reaches a predefined maximum

value. The counter is incremented every time the code in the Forloop is executed.

In a For Each loop, the variable (we supplied item in the above example) represents

the current object from the given collection. It’s not necessarily an integer, like the

counter in a For loop—it can be any kind of object, including a string, date, or custom

object that you created (more about these a bit later!). The object reference changes

to the next item in the collection each time the code in the For Each loop executes.

So if we were looping over an array of string values, the variable item would start

by containing the string value for the first item in the array, then it would receive

the next item of the array, and so on, until there were no items left in the array.

You may also come across instances in which you need to exit a loop prematurely.

In these cases, you can use Exit, if your code is in VB, or the equivalent (break)

statement in C#, to terminate the loop:

Visual Basic

Dim i As Integer
For i = 0 To 10
 If (i = 5) Then
 Response.Write("Oh no! Not the number 5!!")

Exit For
 End If
Next

Build Your Own ASP.NET 4 Website Using C# & VB76

C#

int i;
for (i = 0; i <= 10; i++)
{
 if (i == 5)
 {
 Response.Write("Oh no! Not the number 5!!");

break;
 }
}

In this case, as soon as our For loop hits the condition i = 5, it displays a warning

message using the Response.Write method (which will be familiar to those with

past ASP experience), and exits the loop so that no further passes will be made

through the loop.

Although we’ve only scratched the surface, VB and C# provide a great deal of power

and flexibility to web developers, and the time you spend learning the basics now

will more than pay off in the future.

Object Oriented Programming Concepts
VB and C# are modern programming languages that give you the tools to write

structured, extensible, and maintainable code. The code can be separated into

modules, each of which defines classes that can be imported and used in other

modules. Both languages are relatively simple to get started with, yet they offer

sophisticated features for writing complex, large-scale enterprise applications.

One of the reasons why these languages are so powerful is that they facilitate object

oriented programming (OOP). In this section, we’ll explain the fundamentals of

OOP and learn how adopting a good OOP style now can help you to develop better,

more versatile web applications down the road. This section will provide a basic

OOP foundation angled towards the web developer. In particular, we’ll cover the

following concepts:

■ objects
■ properties
■ methods

77VB and C# Programming Basics

■ classes
■ scope
■ events
■ inheritance

In the pages that follow, we’ll discuss these concepts briefly, and from Chapter 4

onwards, you’ll see some practical examples of OOP in action.

Objects and Classes
So what does object oriented programming really mean? Basically, as the name

suggests, it’s an approach to development that puts objects at the center of the pro-

gramming model. The object is probably the most important concept in the world

of OOP; an object is a self-contained entity that has state and behavior, just like a

real-world object.

In programming, an object’s state is described by its fields and properties, while its

behavior is defined by its methods and events. An important part of OOP’s strength

comes from the natural way it allows programmers to conceive and design their

applications.

We often use objects in our programs to describe real-world objects—we can have

objects that represent a car, a customer, a document, or a person. Each object has

its own state and behavior.

It’s very important to have a clear understanding of the difference between a class

and an object. A class acts like a blueprint for the object, while an object represents

an instance of the class. I just said that you could have objects of type Car, for ex-

ample. If you did, Car would be the class, or the type, and we could create as many

Car objects as we wanted, calling them myCar, johnsCar, davesCar, and so on.

The class defines the behavior of all objects of that type. So all objects of type Car

will have the same behavior—for example, the ability to change gear. However,

each individual Car object may be in a different gear at any particular time; thus,

each object has its own particular state.

Let’s take another example: think of Integer (or int) as a class, and age and height

as objects of type Integer. The class defines the behavior of the objects—they’re

numeric, and we can perform mathematical operations on them. The instances of

Build Your Own ASP.NET 4 Website Using C# & VB78

objects (age and height) have their behavior defined by the class to which they

belong, but they also hold state (so age could be 20).

Take a look at the following code:

Visual Basic

Dim age As Integer
Dim name As String
Dim myCar As Car
Dim myOtherCar As Car

C#

int age;
string name;
Car myCar;
Car myOtherCar;

As you can see, the syntax for declaring an object is the same as that for declaring

a simple integer or string variable. In C#, we first mention the type of the object,

then we name that particular instance. In VB, we use the Dim keyword.

Rayne is your average friendly, loving, playful mutt. You might describe him in

terms of his physical properties: he’s gray, white, brown, and black; he stands

roughly one-and-a-half-feet high; and he’s about three-feet long. You might also

describe some methods to make him do things: he sits when he hears the command

“Sit,” lies down when he hears the command “Lie down,” and comes when his

name is called.

So, if we were to represent Rayne in an OOP program, we’d start by creating a class

called Dog. A class describes how certain types of objects look from a programming

point of view. When we define a class, we must define the following two items:

Properties Properties hold specific information that’s relevant to that class of

object. You can think of properties as characteristics of the objects

that they represent. Our Dog class might have properties such as

Color, Height, and Length.

79VB and C# Programming Basics

Methods Methods are actions that objects of the class can be told to perform.

Methods are subroutines (if they don’t return a value) or functions

(if they do) that are specific to a given class. So the Dog class could

have methods such as Sit and LieDown.

Once we’ve defined a class, we can write code that creates objects of that class, using

the class a little like a template. This means that objects of a particular class expose

(or make available) the methods and properties defined by that class. So, we might

create an instance of our Dog class called rayne, set its properties accordingly, and

use the methods defined by the class to interact with rayne, as shown in Figure 3.6.

Figure 3.6. An instance of Dog

This is just a simple example to help you visualize what OOP is all about. In the

next few sections, we’ll cover properties and methods in greater detail, and talk

about classes and class instances, scope, events, and inheritance.

Properties
As we’ve seen, properties are characteristics shared by all objects of a particular

class. In the case of our example, the following properties might be used to describe

any given dog:

■ color
■ height
■ length

Build Your Own ASP.NET 4 Website Using C# & VB80

In the same way, the more useful ASP.NET Button class exposes properties includ-

ing:

■ Width

■ Height

■ ID

■ Text

■ ForeColor

■ BackColor

Unfortunately, if I get sick of Rayne’s color, I can’t change it in real life. However,

if Rayne was a .NET object, we could change any of his properties in the same way

that we set variables (although a property can be read-only or write-only). For in-

stance, we could make him brown very easily:

Visual Basic

rayne.Color = "Brown"

C#

rayne.Color = "Brown";

In this example, we’re using an instance of our Dog class called rayne. We use the

dot operator (.) to access the Color property that the object exposes, and set it to

the string "Brown."

Methods
Within our dog example, we can expect to make a particular dog do things by calling

commands. If I want Rayne to sit, I tell him to sit. If I want Rayne to lie down, I tell

him to lie down. In object oriented terms, I tell him what I want him to do by calling

a predefined command or method, and an action results. For example, if we wanted

to make Rayne sit, we would use the following code to call his Sit method:

Visual Basic

rayne.Sit()

81VB and C# Programming Basics

C#

rayne.Sit();

Given that rayne is an instance of our Dog class, we say that the Sit method is ex-

posed by the Dog class.

Classes
You can think of a class as a template for building as many objects of a particular

type as you like. When you create an instance of a class, you’re creating an object

of that class, and that new object will have all the characteristics and behaviors

(that is, properties and methods) defined by the class.

In our dog example, rayne was an instance of the Dog class, as Figure 3.6 illustrated.

In our code, we can create a new instance of the Dog class called rayne, as shown

below:

Visual Basic

Dim rayne As New Dog()

C#

Dog rayne = new Dog();

Constructors
Constructors are methods that are used to initialize the object. In OOP, when we

create new instances of a class, we say we’re instantiating that class. The constructor

is a method of a class that’s executed automatically when a class is instantiated.

At least one constructor will be defined for most of the classes you will write (though

we can define more than one constructor for a class, as we’ll see shortly), since it’s

likely that some data will need to be initialized for each class at the time of creation.

In C# and VB, the constructor is defined as a method that has the same name as the

class, and has no return type.

Build Your Own ASP.NET 4 Website Using C# & VB82

Scope
You should now understand programming objects to be entities that exist in a pro-

gram and are manipulated through the methods and properties they expose. However,

in some cases, we want to create methods for use inside our class that are not

available to code outside that class.

Imagine we’re writing the Sit method inside this class, and we realize that before

the dog can sit, it has to shuffle its back paws forward a little (bear with me on this

one!). We could create a method called ShufflePaws, and then call that method

from inside the Sit method. However, we don’t want code in an ASP.NET page or

in some other class to call this method—it’d just be silly. We can prevent that from

happening by controlling the scope of the ShufflePaws method.

The careful control of which members of a class are accessible from outside that

class is fundamental to the success of object oriented programming. You can control

the visibility of a class member using a special set of keywords called access modi-

fiers:

Public Defining a property or method of a class as public allows that property

or method to be called from outside the class itself. In other words,

if an instance of this class is created inside another object (remember,

too, that ASP.NET pages themselves are objects), public methods and

properties are freely available to the code that created that instance

of the class. This is the default scope for VB and C# classes.

Private If a property or method of a class is private, it cannot be used from

outside the class itself. So, if an instance of this class is created inside

an object of a different class, the creating object has no access to

private methods or properties of the created object.

Protected A protected property or method sits somewhere between public and

private. A protected member is accessible from the code within its

class, or to the classes derived from it. We’ll learn more about derived

classes a bit later.

Deciding which access modifier to use for a given class member can be a very diffi-

cult decision—it affects not only your class, but also the other classes and programs

that use your class. Of special importance are the class’s public members, which

83VB and C# Programming Basics

together form the class’s public interface. The public interface acts like a contract

between your class and the users of your class, and if it’s designed properly, it

shouldn’t change over time. If, for example, you mark the Sit method as public,

and later decide to make it private, all the other classes that use this method will

have to change accordingly, which is not good. For an extreme scenario, imagine

that in a year’s time, Microsoft decided to remove the ToString method from its

classes—obviously, this would wreak havoc with your code.

Keep Everything Private Until You Need It

As a simple guideline for designing your classes, remember that it’s often easier

just to make all the members private, and make public only those that really need

to be public. It’s much easier to add to a public interface than it is to remove from

it.

Events
We’ve covered events in some depth already. To sum up, events occur when a

control object sends a message as a result of some change that has been made to it.

Generally, these changes occur as the result of user interaction with the control via

the browser. For instance, when a button is clicked, a Click event is raised, and we

can handle that event to perform some action. The object that triggers the event is

referred to as the event sender, while the object that receives the event is referred

to as the event receiver. You’ll learn more about these objects in Chapter 4.

Understanding Inheritance
The term inheritance refers to the ability of a specialized class to refine the properties

and methods exposed by another, more generalized class.

In our dog example, we created a class called Dog, and then created instances of

that class to represent individual dogs such as Rayne. However, dogs are types of

animals, and many characteristics of dogs are shared by all (or most) animals. For

instance, Rayne has four legs, two ears, one nose, two eyes, and so on. It might be

better, then, for us to create a base class called Animal. When we then defined the

Dog class, it would inherit from the Animal class, and all public properties and

methods of Animal would be available to instances of the Dog class.

Similarly, we could create a new class based on the Dog class. In programming

circles, this is called deriving a subclass from Dog. For instance, we might create a

Build Your Own ASP.NET 4 Website Using C# & VB84

class for Rayne called AustralianShepherd, and one for my other dog, Amigo,

called Chihuahua, both of which would inherit the properties and methods of the

Dog base class, and define new classes specific to each breed.

Don’t worry too much if this is still a little unclear. The best way to appreciate in-

heritance is to see it used in a real program. The most obvious use of inheritance

in ASP.NET is in the technique called code-behind, and we’ll build plenty of ex-

amples using inheritance and code-behind in Chapter 4.

Objects in .NET
If this is the first book in which you’ve read about object oriented programming,

you’re probably starting to dream about objects! Don’t worry, the effects of the first

exposure to objects doesn’t usually last for more than a week. Even though this is

yet another discussion about objects, I promise it won’t be boring. Moreover, in the

course of this section, we’ll cover some important concepts that every serious .NET

programmer must know.

So far, we’ve explored various concepts that apply in one form or another to almost

any truly object oriented language. Every language has its peculiarities, but the

general concepts are the same in all of these languages.

You may already have heard the common mantra of object oriented programmers:

everything is an object. This has two meanings. First of all, in C#, every program

consists of a class. In all stages of application development, from design to imple-

mentation, decisions must be made in regard to the way we design and relate objects

and classes to each other. Yes, objects are everywhere.

If you look at the documentation for the ASP.NET Page class, you can see the list

of classes from which this class inherits, as shown in Figure 3.7.

85VB and C# Programming Basics

Figure 3.7. The Page class’s documentation

You’ll remember from the last section that we said our hypothetical

AustralianShepherd class would inherit from the more general Dog class, which,

in turn, would inherit from the even more general Animal class. This is exactly the

kind of relationship that’s being shown in Figure 3.7—Page inherits methods and

properties from the TemplateControl class, which in turn inherits from a more

general class called Control. In the same way that we say that an Australian Shep-

herd is an Animal, we say that a Page is a Control. Control, like all .NET classes,

inherits from Object.

Since Object is so important that every other class derives from it, either directly

or indirectly, it deserves a closer look. Object contains the basic functionality that

the designers of .NET felt should be available in any object. The Object class contains

these public members:

■ Equals

■ ReferenceEquals

■ GetHashCode

■ GetType

■ ToString

The only member we’re really interested in at the moment is ToString, which returns

the text representation of an object. This method is called automatically when

conversions to string are needed, as is the case in the following code, which joins

a number and a string:

Build Your Own ASP.NET 4 Website Using C# & VB86

Visual Basic

Dim age As Integer = 5
Dim message As String = "Current Age: " & age

C#

int age = 5;
string message = "Current Age: " + age;

Namespaces
As ASP.NET is part of the .NET Framework, we have access to all the goodies that

are built into it in the form of the .NET Framework Class Library. This library rep-

resents a huge resource of tools and features in the form of classes, which are organ-

ized in a hierarchy of namespaces. When we want to use certain features that .NET

provides, we have only to find the namespace that contains the desired functionality,

and import that namespace into our ASP.NET page. Once we’ve done that, we can

make use of the .NET classes in that namespace to achieve our own ends.

For instance, if we wanted to access a database from a page, we would import the

namespace that contains classes for this purpose, which could be

System.Data.SqlClient. You can view the namespace of a class when visiting its

page in the .NET documentation. For example, the Button control’s class can be

found in System.Web.UI.WebControls.

To use a class that’s part of a namespace, but which isn’t available to you by default,

you either need to import the namespace (for example System.Web.UI.WebControls),

or reference the class using its fully qualified name (such as System.Web.UI.Web-

Controls.Button). To import a namespace page, we use the Imports directive in

VB, and using in C#:

Visual Basic

Imports System.Data.SqlClient

87VB and C# Programming Basics

C#

using System.Data.SqlClient;

As we’ve imported that namespace, we have access to all the classes that it contains.

Using Code-behind Files
Most companies that employ web development teams usually split projects into

two groups—visual design and functional development—because software engineers

are usually poor designers, and designers are often poor engineers. However, the

two groups still need to contribute code and markup to the project. The best approach

is to keep programmers’ code separate from the designers’ page markup as much as

possible. Some of the ASP.NET pages we’ve worked on so far have contained code

render blocks that place VB or C# code directly into the ASP.NET page. The problem

with this approach is that there’s no separation of the presentational elements of

the page from the application logic. The old versions of ASP were infamous for

creating “spaghetti” code—snippets of code that were scattered throughout the

presentation elements. This made it very tricky to manage the code between devel-

opment teams, as you’ll know if you’ve ever tried to pick apart someone else’s ASP

code. In response to these problems, ASP.NET introduced a new development ap-

proach that allows code developers to work separately from the presentation design-

ers who lay out individual pages.

This new approach, called code-behind, keeps all of your presentational elements

(controls) inside the .aspx file, but moves all of your code to a separate class in a .vb

or .cs code-behind file. Consider the following ASP.NET page, which displays a

simple button and label:

Visual Basic LearningASP\VB\HelloWorld.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 Sub Click(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text = "Hello World!"

Build Your Own ASP.NET 4 Website Using C# & VB88

 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Hello World!</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="submitButton" Text="Click Me"
 runat="server" OnClick="Click" />
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\HelloWorld.aspx

<%@ Page Language="C#" %>
⋮
<script runat="server">
 void Click(Object s, EventArgs e)
 {
 messageLabel.Text = "Hello World!";
 }
</script>
⋮

Let’s see how this example could be separated into the following distinct files:

HelloWorldCodeBehind.aspx

layout, presentation, and static content

HelloWorldCodeBehind.aspx.vb or HelloWorldCodeBehind.aspx.cs

code-behind files containing a custom page class

Since there isn’t a lot of code to type, you could create these files with any text ed-

itor, including Notepad. Visual Web Developer makes things easier for you, though.

When adding a new Web Form file to the project, you have the option—which

you’ve already noticed when creating new pages—to Place code in separate file.

89VB and C# Programming Basics

Create a new Web Form for your project by clicking Website > Add New Item… and

choosing the Web Form template. Check the Place code in a separate file checkbox,

type HelloWorldCodeBehind.aspx for the filename, and click Add. The default code

Visual Web Developer generates for the Web Form and its code-behind file is very

similar to the code of the Default.aspx form it created for your new Website project,

back in Chapter 1.

We’ll start with the ASP.NET Web Form file HelloWorldCodeBehind.aspx. All we

have to do is change the page title and insert the ASP.NET controls—a Button and

a Label:

Visual Basic LearningASP\VB\HelloWorldCodeBehind.aspx (excerpt)

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="HelloWorldCodeBehind.aspx.vb"
 Inherits="HelloWorldCodeBehind" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Hello World!</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

<asp:Button ID="submitButton" Text="Click Me"
 runat="server" OnClick="Click" />
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
</body>
</html>

C# LearningASP\CS\HelloWorldCodeBehind.aspx (excerpt)

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="HelloWorldCodeBehind.aspx.cs"
 Inherits="HelloWorldCodeBehind" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Build Your Own ASP.NET 4 Website Using C# & VB90

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Hello World!</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Button ID="submitButton" Text="Click Me"
 runat="server" OnClick="Click" />
 <asp:Label ID="messageLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

As you can see, without code blocks, the main ASP.NET page becomes a bit simpler.

You might also notice that the only line that differs between these .aspx pages is the

Page directive. Since the .aspx pages now contain only HTML layout, the contents

are identical no matter what language you use for the code.

You’ll also notice that the code-behind file (HelloWorldCodeBehind.aspx.vb or

HelloWorldCodeBehind.aspx.cs) has been generated automatically, as it was for the

Default.aspx file back in Chapter 1. This is a pure code file, and contains no HTML

or other markup tags. Nevertheless, we can still access presentation elements from

this file using their IDs (such as messageLabel).

Change the code to look like this:

Visual Basic LearningASP\VB\HelloWorldCodeBehind.aspx.vb

Imports System
Imports System.Web.UI
Imports System.Web.UI.WebControls
Partial Class HelloWorldCodeBehind
 Inherits System.Web.UI.Page
Sub Click(ByVal s As Object, ByVal e As EventArgs)

 messageLabel.Text = "Hello World!"
 End Sub
End Class

91VB and C# Programming Basics

C# LearningASP\CS\HelloWorldCodeBehind.aspx.cs

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public partial class HelloWorldCodeBehind : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
public void Click(Object s, EventArgs e)

 {
 messageLabel.Text = "Hello World!";
 }
}

The code in the code-behind file is written differently than the code we’ve written

using <script> tags. Instead of the simple functions we wrote in Chapter 2, we have

a class definition. In our VB example, we added three lines that import namespaces

for use within the code. We can achieve the same end using page directives (as

shown in Chapter 2), but when you’re using code-behind files, it’s easier to type

the namespace reference in the code-behind file:

Visual Basic LearningASP\VB\HelloWorldCodeBehind.aspx.vb (excerpt)

Imports System
Imports System.Web.UI
Imports System.Web.UI.WebControls

Note that, in VB projects, you won’t find any Import statements in the default code-

behind files, although you’ll find them in C# projects. For some reason, the designers

of Visual Web Developer thought that most VB developers would prefer not to be

Build Your Own ASP.NET 4 Website Using C# & VB92

bothered with this kind of detail, so they “hid” the namespace references in the

Web.config configuration file. Here are the using statements that were automatically

added for you when you created the code-behind file for the C# version:

C# LearningASP\CS\HelloWorldCodeBehind.aspx.cs

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

The following lines create a new class, named HelloWorldCodeBehind. Since our

code-behind page contains code for an ASP.NET page, our class inherits from the

Page class:

Visual Basic LearningASP\VB\HelloWorldCodeBehind.aspx.vb (excerpt)

Partial Class HelloWorldCodeBehind
 Inherits System.Web.UI.Page
 ⋮
End Class

C# LearningASP\CS\HelloWorldCodeBehind.aspx.cs

public partial class HelloWorldCodeBehind : System.Web.UI.Page
{
 ⋮
}

This is the practical application of inheritance that we mentioned earlier. The

HelloWorldCodeBehind class inherits from Page, borrowing all its functionality,

and extending it according to the particular needs of the page.

But what does Partial mean? A feature that was introduced in .NET 2.0, partial

classes allow a class to be spread over multiple files. ASP.NET uses this feature to

93VB and C# Programming Basics

make programmers’ lives easier. We write one part of the class in the code-behind

file, and ASP.NET generates the other part of the class for us, adding the object de-

clarations for all the user interface elements.

Take a look at the Click subroutine, through which we access the messageLabel

object without defining it anywhere in the code:

Visual Basic LearningASP\VB\HelloWorldCodeBehind.aspx.vb

 Sub Click(ByVal s As Object, ByVal e As EventArgs)
 messageLabel.Text = "Hello World!"
 End Sub

C# LearningASP\CS\HelloWorldCodeBehind.aspx.cs

 public void Click(Object s, EventArgs e)
 {
 messageLabel.Text = "Hello World!";
 }

That’s pretty handy! However, don’t be fooled into thinking that you can use objects

that haven’t been declared—the messageLabel object has been declared in another

partial class file that the ASP.NET runtime generates for us. The file contains declar-

ations for all of the controls referenced in HelloWorldCodeBehind.aspx.

As I hope you can see, code-behind files are easy to work with, and they can make

managing and using your pages much more straightforward than keeping your code

in code declaration blocks. You’ll find yourself using code-behind files in most of

the real-world projects that you build, but for simplicity’s sake, we’ll stick with

code declaration blocks for one more chapter.

Summary
Phew! We’ve covered quite a few concepts over the course of this chapter. Be sure

to reference this chapter again if you have trouble grasping the language concepts

until they become second nature to you. We hope you leave this chapter with a

basic understanding of programming concepts as they relate to the ASP.NET web

developer.

Build Your Own ASP.NET 4 Website Using C# & VB94

The next chapter will begin to put all the concepts that we’ve covered so far into

practice. We’ll begin by working with HTML Controls, Web Forms, and Web Con-

trols, before launching into our first hands-on project!

95VB and C# Programming Basics

Chapter4
Constructing ASP.NET Web Pages
If you’ve ever built a model from Lego bricks, you’re well prepared to start building

real ASP.NET web pages. ASP.NET offers features that allow web developers to

build parts of web pages independently, then put them together later to form com-

plete pages.

The content we’re creating through our work with ASP.NET is almost never static.

At design time, we tend to think in terms of templates that contain placeholders for

the content that will be generated dynamically at runtime. And to fill those place-

holders, we can either use one of the many controls ASP.NET provides, or build

our own.

In this chapter, we’ll discuss many of the objects and techniques that give life and

color to ASP.NET web pages, including:

■ web forms
■ HTML server controls
■ web server controls
■ web user controls
■ master pages

■ handling page navigation
■ styling pages and controls with CSS

If the list looks intimidating, don’t worry—all of this is far easier to understand than

it might first appear.

Web Forms
As you know, there’s always new terminology to master when you’re learning new

technologies. The term used to describe an ASP.NET web page is web form, and

this is the central object in ASP.NET development. You’ve already met web

forms—they’re the .aspx files you’ve worked with so far in this book. At first glance,

web forms look much like HTML pages, but in addition to static HTML content

they also contain ASP.NET-specific elements, and code that executes on the server

side.

Every web form includes a <form runat="server"> tag, which contains the

ASP.NET-specific elements that make up the page. Multiple forms aren’t supported.

The basic structure of a web form is shown here:

<%@ Page Language="language" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 ⋮ code block…
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Page Title</title>
</head>
<body>
 <form id="form1" runat="server">
 ⋮ user interface elements…
 </form>
</body>
</html>

Build Your Own ASP.NET 4 Website Using C# & VB98

To access and manipulate a web form programmatically, we use the

System.Web.UI.Page class. You might recognize this class from the code-behind

example we saw in Chapter 3. We must mention the class explicitly in the code-

behind file. In situations in which we’re not using code-behind files (that is, we’re

writing all the code inside the .aspx file instead), the Page class is still used—we

just don’t see it.

We can use a range of user interface elements inside the form—including typical,

static HTML code—but we can also use elements whose values or properties can

be generated or manipulated on the server either when the page first loads, or when

the form is submitted. These elements—which, in ASP.NET parlance, are called

controls—allow us to reuse common functionality, such as the page header, a cal-

endar, a shopping cart summary, or a “Today’s Quote” box, for example, across

multiple web forms. There are several types of controls in ASP.NET:

■ HTML server controls
■ web server controls
■ web user controls
■ master pages

There are significant technical differences between these types of controls, but what

makes them similar is the ease with which we can integrate and reuse them in our

web sites. Let’s take a look at them one by one.

HTML Server Controls
HTML server controls are outwardly identical to plain old HTML tags, but include

a runat="server" attribute. This gives the ASP.NET runtime control over the HTML

server controls, allowing us to access them programmatically. For example, if we

have an <a> tag in a page and we want to be able to change the address to which it

links dynamically, using VB or C# code, we use the runat="server" attribute.

A server-side HTML server control exists for each of HTML’s most common elements.

Creating HTML server controls is easy: we simply stick a runat="server" attribute

on the end of a normal HTML tag to create the HTML control version of that tag.

The complete list of current HTML control classes and their associated tags is given

in Table 4.1.

99Constructing ASP.NET Web Pages

Table 4.1. HTML control classes

Associated TagsClass

HtmlAnchor

<button runat="server">HtmlButton

<form runat="server">HtmlForm

HtmlImage

<input type="submit" runat="server">HtmlInputButton

<input type="reset" runat="server">

<input type="button" runat="server">

<input type="checkbox" runat="server">HtmlInputCheckBox

<input type="file" runat="server">HtmlInputFile

<input type="hidden" runat="server">HtmlInputHidden

<input type="image" runat="server">HtmlInputImage

<input type="radio" runat="server">HtmlInputRadioButton

<input type="text" runat="server">HtmlInputText

<input type="password" runat="server">

<select runat="server">HtmlSelect

<table runat="server">HtmlTable

<tr runat="server">HtmlTableRow

<td runat="server">HtmlTableCell

<th runat="server">

<textarea runat="server">HtmlTextArea

HtmlGenericControl

<div runat="server">

All other HTML tags

All the HTML server control classes are contained within the System.Web.UI.Htm-

lControls namespace. As they’re processed on the server side by the ASP.NET

runtime, we can access their properties through code elsewhere in the page. If you’re

familiar with JavaScript, HTML, and CSS, you’ll know that manipulating text

within HTML tags, or even manipulating inline styles within an HTML tag, can be

cumbersome and error-prone. HTML server controls aim to solve these problems

Build Your Own ASP.NET 4 Website Using C# & VB100

by allowing you to manipulate the page easily with your choice of .NET lan-

guage—for instance, using VB or C#.

Using the HTML Server Controls
Nothing explains the theory better than a simple, working example. Let’s create a

simple survey form that uses the following HTML server controls:

■ HtmlForm

■ HtmlButton

■ HtmlInputText

■ HtmlSelect

We’ll begin by creating a new file named Survey.aspx. Create the file in the

LearningASP\VB or LearningASP\CS folder you created in Chapter 1. For the purpose

of the exercises in this chapter we won’t be using a code-behind file, so don’t check

the Place code in a separate file checkbox when you create the form.

Update the automatically generated file with the following code to create the visual

interface for the survey:

Visual Basic LearningASP\VB\Survey_01.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Using ASP.NET HTML Server Controls</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<h1>Take the Survey!</h1>
 <!-- Display user name -->
 <p>

101Constructing ASP.NET Web Pages

 Name:

 <input type="text" id="name" runat="server" />
 </p>
 <!-- Display email -->
 <p>
 Email:

 <input type="text" id="email" runat="server" />
 </p>
 <!-- Display technology options -->
 <p>
 Which server technologies do you use?

 <select id="serverModel" runat="server" multiple="true">
 <option>ASP.NET</option>
 <option>PHP</option>
 <option>JSP</option>
 <option>CGI</option>
 <option>ColdFusion</option>
 </select>
 </p>
 <!-- Display .NET preference options -->
 <p>
 Do you like .NET so far?

 <select id="likeDotNet" runat="server">
 <option>Yes</option>
 <option>No</option>
 </select>
 </p>
 <!-- Display confirmation button -->
 <p>
 <button id="confirmButton" OnServerClick="Click"
 runat="server">Confirm</button>
 </p>
 <!-- Confirmation label -->
 <p>
 <asp:Label id="feedbackLabel" runat="server" />
 </p>
 </div>
 </form>
 </body>
</html>

The C# version is identical except for the first line—the page declaration:

Build Your Own ASP.NET 4 Website Using C# & VB102

C# LearningASP\CS\Survey_01.aspx (excerpt)

<%@ Page Language="C#" %>
⋮

From what we’ve already seen of HTML controls, you should have a good idea of

the classes we’ll be working with in this page. All we’ve done is place some

HtmlInputText controls, an HtmlButton control, and an HtmlSelect control inside

the obligatory HtmlForm control. We’ve also added a Label control, which we’ll use

to give feedback to the user.

HTML Server Controls in Action

Remember, HTML server controls are essentially HTML tags with the

runat="server" attribute. In most cases, you’ll also need to assign them IDs,

which will enable you to use the controls in your code.

Validation Warnings

You may notice that Visual Web Developer will display a validation warning

about the multiple=”true” attribute value on the select element. In XHTML

1.0, the select element only supports multiple=”multiple” and the IDE dutifully

reports the problem. However, since this is a server control—it has a

runat="server" attribute—you must specify multiple=”true”, otherwise the

page will not compile and execute.

When you eventually test this page, you’ll be happy to note that ASP.NET will

change the attribute value to multiple=”multiple”when the HTML is generated

and the page is displayed.

When it’s complete, and you view it in Visual Web Developer’s Design mode, the

Survey.aspx web form will resemble Figure 4.1. Note that you can’t execute the form

yet, because it’s missing the button’s Click event handler that we’ve specified using

the OnServerClick attribute on the HtmlButton control.

103Constructing ASP.NET Web Pages

Figure 4.1. A simple form that uses HTML server controls

When a user clicks on the Confirm button, we’ll display the submitted responses in

the browser. In a real application, we’d probably be more likely to save this inform-

ation to a database, and perhaps show the results as a chart. Keeping it simple for

now, the code for the Click event handler method below shows how we’d access

the properties of the HTML controls:

Visual Basic LearningASP\VB\Survey_02.aspx (excerpt)

<script runat="server">
Sub Click(ByVal s As Object, ByVal e As EventArgs)

 Dim i As Integer
 feedbackLabel.Text = "Your name is: " & name.Value & "
"
 feedbackLabel.Text += "Your email is: " & email.Value & _
 "
"
 feedbackLabel.Text += "You like to work with:
"
 For i = 0 To serverModel.Items.Count - 1
 If serverModel.Items(i).Selected Then
 feedbackLabel.Text += " - " & _
 serverModel.Items(i).Text & "
"
 End If
 Next i

Build Your Own ASP.NET 4 Website Using C# & VB104

 feedbackLabel.Text += "You like .NET: " & likeDotNet.Value
 End Sub
</script>

C# LearningASP\CS\Survey_02.aspx (excerpt)

<script runat="server">
void Click(Object s, EventArgs e)

 {
 feedbackLabel.Text = "Your name is: " + name.Value + "
";
 feedbackLabel.Text += "Your email is: " + email.Value +
 "
";
 feedbackLabel.Text += "You like to work with:
";
 for (int i = 0; i <= serverModel.Items.Count - 1; i++)
 {
 if (serverModel.Items[i].Selected)
 {
 feedbackLabel.Text += " - " + serverModel.Items[i].Text +
 "
";
 }
 }
 feedbackLabel.Text += "You like .NET: " + likeDotNet.Value;
 }
</script>

105Constructing ASP.NET Web Pages

Figure 4.2. Viewing the survey results

Once you’ve written the code, save your work and test the results in your browser.

Enter some information and click the button. To select multiple options in the

serverModel option box, hold down Ctrl as you click on your preferences. The in-

formation you enter should appear at the bottom of the page when the Confirm button

is clicked, as shown in Figure 4.2.

In conclusion, working with HTML server controls is really simple. All you need

to do is assign each control an ID, and add the runat="server" attribute. Then, you

can simply access and manipulate the controls using VB or C# code on the server

side.

Build Your Own ASP.NET 4 Website Using C# & VB106

Web Server Controls
Web server controls can be seen as advanced versions of HTML server controls.

Web server controls are those that generate content for you—you’re no longer in

control of the HTML being used. While having good knowledge of HTML is useful,

it’s not a necessity for those working with web server controls.

Let’s look at an example. We can use the Label web server control to place simple

text inside a web form. To change the Label’s text from within our C# or VB code,

we simply set its Text property like so:

Visual Basic

myLabel.Text = "Mickey Mouse"

Similarly, to add a text box to our form, we use the TextBox web server control.

Again, we can read or set its text using the Text property:

C#

username = usernameTextBox.Text;

Though we’re applying the TextBox control, ASP.NET still uses an input element

behind the scenes; however, we no longer have to worry about this detail. With web

server controls, you no longer need to worry about translating the needs of your

application into elements you can define in HTML—you can let the ASP.NET

framework do the worrying for you.

Unlike HTML server controls, web server controls don’t have a direct, one-to-one

correspondence with the HTML elements they generate. For example, we can use

either of two web server controls—the DropDownList control, or the ListBox con-

trol—to generate a select element.

Web server controls follow the same basic pattern as HTML tags, but the tag name

is preceded by asp:, and is capitalized using Pascal Casing. Pascal Casing is a form

that capitalizes the first character of each word (such as TextBox). The object IDs

are usually named using Camel Casing, where the first letter of each word except

the first is capitalized (e.g. usernameTextBox).

107Constructing ASP.NET Web Pages

Consider the following HTML input element, which creates an input text box:

<input type="text" name="usernameTextBox" size="30" />

The equivalent web server control is the TextBox control, and it looks like this:

<asp:TextBox id="usernameTextBox" runat="server" Columns="30">
</asp:TextBox>

Remember that, unlike any normal HTML that you might use in your web forms,

web server controls are first processed by the ASP.NET engine, where they’re

transformed to HTML. A side effect of this approach is that you must be very careful

to always include closing tags (the </asp:TextBox> part above). The HTML parsers

of most web browsers are forgiving about badly formatted HTML code, but ASP.NET

is not. Remember that you can use the shorthand syntax (/>) if nothing appears

between your web server control’s opening and closing tags. As such, you could

also write this TextBox like so:

<asp:TextBox id="usernameTextBox" runat="server" Columns="30" />

To sum up, the key points to remember when you’re working with web server

controls are:

■ Web server controls must be placed within a <form runat="server"> tag to

function properly.

■ Web server controls require the runat="server" attribute to function properly.

■ We include web server controls in a form using the asp: prefix.

There are more web server controls than HTML controls. Some offer advanced fea-

tures that simply aren’t available using HTML alone, and some generate quite

complex HTML code for you. We’ll meet many web server controls as we work

through this and future chapters.

For more information on web server controls, including the properties, methods,

and events for each, have a look at Appendix A.

Build Your Own ASP.NET 4 Website Using C# & VB108

Standard Web Server Controls
The standard set of web server controls that comes with ASP.NET mirrors the HTML

server controls in many ways. However, web server controls offer some new refine-

ments and enhancements, such as support for events and view state, a more consist-

ent set of properties and methods, and more built-in functionality. In this section,

we’ll take a look as some of the controls you’re most likely to use in your day-to-

day work.

Remember to use the .NET Framework SDK Documentation whenever you need

more details about any of the framework’s classes (or controls). You can access the

documentation from the Help > Index menu item in Visual Web Developer. To find

a class, simply search for the class’s name. If there are many classes with a given

name in different namespaces, you’ll be able to choose the one you want from the

Index Results window. For example, you’ll find that there are two classes named

Label, located in the System.Web.UI.WebControls and System.Windows.Forms

namespaces, as Figure 4.3 illustrates. You’ll most likely be interested in the version

of the class situated in the WebControls namespace.

Figure 4.3. Documentation for the Label control

109Constructing ASP.NET Web Pages

Label

The easiest way to display static text on your page is simply to add the text to the

body of the page without enclosing it in a tag. However, if you want to modify the

text displayed on a page using ASP.NET code, you can display your text within a

Label control. Here’s a typical example:

<asp:Label id="messageLabel" Text="" runat="server" />

The following code sets the Text property of the Label control to display the text

“Hello World”:

Visual Basic

Public Sub Page_Load()
 messageLabel.Text = "Hello World"
End Sub

C#

public void Page_Load()
{
 messageLabel.Text = "Hello World";
}

Reading this Page_Load handler code, we can see that when the page first loads,

the Text property of the Label control with the id of message will be set to “Hello

World.”

Literal

This is perhaps the simplest control in ASP.NET. If you set Literal’s Text property,

it will simply insert that text into the output HTML code without altering it. Unlike

Label, which has similar functionality, Literal doesn’t wrap the text in

tags that would allow the setting of style information.

TextBox

The TextBox control is used to create a box in which the user can type or read

standard text. You can use the TextMode property to set this control to display text

Build Your Own ASP.NET 4 Website Using C# & VB110

in a single line, across multiple lines, or to hide the text being entered (for instance,

in HTML password fields). The following code shows how we might use it in a

simple login page:

<p>
 Username: <asp:TextBox id="userTextBox" TextMode="SingleLine"
 Columns="30" runat="server" />
</p>
<p>
 Password: <asp:TextBox id="passwordTextBox"
 TextMode="Password" Columns="30" runat="server" />
</p>
<p>
 Comments: <asp:TextBox id="commentsTextBox"
 TextMode="MultiLine" Columns="30" Rows="10"
 runat="server" />
</p>

In each of the instances above, the TextMode attribute dictates the kind of text box

that’s to be rendered.

HiddenField

HiddenField is a simple control that renders an input element whose type attribute

is set to hidden. We can set its only important property, Value. These are sometimes

used to pass information through to another website, such as transferring user name

information to another site to perform auto-login functionality.

Button

By default, the Button control renders an input element whose type attribute is

set to submit. When a button is clicked, the form containing the button is submitted

to the server for processing, and both the Click and Command events are raised.

The following markup displays a Button control and a Label:

<asp:Button id="submitButton" Text="Submit" runat="server"
 OnClick="WriteText" />
<asp:Label id="messageLabel" runat="server" />

Notice the OnClick attribute on the control. When the button is clicked, the Click

event is raised, and the WriteText subroutine is called. The WriteText subroutine

111Constructing ASP.NET Web Pages

will contain the code that performs the intended function for this button, such as

displaying a message to the user:

Visual Basic

Public Sub WriteText(s As Object, e As EventArgs)
 messageLabel.Text = "Hello World"
End Sub

C#

public void WriteText(Object s, EventArgs e)
{
 messageLabel.Text = "Hello World";
}

It’s important to realize that events are associated with most web server controls,

and the basic techniques involved in using them, are the same events and techniques

we used with the Click event of the Button control. All controls implement a

standard set of events because they all inherit from the WebControl base class.

ImageButton

An ImageButton control is similar to a Button control, but it uses an image that we

supply in place of the typical system button graphic. Take a look at this example:

<asp:ImageButton id="myImgButton" ImageUrl="myButton.gif"
 runat="server" OnClick="WriteText" />
<asp:Label id="messageLabel" runat="server" />

The Click event of the ImageButton receives the coordinates of the point at which

the image was clicked:

Visual Basic

Public Sub WriteText(s As Object, e As ImageClickEventArgs)
 messageLabel.Text = "Coordinate: " & e.X & "," & e.Y
End Sub

Build Your Own ASP.NET 4 Website Using C# & VB112

C#

public void WriteText(Object s, ImageClickEventArgs e)
{
 messageLabel.Text = "Coordinate: " + e.X + "," + e.Y;
}

LinkButton

A LinkButton control renders a hyperlink that fires the Click event when it’s

clicked. From the point of view of ASP.NET code, LinkButtons can be treated in

much the same way as buttons, hence the name. Here’s LinkButton in action:

<asp:LinkButton id="myLinkButon" Text="Click Here"
 runat="server" />

HyperLink

The HyperLink control creates on your page a hyperlink that links to the URL in

the NavigateUrl property. Unlike the LinkButton control, which offers features

such as Click events and validation, HyperLinks are meant to be used to navigate

from one page to the next:

<asp:HyperLink id="myLink" NavigateUrl="http://www.sitepoint.com/"
 ImageUrl="splogo.gif" runat="server">SitePoint</asp:HyperLink>

If it’s specified, the ImageUrl attribute causes the control to display the specified

image, in which case the text is demoted to acting as the image’s alternate text.

CheckBox

You can use a CheckBox control to represent a choice that can have only two possible

states—checked or unchecked:

<asp:CheckBox id="questionCheck" Text="Yep, ASP.NET is cool!"
 Checked="True" runat="server" />

The main event associated with a CheckBox is the CheckChanged event, which can

be handled with the OnCheckChanged attribute. The Checked property is True if the

checkbox is checked, and False otherwise.

113Constructing ASP.NET Web Pages

RadioButton

A RadioButton is a lot like a CheckBox, except that RadioButtons can be grouped

to represent a set of options from which only one can be selected. Radio buttons

are grouped together using the GroupName property, like so:

<asp:RadioButton id="sanDiego" GroupName="City" Text="San Diego"
 runat="server" />

<asp:RadioButton id="boston" GroupName="City" Text="Boston"
 runat="server" />

<asp:RadioButton id="phoenix" GroupName="City" Text="Phoenix"
 runat="server" />

<asp:RadioButton id="seattle" GroupName="City" Text="Seattle"
 runat="server" />

Like the CheckBox control, the main event associated with RadioButtons is the

CheckChanged event, which can be handled with the OnCheckChanged attribute. The

other control we can use to display radio buttons is RadioButtonList, which we’ll

also meet in this chapter.

Image

An Image control creates an image that can be accessed dynamically from code; it

equates to the tag in HTML. Here’s an example:

<asp:Image id="myImage" ImageUrl="mygif.gif" runat="server"
 AlternateText="description" />

ImageMap

The ImageMap control generates HTML to display images that have certain clickable

regions called hot spots. Each hot spot reacts in a specific way when it’s clicked by

the user.

These areas can be defined using three controls, which generate hot spots of different

shapes: CircleHotSpot, RectangleHotSpot, and PolygonHotSpot. Here’s an example

that defines an image map with two circular hot spots:

<asp:ImageMap ID="myImageMap" runat="server" ImageUrl="image.jpg">
 <asp:CircleHotSpot AlternateText="Button1"
 Radius="20" X="50" Y="50" />

Build Your Own ASP.NET 4 Website Using C# & VB114

 <asp:CircleHotSpot AlternateText="Button2"
 Radius="20" X="100" Y="50" />
</asp:ImageMap>

Table 4.2. Possible values of HotSpotMode

Behavior when hot spot is clickedHotSpotMode value

noneInactive

The user is navigated to the specified URL.Navigate

When this value is set for a HotSpot, the behavior is inherited from the

parent ImageMap; if the parent ImageMap doesn’t specify a default

value, Navigate is set.

NotSet

When it’s set for an ImageMap, this value is effectively equivalent to

Navigate.

The hot spot raises the Click event that can be handled on the server

side to respond to the user action.

PostBack

To configure the action that results when a hot spot is clicked by the user, we set

the HotSpotMode property of the ImageMap control, or the HotSpotMode property of

the individual hot spot objects, or both, using the values shown in Table 4.2. If the

HotSpotMode property is set for the ImageMap control as well as for an individual

hot spot, the latter property will override that set for the more general ImageMap

control.

The Microsoft .NET Framework SDK Documentation for the ImageMap class and

HotSpotMode enumeration contains detailed examples of the usage of these values.

PlaceHolder

The PlaceHolder control lets us add elements at a particular place on a page at any

time, dynamically, through our code. Here’s what it looks like:

<asp:PlaceHolder id="myPlaceHolder" runat="server" />

The following code dynamically adds a new HtmlButton control within the place-

holder:

115Constructing ASP.NET Web Pages

Visual Basic

Public Sub Page_Load()
 Dim myButton As HtmlButton = New HtmlButton()
 myButton.InnerText = "My New Button"
 myPlaceHolder.Controls.Add(myButton)
End Sub

C#

public void Page_Load()
{
 HtmlButton myButton = new HtmlButton();
 myButton.InnerText = "My New Button";
 myPlaceHolder.Controls.Add(myButton);
}

Panel

The Panel control functions similarly to the div element in HTML, in that it allows

the set of items that resides within the tag to be manipulated as a group. For instance,

the Panel could be made visible or hidden by a Button’s Click event:

<asp:Panel id="myPanel" runat="server">
 <p>Username: <asp:TextBox id="usernameTextBox" Columns="30"
 runat="server" /></p>
 <p>Password: <asp:TextBox id="passwordTextBox"
 TextMode="Password" Columns="30" runat="server" /></p>
</asp:Panel>
<asp:Button id="hideButton" Text="Hide Panel" OnClick="HidePanel"
 runat="server" />

The code above places two TextBox controls within a Panel control. The Button

control is outside of the panel. The HidePanel subroutine would then control the

Panel’s visibility by setting its Visible property to False:

Visual Basic

Public Sub HidePanel(s As Object, e As EventArgs)
 myPanel.Visible = False
End Sub

Build Your Own ASP.NET 4 Website Using C# & VB116

C#

public void HidePanel(Object s, EventArgs e)
{
 myPanel.Visible = false;
}

In this case, when the user clicks the button, the Click event is raised and the

HidePanel subroutine is called, which sets the Visible property of the Panel control

to False.

List Controls
Here, we’ll meet the ASP.NET controls that display simple lists of elements: ListBox,

DropDownList, CheckBoxList, RadioButtonList, and BulletedList.

DropDownList

A DropDownList control is similar to the HTML select element. The DropDownList

control allows you to select one item from a list using a drop-down menu. Here’s

an example of the control’s code:

<asp:DropDownList id="ddlFavColor" runat="server">
 <asp:ListItem Text="Red" value="red" />
 <asp:ListItem Text="Blue" value="blue" />
 <asp:ListItem Text="Green" value="green" />
</asp:DropDownList>

The most useful event that this control provides is SelectedIndexChanged. This

event is also exposed by other list controls, such as the CheckBoxList and

RadioButtonList controls, allowing for easy programmatic interaction with the

control you’re using. These controls can also be bound to a database and used to

extract dynamic content into a drop-down menu.

ListBox

A ListBox control equates to the HTML select element with either the multiple

or size attribute set (size would need to be set to a value of 2 or more). If you set

the SelectionMode attribute to Multiple, the user will be able to select more than

one item from the list, as in this example:

117Constructing ASP.NET Web Pages

<asp:ListBox id="listTechnologies" runat="server"
 SelectionMode="Multiple">
 <asp:ListItem Text="ASP.NET" Value="aspnet" />
 <asp:ListItem Text="JSP" Value="jsp" />
 <asp:ListItem Text="PHP" Value="php" />
 <asp:ListItem Text="CGI" Value="cgi" />
 <asp:ListItem Text="ColdFusion" Value="cf" />
</asp:ListBox>

RadioButtonList

Like the RadioButton control, the RadioButtonList control represents radio buttons.

However, the RadioButtonList control represents a list of radio buttons and uses

more compact syntax. Here’s an example:

<asp:RadioButtonList id="favoriteColor" runat="server">
 <asp:ListItem Text="Red" Value="red" />
 <asp:ListItem Text="Blue" Value="blue" />
 <asp:ListItem Text="Green" Value="green" />
</asp:RadioButtonList>

CheckBoxList

As you may have guessed, the CheckBoxList control represents a group of check

boxes; it’s equivalent to using several CheckBox controls in a row:

<asp:CheckBoxList id="favoriteFood" runat="server">
 <asp:ListItem Text="Pizza" Value="pizza" />
 <asp:ListItem Text="Tacos" Value="tacos" />
 <asp:ListItem Text="Pasta" Value="pasta" />
</asp:CheckBoxList>

BulletedList

The BulletedList control displays bulleted or numbered lists, using (unordered

list) or (ordered list) tags. Unlike the other list controls, the BulletedList

doesn’t allow the selection of items, so the SelectedIndexChanged event isn’t sup-

ported.

The first property you’ll want to set is DisplayMode, which can be Text (the default),

or HyperLink, which will render the list items as links. When DisplayMode is set

Build Your Own ASP.NET 4 Website Using C# & VB118

to HyperLink, you can use the Click event to respond to a user’s click on one of

the items.

The other important property is BulletStyle, which determines the style of the

bullets. The accepted values are:

■ Numbered (1, 2, 3, …)
■ LowerAlpha (a, b, c, …)
■ UpperAlpha (A, B, C, …)
■ LowerRoman (i, ii, iii, …)
■ UpperRoman (I, II, III, …)
■ Circle

■ Disc

■ Square

■ CustomImage

If the style is set to CustomImage, you’ll also need to set the BulletStyleImageUrl

to specify the image to be used for the bullets. If the style is one of the numbered

lists, you can also set the FirstBulletNumber property to specify the first number

or letter that’s to be generated.

Advanced Controls
These controls are advanced in terms of their usage, the HTML code they generate,

and the background work they do for you. Some of these controls aren’t available

to older versions of ASP.NET; we’ll learn more about many of them (as well as

others that aren’t covered in this chapter) as we progress through this book.

Calendar

The Calendar is a great example of the reusable nature of ASP.NET controls. The

Calendar control generates markup that displays an intuitive calendar in which

the user can click to select, or move between, days, weeks, months, and so on.

The Calendar control requires very little customization. In Visual Web Developer,

select Website > Add New Item…, and make the changes indicated:

119Constructing ASP.NET Web Pages

Visual Basic LearningASP\VB\Calendar_01.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Calendar Test</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Calendar ID="myCalendar" runat="server" />
 </div>
 </form>
 </body>
</html>

Again, the C# version is the same, except for the Page declaration:

C# LearningASP\CS\01_Calendar.aspx (excerpt)

<%@ Page Language="C#" %>
⋮

If you save this page in your working folder and load it, you’ll see the output shown

in Figure 4.4.

Build Your Own ASP.NET 4 Website Using C# & VB120

Figure 4.4. Displaying the default calendar

The Calendar control contains a wide range of properties, methods, and events,

including those listed in Table 4.3.

121Constructing ASP.NET Web Pages

Table 4.3. Some of the Calendar control’s properties

DescriptionProperty

This property sets the format of the day names. Its possible values are

FirstLetter, FirstTwoLetters, Full, and Short. The default

is Short, which displays the three-letter abbreviation.

DayNameFormat

This property sets the day that begins each week in the calendar. By default,

the value of this property is determined by your server’s region settings,

but you can set this to Sunday or Monday if you want to control it.

FirstDayOfWeek

Set to CustomText by default, this property can be set to ShortMonth

or FullMonth to control the format of the next and previous month

links.

NextPrevFormat

This property contains a DateTime value that specifies the highlighted day.

You’ll use this property often, to determine which date the user has

selected.

SelectedDate

This property determines whether days, weeks, or months can be selected;

its possible values are Day, DayWeek, DayWeekMonth, and None, and

the default is Day. When Day is selected, a user can only select a day;

when DayWeek is selected, a user can select a day or an entire week; and

so on.

SelectionMode

This property controls the text of the link that’s displayed to allow users

to select an entire month from the calendar.

SelectMonthText

This property controls the text of the link that’s displayed to allow users

to select an entire week from the calendar.

SelectWeekText

If True, this property displays the names of the days of the week. The

default is True.

ShowDayHeader

If True, this property renders the calendar with grid lines. The default is

True.

ShowGridLines

If True, this property displays next month and previous month links.

The default is True.

ShowNextPrevMonth

If True, this property displays the calendar’s title. The default is False.ShowTitle

This property determines how the month name appears in the title bar.

Possible values are Month and MonthYear. The default is MonthYear.

TitleFormat

This DateTime value sets the calendar’s current date. By default, this value

is not highlighted within the Calendar control.

TodaysDate

This DateTime value controls which month is displayed.VisibleDate

Build Your Own ASP.NET 4 Website Using C# & VB122

Let’s take a look at an example that uses some of these properties, events, and

methods to create a Calendar control which allows users to select days, weeks, and

months. Modify the calendar in Calendar.aspx (both the VB and C# versions), and

add a label to it, as follows:

LearningASP\VB\Calendar_02.aspx (excerpt)

⋮
 <form id="form1" runat="server">
 <div>
 <h1>Pick your dates:</h1>
 <asp:Calendar ID="myCalendar" runat="server"
 DayNameFormat="Short" FirstDayOfWeek="Sunday"
 NextPrevFormat="FullMonth" SelectionMode="DayWeekMonth"
 SelectWeekText="Select Week"
 SelectMonthText="Select Month" TitleFormat="Month"
 OnSelectionChanged="SelectionChanged" />
 <h1>You selected these dates:</h1>
 <asp:Label ID="myLabel" runat="server" />
 </div>
 </form>
⋮

Now edit the <script runat="server"> tag to include the SelectionChanged event

handler referenced by your calendar:

Visual Basic LearningASP\VB\Calendar_02.aspx (excerpt)

<script runat="server">
Sub SelectionChanged(ByVal s As Object, ByVal e As EventArgs)

 myLabel.Text = ""
 For Each d As DateTime In myCalendar.SelectedDates
 myLabel.Text &= d.ToString("D") & "
"
 Next
 End Sub
</script>

C# LearningASP\CS\Calendar_02.aspx (excerpt)

<script runat="server">
void SelectionChanged(Object s, EventArgs e)

 {
 myLabel.Text = "";

123Constructing ASP.NET Web Pages

 foreach (DateTime d in myCalendar.SelectedDates)
 {
 myLabel.Text += d.ToString("D") + "
";
 }
 }
</script>

Save your work and test it in a browser. Try selecting a day, week, or month. The

selection will be highlighted in a similar way to the display shown in Figure 4.5.

Figure 4.5. Using the Calendar control

In SelectionChanged, we loop through each of the dates that the user has selected,

and append each to the Label we added to the page.

AdRotator

The AdRotator control allows you to display a list of banner advertisements at

random within your web application. However, it’s more than a mere substitute for

creating a randomization script from scratch. Since the AdRotator control gets its

Build Your Own ASP.NET 4 Website Using C# & VB124

content from an XML file, the administration and updating of banner advertisement

files and their properties is a snap. Also, the XML file allows you to control the

banner’s image, link, link target, and frequency of appearance in relation to other

banner ads.

The benefits of using this control don’t stop there, though. Most of the AdRotator

control’s properties reside within an XML file, so, if you wanted to, you could share

that XML file on the Web, allowing value added resellers (VARS), or possibly your

companies’ partners, to use your banner advertisements on their web sites.

What Is XML?

In essence, XML is simply a text-based format for the transfer or storage of data;

it contains no details about how that data should be presented. XML is very easy

to start with because of its close resemblance to your old friend HTML: both are

largely comprised of tags inside angle brackets (< and >), and any tag may contain

attributes that are specific to that tag. The biggest difference between XML and

HTML is that, rather than providing a fixed set of tags as HTML does, XML allows

us to create our own tags to describe the data we wish to represent.

Take a look at the following HTML element:

<h1>Star Wars Episode I: The Phantom Menace</h1>

This example describes the content between the tags as a level one heading. This

is fine if all we want to do is display the heading “Star Wars Episode I: The

Phantom Menace” on a web page. But what if we want to access those words as

data?

Like HTML, XML’s purpose is to describe the content of a document. But where

HTML is a very generic markup language for documents—headings, paragraphs

and lists, for example—XML can, very specifically, describe what the content is.

Using XML, the web author can mark up the contents of a document, describing

that content in terms of its relevance as data.

We can use XML to mark up the words “Star Wars Episode I: The Phantom Men-

ace” in a way that better reflects this content’s significance as data:

<film>
 <title>Star Wars Episode I: The Phantom Menace</title>
</film>

125Constructing ASP.NET Web Pages

Here, the XML tag names we’ve chosen best describe the contents of the element.

We also define our own attribute names as necessary. For instance, in the example

above, you may decide that you want to differentiate between the VHS version

and the DVD version of the film, or record the name of the movie’s director. This

can be achieved by adding attributes and elements, as shown below:

<film format="DVD">
 <title>Star Wars Episode I: The Phantom Menace</title>
<director>George Lucas</director>

</film>

If you want to test this control out, create a file called ads.xml in your LearningASP\VB

or LearningASP\CS folder (or both), and insert the content presented below. Feel free

to create your own banners, or to use those provided in the code archive for this

book:

LearningASP\VB\Ads.xml

<?xml version="1.0" encoding="utf-8" ?>
<Advertisements>
 <Ad>
 <ImageUrl>workatdorknozzle.gif</ImageUrl>
 <NavigateUrl>http://www.example.com</NavigateUrl>
 <TargetUrl>_blank</TargetUrl>
 <AlternateText>Work at Dorknozzle!</AlternateText>
 <Keyword>HR Sites</Keyword>
 <Impressions>2</Impressions>
 </Ad>
 <Ad>
 <ImageUrl>getthenewsletter.gif</ImageUrl>
 <NavigateUrl>http://www.example.com</NavigateUrl>
 <TargetUrl>_blank</TargetUrl>
 <AlternateText>Get the Nozzle Newsletter!</AlternateText>
 <Keyword>Marketing Sites</Keyword>
 <Impressions>1</Impressions>
 </Ad>
</Advertisements>

As you can see, the Advertisements element is the root node, and in accordance

with the XML specification, it appears only once. For each individual advertisement,

Build Your Own ASP.NET 4 Website Using C# & VB126

we simply add an Ad child element. For instance, the above advertisement file

contains details for two banner advertisements.

As you’ve probably noticed by now, the .xml file enables you to specify properties

for each banner advertisement by inserting appropriate elements inside each of the

Ad elements. These elements include:

ImageURL

the URL of the image to display for the banner ad

NavigateURL

the web page to which your users will navigate when they click the banner ad

AlternateText

the alternative text to display for browsers that don’t support images

Keyword

the keyword to use to categorize your banner ad

If you use the KeywordFilter property of the AdRotator control, you can specify

the categories of banner ads to display.

Impressions

the relative frequency with which a particular banner ad should be shown in

relation to other banner advertisements

The higher this number, the more frequently that specific banner will display

in the browser. The number provided for this element can be as low as one, but

cannot exceed 2,048,000,000; if it does, the page throws an exception.

Except for ImageURL, all these elements are optional. Also, if you specify an Ad

without a NavigateURL, the banner ad will display without a hyperlink.

To make use of this Ads.xml file, create a new ASP.NET page called AdRotator.aspx,

and add the following code to it:

Visual Basic LearningASP\VB\AdRotator.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

127Constructing ASP.NET Web Pages

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Using the AdRotator Control</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:AdRotator ID="adRotator" runat="server"
 AdvertisementFile="Ads.xml" />
 </div>
 </form>
 </body>
</html>

Figure 4.6. Displaying ads using AdRotator.aspx

As with most of our examples, the C# version of this code is the same except for

the Page declaration. You’ll also need to copy the workatdorknozzle.gif and

getthenewsletter.gif image files from the code archive and place them in your

working folder in order to see these ad images. Save your work and test it in the

browser; the display should look something like Figure 4.6.

Refresh the page a few times, and you’ll notice that the first banner appears more

often than the second. This occurs because the Impression value for the first Ad is

double the value set for the second banner, so it will appear twice as often.

Build Your Own ASP.NET 4 Website Using C# & VB128

TreeView

The TreeView control is a very powerful control that’s capable of displaying a

complex hierarchical structure of items. Typically, we’d use it to view a directory

structure or a site navigation hierarchy, but it could be used to display a family tree,

a corporate organizational structure, or any other hierarchical structure.

The TreeView can pull its data from various sources. We’ll talk more about the

various kinds of data sources later in the book; here, we’ll focus on the

SiteMapDataSource class, which, as its name suggests, contains a hierarchical

sitemap. By default, this sitemap is read from a file called Web.sitemap that’s located

in the root of your project (you can easily create this file using the Site Map template

in Visual Web Developer). Web.sitemap is an XML file that looks like this:

LearningASP\VB\Web.sitemap

<siteMap
 xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode title="Home" url="~/Default.aspx"
 description="Home">
 <siteMapNode title="SiteMapPath" url="~/SiteMapPath.aspx"
 description="TreeView Example" />
 <siteMapNode title="TreeView" url="~/TreeViewSitemap.aspx"
 description="TreeView Example" />
 <siteMapNode title="ClickEvent" url="~/ClickEvent.aspx"
 description="ClickEvent Example" />
 <siteMapNode title="Loops" url="~/Loops.aspx"
 description="Loops Example" />
 </siteMapNode>
</siteMap>

A Web.sitemap Limitation

An important limitation to note when you’re working with Web.sitemap files is

that they must contain only one siteMapNode as the direct child of the root

siteMap element.

In the example above, the siteMapNode with the title Home is this single

siteMapNode. If we added another siteMapNode alongside (rather than inside)

this element, the Web.sitemap file would no longer be valid.

129Constructing ASP.NET Web Pages

To use this file, you’ll need to add a SiteMapDataSource control to the page, as well

as a TreeView control that uses this data source, like this:

Visual Basic LearningASP\VB\TreeViewSiteMap.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>TreeView Demo</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:SiteMapDataSource ID="mySiteMapDataSource"
 runat="server" />
 <asp:TreeView ID="myTreeView" runat="server"
 DataSourceID="mySiteMapDataSource" />
 </div>
 </form>
 </body>
</html>

Note that although the SiteMapDataSource is a control, it doesn’t generate any

HTML within the web page. There are many data source controls like this; we’ll

delve into them in more detail later.

When combined with the example Web.sitemap file above, this web form would

generate an output like that shown in Figure 4.7.

Build Your Own ASP.NET 4 Website Using C# & VB130

Figure 4.7. A simple TreeView control

As you can see, the TreeView control generated the tree for us. The root Home node

can even be collapsed or expanded.

In many cases, we won’t want to show the root node; we can hide it from view by

setting the ShowStartingNode property of the SiteMapDataSource to false:

<asp:SiteMapDataSource ID="mySiteMapDataSource" runat="server"
ShowStartingNode="false" />

SiteMapPath

The SiteMapPath control provides the functionality to generate a breadcrumb

navigational structure for your site. Breadcrumb systems help to orientate users,

giving them an easy way to identify their current location within the site, and

providing handy links to the current location’s ancestor nodes. An example of a

breadcrumb navigation system is shown in Figure 4.8.

The SiteMapPath control will automatically use any SiteMapDataSource control

that exists in a web form, such as the TreeView control in the previous example, to

display a user’s current location within the site. For example, you could simply

add the following code to a new web form to achieve the effect shown in Figure 4.8:

131Constructing ASP.NET Web Pages

Figure 4.8. A breadcrumb created using the SiteMapPath control

Visual Basic LearningASP\VB\SiteMapPath.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>SiteMapPath Demo</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:SiteMapDataSource ID="mySiteMapDataSource"
 runat="server" />
 <asp:SiteMapPath ID="mySiteMapPath" runat="server"
 DataSourceID="mySiteMapDataSource"
 PathSeparator=" > " />
 </div>
 </form>
 </body>
</html>

Note that the SiteMapPath control allows you to customize the breadcrumbs’ separ-

ator character via the PathSeparator property. Also note that if you don’t have a

file named Default.aspx in the directory, the root node link won’t work.

Build Your Own ASP.NET 4 Website Using C# & VB132

Menu

The Menu control is similar to TreeView in that it displays hierarchical data from a

data source; the ways in which we work with both controls are also very similar.

The most important differences between the two lie in their appearances, and the

fact that Menu supports templates for better customization, and displays only two

levels of items (menu items and submenu items).

MultiView

The MultiView control is similar to Panel in that it doesn’t generate interface ele-

ments itself, but contains other controls. However, a MultiView can store more

pages of data (called views), and lets you show one page at a time. You can change

the active view (the one that’s being presented to the visitor) by setting the value

of the ActiveViewIndex property. The first page corresponds to an ActiveViewIndex

of 0; the value of the second page is 1; the value of the third page is 2; and so on.

The contents of each template are defined inside child View elements. Consider the

following code example, which creates a Button control and a MultiView control:

Visual Basic LearningASP\VB\MultiView.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
Sub SwitchPage(s as Object, e as EventArgs)

 myMultiView.ActiveViewIndex = _
 (myMultiView.ActiveViewIndex + 1) Mod 2
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>MultiView Demo</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p>
 <asp:Button ID="myButton" Text="Switch Page"

133Constructing ASP.NET Web Pages

 runat="server" OnClick="SwitchPage" />
 </p>
 <asp:MultiView ID="myMultiView" runat="server"
 ActiveViewIndex="0">
 <asp:View ID="firstView" runat="server">
 <p>... contents of the first view ...</p>
 </asp:View>
 <asp:View ID="secondView" runat="server">
 <p>... contents of the second view ...</p>
 </asp:View>
 </asp:MultiView>
 </div>
 </form>
 </body>
</html>

C# LearningASP\CS\MultiView.aspx (excerpt)

<%@ Page Language="C#" %>
⋮
<script runat="server">
 public void SwitchPage(Object s, EventArgs e)
 {
 myMultiView.ActiveViewIndex =
 (myMultiView.ActiveViewIndex + 1) % 2;
 }
</script>
⋮

As you can see, by default, the ActiveViewIndex is 0, so when this code is first ex-

ecuted, the MultiView will display its first template, which is shown in Figure 4.9.

Clicking on the button will cause the second template to be displayed. The

SwitchPage event handler uses the modulo operator, Mod in VB and % in C#, to set

the ActiveViewIndex to 1 when its original value is 0, and vice versa

The MultiView control has a number of other handy features, so be sure to check

the documentation for this control if you’re using it in a production environment.

Build Your Own ASP.NET 4 Website Using C# & VB134

Figure 4.9. Using the MultiView control

Wizard

The Wizard control is a more advanced version of the MultiView control. It can

display one or more pages at a time, but also includes additional built-in function-

ality such as navigation buttons, and a sidebar that displays the wizard’s steps.

FileUpload

The FileUpload control allows you to let visitors upload files to your server. You’ll

learn how to use this control in Chapter 14.

Web User Controls
As you build real-world projects, you’ll frequently encounter pieces of the user in-

terface that appear in multiple places—headers or footers, navigation links, and

login boxes are just a few examples. Packaging their forms and behaviors into your

own controls will allow you to reuse these components just as you can reuse

ASP.NET’s built-in controls.

Building your own web server controls involves writing advanced VB or C# code,

and is not within the scope of this book, but it’s good to know that it’s possible.

Creating customized web server controls makes sense when you need to build more

complex controls that provide a high level of control and performance, or you want

to create controls that can be integrated easily into many projects.

Those of us without advanced coding skills can develop our own controls by creating

web user controls. These are also powerful and reusable within a given project;

they can expose properties, events, and methods, just like other controls; and they’re

easy to implement.

135Constructing ASP.NET Web Pages

A web user control is represented by a class that inherits from

System.Web.UI.UserControl, and contains the basic functionality that you need

to extend to create your own controls. The main drawback to using web user controls

is that they’re tightly integrated into the projects in which they’re implemented. As

such, it’s more difficult to distribute them, or include them in other projects, than

it is to distribute or reuse web server controls.

Web user controls are implemented very much like normal web forms—they’re

comprised of other controls, HTML markup, and server-side code. The file extension

of a web user control is .ascx.

Creating a Web User Control
Let’s get a feel for web user controls by stepping through a simple example. Let’s

say that in your web site, you have many forms consisting of pairs of Label and

TextBox controls, like the one shown in Figure 4.10.

All the labels must have a fixed width of 100 pixels, and the text boxes must accept

a maximum of 20 characters.

Rather than adding many labels and text boxes to the form, and then having to set

all their properties, let’s make life easier by building a web user control that includes

a Label of the specified width, and a TextBox that accepts 20 characters; you’ll then

be able to reuse the web user control wherever it’s needed in your project.

Create a new file in you working project using the Web User Control template, as

shown in Figure 4.11.

Build Your Own ASP.NET 4 Website Using C# & VB136

Figure 4.10. A simple form

Figure 4.11. Creating a new Web User Control

Name the file SmartBox.ascx. Then, add the control’s constituent controls—a Label

control and a TextBox control—as shown below (for both VB and C# versions):

137Constructing ASP.NET Web Pages

Visual Basic LearningASP\VB\SmartBox.ascx (excerpt)

<%@ Control Language="VB" ClassName="SmartBox" %>

<script runat="server">
⋮
</script>

<p>
 <asp:Label ID="myLabel" runat="server" Text="" Width="100" />
 <asp:TextBox ID="myTextBox" runat="server" Text="" Width="200"
 MaxLength="20" />
</p>

Label Widths in Firefox

Unfortunately, setting the Width property of the Label control doesn’t guarantee

that the label will appear at that width in all browsers. The current version of

Firefox, for example, will not display the above label in the way it appears in In-

ternet Explorer.

To get around this pitfall, you should use a CSS style sheet and the CssClass

property, which we’ll take a look at later in this chapter.

In Chapter 3 we discussed properties briefly, but we didn’t explain how you could

create your own properties within your own classes. So far, you’ve worked with

many properties of the built-in controls. For example, you’ve seen a lot of code that

sets the Text property of the Label control.

As a web user control is a class, it can also have methods, properties, and so on.

Our SmartBox control extends the base System.Web.UI.UserControl class by adding

two properties:

■ LabelText is a write-only property that allows the forms using the control to set

the control’s label text.

■ Text is a read-only property that returns the text the user typed into the text box.

Let’s add a server-side script element that will give our control two properties—one

called Text, for the text in the TextBox, and one called LabelText, for the text in

the Label:

Build Your Own ASP.NET 4 Website Using C# & VB138

Visual Basic LearningASP\VB\SmartBox.ascx (excerpt)

<%@ Control Language="VB" ClassName="SmartBox" %>

<script runat="server">
Public WriteOnly Property LabelText() As String

 Set(ByVal value As String)
 myLabel.Text = value
 End Set
 End Property

 Public ReadOnly Property Text() As String
 Get
 Text = myTextBox.Text
 End Get
 End Property
</script>

<p>
 <asp:Label ID="myLabel" runat="server" Text="" Width="100" />
 <asp:TextBox ID="myTextBox" runat="server" Text="" Width="200"
 MaxLength="20" />
</p>

C# LearningASP\CS\SmartBox.ascx (excerpt)

<%@ Control Language="C#" ClassName="SmartBox" %>

<script runat="server">
public string LabelText

 {
 set
 {
 myLabel.Text = value;
 }
 }
 public string Text
 {
 get
 {
 return myTextBox.Text;
 }
 }
</script>

139Constructing ASP.NET Web Pages

<p>
 <asp:Label ID="myLabel" runat="server" Text="" Width="100" />
 <asp:TextBox ID="myTextBox" runat="server" Text="" Width="200"
 MaxLength="20" />
</p>

When you use the SmartBox control in a form, you can set its label and have the

text entered by the user, like this:

Visual Basic

mySmartBox.LabelText = "Address:"
userAddress = mySmartBox.Text

C#

mySmartBox.LabelText = "Address:";
userAddress = mySmartBox.Text;

Let’s see how we implemented this functionality. In .NET, properties can be read-

only, write-only, or read-write. In many cases, you’ll want to have properties that

can be both readable and writeable, but in this case, we want to be able to set the

text of the inner Label, and to read the text from the TextBox.

To define a write-only property in VB, you need to use the WriteOnly modifier.

Write-only properties need only define a special block of code that starts with the

keyword Set. This block of code, called an accessor, is just like a subroutine that

takes as a parameter the value that needs to be set. The block of code uses this value

to perform the desired action—in the case of the LabelText property, the action

sets the Text property of our Label control, as shown below:

Visual Basic LearningASP\VB\SmartBox.ascx (excerpt)

Public WriteOnly Property LabelText() As String
 Set(ByVal value As String)
 myLabel.Text = value
 End Set
End Property

Build Your Own ASP.NET 4 Website Using C# & VB140

Assuming that a form uses a SmartBox object called mySmartBox, we could set the

Text property of the Label like this:

Visual Basic

mySmartBox.LabelText = "Address:"

When this code is executed, the Set accessor of the LabelText property is executed

with its value parameter set to Address:. The Set accessor uses this value to set

the Text property of the Label.

The other accessor you can use when defining properties is Get, which allows us

to read values instead of writing them. Obviously, you aren’t allowed to add a Get

accessor to a WriteOnly property, but one is required for a ReadOnly property, such

as Text:

Visual Basic LearningASP\VB\SmartBox.ascx (excerpt)

Public ReadOnly Property Text() As String
 Get
 Text = myTextBox.Text
 End Get
End Property

The Text property is ReadOnly, but it doesn’t need to be. If you wanted to allow the

forms using the control to set some default text to the TextBox, you’d need to add

a Set accessor, and remove the ReadOnly modifier.

When you’re defining a property in C#, you don’t need to set any special modifiers,

such as ReadOnly or WriteOnly, for read-only or write-only properties. A property

that has only a get accessor will, by default, be considered read-only:

C# LearningASP\CS\SmartBox.ascx (excerpt)

public string Text
{
 get
 {
 return myTextBox.Text;
 }
}

141Constructing ASP.NET Web Pages

Likewise, a property that has only a set accessor will be considered to be write-

only:

C# LearningASP\CS\SmartBox.ascx (excerpt)

public string LabelText
{
 set
 {
 myLabel.Text = value;
 }
}

Using the Web User Control
Once the user control has been created, it can be referenced from any ASP.NET

page using the Register directive, as follows:

<%@ Register TagPrefix="prefix" TagName="name"
 Src="source.ascx" %>

The Register directive requires three attributes:

TagPrefix

the prefix for the user control, which allows you to group related controls to-

gether, and avoid naming conflicts

TagName

the control’s tag name, which will be used when the control is added to the

ASP.NET page

Src

the path to the .ascx file that describes the user control

After we register the control, we create instances of it using the <TagPrefix:TagName>

format. Let’s try an example that uses the SmartBox control. Create a Web Form

named ControlTest.aspx in your project folder, and give it this content:

Build Your Own ASP.NET 4 Website Using C# & VB142

Visual Basic LearningASP\VB\ControlTest.aspx

<%@ Page Language="VB" %>
<%@ Register TagPrefix="sp" TagName="SmartBox"
 Src="SmartBox.ascx" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Creating ASP.NET Web Server Controls</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<sp:SmartBox ID="nameSb" runat="server"
 LabelText="Name:" />
 <sp:SmartBox ID="addressSb" runat="server"
 LabelText="Address:" />
 <sp:SmartBox ID="countrySb" runat="server"
 LabelText="Country:" />
 <sp:SmartBox ID="phoneSb" runat="server"
 LabelText="Phone:" />
 </div>
 </form>
 </body>
</html>

Creating this page by hand will really help you to understand the process of building

a web form. In time, you’ll learn how to use Visual Web Developer to do part of the

work for you. For example, you can drag a user control from Solution Explorer and

drop it onto a web form; Visual Web Developer will register the control and add an

instance of the control for you. Loading this page will produce the output we saw

in Figure 4.10.

Now, this is a very simple example indeed, but we can easily extend it for other

purposes. You can see in the above code snippet that we set the LabelText property

directly using the control’s attributes; however, we could have accessed the proper-

143Constructing ASP.NET Web Pages

ties from our code instead. Here’s an example in which we set the LabelText

properties of each of the controls using VB and C#:

Visual Basic

<script runat="server">
 Protected Sub Page_Load()
 nameSb.LabelText = "Name:"
 addressSb.LabelText = "Address:"
 countrySb.LabelText = "Country:"
 phoneSb.LabelText = "Phone:"
 End Sub
</script>

C#

<script runat="server">
 protected void Page_Load()
 {
 nameSb.LabelText = "Name:";
 addressSb.LabelText = "Address:";
 countrySb.LabelText = "Country:";
 phoneSb.LabelText = "Phone:";
 }
</script>

Master Pages
Master pages are an important feature that was introduced in ASP.NET 2.0. Master

pages are similar to web user controls in that they, too, are composed of HTML and

other controls; they can be extended with the addition of events, methods, or

properties; and they can’t be loaded directly by users—instead, they’re used as

building blocks to design the structure of your web forms. forms. You got a taste of

master pages when you created your first ASP.NET project in Chapter 1, since the

Visual Web Developer IDE automatically includes a sample master page when you

created your project file.

A master page is a page template that can be applied to give many web forms a

consistent appearance. For example, a master page can set out a standard structure

Build Your Own ASP.NET 4 Website Using C# & VB144

containing the header, footer, and other elements that you expect to display in

multiple web forms within a web application.

Master page files have the .master extension, and, just like web forms and web user

controls, they support code-behind files. All master pages inherit from the class

System.Web.UI.MasterPage.

Designing a site structure using master pages and web user controls gives you the

power to modify and extend the site easily. If your site uses these features in a well-

planned way, it can be very easy to modify certain details of the layout or function-

ality of your site, because updating a master page or a web user control takes imme-

diate effect on all the web forms that use the file.

As we’ve already mentioned, a master page is built using HTML and controls, in-

cluding the special ContentPlaceHolder control. As its name suggests, the

ContentPlaceHolder is a placeholder that can be filled with content that’s relevant

to the needs of each web form that uses the master page. In creating a master page,

we include all of the basic structure of future pages in the master page itself, includ-

ing the <html>, <head>, and <body> tags, and let the web forms specify the content

that appears in the placeholders.

Let’s see how this works with a simple example. Suppose we have a site with many

pages, all of which contain a standard header, footer, and navigation menu, laid out

as per the wireframe shown in Figure 4.12.

Figure 4.12. A simple web site layout

145Constructing ASP.NET Web Pages

If all the pages in the site have the same header, footer, and navigation menu, it

makes sense to include these components in a master page, and to build several

web forms that customize only the content areas on each page. We’ll begin to create

such a site in Chapter 5, but let’s work through a quick example here.

To keep this example simple, we won’t include a menu here: we’ll include just the

header, the footer, and the content placeholder. Add a new file to your project using

the Master Page template in Visual Web Developer. Name the file FrontPages.master,

as shown in Figure 4.13, and select the appropriate language. You’ll notice that

some <asp:ContentPlaceHolder> tags have been created for you already, one in

the <head>, and one in the page body. You can remove them and modify the page

like this:

Visual Basic LearningASP\VB\FrontPages.master

<%@ Master Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<h1>Welcome to SuperSite Inc!</h1>
 <asp:ContentPlaceHolder ID="FrontPageContent"
 runat="server" />
 <p>Copyright 2006</p>
 </div>
 </form>
 </body>
</html>

Again, the C# version is identical except for the Master declaration at the top of the

page:

Build Your Own ASP.NET 4 Website Using C# & VB146

C# LearningASP\CS\FrontPages.master (excerpt)

<%@ Master Language="C#" %>
⋮

Figure 4.13. Creating a Master Page

The master page looks almost like a web form, except for one important detail: it

has an empty ContentPlaceHolder control. If you want to build a web form based

on this master page, you just need to reference the master page using the Page dir-

ective in the web form, and add a Content control that includes the content you

want to insert.

Let’s try it. Create a web form in Visual Web Developer called FrontPage.aspx, and

check the Select master page option. This option will allow you to choose a master

page for the form; Visual Web Developer will then use that master page to generate

the code for you. Edit it to match this code snippet:

147Constructing ASP.NET Web Pages

Visual Basic LearningASP\VB\FrontPage.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/FrontPages.master"
 Title="Front Page" %>

<script runat="server">

</script>

<asp:Content ID="Content1" ContentPlaceHolderID="FrontPageContent"
 Runat="Server">
<p>

 Welcome to our web site! We hope you'll enjoy your visit.
 </p>
</asp:Content>

The VB and C# versions of this code are the same except for the Language attribute

on the Page declaration, but because Visual Web Developer generates all the code

for you automatically, you don’t need to worry about it—instead, you can focus on

the content.

You’re all set now! Executing FrontPage.aspx will generate the output shown in

Figure 4.14.

Figure 4.14. Using a master page to set the header and footer

Build Your Own ASP.NET 4 Website Using C# & VB148

Although the example is simplistic, it’s easy to see the possibilities: you can create

many web forms based on this template very easily. In our case, the master page

contains a single ContentPlaceHolder, but it could have more. Also, we can define

within the master page default content for display inside the ContentPlaceHolder

on pages whose web forms don’t provide a Content element for that placeholder.

We’ll explore Visual Web Developer’s capabilities in more depth in the following

chapters, but for now you can play around with it yourself, using Design mode to

visually edit web forms that are based on master pages. Looking at Figure 4.15, you

can see that the content of the master page is read-only, and that you can edit only

the content areas of the page.

Figure 4.15. Design mode shows the editable areas of a form that uses a master page

Using Cascading Style Sheets (CSS)
It’s clear that controls make it easy for us to reuse pieces of functionality in multiple

locations. For example, I can’t imagine an easier way to add calendars to many web

forms than to use the Calendar web server control.

However, controls don’t solve the problem of defining and managing the visual

elements of your web site. Modern web sites need constant updating to keep them

149Constructing ASP.NET Web Pages

fresh, and it’s not much fun editing hundreds of pages by hand just to change a

border color, for example, and then having to check everything to ensure that your

changes are consistent. The process is even more painful if your client wants a more

serious update, like a rearrangement of the components on the pages.

The good news is that this maintenance work can be made a lot easier if you plan

ahead, correctly follow a few basic rules, and efficiently use the tools that HTML

and ASP.NET offer you.

An essential tool for building reusable visual styles is Cascading Style Sheets (CSS).

HTML was initially designed to deliver simple text content, and didn’t address the

specifics of how particular items appeared in the browser. HTML left it to the indi-

vidual browsers to work out these intricacies, and tailor the output to the limitations

and strengths of users’ machines. While we can change font styles, sizes, colors,

and so on using HTML tags, this practice can lead to verbose code and pages that

are very hard to restyle at a later date.

CSS gives web developers the power to create one set of styles in a single location,

and to apply those styles to all of the pages in our web site. All of the pages to which

the style sheet is applied will display the same fonts, colors, and sizes, giving the

site a consistent feel. Regardless of whether our site contains three pages or 300,

when we alter the styles in the style sheet, our changes are immediately applied to

all the pages that use that style sheet.

Look Out for Themes and Skins

ASP.NET provides extra value and power to those building reusable visual ele-

ments through offerings like themes and skins. You’ll learn more about these

features in Chapter 5.

Types of Styles and Style Sheets
There are three ways in which you can associate styles with the elements of a par-

ticular web page:

using an external style sheet

If you place your style rules in an external style sheet, you can link this file to

any web page on which you want those styles to be used, which makes updating

a web site’s overall appearance a cakewalk.

Build Your Own ASP.NET 4 Website Using C# & VB150

To reference an external style sheet from a web form, place the following markup

inside the head element:

<link rel="stylesheet" type="text/css" href="file.css" />

In the above example, file.css would be a text file containing CSS rules, much

like the example shown below, which sets the background and foreground color

of all <a> elements:

a {
 background-color: #ff9;
 color: #00f;
}

using an embedded style sheet

You can place style rules for a page between <style type="text/css"> tags

inside that page’s head element, like so:

<style type="text/css">
 a {
 background-color: #ff9;
 color: #00f;
 }
</style>

The problem with using embedded styles is that we can’t reuse those styles in

another page without typing them in again—an approach that makes global

changes to the site very difficult to manage.

using inline style rules

Inline styles allow us to set the styles for a single element using the style attrib-

ute. For instance, we’d apply the style declarations from our previous example

to a specific <a> tag like this:

 Home

151Constructing ASP.NET Web Pages

When it’s used in embedded or external style sheets, a style rule has a selector,

followed by a declaration block that contains one or more style declarations. Consider

this example:

a {
 background-color: #ff9;
 color: #00f;
}

Here we have a style rule with a selector, a, followed by a declaration block that

contains two style declarations: one for the background-color property, and one

for the color property. A declaration block is delimited by curly braces: {…}. A style

declaration consists of a property, a colon (:) and a value. Multiple declarations are

delimited by semicolons (;), but it’s a good practice to put a semicolon at the end

of all your declarations.

The selector in a style rule determines the elements to which that rule will apply.

In ASP.NET, we typically use two types of selectors:

element type selectors

An element type selector targets every single instance of the specified element.

For example, if we wanted to change the colour of all second-level headings in

a document, we’d use an element type selector to target all <h2>s:

h2 {
 color: #369;
}

class selectors

Arguably the most popular way to use styles within your pages is to give each

element a class attribute, then target elements that have a certain class value.

For example, the following markup shows a paragraph whose class attribute

is set to pageinfo:

<p class="pageinfo">
 Copyright 2006
</p>

Build Your Own ASP.NET 4 Website Using C# & VB152

Now, given that any element with the class pageinfo should be displayed in

fine print, we can create a style rule that will reduce the size of the text in this

paragraph, and any other element with the attribute class="pageinfo", using

a class selector. The class selector consists of a dot (.) and the class name:

.pageinfo {
 font-family: Arial;
 font-size: x-small;
}

Whether you’re building external style sheets, embedded style sheets, or inline style

rules, style declarations use the same syntax.

Now that you have a basic understanding of some of the fundamental concepts be-

hind CSS, let’s look at the different types of styles that can be used within our

ASP.NET applications.

Style Properties
You can specify many different types of properties within style sheets. Here’s a list

of the most common property types:

font

This category of properties gives you the ability to format text-level elements,

including their font faces, sizes, decorations, weights, colors, and so on.

background

This category allows you to customize backgrounds for objects and text. These

values give you control over the background, including whether you’d like to

use a color or an image for the background, and whether or not you want to re-

peat a background image.

block

This category allows you to modify the spacing between paragraphs, between

lines of text, between words, and between letters.

box

The box category allows us to customize tables. If you need to modify borders,

padding, spacing, and colors on a table, row, or cell, use the elements within

this category.

153Constructing ASP.NET Web Pages

border

This category lets you draw borders of different colors, styles, and thicknesses

around page elements.

list

This category allows you to customize the way ordered and unordered lists are

displayed.

positioning

Modifying positioning allows you to move and position tags and controls freely.

These categories outline the aspects of a page design that can typically be modified

using CSS. As we progress through the book, the many types of style properties will

become evident.

The CssClass Property
Once you’ve defined a class in a style sheet (be it external or internal), you’ll want

to begin to associate that class with elements in your web forms. You can associate

classes with ASP.NET web server controls using the CssClass property. In most

cases, the value you give the CssClass property will be used as the value of the

resulting element’s class attribute.

Let’s see an example. First, use the Style Sheet template to create within your

working folder (LearningASP\VB or LearningASP\CS) a file named Styles.css. You’ll

notice that Visual Web Developer adds an empty style rule to the newly created

style sheet file with the selector body. We don’t need that rule for this example, so

just insert this code after it:

Styles.css

body {
}
.title {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 19px;
}
.dropdownmenu {
 font-family: Arial;
 background-color: #0099FF;
}

Build Your Own ASP.NET 4 Website Using C# & VB154

.textbox {
 font-family: Arial;
 background-color: #0099FF;
 border: 1px solid
}
.button {
 font-family: Arial;
 background-color: #0099FF;
 border: 1px solid
}

Then, create a new web form named UsingStyles.aspx, containing this code:

Visual Basic LearningASP\VB\UsingStyles.aspx

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Testing CSS</title>

<link rel="Stylesheet" type="text/css" href="Styles.css" />
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p class="title">
 Please select a product:</p>
 <p>
 <asp:DropDownList ID="productsList" CssClass="dropdownmenu"
 runat="server">
 <asp:ListItem Text="Shirt" Selected="true" />
 <asp:ListItem Text="Hat" />
 <asp:ListItem Text="Pants" />
 <asp:ListItem Text="Socks" />
 </asp:DropDownList>
 </p>
 <p>
 <asp:TextBox ID="quantityTextBox" CssClass="textbox"

155Constructing ASP.NET Web Pages

 runat="server" />
 </p>
 <p>
 <asp:Button ID="addToCartButton" CssClass="button"
 Text="Add To Cart" runat="server" />
 </p>
 </div>
 </form>
 </body>
</html>

Loading this page should produce the output shown in Figure 4.16. (We know it

doesn’t look great—we’re programmers, not designers—and it shows! But as far as

you understand the principles of using CSS with ASP.NET, you’ve successfully met

the goal of this exercise.)

Figure 4.16. CSS at work with ASP.NET

In the next chapter, we’ll learn to use Visual Web Developer to create CSS definitions

through a simple visual interface.

Build Your Own ASP.NET 4 Website Using C# & VB156

Summary
In this chapter, we discussed web forms, HTML server controls, web server controls,

web user controls, master pages, and CSS. All these elements can be combined to

create powerful structures for your web sites.

In the next chapter, we’ll start building “real” web applications, putting into practice

most of the theory you’ve learned so far, and using a professional development en-

vironment that will do part of the work for you.

157Constructing ASP.NET Web Pages

Chapter5
Building Web Applications
In the previous chapters, we discussed the different pieces of ASP.NET in some

detail. In this chapter, you’ll start putting together everything you’ve learned in a

larger context. That’s right: it’s time to build your own web application!

Microsoft defines a web application as the collection of all files, pages, handlers,

modules, and executable code that can be invoked or run within a given directory

on a web server. As we embark on developing a web application, we’ll continue

using Visual Web Developer 2010 Express Edition, and you’ll explore more of the

useful features it has in store for ASP.NET developers.

It’s worth keeping in mind that you don’t have to use Visual Web Developer, or any

other specialized tool, to develop ASP.NET web applications: any old text editor

will do. However, we recommend using Visual Web Developer for any real-world

project that’s more complex than a simple, “Hello World”-type example, because

this tool can do a lot of the work for you as you build web applications.

In this chapter, you’ll learn about much of the functionality Visual Web Developer

offers as we start to create an intranet for a company called Dorknozzle. Along the

way, we’ll also explore many interesting ASP.NET features:

■ We’ll use Visual Web Developer to create a new Web Application.
■ We’ll work with Web.config, Global.asax, and the special ASP.NET folders.
■ We’ll use the application state, user sessions, the application cache, and cookies.
■ We’ll debug your project and handle potential coding errors.

Introducing the Dorknozzle Project
While most books give you a series of simple, isolated examples to illustrate partic-

ular techniques, this book is a little different. Most of the examples provided in

these pages will see us working on a single project: an intranet application for a

fictional company called Dorknozzle. We’ll build on this application as we move

through the remaining chapters of this book—the Dorknozzle intranet will give us

a chance to investigate and grasp the many different concepts that are important to

developers of any type of web application.

Now, real-world web development projects are built according to a detailed specific-

ation document which, among other information, includes specific details of the

site’s layout. We’ll assume that the pages in the Dorknozzle intranet will be laid out

as shown in Figure 5.1.

The menu on the left suggests that the site will have more pages than this homepage.

They’ll all have the same structure: the menu will sit on the left, and the header

will be identical to the one shown here. Only the contents of each individual page

will be different from the others. (As mentioned in Chapter 4, you’ll already have

realized that this is a scenario in which it makes sense to use master pages.)

The intranet application we’ll develop will offer the following functionality:

homepage You can customize this page by including news about the

Dorknozzle company.

help desk This page allows Dorknozzle employees to report prob-

lems they experience with software, hardware, or their

computers, as help desk tickets that are sent to an IT ad-

ministrator.

employee directory Employees will likely want to call each other to discuss

important, company-related affairs … such as last night’s

television viewing! The employee directory should let

Build Your Own ASP.NET 4 Website Using C# & VB160

Figure 5.1. The Dorknozzle company intranet site

employees find other staff members’ details quickly and

easily.

address book While the employee directory houses handy information

for staff use, the purpose of the address book is to provide

more detailed information about every employee within

the company.

departments The Departments page displays information about

Dorknozzle’s various departments.

admin tools Administrators will need the ability to perform various

administrative tasks, such as updating users’ information.

The Admin Tools section will provide the interface for

these kinds of interactions.

admin newsletter This page will allow administrators to send email news-

letters to the company employees.

You’ll learn new techniques when building each of these pages. However, before

you can begin to create all these smaller applications, we’ll need to build the

framework that will act as a template for the site as a whole. You’ve already worked

161Building Web Applications

with Visual Web Developer in the previous chapters, but we’ll quickly review its

features before moving on.

Using Visual Web Developer
We’ll start by creating the Dorknozzle project, which will be your working folder

for the exercises to come. Start Visual Web Developer, then Select File > New Web

Site….

In the dialog that appears, which is shown in Figure 5.2, select the ASP.NET Web

Site template, choose your preferred programming language in the Language box,

and identify the location at which the web site should be created—preferably

C:\Dorknozzle\VB if you use VB or C:\Dorknozzle\CS if you use C#. Feel free to choose

the language with which you feel most comfortable, and remember that you can

choose different languages for use in different files, so if you’re not sure which

language is your favorite just yet, don’t worry. It’s also okay to create two projects,

and work with both VB and C# at the same time: Visual Web Developer allows you

to run two instances of the application at the same time to facilitate this approach.

Figure 5.2. Creating the Dorknozzle web site project

Build Your Own ASP.NET 4 Website Using C# & VB162

Choosing Your App’s Location

Remember that setting the Location drop-down menu to File System tells Visual

Web Developer to execute the project in that folder using its integrated web server.

You can create a new web project in IIS by changing the Location to HTTP. In that

case, you’d need to specify an HTTP location for your application, such as ht-

tp://localhost/Dorknozzle, and IIS would take care of creating a physical

folder for you.

Meeting the Features
Once you click OK, your project will be created, along with a few default files, and

you’ll be presented with the first page of your project. It should look something like

the one shown in Figure 5.3.

Figure 5.3. Your new Dorknozzle web application

Don’t be daunted by the many forms and windows around your screen—each has

something to offer! Visual Web Developer is very flexible, so you can resize, relocate,

or regroup the interface elements that appear. We’ll spend the next few pages taking

a brief tour of these windows, though we’ll discover even more as we progress

through the chapters of this book.

163Building Web Applications

The Solution Explorer
The Solution Explorer, whose default location is the upper right-hand part of the

Visual Web Developer window, provides the main view of your project, and displays

the files of which your project is composed. As Figure 5.4 shows, the root node is

the location of your project; beneath the root node you can see that Visual Web

Developer has already created other elements for you.

The files that are created for you will differ depending on the type of project you’re

working on, and the language you’ve chosen.

Let’s investigate the functions of the three child nodes shown in Figure 5.4:

■ Accountis a folder that is automatically created by Visual Web Developer to

manage security and user authentication. The included files allow out-of-the-

box user management such as registration, login, and change of password.

We will keep this folder for discussion in Chapter 13.

■ App_Data is a special folder that ASP.NET uses to store database files. You’ll

learn more about this folder in Chapter 13.

■ Script is a folder that by default contains the latest jQuery JavaScript files for use

within your application. jQuery will be discussed in Chapter 17.

■ Stylesis a folder for the containment of (you guessed it) CSS styles.

■ About.aspxis a web form created by Visual Web Developer that serves as an

“About Us” page. We won’t need this so feel free to delete this page.

■ Default.aspx is the default web form that Visual Web Developer creates for you.

If you look closely, you’ll see that you can expand the Default.aspx node by

clicking the + sign to its left. If you expand the node, you’ll find a code-behind

file named Default.aspx.vb, or Default.aspx.cs, depending on the language you se-

lected when you started the project. Visual Web Developer can work with web

forms that use a code-behind file, as well as with those that don’t.

■ Global.asaxis a global configuration file to manage special events related to the

application and session management. We will discuss its use within this chapter.

Build Your Own ASP.NET 4 Website Using C# & VB164

■ Site.masteris a pre-defined Master Page created by Visual Web Developer to give

programmers an example of how Master Pages and templates apply within a

website. Because we will use our own template, this file isn’t necessary.

■ Web.config is your web application’s configuration file. By editing Web.config,

you can set numerous predefined configuration options for your project (for in-

stance, you can enable debug mode). You can also define your own custom

project-wide settings that can then be read from your code (such as the adminis-

trator’s email address, the project name, your favorite color, or any other simple

value you’d like to store in a central place). We’ll come back to this file later in

the chapter.

Figure 5.4. The Solution Explorer

An icon sits beside each node, reflecting its type. If you right-click on each node, a

list of options that are specific to that particular node type will appear. For example,

right-click on the root node, and you’ll see a list of options that affect the project as

a whole. Double-click on a file, and that file will open in an appropriate editor (for

instance, double-clicking on a web form will open that file in the Web Forms De-

signer).

165Building Web Applications

The Web Forms Designer
The Web Forms Designer is the place where you’ll spend most of your time working

with Visual Web Developer. The Web Forms Designer is a very powerful tool that

allows you to edit web forms, web user controls, and master pages. You can edit

these files in Source view, where you can see their code, or in Design view, which

provides a WYSIWYG (what you see is what you get) interface. Visual Web Developer

2008 introduced the Split view mode, which combines the other two views in a

single view.

By default, when you start a new web site project, the Web Forms Designer will

display the contents of Default.aspx. Figure 5.5 shows the default form in Split view,

where I’ve started to edit the content of the page in the WYSIWYG editor. As you

can see, the WYSIWYG editor is similar to those of Dreamweaver, FrontPage, and

other similar tools.

Tabbed quick links to the currently open files or windows appear at the top of the

interface. In Figure 5.5, only Default.aspx, and the Start Page (the window that was

initially loaded when Visual Web Developer started) are open. Each kind of file is

opened by a different editor or designer, so when you open a database table or a

CSS file, for example, you’ll see a different view from the one shown in Figure 5.5.

The Code Editor
As well as editing HTML code, ASP.NET web developers also edit those forms’ as-

sociated VB or C# code, regardless of whether that code is written inside the .aspx

file or inside its code-behind file. (We’ll be using code-behind files when we develop

the Dorknozzle intranet—this approach is recommended for developing any non-

trivial page.)

If you’ve opened a web form that uses a code-behind file in the Web Forms Designer,

you can easily switch to that code-behind file: click the View Code icon in the

Solution Explorer, right-click the Web Form in Solution Explorer, and select View

Code; alternatively, expand the Web Form’s node in Solution Explorer and double-

click its code-behind file.

Do this to open the code-behind file for Default.aspx. If you chose VB as your preferred

language when you created the project, the code-behind file will be called De-

fault.aspx.vb, and will look like the one shown in Figure 5.6.

Build Your Own ASP.NET 4 Website Using C# & VB166

Figure 5.5. Viewing Default.aspx in Web Forms Designer’s Source view

Figure 5.6. Editing Default.aspx.vb

167Building Web Applications

Figure 5.7. Editing Default.aspx.cs

If you chose C# as your preferred language when you started the project, you’ll see

a slightly different code-behind file—something like the one pictured in Figure 5.7.

As you can see, the C# version contains a number of namespace references. For the

VB template, Visual Web Developer adds these references to the Web.config file,

thereby applying them to the whole project. This difference makes Default.aspx.vb

look less scary than Default.aspx.cs to a beginner, but in the end the functionality of

the default CS and VB templates is very similar. Of course, it’s possible to add the

namespace references to Web.config yourself if you’re using C#.

The – icons to the left of certain sections of your file (such as the starting points of

classes and methods) allow you to collapse those sections, which can help you to

manage larger code files. In Figure 5.8, I’ve collapsed the section of Default.aspx.cs

that contains the namespace references—you can see that the using statements have

been collapsed into a single ellipsis. If you hover your cursor over the ellipsis, you’ll

see a preview of the hidden text.

Visual Web Developer also allows the use of code regions. These are blocks of code

that can be used to collapse/expand large portions into “regions” for ease of readab-

ility. These are created with the #region and #endregion lines.

Build Your Own ASP.NET 4 Website Using C# & VB168

Figure 5.8. Playing around with Visual Web Developer

IntelliSense
IntelliSense is a fantastic code autocompletion feature that Microsoft has included

in the Visual Studio line for some time. In its latest incarnation as part of Visual

Web Developer 2010 Express Edition, IntelliSense is pretty close to perfection. This

feature alone makes it more worthwhile to use Visual Web Developer than simpler

code editors.

Let’s do a quick test. If you’re using VB, delete a character from the end of the

Inherits System.Web.UI.Page line in Default.aspx.vb. As Figure 5.9 shows, Intelli-

Sense will automatically display other words that could be used in that position.

169Building Web Applications

Figure 5.9. IntelliSense displaying possible word autocompletions

IntelliSense behaves slightly differently depending on the language you’ve chosen

to use. For example, if you’re using C#, IntelliSense isn’t triggered as frequently as

it is for those using VB. You can activate IntelliSense yourself by pressing

Ctrl+Space. Then, once you’ve selected the correct entry, press Tab or Enter to have

the word completed for you.

The Toolbox
When you’re editing a web form, web user control, or master page visually, the

Toolbox comes in very handy. The Toolbox contains most of the popular ASP.NET

controls, which you can drag directly from the toolbox and drop into your form.

You must be viewing a form in the Web Forms Designer to see the proper controls

in the Toolbox. If you can’t see the toolbox, which is shown in Figure 5.10, select

View > Toolbox to make it appear.

Let’s give it a test-drive: double-click on the TextBox entry, or drag it from the

Toolbox to the form, to have a TextBox control added to your form.

The controls listed in the Toolbox are grouped within tabs that can be expanded

and collapsed. In the Standard tab of the Toolbox, you’ll find the standard web

server controls we discussed in Chapter 4. In the other tabs, you’ll find other controls,

including the validation controls we’ll discuss in Chapter 6, which can be found

in the Validation tab. Figure 5.11 shows the toolbox with all its tabs in the collapsed

state.

Build Your Own ASP.NET 4 Website Using C# & VB170

Figure 5.10. The Toolbox

Figure 5.11. The collapsed Toolbox tabs

The Properties Window
When you select a control in the web forms designer, its properties are displayed

automatically in the Properties window. For example, if you select the TextBox

control we added to the form earlier, the properties of that TextBox will display in

171Building Web Applications

the Properties window. If it’s not visible, you can make it appear by selecting View

> Properties Window.

The Properties window doesn’t just allow you to see the properties—it also lets you

set them. Many properties—such as the colors that can be chosen from a palette—can

be set visually, but in other cases, complex dialogs are available to help you establish

the value of a property. In Figure 5.12, the properties of the TextBox are displayed

in the Properties window, and the BorderStyle property is being altered.

By default, the control’s properties are listed by category, but you can order them

alphabetically by clicking the A-Z button. Other buttons in the window allow you

to switch between Properties view and Events view.

Figure 5.12. Setting a border style using the Properties window

Executing Your Project
As you already know, every time you pressed F5 or selected Debug > Start Debugging

to load a web page, the page was executed through Visual Web Developer’s integrated

web server, also known as Cassini. The debugging features of Visual Web Developer

enable you to find and fix errors in your code, execute a block of code line by line,

inspect the values of the variables while the code runs, and much more—you’ll

learn more about these features later in this chapter. When you don’t need to use

Build Your Own ASP.NET 4 Website Using C# & VB172

the debugging features, you can execute a page by selecting Debug > Start Without

Debugging, or using the keyboard shortcut Ctrl+F5.

To run an ASP.NET project with debugging enabled, you’ll need to enable that

feature in the project’s Web.config file. This is why the first time you try to debug

the project in Visual Web Developer, it will offer to alter Web.config for you.

When you execute a project through Cassini, it will automatically start on a random

port. When you ran the examples in the previous chapters, you may have noticed

that the URL looked something like this: http://localhost:52481/CS/Default.aspx. You

can see that the integrated web server was running with the host name localhost

on port 52481. The last part of the URL (/CS/Default.aspx) includes a reference to

the folder in which the application file is located—either CS or VB for the examples

in this book. Visual Web Developer’s web server displays one small icon in the

Windows system tray for each web server instance that’s running. If you run multiple

projects at the same time, one web server instance will be created for each project

and more icons will appear. If you double-click on any of those icons, you’ll be

presented with a dialog that contains the web server details, and looks very much

like the window shown in Figure 5.13.

Figure 5.13. Visual Web Developer’s web server in action

As it executes the project, Visual Web Developer will launch your system’s default

web browser, but you can make it use another browser if you wish (we showed you

how to do that in the section called “Writing Your First ASP.NET Page” in Chapter 1).

For the purpose of running and debugging your ASP.NET web applications, you

might find it easier to use Internet Explorer as your default browser—it works a

little better with Visual Web Developer than other browsers. For example, if you

close the Internet Explorer window while your project runs in debug mode, Visual

173Building Web Applications

Web Developer will stop the application automatically. Otherwise, you’d need to

stop it manually by selecting Debug > Stop Debugging, or clicking the Stop button

shown in Figure 5.14.

Figure 5.14. Stopping debug mode

To change the browser that’s used to execute your web applications, first make sure

that none of your projects are running. Then, right-click the root node in Solution

Explorer, and select Browse With to display the dialog shown in Figure 5.15. Select

Internet Explorer, click Set as Default, and click Browse.

Figure 5.15. Setting the default browser in Visual Web Developer

By default, when you press F5 or Ctrl+F5, Visual Web Developer will execute the

page you’re currently editing. Frequently, though, you’ll have a single start page

that you want loaded when you’re executing the project. You can set the default

page by right-clicking a web form in Solution Explorer, and selecting Set As Start Page.

Build Your Own ASP.NET 4 Website Using C# & VB174

Figure 5.16. Setting the start page of the project

Core Web Application Features
Let’s continue our exploration of the key topics related to developing ASP.NET web

applications. We’ll put them into practice as we move through the book, but in this

quick introduction, we’ll discuss:

175Building Web Applications

■ Web.config

■ Global.asax

■ user sessions
■ caching
■ cookies

Web.config
Almost every ASP.NET web application contains a file named Web.config, which

stores various application settings. By default, all .NET web applications are con-

figured in the Machine.config file, which contains machine-wide settings. This file

should rarely be changed, but if you must, the file lives in the

C:\WINDOWS\Microsoft.NET\Framework\version\CONFIG directory.

For the most part, all your configuration settings will be part of the web.config file

in the root directory of your application. You won’t want to make any modifications

to this file. Microsoft has gone to great lengths to make the web.config file in ASP.NET

4 much simpler and cleaner than previous versions. Such versions of ASP.NET had

the web.config file at about 125 lines by default, this is now only about 12 lines in

the 4.0 version. The web.config file is included by default when creating a new

project in Visual Web Developer, but if any reason you need to re-create the file

(after accidentally deleting it for example) you can add it by accessing Website >

Add New Item…, then selecting Web Configuration File from the dialog that appears.

The Web.config file is an XML file that can hold configuration settings for the applic-

ation in which the file resides. One of the most useful settings that Web.config con-

trols is ASP.NET’s debug mode. If Visual Web Developer hasn’t enabled debug mode

for you, you can do it yourself by opening Web.config and editing the compilation

element, which looks like this:

Dorknozzle\VB\01_web.config (excerpt)

<!--
 Set compilation debug="true" to insert debugging
 symbols into the compiled page. Because this
 affects performance, set this value to true only
 during development.

 Visual Basic options:
 Set strict="true" to disallow all data type conversions

Build Your Own ASP.NET 4 Website Using C# & VB176

 where data loss can occur.
 Set explicit="true" to force declaration of all variables.
-->
<compilation debug="true" strict="false" explicit="true" />

Enabling debug mode is as simple as changing the value of the debug attribute to

true. The other attributes listed here were added by Visual Web Developer to offer

a helping hand to VB developers migrating from older versions. For example,

strict="false" makes the compiler forgive some of the mistakes we might make,

such as using the wrong case in variable names. They don’t appear if your project

uses C#. Lastly the targetFramework attribute is a directive to ASP.NET to use the

4.0 version of the .NET Framework.

Web.config can also be used to store custom information for your application in a

central location that’s accessible from all the pages of your site. For example, if you

want to store the email address of someone in your technical support team so that

it can be changed easily, you might take the approach shown here:

<configuration>
 <appSettings>
 <add key="SupportEmail" value="support@dorknozzle.com" />
 </appSettings>
</configuration>

This way, whenever you need to display or use an email address for technical

support within the site, you can simply read the SupportEmail key using the

WebConfigurationManager class. And, if you wanted to change the email address

you used for technical support, you’d just need to change this setting in Web.config.

Dorknozzle\VB\01_web.config (excerpt)

<pages>
 <namespaces>
 <clear/>
 <add namespace="System"/>
 <add namespace="System.Collections"/>
 <add namespace="System.Collections.Generic"/>
 <add namespace="System.Collections.Specialized"/>
 <add namespace="System.Configuration"/>
 <add namespace="System.Text"/>
 <add namespace="System.Text.RegularExpressions"/>

177Building Web Applications

 <add namespace="System.Linq"/>
 <add namespace="System.Xml.Linq"/>
 <add namespace="System.Web"/>
 <add namespace="System.Web.Caching"/>
 <add namespace="System.Web.SessionState"/>
 <add namespace="System.Web.Security"/>
 <add namespace="System.Web.Profile"/>
 <add namespace="System.Web.UI"/>
 <add namespace="System.Web.UI.WebControls"/>
 <add namespace="System.Web.UI.WebControls.WebParts"/>
 <add namespace="System.Web.UI.HtmlControls"/>
 </namespaces>
 ⋮
</pages>

You’ll learn more about working with Web.config as you progress through this book,

so if you wish, you can skip the rest of these details for now, and come back to them

later as you need them.

The Web.config file’s root element is always configuration, and it can contain three

different types of elements:

configuration section groups

As ASP.NET and the .NET Framework are so configurable, the configuration

files could easily become jumbled if we didn’t have a way to break them into

groups of related settings. A number of predefined section grouping tags let you

do just that. For example, settings specific to ASP.NET must be placed inside

a system.web section grouping element, while settings that are relevant to .NET’s

networking classes belong inside a system.net element.

General settings, like the appSettings element we saw above, stand on their

own, outside the section grouping tags. In this book, though, our configuration

files will also contain a number of ASP.NET-specific settings, which live inside

the system.web element.

configuration sections

These are the actual setting tags in our configuration file. Since a single element

can contain a number of settings (for example, the appSettings element we

saw earlier could contain a number of different strings for use by the application),

Microsoft calls each of these tags a configuration section. ASP.NET provides a

Build Your Own ASP.NET 4 Website Using C# & VB178

wide range of built-in configuration sections to control the various aspects of

your web applications.

The following list outlines some of the commonly used ASP.NET configuration

sections, all of which must appear within the system.web section grouping

element:

authentication

outlines configuration settings for user authentication, and is covered in

detail in Chapter 13

authorization

specifies users and roles, and controls their access to particular files within

an application; discussed more in Chapter 13

compilation

contains settings that are related to page compilation, and lets you specify

the default language that’s used to compile pages

customErrors

used to customize the way errors display

globalization

used to customize character encoding for requests and responses

pages

handles the configuration options for specific ASP.NET pages; allows you

to disable session state, buffering, and view state, for example

sessionState

contains configuration information for modifying session state (that is,

variables associated with a particular user’s visit to your site)

trace

contains information related to page and application tracing

configuration section handler declarations

ASP.NET’s configuration file system is so flexible that it allows you to define

your own configuration sections. For most purposes, the built-in configuration

sections will do nicely, but if we want to include some custom configuration

179Building Web Applications

sections, we need to tell ASP.NET how to handle them. To do so, we declare a

configuration section handler for each custom configuration section we want

to create. This is fairly advanced stuff, so we won’t worry about it in this book.

Global.asax
Global.asax is another special file that can be added to the root of an application. It

defines subroutines that are executed in response to application-wide events. For

instance, Application_Start is executed the first time the application runs (or just

after we restart the server). This makes this method the perfect place to execute any

initialization code that needs to run when the application loads for the first time.

Another useful method is Application_Error, which is called whenever an un-

handled error occurs within a page. The following is a list of the handlers that you’ll

use most often within the Global.asax file:

Application_Start

called immediately after the application is created; this event occurs once only

Application_End

called immediately before the end of all application instances

Application_Error

called by an unhandled error in the application

Application_BeginRequest

called by every request to the server

Application_EndRequest

called at the end of every request to the server

Application_PreSendRequestHeaders

called before headers are sent to the browser

Application_PreSendRequestContent

called before content is sent to the browser

Application_AuthenticateRequest

called before authenticating a user

Build Your Own ASP.NET 4 Website Using C# & VB180

Application_AuthorizeRequest

called before authorizing a user

The Global.asax file is created in the same way as the Web.config file—just select File

> New File…, then choose the Global Application Class template, as depicted in Fig-

ure 5.17.

Figure 5.17. Creating Global.asax

Since our project comes with an existing Global.asax file, we can double click on

the file within Solution Explorer to view the contents of the file.Global.asaxcontains

empty stubs for a number of event handlers, and comments that explain their roles.

A typical event handler in a Global.asax file looks something like this:

Visual Basic

Sub Application_EventName(ByVal sender As Object,
➥ ByVal e As EventArgs)
 ⋮ code triggered by this event…
End Sub

181Building Web Applications

C#

void Application_EventName(Object sender, EventArgs e)
{`
 ⋮ code triggered by this event…
}

Be Careful when Changing Global.asax,web.config, or machine.config

Be cautious when you add and modify code within the Global.asax, web.config, or

machine.config file. Any additions or modifications you make within this file will

cause the application to restart, so you’ll lose any data stored in application state,

as well as any users on your site will experience a session reset. This can be in-

credibly troubling for instance if you have a user half-way through the checkout

process on an e-commerce site.

Using Application State
You can store the variables and objects you want to use throughout an entire applic-

ation in a special object called Application. The data stored in this object is called

application state. The Application object also provides you with methods that allow

you to share application state data between all the pages in a given ASP.NET applic-

ation very easily.

Application state is closely related to another concept: session state. The key differ-

ence between the two is that session state stores variables and objects for one par-

ticular user for the duration of that user’s current visit, whereas application state

stores objects and variables that are shared between all users of an application at

the same time. Thus, application state is ideal for storing data that’s used by all

users of the same application.

In ASP.NET, session and application state are both implemented as dictionaries,

or sets of name-value pairs. You can set the value of an application variable named

SiteName like this:

Visual Basic

Application("SiteName") = "Dorknozzle Intranet Application"

Build Your Own ASP.NET 4 Website Using C# & VB182

C#

Application["SiteName"] = "Dorknozzle Intranet Application";

With SiteName set, any pages in the application can read this string:

Visual Basic

Dim appName As String = Application("SiteName")

C#

string appName = (string)Application["SiteName"];

You might have noticed the term (string) in the C# code example above. This is

an example of the task of casting a variable to a specific type. Casting is the act of

ensuring that a value is converted to a specific data type so that it can be stored in

a variable of a matching data type. In the above example the value stored in Applic-

ation["SiteName"] is actually one of type object and must be cast to a string in

order to be able to be stored in a string variable. We don’t have to worry about

such issues in the VB code example above, because the data type conversion takes

place automatically although for readability and code maintenance, it is recommen-

ded.

Using the cast above, an exception will be thrown if the object can not be cast to

the data type requested. To fix this, C# has introduced the as keyword. This allows

the compiler to automatically cast the object as the type specified. If the cast can

not be performed, a null will be returned. Therefore it makes good habit to check

for a null before using a variable being cast.

string appName = Application[“SiteName”] as string;

if (appName != null)
{
 // it is now safe to use the appName variable.
}

We can remove an object from application state using the Remove method, like so:

183Building Web Applications

Visual Basic

Application.Remove("SiteName")

C#

Application.Remove("SiteName");

If you find you have multiple objects and application variables lingering in applic-

ation state, you can remove them all at once using the RemoveAll method:

Visual Basic

Application.RemoveAll()

C#

Application.RemoveAll();

It’s important to be cautious when using application variables. Objects remain in

application state until you remove them using the Remove or RemoveAll methods,

or shut down the application in IIS. If you continue to save objects into the applic-

ation state without removing them, you can place a heavy demand on server re-

sources and dramatically decrease the performance of your applications.

Let’s take a look at application state in action. Application state is very commonly

used to maintain hit counters, so our first task in this example will be to build one!

Let’s modify the Default.aspx page that Visual Web Developer created for us. Double-

click Default.aspx in Solution Explorer, and add a Label control inside the form

element. You could drag the control from the Toolbox (in either Design view or

Source view) and modify the generated code, or you could simply enter the new

code by hand. We’ll also add a bit of text to the page, and change the Label’s ID to

myLabel, as shown below (the VB and C# versions are identical):

Build Your Own ASP.NET 4 Website Using C# & VB184

Dorknozzle\VB\02_Default.aspx (excerpt)

⋮
 <form id="form1" runat="server">
 <div>
 The page has been requested
 <asp:Label ID="myLabel" runat="server" />
 times!
 </div>
 </form>
⋮

In Design view, you should see your label appear inside the text, as shown in Fig-

ure 5.18.

Now, let’s modify the code-behind file to use an application variable that will keep

track of the number of hits our page receives. As we mentioned in the section called

“Writing Your First ASP.NET Page” in Chapter 1, if your site uses, C# the Page_Load

method is already present in the code-behind file. If your site uses VB, double-click

in any empty space on your form; Visual Web Developer will create a Page_Load

method automatically, and display it in the code editor. The method will look like

this:

Visual Basic Dorknozzle\VB\03_Default.aspx.vb (excerpt)

Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load

End Sub
End Class

C# Dorknozzle\CS\03_Default.aspx.cs (excerpt)

⋮
public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

185Building Web Applications

Figure 5.18. The new label appearing in Design view

 }
}

Now, let’s modify the automatically generated method by adding the code that we

want to run every time the page is loaded. Modify Page_Load as shown below:

Visual Basic Dorknozzle\VB\04_Default.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 If Application("PageCounter") >= 10 Then
 Application.Remove("PageCounter")
 End If
 If Application("PageCounter") Is Nothing Then
 Application("PageCounter") = 1
 Else
 Application("PageCounter") += 1
 End If
 myLabel.Text = Application("PageCounter")
End Sub

C# Dorknozzle\CS\04_Default.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
if (Application["PageCounter"] != null &&

 (int)Application["PageCounter"] >= 10)
 {
 Application.Remove("PageCounter");
 }
 if (Application["PageCounter"] == null)
 {
 Application["PageCounter"] = 1;

Build Your Own ASP.NET 4 Website Using C# & VB186

 }
 else
 {
 Application["PageCounter"] =
 (int)Application["PageCounter"] + 1;
 }
 myLabel.Text = Convert.ToString(Application["PageCounter"]);
}

Before analyzing the code, press F5 to run the site and ensure that everything works

properly. Every time you refresh the page, the hit counter should increase by one

until it reaches ten, when it starts over. Now, shut down your browser altogether,

and open the page in another browser. We’ve stored the value within application

state, so when you restart the application, the page hit counter will remember the

value it reached in the original browser, as Figure 5.19 shows.

If you play with the page, reloading it over and over again, you’ll see that the code

increments PageCounter every time the page is loaded. First, though, the code

verifies that the counter hasn’t reached or exceeded ten requests. If it has, the counter

variable is removed from the application state:

Visual Basic Dorknozzle\VB\04_Default.aspx.vb (excerpt)

If Application("PageCounter") >= 10 Then
 Application.Remove("PageCounter")
End If

C# Dorknozzle\CS\04_Default.aspx.cs (excerpt)

if (Application["PageCounter"] != null &&
 (int)Application["PageCounter"] >= 10)
{
 Application.Remove("PageCounter");
}

Notice that the C# code has to do a little more work than the VB code. You may re-

member from Chapter 3 that C# is more strict than VB when it comes to variable

types. As everything in application state is stored as an Object, C# requires that we

cast the value to an integer, by using (int), before we make use of it. This conversion

won’t work if PageCounter hasn’t been added to application state, so we also need

to check that it’s not equal to null.

187Building Web Applications

Figure 5.19. Using the Application object

Next, we try to increase the hit counter. First of all, we to need verify that the counter

variable exists in the application state. If it doesn’t, we set it to 1, reflecting that the

page is being loaded. To verify that an element exists in VB, we use Is Nothing:

Visual Basic Dorknozzle\VB\04_Default.aspx.vb (excerpt)

If Application("PageCounter") Is Nothing Then
 Application("PageCounter") = 1
Else
 Application("PageCounter") += 1
End If

As we’ve already seen, we compare the value to null in C#:

C# Dorknozzle\CS\04_Default.aspx.cs (excerpt)

if (Application["PageCounter"] == null)
{
 Application["PageCounter"] = 1;
}
else
{
 Application["PageCounter"] =
 (int)Application["PageCounter"] + 1;
}

The last piece of code simply displays the hit counter value in the Label.

There’s one small problem with our code: if two people were to open the page

simultaneously, the value could increment only by one, rather than two. The reason

for this has to do with the code that increments the counter:

Build Your Own ASP.NET 4 Website Using C# & VB188

C# Dorknozzle\CS\04_Default.aspx.cs (excerpt)

Application["PageCounter"] =
 (int)Application["PageCounter"] + 1;

The expression to the right of the = operator is evaluated first; to do this, the server

must read the value of the PageCounter value stored in the application. It adds one

to this value, then stores the updated value in application state.

Now, let’s imagine that two users visit this page at the same time, and that the web

server processes the first user’s request a fraction of a second before the other request.

The web form that’s loaded for the first user might read PageCounter from applica-

tion state and obtain a value of 5, to which it would add 1 to obtain 6. However,

before the web form had a chance to store this new value into application state,

another copy of the web form, running for the second user, might read PageCounter

and also obtain the value 6. Both copies of the page will have read the same value,

and both will store an updated value of 6! This tricky situation is illustrated in

Figure 5.20.

Figure 5.20. Two users updating application state simultaneously

To avoid this kind of confusion, we should develop the application so that each

user locks application state, updates the value, and then unlocks application state

so that other users can do the same thing. This process is depicted in Figure 5.21.

189Building Web Applications

Figure 5.21. Two users updating application state with locks

Let’s modify our code slightly to create these locks:

Visual Basic Dorknozzle\CS\05_Default.aspx.vb (excerpt)

⋮
If Application("PageCounter") Is Nothing Then
 Application("PageCounter") = 1
Else
 Application.Lock()
 Application("PageCounter") += 1
Application.UnLock()

End If
⋮

C# Dorknozzle\CS\05_Default.aspx.cs (excerpt)

⋮
if (Application["PageCounter"] == null)
{

Build Your Own ASP.NET 4 Website Using C# & VB190

 Application["PageCounter"] = 1;
}
else
{
 Application.Lock();
 Application["PageCounter"] =
 (int)Application["PageCounter"] + 1;
Application.UnLock();

}
⋮

In this case, the Lock method guarantees that only one user can work with the ap-

plication variable at any time. Next, we call the UnLock method to unlock the applic-

ation variable for the next request. Our use of Lock and UnLock in this scenario

guarantees that the application variable is incremented by one for each visit that’s

made to the page.

Working with User Sessions
Like application state, session state is an important way to store temporary inform-

ation across multiple page requests. However, unlike application state, which is

accessible to all users, each object stored in session state is associated with a partic-

ular user’s visit to your site. Stored on the server, session state allocates each user

free memory on that server for the temporary storage of objects (strings, integers, or

any other kinds of objects).

The process of reading and writing data into session state is very similar to the way

we read and write data to the application state: instead of using the Application

object, we use the Session object. However, the Session object doesn’t support

locking and unlocking like the Application object does.

To test session state, you could simply edit the Page_Load method to use Session

instead of Application, and remove the Lock and UnLock calls if you added them.

The easiest way to replace Application with Session is by selecting Edit > Find and

Replace > Quick Replace.

In the page hit counter example that we created earlier in this chapter, we stored

the count in the application state, which created a single hit count that was shared

by all users of the site. Now, if you load the page in multiple browsers, you’ll see

that each increments its counter independently of the others.

191Building Web Applications

Like objects stored in application state, session state objects linger on the server

even after the user leaves the page that created them. However, unlike application

variables, session variables disappear after a certain period of user inactivity. Since

web browsers don’t notify web servers when a user leaves a web site, ASP.NET can

only assume that a user has left your site after a period in which it hasn’t received

any page requests from that user. By default, a user’s session will expire after 20

minutes of inactivity. We can change this timeframe simply by increasing or decreas-

ing the Timeout property of the Session object, as follows:

Visual Basic

Session.Timeout = 15

You can do this anywhere in your code, but the most common place to set the

Timeout property is in the Global.asax file. If you open Global.asax, you’ll see that it

contains an event handler named Session_Start. This method runs before the first

request from each user’s visit to your site is processed, and gives you the opportunity

to initialize their session variables before the code in your web form has a chance

to access them.

Here’s a Session_Start that sets the Timeout property to 15 minutes:

Visual Basic Dorknozzle\VB\06_Global.asax (excerpt)

Sub Session_Start(sender As Object, e As EventArgs)
Session.Timeout = 15

End Sub

C# Dorknozzle\CS\06_Global.asax (excerpt)

void Session_Start(Object sender, EventArgs e)
{
Session.Timeout = 15;

}

Using the Cache Object
In traditional ASP, developers used application state to cache data. Although there’s

nothing to prevent you from doing the same thing here, ASP.NET provides a new

object, Cache, specifically for that purpose. Cache is also a collection, and we access

Build Your Own ASP.NET 4 Website Using C# & VB192

its contents similarly to the way we accessed the contents of Application. Another

similarity is that both have application-wide visibility, being shared between all

users who access a web application.

Let’s assume that there’s a list of employees that you’d normally read from the

database and store in a variable called employeesTable. To spare the database

server’s resources, after you read the table from the database the first time, you

might save it into the cache using a command like this:

Visual Basic

Cache("Employees") = employeesTable

C#

Cache["Employees"] = employeesTable;

By default, objects stay in the cache until we remove them, or server resources be-

come low, at which point ASP.NET will automatically remove items to free resources.

The Cache object also lets us control expiration—if, for example, we want to add

an object to the cache for a period of ten minutes, we can use the Insert method

to do so. Here’s an example:

Visual Basic

Cache.Insert("Employees", employeesTable, Nothing,
➥ DateTime.MaxValue, TimeSpan.FromMinutes(10))

C#

Cache.Insert("Employees", employeesTable, null,
 DateTime.MaxValue, TimeSpan.FromMinutes(10));

The third parameter, which in this case is Nothing or null, can be used to add cache

dependencies. A cache dependency is an external change indicator to tell ASP.NET

to remove that item from the cache. This is useful for instance if you want to cache

the Employees table, but have it automatically removed if there have been changes

193Building Web Applications

to the Employees table. This kind of task is a little beyond the scope of this discus-

sion.

Later in the code, we could use the cached object as follows:

Visual Basic

employeesTable = Cache("Employees")

C#

employeesTable = Cache["Employees"];

Because ASP.NET automatically manages the items in the Cache as well as its re-

moval, it’s good practice to verify that the object you’re expecting does actually

exist, to avoid any surprises:

Visual Basic

employeesTable = Cache("Employees")
If employeesTable Is Nothing Then
 ⋮ Read the employees table from another source…
 Cache("Employees") = employeesTable
End If

C#

employeesTable = Cache["Employees"];
if (employeesTable == null)
{
 ⋮ Read the employees table from another source…
 Cache["Employees"] = employeesTable;
}

This sample code checks to see if the data you’re expecting exists in the cache. If

not, it means that this is the first time the code has been executed, or that the item

has been removed from the cache. Thus, we can populate employeesTable from the

database, remembering to store the retrieved data into the cache. The trip to the

database server is made only if the cache is empty or not present.

Build Your Own ASP.NET 4 Website Using C# & VB194

Using Cookies
If you want to store data related to a particular user, you could use the Session

object, but this approach has an important drawback: its contents are lost when the

user closes the browser window.

To store user data for longer periods of time, you need to use cookies. Cookies are

pieces of data that your ASP.NET application can save on the user’s browser, to be

read later by your application. Cookies aren’t lost when the browser is closed (unless

the user deletes them), so you can save data that helps identify your user in a

cookie.

In ASP.NET, a cookie is represented by the HttpCookie class. We read the user’s

cookies through the Cookies property of the Request object, and we set cookies

though the Cookies property of the Response object. Cookies expire by default when

the browser window is closed (much like session state), but their points of expiration

can be set to dates in the future; in such cases, they become persistent cookies.

Let’s do a quick test. First, open Default.aspx and remove the text surrounding

myLabel:

Visual Basic Dorknozzle\VB\07_Default.aspx (excerpt)

<form id="form1" runat="server">
 <div>
 <asp:Label ID="myLabel" runat="server" />
 </div>
</form>

Then, modify Page_Load in the code-behind file as shown here:

Visual Basic Dorknozzle\VB\08_Default.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 Dim userCookie As HttpCookie
 userCookie = Request.Cookies("UserID")
 If userCookie Is Nothing Then
 myLabel.Text = "Cookie doesn't exist! Creating a cookie now."
 userCookie = New HttpCookie("UserID", "Joe Black")
 userCookie.Expires = DateTime.Now.AddMonths(1)
 Response.Cookies.Add(userCookie)

195Building Web Applications

 Else
 myLabel.Text = "Welcome back, " & userCookie.Value
 End If
End Sub

C# Dorknozzle\CS\08_Default.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 HttpCookie userCookie;
 userCookie = Request.Cookies["UserID"];
 if (userCookie == null)
 {
 myLabel.Text =
 "Cookie doesn't exist! Creating a cookie now.";
 userCookie = new HttpCookie("UserID", "Joe Black");
 userCookie.Expires = DateTime.Now.AddMonths(1);
 Response.Cookies.Add(userCookie);
 }
 else
 {
 myLabel.Text = "Welcome back, " + userCookie.Value;
 }
}

In the code above, the userCookie variable is initialised as an instance of the

HttpCookie class and set to the value of the UserID cookie. The existence of the

cookie is checked by testing if the userCookie object is equal to Nothing in VB or

null in C#. If it is equal to Nothing or null, then it must not exist yet—an appropriate

message is displayed in the Label and the cookie value is set, along with an expiry

date that’s one month from the current date. The cookie is transferred back to the

browser using the Response.Cookies.Add method. If the cookie value already exis-

ted, a Welcome Back message is displayed.

The result of this code is that the first time you load the page, you’ll be notified that

the cookie doesn’t exist and a new cookie is being created, via a message like the

one shown in Figure 5.22.

Build Your Own ASP.NET 4 Website Using C# & VB196

Figure 5.22. Creating a new cookie

Figure 5.23. A persistent cookie

If you reload the page, the cookie will be found, and you’ll get a different message,

as Figure 5.23 shows. What’s interesting to observe is that you can close the browser

window, or even restart your computer—the cookie will still be there, and the ap-

plication will be able to identify that you’re a returning visitor because the cookie

is set to expire one month after its creation.

Be aware, however, that visitors can choose to reject your cookies, so you can’t rely

on them for essential features of your application.

Starting the Dorknozzle Project
You’re now prepared to start developing a larger project! We were introduced to

Dorknozzle at the beginning of the chapter, and you’ve already created a project for

it. Now, it’s time to add some real functionality to the project! In the next few pages,

we will:

197Building Web Applications

■ Prepare the sitemap for your site.
■ Create a default theme that defines the common styles.
■ Create a master page that will contain the layout for all the pages of Dorknozzle.
■ Create a web form that uses the master page.
■ Learn how to debug your project in case you encounter errors.

The star of the show will be the master page, but because it needs to have the sitemap

and the theme in place, we’ll deal with these first.

Preparing the Sitemap
As we saw in Figure 5.1, on the left of every page of our Dorknozzle site will sit a

menu that contains links to the site’s pages. We’ll implement that list using the

SiteMapPath control, which will require a sitemap file.

Adding Files to Your Project

If the project is running in debug mode, you can’t add new files to it, so you must

first stop debugging. You can do this by closing the browser window (if you’re

using Internet Explorer), by selecting Debug > Stop Debugging, or by clicking the

Stop icon on the debug toolbar.

In Solution Explorer, right-click the root node and select Add New Item....

From the templates list, choose Site Map, as depicted in Figure 5.24, and leave the

filename as Web.sitemap.

Build Your Own ASP.NET 4 Website Using C# & VB198

Figure 5.24. Adding a sitemap file

Click Add to have the file created and added to your project. You’ll be presented

with a default, empty sitemap that you can start modifying. For now, you need only

add a few nodes; you can add the rest later on. Change its contents as shown be-

low—this is the VB version, but the C# version is exactly the same:

Dorknozzle\VB\09_Web.sitemap

<?xml version="1.0" encoding="utf-8" ?>
<siteMap
 xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/" title="Root" description="Root">
 <siteMapNode url="~/Default.aspx" title="Home"
 description="Dorknozzle Home" />
 <siteMapNode url="~/HelpDesk.aspx" title="Help Desk"
 description="Dorknozzle Help Desk" />
 <siteMapNode url="~/EmployeeDirectory.aspx"
 title="Employee Directory"
 description="Dorknozzle Employee Directory" />
 <siteMapNode url="~/AddressBook.aspx" title="Address Book"
 description="Dorknozzle Address Book" />
 <siteMapNode url="~/Departments.aspx" title="Departments"

199Building Web Applications

 description="Dorknozzle Departments" />
 <siteMapNode url="~/AdminTools.aspx" title="Admin Tools"
 description="Admin Tools" />
 <siteMapNode url="~/AdminNewsletter.aspx"
 title="Admin Newsletter"
 description="Dorknozzle Admin Newsletter" />
 </siteMapNode>
</siteMap>

Great! Your sitemap file is ready to be used.

Using Themes, Skins, and Styles
We’ll be using CSS to build the layout of our Dorknozzle interface. CSS provides

developers with flexibility and control over the look of their web applications, and

makes it very simple to keep the appearance of the website consistent.

In ASP.NET, style sheets can be managed through a mechanism called themes.

Themes can be used to do much more than simply select which style sheets are

applied to an application, as we’ll see shortly. But first up, let’s add a style sheet

to our Dorknozzle site.

Creating a New Theme Folder
Right-click the root node in Solution Explorer, and select Add ASP.NET Folder >

Theme. You’ll then be able to type in a name for the new theme. Type Blue, then

hit Return. If everything worked as planned, you should have a brand new folder

called App_Themes in the root of your project, with a subfolder called Blue, as Fig-

ure 5.25 illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB200

Figure 5.25. Viewing your new theme in Solution Explorer

We’ll keep all the files related to the default appearance of Dorknozzle in this Blue

folder.

Creating a New Style Sheet
We’ll start by adding a new CSS file to the Blue theme. CSS files can be created in-

dependently of themes, but it’s easier in the long term to save them to themes—this

way, your solution becomes more manageable, and you can save different versions

of your CSS files under different themes. Any files with the .css extension in a

theme’s folder will automatically be linked to any web form that uses that theme.

Right-click the Blue folder, and select Add New Item…. Select the Style Sheet template

to create a new file named Dorknozzle.css, and click Add. By default, Dorknozzle.css

will be almost empty, containing a single empty CSS rule with the selector body.

Let’s make this file more useful by adding more styles to it. We’ll use these styles

soon, when we build the first page of Dorknozzle. Again the same file used for VB

and C#:

201Building Web Applications

Dorknozzle\VB\10_Dorknozzle.css (excerpt)

body {
font-family: Tahoma, Helvetica, Arial, sans-serif;

 font-size: 12px;
}
h1 {
 font-size: 25px;
}
a:link, a:visited {
 text-decoration: none;
 color: Blue;
}
a:hover {
 color: Red;
}
.Header {
 top: 0px;
 left: 0px;
 position: absolute;
 width: 800px;
 background-image: url(../../Images/header_bg.gif);
 background-repeat: repeat-x;
}
.Menu {
 top: 160px;
 left: 15px;
 width: 195px;
 position: absolute;
}
.Content {
 top: 160px;
 left: 170px;
 position: absolute;
 width: 600px;
}

Remember, we’re not limited to using these styles. If, during the development of

our application, we decide to add more styles, we’ll simply need to open the

Dorknozzle.css file and add them as necessary.

While you’re editing the CSS, take a quick look at the built-in features that Visual

Web Developer offers for building and editing styles. Right-click on any style rule

Build Your Own ASP.NET 4 Website Using C# & VB202

in the CSS code editor, and in the context menu that appears (which is shown in

Figure 5.26), you’ll see one very handy item: Build Style….

Figure 5.26. Choosing to edit a style visually

If you choose Build Style…, you’ll access the very useful Style Builder tool, shown in

Figure 5.27, which lets you set the properties of the selected style.

Figure 5.27. Using the Style Builder

203Building Web Applications

Styling Web Server Controls
CSS styles can apply only to HTML elements—they can’t really be used to keep the

appearance of web server controls consistent. In Chapter 4, you learned about many

ASP.NET controls, and you saw that some of them contain properties that affect

their output.

Take the Calendar control, for example. Say you use many calendars throughout

your web site, and all of them are supposed to have the same properties as this one:

<asp:Calendar id="myCalendar" runat="server" DayNameFormat="Short"
 FirstDayOfWeek="Sunday" NextPrevFormat="FullMonth"
 SelectionMode="DayWeekMonth" SelectWeekText="Select Week"
 SelectMonthText="Select Month" TitleFormat="Month"
 OnSelectionChanged="SelectionChanged" />

Now, given that you have many calendars, you decide that you’d like to have the

common set of properties saved in a central place. This way, if you decided to

change the format later, you’d need to make changes in one place, rather than all

over your web site.

So, can CSS help us keep our calendars consistent in the same way it can keep our

headings consistent? Unfortunately, it can’t. All the settings in the above calendar

are processed on the server side, and are used to determine the actual HTML that’s

output by the control. CSS can affect the final output by setting the colors or other

details of the resulting HTML code, but it can’t influence the way the Calendar

control works on the server.

So the question remains: how can we keep web server controls consistent? Skins,

which were introduced in ASP.NET 2.0, are the answer to this question. They define

default values for server-side controls.

Skin definitions are saved into files with the .skin extension. A skin definition looks

like the markup for a normal web server control, except that it doesn’t have an ID,

and it can’t set event handlers. This makes sense, since the skin isn’t an actual

control. Here’s an example of a skin for a calendar:

Build Your Own ASP.NET 4 Website Using C# & VB204

<asp:Calendar runat="server" DayNameFormat="Short"
 FirstDayOfWeek="Sunday" NextPrevFormat="FullMonth"
 SelectionMode="DayWeekMonth" SelectWeekText="Select Week"
 SelectMonthText="Select Month" TitleFormat="Month" />

Now, provided this skin is part of the theme that’s applied to the current page, all

Calendar controls will inherit all of these property values automatically. These

values can be overridden for any specific calendar, but the skin provides the default

values.

A skin can also contain a SkinId property, and if it does, it becomes a named skin.

A named skin doesn’t apply automatically to all controls of its type: it affects only

those that specify that the skin applies to them. This allows you to define many

skins for the same control (for instance, a SmallCalendar and a BlueCalendar).

Adding a Skin
The truth is, we don’t really need skins for our simple site, but we’ll add one so

that you can get an idea of their functionality. Right-click again on the Blue node in

Solution Explorer, and select Add New Item…. Choose the Skin File template, leave

its name as SkinFile.skin, and click Add.

Visual Web Developer adds a comment to the file; this comment contains default

text that briefly describes skins. A theme can contain one or many skin files, and

each skin file can contain one or more skin definitions. ASP.NET will automatically

read all the files with the .skin extension.

Let’s say we want all TextBox controls to have the default ForeColor property set

to blue. Without skins, we’d need to set this property manually on all TextBox

controls in your site. However, you can achieve the same effect by adding this line

to your SkinFile.skin file:

Dorknozzle\VB\11_SkinFile.skin (excerpt)

<%--
⋮
--%>
<asp:TextBox runat="server" ForeColor="blue" />

205Building Web Applications

Once the theme containing this skin has been applied, the new skin will give all

TextBox controls on your site the default ForeColor of blue.

Applying the Theme
In order for your CSS—and the skin—to take effect, you’ll need to apply the theme

to your web page. Once the new theme has been created, applying it is a piece of

cake. You can apply a new theme using the Web.config configuration file, or through

your code.

For now we’ll use Web.config. The theme can be set using the theme attribute of the

pages element, which should be located inside the system.web element.

The pages element already exists in Web.config—you just need to add the theme

attribute:

Dorknozzle\VB\12_web.config (excerpt)

<system.web>
 ⋮
 <pages theme="Blue">
 ⋮
 </pages>
 ⋮
<system.web>

Building the Master Page
This is where the real fun begins! All of the pages in Dorknozzle have a common

structure, with the same header on the top, and the same menu on the left, so it

makes sense to build a master page. With this master page in place, we’ll be able to

create pages for the site by writing only the content that makes them different, rather

than writing the header and the menu afresh for each page.

Right-click again on the root node in Solution Explorer and select Add New Item….

There, select the Master Page template from the list of available templates, and name

it Dorknozzle.master. Choose the language in which you want to program the master

page from the Language drop-down list, and check the Place code in a separate file

checkbox, as illustrated in Figure 5.28. This latter option will instruct Visual Web

Developer to generate a code-behind file for the master page.

Build Your Own ASP.NET 4 Website Using C# & VB206

Figure 5.28. Creating a new master page

Upon the master page’s creation Visual Web Developer will open the

Dorknozzle.master file (not its code-behind file) for you to edit. You’ll find that

Visual Web Developer has given you a very simple default master page. Edit the

markup inside the form element as shown below:

Dorknozzle\VB\13_Dorknozzle.master (excerpt)

⋮
 <body>
 <form id="form1" runat="server">
 <!-- Header -->
 <div class="Header">
 <asp:Image id="Image1" runat="server"
 ImageUrl="~/Images/header.gif" Width="450" Height="174"
 AlternateText="The Official Dorknozzle Company
 Intranet" />
 </div>
 <!-- Menu -->
 <div class="Menu">
 <asp:SiteMapDataSource id="dorknozzleSiteMap" runat="server"
 ShowStartingNode="false" />
 <asp:Menu id="dorknozzleMenu" runat="server"
 DataSourceID="dorknozzleSiteMap">

207Building Web Applications

 <StaticItemTemplate>
 <img src="Images/book_closed.gif" alt="+"
 width="16" height="16" style="border-width: 0;" />
 <%# Eval("Text") %>
 </StaticItemTemplate>
 </asp:Menu>
 </div>
 <!-- Content -->
 <div class="Content">
 <asp:ContentPlaceHolder id="ContentPlaceHolder1"
 runat="server" />
 </div>
 </form>
 </body>
⋮

The code is pretty simple, and it’s identical regardless of whether you’re using VB

or C#: basically, it defines the layout of all the Dorknozzle pages. Each of the three

sections defined here starts with a comment that identifies the section as being the

header, the menu on the left, or the content area. These elements are positioned on

the page using the CSS styles you added earlier to the Dorknozzle.css file, so you

may want to have another look at that file to refresh your memory.

We saw in Chapter 4 that the TreeView and Menu controls know how to read data

from a SiteMapDataSource class, which reads the Web.sitemap file located in the

root of your project (unless you specify otherwise). To build the menu on the left-

hand side of the page, we create a Web.sitemap file, then add a SiteMapDataSource

control to our web form or master page:

Dorknozzle\VB\13_Dorknozzle.master (excerpt)

<asp:SiteMapDataSource id="dorknozzleSiteMap" runat="server"
 ShowStartingNode="false" />

You might recall that the Web.sitemap file forces us to add a root siteMapNode ele-

ment, but we can suppress this root element using the SiteMapDataSource: we set

its ShowStartingNode property to False.

To have the Menu control simply display the list of nodes, it’s sufficient to set its

DataSourceID to the ID of the SiteMapDataSource. However, the Menu control also

gives us the potential to customize the look of each menu item through templates.

Build Your Own ASP.NET 4 Website Using C# & VB208

Here, we used the StaticItemTemplate to add a little book image to the left of each

menu item:

Dorknozzle\VB\13_Dorknozzle.master (excerpt)

<asp:Menu id="dorknozzleMenu" runat="server"
 DataSourceID="dorknozzleSiteMap">
<StaticItemTemplate>

 <img src="Images/book_closed.gif" alt="+"
 width="16" height="16" style="border-width: 0;" />
 <%# Eval("Text") %>
 </StaticItemTemplate>
</asp:Menu>

After you write Dorknozzle.master, copy the Images folder from the code archive to

your Dorknozzle folder (C:\Dorknozzle\VB\ or C:\Dorknozzle\CS).1 Once this is done,

you should have a Dorknozzle\Images folder that contains a few image files. To make

the Images folder appear in Solution Explorer, right-click the root node and choose

Refresh Folder.

The master page is now in place. Click the Design button at the base of the editor

window to see a preview of the page. Does yours look like the page shown in Fig-

ure 5.29?

1 Remember that all code and images used in building the Dorknozzle project are available in the code

archive, which is available for download from sitepoint.com.

209Building Web Applications

Figure 5.29. Viewing Dorknozzle.master in Design view

Note that the CSS styles don’t apply at design time, so you’ll have to hang on a little

longer to see that code in action.

Using the Master Page
It’s time for our moment of glory, when we assemble all the pieces we’ve been

building and put them to work! We’ll start by re-creating the Default.aspx web form,

but this time, we’ll use the master page. Start by deleting your current Default.aspx

file by right-clicking that file in Solution Explorer, and choosing Delete. You’ll be

warned that Default.aspx is about to be deleted (see Figure 5.30)—choose OK.

Build Your Own ASP.NET 4 Website Using C# & VB210

Figure 5.30. Deleting Default.aspx

Click the root node in Solution Explorer, then select File > New File… (or right-click

the root node in Solution Explorer and select Add New Item… from the context

menu).

Figure 5.31. Creating the new Default.aspx

211Building Web Applications

Once you click Add, you’ll be asked to select the master page you want to use. Choose

Dorknozzle.master, and click OK.

Our new form inherits everything from its master page, so its code is minimal:

Visual Basic Dorknozzle\VB\14_Default.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
</asp:Content>

C# Dorknozzle\CS\14_Default.aspx (excerpt)

<%@ Page Language="C#" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="true" CodeFile="Default.aspx.cs"
 Inherits="_Default" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
</asp:Content>

This file is almost exactly the same when it’s written in C#—the only differences

are the Language, AutoEventWireup, and CodeFile attributes in the Page directive.

Let’s modify the file by adding some content to the ContentPlaceHolder, and altering

the page title. Edit the file to reflect the highlighted sections here:

Visual Basic Dorknozzle\VB\15_Default.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" title="Welcome to Dorknozzle!" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"

Build Your Own ASP.NET 4 Website Using C# & VB212

 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Company News</h1>

 <p>We'll add some news later.</p>
 <h1>Company Events</h1>
 <p>We'll add company events later.</p>
</asp:Content>

Switch to Design view to see a preview of the whole page, like the one shown in

Figure 5.32. The master page areas will be grayed out, and only the content place-

holder will be editable.

By default, when you select Debug > Start Debugging or press F5, Visual Web De-

veloper executes the page that’s being edited. However, if you prefer, you can set a

particular page to execute whenever you start debugging. To make sure that

Default.aspx is the page that’s loaded when the project is executed, right-click De-

fault.aspx in Solution Explorer, and select Set As Start Page.

Now, execute Default.aspx by hitting F5. It should appear as per the page in Fig-

ure 5.33, with all the CSS applied.

213Building Web Applications

Figure 5.32. Editing a web form that uses a master page

Build Your Own ASP.NET 4 Website Using C# & VB214

Figure 5.33. Welcome to Dorknozzle!

Extending Dorknozzle
We’ll extend the Dorknozzle site by adding an employee help desk request web

form. This form will allow our fictitious employees to report hardware, software,

and workstation problems to the help desk. The web form will be arranged into a

series of simple steps that users will work through to report their problems. The

process will include the following stages:

■ Choose from a predefined list of potential problem areas.
■ Choose from a range of predetermined subjects that are related to the problem

area.
■ Enter a description of the problem.
■ Submit the request.

As we already have a master page that defines the layout of the site’s pages, adding

a new page to the site is now a trivial task. In this example, we’ll see how simple

it is to add new pages to an ASP.NET web site once the structure has been created

correctly.

215Building Web Applications

Create a web form in the same way you created Default.aspx, but this time, name it

HelpDesk.aspx. Be sure to check both the Place code in separate file and Select

master page checkboxes. Next, modify the default code that will be generated to

reflect the edits shown below:

Visual Basic Dorknozzle\VB\16_HelpDesk.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="HelpDesk.aspx.vb"
 Inherits="HelpDesk" title="Dorknozzle Help Desk" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Employee Help Desk Request</h1>

 <p>
 Station Number:

 <asp:TextBox id="stationTextBox" runat="server"
 CssClass="textbox" />
 </p>
 <p>
 Problem Category:

 <asp:DropDownList id="categoryList" runat="server"
 CssClass="dropdownmenu" />
 </p>
 <p>
 Problem Subject:

 <asp:DropDownList id="subjectList" runat="server"
 CssClass="dropdownmenu" />
 </p>
 <p>
 Problem Description:

 <asp:TextBox id="descriptionTextBox" runat="server"
 CssClass="textbox" Columns="40" Rows="4"
 TextMode="MultiLine" />
 </p>
 <p>
 <asp:Button id="submitButton" runat="server"
 CssClass="button" Text="Submit Request" /></p>
</asp:Content>

Build Your Own ASP.NET 4 Website Using C# & VB216

Don’t worry that the DropDownList controls don’t have items associated with

them—eventually, the categories and subjects will be retrieved from a database.

When you’re finished, save your work, execute the project, and click the Help Desk

link from the menu. You should see the display shown in Figure 5.34.

Figure 5.34. The Help Desk page up and running

This page gives us the opportunity to test the skin file we created earlier. If you type

text into the text boxes, you’ll see that the color of the text is blue. True, this effect

could have been achieved just as easily through CSS, but in future, when you’re

working on projects that utilize more complex controls and properties, skins might

be your only choice. As such, it’s important that you know how to use them.

Debugging and Error Handling
Your work with Dorknozzle for this chapter is over, but now that we’ve started to

create a real-world application, it’s time to consider the real-world problems that

might occur as we’re developing that application. A constant truth in the life of any

programmer is that programming mistakes do happen, and they happen no matter

how experienced the programmer is. For this reason, it’s beneficial to know what

217Building Web Applications

you can do when you encounter an error, and to learn how ASP.NET and Visual

Web Developer can help you analyze and debug your code.

Debugging with Visual Web Developer
Create a new web form in Visual Web Developer that uses a code-behind file in

your C:\LearningASP\VB or C:\LearningASP\CS folder, and call it ErrorTest.aspx. Then

add the code below to the Page_Load method (remember, if you’re using VB, to

double-click the page in design mode to generate the method) in the code-behind

file:

Visual Basic LearningASP\VB\ErrorTest_01.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 Dim a(10) As Integer
 Dim i As Integer
 For i = 1 To 11
 a(i) = i
 Next
End Sub

C# LearningASP\CS\ErrorTest_01.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 int[] a = new int[10];
 int i;
 for (i = 0; i < 11; i++)
 {
 a[i] = i;
 }
}

The code above creates an array of ten elements, then uses a For loop to assign

values to them. The problem is that it doesn’t stop at the tenth element: it also tries

to assign a value to the 11th element, which doesn’t exist.

If you execute the page without debugging (using the CTRL+F5 shortcut), the page

will generate an error in your web browser, as shown in Figure 5.35.

Build Your Own ASP.NET 4 Website Using C# & VB218

Figure 5.35. Viewing the unhelpful error message

You can obtain more details by executing the project in debug mode (by pressing

F5 in Visual Web Developer).

219Building Web Applications

Figure 5.36. Debugging a run-time error

Executing the page once again—this time, with debugging enabled—takes you

straight to the error in Visual Web Developer, as Figure 5.36 illustrates.

This interface tells you that the code has thrown an exception of type

IndexOutOfRangeException. In .NET, exceptions are the standard means by which

errors are generated and propagated. An exception is a .NET class (in this case, the

IndexOutOfRangeException class) that contains the details of an error. As you’ll

see a little later, you can catch the error in your code using the Try-Catch-Finally

Build Your Own ASP.NET 4 Website Using C# & VB220

construct. If the error isn’t caught and handled, as in this case, it’s finally caught

by the ASP.NET runtime, which generates an error message.

In Figure 5.36, the debugger has paused execution at the moment the exception was

raised. Let’s see what your options are at this moment. One very useful window is

the Watch window, which appears by default when your application is being de-

bugged. If it’s not displayed, you can open it by accessing Debug > Windows > Watch.

You can type the names of the objects in your code into the Watch window; in re-

sponse, it will display their values and types. Try typing a(5) (or a[5] if you’re

using C#) into the Watch window; you should see a display like the one in Fig-

ure 5.37.

Figure 5.37. Inspecting values using the Watch window

You could even type just a, then explore its members via the display shown in

Figure 5.38.

Figure 5.38. The Watch window showing the contents of an array

Arrays and VB

This example reveals an interesting aspect of this array. The Watch window reports

that the array’s length is 11, yet we defined it as a(10). In all .NET languages,

arrays are zero-based, which means that the first element of an array is a(0), the

second is a(1), and so on. So an array called a that had ten elements would have

as its first element a(0), and a(9) as its last.

221Building Web Applications

However, VB offers extra assistance for developers who are experienced with pre-

.NET versions of the language (which used one-based arrays in which the first

element would have been a(1), and the last would have been a(10)): it adds an

element for you. In other words, if you declare an array of ten elements in VB,

you’ll get an array of 11 elements.

C# has always had zero-based arrays, so an array defined as a[10] will have ten

elements.

In more complex scenarios, if you enter the name of an object, the Watch window

will let you explore its members as we just saw.

If you switch to the Locals window (Debug > Windows > Locals) shown in Figure 5.39,

you can see the variables or objects that are visible from the line of code at which

the execution was paused.

Figure 5.39. The Locals window

Another nice feature of Visual Web Developer is that when you hover your cursor

over a variable, the editing window shows you at-a-glance information about that

variable.

Sometimes, you’ll want to debug your application even if it doesn’t generate an

exception. For example, you may find that your code isn’t generating the output

you expected. In such cases, it makes sense to execute pieces of code line by line,

and see in detail what happens at each step.

The most common way to get started with this kind of debugging is to set a break-

point in the code. In Visual Web Developer, we do this by clicking on the gray bar

on the left-hand side of the editing window. When we click there, a red bullet ap-

pears, and the line is highlighted with red to indicate that it’s a breakpoint, as Fig-

ure 5.40 illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB222

Figure 5.40. Setting a breakpoint

Once the breakpoint is set, we execute the code. When the execution pointer reaches

the line you selected, execution of the page will be paused and Visual Web Developer

will open your page in debug mode. In debug mode, you can perform a number of

tasks:

■ View the values of your variables or objects.

■ Step into any line of code by selecting Debug > Step Into. This executes the cur-

rently highlighted line, then pauses. If the selected line executes another local

method, the execution pointer is moved to that method so that you can execute

it line by line, too.

■ Step over any line of code by selecting Debug > Step Over. This makes the execu-

tion pointer move to the next line in the current method without stepping into

any local methods that might be called by the current line.

■ Step out of any method by selecting Debug > Step Out. This causes the current

method to complete and the execution to be paused on the next line of the

method that called the current method.

■ Continue execution of the program normally by selecting Debug > Continue. Ex-

ecution will stop again only if an exception is raised, or another breakpoint is

met. If the execution is stopped as a result of an exception, choosing to continue

the execution will allow the error to propagate to the ASP.NET runtime, which

will cause the error message to display in the browser window.

■ Stop execution by selecting Debug > Stop Debugging.

223Building Web Applications

■ Stop and restart the program by selecting Debug > Restart.

All these commands are also available from the Debug toolbar, which is shown in

Figure 5.41.

Figure 5.41. The Debug toolbar

This toolbar appears by default when you’re debugging, but if it doesn’t, you can

make it display by right-clicking the toolbar and selecting Debug. The Debug toolbar

reflects the commands you can find in the Debug menu, which is depicted in Fig-

ure 5.42, and the button on the extreme right gives you easy access to the various

debugging windows.

Figure 5.42. The debugging windows accessible from the toolbar

Other Kinds of Errors
Along with the runtime errors we’ve seen so far, ASP.NET can also throw the fol-

lowing kinds of errors:

configuration errors

These are caused by problems in the Web.config file. If you add an incorrect

tag to Web.config, the next time you try to load the application, an error will

occur.

parser errors

Parser errors are caused by the use of incorrect syntax in an ASP.NET script

page; for instance, problems in the definitions of ASP.NET controls included

in a web form will cause parser errors.

Build Your Own ASP.NET 4 Website Using C# & VB224

compilation errors

These errors are raised by the compiler when there’s a syntax error in the page’s

C# or VB code, and will be caught by Visual Web Developer.

If you try to execute a page that contains compilation errors with Visual Web De-

veloper, those errors will be signaled right away, as shown in Figure 5.43, and the

page won’t be loaded in the web browser.

Figure 5.43. Visual Web Developer providing a compilation error warning

If you’d like to try this for yourself, write some VB code, but terminate one of the

lines with a semicolon as if you were writing C# code, as shown in the snippet below:

Visual Basic

Sub Page_Load(s As Object, e As EventArgs)
timeLabel.Text = DateTime.Now.ToString();

End Sub

If you try to run this code, Visual Web Developer will present you with the message

shown in Figure 5.43. If you choose Yes, a previous version of the code that used

to compile successfully will be executed. Usually, this isn’t what you want: you’ll

prefer to investigate the problem and fix the error. If you choose No, Visual Web

Developer will display a window called the Error List. Double-click the entry in

the Error List, and the offending portion of code will be highlighted in the editor.

Moreover, hovering your cursor over the highlighted code will display a tooltip

containing a few details about the error, as Figure 5.44 illustrates.

225Building Web Applications

After such a demonstration, I hope you agree that Visual Web Developer is a fant-

astic tool. What you’ve just seen is merely a common-sense feature in the world of

Visual Web Developer, though—much more exciting and powerful features are

available!

Figure 5.44. Visual Web Developer explaining an error in a tooltip

Custom Errors
If you’re not running your application through Visual Web Developer, for example

when your application has been deployed to a live web server, ASP.NET will report

errors by displaying a message in the browser window, as we saw in Figure 5.35.

The default error message that’s shown to remote users doesn’t contain code or

other sensitive data, but you can customize the page that’s displayed to visitors

when errors occur using a Web.config element called customErrors.

Build Your Own ASP.NET 4 Website Using C# & VB226

We define the customErrors element as a child of the system.web element like so:

<configuration>
 <system.web>
 ⋮
 <customErrors mode="modeValue"
 defaultRedirect="errorPage.aspx" />
 ⋮
 </system.web>
</configuration>

The defaultRedirect attribute of the customErrors element is used to specify the

page that’s used to report errors. We can then choose whether this error page is

shown to everybody, to nobody, or only to users who access the site from another

network using the mode attribute. The possible values for the mode attribute are:

On When mode is On, ASP.NET uses user-defined custom error pages,

instead of its default error page, for both local and remote users.

Off When mode has a value of Off, ASP.NET uses its default error page

for both local and remote users. The customErrors element has no

effect when mode is set to Off.

RemoteOnly When mode has the RemoteOnly value, the ASP.NET error page is

shown only to local users, and the custom error page is shown to

remote users. RemoteOnly is the default value, and is generally the

safest option during development. If the defaultRedirect attribute

is present, remote visitors will see the page mentioned; otherwise,

they’ll see a generic error that doesn’t contain debugging information.

Handling Exceptions Locally
As you can see, unless you handle any exceptions that are raised in your code

yourself, they’ll be caught by the debugger. If you’re not running the code within

Visual Web Developer, the exceptions will be caught by the ASP.NET runtime,

which displays the errors in the browser.

Additionally, C# and VB enable you to handle runtime errors using the

Try-Catch-Finally construct.

The basic syntax of Try-Catch-Finally is as follows:

227Building Web Applications

Visual Basic

Try
 ⋮ code block…
Catch ex As Exception
 ⋮ code block…
Finally
 ⋮ code block…
End Try

The equivalent C# syntax looks like this:

C#

try
{
 ⋮ code block…
}
catch (Exception ex)
{
 ⋮ code block…
}
finally
{
 ⋮ code block…
}

As a basic rule of thumb, we place inside a Try block any code that we suspect

might generate errors that we’ll want to handle. If an exception is generated, the

code in the Catch block will be executed. We can access information about the error

from the ex object, which contains the current exception—an instance of the

Exception class. If the code in the Try block doesn’t generate any exceptions, the

code in the Catch block won’t execute. In the end, whether an exception occurred

or not, the code in the Finally block will execute.

That’s an important point: the code in the Finally block will always execute, no

matter what! As such, it’s good practice to place any “mission-critical” code in that

block. For example, if database operations are performed in the Try block, a good

practice would be to close the database connection in the Finally block to ensure

that no open connections remain active on the database server—consuming re-

sources!—or to keep database objects locked.

Build Your Own ASP.NET 4 Website Using C# & VB228

Exceptions propagate from the point at which they were raised up through the call

stack of your program. The call stack is the list of methods that are being executed.

So, if method A calls a method B, which in turn calls method C, the call stack will

be formed of these three methods, as Figure 5.45 illustrates.

Figure 5.45. A simple call stack

In this scenario, an exception that’s raised in method C can be handled within the

same function, provided the offending code is inside a Try/Catch block. If this isn’t

the case, the exception will propagate to method B, which also has the opportunity

to handle the exception, and so on. If no method handles the exception, it will be

intercepted either by the Visual Web Developer debugger or the ASP.NET runtime.

In the Try-Catch-Finally construct, both the Finally and Catch blocks are optional.

You can use only the Try and Catch blocks if there’s no need for a Finally block;

you might use only Try and Finally blocks if you want your code always to perform

a particular action when an exception is thrown, but you want the exception to

propagate up the call stack.

In more complex scenarios, you can use more layers of error handling. In these

scenarios, you’ll want to handle the error partially in the place in which it occurred,

but you’ll still want to let it propagate so that the upper layers take note of it, and

perform further processing. Exceptions are thrown using the Throw keyword (throw

in C#), like so:

Visual Basic

Try
 ⋮ code block…
Catch ex As Exception

229Building Web Applications

 ⋮ code block…
Throw ex

End Try

C#

try
{
 ⋮ code block…
}
catch (Exception ex)
{
 ⋮ code block…
throw ex;

}

If an error is thrown in the Try block, we can use the Catch block to optionally ex-

ecute some code and then Throw the exception again so that it’s caught higher up

the stack. We could modify our array example to include Try and Catch blocks like

this:

Visual Basic LearningASP\VB\ErrorTest_02.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 Dim a(10) As Integer
 Dim i As Integer
 Try
 For i = 1 To 11
 a(i) = i
 Next
Catch ex As Exception

 messageLabel.Text = "Exception!
" & ex.Message
 End Try
End Sub

C# LearningASP\CS\ErrorTest_02.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 int[] a = new int[10];
 int i;

Build Your Own ASP.NET 4 Website Using C# & VB230

try
 {
 for (i = 0; i < 11; i++)
 {
 a[i] = i;
 }
 }
catch(Exception ex)

 {
 messageLabel.Text = "Exception!
" + ex.Message;
 }
}

Provided you have a Label control named messageLabel in your web form, you’ll

see the message shown in Figure 5.46 when you run this code.

Figure 5.46. Catching an exception

In the code above, we can see that the Catch block receives an Exception object,

ex, as a parameter. This object describes the exception that has caused the Catch

block to execute. In our code, we use one of the Exception object’s many proper-

ties—in this case, Message—to display some information about the error. In a real-

istic scenario, you may want to use this opportunity within the Catch block to

possibly redirect a custom error page that will display a more friendly error message.

In .NET, all exceptions are .NET classes derived from the Exception class. This

means that, in fact, each exception is a different class (in our case, ex is an

231Building Web Applications

IndexOutOfRangeException object), but we can treat ex as the generic Exception

class to access the generic details of any error.

The Exception class contains the following properties:

Message

the error message

Source

the name of the exception’s source

StackTrace

the names of the methods that were called just before the error occurred

TargetSite

an instance of the MethodBase class that represents the method that caused the

error

Specialized exception classes can contain additional members. For example, the

SqlException class, which is raised when database-related errors occur, includes

a collection of error messages (SqlError objects) in its Errors property. You could

use a For Each loop to iterate through these errors.

In complex application scenarios, you could even create your own exception classes

as specialized versions of Exception. You could then throw these exceptions as

needed, and catch them in a class or method that was situated in the upper levels

of the hierarchy, and would handle these errors properly.

Summary
In this chapter, you’ve learned just how powerful Visual Web Developer can be.

We’ve seen most of its basic features in action, and we’ve experimented with some

of the really useful features you’ll find yourself using every day, such as automatic

code generation and debugging. We also used Visual Web Developer to make a start

on our exciting new project: Dorknozzle!

We’ve taken a close look at Web.config, which is where your web application’s

configuration settings will be stored, and Global.asax, which is where application-

wide events can be handled. We’ve also discussed the Application and Cache ob-

jects, which can be used to store data that’s available to all pages within an applic-

Build Your Own ASP.NET 4 Website Using C# & VB232

ation; the Session object, which can be used to store user-specific data across re-

quests; and cookies, which can be sent to the user’s browser, then read on subsequent

visits.

Finally, we took a look at themes and master pages, which are powerful ways of

managing your site’s look and feel.

In Chapter 6, we’ll discuss data validation, and learn how ASP.NET’s validation

controls can help us ensure that our back-end systems are as secure as possible.

233Building Web Applications

Chapter6
Using the Validation Controls
Ever needed to ensure that a user typed an email address into a text box? Or wanted

to make sure that a user typed numbers only into a phone number field? Validation

involves checking that the data your application’s users have entered obeys a

number of predefined rules. To help developers with the most common data valid-

ation tasks, ASP.NET provides a set of validation controls that ease the problems

that troubled web developers in the past. This chapter will show you how to use

them.

More specifically, in this chapter you will:

■ Learn the difference between client-side and server-side data validation.
■ Use the .NET validation controls to restrict the data your visitors can submit.
■ Create validation groups to form groups of controls that need to be validated

together.
■ Update Dorknozzle to validate the data submitted by its users.

Client-side Validation and
Server-side Validation
There are two kinds of form validation, and they’re differentiated by the location

in which the validation takes place. You could write client-side JavaScript code

that validates the data typed by the user directly into the browser (client-side valid-

ation), or you could use server-side VB or C# code to validate the user input once

the form has been submitted to the server (server-side validation).

Client-side validation has its benefits, chief among them being the fact that it

provides instant feedback to users. If users fail to enter their names into a text box,

the page automatically displays an error message. The users know immediately that

they need to enter their names—they don’t need to wait for a response from the

server to tell them so. The process is quick and efficient, and good for the overall

user experience.

However, there’s one big drawback with client-side validation: users must have

JavaScript enabled in their browsers, or validation simply will not occur. Some

browsers, such as those built into PDAs and mobile telephones, don’t support

JavaScript, so client-side validation doesn’t work. Although client-side validation

is a great way to increase the usability of your site, it’s not a foolproof way to ensure

that the data entered into your form will pass all your rules.

While client-side validation is optional, server-side validation is not. For this reason,

developers frequently choose to implement only server-side validation methods.

Server-side validation is necessary because it’s our last line of defense against bogus

user data. The downside to server-side validation is that the application has to make

a trip to the server before users can be alerted to any errors in their data.

Introducing the ASP.NET Validation Controls
ASP.NET includes controls that make validation a snap. The ASP.NET validation

controls, while primarily useful for implementing client-side validation, make it

easier to implement server-side validation as well. The ASP.NET validation controls

generate the JavaScript required for basic validation tasks for you (so you don’t need

to deal with any JavaScript code yourself); then, once the page is submitted, you

Build Your Own ASP.NET 4 Website Using C# & VB236

can use the controls to check on the server whether or not the client-side validation

was successful.

ASP.NET’s validation controls provide client-side validation capabilities while

virtually eliminating the need for developers to know JavaScript. Better still, they

don’t require complex server-side scripting. To use ASP.NET validation controls,

we just add an object to the page and configure some simple properties.

As our first step towards demonstrating the ASP.NET validation controls, we’ll

create a number of simple pages in the LearningASP folder we worked with in previous

chapters. Then we’ll update the Dorknozzle intranet, adding validation features to

the Help Desk page.

To start with, let’s create a simple login web form. Create a file named Login.aspx

(with no code-behind file) in your C:\LearningASP\VB or C:\LearningASP\CS folder

and modify it as shown below:

Visual Basic LearningASP\VB\Login_01.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Simple Login Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<!-- Username -->
 <p>
 Username:

 <asp:TextBox id="usernameTextBox" runat="server" />
 <asp:RequiredFieldValidator id="usernameReq"
 runat="server"
 ControlToValidate="usernameTextBox"
 ErrorMessage="Username is required!" />

237Using the Validation Controls

 </p>
 <!-- Password -->
 <p>
 Password:

 <asp:TextBox id="passwordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator id="passwordReq"
 runat="server"
 ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!" />
 </p>
 <!-- Submit Button -->
 <p>
 <asp:Button id="submitButton" runat="server"
 Text="Submit" />
 </p>
 </div>
 </form>
 </body>
</html>

The VB version is displayed above, but the C# version is identical except for the

Page declaration. Here, we’ve added two RequiredFieldValidator controls, which

force the user to type some data into the referenced controls before the form can be

submitted. Let’s have a closer look at the first RequiredFieldValidator to see that

it does its job. It sets a couple of properties, whose names are fairly descriptive

(ControlToValidate and ErrorMessage):

LearningASP\VB\Login_01.aspx (excerpt)

<asp:RequiredFieldValidator id="usernameReq" runat="server"
ControlToValidate="usernameTextBox"
ErrorMessage="Username is required!" />

Load this page and immediately click the Submit button without entering text into

either field. The page should display as shown in Figure 6.1. When we click the

Submit button, we instantly see the error messages that tell us we forgot to type in

a username and password.

Build Your Own ASP.NET 4 Website Using C# & VB238

Figure 6.1. Validation controls at work

The beauty of ASP.NET validation controls is that they determine whether or not

the browser is capable of supporting client-side validation. If it is, ASP.NET auto-

matically includes the necessary client-side JavaScript; if not, it’s omitted and the

form is validated on the server.

ASP.NET and Client-side Validation

In older versions of ASP.NET, these controls demonstrated a tendency to assume

that non-Microsoft browsers, such as Firefox, did not support JavaScript. As

ASP.NET’s client-side validation relies on JavaScript, client-side validation was

not supported in those browsers, and users had to rely on these controls’ server-

side validation.

However, from version 2.0 on, ASP.NET recognized the JavaScript capabilities of

these browsers, so client-side validation is now available to all modern browsers,

including Opera, Firefox, and others. Support is even better now in ASP.NET 4.0.

That said, it’s important not to forget that JavaScript can be disabled in any browser,

so client-side validation cannot be relied upon—we must always validate any

submitted data on the server.

A nice feature of ASP.NET is that we can make it set the focus automatically to the

first input control that causes a validation error. We activate this feature by setting

the SetFocusOnError property of the validation control to True. Our simple example

239Using the Validation Controls

offers two RequiredFieldValidation controls that we can update. Let’s do that

now:

LearningASP\VB\Login_02.aspx (excerpt)

<!-- Username -->
<p>
 Username:

 <asp:TextBox id="usernameTextBox" runat="server" />
 <asp:RequiredFieldValidator id="usernameReq" runat="server"
 ControlToValidate="usernameTextBox"
 ErrorMessage="Username is required!"

SetFocusOnError="True" />
</p>
<!-- Password -->
<p>
 Password:

 <asp:TextBox id="passwordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator id="passwordReq" runat="server"
 ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!"

SetFocusOnError="True" />
</p>

If you make the changes highlighted in bold above, and load the page again, pressing

the Submit button when a text box is empty will cause that text box to gain focus.

If both text boxes are empty, the first one will receive focus.

Enforcing Validation on the Server
Validation is critical in circumstances in which users’ submission of invalid data

could harm your application. There are many circumstances where processing bad

input data could have negative effects—for instance, it could produce runtime errors,

or cause bad data to be stored in your database.

To get a clear idea of these implications, let’s add to the login page some server-side

code that uses the data input by the visitor. The typical point at which visitor data

is used in a login page is the Click event handler of the Submit button. Add the

OnClick property to the Button control, and give it the value submitButton_Click.

This property mimics what Visual Web Developer would give the control if you

double-clicked the button in Design view:

Build Your Own ASP.NET 4 Website Using C# & VB240

LearningASP\VB\Login_03.aspx (excerpt)

<!-- Submit Button -->
<p>
 <asp:Button id="submitButton" runat="server" Text="Submit"

OnClick="submitButton_Click" />
</p>

Next, create the submitButton_Click subroutine. You can add this between the

<script runat="server"> and </script> tags, like so:

Visual Basic LearningASP\VB\Login_03.aspx (excerpt)

Protected Sub submitButton_Click(s As Object, e As EventArgs)
 submitButton.Text = "Clicked"
End Sub

C# LearningASP\CS\Login_03.aspx (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
 submitButton.Text = "Clicked";
}

You can have Visual Web Developer help you generate the method signatures by

switching the form to Design view and double-clicking the button.

Now, if you’re trying to submit invalid data using a browser that has JavaScript

enabled, this code will never be executed. However, if you disable your browser’s

JavaScript, you’ll see the label on the Button control change to Clicked! Obviously,

this is not an ideal situation—we’ll need to do a little more work to get validation

working on the server side.

Disabling JavaScript in Firefox

To disable JavaScript in Firefox, go to Tools > Options…, click the Content tab, and

uncheck the Enable JavaScript checkbox.

241Using the Validation Controls

Disabling JavaScript in Opera

To disable JavaScript in Opera, go to Tools > Preferences…, click the Advanced tab,

select Content in the list on the left, and uncheck the Enable JavaScript checkbox.

Disabling JavaScript in Internet Explorer

To disable JavaScript in Internet Explorer, go to Tools > Internet Options… and

click the Security tab. There, select the zone for which you’re changing the settings

(the zone will be shown on the right-hand side of the browser’s status bar—it will

likely be Local Intranet Zone if you’re developing on the local machine) and press

Custom Level…. Scroll down to the Scripting section, and check the Disable radio

button for Active Scripting.

ASP.NET makes it easy to verify on the server side if the submitted data complies

to the validator rules without our having to write very much C# or VB code at all.

All we need to do is to check the Page object’s IsValid property, which only returns

True if all the validators on the page are happy with the data in the controls they’re

validating. This approach will always work, regardless of which web browser the

user has, or the settings he or she has chosen.

Let’s make use of this property in our Click event handler:

Visual Basic LearningASP\VB\Login_04.aspx (excerpt)

Protected Sub submitButton_Click(s As Object, e As EventArgs)
 If Page.IsValid Then
 submitButton.Text = "Valid"
 Else
 submitButton.Text = "Invalid!"
 End If
End Sub

C# LearningASP\CS\Login_04.aspx (excerpt)

protected void submitButton_Click(object s, EventArgs e)
{
 if(Page.IsValid)
 {
 submitButton.Text = "Valid";
 }

Build Your Own ASP.NET 4 Website Using C# & VB242

 else
 {
 submitButton.Text = "Invalid!";
 }
}

Load the page again after you disable JavaScript, and press the Submit button without

entering any data in the text boxes. The text label on the button should change, as

shown in Figure 6.2.

Figure 6.2. Server validation failed

As you can see, the text on the button changed to a message that reflects the fact

that Page.IsValid returned False. The validator controls also display the error

messages, but only after a round-trip to the server. If JavaScript was enabled, the

validator controls would prevent the page from submitting, so the code that changes

the Button’s text wouldn’t execute.

If you use validation controls, and verify on the server that Page.IsValid is True

before you use any of the validated data, you have a bulletproof solution that’s

guaranteed to avoid bad data entering your application through any browser.

JavaScript-enabled browsers will deliver an improved user experience by allowing

243Using the Validation Controls

client-side validation to take place, but server-side validation ensures that, ultimately,

the functionality is the same regardless of your users’ browser settings.

Using CausesValidation

There are cases in which you might decide to disable validation when a certain

event is triggered. For example, imagine you have a registration page that contains

two buttons: Submit and Cancel. You’ll probably want the Cancel button to work

regardless of whether valid data has been entered, otherwise users won’t be able

to cancel the process before typing in some valid data! You can make Cancel work

at all times by setting the CausesValidation property of the button to False.

One thing to note about validator controls is that, by default, they take up space in

your web form. To illustrate this point, let’s add a password confirmation text box

just after the password text box’s RequiredFieldValidator:

LearningASP\VB\Login_05.aspx (excerpt)

⋮
<!-- Password -->
<p>
 Password and Confirmation:

 <asp:TextBox id="passwordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator id="passwordReq" runat="server"
 ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!"
 SetFocusOnError="True" />
<asp:TextBox id="confirmPasswordTextBox" runat="server"

 TextMode="Password" />
 <asp:RequiredFieldValidator id="confirmPasswordReq"
 runat="server" ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Password confirmation is required!"
 SetFocusOnError="True" />
</p>
⋮

Load this page and you’ll see that the new confirmPasswordTextBox control appears

after the space that’s reserved for the RequiredFieldValidator control, as Figure 6.3

illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB244

Figure 6.3. Displaying the RequiredValidatorControlRequiredFieldValidator control ?

As you can see, ASP.NET reserves space for its validator controls by default. How-

ever, we can change this behavior using the Display property, which can take any

one of the values None, Static, or Dynamic:

None

None makes the validator invisible—no space is reserved, and the error message

is never shown. You may want to set this option when using the

ValidationSummary control (which we’ll cover later) to display a list of valida-

tion errors for the entire page, in which case you won’t want each validation

control to display its own error message separately.

Static

Static is the default display mode. With this mode, the validator occupies

space on the generated form even if it doesn’t display anything.

Dynamic

The Dynamic mode causes the validation control to display if any validation

errors occur, but ensures that it doesn’t generate any output (including the

whitespace shown in Figure 6.3) if the validation is passed.

In the code below, the Display property is set to Dynamic. If we set this property

for all of the validation controls in our page, the two password TextBox controls

will appear side by side until one of them fails validation:

245Using the Validation Controls

LearningASP\VB\Login_06.aspx (excerpt)

⋮
<!-- Password -->
<p>
 Password and Confirmation:

 <asp:TextBox id="passwordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator id="passwordReq" runat="server"
 ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!"
 SetFocusOnError="True" Display="Dynamic" />
 <asp:TextBox id="confirmPasswordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator id="confirmPasswordReq"
 runat="server" ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Password confirmation is required!"
 SetFocusOnError="True" Display="Dynamic" />
</p>
⋮

Using Validation Controls
Now that you have an understanding of what validation controls can do, let’s have

a look at the different controls that are available in ASP.NET:

■ RequiredFieldValidator

■ RangeValidator

■ RegularExpressionValidator

■ CompareValidator

■ CustomValidator

■ ValidationSummary

In general, most controls can be validated. The Calendar control is the exception

to the rule.

If you’re working with Visual Web Developer, you can see the validation controls

in the Validation tab of the Toolbox, as Figure 6.4 illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB246

Figure 6.4. Accessing the validation controls in Visual Web Developer

Validation controls, like other web server controls, are inserted as tags with the

asp: prefix. Once a validation control is inserted, it validates an existing control

elsewhere on the page, and presents an error message to the user if necessary. To

validate a field, all you have to do is insert a control—there’s no JavaScript or clumsy

server-side code to write by hand! Let’s take a look at these ASP.NET validation

controls in detail now.

RequiredFieldValidator
The RequiredFieldValidator control is the simplest of the validation controls. It

does exactly what its name suggests: it makes sure that a user enters a value into a

web control. We used the RequiredFieldValidator control in the login page ex-

ample presented earlier:

247Using the Validation Controls

LearningASP\VB\Login_06.aspx (excerpt)

<asp:RequiredFieldValidator id="passwordReq" runat="server"
 ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!"
 SetFocusOnError="True" Display="Dynamic" />

The ControlToValidate property contains the ID of the web control that the

RequiredFieldValidator control is assigned to. The ErrorMessage property contains

the error message that will be displayed when the user fails to enter a value into

each control. Lastly, we apply red font coloring to bring the note to the user’s atten-

tion. By default, ASP.NET 4 does not apply any styling to the error messages, a

break from previous versions. To perform styling on your own using CSS, there is

a CssClass attribute that can be used to have ASP.NET use the styling based on the

CSS class of your choice. Going forward we will use the errorMsg class that we add

to our Dorknozzle.css file:

CompareValidator
One of the most useful validation controls is the CompareValidator control, which

performs a comparison between the data entered into a given control and some

other value. That other value can be a fixed value, such as a number, or a value

entered into another control.

Let’s look at an example that builds on the login example we saw in the previous

section. Here, we’ll validate that the data entered into both the password fields is

identical. Make the following changes to Login.aspx:

LearningASP\VB\Login_07.aspx (excerpt)

<p>
 Password and Confirmation:

 ⋮
 <asp:CompareValidator id="comparePasswords" runat="server"
 ControlToCompare="passwordTextBox"
 ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Your passwords do not match up!"
 Display="Dynamic" />
</p>

Build Your Own ASP.NET 4 Website Using C# & VB248

Run the page and enter a different password into each field. The CompareValidator

control will appear as soon as you move on from the two fields whose data doesn’t

match, as Figure 6.5 shows.

Figure 6.5. A CompareValidator control in action

As you’ve probably noticed, the CompareValidator control differs very little from

the RequiredFieldValidator control:

LearningASP\VB\Login_07.aspx (excerpt)

<asp:RequiredFieldValidator id="confirmPasswordReq"
 runat="server" ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Password confirmation is required!"
 SetFocusOnError="True" Display="Dynamic" />
<asp:CompareValidator id="comparePasswords" runat="server"
 ControlToCompare="passwordTextBox"
 ControlToValidate="confirmPasswordTextBox"
 ErrorMessage="Your passwords do not match up!"
 Display="Dynamic" />

The only difference is that in addition to a ControlToValidate property, the

CompareValidator has a ControlToCompare property. We set these two properties

to the IDs of the controls we want to compare. So, in our example, the

ControlToValidate property is set to the confirmPasswordTextBox, and the

ControlToCompare property is set to the passwordTextBox.

The CompareValidator can be used to compare the value of a control to a fixed

value, too. CompareValidator can check whether the entered value is equal to, less

than, or greater than any given value. As an example, let’s add an “age” field to our

login form:

249Using the Validation Controls

LearningASP\VB\Login_08.aspx (excerpt)

<!-- Age -->
<p>
 Age:

 <asp:TextBox id="ageTextBox" runat="server" />
 <asp:RequiredFieldValidator id="ageReq" runat="server"
 ControlToValidate="ageTextBox"
 ErrorMessage="Age is required!"
 SetFocusOnError="True" Display="Dynamic" />
 <asp:CompareValidator id="ageCheck" runat="server"
 Operator="GreaterThan" Type="Integer"
 ControlToValidate="ageTextBox" ValueToCompare="15"
 ErrorMessage="You must be 16 years or older to log in" />
</p>

In this case, the CompareValidator control is used to check that the user is old

enough to log in to our fictitious web application. Here, we set the Operator property

of the CompareValidator to GreaterThan. This property can take on any of the

values Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual,

or DataTypeCheck, which we’ll look at shortly. Next, we tell the CompareValidator

control to compare the two values by setting the Type property to Integer, which

will cause the CompareValidator to treat the values as whole numbers (this property

can also be set to Currency or Date, among other options). Finally, we use the

ValueToCompare property to make sure that the user’s age is greater than 15. If you

load this page in your web browser now, you’ll see that the form is only validated

when the user enters an age of 16 or more.

We can also use the CompareValidator control to perform data type checks. To see

how this works, let’s replace the age TextBox control with a date-of-birth text box,

whose value must be a valid date:

LearningASP\VB\Login_09.aspx (excerpt)

<!-- Birth Date -->
<p>
 Birth Date:

 <asp:TextBox id="birthDateTextBox" runat="server" />
 <asp:CompareValidator id="birthDateCheck" runat="server"
 Operator="DataTypeCheck" Type="Date"
 ControlToValidate="birthDateTextBox"

Build Your Own ASP.NET 4 Website Using C# & VB250

 ErrorMessage="You must enter the date in a valid format!"
 SetFocusOnError="True" Display="Dynamic" />
</p>

As you can see, the Operator property of the CompareValidator control is set to

perform a DataTypeCheck, and the Type property is set to Date. Load the page, and

you’ll see that you can’t enter anything other than a valid date into this field. The

constituents of a “valid” date will depend on the regional settings on your web

server.

RangeValidator
The RangeValidator control checks whether the value of a form field falls between

minimum and maximum values. For instance, we could make sure that users who

visit our web site were born in a certain decade. If they enter values that don’t fit

into the range we specify, the validator will return an “invalid” message.

birth date, validatingLet’s continue by expanding Login.aspx even further:

LearningASP\VB\Login_10.aspx (excerpt)

<!-- Birth Date -->
<p>
 Birth Date:

 <asp:TextBox id="birthDateTextBox" runat="server" />
<asp:RangeValidator id="birthDateRangeTest" runat="server"

 Type="Date" ControlToValidate="birthDateTextBox"
 MinimumValue="1/1/1970" MaximumValue="12/31/1979"
 ErrorMessage="You must've been born in the 1970s to use
 this web site!" />
</p>

Take Care when Specifying Dates

If you’re located outside of the US, you may need to modify the above example.

In the US, dates are specified in month-day-year format. In the UK and Australia,

they’re specified in day-month-year order, and in other countries, the year is

specified first. The ASP.NET runtime will be expecting you to specify dates in

your local format, so adjust the values of the MinimumValue and MaximumValue

properties accordingly.

251Using the Validation Controls

Here, we’ve added a RangeValidator to validate the birthDateTextBox control.

Our RangeValidator control checks whether the date entered falls within the 1970s,

and shows an error message similar to Figure 6.6 if it doesn’t.

Figure 6.6. Using the RangeValidator control

Note that the Type property of the RangeValidator control specifies the data type

that’s expected in the control with which it’s associated; if some other data type is

entered into this field, it fails validation. As such, we’ve removed the

CompareValidator we added for this purpose.

ValidationSummary
Imagine we have a form that contains many form fields. If that page contains errors,

it could be difficult for users to figure out which control caused a given error, because

the page is so big. The ValidationSummary control can alleviate this problem by

presenting the user with a list of error messages in one place on the page. Let’s see

the ValidationSummary control in use. Add it to the end of your Login.aspx file, like

so:

LearningASP\VB\Login_11.aspx (excerpt)

<!-- Submit Button -->
<p>
 <asp:Button id="submitButton" runat="server" Text="Submit"
 OnClick="submitButton_Click" />
</p>
<!-- Validation Summary -->

Build Your Own ASP.NET 4 Website Using C# & VB252

<p>
 <asp:ValidationSummary id="vSummary" runat="server" />
</p>

When the user clicks the Submit button, the ValidationSummary is populated

automatically with a list of all the errors on the page, as we can see in Figure 6.7.

Figure 6.7. Using the ValidationSummary control

This control isn’t particularly good looking, but you can see its potential. If you set

the Display properties of all of the other validation controls on the page to None,

you could use a ValidationSummary to show all the errors in one place.

If you set the ShowMessageBox property of the ValidationSummary control to True,

the list of errors will be shown in a JavaScript alert box similar to Figure 6.8. The

server-side list will still be shown to users who don’t have JavaScript-enabled

browsers.

253Using the Validation Controls

Figure 6.8. Showing validation errors in a dialog

RegularExpressionValidator
The RegularExpressionValidator lets you specify a regular expression that de-

scribes all the allowable values for a field. Regular expressions are powerful tools

for manipulating strings, and are supported by many programming languages.

They’re commonly used to check for patterns inside strings. Consider, for instance,

the following regular expression:

^\S+@\S+\.\S+$

In plain English, this expression will match any string that begins with one or more

non-whitespace characters followed by the @ character, then one or more non-

whitespace characters, then a dot (.), then one or more non-whitespace characters,

followed by the end of the string.

This regular expression describes any one of these email addresses:

■ books@sitepoint.com

■ zac@host.modulemedia.com

■ joe_bloggs@yahoo.co.uk

However, the regular expression would fail if the user typed in one of these entries:

Build Your Own ASP.NET 4 Website Using C# & VB254

■ books@sitepoint

■ joe bloggs@yahoo.co.uk

Although regular expressions cannot check to see if the email address itself is valid,

they can, at the very least, provide a means for us to determine whether or not the

user has entered a string of characters that has all the key components of a valid

email address.

Let’s change the username field in our login form to an email address field, and

validate it using the RegularExpressionValidator control.

LearningASP\VB\Login_12.aspx (excerpt)

<!-- Email Address -->
<p>
 Email address:

 <asp:TextBox id="emailTextBox" runat="server" />
 <asp:RequiredFieldValidator id="emailReq" runat="server"
 ControlToValidate="emailTextBox"
 ErrorMessage="Email address is required!"
 SetFocusOnError="True" Display="Dynamic" />
<asp:RegularExpressionValidator id="emailValidator"

 runat="server" ControlToValidate="emailTextBox"
 ValidationExpression="^\S+@\S+\.\S+$"
 ErrorMessage="You must enter a valid email address!" />
</p>

The important property within this control is ValidationExpression, to which we

assign the regular expression that’s appropriate for handling our custom validation

functionality. Figure 6.9 shows the error message that appears when a user enters

an incorrect email address.

255Using the Validation Controls

Figure 6.9. Using the RegularExpressionValidator control

Some Useful Regular Expressions
Writing regular expressions can be tricky, and a comprehensive discussion of the

topic is outside the scope of this book. Many of the regular expressions presented

here are nowhere near as rigorous as they could be, but they’re still quite useful.

The book Mastering Regular Expressions, by Jeffrey E. F. Friedl, contains a single

expression for checking email addresses that tops 6,000 characters!1

Table 6.1 outlines the usage of some simple regular expressions.

1 Jeffrey E. F. Friedl, Mastering Regular Expressions, Third Edition (Sebastopol: O’Reilly Media), 2006.

Build Your Own ASP.NET 4 Website Using C# & VB256

Table 6.1. Some simple regular expressions

Regular ExpressionDescription

^\S+@\S+\.\S+$email address

^https?://\S+\.\S+$web URL

^\(?\d{3}\)?(\s|-)\d{3}-\d{4}$US phone numbers ((555) 555-5555 or

555-555-5555)

^\d(\d|-){7,20}$international phone numbers (begins with a digit,

followed by between seven and 20 digits and/or

dashes)

^\d{5}$five-digit ZIP code

^\d{5}-\d{4}$nine-digit ZIP code

^(\d{5})|(\d{5}\-\d{4})$either five-digit or nine-digit ZIP code

^\d{3}-\d{2}-\d{4}$US social security number

Take a close look at the components of the regular expressions in Table 6.2, and

you should begin to see how they work. If you’d like more information on regular

expressions, try the following resources:

Regular Expression Library2

a searchable library of regular expressions

Using Regular Expressions in PHP3

a great article on the use of regular expressions and PHP

Regular Expressions in JavaScript4

another great article, this time on the use of regular expressions with JavaScript

2 http://www.regexlib.com/
3 http://www.sitepoint.com/article/regular-expressions-php
4 http://www.sitepoint.com/article/expressions-javascript

257Using the Validation Controls

http://www.regexlib.com/
http://www.sitepoint.com/article/regular-expressions-php
http://www.sitepoint.com/article/expressions-javascript

Table 6.2. Common regular expression components and their descriptions

DescriptionSpecial Character

any character.

beginning of string^

end of string$

numeric digit\d

whitespace character\s

non-whitespace character\S

the string abc as a group of characters(abc)

preceding character or group is optional?

one or more of the preceding character or group+

zero or more of the preceding character or group*

exactly n of the preceding character or group{n}

n to m of the preceding character or group{n,m}

either a or b(a|b)

a dollar sign (as opposed to the end of a string). We can escape any of the

special characters listed above by preceding it with a backslash. For example,

\. matches a period character, \? matches a question mark, and so on.

\$

You’ll find a complete guide and reference to regular expressions and their compon-

ents in the .NET Framework SDK Documentation.

CustomValidator
The validation controls included with ASP.NET allow you to handle many kinds

of validation, yet certain types of validation cannot be performed with these built-

in controls. For instance, imagine that you needed to ensure that a new user’s login

details were unique by checking them against a list of existing usernames on the

server. The CustomValidator control can be helpful in this situation, and others

like it. Let’s see how:

Build Your Own ASP.NET 4 Website Using C# & VB258

Visual Basic LearningASP\VB\CustomValidator.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
Sub CheckUniqueUserName(ByVal s As Object,

 ➥ ByVal e As ServerValidateEventArgs)
 Dim username As String = e.Value.ToLower
 If (username = "andrei" Or username = "cristian") Then
 e.IsValid = False
 End If
 End Sub

 Sub submitButton_Click(ByVal s As Object, ByVal e As EventArgs)
 If Page.IsValid Then
 submitButton.Text = "Valid"
 Else
 submitButton.Text = "Invalid!"
 End If
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Custom Validator</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p>
 New Username:

 <asp:TextBox ID="usernameTextBox" runat="server" />
 <asp:CustomValidator ID="usernameUnique" runat="server"
 ControlToValidate="usernameTextBox"
 OnServerValidate="CheckUniqueUserName"
 ErrorMessage="This username already taken!" />
 </p>
 <p>
 <asp:Button ID="submitButton" runat="server"
 OnClick="submitButton_Click" Text="Submit" />
 </p>
 </div>

259Using the Validation Controls

 </form>
 </body>
</html>

C# LearningASP\CS\CustomValidator.aspx (excerpt)

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
void CheckUniqueUserName(Object s, ServerValidateEventArgs e)

 {
 string username = e.Value.ToLower();
 if (username == "andrei" || username == "cristian")
 {
 e.IsValid = false;
 }
 }

 void submitButton_Click(Object s, EventArgs e)
 {
 if (Page.IsValid)
 {
 submitButton.Text = "Valid";
 }
 else
 {
 submitButton.Text = "Invalid!";
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Custom Validator</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p>
 New Username:

 <asp:TextBox ID="usernameTextBox" runat="server" />
 <asp:CustomValidator ID="usernameUnique" runat="server"

Build Your Own ASP.NET 4 Website Using C# & VB260

 ControlToValidate="usernameTextBox"
 OnServerValidate="CheckUniqueUserName"
 ErrorMessage="This username already taken!" />
 </p>
 <p>
 <asp:Button ID="submitButton" runat="server"
 OnClick="submitButton_Click" Text="Submit" />
 </p>
 </div>
 </form>
 </body>
</html>

When this form is submitted, the CustomValidator control raises the ServerValid-

ate event, and the CheckUniqueUserNamemethod is called as a result. At the moment,

our list of usernames is limited to andrei and cristian. If the new username matches

either of these, e.IsValid is set to False, and the error message is displayed; other-

wise, we assume that the username is valid. When our submitButton_Click event

handler checks the Page.IsValid property, e.IsValid returns False if the user

entered andrei or cristian, and True if the new username is anything else.

Although this example shows a very simple CustomValidator, you can certainly

imagine the possibilities this class makes available. For example, while we won’t

explore it in this book, you could create a client-side validation function for your

CustomValidator controls by means of the ClientValidationFunction property.

For details, refer to the .NET Framework SDK Documentation for the

CustomValidator control.

Validation Groups
A very useful feature of ASP.NET, validation groups allow us to validate individual

parts of a web page independently of its other sections. This capability proves par-

ticularly handy when you’re working with complex pages that contain many func-

tional components. For example, consider the scenario of a single page that contains

a login form and a quick registration form, each with its own Submit button and its

own set of validation controls. Certainly we don’t want the functionality of the login

form’s Submit button to be affected by the data in the registration form; nor can we

allow the login form’s data to affect submission of the registration form.

261Using the Validation Controls

The solution to this problem is to set the controls in each of the boxes within differ-

ent validation groups. You can assign a control to a validation group using its

ValidationGroup property, as shown in the following code:

LearningASP\VB\ValidationGroups.aspx (excerpt)

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Untitled Page</title>
 </head>
<body>
 <form id="form1" runat="server">
 <div>
 <!-- Login Controls -->
 <h1>Login</h1>
 <!-- Username -->
 <p>
 Username:

 <asp:TextBox ID="usernameTextBox" runat="server" />
 <asp:RequiredFieldValidator ID="usernameReq"
 runat="server" ControlToValidate="usernameTextBox"
 ErrorMessage="Username is required!"
 SetFocusOnError="True" ValidationGroup="Login" />
 </p>
 <!-- Password -->
 <p>
 Password:

 <asp:TextBox ID="passwordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator ID="passwordReq"
 runat="server" ControlToValidate="passwordTextBox"
 ErrorMessage="Password is required!"
 SetFocusOnError="True" ValidationGroup="Login" />
 </p>
 <p>
 <asp:Button ID="loginButton" runat="server" Text="Log In"

Build Your Own ASP.NET 4 Website Using C# & VB262

 ValidationGroup="Login" />
 </p>
 <!-- Login Controls -->
 <h1>
 Register</h1>
 <!-- Username -->
 <p>
 Username:

 <asp:TextBox ID="newUserNameTextBox" runat="server" />
 <asp:RequiredFieldValidator ID="newUserNameReq"
 runat="server" ControlToValidate="newUserNameTextBox"
 ErrorMessage="Username is required!"
 SetFocusOnError="True" ValidationGroup="Register" />
 </p>
 <!-- Password -->
 <p>
 Password:

 <asp:TextBox ID="newPasswordTextBox" runat="server"
 TextMode="Password" />
 <asp:RequiredFieldValidator ID="newPasswordReq"
 runat="server" ControlToValidate="newPasswordTextBox"
 ErrorMessage="Password is required!"
 SetFocusOnError="True" ValidationGroup="Register" />
 </p>
 <p>
 <asp:Button ID="registerButton" runat="server"
 Text="Register" ValidationGroup="Register" />
 </p>
 </div>
 </form>
</body>
</html>

Executing this page reveals the two sets of controls: one for logging in an existing

user, and another for registering a new user. To keep things simple, the only valid-

ation we’ve implemented in this example is achieved through

RequiredFieldValidator controls.

Clicking the Log In button triggers only those validators that share that button’s

ValidationGroup setting, as Figure 6.10 indicates.

263Using the Validation Controls

Figure 6.10. Triggering the Login ValidationGroup

Likewise, clicking the Register button triggers the second set of validators, and de-

activates the first, as Figure 6.11 shows.

Default Validation Groups

Controls that aren’t specifically assigned to any validation group are aggregated

into a default validation group. In other words, a button that isn’t assigned to any

Build Your Own ASP.NET 4 Website Using C# & VB264

validation group will trigger only those validation controls that aren’t assigned

to any groups.

Finally, remember that Page.IsValid returns the results of the current validation

group (that is, the one that caused the server-side event). To verify the validity of

another group on the page, we use the Page.Validate method, which can receive

as a parameter the name of the validation group to be validated.

Figure 6.11. Activating the RegisterValidationGroup

265Using the Validation Controls

Updating Dorknozzle
Now that you’ve spent some time with validation controls, let’s use them to update

Dorknozzle’s Help Desk page. The following rules must be met before the user can

submit a new help desk request:

■ The station number text box cannot be empty.
■ The station number must be a valid number.
■ The station number must be a numeral between 1 and 50.
■ A description of the problem must be entered.

To make changes to the Help Desk page, you first need to load the Dorknozzle project

in Visual Web Developer. Go to File > Open Web Site… and select the Dorknozzle

project.

Loading Multiple Projects

Did you know that you can work with several projects at the same time? You can

launch multiple instances of Visual Web Developer and load a different web ap-

plication in each of them.

After Dorknozzle loads, open HelpDesk.aspx in the editor, and make the following

changes to the file:

Dorknozzle\VB\01_HelpDesk.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="HelpDesk.aspx.vb"
 Inherits="HelpDesk" title="Dorknozzle Help Desk" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <h1>Employee Help Desk Request</h1>
 <p>
 Station Number:

 <asp:TextBox id="stationTextBox" runat="server"
 CssClass="textbox" />

<asp:RequiredFieldValidator id="stationNumReq" runat="server"

Build Your Own ASP.NET 4 Website Using C# & VB266

 ControlToValidate="stationTextBox"
 ErrorMessage="
You must enter a station number!"
 Display="Dynamic" />
 <asp:CompareValidator id="stationNumCheck" runat="server"
 ControlToValidate="stationTextBox"
 Operator="DataTypeCheck" Type="Integer"
 ErrorMessage="
The value must be a number!"
 Display="Dynamic" />
 <asp:RangeValidator id="stationNumRangeCheck" runat="server"
 ControlToValidate="stationTextBox"
 MinimumValue="1" MaximumValue="50" Type="Integer"
 ErrorMessage="
Number must be between 1 and 50."
 Display="Dynamic" />
 </p>
 <p>
 Problem Category:

 <asp:DropDownList id="categoryList" runat="server"
 CssClass="dropdownmenu" />
 </p>
 <p>
 Problem Subject:

 <asp:DropDownList id="subjectList" runat="server"
 CssClass="dropdownmenu" />
 </p>
 <p>
 Problem Description:

 <asp:TextBox id="descriptionTextBox" runat="server"
 CssClass="textbox" Columns="40" Rows="4"
 TextMode="MultiLine" />

<asp:RequiredFieldValidator id="descriptionReq" runat="server"
 ControlToValidate="descriptionTextBox"
 ErrorMessage="
You must enter a description!"
 Display="Dynamic" />
 </p>
 <p>
 <asp:Button id="submitButton" runat="server"
 CssClass="button" Text="Submit Request" /></p>
</asp:Content>

Now execute the project, and select the Help Desk page from the menu. Clicking

Submit without entering valid data triggers the validation controls, as Figure 6.12

shows.

267Using the Validation Controls

Figure 6.12. Validation controls in action on the Dorknozzle Help Desk

Right now, we’re not doing anything with the data that’s been entered, but we’ll

take care of that in following chapters. When we finally do something with this

data, we don’t want our server-side code to try to work with invalid data. So let’s

add the safety check to the server side as well, to make sure we have a solid

foundation from which to start developing our server-side functionality in the

coming chapters.

Stop the project from within Visual Web Developer, and open HelpDesk.aspx in

Design view. There, double-click the Submit Request button to have its Click event

handler generated for you.

Complete the automatically generated code as shown below:

Visual Basic Dorknozzle\VB\02_HelpDesk.aspx.vb (excerpt)

Protected Sub submitButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles submitButton.Click
 If Page.IsValid Then

Build Your Own ASP.NET 4 Website Using C# & VB268

 ' Code that uses the data entered by the user
 End If
End Sub

C# Dorknozzle\CS\02_HelpDesk.aspx.cs (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
if (Page.IsValid)

 {
 // Code that uses the data entered by the user
 }
}

Up to this point, we’ve only discussed one way of tying a control’s event to an event

handler method. This approach involves setting a property, such as OnClick, on

the control, as shown here:

C# Dorknozzle\CS\03_HelpDesk.aspx (excerpt)

<asp:Button id="submitButton" runat="server" CssClass="button"
 Text="Submit Request" OnClick="submitButton_Click" />

This property causes ASP.NET to call a method named submitButton_Click

whenever this button is clicked. If you’re using C#, you’ll see that Visual Web De-

veloper added this property to the submitButton control when you double-clicked

the Submit Request button in Design view and it generated your event handler, as is

shown above.

However, if you’re using VB, this property is not added. Instead, Visual Web De-

veloper uses the VB-specific keyword Handles, followed by the name of the control

that’s responsible for raising the event, and finally the name of the event that’s being

handled (in our case, submitButton.Click). This generated code is shown below:

Visual Basic Dorknozzle\VB\02_HelpDesk.aspx.vb (excerpt)

Protected Sub submitButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles submitButton.Click

This is simply an alternative way of tying this method to the submitButton control’s

Click event.

269Using the Validation Controls

Event Handling Code and the Examples In this Book

Now is probably a good time to mention that the examples in this book will assume

that you’ll double-click ASP.NET controls in Visual Web Developer Design view

to have the event handling code generated for you, instead of entering it manually.

This is particularly important to remember if you are using C# because example

code listings that contain web form markup may not include properties like

OnClick that are automatically generated.

Double-clicking controls in Design view will ensure all the correct event handling

code is generated regardless of whether you’re using VB or C#.

We’ll expand the code inside this submitButton_Click method in later chapters,

but for the time being, you can rest assured that you’ve put the validation mechanism

in place.

Summary
As we’ve seen, the validation controls available through ASP.NET are very powerful.

This chapter explained how to validate required form fields with the

RequiredFieldValidator control, compare form fields with the CompareValidator

control, check for a numeric range within form fields with the RangeValidator

control, provide a user with a summary of errors using the ValidationSummary

control, check for email addresses with the RegularExpressionValidator control,

and perform your own custom validation with the CustomValidator control.

If you disabled JavaScript during this chapter to test server-side validation, don’t

forget to turn it back on before proceeding. And lastly, don’t forget styling! ASP.NET

4.0 doesn’t automatically require validators to be the color red. Styling of validation

error messages and summary groups can be done through CSS for ultimate flexibility

using the CssClass attribute.

Build Your Own ASP.NET 4 Website Using C# & VB270

In the next chapter, we’ll begin to introduce you to the challenges—and rewards!—in-

volved in working with databases. This is a skill you’ll almost certainly need when

building any non-trivial, real-world web application, so roll up your sleeves and

let’s get into it!

271Using the Validation Controls

Chapter7
Database Design and Development
As you begin to build dynamic web applications, it will become increasingly obvious

that you need to store data and allow users to access it through your application.

Whether you’re building a company-wide intranet that can only be accessed by

employees, or a feature-rich ecommerce site that will be visited by millions of

people, you’ll need a system for storing information. Enter: the database.

In 1970, E.F. Codd, an employee of IBM, proposed his idea for what would become

the first relational database design model. His model, which offered new methods

for storing and retrieving data in large applications, far surpassed any idea or system

that was in place at the time. The concept of relational data stemmed from the fact

that data was organized in tables, and relationships were defined between those

tables.

In this chapter, you’ll learn:

■ what a database is, and why it’s useful
■ what a database is made of
■ what kind of relationships can exist between database elements
■ how to use database diagrams

What Is a Database?
Before we become mired in techno-speak, let’s take a step back to consider the

project at hand—the Dorknozzle Intranet—and how it can benefit from a relational

database. By the end of this book, our site will be able to do all sorts of things, but

besides these bells and whistles, our company intranet will need to perform one

core task: keeping track of the employees in our company. The employee directory

we plan to build would be a sorry sight indeed without a list of employees!

So, how will we go about building that information into our site? Experience with

static web design might lead you to create a web page named Employee Directory,

which would display a table or list of some kind, and type in the details of each of

the employees in the company. But, unless Dorknozzle is a very small company, a

single page containing all the details of every employee destined to become unusably

large. Instead, you might only list the employees’ names, and link each to an indi-

vidual profile page. Sure, this approach might mean there’s a bit of typing to do,

but it’s the kind of job you can assign to the boss’s son on his summer internship.

Now, imagine that, a month or two down the track, Dorknozzle undergoes a corporate

rebranding exercise (a bright idea undoubtedly proposed by the boss’s son one night

at the dinner table), and the entire website needs to be updated to match the “new

look” of the company. By now, Dorknozzle Jr is back at school, and the mind-

numbing job of manually updating each of the employee profile pages falls right in

your lap. Lucky you!

This is the time when you realize that life would be a lot easier if a database was

added to the mix. A database is a collection of data organized within a framework

that can be accessed by programs such as your ASP.NET website. For example, you

could have the Dorknozzle intranet site look into a database to find a list of employ-

ees that you want to display on the employee directory page.

Such a collection of data needs to be managed by some kind of software—that

software is called a database server. The database server we’ll use in this book is

SQL Server 2008 R2 Express Edition, which is a free but powerful database engine

created by Microsoft. Other popular database server software products include Or-

acle, DB2, PostgreSQL, MySQL, and more.

Build Your Own ASP.NET 4 Website Using C# & VB274

In our Dorknozzle scenario, the employee records would be stored entirely in the

database, which would provide two key advantages over the manual maintenance

of a list of employees. First, instead of having to write an HTML file for each em-

ployee profile page, you could write a single ASP.NET web form that would fetch

any employee’s details from the database and display them as a profile. This single

form could be updated quite easily in the event of corporate rebranding or some

other disaster. Second, adding an employee to the directory would be a simple

matter of inserting a new record into the database. The web form would take care

of the rest, automatically displaying the new employee profile along with the others

when it fetched the list from the database.

As a bonus, since this slick, ultra-manageable system reduces the burden of data

entry and maintenance, you could assign the boss’s son to clean the coffee machine

to fill his time!

Let’s run with this example as we look at how data is stored in a database. A database

is composed of one or more tables. For our employee database, we’d probably start

with a table called Employees that would contain—you guessed it—a list of employ-

ees. Each table in a database has one or more columns (or fields). Each column holds

a certain piece of information about each item in the table. In our example, the Em-

ployees table might have columns for the employees’ names, network usernames,

and phone numbers. Each employee whose details were stored in this table would

then be said to be a row (or record) in the table. These rows and columns would

form a table that looks like the one shown in Figure 7.1.

Figure 7.1. Structure of a typical database table

Notice that, in addition to columns for the employees’ names, usernames, and

telephone numbers, we included a column named Employee ID. As a matter of good

design, a database table should always provide a way to identify each of its rows

uniquely. In this particular case, you may consider using an existing piece of data

275Database Design and Development

as the unique identifier—after all, it’s unlikely that two employees will share the

same network username. However, that’s something for our network administrator

to worry about. Just in case he or she slips up somewhere along the line, we include

the Employee ID column, the function of which is to assign a unique number to

each employee in the database. This gives us an easy way to refer to each person,

and allows us to keep track of which employee is which. We’ll discuss such database

design issues in greater depth shortly.

So, to review, Figure 7.1 shows a four-column table with four rows, or entries. Each

row in the table contains four fields, one for each column in the table: the employee’s

ID, name, username, and telephone number.

Now, with this basic terminology under your belt, you’re ready to roll up your

sleeves and build your first database!

Creating Your First Database
The SQL Server engine does a great job of storing and managing your databases, but

in order to be able to do anything meaningful with the data, we first need to connect

to SQL Server. There are many ways to interact with SQL Server, but for starters

we’re just interested in using it as a visual tool to facilitate basic administrative

tasks. The tools you’ll use to interact with your database are:

■ Visual Web Developer 2010 Express Edition
■ SQL Server Management Studio Express Edition

Visual Web Developer has everything you need to get started with SQL Server;

however, we’ll use SQL Server Management Studio for most database tasks. Most

tasks are easier in SQL Server Management Studio than they are in Visual Web

Developer, as SQL Server Management Studio’s interface has been designed spe-

cifically for working with databases.

We’ll name the database that will store the data for our sample project “Dorknozzle.”

In this chapter, you’ll learn how to create its structure, and in the next chapter, we’ll

begin to work with the database. You can use either Visual Web Developer or SQL

Server Management Studio to create the Dorknozzle database. Let’s look at both

approaches, so that you’re comfortable with both options.

Build Your Own ASP.NET 4 Website Using C# & VB276

Creating a New Database Using Visual Web Developer
Visual Web Developer’s Database Explorer window gives you access to most data-

base-related features. You can make this window appear by selecting View > Database

Explorer. Right-click the Data Connections node and select Add Connection… from the

context menu, as shown in Figure 7.2.

Figure 7.2. Adding a new database connection

If you correctly checked the SQL Server Express Edition option during the installa-

tion of Visual Web Developer back in Chapter 1, select Microsoft SQL Server from the

Choose Data Source dialog that appears, and click Continue. You’ll then be asked to

enter the details for your data connection. Enter the following data:

1. Set Server name to localhost\SqlExpress.

2. Leave the Use Windows Authentication option selected.

3. Click Test Connection to ensure you can successfully connect to SQL Server using

the data you’ve provided.

4. Enter Dorknozzle in the Select or enter a database name field. Click OK.

5. You’ll be asked to confirm the creation of a new database called Dorknozzle.

Click Yes.

277Database Design and Development

Figure 7.3. Exploring the Dorknozzle database

Once you click Yes, the new database will be created, and a link to it will be added

to the Data Connections node in Database Explorer. You can expand it to view its

contents, as Figure 7.3 illustrates.

Creating a New Database Using SQL Server
Management Studio
To start SQL Server Management Studio, which we installed in Chapter 1, select

Start > All Programs > Microsoft SQL Server > SQL Server Management Studio Express.

In the dialog that appears, enter localhost\SqlExpress into the Server Name box,

and leave Authentication mode to Windows Authentication, as Figure 7.4 illustrates.

(The local computer name may be used instead of localhost.)

Build Your Own ASP.NET 4 Website Using C# & VB278

Figure 7.4. Connecting to a SQL Server instance

After you connect to SQL Server, expand the Databases node to see the current

databases. If you’ve just installed SQL Server, you’ll only have installed the system

databases, which are grouped under a System Databases node. In Figure 7.5, you can

see that there’s another database, named BalloonShop, on the SQL Server. If you

added the Dorknozzle database using Visual Web Developer, you’ll see that listed

there too.

Figure 7.5. Inspecting your SQL server instance

279Database Design and Development

If you haven’t done so yet, you should go ahead and create the Dorknozzle database.

To create a new database, right-click the Databases node, and select New Database…

from the context menu. In the dialog that appears, enter Dorknozzle into the Database

name field, click OK.

Congratulations, you have a brand new database to play with!

Creating Database Tables
Let’s launch into creating the tables for our intranet application. It’s helpful to think

of tables as the drawers in a filing cabinet: just as we can separate different inform-

ation into different drawers, we can break down information about employees, de-

partments, and help desk requests into different tables. Tables can also be compared

to spreadsheets, as they have rows and columns, but they have many other useful

features. They know what kinds of data they’re allowed to store, can relate to data

contained in other tables, and can be searched and manipulated with a very effective

language called SQL (which you’ll learn about in Chapter 8).

You can organize the tables in your database using either Visual Web Developer or

SQL Server Management Studio, depending on your preference. While SQL Server

Management Studio is more powerful, both tools can be used for basic tasks such

as creating database tables.

In just a minute, we’ll dive in and create our first table. Before we do, it’s worth

giving some thought to how many tables our application will need, and exactly

what they’ll contain. We can think of tables as lists of entities. Entities are the rows

or records in our table. Drawing our tables and their entities on paper is a great way

to plan the logical design of the database. The logical design shows what kinds of

data our database will need to store, and outlines the relationships that we want to

exist between specific pieces of data.

However, unlike a typical spreadsheet file, the tables defined in the logical design

do not usually represent the way we’ll store the data in the database. This is taken

care of in the physical design phase, in which we create a practical blueprint that

allows us to improve database speed, enable relationships between different tables,

or implement other advanced features—basically, to optimize our database in various

ways.

Build Your Own ASP.NET 4 Website Using C# & VB280

Your database’s design has important consequences in terms of the way your applic-

ation works, and how easy it is to extend, so it’s important to take the logical and

physical design phases seriously. Let’s take a look at an example, so that you can

see what this means in practice.

Let’s say that, in addition to a name, username, and telephone number, you wanted

to keep track of the departments in which employees work at Dorknozzle. To do

so, it may seem logical to simply add a column to the Employees table we discussed

above; Figure 7.6 shows how this would look.

Figure 7.6. The Employees table

It looks good, right? Well, it’s okay in theory. However, if you went ahead and im-

plemented this structure in your database, you’d likely end up in trouble, because

this approach presents a couple of potential problems:

■ Every time you insert a new employee record, you’ll have to provide the name

of the department in which that employee works. If you make even the slightest

spelling error, then, as far as the database is concerned, you’ve created a new

department. Now, I don’t know about you, but I’d be fairly upset if my employee

record showed me as the only person working in a department called “Enineer-

ing.” And what if Dorknozzle Sr. decides to rename one of the departments?

You may try to update all the affected employee records with the new department

name, but, even if you miss just one record, your database will contain inconsist-

ent information. Database design experts refer to this sort of problem as an update

anomaly.

■ It would be natural for you to rely on your database to provide a list of all the

departments in the company so you could, for example, choose to view a list of

employees in a particular department. But if, for some reason, you deleted the

records of all the employees in that department (don’t ask me why—your human

resources issues aren’t my problem!), you’d remove any record that the depart-

281Database Design and Development

ment had ever existed (although, if you really did have to fire everyone, that

might be a good thing …). Database design experts call this a delete anomaly.

These problems—and more—can be dealt with very easily. Instead of storing the

information for the departments in the Employees table, let’s create an entirely new

table for our list of departments. Similarly to the Employees table, the new Depart-

ments table will include a column called Department ID, which will identify each

of our departments with a unique number. We can use those department IDs in our

Employees table to associate departments with employees. This new database layout

is shown in Figure 7.7.

Figure 7.7. The Employees table with a new Department ID field

The Difference between Design and Implementation

As this example has shown, the way you’d naturally draw your database design

on paper, and the best way to implement the design in practice, can be quite dis-

tinct. However, keep in mind that there are no absolute rules in database design,

and expert database designers sometimes bend or break rules to meet the require-

ments of particular circumstances.

What these tables show are four employees and three departments. The Department

ID column of the Employees table provides a relationship between the two tables,

indicating that Zak Ruvalcaba works in Department 1, while Kevin Yank and Craig

Anderson work in Department 3. Notice also that, as each department appears only

Build Your Own ASP.NET 4 Website Using C# & VB282

once in the database, and appears independently of the employees who work in it,

we’ve avoided the potential problems outlined before.

However, the most important characteristic of this database design is that, since

we’re storing information about two types of entities (employees and departments),

we’re using two tables. This approach illustrates an important rule of thumb that

we must keep in mind when designing databases:

Each type of entity about which we want to be able to store information should be

given its own table.

With this rule in mind, we can sit back and think about the Dorknozzle application

we want to build, as it was described in Chapter 5. We need to think of the design

in terms of the entities that we want to track, and come up with a preliminary list

of tables. You’ll become more comfortable with this kind of task as you gain exper-

ience in database design, but it’s worth giving it a try on your own at this stage.

When you’re done, compare your list to the one below, and see how you did. Here

are the entities we think we’ll want to track:

Employees

This table keeps track of our company’s employees, each of which is associated

with a department.

Departments

This table lists the departments in our company.

Help Desk Problem Reports

This table stores the problem reports that have been filed at Dorknozzle’s em-

ployee help desk. A category, subject, and status will be associated with each

problem report.

Help Desk Categories

The categories that are available for help desk items (“Hardware,” “Software,”

and so on) are stored in this table.

Help Desk Subjects

The subjects that are available for help desk items (“Computer crashes,” “My

chair is broken,” and the like) are stored in this table.

283Database Design and Development

Help Desk States

This table stores the various states in which a help desk item can exist (“open”

or “closed”).

Breaking down and analyzing the items of information that need to be saved is the

first step in determining the database’s design—this process represents the logical

design phase that I mentioned earlier. Through this process, we work to build a

high-level definition of the data that needs to be saved. This definition can then be

transformed into a physical design structure, which contains the details required

to implement the database.

As you analyze the data that needs to be stored, you may come across items that

we overlooked when we designed the site in Chapter 5, such as help desk item

categories, subjects, and states, which aren’t obvious entities in our application’s

current design. However, remember that whenever you predict that your database

will contain a field that should only accept values from a specific list, it makes

sense to create a table to hold that list. This approach makes it easy to execute

changes to the list in future; it also reduces the amount of disk space required by

your database, and helps you to avoid redundancy, as you store only single instances

of department names, strings like “I can’t print,” and so on.

This process of planning out the entities, tables, and relationships between the

tables to eliminate maintenance problems and redundant data is called database

normalization. Although we’ll talk a bit more about normalization before the end

of this chapter, we’ll only ever discuss it in an informal, hands-on way. As any

computer science major will tell you, database design is a serious area of research,

with tested and mathematically provable principles that, while useful, are beyond

the scope of this book.

So, we have our list of tables. In the next section, we’ll look at the columns within

those tables, and discuss how we can ascertain their characteristics. Although we

won’t go over the creation of all the tables for the Dorknozzle database, we will

create one as an example: the Employees table. Once you understand how to create

a new table, you can create the rest of the tables for the Dorknozzle application in

your own time, based on the descriptions we’ll provide. Or, if you prefer, you can

simply grab the finished database from the code archive.

Build Your Own ASP.NET 4 Website Using C# & VB284

Once you’ve outlined all your tables, the next step is to decide what pieces of in-

formation will be included within those tables. For instance, you may want to in-

clude a first name, last name, phone number, address, city, state, zip code, and so

on, for all employees in the Employees table. Let’s see how we can define these

columns as we create the Employees table for the Dorknozzle database.

Data Types
One of the differences between logical design and physical design is that when

we’re planning the database’s physical design, we have to deal with details such as

data types. That’s right—as with the data we’re storing in our VB.NET and C# vari-

ables, the data we store in each table’s columns has a particular data type.

SQL Server knows many data types—in fact, it knows too many to list here—but

it’s worth our while to take a look at the most common ones. Below is a list of the

common data types that we’ll use in this book:

int

Use the int data type when you need to store whole integers. This data type

can store numbers from -2,147,483,648 to 2,147,483,647.

float

Use the float data type when you’re working with very large numbers or very

small numbers. float can be used for fractions, but they’re prone to rounding

errors.

money

The money data type should be used to store monetary data, such as prices for

a product catalog. This data type is closely related to the int data type.

bit

Use the bit data type when a condition is either true (represented as 1) or false

(represented as 0).

datetime

As you might have guessed, the datetime data type is used to store dates and

times. It’s very useful when you want to sort items in your table chronologically.

285Database Design and Development

nvarchar(n)

The nvarchar data type stores strings of text. It’s the most commonly used data

type because it stores names, descriptions, and the like. When we’re defining

a column of this type, we also need to specify a maximum size in parentheses;

longer strings will be trimmed to fit the defined size. For example, nvarchar(50)

specifies a field that can hold up to 50 characters. The var part of the nvarchar

name indicates that this data type can store strings of variable length up to the

specified maximum.

nchar(n)

The nchar data type is similar to nvarchar in that it stores strings, but a field

of this type will always store strings of the defined size. If the string you’re

saving is shorter, it’s padded with spaces until the specified size is reached. For

example, if you’re working with an nchar(6) field (where the 6 in parentheses

indicates that the field can hold six characters), and you add the word “test” to

the field, two space characters will be appended to the end of the word so that

all six characters are used. This data type is useful when you’re storing strings

that have a predefined size—in such cases, it may be more efficient to use the

nchar(n) type than nvarchar.

money, money, money

Sometimes, you may see poorly designed databases use float to store monetary

data. As float is susceptible to rounding errors, this is a bad idea. money, on the

other hand, is not susceptible to these errors and is a much better choice.

The SQL Server data types, as with the other SQL Server keywords, aren’t case-

sensitive. nvarchar and nchar have non-Unicode cousins named varchar and char,

which you can use if you’re sure you won’t need to store Unicode data. You may

need to use Unicode (or a language-specific form of encoding) when storing non-

English text, such as Chinese, Arabic, and others. Unicode is a very widely supported

standard, so it’s strongly recommended you stick with nvarchar and nchar.

The type of a column defines how that column behaves. For example, sorting data

by a datetime column will cause the records to be sorted chronologically, rather

than alphabetically or numerically.

Build Your Own ASP.NET 4 Website Using C# & VB286

Column Properties
Other than a column’s data type, we can define a number of additional properties

for a column. Other properties you’ll use frequently include:

NULL

In database speak, NULL means “undefined.” Although we talk about it as if it’s

a value, NULL actually represents the lack of a value. If you set an employee’s

mobile telephone number to NULL, for example, it could indicate that the em-

ployee doesn’t have a mobile telephone.

However, it’s important to realize that allowing NULLs is often inappropriate.

For instance, you might create a department with the name NULL to represent a

mysterious department with no name, but this is far from ideal. As you create

a table, you can specify which columns are allowed to store NULL, and which

aren’t. In our example, we’d like every department to have a name, so we

shouldn’t allow the Name column to allow NULLs.

DEFAULT

SQL Server is capable of supplying a default value for a certain column if you

don’t supply one when you add a new row. We won’t be using this feature when

we create Dorknozzle, but it’s good to know you have this option.

IDENTITY

Identity columns are numbered automatically. If you set a column as an IDENTITY

column, SQL Server will generate numbers automatically for that column as

you add new rows to it. The first number in the column is called the identity

seed. To generate subsequent numbers, the identity column adds a given value

to the seed; the value that’s added is called the identity increment. By default,

both the seed and increment have a value of 1, in which case the generated

values are 1, 2, 3, and so on. If the identity seed were 5 and the identity incre-

ment were 10, the generated numbers would be 5, 15, 25, and so on.

IDENTITY is useful for ID columns, such as Department ID, for which you don’t

care what the values are, as long as they’re unique. When you use IDENTITY,

the generated values will always be unique. By default, you can’t specify values

manually for an IDENTITY column. Note also that the column can never contain

NULL.

287Database Design and Development

Understanding NULL

Be sure not to see NULL as equivalent to 0 (in numerical columns), or an empty

string (in the case of string columns). Both 0 and an empty string are values; NULL

defines the lack of a value.

NULL and Default Values

I’ve often heard people say that when we set a default value for a column, it doesn’t

matter whether or not we set it to accept NULLs. Many people seem to believe that

columns with default values won’t store NULL.

That’s incorrect. You can modify a record after it was created, and change any

field that will allow it to NULL. Your columns’ ability to store NULL is important

for the integrity of your data, and it should reflect the purpose of that data. A de-

fault value does make things easier when we create new rows, but it’s not as vital

as is correctly allowing (or disallowing) NULL in columns.

Primary Keys
Primary keys are the last fundamental concept that you need to understand before

you can create your first data table. In the world of relational databases, each row

in a table must be identified uniquely by a column called a key, on which all data-

base operations are based.

The tables in your databases could contain hundreds or even thousands of rows of

similar data—you could have several hundred employees in your Employees table

alone. Imagine that your program needs to update or delete the record for John

Smith, and there are several people with that name in your organization. You

couldn’t rely on the database to find the record for the particular John Smith that

you were trying to work with—it might end up updating or deleting the wrong record.

We can avoid these kinds of problems only by using a system that uniquely identifies

each row in the table. The first step toward achieving this goal is to add to the table

an ID column that provides a unique identifier for each employee, as did the Em-

ployee ID column that we saw in Figure 7.1.

Remember that when we discussed this Employees table, we noted that you may

be tempted to use each employee’s username to uniquely identify each employee.

Build Your Own ASP.NET 4 Website Using C# & VB288

After all, that’s what the network administrator uses them for, so why shouldn’t

you? It’s true that this column uniquely identifies each row in the table, and we

call such a column a candidate key. However, it’s not a good idea to use this column

in our database operations for a number of reasons. First, network usernames have

been known to change, and such a change would wreak havoc on any database of

more than a couple of tables. As we’ll see later, keys are fundamental to establishing

relationships between tables, and these relationships rely keys never changing.

Second, non-numeric keys require much more processing power than simple nu-

meric ones. Using a nvarchar field to uniquely identify rows in your table will bring

your SQL Server to a grinding halt much faster than if you chose a standard, numeric

key.

The column that we use to uniquely identify a row in a table in practice is called

the primary key. In the case of our Employee table, the Employee ID will always

be unique, so it would be a suitable primary key.

Multi-column Keys

To make the concept of keys easier to understand, we have kept the definition

simple, although, technically, it’s not 100% correct. A key isn’t necessarily formed

by a single column—it can be formed by two or more columns. If the key is made

up of multiple columns, the set of values in those columns must be unique for

any given record. We’ll see an example of such a key in a moment.

Although we usually refer to primary keys as if they were columns, technically

they’re constraints that we apply to the existing columns of a table. Constraints

impose restrictions on the data we can enter into our tables, and the primary key

is a particular kind of constraint. When the primary key constraint is set on a column,

the database will refuse to store duplicate values in that column.

Constraints in general, and primary keys in particular, represent a means by which

the database can maintain the integrity and consistency of data.

Primary keys composed of a single column, such as Employee ID, are frequently

used in conjunction with the IDENTITY property. The primary key constraint guar-

antees that duplicate values cannot be inserted into the table. The IDENTITY property

helps us by always generating a new value that hasn’t already been used in the

primary key.

289Database Design and Development

Primary Keys and the IDENTITY Property

Using the IDENTITY property for a column doesn’t mean we can avoid specifying

a primary key. It’s true that the IDENTITY property always generates unique values,

but it doesn’t necessarily enforce them.

For example, say we have a table with a number of columns, one of which has

the IDENTITY property set. This table contains three records that are likely to

contain the automatically generated values 1, 2, and 3 in the IDENTITY column.

Provided the IDENTITY_INSERT property for this table is enabled (by default it’s

disabled, but it’s easy to enable), it’s quite simple to insert another record with

the value 2. The IDENTITY column will continue to generate unique values (4,

5, 6, and so on), but it doesn’t guarantee the column remains unique.

Creating the Employees Table
In this section, we’ll show you how to use Visual Web Developer or SQL Server

Management Studio, but to create a new data table. If you’re using Visual Web De-

veloper, expand the database node in Database Explorer, right-click Tables, and select

Add New Table, as shown in Figure 7.8.

Figure 7.8. Adding a new table in Visual Web Developer

If you prefer SQL Server Management Studio, you need to follow a similar procedure.

Expand the Dorknozzle database node, right-click Tables, and select New Table…, as

illustrated in Figure 7.9.

Build Your Own ASP.NET 4 Website Using C# & VB290

Figure 7.9. Adding a new table with SQL Server Management Studio

The window that appears as a result of either procedure is shown in Figure 7.10—it

looks the same in both Visual Web Developer and SQL Server Management Studio.

The main editing window lets you specify the column’s three main properties:

Column Name, Data Type, and Allow Nulls. To set additional properties, you need to

use the Column Properties pane.

To add the IDENTITY property to a column, locate the Identity Specification row in

the Column Properties pane and expand it. This will reveal the (Is Identity) drop-down

list, which should be set to Yes for an IDENTITY column, as Figure 7.10 indicates.

291Database Design and Development

Figure 7.10. Specifying column properties

To set a column as the primary key, we can select Table Designer > Set Primary Key,

or click the little golden key icon in the Table Designer toolbar when the column

is selected. When a column is set as a primary key, a little golden key appears next

to it, as Figure 7.11 illustrates.

Figure 7.11. The Employees table

Now, let’s create a table called Employees by adding the columns described in

Table 7.1.

Build Your Own ASP.NET 4 Website Using C# & VB292

Table 7.1. The structure of the Employees table

Primary KeyAllow NullsIdentitySQL Data TypeColumn Name

YesNoYesintEmployeeID

NoNoNointDepartmentID

NoNoNonvarchar(50)Name

NoNoNonvarchar(50)Username

NoYesNonvarchar(50)Password

NoYesNonvarchar(50)Address

NoYesNonvarchar(50)City

NoYesNonvarchar(50)State

NoYesNonvarchar(50)Zip

NoYesNonvarchar(50)HomePhone

NoYesNonvarchar(50)Extension

NoYesNonvarchar(50)MobilePhone

After you enter this information, press Ctrl+S to save the table. When you’re asked

to name the table, type Employees and click OK. When you’re done, your table will

resemble Figure 7.11.

After you create the table, you’ll see it appear under the Tables node in the Object

Explorer, in SQL Server Management, or Database Explorer in Visual Web Developer.

SQL Server Management Studio prepends dbo. to the table’s name; dbo is the default

“database owner” user. Don’t worry about this for now—we’ll explore the topic of

database users in some detail later.

If you close the table designer window, you can open it later by right-clicking the

Employees table and selecting Open Table Definition in Visual Web Developer, or

Modify in SQL Server Management Studio. You’ll be taken back to the screen that

shows the structure of the table (shown in Figure 7.11).

Creating the Remaining Tables
Let’s create the rest of the database tables. Apply the process you used to build the

Employee table to create the new data tables, using the data presented in Table 7.2

293Database Design and Development

to Table 7.6. Later in this chapter, we’ll discuss how these tables work. For starters,

though, you need to insert them into your database.

Table 7.2. The Departments table

Primary KeyAllow NullIdentitySQL Data TypeColumn Name

YesNoYesintDepartmentID

NoNoNonvarchar(50)Department

Table 7.3. The HelpDesk table

Primary KeyAllow NullIdentitySQL Data TypeColumn Name

YesNoYesintRequestID

NoNoNointEmployeeID

NoYesNointStationNumber

NoNoNointCategoryID

NoNoNointSubjectID

NoYesNonvarchar(50)Description

NoNoNointStatusID

Table 7.4. The HelpDeskCategories table

Primary KeyAllow NullIdentitySQL Data TypeColumn Name

YesNoYesintCategoryID

NoNoNonvarchar(50)Category

Table 7.5. The HelpDeskSubjects table

Primary KeyAllow NullIdentitySQL Data TypeColumn Name

YesNoYesintSubjectID

NoNoNonvarchar(50)Subject

Build Your Own ASP.NET 4 Website Using C# & VB294

Table 7.6. The HelpDeskStatus table

Primary KeyAllow NullIdentitySQL Data TypeColumn Name

YesNoYesintStatusID

NoNoNonvarchar(50)Status

Using SQL Scripts

Yes, there’s a lot of data to type in! Whilst we recommend that you create the

tables yourself by defining the fields outlined here, you can achieve the same goal

using an SQL script that’s included in this book’s code archive. This script contains

SQL code that SQL Server understands, and has instructions that create data

structures (you’ll learn about SQL in Chapter 8). If you want to use the download-

able script, we recommend you have a look over the following tables to get an

idea of the structures we’ll be creating, then read the section called “Executing

SQL Scripts” that follows.

We already have a clear idea of the data we’ll store in the Employees and Depart-

ments tables. The other tables will be used to store help desk requests; we’ll discuss

these in more detail in the following pages.

Executing SQL Scripts
If you prefer not to create the data tables manually, you can use the CreateTables.sql

script included in the book’s code archive to create the tables for you. This script

is most easily used with SQL Server Management Studio. After you log in, click the

New Query button on the toolbar (or select File > New > Query with Current Connection).

Paste the contents of the CreateTables.sql script into the window that displays, and

press F5 to execute the commands. Note that if you have already created the Employ-

ees table, you should remove the CREATE TABLE command that creates this table

before you hit F5.

The SQL script included in the code archive contains all the commands required

for this chapter; it even creates the sample data and table references that we’ll cover

later.

295Database Design and Development

Populating the Data Tables
If tables represent drawers in a filing cabinet, rows represent individual paper records

in those drawers. Let’s imagine for a moment that our intranet web application is

a real application. As people begin to register and interact with the application,

rows are created within the various tables, and are filled up with information about

those people.

Once the data structures are in place, adding rows of data is as easy as typing in-

formation into the cells in the Datasheet View of a table, which looks a bit like a

spreadsheet. To access it, right-click on the table and select Show Table Data in

Visual Web Developer, or Open Table in SQL Server Management Studio. You can

use the dialog that opens to start adding data. Let’s add some sample data to the

tables you’ve just created, so that we can test the Dorknozzle database as we develop

the application. Table 7.7 to Table 7.11 represent the tables and data you should

add.

Inserting Data and Identity Columns

If you correctly set the ID column as an identity column, you won’t be allowed

to specify the values manually—the ID values will be generated for you automat-

ically. You need to be careful, because an ID value will never be generated twice

on the same table. So even if you delete all the rows in a table, the database will

not generate an ID with the value of 1; instead, it will continue creating new values

from the last value that was generated for you.

Keep in mind that a new row is saved to the database at the moment that you move

on to the next row. It’s very important that you remember this when you reach the

last row, as you’ll need to move to an empty row even if you aren’t adding any more

records.

Build Your Own ASP.NET 4 Website Using C# & VB296

Table 7.7. The Departments table

DepartmentDepartmentID (Primary Key)

Accounting1

Administration2

Business Development3

Customer Support4

Executive5

Engineering6

Facilities7

IT8

Marketing9

Operations10

Table 7.8. The Employees table

M’PhoneStateCityP’wordU’nameNameDep’tIDEmp’ID
(Primary
Key)

555-555-5551CASan

Diego

zakzakZak

Ruvalcaba

51

555-555-5552CASan

Diego

jessicajessicaJessica

Ruvalcaba

92

555-555-5555CASan

Diego

tedtedTed

Lindsey

63

555-555-5554CASan

Diego

shaneshaneShane

Weebe

64

555-555-5553CASan

Diego

daviddavidDavid

Levinson

95

555-555-5556CASan

Diego

geoffgeoffGeoff Kim16

297Database Design and Development

The Employees table contains a few more columns than those outlined here, but,

due to the size constraints of this page, I’ve left them out. Feel free to add your own

data to the rest of the cells, or you could leave the remaining cells empty, as they’re

marked to accept NULL.

Table 7.9. The HelpDeskCategories table

CategoryCategoryID (Primary Key)

Hardware1

Software2

Workstation3

Other/Don't Know4

Table 7.10. The HelpDeskStatus table

StatusStatusID (Primary Key)

Open1

Closed2

Table 7.11. The HelpDeskSubjects table

SubjectSubjectID (Primary Key)

Computer won't start1

Monitor won't turn on2

Chair is broken3

Office won't work4

Windows won't work5

Computer crashes6

Other7

Build Your Own ASP.NET 4 Website Using C# & VB298

What IDENTITY Columns Are Not For

In our examples, as in many real-world scenarios, the ID values are sequences

that start with 1 and increment by 1. This makes many beginners assume that

they can use the ID column as a record-counter of sorts, but this is incorrect. The

ID is really an arbitrary number that we know to be unique; no other information

should be discerned from it.

Relational Database Design Concepts
It is said that data becomes information when we give significance to it. When we

draw tables on paper to decide the logical design of a database, we actually include

significant information about our application (and about the business for which the

application is used). In Figure 7.12, for example, we can see that the employee Zak

Ruvalcaba works in the Executive department.

Figure 7.12. Information about employees

We’ve seen how, in order to optimize data storage and better protect the integrity

of our data, we can extract independent pieces of data, such as department names,

and save them in separate tables, such as the Department table. However, as we did

so, we kept the significance of the original information intact by including references

to the new tables in our existing table. For example, in the Employees table, we have

a DepartmentID column that specifies the department in which each employee

works, as Figure 7.13 illustrates.

This separation of data helps us to eliminate redundant information—for example,

we’d expect to have many employees in each department, but we don’t need to

replicate the department name for each of those employees. Instead, each employee

record refers to the ID of the appropriate department. The benefits of this approach

would be more obvious if more data (such as a department description) were asso-

ciated with each department; copying all that data for each employee would generate

even more redundancy.

299Database Design and Development

Figure 7.13. Related data about employees and departments

These kinds of relationships exist between the HelpDesk, HelpDeskCategories,

HelpDeskStatus, and HelpDeskSubjects tables. Each record in HelpDesk will store

a help desk request. Now, if we stored all the request information in a single table,

its records would look like those shown in Figure 7.14.

Figure 7.14. Information about help desk requests

In order to eliminate redundant data here, we’ve decided to store pieces of this data

in separate tables, and to reference those tables from the HelpDesk table. The only

items of data in the table in Figure 7.14 that aren’t likely to repeat very frequently

are the descriptions and the station numbers. We want users to enter their station

numbers manually, rather than choosing them from a predefined list, so we wouldn’t

gain any benefits from creating a separate table for this item.

Given these requirements, we split the information from Figure 7.14 into four tables:

■ HelpDeskCategories contains the possible help desk request categories.
■ HelpDeskSubject contains the possible request subjects.
■ HelpDeskStatus contains the possible request statuses.

Build Your Own ASP.NET 4 Website Using C# & VB300

■ The HelpDesk table stores the help desk requests by referencing records from

the other tables, and adding only two original pieces of data itself: the help desk

request description and the station number.

The relationships between these tables are critical, because without them the original

significance of the information would be lost. The relationships are so important

that the database has tools to protect them. Primary keys were used to ensure the

integrity of the records within a table (by guaranteeing their uniqueness); in a mo-

ment, we’ll meet foreign keys, which protect the integrity of data spread over mul-

tiple tables.

In our database’s HelpDesk table, the data depicted in Figure 7.14 would be stored

physically as shown in Table 7.12.

Table 7.12. Sample data from the HelpDesk table

StatusIDDescriptionSubj'IDCat'IDStationN'berEmp'IDRequestID
(Primary
Key)

1Crashes

when I open

documents

42531

1Crashes

when I

start

Solitaire

52742

Note that, apart from storing data about the request itself, the HelpDesk table also

has an ID column, named RequestID, which acts as the table’s primary key.

Foreign Keys
Technically speaking, a foreign key is a constraint that applies to a column that

refers to the primary key of another table. In practice, we’ll use the term “foreign

key” to refer to the column to which the constraint applies.

Unlike primary key columns, a foreign key column can contain NULL, and almost

always contains repeating values. The numeric columns in the HelpDesk table that

reference data from other tables (EmployeeID, CategoryID, SubjectID, and StatusID),

301Database Design and Development

and the DepartmentID column in the Employees table, are perfect candidates for

the application of a foreign key constraint. Take a look at the examples shown in

Table 7.13 and Table 7.14.

The DepartmentID column in the Employees table references the DepartmentID

primary key in the Departments table. Notice that the DepartmentID primary key

in the Departments table is unique, but the DepartmentID foreign key within the

Employees table may repeat.

As they stand, these tables already have an established relationship, and all the data

in the DepartmentID column of the Employees table correctly matches existing de-

partments in the Department table. However, as with primary keys, just having the

correct fields in place doesn’t mean that our data is guaranteed to be correct.

For example, try setting the DepartmentID field for one of the employees to 123.

SQL Server won’t mind making the change for you, so if you tried this in practice,

you’d end up storing invalid data. However, after we set the foreign keys correctly,

SQL Server will be able to ensure the integrity of our data—specifically, it will forbid

us to assign employees to nonexistent departments, or to delete departments with

which employees are associated.

The easiest way to create foreign keys using Visual Web Developer or SQL Server

Management Studio is through database diagrams, so let’s learn about them.

Build Your Own ASP.NET 4 Website Using C# & VB302

Table 7.13. The Departments table’s primary key

DepartmentDepartmentID (Primary Key)

Accounting1

Administration2

Business Development3

Customer Support4

Executive5

Engineering6

Facilities7

IT8

Marketing9

Operations10

Table 7.14. The Employees table referencing records from the Departments
table

M’PhoneStateCityP’wordU’nameNameDep’tIDEmp’ID
(Primary
Key)

555-555-5551CASan

Diego

zakzakZak

Ruvalcaba

51

555-555-5552CASan

Diego

jessicajessicaJessica

Ruvalcaba

92

555-555-5555CASan

Diego

tedtedTed

Lindsey

63

555-555-5554CASan

Diego

shaneshaneShane

Weebe

64

555-555-5553CASan

Diego

daviddavidDavid

Levinson

95

555-555-5556CASan

Diego

geoffgeoffGeoff Kim16

303Database Design and Development

Using Database Diagrams
To keep the data consistent, the Dorknozzle database really should contain quite a

few foreign keys. The good news is that you have access to a great feature called

database diagrams, which makes it a cinch to create foreign keys. You can define

the table relationships visually using the database diagrams tool in Visual Web

Developer or SQL Server Management Studio, and have the foreign keys generated

for you.

Database diagrams weren’t created specifically for the purpose of adding foreign

keys. The primary use of diagrams is to offer a visual representation of the tables

in your database and the relationships that exist between them, to help you to design

the structure of your database. However, the diagrams editor included in Visual

Web Developer and SQL Server Management Studio is very powerful, so you can

use the diagrams to create new tables, modify the structure of existing tables, or add

foreign keys.

Let’s start by creating a diagram for the Dorknozzle database. To create a database

diagram in Visual Web Developer, right-click the Database Diagrams node, and select

Add New Diagram, as shown in Figure 7.15.

The process is similar in SQL Server Management Studio, which, as Figure 7.16 il-

lustrates, has a similar menu.

The first time you try to create a diagram, you’ll be asked to confirm the creation

of the database structures that support diagrams. Select Yes from the dialog, which

should look like the one shown in Figure 7.17.

Figure 7.17. Adding support for database diagrams

Next, a dialog like the one in Figure 7.18 will ask you which of your database tables

you want included in the diagram. If you’re working with a database that comprises

many tables, you may want to have diagrams built to represent specific pieces of

Build Your Own ASP.NET 4 Website Using C# & VB304

Figure 7.15. Creating a database diagram with Visual Web Developer

Figure 7.16. Creating a database diagram with SQL Server Management Studio

functionality, but we want to create a diagram that includes all the tables in our

database.

305Database Design and Development

Figure 7.18. Adding tables to the diagram

Click Add until all the tables are added to the diagram. As you click Add, the tables

will be removed from the list and will appear in the diagram. Once you’ve added

all the tables, click Close. You’ll see a window in which all the tables are clearly

displayed—something like Figure 7.19.

You’ll probably need to tweak their positioning and dimensions that so they fit

nicely into the window. The zooming feature may prove useful here! Select File >

Save Diagram1 (or similar) to save your new diagram. Enter Dorknozzle for the dia-

gram’s name.

Now, if you right-click any table in the diagram, you’ll gain access to a plethora of

possibilities, as Figure 7.20 reveals. This menu, along with the other diagramming

features, is identical in Visual Web Developer and SQL Server Management Studio.

Build Your Own ASP.NET 4 Website Using C# & VB306

Figure 7.19. Visualizing data tables using a diagram

Figure 7.20. The many features of the diagram editor

Expanding the Table View submenu gives you more options for displaying your table.

If you choose Standard, you’ll see a full-blown version of the table definition; as

Figure 7.21 shows, you can change the table structure directly in the diagram. The

diagramming features provided for free are extremely useful.

307Database Design and Development

Figure 7.21. The standard table view

Implementing Relationships in the Dorknozzle
Database
Every table in the Dorknozzle database has a relationship with another table. To

create a foreign key using the diagram, click the gray square to the left-hand side of

the column for which you want to create the foreign key, and drag it over the table

to which you want it to relate.

Let’s give it a try. Start by dragging the DepartmentID column of the Employees

table over the DepartmentID column of the Departments table, as illustrated in

Figure 7.22.

Figure 7.22. Creating a link between Employees and Departments

The designer will open a dialog that shows the details of the new foreign key, like

the one shown in Figure 7.23.

Build Your Own ASP.NET 4 Website Using C# & VB308

Figure 7.23. Adding a foreign key

Ensure that your data matches that shown in Figure 7.23, and click OK. A new dialog

like the one shown in Figure 7.24 will appear, allowing you to tweak numerous

options that relate to the new foreign key. Leave the default options as they are for

now (though we’ll discuss them shortly), and click OK to finish up.

Figure 7.24. Editing the foreign key options

After creating the foreign key, make a quick test to ensure that the relationship is

indeed enforced. Try adding an employee, but set the person’s DepartmentID to

123. You should see an error like the one pictured in Figure 7.25.

309Database Design and Development

Figure 7.25. The foreign key disallowing the addition of invalid data

If you tried to delete a department with which employees were associated, you’d

generate a similar error.

Table 7.15 shows the foreign keys that we need to establish in the Dorknozzle

database. In our project, the foreign key column has the same name as its corres-

ponding primary key column. Go ahead and create all the foreign keys outlined in

Table 7.15.

Table 7.15. The relationships in the Dorknozzle database

Foreign KeyPrimary Key

DepartmentID in the table EmployeesDepartmentID in the table Departments

EmployeeID in the table HelpDeskEmployeeID in the table Employees

CategoryID in the table HelpDeskCategoryID in the table

HelpDeskCategories

SubjectID in the table HelpDeskSubjectID in the table HelpDeskSubjects

StatusID in the table HelpDeskStatusID in the table HelpDeskStatus

When it’s complete, your relationship diagram should resemble Figure 7.26. After

you add the relationships, save your changes by selecting File > Save Dorknozzle.

Build Your Own ASP.NET 4 Website Using C# & VB310

Figure 7.26. Creating and visualizing table relationships

When you’re asked to confirm the changes to the database tables you’re altering,

click Yes.

Now that you’ve created these foreign keys, you can be sure that all the data stored

in your tables will obey the enforced table relationships. The DepartmentID column

in the Employees table will always reference valid departments, and the HelpDesk

records will always reference valid employees, help desk categories, help desk

subjects, and help desk status codes.

In Chapter 8, you’ll start learning how to use your new database. Before then, let’s

take a moment to analyze the diagram, and learn more about the information it

shows us.

311Database Design and Development

Diagrams and Table Relationships
Relationships describe how data in one table is linked to data in other tables. In

fact, it’s because relationships are so crucial that these types of databases are given

the name “relational databases.” Relationships exist for the sole purpose of associ-

ating one table with one or more other tables using primary keys and foreign keys.

There are three types of relationships that can occur between the tables in your

database:

■ one-to-one relationships
■ one-to-many relationships
■ many-to-many relationships

One-to-one Relationships
A one-to-one relationship means that for each record in one table, only one other

related record can exist in another table.

One-to-one relationships are rarely used, since it’s usually more efficient just to

combine the two records and store them together as columns in a single table. For

example, every employee in our database will have a phone number stored in the

HomePhone column of the Employees table. In theory, we could store the phone

numbers in a separate table and link to them via a foreign key in the Employees

table, but this would be of no benefit to our application, since we assume that one

phone number can belong to only one employee. As such, we can leave this one-

to-one relationship (along with any others) out of our database design.

One-to-many Relationships
The one-to-many relationship is by far the most common relationship type. Within

a one-to-many relationship, each record in a table can be associated with multiple

records from a second table. These records are usually related on the basis of the

primary key from the first table. In the employees/departments example, a one-to-

many relationship exists between the Employees and Departments tables, as one

department can be associated with many employees.

When a foreign key is used to link two tables, the table that contains the foreign key

is on the “many” side of the relationship, and the table that contains the primary

key is on the “one” side of the relationship. In database diagrams, one-to-many re-

Build Your Own ASP.NET 4 Website Using C# & VB312

lationships are signified by a line between the two tables; a golden key symbol ap-

pears next to the table on the “one” side of the relationship, and an infinity sign is

displayed next to the table that could have many items related to each of its records.

In Figure 7.27, those icons appear next to the Employees and Departments tables.

Figure 7.27. Database diagram showing a one-to-many relationship

As you can see, one-to-many relationships are easy to spot if you have a diagram at

hand—just look for the icons next to the tables. Note that the symbols don’t show

the exact columns that form the relationship; they simply identify the tables in-

volved.

Select the line that appears between two related tables to view the properties of the

foreign key that defines that relationship. The properties display in the Properties

window (you can open this by selecting View > Properties Window). As Figure 7.28

illustrates, they’re the same options we saw earlier in Figure 7.24.

Figure 7.28. The properties of a foreign key

313Database Design and Development

Advanced Foreign Key Options

Unless you really know what you’re doing, we recommend that you use the default

foreign key options for now. However, it’s good to have some idea of the features

available through the Properties window, as they may well come in handy later

in your database development career.

The most significant setting here is Enforce Foreign Key Constraint, which, when set

to Yes, prevents users or applications from entering inconsistent data into our

database (for example, by inserting into the Employees table a DepartmentID value

that doesn’t have a matching entry in the Departments table). In our application,

every user must be associated with a valid department, so we’ll leave this option

enabled.

The options available under INSERT And UPDATE Specification can be used to tell your

database to update the tables itself in order to keep the data valid at times when a

change in a given table would affect a related table. If, for some reason, we changed

the ID of a department in the Departments table, we could set the database to

propagate this change to all the tables related to that department, keeping the rela-

tionships intact. Similarly, we can set the database to automatically delete all the

employees related to a department that has been removed. However, these are quite

sensitive options, and it’s best to avoid them unless you have good reason not to.

The cases in which an ID changes are very uncommon (the ID doesn’t have any

special meaning itself, other than being a unique identifier), and letting the database

delete data for you is a risky approach (it’s safer to delete the related records your-

self).

If these concepts sound a bit advanced at the moment, don’t worry; it will all become

clear as you spend some time working with databases.

Many-to-many Relationships
Many-to-many relationships occur between two tables, when records from either

table can be associated with multiple records in the other table.

Imagine that you wanted a single employee to be able to belong to more than one

department—someone who works in “Engineering” could also be an “Executive,”

for example. One employee can belong to many departments, and one department

can contain many employees, so this is a many-to-many relationship.

Build Your Own ASP.NET 4 Website Using C# & VB314

How do we represent it in our database? Faced with this question, many less-exper-

ienced developers begin to think of ways to store several values in a single column,

because the obvious solution is to change the DepartmentID column in the Employees

table so that it contains a list of the IDs of those departments to which each employee

belongs. One of those good old rules of thumb we discussed previously applies

here:

If you need to store multiple values in a single column, your design is probably

flawed.

The correct way to represent a many-to-many relationship is to add a third table,

named a mapping table, to the database. A mapping table is a table that contains

no data other than the definitions of the pairs of entries that are related. Figure 7.29

shows the database design for our employees and departments.

Figure 7.29. Using a mapping table to implement a many-to-many relationship

The EmployeeDepartment table associates employee IDs with department IDs. If we

added this table to our database, we could add Zak Ruvalcaba to both the “Executive”

and “Engineering” departments.

A mapping table is created in much the same way as any other table. The only dif-

ference lies in the choice of the primary key. Every table we’ve created so far has

had a column named somethingID that was designed to be that table’s primary key.

Designating a column as a primary key tells the database not to allow two entries

in that column to have the same value. It also speeds up database searches based

on that column.

315Database Design and Development

In the case of a mapping table, there’s no single column that we want to force to

have unique values. Each employee ID may appear more than once, as an employee

may belong to more than one department, and each department ID may appear more

than once, as a department may contain many employees. What we don’t want to

allow is the same pair of values to appear in the table twice (it wouldn’t make sense

to associate a particular employee with a particular department more than once).

For this reason, we usually create mapping tables with a multicolumn primary key.

In this example, the primary key for the EmployeeDepartment table would consist

of the EmployeeID and DepartmentID columns. This enforces the uniqueness that

is appropriate to a look-up table, and prevents a particular employee from being

assigned to a particular department more than once.

If you’d like to learn more about many-to-many relationships, or about anything

else related to SQL Server programming, I recommend you download and use the

product’s excellent documentation, SQL Server Books Online.1

Summary
This chapter has introduced the fundamental concepts of relational databases. You

learned about the underlying structure of a modern relational database, which is

composed of tables, columns, and rows, and about crucial concepts that can aid in

database performance, maintenance, and efficiency. You’ve also learned how to

implement and enforce table relationships, and you have a solid understanding of

good relational database design.

Chapter 8 goes beyond data storage and introduces you to the language used to access

and manipulate the data you hold in your tables. That language is the Structured

Query Language, or SQL.

1 http://msdn2.microsoft.com/en-us/library/ms130214.aspx

Build Your Own ASP.NET 4 Website Using C# & VB316

http://msdn2.microsoft.com/en-us/library/ms130214.aspx

Chapter8
Speaking SQL
So your database has been created, and you’ve defined all the tables you’ll need,

and all the columns for your tables—you’ve even defined the relationships between

your tables. The question now is, “How will you get to that data?” Sure, you can

open the database, look at the data contained in the tables, and manually insert and

delete records, but that does little to help your web users interact with that data.

Mary in Accounting isn’t going to want to download and learn to use SQL Server

Management Studio just so she can retrieve an employee’s mobile phone num-

ber—this functionality has to be provided by the Dorknozzle intranet website, which,

after all, is supposed to enable staff members to access data easily. In fact, the

functionality can be created using web forms, web controls, a little code, and a

useful database programming language known as Structured Query Language (or

SQL).

SQL has its origins in a language developed by IBM in the 1970s called SEQUEL

(which stood for Structured English QUEry Language), and is still often referred to

as “sequel” or “ess-que-el.” It represents a very powerful way of interacting with

current database technologies and the tables that constitute our databases. SQL has

roughly 30 keywords, and is the language of choice for simple and complex database

operations alike. The queries you’ll construct with these keywords range from the

very basic to extremely complex strings of subqueries and table joins.

SQL is an international standard, and almost all database products, including SQL

Server, Oracle, DB2, and so on, support the standard to a certain degree. The dialect

of SQL supported by SQL Server is named Transact-SQL (or T-SQL). This chapter

cannot begin to cover all there is to know on the subject, but we hope it will provide

you with an introduction to beginner and advanced SQL concepts.

In this chapter, you’ll learn:

■ basic SQL commands
■ expressions that SQL supports
■ the most important SQL functions
■ how to perform table joins and subqueries
■ how to create stored procedures

This may sound like a lot of work, but you’re certain to enjoy it! Let’s get started.

Reading Data from a Single Table
Information that’s contained within a database is useless unless we have a way to

extract it. SQL is that mechanism; it allows quick but sophisticated access to database

data through the use of queries. Queries pose questions to the database server, which

returns the answer to your application.

Table 8.1. Sample contents from the Employees table

CityUsernameNameDep'tIDEmployeeID
(Primary Key)

San DiegozakZak Ruvalcaba51

San DiegojessicaJessica Ruvalcaba92

San DiegotedTed Lindsey63

San DiegoshaneShane Weebe64

San DiegodavidDavid Levinson95

San DiegogeoffGeoff Kim16

Build Your Own ASP.NET 4 Website Using C# & VB318

For example, imagine that you’re trying to extract the information shown in Table 8.1

from the Employees table of the Dorknozzle database.

How do we make this kind of data available to our website? The first step is to learn

how to read this data using SQL. Then, in the next chapter, we’ll learn to access

the data from ASP.NET web applications.

In the following sections, we’ll learn to write queries that will let us view existing

data, insert new data, modify existing data, and delete data. Once you’ve learned

how to write these fundamental SQL queries, the next step is to put everything to-

gether, and build the web forms with which your users will interact.

Let’s begin: first up, open SQL Server Management Studio. Visual Web Developer

can also be used to test SQL queries, but SQL Server Management Studio is slightly

easier to use for our purposes. Log in to your SQL Server instance, and select the

Dorknozzle database in the Object Explorer pane, as illustrated in Figure 8.1.

Figure 8.1. Using SQL Server Management Studio Express

Having selected the Dorknozzle database, go to File > New > Database Engine Query,

or simply click the New Query button on the toolbar. A new query window, like the

one shown in Figure 8.2, should open in the right-hand pane.

319Speaking SQL

Figure 8.2. A new query window

In the query window, type your first command:

SELECT Name
FROM Employees

Click the Execute button, or press F5. If everything works as planned, the result will

appear similar to Figure 8.3.

Build Your Own ASP.NET 4 Website Using C# & VB320

Figure 8.3. Executing a simple query

Nice work! Now that we’ve taken our first look at SQL, let’s talk more about SQL

queries.

Using the SELECT Statement
The most common of all SQL queries is the SELECT query. This query is generally

constructed using a SELECT clause and a FROM clause. To understand this concept

more clearly, take a look at the following statement, which retrieves all columns of

all records in the Departments table:

SELECT *
FROM Departments

In this case, the SELECT clause lists the columns that you want to retrieve. In this

case, we used *, which means “all columns.” The FROM clause specifies the table

from which you want to pull the records. Together, these two clauses create an SQL

statement that extracts all data from the Departments table.

You’ve probably noticed that the two clauses appear on separate lines. If you wanted

to keep the entire statement on one line, that’s fine, but SQL lets you separate the

statements on multiple lines to make complex queries easier to read. Also note that

321Speaking SQL

although SQL is not actually a case-sensitive language, we’ll capitalize the keywords

(such as SELECT and FROM) according to the popular convention.

To sum up, here’s the basic syntax used in a SELECT query:

SELECT

This keyword indicates that we want to retrieve data, rather than modify, add,

or delete data—these activities use the UPDATE, INSERT, and DELETE keywords,

respectively, in place of SELECT.

columns

We must provide the names of one or more columns in the database table from

which we want to retrieve data. We can list multiple columns by separating the

column names with commas, or we can use * to select all columns. We can also

prefix each column name with the table name, as shown here:

SELECT Employees.Name, Employees.Username
FROM Employees

This approach is mandatory when two or more of the tables we’re dealing with

contain columns that have the same names. We’ll learn to read data from mul-

tiple tables a little later in the chapter.

FROM

The FROM keyword ends the SELECT clause and starts the FROM clause, which

identifies the tables from which the data will be extracted. This clause is required

in all SELECT statements.

tables

We need to identify the names of the tables from which we want to extract data.

To list multiple tables, separate their names with commas. Querying multiple

tables is called a table join—we’ll cover this a bit later.

Armed with this knowledge, we can see that the preceding sample statement would

retrieve all records from the Departments table, producing a set of results like that

shown in Figure 8.4.

Build Your Own ASP.NET 4 Website Using C# & VB322

Figure 8.4. Reading the list of departments

See how easy it is? The SELECT query is probably the one you’ll use most.

Viewing Results in Text Format

By default, the query editor of SQL Server Management Studio displays the results

in a grid like the one shown in Figure 8.3. As you work with SQL Server, you may

start to find this view a little impractical; in particular, it makes viewing longer

strings of text painful because each time you run the query, you need to resize

the columns in the grid. Personally, I prefer the plain text view, shown in Fig-

ure 8.4. You can enable this mode by selecting Query > Results To > Results To Text.

The Number of Affected Rows

As you can see in Figure 8.4, SQL Server reports the number of records that have

been affected by a certain query. This report doesn’t indicate that those records

were modified. Instead, the figure represents the number of rows that were read,

modified, deleted, or inserted by a certain query.

323Speaking SQL

Let’s move on and take a look at some variations of the SELECT query. Then we’ll

see how easy it is to insert, modify, and delete items from the database using other

keywords.

Selecting Certain Fields
If you didn’t want to select all the fields from the database table, you’d include the

names of the specific fields that you wanted in place of the * in your query. For

example, if you’re interested only in the department names—not their IDs—you

could execute the following query:

SELECT Department
FROM Departments

This statement would retrieve data from the Department field only. Rather than

specifying the *, which would return all the fields within the database table, we

specify only the fields that we need.

Selecting All Columns Using *

To improve performance in real-world development scenarios, it’s better to ask

only for the columns that are of interest, rather than using *. Moreover, even when

you need all the columns in a table, it’s better to specify them by nam; this safe-

guards against the possibility of future changes, which cause more columns to be

added to the table, affect the queries you’re writing now.

It’s important to note that the order of the fields in a table determines the order in

which the data will be retrieved. Take this query, for example:

SELECT DepartmentID, Department
FROM Departments

Build Your Own ASP.NET 4 Website Using C# & VB324

You could reverse the order in which the columns are returned with this query:

SELECT Department, DepartmentID
FROM Departments

Executing this query would produce the result set shown in Figure 8.5.

Figure 8.5. Retrieving department names and their IDs

Try it for yourself!

325Speaking SQL

Selecting Unique Data with DISTINCT
Say you want to find out which cities your employees hail from. It’s most likely

that this sort of query would generate multiple results:

SELECT City
FROM Employees

If this query were applied to the Dorknozzle application, the same city location

would appear six times in the results—once for every employee in our database.

Figure 8.6 illustrates this point.

That’s not usually what we want to see in our results. Typically, we prefer to see

the unique cities in the list—a task that, fortunately enough, is easy to achieve.

Adding the DISTINCT keyword immediately after the SELECT clause extracts only

the unique instances of the retrieved data. Take a look at the following SQL state-

ment:

SELECT DISTINCT City
FROM Employees

This query will produce the result shown in Figure 8.7.

Build Your Own ASP.NET 4 Website Using C# & VB326

Figure 8.6. Reading the employees’ cities

327Speaking SQL

Figure 8.7. Selecting distinct cities

In this case, because only the City column was included within the SQL query,

unique instances within the City column were returned.

Note that the uniqueness condition applies to the whole of the returned rows. If,

for example, we asked for the name of each employee as well, all the rows would

be considered unique (because no two employees have the same name) and no row

would be eliminated by DISTINCT. To see for yourself, execute this query:

Build Your Own ASP.NET 4 Website Using C# & VB328

SELECT DISTINCT Name, City
FROM Employees

The results of this code are pictured in Figure 8.8. As we expected, the DISTINCT

clause doesn’t have any effect, since each row is unique.

Figure 8.8. Retrieving employees and cities

Row Filtering with WHERE
The WHERE clause is used in conjunction with SQL queries, including the SELECT

query, to deliver more refined search results based on individual field criteria. The

329Speaking SQL

following example could be used to extract all employees that work in the Depart-

ment whose ID is 6:

SELECT Name, DepartmentID
FROM Employees
WHERE DepartmentID = 6

This query returns the results shown below:

Name DepartmentID
-- ------------
Ted Lindsey 6
Shane Weebe 6

(2 row(s) affected)

But wait! How do I know the name of the department with the ID of 6? Well, you

could use a similar query to find out. Try this:

SELECT Department
FROM Departments
WHERE DepartmentID = 6

Executing this query reveals that the department with the ID of 6 is Engineering:

Department
--
Engineering

(1 row(s) affected)

Selecting Ranges of Values with BETWEEN
There may be times when you’ll want to search within a database table for rows

that fall within a certain range of values. For instance, if you wanted to retrieve

from the Departments table all departments that have IDs between 2 and 5, you

could use the BETWEEN keyword like so:

SELECT DepartmentID, Department
FROM Departments
WHERE DepartmentID BETWEEN 2 AND 5

Build Your Own ASP.NET 4 Website Using C# & VB330

As we requested, all departments whose IDs are between 2 and 5 are returned. Note

that the range is inclusive, so departments with IDs of 2 and 5 will also be retrieved.

Keep in mind that any conditions that use BETWEEN could easily be rewritten by

combining two “greater than or equal” and “less than or equal” conditions:

SELECT DepartmentID, Department
FROM Departments
WHERE DepartmentID >= 2 AND DepartmentID <= 5

We could also use the NOT keyword before the BETWEEN keyword to specify all items

that fall outside the range, as follows:

SELECT DepartmentID, Department
FROM Departments
WHERE DepartmentID NOT BETWEEN 2 AND 5

In this example, all rows whose DepartmentIDs are less than 2 or greater than 5 are

returned.

Matching Patterns with LIKE
As we’ve just seen, the WHERE clause allows us to filter results based on criteria that

we specify. The example we discussed earlier filtered rows by comparing two

numbers, but SQL also knows how to handle strings. For example, if we wanted to

search the company’s Employees table for all employees named Zak Ruvalcaba,

we'd use the following SQL statement:

SELECT EmployeeID, Username
FROM Employees
WHERE Name = 'Zak Ruvalcaba'

However, we won’t see many such queries in reality. In real-world scenarios, most

record matching is done by matching the primary key of the table to some specific

value. When an arbitrary string such as a name is used (as in the previous example),

it’s likely that we’re searching for data based on partially complete information.

A more realistic example is one in which we want to find all employees with the

surname Ruvalcaba. The LIKE keyword allows us to perform pattern matching with

the help of wildcard characters. The wildcard characters supported by SQL Server

331Speaking SQL

are the percentage symbol (%), which matches any sequence of zero or more charac-

ters, and the underscore symbol (_), which matches exactly one character.

If we wanted to find all names within our Employees table with the surname of

Ruvalcaba, we could modify the SQL query using a wildcard, as follows:

SELECT EmployeeID, Name
FROM Employees
WHERE Name LIKE '%Ruvalcaba'

With this query, all records in which the Name column ends with Ruvalcaba are

returned, as shown below.

EmployeeID Name
----------- --
1 Zak Ruvalcaba
2 Jessica Ruvalcaba

(2 row(s) affected)

As we knew that the last name was Ruvalcaba, we only needed to place a wildcard

immediately before the last name. But what would happen if we didn’t know how

to spell the entire last name? That name is fairly difficult to spell! You could solve

the problem by modifying your SQL statement to use two wildcards as follows:

SELECT EmployeeID, Name
FROM Employees
WHERE Name LIKE '%Ruv%'

In this case, the wildcard is placed before and after the string Ruv. Although this

statement would return the same values we saw in the results table above, it would

also return any employees whose names (first or last) contain the sequence Ruv. As

SQL is case-insensitive, this would include the names Sarah Ruvin, Jonny Noruvitch,

Truvor MacDonald, and so on.

Using the IN Operator
We use the IN operator in SELECT queries primarily to specify a list of values that

we want to match in our WHERE clause. Let’s say we want to find all employees who

Build Your Own ASP.NET 4 Website Using C# & VB332

live in California, Indiana, and Maryland. You could write the following SQL

statement to accomplish this task:

SELECT Name, State
FROM Employees
WHERE State = 'CA' OR State = 'IN' OR State = 'MD'

A better way to write this statement uses the IN operator as follows:

SELECT Name, State
FROM Employees
WHERE State IN ('CA', 'IN', 'MD')

If you execute this query, you’ll get the expected results. Since our database only

contains employees living in CA, only those records will be displayed:

Name State
-------------------------------- --------------------------------
Zak Ruvalcaba Ca
Jessica Ruvalcaba Ca
Ted Lindsey Ca
Shane Weebe Ca
David Levinson Ca
Geoff Kim Ca

(6 row(s) affected)

Sorting Results Using ORDER BY
Unless you specify some sorting criteria, SQL Server can’t guarantee to return the

results in a particular order. We’ll most likely receive the results sorted by the

primary key, because it’s easier for SQL Server to present the results in this way

than any other, but this ordering isn’t guaranteed. This explains why, in some of

the examples we’ve completed so far, the order of the results you see on your ma-

chine may differ from what you see in this book. The ORDER BY clause provides you

with a quick way to sort the results of your query in either ascending or descending

order. For instance, to retrieve the names of your employees in alphabetical order,

you’d need to execute this command:

333Speaking SQL

SELECT EmployeeID, Name
FROM Employees
ORDER BY Name

Looks simple, doesn’t it?

EmployeeID Name
----------- --
5 David Levinson
6 Geoff Kim
2 Jessica Ruvalcaba
4 Shane Weebe
3 Ted Lindsey
1 Zak Ruvalcaba

(6 row(s) affected)

Note that the default ordering here is ascending (that is, it runs from A to Z). You

could add the DESC designation (for descending) to the end of the statement, to order

the results backwards:

SELECT EmployeeID, Name
FROM Employees
ORDER BY Name DESC

If you execute this query, you’ll achieve the results we saw above, listed in reverse

order. You could also order the results on the basis of multiple columns—simply

add a comma after the field name and enter a second field name, as follows:

SELECT EmployeeID, Name, City
FROM Employees
ORDER BY City, Name

In this case, the results are returned in alphabetical order by city, and any tying re-

cords (that is, any records that have the same city) will appear sorted by name.

Limiting the Number of Results with TOP
Another useful SQL keyword is TOP, which can be used together with SELECT to

limit the number of returned rows. For example, if we want to retrieve the first five

departments, and have the list ordered alphabetically, we’d use this command:

Build Your Own ASP.NET 4 Website Using C# & VB334

SELECT TOP 5 Department
FROM Departments
ORDER BY Department

Here are the results:

Department
--
Accounting
Administration
Business Development
Customer Support
Engineering

(5 row(s) affected)

Reading Data from Multiple Tables
Until now, we’ve primarily focused on extracting data from a single table. Yet in

many real-world applications, you’ll need to extract data from multiple tables sim-

ultaneously. To do so, you’ll need to use subqueries or joins.

Let’s learn about subqueries and joins by looking closely at a typical example. Say

you’re asked to build a report that displays all the employees in the Engineering

department. To find employee data, you’d normally query the Employees table, and

apply a WHERE filter on the ID of the department. That approach would work fine

in this case, except for one element: you don’t know the ID of the Engineering de-

partment!

The solution? First, execute this query to find the ID of the Engineering department:

SELECT DepartmentID
FROM Departments
WHERE Department = 'Engineering'

The result of this query will show that the ID of the Engineering department is 6.

Using this data, you can make a new query to find the employees in that department:

335Speaking SQL

SELECT Name
FROM Employees
WHERE DepartmentID = 6

This query retrieves the same list of employees we saw earlier in this chapter.

So everything’s great … except that you had to execute two queries in order to do

the job! There is a better way: SQL is very flexible and allows you to retrieve the

intended results using a single command. You could use either subqueries or joins

to do the job, so let’s take a look at them in turn.

Subqueries
A subquery is a query that’s nested inside another query, and can return data that’s

used by the main query. For example, you could retrieve details of all the employees

who work in the Engineering department like this:

SELECT Name
FROM Employees
WHERE DepartmentID IN
 (SELECT DepartmentID
 FROM Departments
 WHERE Department LIKE '%Engineering')

In this case, the subquery (highlighted in bold) returns the ID of the Engineering

department, which is then used to identify the employees who work in that depart-

ment. An embedded SELECT statement is used when you want to perform a second

query within the WHERE clause of a primary query.

Note that we’re using the IN operator instead of the equality operator (=). We do so

because our subquery could return a list of values. For example, if we added another

department with the name “Product Engineering,” or accidentally added another

Engineering record to the Departments table, our subquery would return two IDs.

So, whenever we’re dealing with subqueries like this, we should use the IN operator

unless we’re absolutely certain that the subquery will return only one record.

Build Your Own ASP.NET 4 Website Using C# & VB336

Querying Multiple Tables

When using queries that involve multiple tables, it’s useful to take a look at the

database diagram you created in Chapter 7 to see what columns exist in each table,

as well as gain an idea of the relationships between the tables.

Table Joins
An inner join allows you to read and combine data from two tables between which

a relationship is established. In Chapter 7, we created such a relationship between

the Employees table and the Departments table using a foreign key.

Let’s make use of this now, to obtain a list of all employees in the engineering de-

partment:

SELECT Employees.Name
FROM Departments
INNER JOIN Employees ON Departments.DepartmentID =
 Employees.DepartmentID
WHERE Departments.Department LIKE '%Engineering'

The first point to notice here is that we qualify our column names by preceding

them with the name of the table to which they belong, and a period character (.).

We use Employees.Name rather than Name, and Departments.DepartmentID instead

of DepartmentID. We need to specify the name of the table whenever the column

name exists in more than one table (as is the case with DepartmentID); in other

cases (such as with Employees.Name), adding the name of the table is optional.

As an analogy, imagine that you have two colleagues at work named John. John

Smith works in the same department as you, and his desk is just across the aisle.

John Thomas, on the other hand, works in a different department on a different

floor. When addressing a large group of colleagues, you’d use John Smith’s full

name, otherwise people could become confused. However, it would quickly become

tiresome if you always used John Smith’s full name when dealing with people in

your own department on a day-to-day basis. In exactly the same way, you could

always refer to a column in a database using the Table.Column form, but it’s only

necessary when there’s the potential for confusion.

337Speaking SQL

As for the join itself, the code is fairly clear: we’re joining the Departments table

and the Employees table into a single, virtual table by matching the values in the

Departments.DepartmentID column with those in the Employees.DepartmentID

column. From this virtual table, we’re only interested in the names of the employees

whose records match the filter Departments.Department LIKE '%Engineering'.

By eliminating the WHERE clause and adding the department’s name to the column

list, we could generate a list that contained the details of all the employees and their

associated departments. Try this query:

SELECT Employees.Name, Departments.Department
FROM Departments
INNER JOIN Employees ON Departments.DepartmentID =
 Employees.DepartmentID

The results are as you’d expect:

Name Department
-------------------------------- ---------------------------------
Zak Ruvalcaba Executive
Jessica Ruvalcaba Marketing
Ted Lindsey Engineering
Shane Weebe Engineering
David Levinson Marketing
Geoff Kim Accounting

(6 row(s) affected)

Expressions and Operators
In the wonderful world of programming, an expression is any piece of code that,

once evaluated, results in a value. For instance, 1 + 1 is a very simple expression.

In SQL, expressions work in much the same way, though they don’t necessarily

have to be mathematical. For a simple example, let’s create a list that contains em-

ployees and their cities as single strings. Try this query:

SELECT EmployeeID, Name + ', ' + City AS NameAndCity
FROM Employees

The results are shown below:

Build Your Own ASP.NET 4 Website Using C# & VB338

EmployeeID NameAndCity
---------- ---
1 Zak Ruvalcaba, San Diego
2 Jessica Ruvalcaba, San Diego
3 Ted Lindsey, San Diego
4 Shane Weebe, San Diego
5 David Levinson, San Diego
6 Geoff Kim, San Diego

(6 row(s) affected)

Note that the results of the expression are used to create a virtual column. This

column doesn’t exist in reality, but is calculated using the values of other columns.

We give this column the name NameAndCity using the AS keyword.

Expressions would be quite useless if we didn’t have operators. Over the course of

the previous sections, you’ve seen the operators =, AND, >=, <=, LIKE, and IN at work.

Here’s a list of operators that you’ll need to know to use SQL effectively:

+ The addition operator adds two numbers or combines two strings.

– The subtraction operator subtracts one number from another.

* The multiplication operator multiplies one number with another.

/ The division operator divides one number by another.

> The greater-than operator is used in WHERE clauses to determine whether

the first value is greater than the second. For example, the following query

would return all the records from the table whose EmployeeID is greater

than ten (that is, 11 and up):

SELECT Name
FROM Employees
WHERE EmployeeID > 10

< The less-than operator is used in WHERE clauses to determine whether the

first value is less than the second. The result of the following query would

return from the table all records whose EmployeeID is less than ten (that

is, nine and lower):

339Speaking SQL

SELECT Name
FROM Employees
WHERE EmployeeID < 10

>= The greater-than or equal-to operator is used in WHERE clauses to determine

whether the first value is greater than, or equal to, the second. The follow-

ing query would return the record with an EmployeeID of ten, and every

one after that:

SELECT Name
FROM Employees
WHERE EmployeeID >= 10

<= The less-than or equal-to operator is used in WHERE clauses to determine

whether the first value is less than, or equal to, the second. The result of

the following query would be the record with EmployeeID of ten, and

every one before that:

SELECT Name
FROM Employees
WHERE EmployeeID <= 10

<>, != This operator is used to check whether a value is not equal to a second

value.

OR This operator is used with the WHERE clause in the SELECT statement. The

OR operator can be used when a certain condition needs to be met, or

when only one of two conditions needs to be met. For example, the fol-

lowing query’s results would return the employees with employee IDs of

1 or 2:

SELECT Name
FROM Employees
WHERE EmployeeID = 1 OR EmployeeID = 2

Build Your Own ASP.NET 4 Website Using C# & VB340

AND This operator works just like OR, except that it requires all the conditions

to be satisfied, not just any of them.

NOT Typically used in conjunction with the LIKE operator, the NOT operator

is used when we’re looking for values that are not like the value we spe-

cify. For example, the following query would return all employees whose

names do not begin with “Jess”:

SELECT Name
FROM Employees
WHERE Name NOT LIKE 'Jess%'

_, ? The underscore operator is used by SQL Server in WHERE clauses, and

matches any single character in a string. For instance, if you weren’t sure

of the first letter of Geoff Kim’s surname, you could use the following

query:

SELECT Name
FROM Employees
WHERE Name LIKE 'Geoff _im'

This would return Geoff Kim’s record, as well as Geoff Sim’s, Geoff Lim’s,

and so on, were there such employees in the database. Note that the _

character only matches a single character, so Geoff Sirrim would not be

returned. To match zero or more characters, you’d use the % or * operator.

%, * The multiple character operator is similar to the underscore operator,

except that it matches multiple or zero characters, whereas the underscore

operator only matches one.

IN This operator is used in WHERE clauses to specify that an expression’s

value must be one of the values specified in a list.

Transact-SQL (T-SQL) Functions
As well as using operators to construct expressions manually, SQL Server provides

us with some functions that we can use within our queries. For the most part, SQL

has sufficient functions to handle almost all of the day-to-day tasks that you’ll un-

341Speaking SQL

dertake. So let’s take a look at some of the most useful and common functions you’re

likely to use in your queries.

Getting More Information

Note that the complete list of built-in functions supported by T-SQL is much

longer than that presented here. You can find the complete lists by searching for,

say, “string functions” or “date and time functions” in the free SQL Server docu-

mentation, SQL Server Books Online, which can be downloaded from Microsoft’s

TechNet site.1 Additionally, SQL Server allows you to create your own user-

defined functions either in SQL, or a language such as VB or C#. However, this

is an advanced topic that we won’t be covering in this book.

Arithmetic Functions
SQL supports many arithmetic functions. Although the commonly preferred solution

is to perform such calculations in VB or C# code, SQL’s arithmetic functions can

prove handy at times.

ABS

This function returns the absolute value. Both of the following queries will return

the value 5:

SELECT ABS(5)

SELECT ABS(-5)

CEILING

CEILING returns the smallest integer that’s greater than the value that was passed

in. In other words, this function rounds up the value passed in. The following

query will return 6:

SELECT CEILING(5.5)

1 http://www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx

Build Your Own ASP.NET 4 Website Using C# & VB342

http://www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx

FLOOR

This function returns the largest integer that’s less than the value that was passed

in—in other words—it rounds down the value that was passed in. The following

query will return the value 5:

SELECT FLOOR(5.5)

MOD

MOD returns the remainder of one value divided by another. The following query

would return the value 2:

SELECT MOD(8, 3)

SIGN

This function returns -1, 0, or 1, to indicate the sign of the argument.

POWER

This function returns the result of one value raised to the power of another. The

following query returns the result of 23:

SELECT POWER(2, 3)

SQRT

SQRT returns the non-negative square root of a value.

Many, many more mathematical functions are available—check SQL Server Books

Online2 for a full list.

String Functions
String functions work with literal text values rather than numeric values.

UPPER, LOWER

This function returns the value passed in as all uppercase or all lowercase, re-

spectively. Take the following example:

2 http://msdn.microsoft.com/en-us/library/ms130214.aspx

343Speaking SQL

http://msdn.microsoft.com/en-us/library/ms130214.aspx

SELECT LOWER(Username), UPPER(State)
FROM Employees

The query above will return a list of usernames in lowercase, and a list of states

in uppercase.

LTRIM, RTRIM

This function trims whitespace characters, such as spaces, from the left- or right-

hand side of the string, respectively.

REPLACE

Use the REPLACE function to change a portion of a string to a new sequence of

characters that you specify:

SELECT REPLACE('I like chocolate', 'like', 'love')

This query will search the string “I like chocolate” for the word “like” and re-

place it with the word “love,” as shown in the output below:

--
I love chocolate

(1 row(s) affected)

SUBSTRING

This function returns the sequence of characters within a given value, beginning

at a specified start position and spanning a specified number of characters:

SELECT SUBSTRING('I like chocolate', 8, 4)

The above query will take four characters from the string “I like chocolate”

starting from the eighth character, as shown in the output below:

choc

(1 row(s) affected)

Build Your Own ASP.NET 4 Website Using C# & VB344

LEN

This function returns the length of a string. Thus, the following query would

return a list of all usernames, and how many characters were in each username:

SELECT Username, LEN(Username) AS UsernameLength
FROM Employees

CHARINDEX

This function returns the first position in which a substring can be found in a

string.

It’s also worth noting that these functions can be used in conjunction with other

functions, often to create quite powerful results. For example, the following SQL

query would return the first name of every employee within the Employees table:

SELECT SUBSTRING(Name, 1, CHARINDEX(' ', Name)) AS FirstName
FROM Employees

Here, we’re using two string functions. CHARINDEX is used to locate the first space

within the Name column. If we assume that the first space indicates the end of the

first name, we can then use SUBSTRING to extract the first name from the name string.

The results, shown in Figure 8.9, are as we’d expect.

345Speaking SQL

Figure 8.9. Employees’ first names

Note that the query isn’t bulletproof—it’s only suitable for western-style names. If

employees had no spaces in their names (for instance, Cher or Madonna), the

CHARINDEX function would return -1, indicating that there was no space character

in the name. The SUBSTRING function would then return NULL, so the list of results

would be flawed.

Date and Time Functions
Date and time functions facilitate the manipulation of dates and times that are stored

within your database. These functions work with arguments of the datetime type.

Here are some of the most useful ones:

Build Your Own ASP.NET 4 Website Using C# & VB346

GETDATE

Returns the current date and time

DATEADD

Adds an interval to an existing date (a number of days, weeks, and so on) in

order to obtain a new date

DATEDIFF

Calculates the difference between two specified dates

DATEPART

Returns a part of a date (such as the day, month, or year)

DAY

Returns the day number from a date

MONTH

Returns the month number from a date

YEAR

Returns the year from a date

We won’t be working with these functions in our example application, but it’s good

to keep them in mind. Here’s a quick example that displays the current year:

SELECT YEAR(GETDATE())

The result (assuming it’s still 2008, of course) is shown below:

CurrentYear

2008

(1 row(s) affected)

Working with Groups of Values
Transact-SQL includes two very useful clauses that handle the grouping of records

and the filtering of these groups: GROUP BY and HAVING. These clauses can help you

find answers to questions like, “Which are the departments in my company that

347Speaking SQL

have at least three employees?” and “What is the average salary in each depart-

ment?”3

When working with groups of data, you’ll usually need to use aggregate functions.

Earlier, you learned about simple functions, which receive fixed numbers of para-

meters as their inputs. Aggregate functions, on the other hand, can handle a variable

number of parameters, and can perform a range of tasks with these parameters.

The typical example for an aggregate function is COUNT, which is used when we

want to count how many records are returned by a SELECT query. In the following

pages, we’ll learn about the GROUP BY and HAVING clauses, which are useful when

working with aggregate functions; we’ll also explore the COUNT, SUM, AVG, MIN, and

MAX functions.

The COUNT Function
The COUNT function returns the number of records selected by a query. If you wanted

to retrieve the total count of employees in your Employees table, you could run the

following query:

SELECT COUNT(Name) AS NumberOfEmployees
FROM Employees

Running this query with your current sample data would return the number of

employees stored in the database, as follows:

NumberOfEmployees

6

(1 row(s) affected)

The COUNT function becomes far more useful when it’s combined with a GROUP BY

clause.

3 Assuming, of course, that yourEmployees table has aSalary column, or some other way of keeping

track of salaries.

Build Your Own ASP.NET 4 Website Using C# & VB348

Grouping Records Using GROUP BY
Let’s imagine that you need to find out how many employees work in each depart-

ment. We already know how to get a list of employees and their departments:

SELECT Departments.Department, Employees.Name
FROM Employees
INNER JOIN Departments ON Departments.DepartmentID =
 Employees.DepartmentID

The results of this query are shown below:

Department Name
-------------------------------- --------------------------------
Executive Zak Ruvalcaba
Marketing Jessica Ruvalcaba
Engineering Ted Lindsey
Engineering Shane Weebe
Marketing David Levinson
Accounting Geoff Kim

(6 row(s) affected)

Now, let’s build on this query to find out how many employees work in each depart-

ment. Let’s start by adding the COUNT aggregate function:

SELECT Departments.Department, COUNT(Employees.Name) AS
 HowManyEmployees
FROM Employees
INNER JOIN Departments ON Departments.DepartmentID =
 Employees.DepartmentID

If we execute this query as is, we receive the following error message:

Msg 8120, Level 16, State 1, Line 1
Column 'Departments.Department' is invalid in the select list
because it is not contained in either an aggregate function or the
GROUP BY clause.

Yikes! What this error message is trying to tell us is that SQL Server is confused. It

knows that we want to count employees, but it doesn’t understand how the Depart-

349Speaking SQL

ments.Department field relates to this query. We can tell SQL Server to count the

employees based on their departments by adding a GROUP BY clause, like so:

SELECT Departments.Department, COUNT(Employees.Name) AS
 HowManyEmployees
FROM Employees
INNER JOIN Departments ON Departments.DepartmentID =
 Employees.DepartmentID
GROUP BY Departments.Department

When we run the query now, we get the result we were expecting:

Department HowManyEmployees
--- ----------------
Accounting 1
Engineering 2
Executive 1
Marketing 2

(4 row(s) affected)

Filtering Groups Using HAVING
Let’s say that we’re interested only in the members of the Ruvalcaba family that

work at Dorknozzle, and that we want to know how many of them work in each

department. We can filter out those employees using a WHERE clause, as shown below:

SELECT Departments.Department, COUNT(Employees.Name) AS
 HowManyEmployees
FROM Employees
INNER JOIN Departments ON Departments.DepartmentID =
 Employees.DepartmentID
WHERE Employees.Name LIKE '%Ruvalcaba'
GROUP BY Departments.Department

While this query is a little complicated, the WHERE clause by itself is fairly simple—it

includes only employees whose names end with Ruvalcaba. These records are the

only ones that are included in the count, as you can see here:

Build Your Own ASP.NET 4 Website Using C# & VB350

Department HowManyEmployees
--- ----------------
Executive 1
Marketing 1

(2 row(s) affected)

When SQL Server processes this query, it uses the WHERE clause to remove records

before counting the number of employees in each department. The HAVING clause

works similarly to the WHERE clause, except that it removes records after the aggregate

functions have been applied. The following query builds on the previous example.

It seeks to find out which of the departments listed in the Dorknozzle database have

at least two employees:

SELECT Departments.Department, COUNT(Employees.Name) AS
 HowManyEmployees
FROM Employees
INNER JOIN Departments ON Departments.DepartmentID =
 Employees.DepartmentID
GROUP BY Departments.Department
HAVING COUNT(Employees.Name) >= 2

The results show us that there are two departments that have at least two employees:

Department HowManyEmployees
--- ----------------
Engineering 2
Marketing 2

(2 row(s) affected)

The SUM, AVG, MIN, and MAX Functions
Other common aggregate functions you’re likely to need when you’re building more

complex applications include:

SUM

Unlike the COUNT function, which returns a value that reflects the number of

rows returned by a query, the SUM function performs a calculation on the data

within those returned rows.

351Speaking SQL

AVG

The AVG function receives a list of numbers as its arguments, and returns the

average of these numbers.

MIN, MAX

The MIN and MAX functions enable you to find the smallest and largest values in

a group, respectively.

These functions are great for conducting a statistical analysis of records within the

database. For example, it would be quite easy to use them to put together a web-

based accounting application that monitored daily sales, giving us totals, averages,

and the minimum and maximum values for certain products sold.

Updating Existing Data
Okay, so SQL is great for querying existing data. Fantastic! But how are we supposed

to add data to the tables in the first place? We can’t exactly ask Dorknozzle employees

to add data to our tables using SQL Server Management Studio, can we? We need

to learn how to add, update, and delete data inside our database programmatically.

The basic SQL statements that handle these actions are INSERT, UPDATE, and DELETE.

Let’s put them to work!

The INSERT Statement
Here’s a very simple example of INSERT in action:

INSERT INTO Departments (Department)
VALUES ('Cool New Department')

Executing this command adds a new department, named Cool New Department, to

our database. When we add a new row to a table, we must supply data for all the

columns that don’t accept NULL, don’t have a default value, and aren’t IDENTITY

columns that are automatically filled by the database (as in this example).

If, in Chapter 7, you used the database scripts to create database structures and insert

data, you probably noticed that the script contained many INSERT commands, which

populated the tables with the sample data.

The INSERT statement generally consists of the following components:

Build Your Own ASP.NET 4 Website Using C# & VB352

INSERT INTO

These keywords indicate that this statement will add a new record to the data-

base. The INTO part is optional, but it can make your commands easier to read.

Table name

We provide the name of the table into which we want to insert the values.

Column names

We also list the names of the columns for which we’ll be supplying data in this

statement. We separate these column names with commas and enclose the list

in parentheses.

VALUES

This keyword comes between the list of columns and their values.

Values

We provide a list of values that we wish to supply for the columns listed above.

Try the above SQL statement. Then, to read the new list of records, execute the

following query:

SELECT DepartmentID, Department
FROM Departments

All records in the Departments table will be displayed, along with our Cool New

Department and its automatically generated DepartmentID.

Identity Values

To obtain programmatically the identity value that we just generated, we can use

the scope_identity function like this:

SELECT scope_identity()

The UPDATE Statement
We use the UPDATE statement to make changes to existing records within our database

tables. The UPDATE statement requires certain keywords, and usually a WHERE clause,

in order to modify particular records. Consider this code:

353Speaking SQL

UPDATE Employees
SET Name = 'Zak Christian Ruvalcaba'
WHERE EmployeeID = 1

This statement would change the name of the employee whose EmployeeID is 1.

Let’s break down the UPDATE statement’s syntax:

UPDATE

This clause identifies the statement as one that modifies the named table in the

database.

Table name

We provide the name of the table we’re updating.

SET

The SET clause specifies the columns we want to modify, and gives their new

values.

Column names and values

We provide a list of column names and values, separated by commas.

WHERE condition(s)

This condition specifies which records are being updated.

Updating Records

Be sure to always include a WHERE clause in your UPDATE statement. If you fail

to do so, all the records will be updated, which is not usually what you want!

The DELETE Statement
The DELETE statement removes records from the database. You could use it to delete

all records from the Departments table, like so:

DELETE
FROM Departments

Fortunately, executing this command will throw an error if the foreign key that

links the Departments and Employees tables is in place, because removing the de-

partments records would leave the employee records referencing nonexistent de-

Build Your Own ASP.NET 4 Website Using C# & VB354

partments, which would make your data inconsistent (note that the reverse isn’t

true, you could delete all the employees if you wanted to, but please don’t!).

In case you’re curious, here’s the error message that would be generated by the DE-

LETE command above:

Msg 547, Level 16, State 0, Line 1
The DELETE statement conflicted with the REFERENCE constraint
 "FK_Employees_Departments". The conflict occurred in database
 "Dorknozzle", table "dbo.Employees", column 'DepartmentID'.
The statement has been terminated.

You could also delete that new department you created earlier:

DELETE
FROM Departments
WHERE Department = 'Cool New Department'

The command above would execute successfully because there aren’t any employees

linked to the new department.

Real-world References

Remember that in real-world scenarios, items should be referenced by their IDs,

not by name (as shown in the previous above). Note also that if you mistype the

name of a department when you’re executing that command, no rows will be af-

fected.

Deleting Records

Like the UPDATE command, the WHERE clause is best used together with DELETE;

otherwise, you can end up deleting all the records in the table inadvertently!

Stored Procedures
Stored procedures are database objects that group one or more T-SQL statements.

Much like VB or C# functions, stored procedures can take parameters and return

values.

355Speaking SQL

Stored procedures are used to group SQL commands that form a single, logical action.

For example, let’s say that you want to add to your website functionality that allows

departments to be deleted. However, as you know, you must delete all the depart-

ment’s employees before you can delete the department itself.

To help with such management issues, you could have a stored procedure that

copies the employees of that department to another table (called EmployeesBackup),

deletes those employees from the main Employees table, then removes the depart-

ment from the Department table. As you can imagine, having all this logic saved as

a stored procedure can make working with databases much easier.

We’ll see a more realistic example of a stored procedure in the next chapter, when

we start to add more features to the Dorknozzle project, but until then, let’s learn

how to create a stored procedure in SQL Server, and how to execute it.

The basic form of a stored procedure is as follows:

CREATE PROCEDURE ProcedureName
(
 @Parameter1 DataType,
 @Parameter2 DataType,
 ⋮
)
AS
 -- an optional comment
 ⋮ SQL Commands

The leading “--” marks a comment. The parameter names, as well as the names of

variables we can declare inside stored procedures, start with @. As you might expect,

their data types are the same data types supported by SQL Server.

The stored procedure shown below creates a new department whose name is spe-

cified through the first parameter. It then creates a new employee whose name is

specified as the second parameter, assigns the new employee to the new department,

and finally deletes both the new employee and the new department. Now, such a

stored procedure would make little sense in reality, but this example allows you to

learn a few interesting details that you’ll be using frequently as you develop applic-

ations, and it uses much of the theory you’ve learned in this chapter. Take a look

at it now:

Build Your Own ASP.NET 4 Website Using C# & VB356

CREATE PROCEDURE DoThings
(
 @NewDepartmentName VARCHAR(50),
 @NewEmployeeName VARCHAR(50),
 @NewEmployeeUsername VARCHAR(50)
)
AS
-- Create a new department
INSERT INTO Departments (Department)
VALUES (@NewDepartmentName)
-- Obtain the ID of the created department
DECLARE @NewDepartmentID INT
SET @NewDepartmentID = scope_identity()
-- Create a new employee
INSERT INTO Employees (DepartmentID, Name, Username)
VALUES (@NewDepartmentID, @NewEmployeeName, @NewEmployeeUsername)
-- Obtain the ID of the created employee
DECLARE @NewEmployeeID INT
SET @NewEmployeeID = scope_identity()
-- List the departments together with their employees
SELECT Departments.Department, Employees.Name
FROM Departments
INNER JOIN Employees ON Departments.DepartmentID =
 Employees.DepartmentID
-- Delete the new employee
DELETE FROM Employees
WHERE EmployeeID = @NewEmployeeID
-- Delete the new department
DELETE FROM Departments
WHERE DepartmentID = @NewDepartmentID

Execute this code to have the DoThings stored procedure saved to your Dorknozzle

database. You can now execute your new stored procedure by supplying the required

parameters as follows:

EXECUTE DoThings 'Research', 'Cristian Darie', 'cristian'

If you execute the procedure multiple times, you’ll achieve the same results, since

any data that’s created as part of the stored procedure is deleted at the end of the

stored procedure:

357Speaking SQL

(1 row(s) affected)

(1 row(s) affected)
Department Name
-------------------------------- --------------------------------
Executive Zak Ruvalcaba
Marketing Jessica Ruvalcaba
Engineering Ted Lindsey
Engineering Shane Weebe
Marketing David Levinson
Accounting Geoff Kim
Research Cristian Darie

(7 row(s) affected)

(1 row(s) affected)

(1 row(s) affected)

So, what does the stored procedure do? Let’s take a look at the code step by step.

The beginning of the stored procedure code specifies its name and its parameters:

CREATE PROCEDURE DoThings
(
 @NewDepartmentName VARCHAR(50),
 @NewEmployeeName VARCHAR(50),
 @NewEmployeeUsername VARCHAR(50)
)
AS

The parameters include a department name, an employee name, and an employee

username.

CREATE PROCEDURE and ALTER PROCEDURE

To modify an existing stored procedure, you’ll need to use ALTER PROCEDURE

instead of CREATE PROCEDURE. Feel free to play with your existing procedure,

to get and idea of how this works.

Build Your Own ASP.NET 4 Website Using C# & VB358

The code of the stored procedure starts by creating a new department with the name

specified by the @NewDepartmentName parameter:

-- Create a new department
INSERT INTO Departments (Department)
VALUES (@NewDepartmentName)

Immediately after it creates the department, the stored procedure stores the value

generated for the IDENTITY primary key column (DepartmentID). This value is re-

turned by the scope_identity function, which returns the most recently generated

identity value. Keep in mind that it’s good practice to store this identity value right

after the INSERT query that generated it; if we don’t store this value immediately, a

second INSERT query may generate another identity value, and that second identity

value would then be returned by scope_identity. The value is saved into a new

variable named @NewDepartmentID.

Next, you can see how we use the DECLARE statement to declare a new variable in

an SQL stored procedure:

-- Obtain the ID of the created department
DECLARE @NewDepartmentID INT
SET @NewDepartmentID = scope_identity()

The stored procedure continues by creating a new employee using the name and

username it received as parameters; it assigns this employee to the department that

was created earlier:

-- Create a new employee
INSERT INTO Employees (DepartmentID, Name, Username)
VALUES (@NewDepartmentID, @NewEmployeeName, @NewEmployeeUsername)

Again, right after creating the new employee, we store its ID into a variable named

@NewEmployeeID. Earlier, we needed to store the generated DepartmentID so that

we could assign the new employee to it; this time, we’re storing the new employee

ID so we can delete the employee later:

-- Obtain the ID of the created employee
DECLARE @NewEmployeeID INT
SET @NewEmployeeID = scope_identity()

359Speaking SQL

Finally, with the new department and employee in place, the stored procedure selects

the list of departments together with their employees:

-- List the departments together with their employees
SELECT Departments.Department, Employees.Name
FROM Departments
INNER JOIN Employees ON Departments.DepartmentID =
 Employees.DepartmentID

For the purposes of this example, we’d prefer to keep the database tidy, which is

why we’re deleting the new records at the end of the stored procedure:

-- Delete the new employee
DELETE FROM Employees
WHERE EmployeeID=@NewEmployeeID
-- Delete the new department
DELETE FROM Departments
WHERE DepartmentID=@NewDepartmentID

In the code above, the department and employee IDs that we saved earlier come in

very handy: without them, we wouldn’t have any way to guarantee that we were

deleting the right records!

As you can see, a stored procedure is similar to a function in VB or C#: just like

functions in VB or C# code, stored procedures can accept parameters, perform cal-

culations based on those parameters, and return values. SQL also allows for some

of the other programming constructs we’ve seen in the preceding chapters, such as

If statements, While loops, and so on, but advanced stored procedure programming

is a little beyond the scope of this book.

Summary
Robust, reliable data access is crucial to the success of any application, and SQL

meets those needs. As you have seen, SQL not only returns simple results from in-

dividual tables, but can produce complex data queries complete with filtering,

sorting, expressions, and even nested statements.

In the latter part of this chapter, we learned how to group T-SQL statements and

save them together as stored procedures. In Chapter 9, you’ll begin to use the

Build Your Own ASP.NET 4 Website Using C# & VB360

knowledge you’ve gained about databases, and the language that connects those

databases together, to create a real, working application.

361Speaking SQL

Chapter9
ADO.NET
Through the preceding chapters, you’ve made major strides into the world of dy-

namic web development using ASP.NET. You’ve learned about interface develop-

ment using web forms and web controls and about modeling and structuring your

data within the framework of a database—you’ve even learned about the SQL lan-

guage that’s used to access the data stored within your database. What you’re yet

to learn is how to access that data through your web applications.

The next step is to learn how to access a database using VB or C# code. This, of

course, is what we’ve been working towards from the beginning of our adventures

in ASP.NET. The whole purpose of data store is to support an application. In our

case, that application is the Dorknozzle Intranet website, which offers an easy-to-

use interface to company data.

ADO.NET (ActiveX Data Objects .NET) is a modern Microsoft technology that permits

us to access a relational database from an application’s code. With ADO.NET, we’ll

be able to display lists of employees and departments, and allow users to add data

to the data store, directly from the Dorknozzle application.

In this chapter, you’ll learn how to:

■ connect to your database using ADO.NET
■ execute SQL queries and retrieve their results using ADO.NET
■ display data that is read from a database
■ handle data access errors

Introducing ADO.NET
In previous chapters, we learned how to use Visual Web Developer and SQL Man-

agement Studio to connect to a database and execute SQL queries. Now, it’s time

to apply this knowledge. Within our web application, we’ll use ADO.NET’s classes

to connect to the database. Once that connection is established, we’ll be in a position

where we can execute SQL queries.

In order to use ADO.NET, we must first decide which kind of database we’ll use.

Once we have made that choice, we can import the namespaces that contain classes

that will work with the database. Since we’re using SQL Server, you’ll need to import

the System.Data.SqlClient namespace. This contains all the required Sql classes,

the most important of which are:

SqlConnection

This class exposes properties and methods for connecting to an SQL Server

database.

SqlCommand

This class holds data about the SQL queries and stored procedures that you in-

tend to run on your SQL Server database.

SqlDataReader

Data is returned from the database in an SqlDataReader class. This class comes

with properties and methods that let you iterate through the data it contains.

Traditional ASP developers can think of the SqlDataReader as being similar to

a forward-only RecordSet, in which data can only be read forward, one record

at a time, and we can’t move back to the beginning of the data stream.

The System.Data.SqlClient namespace exposes many more than the few classes

listed above. We’ll discuss some of the more advanced classes in the next few

chapters.

Build Your Own ASP.NET 4 Website Using C# & VB364

ADO.NET and Generic Data Access

ADO.NET is able to use different types of data connections, depending on the

kind of database to which the application is trying to connect. The ADO.NET

classes whose names start with Sql (such as the previously mentioned

SqlConnection, SqlCommand, and so on) are specifically built to connect to

SQL Server.

Similar classes are provided for other databases—for example, if you’re working

with Oracle, you can use classes such as OracleConnection, OracleCommand,

and so on. If, on the other hand, you’re working with database systems for which

such classes aren’t specifically designed, you can use generic low-level interfaces;

most databases can be accessed through the OLE DB interface (using classes such

as OleDbConnection and OleDbCommand), or the older ODBC interface (using

classes such as OdbcConnection and OdbcCommand).

In this book, we’ll use only the Sql classes, but it’s good to know that you have

options!

Once you’re ready to begin working with ADO.NET, the task of establishing a link

between the database and your application is a straightforward, six-step process:

1. Import the necessary namespaces.

2. Define a connection to your database with an SqlConnection object.

3. When you’re ready to manipulate your database, set up the appropriate query

in an SqlCommand object.

4. Open the connection and execute the SQL query to return the results into a

SqlDataReader object.

5. Extract relevant database data from the SqlDataReader object and display it on

your web page.

6. Close the database connection.

Let’s walk through this process, discussing each step.

365ADO.NET

Importing the SqlClient Namespace
It’s been a while since we’ve written some VB or C# code! Let’s fire up our old

friend, Visual Web Developer, and load the LearningASP project. We’ll use this

application to create a few simple scripts; then we’ll move to Dorknozzle, adding

more functionality to the project site.

Open the LearningASP project and go to File > New File… to create a new file. Select

the Web Form template, and name it AccessingData.aspx. Uncheck the Place code in

separate file and Select master page checkboxes, as shown in Figure 9.1.

Figure 9.1. Creating the AccessingData.aspx web form

Once the form is created, we can import the SqlClient namespace:

LearningASP\VB\AccessingData_01.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace = "System.Data.SqlClient" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
⋮

Build Your Own ASP.NET 4 Website Using C# & VB366

Defining the Database Connection
With our import of the SqlClient namespace complete, we can create a new instance

of the SqlConnection, which will facilitate our connection to the database. To ini-

tialize this connection, we need to specify a connection string—a string in which

we specify the database we want to connect to, and provide any required authentic-

ation details. A typical connection string for an SQL Server Express database looks

like this:

Server=computer\SqlExpress;Database=database;
➥ User ID=username;Password=password

The connection string must specify the name of the computer on which the database

is located (you can always use localhost to refer to the local machine), and the

name assigned to the database server instance (SqlExpress is the default for SQL

Server Express). Also required are the name of the database (such as Dorknozzle),

the user ID, and the password for that user account.

SQL Server supports two methods of authentication: SQL Server Authentication

and Windows Authentication. The form of authentication we’ve used in previous

chapters to connect to SQL Server was Windows Authentication, which doesn’t

require you to supply a SQL Server name and password, but instead uses the cre-

dentials of your Windows user account. To tell SQL Server that we’re logging in

using Windows Authentication, we’d use a connection string that included Integ-

rated Security=True, rather than a username and password, as shown here:

Server=computer\SqlExpress;Database=database;
➥ Integrated Security=True

SQL Server Authentication

Be aware that, when the ASP.NET web application is run by ASP.NET through

IIS, it authenticates to SQL Server using a special account named ASPNET. We’ll

discuss more about configuring SQL Server authentication a little later; for now,

let’s assume that your code can access your database successfully.

Let’s put this approach into practice by creating an SqlConnection in the Page_Load

event handler. To have Visual Web Developer create an empty Page_Load event

367ADO.NET

handler for you, switch to Design view, and double-click somewhere within the

form. This should take you back to Source view, where you can see the Page_Load

method that was created for you. If you’re using VB, enter the code shown in bold

below:

Visual Basic LearningASP\VB\AccessingData_02.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
End Sub

If you're sick of typing quotes, ampersands, and underscores, you can combine the

three bold strings in the above code into a single string. However, I’ll continue to

present connection strings this way throughout this book—not only are they more

readable that way, but they fit on the page, too!

If you’re using C#, your code should look like this:

C# LearningASP\CS\AccessingData_02.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
SqlConnection conn = new SqlConnection(

 "Server=localhost\\SqlExpress;Database=Dorknozzle;" +
 "Integrated Security=True");
}

Be aware that, in C#, the backslash (\) character has a special meaning when it's

contained inside a string; so, when we wish to use one, we have to use the double

backslash (\\) shown above.

Preparing the Command
Now we’re at step three, in which we create an SqlCommand object and pass in our

SQL statement. The SqlCommand object accepts two parameters. The first is the SQL

statement, and the second is the connection object that we created in the previous

step:

Build Your Own ASP.NET 4 Website Using C# & VB368

Visual Basic LearningASP\VB\AccessingData_03.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
 Dim comm As New SqlCommand("SELECT EmployeeID, Name " & _
 "FROM Employees", conn)
End Sub

C# LearningASP\CS\AccessingData_03.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 SqlConnection conn = new SqlConnection(
 "Server=localhost\\SqlExpress;Database=Dorknozzle;" +
 "Integrated Security=True");
SqlCommand comm = new SqlCommand(

 "SELECT EmployeeID, Name FROM Employees", conn);
}

Executing the Command
When we’re ready to run the query, we open the connection and execute the com-

mand. The SqlCommand class has three methods that we can use to execute a com-

mand; we simply choose the one that meets the specific needs of our query. The

three methods are as follows:

ExecuteReader

ExecuteReader is used for queries or stored procedures that return one or more

rows of data. ExecuteReader returns an SqlDataReader object that can be used

to read the results of the query one by one, in a forward-only, read-only manner.

Using the SqlDataReader object is the fastest way to retrieve records from the

database, but it can’t be used to update the data or to access the results in random

order.

The SqlDataReader keeps the database connection open until all the records

have been read. This can be a problem, as the database server will usually have

a limited number of connections—people who are using your application sim-

ultaneously may start to see errors if you leave these connections open. To alle-

viate this problem, we can read all the results from the SqlDataReader object

369ADO.NET

into an object such as a DataTable, which stores the data locally without

needing a database connection. You’ll learn more about the DataTable object

in Chapter 12.

ExecuteScalar

ExecuteScalar is used to execute SQL queries or stored procedures that return

a single value, such as a query that counts the number of employees in a com-

pany. This method returns an Object, which you can convert to a specific data

type depending on the kind of data you expect to receive. This is the fastest of

the execution methods, helpful if you only want the first column of the first

row in a result set.

ExecuteNonQuery

ExecuteNonQuery is an oddly named method that’s used to execute stored pro-

cedures and SQL queries that insert, modify, or update data. The return value

will be the number of affected rows.

As we’re reading a list of employees, we’ll be using ExecuteReader. After we execute

this method, we’ll follow standard practice, reading the data from the returned

SqlDataReader as quickly as possible; we’ll then close both the SqlDataReader and

the SqlConnection, to ensure we don’t keep any database resources tied up for

longer than is necessary:

Visual Basic LearningASP\VB\AccessingData_04.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
 Dim comm As New SqlCommand("SELECT EmployeeID, Name " & _
 "FROM Employees", conn)
 conn.Open()
 Dim reader As SqlDataReader = comm.ExecuteReader()
 ⋮ we'll do something with the data here…
reader.Close()

 conn.Close()
End Sub

Build Your Own ASP.NET 4 Website Using C# & VB370

C# LearningASP\CS\AccessingData_04.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 SqlConnection conn = new SqlConnection(
 "Server=localhost\\SqlExpress;Database=Dorknozzle;" +
 "Integrated Security=True");
 SqlCommand comm = new SqlCommand(
 "SELECT EmployeeID, Name FROM Employees", conn);
conn.Open();

 SqlDataReader reader = comm.ExecuteReader();
 ⋮ we'll do something with the data here…
reader.Close();

 conn.Close();
}

Let’s take a look at a few of the methods that are being introduced here. Before we

can query our database, a connection must be opened, so we need to call the Open

method of our SqlConnection object: conn. Once the connection is opened, we call

the ExecuteReader method of our SqlCommand object—comm—to run our query.

ExecuteReader will retrieve a list of all employees and return the list in an open

SqlDataReader object.

At this point, we would typically use the data in reader, but for now, we’ve left a

comment to remind ourselves that this method doesn’t produce any output.

Immediately after we’ve done something with the data, we close the SqlDataReader

and SqlConnection objects using their Close methods. Keeping the connection

open for longer than necessary can waste database resources, which can be an issue

in real-world applications where hundreds or more users might be accessing the

same database at once. As such, it’s best practice to keep the connection open for

the minimum time.

The aforementoned code lacks any “real” functionality, as it doesn’t actually display

anything for the user; however, it does open a connection to your database, it ex-

ecutes a SQL query, and finally closes the connection.

Setting Up Database Authentication
Quite frequently, when using Integrated Windows Authentication (by setting "In-

tegrated Security=True" in the connection string), programmers find that their

371ADO.NET

applications are unable to access the database. If you receive a login failed error

when executing the AccessingData.aspx file, you’ll find the solution to the problem

in this section. If you don’t get this error, you can safely skip to the next section

—come back only if you get into trouble when you’re connecting to SQL Server.

Such database authentication and authorization problems can be solved easily with

SQL Server authentication. When you use this authentication method, your applic-

ation doesn’t use a Windows account to log in to the SQL Server database; instead,

it uses an SQL Server username and password. This is also the authentication

method you’ll use when you deploy applications to a production server.

To be able to use SQL Server authentication with your database, you first need to

enable the feature in SQL Server by setting the Server authentication mode to SQL

Server and Windows Authentication mode as we did in the section called “In-

stalling SQL Server Management Studio Express” in Chapter 1. You then need to

create an SQL Server username that has access to the Dorknozzle database. To do

that, start SQL Server Management Studio, expand the Security > Logins node in

Object Explorer, right-click the Logins node, and select New Login…. In the dialog that

displays, select SQL Server authentication and type dorknozzle as the username and

dorknozzle as the password. Deselect the Enforce password policy checkbox. Though

these options are very important in a real-world scenario, we’re deactivating them

for the exercises in this book. Finally, change the Default database to Dorknozzle.

The required settings are shown in Figure 9.2.

Build Your Own ASP.NET 4 Website Using C# & VB372

Figure 9.2. Setting up SQL Server authentication

We also want our new user to have full access to the Dorknozzle database. You can

modify this user permission when you’re creating the new user, or after the fact.

To make the user dorknozzle the owner of the Dorknozzle database, select User

Mapping from the Select a page pane, check the Dorknozzle table in the list, and check

the db_owner role, as depicted in Figure 9.3. To return to this page after you create

the user, right-click the dorknozzle user in SQL Server Management Studio and select

Properties.

373ADO.NET

Figure 9.3. Setting the database owner

Once the new user is in place, you can employ this user account to connect to your

database. The code to do this in VB and C# is shown below. Be sure to replace

ServerName, InstanceName, DatabaseName, Username, and Password with the

appropriate details for your server:

Visual Basic

Dim conn As New SqlConnection("Server=ServerName\InstanceName;" & _
 "Database=DatabaseName;User ID=Username;" & _
 "Password=Password")

Build Your Own ASP.NET 4 Website Using C# & VB374

C#

SqlConnection conn = new SqlConnection(
 "Server=ServerName\\InstanceName;" +
 "Database=DatabaseName;User ID=Username;" +
 "Password=Password");

Reading the Data
Okay, so you’ve opened the connection and executed the command. Let’s do

something with the returned data!

A good task for us to start with is to display the list of employees we read from the

database. To do so, we’ll simply use a While loop to add the data to a Label control

that we’ll place in the form. Start by adding a Label named employeesLabel to the

AccessingData.aspx web form. We’ll also change the title of the page to Using ADO.NET:

LearningASP\VB\AccessingData_05.aspx (excerpt)

⋮
 <head runat="server">
 <title>Using ADO.NET</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Label ID="employeesLabel" runat="server" />
 </div>
 </form>
 </body>
⋮

Now, let’s use the SqlDataReader’s Read method to loop through the data items

held in the reader; we’ll display them by adding their text to the employeesLabel

object as we go:

Visual Basic LearningASP\VB\AccessingData_06.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 ⋮ create the SqlConnection and SqlCommand objects…
 conn.Open()

375ADO.NET

 Dim reader As SqlDataReader = comm.ExecuteReader()
While reader.Read()

 employeesLabel.Text &= reader.Item("Name") & "
"
 End While
 reader.Close()
 conn.Close()
End Sub

C# LearningASP\CS\AccessingData_06.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
 ⋮ create the SqlConnection and SqlCommand objects…
 conn.Open();
 SqlDataReader reader = comm.ExecuteReader();
while (reader.Read())

 {
 employeesLabel.Text += reader["Name"] + "
";
 }
 reader.Close();
 conn.Close();
}

We know that the SqlDataReader class reads the data one row at a time, in a forward-

only fashion. When we call reader.Read, our SqlDataReader reads the next row

of data from the database. If there’s data to be read, it returns True; otherwise—if

we’ve already read the last record returned by the query—the Read method returns

False. If we view this page in the browser, it should look like Figure 9.4.

Build Your Own ASP.NET 4 Website Using C# & VB376

Figure 9.4. Displaying the list of employees

Using Parameters with Queries
What if the user doesn’t want to view information for all employees, but instead,

wants to see details for one specific employee?

To get this information from our Employees table, we’d run the following query,

replacing EmployeeID with the ID of the employee in which the user was interested:

SELECT EmployeeID, Name, Username, Password
FROM Employees
WHERE EmployeeID = EmployeeID

Let’s build a page like the one shown in Figure 9.5 to display this information.

377ADO.NET

Figure 9.5. Retrieving the details of a specific employee

Create a new web form called QueryParameters.aspx and alter it to reflect the code

shown here:

LearningASP\VB\QueryParameters_01.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Using Query Parameters</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

User ID:
 <asp:TextBox ID="idTextBox" runat="server" />
 <asp:Button ID="submitButton" runat="server"
 Text="Get Data" onclick="submitButton_Click" />

 <asp:Label ID="userLabel" runat="server" />
 </div>

Build Your Own ASP.NET 4 Website Using C# & VB378

 </form>
 </body>
</html>

With these amendments, we’ve added a Textbox control into which users can enter

the ID of the employee whose information they want to see. We’ve also added a

Button that will be used to submit the form and retrieve the data.

Next, we need to add a Click event handler to the Button control. When this button

is clicked, our web form will need to execute the following tasks:

1. Read the ID typed by the user in the idTextBox control.

2. Prepare an SQL query to retrieve data about the specified employee.

3. Execute the query and read the results.

Now, we could perform this query using the following code:

Visual Basic

comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username, Password " & _
 "FROM Employees WHERE EmployeeID = " & idTextBox.Text , conn)

If the user entered the number 5 into the text box and clicked the button, the follow-

ing query would be run:

SELECT EmplyeeID, Name, Username, Password
FROM Employees
WHERE EmployeeID = 5

The database would run this query without complaint, and your program would

execute as expected. However, if—as is perhaps more likely—the user entered an

employee’s name, your application would attempt to run the following query:

SELECT EmployeeID, Name, Username, Password
FROM Employees
WHERE EmployeeID = Zac Ruvalcaba

379ADO.NET

This query would cause an error in the database, which would, in turn, cause an

exception in your web form. As a safeguard against this eventuality, ADO.NET allows

you to define parameters in your query, and give each of those parameters a type.

Inserting parameters into your query is a reasonably simple task:

Visual Basic

comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username, Password " & _
 "FROM Employees WHERE EmployeeID = @EmployeeID", conn)

We’ve added a placeholder to the query for our parameter; it comprises the @ symbol,

followed by an identifier for the parameter (in this case, we have used EmployeeID).

Next, we need to add this parameter to the SqlCommand object, and give it a value:

Visual Basic

comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
comm.Parameters("@EmployeeID").Value = idTextBox.Text

C#

comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
comm.Parameters["@EmployeeID"].Value = idTextBox.Text;

Here, we call the Add method of comm.Parameters, passing in the name of the

parameter (EmployeeID) and the parameter’s type; we’ve told ADO.NET that we’re

expecting an int to be passed to the database, but we could specify any of the SQL

Server data types here.

One of the most common SQL Server data types is nvarchar. If your query involved

an nvarchar parameter named @Username, for example, you could set its value with

the following code:

Visual Basic

comm.Parameters.Add("@Username", Data.SqlDbType.NVarChar, 50)
comm.Parameters("@Username").Value = username

Build Your Own ASP.NET 4 Website Using C# & VB380

C#

comm.Parameters.Add("@Username", SqlDbType.NVarChar, 50);
comm.Parameters["@Username"].Value = username;

Notice that we’ve included an additional parameter in our call to the Add method.

This optional parameter tells the SqlCommand object the maximum allowable size

of the nvarchar field in the database. We’ve given the Username field in our Employ-

ees table a maximum size of 50 characters, so our code should reflect this limit.

For a list of all the types you can use when calling conn.Parameters.Add, see the

entry on System.Data.SqlDbType enumeration in the .NET Framework’s SDK

Documentation.

Let’s put parameters into action in QueryParameters.aspx. First, create a Click event

handler for the Button control by double-clicking it in Design view. Next, fill the

event handler with the code shown:

Visual Basic LearningASP\VB\QueryParameters_02.aspx (excerpt)

Protected Sub submitButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 conn = New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username, Password " & _
 "FROM Employees WHERE EmployeeID=@EmployeeID", conn)
 Dim employeeID As Integer
 If (Not Integer.TryParse(idTextBox.Text, employeeID)) Then
 userLabel.Text = "Please enter a numeric ID!"
 Else
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = employeeID
 conn.Open()
 reader = comm.ExecuteReader()
 If reader.Read() Then
 userLabel.Text = "Employee ID: " & _
 reader.Item("EmployeeID") & "
" & _
 "Name: " & reader.Item("Name") & "
" & _

381ADO.NET

 "Username: " & reader.Item("Username") & "
" & _
 "Password: " & reader.Item("Password")
 Else
 userLabel.Text = _
 "There is no user with this ID: " & employeeID
 End If
 reader.Close()
 conn.Close()
 End If
End Sub

C# LearningASP\CS\QueryParameters_02.aspx (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
SqlConnection conn;

 SqlCommand comm;
 SqlDataReader reader;
 conn = new SqlConnection("Server=localhost\\SqlExpress;" +
 "Database=Dorknozzle;Integrated Security=True");
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, Username, Password " +
 "FROM Employees WHERE EmployeeID=@EmployeeID", conn);
 int employeeID;
 if (!int.TryParse(idTextBox.Text, out employeeID))
 {
 userLabel.Text = "Please enter a numeric ID!";
 }
 else
 {
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value = employeeID;
 conn.Open();
 reader = comm.ExecuteReader();
 if (reader.Read())
 {
 userLabel.Text = "Employee ID: " +
 reader["EmployeeID"] + "
" +
 "Name: " + reader["Name"] + "
" +
 "Username: " + reader["Username"] + "
" +
 "Password: " + reader["Password"];
 }
 else
 {
 userLabel.Text =

Build Your Own ASP.NET 4 Website Using C# & VB382

 "There is no user with this ID: " + employeeID;
 }
 reader.Close();
 conn.Close();
 }
}

Now, when the user clicks the button, the Click event is raised, and the event

handler is executed. In that method, we grab the Employee ID from the Text property

of the TextBox control, and check that it’s a valid integer. This check can be done

with the Integer.TryParse method in VB, or the int.TryParse method in C#:

Visual Basic LearningASP\VB\QueryParameters_02.aspx (excerpt)

⋮
Dim employeeID As Integer
If (Not Integer.TryParse(idTextBox.Text, employeeID)) Then
 ⋮

C# LearningASP\CS\QueryParameters_02.aspx (excerpt)

⋮
int employeeID;
if (!int.TryParse(idTextBox.Text, out employeeID))
{
 ⋮

This method verifies whether or not the string we pass as the first parameter can

be cast to an integer; if it can, the integer is returned through the second parameter.

Note that in C#, this second parameter is an out parameter. Out parameters are

parameters that are used to retrieve data from a function, rather than send data to

that function. Out parameters are similar to return values, except that we can supply

multiple out parameters to any method. The return value of TryParse is a Boolean

value that specifies whether or not the supplied value could be properly converted.

If the ID entered isn’t a valid number, we notify the user, as Figure 9.6 illustrates.

383ADO.NET

Figure 9.6. Invalid input data generating a warning

We also want to notify the user if the query doesn’t return any results. This feature

is simple to implement, because reader.Read only returns True if the query returns

a record:

Visual Basic LearningASP\VB\QueryParameters_02.aspx (excerpt)

⋮
If reader.Read() Then
 userLabel.Text = "Employee ID: " & reader.Item("EmployeeID") & _
 ⋮

C# LearningASP\CS\QueryParameters_02.aspx (excerpt)

⋮
if (reader.Read())
{
 userLabel.Text = "Employee ID: " + reader["EmployeeID"] +
 ⋮

Figure 9.7 shows the message you’ll see if you enter an ID that doesn’t exist in the

database.

There are still a couple of details that we could improve in this system. For example,

if an error occurs in the code, the connection will never be closed. Let’s look at this

problem next.

Build Your Own ASP.NET 4 Website Using C# & VB384

Figure 9.7. An invalid ID warning

Bulletproofing Data Access Code
Right now, the code in QueryParameters.aspx seems to be perfect, right? Well, not

quite. While the code does its job most of the time, it still has one important weak-

ness: it doesn’t take into account potential errors that could occur in the data access

code. It’s very good practice to enclose such code in Try-Catch-Finally blocks, and

to always use the Finally block to close any open data objects. We learned about

Try-Catch-Finally in Chapter 5; now we’re going to use that theory in a real-world

scenario.

Take a look at the following code samples:

Visual Basic LearningASP\VB\QueryParameters_03.aspx (excerpt)

Protected Sub submitButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 conn = New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username, Password " & _
 "FROM Employees WHERE EmployeeID=@EmployeeID", conn)
 Dim employeeID As Integer
 If (Not Integer.TryParse(idTextBox.Text, employeeID)) Then
 userLabel.Text = "Please enter a numeric ID!"
 Else
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = employeeID
 Try
 conn.Open()
 reader = comm.ExecuteReader()

385ADO.NET

 If reader.Read() Then
 userLabel.Text = "Employee ID: " & _
 reader.Item("EmployeeID") & "
" & _
 "Name: " & reader.Item("Name") & "
" & _
 "Username: " & reader.Item("Username") & "
" & _
 "Password: " & reader.Item("Password")
 Else
 userLabel.Text = _
 "There is no user with this ID: " & employeeID
 End If
 reader.Close()

Catch
 userLabel.Text = "Error retrieving user data."
 Finally
 conn.Close()
 End Try
 End If
 End Sub

C# LearningASP\CS\QueryParameters_03.aspx (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 conn = new SqlConnection("Server=localhost\\SqlExpress;" +
 "Database=Dorknozzle;Integrated Security=True");
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, Username, Password " +
 "FROM Employees WHERE EmployeeID=@EmployeeID", conn);
 int employeeID;
 if (!int.TryParse(idTextBox.Text, out employeeID))
 {
 userLabel.Text = "Please enter a numeric ID!";
 }
 else
 {
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value = employeeID;

try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 if (reader.Read())

Build Your Own ASP.NET 4 Website Using C# & VB386

 {
 userLabel.Text = "Employee ID: " +
 reader["EmployeeID"] + "
" +
 "Name: " + reader["Name"] + "
" +
 "Username: " + reader["Username"] + "
" +
 "Password: " + reader["Password"];
 }
 else
 {
 userLabel.Text =
 "There is no user with this ID: " + employeeID;
 }
 reader.Close();

}
 catch
 {
 userLabel.Text = "Error retrieving user data.";
 }
 finally
 {
 conn.Close();
 }
 }
}

So, what’s new in this version of the event handler, apart from the fact that it has

become larger? First of all—and most importantly—we have the Try-Catch-Finally

block in place. Everything that manipulates the database is in the Try block. If an

error arises, we display a message for the user through the Catch block. In the Fi-

nally block, which is guaranteed to execute, we close the database connection.

Using the Repeater Control
The .NET Framework comes bundled with a few controls that can help us to display

more complex lists of data: Repeater, DataList, GridView, DetailsView, and

FormView. These controls allow you to format database data easily within an

ASP.NET page.

In this chapter, you’ll learn how to work with the Repeater; we’ll cover the other

controls in the next few chapters. Note that these controls aren’t part of ADO.NET,

but we’re presenting them together with ADO.NET because they’re frequently used

in work with databases.

387ADO.NET

The Repeater control is a lightweight ASP.NET control that allows the easy

presentation of data directly from a data source, usually in just a handful of code.

Let’s look at a quick example of how a Repeater control can be added to a page:

<asp:Repeater id="myRepeater" runat="server">
 <ItemTemplate>
 <%# Eval("Name") %>
 </ItemTemplate>
</asp:Repeater>

As you can see, the Repeater control looks a little different from the other web

controls we’ve used thus far. The difference with this control is that an

<ItemTemplate> subtag—otherwise known as a child tag—is located within the

control’s main <asp:Repeater> tag, or parent tag. This child tag contains a code

render block that specifies the particular data item that we want to appear in the

Repeater. However, before this data can be displayed, we have to bind an

SqlDataReader object (which contains the results of an SQL query) to the Repeater

control using the process known as data binding. This task is achieved from a code

block like so:

Visual Basic

myRepeater.DataSource = reader
myRepeater.DataBind()

Yes, it’s that easy! In a moment, we’ll display the code within the framework of a

new example. But first, let’s discuss what’s happening here in more detail.

True to its name, the Repeater control lets us output some markup for each record

in an SqlDataReader, inserting values from those records wherever we like in this

repeated markup. The markup that’s to be repeated is provided as templates for the

Repeater to use. For example, if we wanted to display the results of a database

query in an HTML table, we could use a Repeater to generate an HTML table row

for each record in that results set. We’d provide a template containing <tr> and

</tr> tags, as well as <td> and </td> tags, and we’d indicate where in that template

we wanted the values from the results set to appear.

To gain greater flexibility in the presentation of our results, we can provide the

Repeater control with a number of different templates, which the Repeater will

Build Your Own ASP.NET 4 Website Using C# & VB388

use in the circumstances described in the templates list below. Each of these tem-

plates must be specified in a child tag of the <asp:Repeater> tag:

<HeaderTemplate>

This template provides a header for the output. If we’re generating an HTML

table, for example, we could include the opening <table> tag, provide a row

of header cells (th), and even specify a caption for the table.

<ItemTemplate>

The only template that is actually required, <ItemTemplate> specifies the markup

that should be output for each item in the data source. If we were generating an

HTML table, this template would contain the <td> and </td> tags and their

contents.

<AlternatingItemTemplate>

This template, if provided, will be applied instead of ItemTemplate to every

second record in the data source, making it easy to produce effects such as al-

ternating table row colors.

<SeparatorTemplate>

This template provides markup that will appear between the items in the data

source. It will not appear before the first item or after the last item.

<FooterTemplate>

This template provides a footer for the control’s output, which will appear after

all the items in the data source. If you’re generating an HTML table, you could

include the closing </table> tag in this template.

Let’s take a look at a repeater control that displays a table of employees. If you want

to test this code, create a new web form named UsingRepeater.aspx in the Learning

application. Don’t use a code-behind file or a master page. Import the Sys-

tem.Data.SqlClient namespace just as you did for the two forms we created

earlier in this chapter.

The following code will set up a Repeater that can be used to display a table of

employees, listing their employee IDs, names, usernames, and passwords:

389ADO.NET

LearningASP\VB\UsingRepeater.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Using the Repeater</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

<asp:Repeater ID="myRepeater" runat="server">
 <HeaderTemplate>
 <table width="400" border="1">
 <tr>
 <th>Employee ID</th>
 <th>Name</th>
 <th>Username</th>
 <th>Password</th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Eval("EmployeeID") %></td>
 <td><%# Eval("Name") %></td>
 <td><%# Eval("Username") %></td>
 <td><%# Eval("Password") %></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

Build Your Own ASP.NET 4 Website Using C# & VB390

The Repeater control naturally lends itself to generating HTML tables, and that’s

just what we’re doing here. First, we include a <HeaderTemplate>, which includes

the opening <table> tag, along with the table’s heading row.

Next, we provide a template for each item in the result set. The template specifies

a table row containing four table cells, each of which contains a code render block

that outputs the values taken from each record in the results set. In both VB and

C#, we use Eval to retrieve database values. Alternatively, you could use the longer

form, Container.DataItem("FieldName") in VB.NET or DataBinder.Eval(Contain-

er.DataItem, "FieldName") in C#, but we’ll stick with Eval in this book.

Finally, here’s the <FooterTemplate> that includes the closing </table> tag. To

make the repeater display information, we need to bind a data source to it. Use

Visual Web Developer to generate the web form’s Page_Load event handler, and

complete it like this:

Visual Basic LearningASP\VB\UsingRepeater.aspx (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs)
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 conn = New SqlConnection("Server=localhost\SqlExpress;" & _
 "Database=Dorknozzle;Integrated Security=True")
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username, Password " & _
 "FROM Employees", conn)
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 myRepeater.DataSource = reader
 myRepeater.DataBind()
 reader.Close()
 Catch
 Response.Write("Error retrieving user data.")
 Finally
 conn.Close()
 End Try
End Sub

391ADO.NET

C# LearningASP\CS\UsingRepeater.aspx (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
SqlConnection conn;

 SqlCommand comm;
 SqlDataReader reader;
 conn = new SqlConnection("Server=localhost\\SqlExpress;" +
 "Database=Dorknozzle;Integrated Security=True");
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, Username, Password " +
 "FROM Employees", conn);
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 myRepeater.DataSource = reader;
 myRepeater.DataBind();
 reader.Close();
 }
 catch
 {
 Response.Write("Error retrieving user data.");
 }
 finally
 {
 conn.Close();
 }
}

As you can see, binding a control to a data source makes it very easy to display our

data in the web form. In this case, we’ve used the Repeater control, which, in the

server-side code, we bound to the SqlDataReader that contains our data. The results

of this work are shown in Figure 9.8.

Build Your Own ASP.NET 4 Website Using C# & VB392

Figure 9.8. Using the Repeater control

Creating the Dorknozzle Employee Directory
Great work! You’re presenting data in the browser window based on user interaction,

and you have even allowed your users to filter that data in accordance with their

own search parameters. Your code also takes care to close the database connection

in case an error occurs along the way.

It’s time to apply the theory we’re learning directly to the Dorknozzle application.

In the following pages, you’ll insert, update, and delete database records in a new

Dorknozzle Employee Directory web form. You’ll also learn how to call stored

procedures using ADO.NET.

Start by loading the Dorknozzle project and creating a new web form. Make sure

you name it EmployeeDirectory.aspx, check that both the Place code in separate file and

the Select master page checkboxes are checked, and confirm that your new page is

based on the master page Dorknozzle.master. Then, modify the automatically generated

code like this:

393ADO.NET

Dorknozzle\VB\01_EmployeeDirectory.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="true" CodeFile="EmployeeDirectory.aspx.vb"
 Inherits="EmployeeDirectory"
 title="Dorknozzle Employee Directory" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Employee Directory</h1>

 <asp:Repeater id="employeesRepeater" runat="server">
 <ItemTemplate>
 Employee ID:
 <%#Eval("EmployeeID")%>

 Name: <%#Eval("Name")%>

 Username: <%#Eval("Username")%>
 </ItemTemplate>
 <SeparatorTemplate>
 <hr />
 </SeparatorTemplate>
 </asp:Repeater>
</asp:Content>

This Repeater includes item and separator templates. The item template contains

code render blocks that will display the data from an SqlDataReader. When this

repeater is properly populated with data, the employee directory page will look like

the one shown in Figure 9.9.

Build Your Own ASP.NET 4 Website Using C# & VB394

Figure 9.9. The completed Employee Directory page

First up, let’s write the code that populates the repeater control. That code will take

the form of a Page_Load method within our code-behind file. To have the method’s

signature generated for you, switch the form to Design view, and double-click an

empty space on the form (not in the space of other controls such as the Repeater;

a good place to double-click would be to the right of the Employee Directory header).

Then, add this code:

Visual Basic Dorknozzle\VB\02_EmployeeDirectory.aspx.vb (excerpt)

Imports System.Data.SqlClient
Imports System.Configuration

Partial Class EmployeeDirectory
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader

395ADO.NET

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Username FROM Employees", _
 conn)
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 employeesRepeater.DataSource = reader
 employeesRepeater.DataBind()
 reader.Close()
 Finally
 conn.Close()
 End Try
End Sub
End Class

C# Dorknozzle\CS\02_EmployeeDirectory.aspx.cs (excerpt)

using System;
⋮
using System.Data.SqlClient;

public partial class EmployeeDirectory : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, Username FROM Employees",
 conn);
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 employeesRepeater.DataSource = reader;
 employeesRepeater.DataBind();

Build Your Own ASP.NET 4 Website Using C# & VB396

 reader.Close();
 }
 finally
 {
 conn.Close();
 }
 }
}

Most of the code should look familiar, except for the following part, which reads

the connection string:

Visual Basic Dorknozzle\VB\02_EmployeeDirectory.aspx.vb (excerpt)

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString

C# Dorknozzle\CS\02_EmployeeDirectory.aspx.cs (excerpt)

 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;

Back in Chapter 5, you learned that you can store various configuration options in

Web.config. Anticipating that many applications will use Web.config to store their

connection strings, the designers of .NET reserved a special place in Web.config for

database connection strings. If you open Web.config now, you’ll see an empty

connectionStrings element located inside the configuration element. Modify

Web.config like this:

Dorknozzle\VB\03_web.config (excerpt)

<configuration>
 ⋮
 <connectionStrings>
 <add name="Dorknozzle"
 connectionString="Server=localhost\SqlExpress;
 ➥ Database=Dorknozzle;Integrated Security=True"
 providerName="System.Data.SqlClient"/>

397ADO.NET

 </connectionStrings>
 ⋮
</configuration>

You can add more connection strings under the connectionStrings element by

inserting add elements with three attributes: connectionString contains the actual

connection string, name gives the connection string an identifier that we can reference

within our code, and providerName indicates the type of data provider we want to

use for the connection. In our case, providerName="System.Data.SqlClient"

specifies that we’re connecting to an SQL Server database.

To retrieve configuration data from Web.config, we use the ConfigurationManager

class, which is located in the System.Configuration namespace.

You may have also noticed we’re without a Catch block in our database handling

code. When a Catch block is absent, any exceptions that are raised are not caught,

although the code in the Finally block is still executed. In other words, we’re

choosing not to handle potential errors in EmployeeDirectory.aspx, but we still want

to ensure that the database connection is properly closed if an error arises.

The rest of the code comprises the typical data access routine, involving a

SqlConnection object, a SqlCommand object, and a SqlDataReader object. Once the

reader has been filled with the database data, it is bound to the Repeater control’s

DataSource property, and from this point, the repeater takes control and reads all

the data from the data source. If you save and run this page, it should appear as

shown in Figure 9.9.

More Data Binding
The term data binding describes the act of associating a data source with a data

consumer. In our previous examples, the data source was an SqlDataReader object,

and the consumer was a Repeater control that read and displayed the data. Data

binding typically involves setting the DataSource property of the consumer object

to the data source object, and calling the DataBind method to apply the binding:

Visual Basic

employeesRepeater.DataSource = reader
employeesRepeater.DataBind()

Build Your Own ASP.NET 4 Website Using C# & VB398

C#

employeesRepeater.DataSource = reader;
employeesRepeater.DataBind();

As we discussed earlier, ASP.NET includes a few controls that specialize in display-

ing data that comes from data sources, but you can also bind data to numerous

other controls, including lists, menus, text boxes, and so on. To explore the process

of control binding further, let’s open the Help Desk page again. If you remember,

we left the Category and Subject drop-down lists empty back in Chapter 5. We did

so because we knew that, eventually, those items would have to be populated dy-

namically through code. Sure, we could have hard-coded the values ourselves, but

imagine what would happen if additions or deletions needed to be made to that

list. In order to make the necessary changes to the controls, we would have to open

every page that contained lists of categories and subjects.

It’s preferable to store the lists of categories and subjects in database tables, and to

bind this data to the drop-down lists in the Help Desk page. Whenever a change

needs to be made, we can make it once within the database; all the controls that are

bound to that database table will change automatically.

Let’s go ahead and add the necessary code to Page_Load in HelpDesk.aspx to populate

the DropDownList controls from the database. After the changes are made, the lists

will be populated with the data you added to your database in Chapter 7, as illus-

trated in Figure 9.10.

399ADO.NET

Figure 9.10. A drop-down list created with data binding

Open HelpDesk.aspx in Design view and double-click an empty space on the form

to have the signature of the Page_Load method generated for you. First, we’ll need

to import some namespaces. You’ll need two if you’re using VB, but only one if

you’re using C#. Add the following to the top section of the file:

Visual Basic Dorknozzle\VB\04_HelpDesk.aspx.vb (excerpt)

Imports System.Data.SqlClient
Imports System.Configuration

Partial Class HelpDesk
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 ⋮
End Sub
End Class

Build Your Own ASP.NET 4 Website Using C# & VB400

C# Dorknozzle\CS\04_HelpDesk.aspx.cs (excerpt)

using System;
⋮
using System.Data.SqlClient;

public partial class HelpDesk : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 ⋮
 }
}

Then, add the following code to the Page_Load method:

Visual Basic Dorknozzle\VB\04_HelpDesk.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 Dim conn As SqlConnection
 Dim categoryComm As SqlCommand
 Dim subjectComm As SqlCommand
 Dim reader As SqlDataReader
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 categoryComm = New SqlCommand(_
 "SELECT CategoryID, Category FROM HelpDeskCategories", _
 conn)
 subjectComm = New SqlCommand(_
 "SELECT SubjectID, Subject FROM HelpDeskSubjects", conn)
 Try
 conn.Open()
 reader = categoryComm.ExecuteReader()
 categoryList.DataSource = reader
 categoryList.DataValueField = "CategoryID"
 categoryList.DataTextField = "Category"
 categoryList.DataBind()
 reader.Close()
 reader = subjectComm.ExecuteReader()
 subjectList.DataSource = reader
 subjectList.DataValueField = "SubjectID"

401ADO.NET

 subjectList.DataTextField = "Subject"
 subjectList.DataBind()
 reader.Close()
 Finally
 conn.Close()
 End Try
 End If
End Sub

C# Dorknozzle\CS\04_HelpDesk.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)

 {
 SqlConnection conn;
 SqlCommand categoryComm;
 SqlCommand subjectComm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 categoryComm = new SqlCommand(
 "SELECT CategoryID, Category FROM HelpDeskCategories",
 conn);
 subjectComm = new SqlCommand(
 "SELECT SubjectID, Subject FROM HelpDeskSubjects", conn);
 try
 {
 conn.Open();
 reader = categoryComm.ExecuteReader();
 categoryList.DataSource = reader;
 categoryList.DataValueField = "CategoryID";
 categoryList.DataTextField = "Category";
 categoryList.DataBind();
 reader.Close();
 reader = subjectComm.ExecuteReader();
 subjectList.DataSource = reader;
 subjectList.DataValueField = "SubjectID";
 subjectList.DataTextField = "Subject";
 subjectList.DataBind();
 reader.Close();
 }
 finally

Build Your Own ASP.NET 4 Website Using C# & VB402

 {
 conn.Close();
 }
 }
}

You’ll notice that the guts of Page_Load are enclosed in an If statement, which

tests to see if IsPostBack is not True. But just what is this IsPostBack?

Earlier, in Chapter 2, we explored the view state mechanism that ASP.NET uses to

remember the data in its controls. View state allows your user controls to remember

their states across page loads. Every time an event that needs to be handled on the

server is raised, the form in the page is submitted to the server—a process known

as a post back. For example, when a button with a server-side Click event handler

is clicked, a post back occurs so that the server-side code can respond to the Click

event.

After such an event occurs, all the controls in the web form retain their values, but

the Page_Load method is executed again regardless. In consequence, if you click

the Submit Request button ten times, Page_Load will be executed ten times. If the

data access code that fills the form with values is in Page_Load, the database will

be queried ten times, even though the data that needs to be displayed on the page

won’t change!

It’s here that IsPostBack comes into play. IsPostBack returns False if the web

form is being loaded for the first time; it returns True if the page is being loaded,

because the form has been posted back to the server.

Referring to IsPostBack

IsPostBack is actually a property of the Page class, but since our web form is

a class that inherits from Page, we can refer to IsPostBack directly. If we wanted

to, we could refer to this property as Me.IsPostBack in VB, or this.IsPostBack

in C#.

Using the IsPostBack Property Appropriately

It’s not always appropriate to use IsPostBack as we’re using it here. We’re

loading the form with data only the first time the page is loaded, because we know

403ADO.NET

that the data in the drop-down lists won’t change in response to other changes in

the form. In cases in which the data in the drop-down lists may change, it may

be appropriate to access the database and refill the form with data every time the

form is loaded. For example, we might want to take such action in a car search

form in which, when users select a car manufacturer, their selection triggers a re-

quest to the server to load a list of all models of car made by that manufacturer.

Once it has been established that this is the first time the page has been loaded, the

code continues in a pattern similar to the previous code samples. We retrieve the

connection string from Web.config, create a new connection to the database, and set

up our SqlCommand objects. In this page, we retrieve two lists—a list of help desk

request categories and a list of subjects—so we’ll need to execute two queries. These

queries are stored in two SqlCommand objects: categoryComm and subjectComm.

Next, inside a Try block, we execute the commands and bind the data in our

SqlDataReader to the existing controls. First, we execute categoryComm to retrieve

a list of categories; then, we bind that list to categoryList:

Visual Basic Dorknozzle\VB\04_HelpDesk.aspx.vb (excerpt)

 reader = categoryComm.ExecuteReader()
 categoryList.DataSource = reader
 categoryList.DataValueField = "CategoryID"
 categoryList.DataTextField = "Category"
 categoryList.DataBind()
 reader.Close()

C# Dorknozzle\CS\04_HelpDesk.aspx.cs (excerpt)

 reader = categoryComm.ExecuteReader();
 categoryList.DataSource = reader;
 categoryList.DataValueField = "CategoryID";
 categoryList.DataTextField = "Category";
 categoryList.DataBind();
 reader.Close();

Note that not all controls handle their bindings in the same way. In this case, we

want the DropDownList control to display the data from the Category column of

the HelpDeskCategories table. The DropDownList control is cleverly designed, and

it can also store an ID associated with each item in the list. This can be very helpful

when we’re performing database operations using the items selected from a Drop-

Build Your Own ASP.NET 4 Website Using C# & VB404

DownList, because the database operations are always carried out using the items’

IDs.

The DataTextField property of the DropDownList needs to be set to the name of

the column that provides the text to be displayed, and the DataValueField must

be set to the name of the column that contains the ID. This allows us to pass the ID

of the category or subject along to any part of the application when a user makes a

selection from the drop-down lists.

When the page loads, all the categories and subjects will be loaded into their respect-

ive DropDownList controls, as shown previously in Figure 9.10.

Inserting Records
The code that inserts records from your application into a database isn’t too different

from what we’ve already seen. The main difference is that we need to retrieve data

from the user input controls in the page, and use this data as the parameters to our

INSERT query, rather than simply firing off a simple SELECT query. As we discussed

earlier in this chapter, to execute an INSERT query, you’d need to use the

ExecuteNonQuery method of the SqlCommand object, as INSERT queries don’t return

results.

When you’re inserting user-entered data into the database, you need to be extra

careful about validating that data, in case the users don’t type whatever you expect

them to (those pesky users always seem to find unimaginable ways to do things!).

A typical INSERT query is coded as follows:

Visual Basic

comm = New SqlCommand(_
 "INSERT INTO HelpDesk (Field1, Field2, …) " & _
 "VALUES (@Parameter1, @Parameter2, …)", conn)

Once the SqlCommand object has been created with a parameterized INSERT query,

we simply pass in the necessary parameters, similarly to the process we followed

for SELECT queries:

405ADO.NET

Visual Basic

comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1)
comm.Parameters("@Parameter1").Value = value1
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2)
comm.Parameters("@Parameter2").Value = value2

Keep in mind that in C#, the syntax for accessing the parameters collection is

slightly different:

C#

comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1);
comm.Parameters["@Parameter1"].Value = value1;
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2);
comm.Parameters["@Parameter2"].Value = value2;

To demonstrate the process of inserting records into the database, let’s finish the

Help Desk page.

When employees visit the Help Desk page, they’ll fill out the necessary information

and click Submit Request to cause the information to be saved within the HelpDesk

table. The HelpDesk table acts as a queue for IT personnel to review and respond

to reported issues.

First, open HelpDesk.aspx, and add a label just below the page’s heading:

Dorknozzle\VB\05_HelpDesk.aspx (excerpt)

⋮
<h1>Employee Help Desk Request</h1>
<asp:Label ID="dbErrorMessage" ForeColor="Red" runat="server" />
⋮

The form already contains numerous validation controls that display error messages

if problems are found within the entered data. We’re adding this Label control to

display errors that arise when an exception is caught while the database query is

executing. This is necessary because, although the validation controls prevent most

of the errors that could occur, they can’t guarantee that the database query will run

flawlessly. For example, if the database server is rebooted, and we try to run a

Build Your Own ASP.NET 4 Website Using C# & VB406

database query, we’ll receive an error; this situation will persist until the database

is up and running again. There could be other kinds of errors, too. An example of

an error message is shown in Figure 9.11.

You already have a Click event handler for the Submit Request button in

HelpDesk.aspx—we added it in the section called “Updating Dorknozzle” in Chapter 6,

when we added validation controls to the page. Modify this method by adding code

that inserts the user-submitted Help Desk Request into the database, as shown below:

Visual Basic Dorknozzle\VB\06_HelpDesk.aspx.vb (excerpt)

Protected Sub submitButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles submitButton.Click
 If Page.IsValid Then
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "INSERT INTO HelpDesk (EmployeeID, StationNumber, " & _
 "CategoryID, SubjectID, Description, StatusID) " & _
 "VALUES (@EmployeeID, @StationNumber, @CategoryID, " & _
 "@SubjectID, @Description, @StatusID)", conn)
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = 5
 comm.Parameters.Add("@StationNumber", _
 System.Data.SqlDbType.Int)
 comm.Parameters("@StationNumber").Value = stationTextBox.Text
 comm.Parameters.Add("@CategoryID", System.Data.SqlDbType.Int)
 comm.Parameters("@CategoryID").Value = _
 categoryList.SelectedItem.Value
 comm.Parameters.Add("@SubjectID", System.Data.SqlDbType.Int)
 comm.Parameters("@SubjectID").Value = _
 subjectList.SelectedItem.Value
 comm.Parameters.Add("@Description", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Description").Value = _
 descriptionTextBox.Text
 comm.Parameters.Add("@StatusID", System.Data.SqlDbType.Int)
 comm.Parameters("@StatusID").Value = 1
 Try
 conn.Open()

407ADO.NET

Figure 9.11. Displaying an error message in the catch block

 comm.ExecuteNonQuery()
 Response.Redirect("HelpDesk.aspx")
 Catch
 dbErrorMessage.Text = _
 "Error submitting the help desk request! Please " & _
 "try again later, and/or change the entered data!"
 Finally
 conn.Close()
 End Try
 End If
End Sub

C# Dorknozzle\CS\06_HelpDesk.aspx.cs (excerpt)

protected void submitButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {

Build Your Own ASP.NET 4 Website Using C# & VB408

SqlConnection conn;
 SqlCommand comm;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "INSERT INTO HelpDesk (EmployeeID, StationNumber, " +
 "CategoryID, SubjectID, Description, StatusID) " +
 "VALUES (@EmployeeID, @StationNumber, @CategoryID, " +
 "@SubjectID, @Description, @StatusID)", conn);
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value = 5;
 comm.Parameters.Add("@StationNumber",
 System.Data.SqlDbType.Int);
 comm.Parameters["@StationNumber"].Value = stationTextBox.Text;
 comm.Parameters.Add("@CategoryID", System.Data.SqlDbType.Int);
 comm.Parameters["@CategoryID"].Value =
 categoryList.SelectedItem.Value;
 comm.Parameters.Add("@SubjectID", System.Data.SqlDbType.Int);
 comm.Parameters["@SubjectID"].Value =
 subjectList.SelectedItem.Value;
 comm.Parameters.Add("@Description",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Description"].Value =
 descriptionTextBox.Text;
 comm.Parameters.Add("@StatusID", System.Data.SqlDbType.Int);
 comm.Parameters["@StatusID"].Value = 1;
 try
 {
 conn.Open();
 comm.ExecuteNonQuery();
 Response.Redirect("HelpDesk.aspx");
 }
 catch
 {
 dbErrorMessage.Text =
 "Error submitting the help desk request! Please " +
 "try again later, and/or change the entered data!";
 }
 finally
 {
 conn.Close();

409ADO.NET

 }
 }
}

It may look intimidating, but most of this code is simply defining the SQL command

parameter types and values that are to be inserted into the SQL statement.

Make Sure You’ve Set the Identity Property!

Note that when we’re inserting a new record into the HelpDesk table, we rely on

the ID column, RequestID, to be generated automatically for us by the database.

If we forget to set RequestID as an identity column, we’ll receive an exception

every time we try to add a new Help Desk Request!

You may have noticed the use of the ExecuteNonQuery method:

Visual Basic Dorknozzle\VB\06_HelpDesk.aspx.vb (excerpt)

 Try
 conn.Open()

comm.ExecuteNonQuery()
 Response.Redirect("HelpDesk.aspx")

C# Dorknozzle\CS\06_HelpDesk.aspx.cs (excerpt)

 try
 {
 conn.Open();

comm.ExecuteNonQuery();
 Response.Redirect("HelpDesk.aspx");
 }

As you know, we use this method when we’re executing any SQL query that doesn’t

return a set of results, such as INSERT, UPDATE, and DELETE queries.

You’ll remember that, in order to make the example simpler, we hard-coded the

EmployeeID (to the value of 5), and the Status (to the value of 1). To make the ap-

plication complete, you could add another drop-down list from which employees

could select their names, and take the IDs from there. For now, just make sure that

the Employees table has a record with an EmployeeID of 5, otherwise the query won’t

execute successfully.

Build Your Own ASP.NET 4 Website Using C# & VB410

The other potentially unfamiliar part of this code is the final line of the Try block,

which uses Response.Redirect. This method should be quite familiar to developers

who are experienced with ASP. Response.Redirect simply redirects the browser

to another page.

In our Dorknozzle Help Desk request form script, we redirect the user back to the

same web form. Why on earth would we want to do that? It’s because of view state—if

we didn’t end our event handler this way, the same page would display in the

browser, but ASP.NET would preserve all the values that the user had typed into

the form fields. The user might not realize the form had even been submitted, and

might submit the form repeatedly in his or her confusion. Redirecting the user in

the way that’s been outlined causes the browser to reload the page from scratch,

clearing the form fields to indicate the completed submission.

Okay, save your work and run it in a browser. Now, we can enter help desk inform-

ation, as shown in Figure 9.12, and click Submit Request.

Once we click Submit Request, the Click event is raised, the submitButton_Click

method is called, all the parameters from the form are passed into the SQL statement,

and the data is inserted into the HelpDesk table. To verify this, we can open the

table in SQL Server Management Studio or Visual Web Developer; we’ll see the

view shown in Figure 9.13.

Figure 9.13. The new request appearing in the HelpDesk table

Updating Records
The major difference between inserting new database records and updating existing

ones is that if a user wants to update a record, you’ll usually want to display the

information that already exists in the database table before allowing the user to

update it. This gives the user a chance to review the data, make the necessary

changes, and, finally, submit the updated values. Before we get ahead of ourselves,

though, let’s take a look at the code we’ll use to update records within the database

table:

411ADO.NET

Figure 9.12. Submitting the Help Desk Request form

Visual Basic

comm = New SqlCommand("UPDATE Table " & _
 "SET Field1=@Parameter1, Field2=@Parameter2, … " & _
 "WHERE UniqueField=@UniqueFieldParameter", conn)
comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1)
comm.Parameters("@Parameter1").Value = value1
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2)
comm.Parameters("@Parameter2").Value = value2

C#

comm = new SqlCommand ("UPDATE Table " +
 "SET Field1=@Parameter1, Field2=@Parameter2, … " +
 "WHERE UniqueField=@UniqueFieldParameter", conn);
comm.Parameters.Add("@Parameter1", System.Data.SqlDbType.Type1);
comm.Parameters["@Parameter1"].Value = value1;
comm.Parameters.Add("@Parameter2", System.Data.SqlDbType.Type2);
comm.Parameters["@Parameter2"].Value = value2;

Build Your Own ASP.NET 4 Website Using C# & VB412

Once the SqlCommand object has been created using this UPDATE statement, we simply

pass in the necessary parameters, as we did with the INSERT statement. The important

thing to remember when you’re updating records is that you must take care to per-

form the UPDATE on the correct record. To do this, you must include a WHERE clause

that specifies the correct record using a value from a suitable unique column (usually

the primary key), as shown.

Handle Updates with Care!

If you don’t specify a WHERE clause when you’re updating a table with new data,

every record in the table will be updated with the new data, and (usually) there’s

no way to undo the action!

Let’s put all this theory into practice as we build the Admin Tools page. The database

doesn’t contain a table that’s dedicated to this page; however, we’ll use the Admin

Tools page as a centralized location for a number of tables associated with other

pages, including the Employees and Departments tables. For instance, in this section,

we’ll allow an administrator to change the details of a specific employee.

Create a new web form named AdminTools.aspx in the same way you created the

other web forms we’ve built so far in Dorknozzle. Use the Dorknozzle.master master

page and a code-behind file. Then, add the following code to the content placeholder,

and modify the page title as shown below:

Dorknozzle\VB\07_AdminTools.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="true" CodeFile="AdminTools.aspx.vb"
 Inherits="AdminTools" title="Dorknozzle Admin Tools" %>
<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" runat="Server">
<h1>Admin Tools</h1>

 <p>
 <asp:Label ID="dbErrorLabel" ForeColor="Red" runat="server" />
 Select an employee to update:

 <asp:DropDownList ID="employeesList" runat="server" />
 <asp:Button ID="selectButton" Text="Select" runat="server" />
 </p>

413ADO.NET

 <p>
 Name:
 <asp:TextBox ID="nameTextBox" runat="server" />

 User Name:
 <asp:TextBox ID="userNameTextBox" runat="server" />

 Address:
 <asp:TextBox ID="addressTextBox" runat="server" />

 City:
 <asp:TextBox ID="cityTextBox" runat="server" />

 State:
 <asp:TextBox ID="stateTextBox" runat="server" />

 Zip:
 <asp:TextBox ID="zipTextBox" runat="server" />

 Home Phone:
 <asp:TextBox ID="homePhoneTextBox" runat="server" />

 Extension:
 <asp:TextBox ID="extensionTextBox" runat="server" />

 Mobile Phone:
 <asp:TextBox ID="mobilePhoneTextBox" runat="server" />

 </p>
 <p>
 <asp:Button ID="updateButton" Text="Update Employee"
 Width="200" Enabled="False" runat="server" />
 </p>
</asp:Content>

Now add the following CSS style rule to Dorknozzle.css (remember the Dorknozzle.css

file is under the Blue theme, under the App_Themes folder):

Build Your Own ASP.NET 4 Website Using C# & VB414

Dorknozzle\VB\08_Dorknozzle.css (excerpt)

.widelabel {
 display:-moz-inline-block;
 display:inline-block;
 width: 100px;
}

You can switch to Design view to ensure that you created your form correctly; it

should look like the one shown in Figure 9.14.

Figure 9.14. Viewing the Admin Tools page in Design view

We’ve added the following controls to our form:

415ADO.NET

employeesList

In order for administrators to select the record for the employee whose details

they want to update, we’ll first have to bind the Employees table to this

DropDownList control.

selectButton

Once the users select the record for the aforementioned employee, they’ll click

this Button control. The Click event will be raised, and the Employee ID that’s

selected from employeesList will be passed to the web form—this will be used

in an SqlCommand to retrieve the details for this employee.

nameTextBox, userNameTextBox, addressTextBox, cityTextBox, stateTextBox,

zipTextBox, homePhoneTextBox, extensionTextBox, mobilePhoneTextBox

Within the selectButton’s Click event handler, we’ll add some code that binds

user information to these TextBox controls.

updateButton

When the users make the desired changes to the TextBox controls listed above,

they’ll click this button to update the database.

dbErrorLabel

We use dbErrorLabel to display an error message if a database operation fails.

Our first task is to populate the employeesList control with the list of employees

from our database. Use Visual Web Developer to generate the page’s Page_Load

event handler, add the following code. First, we need to import the required

namespaces. If you’re using VB these go right at the top of the file, but if you’re using

C# place the using statement at the end of the existing list of using statements:

Visual Basic Dorknozzle\VB\09_AdminTools.aspx.vb (excerpt)

Imports System.Data.SqlClient
Imports System.Configuration

Partial Class AdminTools
 Inherits System.Web.UI.Page
⋮
End Class

Build Your Own ASP.NET 4 Website Using C# & VB416

C# Dorknozzle\CS\09_AdminTools.aspx.cs (excerpt)

using System;
⋮
using System.Data.SqlClient;

public partial class AdminTools : System.Web.UI.Page
{
⋮
}

Next, add the following to the Page_Load method:

Visual Basic Dorknozzle\VB\09_AdminTools.aspx.vb (excerpt

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 LoadEmployeesList()
 End If
End Sub

C# Dorknozzle\CS\09_AdminTools.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)

 {
 LoadEmployeesList();
 }
}

You’ve probably noticed in this code that we’ve added a call to a separate subroutine

called LoadEmployeeList. We’ll place the code to populate the employeesList in

this method. Later on, we’ll need to reload the names in this list in case any of those

names have been edited; we put this code into its own subroutine so that we don’t

need to repeat it. Our next task is to add the code for the LoadEmployeeList sub-

routine after the Page_Load method, but within the AdminTools partial class:

417ADO.NET

Visual Basic Dorknozzle\VB\09_AdminTools.aspx.vb (excerpt)

Partial Class AdminTools
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object,
 ➥ ByVal e As System.EventArgs) Handles Me.Load
 ⋮
 End Sub

 Private Sub LoadEmployeesList()
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name FROM Employees", conn)
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 employeesList.DataSource = reader
 employeesList.DataValueField = "EmployeeID"
 employeesList.DataTextField = "Name"
 employeesList.DataBind()
 reader.Close()
 Catch
 dbErrorLabel.Text = _
 "Error loading the list of employees!
"
 Finally
 conn.Close()
 End Try
 updateButton.Enabled = False
 nameTextBox.Text = ""
 userNameTextBox.Text = ""
 addressTextBox.Text = ""
 cityTextBox.Text = ""
 stateTextBox.Text = ""
 zipTextBox.Text = ""
 homePhoneTextBox.Text = ""
 extensionTextBox.Text = ""

Build Your Own ASP.NET 4 Website Using C# & VB418

 mobilePhoneTextBox.Text = ""
 End Sub
End Class

C# Dorknozzle\CS\09_AdminTools.aspx.cs (excerpt)

public partial class AdminTools : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 ⋮
 }
 private void LoadEmployeesList()
 {
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "SELECT EmployeeID, Name FROM Employees", conn);
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 employeesList.DataSource = reader;
 employeesList.DataValueField = "EmployeeID";
 employeesList.DataTextField = "Name";
 employeesList.DataBind();
 reader.Close();
 }
 catch
 {
 dbErrorLabel.Text =
 "Error loading the list of employees!
";
 }
 finally
 {
 conn.Close();
 }
 updateButton.Enabled = false;
 nameTextBox.Text = "";
 userNameTextBox.Text = "";

419ADO.NET

 addressTextBox.Text = "";
 cityTextBox.Text = "";
 stateTextBox.Text = "";
 zipTextBox.Text = "";
 homePhoneTextBox.Text = "";
 extensionTextBox.Text = "";
 mobilePhoneTextBox.Text = "";
 }
}

In our LoadEmployeeList method, we use data binding to create the values in the

drop-down list as we did in the section called “More Data Binding”, and we clear

all the form fields by setting their values to an empty string. You may have also

noticed that we set the Enabled property of the updateButton to False. We have a

good reason for doing this, as we’ll explain shortly, when we come to write the code

that updates the employee record in the database.

Load the page now, testing that the list of employees is bound to employeeList,

and that the page displays as shown in Figure 9.15.

Build Your Own ASP.NET 4 Website Using C# & VB420

Figure 9.15. Displaying the list of employees in a drop-down list

As you can see, all the employees are listed within the drop-down menu. Again,

the employees’ names are shown because the Name field is bound to the

DataTextField property of the DropDownList control. Similarly, the EmployeeID

field is bound to the DataValueField property of the DropDownList control, ensuring

that a selected employee’s ID will be submitted as the value of the field.

421ADO.NET

We need to undertake two more tasks to complete this page’s functionality. First,

we need to handle the Click event of the Select button so that it will load the form

with data about the chosen employee. Then, we’ll need to handle the Click event

of the Update button, to update the information for the selected employee. Let’s start

with the Select button. Double-click the button in Design view to have the Click

event handler generated for you, and then insert the following code:

Visual Basic Dorknozzle\VB\10_AdminTools.aspx.vb (excerpt)

Protected Sub selectButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles selectButton.Click
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "SELECT Name, Username, Address, City, State, Zip, " & _
 "HomePhone, Extension, MobilePhone FROM Employees " & _
 "WHERE EmployeeID = @EmployeeID", conn)
 comm.Parameters.Add("@EmployeeID", Data.SqlDbType.Int)
 comm.Parameters.Item("@EmployeeID").Value = _
 employeesList.SelectedItem.Value
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 If reader.Read() Then
 nameTextBox.Text = reader.Item("Name").ToString()
 userNameTextBox.Text = reader.Item("Username").ToString()
 addressTextBox.Text = reader.Item("Address").ToString()
 cityTextBox.Text = reader.Item("City").ToString()
 stateTextBox.Text = reader.Item("State").ToString()
 zipTextBox.Text = reader.Item("Zip").ToString()
 homePhoneTextBox.Text = reader.Item("HomePhone").ToString()
 extensionTextBox.Text = reader.Item("Extension").ToString()
 mobilePhoneTextBox.Text = _
 reader.Item("MobilePhone").ToString()
 End If
 reader.Close()
 updateButton.Enabled = True
 Catch
 dbErrorLabel.Text = _

Build Your Own ASP.NET 4 Website Using C# & VB422

 "Error loading the employee details!
"
 Finally
 conn.Close()
 End Try
End Sub

C# Dorknozzle\CS\10_AdminTools.aspx.cs (excerpt)

protected void selectButton_Click(object sender, EventArgs e)
{
SqlConnection conn;

 SqlCommand comm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "SELECT Name, Username, Address, City, State, Zip, " +
 "HomePhone, Extension, MobilePhone FROM Employees " +
 "WHERE EmployeeID = @EmployeeID", conn);
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value =
 employeesList.SelectedItem.Value;
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 if (reader.Read())
 {
 nameTextBox.Text = reader["Name"].ToString();
 userNameTextBox.Text = reader["Username"].ToString();
 addressTextBox.Text = reader["Address"].ToString();
 cityTextBox.Text = reader["City"].ToString();
 stateTextBox.Text = reader["State"].ToString();
 zipTextBox.Text = reader["Zip"].ToString();
 homePhoneTextBox.Text = reader["HomePhone"].ToString();
 extensionTextBox.Text = reader["Extension"].ToString();
 mobilePhoneTextBox.Text = reader["MobilePhone"].ToString();
 }
 reader.Close();
 updateButton.Enabled = true;
 }
 catch
 {

423ADO.NET

 dbErrorLabel.Text =
 "Error loading the employee details!
";
 }
 finally
 {
 conn.Close();
 }
}

In our Select button Click event code, we start by setting up our database connection

and command objects, as well as the command parameter for the employee ID. Then,

within the Try block we read the data from the SqlDataReader object to fill in the

form fields. If you load the page, select an employee, and click the Select button,

the form will be populated with the employee’s details, as depicted in Figure 9.16.

The last thing we need to do is add code to handle the update interaction. You may

have noticed that the Button control has an Enabled property, which is initially set

to False. The reason for this is simple: you don’t want your users updating inform-

ation before they’ve selected an employee. You want them to use the Update Employee

button only when data for an existing employee has been loaded into the TextBox

controls. If you look again at the selectButton_Click method above, just before

the Catch statement, you’ll notice that we enable this button by setting its Enabled

property to True, after binding the user data to the fields.

Now that these TextBox controls are populated and the Update Employee button is

enabled, let’s add some code to update an employee’s details. Open AdminTools.aspx

in Design view, and double-click the Update Employee button. Visual Web Developer

will generate the signature for the updateButton_Click event handler automatically.

Finally, let’s add the code that handles the updating of the employee data:

Visual Basic Dorknozzle\VB\11_AdminTools.aspx.vb (excerpt)

Protected Sub updateButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles updateButton.Click
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_

Build Your Own ASP.NET 4 Website Using C# & VB424

Figure 9.16. Displaying employee details in the update form

 "UPDATE Employees SET Name=@Name, Username=@Username, " & _
 "Address=@Address, City=@City, State=@State, Zip=@Zip," & _
 "HomePhone=@HomePhone, Extension=@Extension, " & _
 "MobilePhone=@MobilePhone " & _
 "WHERE EmployeeID=@EmployeeID", conn)
 comm.Parameters.Add("@Name", System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Name").Value = nameTextBox.Text
 comm.Parameters.Add("@Username", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Username").Value = userNameTextBox.Text
 comm.Parameters.Add("@Address", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Address").Value = addressTextBox.Text
 comm.Parameters.Add("@City", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@City").Value = cityTextBox.Text
 comm.Parameters.Add("@State", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@State").Value = stateTextBox.Text

425ADO.NET

 comm.Parameters.Add("@Zip", System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Zip").Value = zipTextBox.Text
 comm.Parameters.Add("@HomePhone", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@HomePhone").Value = homePhoneTextBox.Text
 comm.Parameters.Add("@Extension", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@Extension").Value = extensionTextBox.Text
 comm.Parameters.Add("@MobilePhone", _
 System.Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@MobilePhone").Value = mobilePhoneTextBox.Text
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = _
 employeesList.SelectedItem.Value
 Try
 conn.Open()
 comm.ExecuteNonQuery()
 Catch
 dbErrorLabel.Text = _
 "Error updating the employee details!
"
 Finally
 conn.Close()
 End Try
 LoadEmployeesList()
End Sub

C# Dorknozzle\CS\11_AdminTools.aspx.cs (excerpt)

protected void updateButton_Click(object sender, EventArgs e)
{
SqlConnection conn;

 SqlCommand comm;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "UPDATE Employees SET Name=@Name, Username=@Username, " +
 "Address=@Address, City=@City, State=@State, Zip=@Zip, " +
 "HomePhone=@HomePhone, Extension=@Extension, " +
 "MobilePhone=@MobilePhone " +
 "WHERE EmployeeID=@EmployeeID", conn);
 comm.Parameters.Add("@Name",
 System.Data.SqlDbType.NVarChar,50);
 comm.Parameters["@Name"].Value = nameTextBox.Text;

Build Your Own ASP.NET 4 Website Using C# & VB426

 comm.Parameters.Add("@Username",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Username"].Value = userNameTextBox.Text;
 comm.Parameters.Add("@Address",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Address"].Value = addressTextBox.Text;
 comm.Parameters.Add("@City",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@City"].Value = cityTextBox.Text;
 comm.Parameters.Add("@State",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@State"].Value = stateTextBox.Text;
 comm.Parameters.Add("@Zip",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Zip"].Value = zipTextBox.Text;
 comm.Parameters.Add("@HomePhone",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@HomePhone"].Value = homePhoneTextBox.Text;
 comm.Parameters.Add("@Extension",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@Extension"].Value = extensionTextBox.Text;
 comm.Parameters.Add("@MobilePhone",
 System.Data.SqlDbType.NVarChar, 50);
 comm.Parameters["@MobilePhone"].Value = mobilePhoneTextBox.Text;
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value =
 employeesList.SelectedItem.Value;
 try
 {
 conn.Open();
 comm.ExecuteNonQuery();
 }
 catch
 {
 dbErrorLabel.Text =
 "Error updating the employee details!
";
 }
 finally
 {
 conn.Close();
 }
 LoadEmployeesList();
}

427ADO.NET

As you can see, the only real differences between this and the help desk page are

that here we’re using an UPDATE query instead of an INSERT query, and we’ve had

to let the user choose an entry from the database to update. We use that selection

not only to populate the form fields with the existing database values, but to restrict

our UPDATE query so that it only affects that one record.

You’ll also notice that at the very end of this method, we call LoadEmployeesList

to reload the list of employees, as the user may have changed the name of one of

the employees. LoadEmployeesList also disables the Update Employee button and

clears the contents of the page’s TextBox controls. Once LoadEmployeesList has

executed, the page is ready for the user to select another employee for updating.

As with all examples in this book, you can find this page’s completed code in the

code archive.

Deleting Records
Just as we can insert and update records within the database, so we can delete them.

Again, most of the code for deleting records resembles that which we’ve already

seen. The only major part that changes is the SQL statement within the command:

Visual Basic

comm = New SqlCommand("DELETE FROM Table " & _
 "WHERE UniqueField=@UniqueFieldParameter", conn)

C#

comm = new SqlCommand("DELETE FROM Table " +
 "WHERE UniqueField=@UniqueFieldParameter", conn)

Once we’ve created the DELETE query’s SqlCommand object, we can simply pass in

the necessary parameter:

Visual Basic

comm.Parameters.Add("@UniqueFieldParameter", _
 System.Data.SqlDbType.Type)
comm.Parameters("@UniqueFieldParameter").Value = UniqueValue

Build Your Own ASP.NET 4 Website Using C# & VB428

C#

comm.Parameters.Add("@UniqueFieldParameter",
 System.Data.SqlDbType.Type);
comm.Parameters["@UniqueFieldParameter"].Value = UniqueValue;

To demonstrate the process of deleting an item from a database table, we’ll expand

on the Admin Tools page. Since we’re allowing administrators to update information

within the Employees table, let’s also give them the ability to delete an employee’s

record from the database. To do this, we’ll place a new Button control for deleting

the selected record next to our existing Update Employee button.

Start by adding the new control at the end of AdminTools.aspx:

Dorknozzle\VB\12_AdminTools.aspx (excerpt)

<p>
 <asp:Button ID="updateButton" Text="Update Employee"
 Enabled="False" runat="server" />
<asp:Button ID="deleteButton" Text="Delete Employee"

 Enabled="False" runat="server" />
</p>

Next, update the LoadEmployeesList method. Here, you need to ensure the Delete

Employee button is disabled when the form loads, or after the Update Employee button

has been clicked. Place it directly after the line in which you disable the

updateButton:

Visual Basic Dorknozzle\VB\13_AdminTools.aspx.vb (excerpt)

updateButton.Enabled = False
deleteButton.Enabled = False

C# Dorknozzle\CS\13_AdminTools.aspx.cs (excerpt)

updateButton.Enabled = false;
deleteButton.Enabled = false;

Perform the opposite action in the selectButton_Click method to enable the Delete

Employee button when an employee is selected:

429ADO.NET

Visual Basic Dorknozzle\VB\13_AdminTools.aspx.vb (excerpt)

updateButton.Enabled = True
deleteButton.Enabled = True

C# Dorknozzle\CS\13_AdminTools.aspx.cs (excerpt)

updateButton.Enabled = true;
deleteButton.Enabled = true;

Next, write the code for its Click event handler. Remember that you can double-

click the button in Visual Web Developer’s Design view to have the signature gen-

erated for you:

Visual Basic Dorknozzle\VB\14_AdminTools.aspx.vb (excerpt)

Protected Sub deleteButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles deleteButton.Click
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "DELETE FROM Employees " & _
 "WHERE EmployeeID=@EmployeeID", conn)
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = _
 employeesList.SelectedItem.Value
 Try
 conn.Open()
 comm.ExecuteNonQuery()
 Catch
 dbErrorLabel.Text = "Error deleting employee!
"
 Finally
 conn.Close()
 End Try
 LoadEmployeesList()
End Sub

Build Your Own ASP.NET 4 Website Using C# & VB430

C# Dorknozzle\CS\14_AdminTools.aspx.cs (excerpt)

protected void deleteButton_Click(object sender, EventArgs e)
{
SqlConnection conn;

 SqlCommand comm;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand("DELETE FROM Employees " +
 "WHERE EmployeeID = @EmployeeID", conn);
 comm.Parameters.Add("@EmployeeID", System.Data.SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value =
 employeesList.SelectedItem.Value;
 try
 {
 conn.Open();
 comm.ExecuteNonQuery();
 }
 catch
 {
 dbErrorLabel.Text = "Error deleting employee!
";
 }
 finally
 {
 conn.Close();
 }
 LoadEmployeesList();
}

Save your work and test it within the browser. For testing purposes, feel free to add

more records to the Employees table using SQL Server Management Studio Express;

then delete them through the Dorknozzle application (if you do that, note you’ll

need to refresh the view of the Employees table manually in order to see the changes).

Using Stored Procedures
In the section called “Stored Procedures” in Chapter 8, you learned all about stored

procedures. As far as ADO.NET is concerned, a stored procedure is much like a

query that has parameters.

Let’s assume you’d prefer to use a stored procedure to add help desk requests, rather

than typing the SQL code in HelpDesk.aspx.vb, or HelpDesk.aspx.cs. Naturally, the

431ADO.NET

first step would be to add a stored procedure to your Dorknozzle database. In SQL

Server Management Studio Express, select the Dorknozzle database, go to File >

New > Database Engine Query, or simply click the New Query button on the toolbar.

Then, copy and paste the following code into the query window, and execute the

query to create the stored procedure:

Dorknozzle\VB\15_InsertHelpDesk.sql (excerpt)

CREATE PROCEDURE InsertHelpDesk
(
 @EmployeeID int,
 @StationNumber int,
 @CategoryID int,
 @SubjectID int,
 @Description nvarchar(50),
 @StatusID int
)
AS
INSERT INTO HelpDesk (EmployeeID, StationNumber, CategoryID,
 SubjectID, Description, StatusID)
VALUES (@EmployeeID, @StationNumber, @CategoryID, @SubjectID,
 @Description, @StatusID)

To use this stored procedure, you’d need to modify the submitButton_Click

method in HelpDesk.aspx.vb (or HelpDesk.aspx.cs). You can do this by replacing the

line that creates a new SqlCommand object using an SQL query with one that does

so using the name of the stored procedure, as shown here:

Visual Basic HelpDesk.aspx.vb (excerpt)

Dim conn As SqlConnection
Dim comm As SqlCommand
Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
conn = New SqlConnection(connectionString)
comm = New SqlCommand("InsertHelpDesk", conn)
comm.CommandType = System.Data.CommandType.StoredProcedure
⋮ add command parameters

Build Your Own ASP.NET 4 Website Using C# & VB432

C# HelpDesk.aspx.cs (excerpt)

SqlConnection conn;
SqlCommand comm;
string connectionString = ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
conn = new SqlConnection(connectionString);
comm = new SqlCommand("InsertHelpDesk", conn);
comm.CommandType = System.Data.CommandType.StoredProcedure;
⋮ add command parameters

You’ll also notice that we’ve had to place an additional line of code to set the

CommandTypeproperty of the SqlCommand object to System.Data.CommandType.Stored-

Procedure, in order to specify that we are calling a stored procedure. If you now

load the Help Desk page, you’ll see that it works just as it used to, but behind the

scenes, it’s making use of a stored procedure. You can verify that this approach

works by adding a new Help Desk Request through the web form, and then opening

the HelpDesk table and checking for your new Help Desk Request.

That’s it! As you can see, using stored procedures is very easy. Everything else is

the same as when working with a parameterized query.

Summary
In this chapter, you learned how to create simple web applications that interact

with databases. First, you learned about the various classes included with ADO.NET,

such as SqlConnection, SqlCommand, and SqlDataReader. Then, you learned how

to use these classes to create simple applications that query the database, insert re-

cords into a database, update records within a database, and delete records from a

database. You also learned important techniques for querying database data, includ-

ing using parameters and control binding. Later in the chapter, you learned how to

use stored procedures.

The next chapter will expand on what we learned here, and introduce a new control

that’s often used to display data from a database: the DataList.

433ADO.NET

Chapter10
Displaying Content Using Data Lists
Similar to the Repeater control, the DataList control allows you to bind and cus-

tomize the presentation of database data. The fundamental difference is that while

the Repeater requires building the template from scratch (allowing you to customize

the generated HTML output in any way you like), the DataList control automatically

generates a single-column HTML table for you, like the one shown below:

<table>
 <tr>
 <td>
 <p>Employee ID: 1</p>
 <p>Name: Zak Ruvalcaba</p>
 <p>Username: zak</p>
 </td>
 </tr>
 <tr>
 <td>
 <p>Employee ID: 2</p>
 <p>Name: Jessica Ruvalcaba</p>
 <p>Username: jessica</p>
 </td>
 </tr>

 <tr>
 <td>
 <p>Employee ID: 3</p>
 <p>Name: Ted Lindsey</p>
 <p>Username: ted</p>
 </td>
 </tr>
 ⋮
</table>

As you can see, DataList has, as the name implies, been designed to display lists

of data; while it’s less flexible than the Repeater, it contains more built-in function-

ality that can help make the implementation of certain features faster and easier. In

the following pages, you’ll learn:

■ the basics of the DataList control
■ how to handle DataList events
■ how to edit DataList items
■ how to handle the controls inside the DataList templates
■ how to use Visual Web Developer to edit the DataList

Let’s get started!

DataList Basics
To learn how to use the DataList, we’ll update the Dorknozzle Employee Directory

page to use a DataList control instead of a Repeater control. This update will be

particularly easy to do because the Employee Directory already has a list-like format.

If you now open EmployeeDirectory.aspx, you’ll see the Repeater control is used like

this:

<asp:Repeater id="employeesRepeater" runat="server">
 <ItemTemplate>
 Employee ID:
 <%#Eval("EmployeeID")%>

 Name: <%#Eval("Name")%>

 Username: <%#Eval("Username")%>
 </ItemTemplate>
 <SeparatorTemplate>

Build Your Own ASP.NET 4 Website Using C# & VB436

 <hr />
 </SeparatorTemplate>
</asp:Repeater>

You can see the output of this code in Figure 9.9 in Chapter 9. Now, let’s update

the employee directory page to use a DataList instead of a Repeater. We can do

this simply by replacing the <asp:Repeater> and </asp:Repeater> tags with the

tags for a DataList:

Dorknozzle\VB\01_EmployeeDirectory.aspx (excerpt)

<asp:DataList id="employeesList" runat="server">
 <ItemTemplate>
 Employee ID:
 <%#Eval("EmployeeID")%>

 Name: <%#Eval("Name")%>

 Username: <%#Eval("Username")%>
 </ItemTemplate>
 <SeparatorTemplate>
 <hr />
 </SeparatorTemplate>
</asp:DataList>

As we’ve changed the ID for this control, we’ll need to change the name of the

control in the code-behind file as well. Locate the following lines of code and change

employeesRepeater to employeesList, as shown here:

Visual Basic Dorknozzle\VB\02_EmployeeDirectory.aspx.vb (excerpt)

 reader = comm.ExecuteReader()
employeesList.DataSource = reader
employeesList.DataBind()

 reader.Close()

C# Dorknozzle\CS\02_EmployeeDirectory.aspx.cs (excerpt

 reader = comm.ExecuteReader();
employeesList.DataSource = reader;
employeesList.DataBind();

 reader.Close();

437Displaying Content Using Data Lists

You can see that the changes required to use DataList instead of Repeater are

minimal in this case. That’s largely because the Repeater was displaying a basic

list of data anyway.

As with the Repeater control, we can feed data into the DataList control by binding

it to a data source. Both Repeater and DataList support the ItemTemplate and

SeparatorTemplate templates, but in the case of the DataList, the templates specify

the content that is to be inserted in the td elements of the table.

At the moment, the output appears very similar to the output we generated using

the Repeater, as Figure 10.1 illustrates.

Figure 10.1. The Dorknozzle Employee Directory page

Repeater versus DataList

As a rule of thumb, you’ll use the Repeater when you need total control over

the HTML output, and when you don’t require features such as editing, sorting,

formatting, or paging for the data you’re displaying. Depending on the extra features

needed, you can use either the DataList control (which is covered in this chapter),

or the GridView or DetailsView controls (which you’ll learn about in

Chapter 12).

Build Your Own ASP.NET 4 Website Using C# & VB438

In this example, we’ve used the ItemTemplate of our DataList. The DataList offers

a number of templates:

ItemTemplate

This template is replicated for each record that’s read from the data source. The

contents of the ItemTemplate are repeated for each record and placed inside

td elements.

AlternatingItemTemplate

If this template is defined, it will be used instead of ItemTemplate to display

every second element.

SelectedItemTemplate

This is used to display the selected list item. The DataList control doesn’t

automatically give the user a way to select an item in the list, but you can mark

an item as selected by setting the DataList control’s SelectedIndex property.

Setting this property to 0 will mark the first item as selected; setting

SelectedIndex to 1 will mark the second item as selected; and so on. Setting

SelectedIndex to -1 deselects any selected item.

EditItemTemplate

Similar to SelectedItemTemplate, this template applies to an item that’s being

edited. We can set the item that’s being edited using the EditItemIndex property

of the DataList, which operates in the same way as the SelectedIndex property.

Later on, you’ll learn how to edit your DataList using the EditItemTemplate.

HeaderTemplate

This template specifies the content to be used for the list header.

FooterTemplate

This template defines the list footer.

SeparatorTemplate

This specifies the content to be inserted between two consecutive data items.

The content will appear inside its own table cell.

439Displaying Content Using Data Lists

Handling DataList Events
One problem you may encounter when working with container controls such as

the DataList or the Repeater is that you can’t access the controls inside their

templates directly from your code. For example, consider this ItemTemplate, which

contains a Button control:

<asp:DataList ID="employeesList" runat="server">
 <ItemTemplate>
 Employee ID: <%#Eval("EmployeeID")%>

<asp:Button runat="server" ID="myButton" Text="Select" />
 </ItemTemplate>
</asp:DataList>

Although it may not be obvious at first glance, you can’t access the Button easily

through your code. So the following code would generate an error:

Visual Basic

' Don't try this at home
myButton.Enabled = False

It becomes even more complicated if you want to handle the Button’s Click event,

because—you guessed it—you can’t do so without jumping through some reasonably

complicated hoops.

So, if we can’t handle events raised by the buttons and links inside a template, how

can we interact with the data in each template? To answer this question, we’ll im-

prove our employee directory by making a more basic view of the items, and adding

a View More link that users can click in order to access more details about the em-

ployee. To keep it simple, for now, we’ll hide only the employee ID from the

standard view; we’ll show it when the visitor clicks the View More link.

After we implement this feature, our list will appear as shown in Figure 10.2. You’ll

be able to view more details about any employee by clicking on the appropriate

link.

Open EmployeeDirectory.aspx, and modify the ItemTemplate of the DataList as

shown:

Build Your Own ASP.NET 4 Website Using C# & VB440

Figure 10.2. Hiding employee details

Visual Basic Dorknozzle\VB\03_EmployeeDirectory.aspx (excerpt)

<asp:DataList id="employeesList" runat="server">
 <ItemTemplate>

<asp:Literal ID="extraDetailsLiteral" runat="server"
 EnableViewState="false" />
 Name: <%#Eval("Name")%>

 Username: <%#Eval("Username")%>

 <asp:LinkButton ID="detailsButton" runat="server"
 Text=<%#"View more details about " & Eval("Name")%>
 CommandName="MoreDetailsPlease"
 CommandArgument=<%#Eval("EmployeeID")%> />
 </ItemTemplate>
 <SeparatorTemplate>
 <hr />
 </SeparatorTemplate>
</asp:DataList>

In C#, the string concatenation operator is + rather than &, so the Text property

definition of the Linkbutton should be as follows:

441Displaying Content Using Data Lists

C# Dorknozzle\CS\03_EmployeeDirectory.aspx (excerpt)

 <asp:LinkButton ID="detailsButton" runat="server"
Text=<%#"View more details about " + Eval("Name")%>

 CommandName="MoreDetailsPlease"
 CommandArgument=<%#Eval("EmployeeID")%> />

Here, we’ve added two controls. The first is a Literal control, which serves as a

placeholder that we can replace with HTML later when the user clicks on the other

control we’ve added—a LinkButton. Even though the LinkButton looks like a link,

it really behaves like a button. When someone clicks this button, it generates an

event that can be handled on the server side. If you prefer, you can change the

LinkButton to a Button, and the functionality will remain identical. If you load the

page now, it should appear as shown in Figure 10.2.

Now you have a button that’s displayed for each employee in the list. In order to

react to this LinkButton being clicked, you might think that you’d need to handle

its Click event. Not this time! The button is located inside the DataList—it’s part

of its ItemTemplate—so it’s not directly visible to your code. Additionally, when

the code executes, the page will contain more instances of this button, so on the

server side, you’ll need a way to know which of them was clicked!

Luckily, ASP.NET provides an ingenious means of handling this scenario. When

ever a button inside a DataList generates a Click event, the DataList generates

itself an ItemCommand event. The DataList control is accessible in your code, so

you can handle its ItemCommand event, whose arguments will give us information

about which control was clicked.

Within the ItemCommand event handler, we can retrieve the data contained in the

LinkButton’s CommandName and CommandArgument properties. We use these properties

to pass the employee ID to the ItemCommand event handler, which can use the ID to

get more data about that particular employee.

Take another look at the button definition from the DataList’s ItemTemplate:

Build Your Own ASP.NET 4 Website Using C# & VB442

Visual Basic Dorknozzle\VB\03_EmployeeDirectory.aspx (excerpt)

<asp:LinkButton ID="detailsButton" runat="server"
 Text=<%#"View more details about " & Eval("Name")%>

CommandName="MoreDetailsPlease"
 CommandArgument=<%#Eval("EmployeeID")%> />

Here, you can see that we’re using CommandArgument to save the ID of the employee

record with which it’s associated. We’re able to read this data from the DataList’s

ItemCommand event handler.

Let’s use Visual Web Developer to generate the ItemCommand event handler. Open

EmployeeDirectory.aspx in Design view, select the DataList, and hit F4 to open its

Properties window. There, click the yellow lightning symbol to open the list of

events, and double-click the ItemCommand event in that list. Visual Web Developer

will generate an empty event handler, and take you to the event handler’s code in

the code-behind file.

If you were to open the DataList’s properties again, you’d see the event handler

name appearing next to the event name, as depicted in Figure 10.3.

Figure 10.3. The ItemCommand event in the Properties window

If you’re using C#, you will also notice that as well as the generation of the empty

event handler in the code-behind file, the onitemcommand property has been added

to the DataList element, as shown here:

443Displaying Content Using Data Lists

C#

<asp:DataList id="employeesList" runat="server"
onitemcommand="employeesList_ItemCommand">

 ⋮
</asp:DataList>

Modify the code in employeesList_ItemCommand like so:

Visual Basic Dorknozzle\VB\04_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub employeesList_ItemCommand(ByVal source As Object,
➥ ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs)
➥ Handles employeesList.ItemCommand
 If e.CommandName = "MoreDetailsPlease" Then
 Dim li As Literal
 li = e.Item.FindControl("extraDetailsLiteral")
 li.Text = "Employee ID: " & e.CommandArgument & _
 "
"
 End If
End Sub

C# Dorknozzle\CS\04_EmployeeDirectory.aspx.cs (excerpt)

protected void employeesList_ItemCommand(object source,
 DataListCommandEventArgs e)
{
if (e.CommandName == "MoreDetailsPlease")

 {
 Literal li;
 li = (Literal)e.Item.FindControl("extraDetailsLiteral");
 li.Text = "Employee ID: " + e.CommandArgument +
 "
";
 }
}

Our code is almost ready to execute, but we should make one more minor tweak

before we execute this page. Currently, the Page_Load event will cause the DataList

to bind data on every page load. Not only is this bad for overall performance of our

application, it is best practice to only data bind when there is not a PostBack event.

Doing so may otherwise overwrite any changes the user requests on the page. We’ll

also move the data binding code into its own function, so that we can make use of

Build Your Own ASP.NET 4 Website Using C# & VB444

it later. Modify the code as shown here, moving the current contents of Page_Load

into a new method called BindList:

Visual Basic Dorknozzle\VB\05_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

 BindList()
 End If
End Sub
Protected Sub BindList()
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 ⋮
End Sub

C# Dorknozzle\CS\05_EmployeeDirectory.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{

if (!IsPostBack)
 {
 BindList();
 }
}
protected void BindList()
{
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 ⋮
}

Execute the project and click the View more details links to see the employee ID, as

shown in Figure 10.4.

445Displaying Content Using Data Lists

Figure 10.4. The Employee Directory showing employee IDs

The code in employeesList_ItemCommand shows how you can work with controls

inside a DataList template, and how to handle their events. We determine which

control was clicked by checking the value of e.CommandName in the event handler;

it will be populated with the value of the CommandName property of the control that

was clicked. Since our LinkButton has the CommandName value MoreDetailsPlease,

we check for this value in the ItemCommand event handler, as shown below:

Visual Basic Dorknozzle\VB\05_EmployeeDirectory.aspx.vb (excerpt)

If e.CommandName = "MoreDetailsPlease" Then

C# Dorknozzle\CS\05_EmployeeDirectory.aspx.cs (excerpt)

if (e.CommandName == "MoreDetailsPlease")
{

Once we know the View more details button was clicked, we want to use the extra-

DetailsLiteral control from our template to display the employee ID. But, given

that this control is inside our template, how can we access it through code?

Build Your Own ASP.NET 4 Website Using C# & VB446

To use a control inside a DataList, we use the FindControl method of the object

e.Item. Here, e.Item refers to the template that contains the control; the FindControl

method will return a reference to any control within the template that has the sup-

plied ID. So, in order to obtain a reference to the control with the ID extraDetails-

Literal, we use FindControl like this:

Visual Basic Dorknozzle\VB\05_EmployeeDirectory.aspx.vb (excerpt)

Dim li As Literal
li = e.Item.FindControl("extraDetailsLiteral")

Note that FindControl returns a generic Control object. If you’re using VB, the re-

turned Control is automatically converted to a Literal when you assign it to an

object of type Literal. In C#, we need an explicit cast, or conversion, as shown

here:

C# Dorknozzle\CS\05_EmployeeDirectory.aspx.cs (excerpt)

Literal li;
li = (Literal)e.Item.FindControl("extraDetailsLiteral");

Finally, once we have access to the Literal control in a local variable, setting its

contents is a piece of cake:

Visual Basic Dorknozzle\VB\05_EmployeeDirectory.aspx.vb (excerpt)

li.Text = "Employee ID: " & e.CommandArgument & _
 "
"

C# Dorknozzle\CS\05_EmployeeDirectory.aspx.cs (excerpt)

li.Text = "Employee ID: " + e.CommandArgument +
 "
";

447Displaying Content Using Data Lists

Disabling View State

If you take a look at the definition of the extraDetailsLiteral control in

EmployeeDirectory.aspx, you’ll see that we set its EnableViewState property to

False:

Dorknozzle\VB\03_EmployeeDirectory.aspx (excerpt)

<asp:Literal ID="extraDetailsLiteral" runat="server"
EnableViewState="false" />

When this property is False, its contents aren’t persisted during postback events.

In our case, once the visitor clicks another View more details button, all the instances

of that Literal control lose their values. This way, at any given moment, no

more than one employee’s ID will be displayed. If you change EnableViewState

to True (the default value), and then click the View more details button, you’ll see

that all employee IDs remain in the form, as they’re persisted by the view state

mechanism.

Editing DataList Items
and Using Templates
Continuing our journey into the world of the DataList, let’s learn a little more about

its templates, and see how you can use the EditItemTemplate to edit its contents.

Our goal here is to allow users to change the name or username of any employee

using this form.

Start by adding another button to the ItemTemplate of the DataList. This button

will read Edit employee Employee Name and, when clicked, it will cause the item of

which it’s a part to become editable. It goes at the end of the ItemTemplate element:

Visual Basic Dorknozzle\VB\06_EmployeeDirectory.aspx (excerpt)

<ItemTemplate>
 ⋮

 <asp:LinkButton ID="editButton" runat="server"
 Text=<%#"Edit employee " & Eval("Name")%>

Build Your Own ASP.NET 4 Website Using C# & VB448

 CommandName="EditItem"
 CommandArgument=<%#Eval("EmployeeID")%> />
</ItemTemplate>

If you are using C#, don’t forget to replace the & with a + in the Text property value.

When an Edit employee button is clicked, we will make the item enter edit mode.

When one of the DataList items is in edit mode, the EditItemTemplate template

of the DataList is used to generate the contents of that item. All the other items are

generated by the ItemTemplate, as usual.

Modify EmployeeDirectory.aspx by adding the EditItemTemplate to the DataList.

The EditItemTemplate contains TextBox controls into which the user can enter

the employee’s name and username, and two buttons: Update Item and Cancel Editing,

whose names are self-explanatory:

Dorknozzle\VB\07_EmployeeDirectory.aspx (excerpt)

<EditItemTemplate>
 Name: <asp:TextBox ID="nameTextBox" runat="server"
 Text=<%#Eval("Name")%> />

 Username: <asp:TextBox ID="usernameTextBox" runat="server"
 Text=<%#Eval("Username")%> />

 <asp:LinkButton ID="updateButton" runat="server"
 Text="Update Item" CommandName="UpdateItem"
 CommandArgument=<%#Eval("EmployeeID")%> />
 or
 <asp:LinkButton ID="cancelButton" runat="server"
 Text="Cancel Editing" CommandName="CancelEditing"
 CommandArgument=<%#Eval("EmployeeID")%> />
</EditItemTemplate>

Finally, before you can see your new template, we need to handle the Edit employee

button. Again, when that button is clicked, the DataList’s ItemCommand event is

fired. This time, the CommandName of the new button is EditItem, and when we

discover that this button was clicked, we’ll put the item into edit mode. To put a

DataList item into edit mode, we set its EditItemIndex to the index of the item,

and then bind the DataList to its data source again to refresh its contents. Add this

code to the file:

449Displaying Content Using Data Lists

Visual Basic Dorknozzle\VB\08_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub employeesList_ItemCommand(ByVal source As Object,
➥ ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs)
➥ Handles employeesList.ItemCommand
 If e.CommandName = "MoreDetailsPlease" Then
 Dim li As Literal
 li = e.Item.FindControl("extraDetailsLiteral")
 li.Text = "Employee ID: " & e.CommandArgument & _
 "
"
 ElseIf e.CommandName = "EditItem" Then
 employeesList.EditItemIndex = e.Item.ItemIndex
 BindList()
 End If
End Sub

C# Dorknozzle\CS\08_EmployeeDirectory.aspx.cs (excerpt)

protected void employeesList_ItemCommand(object source,
 DataListCommandEventArgs e)
{
 if (e.CommandName == "MoreDetailsPlease")
 {
 Literal li;
 li = (Literal)e.Item.FindControl("extraDetailsLiteral");
 li.Text = "Employee ID: " + e.CommandArgument +
 "
";
 }
else if (e.CommandName == "EditItem")

 {
 employeesList.EditItemIndex = e.Item.ItemIndex;
 BindList();
 }
}

Execute the project now, load the employee directory, and enter one of your items

into edit mode, as shown in Figure 10.5.

Build Your Own ASP.NET 4 Website Using C# & VB450

Figure 10.5. Editing the DataList

We need to implement functionality for two more buttons: Update Item and Cancel

Editing. We’ll take them one at a time, starting with Cancel Editing, which is easier

to handle. Modify employeesList_ItemCommand like this:

Visual Basic Dorknozzle\VB\09_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub employeesList_ItemCommand(ByVal source As Object,
➥ ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs)
➥ Handles employeesList.ItemCommand
 If e.CommandName = "MoreDetailsPlease" Then
 ⋮
 ElseIf e.CommandName = "EditItem" Then
 ⋮
 ElseIf e.CommandName = "CancelEditing" Then
 employeesList.EditItemIndex = -1
 BindList()
 End If
End Sub

451Displaying Content Using Data Lists

C# Dorknozzle\CS\09_EmployeeDirectory.aspx.cs (excerpt)

protected void employeesList_ItemCommand(object source,
 DataListCommandEventArgs e)
{
 if (e.CommandName == "MoreDetailsPlease")
 {
 ⋮
 }
 else if (e.CommandName == "EditItem")
 {
 ⋮
 }
 else if (e.CommandName == "CancelEditing")
 {
 employeesList.EditItemIndex = -1;
 BindList();
 }
}

Execute your project again and check that your new button works. As you can see,

exiting edit mode is really simple. You merely need to set the EditItemIndex

property of the DataList to -1, and then refresh the DataList’s contents.

Let’s deal with the task of updating the record now. We read the ID of the employee

whose details are being edited from the button’s CommandArgument property, and

we read that person’s new name and username from the TextBox control:

Visual Basic Dorknozzle\VB\10_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub employeesList_ItemCommand(ByVal source As Object,
➥ ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs)
➥ Handles employeesList.ItemCommand
 If e.CommandName = "MoreDetailsPlease" Then
 ⋮
 ElseIf e.CommandName = "EditItem" Then
 ⋮
 ElseIf e.CommandName = "CancelEditing" Then
 ⋮
 ElseIf e.CommandName = "UpdateItem" Then
 Dim employeeId As Integer = e.CommandArgument
 Dim nameTextBox As TextBox = _
 e.Item.FindControl("nameTextBox")
 Dim newName As String = nameTextBox.Text

Build Your Own ASP.NET 4 Website Using C# & VB452

 Dim usernameTextBox As TextBox = _
 e.Item.FindControl("usernameTextBox")
 Dim newUsername As String = usernameTextBox.Text
 UpdateItem(employeeId, newName, newUsername)
 employeesList.EditItemIndex = -1
 BindList()
 End If
End Sub

C# Dorknozzle\CS\10_EmployeeDirectory.aspx.cs (excerpt)

protected void employeesList_ItemCommand(object source,
 DataListCommandEventArgs e)
{
 if (e.CommandName == "MoreDetailsPlease")
 {
 ⋮
 }
 else if (e.CommandName == "EditItem")
 {
 ⋮
 }
 else if (e.CommandName == "CancelEditing")
 {
 ⋮
 }
 else if (e.CommandName == "UpdateItem")
 {
 int employeeId = Convert.ToInt32(e.CommandArgument);
 TextBox nameTextBox =
 (TextBox)e.Item.FindControl("nameTextBox");
 string newName = nameTextBox.Text;
 TextBox usernameTextBox =
 (TextBox)e.Item.FindControl("usernameTextBox");
 string newUsername = usernameTextBox.Text;
 UpdateItem(employeeId, newName, newUsername);
 employeesList.EditItemIndex = -1;
 BindList();
 }
}

The techniques used in the above code are ones we have used earlier, but be sure

to read the code carefully to ensure that you understand how it works. If you are

using C#, you may have noticed that once again we need an explicit case for the

453Displaying Content Using Data Lists

TextBox objects, whereas VB automatically converts the control to the proper type.

This is also true of the employeeId variable; in VB this is automatically converted

to an integer, but in C# we have to perform the conversion explicitly using the

Convert.ToInt32 method.

As you can see, we make a call to a mysterious method named UpdateItem. This

method is used to perform the actual update. We’ve created it as a separate method

to make the code easier to manage. Add this code to your code-behind file:

Visual Basic Dorknozzle\VB\11_EmployeeDirectory.aspx.vb (excerpt)

Protected Sub UpdateItem(ByVal employeeId As Integer,
➥ ByVal newName As String, ByVal newUsername As String)
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand("UpdateEmployee", conn)
 comm.CommandType = System.Data.CommandType.StoredProcedure
 comm.Parameters.Add("@EmployeeID", Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = employeeId
 comm.Parameters.Add("@NewName", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewName").Value = newName
 comm.Parameters.Add("@NewUsername", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewUsername").Value = newUsername
 Try
 conn.Open()
 comm.ExecuteNonQuery()
 Finally
 conn.Close()
 End Try
End Sub

C# Dorknozzle\CS\11_EmployeeDirectory.aspx.cs (excerpt)

protected void UpdateItem(int employeeId, string newName,
 string newUsername)
{
 SqlConnection conn;
 SqlCommand comm;
 string connectionString =
 ConfigurationManager.ConnectionStrings[

Build Your Own ASP.NET 4 Website Using C# & VB454

 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand("UpdateEmployee", conn);
 comm.CommandType = System.Data.CommandType.StoredProcedure;
 comm.Parameters.Add("@EmployeeID", SqlDbType.Int);
 comm.Parameters["@EmployeeID"].Value = employeeId;
 comm.Parameters.Add("@NewName", SqlDbType.NVarChar, 50);
 comm.Parameters["@NewName"].Value = newName;
 comm.Parameters.Add("@NewUsername", SqlDbType.NVarChar, 50);
 comm.Parameters["@NewUsername"].Value = newUsername;
 try
 {
 conn.Open();
 comm.ExecuteNonQuery();
 }
 finally
 {
 conn.Close();
 }
}

Once the parameters are prepared, the UpdateItemmethod calls the UpdateEmployee

stored procedure, which performs the database operation.

Next, let’s add the UpdateEmployee stored procedure to our database by executing

the following script using SQL Server Management Studio:

Dorknozzle\VB\12_UpdateEmployee.sql (excerpt)

CREATE PROCEDURE UpdateEmployee
(
 @EmployeeID Int,
 @NewName nvarchar(50),
 @NewUsername nvarchar(50)
)
AS
UPDATE Employees
SET Name = @NewName, Username = @NewUsername
WHERE EmployeeID = @EmployeeID

Finally, execute the project again, load the Employee Directory page, and enter one

of the employees into edit mode. You should see a display like the one shown in

Figure 10.6.

455Displaying Content Using Data Lists

Figure 10.6. Viewing an employee in edit mode

Change the name or username, and click Update Item to see the listed data change.

In Figure 10.7, you can see that I’ve changed Zak’s username to zakNew.ch

Figure 10.7. Editing the username

Build Your Own ASP.NET 4 Website Using C# & VB456

DataList and Visual Web Developer
Just like some of the more complex web server controls, DataLists offer a number

of design-time features that are tightly integrated within Visual Web Developer.

One of these slick features is the smart tag, which appears as a little arrow button

in the upper-right part of the control when the cursor is hovered over the control

in Design view.

You’ll be working with these cool features in coming chapters, but we can’t finish

a chapter on DataLists without making ourselves aware of them. If you open

EmployeeDirectory.aspx in Design view and click the smart tag, you’ll see the menu

depicted in Figure 10.8.

You can use this menu to apply predefined styles to your grid, choose a data source

control (you’ll learn more about these in the following chapters), or edit the grid’s

templates.

If you click Edit Templates, you can build the DataList’s templates visually, shown

in Figure 10.9.

Figure 10.9. Building the DataList’s templates visually

457Displaying Content Using Data Lists

Figure 10.8. The smart tag options of DataList

Advanced users will probably want to code by hand, but the visual designer is still

available. We will continue the rest of the way with coding manually so that we

can gain a better understanding of the technology.

Choose the Property Builder from the smart tag’s menu, and a window will display

that lets us set various properties of a DataList. We can access the same settings

through the Properties window, but the DataList gives us another way to set these

properties.

The Choose Data Source item in the smart tag’s menu lets us choose a data source

control for our list. You’ll learn a lot more about this in Chapter 12.

Styling the DataList
The Auto Format item in the smart tag menu is probably the most interesting. We

left this discussion until the end of the chapter to give you the chance to play with

it a little beforehand. When you select Auto Format, a dialog with a number of pre-

defined schemes will appear; you can customize these options manually to suit

your tastes, as Figure 10.10 illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB458

Figure 10.10. Choosing an Auto Format scheme

If you choose the Simple style, and then remove the SeparatorTemplate from your

DataList, your Employee Directory page will look like the one shown in Fig-

ure 10.11.

So, what happened behind the scenes? If you look at the DataList definition in

EmployeeDirectory.aspx, you’ll see it contains a few new lines that Visual Web De-

veloper generated for us after we chose the style:

<asp:DataList>
 ⋮
 <FooterStyle BackColor="#1C5E55" Font-Bold="True"
 ForeColor="White" />
 <SelectedItemStyle BackColor="#C5BBAF" Font-Bold="True"

459Displaying Content Using Data Lists

Figure 10.11. The styled Employee Directory list

 ForeColor="#333333" />
 <AlternatingItemStyle BackColor="White" />
 <ItemStyle BackColor="#E3EAEB" />
 <HeaderStyle BackColor="#1C5E55" Font-Bold="True"
 ForeColor="White" />
</asp:DataList>

The significance of these new elements is as follows:

HeaderStyle

Customizes the appearance of the DataList’s heading

ItemStyle

Customizes the appearance of each item displayed within the DataList

AlternatingItemStyle

Customizes the appearance of every second item displayed within the DataList

Build Your Own ASP.NET 4 Website Using C# & VB460

FooterStyle

Customizes the appearance of the DataList’s footer

SelectedItemStyle

Customizes the appearance of a selected item within the DataList

EditItemStyle

Customizes the appearance of the DataList in edit mode

In the next chapter, you’ll learn how to use CSS styles and control skins to facilitate

a more professional approach to styling your data controls. Until then, enjoy the

benefits of having a modern-looking, functional employee directory!

Summary
As you’ve seen, DataLists provide flexibility and power in terms of presenting

database data dynamically within the browser. In this chapter, you learned how to

bind your data to DataLists, and how to customize appearance using templates

and styles. You also learned how to edit data in your DataList control, and how

to access controls located in the DataList templates.

The next chapter will introduce you to two more powerful controls: GridView and

DetailsView.

461Displaying Content Using Data Lists

Chapter11
Managing Content
Using GridView and DetailsView
In the previous chapters, you learned some of the important concepts surrounding

data access and presentation. You learned that when connecting to a database, you

have to establish a connection using the SqlConnection class. You also learned that

in order to retrieve data from the database table, you must write an SQL statement

within a command using the SqlCommand class. You discovered that we use the

SqlDataReader class to place the database records into a virtual container of some

sort. Finally, you learned that presenting the data within the SqlDataReader was

simply a matter of binding the SqlDataReader to a data control such as the Repeater

or DataList controls.

Here, we’ll learn about two more controls that offer much more functionality and

make it very easy for you to create a table: GridView and DetailsView. These con-

trols, which form part of ASP.NET’s set of data controls, are more complex and offer

many more features than Repeater and DataList. Of course, these additional features

come at a cost—they consume more memory and processing power on the server,

so they should only be used when they deliver real benefits. Otherwise, it’s best to

stick to simpler controls.

In this chapter you’ll learn how to:

■ Create GridView controls and set up their columns.
■ Style the data displayed by GridView.
■ Display the details of a selected record using the DetailsView control.
■ Customize the appearance of the DetailsView control.
■ Use GridView and DetailsView to update your data.

Using the GridView Control
The GridView control solves a problem that has plagued developers for years: data

presentation. The GridView control generates simple HTML tables, so information

within a GridView is presented to the end user in a familiar, cleanly formatted,

tabular structure. Similar to the Repeater control, the GridView can automatically

display on a page all the content contained within an SqlDataReader, based on

styles we set within its templates. However, unlike the Repeater control, the

GridView offers several more advanced features, such as sorting and paging (that

is, splitting a large result set into pages), and makes it easy to modify the data in

the underlying data source.

To sum up, the GridView control provides the following functionality:

■ database table-like presentation of data
■ table headers and footers
■ paging
■ sorting
■ style modification through templates
■ customizable columns for advanced editing

You’ll learn about some of these features in this chapter; we’ll leave the more ad-

vanced ones (sorting, paging, and editing) for the next chapter.

As with any other ASP.NET server control, GridView controls are added to the page

using a specific element:

<asp:GridView id="myGridView" runat="server" />

Build Your Own ASP.NET 4 Website Using C# & VB464

Once we add the GridView to the page, we can bind an SqlDataReader to it as fol-

lows:

Visual Basic

myGridView.DataSource = myDataReader
myGridView.DataBind()

The GridView doesn’t seem to function very differently from the Repeater control,

right? Think again! The Repeater control didn’t work unless we specified content

within the required <ItemTemplate> and </ItemTemplate> tags. The GridView

takes the structure of the database table automatically, and presents the data to the

user in a cleanly formatted HTML table.

Let’s take a look at GridView in action as we develop the Dorknozzle intranet’s ad-

dress book page. Start by opening the Dorknozzle project, if it’s not already open,

and creating a new web form named AddressBook.aspx, based on the Dorknozzle.master

master page. Also, make sure the new web form uses a code-behind file.

Now, open AddressBook.aspx, and complete its code as shown in the following

snippet:

Dorknozzle\VB\01_AddressBook.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="AddressBook.aspx.vb"
 Inherits="AddressBook" title="Dorknozzle Address Book" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Address Book</h1>

 <asp:GridView id="grid" runat="server" />
</asp:Content>

Switch to Design view to see how your grid is represented in the designer. It should

look something like Figure 11.1.

465Managing Content Using GridView and DetailsView

Figure 11.1. Viewing AddressBook.aspx in Design view

Now, double-click on an empty portion of the page to have the form’s Page_Load

event handler generated for you in the code-behind file. In Page_Load, we’ll call a

method named BindGrid, which will, in turn, create a database connection and a

database command object, execute that command, and bind the resulting data

reader to the grid, as shown below:

Visual Basic Dorknozzle\VB\02_AddressBook.aspx.vb (excerpt)

Imports System.Data.SqlClient

Partial Class AddressBook
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 BindGrid()
 End If
End Sub

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim comm As SqlCommand

Build Your Own ASP.NET 4 Website Using C# & VB466

 Dim reader As SqlDataReader
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, City, State, MobilePhone " & _
 "FROM Employees", conn)
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 grid.DataSource = reader
 grid.DataBind()
 reader.Close()
 Finally
 conn.Close()
 End Try
End Sub
End Class

C# Dorknozzle\CS\02_AddressBook.aspx.cs (excerpt)

using System;
⋮
using System.Data.SqlClient;

public partial class AddressBook : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

if (!IsPostBack)
 {
 BindGrid();
 }
 }
private void BindGrid()

 {
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(

467Managing Content Using GridView and DetailsView

 "SELECT EmployeeID, Name, City, State, MobilePhone " +
 "FROM Employees", conn);
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 grid.DataSource = reader;
 grid.DataBind();
 reader.Close();
 }
 finally
 {
 conn.Close();
 }
 }
}

What’s going on here? If you disregard the fact that you’re binding the SqlDataReader

to a GridView instead of a Repeater or DataList, the code is almost identical to

that which we saw in the previous chapter.

Now save your work and open the page in the browser. Figure 11.2 shows how the

GridView presents all of the data within the Employees table in a cleanly formatted

structure.

Build Your Own ASP.NET 4 Website Using C# & VB468

Figure 11.2. Displaying the address book in GridView

Okay, perhaps it doesn’t look all that clean right now! One of the new features in

ASP.NET 4 is the clean grid-styles that will allow the programmer to easily change

CSS styles and how the grid can be displayed. By default, we see just a single-pixel

black border for the table, a departure from previous version where ASP.NET would

apply other styling that wasn’t as configurable as we now have the ability to change.

However, the display will change as we get some practice using the GridView’s

powerful and intuitive formatting capabilities. You’ll notice that the GridView

closely resembles the structure of the query’s result shown when you run a SELECT

query directly from SQL Server Management Studio in the grid result format. All

the names of the columns in the database table show as headers within the table,

and all the rows from the database table are repeated down the page.

If you look at the generated page source (right-click the page in browser and choose

View Source or similar), you’ll see that the GridView indeed generated an HTML

table for you:

<table cellspacing="0" rules="all" border="1"
 id="ctl00_ContentPlaceHolder1_grid"
 style="border-collapse:collapse;">
 <tr>

469Managing Content Using GridView and DetailsView

 <th scope="col">EmployeeID</th>
 <th scope="col">Name</th>
 <th scope="col">City</th>
 <th scope="col">State</th>
 <th scope="col">MobilePhone</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Zak Ruvalcaba</td>
 <td>San Diego</td>
 <td>Ca</td>
 <td>555-555-5551</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Jessica Ruvalcaba</td>
 <td>San Diego</td>
 <td>Ca</td>
 <td>555-555-5552</td>
 </tr>
 ⋮
</table>

Formatted for Readability

The HTML generated by ASP.NET won’t look exactly as it does above. You’ll find

that ASP.NET will output long, convoluted lines of td elements, each of which

appears directly after the previous one. We’ve simply made the code a little easier

to read; the two HTML tables are otherwise identical. ASP.NET 4 has also made

it easier for newer browser and even mobile devices to easily read the HTML being

output from the GridView control.

There’s no doubt that the GridView’s automatic presentation features are useful.

The GridView automatically displays all columns retrieved from the database in

the order in which they’re sent from the database. While this is very useful, in some

cases you’ll want your grid to display only a subset of the information retrieved

from the database, and in many cases you’ll also want to change the order in which

the columns of data are displayed.

Let’s learn how to customize the GridView by selecting the columns we want to

show in a given order. In this case, one of the columns that we want to retrieve from

Build Your Own ASP.NET 4 Website Using C# & VB470

the database, but hide from users, is the EmployeeID column. We need to retrieve

the table’s primary key because it’s required for any database operations that involve

the unique identification of a record (including tasks such as editing or deleting an

employee from the list). The user doesn’t need to be overwhelmed with this inform-

ation, though—after all, humans don’t use numeric IDs to identify people in a list.

Customizing the GridView Columns
Our next task is to customize the columns displayed by the GridView. In this case,

our goal is to prevent the EmployeeID column from appearing, but the techniques

we’ll learn here can be used to make all sorts of customizations.

Filtering Table Columns

This is rather obvious, but it has to be said: the columns you can display in the

GridView must be a subset of the columns you’re retrieving from the database.

For example, unless you modify the database query to retrieve the employees’

passwords, it’s not possible to display them in the grid.

If you wish to restrict the information that appears within your GridView, you can

select the columns you want to display by making a few simple modifications. When

you simply bind an SqlDataReader to the GridView, you’re presented with a quick,

simple representation of the data you’ve retrieved from the database, with automat-

ically generated column headers.

One of the properties available to GridView is AutoGenerateColumns, which is set

to True by default. If you want to name the columns that your GridView displays

manually, you must set this property to False.

If you set this property to False and test it in the browser, you’ll find that the grid

doesn’t display any more. The reason for this is simple: as the GridView can’t gen-

erate its own column headers, you must manually specify the columns that you

want displayed. To do so, list the columns inside the <asp:GridView> and

</asp:GridView> tags, as shown below:

Dorknozzle\VB\03_AddressBook.aspx (excerpt)

<asp:GridView ID="grid" runat="server" AutoGenerateColumns="False">
<Columns>

 <asp:BoundField DataField="Name" HeaderText="Name" />

471Managing Content Using GridView and DetailsView

 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="MobilePhone"
 HeaderText="Mobile Phone" />
 </Columns>
</asp:GridView>

Notice that each column that we want to display is created using a BoundField

control inside a set of <Columns> and </Columns> tags. Each BoundField control

has a DataField property, which specifies the name of the column, and a HeaderText

property, which sets the name of the column as you want to display it to the user.

Now, save your work and view it in the browser. This time, only the columns that

you specified to be bound are displayed in the GridView, as Figure 11.3 indicates.

Note that if you don’t include the HeaderText property for any of the bound columns,

those columns won’t have a header.

We’ve now succeeded in displaying only the information we want to display, but

the GridView still looks plain. In the next section, we’ll use styles to customize the

appearance of our GridView.

Styling the GridView with Templates, Skins, and CSS
The GridView control offers a number of design-time features that are tightly integ-

rated with the Visual Web Developer designer. As with the DataList class, when

you click the grid’s smart tag, you get quick access to a number of very useful fea-

tures, as Figure 11.4 illustrates.

Build Your Own ASP.NET 4 Website Using C# & VB472

Figure 11.3. Displaying selected columns

Figure 11.4. The smart tag options of GridView

If you click the Auto Format… link from the smart tag menu and choose one of the

predefined styles, Visual Web Developer generates a number of template styles for

you, like this:

473Managing Content Using GridView and DetailsView

<asp:GridView ID="grid" runat="server" AutoGenerateColumns="False"
CellPadding="4" ForeColor="#333333" GridLines="None">

 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="MobilePhone"
 HeaderText="Mobile Phone" />
 </Columns>
<FooterStyle BackColor="#5D7B9D" Font-Bold="True"

 ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <EditRowStyle BackColor="#999999" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"
 ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True"
 ForeColor="White" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
</asp:GridView>

However, this time, let’s not rely on the predefined templates; let’s define our own

styles through CSS. Additionally, we want to add a new skin definition for the

GridView (you learned about skins back in Chapter 5), so that all the GridView

controls throughout the site have a standard appearance.

Open your Dorknozzle.css file from the App_Themes/Blue folder and add these styles

to it:

Dorknozzle\VB\04_Dorknozzle.css (excerpt)

.GridMain
{
 border-right: gainsboro thin solid;
 border-top: gainsboro thin solid;
 border-left: gainsboro thin solid;
 border-bottom: gainsboro thin solid;
 background-color: #333333;
 width: 400px;
}
.GridRow
{
 background-color: #FFFAFA;

Build Your Own ASP.NET 4 Website Using C# & VB474

}
.GridSelectedRow
{
 background-color: #E6E6FA;
}
.GridHeader
{
 background-color: #ADD8E6;
 font-weight: bold;
 text-align: left;
}

Now, modify the skin file SkinFile.skin in App_Themes/Blue by adding this skin

definition:

Dorknozzle\VB\05_SkinFile.skin (excerpt)

<asp:GridView runat="server" CssClass="GridMain" CellPadding="4"
 GridLines="None">
 <RowStyle CssClass="GridRow" />
 <SelectedRowStyle CssClass="GridSelectedRow" />
 <HeaderStyle CssClass="GridHeader" />
</asp:GridView>

Finally, make sure that your GridView declaration in AddressBook.aspx doesn’t

contain any styling details. Your page declaration also should have the theme set

to “Blue”. It should look like the excerpt shown here:

Dorknozzle\VB\03_AddressBook.aspx (excerpt)

<%@ Page Title="" Language="C#" MasterPageFile="~/Dorknozzle.➥

 master" AutoEventWireup="true" CodeFile="AddressBook.aspx.cs"➥

 Theme="Blue" Inherits="AddressBook" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

 <h1>Address Book</h1>
 <asp:GridView ID="grid" runat="server" AutoGenerateColumns=➥

 "false">

475Managing Content Using GridView and DetailsView

 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="MobilePhone"
 HeaderText="Mobile Phone" />
 </Columns>
</asp:GridView>

Figure 11.5. The styled address book

All the styling we need is already defined in the skin file; we’d only need to define

new properties if we wanted to alter the default values provided through the skin

file. Save your work and view the results in the browser. Do they look like the display

in Figure 11.5?

Congratulations! You’ve harnessed the power of CSS and skin files, and combined

it with the flexibility of GridView to create a good-looking address book. And it was

easy, too!

As you can see, you can style the items in the GridView by altering their font types,

colors, and sizes. You can also style the column headers and apply an alternating

item style to the rows in the table. Now, when the GridView is viewed in the browser,

Build Your Own ASP.NET 4 Website Using C# & VB476

we see a little more room between cells, and the lines surrounding the GridView

are gone.

Selecting Grid Records
We’ve already made quite a few changes to the display of our GridView. The next

step will be to allow users to select any of the rows in the GridView so they can

view more information about the listed employees.

We can create several types of columns in a GridView in addition to the BoundField

columns we’ve already seen. For instance, we could create a ButtonField column,

which displays a button in each row. Here’s a complete list of column controls and

their descriptions:

BoundField

As you’ve already seen, the BoundField provides flexibility in presentation by

allowing you to specify which columns will appear within the GridView. When

the grid enters edit mode, this field renders itself as an editable text box, as

we’ll see later.

ButtonField

Use the ButtonField to display a clickable button for each row within the

GridView. When it’s clicked, the button triggers a configurable event that you

can handle within your code to respond to the user’s action. A button can trigger

the following event types: Cancel, Delete, Edit, Select, and Update.

CheckBoxField

The CheckBoxField displays a checkbox in each row, allowing you to easily

present Boolean data in the display.

CommandField

The CommandField column automatically generates a ButtonField in your grid.

The actions performed by these buttons depend on the grid’s current state. For

example, if CommandField is set to generate Edit buttons, it will display an Edit

button when the grid is in non-editable mode, and will display Update and

Cancel buttons when the grid is being edited.

477Managing Content Using GridView and DetailsView

HyperLinkField

Use the HyperLinkField to display a clickable link within the GridView. This

link simply acts as a hyperlink to a URL; it raises no server-side events.

ImageField

This control displays an image inside your grid.

TemplateField

Use the TemplateField to display markup within the GridView.

If you’re using Visual Web Developer, you can quickly and easily add a new column

to your table in Design view. Click the GridView’s smart tag, and click the Add New

Column... item, as shown in Figure 11.6.

Figure 11.6. Adding a new GridView column

In the dialog that appears, change the field type to ButtonField, the command name

to Select, and set the Text field to Select, so the dialog appears as it does in Fig-

ure 11.7.

Build Your Own ASP.NET 4 Website Using C# & VB478

Figure 11.7. Adding a new field

After clicking OK, your brand-new column shows up in Design view. If you switch

to Source view, you can see it there, too:

Dorknozzle\VB\06_AddressBook.aspx (excerpt)

<asp:GridView ID="grid" runat="server"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="MobilePhone"
 HeaderText="Mobile Phone" />

<asp:ButtonField CommandName="Select" Text="Select" />
 </Columns>
</asp:GridView>

If you execute the project now, and click the new button, the row will become

highlighted, as Figure 11.8 indicates. You’ll have noticed that we didn’t write any

code to implement this feature. We’re relying on the functionality provided by the

ButtonField control when it’s CommandName property is set to Select, combined

with the style settings you set earlier, to produce this functionality.

479Managing Content Using GridView and DetailsView

Figure 11.8. Highlighting the selected field in the Address Book

We usually want extra work—in addition to the row highlighting—to be performed

when a user selects a row in the address book. When the Select button is pressed,

the GridView fires the SelectedIndexChanged event, which we handle if we need

to do any further processing. We can generate the GridView’s SelectedIndexChanged

event handler simply by double-clicking the GridView in the Visual Web Developer

designer.

Generating Default Event Handlers

Double-clicking a control in the designer causes Visual Web Developer to generate

the handler of the control’s default event. The default event of the GridView is

SelectedIndexChanged, which explains why it’s so easy to generate its signature.

Remember that you can use the Properties window to have Visual Web Developer

generate handlers for other events—just click the lightning icon in the Properties

window, then double-click on any of the listed events.

Build Your Own ASP.NET 4 Website Using C# & VB480

Before we handle the SelectedIndexChanged event, let’s add just below the GridView

control in AddressBook.aspx a label that we can use to display some details of the

selected record. You can use Visual Web Developer’s designer to add the control,

or you can write the code manually:

Dorknozzle\VB\07_AddressBook.aspx (excerpt)

 ⋮
 <asp:GridView id="grid" runat="server"
 AutoGenerateColumns="False">
 ⋮
 </asp:GridView>

 <asp:Label ID="detailsLabel" runat="server" />
</asp:Content>

Now, generate the SelectedIndexChanged event handler by double-clicking the

GridView control in Design view, then update the event handler to display a short

message about the selected record:

Visual Basic Dorknozzle\VB\08_AddressBook.aspx.vb (excerpt)

Protected Sub grid_SelectedIndexChanged(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles grid.SelectedIndexChanged
 Dim selectedRowIndex As Integer
 selectedRowIndex = grid.SelectedIndex
 Dim row As GridViewRow = grid.Rows(selectedRowIndex)
 Dim name As String = row.Cells(0).Text
 detailsLabel.Text = "You selected " & name & "."
End Sub

C# Dorknozzle\CS\08_AddressBook.aspx.cs (excerpt)

protected void grid_SelectedIndexChanged(object sender,
 EventArgs e)
 {

int selectedRowIndex;
 selectedRowIndex = grid.SelectedIndex;
 GridViewRow row = grid.Rows[selectedRowIndex];
 string name = row.Cells[0].Text;
 detailsLabel.Text = "You selected " + name + ".";
 }

481Managing Content Using GridView and DetailsView

Execute the project, and select one of the records. You should see a display like the

one in Figure 11.9.

Figure 11.9. Displaying details about the selected row

It was easy to add this new feature, wasn’t it?

Using the DetailsView Control
ASP.NET 2.0 introduced the DetailsView control, which can come in very handy

when you want to display more details about one record in a grid. You’ll find this

control very useful when you need to display details about a record that contains

many fields—so many, in fact, that the main grid can’t display all of them.

The DetailsView control is commonly used to create a page that shows a list of

items, and allows you to drill down to view the details of each item. For instance,

an ecommerce site might initially present users with only a little information about

all available products, to reduce download time and make the information more

Build Your Own ASP.NET 4 Website Using C# & VB482

readable. Users could then select a product to see a more detailed view of that

product.

Let’s see how this works by using a GridView and a DetailsView in our Address

Book web form. Replace detailsLabel with a DetailsView control, as shown in

the following code snippet:

Dorknozzle\VB\09_AddressBook.aspx (excerpt)

 ⋮
 <asp:GridView ID="grid" runat="server"
 AutoGenerateColumns="false">
 ⋮
 </asp:GridView>

 <asp:DetailsView id="employeeDetails" runat="server" />
</asp:Content>

Next, we’ll modify the BindGrid method to specify the grid’s data key. The data

key feature of the GridView control basically allows us to store a piece of data about

each row without actually displaying that data. We’ll use it to store the EmployeeID

of each record. Later, when we need to retrieve additional data about the selected

employee, we’ll be able to read the employee’s ID from the data key, and use it in

our SELECT query. Add this line to your code-behind file:

Visual Basic Dorknozzle\VB\10_AddressBook.aspx.vb (excerpt)

Try
 conn.Open()
 reader = comm.ExecuteReader()
 grid.DataSource = reader
grid.DataKeyNames = New String() {"EmployeeID"}

 grid.DataBind()
 reader.Close()

C# Dorknozzle\CS\10_AddressBook.aspx.cs (excerpt)

try
{
 conn.Open();
 reader = comm.ExecuteReader();
 grid.DataSource = reader;

483Managing Content Using GridView and DetailsView

grid.DataKeyNames = new string[] { "EmployeeID" };
 grid.DataBind();
 reader.Close();
}

As you can see, we tell the GridViewwhich keys to store by setting the DataKeyNames

property. This property needs to be populated with an array of keys, because the

GridView supports storing zero, one, or many keys for each row it displays. In this

case, we create an array that contains just one value: EmployeeID. In the code you’ve

just written, you can see the syntax that creates such an array on the fly, without

declaring an array first.

After you make this change, you’ll be able to access the EmployeeID value for any

given row through the GridView’s DataKeys property.

With this new data to hand, loading the details of the selected employee into the

DetailsView is a straightforward process. Within the GridView’s SelectedIndex-

Changed event handler, we just need to make another database query to read the

details we want to display for the selected employee, then simply feed the results

into the DetailsView object, like this:

Visual Basic Dorknozzle\VB\11_AddressBook.aspx.vb (excerpt)

Protected Sub grid_SelectedIndexChanged(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles grid.SelectedIndexChanged
 BindDetails()
End Sub

Private Sub BindDetails()
 Dim selectedRowIndex As Integer = grid.SelectedIndex
 Dim employeeId As Integer = _
 grid.DataKeys(selectedRowIndex).Value
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim reader As SqlDataReader
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand(_
 "SELECT EmployeeID, Name, Address, City, State, Zip, " & _
 "HomePhone, Extension FROM Employees " & _

Build Your Own ASP.NET 4 Website Using C# & VB484

 "WHERE EmployeeID=@EmployeeID", conn)
 comm.Parameters.Add("EmployeeID", Data.SqlDbType.Int)
 comm.Parameters("EmployeeID").Value = employeeId
 Try
 conn.Open()
 reader = comm.ExecuteReader()
 employeeDetails.DataSource = reader
 employeeDetails.DataKeyNames = New String() {"EmployeeID"}
 employeeDetails.DataBind()
 reader.Close()
 Finally
 conn.Close()
 End Try
End Sub

C# Dorknozzle\CS\11_AddressBook.aspx.cs (excerpt)

protected void grid_SelectedIndexChanged(object sender, EventArgs e)
{
BindDetails();

}
private void BindDetails()
{
 int selectedRowIndex = grid.SelectedIndex;
 int employeeId = (int)grid.DataKeys[selectedRowIndex].Value;
 SqlConnection conn;
 SqlCommand comm;
 SqlDataReader reader;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand(
 "SELECT EmployeeID, Name, Address, City, State, Zip, " +
 "HomePhone, Extension FROM Employees " +
 "WHERE EmployeeID=@EmployeeID", conn);
 comm.Parameters.Add("EmployeeID", SqlDbType.Int);
 comm.Parameters["EmployeeID"].Value = employeeId;
 try
 {
 conn.Open();
 reader = comm.ExecuteReader();
 employeeDetails.DataSource = reader;
 employeeDetails.DataKeyNames = new string[] { "EmployeeID" };
 employeeDetails.DataBind();

485Managing Content Using GridView and DetailsView

 reader.Close();
 }
 finally
 {
 conn.Close();
 }
}

Now, if you execute the project and select one of the employees, you should see a

page like the one shown in Figure 11.10.

Styling the DetailsView
Displaying the data in the DetailsView control is easy enough, but you’ll probably

want to make it look a bit prettier. We’ll start by changing the row headings in the

left-hand column. Open AddressBook.aspx and modify the DetailsView control like

this:

Dorknozzle\VB\12_AddressBook.aspx (excerpt)

<asp:DetailsView id="employeeDetails" runat="server"
AutoGenerateRows="False">

<Fields>
 <asp:BoundField DataField="Address" HeaderText="Address" />
 <asp:BoundField DataField="City" HeaderText="City" />
 <asp:BoundField DataField="State" HeaderText="State" />
 <asp:BoundField DataField="Zip" HeaderText="Zip" />
 <asp:BoundField DataField="HomePhone"
 HeaderText="Home Phone" />
 <asp:BoundField DataField="Extension"
 HeaderText="Extension" />
 </Fields>
 <HeaderTemplate>
 <%#Eval("Name")%>
 </HeaderTemplate>
</asp:DetailsView>

As you can see, we customize the DetailsView control in a similar way to the

GridView, except that this time we’re dealing with fields instead of rows. We set

the AutoGenerateRows property to False. Then, we define the fields we want to

show, and create a HeaderTemplate to display the name of the employee in the

header—we’ll see what this looks like in a minute.

Build Your Own ASP.NET 4 Website Using C# & VB486

Figure 11.10. The DetailsView control in action

To further improve the appearance of the DetailsView, add this skin to SkinFile.skin:

Dorknozzle\VB\13_SkinFile.skin (excerpt)

<asp:DetailsView runat="server" CssClass="GridMain"
 CellPadding="4" GridLines="None">
 <RowStyle CssClass="GridRow" />
 <HeaderStyle CssClass="GridHeader" />
</asp:DetailsView>

Here, we’ve defined a style that’s similar to the GridView control, which will ensure

that our page has a consistent appearance. Save your work, open AddressBook.aspx

in the browser, and select an employee. You should see something similar to Fig-

ure 11.11.

We’re really making progress now. There’s only one problem—our employee records

don’t include any addresses, and at this moment there’s no way to add any! Let’s

take care of this next.

487Managing Content Using GridView and DetailsView

Figure 11.11. Viewing employee details

GridView and DetailsView Events
In order to use the GridView and DetailsView controls effectively, we need to know

how to handle their events. In this section, we’ll learn about the events raised by

these controls. We’ll focus on the events that relate to editing and updating data,

as our next goal will be to allow users to edit employee details in the DetailsView.

Earlier, you learned how to respond to the user’s clicking of the Select button by

handling the GridView’s SelectedIndexChanged event. Soon you’ll implement

editing functionality, which you’ll achieve by adding an Edit button to the

DetailsView control. The editing features of the GridView and the DetailsView

Build Your Own ASP.NET 4 Website Using C# & VB488

are very similar, so you can apply the same principles—and almost the same code—to

both of them.

Both the GridView and DetailsView controls support Edit command buttons, which

will place Edit buttons in the control when the page loads. Once one of the Edit

buttons has been clicked, the row (in case of GridView) or the entire form (in case

of DetailsView) will become editable, and instead of an Edit button, users will see

Update and Cancel buttons.

These features are fairly amazing, because you can achieve this “edit mode” without

writing any HTML at all: the columns know how to render their editable modes by

themselves. If you don’t like their default edit mode appearances, you can customize

them using templates.

Before we write any code, let’s see what this edit mode looks like. Figure 11.12

shows a GridView control in which one row appears in edit mode.

Figure 11.12. GridView in edit mode

Figure 11.13 shows a DetailsView control in edit mode.

489Managing Content Using GridView and DetailsView

Figure 11.13. DetailsView in edit mode

When command buttons such as Edit are clicked, they raise events that we can

handle on the server side. The GridView supports more kinds of command buttons,

each of which triggers a certain event that we can handle. The action types and the

events they trigger are listed in Table 11.1.

Table 11.1. GridView Action Types and the Events They Trigger

Events Triggered When ClickedAction

SelectedIndexChanging, SelectIndexChangedSelect

RowEditingEdit

RowUpdating, RowUpdatedUpdate

RowCancelingEditCancel

RowDeleting, RowDeletedDelete

RowSorting, RowSorted(sorting buttons)

RowCommand(custom action)

The DetailsView control, on the other hand, has buttons and events that refer to

items, rather than rows, which makes sense when you realize that DetailsView is

used to display the items in one record, while GridView displays a few items from

many records. The DetailsView action types, and the events they generate, are listed

in Table 11.2.

Build Your Own ASP.NET 4 Website Using C# & VB490

Table 11.2. DetailsView Action Types and the Events They Trigger

Events triggered when clickedAction

PageIndexChanging, PageIndexChanged(paging controls)

ItemDeleting, ItemDeletedDelete

ItemInserting, ItemInsertedInsert

ModeChanging, ModeChangedEdit

ItemUpdating, ItemUpdatedUpdate

RowDeleting, RowDeletedDelete

ItemCommand(custom action)

Notice that, except for the RowCommand (for the GridView) and the ItemCommand (for

the DetailsView) events, we have some events that are named in the present tense

(that is, those that end in “ing,” such as SelectedIndexChanging and ItemUpdating),

and other events that are named in the past tense (that is, those that end in “ed,”

such as SelectIndexChanged and ItemUpdated). The events that end in “ing” are

fired just before their past-tense counterparts, and should be handled only if you

want to implement some logic to determine whether the action in question should

be performed.

The “ed” events, on the other hand, should perform the actual task of the button.

We saw such an event handler when we handled the SelectIndexChanged event

of our GridView control. In this handler, we queried the database to get the details

of the selected employee, then displayed the result in a DetailsView control.

If we wanted to disallow the selection of a particular employee (say, the employee

with the ID 1), we could do so by setting e.Cancel to True in the SelectIndexChan-

ging event handler, as shown below:

Visual Basic

Protected Sub grid_SelectedIndexChanging(ByVal sender As Object,
➥ ByVal e As GridViewSelectEventArgs)
➥ Handles grid.SelectedIndexChanging
 Dim selectedRowIndex As Integer = grid.SelectedIndex
 Dim employeeId As Integer = _
 grid.DataKeys(selectedRowIndex).Value
 If employeeId = 1 Then

491Managing Content Using GridView and DetailsView

 e.Cancel = True
 End If
End Sub

C#

protected void grid_SelectedIndexChanging(object sender,
 GridViewSelectEventArgs e)
{
 int selectedRowIndex = grid.SelectedIndex;
 int employeeId = (int)grid.DataKeys[selectedRowIndex].Value;
 if (employeeId == 1)
 {
 e.Cancel = true;
 }
}

Where’s RowEdited?

Note that, in the case of the Edit action in the GridView, there’s no RowEdited

event. Why not? Well, it wouldn’t make much sense to have one—GridView

knows what to do when an editing action is approved to take place. More specific-

ally, when a row enters edit mode, it’s displayed using the default editing style

of the column. The built-in column types (such as bound columns, check box

columns, and so on) have built-in editing templates, which you can customize by

providing custom templates.

Entering Edit Mode
To get a better grasp on all this theory, let’s look at another example. Here, we’ll

modify the DetailsView control to let users update employee data. To implement

GridView or DetailsView editing, we can use a CommandField column.

Let’s get started. Open AddressBook.aspx in the designer, click the DetailsView’s

smart tag, and choose Add New Field…. In the Choose a field type drop-down, select

CommandField, and check the Edit/Update checkbox, as shown in Figure 11.14.

Build Your Own ASP.NET 4 Website Using C# & VB492

Figure 11.14. Adding the Edit/Update CommandField

If you’d prefer to add the new column by hand, do so by adding it to

AddressBook.aspx. Either way, you should end up with the following code:

Dorknozzle\VB\14_AddressBook.aspx (excerpt)

<asp:DetailsView id="employeeDetails" runat="server"
 AutoGenerateRows="False">
 <Fields>
 <asp:BoundField DataField="Address" HeaderText="Address" />
 <asp:BoundField DataField="City" HeaderText="City" />

493Managing Content Using GridView and DetailsView

 <asp:BoundField DataField="State" HeaderText="State" />
 <asp:BoundField DataField="Zip" HeaderText="Zip" />
 <asp:BoundField DataField="HomePhone"
 HeaderText="Home Phone" />
 <asp:BoundField DataField="Extension"
 HeaderText="Extension" />

<asp:CommandField ShowEditButton="True" />
 </Fields>
 <HeaderTemplate>
 <%#Eval("Name")%>
 </HeaderTemplate>
</asp:DetailsView>

The new item will appear in the designer as an Edit link immediately below the list

of columns. If you execute the project and click that Edit link, an exception will be

thrown, telling you that you didn’t handle the ModeChanging event. The DetailsView

control doesn’t know how to switch itself to edit mode, but fortunately, it’s extremely

easy to write the code yourself.

To have Visual Web Developer generate the ModeChanging event signature for you,

open AddressBook.aspx in Design view, select the DetailsView control, click the

yellow button with the lightning symbol in the Properties window to display the

list of the control’s events, and double-click on the ModeChanging entry. This will

generate an empty event handler for you (as well as the onmodechanging property

on the DetailsView control if you’re using C#), and take you straight to the function

in the code-behind file. Complete the generated code like this:

Visual Basic Dorknozzle\VB\15_AddressBook.aspx.vb (excerpt)

Protected Sub employeeDetails_ModeChanging(ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.DetailsViewModeEventArgs)
➥ Handles employeeDetails.ModeChanging
 employeeDetails.ChangeMode(e.NewMode)
 BindDetails()
End Sub

C# Dorknozzle\CS\15_AddressBook.aspx.cs (excerpt)

protected void employeeDetails_ModeChanging(object sender,
 DetailsViewModeEventArgs e)
 {

Build Your Own ASP.NET 4 Website Using C# & VB494

employeeDetails.ChangeMode(e.NewMode);
 BindDetails();
 }

Execute the project and click the Edit button. This will transform the control as

shown in Figure 11.15.

Figure 11.15. The DetailsView in edit mode

In order to understand the code in employeeDetails_ModeChanging, you need to

know about the display modes of the DetailsView control. The DetailsView control

supports three display modes. You can change the current mode using its ChangeMode

method, providing as parameter one of these values:

495Managing Content Using GridView and DetailsView

DetailsViewMode.ReadOnly

This is the default mode, which is used to display data. When you execute your

project, and load the details of an employee, you see those details in ReadOnly

mode.

DetailsViewMode.Edit

This mode is used to edit an existing record. We saw this mode in action earlier,

when we clicked the Edit button.

DetailsViewMode.Insert

We use this mode to insert a new record. It’s similar to the edit mode, except

all the controls are empty, so you can fill in data for a new item.

If you look at the employeeDetails_ModeChanging, you’ll see it receives a parameter

named e that is an object of class DetailsViewModeEventArgs. e’s NewMode property

tells us which display mode was requested by the user. Its value will be Details-

ViewMode.Edit when the ModeChanging event is fired as a result of the Edit button

being clicked. We pass this value to the DetailsView control’s ChangeMode method,

which does exactly as its name suggests: it changes the mode of the DetailsView.

With this code, you’ve implemented the functionality to make both the Edit and

Cancel buttons work correctly, as we’ll see in an example shortly.

However, note that once you switch to edit mode, clicking the Update button will

generate an error, because we still haven’t handled the ItemUpdating event that’s

fired when the user tries to save changes to a record. We’ll create the event handler

later; next, we want to improve our existing solution using templates.

Using Templates
The built-in column types are sufficiently varied and configurable to provide for

most of the functionality you’re likely to need, but in cases where further customiz-

ation is required, you can make the desired changes using templates. In the smart

tag menu of the GridView and DetailsView controls, you’ll see an option called

Edit Columns (for the GridView) or Edit Fields (for the DetailsView). Select that option

to open a dialog that provides us with a great deal of control over the options for

each column or field.

You’ll notice a Convert this field into a TemplateField link in the dialog. Let’s see how

this works. Click the smart tag of your DetailsView control, then click Edit Fields.

Build Your Own ASP.NET 4 Website Using C# & VB496

In the dialog that appears, select the Address field from the Selected fields list, as

shown in Figure 11.16.

Figure 11.16. Editing a field’s properties

Click the Convert this field into a TemplateField link to have Visual Web Developer

create a template that simulates the current functionality of the field, then click OK

to close the dialog.

So, what happened? Let’s switch AddressBook.aspx to Source view. After you convert

the field to a template field, its definition will look like this:

Dorknozzle\VB\16_AddressBook.aspx (excerpt)

<asp:DetailsView id="employeeDetails" runat="server"
 AutoGenerateRows="False">
 <Fields>

<asp:TemplateField HeaderText="Address">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server"
 Text='<%# Bind("Address") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server"
 Text='<%# Bind("Address") %>'></asp:TextBox>

497Managing Content Using GridView and DetailsView

 </InsertItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server"
 Text='<%# Bind("Address") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="City" HeaderText="City" />
 ⋮
 <asp:CommandField ShowEditButton="True" />
 </Fields>
 ⋮
</asp:DetailsView>

Cool, huh? Visual Web Developer did a little bit of magic for us: it replaced the

BoundField column that used to display the address with a TemplateField contain-

ing an ItemTemplate, an EditItemTemplate, and an InsertItemTemplate. Despite

these alterations, the current functionality hasn’t changed: you can still execute

your project and load the address book, and it will continue to work as before. The

difference is that now you can easily refer to these inner controls from your code,

you can easily change their appearance using custom HTML code, and, if you wish,

you can replace them with totally different controls. The power is in your hands.

For example, you can widen the TextBox controls that are used to edit the fields,

as well as performing other kinds of customizations. You can also give specific IDs

to the inner template controls, rather than using their default generic names, so that

you can find them easily when you need to.

Beware of ReadOnly

Note that if you set a column as read-only (by setting the column’s ReadOnly

property to True) prior to its conversion, Visual Web Developer will use a Label

control instead of a TextBox control in the EditItemTemplate for that field.

Thus, when the grid enters edit mode, that particular column won’t be transformed

into a TextBox, so its read-only behavior will be conserved.

Now, convert the other fields—except for CommandField—to template fields. Then,

we’ll modify the generated code by altering the TextBox controls, and assigning

appropriate names to our controls. To keep things simple, we’re only going to make

Build Your Own ASP.NET 4 Website Using C# & VB498

changes to the Address and City fields in the code samples provided here—you can

update the others yourself. Let’s get started:1

Dorknozzle\VB\17_AddressBook.aspx (excerpt)

<asp:TemplateField HeaderText="Address">
 <EditItemTemplate>
 <asp:TextBox ID="editAddressTextBox" runat="server"
 Text='<%# Bind("Address") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="insertAddressTextBox" runat="server"
 Text='<%# Bind("Address") %>'></asp:TextBox>
 </InsertItemTemplate>
 <ItemTemplate>
 <asp:Label ID="addressLabel" runat="server"
 Text='<%# Bind("Address") %>'></asp:Label>
 </ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="City">
 <EditItemTemplate>
 <asp:TextBox ID="editCityTextBox" runat="server"
 Text='<%# Bind("City") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="insertCityTextBox" runat="server"
 Text='<%# Bind("City") %>'></asp:TextBox>
 </InsertItemTemplate>
 <ItemTemplate>
 <asp:Label ID="cityLabel" runat="server"
 Text='<%# Bind("City") %>'></asp:Label>
 </ItemTemplate>
</asp:TemplateField>

Execute your project, load the address book, select one employee, and click the Edit

link to ensure everything works (and looks) as shown in Figure 11.17.

1 If you’re feeling lazy, you’ll be pleased to hear that updating the other fields is optional for the purposes

of this chapter.

499Managing Content Using GridView and DetailsView

Figure 11.17. After the DetailsView’s BoundFields have been converted to TemplateFields

Updating DetailsView Records
Now that you have your DetailsView control in place, let’s complete its function-

ality by making the Update link functional. To begin, we’ll generate the ItemUpdating

event handler. The ItemUpdating event is triggered when the Update link is

clicked—an action that will occur once the user enters new data into the text boxes

and is ready to commit the updated data to the database.

Updating Employee Details

To keep the code in this chapter short, we’re only showing the code that’s required

to update a couple of the fields in the Employees table. Adding the code to update

the rest of the fields is easy, so we’ve left it as a task for you to complete on your

own. If you decide to have a go (and you should!), don’t forget to update the stored

procedure in the database as well as the code-behind file.

To take care of the actual database update, though, we will be using a stored proced-

ure called UpdateEmployeeDetails. To create this stored procedure, run the follow-

ing script in SQL Server Management Studio:

Build Your Own ASP.NET 4 Website Using C# & VB500

Dorknozzle\VB\18_UpdateEmployeeDetails.sql (excerpt)

CREATE PROCEDURE UpdateEmployeeDetails
(
 @EmployeeID Int,
 @NewAddress nvarchar(50),
 @NewCity nvarchar(50)
)
AS
UPDATE Employees
SET Address = @NewAddress, City = @NewCity
WHERE EmployeeID = @EmployeeID

Now that our stored procedure is in place, we can add the code for the Update link,

Open AddressBook.aspx in the designer, select the DetailsView control, and switch

to the events viewer by clicking the Event button (the little lightning symbol) in the

Properties window. There, double-click the ItemUpdating row to have the designer

generate the employeeDetails_ItemUpdating method for you (and of course the

onitemupdating property if you’re using C#), and update the handler with the code

shown below:

Visual Basic Dorknozzle\VB\19_AddressBook.aspx.vb (excerpt)

Protected Sub employeeDetails_ItemUpdating(ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.DetailsViewUpdateEventArgs)
➥ Handles employeeDetails.ItemUpdating
 Dim employeeId As Integer = employeeDetails.DataKey.Value
 Dim newAddressTextBox As TextBox = _
 employeeDetails.FindControl("editAddressTextBox")
 Dim newCityTextBox As TextBox = _
 employeeDetails.FindControl("editCityTextBox")
 Dim newAddress As String = newAddressTextBox.Text
 Dim newCity As String = newCityTextBox.Text
 Dim conn As SqlConnection
 Dim comm As SqlCommand
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 comm = New SqlCommand("UpdateEmployeeDetails", conn)
 comm.CommandType = Data.CommandType.StoredProcedure
 comm.Parameters.Add("@EmployeeID", Data.SqlDbType.Int)
 comm.Parameters("@EmployeeID").Value = employeeId

501Managing Content Using GridView and DetailsView

 comm.Parameters.Add("@NewAddress", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewAddress").Value = newAddress
 comm.Parameters.Add("@NewCity", Data.SqlDbType.NVarChar, 50)
 comm.Parameters("@NewCity").Value = newCity
 Try
 conn.Open()
 comm.ExecuteNonQuery()
 Finally
 conn.Close()
 End Try
 employeeDetails.ChangeMode(DetailsViewMode.ReadOnly)
 BindGrid()
 BindDetails()
End Sub

C# Dorknozzle\CS\19_AddressBook.aspx.cs (excerpt)

protected void employeeDetails_ItemUpdating(object sender,
 DetailsViewUpdateEventArgs e)
 {

int employeeId = (int)employeeDetails.DataKey.Value;
 TextBox newAddressTextBox =
 (TextBox)employeeDetails.FindControl("editAddressTextBox");
 TextBox newCityTextBox =
 (TextBox)employeeDetails.FindControl("editCityTextBox");
 string newAddress = newAddressTextBox.Text;
 string newCity = newCityTextBox.Text;
 SqlConnection conn;
 SqlCommand comm;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 comm = new SqlCommand("UpdateEmployeeDetails", conn);
 comm.CommandType = CommandType.StoredProcedure;
 comm.Parameters.Add("EmployeeID", SqlDbType.Int);
 comm.Parameters["EmployeeID"].Value = employeeId;
 comm.Parameters.Add("NewAddress", SqlDbType.NVarChar, 50);
 comm.Parameters["NewAddress"].Value = newAddress;
 comm.Parameters.Add("NewCity", SqlDbType.NVarChar, 50);
 comm.Parameters["NewCity"].Value = newCity;
 try
 {
 conn.Open();
 comm.ExecuteNonQuery();

Build Your Own ASP.NET 4 Website Using C# & VB502

 }
 finally
 {
 conn.Close();
 }
 employeeDetails.ChangeMode(DetailsViewMode.ReadOnly);
 BindGrid();
 BindDetails();
 }

This code is fairly straightforward. It starts by reading the value of the DataKey of

the DetailsView object. As we saw earlier, the DetailsView, like the GridView, is

able to store the ID of the record (or records) it’s displaying. You’ll remember that

we made the DetailsView object aware of the EmployeeID data key when we bound

the DetailsView to its data source in the BindDetails method. We read this inform-

ation in the ItemUpdating event handler, like so:

Visual Basic Dorknozzle\VB\19_AddressBook.aspx.vb (excerpt)

Dim employeeId As Integer = employeeDetails.DataKey.Value

C# Dorknozzle\CS\19_AddressBook.aspx.cs (excerpt)

int employeeId = (int) employeeDetails.DataKey.Value;

The next step is to find the TextBox objects that contain the updated data. We do

this using the FindControl method, as we’ve seen previously. After we obtain the

control references, we obtain the string values that we’re interested in simply by

reading their Text properties, as you can see in the following code snippets:

Visual Basic Dorknozzle\VB\19_AddressBook.aspx.vb (excerpt)

Dim newAddressTextBox As TextBox = _
 employeeDetails.FindControl("editAddressTextBox")
Dim newCityTextBox As TextBox = _
 employeeDetails.FindControl("editCityTextBox")
Dim newAddress As String = newAddressTextBox.Text
Dim newCity As String = newCityTextBox.Text

503Managing Content Using GridView and DetailsView

C# Dorknozzle\CS\19_AddressBook.aspx.cs (excerpt)

TextBox newAddressTextBox =
 (TextBox)employeeDetails.FindControl("editAddressTextBox");
TextBox newCityTextBox =
 (TextBox)employeeDetails.FindControl("editCityTextBox");
string newAddress = newAddressTextBox.Text;
string newCity = newCityTextBox.Text;

After we obtain the data we wish to insert into the database, we call the UpdateEm-

ployeeDetails stored procedure we created earlier. The database connection and

command code is identical to the code we’ve used previously, so we don’t need to

examine it again.

In the last part of employeeDetails_ItemUpdating, we rebind both the GridView

and the DetailsView with the updated information, and switch the DetailsView

back to its read-only state:

Visual Basic Dorknozzle\VB\19_AddressBook.aspx.vb (excerpt)

employeeDetails.ChangeMode(DetailsViewMode.ReadOnly)
BindGrid()
BindDetails()

C# Dorknozzle\CS\19_AddressBook.aspx.cs (excerpt)

employeeDetails.ChangeMode(DetailsViewMode.ReadOnly);
BindGrid();
BindDetails();

The code is ready to be executed! Try updating the addresses of your employees to

ensure the feature works correctly—it should display as shown in Figure 11.18.

Build Your Own ASP.NET 4 Website Using C# & VB504

Figure 11.18. Updating an employee’s address and city

Summary
As we’ve seen throughout this chapter, GridViews and DetailsViews provide

enormous flexibility and power in terms of presenting database data dynamically

within the browser. In these pages, we learned how to create both of these data

controls and bind data to them. We also learned how to customize the appearance

of elements using templates and styles, and saw how various commands allow us

to select and update items. You can use these techniques to add new records, and

update existing ones.

The next chapter will begin to introduce you to advanced programming topics, as

we investigate even more possibilities for data binding the DetailsView control to

allow for the editing, updating, and insertion of new records with minimal coding

505Managing Content Using GridView and DetailsView

effort. We’ll also have a chance to explore the topic of code-free data binding in that

chapter.

Build Your Own ASP.NET 4 Website Using C# & VB506

Chapter12
Advanced Data Access
In the last three chapters, you learned some of the important concepts of data access

and presentation. You learned how to use the SqlConnection class to establish a

connection to the database, you learned how to use the SqlCommand class to execute

a query on a database table, and you learned how to return the results of the com-

mand into an SqlDataReader for use within the application.

In this chapter, we’ll discuss the alternatives to using the SqlDataReader object for

retrieving data from your database. For starters, it’s important to understand that

SqlDataReader has both advantages and disadvantages. The two main points you

need to keep in mind about SqlDataReader are:

■ It represents the fastest method available to read data from the data source.
■ It allows read-only, forward-only access to data.

In other words, the SqlDataReader achieves very high performance at the cost of

providing a direct connection to the data source. It doesn’t store the data locally,

so after it reads one record and moves to the next, there’s no way to go back. The

SqlDataReader basically offers an input data stream that you can read in the order

in which it was sent, but which you are unable to modify.

However, SqlDataReader isn’t the only way to access your data, and in many

scenarios, it makes sense to use one of the two popular alternatives:

1. The first option involves using the new ADO.NET data source controls, which

are tightly integrated with the GridView and DetailsView controls. They allow

you to implement reading, updating, deleting, inserting, paging, and sorting fea-

tures very easily—for the most part, you don’t even need to write any code!

2. The second approach involves using the SqlDataAdapter class in conjunction

with the DataTable, DataView, and DataSet classes, which are able to read data

from the database and store it locally, allowing you to browse, filter, and sort

data in your code without leaving a connection to the database open. This

method occupies more memory on the server that runs your application, and

means that fewer of Visual Web Developer’s automated features are available to

you (you have to write more code!), but it does give you more flexibility in terms

of what you can do with your data.

In this chapter, you’ll learn how to use both of these data access methods.

Using Data Source Controls
The .NET framework offers seven data source controls: SqlDataSource,

AccessDataSource, LinqDataSource, ObjectDataSource, XmlDataSource,

EntityDataSourceand SiteMapDataSource. These objects enable automatic connec-

tion to various data sources and provide easy ways to read or modify your database

using data-bound controls:

■ SqlDataSource allows you to connect to any data source that has an ADO.NET

data provider. The default providers are SqlClient, OracleClient, OleDb, and

Odbc. Even though the name of the class is SqlDataSource, the fact that its name

begins with Sql doesn’t mean it works only with SQL Server—it’s really very

flexible. This is the data source we’ll work with in this chapter.

■ AccessDataSource is the data source object we use to connect to Access data-

bases.

■ LinqDataSource is the data source object you can use to connect to Language-

Integrated Query (LINQ) data sources. This is an advanced ADO.NET feature

that we will cover later in this book.

Build Your Own ASP.NET 4 Website Using C# & VB508

■ ObjectDataSource allows us to connect to custom data access classes, and is

appropriate when we’re creating complex application architectures.

■ XmlDataSource knows how to connect to XML files.

■ EntityDataSource is the data source object that connects to objects using the

Entity Framework. Data access using the Entity Framework is outside the scope

of this book, but it is heavily similar to LINQ-To-SQL which we will cover.

■ SiteMapDataSource knows how to connect to a site map data source, and can

be used to generate site maps. We worked a little with this data source control

in Chapter 4.

You can find these controls in the Data tab of Visual Web Developer’s Toolbox, as

Figure 12.1 shows.

Figure 12.1. The Data Source Controls in the Toolbox

In Chapter 11, we implemented the functionality required to show employee details

in the Dorknozzle Address Book page (AddressBook.aspx). We used the SqlDataReader

class for the task, which means we’ve achieved the best possible performance.

However, we wrote quite a bit of code to implement the viewing and editing features

509Advanced Data Access

for that page, and we’d need to do even more hand coding to implement paging,

sorting, and inserting features.

This time, to make it easier on our fingers, we’ll use the SqlDataSource object in-

stead. This object can automate many tasks for us, and while it may not always

provide the best performance or the greatest flexibility, it’s important that we know

how to use it, because it can come in very handy for quick programming tasks.

Binding the GridView to a SqlDataSource
We’ll start by binding the GridView control in AddressBook.aspx to a SqlDataSource;

we’ll deal with the DetailsView control later. Since the data sources work with

different SQL queries, we’ll need to create two data sources: one that reads all em-

ployees (to populate the GridView), and one that reads the details of one employee

(to populate the DetailsView).

Let’s start by deleting all the code in the code-behind file (AddressBooks.aspx.vb or

AddressBook.aspx.cs). Yes, you’ve read this correctly: we’re starting from scratch! As

you’ll see, we can implement a large number of features without any code at all

when we use the SqlDataSource class. Leave your code-behind files like this:

Visual Basic Dorknozzle\VB\01_AddressBook.aspx.vb (excerpt)

Imports System.Data.SqlClient

Partial Class AddressBook
 Inherits System.Web.UI.Page

End Class

C# Dorknozzle\CS\01_AddressBook.aspx.cs (excerpt)

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

Build Your Own ASP.NET 4 Website Using C# & VB510

using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using System.Data.SqlClient;

public partial class AddressBook : System.Web.UI.Page
{

}

If you’re using C#, you’ll also need to delete the event handler declarations from

AddressBook.aspx. Remove the OnSelectedIndexChanged property from the GridView

control, and the OnModeChanging and OnItemUpdating properties from the

DetailsView control.

Open AddressBook.aspx in Design view, and drag the SqlDataSource control from

the Toolbox (it’s located under the Data tab) onto the form. You can place it anywhere

you like—the location isn’t relevant because the control doesn’t display in the

browser. Of course, it will appear in the Design view, as Figure 12.2 shows.

Figure 12.2. AddressBook.aspx with an SqlDataSource control

511Advanced Data Access

Rename the object employeesDataSource. In Source view, the code for the new

control should look like this:

Dorknozzle\VB\02_AddressBook.aspx (excerpt)

<asp:SqlDataSource id="employeesDataSource" runat="server">
</asp:SqlDataSource>

Switch back to Design view, click the SqlDataSource control’s smart tag, and select

Configure Data Source. A dialog will appear, giving us the opportunity to provide

the details of the data source. In the first page of the dialog, we specify the data

connection we want to use. If we hadn’t already added the Dorknozzle connection

string to the Web.config file, we could have clicked the New Connection… button,

and used the wizard to add a connection string to Web.config. However, as we’ve

already set up the connection string, we simply choose it from the drop-down list,

as shown in Figure 12.3.

Figure 12.3. Specifying the connection string

After we’ve selected the Dorknozzle connection, we click Next. This is where the

fun begins!

Build Your Own ASP.NET 4 Website Using C# & VB512

In the next screen, we can specify the database table and the columns that we want

our data source object to handle. Select the Employees table and check the Employ-

eeID, Name, City, and MobilePhone columns, as depicted in Figure 12.4.

Figure 12.4. Choosing columns

Figure 12.5. Specifying an ORDER BY clause

513Advanced Data Access

Click the ORDER BY… button and select the Name column (or any other column by

which you want to sort your employees), as illustrated in Figure 12.5.

Click OK, then Next. In the dialog that appears, press the Test Query button to test

that the query will work with this data source. If everything worked well, you should

be shown a list of employees similar to the one depicted in Figure 12.6. Finally,

click Finish.

Figure 12.6. Testing the data source

Before we move on, let’s take a look at the new code we’ve added to AddressBook.aspx.

If you switch to Source view, you’ll see that quite a bit of code has been created for

you. Let’s look at the SqlDataSource object first:

Dorknozzle\VB\03_AddressBook.aspx (excerpt)

<asp:SqlDataSource ID="employeesDataSource" runat="server"
 ConnectionString="<%$ ConnectionStrings:Dorknozzle %>"
 SelectCommand="SELECT [EmployeeID], [Name], [City],
 [MobilePhone] FROM [Employees] ORDER BY [Name]">
</asp:SqlDataSource>

Build Your Own ASP.NET 4 Website Using C# & VB514

This object is amazing in its simplicity, yet the GridView can connect to it and dis-

play the required data with very little additional effort. Let’s use this SqlDataSource

object to populate the GridView.

In AddressBook.aspx, use either Source view or the Properties window in Design view

to set the properties of the GridView control to those outlined in Table 12.1.

Table 12.1. Properties to Set for the GridView Control

ValueProperty

employeesDataSourceDataSourceID

EmployeeIDDataKeyNames

TrueAllowPaging

3PageSize

TrueAllowSorting

Don’t Overwrite the Columns!

If you set the DataSourceID property in Design view, Visual Web Developer will

ask if you’d like to clear the column data and replace it with that from the data

source, as Figure 12.7 illustrates. Make sure you choose No, because we’re happy

with the columns we decided to display when creating the grid in Chapter 11.

Figure 12.7. We’re not refreshing the GridView fields

PageSize specifies the number of records the GridView should display on every

product page. Normally, we’d want this number to be greater than three, but we’ve

set it to a low number here so that we can test the paging functionality with our

sample data. AllowPaging enables GridView’s paging functionality, which will

cause paging links to be displayed. When we set AllowSorting to True, it will allow

515Advanced Data Access

us to change the column names into links that users can click to sort the data on

the basis of that field; we’ll do this in a moment.

After the above properties have been set, the GridView control source should look

like this:

Dorknozzle\VB\04_AddressBook.aspx (excerpt)

<asp:GridView id="grid" runat="server" AutoGenerateColumns="False"
AllowPaging="True" AllowSorting="True" DataKeyNames="EmployeeID"

 DataSourceID="employeesDataSource" PageSize="3">
 <Columns>
 ⋮
 </Columns>
</asp:GridView>

Let’s also deal with style issues by adding the lines below to the skin file, SkinFile.skin.

The PagerStyle defines the style used by the cells that contain the paging buttons;

we’ll see these buttons in a moment:

Dorknozzle\VB\05_SkinFile.skin (excerpt)

<asp:GridView runat="server" CssClass="GridMain" CellPadding="4"
 GridLines="None">
 <RowStyle CssClass="GridRow" />
 <SelectedRowStyle CssClass="GridSelectedRow" />
 <HeaderStyle CssClass="GridHeader" />
<PagerStyle CssClass="GridRow" />

</asp:GridView>

<asp:DetailsView runat="server" CssClass="GridMain"
 CellPadding="4" GridLines="None">
 <RowStyle CssClass="GridRow" />
 <HeaderStyle CssClass="GridHeader" />
<PagerStyle CssClass="GridRow" />

</asp:DetailsView>

To enable column sorting, you need to click the grid’s smart tag in Design view and

choose Edit Columns…. We want to allow sorting by name and by city, so we’ll alter

these columns only. Start by selecting the Name column from the Selected fields box.

Then, from its properties box on the right, choose Name for its SortExpression

property as depicted in Figure 12.8.

Build Your Own ASP.NET 4 Website Using C# & VB516

Figure 12.8. Selecting a SortExpression value for column sorting\

Then select the City column and set its SortExpression property to City.

SortExpression property to City.. If the SortExpression field is blank, be sure to

click the Refresh Schema link in the lower left-hand corner. After clicking OK, the

Name and City column headers should appear as links in Visual Web Developer’s

Design view, as shown in Figure 12.9.

Figure 12.9. Column headers as links in Visual Web Developer

Finally, use Visual Web Developer to generate the signature for the grid’s Sorting

event, and add the following single line to the generated code:

517Advanced Data Access

Visual Basic Dorknozzle\VB\06_AddressBook.aspx.vb (excerpt)

Protected Sub grid_Sorting(ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.GridViewSortEventArgs)
➥ Handles grid.Sorting
 grid.DataBind()
End Sub

C# Dorknozzle\CS\06_AddressBook.aspx.cs (excerpt)

protected void grid_Sorting(object sender, GridViewSortEventArgs e)
{
grid.DataBind();

}

Execute the project. If everything goes well, you should see a functional GridView,

with working paging buttons, like the one in Figure 12.10.

Figure 12.10. Address Book paging in action

Yes, paging works, and you didn’t write a single line of C# or VB code to implement

it! You can even select rows—although when you do, nothing happens (other than

the appearance of shading that acts as a visual cue that the row has been selected),

because we haven’t implemented any functionality for the DetailsView control as

yet. (Remember that at the beginning of the chapter, we deleted all the code.)

Build Your Own ASP.NET 4 Website Using C# & VB518

Binding the DetailsView to a SqlDataSource
Here, our aim is to replicate the functionality the DetailsView gave us in Chapter 11,

and to add functionality that will allow users to add and delete employees’ records.

Let’s start by adding another SqlDataSource control, either next to or below the

existing one, in AddressBook.aspx. Give the new SqlDataSource the name employ-

eeDataSource. Click its smart tag, and select Configure Data Source. The Configure

Data Source wizard will appear again.

In the first screen, choose the Dorknozzle connection string. Click Next, and you’ll

be taken to the second screen, where there’s a bit more work to do. Start by specifying

the Employees table and checking all of its columns, as shown in Figure 12.11.

Figure 12.11. Choosing fields

519Advanced Data Access

Figure 12.12. Creating a new condition

Next, click the WHERE… button. In the dialog that opens, select the EmployeeID

column, specify the = operator, and select Control in the Source field. For the Control

ID select grid, and leave the default value empty, as Figure 12.12 shows.

Finally, click Add, and the expression will be added to the WHERE clause list. The

SQL expression that’s generated will filter the results on the basis of the value se-

lected in the GridView control. Click OK to close the dialog, then click the Advanced…

button. Check the Generate INSERT, UPDATE, and DELETE statements checkbox, as

shown in Figure 12.13.

Click OK to exit the Advanced SQL Generation Options dialog, then click Next. In

the next screen, feel free to click on Test Query to ensure everything’s working as

expected. If you click Test Query, you’ll be asked for the Employee ID’s type and

value. Enter 1 for the value, leave the type as Int32, then click OK. The row should

display as it does in Figure 12.14.

Click Finish.

Congratulations! Your new SqlDataSource is ready to fill your DetailsView. Next,

we need to tie this SqlDataSource to the DetailsView and specify how we want

Build Your Own ASP.NET 4 Website Using C# & VB520

Figure 12.13. Generating INSERT, UPDATE, and DELETE statements

Figure 12.14. Testing the query generated for our data source

the DetailsView to behave. Locate the DetailsView control and set the properties

as outlined in Table 12.2.

521Advanced Data Access

Table 12.2. Properties to Set for the DetailsView Control

ValueProperty

TrueAutoGenerateDeleteButton

TrueAutoGenerateEditButton

TrueAutoGenerateInsertButton

FalseAllowPaging

employeeDataSourceDataSourceID

EmployeeIDDataKeyNames

If you’re using Design view, make sure you choose Yes when you’re asked about re-

creating the DetailsView rows and data keys. If you’re not using Design view, set

the columns as shown here:

Dorknozzle\VB\07_AddressBook.aspx (excerpt)

<Fields>
<asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"

 InsertVisible="False" ReadOnly="True"
 SortExpression="EmployeeID" />
 <asp:BoundField DataField="DepartmentID"
 HeaderText="DepartmentID" SortExpression="DepartmentID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="Username" HeaderText="Username"
 SortExpression="Username" />
 <asp:BoundField DataField="Password" HeaderText="Password"
 SortExpression="Password" />
 <asp:BoundField DataField="Address" HeaderText="Address"
 SortExpression="Address" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="MobilePhone" HeaderText="MobilePhone"
 SortExpression="MobilePhone" />
 <asp:BoundField DataField="State" HeaderText="State"
 SortExpression="State" />
 <asp:BoundField DataField="Zip" HeaderText="Zip"
 SortExpression="Zip" />
 <asp:BoundField DataField="HomePhone" HeaderText="HomePhone"
 SortExpression="HomePhone" />

Build Your Own ASP.NET 4 Website Using C# & VB522

 <asp:BoundField DataField="Extension" HeaderText="Extension"
 SortExpression="Extension" />
</Fields>

You’re ready! Execute the project, and enjoy the new functionality that you imple-

mented without writing a single line of code. Take it for a quick spin to ensure that

the features for editing and deleting users are perfectly functional.

Right now, if you select an employee from the list, you’ll see the page shown in

Figure 12.15.

Figure 12.15. Adding a new employee

When you click on New to add a new employee, the form becomes editable, allowing

you to create a new employee record.

523Advanced Data Access

Adding Users the Easy Way

If you want to be able to use this form to add new employees to the database, the

easiest way to do so is to leave in all the required columns; otherwise, you’ll get

an error when you try to add a new employee without specifying values for the

NOT NULL columns. If you don’t want to give intranet administrators the ability

to add new employee records to the database with this form, and you want to keep

the list of details short, you can simply remove the unwanted columns from the

list.

Before we discuss exactly what’s happening here, and how the functionality works,

let’s implement a few small improvements.

If you agreed to let Visual Web Developer generate the DetailsView columns for

you, it will automatically have rewritten the templates we developed in the last

chapter, and added BoundField controls for each of the columns you’re reading

from the data source.

The HeaderTemplate is still intact, but we want to update it to show a different

display when we’re inserting details for a new employee. Currently, the header is

set to display the Name field of the selected employee, which means it will be empty

when we insert a new employee (as we saw in Figure 12.15). To change this,

modify the HeaderTemplate of your DetailsView as follows:

Visual Basic Dorknozzle\VB\08_AddressBook.aspx (excerpt)

<HeaderTemplate>
<%#IIf(Eval("Name") = Nothing, "Adding New Employee", _

 Eval("Name"))%>
</HeaderTemplate>

C# Dorknozzle\CS\08_AddressBook.aspx (excerpt)

<HeaderTemplate>
<%#Eval("Name") == null ? "Adding New Employee" :

 Eval("Name")%>
</HeaderTemplate>

Build Your Own ASP.NET 4 Website Using C# & VB524

Now, when we insert a new employee record, DetailsView will display the words

Adding New Employee in its header; when we’re editing or displaying an existing

employee’s details, it will display the name of that employee, as Figure 12.16 shows.

Figure 12.16. Adding a new employee, and displaying the new header

525Advanced Data Access

IIf and the Ternary Operator

IIf (in VB) and the ternary operator (in C#) receive as parameters one conditional

expression (which returns True or False), and two values. If the condition is

True, the first value is returned, and if the condition is False, the second value

is returned.

In our case, the conditional expression verifies whether the Name field is empty,

which will be the case if we’re inserting a new row. So, when we’re inserting a

new row, we display Adding New Employee in the DetailsView’s header; other-

wise, we display the name of the employee whose details are being edited.

One minor hitch with this solution is that the GridView isn’t instantly updated

when we make a change using the DetailsView control. Try modifying the name

of a user; even after you click the Update link in the DetailsView, the GridView

will show the old value. Only after you reload the page will the data be displayed

correctly by the GridView.

This issue occurs because the GridView is populated before the DetailsView updates

the database. To avoid this problem, we could use a simple workaround that forces

the GridView to update itself in response to the occurrence of certain events raised

by the DetailsView control. These events are ItemUpdated, ItemDeleted, and

ItemInserted. Use Visual Web Developer to generate the event handlers for these

events, and update the code like this:

Visual Basic Dorknozzle\VB\09_AddressBook.aspx.vb (excerpt)

Protected Sub employeeDetails_ItemUpdated(
➥ ByVal sender As Object, ByVal e As
➥ System.Web.UI.WebControls.DetailsViewUpdatedEventArgs)
➥ Handles employeeDetails.ItemUpdated
 grid.DataBind()
End Sub
Protected Sub employeeDetails_ItemDeleted(
➥ ByVal sender As Object, ByVal e As
➥ System.Web.UI.WebControls.DetailsViewDeletedEventArgs)
➥ Handles employeeDetails.ItemDeleted
 grid.DataBind()
End Sub
Protected Sub employeeDetails_ItemInserted(
➥ ByVal sender As Object, ByVal e As

Build Your Own ASP.NET 4 Website Using C# & VB526

➥ System.Web.UI.WebControls.DetailsViewInsertedEventArgs)
➥ Handles employeeDetails.ItemInserted
 grid.DataBind()
End Sub

C# Dorknozzle\CS\09_AddressBook.aspx.cs (excerpt)

protected void employeeDetails_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
grid.DataBind();

}
protected void employeeDetails_ItemDeleted(object sender,
 DetailsViewDeletedEventArgs e)
{
grid.DataBind();

}
protected void employeeDetails_ItemInserted(object sender,
 DetailsViewInsertedEventArgs e)
{
grid.DataBind();

}

Now your GridView and DetailsView controls will be synchronized permanently.

The last improvement we’ll make is to add an Add New Employee button to the

page—you can see how it will look in Figure 12.17. Right now, we can only add

new employees if we select an employee from the GridView, but this isn’t exactly

an intuitive way to work. Let’s add a button that will make the DetailsView control

display in insert mode when it’s clicked by a user.

527Advanced Data Access

Figure 12.17. The Add New Employee button

Add the new button above the grid like this:

Dorknozzle\VB\10_AddressBook.aspx (excerpt)

<h1>Address Book</h1>
<p>
 <asp:LinkButton id="addEmployeeButton" runat="server"
 Text="Add New Employee" />
</p>
<asp:GridView id="grid" runat="server"… >
 ⋮
</asp:GridView>

Double-click the button in Design view, and fill in its Click event handler like this:

Visual Basic Dorknozzle\VB\11_AddressBook.aspx.vb (excerpt)

Protected Sub addEmployeeButton_Click(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles addEmployeeButton.Click
 employeeDetails.ChangeMode(DetailsViewMode.Insert)
End Sub

Build Your Own ASP.NET 4 Website Using C# & VB528

C# Dorknozzle\CS\11_AddressBook.aspx.cs (excerpt)

protected void addEmployeeButton_Click(object sender, EventArgs e)
{
employeeDetails.ChangeMode(DetailsViewMode.Insert);

}

Our new button will cause the DetailsView to display in insert mode when clicked.

Your Address Book is now fully featured, and ready for production!

What’s really interesting about the code that was generated for us in this section is

the definition of the employeeDataSource. Since this data source needs to store the

details of selecting, deleting, updating, and inserting rows, it looks significantly

bigger than the employeesDataSource:

Dorknozzle\VB\10_AddressBook.aspx (excerpt)

<asp:SqlDataSource ID="employeeDataSource" runat="server"
 ConnectionString="<%$ ConnectionStrings:Dorknozzle %>"
 DeleteCommand="DELETE FROM [Employees]
 WHERE [EmployeeID] = @EmployeeID"
 InsertCommand="INSERT INTO [Employees] ([DepartmentID], [Name],
 [Username], [Password], [Address], [City], [MobilePhone],
 [State], [Zip], [HomePhone], [Extension])
 VALUES (@DepartmentID, @Name, @Username, @Password,
 @Address, @City, @MobilePhone, @State, @Zip, @HomePhone,
 @Extension)"
 SelectCommand="SELECT [EmployeeID], [DepartmentID], [Name],
 [Username], [Password], [Address], [City], [MobilePhone],
 [State], [Zip], [HomePhone], [Extension] FROM [Employees]
 WHERE ([EmployeeID] = @EmployeeID)"
 UpdateCommand="UPDATE [Employees]
 SET [DepartmentID] = @DepartmentID, [Name] = @Name,
 [Username] = @Username, [Password] = @Password,
 [Address] = @Address, [City] = @City,
 [MobilePhone] = @MobilePhone, [State] = @State,
 [Zip] = @Zip, [HomePhone] = @HomePhone,
 [Extension] = @Extension
 WHERE [EmployeeID] = @EmployeeID">
 <SelectParameters>
 <asp:ControlParameter ControlID="grid" Name="EmployeeID"
 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
 <DeleteParameters>

529Advanced Data Access

 <asp:Parameter Name="EmployeeID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="DepartmentID" Type="Int32" />
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="Password" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="MobilePhone" Type="String" />
 <asp:Parameter Name="State" Type="String" />
 <asp:Parameter Name="Zip" Type="String" />
 <asp:Parameter Name="HomePhone" Type="String" />
 <asp:Parameter Name="Extension" Type="String" />
 <asp:Parameter Name="EmployeeID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="DepartmentID" Type="Int32" />
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="Username" Type="String" />
 <asp:Parameter Name="Password" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="MobilePhone" Type="String" />
 <asp:Parameter Name="State" Type="String" />
 <asp:Parameter Name="Zip" Type="String" />
 <asp:Parameter Name="HomePhone" Type="String" />
 <asp:Parameter Name="Extension" Type="String" />
 </InsertParameters>
 </asp:SqlDataSource>

The SqlDataSource produces the necessary queries for the database for UPDATE,

DELETE, and INSERT operations. Look, we didn’t even have to write any database

code! One more important feature, the code generated uses parameterized queries.

A parameterized query is where the data type is known ahead of time and also se-

cures the query against any possible SQL Injection attack. It is good practice to use

parameterized queries or stored procedures whenever possible for this security

precaution. You should also notice the use of square brackets ([and]) surrounding

the fields and table names. These are to help distinguish these database objects from

any conflicting keyword. Although our example doesn’t use any conflicting keywords

as it is an object name, it is always a good habit to develop.

Build Your Own ASP.NET 4 Website Using C# & VB530

I’m sure you can now immediately see the benefits of us using SqlDataSource to

create data-entry forms, such as our address book, for smaller projects like the

Dorknozzle intranet. The SqlDataSource produces secure ASP.NET code and

database SQL queries for both the DetailsView and GridView controls without

much interaction from the developer. Yet, we still retain the power and flexibility

to edit these SQL queries or controls to improve functionality, introduce styling

using our templates, and even interact with the grid controls if we wish to do so.

Displaying Lists in DetailsView
We want to improve on our DetailsView by making it show a list of department

names instead of department IDs. This makes sense, as it’s much easier for users to

select the name of a department than a department ID when they’re updating or

inserting the details of an employee. Figure 12.18 shows how the page will look

once we’ve created this functionality.

Figure 12.18. Viewing the Department drop-down list in Details view

Start by adding a new SqlDataSource control beside the two existing data source

controls in AddressBook.aspx. Name the control departmentsDataSource, click its

smart tag, and select Configure Data Source. In the first screen, select the Dorknozzle

531Advanced Data Access

connection, then click Next. Specify the Departments table and select both of its

columns, as shown in Figure 12.19.

Click Next, then Finish to save the data source configuration. The definition of your

new data source control will look like this:

Dorknozzle\VB\12_AddressBook.aspx (excerpt)

<asp:SqlDataSource ID="departmentsDataSource" runat="server"
 ConnectionString="<%$ ConnectionStrings:Dorknozzle %>"
 SelectCommand="SELECT [DepartmentID], [Department]
 FROM [Departments]">
</asp:SqlDataSource>

Now, with AddressBook.aspx open in Design view, click the DetailsView control’s

smart tag, select Edit Fields, and transform the Department ID BoundField into a

TemplateField (you learned how to do this back in Chapter 11). Now, switch to

Source view, and locate the Department ID TemplateField that you just generated.

It should look something like this:

<asp:TemplateField HeaderText="DepartmentID"
 SortExpression="DepartmentID">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server"
 Text='<%# Bind("DepartmentID") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server"
 Text='<%# Bind("DepartmentID") %>'></asp:TextBox>
 </InsertItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server"
 Text='<%# Bind("DepartmentID") %>'></asp:Label>
 </ItemTemplate>
</asp:TemplateField>

Modify this generated template as highlighted below:

Build Your Own ASP.NET 4 Website Using C# & VB532

Figure 12.19. Selecting the columns from the Departments table

Dorknozzle\VB\13_AddressBook.aspx (excerpt)

<asp:TemplateField HeaderText="Department"
 SortExpression="DepartmentID">
 <EditItemTemplate>

<asp:DropDownList id="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department" DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>' />
 </EditItemTemplate>
 <InsertItemTemplate>

<asp:DropDownList ID="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department"
 DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>' />
 </InsertItemTemplate>
 <ItemTemplate>

<asp:DropDownList ID="didDdl" runat="server"
 DataSourceID="departmentsDataSource"
 DataTextField="Department"
 DataValueField="DepartmentID"
 SelectedValue='<%# Bind("DepartmentID") %>'

533Advanced Data Access

 Enabled="False" />
 </ItemTemplate>
</asp:TemplateField>

When you reload your address book now, you’ll see that the departments are dis-

played in a drop-down list. You can use that list when you’re inserting and editing

employee data—a feature that the intranet’s users are sure to find very helpful!

More on SqlDataSource
The SqlDataSource object can make programming easier when it’s used correctly

and responsibly. However, the simplicity of the SqlDataSource control comes at

the cost of maintainability, and introduces the potential for performance problems.

The main advantage of your new AddressBook.aspx file is that it’s incredibly easy

and quick to implement, especially if you’re using Visual Web Developer.

However, embedding SQL queries right into your .aspx files does have a major dis-

advantage if you intend to grow your web site: in more complex applications con-

taining many forms that perform data-related tasks, an approach that sees you

storing all of your SQL queries inside different SqlDataSource controls can degen-

erate very quickly into a system that’s very difficult to maintain. Why does this

matter? In the real-world, you’ll probably want to store your SQL queries as stored

procedures on the database, where they can easily be changed without having to

recompile and deploy your code to the web server. Your code logic for handling all

data access will most likely also reside in a standalone class, that makes the database

calls to these SQL queries without affecting the user interface in case of a database

design change. Trust me, no matter how often you believe a screen is complete,

somebody will always need an additional field or column. This would require

manually updating every control on every page that uses a SqlDataSource.

Another disadvantage of using the SqlDataSource is that its sorting and paging

features usually aren’t as fast and efficient as they could be if you used a custom

SQL query that returned the data already paged and/or sorted from the database.

When we use the GridView’s paging feature, for example, the SqlDataSource control

doesn’t limit the number of records we read from the database. Even if only a small

subset of data needs to be shown, unless customizations are implemented, the entire

Build Your Own ASP.NET 4 Website Using C# & VB534

table will be read from the database, and a subset of the data displayed. Even if only

three records need to be displayed, all of the records in the table will be returned.

An interesting property of SqlDataSource that’s worth noting is DataSourceMode,

whose possible values are DataSet or SqlDataReader. The DataSet mode is the

default mode, and implies that the SqlDataSource will use a DataSet object to re-

trieve its data. We’ll analyze the DataSet class next. The other mode is

SqlDataReader, which makes the SqlDataSource use your old friend, the

SqlDataReader, behind the scenes.

So, what is this DataSet class? Since version 1.0, the .NET Framework has come

with a number of objects—DataSet, DataTable, DataView, SqlDataAdapter, and

others—that provide disconnected data access. So, instead of having the database

return the exact data you need for a certain task in the exact order in which you

need it, you can use these objects to delegate some of the responsibility of filtering

and ordering the data to your C# or VB code.

Both the DataSet and SqlDataReader settings of DataSourceMode have advantages

and disadvantages, and the optimum approach for any task will depend on the task

itself. There are circumstances in which it makes sense to store the data locally,

and you need to be aware of all the possibilities in order to be able to make an in-

formed decision about which mode to use.

Working with Data Sets and Data Tables
We’ve been working with databases for a while now. Initially, you learned about

the SqlDataReader, and used it to populate your controls. Then, in the first half of

this chapter, we gained first-hand experience with the data source controls, which

can automate many features for you. Let’s learn about one more technique you can

use to get data to your visitors.

I know that all these options can be confusing at first, but hang in there. You need

to play around with all of them before you can become an experienced ASP.NET

developer!

The DataSet object is at the center of Microsoft’s model for presenting disconnected

data. Disconnected data—data that resides in memory and is completely independent

of the data source—gives us a raft of new opportunities of developing desktop and

web apps.

535Advanced Data Access

In Chapter 9, you learned about the role that data readers play in relation to applic-

ations and database data. Whenever we need to access data from a database, we

create a connection object and a command object. These two objects are used together

to create a data reader object, which we can use within our application by binding

it to a data control for presentation purposes. Figure 12.20 illustrates this process.

So, what’s the problem? Well, while they’re the fastest way to retrieve data from a

database, data readers can’t be used to carry out any significant work—you can’t

use them to sort, filter, or page through the data. As the arrows in Figure 12.20 show,

data readers present a forward-only stream of data to the application: you can’t go

back to a previous record, or reuse that data reader somewhere else. Moreover, a

data reader object isn’t reusable. This means that you can’t make multiple requests

to a database using the same data reader to fetch more data.

Data sets, on the other hand, are much more flexible. Imagine your own in-memory

representation of your database containing your data tables that you’re free to use

in code whenever and however you wish. That’s a data set. As we’ll see in the next

section, data sets have all the bells and whistles that databases offer, including

tables, columns, rows, relationships, and even queries! A data set is a memory-res-

ident copy of database data, so, once a data set has been created, it is stored in

memory and its ties to the database will have been broken. Then, when you need

to work with the data, you don’t need to re-query the database—you simply retrieve

the data from the data set again and again. From your data set, you can filter, sort,

edit, or page data as you choose without ever having to call the database again.

Figure 12.21 illustrates this point.

Figure 12.22. Multiple pages making multiple requests from the same data set

An even greater advantage of data sets is that they can be shared among multiple

requests, as illustrated in Figure 12.22.

Build Your Own ASP.NET 4 Website Using C# & VB536

Figure 12.20. Retrieving data using a data reader

Figure 12.21. Breaking the data set’s ties to the data source once it has been created

What this means is that you simply need to create the data set once per request.

Once the data set has been created, it can be used by many different pages, all of

which may make multiple—and even different—requests to that data set.

However, data sets require more memory resources than do data readers. A data

reader simply keeps track of its position within the results of a query, whereas a

data set can contain a local copy of an entire database. However, in practice you

shouldn’t do this of course, as the larger the amount of data kept in the data set, the

more memory the data set uses.

537Advanced Data Access

If you’re only reading the data, using a data reader can make sense—especially if

you’ve gotten yourself familiar with reading from a data reader object. If you also

need to update, insert, or delete data, or you need to process the data within your

code, data sets might be of more help. However, if you need to perform other oper-

ations, such as adding, editing, or deleting data then using a data set is your only

choice.

When you’re deciding whether to use data readers or data sets, you need to consider

the purpose for which you need the data. This decision is important, because it af-

fects:

■ resources consumed on the database server
■ resources consumed on the web server
■ the overall application architecture
■ Maintainability for future enhancements

If you’re only reading the data, using a data reader can make sense. If you also need

to update, insert, or delete data, or you need to process the data within your code,

data sets might be of more help.

This section will teach you everything you need to know to begin working with

data sets.

What Is a Data Set Made From?
A data set comprises many parts, all of which are required for its usage. We’ll meet

and discuss the following classes in this section:

■ DataSet

■ DbDataAdapterand its derivative, SqlDataAdapter
■ DataTable

■ DataColumn

■ DataRow

■ DataRelation

■ DataView

We need to use most of these classes in order to work with data sets. The

DbDataAdapter is an abstract class that handles the communication between a

DataSet and the database server itself. It knows how to fill the DataSet with data,

Build Your Own ASP.NET 4 Website Using C# & VB538

and it also knows how to handle any request for add, edit, or delete operations from

your DataSet back to the database server. Because we are using SQL Server we then

use the SqlDataAdapter for all of our communications.

Data Adapters

SqlDataAdapter is one of the many available data providers available now in

ASP.NET 4. SqlDataAdapter can only be used with Microsoft SQL Server, and

isn’t interchangeable with other database servers. Microsoft has cataloged several

data providers at http://msdn.microsoft.com/en-us/data/dd363565 including

popular database servers such as Oracle, MySQL, and Sybase. Included in the

.NET 4.0 Framework is the OdbcDbDataAdapter and OleDbDataAdapter for

generic access to custom data sources that support ODBC or OLE respectively.

Going forward we will use only the SqlDataAdapter for our examples, however

the code should be the same when using a different data provider.

A DataSet will always contain at least one DataTable, but it can contain many.

DataTables can contain a reference back to the DataSet object, but they can stan-

dalone.These DataTables contain DataColumns and DataRows. If we needed to estab-

lish a relationship between multiple DataTables within a DataSet, we’d use

DataRelations. Finally, we’d create DataViews to query the DataSet.These

DataViews represent sorted or filtered data from the DataSet.

A DataSet mirrors the structure of a relational database, as Figure 12.23 shows.

Figure 12.23. The structure of a DataSet, which closely resembles that of a database

539Advanced Data Access

http://msdn.microsoft.com/en-us/data/dd363565

You can see the parallel between the DataSet’s structure and that of a database. A

database contains tables; here, the DataSet contains DataTables. Tables in a database

have columns and rows; our DataTables have DataColumns and DataRows. When

we work in a database, we establish relationships between tables; here, we’d create

DataRelations. The major difference between DataSets and databases is that

DataSets are memory-resident, while a centralized database resides inside a database

management system.

Let’s see how we can create a DataSet within code.

Binding DataSets to Controls
Now that you have some understanding of the structure of a typical DataSet, let’s

look at the process involved in creating a DataSet in code, and binding a DataTable

to a control. To illustrate this example, we’ll create a simple page that displays the

Dorknozzle departments; we’ll call this page Departments.aspx.

Create a new web form called Departments.aspx, as you have for the other pages in

the Dorknozzle project. Update the generated code like this:

Dorknozzle\VB\14_Departments.aspx (excerpt)

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="Departments.aspx.vb"
 Inherits="Departments" title="Dorknozzle Departments" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Dorknozzle Departments</h1>

 <asp:GridView id="departmentsGrid" runat="server">
 </asp:GridView>
</asp:Content>

So far, everything looks familiar. We have a blank page based on Dorknozzle.master,

with an empty GridView control called departmentsGrid. Our goal through the rest

of this chapter is to learn how to use the DataSet and related objects to give life to

the GridView control.

Build Your Own ASP.NET 4 Website Using C# & VB540

Switch to Design view, and double-click on an empty part of the form to generate

the Page_Load event handler. Add references to the System.Data.SqlClient

namespace (which contains the SqlDataAdapter class), and, the System.Data

namespace (which contains classes such as DataSet, DataTable, and so on) and

the System.Configuration namespace (which contains the ConfigurationManager

class, used for reading connection strings from Web.config). Here’s how the code

should look:

Visual Basic Dorknozzle\VB\15_Departments.aspx.vb (excerpt)

Imports System.Data.SqlClient
Imports System.Data
Imports System.Configuration

Partial Class Departments
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 ⋮
End Sub
⋮
End Class

C# Dorknozzle\CS\15_Departments.aspx.cs (excerpt)

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using System.Data.SqlClient;

public partial class Departments : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)

541Advanced Data Access

 {
 ⋮
 }
 ⋮
}

Next, we’ll add a method called BindGrid, which populates the GridView control

using an SqlDataAdapter and a DataSet. We’ll call BindGrid from Page_Load only

when the page is loaded for the first time. We assume that any postback events

won’t affect the data that’s to be displayed by the grid, so we populate the grid just

once, when the page loads:

Visual Basic Dorknozzle\VB\15_Departments.aspx.vb (excerpt)

Protected Sub Page_Load(ByVal sender As Object,
➥ ByVal e As System.EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 BindGrid()
 End If
End Sub

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim dataSet As New DataSet
 Dim adapter As SqlDataAdapter
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", _
 conn)
 adapter.Fill(dataSet, "Departments")
 departmentsGrid.DataSource = dataSet
 departmentsGrid.DataBind()
End Sub

C# Dorknozzle\CS\15_Departments.aspx.cs (excerpt)

protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)

 {

Build Your Own ASP.NET 4 Website Using C# & VB542

 BindGrid();
 }
}
private void BindGrid()
{
 SqlConnection conn;
 DataSet dataSet = new DataSet();
 SqlDataAdapter adapter;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments",
 conn);
 adapter.Fill(dataSet, "Departments");
 departmentsGrid.DataSource = dataSet;
 departmentsGrid.DataBind();
}

Execute the project, and browse to your Departments page. You should see a display

that’s similar to Figure 12.24.

The grid is already styled because we have a GridView skin in place. At this point,

we’ve achieved a level of functionality that you might otherwise have reached using

SqlCommand and SqlDataReader, or the SqlDataSource; the difference is that, this

time, we’ve used an SqlDataAdapter and a DataSet.

An SqlDataAdapter object is created in much the same way as an SqlCommand object.

We simply provide it with an SQL statement and an SqlConnection object. However,

it’s the line that immediately follows the creation of the adapter that does all the

work. The Fill method of the SqlDataAdapter fills our DataSet with the data re-

turned by the SQL query. The Fill method accepts two parameters: the first is the

DataSet object that needs to be filled, the second is the name of the table that we

want to create within the DataSet.

Once the DataSet has been filled with data, it’s simply a matter of binding the

DataSet to the GridView, which we do using the same approach we’d use to bind

an SqlDataReader.

543Advanced Data Access

Figure 12.24. The Departments page

Moving on, let’s see how we can add another DataTable to our DataSet. The follow-

ing code uses the SelectCommand property of the SqlDataAdapter object to create

a new command on the fly, and fill the same DataSet with a new DataTable called

Employees:

Build Your Own ASP.NET 4 Website Using C# & VB544

Visual Basic

⋮
adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", conn)
adapter.Fill(dataSet, "Departments")
adapter.SelectCommand = New SqlCommand(_
 "SELECT EmployeeID, Name, MobilePhone FROM Employees", conn)
adapter.Fill(dataSet, "Employees")
departmentsGrid.DataSource = dataSet
departmentsGrid.DataMember = "Employees"
departmentsGrid.DataBind()
⋮

C#

⋮
adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments", conn);
adapter.Fill(dataSet, "Departments");
adapter.SelectCommand = new SqlCommand(
 "SELECT EmployeeID, Name, MobilePhone FROM Employees", conn);
adapter.Fill(dataSet, "Employees");
departmentsGrid.DataSource = dataSet;
departmentsGrid.DataMember = "Employees";
departmentsGrid.DataBind();
⋮

This code binds the Employees table of the DataSet to the GridView control by

setting the GridView’s DataMember property. The GridView will now appear as

shown in Figure 12.25.

545Advanced Data Access

Figure 12.25. Displaying data from a DataTable in a GridView

It’s easy to imagine how quickly you could fill a page containing many GridViews

using only one DataSet as the source.

As you’ve learned thus far, DataTables are elements that hold data within a DataSet.

Just like tables in a database, DataTables are built from columns and rows. However,

unlike tables in databases, DataTables reside in memory, which gives us the ability

to page, sort, and filter the data in ways that just wouldn’t be possible with an

SqlDataReaderwithout having to wait for additional data to load from the database.

Implementing Paging
We saw the GridView’s paging functionality in action earlier in this chapter. When

we bound the GridView to the SqlDataProvider, the paging functionality was

automatically implemented. Now that we’re binding the GridView to a DataSet,

there’s a little more work involved in getting paging up and running. However, the

effort will be more than worthwhile if performance is an issue for your application.

The task of implementing paging in a GridView that has been bound to an

SqlDataAdapter involves a two-step process. First, we need to set the AllowPaging

property of the GridView to True, and set its PageSize value to reflect the number

of items we want to see on every page. Open Departments.aspx in Visual Web De-

veloper and set AllowPaging to True, and PageSize to 4 on the departmentsGrid

control, as shown below:

Dorknozzle\VB\16_Departments.aspx (excerpt)

<asp:GridView id="departmentsGrid" runat="server"
AllowPaging="True" PageSize="4">

</asp:GridView>

Build Your Own ASP.NET 4 Website Using C# & VB546

Next, we need to handle the PageIndexChanging event of the GridView control.

This event is fired when the user clicks one of the paging controls; we’ll need to

update the data displayed in the grid accordingly.

Double-click the PageIndexChanging entry in the Properties window, as shown in

Figure 12.26, to have Visual Web Developer generate an empty event handler for

you.

Figure 12.26. Creating the PageIndexChanging event handler

Finally, fill in the generated event handler as shown below:

Visual Basic Dorknozzle\VB\17_Departments.aspx.vb (excerpt)

Protected Sub departmentsGrid_PageIndexChanging(
➥ ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.GridViewPageEventArgs)
➥ Handles departmentsGrid.PageIndexChanging
 Dim newPageIndex As Integer = e.NewPageIndex
 departmentsGrid.PageIndex = newPageIndex
 BindGrid()
End Sub

C# Dorknozzle\CS\17_Departments.aspx.cs (excerpt)

protected void departmentsGrid_PageIndexChanging(object sender,
 GridViewPageEventArgs e)
{
int newPageIndex = e.NewPageIndex;

547Advanced Data Access

 departmentsGrid.PageIndex = newPageIndex;
 BindGrid();
}

In this code, we’ve retrieved the index of the requested page from e.NewPageIndex

parameter, and used its value to set the PageIndex property of the GridView. We’ve

then bound the grid to its data source once more.

Execute the project again. When you click a paging link within the grid, the display

should update quickly, as Figure 12.27 shows.

Figure 12.27. Viewing Departments with paging functionality

Storing Data Sets in View State
Now, we’re able to page through our list of departments, but the code isn’t anywhere

near as efficient as it could be. Every time we display another page of departments

in our GridView, we call the BindData method, which executes the following code

in order to retrieve a list of departments:

Build Your Own ASP.NET 4 Website Using C# & VB548

Visual Basic Dorknozzle\VB\15_Departments.aspx.vb (excerpt)

conn = New SqlConnection(connectionString)
adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", conn)
adapter.Fill(dataSet, "Departments")

C# Dorknozzle\CS\15_Departments.aspx.cs (excerpt)

conn = new SqlConnection(connectionString);
adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments", conn);
adapter.Fill(dataSet, "Departments");

Given that this list of departments is unlikely to change while we’re browsing

through its pages, wouldn’t it be better if we had to query the database only once?

Well, given that we now have a complete copy of the data in the Departments table,

we can! Modify the BindGrid method as shown below:

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim dataSet As New DataSet
 Dim adapter As SqlDataAdapter
If ViewState("DepartmentsDataSet") Is Nothing Then

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", _
 conn)
 adapter.Fill(dataSet, "Departments")

ViewState("DepartmentsDataSet") = dataSet
 Else
 dataSet = ViewState("DepartmentsDataSet")
 End If
 departmentsGrid.DataSource = dataSet
 departmentsGrid.DataBind()
End Sub

549Advanced Data Access

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

private void BindGrid()
{
 SqlConnection conn;
 DataSet dataSet = new DataSet();
 SqlDataAdapter adapter;
if(ViewState["DepartmentsDataSet"] == null)

 {
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments",
 conn);
 adapter.Fill(dataSet, "Departments");

ViewState["DepartmentsDataSet"] = dataSet;
 }
 else
 {
 dataSet = (DataSet)ViewState["DepartmentsDataSet"];
 }
 departmentsGrid.DataSource = dataSet;
 departmentsGrid.DataBind();
}

Here, we’re using the ViewState collection to store our DataSet. The ViewState

collection works a lot like the Session collection, except that instead of storing data

for access by the entire application, ViewState stores data for just this one page

while the user is interacting with it. If the users navigate away from this page, the

data in ViewState will be lost—even if they return to the page within the same

session. But, be careful trying to store too much data in the ViewState, it comes at

a cost of increasing the page size for the browser which can negatively affect your

page load times. In our final chapter, we’ll talk about potential ways we can store

these DataSetson the server to increase our performance. In the meantime, using

the ViewState is sufficient for our smaller result sets.

In this revised version of BindGrid, we start by checking the ViewState collection

for an item named DepartmentsDataSet. If no such item exists, we create a new

DataSet, fill it with data from the database, as before, and store it in ViewState. If

an item named DepartmentsDataSet does exist in ViewState, we simply save that

Build Your Own ASP.NET 4 Website Using C# & VB550

item into our local variable, dataSet. Regardless of how the DataSet is loaded, we

bind it to our GridView as we did before.

If you save your work and load the Departments page in your browser, you should

see that the page runs exactly as it did previously, except that now the database is

accessed only once, the first time the page loads.

Implementing Sorting
To implement sorting functionality, we need to understand a few details of the inner

workings of data binding.

Technically, you can’t bind a DataSet to a GridView control, because a DataSet

can contain many tables, whereas the GridView control can only handle one set of

rows and columns. However, by virtue of the fact that your DataSet has, so far, only

contained a single DataTable, the GridView control has been smart enough to figure

out that what you probably meant was the following:

Visual Basic

departmentsGrid.DataSource = dataSet.Tables("Departments")
departmentsGrid.DataBind()

C#

departmentsGrid.DataSource = dataSet.Tables["Departments"];
departmentsGrid.DataBind();

However, the above code isn’t technically correct in the strictest sense. All of the

GridView’s data binding is actually achieved through DataView objects. Thankfully,

each DataTable has a DefaultView property, which the GridView will automatically

use whenever you bind it to a DataTable. So, the following code listings have the

same functionality as those we saw above:

Visual Basic

departmentsGrid.DataSource = _
 dataSet.Tables("Departments").DefaultView
departmentsGrid.DataBind()

551Advanced Data Access

C#

departmentsGrid.DataSource =
 dataSet.Tables["Departments"].DefaultView;
departmentsGrid.DataBind();

DefaultView Does Not Apply when Binding to a DataSet

It’s interesting to note that if you bind directly to a DataSet that contains only

one table, that table’s DefaultViewwill not be used; the GridViewwill generate

a separate DataView itself.

DataViews represent a customized view of a DataSet for sorting, filtering, searching,

editing, and navigation. When binding a GridView directly to a DataTable, the

DefaultView property, which is a DataView object, is accessed automatically for

us. However, if we want to enable sorting, we need to access the DataView and set

its sorting parameters.

The first step to enabling sorting is to set the AllowSorting property to True. When

we do that, the grid’s column headings become hyperlinks. Before we make those

hyperlinks work, we need to handle the grid’s Sorting event, in which we teach

the grid what to do when those links are clicked.

Set the AllowSorting property of the GridView control in Departments.aspx to True,

then use the designer to generate the handler for the GridView’s Sorting event.

Now, complete the code as shown here:

Visual Basic Dorknozzle\VB\19_Departments.aspx.vb (excerpt)

Protected Sub departmentsGrid_Sorting(ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.GridViewSortEventArgs)
➥ Handles departmentsGrid.Sorting
 Dim sortExpression As String = e.SortExpression
 If (sortExpression = gridSortExpression) Then
 If gridSortDirection = SortDirection.Ascending Then
 gridSortDirection = SortDirection.Descending
 Else
 gridSortDirection = SortDirection.Ascending
 End If
 Else
 gridSortDirection = WebControls.SortDirection.Ascending

Build Your Own ASP.NET 4 Website Using C# & VB552

 End If
 gridSortExpression = sortExpression
 BindGrid()
End Sub

Private Property gridSortDirection() As SortDirection
 Get
 If (ViewState("GridSortDirection") Is Nothing) Then
 ViewState("GridSortDirection") = SortDirection.Ascending
 End If
 Return ViewState("GridSortDirection")
 End Get

 Set(ByVal value As SortDirection)
 ViewState("GridSortDirection") = value
 End Set
End Property

Private Property gridSortExpression() As String
 Get
 If (ViewState("GridSortExpression") Is Nothing) Then
 ViewState("GridSortExpression") = "DepartmentID"
 End If
 Return ViewState("GridSortExpression")
 End Get

 Set(ByVal value As String)
 ViewState("GridSortExpression") = value
 End Set
End Property

C# Dorknozzle\CS\19_Departments.aspx.cs (excerpt)

protected void departmentsGrid_Sorting(object sender,
 GridViewSortEventArgs e)
{
string sortExpression = e.SortExpression;

 if (sortExpression == gridSortExpression)
 {
 if(gridSortDirection == SortDirection.Ascending)
 {
 gridSortDirection = SortDirection.Descending;
 }
 else
 {

553Advanced Data Access

 gridSortDirection = SortDirection.Ascending;
 }
 }
 else
 {
 gridSortDirection = SortDirection.Ascending;
 }
 gridSortExpression = sortExpression;
 BindGrid();
}

private SortDirection gridSortDirection
{
 get
 {
 if (ViewState["GridSortDirection"] == null)
 {
 ViewState["GridSortDirection"] = SortDirection.Ascending;
 }
 return (SortDirection) ViewState["GridSortDirection"];
 }

 set
 {
 ViewState["GridSortDirection"] = value;
 }
}

private string gridSortExpression
{
 get
 {
 if (ViewState["GridSortExpression"] == null)
 {
 ViewState["GridSortExpression"] = "DepartmentID";
 }
 return (string) ViewState["GridSortExpression"];
 }

 set
 {
 ViewState["GridSortExpression"] = value;
 }
}

Build Your Own ASP.NET 4 Website Using C# & VB554

Properties

We haven’t really discussed the task of defining your own properties since

Chapter 4, so now might be a good time for a quick refresher. By now, you should

be fairly comfortable with the idea that each of your web forms is its own class,

and inherits a great deal of functionality from its parent class, Page. You’ve already

dealt with quite a few of that class’s features, such as its Load event and its

IsPostBack property.

You can define for your class properties that can be read-only, write-only, or are

able to be both read and written to. When you read data from a property, its Get

code is executed. Most of the time, this code will be quite simple, but it can be as

complex as you choose to make it. In the same way, when a value is written to a

property, its Set code is executed, which can also be quite complex if you choose

to make it so.

Finally, update the BindGrid method to apply the sorting:

Visual Basic Dorknozzle\VB\19_Departments.aspx.vb (excerpt)

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim dataSet As New DataSet
 Dim adapter As SqlDataAdapter
 If ViewState("DepartmentsDataSet") Is Nothing Then
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", _
 conn)
 adapter.Fill(dataSet, "Departments")
 ViewState("DepartmentsDataSet") = dataSet
 Else
 dataSet = ViewState("DepartmentsDataSet")
 End If
Dim sortExpression As String

 If gridSortDirection = SortDirection.Ascending Then
 sortExpression = gridSortExpression & " ASC"
 Else
 sortExpression = gridSortExpression & " DESC"
 End If

555Advanced Data Access

 dataSet.Tables("Departments").DefaultView.Sort = sortExpression
departmentsGrid.DataSource = _

 dataSet.Tables("Departments").DefaultView
 departmentsGrid.DataBind()
End Sub

C# Dorknozzle\CS\19_Departments.aspx.cs (excerpt)

private void BindGrid()
{
 SqlConnection conn;
 DataSet dataSet = new DataSet();
 SqlDataAdapter adapter;
 if(ViewState["DepartmentsDataSet"] == null)
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments",
 conn);
 adapter.Fill(dataSet, "Departments");
 ViewState["DepartmentsDataSet"] = dataSet;
 }
 else
 {
 dataSet = (DataSet)ViewState["DepartmentsDataSet"];
 }

string sortExpression;
 if(gridSortDirection == SortDirection.Ascending)
 {
 sortExpression = gridSortExpression + " ASC";
 }
 else
 {
 sortExpression = gridSortExpression + " DESC";
 }
 dataSet.Tables["Departments"].DefaultView.Sort = sortExpression;
departmentsGrid.DataSource =

 dataSet.Tables["Departments"].DefaultView;
 departmentsGrid.DataBind();
}

Build Your Own ASP.NET 4 Website Using C# & VB556

Execute the project again, and test that sorting by column works as shown in Fig-

ure 12.28.

Figure 12.28. Sorting Dorknozzle’s departments

We’ve written a lot of code here! Let’s take a look at how it works.

In order to sort the data in the grid, all we need to do is set the Sort property of the

view we’re displaying to ColumnNameSortOrder, where ColumnName is, of course,

the name of the column we’re sorting, and SortOrder is either ASC (for ascending)

or DESC (for descending). So, if you were sorting the DepartmentID column, the Sort

property would need to be set to DepartmentID ASC or Department DESC.

This property must be set before the data binding is performed, as is shown in the

following code, which will sort the data by DepartmentID in descending numeric

order:

Visual Basic

dataTable.DefaultView.Sort = "DepartmentID DESC"
departmentsGrid.DataSource = dataTable.DefaultView
departmentsGrid.DataBind()

557Advanced Data Access

C#

dataTable.DefaultView.Sort = "Department DESC";
departmentsGrid.DataSource = dataTable.DefaultView;
departmentsGrid.DataBind();

It’s a pretty simple task to sort a DataView in code like this, but if we want to let

users sort the data on the basis of any column, in any direction, things get a little

bit more complicated. In this case, we need to remember the previous sort method

between requests.

In order to be truly user-friendly, our grid should behave like this:

■ The first time a column header is clicked, the grid should sort the data in ascend-

ing order, based on that column.

■ When the same column header is clicked multiple times, the grid should alternate

between sorting the data in that column in ascending and descending modes.

When a column heading is clicked, the grid’s Sorting event is fired. In our case,

the Sorting event handler (which we’ll look at in a moment) saves the details of

the sort column and direction in two properties:

■ gridSortExpression retains the name of the column on which we’re sorting the

data (such as Department).

■ gridSortDirection can be either SortDirection.Ascending or SortDirec-

tion.Descending.

We create a sorting expression using these properties in BindGrid:

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

Dim sortExpression As String
If gridSortDirection = SortDirection.Ascending Then
 sortExpression = gridSortExpression & " ASC"
Else
 sortExpression = gridSortExpression & " DESC"
End If

Build Your Own ASP.NET 4 Website Using C# & VB558

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

string sortExpression;
if(gridSortDirection == SortDirection.Ascending)
{
 sortExpression = gridSortExpression + " ASC";
}
else
{
 sortExpression = gridSortExpression + " DESC";
}

In order to implement the sorting functionality as explained above, we need to re-

member between client requests which column is being sorted, and whether it’s

being sorted in ascending or descending order. That’s what the properties

gridSortExpression and gridSortDirection do:

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

Private Property gridSortDirection() As SortDirection
 Get
 If (ViewState("GridSortDirection") Is Nothing) Then
 ViewState("GridSortDirection") = SortDirection.Ascending
 End If
 Return ViewState("GridSortDirection")
 End Get

 Set(ByVal value As SortDirection)
 ViewState("GridSortDirection") = value
 End Set
End Property

Private Property gridSortExpression() As String
 Get
 If (ViewState("GridSortExpression") Is Nothing) Then
 ViewState("GridSortExpression") = "DepartmentID"
 End If
 Return ViewState("GridSortExpression")
 End Get

 Set(ByVal value As String)
 ViewState("GridSortExpression") = value
 End Set
End Property

559Advanced Data Access

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

private SortDirection gridSortDirection
{
 get
 {
 if (ViewState["GridSortDirection"] == null)
 {
 ViewState["GridSortDirection"] = SortDirection.Ascending;
 }
 return (SortDirection) ViewState["GridSortDirection"];
 }

 set
 {
 ViewState["GridSortDirection"] = value;
 }
}

private string gridSortExpression
{
 get
 {
 if (ViewState["GridSortExpression"] == null)
 {
 ViewState["GridSortExpression"] = "DepartmentID";
 }
 return (string) ViewState["GridSortExpression"];
 }

 set
 {
 ViewState["GridSortExpression"] = value;
 }
}

Here, we use the ViewState collection to store information about which column is

being sorted, and the direction in which it’s being sorted.

When the Sorting event handler fires, we set the gridSortExpression and

gridSortDirection properties. The method starts by retrieving the name of the

clicked column:

Build Your Own ASP.NET 4 Website Using C# & VB560

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

Protected Sub departmentsGrid_Sorting(ByVal sender As Object,
➥ ByVal e As System.Web.UI.WebControls.GridViewSortEventArgs)
➥ Handles departmentsGrid.Sorting
 Dim sortExpression As String = e.SortExpression

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

protected void departmentsGrid_Sorting(object sender,
 GridViewSortEventArgs e)
{
 string sortExpression = e.SortExpression;

Next, we check whether the previously clicked column is the same as the newly

clicked column. If it is, we need to toggle the sorting direction. Otherwise, we set

the sort direction to ascending:

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

If (sortExpression = gridSortExpression) Then
 If gridSortDirection = SortDirection.Ascending Then
 gridSortDirection = SortDirection.Descending
 Else
 gridSortDirection = SortDirection.Ascending
 End If
Else
 gridSortDirection = WebControls.SortDirection.Ascending
End If

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

if (sortExpression == gridSortExpression)
{
 if(gridSortDirection == SortDirection.Ascending)
 {
 gridSortDirection = SortDirection.Descending;
 }
 else
 {
 gridSortDirection = SortDirection.Ascending;
 }
}
else

561Advanced Data Access

{
 gridSortDirection = SortDirection.Ascending;
}

Finally, we save the new sort expression to the gridSortExpression property,

whose value will be retained in case the user keeps working (and changing sort

modes) on the page:

Visual Basic Dorknozzle\VB\18_Departments.aspx.vb (excerpt)

gridSortExpression = sortExpression
BindGrid()

C# Dorknozzle\CS\18_Departments.aspx.cs (excerpt)

gridSortExpression = sortExpression;
BindGrid();

After we store the sort expression, we rebind the grid to its data source so that the

expression will reflect the changes we’ve made to the gridSortExpression and

gridSortDirection properties.

Filtering Data
Although we’re not using the DataView control in the Dorknozzle project, it’s inter-

esting to note that this control can filter data. Normally you’d have to apply WHERE

clauses to filter the data before it reaches your application, but in certain cases you

may prefer to filter data on the client.

Imagine that you wanted to display employees or departments whose names started

with a certain letter. You could retrieve the complete list of employees or depart-

ments from the database using a single request, then let the user filter the list locally.

The DataView class has a property named RowFilter that allows you to specify an

expression similar to that of an SQL statement’s WHERE clause. For instance, the

following filter selects all departments whose names start with “a”:

Visual Basic

dataTable.DefaultView.RowFilter = "Department LIKE 'a%'"

Build Your Own ASP.NET 4 Website Using C# & VB562

C#

dataTable.DefaultView.RowFilter = "Department LIKE 'a%'";

Updating a Database
from a Modified DataSet
So far, we’ve used the DataSet exclusively for retrieving and binding database data

to controls such as the GridView. The reverse operation—updating data within a

database from a DataSet—is also possible using the Update method of the

SqlDataAdapter.

The SqlDataAdapter has the following four properties, which represent the main

database commands:

■ SelectCommand

■ InsertCommand

■ UpdateCommand

■ DeleteCommand

The SelectCommand contains the command that’s executed when we call Fill. The

other properties are quite similar, except that, to execute them, you must call the

Update method instead.

If we want to insert, update, or remove records in a database, we simply make

modifications to the data in the DataSet or DataTable, then call the Update method

of the SqlDataAdapter. This will automatically execute the SQL queries specified

in the InsertCommand, UpdateCommand, and DeleteCommand properties as appropriate.

The excellent news is that ADO.NET also provides an object named

SqlCommandBuilder, which creates the UPDATE, DELETE, and INSERT code for us.

Basically, we just need to populate the DataSet or DataTable objects (usually by

performing a SELECT query), then use SqlDataAdapter and SqlCommandBuilder to

do the rest of the work for us.

In the example below, we’ll see a modified version of BindGrid that adds a new

department, called New Department, to the database. The new lines are highlighted

563Advanced Data Access

(note that I’ve simplified BindGrid by removing the code that stores and retrieves

the DataSet from view state, as well as the code that sorts the results):

Visual Basic

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim dataSet As New DataSet
 Dim adapter As SqlDataAdapter
Dim dataRow As DataRow

 Dim commandBuilder As SqlCommandBuilder
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString
 conn = New SqlConnection(connectionString)
 adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", _
 conn)
 adapter.Fill(dataSet, "Departments")
dataRow = dataSet.Tables("Departments").NewRow()

 dataRow("Department") = "New Department"
 dataSet.Tables("Departments").Rows.Add(dataRow)
 commandBuilder = New SqlCommandBuilder(adapter)
 adapter.Update(dataSet.Tables("Departments"))
 departmentsGrid.DataSource = _
 dataSet.Tables("Departments").DefaultView
 departmentsGrid.DataBind()
End Sub

C#

private void BindGrid()
{
 SqlConnection conn;
 DataSet dataSet = new DataSet();
 SqlDataAdapter adapter;
DataRow dataRow ;

 SqlCommandBuilder commandBuilder;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments",

Build Your Own ASP.NET 4 Website Using C# & VB564

 conn);
 adapter.Fill(dataSet, "Departments");
dataRow = dataSet.Tables["Departments"].NewRow();

 dataRow["Department"] = "New Department";
 dataSet.Tables["Departments"].Rows.Add(dataRow);
 commandBuilder = new SqlCommandBuilder(adapter);
 adapter.Update(dataSet.Tables["Departments"]);
 departmentsGrid.DataSource =
 dataSet.Tables["Departments"].DefaultView;
 departmentsGrid.DataBind();
}

If you run this code a few times, lots of departments titled New Department will be

added to the database, as shown in Figure 12.29.

As you can see, adding a new record is a trivial task. The work that’s required to

submit the changes to the database requires us to write just two rows of code. The

rest of the new code creates the new row that was inserted.

We create an SqlCommandBuilder object, passing in our SqlDataAdapter. The

SqlCommandBuilder class is responsible for detecting modifications to the DataSet

and deciding what needs to be inserted, updated, or deleted to apply those changes

to the database. Having done this, SqlCommandBuilder generates the necessary SQL

queries and stores them in the SqlDataAdapter for the Update method to use. It

should be no surprise, then, that our next action is to call the Update method of the

SqlDataAdapter object, passing in the DataTable that needs updating.

Deleting all of these new departments is also an easy task. The following code

browses the Departments DataTable and deletes all departments with the name

New Department:

Visual Basic

Private Sub BindGrid()
 Dim conn As SqlConnection
 Dim dataSet As New DataSet
 Dim adapter As SqlDataAdapter
 Dim commandBuilder As SqlCommandBuilder
 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString

565Advanced Data Access

Figure 12.29. Adding many new departments

 conn = New SqlConnection(connectionString)
 adapter = New SqlDataAdapter(_
 "SELECT DepartmentID, Department FROM Departments", _
 conn)
 adapter.Fill(dataSet, "Departments")
For Each dataRow As DataRow In _

 dataSet.Tables("Departments").Rows
 If dataRow("Department") = "New Department" Then
 dataRow.Delete()
 End If
 Next
 commandBuilder = New SqlCommandBuilder(adapter)
 adapter.Update(dataSet.Tables("Departments"))
 departmentsGrid.DataSource = _
 dataSet.Tables("Departments").DefaultView
 departmentsGrid.DataBind()
End Sub

Note that in the C# version the conversion to string needs to be performed explicitly:

Build Your Own ASP.NET 4 Website Using C# & VB566

C#

private void BindGrid()
{
 SqlConnection conn;
 DataSet dataSet = new DataSet();
 SqlDataAdapter adapter;
 SqlCommandBuilder commandBuilder;
 string connectionString =
 ConfigurationManager.ConnectionStrings[
 "Dorknozzle"].ConnectionString;
 conn = new SqlConnection(connectionString);
 adapter = new SqlDataAdapter(
 "SELECT DepartmentID, Department FROM Departments", conn);
 adapter.Fill(dataSet, "Departments");
foreach (DataRow dataRow in

 dataSet.Tables["Departments"].Rows)
 {
 if(dataRow["Department"].ToString() == "New Department")
 {
 dataRow.Delete();
 }
 }
 commandBuilder = new SqlCommandBuilder(adapter);
 adapter.Update(dataSet.Tables["Departments"]);
 departmentsGrid.DataSource =
 dataSet.Tables["Departments"].DefaultView;
 departmentsGrid.DataBind();
}

Execute this command, and all departments called New Department will be removed.

We use the ToString()method just as we did during our discussion of data readers.

In the real-world, if you’re using VB, you’ll probably want to explicitly call any

conversions to the data types just as C# requires. This helps in the readability of

code without having to go back to the database to refresh your memory on the data

types.

Summary
This chapter has given us the chance to explore some more important concepts of

ADO.NET. First, you learned about the data source controls, and how they can be

567Advanced Data Access

used to build code-free data binding. With just a few mouse clicks, you were able

to build editable grids of data!

We also investigated the DataSet class, and learned how to use it in our intranet

application. We then moved on to learn about the constructs of DataSets, including

DataTables and DataViews. We also learned how to populate DataSets using

SqlDataAdapters. Finally, we looked at sorting, paging, and filtering data using

DataViews, and updated a data source from a modified DataSet using the

SqlCommandBuilder.

In the next chapter, we’ll be looking at ASP.NET’s security features. Using ASP.NET’s

form-based security capabilities, we’ll learn how to restrict each user’s access to

the specific web forms we want them to be able to use, while still allowing public

access to other parts of the site. We’ll also take a look at some controls that make

building login and logout mechanisms a snap.

Build Your Own ASP.NET 4 Website Using C# & VB568

Chapter13
Security and User Authentication
The issue of security is important in many facets of information technology, but it’s

especially relevant in web development. While you’ll want to make sure that your

web site users are able to go where they need to go and see what they’re allowed to

see, you’ll also want to prevent unauthorized and malicious users from getting into

your system.

One common approach is to require your site’s visitors to log in before they can

view certain pages and to ensure that restricted pages cannot be accessed by simply

typing in the correct URLs, unless the user has been specifically allowed to view

those pages. Although different solutions exist for the various applications you may

create—for instance, IIS could provide certain pages to users who have been authen-

ticated by Windows within an intranet environment—this chapter focuses on the

more straightforward tasks of form- and script-based authentication.

In this chapter, we’ll learn some simple coding techniques and discover just how

easy it is to secure your web applications using ASP.NET. Security is a huge topic,

and several books have been written on the subject. If you’re serious about developing

secure complex applications, we recommend that you check out some additional

resources, such as Professional ASP.NET 2.0 Security, Membership, and Role

Management with C# and VB (Wrox Press, 2006),1 and Writing Secure Code, Second

Edition (Microsoft Press, 2003).2

In this chapter, you will:

■ Learn how to authenticate your visitors using ASP.NET Forms Authentication.
■ Use ASP.NET Memberships and Roles.
■ Create users and roles.
■ Use the ASP.NET login controls.

Let’s get moving!

Basic Security Guidelines
The primary and most important element of building secure applications is to

consider and plan an application’s security from the early stages of its development.

Of course, we must know the potential internal and external threats to which an

application will be exposed before we can plan the security aspects of that system.

Generally speaking, ASP.NET web application security involves—but is not limited

to—the following considerations:

validating user input

Back in Chapter 6, you learned how to use validation controls to enable the

client-side validation of user input, and how to double-check that validation

on the server side.

Since the input your application receives from web browsers is ultimately under

users’ control, there’s always a possibility that the submitted data will not be

what you expect. The submission of invalid data can generate errors in your

web application, potentially compromising its security.

protecting your database

The database is quite often the most important asset you need to protect—after

all, it’s there that most of the information your application relies upon is stored.

1 Stefan Schackow, Professional ASP.NET 2.0 Security, Membership, and Role Management with C#

and VB (New Jersey: Wrox Press, 2006). A new version updated for ASP.NET 4 is due out in November

2008.
2 Michael Howard and David LeBlanc, Writing Secure Code, Second Edition (Washington: Microsoft

Press, 2003)

Build Your Own ASP.NET 4 Website Using C# & VB570

SQL injection attacks, which target the database, are a common threat to web

application security. If the app builds SQL commands by naively assembling

text strings that include data received from user input, an attacker can alter the

meaning of the commands the application produces simply by including mali-

cious code in the user input.3

You’ve already learned how to use ADO.NET to make use of command paramet-

ers, and parameterized stored procedures, in order to include user input in SQL

queries. If you use the practices you’ve learned in this book, ADO.NET will

protect your against injection attacks.

displaying data correctly

If your web application produces HTML output, you should always bear in

mind that any text you include in that output will also be interpreted as HTML

by your visitors’ browsers. As such, you need to escape special characters (such

as < and &) correctly, using the HttpUtility.HtmlEncode method.

This consideration is especially important when you’re outputting a string that

was originally received as user input. If that user input were to contain HTML

code, that code might disrupt the appearance or functionality of your application

when it was displayed. For example, if you want to display the text “<script>“

using a Label control, you should set your label’s Text property to HttpUtil-

ity.HtmlEncode("<script>").

Note that the fields or columns of data-bound controls such as GridView and

DetailsView have a property called HtmlEncode, the default value of which is

True. As such, any values that are displayed by these controls are automatically

HTML-encoded unless you set this property to False.

keeping sensitive data to yourself

Even though it may not be visible in the browser window, any output that your

application produces is ultimately accessible to the end user. Consequently,

you should never include sensitive data (such as user passwords, credit card

data, and so on) in JavaScript code, HTML hidden fields, or the ViewState

collection. (Unlike the Application, Session, or Cache collections, ViewState

3 You'll find a detailed article on SQL injection attacks at

http://www.unixwiz.net/techtips/sql-injection.html.

571Security and User Authentication

http://www.unixwiz.net/techtips/sql-injection.html

isn’t stored on the server, but is passed back and forth between the client and

the server on every request in an easily decipherable format.)

using encryption or hashing whenever necessary

As we’ll see later in this chapter, ASP.NET also supports hashing, an irreversible

form of encryption that you can use to encrypt passwords and store them safely

on your server.

using secure communication channels whenever necessary

You can always use the HTTPS (HTTP Secure) protocol to secure the commu-

nication between your visitors and your site. If you use this protocol, an attacker

who intercepts the data being passed back and forth between your application

and its users won’t obtain any meaningful data.

This approach is particularly useful when you’re transferring very sensitive

data such as user passwords, credit card information, and so on. However, HT-

TPS isn’t used in scenarios where the extra security doesn’t bring benefits, be-

cause it consumes significant processing power on the server—especially when

many users access the site simultaneously.

In this chapter, we’ll explore the basic ASP.NET features for implementing user

authentication and authorization to protect the sensitive areas of your web site.

Securing ASP.NET Applications
The ASP.NET server model offers several robust options for storing user information.

In securing the sensitive pages of a web site, you’ll need to deal with two basic se-

curity-related concepts: authentication and authorization.

authentication

Authentication is the process by which an anonymous user is identified as a

particular user of your system.

Authentication mechanisms include providing a username/password combina-

tion, using a fingerprint reader, and so on. As a result of this process, the person

(or process, or computer) accessing your web site is associated with a security

token (such as a username) which identifies the user into your system.

Build Your Own ASP.NET 4 Website Using C# & VB572

authorization

Authorization establishes the resources an authenticated user can access, and

the actions that user is allowed to perform. For example, you’ll probably want

to give different permissions to anonymous users, to registered users, and to

site administrators.

To ease the administrative work, modern authorization systems, including those

supported by ASP.NET, support the notion of authorization roles (or groups).

A role represents a set of permissions that can be associated with any user who

needs all the permissions associated with that role. For example, you could

build a role called Administrators, and associate the permissions typically re-

quired by an administrator to that role. Then, when you need to give adminis-

trative permissions to a user, you simply assign that user to the Administrators

role, instead of supplying all the related permissions manually.

With older versions of ASP, usernames and passwords were either hard-coded into

the ASP file, or stored in an external data store such as a database. ASP.NET offers

a better way to implement these old techniques, and also adds new user authentic-

ation methods:

Windows authentication

Windows authentication uses IIS in conjunction with the users’ operating system

user accounts to allow or deny those users access to certain parts of your web

application.

forms authentication

Offering the greatest flexibility, forms authentication provides the maximum

control and customization abilities to the developer. Using forms authentication,

you can authenticate your users against hard-coded credentials, credentials

stored in your Web.config file, user account details stored in a database, or a

combination of these.

Windows Live ID authentication

The newest addition to user authentication methods, Windows Live ID authen-

tication (also known as Passport authentication) is a centralized authentication

service provided by Microsoft. It allows users to sign in to multiple web sites

using Windows Live accounts, which are associated with the users’ email ad-

573Security and User Authentication

dresses. Developers who use this authentication method don’t need to worry

about storing credential information on their own servers.

When users log in to a site that has Windows Live ID authentication enabled,

they are redirected to the Windows Live ID web site, which prompts them for

their email addresses and passwords. After the information is validated, the

users are automatically redirected back to the original site.

This method sounds good, but it has one major downside: it requires users to

have a Windows Live account in order to use your site, and it ties your applic-

ation to Microsoft’s proprietary system.

We’ll spend the rest of this chapter exploring forms authentication—the most pop-

ular authentication method supported by ASP.NET.

Working with Forms Authentication
By far the most popular authentication method, forms authentication is extremely

flexible. With forms authentication, you get to choose where the usernames and

passwords are stored: in the Web.config file, in a separate XML file, in a database,

or in any combination of the three.

Forms authentication is cookie-based—each user’s login is maintained with a

cookie. A browser may not access protected pages of the site unless it has a cookie

that corresponds to the successful authentication of an authorized user.

You’ll most frequently use three classes from the System.Web.Security namespace

as you work with forms authentication:

FormsAuthentication

contains several methods for working with forms authentication

FormsAuthenticationTicket

represents the authentication ticket that’s stored in the user’s cookie

FormsIdentity

represents the authenticated user’s identity

Let’s walk through an example that explains how a basic Login page is constructed.

Build Your Own ASP.NET 4 Website Using C# & VB574

Adding a Login Page to Dorknozzle
In this chapter, we talk about security and the final goal is to establish in the site a

number of secure zones that can be accessed only by certain users. We start by

adding a Login page to Dorknozzle. Whenever an anonymous user tries to access

those secured zones, he or she will be redirected to this Login page. In the following

few pages, we will:

1. Configure the authentication mode for the application within the Web.config file.

2. Configure the authorization section to allow or deny certain users within the

Web.config file.

3. Create the Login page that your visitors use.

The first step is to configure the authentication mode for the application.

To do so, we must edit the application configuration file, Web.config. Open this file

in Visual Web Developer and add the <authentication> tag shown in the following

code snippet. Visual Web Developer may already have created an <authentication>

tag for you with the default mode of Windows—in this case, just change the value to

Forms:

DorkNozzle\VB\01_web.config (excerpt)

<configuration>
 <system.web>
 ⋮
 <authentication mode="Forms"/>
 ⋮
 </system.web>
</configuration>

The mode attribute has four possible values: Forms, Windows, Passport, and None.

Since we’re working with forms authentication, we set the mode to Forms.

Next, set up the authorization scheme by adding the <authorization> tag:

575Security and User Authentication

DorkNozzle\VB\02_web.config (excerpt)

<authentication mode="Forms" />
<authorization>
 <deny users="?" />
</authorization>

As you’ll see in more detail in the next few sections, the question mark symbol (?)

represents all anonymous users—that is, users who have not logged in. Essentially,

this configuration reads: “Deny all non-logged-in users.” If a user tries to access a

page controlled by this Web.config file without logging in, he or she will be redirected

to the Login page. Unfortunately, this has the side-effect of denying all unauthentic-

ated users access to our style sheet and image files as well. Thankfully, ASP.NET

provides a way to override Web.config settings for particular directories of your web

site—the <location> tag.

To allow anonymous users access to your App_Themes and Images folders, add the

following to Web.config:

DorkNozzle\VB\03_web.config (excerpt)

 <system.web>
 ⋮
 </system.web>

 <!-- Allow access to App_Themes directory -->
 <location path="App_Themes">
 <system.web>
 <authorization>
 <allow users="?"/>
 </authorization>
 </system.web>
 </location>

 <!-- Allow access to Images directory -->
 <location path="Images">
 <system.web>
 <authorization>
 <allow users="?"/>
 </authorization>
 </system.web>
 </location>

Build Your Own ASP.NET 4 Website Using C# & VB576

Now, all you need do is create that Login page.

Create a new page named Login.aspx, which uses a code-behind file, and is based

on the Dorknozzle.master master page. Then, modify its title and content placeholders

like this:

DorkNozzle\VB\04_Login.aspx

<%@ Page Language="VB" MasterPageFile="~/DorkNozzle.master"
 AutoEventWireup="false" CodeFile="Login.aspx.vb"
 Inherits="Login" Title="Dorknozzle Login" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Login</h1>

</asp:Content>

If you execute the project now, you’ll notice that no matter which link you click,

you’ll be redirected to the blank Login page shown in Figure 13.1.

Naming the Login Page

How did ASP.NET know that our login form was named Login.aspx? We didn’t

specify the name anywhere. By default, unless you specify another form name,

ASP.NET will assume that the Login page is called Login.aspx. This is configurable

in the web.config by editing the loginUrl attribute on the <forms> tag.

Authenticating Users
You’re secured! Anonymous users can’t see your application’s pages, and are

automatically redirected to the Login page. Now what? How can you create users,

give them privileges, store their settings, and so on? Well, it depends.

All versions of ASP.NET can store user account data, and details of the resources

each user can access, in the Web.config file. However, relying only on the Web.config

file isn’t particularly helpful when the users’ account settings need to be easily

configurable: you can’t keep modifying the configuration file to register new users,

modify user passwords, and so on.

577Security and User Authentication

Figure 13.1. The Login page

As you probably already suspect, a real user management solution must use the

database somehow. Storing authentication and authorization data—such as user

accounts, roles, and privileges—in the database gives you much greater flexibility

in the long run.

A third solution is to store the user data in the code-behind file. This solution should

never, ever be used in any application, but it will make things easier for us as we

work through the first few examples.

To start off, let’s update our login form by adding a TextBox into which the user

can enter a username, another TextBox for the password, and a Button for submitting

the data to the server. Add this code after the Login heading in Login.aspx:

DorkNozzle\VB\05_Login.aspx (excerpt)

<h1>Login</h1>
<p>Username:

 <asp:TextBox id="username" runat="server" />
</p>
<p>Password:

 <asp:TextBox id="password" runat="server" TextMode="Password" />
</p>
<p><asp:Button id="submitButton" runat="server" Text="Login"
 OnClick="LoginUser" /></p>

Build Your Own ASP.NET 4 Website Using C# & VB578

As you can see, the page contains two TextBox controls, one of which has the

TextMode set to Password, which means that an asterisk will display for each char-

acter that a user types into this field. The other is a Button control, the OnClick at-

tribute for which calls the LoginUser method. Of course you’ll want to include

validator controls to validate input from the user. To do that, you can add Required-

FieldValidators for the both textboxes, however we’ll leave that step up to you.

Next, we’ll add the server-side script for this method, which will validate the login

credentials. Add the following code to your code-behind file:

Visual Basic DorkNozzle\VB\06_Login.aspx.vb

Partial Class Login
 Inherits System.Web.UI.Page
Sub LoginUser(ByVal s As Object, ByVal e As EventArgs)
 If (username.Text = "username" And _
 password.Text = "password") Then
 FormsAuthentication.RedirectFromLoginPage(username.Text, False)
 End If
End Sub
End Class

C# DorkNozzle\CS\06_Login.aspx.cs

public partial class Login : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
protected void LoginUser(Object s, EventArgs e)

 {
 if (username.Text == "username" &&
 password.Text == "password")
 {
 FormsAuthentication.RedirectFromLoginPage(username.Text,
 false);
 }
 }
}

579Security and User Authentication

Execute your project and you’ll see the simple, yet functional, Login page shown

in Figure 13.2.

Figure 13.2. The simple Dorknozzle Login page

In the code above, the If statement is used to check whether or not the user typed

in the correct username and password. If the username and password entered were

username and password, respectively, we call the FormsAuthentication class’s

RedirectFromLoginPage method, passing in two parameters.

The first parameter is the username that will be stored in the authentication ticket

(the cookie that’s sent to the user’s browser). We’ll simply use the username entered

into the form for this example. The second parameter is a Boolean value that indic-

ates whether a persistent cookie should be created. By setting this value to True,

you allow your users to close their browsers, open them again, navigate back to

your site, and still be logged in to the application. Setting this value to False allows

users to be logged in only as long as their browsers remain open. If they close their

browsers, reopen them, and navigate to your site, they’ll have to log in again.4

Once you enter the correct name and password, you’ll be forwarded to the page you

initially requested—by default, this is the homepage.

4 You could add a Remember Me checkbox, and decide the value of the second parameter based on the

user’s preference.

Build Your Own ASP.NET 4 Website Using C# & VB580

Configuring Forms Authentication
In the previous section, we created a basic Login page. We also modified the

Web.config file to enable the forms authentication mode. In this section, we’ll explore

the forms authentication section of the Web.config file in greater detail.

Aside from the basic authentication mode, the <authentication> tag within the

Web.config file may contain a <forms> tag. The <forms> tag accepts the following

attributes:

loginUrl

This attribute specifies the page that the user is redirected to when authentication

is necessary. By default, this page is called login.aspx. Using this attribute, you

can modify the filename to anything you like.

name

This attribute specifies the name of the cookie to be stored on the user’s machine.

By default, the name is set to .ASPXAUTH.

timeout

This attribute specifies the amount of time in minutes before the cookie expires.

By default, this value is set to 30 minutes.

path

This attribute specifies the path to the location at which the cookie is stored.

By default, this value is set to /.

protection

This attribute controls the way(s) in which the cookie data is protected. Values

include All, None, Encryption, and Validation. The default value is All.

cookieless attribute

A new ASP.NET feature, this attribute forces your application to use the URL

instead of a cookie to identify the logged-in user. The possible values are

UseCookies (use the cookie to identify the user), UseUri (use the URL to store

identification data), AutoDetect (try to detect if the user client supports cookies),

and UseDeviceProfile (use cookies if the user client is known to support them).

The default is UseDeviceProfile.

581Security and User Authentication

Applying the cookieless authentication mode is similar to using cookieless

sessions, and can be used to support visitors who have cookies disabled. When

the URL is used to identify the visitor, the links in your website will automatic-

ally be modified to include the identification information, and will look like

this:

http://localhost/Dorknozzle/(F(oyVZpBZ3w7Iz_LEFRukBigAf

nxM5QzvMY374YdcVjfcfgKJt8SJ3x9pVlrvUSUKbAiMuTP4rylvvNi7

HQH3ta9kMmQWQmZM5aT13GkenHPk1))/Default.aspx

slidingExpiration

This attribute specifies whether the cookie’s expiration date (which is specified

using the timeout attribute) should be reset on subsequent requests of a user’s

session. The default value in ASP.NET 1.x was True, and the default value in

ASP.NET is False.

An example Web.config file to which the <forms> tag has been applied might look

like this:

<configuration>
 <system.web>
 <authentication mode="Forms">

<forms name=".LoginCookie" loginUrl="Login.aspx"
 protection="All" timeout="40" path="/"
 cookieless="UseUri"/>
 </authentication>
 ⋮
 </system.web>
</configuration>

Configuring Forms Authorization
As is the case with the authentication section of the Web.config file, the

<authorization> tag can be modified to provide or deny certain users access to

your application, allowing you to make extremely specific decisions regarding who

is, and is not, accepted into the app. For instance, the following code allows all

authenticated (non-anonymous) users except for andrei:

Build Your Own ASP.NET 4 Website Using C# & VB582

<configuration>
 <system.web>
 <authentication mode="Forms"/>
 <authorization>
 <deny users="?"/>

<deny users="andrei"/>
 </authorization>
 </system.web>
</configuration>

Here, we again use the question mark (?) to force users to log in, thus denying an-

onymous users access to our application. We’ve also added another <deny> tag, for

the user andrei. In a nutshell, the two deny elements will allow everyone except

andrei to log in.

In addition to <deny> tags, the <authorization> tag may contain <allow> tags—we’ll

see an example of this in a moment. For each user who attempts to access the ap-

plication, ASP.NET will read through the tags in <authorization> and find the

first tag that matches that user. If it turns out to be a <deny> tag, that user will be

denied access to the application; if it’s an <allow> tag, or if no matching tag is found,

the user will be granted access.

The users attribute of <allow> and <deny> will accept three types of values:

?

Use this value to allow or deny all anonymous users. This is the most common

value used with forms authentication.

*

Use this value to allow or deny all users, including users who are logged in.

user, …

As with andrei above, we can allow or deny access to a specific user via this

attribute. We can list several users by separating their names with commas.

We could modify the code a bit further in an effort to allow only specific users:

<configuration>
 <system.web>
 <authentication mode="Forms"/>

583Security and User Authentication

 <authorization>
<allow users="john,jane" />

 <deny users="*" />
 </authorization>
 </system.web>
</configuration>

In this case, the users with the login names of john and jane are allowed access to

the application, but all other users (whether they’re logged in or not) will be denied

access.

Now that you have a basic understanding of the ways in which user access is con-

figured within the Web.config file, let’s see how we can use Web.config to store a list

of users for our application.

Storing Users in Web.config

The great thing about the Web.config file is that it is secure enough for us to store

usernames and passwords in it with confidence. For now, we’ll leave it in plain

text, however in the next section we will cover the recommended approach of

hashing the password in case someone gets access to the web.config file. The

<credentials> tag, shown here within the forms element of the Web.config file,

defines login credentials for two users:

DorkNozzle\VB\07_web.config

<authentication mode="Forms">
<forms>

 <credentials passwordFormat="Clear" >
 <user name="john" password="john" />
 <user name="jane" password="jane" />
 </credentials>
 </forms>
</authentication>
<authorization>
 <deny users="?" />
</authorization>

As we want to prevent users from browsing the site if they’re not logged in, we use

the appropriate <deny> tag in our <authorization> tag. The names and passwords

of the users we will permit can then simply be specified in the <credentials> tag.

Build Your Own ASP.NET 4 Website Using C# & VB584

Change your Web.config file to match the one shown above, and we’ll try another

example.

Let’s modify the code in the code-behind file for the Login.aspx page to validate the

usernames and passwords based on the Web.config file. Here’s what this change

looks like:

Visual Basic DorkNozzle\VB\08_Login.aspx.vb (excerpt)

Sub LoginUser(s As Object, e As EventArgs)
 If FormsAuthentication.Authenticate(username.Text, _
 password.Text) Then
 FormsAuthentication.RedirectFromLoginPage(username.Text, True)
 End If
End Sub

C# DorkNozzle\CS\08_Login.aspx.cs (excerpt)

void LoginUser(Object s, EventArgs e)
{
 if (FormsAuthentication.Authenticate(username.Text,
 password.Text))
 {
 FormsAuthentication.RedirectFromLoginPage(username.Text,
 true);
 }
}

In this case, we use the Authenticate method of the FormsAuthentication class,

which checks a username and password against the users defined in the

<credentials> tag within the Web.config file. Save your work and test the results

in the browser. Again, when you enter credentials that match those in the Web.config

file, you’ll be redirected to the page you requested.

In order to make this solution easier to maintain, you could write code that checked

the username and password against a database. However, as it turns out, ASP.NET

has built-in features that do all this work for you. We’ll look at them a little later in

this chapter.

585Security and User Authentication

Hashing Passwords
You can provide an increased level of protection for your users’ passwords by

storing them in a hashed format.

A hashing algorithm is an algorithm that performs an irreversible but reproducible

transformation on some input data. If we hash a user’s password before storing it,

then, when that user tries to log in, we can simply apply the same hashing algorithm

to the password the user has entered, and compare the results with the stored value.

You can store hashed versions of passwords in your database—you can even store

hashed passwords in Web.config. If you choose the latter option, you’ll obviously

need a means of hashing your passwords when you add new users to the file. For

a quick test, you can use an online hashing tool.5 Simply supply the tool with a

cleartext string (the desired password in its original unencoded state) and a hashing

algorithm, and it will give you the hashed version of the string.

The built-in hashing algorithms that ASP.NET supports are MD5 and SHA1. If you

were to hash the string “cristian” using MD5, the hashed version would be

B08C8C585B6D67164C163767076445D6. Here’s what your Web.config file would look

like if you wanted to assign the password “cristian” to the user “cristian”:

 <authentication mode="Forms">
 <forms>
 <credentials passwordFormat="MD5">
 <user name="cristian"

password="B08C8C585B6D67164C163767076445D6" />
 </credentials>
 </forms>
 </authentication>

After you make this change, execute your project again. When the login form appears,

enter cristian for the username, and cristian for the password, and you should

be redirected to the requested page (which, by default, is the homepage).

5 Try the one at http://aspnetresources.com/tools/pwdhash.aspx.

Build Your Own ASP.NET 4 Website Using C# & VB586

http://aspnetresources.com/tools/pwdhash.aspx

Hashing Passwords Programatically

I won’t insist on using Web.config because ASP.NET offers the much more

powerful option of storing credentials in the database. However, if you want to

hash passwords yourself without using an online tool, you can use the

HashForStoringInConfigFile method of the FormsAuthentication class,

which takes as parameters the cleartext password, and the hashing algorithm you

want to use—MD5 or SHA1.

Logging Users Out
You’ll usually want to provide users with the ability to log out once they’ve finished

browsing your site. People gain security from the knowledge that they have success-

fully logged out, and rightly so, since it’s possible for a hacker to take over (or spoof)

an existing login while it remains active. The first step to take in order to create

logout functionality for your application is to insert a suitable control that users

can click on when they finish browsing.

The method that lets you sign out current users is the FormsAuthentication class’s

SignOut method. You could call this method in the Click event handler of a Sign

Out button, like this:

Visual Basic

Sub Logout(s As Object, e As EventArgs)
 FormsAuthentication.SignOut()
 Response.Redirect("Default.aspx")
End Sub

C#

void Logout(Object s, EventArgs e) {
 FormsAuthentication.SignOut();
 Response.Redirect("Default.aspx");
}

The SignOut method shown above is used to clear the authentication cookie. The

next line simply redirects the user to the homepage.

587Security and User Authentication

In the next section we’ll be learning about ASP.NET Memberships and Roles and

using our database to store user credentials. This means that now is a good oppor-

tunity to remove the user credentials for John and Jane (and anyone else you may

have added) from our Web.config file before we progress.

ASP.NET Memberships and Roles
The ASP.NET team made a big step forward by implementing common functionality

that previously needed to be coded from scratch for every new web application.

This functionality includes a membership system, which supports the management

of customer accounts, login forms, user registration forms, and so on, and is divided

into several layers, each of which can be extended or modified to suit your needs.

In particular, this new membership system offers a rich set of login controls, which

you find in the Login tab of the Toolbox in Visual Web Developer. That’s right—you

can add a form for the creation of new user accounts simply by dragging a

CreateUserWizard control into a web form! ASP.NET makes implementing many

such features extremely easy, but in order to take full advantage of these controls,

we’ll need to learn about the framework on which they’re built.

Creating the Membership Data Structures
ASP.NET’s membership system stores user profile data, including membership and

personalization information, in a structured data store consisting of a set of tables,

views, and stored procedures. We’ll call these membership data structures, although

that name doesn’t take into account the complete range of data they contain.

To manipulate this data, Visual Web Developer provides the ASP.NET Web Site

Administration Tool, which lets you add and edit users and their roles, and perform

other administrative tasks.

We can use two procedures to create the necessary data structures. The first option

is simply to open the ASP.NET Web Site Administration Tool, and click the Security

tab. When you do this for the first time, the Web Site Administration Tool will

create a database called ASPNETDB in the App_Data folder of your Web Application.

This database will consist of two files: ASPNETDB.MDF (the database file) and

ASPNETDB_LOG.LDF (the database log file).

Build Your Own ASP.NET 4 Website Using C# & VB588

Let’s give this a try. With the Dorknozzle web site project loaded in Visual Web

Developer, select Website > ASP.NET Configuration. This will load a page like that

shown in Figure 13.3.

Figure 13.3. The ASP.NET Web Site Administration Tool

Figure 13.4. The Security tab

Click the Security tab to access the page shown in Figure 13.4.

589Security and User Authentication

At this point you can open the Dorknozzle\App_Data folder, where you’ll be able to

see your new database files, as Figure 13.5 indicates.

The ASPNETDB database is what's called a User Instance database, whose files are

stored locally inside your application’s folder. User instance databases are new to

Microsoft SQL Server 2005; they allow you to access database files without attaching

them to an SQL Server instance. These databases can easily be copied or transferred,

and your application can connect to them as needed.

The new ASP.NET login controls, the ASP.NET Web Site Administration Tool, and

a number of related classes are able to access the ASPNETDB database automatically,

without any configuration. Should you need to access this database through your

own code (for example, to customize the data structures), you can do so using the

special connection string LocalSqlServer.

There are two things you need to be aware of when you’re using the ASPNETDB

database:

■ Although User Instance databases were designed to be easy to move between

systems, you can’t always easily upload them to a hosting server.

■ This approach will cause your application to have to work with two databases.

In our case, the Dorknozzle site would need to use both the ASPNETDB database

and our old friend, the Dorknozzle database. Whether this is a wise choice or

not depends on the specifics of your project, and whether your site’s other data

structures need to relate to the membership data of your users.

Fortunately, you have the option to create the necessary data structures within your

existing database.

Using Your Database to Store Membership Data
In many cases, it’s more beneficial to store the membership data structures in your

own database than in the default ASPNETDB database. Indeed, for the purposes of

our application, it would be preferable to keep that data inside the existing

Dorknozzle database. This way, when we launch the project, we’ll need to transfer

only one database to the production machine, rather than having to migrate two

separate databases.

Build Your Own ASP.NET 4 Website Using C# & VB590

Figure 13.5. The ASPNETDB database files

In order to use your database to store membership data, you need to complete two

tasks:

■ Create the necessary data structures in Dorknozzle.

■ Edit Web.config to specify the new location of these structures, overriding the

default configuration that uses the ASPNETDB database.

You can use a tool that ships with ASP.NET, aspnet_regsql.exe, to customize the

data store and add the necessary structures to your own database. This tool can be

executed at the Windows command prompt, where you can include various para-

meters to configure it instantly for your database; alternatively, it can be run in

Wizard mode, allowing you to set those options one at a time. To execute the tool,

open aspnet_regsql.exe, which is located in

C:\Windows\Microsoft.NET\Framework\v2.0.nnnnn\.

The wizard should open with a Welcome screen, where you’ll just need to click

Next. In the next window, which is shown in Figure 13.6, you can choose between

adding the data structures to an existing database (or to a new database that can be

created for you), or removing the data structures.

591Security and User Authentication

Figure 13.6. The SQL Server Setup Wizard

Leave the first option selected and hit Next—you’ll see the dialog shown in Fig-

ure 13.7. Here, you’ll need to tell the wizard which server and database you want

to connect to in order to create those structures. The Server should be LOCAL\SqlEx-

press (where LOCAL is the network name of your current machine), and the Database

should be Dorknozzle.

Using Remote Servers

You can enter any local or remote server into the Server field. You might use this

tool to configure a remote server, for example, when you’re choosing to move the

application from your development machine to a remote production machine. In

that case, you’d need to select SQL Server Authentication and supply the username

and password provided by the server’s administrator.

Build Your Own ASP.NET 4 Website Using C# & VB592

Figure 13.7. Selecting the Server and Database

Click Next, and you’ll be asked to confirm the data you’ve entered. Hit Next again,

and expect a delay while the tool finishes setting up the database for you. When

it’s done, click Finish to close the wizard; then, when aspnet_regsql.exe finishes ex-

ecuting and a new prompt is displayed, you can close the SDK Command Prompt

window.

Once your database is ready, you’ll need to modify Web.config to configure a new

connection string named LocalSqlServer, which points to your database. As we

mentioned earlier, this is the default connection string used by the built-in controls

and tools that need access to the membership data.

More on aspnet_regsql.exe

You can customize or automate this process by supplying parameters to the

aspnet_regsql.exe program at the command prompt. For example, instead of running

the wizard using the steps above, you could have executed this command at the

SDK Command Prompt:

aspnet_regsql -S LOCAL\SqlExpress -E -A all
 -d Dorknozzle

To have the tool connect using SQL Server Authentication instead of the integrated

Windows Authentication, you’d use a slightly different command:

593Security and User Authentication

aspnet_regsql -S LOCAL\SqlExpress -U username
 -P password –A all -d Dorknozzle

Keep in mind that you can also use this tool to configure a remote database, in

which case you’d need to mention the remote server address and database instance

name instead of the local machine name and local SQL Server instance name.

If you executed the commands shown above, the output would look like that

shown in Figure 13.8.

Figure 13.8. Using aspnet_regsql.exe at the command prompt

LocalSqlServer Definition In machine.config

Should you ever want to see or modify the default definition of the LocalSqlServ-

er connection string, you can find it in the file

\Windows\Microsoft.NET\Framework\version\CONFIG\machine.config.

The machine.config file contains default machine-wide settings, which can be

customized by each application’s Web.config file. Here’s the default definition of

LocalSqlServer; this snippet also shows you how to connect to a disconnected

database, such as ASPNETDB:

<connectionStrings>
 <add name="LocalSqlServer" connectionString="
 data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;

Build Your Own ASP.NET 4 Website Using C# & VB594

 User Instance=true"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

Modify Web.config so that it removes the default LocalSqlServer connection string,

then redefines it with the same connection data as DorknozzleConnectionString:

Dorknozzle\VB\09_web.config (excerpt)

<connectionStrings>
 <add name="Dorknozzle"
 connectionString="Server=localhost\SqlExpress;
 Database=Dorknozzle;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
<remove name="LocalSqlServer"/>

 <add name="LocalSqlServer"
 connectionString="Server=localhost\SqlExpress;
 Database=Dorknozzle;Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

At this point, if you experimented with the auto-generated ASPNETDB database, you

can delete the two database files, aspnetdb.mdf and aspnetdb_log.ldf, from your ap-

plication’s App_Data folder.6

If you’re curious, open the Dorknozzle database using the tool of your choice to see

the new tables that have been created—they’re shown in Figure 13.9. You’ll notice

that your database now has 11 new tables whose names start with aspnet.

6 It’s interesting to note that if your application isn’t using the ASPNETDB database, you’re free to simply

delete its files. This is possible because, as we explained earlier, ASPNETDB is a User Instance database,

the files of which are opened and read only when needed.

595Security and User Authentication

Figure 13.9. Membership tables in Dorknozzle

Using the ASP.NET Web Site Configuration Tool
After making the configuration changes we mentioned earlier, run the ASP.NET

Web Site Configuration Tool and click the Security tab again. If you look into the

App_Data folder, you’ll notice that the tool didn’t create the ASPNETDB database. In-

stead, it’s using the Dorknozzle database.

Before you start to add users and roles, it’s worth taking a look around. While you’re

viewing the Security tab, click the Select authentication type link. You’ll see two op-

tions:

From the Internet

You would normally have to select this option to enable forms authentication,

but since you have already selected that type of authentication by editing your

application’s Web.config file, you’ll find this option is already selected. However,

in future, you might want to use this tool to set your preferred authentication

type, instead of editing the file manually.

Build Your Own ASP.NET 4 Website Using C# & VB596

From a local network

Had we not specified forms authentication in the Web.config file, this option,

which selects Windows authentication—ASP.NET’s default—would have been

selected. If you were to re-select this option at this stage, the tool would remove

the <authentication> tag from your Web.config file, restoring the default setting.

Leave the From the Internet option selected, and click Done to return to the Security

tab.

The Provider tab allows you to change the data provider that’s used to store the se-

curity data. Currently, you can only choose AspNetSqlProvider, which uses SQL

Server to store the membership data.

The Application tab shown in Figure 13.10 lets you create and manage application

settings. You will find particularly useful the Application Settings tab, which lets

you define name-value pairs to be stored in the Web.config file. For example, you

might want to add a setting named AdminEmail, which contains an email address

that can be used by your application to send important administration messages,

as shown in Figure 13.11.

Figure 13.11. Adding an application setting

597Security and User Authentication

Figure 13.10. Managing application settings

We’ve already learned to use Web.config to store connection strings within a dedic-

ated <connectionStrings> tag. Similarly, ASP.NET supports an <appSettings>

tag in the same file for the purpose of storing general application settings.

If you click Save, the administration tool will store the setting in your application’s

Web.config file:

<appSettings>
<add key="AdminEmail" value="dorknozzle@example.com" />

</appSettings>

To access this data, you need to use the ConfigurationManager class, which is

located in the System.Configuration namespace, like this:

Visual Basic

adminEmail = ConfigurationManager.AppSettings("AdminEmail")

Build Your Own ASP.NET 4 Website Using C# & VB598

C#

adminEmail = ConfigurationManager.AppSettings["AdminEmail"];

Creating Users and Roles
Open the ASP.NET web site, click the Security tab, and click Enable Roles under the

Roles section. This will add the following line to your Web.config file:

Dorknozzle\VB\10_web.config (excerpt)

<roleManager enabled="true" />

Two new links will appear under Roles: Disable Roles, and Create or Manage Roles.

Click Create or Manage Roles, and use the form shown in Figure 13.12 to create two

roles: one named Users, and another named Administrators.

Figure 13.12. Creating roles

599Security and User Authentication

Figure 13.13. Creating the admin account

Click the Security tab to return to the main Security window. Now click the Create

user link and add a user named admin, whose password is Dorknozzle!. Check the

checkbox to assign this user the Administrators role, and complete the other fields

shown in Figure 13.13, which are not optional.

Previously, the settings you specified using the ASP.NET Web Site Administration

Tool always affected the Web.config file. Not this time, though! In accordance with

the connection string in Web.config, roles and users are stored directly in the mem-

bership data structures that we added to the Dorknozzle database.

Changing Password Strength Requirements
By default, you won’t be allowed to enter passwords that aren’t considered suffi-

ciently secure. The default security requirements for AspNetSqlMembershipProvider,

as defined in machine.config, require the password to be at least seven characters

long, and to include at least one non-alphanumeric character (which is why the

Build Your Own ASP.NET 4 Website Using C# & VB600

exclamation mark was included in the example above). Also, passwords are stored

in a hashed format by default.

To change the password strength requirements, we must override the default settings

for the AspNetSqlMembershipProvider by adding a <membership> tag to the

Web.config file. As you might expect, we must first remove the default settings in-

herited from machine.config, then define our own settings:

Dorknozzle\VB\11_web.config (excerpt)

 <system.web>
 ⋮
 <membership>
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 applicationName="/"
 requiresUniqueEmail="false"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="10"
 minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="0"
 passwordAttemptWindow="10" />
 </providers>
 </membership>
 ⋮
 </system.web>

The settings in the example above are self-explanatory. For example, we’ve increased

the maxInvalidPasswordAttempts from the default of 5 to 10, to help many users

avoid being locked out of their accounts if they repeatedly enter an incorrect pass-

word. We’ve also removed the constraint that required us to have at least one alpha-

numeric character in the password, and the function that facilitated lost password

retrieval by means of a secret question and answer.

601Security and User Authentication

What Does Your Project Need?

Don’t take these security settings as recommendations for your own projects. These

kinds of decisions need to be taken seriously, and the choices you make should

relate directly to the specific needs of your project.

Using Regular Expressions

Advanced programmers can make use of an additional setting,

passwordStrengthRegularExpression, which can be used to describe complex

rules that ensure password strength.

After you make this change in Web.config, start the ASP.NET Web Site Configuration

Tool again and add another user named cristian with the password cristian;

assign this user the Users role.7 As Figure 13.14 illustrates, the fields for specifying

a security question and answer no longer appear in the form.

Figure 13.14. Creating a user

7 Feel free to use another username and password combination that matches the new password strength

requirements—the purpose of this exercise is to see for yourself that the new settings are in place.

Build Your Own ASP.NET 4 Website Using C# & VB602

Securing Your Web Application
Now we have two roles, and two users (admin and cristian), but we still need to

secure the application. You should have restricted access to the app earlier in this

chapter by modifying Web.config like this:

Dorknozzle\VB\11_web.config (excerpt)

<authorization>
 <deny users="?" />
</authorization>

If you haven’t already done so, you can add this code now, or use Visual Web De-

veloper to add it for you. Open the ASP.NET Web Site Administration Tool, click

the Security tab, and click Create access rules. Create a new access rule for the

Dorknozzle directory, as shown in Figure 13.15, to Deny all Anonymous users.

Figure 13.15. No anonymous users can access Dorknozzle!

Check the options indicated in Figure 13.15 and click OK. If you look at your updated

Web.config file, you’ll see the new authorization element that denies anonymous

access.

603Security and User Authentication

Creating Access Rules Using the Administration Tool

Note that, while it’s useful, this tool can be misleading. When you add a new access

rule using the ASP.NET Web Site Administration Tool, the new rule is added to

Web.config—even if it existed before! If you used the tool multiple times in the

previous example, you could end up with repetitions like this:

 <authorization>
 <deny users="?" />
 <deny users="?" />
 <deny users="?" />
 </authorization>

Also, keep in mind that the new rules you add using the tool are appended to the

bottom of the list. This is important because these rules are applied in sequence!

For example, adding a new rule that allows anonymous users doesn’t change the

line created previously. Instead, it creates a new entry:

 <authorization>
 <deny users="?" />

<allow users="?" />
 </authorization>

As these rules are processed in sequence, all anonymous users would be rejected

even after we added the new rule. The tool isn’t smart enough to detect such lo-

gical contradictions, so you must be careful with your rule-setting.

Before moving on, make sure your authorization element looks like this:

Dorknozzle\VB\11_web.config (excerpt)

 <authorization>
 <deny users="?" />
 </authorization>

At this point, no unauthenticated users can access your application. Since this is

an intranet application that’s supposed to be accessed only by Dorknozzle’s employ-

ees, this security requirement makes sense.

However, we’d like to impose more severe security restrictions to the AdminTools.aspx

file, which is supposed to be accessed only by administrators. Unfortunately, the

Build Your Own ASP.NET 4 Website Using C# & VB604

ASP.NET Web Site Application Configuration tool can’t help you set permissions

for individual files in your project, so you’ll either need to place all admin-related

functionality into a separate folder (which would allow you to continue using the

tool to configure security options), or modify Web.config by hand.

You can set individual access rules for files using the location element, which can

contain a system.web sub-element, which, in turn, can contain settings customized

for the location. Add this code to your Web.config file:

Dorknozzle\VB\12_web.config (excerpt)

 <!-- Allow access to Images directory -->
 <location path="Images">
 <system.web>
 <authorization>
 <allow users="?"/>
 </authorization>
 </system.web>
 </location>
<!-- Only administrators may access AdminTools.aspx -->

 <location path="AdminTools.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

Now, administrators are allowed to access AdminTools.aspx, as this rule comes first

under the authorization element. If you switched the order of the allow and deny

elements, no one would be allowed to access AdminTools.aspx.

Now your site is accessible only to authenticated users, with the exception of the

Administration page, which is accessible only to users in the Administrator role.

Now we just need to let users log in into the system.

Using the ASP.NET Login Controls
As we mentioned earlier in this chapter, ASP.NET delivers a range of very useful

controls for managing users on your site:

605Security and User Authentication

Login

This control displays a login form that contains a User Name text box, a Password

text box, a Remember me next time checkbox, and a Log In button. It’s integrated

with the membership API, and performs the login functionality without requiring

you to write any code. The layout is customizable through templates and mul-

tiple properties.

LoginStatus

This is a simple yet useful control that displays a Login link if the user isn’t

logged in; otherwise, it displays a Logout link. Again, this control requires no

additional coding in order to work with your application’s membership data.

LoginView

This control contains templates that display different data depending on

whether or not the user is logged in. It can also display different templates for

authenticated users depending on their roles.

LoginName

This control displays the name of the logged-in user.

PasswordRecovery

If the user has provided an email address and a secret question and answer

during registration, this control will use them to recover the user’s password.

ChangePassword

This control displays a form that requests the user’s existing password and a

new password, and includes the functionality to change the user’s password

automatically, without requiring you to write additional code.

CreateUserWizard

This control displays a wizard for creating a new user account.

Let’s see a few of these controls in action in our own application. In the following

pages, we’ll undertake these tasks:

1. Use a Login control in the Login.aspx page to give users a means of logging in to

our application.

2. Use LoginStatus and LoginView controls to display Login and Logout links, and

ensure that the Admin Tools link is displayed only to site administrators.

Build Your Own ASP.NET 4 Website Using C# & VB606

Authenticating Users
Earlier in this chapter, we created a web form based on the Dorknozzle.master master

page, called Login.aspx. Remove the existing controls from the form’s

ContentPlaceHolder, and also remove the LoginUsermethod from the code-behind

file.

Using the ASP.NET login controls, we can easily make the authentication work. If

you’re using Visual Web Developer, simply drag a Login control from the Login

section of the Toolbox to just below the Login header in Login.aspx. If you’d prefer

to add the control manually, here’s the code:

Dorknozzle\VB\13_Login.aspx (excerpt)

<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <h1>Login</h1>
<asp:Login ID="Login1" runat="server">

 </asp:Login>
</asp:Content>

If you switch to Design view, you should see a display like the one depicted in Fig-

ure 13.16.

Figure 13.16. Using the Login control

Yes, that’s all you have to do! Start your project, and you’ll be sent to the Login

page. First, log in with the regular user details that you created earlier (not with the

admin account), then browse through the links to see that they can indeed be ac-

cessed, with the exception of the Admin Tools link. When you click Admin Tools, you

607Security and User Authentication

should be sent back to the Login page. This time, log in with the admin user details,

and voilà! You’ll gain access to the Admin Tools page as well.

Let’s take a few moments to customize the look of your login controls. Stop the ex-

ecution of the project, and switch back to Login.aspx in Design view. Select the Login

control and click its smart tag to see the three very useful options shown in Fig-

ure 13.17.

Figure 13.17. Options for the Login control

The Administer Website menu option launches the ASP.NET Web Site Administration

Tool. The Convert to Template option transforms the current layout of your control

into templates, which you can customize down to the smallest detail. The Auto

Format… link lets you select a predefined style to apply to this control.

If you were working in a production scenario, I’d advise you to select Convert to

Template and use CSS to fine-tune the appearance of your control, as we did with

the GridView and DetailsView controls in Chapter 11. However, for the purposes

of this exercise, let’s just set the BorderStyle property of the Login control to Solid,

and the BorderWidth property to 1px.

It was very simple to add login functionality—we even changed its appearance with

just a few mouse clicks! There are just one or two more things that we need to take

care of before we can continue to add features to our site. First, let’s deal with per-

sonalization.

Customizing User Display
The next feature we want to implement is functionality that gives the user a way

to log out of the application. After you perform the changes that we’re about to im-

plement, logged-in users will have the option to log out, as Figure 13.18 illustrates.

On the other hand, users that aren’t logged in won’t see the menu at all, as Fig-

ure 13.19 indicates.

Build Your Own ASP.NET 4 Website Using C# & VB608

Figure 13.18. The view that the logged-in user sees

Figure 13.19. The Login page

To implement the logout link functionality, we’ll need to modify the menu in the

Dorknozzle.master master page.

609Security and User Authentication

Using Master Pages

At this point, you should appreciate the extraordinary flexibility that master pages

offer us. If you didn’t use master pages or web user controls, you’d have to modify

all of the pages on your site to implement this new functionality.

Open Dorknozzle.master, and change the code between <!-- Menu --> and <!--

Content --> as indicated here:

Dorknozzle\VB\14_Dorknozzle.master (excerpt)

<!-- Menu -->
<div class="Menu">
<asp:LoginView ID="loginView" runat="server">

 <LoggedInTemplate>
 <asp:LoginName ID="loginName" runat="server"
 FormatString="Hello, {0}!" />
 (<asp:LoginStatus ID="loginStatus" runat="server" />)
 <asp:SiteMapDataSource ID="dorknozzleSiteMap" runat="server"
 ShowStartingNode="false" />
 <asp:Menu ID="dorknozzleMenu" runat="server"
 DataSourceID="dorknozzleSiteMap">
 <StaticItemTemplate>
 <img src="Images/book_closed.gif" border="0" width="16"
 height="16" alt="+" />
 <%# Eval("Text") %>
 </StaticItemTemplate>
 </asp:Menu>

</LoggedInTemplate>
 <AnonymousTemplate>
 <asp:LoginStatus ID="loginStatus" runat="server" />
 </AnonymousTemplate>
 </asp:LoginView>
</div>
<!-- Content -->

Also modify the Dorknozzle.css file to accommodate the new control:

Dorknozzle\VB\15_Dorknozzle.css (excerpt)

.Menu
{
top: 180px;

Build Your Own ASP.NET 4 Website Using C# & VB610

 left: 15px;
 width: 195px;
 position: absolute;
}

Don’t let this code scare you; it’s actually quite simple. The root control here is a

LoginView control, which displays different templates depending on whether or

not the user is logged in (it also knows how to display different templates depending

on the roles of the user).

If the site is loaded by an anonymous (unauthenticated) user, we don’t want to

display the navigation menu; we want to display only the Login link. The output

that’s to be shown to anonymous users by the LoginView control is placed inside

its AnonymousTemplate template. There, we use a LoginStatus control that displays

a Login link for anonymous users, and a Logout link for logged-in users. Note that

with the current Dorknozzle configuration, the contents of the AnonymousTemplate

are never actually used—all anonymous users are simply redirected to the Login

page. However, it’s best to include the LoginStatus control here anyway, just in

case we should ever reconfigure the site to include some pages that are accessible

to anonymous users:

Dorknozzle\VB\14_Dorknozzle.master (excerpt)

 <AnonymousTemplate>
 <asp:LoginStatus ID="loginStatus" runat="server" />
 </AnonymousTemplate>

The output that will be displayed to authenticated users is placed inside the

LoggedInTemplate template of the LoginView control. The LoggedInTemplate starts

by displaying a welcome message:

Dorknozzle\VB\14_Dorknozzle.master (excerpt)

 <LoggedInTemplate>
 <asp:LoginName ID="loginName" runat="server"
 FormatString="Hello, {0}!" />

By default, the LoginName control displays just the username. However, you can

customize it by setting its FormatString property to a custom string, where {0} is

611Security and User Authentication

a placeholder for the username. Our FormatString value, Hello, {0}! will output

“Hello, cristian!” if the logged in user’s username is cristian.

Immediately after this welcome message, we have a Logout link generated by another

LoginStatus control which, as we discussed earlier, displays a Logout link to logged-

in users:

Dorknozzle\VB\14_Dorknozzle.master (excerpt)

 (<asp:LoginStatus ID="loginStatus" runat="server" />)

Just below the welcome message and the Logout link sits our old friend, Menu, which

displays the navigation menu. Since the Menu is now part of the LoggedInTemplate

of the LoginView, it’s displayed only for logged-in users, as we planned.

Finally, it’s worth noting that you can use Visual Web Developer to edit the various

templates (and the controls they house). Open Dorknozzle.master in the designer,

and click the smart tag of the LoginView control. The options that display, which

are shown in Figure 13.20, are certainly interesting.

Figure 13.20. Viewing LoginView Tasks

The Edit RoleGroups… link lets you administer the templates that are shown to users

who are assigned particular roles. This facility is useful when you want to display

to users specific content that’s relevant to their roles. For example, if you wanted

to display to administrators different menus than you show to regular users, you

could create a group for users within the Users role, and another group for users in

the Administrators role, then create different views for these groups using templates.

To check in your code whether or not the current user is authenticated (that is,

logged in), you must check the value of

HttpContext.Current.User.Identity.IsAuthenticated. To check the role of the

logged-in user, you must use the HttpContext.Current.User.IsInRole method,

as shown here:

Build Your Own ASP.NET 4 Website Using C# & VB612

Visual Basic

If HttpContext.Current.User.IsInRole("Administrators") Then
 ⋮

C#

if (HttpContext.Current.User.IsInRole("Administrators"))
{
 ⋮

This method returns True if the current user is a member of the specified role, and

False if he or she is not.

Summary
In this chapter, we examined the approaches you can use to secure your ASP.NET

applications. You learned how to create a simple Login page, configure the Web.config

file to handle authentication and authorization, and check for usernames and

passwords using a database.

ASP.NET’s membership features provide extraordinary built-in functionality, and

we have explored a number of these features through this chapter. The complete

list of features is much larger, and, as we mentioned at the beginning of this chapter,

there are entire books that deal solely with this topic.

In Chapter 14, we’ll learn to work with files and directories, and send email messages

using ASP.NET.

613Security and User Authentication

Chapter14
Working with Files and Email
The .NET Framework exposes a set of classes for working with text files, drives,

and directories, through the System.IO namespace. This namespace exposes func-

tionality that allows you to read from, write to, and update content within directories

and text files. On occasion, you will want to read from and write to a text file. Text

files almost always use a format that’s based on the ASCII standard, which is perhaps

the most widely accepted cross-platform file format, having been around since the

1960s. This makes it a very useful way of exchanging information between pro-

grams—even if they’re running on different platforms and operating systems.

As we’ll see in the course of this chapter, we can use the set of classes exposed by

the System.IO namespace to complete the following tasks:

Write to text files.

The sales department within our fictitious company may want to write sales

and forecast information to a text file.

Read from text files.

As a member of the web development team, you may want to use the data

within a text file to create dynamic graphs to display sales and revenue forecasts

on the Web.

Upload files from the client to the server.

You may want to create an interface that allows staff from the Human Resources

department to upload company documentation for reference by employees.

Access directories and directory information.

You may want to let the Human Resources department choose the drive to which

staff will upload files. For instance, you may have one drive dedicated to

spreadsheets, and another just for Word documents.

Once you have a firm grasp on the intricacies of working with text files and directory

information, you’ll learn how to send email in ASP.NET using the System.Net.Mail

namespace. We’ll finish the chapter with a quick introduction to serialization.

Writing and Reading Text Files
The System.IO namespace contains three different groups of classes:

■ classes for working with files
■ classes for working with streams
■ classes for working with directories

As we progress through this chapter, we’ll look at each of these groups. However,

let’s begin by discussing the tasks of writing to and reading from text files with the

aid of the classes that work with files and streams. These classes include:

File

contains methods for working with files

FileStream

represents a stream for reading and writing to files

StreamReader

reads characters from a text file

Build Your Own ASP.NET 4 Website Using C# & VB616

StreamWriter

writes characters to a text file

Path

contains methods for manipulating a file or directory

For the most part, we read from and write to text files by using the File class to

return a stream. If we want to write to a text file, we use the StreamWriter class;

conversely, we use the StreamReader class to read from a text file.

Setting Up Permissions
Before our ASP.NET page can read and write files to your hard disk, the ASP.NET

page must have permissions to access the file we’re trying to read or write. The task

of setting the permissions depends on our context. Here's a couple of possible

scenarios:

■ If you’re running the page using Cassini (Visual Web Developer’s integrated web

server), the code will run under the credentials of your user account, so it will

inherit all your permissions. For example, if you’re a computer administrator,

then your page will be able to access any resource on your computer.

■ If you’re running the page using IIS, the code will run under the credentials of

the ASPNET user account, or the Network Service user account, depending on

your operating system. By default, this account has access to any folder that’s

part of an IIS application.

Running Under IIS

The IIS scenario is particularly relevant because your web application will run

under IIS when it’s hosted on a production server. Also of note is the fact that,

while you may fine-tune the permission rules on your development machine, on

a hosting server you probably won’t be allowed to access folders outside your

application’s virtual directory.

On your own machine, you’ll need to set special permissions only if you use IIS,

and you want to write in a folder that’s not part of an existing IIS application. If

you’re in this situation, read on. Otherwise, feel free to skip to the next section, in

617Working with Files and Email

which we’ll create within your application’s folder structure a file that will be ac-

cessible under the default configuration of either IIS or Cassini.

Detailed instructions are provided only for Windows XP, which requires an extra

step compared to Windows Vista. If you run Windows Vista, follow the exercise,

but exclude Step 2. At Step 5, you should add the account Network Service instead

of ASPNET.

1. Create a new folder called WritingTest somewhere on your disk. For the purposes

of this discussion, I’ll assume it’s at C:\WritingTest.

2. In Windows XP, simple file sharing is enabled by default. This hides the Security

tab you’ll need to select in Step 4, preventing you from granting web applications

write access to this directory. To disable simple file sharing, open the Windows

Control Panel and double-click the Folder Options icon. In the View tab, uncheck

Use simple file sharing (Recommended) (as Figure 14.1 indicates, this should be

the last option on the list).

3. Open the C: drive with the Windows Explorer (not the IIS control panel), right-

click on the WritingText directory and select Properties.

4. Select the Security tab.

5. Add the ASPNET account (Network Service if you run Vista) to the Group or

user names list by clicking Add…, and typing it into the Select Users or Groups

dialog as shown in Figure 14.2. A new entry called ASP.NET Machine Account

(machinename\ASPNET) will be added to the list.

Figure 14.2. Adding the ASPNET account

Build Your Own ASP.NET 4 Website Using C# & VB618

Figure 14.1. Disabling simple file sharing in Windows XP

6. Select the new user in the list, and click on the Write checkbox under Allow in

the permissions list, as shown in Figure 14.3.

7. Click OK.

Figure 14.3. Giving write access to ASPNET

619Working with Files and Email

Writing Content to a Text File
For the purposes of the next few exercises, let’s work again with our old friend, the

LearningASP folder. Start Visual Web Developer, open the LearningASP\CS or

LearningASP\VB folder, and create a new web form called WriteFile.aspx. Make

sure you aren’t using a code-behind file or a master page. Next, enter the code shown

here in bold:

LearningASP\VB\WriteFile_1.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Writing to Text Files</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p>Write the following text within a text file:</p>
 <asp:TextBox ID="myText" runat="server" />
 <asp:Button ID="writeButton" Text="Write" runat="server"
 OnClick="WriteText" />
 </div>
 </form>
 </body>
</html>

As you can see, we import the System.IO namespace—the namespace that contains

the classes for working with text files—first. Next, we add a TextBox control to

handle collection of the user-entered text, and a Button control to send the inform-

ation to the server for processing.

Next, in the <head> tag, we’ll create the WriteTextmethod mentioned in the OnClick

attribute of the Button. This method will write the contents of the TextBox to the

text file:

Build Your Own ASP.NET 4 Website Using C# & VB620

Visual Basic LearningASP\VB\WriteFile_2.aspx (excerpt)

<script runat="server">
Sub WriteText(ByVal s As Object, ByVal e As EventArgs)

 Using streamWriter As StreamWriter = File.CreateText(_
 "C:\LearningASP\VB\myText.txt")
 streamWriter.WriteLine(myText.Text)
 End Using
 End Sub
</script>

C# LearningASP\CS\WriteFile_2.aspx (excerpt)

<script runat="server">
void WriteText(Object s, EventArgs e)

 {
 using (StreamWriter streamWriter = File.CreateText(
 @"C:\LearningASP\CS\myText.txt"))
 {
 streamWriter.WriteLine(myText.Text);
 }
 }
</script>

Apart from the new Using construct, the code is fairly straightforward. First, we

create a StreamWriter variable called streamWriter. To obtain the variable’s value,

we call the CreateText method of the File class, passing in the location of the text

file, which returns a new StreamWriter. Don’t forget that C# needs to escape back-

slashes when they’re used in strings, so the path to our file must use \\ to separate

folder names, or use the @ character in front of the string so that backslashes are

automatically ignored.

What about Using, then? Similarly to database connections, streams are something

that we need to close when we’re finished working with them, so they don’t occupy

resources unnecessarily. The Using construct is a common means of ensuring that

the stream is closed and disposed of after we work with it.

Disposing of Objects

Technically, when we work with Using, the object is disposed of, rather than

simply closed. The action is identical to explicitly calling its Dispose method.

621Working with Files and Email

When the code enclosed by Using finishes executing, streamWriter’s Dispose

method is called automatically for you. This ensures that it doesn't keep any re-

sources locked, and that the object itself is removed from memory immediately.

In the world of .NET, closed objects are cleared from memory at regular intervals

by .NET’s Garbage Collector, but for classes that support the Dispose method

(such as StreamWriter), you can use this method (or the Using construct) to

remove an object from memory immediately.

It’s also interesting to note the way we used the File class’s CreateText method

in the code above. Normally, when we need to call a method of a particular class,

we create an object of that class first. How was it possible to call the CreateText

method using a class name, without creating an object of the File class first?

The CreateText method is what Visual Basic calls a shared method, and what’s

known in C# as a static method. Shared or static methods can be called without our

having to create an actual instance of the class. In the above code, CreateText is a

shared or static method, because we can call it directly from the File class, without

having to create an instance of that class.

We worked with shared/static class members earlier, when we read the connection

string. In that case, you didn’t need to create an object of the ConfigurationManager

class in order to read your connection string:

Visual Basic

string connectionString =
 ConfigurationManager.ConnectionStrings(_
 "Dorknozzle").ConnectionString

Instance methods, on the other hand, are those with which you’re familiar—they

may only be called on an instance (object) of the class. Instance methods are most

commonly used, but shared/static methods can be useful for providing generic

functionality that doesn’t need to be tied to a particular class instance.

Now, test the page in your browser. Initially, all you’ll see is an interface that’s

similar to Figure 14.4.

Type some text into the text box, and click the Write button to submit your text for

processing. Browse to and open the C:\LearningASP\VB\myText.txt or

Build Your Own ASP.NET 4 Website Using C# & VB622

Figure 14.4. Writing text to a file

C:\LearningASP\CS\myText.txt file in Notepad, and as in Figure 14.5, you’ll see the

newly added text.

If you try to enter a different value into the TextBox control and click the Write

button, the existing text will be overwritten with the new content. To prevent this

from happening, you can replace the call to the CreateText method with a call to

AppendText. As Figure 14.6 shows, the AppendText method adds to existing text,

rather than replacing it.

Figure 14.6. Appending text

Also note that, rather than specifying the full path to the text file, you can use the

MapPath method to generate the full path to the text file automatically. All you need

to do is give the method a path that’s relative to the current directory, as follows:

Visual Basic LearningASP\VB\WriteFile_3.aspx (excerpt)

 Using streamWriter As StreamWriter = File.AppendText(_
MapPath("myText.txt"))

623Working with Files and Email

Figure 14.5. Viewing your new file in Notepad

C# LearningASP\CS\WriteFile_3.aspx (excerpt)

 using (StreamWriter streamWriter = File.AppendText(
MapPath("myText.txt")))

The MapPath method returns the full path to the filename that you pass in as a

parameter, and can make for cleaner code that’s easier to read.

Reading Content from a Text File
Just as you used the CreateText and AppendText methods of the File class to return

a new StreamWriter object, you can use the OpenText method of the File class to

return a new StreamReader. Once the StreamReader has been established, you can

loop through the text file using a While loop in conjunction with the object’s

ReadLine method to examine the contents of the text file.

To experiment with the process of reading from text files, create a new web form

named ReadFile.aspx in the same way that you created WriteFile.aspx, and add this

code to it:

Visual Basic LearningASP\VB\ReadFile_1.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">

Build Your Own ASP.NET 4 Website Using C# & VB624

 <head runat="server">
 <title>Reading from Text Files</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Button ID="readButton" Text="Read" runat="server"
 OnClick="ReadText" />

 <asp:Label ID="resultLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

As you can see, we’ve simply added a Button and Label to the page. When the user

clicks the button, the Click event will be raised and the ReadText method will be

called. Let’s add this method next. It will read the text from the text file and write

it out to the Label control:

Visual Basic LearningASP\VB\ReadFile_2.aspx (excerpt)

<script runat="server">
 Sub ReadText(ByVal s As Object, ByVal e As EventArgs)
 Dim inputString As String
 resultLabel.Text = ""
 Using streamReader As StreamReader = _
 File.OpenText(MapPath("myText.txt"))
 inputString = streamReader.ReadLine()
 While (inputString <> Nothing)
 resultLabel.Text &= inputString & "
"
 inputString = streamReader.ReadLine()
 End While
 End Using
 End Sub
</script>

C# LearningASP\CS\ReadFile_2.aspx (excerpt)

<script runat="server">
 void ReadText(Object s, EventArgs e)
 {
 string inputString;

625Working with Files and Email

 resultLabel.Text = "";
 using (StreamReader streamReader =
 File.OpenText(MapPath("myText.txt")))
 {
 inputString = streamReader.ReadLine();
 while (inputString != null)
 {
 resultLabel.Text += inputString + "
";
 inputString = streamReader.ReadLine();
 }
 }
 }
</script>

We declare a new string variable named inputString to hold the text we’ll read

from the text file. Next, we set the text value of the Label control to an empty string.

We do this in case the user presses the Read button when the Label already contains

text from a previous click.

The next thing our method has to do is call the OpenText method of the File class

to return a new StreamReader, again passing in the full path to the text file. And,

once again, we’re using the Using construct to ensure the stream object is disposed

of after we finish working with it:

Visual Basic LearningASP\VB\ReadFile_2.aspx (excerpt)

 Using streamReader As StreamReader = _
 File.OpenText(MapPath("myText.txt"))

C# LearningASP\CS\ReadFile_2.aspx (excerpt)

 using (StreamReader streamReader =
 File.OpenText(MapPath("myText.txt")))
 {

Next, we call the ReadLine method of the streamReader object to get the first line

of the file:

Visual Basic LearningASP\VB\ReadFile_2.aspx (excerpt)

 inputString = streamReader.ReadLine()

Build Your Own ASP.NET 4 Website Using C# & VB626

C# LearningASP\CS\ReadFile_2.aspx (excerpt)

 inputString = streamReader.ReadLine();

Now we loop through the file, reading each line and adding it, in turn, to the end

of the text in the Label:

Visual Basic LearningASP\VB\ReadFile_2.aspx (excerpt)

 While (inputString <> Nothing)
 resultLabel.Text &= inputString & "
"
 inputString = streamReader.ReadLine()
 End While

C# LearningASP\CS\ReadFile_2.aspx (excerpt)

 while (inputString != null)
 {
 resultLabel.Text += inputString + "
";
 inputString = streamReader.ReadLine();
 }

Remember, While loops are used when you want to repeat the loop while a condition

remains True. In this case, we want to loop through the file, reading in lines from

it until the ReadLinemethod returns the value Nothing (null in C#), which indicates

that we’ve reached the end of the file. Within the loop, we simply append the value

of inputString to the Label control’s Text property using the &= operator (+= in

C#), then read the next line from streamReader into inputString.

Save your work and test the results in the browser. Figure 14.7 shows the contents

of the text file, as displayed by ReadFile.aspx.

Figure 14.7. Reading a file using StreamReader

627Working with Files and Email

Accessing Directories and
Directory Information
Now that you have some understanding of writing to and reading from text files,

let’s look at accessing the directories in which those files are located. The classes

that are available in the System.IO namespace for working with directories and

directory information are as follows:

Directory

contains shared/static methods for creating, moving, and retrieving the contents

of directories

DirectoryInfo

contains instance methods for creating, moving, and retrieving the contents of

directories

Just like the File class, the Directory class contains shared/static methods, which

we can call without instantiating the class. The DirectoryInfo class, on the other

hand, requires instantiation, as it contains only instance methods. The Directory

class contains the following useful methods:

GetDirectories

returns a string array of directory names

GetFiles

returns a string array of filenames from a specific drive or directory

GetFileSystemEntries

returns a string array of directory and filenames

Let’s build an example page with a DropDownList control to display the directories

and files within the server’s C: drive. In the same Learning folder, create a web form

named Directories.aspx, without a code-behind file, then add to it the code shown

here in bold:

Build Your Own ASP.NET 4 Website Using C# & VB628

Visual Basic LearningASP\VB\Directories_1.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Directory Info</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<p>What do you want to view:</p>
 <asp:DropDownList ID="dirDropDown" runat="server"
 OnSelectedIndexChanged="ViewDriveInfo"
 AutoPostBack="true">
 <asp:ListItem Text="Select..." />
 <asp:ListItem Text="Directories" />
 <asp:ListItem Text="Files" />
 <asp:ListItem Text="Directories/Files" />
 </asp:DropDownList>
 <asp:GridView ID="grid" runat="server" />
 </div>
 </form>
 </body>
</html>

As you can see, our interface consists of a DropDownList control containing the

three choices from which the user can select (Directories, Files, or Directories/Files).

When a user selects an item from the DropDownList control, the SelectedIndex-

Changed event is raised, and ViewDriveInfo is called.

Now, let’s write the ViewDriveInfo method, which will write the specified inform-

ation to the GridView control:

629Working with Files and Email

Visual Basic LearningASP\VB\Directories_2.aspx (excerpt)

<script runat="server">
Sub ViewDriveInfo(ByVal s As Object, ByVal e As EventArgs)

 Select Case dirDropDown.SelectedItem.Text
 Case "Directories"
 grid.DataSource = Directory.GetDirectories("C:\")
 Case "Files"
 grid.DataSource = Directory.GetFiles("C:\")
 Case "Directories/Files"
 grid.DataSource = Directory.GetFileSystemEntries("C:\")
 End Select
 grid.DataBind()
 End Sub
</script>

C# LearningASP\CS\Directories_2.aspx (excerpt)

<script runat="server">
void ViewDriveInfo(Object s, EventArgs e)

 {
 switch (dirDropDown.SelectedItem.Text)
 {
 case "Directories":
 grid.DataSource = Directory.GetDirectories("C:\\");
 break;
 case "Files":
 grid.DataSource = Directory.GetFiles("C:\\");
 break;
 case "Directories/Files":
 grid.DataSource = Directory.GetFileSystemEntries("C:\\");
 break;
 }
 grid.DataBind();
 }
</script>

You might remember from Chapter 3 that we use Select Case (VB) or switch (C#)

statements to check for the possibility of multiple values of an object, rather than

just one. The Select Case or switch specifies the value that is to be checked (in

this case, the Text property of the selected list item):

Build Your Own ASP.NET 4 Website Using C# & VB630

Visual Basic LearningASP\VB\Directories_2.aspx (excerpt)

 Select Case dirDropDown.SelectedItem.Text

C# LearningASP\CS\Directories_2.aspx (excerpt)

 switch (dirDropDown.SelectedItem.Text)

Next, we use Case to specify the action to be performed for each significant value.

The data retrieved by the , GetFiles, or GetFileSystemEntriesmethod of Directory

can be fed to the GridView as its DataSource. After we specify the DataSource, we

need to call the control’s DataBind method, as if we were reading from a database,

to fetch and display the data from the data source.

Save your work and test the results in your browser. Figure 14.8 shows within the

GridView the kind of results that display when the user selects an item from the

DropDownList.

Figure 14.8. Using the Directory class to view specific files, directories, or both, from a given drive

More Options

The GetDirectories, GetFiles, and GetFileSystemEntriesmethods accept

more than simple drive or directory names. For instance, if you wanted to view

only text files, you could use the following VB code:

631Working with Files and Email

Directory.GetFiles("C:\", "*.txt")

In this example, the GetFilesmethod would retrieve from the root of the C: drive

all files that have the .txt extension.

Working with Directory and File Paths
The System.IO namespace includes a utility class named Path that contains methods

for retrieving path information from files and directories. As an example, let’s build

a simple application that retrieves the directory and path information for a text file.

Create a new web form named PathInfo.aspx in the Learning directory, then add to

it the code shown here in bold:

Visual Basic LearningASP\VB\PathInfo_1.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Directory and Path Information</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Label ID="resultLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

The page contains a simple Label control, which we’ll use to show all the directory

and path information. Next, let’s add the code that actually returns the path and

directory information:

Build Your Own ASP.NET 4 Website Using C# & VB632

Visual Basic LearningASP\VB\PathInfo_2.aspx (excerpt)

<script runat="server">
 Sub Page_Load(ByVal s As Object, ByVal e As EventArgs)
 Dim strPath As String
 strPath = MapPath("myText.txt")
 resultLabel.Text &= "File Path: " & strPath & "
"
 resultLabel.Text &= "File name: " & _
 Path.GetFileName(strPath) & "
"
 resultLabel.Text &= "Directory: " & _
 Path.GetDirectoryName(strPath) & "
"
 resultLabel.Text &= "Extension: " & _
 Path.GetExtension(strPath) & "
"
 resultLabel.Text &= "Name without Extension: " & _
 Path.GetFileNameWithoutExtension(strPath)
 End Sub
</script>

C# LearningASP\CS\PathInfo_2.aspx (excerpt)

<script runat="server">
 void Page_Load(Object s, EventArgs e)
 {
 string strPath;
 strPath = MapPath("myText.txt");
 resultLabel.Text += "File Path: " + strPath + "
";
 resultLabel.Text += "File name: " +
 Path.GetFileName(strPath) + "
";
 resultLabel.Text += "Directory: " +
 Path.GetDirectoryName(strPath) + "
";
 resultLabel.Text += "Extension: " +
 Path.GetExtension(strPath) + "
";
 resultLabel.Text += "Name w/out Extension: " +
 Path.GetFileNameWithoutExtension(strPath);
 }
</script>

Initially, we create a new string variable and set it equal to the full path of the text

file:

Visual Basic LearningASP\VB\PathInfo_2.aspx (excerpt)

 Dim strPath As String
 strPath = MapPath("myText.txt")

633Working with Files and Email

Next, we write into the Label control the complete file path, filename with extension,

directory, extension, and filename without extension, by using the Path class’s

GetFileName, GetDirectoryName, GetExtension, and GetFileNameWithoutExtension

methods, respectively.

Save your work and test the results in your browser. Figure 14.9 shows how all the

information for the text file is displayed.

Figure 14.9. Retrieving the path, filename, directory, file extension, and filename without extension for the text file

However, those aren’t the only methods to which the Path class gives us access.

Here’s a list of all of the methods you can use:

ChangeExtension

modifies a file’s extension

Combine

joins two file paths

GetDirectoryName

returns the directory part of a complete file path

GetExtension

returns the file extension from a file path

GetFileName

returns the filename from a file path

GetFileNameWithoutExtension

returns the filename without the file extension from a file path

Build Your Own ASP.NET 4 Website Using C# & VB634

GetFullPath

expands the supplied file path with a fully qualified file path

GetPathRoot

returns the root of the current path

GetTempFileName

creates a uniquely named file and returns the name of the new file

GetTempPath

returns the path to the server’s temp directory

HasExtension

returns True when a file path contains a file extension

IsPathRooted

returns True when a file path makes reference to a root directory or network

share

See the .NET Framework SDK documentation for full details on all of these methods.

Uploading Files
There are many situations in which you’ll want your web application to allow users

to upload files to the server. For example, you could create a photo album site to

which users could upload images for others to view.

ASP.NET offers the FileUpload control for uploading files; it provides a text box

and Browse button to allow users to select files from their own computers and

transfer them to the server with ease. The FileUpload control can be found in the

Standard tab of the Toolbox; Figure 14.10 shows how it looks in Visual Web De-

veloper’s Design view.

635Working with Files and Email

Figure 14.10. The FileUpload control in Visual Web Developer

The FileUpload control has the following read-only properties:

HasFile

is True if the user has uploaded a file, False otherwise

FileName

the name of the file as a string

FileContent

a stream that can be used to read the contents of the file

FileBytes

an array of bytes that can be used to read the contents of the file

PostedFile

an HttpPostedFile object for the uploaded file; this object has properties that

can be used to obtain additional data about the file, such as:

ContentLength the file length in bytes

ContentType the MIME type of the file (such as image/gif for a .gif file)1

The FileUpload control also has a method that you’ll find very useful: SaveAs. Al-

though you can get the contents of an uploaded file using the FileContent and

FileBytes properties described above, it’s usually more convenient to use the

SaveAs method to save files uploaded by users, but not before checking that HasFile

is True. The SaveAs method takes as a parameter a string containing the path and

the name of the target file.

1 View the complete list of MIME types at http://www.w3schools.com/media/media_mimeref.asp. Note

that there’s no guarantee the MIME type is correct, as it’s easily manipulated by the client.

Build Your Own ASP.NET 4 Website Using C# & VB636

http://www.w3schools.com/media/media_mimeref.asp

Let’s test this control out. Create a new web form named FileUpload.aspx in the

LearningASP\VB or LearningASP\CS folder, and populate it with this code:

Visual Basic LearningASP\VB\FileUpload.aspx (excerpt)

<%@ Page Language="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
Sub UploadFile(ByVal s As Object, ByVal e As EventArgs)

 If fileUpload.HasFile Then
 Dim fileName As String = fileUpload.FileName
 fileUpload.SaveAs(MapPath(fileName))
 label.Text = "File " & fileName & " uploaded."
 Else
 label.Text = "No file uploaded!"
 End If
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>File Upload</title>
 </head>
<body>
 <form id="form1" runat="server">
 <div>

<asp:FileUpload ID="fileUpload" runat="server" />
 <asp:Button ID="uploadButton" runat="server" Text="Upload!"
 OnClick="UploadFile" />

 <asp:Label ID="label" runat="server"></asp:Label>
 </div>
 </form>
</body>
</html>

If you’re using C#, you should place the following code in the <script

runat="server"> tag:

637Working with Files and Email

C# LearningASP\CS\FileUpload.aspx (excerpt)

<script runat="server">
void UploadFile(Object s, EventArgs e)

 {
 if (fileUpload.HasFile)
 {
 string fileName = fileUpload.FileName;
 fileUpload.SaveAs(MapPath(fileName));
 label.Text = "File " + fileName + " uploaded.";
 }
 else
 label.Text = "No file uploaded!";
 }
</script>

Load the script, and click the Upload! button without selecting a file. The message

“No file uploaded!” is displayed, as shown in Figure 14.11.

Figure 14.11. An error arising as a file has not been specified

Now, click the Browse… button, select a file from your system, and click Upload!

again. Some basic file information, like that shown in Figure 14.12, is displayed.

Figure 14.12. Uploading a file

Build Your Own ASP.NET 4 Website Using C# & VB638

After you’ve uploaded a file successfully, check the LearningASP\VB or LearningASP\CS

folder to ensure that the new file has indeed been saved there. As you can see,

handling file uploads in ASP.NET is very easy.

Sending Email with ASP.NET
Suppose for a moment that you’re the webmaster for an online store, and you want

to send an email confirmation to each customer who places an order. Rather than

manually typing an email to every customer about every order, you could automate

the process using ASP.NET.

The namespace that groups the .NET mail-related classes is System.Net.Mail. The

most useful classes in this namespace are:

SmtpClient

contains functionality for sending email

MailMessage

represents an email message

Attachment

represents an email attachment

AttachmentCollection

represents a collection of Attachment objects

MailAddress

represents an email address

MailAddressCollection

represents a collection of email addresses

A core set of features is common to most email programs. For instance, they all enable

you to send an email to someone by typing the recipient’s email address in a To

field. You are also able to specify who the email is from, the subject of the message,

and the body content of the email. All these properties—and more—are available

through the MailMessage class. Here’s a partial list of the properties that MailMessage

supports:

639Working with Files and Email

From

specifies the address from which the email message is to be sent

To

specifies the address to which the email message is to be sent

CC

specifies the carbon copy field of the email message

Bcc

specifies the blind carbon copy field of the email message

Attachments

a collection of items or files attached to the email message

Subject

specifies the subject of the email message

Body

defines the body of the email message

IsBodyHtml

True if the message is in HTML format; False otherwise (defaults to False)

Other properties of MailMessage that you may need to use include AlternateViews,

BodyEncoding, DeliveryNotificationOptions, Headers, Priority, ReplyTo, Sender,

and SubjectEncoding.

The From field has the MailAddress type which represents an email address. The

To, CC, and Bcc properties are of the MailAddressCollection type, and represent

a collection of MailAddress objects.

As you can see, there are lots of classes and properties that let you define email

messages. However, to be able to send these messages, you need access to a SMTP

server.

The standard email protocol of the Internet is Simple Mail Transfer Protocol (SMTP).

When you use ASP.NET to send an email, the message is relayed through one or

more SMTP servers on the way to its final destination. Most ISPs provide an SMTP

Build Your Own ASP.NET 4 Website Using C# & VB640

server for customers’ use; alternatively, if you’re using IIS, you can make use of

Windows’ built-in SMTP Server.

Sending a Test Email
Later, we’ll add a newsletter section to the Dorknozzle site; first, let’s write a very

simple page to test that everything’s working as it should.

Create a new file named SendEmail.aspx in the LearningASP\VB or LearningASP\CS

folder. Don’t use a code-behind file. Open it for editing and add the code highlighted

in bold here:

LearningASP\VB\SendEmail_1.aspx

<%@ Page Language="VB" %>
<%@ Import Namespace="System.Net.Mail" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Sending Emails with ASP.NET</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>

<asp:Button ID="sendEmailButton" runat="server"
 Text="Send Email!" OnClick="SendEmail" />

 <asp:Label ID="statusLabel" runat="server" />
 </div>
 </form>
 </body>
</html>

Add the following code, making sure you change the To email address to your own,

and that you set the Host property to your SMTP server’s address:

641Working with Files and Email

Visual Basic LearningASP\VB\SendEmail_2.aspx (excerpt)

<script runat="server">
Sub SendEmail(ByVal s As Object, ByVal e As EventArgs)

 Dim smtpClient As SmtpClient = New SmtpClient()
 Dim message As MailMessage = New MailMessage()
 Try
 Dim fromAddress As New MailAddress(_
 "from@example.com", "From Me")
 Dim toAddress As New MailAddress(_
 "to@example.com", "To You")
 message.From = fromAddress
 message.To.Add(toAddress)
 message.Subject = "Testing!"
 message.Body = "This is the body of a sample message"
 smtpClient.Host = "mailserver.example.com"
 smtpClient.Credentials = _
 New System.Net.NetworkCredential("username", "password")
 smtpClient.Send(message)
 statusLabel.Text = "Email sent."
 Catch ex As Exception
 statusLabel.Text = "Coudn't send the message!"
 End Try
 End Sub
</script>

C# LearningASP\CS\SendEmail_2.aspx (excerpt)

<script runat="server">
protected void SendEmail(object sender, EventArgs e)

 {
 SmtpClient smtpClient = new SmtpClient();
 MailMessage message = new MailMessage();
 try
 {
 MailAddress fromAddress = new MailAddress(
 "from@example.com", "From Me");
 MailAddress toAddress = new MailAddress(
 "to@example.com", "To You");
 message.From = fromAddress;
 message.To.Add(toAddress);
 message.Subject = "Testing!";
 message.Body = "This is the body of a sample message";
 smtpClient.Host = "mailserver.example.com";
 smtpClient.Credentials = new System.Net.NetworkCredential(

Build Your Own ASP.NET 4 Website Using C# & VB642

 "username", "password");
 smtpClient.Send(message);
 statusLabel.Text = "Email sent.";
 }
 catch (Exception ex)
 {
 statusLabel.Text = "Coudn't send the message!";
 }
 }
</script>

This script simply creates a new MailMessage object to hold the email contents and

a new SmtpClient object that will handle the job of creating a connecting to the

server and sending the email. We’ve also set the Credentials property of the

SmtpClient object, but this is only necessary if the SMTP server requires a username

and password to establish a connection. We wrap the code in a Try-Catch block in

order to catch any potential email errors.

Execute the script, and press the Send Email button, as shown in Figure 14.13.

Figure 14.13. Sending the email

The email should arrive successfully at its destination, looking something like Fig-

ure 14.14.

Now you’re ready to update the Dorknozzle site!

Creating the Company Newsletters Page
Let’s now extend the Dorknozzle site structure by adding a Newsletters page. This

page will be accessible only to the site administrator, and will provide tools with

which a customized newsletter can be sent to a list of recipients.

643Working with Files and Email

Figure 14.14. Viewing the email

Open the Dorknozzle project in Visual Web Developer, and add to it a new web

form named AdminNewsletter.aspx, making sure both the Select master page and Create

code in a separate file checkboxes are checked. When prompted, select the

Dorknozzle.master master page.

Complete the generated code like this:

Dorknozzle\VB\01_AdminNewsletter.aspx

<%@ Page Language="VB" MasterPageFile="~/Dorknozzle.master"
 AutoEventWireup="false" CodeFile="AdminNewsletter.aspx.vb"
 Inherits="AdminNewsletter" title="Dorknozzle Admin Newsletter"
%>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<h1>Create Newsletter</h1>

 <p>
 <asp:Label ID="resultLabel" runat="server" ForeColor="Red"/>
 </p>
 <p>
 To:

 <asp:TextBox ID="toTextBox" runat="server" />
 </p>
 <p>
 Subject:

 <asp:TextBox ID="subjectTextBox" runat="server" />
 </p>

Build Your Own ASP.NET 4 Website Using C# & VB644

 <p>
 Introduction:

 <asp:TextBox ID="introTextBox" runat="server"
 TextMode="MultiLine" Width="300" Height="100" />
 </p>
 <p>
 Employee Of The Month:

 <asp:TextBox ID="employeeTextBox" runat="server" />
 </p>
 <p>
 Featured Event:

 <asp:TextBox ID="eventTextBox" runat="server" />
 </p>
 <p>
 <asp:Button ID="sendNewsletterButton" runat="server"
 Text="Send Newsletter" />
 </p>
</asp:Content>

Switch to Design view. The form should look like the one shown in Figure 14.15.

As you can see, the form contains five TextBox controls, plus a Button and a Label.

The boxes will allow the administrator to specify who the email is to be sent to and

what the subject is, enter a simple introduction, identify the employee of the month,

and feature a company event. The Button control is used to submit the form, while

the Label control will display a confirmation message once the email has been sent.

To ensure that only administrators can send email messages, add the XML code

below, which we’ve already discussed in detail in Chapter 13, to Web.config:

Dorknozzle\VB\02_web.config (excerpt)

<!-- Only administrators are allowed to send emails -->
<location path="AdminNewsletter.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrators" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

\

645Working with Files and Email

Figure 14.15. The Create Newsletter form

One hurdle that we need to overcome is that we want to include an image to be

displayed as part of the HTML content of the message. We can use either of two

approaches to solve this problem:

■ Host the image on our web server and reference it in an tag in the HTML

code of the message (for example, <img

src="http://www.dorknozzle.com/Images/Newsletter.jpg" …>).

■ Embed the image data in the email.

We’ll apply the first technique, as it has the benefit of simplicity, and keeps the

message as small as possible. If you want readers to see the image even when they’re

not connected to the Internet, you should look into the second option. Developer

Mike Pope explains image embedding, and provides sample code, in a post on his

blog, titled “System.Net.Mail and embedded images.”2

2 http://www.mikepope.com/blog/DisplayBlog.aspx?permalink=1264

Build Your Own ASP.NET 4 Website Using C# & VB646

http://www.mikepope.com/blog/DisplayBlog.aspx?permalink=1264
http://www.mikepope.com/blog/DisplayBlog.aspx?permalink=1264

All we need to do is handle the Send Newsletter button’s Click event. While in

Design view, double-click the button to generate the event handler signature. In the

code-behind file, we’ll first need to import the System.Net.Mail namespace:

Visual Basic Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

Imports System.Net.Mail

C# Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

using System.Net.Mail;

Then, complete the code of sendNewsletterButton_Click to send your newsletter:

Visual Basic Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

Protected Sub sendNewsletterButton_Click(
➥ ByVal sender As Object, ByVal e As System.EventArgs)
➥ Handles sendNewsletterButton.Click
 Dim smtpClient As SmtpClient = New SmtpClient()
 Dim message As MailMessage = New MailMessage()
 Try
 Dim fromAddress As New MailAddress(_
 "dorknozzle@example.com", "Your Friends at Dorknozzle")
 Dim toAddress As New MailAddress(toTextBox.Text)
 message.From = fromAddress
 message.To.Add(toAddress)
 message.Subject = subjectTextBox.Text
 message.IsBodyHtml = True
 message.Body = _
 "<html><head><title>" & _
 HttpUtility.HtmlEncode(subjectTextBox.Text) & _
 "</title></head><body>" & _
 "<img src=""http://www.cristiandarie.ro/Dorknozzle" & _
 "/Images/newsletter_header.gif"" />" & _
 "<p>" & _
 HttpUtility.HtmlEncode(introTextBox.Text) & "</p>" & _
 "<p>Employee of the month: " & _
 HttpUtility.HtmlEncode(employeeTextBox.Text) & "</p>" & _
 "<p>This months featured event: " & _
 HttpUtility.HtmlEncode(eventTextBox.Text) & "</p>" & _
 "</body></html>"
 smtpClient.Host = "localhost"
 smtpClient.Credentials = _

647Working with Files and Email

 New System.Net.NetworkCredential("username", "password")
 smtpClient.Send(message)
 resultLabel.Text = "Email sent!
"
 Catch ex As Exception
 resultLabel.Text = "Couldn't send the message!"
 End Try
End Sub

C# Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

protected void sendNewsletterButton_Click(
 object sender, EventArgs e)
{
SmtpClient smtpClient = new SmtpClient();

 MailMessage message = new MailMessage();
 try
 {
 MailAddress fromAddress = new MailAddress(
 "dorknozzle@example.com", "Your Friends at Dorknozzle"
);
 MailAddress toAddress = new MailAddress(toTextBox.Text);
 message.From = fromAddress;
 message.To.Add(toAddress);
 message.Subject = subjectTextBox.Text;
 message.IsBodyHtml = true;
 message.Body =
 "<html><head><title>" +
 HttpUtility.HtmlEncode(subjectTextBox.Text) +
 "</title></head><body>" +
 "<img src=\"http://www.cristiandarie.ro/Dorknozzle" +
 "/Images/newsletter_header.gif\" />" +
 "<p>" +
 HttpUtility.HtmlEncode(introTextBox.Text) + "</p>" +
 "<p>Employee of the month: " +
 HttpUtility.HtmlEncode(employeeTextBox.Text) + "</p>" +
 "<p>This months featured event: " +
 HttpUtility.HtmlEncode(eventTextBox.Text) + "</p>" +
 "</body></html>";
 smtpClient.Host = "localhost";
 smtpClient.Credentials =
 new System.Net.NetworkCredential("username", "password");
 smtpClient.Send(message);
 resultLabel.Text = "Email sent!
";
 }
 catch (Exception ex)

Build Your Own ASP.NET 4 Website Using C# & VB648

 {
 resultLabel.Text = "Couldn\'t send the message!";
 }
}

That’s a pretty large chunk of code, so let’s break it down. Initially, we create a new

instance of the MailMessage class, called message:

Visual Basic Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

 Dim message As MailMessage = New MailMessage()

C# Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

 MailMessage message = new MailMessage();

Next, we begin to define the email message by setting some of the properties that

the MailMessage class exposes:

Visual Basic Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

 Dim fromAddress As New MailAddress(_
 "newsletter@dorknozzle.com", "Your Friends at Dorknozzle")
 Dim toAddress As New MailAddress(toTextBox.Text)
 message.From = fromAddress
 message.To.Add(toAddress)
 message.Subject = subjectTextBox.Text
 message.IsBodyHtml = True

C# Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

 MailAddress fromAddress = new MailAddress(
 "newsletter@dorknozzle.com", "Your Friends at Dorknozzle"
);
 MailAddress toAddress = new MailAddress(toTextBox.Text);
 message.From = fromAddress;
 message.To.Add(toAddress);
 message.Subject = subjectTextBox.Text;
 message.IsBodyHtml = true;

You’ll notice we’ve set the IsBodyHtml property to True because we’re creating an

HTML email message. By default, this property is set to False.

649Working with Files and Email

Next, we need to create the body of the message, which, essentially, will be an

HTML document:

Visual Basic Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

 message.Body = _
 "<html><head><title>" & _
 HttpUtility.HtmlEncode(subjectTextBox.Text) & _
 "</title></head><body>" & _
 "<img src=""http://www.cristiandarie.ro/Dorknozzle" & _
 "/Images/newsletter_header.gif"" />" & _
 "<p>" & _
 HttpUtility.HtmlEncode(introTextBox.Text) & "</p>" & _
 "<p>Employee of the month: " & _
 HttpUtility.HtmlEncode(employeeTextBox.Text) & "</p>" & _
 "<p>This month's featured event: " & _
 HttpUtility.HtmlEncode(eventTextBox.Text) & "</p>" & _
 "</body></html>"

C# Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

 message.Body =
 "<html><head><title>" +
 HttpUtility.HtmlEncode(subjectTextBox.Text) +
 "</title></head><body>" +
 "<img src=\"http://www.cristiandarie.ro/Dorknozzle" +
 "/Images/newsletter_header.gif\" />" +
 "<p>" +
 HttpUtility.HtmlEncode(introTextBox.Text) + "</p>" +
 "<p>Employee of the month: " +
 HttpUtility.HtmlEncode(employeeTextBox.Text) + "</p>" +
 "<p>This month's featured event: " +
 HttpUtility.HtmlEncode(eventTextBox.Text) + "</p>" +
 "</body></html>";

As we’re building an HTML document, we need to take care to convert special

characters (including <, >, and &) into their character entity equivalents (<, >,

&, and so on). The HtmlEncode method of the HttpUtility class does this for

us.

Also note that the image we’ll use in the email has to be hosted on a site somewhere.

In the code above, I’ve used an example URL. To get this example to work properly,

Build Your Own ASP.NET 4 Website Using C# & VB650

you’ll need to host the image on your web site, and use the appropriate URL in your

code.

We set the Host property of the smtpClient object to localhost, indicating that the

computer that’s acting as our ASP.NET server should also act as our outgoing mail

server—you’ll need to change this if you’re using another SMTP server. Finally, we

call the Sendmethod, pass in the message object, and display a confirmation message

to the user within the resultLabel control:

Dorknozzle\VB\03_AdminNewsletter.aspx.vb (excerpt)

 smtpClient.Host = "localhost"
 smtpClient.Send(message)
 resultLabel.Text = "Email sent!
"

Dorknozzle\CS\03_AdminNewsletter.aspx.cs (excerpt)

 smtpClient.Host = "localhost";
 smtpClient.Send(message);
 resultLabel.Text = "Email sent!
";

Save your work and run the page in your browser. Enter all the necessary information

into the Newsletters page and click the Send Newsletter button, as shown in Fig-

ure 14.16.

651Working with Files and Email

Figure 14.16. Sending the newsletter

Build Your Own ASP.NET 4 Website Using C# & VB652

Figure 14.17. Receiving the newsletter

You should receive the message once the email is sent. Check your email account

for the new email message. The message should look like the one shown in Fig-

ure 14.17.

Summary
This chapter introduced you to some useful topics relating to files and email; it gave

you the ability to read and write to files, access directory information, upload files

from the client to the server, and send email messages in ASP.NET.

The topics we covered in this chapter will prove invaluable as you develop applic-

ations with ASP.NET. Although, strictly speaking, they’re not core features of

ASP.NET, these tools enable you to implement many of the common requirements

of ASP.NET applications. Stick ’em in your mental tool belt for now—I guarantee

they won’t gather much dust!

653Working with Files and Email

Chapter15
Introduction to LINQ
LINQ—Language-Integrated Query—is a new data-access feature that enables the

querying of data sources from within the language itself. Typically in .NET, we use

a technology such as ADO.NET to directly query a relational database management

server, such as SQL Server or MySQL. LINQ is a new language construct that allows

us to query relational data from different sources and interact with it just like any

other object or class. With LINQ, we have access to compile-time syntax checking,

the use of IntelliSense, and the ability to access other data sources such as XML or

just about any custom data sources. There are many LINQ extensions, such as LINQ-

to-SQL, LINQ-to-Sharepoint, LINQ-to-MySQL, LINQ-to-Entities, and so on.

Let’s get started with LINQ to give you an immediate feel for the syntax. We present

this in C# since it’s the easiest to use with LINQ, although VB fans can rest assured

that VB code samples are provided:

// create an array of integers
 int[] sampleNumbers = { 1, 2, 3 };

 IEnumerable<int> doubledNumbers = from i in sampleNumbers
 select i * 2;

 // produces "2, 4, 6";
 foreach (int number in doubledNumbers)
 Response.Write(number + “
”);

Our IEnumerable variable called doubledNumbers contains the output from the

query expression. As you can see, the syntax is similar to SQL; however, Microsoft

introduces selectors (the “I” in our case). As we dig deeper into the LINQ syntax,

these selectors will become more obvious. This sample only shows a collection of

numbers. In our case, we know we are expecting the return of integers. However,

to help in the cases where we may not know the exact return type at compile time,

Microsoft has introduced the var keyword:

// create an array of integers
 int[] sampleNumbers = { 1, 2, 3 };

 var squaredNumbers = from i in sampleNumbers
 select i * i;

 // produces "1, 4, 9";
 foreach (int number in squaredNumbers)
 Response.Write(number + “
”);

So, like most lazy programmers, we will use the var keyword to allow the compiler

to determine the type where appropriate.

Let’s do another example of LINQ syntax to introduce WHERE clauses, since we often

need a subset of data:

// create an array of random fruits
 string[] fruits = { "Blueberry", "Banana", "Orange", "Peach",➥

 "Kiwi", "Blackberry" };

 var fruitsStartingWithB = from f in fruits
 where f.StartsWith("B") && ➥

 f.Contains("berry")
 select f;

Build Your Own ASP.NET 4 Website Using C# & VB656

 // produces "Blueberry, Blackberry"
 foreach (var fruit in fruitsStartingWithB)
 Response.Write(fruit + “
”);

Here we use the standard “AND” (&&) operator as part of C#. Available also is the

“OR” (||) operator within the WHERE clause.

Extension Methods
LINQ makes heavy use of extension methods in order to manipulate the data into

what we need. One of these features is the First extension method. This takes the

first item in the result and returns it. It can be used as follows:

string[] fruits = { "Blueberry", "Banana", "Orange", "Peach",➥

 "Kiwi", "Blackberry" };

string berry = (from f in fruits
 where f.StartsWith("B") && ➥

 f.Contains("berry")
 select f).First<string>();

// Output is "Blueberry"
Response.Write(berry);

In a subsequent section, we will discuss more extension methods that allow us to

have more control over our result set, as well as fine-tune the LINQ capabilities.

LINQ to SQL
How does this help us when dealing with a non-object oriented data structure? Let’s

see how LINQ can help us when dealing with relational data.

We’ll need a new sample database with plenty more records and tables to query.

The Microsoft sample database called AdventureWorks is perfect for our SQL

Server 2008 R2 Express Edition installation, and is available at the Microsoft

CodePlex, available directly at

http://msftdbprodsamples.codeplex.com/releases/view/4004#DownloadId=11753.

You will want to “attach” the AdventureWorks sample database. To do this, open

the SQL Server 2008 Management Studio. Right-click on Databases and select Tasks

657Introduction to LINQ

http://msftdbprodsamples.codeplex.com/releases/view/4004#DownloadId=11753

-> Attach Database. Select the .mdf file from the location you installed it, and then

you will be ready to begin the sample exercises.

Next, we create a server connection within Visual Studio with the Server Explorer

toolbar window, as shown in Figure 15.1 and Figure 15.2.

Figure 15.1. Creating a connection with Visual Studio

Figure 15.2. Connecting to the database

Build Your Own ASP.NET 4 Website Using C# & VB658

To connect to our SQL Express instance, we choose the Microsoft SQL Server data

source option. Then we simply select the SQLEXPRESS instance and the Adventure-

Works database as the default database option.

Next, we add a new item to our project, as in Figure 15.3. To utilize LINQ with an

SQL data source, we choose to create a LINQ-to-SQL data class. In the simplest ex-

planation, LINQ-to-SQL maps object oriented classes with an SQL database table,

otherwise called an object relational mapper. There are other ORM frameworks

available, such as NHibernate, Entity Framework, or SubSonic. Each of these has

their own strengths and weaknesses, but for now we’ll concentrate on the features

found in LINQ-to-SQL.

Figure 15.3. Adding a new item to our project

We name this .dbml file AdventureWorks.dbml. Once you create this, you begin with

a blank slate where you have the ability to create entities. An entity is a strongly

typed data structure typically used to represent a business relationship or object.

Microsoft has introduced the ADO.NET Entity Framework that takes these advanced

concepts further. But these topics are beyond the scope of our current discussion.

In our example, we want an entity called “Employee” that represents a single in-

stance of an employee within the AdventureWorks corporation. The on-screen details

show that you can use the Toolbox to create a new entity, but we want to utilize

659Introduction to LINQ

the power of the created data source connection to our SQL Express instance by

opening the Server Explorer to drag-and-drop the Employees table.

The result is a new entity object called “Employee” (take note that it is the singular

wording of the Employees table name, autonamed by Visual Studio). Visual Studio

not only creates the entity for us, it autogenerates code for a DataContext object.

This DataContext object represents the connection with the data source; in our

case, the SQL Express database connection. The DataContext also keeps track of

all changes to all entities, and serves as the reference point to insert, update, or delete

an entity record back to its main data source (the “Employees” database table). These

objects are designed to be used once as they are lightweight and have no discernible

impact when creating thousands of instances. Furthermore, the DataContext is

different from the standard ADO.NET way of opening an SqlConnection and then

executing queries; the SQL generated when performing LINQ queries is performed

at run-time, as well as the connection management. A DataContext is created in

one line:

AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext();

The DataContext is created and named after the DBML file created earlier. If you

created your DBML as Sample.dbml, your DataContext would be named

SampleDataContext.

Everything at this point has been connected by Visual Studio using autogenerated

code for the DBML class. From the Solution Explorer window, you can explore this

autogenerated code for the AdventureWorks.dbml file by right clicking on the file to

View Code. Be sure not to make any permanent changes here, as any changes with

the designer will automatically overwrite any changes in the autogenerated code

files. We can now query the Employees data table using LINQ. As an example, we

will look for only female employees. For the purpose of these exercises, you can

assume we are using the same reference namespaces in the “using” section at the

top of the source code. All code samples should be run from within the Page_Load

event of an ASP.NET page:

using System;
using System.Collections.Generic;
using System.Linq;

Build Your Own ASP.NET 4 Website Using C# & VB660

using System.Text;

AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext();

var employees = from emp in dataContext.Employees
 where e.Gender == 'F'
 select emp;

// produces a list of employee IDs for all female employees
foreach (var employee in employees)
Response.Write(employee.EmployeeID + “
”);

Updating Data
One of the columns in the Employees table is the MaritalStatus column. This is

a character field that has an S for a single employee or M for a married employee.

Due to a rash outbreak of women getting married, Human Resources (HR) needs to

mark them all as married. We will perform this update using LINQ-to-SQL:

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
{
var employees = from e in dataContext.Employees
 where e.Gender == 'F'
 select e;

// produces a list of employee IDs for all female employees
foreach (var employee in employees)
{
 employee.MaritalStatus = 'M'; // all changes have not been ➥

 persisted to the database.
 Response.Write(employee.EmployeeID + " is now married.
");

}

 // Send changes to the database.
 dataContext.SubmitChanges();

}

661Introduction to LINQ

The change seems simple enough, but take note that the changes to the Employee

entity record are not saved (persisted) to the database until the DataContext’s

SubmitChanges method is called.

You may also notice that we create our DataContext object within a using statement.

This is a feature of C# that will automatically call close our DataContext object and

dispose of it properly, without having to specifically call it. This is done by the

closing brace. Anything inside the braces is run, and once it is finished, the object

is disposed of by calling its Dispose method. We will use this using keyword to

ensure our database connections have been properly taken care of when we’re done

with them.

Relationships
sSo far, we have dealt with only one single Employees table. Our Employee entity

has a ContactID property that is the reference key for the Contacts table. Visual

Studio’s DBML designer tool will automatically recognize foreign keys within the

database. We simply drag-and-drop the Contacts table from the Server Explorer

window for the SQL Express connection (just as we did for the Employees table)

onto the DBML designer; Visual Studio will then create the Contact entity object

for us. The designer view now looks like Figure 15.4.

Figure 15.4. Dropping the contacts table onto DBML designer

We can now reference the personally identifiable information for each employee.

Let’s prepare a report for HR listing employees hired after 2002:

Build Your Own ASP.NET 4 Website Using C# & VB662

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
{
 var employees = from e in dataContext.Employees
 where e.HireDate > DateTime.Parse("2002-01-01")
 select e;

 foreach (var employee in employees)
 Response.Write(employee.Contact.FirstName + ➥

 " " + employee.Contact.LastName + “
”);

}

Directly Executing Queries from the DataContext
At this point, you may most likely be familiar with directly calling standard ANSI

SQL to the database via ADO.NET and/or stored procedures. LINQ-to-SQL supports

these direct queries via the ExecuteQuery method call. This method has two over-

ridden parameters, a standard version that takes a Type as its first parameter, or a

generic version that returns the generic input type given:

■ ExecuteQuery<ResultType>(String SqlQuery, Object[] Parameters)

■ ExecuteQuery(Type result, String sqlQuery, Object[] Parameters)

When using ExecuteQuery with the generic version, we intend to use the Employee

entity type, so that we can access the relationship with the Contact entity to gain

the employee’s first and last name. Thus, it is in our interest to use the generic

method signature for the ExecuteQuery call:

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
{

 var employees = from e in dataContext.Employees
 where e.HireDate > DateTime.Parse("2002-01-01")
 select e;

 var emps = dataContext.ExecuteQuery<Employee>➥

 ("SELECT * FROM HumanResources.Employee
 WHERE HireDate > '2002-01-01'");

663Introduction to LINQ

 foreach (var currentEmployee in emps)
 Response.Write(currentEmployee.Contact.FirstName ➥

 + " " + currentEmployee.Contact.LastName);

Response.Write("----------------");

 foreach (var employee in employees)
 Response.Write(employee.Contact.FirstName ➥

 + " " + employee.Contact.LastName + “
”);

}

When running this example, you should receive the same result for each query ex-

ecutions. Furthermore, LINQ-to-SQL also supports direct query execution where

there aren’t any return parameters expected from the SQL execution, such as deleting,

manually inserting, or updating records with the Execute method.

HR has now informed us they have made an error, and now need to revert all female

employees back to single status. We will do this using direct query execution with

LINQ-to-SQL:

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
 {
 int rowsAffected = dataContext.ExecuteCommand➥

 ("UPDATE HumanResources.Employee WITH(ROWLOCK)
 SET MaritalStatus = 'S' WHERE Gender = 'F' ");

 // should display "Execution completed, ➥

 84 rows affected."
 Response.Write("Execution completed, {0} rows ➥

 affected", rowsAffected);

 }

Stored Procedures with LINQ-to-SQL
One of the features of LINQ-to-SQL is the stored procedure support for LINQ. LINQ-

to-SQL treats stored procedures as standard method calls. As part of the Adventure-

Works database, there is a stored procedure called uspGetManagerEmployees. To

enable LINQ-to-SQL to integrate this stored procedure call, we perform a drag-and-

Build Your Own ASP.NET 4 Website Using C# & VB664

drop from the Server Explorer window, where we select the Stored Procedure from

our SQL Express connection onto the right pane of our DBML designer. Have a look

at Figure 15.5.

Figure 15.5. Dropping the stored procedure onto DBML designer

Visual Studio will now create the method called uspGetManagerEmployees. Because

the “usp” prefix is unnecessary for method calls, we right-click on this to choose

Properties and rename it as GetManagerEmployees. We can now call this procedure

in our code:

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
 {
 var employees = dataContext.➥

 GetManagerEmployees(185);

 foreach (var currentEmployee in employees)
 Response.Write(currentEmployee.FirstName ➥

 + " " + currentEmployee.LastName);

 }

Notice the return type from the GetManagerEmployees call is a ISingleResult<us-

pGetManagerEmployees1> object. This is where the var keyword becomes useful

665Introduction to LINQ

since we may not know the full return type. The properties for the procedure call

in the designer view show us that the result type is auto-generated. However, what

if we want the designer to strongly type this return to one of the known entity types?

To conduct this sample, we first create a new stored procedure called uspGetEmploy-

eeByID:

CREATE PROCEDURE uspGetEmployeeByID
-- Add the parameters for the stored procedure here
@EmployeeID int = 0

AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

 -- Insert statements for procedure here
SELECT * FROM HumanResources.Employee where EmployeeID = @EmployeeID
END
GO

From the designer view, we drag-and-drop this procedure call to the right pane. We

then rename the method call to remove the “usp” prefix. Furthermore, we intend

to change the return type to the Employee entity, as in Figure 15.6.

Figure 15.6. Selecting “Employee” as the return type

When you make this selection, you will see a warning alerting you to the one-way

nature of this change, as in Figure 15.7: It cannot be undone. If you need to make

adjustments to the stored procedure, you must delete the method call, and then add

it again using drag-and-drop from the Server Explorer window.

Build Your Own ASP.NET 4 Website Using C# & VB666

Figure 15.7. Changing the return type

Once we are satisfied with the changes that have been made, we can make a call to

this new stored procedure by using the DataContext object:

using (AdventureWorksDataContext dataContext = ➥

 new AdventureWorksDataContext())
{

 Employee jefferyFord = dataContext.➥

 GetEmployeeByID(15).First<Employee>();

 Response.Write(jefferyFord.Contact.FirstName ➥

 + " " + jefferyFord.Contact.LastName);

}

Using ASP.NET and LINQ-to-SQL
LINQ allows fully bindable objects as a data source. This allows us to build fully

functional data grids with a LINQDataSource. To get started, we drag-and-drop a

LinqDataSource from the Visual Studio Toolbox sidebar menu onto a standard

ASP.NET Web Forms .aspx page. After highlighting this new object on the page, we

can now configure the DataSource to use our DataContext object for the Adventure-

Works database. Take a look at Figure 15.8.

667Introduction to LINQ

Figure 15.8. Choosing a Context Object

For the purposes of this sample, we simply want a read-only data source for a

standard ASP.NET data grid control. We configure our LinqDataSource object as

shown in Figure 15.9.

Figure 15.9. Configuring the data selection

By selecting all columns, we have enough information to display the first and last

names for the employee records we require. More advanced features are available

when configuring the data source, such as a custom query or custom order by clause,

which pre-sorts the records when they are returned from the LINQ query. Further-

more, the LinqDataSource allows automatic editing, insertion, and deletion com-

mands to be configured, but these are advanced topics outside the scope of this

book.

Build Your Own ASP.NET 4 Website Using C# & VB668

Next, we continue by adding a standard GridView control to our page. We can now

configure this grid to use our LinqDataSource that we created earlier; this is shown

in Figure 15.10.

Figure 15.10. Using our LinqDataSource in GridView

We select our newly created LinqDataSource1 object as the data source for the

GridView. After we select this, the GridView control will instantly change to reflect

the new schema of the LinqDataSource object. You are now ready to view the page

in the browser. Be aware that the page may take some time to fully load, as the

LinqDataSource is currently configured to return all rows and columns from the

Contacts table from the AdventureWorks database. To prepare a report for HR that

shows a list of all employees and their email addresses, we can choose the Edit

Columns task from the smart tag popup for the GridView, and select only the columns

we wish to show.

The full HTML of the .aspx page should look as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server" ➥

 AutoGenerateColumns="False"
 DataKeyNames="ContactID" DataSourceID="LinqDataSource1">
 <Columns>
 <asp:BoundField DataField="ContactID" ➥

 HeaderText="ContactID"
 InsertVisible="False" ReadOnly="True" ➥

 SortExpression="ContactID" />

669Introduction to LINQ

 <asp:CheckBoxField DataField="NameStyle" ➥

 HeaderText="NameStyle"
 SortExpression="NameStyle" />
 <asp:BoundField DataField="Title" ➥

 HeaderText="Title" ➥

 SortExpression="Title" />
 <asp:BoundField DataField="FirstName" ➥

 HeaderText="FirstName"
 SortExpression="FirstName" />
 <asp:BoundField DataField="MiddleName" ➥

 HeaderText="MiddleName"
 SortExpression="MiddleName" />
 <asp:BoundField DataField="LastName" ➥

 HeaderText="LastName"
 SortExpression="LastName" />
 <asp:BoundField DataField="Suffix" ➥

 HeaderText="Suffix"
 SortExpression="Suffix" />
 <asp:BoundField DataField="EmailAddress" ➥

 HeaderText="EmailAddress"
 SortExpression="EmailAddress" />
 </Columns>
 </asp:GridView>

 </div>
 <asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="LinqWebApp1.AdventureWorksDataContext" ➥

 EntityTypeName=""
 TableName="Contacts">
 </asp:LinqDataSource>
 </form>
</body>
</html>

Overall, LINQ is a powerful tool that allows you to rapidly develop your code while

spending less time focused on the data management aspects. This increases our

productivity because we can query all data within Visual Studio without the need

for knowing the underlying structure of how a database server is configured, or even

knowing the data source itself.

Build Your Own ASP.NET 4 Website Using C# & VB670

Chapter16
Introduction to MVC
ASP.NET MVC (Model-View-Controller) Framework is the invention of Scott Guthrie

of Microsoft’s ASP.NET team, built upon a common software design principle to

solve many common problems that software developers face. In the real world,

software is a living design that requires many changes after the original features are

developed.

The benefits of using MVC include:

■ the Separation of Concerns between the HTML markup, data classes, and user

workflow

■ there’s no more need for server-side forms, or view state, as we have full control

over HTML output

■ easy integration with Visual Web Developer to create views, controllers, models,

and scaffolding template support

■ razor scripting engine support to easily mix HTML markup with C#/VB code

■ search engine optimized (SEO) URLs and URL Routing

The benefits of using standard ASP.NET Web Forms are:

■ it’s an event-driven programming model

■ access to view state and server-side web forms for processing data and preserving

the state between pages

■ out-of-the-box access to use repeaters and other ASP.NET and third-party controls

with minimal code

■ ability to create websites rapidly

Nearly every software development project will undergo significant changes from

the original scope. Maintenance is typically the largest phase of the software life

cycle, with the addition of new features and the modification of business rules in

regards to the ever changing environment of a company. Each change often requires

updates to the three major components of a software product:

1. Business rules—the code that manages logic and functionality customized to the

business for which you are developing.

2. User interface—how these new features are presented and how the user interacts

with them.

3. Control flow—managing what is shown on the user interface screens and when.

These components are not universal to software development in general, but we

run across them very often in a corporate web development environment. If you

break down the individual components of our Dorknozzle intranet site, you’ll see

that the majority of what we’ve done is manage these components, referred to as

the Model-View-Controller software design pattern. A software design pattern is

simply a common way of solving a problem in software development and mainten-

ance. There are several useful design patterns, all of which are probably outside the

scope of this book, but we would highly recommend Design Patterns: Elements of

Reusable Object-Oriented Software by the Gang of Four.1 The Model-View-Controller

pattern as shown in Figure 16.1 fits our use for the Dorknozzle project. First, we

have some sort of business logic, which is displaying employee records that we

want to see for the Employee Directory page. Then we have the View itself, the

1 Gamma, Eric, Helm, Richard, Johnson, Ralph, Vlissides, John (New Jersey: Pearson, 2010).

Build Your Own ASP.NET 4 Website Using C# & VB672

HTML markup used to display the page along with CSS styling to make it look

pretty. Lastly, we have the Controller, the mediator between the Model and the

View as it handles actions requested by the user, such as whether to edit an existing

employee’s record or to add a new one, and which employee ID we are editing or

deleting.

Figure 16.1. Model-View-Controller pattern

Don’t worry, it can take a bit of time to fully grasp this concept. We’ll be exploring

the third iteration of MVC for the ASP.NET framework, called MVC3 for short. We’ll

give you the main concepts, skipping past the items discussed in earlier chapters

and leaving it up to you to implement the rest of the Dorknozzle intranet project in

MVC3. Now, let’s jump into some code so that you can get a feel for how the Visual

Web Developer processes this. First, we want to create a brand new web application

project. To do this, we choose File > New Project > ASP.NET MVC 3 Web Application,

as seen in Figure 16.2.

673Introduction to MVC

Figure 16.2. Creating a new project

We’ll name this one DorknozzleMVC to distinguish it from our previous Dorknozzle

intranet project. On the next screen you’ll be prompted to choose the MVC project

type; we’ll go with an empty project here and use the ASPX view engine, as shown

in Figure 16.3.

Build Your Own ASP.NET 4 Website Using C# & VB674

Figure 16.3. Create an empty project

Once you create the new project, you’ll notice several folders and files in the Solution

Explorer, similar to Figure 16.4.

675Introduction to MVC

Figure 16.4. Folders in Solution Explorer

The folders are necessary for full integration support with our development envir-

onment. The folders for Controllers will store all our classes that act as Controllers;

the same for the Models and Views folder. At this point, you can open the Global.asax

file to see how the default URL routing is set up for our application, as in Figure 16.5.

Build Your Own ASP.NET 4 Website Using C# & VB676

Figure 16.5. Adding a controller

One of the features that is supported out of the box with MVC is the use of search

engine optimized URLs. These URLs are in a clean format, without question marks

and ampersands that clutter the URL and make it hard for search engines to determ-

ine which page you are on. Most search engines will rank a URL higher in the format

of http://www.myDomain.com/Products/iPad/12345, rather than

http://www.myDomain.com/products.aspx?id=12345.

As part of ASP.NET 4, the URL Routing feature is available for use in non-MVC

projects, but it is required for MVC3 to work properly. This is done in the global.asax

file that was generated when we created the project.

In the RegisterRoutes method, the URL that is expected is the controller name,

followed by a slash, and then the action. For instance, a URL request with

http://MyServer/Home/Index will have ASP.NET load the Home controller and call

the Index action within that controller. Optionally, an ID parameter can be passed

for any actions that will use it. An example of the ID parameter would be

http://MyServer/Products/Details/5 having ASP.NET load the Products controller

and call the Details action with a parameter of 5. What’s neat about the use of

parameters here in MVC is that they are strongly typed, as we will see shortly. In

this file, the default route is set to the Home controller calling the Index action with

no parameter.

677Introduction to MVC

This exercise will essentially replicate the Employee Directory of the earlier chapters,

but using MVC and LINQ. To get started, let’s right-click on the Controllers folder

to create a new Controller called EmployeesController, as in Figure 16.6.

Figure 16.6. Creating a new Controller called EmployeesController

As you can see, Visual Web Developer automatically recognizes the folder is called

Controller and prompts you to add a new controller in that directory.

In the recent version of MVC3, Visual Web Developer included support for scaffold-

ing. Scaffolding is using the IDE to quickly generate code samples on how to do

popular tasks. We use the scaffolding feature to create our Controller, seen in Fig-

ure 16.7.

Build Your Own ASP.NET 4 Website Using C# & VB678

Figure 16.7. The scaffolding feature

Once created, you’ll see several Actions that make up the use of the controller. Ac-

tions are similar to events called to the controller. Most of these are separated into

GETs and POSTs. When the web server is requesting data, it’ll send a GET request

to ASP.NET along with the Action. One of the default Actions created by the scaf-

folding template is Details, along with an id parameter. To call this from the browser,

your URL would be http://myserver/Employee/Details/10 to get the details where

the ID is 10. In other URLs, you may have seen something like Details.aspx?id=10”.

With the URL Routing part of MVC, ASP.NET will automatically route the Details

679Introduction to MVC

http://myserver/Employee/Details/10

Action to the Employee controller, passing in an integer of 10. We can then imple-

ment the method to get the data corresponding to an employee with an ID of 10 and

send this data to our view processing.

The EmployeesController will process various Actions such as showing a full

listing of employees, editing a specific employee’s data, and deleting an employee

record. The Model in our case will be the data that will be displayed. For our full

listing of employees, we will need to create a Model containing a List object of all

the Employee entity records we query using LINQ. For displaying a single record,

our Model will be a single Employee entity record.

Before we can fully fetch data, we’ll need to create a new LINQ-to-SQL class for our

connection to the Dorknozzle database. To do that, we right-click on the Models

folder within Visual Web Developer, and add the new item, as in Figure 16.8.

Figure 16.8. Adding the new item

Within the Dorknozzle.dbml file, you’ll want to drag-and-drop the Employees table

from the Database Explorer for our Dorknozzle database (your local SQL Express

instance) to our DBML pane.

Build Your Own ASP.NET 4 Website Using C# & VB680

Now that we have our database connectivity set up, our next task is to create a new

Action for Details. This Action should display the list of all available employees.

To do so, we create a new method in the EmployeeController class:

// GET: /Employee/List
public ActionResult List()
{
 DorknozzleDataContext dorkDC = new DorknozzleDataContext();

 List<Employee> listEmployees = dorkDC.Employees.➥

 ToList<Employee>();

 return View(listEmployees);
 }

As you can see, the first two lines of code are standard LINQ data access code, which

will return a generic list of all Employee entity records. The last line of code tells

ASP.NET to render the View with the generic list to be used as the Model. You can

specify the name of a View manually, but if you do not, ASP.NET assumes it to look

for a View named after your Action, within a folder for your controller in the Views

folder.

Phew! That sounds like a lot, but in our example, this basically means that we need

to have another folder called “Employees” within our Views folder. Then we create

a new View called List.aspx. So if our EmployeesController class has an action for

“List”, it will automatically render the List.aspx in the Views/Employees folder. Al-

ternatively, there are method overloads where you can manually specify the view

name.

Before we start creating our view, we’ll want to add in a new master page and

stylesheet. Master pages often go in the Views/Shared directory since it will be used

across multiple controllers and actions. To add a new master page, right click on

the Shared folder within “Views” and select “Add New Item”. You’ll create a new

Dorknozzle.master file, as we’ve done in previous chapters. Our master page file will

give us the same layout as its web forms version, but without a server-side ASP.NET

controls and no required forms:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

681Introduction to MVC

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>

 <link type="text/css" href="~/Content/Dorknozzle.css"
 rel="Stylesheet" />
 <link type="text/css" href="~/Content/Site.css"
 rel="Stylesheet" />
</head>
<body>

 <!-- Header -->
 <div class="Header">
 <asp:Image id="Image1" runat="server"
 ImageUrl="~/Content/Images/header.gif" Width="450"
 Height="174"
 AlternateText="The Official Dorknozzle Company
 Intranet" />
 </div>
 <!-- Menu -->
 <div class="Menu">
 <div id="dorknozzleMenu">
<ul class="level1">
<a title="Dorknozzle Home" class="level1"➥
 href="/Employees/List">

 Home
 <a title="Dorknozzle Help Desk" class="level1"
 href="/HelpDesk">

 Help Desk
 <a title="Dorknozzle Employee Directory"
 class="level1" href="/Employees/List">

 Employee Directory
 <a title="Dorknozzle Address Book" class="level1"
 href="/AddressBook">

Build Your Own ASP.NET 4 Website Using C# & VB682

 Address Book
 <a title="Dorknozzle Departments" class="level1"
 href="/Departments">

 Departments
 <a title="Admin Tools" class="level1"
 href="/AdminTools">

 Admin Tools
 <a title="Dorknozzle Admin Newsletter"
 class="level1" href="/AdminNewsletter">

 Admin Newsletter

</div>
 </div>

 <!-- Content -->
 <div class="Content">
 <asp:ContentPlaceHolder id="MainContent"
 runat="server" />
 </div>
 </body>
</html>

Focus on MVC

We removed the SiteMapDataSource object here because it is a server-side

control that did not fit in with the MVC pattern, and chose to hard-code the links

instead with search engine optimized URLs. We won’t implement the Views for

each of the links here, although it would be a good exercise for you to do. If you

want a MVC-compatible sitemap control, you can try taking a look at MvcSiteM-

apProvider at mvcsitemap.codeplex.com.

If you have downloaded the code files, you can Add Existing Item rather than create

a new file. When you Add Existing Item to that folder, it’ll prompt you to indicate

where the file is located, and then copy the file to the solutions directory with the

rest of the project. Static content, such as images and stylesheets, go into the Content

folder. You’ll want to create an “Images” folder within /Content and add the existing

images to it; then simply add Dorknozzle.css to the base of the /Content directory.

You can delete the existing Site.css that was created when the initial MVC project

683Introduction to MVC

was created. If this folder structure is a little foreign to you or you are unsure of

how it should look, refer to the code files for this chapter.

Now that our asset files are in place, we are now ready to create our view. We start

by right-clicking on the Views folder to Create New Folder. Name this folder Employ-

ees. In the real world, most developers create a new folder for each one of their

controllers to separate the MVC pattern. Within the Employees folder, right-click

to Add > View with the settings on the next dialog screen shown in Figure 16.9.

Figure 16.9. Settings for the Employees folder

Build Your Own ASP.NET 4 Website Using C# & VB684

The scaffolding template here is helpful, as it generates the Add, Edit, Details, Delete

links for us. However the auto selected Model needs to be a generic List<> of Em-

ployees, which we can change on our own. So we correct it in the Inherits attribute

in the Page Declaration, along with minor formatting changes:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/➥

 DorknozzleMVC.Master" Inherits="System.Web.Mvc.ViewPage➥

 <List<Employee>>" %>
<%@ Import Namespace="DorknozzleMVC.Models" %>
<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
 runat="server">

<h2>Employee List</h2>

<p>
 <%: Html.ActionLink("Create New", "Create") %>
</p>
<table class="mvcTable">

 <thead>
 <tr><td>Name</td><td colspan="3">Action</td></tr>

 </thead>
<% foreach (Employee emp in Model) { %>
 <tr>
 <td>
 <%: emp.Name %>

 </td>
 <td><%: Html.ActionLink("Edit", "Edit", new { id =➥
 emp.EmployeeID }) %></td>
 <td><%: Html.ActionLink("Details", "Details", new { id =➥

 emp.EmployeeID })%></td>
 <td><%: Html.ActionLink("Delete", "Delete", new { id =➥

 emp.EmployeeID })%></td>

 </tr>
<% } %>

</table>

</asp:Content>

685Introduction to MVC

<asp:Content ID="Content2" ContentPlaceHolderID="head"
 runat="server">
</asp:Content>

Notice the Html.ActionLink code blocks? These are helper methods that are useful

in MVC3 as we can easily generate new Html items (hyperlinks in this case), without

messy code integration blocks. Html.ActionLink() simply creates a new hyperlink

to call a new Action for our current controller, and optionally passes in a parameter.

In our case, it now passes in the EmployeeID as the URL parameter. In the Web

Forms way of using the repeater, we often had a server-side HyperLink control that

managed these links.

These integrated code blocks within the View may remind you of other web devel-

opment languages, such as PHP. You can find additional helper methods to generate

standard HTML controls such as text boxes or drop-down boxes, such as

Html.TextBox or Html.DropDownList. These have the added benefit of not requiring

a server-side postback like typical controls in ASP.NET Web Forms, which helps

the performance of our application.

Let’s go ahead and give our project a run. Take a look at Figure 16.10.

Figure 16.10. Something amiss when we run our project

Build Your Own ASP.NET 4 Website Using C# & VB686

Don’t be alarmed if you get a 404 error the first time around. You simply need to

specify the URL. In this case, it will be http://localhost:port/Employees/List.

The Specifics

You can permanently set the URL by right-clicking on the solution, and going to

Properties; now select the Web tab and enter “Employees/List” as the start Action

for a “specific page.”

This will call the List action within the EmployeesController class. Your page

should show up as in Figure 16.11.

Figure 16.11. Dorknozzle employee list

687Introduction to MVC

Look familiar? Take a look at the HTML source code from the browser. You’ll notice

that the HTML being output is much cleaner: no forms are needed, no extra view

state was added, and the HTML from the view and the master page is essentially

what the server outputs. With MVC, you have full control over the way HTML is

rendered. This is extremely useful in accessibility situations—such as developing

a website geared for mobile devices.

You can verify that the ActionLinks are being created properly by hovering over

the links and verifying that they are calling the EmployeesController with the Edit,

Details, or Delete Action, along with the correct Employee ID parameter.

Let’s continue by adding the Details Action to our EmployeesController. Our Details

Action was already stubbed for us using the scaffolding template. We just have to

make minor modifications to pull the exact data of the employee ID from the data-

base:

public ActionResult Details(int id)
 {
 DorknozzleDataContext dorkDC = new ➥

 DorknozzleDataContext();

 Employee currentEmployee = dorkDC.Employees.Where➥

 (e => e.EmployeeID == id).First<Employee>();

 return View(currentEmployee);
 }

This is fairly simple LINQ-to-SQL code to get the first Employee entity record that

matches based on the employee ID passed as a parameter. This Employee record

will be the Model passed to the Details View. MVC handles the URL parameter passed

from the URL to this Action call here. Coincidentally, the same code will be used

for our Edit Action.

Getting Some HTTP Action

There are two methods for the Edit actions. One has a standard parameter of id,

which is the HTTP GET Action. Then there is an HTTP POST Action, where the

parameter is a FormsCollection object. The first GET Action is when the user

chooses to begin editing a user. This should load the user’s existing data in writable

fields. When the user finishes editing and clicks the submit button, the browser

Build Your Own ASP.NET 4 Website Using C# & VB688

sends the information contained in these form fields to ASP.NET with an HTTP

POST, essentially telling the server to process the information:

public ActionResult Edit(int id)
 {
 DorknozzleDataContext dorkDC = new➥

 DorknozzleDataContext();

 Employee currentEmployee = dorkDC.Employees.Where➥

 (e => e.EmployeeID == id).First<Employee>();

 return View(currentEmployee);
 }

Now we’re at the point where we can create our views for Edit and Details.

Right-click on the Employees folder under Views and add a new View called “Details”

as in Figure 16.12. Select the Employee LINQ entity as your Model, Details as your

scaffolding template, and select the Master Page we added earlier.

689Introduction to MVC

Figure 16.12. Choosing Employee LINQ as the model

We’ll also add a new View called Edit (seen in Figure 16.13) using the same options,

except using Edit as the scaffolding template option. For this, we’ll specifically

skip the script libraries referencing, as our master page is not yet ready for jQuery

validation for the editable fields.

Build Your Own ASP.NET 4 Website Using C# & VB690

Figure 16.13. Adding a new View called “Edit”

The HTML used for the Details and Edit template are enough to get us going. The

only minor bit we need to change is at the bottom of both Views: we want to use

the “List” Action when we return our user to the main page. An excerpt is below:

<%: Html.ActionLink("Back to List", "Index") %>

It should now be:

691Introduction to MVC

<%: Html.ActionLink("Back to List", "List") %>

Calling All Lists

We could have create a new Action called Index here to render the List view, but

since we have already coded the List Action, we just change our user interface to

call List. This is a great example where our Separation of Concerns allows us to

make a change without affecting the other parts of the code, one of the useful

features of the MVC pattern. But one thing you could do in the Index action is to

call the RedirectToActionmethod as: return RedirectToAction("List");.

Let’s go ahead and test our new Actions and Views by navigating to them, clicking

on Edit or Details from the List view.

The Details View looks like Figure 16.14.

Figure 16.14. The Details View

The Edit View looks like Figure 16.15.

Build Your Own ASP.NET 4 Website Using C# & VB692

Figure 16.15. The Edit View

So with very little code written on our side thanks to the scaffolding templating,

we can see the Details and the Edit view for our application. The POST Action isn’t

implemented, so the edit feature is yet to fully work. Let’s do that now!

The method parameters for our Action for handling the POST of our Edit Action

will give us the ID being edited, as well as a FormsCollection object. This is simply

a name-value pair containing the new items that the end-user entered. So if you

wanted to reference the “Name” field, we’d access it through the FormsCollection

object as:

collection[“Name”]; // returns “Ted Lindsey” if you’re editing ID 3

We can now go ahead and edit the Employee record with the new data being sub-

mitted:

[HttpPost]
 public ActionResult Edit(int id, FormCollection collection)
 {

 using (DorknozzleDataContext dorkDC = new➥
 DorknozzleDataContext())

693Introduction to MVC

 {

 Employee currentEmployee = dorkDC.Employees.➥

 Where(e => e.EmployeeID == id).➥

 First<Employee>();

 currentEmployee.Address = collection["Address"];
 currentEmployee.City = collection["City"];
 currentEmployee.DepartmentID = Convert.ToInt32➥

 (collection["DepartmentID"]);
 currentEmployee.Extension = ➥

 collection["Extension"];
 currentEmployee.HomePhone = ➥

 collection["HomePhone"];
 currentEmployee.MobilePhone = ➥

 collection["MobilePhone"];
 currentEmployee.Name = collection["Name"];
 currentEmployee.Password = ➥

 collection["Password"];
 currentEmployee.State = collection["State"];
 currentEmployee.Username = ➥

 collection["Username"];
 currentEmployee.Zip = collection["Zip"];

 dorkDC.SubmitChanges();
 }
 return RedirectToAction("List");
 }

Compile your application and give it a test run by editing an Employee record. After

editing, it should return you to the List view. For deleting a user, it’s similar:

public ActionResult Delete(int id)
 {
 using (DorknozzleDataContext dorkDC = new➥

 DorknozzleDataContext())
 {
 var employee = dorkDC.Employees.Where(emp => ➥

 emp.EmployeeID == id).First<Employee>();

 dorkDC.Employees.DeleteOnSubmit(employee);

 }

Build Your Own ASP.NET 4 Website Using C# & VB694

 return RedirectToAction("List");
 }

Finally, we can implement the “Create” Action and View to fulfill our final require-

ment for this application, as in Figure 16.16. Since the “Create” Action is already

stubbed out for us, we can begin with creating the Create view, also using the scaf-

folding template. We don’t need the reference script libraries here either.

Figure 16.16. Creating the Create view

695Introduction to MVC

The View comes ready for us with no changes, except the link to return to the main

List:

<%: Html.ActionLink("Back to List", "Index") %>

It becomes:

<%: Html.ActionLink("Back to List", "List") %>

Now, all we have to do is handle the POST action for “Create” within our controller.

This also uses a FormsCollection object, which we will use to populate a new

Employee entity record:

[HttpPost]
 public ActionResult Create(FormCollection collection)
 {

 using (DorknozzleDataContext dorkDC = new ➥

 DorknozzleDataContext())
 {

 Employee newEmployee = new Employee();

 newEmployee.Address = collection["Address"];
 newEmployee.City = collection["City"];
 newEmployee.DepartmentID = Convert.ToInt32➥

 (collection["DepartmentID"]);
 newEmployee.Extension = collection["Extension"];
 newEmployee.HomePhone = collection["HomePhone"];
 newEmployee.MobilePhone = collection["MobilePhone"];
 newEmployee.Name = collection["Name"];
 newEmployee.Password = collection["Password"];
 newEmployee.State = collection["State"];
 newEmployee.Username = collection["Username"];
 newEmployee.Zip = collection["Zip"];

 dorkDC.Employees.InsertOnSubmit(newEmployee);

 dorkDC.SubmitChanges();
 }

Build Your Own ASP.NET 4 Website Using C# & VB696

 return RedirectToAction("List");

 }

That’s it! Give it a compile and view your application. You can now add, edit, delete,

and view details for the employees of the Dorknozzle Corporation as in Figure 16.17.

Figure 16.17. Employee detail page of the Dorknozzle Corporation

Our listing with the newly created employee can be seen in Figure 16.18.

697Introduction to MVC

Figure 16.18. Our newly created employee

Summary
Is MVC a replacement for the Web Forms that we’ve used throughout this book?

No—it’s another tool in the web developer’s arsenal to choose, depending on the

project. MVC is a powerful framework for ASP.NET that solves many of the original

issues we discussed earlier—namely the ability to more easily maintain complex

applications by separating the three main sections of the project. Many of the features

that were once previously available for ASP.NET MVC are now available for Web

Forms, such as the URL Routing features and SEO-friendly URLs. jQuery integration

is also now shipping with Visual Web Developer—previously it was once a mainstay

of the MVC Framework. The choice is ultimately up to you as the developer, but it

is important to understand what tools are available, and MVC is yet another tool to

help you accomplish your tasks.

We have seen the full power of MVC, from creating a new web application without

the need for server-side web controls or ViewState. We’ve also seen LINQ-to-SQL

in a real-example setting, and how easy it is to use LINQ-to-SQL to promptly query

data from the database without needing to worry about data sets or connection

strings.

One of the major benefits here from MVC is the ability for multiple programmers

to work on the same project using different files. The programmer whose strengths

are in HTML design can now work on the View, while a back-end developer can

Build Your Own ASP.NET 4 Website Using C# & VB698

handle the Model and Controller. The principle of Separation of Concerns allows

us to also make changes without affecting most of the other working parts of the

application. We also have full control over the HTML being output by the server,

so if we needed to target other browsers or devices, we could easily accommodate

those changes.

Lastly, we saw the usefulness of the scaffolding templates to add functionality for

our Controller, in order to stub out Action methods for adding, editing, deleting,

and viewing the details on our Model. This scaffolding template also generated the

majority of our HTML layout with very little changes on our side to make it fully

functional.

699Introduction to MVC

Chapter17
ASP.NET AJAX
Throughout this book, we’ve been building ASP.NET Web Forms that, after any

user interaction, send all of the page’s data back to the server. You may not really

notice any problems with this approach if you’re developing locally on a fast com-

puter, but once your application is deployed to the Internet, it may appear to be

quite slow and unresponsive to users. However, by harnessing ASP.NET AJAX, you

can take a slow and clunky web application and make it sing with surprisingly little

effort.

In this chapter we’ll learn about:

■ what Ajax is and how it works
■ ASP.NET AJAX
■ the UpdatePanel and UpdateProgress controls
■ using triggers
■ the ASP.NET AJAX Control Toolkit
■ the ValidatorCalloutExtender control extender
■ jQuery and how it fits in with Visual Web Developer

What is Ajax?
What is Ajax, you ask? The acronym itself, coined by Jesse James Garret in 2005,

stands for Asynchronous JavaScript and XML.1In a nutshell, the term represents

the methodologies and technologies that allow developers to make web applications

feel far more interactive and responsive. Notable examples of applications that

utilize Ajax include Gmail, Google Maps, Yahoo! Mail, Kayak, Flickr, and Facebook.

Moreover, just about every significant web site you interact with today probably

takes advantage of some Ajax concepts to improve the user experience in some way.

On a technical level, Ajax uses a few key technologies:

■ The most critical piece is the JavaScript XmlHttpRequest object. Originally in-

vented by Microsoft for Internet Explorer 4, it’s now a standard feature of all

browsers. This very powerful object allows developers to use JavaScript to make

HTTP GET and POST requests without submitting the whole page, and to then

access the content of the server response. Note that the Xml part of the name is

a bit misleading. In practice, you’re free to choose the format of the response

data—XML, JSON,2 an HTML snippet, or just about any format that can be sent

over HTTP.

■ The second most important technology is browser DOM scripting: Document

Object Model manipulation using JavaScript. JavaScript is required to create the

XmlHttpRequest object and make the request, but also to take the raw data re-

turned from the request, parse it, and integrate it back into the page for the user.

■ The final leg on which Ajax applications stand is standards–based HTML and

CSS. HTML provides the structure and the content, while CSS is used to control

the presentation of the interface.

Like any technology, Ajax is not without its challenges. First and foremost, to do

anything with Ajax, you need to have JavaScript enabled in the browser. From an

accessibility viewpoint, heavily interactive web sites can be very difficult for people

using assistive technology like screen readers to use. The application of Ajax within

1 “Ajax: A New Approach to Web Applications,” http://www.adaptivepath.com/ideas/es-

says/archives/000385.php
2 JavaScript Object Notation, a lightweight data transfer format for use with JavaScript. See ht-

tp://www.json.org/ for further information.

Build Your Own ASP.NET 4 Website Using C# & VB702

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.json.org/
http://www.json.org/

a web site can subtly alter the behavior of the browser in ways that users can find

confusing—for example, they may be unable to use the Back button, or accurately

bookmark pages. Finally, if your web site content can’t be accessed by any means

other than JavaScript, search engines won’t be able to index your content.

Ajax may sound intimidating, and for the original trail blazers there were a number

of complex problems to solve. But, as Ajax has matured and become a standard

component of modern web development, a number of tools have been created to

make “Ajaxifying” your application very easy. You may have heard of—or even

used—some of these tools, including jQuery,3 Prototype,4 and MooTools.5 However,

as a budding ASP.NET developer, you really need to familiarize yourself with one

tool in particular: Microsoft’s ASP.NET AJAX.

ASP.NET AJAX
ASP.NET AJAX, originally called ASP.NET Atlas, is a core part of ASP.NET 4.6 The

library itself has three components. The first is a set of client-side JavaScript libraries,

known as the Microsoft AJAX Library, which provide the framework of cross-browser

functionality that’s used by the ASP.NET AJAX server-side components. Second,

on the server-side, Microsoft developed a set of HTTP handlers and modules to

wrap the standard XML-based web services and allow them to respond to Ajax re-

quests using JSON. Finally, there’s the component we’ll focus on in this chapter—the

server-side controls that make Ajaxifying your application incredibly easy.

Included in the core ASP.NET AJAX library are just a few key server controls:

1. The ScriptManager control is rather boring and unsung, but it’s absolutely crit-

ical.7 As its name indicates, it manages the registration of client scripts on your

web page, handling mundane tasks like making certain that your Ajax controls

have the scripts they need and, more importantly, that these scripts are included

only once.

3 http://jquery.com/
4 http://www.prototypejs.org/
5 http://mootools.net/
6 http://www.asp.net/ajax/
7 http://www.asp.net/AJAX/Documentation/Live/overview/ScriptManagerOverview.aspx

703ASP.NET AJAX

http://jquery.com/
http://www.prototypejs.org/
http://mootools.net/
http://www.asp.net/ajax/
http://www.asp.net/AJAX/Documentation/Live/overview/ScriptManagerOverview.aspx
http://www.asp.net/AJAX/Documentation/Live/overview/ScriptManagerOverview.aspx

2. The Timer control provides the plumbing to perform postback operations at

defined intervals.8 Again, it’s a straightforward, often-overlooked control, but

it’s very handy for those operations.

3. The final components are the interrelated UpdatePanel and UpdateProgress

controls.9 The UpdatePanel, when used with a ScriptManager, allows a developer

to use partial rendering—a procedure by which different sections of a page are

updated independently, without requiring the browser to refresh the entire page.

The UpdateProgress control informs users that a partial rendering operation is

in progress.

While it probably doesn’t seem like there’s much variety in the way of server con-

trols, these provide the core functionality to let us very quickly and easily add Ajax

functionality to just about any web site that uses ASP.NET 2.0 or later versions.

Using the UpdatePanel Control
The most exciting control included in the core of ASP.NET AJAX is the UpdatePanel.

It’s been called the “gateway drug” to Ajax, and rightly so—it can be added to nearly

any ASP.NET page to instantly, and almost magically, make it feel “Ajaxy.” In most

cases, this goal can be achieved without making material changes to the code. Let’s

try a simple example: wrapping a GridView in an UpdatePanel.

The GridView on our Departments.aspx page currently requires a complete page reload

for every interaction. That seems a bit wasteful for simple user actions such as

sorting columns and clicking the paging links. This page is a perfect candidate for

a little Ajax magic!

To get started, let’s add an UpdatePanel to the Departments.aspx page. Open your

Departments.aspx page and make the changes shown below:

Dorknozzle\VB\01_Departments.aspx (excerpt)

<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<asp:ScriptManager runat="server" ID="DepartmentsScriptManager"

 EnablePartialRendering="True" />

8 http://www.asp.net/AJAX/Documentation/Live/overview/UsingTimerControlTutorial.aspx
9 http://www.asp.net/AJAX/Documentation/Live/overview/PartialUpdates.aspx

Build Your Own ASP.NET 4 Website Using C# & VB704

http://www.asp.net/AJAX/Documentation/Live/overview/UsingTimerControlTutorial.aspx
http://www.asp.net/AJAX/Documentation/Live/overview/UsingTimerControlTutorial.aspx
http://www.asp.net/AJAX/Documentation/Live/overview/PartialUpdates.aspx
http://www.asp.net/AJAX/Documentation/Live/overview/PartialUpdates.aspx

 <h1>Dorknozzle Departments</h1>
<p>Page rendered at <%= DateTime.Now.ToLongTimeString() %>.</p>
<asp:UpdatePanel runat="server" ID="DepartmentsUpdatePanel">

 <ContentTemplate>
 <asp:GridView id="departmentsGrid" runat="server"
 AllowPaging="True" PageSize="4" AllowSorting="True"
 onpageindexchanging="departmentsGrid_PageIndexChanging"
 onsorting="departmentsGrid_Sorting">
 </asp:GridView>

<p>Grid rendered at <%= DateTime.Now.ToLongTimeString() %>
 </p>
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Hit F5 to execute the site and if everything goes well, you should see a rather famil-

iar Dorknozzle Departments page with a few extra lines of text, as shown in Fig-

ure 17.1.

Figure 17.1. The Departments GridView within an UpdatePanel

Now click on the paging buttons to change the GridView display. You should notice

two things: first, the page doesn’t flicker nor completely refresh—only the contents

of the GridView change; second, the time output in the bottom paragraph will be

updated each time you click, while the time output in the top paragraph will stay

the same. Congratulations, you just Ajax-enabled your page! Now let’s take a look

at how this all works.

We added the time output only to underline the fact that this page is being partially

rendered—you probably won’t do that in a real application. The top paragraph is

output when the page is first rendered, while the bottom one is changed using Ajax.

705ASP.NET AJAX

However, the Ajax wouldn’t work at all if we didn’t add the ScriptManager control

to the page. We also made sure that the EnablePartialRendering property was set

to True to enable partial rendering. This invisible control also provides the key

plumbing for the other Ajax controls we’re going to use in the chapter, so don’t

leave home without it!

With the ScriptManager control in place, we can add our Ajax controls. We’ve

wrapped the GridView in an UpdatePanel control, making sure the GridView is

within the <ContentTemplate> tags. The UpdatePanel allows the content within

its <ContentTemplate> tags to be partially rendered and updated using Ajax.

Now let’s expand on this functionality using one of the other controls included in

ASP.NET AJAX—the UpdateProgress control. You’re probably fairly familiar with

the little spinning animations on sites such as Facebook. The animation serves as

an indicator that although the page itself isn’t refreshing, some aspect of the page

is being loaded or updated. In our case, since this application is running locally

and the data sets are limited, we’re going to need to fake a time delay in order to

see the effect. Open the Departments.aspx code-behind file (Departments.aspx.vb or

Departments.aspx.cs) and add the following line to the BindGrid method:

Visual Basic

departmentsGrid.DataSource = _
 dataSet.Tables("Departments").DefaultView
System.Threading.Thread.Sleep(2500)
departmentsGrid.DataBind()

C#

departmentsGrid.DataSource =
 dataSet.Tables["Departments"].DefaultView;
System.Threading.Thread.Sleep(2500);
departmentsGrid.DataBind();

The System.Threading.Thread class represents the current Thread in which our

application is running, and this trick simply tells the thread to halt for 2500 milli-

seconds. This isn’t something you should do in production, but it can help with

examples like this, and with testing.

Build Your Own ASP.NET 4 Website Using C# & VB706

Now that we’ve added a time delay, let’s add an UpdateProgress control to our

GridView. Make the following changes to Departments.aspx:

Dorknozzle\VB\02_Departments.aspx (excerpt)

<asp:UpdatePanel runat="server" ID="DepartmentsUpdatePanel" >
 <ContentTemplate>

<asp:UpdateProgress ID="DepartmentsUpdateProgress"
 DynamicLayout="true" runat="server">
 <ProgressTemplate>
 <p class="UpdateProgress">Updating...</p>
 </ProgressTemplate>
 </asp:UpdateProgress>
 ⋮
 </ContentTemplate>
</asp:UpdatePanel>

Examine the code and you’ll see that all we’ve done is add an UpdateProgress

control with the an id value of DepartmentsUpdateProgress, set the DynamicLayout

property to True, and added some HTML: a <p> tag within the <ProgressTemplate>

tags. Whatever content we place within those tags will be visible while the

UpdatePanel is updating; you can add just about anything you can dream up. The

DynamicLayout property is handy—if we left it as False, space would always be

reserved on the page for the UpdateProgress control’s content.

Let’s give our update indicator a little style. Add the following CSS rule to the

Dorknozzle CSS file:

Dorknozzle\VB\03_Dorknozzle.css (excerpt)

.UpdateProgress {
 background-color: Black;
 color: White;
 font-weight: bold;
 padding: 5px;
 text-transform: uppercase;
}

Save the changes and execute the page to see our new UpdateProgress control in

action. Now, when you click on a different page number, you should see the UPDAT-

ING… message shown in Figure 17.2.

707ASP.NET AJAX

Figure 17.2. The UpdateProgress control at work

Managing the ScriptManager Control
As we saw above, one thing that all ASP.NET pages with Ajax controls need in order

to work is the ScriptManager control. In the first example, we added the

ScriptManager directly to our page. But since we have a well-structured project

including a master page, and we intend to use ASP.NET AJAX controls on multiple

pages, it would be handy to add the ScriptManager control to our master page.

Open Dorknozzle.master in Design mode. Look in the toolbox for the AJAX Extensions

section and drag a ScriptManager to the top of the form. Right-click on the new

ScriptManager control and choose Properties—let’s give our control a good name,

like DorknozzleScriptManager, by editing the (ID) property. If you save the file

and then click on Source view, you should see this code:

Dorknozzle\VB\04_Dorknozzle.master (excerpt)

<!-- Header -->
<div class="Header">
<asp:ScriptManager ID="DorknozzleScriptManager" runat="server">

 </asp:ScriptManager>
 ⋮
</div>

If you try to execute the Departments.aspx page we modified previously, you’ll see

an error—the dreaded yellow screen of death, which states that, “Only one instance

of ScriptManager can be added to the page.” Go back and remove the

ScriptManager control from that page to restore normal functionality.

Build Your Own ASP.NET 4 Website Using C# & VB708

There’s one downside to adding the ScriptManager control to the master page:

sometimes you need to reference it from your web forms. That won’t be a problem

in this book, but if you do ever need to access a ScriptManager control, ASP.NET

AJAX has you covered. Just add a ScriptManagerProxy control to the web form,

and you can access the master page’s ScriptManager as if it lived on that page.

Using Triggers to Update an UpdatePanel
Our first example was rather simple—we just wrapped the Departments page’s

GridView in an UpdatePanel and let ASP.NET AJAX handle the rest. Unfortunately,

real-life web applications aren’t often so simple. Sometimes you need to use a

control that’s located separately from the UpdatePanel to trigger the partial rendering

process, instead of allowing the default behaviour of reloading every single

UpdatePanel with every asynchronous postback.

The Departments page was a great starting point, but in this example, we’re going

to work with a more complex page. Open the AddressBook.aspx file in your Dorknozzle

project. To begin our work with triggers, we’ll need to add some basic plumbing to

the page:

1. We’ll need two UpdatePanels: one for the GridView control, and one for the

DetailsView control.

2. We’ll need to add bit of instrumentation—an output of the current server time—for

the sake of the demonstration.

In AddressBook.aspx, modify the code as shown below:

Dorknozzle\VB\05_AddressBook.aspx (excerpt)

 <h1>Address Book</h1>
<p>Page rendered at <%= DateTime.Now.ToLongTimeString() %>.

 </p>
 <p>
 <asp:LinkButton id="addEmployeeButton" runat="server"
 Text="Add New Employee" />
 </p>
<asp:UpdatePanel runat="server" ID="AddressGridViewUpdatePanel"

 UpdateMode="Conditional" ChildrenAsTriggers="True">
 <ContentTemplate>
 <asp:GridView …>

709ASP.NET AJAX

 ⋮ GridView control markup…
 </asp:GridView>

<p>Grid rendered at <%= DateTime.Now.ToLongTimeString() %>.
 </p>
 </ContentTemplate>
 </asp:UpdatePanel>

<asp:UpdatePanel runat="server" ID="DetailsViewUpdatePanel"

 UpdateMode="Conditional" ChildrenAsTriggers="True">
 <ContentTemplate>
 <p>Details rendered at <%= DateTime.Now.ToLongTimeString() %>.
 </p>
 <asp:DetailsView …>
 ⋮ DetailsView control markup…
 </asp:DetailsView>

</ContentTemplate>
 </asp:UpdatePanel>

The instrumentation should look familiar—we used the same technique in the first

example, when we output the current time inside the UpdatePanel controls. This

time, we need to track three items: the page and the two UpdatePanels. For the

UpdatePanel controls, we use a new property—we set the UpdateMode property to

Conditional, which tells the panel to refresh only when it’s triggered.

Execute the page in your browser to check out the results. The new page shouldn’t

look appreciably different than the previous version, but it should display a few

new lines of text to indicate the rendering times of different parts of the page. If you

click on the page numbers or sorting controls in the GridView, you’ll notice that

the refresh lacks any of the flashing associated with a complete page refresh, and

it’s only the rendering time display for the GridView that changes.

Next, try to click on the Select LinkButton for one of the employees. Shockingly,

nothing happens! Remember that the Select button opens the employeeDetails

DetailsView control that’s now invisible. Now that each control is in a distinct

UpdatePanel, and the UpdatePanel controls have their respective UpdateMode set

to Conditional, a postback in one control—clicking Select, in this case—doesn’t let

ASP.NET AJAX know enough to refresh the other UpdatePanel control. We need

to use another element to make this happen: a trigger.

ASP.NET AJAX triggers come in two fashions: AsyncPostBackTriggers and

PostBackTriggers. The former trigger performs an asynchronous Ajax postback,

Build Your Own ASP.NET 4 Website Using C# & VB710

while the latter triggers a normal, full-page postback operation. In most cases you’d

want to use AsyncPostBackTriggers—after all, we are making Ajax applications!

Yet there are some cases in which you’ll need to use an explicit PostBackTrigger.

A common scenario is the uploading of files. For security reasons, ASP.NET AJAX

doesn’t handle file uploads—any posted file is ignored. But if you use a

PostBackTrigger on a control that triggers a file upload, the upload can be made

to work.

In order to make the page that contains multiple UpdatePanels work properly, we’re

going to have to add a few AsyncPostBackTrigger controls to our UpdatePanels.

Switch AddressBook.aspx to Design mode and select the AddressGridUpdatePanel

first. Spotting an UpdatePanel can be tricky at first—they’re invisible controls that

are difficult to see on the design canvas. The easiest way to find them is to select a

child control, so click on the employeeDetails DetailsView. From there, the label

for the containing UpdatePanel should appear as it does in Figure 17.3.

Figure 17.3. Finding the UpdatePanel in Design view

Click on the label to select the UpdatePanel, then and look at the Properties window.

Edit the Triggers collection by selecting its entry in the Properties window and

clicking on the … button that appears next to it. Add a new AsyncPostBackTrigger

by clicking on the Add button. Select grid for the ControlID field and select SelectedIn-

dexChanged for the EventName field. Click OK to add the trigger to your page, then

save it and view it in your browser.

Once the page renders, try clicking the Select button on any row. Hey presto—the

DetailsView appears as it should! Look at the timestamps and you’ll see that both

the UpdatePanel controls now update, but the page itself isn’t being reloaded.

Not all of our problems are solved, though; in fact, we’ve created a new issue. Click

Edit on an employee’s record, change the City field to Beijing, then click Save. The

711ASP.NET AJAX

DetailsView updates correctly, but the GridView doesn’t register the update. If you

look at the timestamp, you’ll see that the GridView wasn’t refreshed when you

clicked Save. If you think we need another trigger, you’re quite correct. In fact, we’re

going to need a few triggers to make this happen.

Switch back to Visual Web Developer and let’s add four AsyncPostBack triggers to

the AddressViewGridView using the Properties dialog as we did before. We’ll need

one trigger for each of the following events: ItemCreated, ItemDeleted, ItemInser-

ted, and ItemUpdated. For each, choose employeeDetails for the ControlID.

Next, select the employeeDetails GridView. Add one more trigger for the Click

event and choose addEmployeeButton for the ControlID.

If you switch to Source view, you’ll see the source code of your new triggers, which

looks like this:

Dorknozzle\VB\06_AddressBook.aspx (excerpt)

<asp:UpdatePanel runat="server" ID="AddressGridViewUpdatePanel"
 UpdateMode="Conditional">
 <ContentTemplate>
 ⋮
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="employeeDetails"
 EventName="ItemCreated" />
 <asp:AsyncPostBackTrigger ControlID="employeeDetails"
 EventName="ItemDeleted" />
 <asp:AsyncPostBackTrigger ControlID="employeeDetails"
 EventName="ItemInserted" />
 <asp:AsyncPostBackTrigger ControlID="employeeDetails"
 EventName="ItemUpdated" />
 </Triggers>
</asp:UpdatePanel>

<asp:UpdatePanel runat="server" ID="DetailsViewUpdatePanel"
 UpdateMode="Conditional">
 <ContentTemplate>
 ⋮
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="grid"
 EventName="SelectedIndexChanged" />

Build Your Own ASP.NET 4 Website Using C# & VB712

 <asp:AsyncPostBackTrigger ControlID="addEmployeeButton"
 EventName="Click" />
 </Triggers>
</asp:UpdatePanel>

Now, execute the page and edit an employee’s City field again. You’ll see the change

reflected in the GridView. Click the Add Employee LinkButton to create a new em-

ployee, and the new item will appear in the GridView. If you want to live danger-

ously, delete the new employee and note how the item disappears from the GridView.

Finally, note that even with all these changes, the page itself has never been wholly

reloaded—that page’s timestamp should remain the same.

Now, you might ask “Why bother setting up all these triggers? If we just leave the

UpdateMode property of all the UpdatePanel controls set to the default value of Al-

ways, we’ll never have to deal with this.” Technically, that’s correct, but that idea’s

not without its drawbacks. UpdatePanels can be quite expensive in terms of server

capacity. In order to properly maintain state, the controls must submit the entire

view state back to the server. The server must then process this mass of data and

push the content of all the UpdatePanel controls back to the browser. By only trig-

gering the updates on the panels we wished to change in this example, we saved

significant amounts of bandwidth per request.

The ASP.NET AJAX Control Toolkit
So far, we’ve explored the basic ASP.NET AJAX Server Controls—the ScriptManager,

the UpdatePanel, and the UpdateProgress controls. They’re very handy, but they

have no flair, and today’s users expect a little glitz in their web applications. With

the ASP.NET AJAX Control Toolkit, adding a touch of glamour to your ASP.NET

AJAX application becomes a simple matter of applying a few control extenders to

your page.

The ASP.NET AJAX Control Toolkit is a Microsoft-supported open source project.

It’s a good example of a very well-designed, well-tested control library that you can

include in any of your projects. Unlike many of the libraries you might wish to use

in the future, this one is totally free of charge. Check out the sample project at

http://www.asp.net/ajax/ajaxcontroltoolkit/samples/, play around with some of the

controls, and think about how we can spice up Dorknozzle a little. Pay special at-

713ASP.NET AJAX

http://www.asp.net/ajax/ajaxcontroltoolkit/samples/

tention to the Animation and the ValidatorCallout—we’ll see these controls in

action shortly.

In order to best use the Toolkit, we need to integrate it into Visual Web Developer

Express. The first step is to acquire the Toolkit itself. Visit the project’s home page

at http://www.codeplex.com/AjaxControlToolkit and click on the Releases tab. Select

the AjaxControlToolkit-Framework3.5-NoSource.zip file, download it, and extract it to

a temporary folder on your hard drive. In the extracted folders, open the

SampleWebSite\Bin folder. You should see a number of localized language folders

and also a key file: AjaxControlToolkit.dll.

Grab the AjaxControlToolkit.dll file and stash it somewhere permanent so we can

reference it from Visual Web Developer to integrate it into the designer. I recommend

that you create a folder within your My Documents folder to handle this:

1. Click on Start, and then Run.

2. Type in My Documents.

3. Double-click on the Visual Studio 2008 folder.

4. Create a new folder called Add-Ins.

5. In this new folder, create a folder called Ajax Control Toolkit.

6. Get the AjaxControlToolkit.dll from the location we established above, and copy it

to the Ajax Control Toolkit folder we just created.

7. In Visual Web Developer, expand the Toolbox, right-click on an empty area, and

choose Add Tab. Call the new tab AJAX Control Toolkit.

8. Right-click on the text in the empty tab and select Choose Items….

9. Click Browse to add a new file, and then head to the location where you saved

the AjaxControlToolkit.dll file. Double-click on the file to select it.

10. You should see a few new, highlighted lines in the Choose Toolbox Items dialog

with the namespace value of AjaxControlToolkit. Click OK to continue.

11. Two dozen or so new items should load into your new toolbar tab, ranging from

Accordian all the way to ValidatorCalloutExtender.

Build Your Own ASP.NET 4 Website Using C# & VB714

http://www.codeplex.com/AjaxControlToolkit

The ValidatorCalloutExtender Control Extender
ASP.NET’s built-in validation controls are very effective, but they’re visually bor-

ing—especially when they’re compared to many modern web applications. The

ASP.NET AJAX Control Toolkit has a solution: the ValidatorCalloutExtender.

This control extender takes the plain old ASP.NET validator controls we learned

about in Chapter 6 and extends them. It adapts their rendering to take advantage of

the tools ASP.NET AJAX provides to make them more user friendly and visually

appealing.

Once you have the toolkit set up, open HelpDesk.aspx, go into Design mode, and click

on the red text message that reads, You must enter station number. This will select

the simple RequiredFieldValidator control and show a smart tag indicating that

we can add something to it. Click on the smart tag and choose Add Extender…, as

shown in Figure 17.4, to start the Extender Wizard. Select the ValidatorCallout and

click OK. Repeat this process with three remaining validation controls on this page.

Figure 17.4. Adding the ValidatorCalloutExtender control

One thing to note—the first time you added an extender to the page, you might have

seen a new Bin folder appear in your Solution Explorer. This folder contains the fa-

miliar AjaxControlToolkit.dll file, which is known as an assembly—a logical unit of

code that can actually contain one or more files as a package. If you click on the file

in Solution Explorer and look at the Properties panel, you’ll notice that the value of

the Auto-refresh Path property is the same as the location in which we parked

the assembly file. Once we incorporated the functionality into Dorknozzle, Visual

Web Developer added the referenced assembly to our solution for our convenience.

Visual Web Developer also registered the assembly on the Help Desk page. If we

switch to Source mode, we’ll see the following new code near the beginning of our

file:

715ASP.NET AJAX

<%@ Register assembly="AjaxControlToolkit"
 namespace="AjaxControlToolkit" tagprefix="cc1" %>

And, if we look at the first ValidatorCalloutExtender extender we added, we’ll

see the following code:

<cc1:ValidatorCalloutExtender
 ID="stationNumReq_ValidatorCalloutExtender"
 runat="server" Enabled="True"
 TargetControlID="stationNumReq">
</cc1:ValidatorCalloutExtender>

That snippet of code tells the compiler and Visual Web Developer to look for tags

from the AjaxControlToolkit.dll when we add an element with the prefix cc1. Now,

let’s run the page and see how it looks when we input some invalid data. Click on

the Submit Request button and you should see a validation message like the one

displayed in Figure 17.5.

This isn’t quite what we wanted. First, why are those red error messages appearing?

Second, how can we highlight the fields in error?

Figure 17.5. Both validation messages displaying

Let’s tackle the redundant validation text first. When we first built the page in

Chapter 6, we used the validation controls’ dynamic rendering functionality to im-

Build Your Own ASP.NET 4 Website Using C# & VB716

prove the usability of the page. Now, since we’re going to use callouts to highlight

the fields in error, this dynamically generated error message is interfering with our

much prettier callouts. To eliminate this problem, we could hunt down each of the

four validator controls on the page and set their Display properties to None. Altern-

atively, we can take advantage of Visual Web Developer’s find-and-replace function-

ality:

1. Open HelpDesk.aspx in Source view.

2. Open the Quick Replace dialog by pressing Ctrl+h.

3. Make absolutely certain that Look in is set to Current Document.

4. Enter Display=”Dynamic” into Find What.

5. Enter Display=”None” into Replace With.

6. Click Replace All.

7. You should see four replacements made.

Our next task is to enable some kind of highlight on the fields that have errors.

Conveniently, the ValidationCalloutExtender extender has a property just for

this purpose: HighlightCssClass. This class is applied via JavaScript manipulation

when a field is in error. To use it, we need to add the following piece of CSS to our

Dorknozzle CSS file:

Dorknozzle\VB\07_Dorknozzle.css(excerpt)

.fieldError {
 background-color: pink;
 color: White;
}

Next, add the HighlightCssClass attribute to each of the four

ValidatorCalloutExtender extenders you added to the page, and give each instance

the value fieldError. If you’re using Design view, the extenders can be very hard

to find—the only way is to grab them from the drop-down list in the Properties

panel. In Source view, on the other hand, you can just type the code directly into

the relevant tag. Each of your ValidatorCalloutExtender extenders should have

a new attribute like the one below:

717ASP.NET AJAX

Dorknozzle\VB\08_HelpDesk.aspx (excerpt)

<cc1:ValidatorCalloutExtender
 ID="stationNumReq_ValidatorCalloutExtender"
 runat="server" Enabled="True" TargetControlID="stationNumReq"

HighlightCssClass="fieldError">
</cc1:ValidatorCalloutExtender>

View the page in your browser again, and click Submit Request without entering any

data. The red error messages should have been replaced with pink highlights and

yellow validation callouts like the ones in Figure 17.6.

Figure 17.6. The completed validation display

Getting Started with Animation
ValidatorCalloutExtender extenders are fun, but we all know that the marketing

department is always demanding the kind of pop and pizzaz that’s powered by an-

imation.

We’re going to take our old Departments.aspx page and spice it up—we’ll use some

animation to indicate that it’s updating, rather than relying on a plain old

UpdateProgress control. However, before we get started on this, we’re going to have

to enable the AJAX Control Toolkit to be used project-wide. Open the Dorknozzle

Web.config file, find the <controls> node within the <pages>, and make the follow-

ing addition:

Build Your Own ASP.NET 4 Website Using C# & VB718

Dorknozzle\VB\09_web.config (excerpt)

<pages theme="Blue">
 <controls>
 ⋮
 <add tagPrefix="atk" namespace="AjaxControlToolkit"
 assembly="AjaxControlToolkit" />
 </controls>
</pages>

You might notice that this is quite similar to the @Register directive that was created

in the HelpDesk.aspx file when we dragged the ValidationCalloutExtender extender

onto the design canvas. However, rather than applying only to a single page, as the

directive does, this configuration applies to the entire project. This is a handy way

to globally enable a library that you plan to use liberally throughout your project.

Now that we’ve registered the library, we can add our animation. Open the

Departments.aspx page in Source view and remove the UpdateProgress control we

added previously. If you didn’t remove the ScriptManager control earlier, do that

now—it will conflict with the global ScriptManager control we added to

Dorknozzle.master file.

Next, make the following changes to your Departments.aspx file:

Dorknozzle\VB\10_Departments.aspx (excerpt)

<asp:UpdatePanel runat="server" ID="DepartmentsUpdatePanel">
 <ContentTemplate>

<div id="gridContainer">
 <asp:GridView id="departmentsGrid" runat="server"
 AllowPaging="True"
 PageSize="4" AllowSorting="True"
 onpageindexchanging="departmentsGrid_PageIndexChanging"
 onsorting="departmentsGrid_Sorting">
 </asp:GridView>
 <p>Grid rendered at <%= DateTime.Now.ToLongTimeString() %></p>

</div>
 </ContentTemplate>
</asp:UpdatePanel>
s<atk:UpdatePanelAnimationExtender
 ID="UpdatePanelAnimationExtender1" runat="server"
 TargetControlID="DepartmentsUpdatePanel"
 BehaviorID="Animation">

719ASP.NET AJAX

 <Animations>
 <OnUpdating>
 <FadeOut AnimationTarget="gridContainer"
 minimumOpacity=".2" />
 </OnUpdating>
 <OnUpdated>
 <FadeIn AnimationTarget="gridContainer"
 minimumOpacity=".2" />
 </OnUpdated>
 </Animations>
</atk:UpdatePanelAnimationExtender>

In this code, we first wrapped the grid in a div element, which is required for the

animation. Then we added an UpdatePanelAnimationExtender extender targeting

the DepartmentsUpdatePanel. The extender handles two events—OnUpdating and

OnUpdated. We specify a fade-out animation to appear while the page is updating,

and a fade-in animation to appear when it’s finished updating. Execute the page in

your browser and click on a few of the paging and sorting controls to enjoy the effect.

Animations can be far more complex than this simple example, but this should be

enough to get you going.

jQuery
When performing some of the examples in this book, you may have noticed a jQuery.js

file in the Scripts folder that comes by default with most created projects within

Visual Web Developer. jQuery is a popular open-source JavaScript framework used

by many websites to easily perform AJAX operations, animations, and other web

development tasks. jQuery and JavaScript are both beyond the scope of this book,

but it is important to note that Visual Web Developer includes a recent version of

jQuery.

The three files here represent different outputs for version 1.6.2 of jQuery. The vsdoc

file is for Visual Studio IntelliSense to work correctly if you choose to use jQuery

within Visual Studio. The min file is a deployable file that represents the smallest

possible format so browsers can easily download this file very quickly. Finally, the

main jquery-1.6.2.js file is the human readable form.

To include jQuery in your presentation, you’ll want to reference the script as such:

Build Your Own ASP.NET 4 Website Using C# & VB720

<script type="text/javascript" src="jquery-1.6.2-vsdoc.js"></script>

The website at http://www.jquery.com is the best resource to see examples and tu-

torials for using jQuery, as well as for getting the latest version. jQuery runs on a

fast release schedule—currently at v1.6.2.

Summary
In this chapter, we started out by learning a bit about Ajax technology, and what

ASP.NET AJAX has to offer. We used the UpdatePanel and the UpdateProgress

controls on our Departments GridView to improve the user experience. We then

employed AsyncPostBackTriggers and multiple UpdatePanels in our Address

Book page to explore a more advanced, multi-UpdatePanel scenario.

Shifting gears, we examined the ASP.NET AJAX Control Toolkit and added it to

Visual Web Developer. We then added some ValidationCallout control extenders

to our Help Desk form before going on a short foray into the wonderful world of

animation. While we didn’t have the space here to fully examine every feature of

ASP.NET AJAX or the ASP.NET AJAX Control Toolkit, you should now have the

knowledge to start employing them in your own projects.

721ASP.NET AJAX

http://www.jquery.com

Appendix A: Web Control Reference
The following reference includes a list of important properties, methods, and events

for some of the useful controls you’ll find in the Visual Web Developer Toolbox.

We’ve grouped the lists of controls on the basis of their locations within the Toolbox:

■ standard controls
■ validation controls
■ navigation controls
■ Ajax controls

As well as the controls listed below, don’t forget that any HTML element can be

used with a runat=”server” attribute value to access server-side features. We

covered this capability in the section called “HTML Server Controls” in Chapter 4.

As almost all the web controls listed here are based on (or, more specifically, derived

from) the WebControl class, they inherit its properties and methods. First up, let’s

review the more useful of these, which can be used with any of the web controls.

The WebControl Class
Properties
AccessKey specifies a shortcut key that quickly selects a control

without the user needing to use a mouse; the shortcut

command is usually Alt plus a letter or number

Attributes allows the accessing and manipulation of the attributes

of the HTML code rendered by the control

BackColor the control’s current background color

BorderColor color for the border

BorderStyle style of border drawn around the web control; default is

NotSet; other values are None, Solid, Double, Groove,

Ridge, Dotted, Dashed, Inset, and Outset

BorderWidth width of the border

Controls a collection of all the controls contained within the web

control (its child controls)

CssClass indicates the style class within the current CSS stylesheet

that should be applied to the web control

Enabled determines whether the web control is active and able to

receive user input

EnableTheming determines whether the control uses themes

Font a FontInfo object representing the control’s current font;

properties of FontInfo include Bold, Italic, Name, Names,

Overline, Size, Strikeout, and Underline

ForeColor the control’s current foreground color

Height the current height of the control

SkinID the ID of the skin to be used by the control

Style allows the manipulation of the CSS style elements through

the returned CssStyleCollection object

TabIndex defines the order in which controls on the page are selec-

ted when the user presses Tab; the lowest value is selected

first

Tooltip the text that appears in a popup when the cursor is

hovered over the control

Visible determines whether the control appears onscreen in the

user’s browser

Width the current width of the control

Methods
ApplyStyle copies an element of a Style object to a control

Build Your Own ASP.NET 4 Website Using C# & VB724

MergeStyle copies an element of a Style object to a control but does

not overwrite existing styles

DataBind binds the web control to its data source

As well as the properties and methods described here, web controls offer additional

properties and methods specific to each control. These are listed in the following

sections.

Standard Web Controls
AdRotator

Properties

AdvertisementFile specifies the path to the XML file that contains the list of

banner advertisements

KeywordFilter returns only advertisements that match a specific filter

when the property is set

Target displays the page in this window or frame; possible values

are _child, _self, _parent, and _blank

Events

AdCreated raised after an ad is retrieved from the advertisement file,

but before the ad is rendered

BulletedList

Properties

BulletImageUrl specifies the URL of the image used to display the bullets

BulletStyle identifies the style of the bulleted list; can take one of the

BulletStyle enumeration values: Numbered (1, 2, 3, ...),

LowerAlpha (a, b, c, ...), UpperAlpha (A, B, C, ...), LowerRo-

man (i, ii, iii, ...), UpperRoman (I, II, III, ...), Circle, Custom-

Image, Disc, and Square

725Appendix A: Web Control Reference

DisplayMode determines the display mode, which can be Text (the

default), or HyperLink (if you want the list to be formed

of links)

FirstBulletNumber specifies the value of the first bullet

SelectedIndex the index of the selected item

SelectedItem specifies the currently selected item as a ListItem object

SelectedValue the Value of the selected ListItem object

Target specifies the target window or frame in which new content

should be displayed when a link is clicked; possible val-

ues are _blank, _parent, _search, _self, and _top

Text the text of the BulletedList control

Events

Click raised when the Button is clicked and the form is submit-

ted to the server for processing

Button

Properties

CommandName passes a value to the Command event when the Button is

clicked

CommandArgument passes a value to the Command event when the Button is

clicked

CausesValidation allows interaction with client-side validation controls;

when False, validation does not occur

Text specifies the text displayed by the Button

Visible controls the visibility of the Button

Build Your Own ASP.NET 4 Website Using C# & VB726

Events

Click raised when the Button is clicked and the form is submit-

ted to the server for processing

Command raised when the Button is clicked and the form is submit-

ted to the server for processing; passes the values of the

CommandName and CommandArgument properties

Calendar

Properties

CellPadding specifies the number of pixels between a cell and border

CellSpacing specifies the number of pixels between cells

DayHeaderStyle specifies the style of the weekdays listed at the top of the

calendar

DayNameFormat sets the format of day names; possible values are

FirstLetter, FirstTwoLetters, Full, and Short

DayStyle specifies the style applied to each day in the calendar

FirstDayOfWeek specifies which day of the week is displayed in the first

column

NextMonthText if ShowNextPrevMonth is True, specifies the text for the

next month hyperlink

NextPrevFormat specifies the format for the next and previous hyperlinks

NextPrevStyle specifies the style to use for next and previous month

links

OtherMonthDayStyle specifies the style to use to display days of adjacent

months within the current month’s calendar

PrevMonthText if ShowNextPrevMonth is True, specifies the text for the

previous month hyperlink

727Appendix A: Web Control Reference

SelectedDate contains a date-and-time value that specifies a highlighted

day

SelectedDates contains a collection of date-and-time values that specify

the highlighted days

SelectedDayStyle specifies the style to use for the currently selected day

SelectionMode determines whether or not days, weeks, or months can

be selected; possible values are Day, DayWeek, DayWeek-

Month, and None

SelectMonthText contains the HTML text displayed in the month selector

column; default value is >>, rendered as >>

SelectorStyle specifies the style to be applied to the link for selecting

week and month

SelectWeekText contains HTML text displayed for selecting weeks when

SelectionMode has the value DayWeek or DayWeekMonth

ShowDayHeader if True, displays the names of the days of the week

ShowGridLines if True, renders the calendar with a border around each

day’s cell

ShowNextPrevMonth if True, displays links to the next and previous months

ShowTitle if True, displays the calendar’s title

TitleFormat determines how the month name appears in the title bar;

possible values are Month and MonthYear

TitleStyle specifies the style to use for text within the title bar

TodayDayStyle specifies the style to use for the current day

TodaysDate specifies a DateTime value that sets the calendar’s current

date

VisibleDate specifies a DateTime value that sets the month to display

Build Your Own ASP.NET 4 Website Using C# & VB728

WeekendDayStyle specifies the style to use for weekend days

Events

DayRender raised before each day cell is rendered on the calendar

SelectionChanged raised when a new day, month, or week is selected

VisibleMonthChanged raised by clicking the next or previous month links

CheckBox

Properties

AutoPostBack when True, automatically posts the form containing the

CheckBox whenever it’s checked or unchecked

Checked shows the CheckBox as checked if set to True

Text specifies the text displayed next to the CheckBox

TextAlign determines how the text associated with the CheckBox is

aligned; possible values are Left and Right

Events

CheckedChanged raised when the CheckBox is checked or unchecked

CheckBoxList

Properties

AutoPostBack if True, automatically posts the form containing the

CheckBoxList whenever a CheckBox is checked or un-

checked

CellPadding sets the number of pixels between the border and a partic-

ular CheckBox

CellSpacing sets the number of pixels between individual CheckBoxes

within the CheckBoxList

729Appendix A: Web Control Reference

DataMember represents the particular table within the data source

DataSource represents the actual data source to use when binding to

a CheckBoxList

DataTextField represents the field within the data source to use with the

CheckBoxList text label

DataTextFormatString a format string that determines how the data is displayed

DataValueField represents the field within the data source to use with the

CheckBoxList’s value

Items the collection of items within the CheckBoxList

RepeatColumns determines the number of columns to use when displaying

the CheckBoxList

RepeatDirection indicates the direction in which the CheckBoxes should

repeat; possible values are Horizontal and Vertical

RepeatLayout determines how the checkboxes are formatted; possible

values are Table and Flow; default is Table

SelectedIndex represents the index selected within the CheckBoxList

SelectedItem represents the item selected within the CheckBoxList

Events

SelectedIndexChanged raised when a CheckBoxwithin the CheckBoxList is selec-

ted

DropDownList

Properties

AutoPostBack automatically posts the form containing the DropDownList

whenever the selection in the list is changed

DataMember represents the particular table within the data source

Build Your Own ASP.NET 4 Website Using C# & VB730

DataSource represents the actual data source to use when binding to

a DropDownList

DataTextField represents the field within the data source to use with the

DropDownList’s text label

DataTextFormatString specifies a format string that determines how the

DropDownList is displayed

DataValueField represents the field within the data source to use with the

DropDownList’s value

Items the collection of items within the DropDownList

SelectedIndex represents the index selected within the DropDownList

SelectedItem represents the item selected within the DropDownList

Events

SelectedIndexChanged raised when an item within the DropDownList is selected

FileUpload

Properties

FileBytes returns the contents of the uploaded file as an array of

bytes

FileContent returns the contents of the uploaded file as a stream

FileName returns the name of the file

HasFile returns True if the control has loaded a file, and False

otherwise

PostedFile returns for the uploaded file an HttpPostedFile object

whose properties can be used to obtain additional data

about the file

731Appendix A: Web Control Reference

Methods

SaveAs saves the uploaded file to disk

HiddenField

Properties

Value specifies the value of the hidden field

HyperLink

Properties

ImageURL specifies the location of the image to use

NavigateURL specifies the URL to navigate to when the hyperlink is

clicked

Target specifies the target window or frame to display for the

URL; the possible values are _top, _blank, _self, and

_parent

Text specifies the text displayed by the HyperLink

Visible controls the visibility of the HyperLink

Image

Properties

AlternateText specifies the text to display within browsers that do not

support images

ImageAlign specifies one of ten possible values for image alignment;

possible values include AbsBottom, AbsMiddle, Baseline,

Bottom, Left, Middle, NotSet, Right, TextTop, and Top

ImageURL specifies the location of the image to use

Visible controls the visibility of the image

Build Your Own ASP.NET 4 Website Using C# & VB732

ImageButton

Properties

AlternateText specifies the text to display within browsers that do not

support images

CommandName passes a value to the Command event when the ImageButton

is clicked

CommandArgument passes a value to the Command event when the ImageButton

is clicked

CausesValidation allows interaction with client-side validation controls;

when False, validation does not occur

ImageAlign specifies one of ten possible values for image alignment;

possible values include AbsBottom, AbsMiddle, Baseline,

Bottom, Left, Middle, NotSet, Right, TextTop, and Top

ImageURL specifies the location of the image to use

Visible controls the visibility of the ImageButton

Events

Click raised when the ImageButton is clicked and the form is

submitted to the server for processing

Command raised when the ImageButton is clicked and the form is

submitted to the server for processing; values of the

CommandName and CommandArgument properties are

provided with the event

ImageMap

Properties

Enabled enables or disables the control

733Appendix A: Web Control Reference

HotSpotMode defines the behavior when a hot spot is clicked; possible

values are Inactive, Navigate, NotSet, and PostBack

HotSpots the HotSpotCollection object containing the ImageMap’s

hot spots; hot spots are defined using three controls that

generate hot spots of different shapes: CircleHotSpot,

RectangleHotSpot, and PolygonHotSpot

Target specifies the target window or frame where new content

should be displayed when a link is clicked; the possible

values are _blank, _parent, _search, _self, and _top

Events

Click raised when a HotSpot object in the ImageMap is clicked

and the form is submitted to the server for processing

Label

Properties

AssociatedControlID specifies the ID of the server control with which the Label

is associated and, if set, causes the control to be rendered

as an HTML label element

Text specifies the text displayed by the Label

Visible controls the visibility of the Label

LinkButton

Properties

Text specifies the text displayed by the LinkButton

CommandName passes a value to the Command event when the LinkButton

is clicked

CommandArgument passes a value to the Command event when the LinkButton

is clicked

Build Your Own ASP.NET 4 Website Using C# & VB734

CausesValidation allows interaction with client-side validation controls;

when False, validation does not occur

Visible controls the visibility of the LinkButton

Events

Click raised when the LinkButton is clicked and the form is

submitted to the server for processing

Command raised when the LinkButton is clicked and the form is

submitted to the server for processing; values of the

CommandName and CommandArgument properties are passed

ListBox

Properties

AutoPostBack when True, automatically posts the form containing the

ListBox whenever an item is selected

DataMember specifies the particular table within the data source to use

when binding

DataSource represents the actual data source to use when binding

DataTextField represents the field within the data source to use with the

ListBox’s text label

DataTextFormatString specifies a format string that determines how the ListBox

is displayed

DataValueField represents the field within the data source to use with the

ListBox’s value

Items the collection of items within the ListBox

Rows indicates the number of rows to display within the

ListBox; default value is 4

SelectedIndex represents the index selected within the ListBox

735Appendix A: Web Control Reference

SelectedItem represents the item selected within the ListBox

SelectionMode determines whether or not a user can select more than

one item at a time; possible values are Multiple and

Single

Events

SelectedIndexChanged raised when an item within the ListBox is selected

Literal

Properties

Text specifies the text displayed by the control

MultiView

Properties

ActiveViewIndex specifies the index of the active view

Views represents the ViewCollection object representing the

collection of views

Methods

GetActiveView returns the active view as a View object

SetActiveView sets the active view to the View received as parameter

Events

ActiveViewChanged fires when the active view of the MultiView changes

Panel

Properties

BackImageURL the URL of the background image to use within the Panel

Build Your Own ASP.NET 4 Website Using C# & VB736

DefaultButton specifies the ID of a button contained within the Panel

that is the default button that’s clicked should the user

press the Enter key while the Panel has focus

HorizontalAlign sets the horizontal alignment of the Panel; possible values

are Center, Justify, Left, NotSet, and Right

Wrap wraps the contents within the Panel when True; default

value is True

Visible controls the visibility of the Panel

PlaceHolder

Properties

Visible controls the visibility of the PlaceHolder

RadioButton

Properties

AutoPostBack automatically posts the form containing the RadioButton

whenever checked or unchecked is True

Checked shows the RadioButton as checked if set to True

GroupName determines the name of the group to which the

RadioButton belongs

Text specifies the text displayed next to the RadioButton

TextAlign determines how the text associated with the RadioButton

is aligned; possible values are Left and Right

Events

CheckedChanged raised when the RadioButton is checked or unchecked

737Appendix A: Web Control Reference

RadioButtonList

Properties

AutoPostBack automatically posts the form containing the

RadioButtonList whenever checked or unchecked is

True

DataMember represents the particular table within the data source

DataSource represents the actual data source to use when binding to

a RadioButtonList

DataTextField represents the field within the data source to use with the

RadioButtonList’s text label

DataTextFormatString specifies a format string that determines how the

RadioButtonList is displayed

DataValueField represents the field within the data source to use with the

RadioButtonList’s value

RepeatColumns the collection of items within the RadioButtonList

Items determines the number of columns to use when displaying

the radio buttons

RepeatDirection indicates the direction in which the radio buttons should

repeat; possible values are Horizontal and Vertical

RepeatLayout determines how the radio buttons should repeat; possible

values are Horizontal and Vertical

SelectedIndex represents the index selected within the RadioButtonList

SelectedItem represents the item selected within the RadioButtonList

SelectedItem represents the item selected within the RadioButtonList

Build Your Own ASP.NET 4 Website Using C# & VB738

TextAlign determines how the text associated with the

RadioButtonList is aligned; possible values are Left and

Right

Events

SelectedIndexChanged raised when a radio button within the RadioButtonList

is selected

TextBox

Properties

AutoPostBack automatically posts the form containing the TextBox

whenever a change is made to the contents of the TextBox

Columns sets the horizontal size of the TextBox in characters

MaxLength sets the maximum number of characters that may be

entered

Rows sets the vertical size of the multiline TextBox

Text specifies the text displayed by the TextBox

TextMode determines whether the TextBox should render as

SingleLine, Password, or MultiLine

Visible controls the visibility of the TextBox

Wrap determines how a multiline TextBoxwraps; if set to True,

word wrapping is enabled

Events

TextChanged raised when the contents of the TextBox have changed

739Appendix A: Web Control Reference

Wizard

Properties

ActiveStep

represents the step that is currently displayed to the user

ActiveStepIndex

specifies the index of the current step

CancelButtonImageUrl

specifies the URL of the image displayed for the Cancel button

CancelButtonStyle

represents the style properties of the Cancel button

CancelButtonText

specifies the text for the Cancel button

CancelButtonType

specifies the type of button that’s displayed as the Cancel button; possible values

are Button, Image, or Link

CancelDestinationPageUrl

specifies the URL that the user is directed to when he or she clicks the Cancel

button

CellPadding

specifies the amount of cell padding

CellSpacing

specifies the amount of cell spacing

DisplayCancelButton

enables or disables the display of a Cancel button

DisplaySideBar

enables or disables the display of the sidebar area

FinishCompleteButtonImageUrl

specifies the URL of the image displayed for the Finish button

Build Your Own ASP.NET 4 Website Using C# & VB740

FinishCompleteButtonStyle

represents the style properties of the Finish button

FinishCompleteButtonText

specifies the text for the Finish button

FinishCompleteButtonType

specifies the type of button that’s displayed as the Finish button; possible values

are Button, Image, or Link

FinishDestinationPageUrl

specifies the URL that the user is directed to when he or she clicks the Finish

button

FinishNavigationTemplate

specifies the template used to display the navigation area on the Finish step

FinishPreviousButtonImageUrl

specifies the URL of the image displayed for the Previous button on the Finish

step

FinishPreviousButtonStyle

represents the style properties of the Previous button on the Finish step

FinishPreviousButtonText

specifies the text for the Previous button on the Finish step

FinishPreviousButtonType

specifies the type of button that’s displayed as the Previous button on the Finish

step; possible values are Button, Image, or Link

HeaderStyle

represents the style properties of the header area

HeaderTemplate

specifies the template that’s used to display the header area

HeaderText

specifies the text caption that’s displayed for the header area

741Appendix A: Web Control Reference

NavigationButtonStyle

represents the style properties for the buttons in the navigation area

NavigationStyle

represents the style properties for the navigation area

SideBarButtonStyle

represents the style properties for the buttons on the sidebar

SideBarStyle

represents the style properties for the sidebar area

SideBarTemplate

specifies the template that’s used to display the sidebar area

SkipLinkText

specifies alternative text that notifies screen readers to skip the content in the

sidebar

StartNavigationTemplate

specifies the template that’s used to display the navigation area on the Start step

StartNextButtonImageUrl

specifies the URL of the image displayed for the Next button on the Start step

StartNextButtonStyle

represents the style properties of the Next button on the Start step

StartNextButtonText

specifies the text for the Next button on the Start step

StartNextButtonType

specifies the type of button that’s displayed as the Next button on the Start step;

possible values are Button, Image, or Link

StepNavigationTemplate

specifies the template that’s used to display the navigation area on any step

other than the Start, Finish, or Complete step

StepNextButtonImageUrl

specifies the URL of the image displayed for the Next button

Build Your Own ASP.NET 4 Website Using C# & VB742

StepNextButtonStyle

represents the style properties of the Next button

StepNextButtonText

specifies the text for the Next button

StepNextButtonType

specifies the type of button that’s displayed as the Next button; possible values

are Button, Image, or Link

StepPreviousButtonImageUrl

specifies the URL of the image displayed for the Previous button

StepPreviousButtonStyle

represents the style properties of the Previous button

StepPreviousButtonText

specifies the text for the Previous button

StepPreviousButtonType

specifies the type of button that’s displayed as the Previous button; possible

values are Button, Image, or Link

StepStyle

represents the style properties of the steps that are defined for the Wizard

WizardSteps

represents the steps that are defined for the Wizard control as a collection of

WizardStepBase objects

Methods

GetHistory returns all the steps that have already been accessed as a

collection of WizardStepBase objects

GetStepType returns the WizardStepType value for the specified

WizardStepBase object

MoveTo sets the ActiveStep property of the Wizard control to the

specified WizardStepBase-derived object

743Appendix A: Web Control Reference

Events

ActiveStepChanged raised when the user switches to a new step

CancelButtonClick raised when the Cancel button is clicked

FinishButtonClick raised when the Finish button is clicked

NextButtonClick raised when the Next button is clicked

PreviousButtonClick raised when the Previous button is clicked

SideBarButtonClick raised when a button in the sidebar is clicked

Xml

Properties

Document specifies the System.Xml.XmlDocument object to display

DocumentContent specifies a string representing the XML document to dis-

play

DocumentSource specifies the URL of a document to display

Transform specifies the System.Xml.Xsl.XslTransform object used

to format the XML document

TransformArgumentList specifies the XsltArgumentList used to format the XML

document

TransformSource specifies the URL of an XSLT stylesheet used to format

the XML document

Validation Controls
The following reference includes a list of important properties, methods, and events

for each of the validation controls. These controls ultimately derive from the

WebControl class, meaning that they, like the web controls themselves, inherit its

properties and methods. The more useful of these properties and methods are listed

at the start of this appendix.

Build Your Own ASP.NET 4 Website Using C# & VB744

CompareValidator

Properties

ControlToCompare specifies the ID of the control to use for comparing values

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation control

will be displayed; possible values are Static, Dynamic,

and None; default is Static

EnableClientScript enables or disables client-side validation; by default, is

set to Enabled

Enabled enables or disables client and server-side validation; the

default is Enabled

ErrorMessage specifies the error message that will be displayed to the

user in any associated validation summary control; if no

value is set for the Text property, this message also ap-

pears in the control itself

IsValid has the value True when the validation check succeeds,

and False otherwise

Operator specifies the operator to use when performing comparis-

ons; possible values are Equal, NotEqual, GreaterThan,

GreaterThanEqual, LessThan, LessThanEqual, Data-

TypeCheck

Text sets the error message displayed by the control when

validation fails

Type specifies the data type to use when comparing values;

possible values are Currency, Date, Double, Integer, and

String

ValueToCompare specifies the value used when performing the comparison

745Appendix A: Web Control Reference

Methods

Validate performs validation and modifies the IsValid property

CustomValidator

ClientValidationFunction

specifies the name of the client-side function to use for validation

ControlToValidate

specifies the ID of the control that you want to validate

Display

shows how the error message within the validation control will be displayed;

possible values are Static, Dynamic, and None; default is Static

EnableClientScript

enables or disables client-side validation; by default, is set as Enabled

Enabled

enables or disables client and server-side validation; by default, is set as Enabled

ErrorMessage

specifies the error message that will be displayed to the user

IsValid

has the value True when the validation check succeeds, and False otherwise

Text

sets the error message displayed by the control when validation fails

Methods

Validate performs validation and modifies the IsValid property

Events

ServerValidate the function for performing server-side validation

Build Your Own ASP.NET 4 Website Using C# & VB746

RangeValidator

Properties

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation control

will be displayed; possible values are Static, Dynamic,

and None; default is Static

EnableClientScript enables or disables client-side validation; set as Enabled

by default

Enabled enables or disables client and server-side validation; set

as Enabled by default

ErrorMessage specifies the error message that will be displayed to the

user in any associated validation summary control; if no

value is set for the Text property, this message also ap-

pears in the control itself

IsValid has the value True when the validation check succeeds,

and False otherwise

MaximumValue sets the maximum value in the range of permissible values

MinimumValue sets the minimum value in the range of permissible values

Text sets the error message displayed by the control when

validation fails

Type specifies the data type to use when comparing values;

possible values are Currency, Date, Double, Integer, and

String

Methods

Validate performs validation and modifies the IsValid property

747Appendix A: Web Control Reference

RegularExpressionValidator

Properties

ControlToValidate specifies the ID of the control that you want to validate

Display shows how the error message within the validation control

will be displayed; possible values are Static, Dynamic,

and None; default is Static

EnableClientScript enables or disables client-side validation; set as Enabled

by default

Enabled enables or disables client and server-side validation; by

default, is set as Enabled

ErrorMessage specifies the error message that will be displayed to the

user

InitialValue specifies the initial value by the ControlToValidate

property

IsValid has the value True when the validation check succeeds,

and False otherwise

Text sets the error message displayed by the control

ValidateExpression specifies the regular expression to use when performing

validation

Methods

Validate performs validation and modifies the IsValid property

RequiredFieldValidator

Properties

ControlToValidate specifies the ID of the control that you want to validate

Build Your Own ASP.NET 4 Website Using C# & VB748

Display shows how the error message within the validation control

will be displayed; possible values are Static, Dynamic,

and None; default is Static

EnableClientScript enables or disables client-side validation; set as Enabled

by default

Enabled enables or disables client and server-side validation; by

default, it is enabled

ErrorMessage specifies the error message that will be displayed to the

user in any associated validation summary control; if no

value is set for the Text property, this message also ap-

pears in the control itself

InitialValue specifies the initial value by the ControlToValidate

property

IsValid has the value True when the validation check succeeds,

and False otherwise

Text sets the error message displayed by the control when

validation fails

Methods

Validate performs validation and modifies the IsValid property

ValidationSummary

Properties

DisplayMode sets the formatting for the error messages that are dis-

played within the page; possible values are BulletList,

List, and SingleParagraph; these messages are the

ErrorMessage properties of all validation controls for

which validation has failed

EnableClientScript enables or disables client-side validation; by default, is

set as Enabled

749Appendix A: Web Control Reference

Enabled enables or disables client and server-side validation; by

default, is set as Enabled

HeaderText sets the text that is displayed to the user at the top of the

summary

ShowMessageBox when the value is set to True, an alert box listing form

fields that caused errors is presented to the user

ShowSummary enables or disables the summary of error messages

Navigation Web Controls
SiteMapPath

Properties

CurrentNodeStyle the style used to display the current node

CurrentNodeTemplate the template used to display the current node

NodeStyle the style used to display SiteMapPath nodes

NodeTemplate the template used to display nodes

ParentLevelsDisplayed the maximum number of parent nodes to display

PathDirection specifies the path direction display; possible values are

PathDirection.CurrentToRoot and

PathDirection.RootToCurrent

PathSeparator the string used to separate path nodes

PathSeparatorStyle the styles used to display the path separator

PathSeparatorTemplate the template used to display the separator

Provider the SiteMapProvider object associated with the

SiteMapPath; the default site map provider is

XmlSiteMapProvider, which reads its data from the

Web.sitemap file

Build Your Own ASP.NET 4 Website Using C# & VB750

RenderCurrentNodeAsLink when set to True, the current site map will be displayed

as a link; default value is False

RootNodeStyle the style used to display the root node

RootNodeTemplate the template used to display the root node

ShowToolTips specifies whether the node links should display tooltips

when the cursor hovers over them

SiteMapProvider a string representing the name of the SiteMapProvider

object associated with the SiteMapPath

SkipLinkText a string that describes a link to allow screen reader users

to skip the control’s content

Methods

DataBind binds the SiteMapPath to its data source

Events

ItemCreated fires when a new SiteMapNodeItem object is created

ItemDataBound fires after a node item has been bound to the data source

Menu

Properties

Controls

returns a ControlColection object containing the menu’s child controls

DisappearAfter

an integer representing how long, in milliseconds, a dynamic menu continues

to display after the cursor ceases to hover over it; the default is 500; when

DisappearAfter is set to -1, the menu won’t disappear automatically

751Appendix A: Web Control Reference

DynamicBottomSeparatorImageUrl

a string representing the URL of an image to be displayed at the bottom of a

dynamic menu item; this is usually a line that separates the dynamic item from

the other items; value is empty (an empty string) by default

DynamicEnableDefaultPopOutImage

a Boolean value representing whether a dynamic menu that contains a submenu

should be enhanced with the image specified by DynamicPopOutImageUrl; default

value is True

DynamicHorizontalOffset

an integer representing the number of pixels by which a dynamic menu should

be shifted horizontally relative to the parent menu item

DynamicHoverStyle

a MenuItemStyle object that allows you to control the appearance of a dynamic

menu item when the cursor hovers over it

DynamicItemFormatString

a string used to set the text to be displayed for dynamic menu items on mobile

devices that don’t support templates

DynamicItemTemplate

the template to be used to render dynamic menu items

DynamicMenuItemStyle

the MenuItemStyle object that represents the styles used to render dynamic

menu items

DynamicMenuStyle

the SubMenuStyle object that represents the styles used for rendering the dynamic

menu

DynamicPopOutImageTextFormatString

a string representing the alternate text to be displayed instead of the image

specified by DynamicPopOutImageUrl

DynamicPopOutImageUrl

a string representing the URL for the image to be displayed for a dynamic menu

item that has a submenu when DynamicEnableDefaultPopOutImage is True

Build Your Own ASP.NET 4 Website Using C# & VB752

DynamicSelectedStyle

a MenuItemStyle object representing the style of a selected dynamic menu item

DynamicTopSeparatorImageUrl

a string representing the URL for an image to be displayed at the top of a dynamic

menu item; this is usually a line that separates the dynamic item from the other

items; the value is empty (an empty string) by default

DynamicVerticalOffset

an integer representing the number of pixels by which a dynamic menu should

be shifted vertically relative to the parent menu item

Items

a MenuItemCollection that contains MenuItem objects, representing all the menu

items

ItemWrap

a Boolean value representing whether the menu items’ text should wrap

LevelMenuItemStyles

a MenuItemStyleCollection representing a collection of MenuItemStyle objects

that define the styles to be applied to menu items, depending on their levels in

the menu (the first object in the collection defines the style for the first menu

level, the second object in the collection defines the style for the second menu

level, and so on)

LevelSelectedStyles

similar to LevelMenuItemStyles, but applies to selected menu items

LevelSubMenuStyles

similar to LevelMenuItemStyles, but applies to submenu items

MaximumDynamicDisplayLevels

specifies the maximum number of dynamic menu levels to display; the default

value is 3

Orientation

specifies the direction in which to display the menu items; can be set either to

Orientation.Horizontal or Orientation.Vertical

753Appendix A: Web Control Reference

PathSeparator

a Char value representing the character used to delimit the path of a menu item

ScrollDownImageUrl

a string representing the URL for an image to be displayed in a dynamic menu

to indicate that the user can scroll down to see more menu items

ScrollDownText

alternate text for the image defined by ScrollDownImageUrl

ScrollUpImageUrl

a string representing the URL for an image to be displayed in a dynamic menu

to indicate that the user can scroll up to see more menu items

ScrollUpText

alternate text for the image defined by ScrollUpImageUrl

SelectedItem

a MenuItem object representing the selected menu item

SelectedValue

a string representing the text of the selected menu item

SkipLinkText

a string representing alternate text to be used by screen readers to allow screen

reader users to skip the list of links

StaticBottomSeparatorImageUrl

a string representing the URL for an image to be displayed at the bottom of a

static menu item—usually a line that separates the static item from the other

items; value is empty (an empty string), by default

StaticDisplayLevels

an integer representing the maximum number of levels to display for a static

menu; default is 1

StaticEnableDefaultPopOutImage

a Boolean value representing whether a static menu that contains a submenu

should be enhanced with the image specified by StaticPopOutImageUrl; default

is True

Build Your Own ASP.NET 4 Website Using C# & VB754

StaticHoverStyle

a MenuItemStyle object that allows you to control the appearance of a static

menu item when the cursor is hovered over it

StaticItemFormatString

a string used to set the text for static menu items displayed on mobile devices

that don’t support templates

StaticItemTemplate

the template to be used to render static menu items

StaticMenuItemStyle

the MenuItemStyle object that represents the styles used to render static menu

items

StaticMenuStyle

the SubMenuStyle object that represents the styles used to render the static menu

StaticPopOutImageTextFormatString

a string representing the alternative text to be displayed instead of the image

specified by StaticPopOutImageUrl

StaticPopOutImageUrl

a string representing the URL for the image to be displayed for a dynamic menu

item that has a submenu, when StaticEnableDefaultPopOutImage is True

StaticSelectedStyle

a MenuItemStyle object representing the style of a selected static menu item

StaticSubMenuIndent

a Unit value representing the number of pixels by which submenus should be

indented in a static menu

StaticTopSeparatorImageUrl

a string representing the URL for an image to be displayed at the top of a static

menu item; this is usually a line that separates the static item from the other

items; value is empty (an empty string) by default

755Appendix A: Web Control Reference

Target

specifies the target window or frame in which content associated with a menu

item should be displayed when the item is clicked; possible values are _blank,

_parent, _search, _self, and _top

Methods

DataBind binds the menu to its data source

FindItem returns the MenuItem located at the path specified by the

valuePath string parameter; that path must also contain

the path separator, which is retrieved through the

PathSeparator property

Events

MenuItemClick fires when a menu item is clicked

MenuItemDataBound fires when a menu item is bound to its data source

TreeView

Properties

AutoGenerateDataBindings

a Boolean value specifying whether the TreeView should automatically generate

tree node bindings; default is True

CheckedNodes

a collection of TreeNode objects representing the checked TreeView nodes

CollapseImageToolTip

the tooltip for the image displayed for the “collapse” node indicator

CollapseImageUrl

a string representing the URL for a custom image to be used as the “collapse”

node indicator

Build Your Own ASP.NET 4 Website Using C# & VB756

EnableClientScript

a Boolean value that specifies whether or not the TreeView should generate

client-side JavaScript that expands or collapses nodes; True by default; when

the value is False, a server postback needs to be performed every time the user

expands or collapses a node

ExpandDepth

an integer representing the number of TreeView levels that are expanded when

the control is displayed for the first time; default is -1, which displays all the

nodes

ExpandImageToolTip

the tooltip for the image displayed for the “expand” node indicator

ExpandImageUrl

a string representing the URL for a custom image to be used as the “expand”

node indicator

HoverNodeStyle

a TreeNodeStyle object used to define the styles of a node when the cursor is

hovered over it

ImageSet

a TreeViewImageSet value representing the set of images to be used when dis-

playing TreeView nodes; default values are Arrows, BulletedList, Bulleted-

List2, BulletedList3, BulletedList4, Contacts, Custom, Events, Faq, Inbox,

News, Simple, Simple2, Msdn, WindowsHelp, and XPFileExplorer; when not

using one of these predefined sets, you should define these properties instead:

CollapseImageUrl, ExpandImageUrl, LineImagesFolder, and NoExpandImageUrl

LeafNodeStyle

a TreeNodeStyle representing the style used to render leaf nodes

LevelStyles

a TreeNodeStyleCollection that contains the styles used to render the items

in each TreeView level

757Appendix A: Web Control Reference

LineImagesFolder

a string containing the path to a web-accessible folder that holds the image files

used to connect child nodes to parent nodes; that folder must include these

files: Dash.gif, Dashminus.gif, Dashplus.gif, I.gif, L.gif, Lminus.gif, Lplus.gif, Minus.gif,

Noexpand.gif, Plus.gif, R.gif, Rminus.gif, Rplus.gif, T.gif, Tminus.gif, and Tplus.gif

MaxDataBindDepth

defines the maximum number of tree levels to bind to the TreeView control

NodeIndent

an integer representing the number of pixels by which child nodes in the tree

will be indented

Nodes

a TreeNodeCollection containing the root nodes of the tree

NodeStyle

the TreeNodeStyle object that defines the default appearance of all tree nodes

NodeWrap

a Boolean value indicating whether the text in a node wraps

NoExpandImageUrl

a string representing the URL for a custom image that indicates nodes that cannot

be expanded

ParentNodeStyle

the TreeNodeStyle object that defines the appearance of parent nodes

PathSeparator

the character used to delimit node values in the ValuePath property

PopulateNodesFromClient

a Boolean value that specifies whether or not node data should be populated

dynamically when necessary, without posting back to the server; default value

is True

RootNodeStyle

a TreeNodeStyle object that defines the appearance of the root node

Build Your Own ASP.NET 4 Website Using C# & VB758

SelectedNode

a string containing the value of the selected node

SelectedNodeStyle

a TreeNodeStyle object that defines the appearance of the selected node

ShowCheckBoxes

a TreeNodeTypes value that defines which tree nodes should be associated with

text boxes; possible values are All, Leaf, None, Parent, and Root

ShowExpandCollapse

a Boolean value that determines whether or not expansion node indicators

should be displayed

ShowLines

a Boolean value that determines whether or not linking lines between parent

nodes and child nodes should be displayed

SkipLinkText

a string that describes the link that allows screen reader users to skip the content

of this element

Target

specifies the target window or frame in which content associated with a menu

item should be displayed when that item is clicked; possible values are _blank,

_parent, _search, _self, and _top

Methods

CollapseAll collapses all nodes

DataBind binds the control to its data source

ExpandAll expands all nodes

FindNode returns the TreeNode object located at the path specified

by the string parameter

Events

SelectedNodeChanged fires when the currently selected item changes

759Appendix A: Web Control Reference

TreeNodeCheckChanged fires when a checkbox changes state

TreeNodeCollapsed fires when a node is collapsed

TreeNodeExpanded fires when a node is expanded

TreeNodePopulate fires when a node that has its PopulateOnDemand property

set to True is expanded

Ajax Web Extensions
ScriptManager

Properties

AllowCustomErrorsRedirect

specifies whether or not the custom errors section of the Web.config file is used

in the case of an error occurring during an asynchronous postback request

AsyncPostBackErrorMessage

specifies the error message that’s sent to the client browser when an unhandled

error occurs during an asynchronous postback request

AsyncPostBackSourceElementID

specifies the ID of the control that initiated the asynchronous postback request

AsyncPostBackTimeout

specifies the time-out period in seconds for asynchronous postback requests

EnablePartialRendering

if set to True, allows the use of UpdatePanel controls to implement partial page

updates

LoadScriptsBeforeUI

specifies if scripts are loaded before or after the page markup is loaded

ScriptPath

sets the root path of the location of ASP.NET AJAX or custom script files

Build Your Own ASP.NET 4 Website Using C# & VB760

Events

AsyncPostBackError raised when an error occurs during an asynchronous

postback request

Timer

Properties

Enabled specifies if the Timer is active

Interval specifies the length of the delay in milliseconds before a

postback request will be initiated

UpdatePanel

Properties

ChildrenAsTriggers

specifies whether immediate child controls of the UpdatePanel can trigger an

update of the panel

ContentTemplate

the template that defines the content of the panel

ContentTemplateContainer

a control object to which you can add child controls

Controls

a ControlCollection object containing the child controls for the UpdatePanel

IsInPartialRendering

indicates the UpdatePanel is currently being updated by an asynchronous

postback request

RenderMode

specifies whether the UpdatePanel will be rendered as an HTML div (if set to

Block) or span (if set to Inline) element

761Appendix A: Web Control Reference

Triggers

an UpdatePanelTriggerCollection object containing all the registered triggers

for the UpdatePanel

UpdateMode

specifies when the contents of the UpdatePanel are updated; possible values

are Always or Conditional

Methods

Update causes an update of the contents of the UpdatePanel

UpdateProgress

Properties

AssociatedUpdatePanelID

specifies the ID of the associated UpdatePanel

DisplayAfter

specifies the amount of time in milliseconds before the UpdateProgress control

is displayed

DynamicLayout

specifies if the control is rendered dynamically

ProgressTemplate

the template that defines the content of the UpdateProgress control

Build Your Own ASP.NET 4 Website Using C# & VB762

Appendix B: Deploying ASP.NET Websites
One of the trickier parts of working with ASP.NET is deploying your application.

First, unlike many traditional scripting languages such as PHP or classic ASP,

ASP.NET is compiled. Second, SQL Server databases are not as easily transportable

as other database like MySQL, for example, which many developers grew up with.

Third, the complex nature of the framework may lead to many cases where things

that work in development on your local machine fail on your remote web server,

where you don’t have nearly as many tools available to debug the issues.

But don’t be intimidated—it’s still possible to deploy ASP.NET applications quite

easily using Visual Web Developer Express and the SQL Server Hosting Toolkit.

ASP.NET Hosting Considerations
Before worrying about how to deploy our applications, we should find a web host.

Feel free to skip this section if you already have a host that you’re satisfied with; if

not, read on for some handy tips on how to choose a host. Given the bewildering

array of ASP.NET hosting options available these days, you might find it helpful to

remember these key points while you shop:

■ You are first and foremost choosing a service provider. If you can’t get quick

answers to sales questions, don’t delude yourself that the service department

will be any better—it won’t. Trust us, you will need to use the service department

at some point.

■ Making the decision solely on the basis of price is pure folly. Yes, you could

save $2 a month or so with the cheapest options, but you generally get what you

pay for in this world. Web hosting is a very low-margin business these days, and

bargain-basement hosting is almost a no-margin business. Remember, your

hosting fees are not dead money; they’re paying for the equipment your site is

running on, as well as the engineers looking after that equipment.

■ Choose a service that has an upgrade path of some sort. It should offer semi-

dedicated hosting, virtual private servers and/or dedicated boxes, along with

run-of-the-mill shared hosting.

■ Make sure the host supports the version of the framework you’re using in devel-

opment. You may be surprised that at the time of writing, there are still some

less reputable hosts that don’t support ASP.NET 4 or even ASP.NET AJAX on

.NET 2.0, both of which have long been released to manufacturing with Mi-

crosoft’s full support. In addition, make certain the host provides the sort of

database server you wish to use in your project.

■ Peruse the host’s online troubleshooting documentation. Be wary if you can’t

find any documentation at all; but, if it exists, walk through some typical scen-

arios—such as deploying a database—to see if there’s any guidance, and if such

guidance is clear and intelligible. Good documentation general indicates a well-

run operation with the resources to create such documentation, rather than a

fly-by-night shop with limited resources.

■ If at all possible, choose a Windows Server 2008-based host. Windows Server

2008 has a new version of IIS with many features that are designed to make

working with a remotely hosted ASP.NET website much, much easier. The early

adoption of new technology by a host usually indicates that it’s better funded,

and has access to a larger skill base than the guys milking yet another year out

of old equipment and operating systems.

■ Definitely visit online communities to ask any questions before you reach for

the plastic, such as the hosting section of SitePoint forums.1

Using Visual Web Developer Express
to Deploy ASP.NET Websites
The principal tool that Visual Web Developer Express offers to help you deploy

your website is the Copy Website feature. It can be found through the Solution Explorer

(it’s the second button from the left) or via the Website menu’s Copy Website… item.

The deployment tools also support the deployment of the file system, a local IIS

instance, a remote IIS instance using Front Page Server extensions, and/or a remote

server via FTP. You’ll probably use the FTP option to deploy your site, but we’re

going to use the local file system functionality in our example. This isn’t to say that

1 http://www.sitepoint.com/forums/forumdisplay.php?f=95

Build Your Own ASP.NET 4 Website Using C# & VB764

http://www.sitepoint.com/forums/forumdisplay.php?f=95

you can’t use your favorite FTP client to push your files to your site, but Visual Web

Developer Express’s tool has a few advantages that we’ll explore.

The time has come! Fire up Visual Web Developer Express, open your Dorknozzle

project, and let’s get started:

1. Click on the Website menu and select Copy Website… to open the website copy

tool.

2. Click on the Connect button and leave File System selected. It’s here that, when

transferring your website to a remote host, you’d choose FTP and configure the

connection using the credentials provided by your host or your network admin-

istrator. For now, we’ll practice the process using the local file system.

3. Select a folder to deploy to. Since we’re just practicing, and we’ll remove it

later, let’s create a temporary folder for the time being. Type C:\DorknozzleTemp

into the Folder field and click Open. Click Yes when prompted, to create the

folder. Your screen should now look like Figure B.1.

Figure B.1. Opening the remote website

765Appendix B: Deploying ASP.NET Websites

4. Select all the files in your Source Web site panel and click on the double arrow

button to synchronize all selected files. There should now be an identical list

in both panes of the display.

Congratulations—you’ve just deployed the site with Visual Web Developer Express!

If you know anything about websites, you’ll realize that changes and updates occur

often and the challenge is keeping the live website synchronized and up to date.

This is exactly where the Copy Website tool shines. Let’s update the home page to

see this in action. Open Default.aspx, and add a line of text like the one shown in

bold here:

<h1>Company News</h1>
<p>We'll add some news later.</p>
<p>We added some news.</p>
<h1>Company Events</h1>
<p>We'll add company events later.</p>

Save the file and open the Copy Website tool again. Note that there is now a blue

arrow next to the Default.aspx file icon and the status is now listed as Changed. Select

everything, as we did earlier, and click the double-arrow button again. Since we’re

working locally, the action will be a little too quick for us to catch, but if we click

the View Log… button, we should see that, even though we had all the files selected,

only the Default.aspx has been updated:

Synchronize between 'C:\Dorknozzle\VB' and 'C:\DorknozzleTemp'
 started at date and time.

 Copy file Default.aspx from source to remote Web site.

Synchronize between 'C:\Dorknozzle\VB' and 'C:\DorknozzleTemp'
 is finished. Completed at date and time.

Don’t forget that synchronization is a two-way street. A changed file on the remote

site will be copied to the local site. The Copy Website tool will indicate when files

on the remote site have been updated in the same way that it indicates local updates.

Now that we’re done, feel free to delete the C:\DorknozzleTemp folder at your leisure.

Do take care when using this tool—it can easily lead to accidental file overwrites

if you’re not careful. For example, your Web.config file is likely to be different in

Build Your Own ASP.NET 4 Website Using C# & VB766

production than it is in your development setting and you don’t want one overwriting

the other. There isn’t an Undo button, so be certain before you synchronize.

Deploying MVC Sites and Web Applications
One of the main differences between websites and web applications is how they are

deployed. Websites will deploy all the code files, including the source code, to your

hosting server. The first browser request for a page on your site will cause IIS to

compile your .cs or .vb files. Subsequent requests don’t have this compilation step

unless your code files have changed. If you need to make a change on the server,

you can do so quite quickly. You do not have an App_Code folder as part of Web

Applications, as your project is compiled into a single DLL for deployment, along

with only your designer .aspx files. There are many minor differences between the

two project types, but our Dorknozzle MVC site was built as an application, to take

advantage of our model, view, and controller design pattern. When you built the

DorknozzleMVC project, you will have noticed that a single DLL was created.

One of the newer features of Visual Web Developer 2010 is the ability to publish

these web applications automatically to the server or to a file system. This is very

similar to the Copy Web Site feature we talked about above, but this will include

the step for compiling your site into the DLL and copying the views only. To do

this for our DorknozzleMVC project, we simply right-click on the project and select

Publish. You will see a similar screen such as the one in Figure B.2

767Appendix B: Deploying ASP.NET Websites

Figure B.2. Publishing profile

The publish feature can configure IIS on your host if it supports one-click deploy-

ments. Not all hosting providers allow for this, so click on the link provided on the

Build Your Own ASP.NET 4 Website Using C# & VB768

Publish screen to see a list of Microsoft-endorsed providers with this feature. If your

host is without this feature, you can select to have the site deployed via file system

or FTP as in the Copy Web Site feature by changing the Publish method on the

same screen.

After publishing, your Build Window will contain notification that the

DorknozzleMVC.dll file was compiled. The Publish system will also deploy the asset

files, such as JavaScript files, CSS stylesheets, and images that have been included

with your project. Figure B.3 shows the resulting output after publishing to the file

system for our DorknozzleMVC project.

Figure B.3. Output after publishing to the file system

ASP.NET Deployment “Gotchas”
Deploying ASP.NET sites can be frustrating at times. Here are a few gotchas that

could save you some time, some hair, your liver, or all three:

1. If you have disabled custom errors, it can be annoying receiving the following

error message: An application error occurred on the server. The current

custom error settings for this application prevent the details of

the application error from being viewed remotely (for security reas-

ons). It could, however, be viewed by browsers running on the local

server machine. It usually indicates that the website you’re using is configured

769Appendix B: Deploying ASP.NET Websites

to use a version of ASP.NET that’s different from the one your Web.config file

wants. Be sure to double-check that with your host.

2. Most shared hosts run at a security level of Medium trust. You’ll probably figure

this out when you try to either access a file outside of the web root or access a

remote URL and get the dreaded System.Security.SecurityException. The

best solution is to run your application locally at the same security level, so that

you can discover any issues ahead of time. To do so, add the following line to

the system.web section of your Web.config:

<trust level="Medium" originUrl="" />

3. This issue isn’t especially ASP.NET-specific, but it’s worth remembering that

you should never do anything in production without having a backup of the

website’s previous state in case something goes wrong when you push it to pro-

duction. The previous working state of the website is often better than a non-

functional website.

4. Hard-coded file paths will come back to bite you. Remember to resolve all paths

using Server.MapPath (we used this method in the section called “Writing

Content to a Text File” in Chapter 14), or handle the issue with configuration

values. To assume that your site will always run in C:\MyApplication is not a wise

approach.

5. Be certain that your host supports the features you wish to use. A good example

would be ASP.NET AJAX support on ASP.NET 4.0, which some hosts are yet to

install, even though it’s been a production release for some time.

This is not a complete list of everything that can go wrong. It’s probably worthwhile

to look at the Microsoft recommended hosting providers conviently linked from

within Visual Web Developer, or at Microsoft.com/web/hosting/. But remember: if

you run into an insurmountable issue, contact your host or the server administrators.

They’re there to help you—in theory, at least!

Using the SQL Server Hosting Toolkit
As we saw above, deploying the website is fun and easy—it simply involves copying

some files. By contrast, getting your database going can be very difficult if you’re

Build Your Own ASP.NET 4 Website Using C# & VB770

Microsoft.com/web/hosting/

not careful. In this book, we’ve been using SQL Server Express, which has one very

easy deployment option—user database instances in which the database file itself

is included and deployed with the project. Unfortunately, many hosts don’t support

this feature, preferring to push users to a dedicated SQL Server instance, which

renders this easy deployment and management option useless.

That said, SQL Server databases are notoriously hard to transfer if you don’t have

direct access to the server, which is even harder to obtain! Rather, you need a tool

that can generate an SQL script that can be executed either from SQL Management

Studio, or via an ASP.NET web page if you can’t access even the database server

directly. Your first approach might be to use the Generate Scripts functionality in

SQL Server Management Studio Express, which works to some extent. It does a fine

job of generating the scripts you’ll use to create your database objects—the tables

and stored procedures we made in this book. But it doesn’t know what to do with

your data, which is often a key feature in a database-driven web application.

Conveniently, Microsoft has created a very handy tool that’s designed to help non-

database administrators deploy SQL Server Databases: the SQL Server Hosting

Toolkit. The software can be found on the Microsoft CodePlex website at

http://sqlhost.codeplex.com/. Click on the Database Publishing Wizard link to grab

the current release. Once you’ve downloaded the file, close all running Visual Web

Developer Express instances and install the product with the default options.

Running the wizard is a piece of cake. Find Microsoft SQL Server Database Publishing

Wizard in your Start menu, and then run the Database Publishing Wizard:

1. Click Next to get past the introductory page.

2. Specify localhost\SqlExpress in the Server field and leave Use Windows Authen-

tication selected.

3. Select the Dorknozzle database, leave the Script all objects in the selected database

box checked, and click Next.

4. Choose the Script to file option and select a handy location for the generated SQL

file. Click Next to continue.

5. The Select Publishing Options page is a bit more interesting than the last few. Ex-

amine the options, but make sure you leave them set to the defaults before you

771Appendix B: Deploying ASP.NET Websites

http://sqlhost.codeplex.com/

click Next. Be especially careful about the first option. If you’re making an update

to your database, you probably don’t want to generate DROP statements, unless

you actually want to delete your data.

6. Click Finish and let the tool create your SQL script.

Now browse to the location you chose in step 4 and open the script file with SQL

Server Management Studio Express. You’ll notice this is a rather obtuse mess of

SQL code, but you should see a number of INSERT statements among the other SQL

statements. In any case, given proper credentials, you’ll be able to connect to your

host’s SQL server and execute this file to deploy your database.

There’s one big potential land mine here: the script we created could include DROP

statements. So, if we were pushing this into an existing database, we could very

easily destroy all the existing data. And if there’s one thing that will cost you dearly

in the software development field, it’s losing people’s data. The rule of thumb is

that before touching the production data, make absolutely certain you have a good

backup of the database. Your host or database administrator should be able to help

you with this problem. In its current version, this tool is better suited to initial de-

ployments than it is to updating your application. Your own hand-crafted SQL ALTER

scripts still rule the day on that front.

For further reading about the Hosting Toolkit, head over to the CodePlex site.2 You’ll

also find a discussion forum3 as well as several good tutorials and demonstrations

that show how to make the best use of this tool to deploy your application in various

scenarios.

Dealing with SQL Security
Another issue that drives many novice developers crazy is dealing with SQL Server

security. We’ve not really had to touch on the subject in this book, as we’ve been

relying on a default feature of SQL Server security, whereby local administrators

are automatically granted full access to all databases and database objects. And,

since we were using Visual Web Developer’s built-in web server and Integrated

Security features, our application was accessing the database in our context with

2 http://www.codeplex.com/
3 http://www.codeplex.com/sqlhost/Thread/List.aspx

Build Your Own ASP.NET 4 Website Using C# & VB772

http://www.codeplex.com/
http://www.codeplex.com/sqlhost/Thread/List.aspx

full privileges. Running your application in the cold, hard world of the Internet will

make things a bit more complex.

Your first resource should be your host or database administrator. They hold the

keys to the bank—specifically, they can tell you which account you should be using

to access your database. We explored the use of SQL Server authentication in the

section called “Setting Up Database Authentication” in Chapter 9. In many cases

with most web hosts, you’ll have a single SQL user account to access the database,

and that account will have database owner privileges to your database. However,

depending on the host, your database account might be a bit more restricted.

To work around this issue, first ensure that the account in question has been created

on the SQL Server and granted a login to your database. From there, you could take

the easy way out by simply adding this account to the db_owners role. But beware—in

this context, users can do just about anything they want to your database should

they find a way to execute arbitrary commands. A better method is to assign only

the required permissions. In most cases, you can achieve this by using a statement

to grant the account privileges on the DBO schema:4

GRANT SELECT, INSERT, UPDATE, DELETE on SCHEMA :: DBO to account

This will allow the SQL user account to run SELECT, INSERT, UPDATE, and DELETE

statements, while granting the account the powers necessary to execute stored

procedures. However, it will not allow users to complete nefarious actions such as

dropping or creating database objects.

4 Note that in many shared hosting environments, your database might not be using the default DBO
schema. If you examine the table names in SQL Server Management Studio Express, the name of the

schema should be visible—your employee table will be called xxx.Employees rather than

dbo.Employees.

773Appendix B: Deploying ASP.NET Websites

Index

Symbols
!!, 68

!=, 68

$, 258

%, 332, 341

&, 68

&&, 68

', 34

(), 62, 258

*, 68, 258, 324, 339

+, 68, 258, 339

++, 73

+=, 73

., 81, 258, 337

.NET Framework, 4–5, 6

/, 68, 339

/*, 34

//, 34

/>, 108

<, 68, 339

<!--, 37

<%--, 37

<%@, 32

<=, 68, 340

<>, 340

=, 68

==, 68, 69

>, 68, 339

>=, 68, 340

?, 258

@, 356, 380

[], 62, 530

\, 368

\\, 368

\d, 258

\s, 258

\S, 258

^, 258

_, 69, 332, 341

{ }, 22, 258

–, 339

A
About.aspx file, 164

ABS function, 342

access

file-level, 605

folder-level, 576, 616, 617, 628–632

restricting (see forms authentication;

memberships)

access modifiers, 83

AccessDataSource control, 508

AccessingData.aspx file, 366

accessors, 140–142

Account folder, 164

ActionLinks, 686–688

ActiveViewIndex property, 133

Add method, 380

addition, 68, 339

Admin Tools link, 606, 607

Administer Website, 608

AdminTools.aspx file, 604

ADO.NET

about, 363–365

building queries, 368–369

connecting to ODBC, 365

connecting to OLE DB, 365

connecting to Oracle, 365

connecting to SQL Server, 365

database authentication, 371–372, 373

DELETE, 428–431

displaying data, 375–376, 377

Entity Framework, 659

error handling, 385–387, 406, 408

ExecuteNonQuery method, 370

ExecuteReader method, 369, 370–371

ExecuteScalar method, 370

executing queries, 369–371

importing the SqlClient namespace,

366

initializing database connection, 367–

368

INSERT, 405–411

selecting with parameters, 377–383

setting database owner, 374

SqlCommand, 365, 368–369

SqlCommandBuilder, 563

SqlConnection, 365, 367–368

SqlDataReader, 365, 375–376

storing procedures, 431–433

UPDATE, 411–428

user authentication, 373–375

ADO.NET Entity Framework, 659

AdRotator control, 124–128

ads.xml file, 126–127

aggregate functions, 348, 351–352

Ajax

about, 702–703

ASP.NET and, 703–704

jQuery and, 720–721

ScriptManager control, 703, 706, 708–

709

ScriptManagerProxy control, 709

triggers, 710–713

UpdatePanel control, 704–706, 709–

713

UpdateProgress control, 707, 708

Ajax Control Toolkit

about, 713–714

creating animations, 719–720

enabling for project, 718–719

ValidatorCalloutExtender, 715–718

AjaxControlToolkit.dll file, 715

alert box, 253, 254

allow tag, 583–584

AllowPaging property, 515, 522

AllowSorting property, 515, 552

ALTER PROCEDURE function, 358

AlternateViews property, 640

AlternatingItemStyle property, 460

AlternatingItemTemplate, 389, 439

and, 68

AND operator, 341

AndAlso, 68

animation, using Ajax Control Toolkit,

719–720

anonymous users, 576

AnonymousTemplate, 610, 611

App_Data folder, 13, 164

AppendText method, 623

Application object, 182, 188

application settings, configuring, 597–

599

application state

about, 182–184

hit counter, 184–191

locking, 189–191

loss of data, 182

application variables, 182, 184

Application_AuthenticateRequest hand-

ler, 180

776

Application_AuthorizeRequest handler,

181

Application_BeginRequest handler, 180

Application_End handler, 180

Application_EndRequest handler, 180

Application_Error handler, 180

Application_PreSendRequestContent

handler, 180

Application_PreSendRequestHeaders

handler, 180

Application_Start handler, 180

appSettings tag, 598

arithmetic functions (T-SQL), 342–343

arrays, 60–63, 68, 75–76, 221–222

as keyword, 183

ASP, vs ASP.NET, 40–41, 192

ASP.NET

about, 2–4

Ajax and (see Ajax)

ASP vs, 40–41, 192

benefits of, 4–5

client-side validation and, 239

controls (see controls)

deployment issues (see deployment)

object oriented programming in, 140

object-oriented programming in, 85–

86

pages (see ASP.NET pages)

required software, 5–11

resources, 25

ASP.NET Atlas (see Ajax)

ASP.NET controls (see controls)

ASP.NET pages

about, 98–99

code declaration blocks, 33–35

code render blocks, 35–36

creating new, 12–15, 31

directives, 32–33, 44–45

HTML in, 39–40

life cycle, 28

opening in browser, 22

server-side comments, 37–39

text in, 39–40

ASP.NET runtime, 28, 227

ASP.NET Web Site Administration Tool

about, 588, 589

configuring application settings, 597–

599

configuring authentication, 596–597,

598

launching, 608

asp: prefix, 107

ASPNET account, 618, 619

aspnet_regsql.exe, 591–594

ASPNETDB database, 588–590, 591

aspnetdb.mdf, 595

aspnetdb_log.ldf, 595

AspNetSqlMembershipProvider, 600

AsyncPostBackTrigger, 710–713

Attachment class, 639

AttachmentCollection class, 639

Attachments property, 640

attachments, sending, 639

Authenticate method, 585

authentication

about, 572

configuring for site, 596–597

cookieless, 581–582

database, 367

methods of, 573–574

of users, 164, 179, 180–181, 373–375

SQL Server, 371–372, 373

of users, 164, 179, 180–181, 373–375

777

(see also forms authentication;

memberships)

authentication section, 179

authentication tag, 575–576, 581

authorization, 573

authorization section, 179

authorization tag, 582–584

Auto Format, 458, 459

autocompletion, of code, 169–170

AutoEventWireup attribute, 212

AutoGenerateDeleteButton property, 522

AutoGenerateEditButton property, 522

AutoGenerateInsertButton property, 522

AutoGenerateRows property, 486

AVG function, 352

B
background properties, 153

banner ads (see AdRotator)

Bcc property, 640

BETWEEN keyword, 330–331

BindGrid method, 483, 549

birthdate, validating, 251–252

bit data type, 285

block properties, 153

Body property, 640

BodyEncoding property, 640

boolean data type, 58

border properties, 154

BoundField control, 472, 477

box properties, 153

breadcrumb navigation, 131–132

break, 76

breakpoints, 222–223

browsers

disabling JavaScript, 241–242

JavaScript support, 239

setting default, 17, 174

BulletedList control, 118–119

BulletStyle property, 119

BulletStyleImageUrl property, 119

Button class, 81

Button control

about, 111–112

attributes, 51

events, 48

LinkButton, 442

OnClick attribute, 48

ButtonField control, 477, 478–479

C
C#

about, 46

case sensitivity, 21, 70

comments, 34

data typing, 59, 453

declaring variables, 57

default page code, 18

marking code blocks, 22

setting with Language attribute, 33

specifying in Visual Web Developer,

12

cache dependencies, 193

Cache object, 192–194

Calendar control, 119–124, 204

call stack, 229

Camel Casing, 107

candidate key, 289

cascading style sheets (CSS)

about, 149–150

associating, 150–151

declaring, 152–153

properties, 153–156

case sensitivity, 21, 70, 286

778

case statements, 70

Cassini, 172, 173, 617

casting, 183

catch (errors), 220, 231, 406, 408

categoryComm, 404

CausesValidation property, 244

CC property, 640

CEILING function, 342

ChangeExtension, 634

ChangePassword control, 606

char data type, 286

character data type, 58

CHARINDEX function, 345

CheckBox control, 113

CheckBoxField control, 477

CheckBoxList control, 118

CheckChanged event, 113, 114

Choose Data Source, 458

CircleHotSpot, 114

class libraries, 87

classes, 78–80, 82, 93

clearing fields, 420

Click event, 48, 50, 51, 104

closing tags, 108

Codd, E.F., 273

code blocks

in C#, 22

in VB, 22

code declaration blocks, 33–35

code editor, 166–168

Code Project, 67

code regions, 168

code render blocks, 35–36

code-behind files

about, 88

creating, 89–91

inheritance and, 85, 93

script tags vs., 92

storing user data in, 578

viewing, 166–168

working with, 17, 91–94

CodeFile attribute, 212

Combine, 634

CommandArgument property, 442

CommandField control, 477, 492–494

CommandName property, 442

CommandType property, 433

comments

C#, 34

HTML, 38

server-side, 37–39

SQL, 356

VB, 34

CompareValidator control, 248–251

compilation errors, 225

compilation section, 179

compiling, 28

concatenation, 68, 69

conditional logic, 69–71

CONFIG folder, 176

configuration element, 178

configuration errors, 224

configuration files

Global.asax, 164, 180–182, 192

Machine.config, 176, 182, 594, 600

Web.config (see Web.config file)

configuration section groups, 178

configuration section handlers, 179

configuration sections, 178–180

ConfigurationManager, 398

ConfigurationManager class, 598

connection strings

for LocalSqlServer, 593, 594, 595

for SQL Server Express, 367

779

for SqlDataSource, 512

storing in Web.config, 397–398

constraints, database, 289, 301, 355

constructors, 82

Content control, 147

ContentLength property, 636

ContentPlaceHolder control, 145–149

ContentType property, 636

control events, 48–53

controls

about, 99

data (see DetailsView control; Grid-

View control)

data retention, 448

extending, 715–718

HTML server, 99–106

in templates, 447

validator (see validator controls)

web server (see web controls)

web user (see web user controls)

ControlToCompare property, 249

ControlToValidate property, 248, 249

conversion, of data types, 58–60, 66–67,

183, 453, 667

Convert.ToInt32, 454

cookieless attribute, 581–582

cookies, 195–197, 574, 581–582, 587

Cookies property, 195

Copy Website tool, 766

COUNT function, 348

CREATE PROCEDURE function, 356–358

CreateTables.sql file, 295

CreateText method, 622

CreateUserWizard control, 588, 606

credentials tag, 584–585

CSS style sheets

creating, 201–203

location of, 164

setting width property, 138

styling GridView, 474–475

styling validation controls, 248, 717–

718

styling web server controls, 204

themes, 200–201, 206

CssClass attribute, 248

CssClass property, 138, 154–156

currency data type, 285, 286

customErrors element, 226–227

customErrors section, 179

CustomValidator control, 258–261

D
data adapters, 539

data binding

about, 37, 388

DataBind method, 398–405

in DataList, 444–445

to DataSets, 540–545, 551–562

drop-down list using, 400

HtmlEncode property, 571

OnDataBinding attribute, 51

to SqlDataSource, 510–516, 519–521

to LINQDataSource, 667–670

data controls (see DetailsView control;

GridView control)

data keys, 483, 503

data readers, 536, 537

data sets

about, 535–538

classes required, 538–539

filtering, 562–563

handling multiple requests, 536

storing in view state, 548–551

updating database with, 563–567

780

data source controls

about, 508–509

AccessDataSource, 508

EntityDataSource, 509

LinqDataSource, 508

ObjectDataSource, 509

SiteMapDataSource, 509

SqlDataSource (see SqlDataSource)

XmlDataSource, 509

data storage

(see also application state; session

state)

application state vs session state, 182

Cache object, 192–194

cookies, 195–197

data types

(see also specific data types, e.g. char

or int)

about, 56

converting, 58–60, 66–67, 183, 453,

667

list of, 58

for parameters, 380–381

in SQL Server, 285–286

Type property, 250

validating, 250–251, 383, 384

data typing

in JavaScript, 59

in LINQ, 665–666, 667

in VB and C#, 59, 453

database authentication, 371–372, 373

database design, 280–285, 299–301

database diagrams

about, 304

creating, 304–308

creating relationships, 308–311

diagram editor, 307

one-to-many relationships, 313

Database Publishing Wizard, 771

database servers, 274

database tables

(see also keys)

about, 275–276

adding data, 352–353, 405–411

constraints, 289, 301

creating, 290–293

creating with SQL scripts, 295

data types, 285–286

DEFAULT property, 287

default values, 287, 288

deleting data, 354–355, 428–431

IDENTITY property, 287, 289–290,

291

mapping tables, 315–316

NULL property, 287, 288

outputting as HTML tables, 391, 435

populating, 296

querying (see LINQ; MVC; SQL)

relationships between (see relation-

ships)

setting properties, 291, 292

updating data, 314, 353–354, 411–428

databases

about, 274–275

creating, 276–280

data sets vs, 540

design phase, 280–285

location of files, 164

normalizing, 284

querying (see ADO.NET; LINQ; MVC;

SQL)

relational, 299–301

security issues, 570

setting owner, 374

781

setting permissions, 773

updating using data sets, 563–567

User Instance, 590

DataBind method, 398

DataColumn class, 538

DataContext object, 660

DataField property, 472

DataKeyNames property, 515, 522

DataList control

about, 435–436

accessing controls, 447

accessing events, 440, 442

basic format, 436–438

data binding in, 444–445

editing items, 448–456

editing templates, 457–458

ItemCommand event, 442–444

refreshing, 449

Repeater vs, 438

smart tags, 458

styling, 458–461

DataRelation class, 538

DataRow class, 538

DataSet class

about, 538

binding to GridView, 540–545

paging, 546–548

selecting data, 543

sorting with GridView, 551–562

storing in view state, 548–551

structure, 539–540

DataSource property, 398

DataSourceID property, 515, 522

DataTable class, 538, 544–546, 551–552

DataView class, 538, 551–552, 562

date formats, 251

date functions, 346–347

DATEADD function, 347

DATEDIFF function, 347

DATEPART function, 347

DateTime class, 23

datetime data type, 285

DAY function, 347

DayNameFormat property, 122

DbDataAdapter class, 538

DBML designer, 662

debugging

breakpoints, 222–223

compilation errors, 225

configuration errors, 224

custom errors, 226–227

enabling, 176–177

handling exceptions, 227–232

in Internet Explorer, 16, 173

Locals window, 222, 224

parser errors, 224

run-time errors, 219–221

setting start page, 213

starting, 218

stopping, 198

syntax errors, 224–225

toolbar options, 223–224

in Visual Web Developer, 15–16, 172–

175

Watch window, 221–222, 224

decimal data type, 58

DEFAULT property, 287

Default.aspx

about, 164

adding master page, 210

C# version, 18, 168

creating, 13–15, 211

deleting, 211

VB version, 19, 167, 168

782

defaultRedirect attribute, 227

DefaultView property, 551–552

DELETE query, 428–431

DELETE statement, 354–355

DeleteCommand property, 563

DeliveryNotificationOptions property,

640

deny tag, 576, 583–584

deployment

ASP.NET issues, 763

choosing a host, 763–764

of MVC sites, 767–769

security issues, 772–773

with SQL Server Hosting Toolkit, 770–

772

troubleshooting, 769–770

with Visual Web Developer Express,

764–767

Design view, 166

DetailsView control

about, 482–483

adding data, 527–529

basic format, 483–486, 487

binding to SqlDataSource, 519–521

customizing fields, 486

default fields, 488

display mode, 495–496

drop-down lists, 531–534

edit mode, 488–490, 492–496

editing fields, 496–498

events, 490–492

properties, 522

refreshing, 709–713

storing record data, 503

styling, 487

synchronizing with GridView, 526–

527

templates, 498

updating header, 524–525

updating items, 500–504

dictionaries, 182

Dim keyword, 57, 79

directives, 32–33, 44–45

directories, accessing, 576, 616, 617,

628–635

Directory class, 628

DirectoryInfo class, 628

disconnected data, 535, 537

Display property, 245–246

DisplayMode property, 118

Dispose method, 621–622

DISTINCT keyword, 326–329

div element, 116

division, 68, 339

Do loops, 71–74

DROP statement, 772

drop-down lists, in DetailsView, 531–534

DropDownList control, 74, 117, 217,

399–405, 628–631

E
EditItemIndex property, 439, 449

EditItemStyle property, 461

EditItemTemplate, 439, 498

EditItemTemplate template, 448–456

email

classes, 639

creating, 643–645, 646, 649–650

images in, 646–647, 650

properties, 639–640

restricting sender, 645

sending group messages, 647–649

sending single message, 641–643

storing addresses, 177

783

EnableViewState property, 43

encryption, 572

End Sub, 22

entities, 280, 659

EntityDataSource control, 509

equals, 68

Equals method, 86

error messages

customizing, 226–227, 248

in ADO.NET, 406, 408

summarizing, 252–253

ErrorMessage property, 248

errors (see debugging)

catching, 220, 231, 406, 408

in deployment, 769–770

escaping (of special characters), 571

event handlers

about, 48–50

components of, 51–53

for page events, 55

generating code for, 270

in Global.asax, 181

event receivers, 84

event senders, 84

EventArgs, 53

events

(see also specific events, e.g. Click

event)

about, 48

application-wide, 180–181

control, 48–53

in templates, 440, 442

page, 53–56, 57

senders and receivers, 84

Exception class, 220, 231–232

exceptions, handling, 227–232

(see also errors)

Execute method, 664

ExecuteNonQuery method, 370, 405, 410

ExecuteQuerymethod, 663–664

ExecuteReader method, 369, 370–371

ExecuteScalar method, 370

Exit, 76

exponents, 343

extension methods, 657

F
File class, 616

file length, retrieving, 636

FileBytes property, 636

FileContent property, 636

FileName property, 636, 637, 638

filenames, retrieving, 628, 629, 631–632,

634

filenames, retrieving property, 636

files

allowing access to, 605

manipulating (see text files)

reading, 636

sharing, 617–619

text (see text files)

uploading, 616, 635–639

file-sharing, 617–619

FileStream class, 616

FileUpload control, 135, 635–638

Fill method, 543

FindControl method, 447

Firefox

disabling JavaScript, 241

width property, 138

First method, 657

FirstDayOfWeek property, 122

float data type, 285, 286

FLOOR function, 343

784

folders, accessing, 576, 616, 617, 628–

632

font properties, 153

footers, setting, 148

FooterStyle property, 461

FooterTemplate, 389, 439

For Each loops, 75–76

For loops, 71, 74–75, 76

foreign keys, 301–302, 308–311, 312–

314, 354

form tag, 31, 37, 98

forms authentication

(see also memberships)

about, 573, 574

configuring, 581–582

enabling in Web.config, 575–576

logging users out, 587

performing, 577–580

selecting, 596

storing user data, 584–587

user login, 577, 578, 580

using URL, 581

forms authorization, 582–584

forms tag, 581–582

Friedl, Jeffrey E., 256

From property, 640

Function keyword, 63

functions, 63–66, 70

G
GET, 688

Get accessor, 141–142

GETDATE function, 347

GetDirectories method, 628

GetDirectoryName, 633, 634

GetExtension, 633, 634

GetFileName, 633, 634

GetFileNameWithoutExtension, 633, 634

GetFiles, 631–632

GetFiles method, 628

GetFileSystemEntries, 631–632

GetFileSystemEntries method, 628

GetFullPath, 635

GetHashCode method, 86

GetPathRoot, 635

GetTempFileName, 635

GetTempPath, 635

GetType method, 86

Global.asax file, 164, 180–182, 192

globalization section, 179

graphic, as button, 112

greater than (>), 68

greater than or equal to (>=), 68

greater-than, 339

greater-than or equal-to (>=), 340

gridSortDirection property, 558–561

gridSortExpression property, 558–561

GridView control

about, 464

adding columns, 478–479

adding fields, 479

basic format, 464–468

binding to DataSet, 540–545, 546

binding to SqlDataSource, 510–516

combining with DetailsView, 483–486

customizing display, 471–472, 473

default display, 469–470

edit mode, 488–490, 492–496

editing columns, 496

events, 490, 491–492

paging, with DataSets, 546–548

paging, with SqlDataSource, 515, 518

properties, 515

refreshing, 515, 704–707, 709–713

785

Repeater vs, 465

selecting records, 477–482

smart tags, 473

sorting columns, 516–518

sorting DataSets, 551–562

storing record data, 483

styling, 472–477, 516

synchronizing with DetailsView, 526–

527

templates, 498

UpdatePanel and, 705

GROUP BY clause, 347, 349–350

Guthrie, Scott, 671

H
Handles keyword, 269

HasExtension, 635

HasFile property, 636, 637

HashForStoringInConfigFile method, 587

hashing, 572, 586–587, 601

HAVING clause, 347, 350–351

Headers property, 640

headers, setting, 148

HeaderStyle property, 460

HeaderTemplate, 389, 439, 524–525

hidden fields, 43, 571

HiddenField control, 111

HighlightCssClass property, 717–718

hit counter, 184–191

Host property, 641, 651

host, choosing, 763–764

hot spots, 114–115

HotSpotMode property, 115

HTML

comments, 38

div element, 116

img tag, 114, 646, 650

in ASP.NET pages, 39–40

ol element, 118

select element, 117

for server controls, 99

special characters, 650

tables, 391, 435, 469

ul element, 118

viewing source, 24

web controls and, 107

HTML server controls, 99–106

HtmlAnchor control, 100

HtmlButton, 101

HtmlButton control, 100

HtmlEncode property, 571

HtmlForm control, 100, 101

HtmlGenericControl, 100

HtmlImage control, 100

HtmlInputButton control, 100

HtmlInputCheckBox control, 100

HtmlInputFile control, 100

HtmlInputHidden control, 100

HtmlInputImage control, 100

HtmlInputRadioButton control, 100

HtmlInputText, 101

HtmlInputText control, 100

HtmlSelect, 101

HtmlSelect control, 100

HtmlTable control, 100

HtmlTableCell control, 100

HtmlTableRow control, 100

HtmlTextArea control, 100

HttpCookie class, 195

HttpPostedFile object, 636

HTTPS protocol, 572

HttpUtility.HtmlEncode method, 571

HyperLink control, 113

HyperLinkField control, 478

786

I
identity columns, 287, 290, 296, 299

identity increment, 287

IDENTITY property, 287, 289–290, 291,

410

identity seed, 287

If statements, 69

IIf statement, 526

IIS, permissions, 617–618

Image control, 114

ImageButton control, 112–113

ImageField control, 478

ImageMap control, 114–115

images, in emails, 646–647, 650

ImageUrl attribute, 113

img tag, 114, 646, 650

Import directive, 32, 45, 92

IN, 341

IN operator, 332–333

Inactive mode, 115

incrementing variables, 73

IndexOutOfRangeException, 220

inheritance, 84–85, 93

initialization, 57

inline code, 35–36

inline expressions, 35, 36

Insert method, 193

INSERT query, 405–411

INSERT statement, 352–353

InsertCommand property, 563

inserting elements, 115

InsertItemTemplate, 498

instance methods, 622

instantiating a class, 82

int data type, 285

integer data type, 58

Integrated Security attribute, 367, 371

IntelliSense, 169–170

Internet Explorer

debugging in, 16, 173

disabling JavaScript, 242

setting as default, 17

Is Nothing, 188

IsBodyHtml property, 640, 649

IsPathRooted, 635

IsPostBack property, 403–404

IsValid property, 242–244, 265

ItemCommand event, 442–444

ItemDeleted event, 491

ItemDeleting event, 491

ItemInserted event, 491

ItemInserting event, 491

ItemStyle property, 460

ItemTemplate, 389, 438, 439, 498

ItemUpdated event, 491

ItemUpdating event, 491, 500

ItemUpdating method, 501

J
JavaScript

AJAX library, 703

browser support, 239

data typing, 59

disabling, 241–242

DOM scripting and, 702

file location, 164

in script tags, 35

security issues, 571

validation and, 236–237

joining tables, 337–338

jQuery, 164, 720–721

787

K
keys

data, 483, 503

foreign, 301–302, 308–311, 312–314,

354

multi-column, 289, 316

numeric vs non-numeric, 289

primary, 288–290, 292

KeywordFilter property, 127

L
Label control

about, 15

adding in Design view, 184–185, 186

adding text using, 107, 110

namespace differences, 109

with Button control, 111

Language attribute (Page directive), 33,

212

language attribute (script tag), 34–35

language, specifying in Visual Web De-

veloper, 162, 206

LEN function, 345

less than (<), 68

less than or equal to (<=), 68

less-than (<), 339

less-than or equal-to (<=), 340

libraries, 87

LIKE keyword, 331–332

limiting query results, 334–335

line continuation symbol, 69

LinkButton control, 113, 442

LINQ (Language-Integrated Query)

about, 655–657

binding to GridView, 667–670

connecting to database, 657–660

data typing, 665–666, 667

direct queries, 663–664

editing data, 668

extension methods, 657

querying database, 660–661

relationship, 662–663

storing procedures, 664–667

updating data, 661–662

LinqDataSource control, 508

LINQ-to-SQL data classes, 659

list controls

(see also DataList)

BulletedList, 118–119

CheckBoxList, 118

DropDownList, 74, 117, 217, 399–405,

628–631

ListBox, 117

RadioButtonList, 118

list properties, 154

ListBox control, 117

Literal control, 110, 442

localhost port, 173

Locals window, 222

LocalSqlServer, 593, 594, 595

Lock method, 189–191

locking

application state, 189–191

session state, 191

LoggedInTemplate, 611–612

login attempts, 601

Login control, 606, 607–608

login page, 577–580

Login.aspx, 577

LoginName control, 606, 611

LoginStatus control, 606, 611–612

loginUrl attribute, 581

LoginUser method, 579

788

LoginView control, 606, 611–612

logout functionality, 587

Logout link, 611

loops

Do or While, 71–74

exiting, 76–77

For, 71, 74–75, 76

For Each, 75–76

LOWER function, 343

LTRIM function, 344

M
Machine.config file, 176, 182, 594, 600

MailAddress class, 639

MailAddressCollection class, 639

MailMessage class, 639–640, 649

MailMessage object, 643

many-to-many relationships, 314–316

MapPath method, 623–624

mapping tables, 315–316

Master Page template, 146, 147

master pages

about, 144–149, 165

adding ScriptManager, 708–709

benefits of, 610

creating, 147, 148, 149, 206–210

in MVC, 681–683

template, 146

using, 210–213, 214

MAX function, 352

MaximumValue property, 251

memberships

about, 588

authenticating users, 607–608

creating roles, 599

creating users, 599–600, 602

customizing user display, 605–606,

608–613

password strength requirements, 600–

601

restricting access, 603–605

storing in ASPNETDB, 588–590

storing in your database, 590, 596

user management, 606

Menu control, 133, 208

menu, building, 208

methods

about, 81–82

extension, 657

instance, 622

shared, 622

static, 622

MIME type, retrieving, 636

MIN function, 352

MinimumValue property, 251

MOD function, 343

mode attribute, 227

ModeChanged event, 491

ModeChanging event, 491

ModeChanging event signature, 494–495

money data type, 285, 286

MONTH function, 347

multi-column keys, 316

multiplication, 68, 339

MultiView control, 133–134, 135

MVC

about, 671–672

ActionLinks, 686–688

adding controllers, 677, 678

connecting to database, 680–681

Create, 695–696

deployment issues, 767–769

Details, 688

789

Edit, 688

file locations, 683

master pages and, 681–683

scaffolding, 679

SiteMapDataSource and, 683

Views, 672, 684–686

mySubName(), 52

N
name attribute, 581

namespaces

.NET Framework Class Library, 87–88

in Default.aspx, 168

importing, 92, 620

System.Configuration, 398, 541, 598

System.Data, 541

System.Data.SqlClient, 364, 366, 541

System.IO, 615–616, 620, 628

System.Net.Mail, 639

System.Web.Security, 574

System.Web.UI.WebControls, 109

System.Windows.Forms, 109

Navigate mode, 115

nchar data type, 286

.NET Framework, 4–5, 6

.NET Framework Class Library, 23, 87–

88

.NET Framework Class Library, 23, 87–

88

new keyword, 62

new operator, 68

NextPrevFormat property, 122

normalization, 284

not equal to, 68, 340

NOT operator, 341

NotSet mode, 115

Now property, 23

NULL property, 287, 288

nvarchar data type, 286, 380

O
Object class, 86

Object control, 53

object data type, 58

object oriented programming

about, 77–78

classes, 78–80, 82

constructors, 82

disposing of objects, 621–622

inheritance, 84–85, 93

methods (see methods)

namespaces (see namespaces)

in .NET, 85–86, 140

objects, 78–80

partial classes, 93

properties, 80–81 (see properties)

scope, 83–84

ObjectDataSource control, 509

objects, 78–80, 621–622

ODBC, and ADO.NET, 365

offset, 60

ol element, 118

OLE DB, and ADO.NET, 365

OnCheckChanged attribute, 113, 114

OnClick attribute, 48, 51, 111

OnCommand attribute, 51

OnDataBinding attribute, 51

OnDisposed attribute, 51

one-to-many relationships, 312–313

one-to-one relationship, 312

OnInit attribute, 51

onitemcommand property, 443

onitemupdating property, 501

OnLoad attribute, 51

790

OnPreRender attribute, 51

OpenText method, 624, 626

Opera, disabling JavaScript, 242

Operator property, 250

operators

ASP.NET, 67–69

SQL, 338–341

or, 68

OR operator, 340

Oracle, and ADO.NET, 365

ORDER BY clause, 333–334, 513, 514

OrElse, 68

out parameters, 383

P
Page class, 85–86

Page directive, 32–33, 43, 45, 92, 147

page events, 53–56, 57

Page.Validate method, 265

Page_Init event, 54

Page_Load event, 54, 56

Page_Load method, 19–22, 185–187

Page_PreRender event, 54

Page_UnLoad event, 54, 56

PageIndexChanged event, 491

PageIndexChanging event, 491

pages

master (see master pages)

storing multiple, 133, 135

switching, 134

pages section, 179

PageSize property, 515

Panel control, 116–117

parameterized queries, 530

parameters

in ADO.NET, 377–383

in MVC, 677

in subroutines, 53

parser errors, 224

partial classes, 93

partial rendering, 704

Pascal Casing, 107

Password mode, 579

password strength, 600–601

PasswordRecovery control, 606

passwords

changing, 606

hashing, 586–587, 601

recovering, 606

storing, 584–585

strength requirements, 600–601

validating, 247–249

path attribute, 581

Path class, 617, 632–635

path, specifying, 621, 623–624

paths, hard-coded, 770

performance, enhancing (see Ajax)

persistence of data (see session state;

view state)

PlaceHolder control, 115–116

PolygonHotSpot, 114

positioning properties, 154

POST, 688, 693

post back, 403

PostBack event, 444, 448, 710

PostBack mode, 115

PostBackTrigger, 710

PostedFile object, 636

POWER function, 343

primary keys, 288–290, 292

Priority property, 640

Private access, 83

private keyword, 52

791

procedures, storing, 355–360, 431–433,

500–501, 534, 664–667

propagation, of exceptions, 229

properties

about, 80–81

creating, 138–142

custom, 555

in CSS, 153–156

setting in Visual Web Developer, 171–

172

setting permissions, 140, 555

Properties window, 171–172

Property Builder, 458

Protected access, 83

protection attribute, 581

Public access, 83

public interface, 84

public keyword, 52

publishing (a website) (see deployment)

Q
queries (see ADO.NET; MVC; SQL)

R
RadioButton control, 114

RadioButtonList control, 118

RangeValidator control, 251–252

Read method, 375–376

ReadLine method, 624, 626–627

ReadOnly property, 141, 498

ReadText method, 625–626

RecordSet, 364

RectangleHotSpot, 114

Redirect method, 411

RedirectFromLoginPage method, 580

RedirectToAction method, 692

ReferenceEquals method, 86

refreshing

DetailsView, 709–713

GridView, 704–707, 709–713

Register directive, 45, 142–143

RegisterRoutes method, 677

regular expressions, 254–258, 602

RegularExpressionValidator control,

254–255, 256

relationships

about, 312

creating, 308–311

design phase, 282

importance of, 299–301

in data sets, 540

in LINQ, 662–663

many-to-many, 314–316

mapping tables, 315–316

one-to-many, 312–313

one-to-one, 312

table joins and, 337

remainder, 343

remote servers, 592

Remove method, 183

RemoveAll method, 184

Repeater control, 387–392, 393, 394–

397, 435, 438, 465

REPLACE function, 344

ReplyTo property, 640

Request object, 195

RequiredFieldValidator control, 238,

244, 245, 247–248, 715

Response object, 195

Response.Write function, 36

Response.Write method, 77

return types, 65–66

roles, 599

792

rounding, 342–343

RowDeleted event, 491

RowDeleting event, 491

RowFilter property, 562

RTRIM function, 344

runat attribute, 33, 34–35, 99

run-time errors, 219–221

S
SaveAs method, 636, 637, 638

scope, 83–84

scope_identity function, 353

Script folder, 164

script tag

basic format, 29–31

script tag

JavaScript in, 35

language attribute, 34–35

runat attribute, 33, 34–35

src attribute, 35

ScriptManager control, 703, 706, 708–

709

ScriptManagerProxy control, 709

Scripts folder, 13

scripts, registering, 703

security

Account folder, 164

deployment issues, 772–773

guidelines, 570–572

JavaScript issues, 571

security guidelines, 602

Select Case, 70, 630

SELECT DISTINCT statement, 326–329

select element, 117

SELECT statement, 321–324

SelectCommand property, 544, 563

SelectedDate property, 122

SelectedIndexChanged event, 117, 480–

481, 629

SelectedItemStyle property, 461

SelectedItemTemplate, 439

SelectionChanged event, 123

SelectionMode attribute, 117

SelectionMode property, 122

SelectMonthText property, 122

selectors, 152, 656

SelectWeekText property, 122

Send method, 651

Sender property, 640

sensitive data, protecting, 571–572

SeparatorTemplate, 389, 438, 439

server controls

HTML (see HTML server controls)

web (see web controls)

Server.MapPath method, 770

server-side technologies, 2–3

ServerValidate event, 261

Session object, 191

session state, 182, 191–192

session variables, 192

Session_Start, 192

sessionState section, 179

Set accessor, 141–142

SetFocusOnError property, 239–240

shared methods, 622

ShowDayHeader property, 122

ShowGridLines property, 122

ShowMessageBox property, 253

ShowNextPrevMo propertynth, 122

ShowTitle property, 122

SIGN function, 343

SignOut method, 587

Simple Mail Transfer Protocol (SMTP),

640

793

Site Map, 129, 198–200

Site.css, 13

Site.master file, 13, 165

SiteMapDataSource control, 129, 130,

131, 208, 509, 683

siteMapNode element, 208

SiteMapPath control, 131–132, 198

SiteName, 182

skins, 150, 204–206, 475–476

slidingExpiration, 582

smart tags

DataList, 457–458

GridView, 472, 473

SMTP (Simple Mail Transfer Protocol),

640

SmtpClient class, 639

SmtpClient object, 643, 651

Solution Explorer, 143, 164–165, 715

Sort property, 557

SortExpression property, 516, 517

sorting

of DataSets, 551–562

of query results, 333–334

Sorting event, 517, 558

Source view, 166

special characters, escaping, 571

Split view, 166

SQL

about, 317–318

aggregate functions, 348

arithmetic functions (T-SQL), 342–343

AVG, 352

BETWEEN, 330–331

comments, 356

COUNT, 348

date/time functions (T-SQL), 346–347

DELETE statement, 354–355

DISTINCT keyword, 326–329

embedding in .aspx files, 534

filtering groups, 350–351

GROUP BY clause (T-SQL), 347, 349–

350

HAVING clause (T-SQL), 347, 350–

351

IN, 332–333

INSERT statement, 352–353

LIKE, 331–332

limiting results, 334–335

matching a list of items, 332–333

matching patterns, 331–332

MAX, 352

MIN, 352

operators, 338–341

ORDER BY clause, 333–334, 513, 514

querying a table, 318–321

querying multiple tables, 335–336,

337

row filtering, 329–330

SELECT, 321–324

selecting a range of values, 330–331

selecting all fields, 324

selecting specific fields, 324–325

selecting unique values, 326–329

sorting results, 333–334

storing procedures (T-SQL), 355–360,

500–501

string functions (T-SQL), 343–346

subqueries, 336–337

SUM, 351

table joins, 337–338

TOP, 334–335

UPDATE statement, 353–354

WHERE clause, 329–330, 354, 355,

413

794

SQL injection attacks, 570

SQL scripts, 295

SQL Server 2008

about, 6, 274

ADO.NET connections, 365, 367–368

case sensitivity, 286

data types, 285–286

enabling authentication, 371–372, 373

installing, 6

integrated security option, 367

selecting authentication mode, 7

Setup Wizard, 591–594

SQL Server Hosting Toolkit, 770–772

SQL Server Management Studio Express

about, 6

configuring, 10, 11

connecting to database, 278–280, 658

connecting to server, 9, 658

creating database diagrams, 304, 305

creating tables, 290, 291

installing, 8–11

Object Explorer, 293

storing queries, 432

viewing results in plain text, 323

SQL Server Setup Wizard, 591–594

SqlCommand, 364, 365, 368–369, 380

SqlCommandBuilder, 563

SqlConnection, 364, 365, 367–371

SqlDataAdapter class

about, 539

adding tables, 544–546

loading data, 543

updating data, 563–567

SqlDataReader, 364, 365, 369–371, 375–

376, 388, 507–508

SqlDataSource control

(see also DataSet object)

about, 508

adding data, 523–524

binding to DetailsView, 519–521

binding to GridView, 510–516

creating conditions, 520

editing data, 520, 521, 522

performance issues, 534–535

selecting data, 513–514, 519, 533

testing, 514, 521

SQRT function, 343

Src attribute (Register directive), 142–

143

src attribute (script tag), 35

start page, 166, 174, 175, 213

static methods, 622

storage, data, 182

StreamReader, 624, 625–627

StreamReader class, 616

StreamWriter class, 617, 621

strict attribute, 177

string data type, 23, 58, 286

string functions, 343–346

String variables, 36

Style Builder, 203

style sheets (see CSS style sheets)

Styles folder, 13, 164

Styles.css, 154

Sub keyword, 52

Subject property, 640

subjectComm, 404

SubjectEncoding property, 640

submitButton_Click method, 240, 269

SubmitChangesmethod, 662

subqueries, 336–337

subroutines

(see also event handlers)

application-level, 180–181

795

functions vs., 63

SUBSTRING function, 344

subtraction, 68, 339

SUM function, 351

SupportEmail key, 177

switch statement, 70, 630

SwitchPage, 134

syntax errors, 224–225

System.Configuration namespace, 398,

541, 598

System.Data namespace, 541

System.Data.SqlClient namespace, 364,

366, 541

System.IO namespace, 615–616, 620, 628

system.net element, 178

System.Net.Mail namespace, 639

System.Security.SecurityException, 770

system.web element, 178

System.Web.Security namespace, 574

System.Web.UI.MasterPage class, 145

System.Web.UI.Page class, 99

System.Web.UI.UserControl class, 136

System.Web.UI.WebControls namespace,

109

System.Windows.Forms namespace, 109

T
tables, database (see database tables)

tables, HTML (see DataList; GridView;

Repeater)

TagName attribute, 142–143

TagPrefix attribute, 142–143

targetFramework attribute, 177

TemplateField control, 478, 498–499,

500

ternary operators, 526

text

displaying, 110

in ASP.NET pages, 39–40

non-English, 286

text files

about, 615

reading from, 616–617

setting permissions, 617–619

writing to, 615, 616–617, 620–627

Text property, 23

TextBox control, 107, 110, 579

TextMode attribute, 111

theme attribute, 206

themes, 150, 200–201, 206

time data type, 285

time functions, 346–347

timeout attribute, 581

Timeout property, 192

Timer control, 704

TitleFormat property, 122

To property, 640

TodaysDate property, 122

Toolbox, 170, 171

tooltips, 226

TOP keyword, 334–335

ToString method, 23, 66, 86–87

trace section, 179

Transact-SQL (T-SQL) (see T-SQL

(Transact-SQL))

TreeView control, 129–131

triggers, 710–713

true/false data type, 285

Try-Catch-Finally, 220, 227–228, 385–

387

TryParse method, 383, 384

T-SQL (Transact-SQL)

about, 342

796

arithmetic functions, 342–343

date/time functions, 346–347

GROUP BY clause, 347, 349–350

HAVING clause, 347, 350–351

storing procedures, 355–360

string functions, 343–346

Type property, 250

U
ul element, 118

Unicode, 286

UnLock method, 191

Update method, 563–567

UPDATE query, 411–428

UPDATE statement, 353–354

UpdateCommand property, 563

UpdateItem method, 454

UpdateMode property, 710

UpdatePanel control, 704–706, 709–713

UpdateProgress control, 704, 707, 708

UPPER function, 343

URLs

as authenticators, 581

User Instance database, 590

user interaction (see server controls)

user management, 606

user sessions, 191–192

username, displaying, 606, 611

users

anonymous, 576

assigning roles, 599

authenticating, 164, 179, 180–181,

373–375

(see also forms authentication;

memberships)

creating, 599–600, 602

logging out, 587

remembering, 606

restricting access, 603–605

storing in Web.config, 584–585

users attribute, 583

Using construct, 621–622

“usp” prefix, 665

V
validation

client-side, 236, 239

data type, 250–251, 383, 384

disabling, 244

during data insertion, 405

security and, 570

server-side, 236, 240–246

validation controls

about, 236–240, 246–247

accessing, 170, 247

CompareValidator, 248–251

CustomValidator, 258–261

Display property, 245–246

extending, 715–718

in Help Desk page, 268

RangeValidator, 251–252

RegularExpressionValidator, 254–255,

256

RequiredFieldValidator, 238, 244,

245, 247–248

styling, 248, 717–718

ValidationSummary, 245, 252–253

validation groups, 261–265

validation warnings, 103

ValidationGroup property, 262

ValidationSummary control, 245, 252–

253

ValidatorCalloutExtender, 715–718

ValueToCompare property, 250

797

var keyword, 656

varchar data type, 286

variables

(see also data types)

about, 56

application, 182, 184

case sensitivity, 70

casting, 183

declaring, 36, 53, 56–60

incrementing, 73

initializing, 57

return types, 65–66

VB

about, 46

case sensitivity, 21, 70

comments, 34

data typing, 59, 453

declaring variables, 57

default page code, 18, 19

marking code blocks, 22

setting with Language attribute, 33

specifying in Visual Web Developer,

12

View Code, 166

View Source, 24

view state, 37, 40, 43, 403, 448, 548–551,

571

Visible property, 116

VisibleDate property, 122

Visual Basic (see VB)

Visual Web Developer

about, 5

accessing validation controls, 247

Ajax Control Toolkit, 714

autocomplete (IntelliSense), 169–170

building web forms, 143

choosing data source, 458

code editor, 166–168

connecting to database, 277–278

creating code-behind files, 89–91

creating database diagrams, 304, 305

creating MVC project, 675

creating new pages, 14–15, 31

creating new website, 12–14, 162–163

creating tables, 290

data source controls, 509

Database Explorer, 277, 293

DataList features, 457–458

debugging in, 15–16, 172–175, 176–

177, 198, 213 (see debugging)

Design mode, 149

executing a page, 16

executing a project, 172

find-and-replace, 717

generating event handler code, 480

generating event handling code, 270

generating ItemCommand code, 443

generating ModeChanging code, 494–

495

generating Page_Load code, 367

GridView features, 472, 473

installing, 6–8

loading multiple projects, 266

master pages, 144

Properties window, 171–172

Property Builder, 458

setting default browser, 17, 174

setting file location, 162

setting programming language, 12, 162

setting Start page, 166, 174, 175

Site Map template, 129

Solution Explorer, 164–165

Style Builder, 203

Toolbox, 170, 171, 509

798

viewing page code, 17

Web Forms Designer, 166, 167

web server, 172, 173

Visual Web Developer Express, 764–767

void keyword, 52

W
Watch window, 221–222

web applications

about, 3, 159

security guidelines, 570–572

websites vs, 767

web controls

about, 15, 37, 107–108

AdRotator, 124–128

associating classes with, 154

BulletedList, 118–119

Button (see Button control)

Calendar, 119–124

CheckBox, 113

CheckBoxList, 118

custom, 135–136

data binding, 388, 398–405

data retention, 40

DataList (see DataList)

DropDownList, 117

FileUpload, 135

generic, 53

HiddenField, 111

HyperLink, 113

Image, 114

ImageButton, 112–113

ImageMap, 114–115

Label, 110

Label control, 109, 111

LinkButton, 113

ListBox, 117

Literal, 110

Menu, 133

MultiView, 133–134, 135

Panel, 116–117

PlaceHolder, 115–116

RadioButton, 114

RadioButtonList, 118

Repeater, 387–392, 393, 394–397,

435, 438

SiteMapPath, 131–132

styling, 204–206

TextBox, 110

TreeView, 129–131

Wizard, 135

Web Form template, 31

web forms (see ASP.NET pages)

Web Forms Designer, 166, 167

web server (Cassini), 172, 173, 617

web user controls

about, 135–136

creating, 136–142

using, 142–144

Web.config file

about, 165, 176–180, 182

authentication section, 575–576, 577,

581–582

authorization section, 582–584, 604

configuring for local server, 593, 595

creating, 13

customErrors element, 226–227

database connection strings in, 397–

398

enabling Ajax Control Toolkit, 718–

719

errors in, 224

interaction with Machine.config, 594

namespace references in, 93

799

setting theme, 206

storing application settings, 597–598

storing hashed passwords, 586–587

storing user data, 584–585

system.web section, 770

Web.sitemap file, 129, 208

WHERE clause, 329–330, 354, 355, 413,

656

While loops, 71–74, 624, 627

Width property, 138

wildcard characters, 331, 341

Windows Authentication, 7, 9, 367, 371,

573, 597

Windows Live ID authentication, 573–

574

Windows Server 2008, 764

Windows, file-sharing, 618–619

Wizard control, 135

WriteFile.aspx, 620

WriteOnly property, 140–142

WriteText method, 620–621

X
XML, 125–126

XmlDataSource control, 509

XmlHttpRequest, 702

Y
YEAR function, 347

Z
zero-based arrays, 62

800

WEB PROGRAMMING
PRINT ISBN 978-0-9870908-6-7

USD $44.95 CAD $44.95

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

Build Your Own ASP.NET 4 Website Using C# & VB

is packed full of practical examples, straightforward

explanations, and ready-to-use code samples in both

C# and VB. The fourth edition of this comprehensive

step-by-step guide will help get your database-driven

ASP.NET website up and running in no time.

 Learn how to set up the free software you need for ASP.NET

 Build a complete website from scratch using ASP.NET

 Use the code examples for your future ASP.NET projects

 Learn how to easily integrate data from Microsoft SQL Server

 Use MVC to structure your web applications

START BUILDING
POWERFUL ASP.NET
WEB APPLICATIONS TODAY!

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

Tim Posey is a long-time
developer and a passionate
educator. Armed with a B.S.
in Computer Science and
an M.B.A. in Finance, he
serves as a senior software
engineer and an adjunct
professor.TIM

POSEY

Cristian is a professional
software engineer with vast
experience in a wide range
of modern technologies.
The author of numerous
technical books, Cristian
has mastered the
complexities of ASP.NET so
that you don’t have to.

CRISTIAN
DARIE

Choose either C# or VB: this
book covers both languages.

Learn to build this complete website
from scratch using ASP.NET.

Build powerful applications faster
than ever before with LINQ and MVC.

Wyatt leads the in-house
development team for a
major industry trade
association. When not
slinging obscene amounts
of C# and SQL at a few
exceedingly large monitors,
he is sharing his ASP.NET
wisdom with others.

WYATT
BARNETT

coveraspnet4-2011.indd 1

EBOOK ISBN 978-0-9871530-3-6

	Build Your Own ASP.NET 4 Website Using C# & VB
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Introducing ASP.NET and the .NET Platform
	What is ASP.NET?
	Installing the Required Software
	Installing Visual Web Developer 2010 Express Edition
	Installing SQL Server Management Studio Express

	Writing Your First ASP.NET Page
	Getting Help
	Summary

	ASP.NET Basics
	ASP.NET Page Structure
	Directives
	Code Declaration Blocks
	Comments in VB and C# Code
	<script> Tag Attributes

	Code Render Blocks
	ASP.NET Server Controls
	Server-side Comments
	Literal Text and HTML Tags

	View State
	Working with Directives
	ASP.NET Languages
	Visual Basic
	C#

	Summary

	VB and C# Programming Basics
	Programming Basics
	Control Events and Subroutines
	Page Events
	Variables and Variable Declaration
	Arrays
	Functions
	Operators
	Breaking Long Lines of Code

	Conditional Logic
	Loops

	Object Oriented Programming Concepts
	Objects and Classes
	Properties
	Methods
	Classes
	Constructors
	Scope
	Events
	Understanding Inheritance
	Objects in .NET
	Namespaces

	Using Code-behind Files
	Summary

	Constructing ASP.NET Web Pages
	Web Forms
	HTML Server Controls
	Using the HTML Server Controls

	Web Server Controls
	Standard Web Server Controls
	Label
	Literal
	TextBox
	HiddenField
	Button
	ImageButton
	LinkButton
	HyperLink
	CheckBox
	RadioButton
	Image
	ImageMap
	PlaceHolder
	Panel

	List Controls
	DropDownList
	ListBox
	RadioButtonList
	CheckBoxList
	BulletedList

	Advanced Controls
	Calendar
	AdRotator
	TreeView
	SiteMapPath
	Menu
	MultiView
	Wizard
	FileUpload

	Web User Controls
	Creating a Web User Control
	Using the Web User Control

	Master Pages
	Using Cascading Style Sheets (CSS)
	Types of Styles and Style Sheets
	Style Properties
	The CssClass Property

	Summary

	Building Web Applications
	Introducing the Dorknozzle Project
	Using Visual Web Developer
	Meeting the Features
	The Solution Explorer
	The Web Forms Designer
	The Code Editor
	IntelliSense
	The Toolbox
	The Properties Window

	Executing Your Project
	Core Web Application Features
	Web.config
	Global.asax
	Using Application State
	Working with User Sessions
	Using the Cache Object
	Using Cookies

	Starting the Dorknozzle Project
	Preparing the Sitemap
	Using Themes, Skins, and Styles
	Creating a New Theme Folder
	Creating a New Style Sheet
	Styling Web Server Controls
	Adding a Skin
	Applying the Theme

	Building the Master Page
	Using the Master Page

	Extending Dorknozzle
	Debugging and Error Handling
	Debugging with Visual Web Developer
	Other Kinds of Errors
	Custom Errors
	Handling Exceptions Locally

	Summary

	Using the Validation Controls
	Client-side Validation and Server-side Validation
	Introducing the ASP.NET Validation Controls
	Enforcing Validation on the Server

	Using Validation Controls
	RequiredFieldValidator
	CompareValidator
	RangeValidator
	ValidationSummary
	RegularExpressionValidator
	Some Useful Regular Expressions

	CustomValidator

	Validation Groups
	Updating Dorknozzle
	Summary

	Database Design and Development
	What Is a Database?
	Creating Your First Database
	Creating a New Database Using Visual Web Developer
	Creating a New Database Using SQL Server Management Studio

	Creating Database Tables
	Data Types
	Column Properties
	Primary Keys
	Creating the Employees Table
	Creating the Remaining Tables
	Executing SQL Scripts

	Populating the Data Tables

	Relational Database Design Concepts
	Foreign Keys
	Using Database Diagrams
	Implementing Relationships in the Dorknozzle Database
	Diagrams and Table Relationships
	One-to-one Relationships
	One-to-many Relationships
	Many-to-many Relationships

	Summary

	Speaking SQL
	Reading Data from a Single Table
	Using the SELECT Statement
	Selecting Certain Fields
	Selecting Unique Data with DISTINCT
	Row Filtering with WHERE
	Selecting Ranges of Values with BETWEEN
	Matching Patterns with LIKE
	Using the IN Operator
	Sorting Results Using ORDER BY
	Limiting the Number of Results with TOP

	Reading Data from Multiple Tables
	Subqueries
	Table Joins

	Expressions and Operators
	Transact-SQL (T-SQL) Functions
	Arithmetic Functions
	String Functions
	Date and Time Functions

	Working with Groups of Values
	The COUNT Function
	Grouping Records Using GROUP BY
	Filtering Groups Using HAVING
	The SUM, AVG, MIN, and MAX Functions

	Updating Existing Data
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement

	Stored Procedures
	Summary

	ADO.NET
	Introducing ADO.NET
	Importing the SqlClient Namespace
	Defining the Database Connection
	Preparing the Command
	Executing the Command
	Setting Up Database Authentication
	Reading the Data
	Using Parameters with Queries
	Bulletproofing Data Access Code
	Using the Repeater Control

	Creating the Dorknozzle Employee Directory
	More Data Binding
	Inserting Records
	Updating Records
	Deleting Records
	Using Stored Procedures

	Summary

	Displaying Content Using Data Lists
	DataList Basics
	Handling DataList Events
	Editing DataList Items and Using Templates
	DataList and Visual Web Developer
	Styling the DataList
	Summary

	Managing Content Using GridView and DetailsView
	Using the GridView Control
	Customizing the GridView Columns
	Styling the GridView with Templates, Skins, and CSS
	Selecting Grid Records

	Using the DetailsView Control
	Styling the DetailsView

	GridView and DetailsView Events
	Entering Edit Mode
	Using Templates
	Updating DetailsView Records

	Summary

	Advanced Data Access
	Using Data Source Controls
	Binding the GridView to a SqlDataSource
	Binding the DetailsView to a SqlDataSource
	Displaying Lists in DetailsView
	More on SqlDataSource

	Working with Data Sets and Data Tables
	What Is a Data Set Made From?
	Binding DataSets to Controls
	Implementing Paging
	Storing Data Sets in View State
	Implementing Sorting
	Filtering Data

	Updating a Database from a Modified DataSet
	Summary

	Security and User Authentication
	Basic Security Guidelines
	Securing ASP.NET Applications
	Working with Forms Authentication
	Adding a Login Page to Dorknozzle
	Authenticating Users
	Configuring Forms Authentication
	Configuring Forms Authorization
	Storing Users in Web.config
	Hashing Passwords
	Logging Users Out

	ASP.NET Memberships and Roles
	Creating the Membership Data Structures
	Using Your Database to Store Membership Data
	Using the ASP.NET Web Site Configuration Tool
	Creating Users and Roles
	Changing Password Strength Requirements
	Securing Your Web Application
	Using the ASP.NET Login Controls
	Authenticating Users
	Customizing User Display

	Summary

	Working with Files and Email
	Writing and Reading Text Files
	Setting Up Permissions
	Writing Content to a Text File
	Reading Content from a Text File

	Accessing Directories and Directory Information
	Working with Directory and File Paths

	Uploading Files
	Sending Email with ASP.NET
	Sending a Test Email
	Creating the Company Newsletters Page

	Summary

	Introduction to LINQ
	Extension Methods
	LINQ to SQL
	Updating Data
	Relationships
	Directly Executing Queries from the DataContext
	Stored Procedures with LINQ-to-SQL
	Using ASP.NET and LINQ-to-SQL

	Introduction to MVC
	Summary

	ASP.NET AJAX
	What is Ajax?
	ASP.NET AJAX
	Using the UpdatePanel Control
	Managing the ScriptManager Control

	Using Triggers to Update an UpdatePanel
	The ASP.NET AJAX Control Toolkit
	The ValidatorCalloutExtender Control Extender
	Getting Started with Animation

	jQuery
	Summary

	Appendix A: Web Control Reference
	The WebControl Class
	Properties
	Methods

	Standard Web Controls
	AdRotator
	Properties
	Events

	BulletedList
	Properties
	Events

	Button
	Properties
	Events

	Calendar
	Properties
	Events

	CheckBox
	Properties
	Events

	CheckBoxList
	Properties
	Events

	DropDownList
	Properties
	Events

	FileUpload
	Properties
	Methods

	HiddenField
	Properties

	HyperLink
	Properties

	Image
	Properties

	ImageButton
	Properties
	Events

	ImageMap
	Properties
	Events

	Label
	Properties

	LinkButton
	Properties
	Events

	ListBox
	Properties
	Events

	Literal
	Properties

	MultiView
	Properties
	Methods
	Events

	Panel
	Properties

	PlaceHolder
	Properties

	RadioButton
	Properties
	Events

	RadioButtonList
	Properties
	Events

	TextBox
	Properties
	Events

	Wizard
	Properties
	Methods
	Events

	Xml
	Properties

	Validation Controls
	CompareValidator
	Properties
	Methods

	CustomValidator
	Methods
	Events

	RangeValidator
	Properties
	Methods

	RegularExpressionValidator
	Properties
	Methods

	RequiredFieldValidator
	Properties
	Methods

	ValidationSummary
	Properties

	Navigation Web Controls
	SiteMapPath
	Properties
	Methods
	Events

	Menu
	Properties
	Methods
	Events

	TreeView
	Properties
	Methods
	Events

	Ajax Web Extensions
	ScriptManager
	Properties
	Events

	Timer
	Properties

	UpdatePanel
	Properties
	Methods

	UpdateProgress
	Properties

	Appendix B: Deploying ASP.NET Websites
	ASP.NET Hosting Considerations
	Using Visual Web Developer Express to Deploy ASP.NET Websites
	Deploying MVC Sites and Web Applications
	ASP.NET Deployment “Gotchas”
	Using the SQL Server Hosting Toolkit
	Dealing with SQL Security

	Index

