

JavaScript: Novice to Ninja 2nd Edition
by Darren Jones

Copyright © 2017 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
English Editor: Katie Monk
Technical Editor: James Hibbard
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations
embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066
Web: www.sitepoint.com
Email: books@sitepoint.com

ISBN 978-0-9953826-2-6 (print)

ISBN 978-0-9953827-7-0 (ebook)
Printed and bound in the United States of America

About Darren Jones
Darren has been programming and building websites since the turn of the
millennium. He wrote the book Jump Start Sinatra in 2013 and followed it up
with the Getting Started With Ruby video tutorials for SitePoint Premium. He
has also written a number articles for SitePoint’s website.

He started using JavaScript much more often after the release of Node.js. He
loves the power and flexibility of the language as well as the amazing
ecosystem that has grown around it. At the moment he is working on using
React and Redux to develop an interactive online math quiz.

He was born in the city of Manchester and still lives there, where he teaches
mathematics and enjoys playing water polo.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, Ruby, mobile development, design,
and more.

To Helen - thanks for always being there for me.

http://www.sitepoint.com/

Preface
In the preface to the first edition of this book, I talked about the ubiquity of
JavaScript and its exponential growth. This shows no signs of slowing down
as the second edition is published. In fact, there is a new phenomenon known
as “JavaScript fatigue” that is used to describe the unrelenting barrage of new
JavaScript tools and methodologies that are constantly appearing. In my
view, this shouldn’t be viewed as a negative, it’s just a sign that the
JavaScript landscape is a fertile one, and that will mean an ever-expanding
list of new tools and libraries. Most of these help to take the language
forward and make it better, and eventually these ideas make it into the official
language. There’s now a new version of JavaScript scheduled for release
every year. And, with each passing year, and each new version, the language
becomes more powerful and mature, capable of building complex
applications. It’s still not perfect, but it’s getting better all the time.

While I was halfway through writing this second edition, I read somewhere
that print books about JavaScript programming are pointless because they are
out of date by the time they are published. On the one hand, I can appreciate
this. The first edition of this book didn't use ES6 notation, which seemed to
be a good idea at the time as it had only just become a standard, and hardly
any browsers supported it. But ES6 quickly gained traction due to Node.js,
and tools such as Babel bypassed the need for browser support. This meant
that some of the code in the first edition appeared dated almost immediately
after it was published. In this edition, I tried to avoid this happening by using
the most up-to-date notation of the language, and removing most of the
references to browser support. And, on the other hand, it doesn't matter,
because, despite the unrelenting pace the JavaScript world moves at, the basic
principles of programming don't change. This book is as much about learning
to program as it is about learning JavaScript and, as in the first edition, it will
teach you about fundamental programming principles. The way they are
implemented might change, but the basic theory remains the same. I feel that
JavaScript is an excellent choice of language for learning these techniques,
particularly because of how easy it is to access – you can run a program from
within your browser, without the need for installing any special software!

It’s an exciting time to be programming JavaScript, and it’s never too late to
learn. In fact, if you are only just beginning to learn, you are lucky, as you’ll
be able to ignore all its baggage from the past and focus on the exciting
language it has become. Whatever level you’re at, I hope you get something
from this book and enjoy programming in the language of the web!

The aim of this book is to introduce you to programming using the JavaScript
language, eventually helping you to develop into a JavaScript ninja.

This is an exciting time to be learning JavaScript, having finally outgrown its
early reputation as a basic scripting language used to produce cringeworthy
effects on web pages. Today, JavaScript is used to produce professional and
powerful web applications. Modern browsers are now capable of running
JavaScript code at lightning speed, and Node.js has helped to revolutionize it
by facilitating its use in other environments. This has led to a much more
professional and structured approach to building JavaScript applications,
where it is now considered a fully-fledged programming language. In short,
JavaScript has grown up.

JavaScript has a number of cool features that make it stand out from other
languages, such as callbacks, first-class functions, prototypal inheritance, and
closures. Its event-based model also makes it a very good choice for modern
web application development. JavaScript’s ace in the pack, though, is
something of which every language is envious ― its *ubiquity*. JavaScript is
available almost everywhere; anybody who has access to a browser can use
it. And this is increasing every year as it becomes more readily available
outside the browser environment. This translates into JavaScript’s reach
being immense: it is already the [most popular language on GitHub I can only
see JavaScript growing even more popular in the future as it becomes the
language of choice for the Internet of Things — helping to control household
appliances, and even program robots.

Before I get carried away, though, I should point out that JavaScript is far
from perfect. It is missing some important programming constructs, such as
modules and private functions, which are considered standard in many
modern programming languages. Yet it’s also an unbelievably flexible
language, where many of these gaps can be filled using the tools that it
provides. In addition, many libraries have sprung into existence that help to

extend JavaScript so that it’s now able to reach its full potential.

This book starts off with the basics, assuming no programming or JavaScript
knowledge, but quickly gets up to speed covering all the main topics in great
depth, such as functions, objects, and DOM manipulation.

More advanced topics, such as error handling and testing, functional
programming and OOP, are then introduced after the basics have been
covered. There have been some exciting new developments in the world of
JavaScript over the last few years, such as Ajax, HTML5 APIs and task
runners, and these are covered in the last part of the book. There’s also a
practical project to build a quiz application that is developed throughout the
book towards the end of each chapter. I’ve written with developing for
modern browsers in mind, so I’ve always tried to use the most up-to-date
methods in the examples. Having said that, I’ve also tried to acknowledge if
something might not work in an older browser, or if a workaround is needed.

It’s a long way ahead ― 16 chapters, to be precise. But remember, every
ninja’s journey starts with a single page (or something like that, anyway). So,
turn the page and let’s get started!

Who Should Read This Book
This book is suitable for beginner-level web designers and developers. Some
knowledge of HTML and CSS is assumed, but no previous programming
experience is necessary.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles
throughout this book to signify different types of information. Look out for
the following items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds were singing and the kids were all back at school.</p>

Some lines of code should be entered on one line, but we’ve had to wrap
them because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://github.com/spbooks/jsninja2 contains the book's code archive.
https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky web problems.
books@sitepoint.com is our email address, should you need to contact
us to report a problem, or for any other reason.

https://github.com/spbooks/jsninja2
https://www.sitepoint.com/community/

Chapter 1: Hello, JavaScript
In this chapter, we’re going to introduce the JavaScript language, as well as
set up a programming environment. We’ll also get started with some
programming and write a couple of programs in JavaScript!

Here’s what this chapter will cover:

What is programming?

The history of JavaScript

The tools that are needed to program in JavaScript

Installing Node.js

JavaScript in the console

Hello, world! Your first JavaScript program

JavaScript in the web browser

Graceful degradation and progressive enhancement

A more complicated JavaScript program

Project - we'll start a quiz project that will be developed throughout the
book

Programming
Programming is about making computers do what you want. A computer
program is basically a series of instructions that tell your computer how to
perform a task. Unfortunately, though, computers don’t speak the same
language as us ― they only use 1s and 0s. The first computers were
programmed using punched cards, with a hole representing a 1 and no hole
representing 0.

The first computer programs were written in machine code and assembly
language. These are low-level programming languages that are closely
associated with a computer’s hardware. This means they can be difficult
languages to program in because they involve writing abstract code that is
heavily tied to a computer’s architecture. If speed is very important, however,
then writing in machine code or assembly language can be the best option.

High-level programming languages, on the other hand, allow abstractions
to be used that make the code easier for humans to read and write. Programs
are written in a language such as C, C++ or Java, which is then compiled into
machine code and executed. The programs written using these languages are
very fast, making high-level languages suited to writing games and
professional business software where speed is important. Most native apps
are also written in higher-level languages.

Scripting languages are also high-level, but they are interpreted, which
means they are translated into machine code at run time. This often makes
them slower than compiled languages, although interpreters are becoming
ever more sophisticated, and increasingly blurring the lines between
compiled and interpreted languages.

JavaScript
The language we’ll be learning in this book is JavaScript, often referred to as
the language of the web.

Nearly all web browsers can run JavaScript, making it one of the most
popular programming languages in the world. It has a low barrier to entry ―
all you need to program in JavaScript is a text editor and a web browser.
Although it is easy to get started, JavaScript can be a tricky language to grasp
as it has some unique features and interesting quirks. Once you have
mastered it, though, you’ll find it is a very flexible and expressive language
that can create some powerful applications.

JavaScript is a high-level scripting language that is interpreted and compiled
at run time. This means it requires an engine that's responsible for
interpreting a program and running it. The most common JavaScript engines
are found in browsers such as Firefox, Chrome or Safari, although JavaScript
can be run without a browser using an engine such as Google V8. Many
modern JavaScript engines use a Just-In-Time (JIT) interpreting process,
which considerably speeds up the compilation, making programs run faster.

JavaScript is also a dynamic language, so elements of a program can change
while it's running, and it can do lots of things in the background at run time
(such as type checking, which we'll cover later) ― things that a compiled
language like C++ would do at compile time.

The History of JavaScript
The World Wide Web started life as a bunch of pages linked by hyperlinks.
Users soon wanted more interaction with these pages, so Netscape (an early
browser vendor) asked one of their employees, Brendan Eich, to develop a
new language for their Navigator browser. This needed to be done quickly
because of the intense competition between Netscape and Microsoft at the
time.

Eich managed to create a prototype scripting language in just 10 days. To do
this, he borrowed various elements from other languages, including AWK,
Java, Perl, Scheme, HyperTalk and Self. This was an impressive feat, but in
the rush to be first to market, a number of quirks and bugs ended up in the
language that were never fully addressed.

The new language was originally called Mocha, but it was changed to
LiveScript, then hastily rebranded as JavaScript so it could benefit from the
publicity that Sun Microsystem’s Java language was attracting at the time.
This name has often caused some confusion, with JavaScript often considered
a lighter version of Java. However, the two languages are unrelated ―
though JavaScript does have syntactical similarities to Java.

JavaScript made its debut in version 2 of Netscape’s Navigator browser in
1995. The following year, Microsoft reverse-engineered JavaScript to create
their own version, calling it JScript to avoid copyright issues with Sun
Microsystems, who owned the Java trademark. JScript shipped with version 3
of the Internet Explorer browser, and was almost identical to JavaScript ― it
even included all the same bugs and quirks ― but it did have some extra
Internet Explorer-only features. Microsoft included another scripting
language called VBScript with Internet Explorer at the same time.

JavaScript (and JScript) was immediately popular. It had a low barrier to
entry and was relatively easy to learn, which meant an explosion in its usage
for making web pages dynamic and more interactive. Unfortunately, its low
barrier was also a curse ― many people were now writing snippets of code

without understanding what they were doing. Code could now be easily
copied and pasted, and was often used incorrectly, leading to lots of poor
examples appearing all over the web.

JavaScript was also frequently used to create annoying pop-up adverts, as
well as for 'browser sniffing' (the process of detecting which browser was
being used to view a web page). It had started to gain a negative reputation.

The Browser Wars
By the time Netscape Navigator 4 and Internet Explorer 4 were released,
JavaScript had become incredibly popular. Microsoft had started a lot of hype
about the term Dynamic HTML, or DHTML for short, to refer to the use of
JavaScript to make HTML more interactive and dynamic. In an attempt to
capitalize on this popularity, Netscape and Microsoft tried to add new
proprietary features, which lead to different syntaxes being used. This 'arms
race' of adding new features became known as the 'Browser Wars'. The
unfortunate downside was that programmers had to write two versions of
code to achieve the same results in each browser. Professional programmers
often dismissed JavaScript as a toy language, unsuitable for any serious
programming, but this was unfair criticism ― the language wasn’t the
problem, it was the way it was being used.

Eventually, Microsoft won the browser wars and Internet Explorer emerged
as the dominant browser. Support for standards also increased, helped largely
by the efforts of the Web Standards Project (WaSP). Developer and browser
vendors started to work together and embrace the standards laid out by the
World Wide Web Consortium (W3C) and ECMA.

The open-source web browser, Firefox, debuted in 2002, and Apple launched
the Safari browser in 2003. Both had strong standards support, which meant
developers were able to produce better web applications using JavaScript that
behaved consistently across different browsers.

Web 2.0
In 2005, sites such as Google Maps, Flickr and Gmail started to appear, and
demonstrated that JavaScript was capable of creating rich internet
applications that looked and behaved like native desktop applications. At
around the same time, the term Ajax, short for Asynchronous JavaScript And
XML, was coined by Jesse James Garrett. This described a technique of
obtaining data from a server in the background and updating only the relevant
parts of the web page without the need for a full page reload, enabling users
to continue interacting with the rest of the page. This created a more seamless
experience for users and was used extensively in many Web 2.0 applications.
As a result, professional programmers started to take more notice of
JavaScript, and it began to be seen as a powerful and flexible programming
language, capable of producing high-quality web applications.

Standards
As JavaScript became used for more sophisticated applications, and browsers
embraced standards, the JavaScript landscape changed. A new browser war
started, but this time it was about which browser could be the most standards-
compliant. There has also been competition to increase the speed of the
JavaScript engine that is built into the different browsers. This started in 2008
when engineers at Google developed the V8 engine to run inside the Chrome
browser. It was significantly faster than previous JavaScript engines, and
signaled another arms race as other browser vendors responded by increasing
the speed of their engines. JavaScript now runs significantly faster in modern
browsers and the pace of improvement shows no sign of slowing down.

HTML5
HTML5 is the latest HTML specification, though it’s actually more of an
umbrella term for all the latest technologies that are used on the web. This
includes HTML, CSS3 and lots of APIs that use JavaScript to interact with
web pages. These will be covered in more detail in [Chapter 10].

HTML5 was finalized in 2014, and the recommendation for the next version,
5.1, was proposed at the end of 2016 (https://www.w3.org/TR/html/). It has
quickly become the dominant standard for web development. JavaScript is a
key feature in how some of its more interesting aspects work.

https://www.w3.org/TR/html/

Node.js
In 2009, Ryan Dahl developed Node.js (commonly known as just Node),
which allowed server-side applications to be written in JavaScript. Node is
based on Google's V8 engine and allows the creation of fast and powerful
real-time web applications written exclusively in JavaScript. It also lead to
many applications and JavaScript libraries that don’t use the browser at all.
Node.js has proven to be exceptionally popular, and its usage continues to
grow. This has increased the interest in and use of JavaScript as it starts to
appear in many environments outside the web.

The popularity of Node has lead to an interesting development known as
Isomorphic JavaScript. This involves having the same JavaScript code that
can be run either on the client or server side: if a browser is unable to run the
code, it can be run on the server and downloaded, or if the server is
unavailable, the code can be run on the client.

JavaScript Versions
In 1996, Netscape and Sun Microsystems decided to standardize the
language, along with the help of the European Computer Manufacturers
Association, who would host the standard. This standardized language was
called ECMAScript to avoid infringing on Sun’s Java trademark. This caused
even more confusion, but eventually ECMAScript was used to refer to the
specification, and JavaScript was (and still is) used to refer to the language
itself.

In an ideal world, the ECMAScript standard should mean that all JavaScript
engines interpret programs in the same way. But the specification can be
difficult to interpret in places, so the implementations of JavaScript can vary
from engine to engine. This is why some web browsers behave differently
when running JavaScript programs. JavaScript is also a superset of
ECMAScript as it often contains additional non-standard features such as the
alert() function.

The working group in charge of maintaining ECMAScript is known as
Technical Committee 39, or TC-39. It’s made up of representatives from all
the major browser vendors such as Apple, Google, Microsoft and Mozilla, as
well as invited experts and delegates from other companies with an interest in
the development of the web. They have regular meetings to decide on how
the language will develop.

When JavaScript was standardized by TC-39 in 1997, the specification was
known as ECMAScript version 1. Version 2 followed a year later but didn't
make any major changes to the language. In 1999, ECMAScript version 3
was published in December 1999 and added a variety of new features.

The development of ECMAScript version 4 was mired by disagreements on
TC-39 over the direction the language should take. Some members believed
the language needed lots of big changes to make it more robust, while others
thought it only needed minor changes. Many new features were proposed, but
were often felt to be overly ambitious or too difficult to implement in

browsers. After many years without progress, version 4 was eventually
abandoned, and the working party skipped over this version and went straight
on to developing version 5. It was agreed that this needed be a slimmed down
specification that could actually be implemented, and it was finally published
in December 2009. ECMAScript version 5 added many new features to the
language, but it was far less ambitious than the ill-fated version 4. Despite
this, some of these features took a long time to be fully supported by browser
JavaScript engines.

After ES5 was published, work started on a new standard that was
codenamed 'Harmony'. The idea with Harmony was to outline all the
desirable features for the next versions of JavaScript. It would take another
six years, but eventually most of these features made it into ECMAScript
version 6, although some of them were put off until version 7 or later.

In 2015, TC-39 decided to adopt a new approach and start publishing a new
specification every year, with the version named after the year it was
published. This meant that only the features that had been approved would
make it into the specification for that year. As a result, ECMAScript version
6 was renamed ECMAScript 2015 when it was published in June 2015 and it
added some major new features to the language. The plan is to release a new
version in June of each year so the language evolves slowly as new features
are added in a more gradual way; rather than making drastic additions every
five or so years. This means ES2015 will probably be the last version of
JavaScript to have such a large number of new features and make significant
changes to the language. In fact, version 7, or ECMAScript 2016, was
published in June 2016 and only added two new features to the previous
version.

In this book we’ll refer to ES2015 as ES6, as this is what it’s most commonly
called. The code examples will use the most up-to-date syntax, with a note to
say which version of ECMAScript introduced a particular feature.

We'll also assume you're using a modern browser (try to update to the latest
version of whichever is your favorite). You can see a chart that shows which
features have been implemented in different browsers here.

http://kangax.github.io/compat-table/es2016plus/

The Future of JavaScript
These are exciting times for JavaScript as it’s used for more and more
applications beyond simply making web pages interactive. There’s been a
huge rise in the use of Single Page Applications (SPAs), which run in the
browser and rely heavily on JavaScript. The next iteration of these are
Progressive Web Apps (PWAs) that use web technologies to create
applications that behave like a native app on a mobile device, but without
being installed from an app store. HTML5 games that use JavaScript
extensively are also becoming increasingly popular, especially as the
graphical ability of browsers continues to improve.

JavaScript and HTML5 technologies can be used to develop browser
extensions, Windows desktop widgets and Chrome OS applications. Many
non-web-related applications also use JavaScript as their scripting language.
It can be used to add interactivity to PDF documents, interact with a database,
and even control household appliances!

It certainly seems like JavaScript has a bright future. There are many more
exciting new features under discussion that will hopefully make it into future
versions of JavaScript and help to make it a more powerful and expressive
language. As the web platform continues to evolve and mature, and its usage
grows beyond the browser, JavaScript is sure to remain a central part of
future developments in technology.

https://developers.google.com/web/progressive-web-apps/

A Ninja Programming Environment
If you're going to be a JavaScript programmer, you're going to need some
tools. It is possible to write and run JavaScript programs using just a browser,
but in order to get the most out of this book, you'll need a text editor for
writing and editing your programs and a JavaScript engine to run them in.
This means you'll need a modern, an up-to-date browser, and an installation
of the latest version of Node.

I was a little apprehensive about suggesting that Node be installed at the start
of the book when we are still covering the basics of learning JavaScript. But
after a lot of consideration, I think it’s the best thing to do for the following
reasons:

1. A lot of online tutorials require you to have Node installed. I don't think
I'll be doing you any favors by leaving you unable to follow these
tutorials without a Node installation.

2. Node allows you to use most of the latest features in the language,
whereas some of them won't work in browsers.

3. You'll be able to install a huge variety of tools and code libraries using
npm (The Node Package Manager), which is currently the largest code
repository in the world.

4. Node can be used to install Babel, a transpiler that will convert code
written in the latest version of JavaScript into code that can will run in
most browsers.

If you don't want to install Node at this point (or you are unable to, for
whatever reason), then it will still be possible to run most of the code
examples in the book. There are also a number of online options that will let
you use the latest version of JavaScript.

https://developers.slashdot.org/story/17/01/14/0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
https://babeljs.io

Installing Node
There are two options for installing Node: The installer or Node Version
Manager.

Node Installer

If you use Windows or Mac OS, then you can use the Node Installer to do all
the installation for you ― all you need to do is download it and follow the
instructions.

Node Version Manager

The other option is to use the Node Version Manager (nvm). An advantage of
using nvm is that it allows you to install multiple versions of Node and makes
it easy to quickly update your installation to the latest version. Unfortunately,
nvm doesn’t support Windows, but can be installed on a Mac or Linux. To
download and install nvm, just follow the two-step process outlined below:

The Command Line

If you're not familiar with running apps and tools from the command line,
then don't worry, it's not that difficult. It might seem strange at first, but after
a while, you'll soon be wondering how you coped without it!

You can find this on Mac OS in Applications -> Utilities -> Terminal, or use
Spotlight to search for Terminal. Type the command into this window and hit
Return to run it.

On Windows, you access it by entering cmd in the Start menu.

If you're using Linux, I assume you're already comfortable with opening and
using the command line!

https://nodejs.org/en/download/

Step 1: Install Build Tools

If you have a Mac, you’ll need to install the Xcode command line tools by
running the following command:

xcode-select --install

If you’re using Linux, you'll need to install the “build-essential” package.
This can be done by running the following commands on Debian-based
distros (use your package manager of choice with other distros):

sudo apt-get update
sudo apt-get install build-essential

Step 2: Install nvm

To install nvm, simply run the following command:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.0/install.sh | bash

Now that nvm is installed, you'll need to reload your shell, before you can
install Node. This can be done using the following command in Mac Os:

. ~/.bash_profile

Or by using the following command in Linux:

. ~/.bashrc

Now you can install the latest version of Node with the following command:

nvm install node

You might have to wait a while for everything to download and install, but
once it's finished, you can check everything is working properly by entering

the following command:

node -v

This returns the version number of Node that is installed.

You can use nvm to install multiple different versions of Node, as well as
using it to switch from one version to the other. You can find out more about
it by reading this article https://www.sitepoint.com/quick-tip-multiple-
versions-node-nvm/.

https://www.sitepoint.com/quick-tip-multiple-versions-node-nvm/

JavaScript In The Console
A console is a useful tool for experimenting and testing out pieces of code. It
allows you to enter code, then it displays the output after you press 'Enter'.
This is different from a full JavaScript program that contains many lines of
code that are interpreted at the same time. A console lets you see the results
of each line of code as it is entered and is perfect for trying out small snippets
of code. We'll often use the console to demonstrate many of the examples in
this book.

There are three options available to use a console:

1. If you installed Node, you can use the REPL, which stands for Read
Eval Print Loop. It allows you to write JavaScript in the console then
outputs the results. To start the REPL, all you need to do is open up a
terminal prompt and enter the following command:

node

This should then display a prompt like the one shown in the screenshot
below:

The REPL

To exit the REPL, simply hold the ctrl key and hit C twice.

1. Another option is to use the JavaScript console that comes with your
browser. You can access the console by opening your browser and
pressing F12 (or Command + Option + I on a Mac) to open the
developer tools then clicking on the Console tab. It should look similar
to the screenshot below:

Browser Console

1. The last option is to use the E66 Console website. This allows you to
enter JavaScript commands directly into the browser and see the results.
It also lets you write in ES6 and see what it looks like after it has been
transpiled into ES5.

http://es6console.com

ES6 Console

Text Editors
One of the best things about programming in JavaScript is that you don't need
any fancy and expensive programs to write the code – just a simple text
editor.

The default text editor that comes with your operating system (such as
Notepad on Windows) will work just fine, although you might want to
upgrade to a text editor that is geared towards programming. These offer
extra features such as code highlighting, code completion and file browsing
without using too much of your system's resources. There are a number of
good free options available, including Atom text editor and Brackets (which
is actually built using JavaScript!).

Another option is to use an Integrated Development Environment (IDE).
These usually have more features than text editors, but they could be
considered overkill for small projects. The community edition of Microsoft
Visual Studio is a good option that is also free to use.

Online Options

CodePen, JSFiddle and JS Bin are all online services that let you enter
HTML, CSS and JavaScript code and view the results. They even allow you
to use pre-processors on your JavaScript and CSS. This means you can write
your code using the most up-to-date version of JavaScript and it will still
work, even if your browser doesn't support it. They also let you save all your
creations in the cloud.

Many of the examples in this book have been saved on CodePen, so you can
take a look at the code as well as saving your own copy to play around with.

https://atom.io/
http://brackets.io/
https://www.visualstudio.com
http://codepen.io
https://jsfiddle.net/
https://jsbin.com

Your First JavaScript Program
That’s enough talk about JavaScript! Let's write your first program.

It is a tradition when learning programming languages to start with a "Hello
world!" program. This is a simple program that outputs the phrase "Hello
world!" to announce your arrival to the world of programming. We’re going
to stick to this tradition and write a "Hello world" program in JavaScript. It
will be a single statement that logs the phrase "Hello world!" to the console.

To get started, you'll need to open up your preferred console (either the Node
REPL, browser console, or ES6 Console on the web). Once the console has
opened, all you need to do is enter the following code:

console.log('Hello world!');

Then press Enter. if all went to plan you should see an output of ‘Hello
world!’ displayed; similar to the screenshot below.

http://es6console.com

"Hello, world!"

Congratulations, you’ve just written your first JavaScript program! It might
not look like much, but a wise person once said that every ninja
programmer’s journey begins with a single line of code (or something like
that, anyway!).

JavaScript in the Browser
JavaScript is an interpreted language and needs a host environment to run.
Because of its origins, the main environment that JavaScript runs in is the
browser, although it can be run in other environments; for example, our first
program that we just wrote ran in the Node REPL. Node can also be used to
run JavaScript on a server. By far the most common use of JavaScript is still
to make web pages interactive. Because of this, we should have a look at
what makes up a web page before we go any further.

Three Layers of the Web
Nearly all web pages are made up of three key ingredients ― HTML, CSS
and JavaScript. HTML is used to mark up the content. CSS is the
presentation layer, and JavaScript adds the interactivity.

Each layer builds on the last. A web page should be able to function with just
the HTML layer ― in fact, many websites celebrate 'naked day' when they
remove the CSS layer from their site. A website using just the HTML layer
will be in its purest form and look very old school, but should still be fully
functional.

Keep These Layers Separate

It is widely considered best practice to separate the concerns of each layer, so
each layer is only responsible for one thing. Putting them altogether can lead
to very complicated pages where all of the code is mixed up together in one
file, causing ‘tag soup’ or 'code spaghetti'. This used to be the standard way
of producing a website and there are still plenty of examples on the web that
do this.

https://css-naked-day.github.io/

Unobtrusive JavaScript
When JavaScript was initially used, it was designed to be inserted directly
into the HTML code, as can be seen in this example that will display a
message when a button is clicked:

<button id='button' href='#' onclick='alert("Hello World")'>Click Me

This made it difficult to see what was happening, as the JavaScript code was
mixed up with the HTML. It also meant the code was tightly coupled to the
HTML, so any changes in the HTML required the JavaScript code to also be
changed to stop it breaking.

It’s possible to keep the JavaScript code away from the rest of the HTML by
placing it inside its own <script> tags. The following code will achieve the
same result as that above:

<script>
const btn = document.getElementById(’link’)
btn.addEventListener('click', function() {
 alert('Hello World!');
 };
</script>

This is better because all the JavaScript is in one place, between the two
script tags, instead of mixed with the HTML tags.

We can go one step further and keep the JavaScript code completely separate
from the HTML and CSS in its own file. This can be linked to using the src
attribute in the script tag to specify the file to link to:

<script src='main.js'></script>

The JavaScript code would then be placed in a file called main.js inside the
same directory as the HTML document. This concept of keeping the

JavaScript code completely separate is one of the core principles of
unobtrusive JavaScript.

In a similar way, the CSS should also be kept in a separate file, so the only
code in a web page is the actual HTML with links to the CSS and JavaScript
files. This is generally considered best practice and is the approach we’ll be
using in the book.

Self-Closing Tags

If you’ve used XML or XHTML, you might have come across self-closing
tags such as this script tag:

<script src='main.js' />

These will fail to work in HTML5, so should be avoided.

You may see some legacy code that uses the language attribute:

<script src='main.js' language='javascript'></script>

This is unnecessary in HTML5, but it will still work.

https://en.wikipedia.org/wiki/Unobtrusive_JavaScript

Graceful Degradation and Progressive
Enhancement
Graceful degradation is the process of building a website so it works best in
a modern browser that uses JavaScript, but still works to a reasonable
standard in older browsers, or if JavaScript or some of its features are
unavailable. An example of this are programs that are broadcast in high
definition (HD) ― they work best on HD televisions but still work on a
standard TV; it’s just the picture will be of a lesser quality. The programs will
even work on a black-and-white television.

Progressive enhancement is the process of building a web page from the
ground up with a base level of functionality, then adding extra enhancements
if they are available in the browser. This should feel natural if you follow the
principle of three layers, with the JavaScript layer enhancing the web page
rather than being an essential element that the page cannot exist without. An
example might be the phone companies who offer a basic level of phone
calls, but provide extra services such as call-waiting and caller ID if your
telephone supports it.

Whenever you add JavaScript to a web page, you should always think about
the approach you want to take. Do you want to start with lots of amazing
effects that push the boundaries, then make sure the experience degrades
gracefully for those who might not have the latest and greatest browsers? Or
do you want to start off building a functional website that works across most
browsers, then enhance the experience using JavaScript? The two approaches
are similar, but subtly different. This blog post might help you to decide
which approach to take.

http://www.sitepoint.com/progressive-enhancement-graceful-degradation-choice/

Your Second JavaScript Program
We’re going to finish the chapter with a second JavaScript program that will
run in the browser. This example is more complicated than the previous one
and includes a lot of concepts that will be covered in later chapters in more
depth, so don’t worry if you don't understand everything at this stage! The
idea is to show you what JavaScript is capable of, and introduce some of the
important concepts that will be covered in the upcoming chapters.

We’ll follow the practice of unobtrusive JavaScript mentioned earlier and
keep our JavaScript code in a separate file. Start by creating a folder called
rainbow. Inside that folder create a file called rainbow.html and another
called main.js.

Let’s start with the HTML. Open up rainbow.html and enter the following
code:

<head>
<meta charset='utf-8'>
<title>I Can Click A Rainbow</title>
</head>
<body>
<button id='button'>click me</button>
<script src='main.js'></script>
</body>
</html>

This file is a fairly standard HTML5 page that contains a button with an ID of
button. The ID attribute is very useful for JavaScript to use as a hook to
access different elements of the page. At the bottom is a script tag that links
to our JavaScript file.

Now for the JavaScript. Open up main.js and enter the following code:

const btn = document.getElementById('button');

const rainbow = ['red','orange','yellow','green','blue','rebeccapurple','violet'];

function change() {
document.body.style.background = rainbow[Math.floor(7*Math.random())];
}
btn.addEventListener('click', change);

Our first task in the JavaScript code is to create a variable called btn (we
cover variables in Chapter 2).

We then use the document.getElementById function to find the HTML
element with the ID of btn (Finding HTML elements is covered in Chapter
6)). This is then assigned to the btn variable.

We now create another variable called rainbow. An array containing a list of
strings of different colors is then assigned to the rainbow variable (we cover
strings and variables in Chapter 2 and arrays in Chapter 3).

Then we create a function called change (we cover functions in Chapter 4).
This sets the background color of the body element to one of the colors of the
rainbow (changing the style of a page will be covered in Chapter 6). This
involves selecting a random number using the built-in Math object (covered
in Chapter 5) and selecting the corresponding color from the rainbow array.

Last of all, we create an event handler, which checks for when the button is
clicked on. When this happens it calls the change function that we just
defined (event handlers are covered in Chapter 7).

Open rainbow.html in your favorite browser and try clicking on the button a
few times. If everything is working correctly, the background should change
to every color of the rainbow, such as in the screenshot below.

I can click a rainbow

If you want to try this out quickly, you can checkout the code on CodePen.
For the sake of getting some practice in though, I would recommend you also
take the time to create these files, write up the code by hand and try running it
in your browser as well.

http://codepen.io/daz4126/pen/VPRdGa

Don't Break the Web
An important concept in the development of the JavaScript language is that it
has to be backward compatible. That is, all old code must work the same
way when interpreted by an engine running a new specification (it's a bit like
saying that PlayStation 4 must still be able to run games created for
PlayStation 1, 2 and 3). This is to prevent JavaScript from 'breaking the web'
by making drastic changes that would mean legacy code on some websites
not running as expected in modern browsers.

So new versions of JavaScript can't do anything that isn't already possible in
previous versions of the language. All that changes is the notation used to
implement a particular feature to make it easier to write. This is known as
syntactic sugar, as it allows an existing piece of code to be written in a nicer
and more succinct way.

The fact that all versions of JavaScript are backwardly compatible means that
we can use transpilers to convert code from one version of JavaScript into
another. For example, you could write your code using the most up-to-date
version of JavaScript and then transpile it into version 5 code, which would
work in virtually any browser.

A new version of ECMAScript every year means it’s likely that browsers will
always be slightly when it comes to implementing the latest features (they're
getting faster at doing this, but it’s still taken two years for most browsers to
support ES6 modules). This means that if you want to use the most up-to-date
coding techniques, you'll probably have to rely on using a transpiler, such as
Babel, at some point.

If you find that some code isn't working in your browser, you can add the
following link into your HTML document:

<script src='https://unpkg.com/babel-standalone@6/babel.min.js'></script>

Note that this link needs to go before any JavaScript that needs to be

https://babeljs.io

transpiled.

You also have to change the type attribute to 'text/babel' in any links to
JavaScript files. For example, the link to the JavaScript file in the example
above would change to:

<script type='text/babel' src='main.js'></script>

This isn't the best long-term solution as it requires the browser to transpile all
the code at run-time, although it’s fine for experimenting with code. A better
solution is to transpile your code as part of a build process, which is covered
in Chapter 15.

A number of online editors such as CodePen, Babel REPL and JS Fiddle
allow you to transpile code in the browser.

The ECMAScript 6 compatibility table also contains up-to-date information
about which features have been implemented in various transpilers.

http://codepen.io
https://babeljs.io/repl
https://jsfiddle.net
http://kangax.github.io/compat-table/es6/

The Project: Quiz Ninja
Throughout this book we will be building an example application called 'Quiz
Ninja'. This is a quiz application where the aim is for the player to answer
questions about the real names of super heroes. The quiz application will run
in the browser and use many of the concepts covered in the book. At the end
of each chapter we’ll use the skills we have covered in that chapter to develop
the application further.

The application will adhere to the principles of three separate web layers and
unobtrusive JavaScript. So we need to keep the HTML, CSS and JavaScript
in separate files. Let’s create those files now.

Create a folder called quiz, and inside that create the following files:

index.html

main.js

styles.css

Add the following code to index.html:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<meta name='description' content='A JavaScript Quiz Game'>
<title>Quiz Ninja</title>
<link rel='stylesheet' href='styles.css'>
</head>
<body>
 <section class='dojo'>
 <div class='quiz-body'>
 <header>
 <h1>Quiz Ninja!</h1>
 </header>
 </div>
 </section>
<script src='main.js'></script>

</body>
</html>

This is a standard HTML5 layout with a simple heading at the top of the
page. We’ll add more to the page as the application develops in later
chapters.

Now it’s time to style the page. Add the following code to the styles.css
file:

@import url('https://fonts.googleapis.com/css?family=Baloo+Da|Roboto');

body{
background: #5F1C1C;
font-family: 'Roboto', sans-serif;
}
.dojo{
background: url(https://cdn.rawgit.com/alexmwalker/6acbe9040d9fe6e5e9fd758a25e1b2a5/raw/9c8131eb2ccc1e3839a5a5114cb16b5dc74daf04/dojo.svg) no-repeat;
width: 100%;
height: 800px;
background-size: 100% auto;
padding-top: 10px;
}
.quiz-body{
background: rgba(255,255,255,1);
margin: 150px 33%;
padding: 10px 20px 50px 20px;
-webkit-box-shadow: 4px 4px 11px 3px rgba(0,0,0,0.3);
-moz-box-shadow: 4px 4px 11px 3px rgba(0,0,0,0.3);
box-shadow: 4px 4px 11px 3px rgba(0,0,0,0.3);
}
h1{
color: #611BBD;
font-family: 'Baloo Da', cursive;
font-weight: 900;
text-align: center;
font-size: 48px;
margin: 0;
}
button {
color: #ffffff;
background-color: #611BBD;
border-color: #130269;
border-radius: 4px;
margin: 0.2em 0;

display: block;
width: 100%;
font-size: 24px;
}
#question {
font-size: 24px;
}

#result{
color: #fff;
margin: 0.2em 0;
width: 100%;
text-align: center;
}
.correct {
 background-color: #0c0;
}
.wrong {
color: #fff;
background-color: #c00;
}

This file covers all the styles that will be used throughout the project, so quite
a few of the styles aren't used at first, but it means we won't need to edit this
file again in the book.

And finally we’ll add some interactivity using JavaScript. Place the following
code inside the main.js file:

alert('Welcome to Quiz Ninja!');

The first line uses the alert() function that displays a welcome message to
the player in a dialog box in the browser. Although alert isn’t actually part
of the official ECMAScript specification, it’s used by all browsers as a way
of showing messages.

To give this a try, open the index.html file in your favorite browser. You
should be greeted by the welcome message alert box, such as in the
screenshot below.

"Hello, world!"

You can also see a live example on CodePen.

This gives us a good solid start to our project that we can build on over the
course of the book as our JavaScript knowledge develops.

https://codepen.io/daz4126/pen/YNgvdG

Chapter Summary
JavaScript was created in 1995 by Brendan Eich, an employee of
Netscape.

It quickly became popular and was soon considered to be the language
of the web.

The browser wars caused many problems for JavaScript and resulted in
lots of fragmented code that was hard to maintain.

The advent of Ajax and its use in Web 2.0 apps, such as Gmail and
Google Maps, prompted a resurgence in JavaScript.

JavaScript’s main environment is the browser, but can also be used in
other environments.

You only need a browser to write JavaScript but a good text editor or
IDE and Node installation are recommended.

Graceful degradation and progressive enhancement are the process of
ensuring users receive a decent experience even if they lack some of the
requirements.

Unobtrusive JavaScript is when the JavaScript functionality is separated
from the HTML content and CSS styling.

Each new version of JavaScript has to be compatible with older
versions.

A transpiler can be used to convert code from one version of JavaScript
into another. They are often used to transpile the latest version of the
language into an older version that will work in most browsers.

In the next chapter we’re going to start looking at some programming
fundamentals ― let’s get to it, ninja!

Chapter 2: Programming Basics
In the last chapter, we introduced JavaScript, then set up a programming
environment. We even got our hands dirty with a few JavaScript programs. In
this chapter, we’ll delve further and learn how JavaScript works, as well as
write some more programs.

This chapter will cover the following topics:

The importance of well-commented code

JavaScript grammar ― expressions, statements, semicolons and
whitespace

Primitive data types

Strings ― string literals, string properties and methods

Declaring and assigning constants and variables

Numbers ― decimal, hexadecimal, octal, binary and exponent form,
Infinity, and NaN

Arithmetic operations such as +, -, *, /, and %

Undefined and null

Booleans ― truthy and falsy values

Logical operators ― AND, OR, and NOT

Our project ― we’ll set some question-and-answer variables and use
alert boxes to display them

Comments
Our first task on our journey to becoming a JavaScript ninja is learning how
to write comments in JavaScript. This may seem a strange place to start,
because in programming, a comment is a piece of code that is ignored by the
language ― it doesn’t do anything. Despite this, comments are extremely
important: well-commented code is the hallmark of a ninja programmer. It
makes it easier for anybody reading your code to understand what’s going on,
and that includes you! Believe me, you’ll be thankful you commented your
code when you come back to read it after a few weeks. You don't need to
write an essay though, just enough so that it’s clear what the code is supposed
to do.

In JavaScript there are two types of comment:

Single line comments starting with // and finishing at the end of the
line:

// this is a short comment

Multi-line comments starting with /* and finishing with */:

/* This is a longer comment
anything here will be ignored
This is a useful place to put notes
*/

It’s good practice to write comments in your code. There are even utilities
that can take your comments and produce documentation from them such as
JSDoc Toolkit, Docco, and YUIDoc. You’ll see lots of comments throughout
the code in this book.

http://code.google.com/p/jsdoc-toolkit/
http://jashkenas.github.io/docco/
http://yui.github.io/yuidoc/

JavaScript Grammar
The syntax used by JavaScript is known as a C-style syntax because of its
similarities with the C programming language.

A JavaScript program is made up of a series of statements. Each statement
ends with a new line or semicolon.

Here is an example of two statements, one on each line:

const message = 'Hello World!'
alert(message)

This example could also be written as follows, using semicolons at the end of
each statement:

const message = 'Hello World!';alert(message);

There’s no need to actually use a semicolon to terminate a statement because
JavaScript interpreters use a process called Automatic Semicolon Insertion
(ASI). This will attempt to place semicolons at the end of lines for you.
However, it can be error-prone and cause a number of automated services
such as code minifiers and validators to not work properly.

For this reason, it’s considered best practice to combine the two and write
each statement on a new line, terminated by a semi-colon, like so:

const message = 'Hello World!';
alert(message);

A block is a series of statements that are collected together inside curly
braces:

{
// this is a block containing 2 statements
const message = 'Hello!';

https://en.wikipedia.org/wiki/C_(programming_language

alert(message);
}

Blocks do not need to be terminated by a semicolon.

Whitespace (such as spaces, tabs and new lines) is used to separate the
different parts of each statement. You can use as much whitespace as
required to format your code so it’s neat and easy to read. Examples of this
include using spaces to indent nested code and multiple lines to separate
blocks of code.

Reserved Words
The following words are reserved for use by the JavaScript language and
cannot be used to name variables (or function parameters and object
properties that appear in later chapters):

abstract, await, boolean, break, byte, case, catch, char, class, const, continue, debugger, default, delete, do, double, else, enum, export, extends, false, final, finally, float, for, function, goto, if, implements, import, in instanceof, int, interface, let, long, native, new, null, package, private, protected, public, return, short, static, super, switch, synchronized, this, throw, throws, transient, true, try, typeof, var, volatile, void, while, with, yield

These words are reserved because many of them are used by the language
itself, and you will come across them later in this book.

Some of the reserved words are not used by the language, however; one can
only assume they were planned to be used at some point, but never were.
There are also a few words not reserved but really should have been, as they
are an important part of the language:

undefined, NaN, Infinity

These are covered later in this chapter and should be treated as if they were
reserved words and avoided when naming variables, despite the fact that
JavaScript may let you do it.

Primitive Data Types
JavaScript has seven different data types. Six of them are primitive data types
and are listed below:

String

Symbol

Number

Boolean

Undefined

Null

Any value that isn’t one of the primitive data types listed above is an object.
These include arrays, functions and object literals, which will be discussed in
later chapters.

JavaScript has a special operator called typeof for finding out the type of a
value.

Here are some examples of the different value types:

typeof 'hello'
<< 'string'

typeof 10
<< 'number'

typeof true
<< 'boolean'

typeof { ninja: 'turtle' }
<< 'object'

typeof [1, 2, 3]

<< 'object'

An operator applies an operation to a value, which is known as the operand.
A unary operator only requires one operand; for example:

typeof 'hello'

The operator is typeof and the string 'hello' is the operand.

A binary operator requires two operands; for instance:

3 + 5

The operator is + and the numbers 3 and 5 are the operands.

There is also a ternary operator that requires three operands, which is covered
in the next chapter.

Variables
Variables are used in programming languages to refer to a value stored in
memory.

Declaring and Assigning

Variables have to be declared before they can be used. From ES6 onwards,
JavaScript uses the keywords const and let to declare variables. The
keyword const is used when the variable will not be reassigned to another
value, whereas let is used if the variable might be reassigned later in the
program.

To assign a value to a constant or variable, we use the = operator.

This example shows how we would declare a variable called name and assign
the string literal 'Alexa' to it:

const name = 'Alexa'; // This won't be assigned to another string

This example shows how we would declare the variable score and assign it a
value of the number literal 0:

let score = 0; // This value may change during the program

To see the value of a variable, simply enter it in the console and press enter.

name
<< 'Alexa'

The constant name now has a value of the string literal 'Alexa', so it will
behave in exactly the same way. Any reference to name will be as if you had
entered the string literal:

typeof name;
<< 'string'

This is a useful way of dealing with long strings or expressions as it saves us
from typing them over and over again.

You can even declare and assign multiple variables at the same time if you
separate them with commas:

let x = 3, y = 4, z = 5;

Variables that have been declared using the let keyword can be reassigned to
another value at some point later in the program. This is done by simply
putting them equal to the new value. For example, we would update the
score variable to have a value of 5, like so:

score = 5;

In contrast, using const means you can't reassign the variable to another
value. That means that if a variable is assigned to a primitive data type, then
the value can't be changed, and will result in an error if you attempt to:

const name = 'Alexa';
name = 'Siri';
<< TypeError: Assignment to constant variable.

If the variable references a non-primitive data type, such as an array, function
or object, then using const will not make it immutable. This means the
underlying data inside the object can change (known as mutating the object).
We can see this in the example below:

const name = { value: 'Alexa' }; // an object
name.value = 'Siri'; // change the value
<< 'Siri'

Don't worry if you don't quite follow the notation used in this example. We'll
cover it in Chapter 5. The important thing to note is that the value property

of the object referenced by the variable name was changed from 'Alexa' to
'Siri'.

This highlights an important point. Even if you use const to declare a
variable, non-primitive data types can still be mutated later in the program.

Using const prevents you from reassigning a variable to another object, as it
will produce an error, as illustrated below:

// declare object
const name = { value: 'Alexa' };

// attempt to reassign to another object
name = { value: 'Siri' }
<< TypeError: Assignment to constant variable.

It may seem like a restriction to use const, but it actually helps make your
programs more predictable if the assignment to variables can't change. For
this reason, you should try to use const to declare most variables. This helps
to avoid any bugs caused by unexpected changes in assignment.

What happened to var?

In versions of JavaScript previous to ES6, variables were declared using the
keyword var. The following code shows how a variable called number would
be declared and assigned the value of 2:

var number = 2;

This worked in much the same way as using let. The main difference was
that variables declared using let and const have block scope, which is
discussed in more detail below. They also prevent you from overwriting any
built-in methods by assignment, which is generally frowned upon, whereas
using var doesn't.

So why was the new word let introduced into ES6? Why not just change the
behavior of var?

Remember that a core tenet of the JavaScript language is that it has to remain
backwardly compatible. This means that the behavior of var had to remain
consistent, so couldn't just be changed in ES6. For that reason, the new
keyword let was introduced.

You should be aware of var though, as you will see it used frequently in
older code examples around the web to declare variables.

Scope

Using const and let to declare variables means they are block scoped, so
their value only exists inside the block they are declared in.

Scope is an important concept in programming. It refers to where a constant
or variable is accessible by the program. There are two common scopes that
are often referred to in programs: global scope and local scope.

Global Scope

Any variable declared outside of a block is said to have global scope. This
means it is accessible everywhere in the program. While this may seem to be
a good idea at first, it is not considered good practice. A ninja programmer
will try to keep the number of global variables to a minimum, because any
variables that share the same name will clash and potentially overwrite each
other’s values. It might seem unlikely that this would happen, but it is all too
common in large programs when you forget which variables you have used.
There are also conventions where the same variable name is used in different
situations. It can also be a problem when you are writing code in teams, or if
you’re using code libraries that may use the same variable names as some of
your own code.

Local Scope

In ES6, blocks can be used to create a local scope. This means that any
variables defined inside a block using the let or const will only be available
inside that block and not be accessible outside of that block. This is known as

having local scope, as the variable is only visible in the locality of the block.

If let or const are not used, the variable will have global scope and be
available outside the block. This can be demonstrated in the following
example, where the variable a can have two different values depending on
whether it is defined inside or outside a block:

const a = 1;

{ const a = 3; a; }
<< 3

Now check the value of a outside the block:

a;
<< 1

In the example, a is initially defined globally outside the block and is given
the value of 1. This means it has global scope and is available inside and
outside the block. But then a is defined inside the local block using let.
This gives it local scope inside the block where it has a value of 3, but it
retains the value of 1 outside the block. For all intents and purposes, the two a
variables are different variables.

Here’s another example where we define a global variable and then overwrite
it from within the block:

let b = 2;

{ b = 4; b; }
<< 4

Now check the value of b outside the block:

b;
<< 4

In this example, b is defined globally outside the block and given the value of

2. Then we reassign the value of b to 4 inside the block, but without using
let. This means that it still refers to the global variable outside the block, so
the value of b is the same both inside and outside the block and it gets
overwritten globally to be a value of 4.

In the next example, we'll create a global variable from within a block that is
then still accessible from outside of the block:

{ c = 5; c; }
<< 5

Now check the value of c outside the block:

c;
<< 5

In this example, c is defined inside the block, but because this is done without
using let or const, it has global scope and is also available outside the block.

In the last example we'll create a local variable, d, inside a block that is not
accessible outside the block:

{ const d = 6; d; }
<< 6

Now check the value of d outside the block:

d;
<< ReferenceError: d is not defined

In this example, d is defined inside the block, but by using const so it has
local scope and is only accessible inside the block. When we try to log the
value of d outside the block, it causes an error because d is not defined
globally.

Using let or const to declare variables will ensure they are block scoped,
and it is good practice to always use them to declare variables. In general, if a

value is unlikely to change in your code then you should declare it using
const, and let should only be used for storing values that will need to be
reassigned while the program is running.

Naming Constants & Variables
When naming constants and variables, you should try to give them sensible
names that describe what the variable represents; hence, answer is a better
variable name than x.

Constant and variable names can start with any upper or lower-case letter, an
underscore, _, or dollar character, $. They can also contain numbers, but
cannot start with them.

Here are some valid examples:

$name
_answer
firstName
last_name
address_line1

Variable Naming

Variables that start with an underscore generally refer to private properties
and methods, so it's best to not follow this convention for your own variable
names.

The $ character is also used by the popular jQuery library, so using this in
your variable names may also cause problems.

Constant and variable names are case sensitive, so ANSWER is different to
Answer and answer.

When using multiple words for constant and variable names there are two
conventions:

Camel case starts with a lowercase letter and then each new word is
capitalized:

firstNameAndLastName

Underscore separates each new word with an underscore:

first_name_and_last_name

JavaScript’s built-in functions use the camel-case notation and this is
probably the best convention to follow when naming the constants and
variables in your code. The most important thing is to be consistent.

Direct Assignment and Assignment By
Reference
When you assign a primitive value to a variable, any changes you make are
made directly to that value:

const a = 1;
let b = a; // a = 1, b = 1

b = 2; // a = 1, b = 2

In the example above, a references the primitive number 1. We then assign b
to the same value as a. At this point a and b both have the same value of 1.
Then we reassign the value of 2 to b, but the a still has a value of 1.

But if you assign a non-primitive value to a variable, then this is done by
reference, so any changes that are subsequently made will affect all
references to that object:

const c = { value: 1 };
let d = c; // c.value = 1, d.value = 1
d.value = 2; // c.value = 2, d.value = 2

In the example above, the change to the value property of d also results in the
value property of c changing as well. This is because the variables c and d
are both referencing the same object, so any changes to one of them will also
affect the other.

Strings
A string is a collection of characters, such as letters and symbols. We can
create a string literal by writing a group of characters inside quote marks like
this:

'hello'

Variables that start with an underscore, generally refer to private properties
and methods, so it's best to not follow this convention for your own variable
names.

The $ character is also used by the popular jQuery library, so using this in
your variable names may also cause problems.

Using a Constructor Function

You can also create a string object using the following constructor function:

new String("hello")
<< [String: 'hello']

This will create a new string that is the same as the string literal 'hello',
although it will be classed as an object rather than a primitive data type. For
this reason it is preferable to use the string literal notation, not to mention it
requires less typing to use literals!

The same string literal can be created using single quote marks:

'hello'

If you want to use double quote marks inside a string literal, you need to use
single quote marks to enclose the string. And if you want to use an
apostrophe in your string, you will need to use double quote marks to enclose

the string, otherwise the apostrophe will terminate the string, causing an
error:

'It's me' // causes an error
"It’s me" // this works

Another option is to escape the quotation mark. You place a backslash before
the apostrophe so it appears as an apostrophe inside the string instead of
terminating the string:

'It\'s me'

Backslashes

The backslash is used to escape special characters in strings such as:

Single quote marks \'

Double quote marks \"

End of line \n

Carriage return \r

Tab \t

If you want to actually write a backslash, you need to escape it with another
backslash:

"This is a backslash \\"
<< "This is a backslash \"

String Properties and Methods
Primitive data types and objects have properties and methods. Properties are
information about the object or value, while methods perform an action on
the object or value ― either to change it or to tell us something about it.

Wrapper Objects

Technically, only objects have properties and methods. JavaScript overcomes
this by creating wrapper objects for primitive data types. This all happens in
the background, so for all intents and purposes it appears that primitive data
types also have properties and methods.

We can access the properties of a string using dot notation. This involves
writing a dot followed by the property we are interested in. For example,
every string has a length property that tells us how many characters are in
the string:

const name = 'Alexa'; // declare and assign a variable
<< 'Alexa'

name.length; // retrieve the name variable's length property
<< 5

As you can see, this tells us that there are five characters in the string stored
in the name constant.

Good Habits

You may have noted that we're using the const keyword to declare the
variable above. We also finished each line with a semicolon. Strictly
speaking, this isn't really required for these short examples, but it's good
practice and we'll be doing it in all the examples in the book. I would
encourage you to do the same so you get yourself into a good habit. Believe
me, it will be useful by the time we are writing larger, more complex

applications later in the book.

An alternative notation you can use to access a primitive data type's
properties are square brackets:

name['length']; // note the property name is in quote marks
<< 5

It's usually more common to use the dot notation due to it requiring less
typing, although there are some occasions, which we'll come across later in
the book, when the square bracket notation is preferable.

All properties of primitive data types are immutable, meaning they’re unable
to be changed. You can try, but your efforts will be futile:

name.length;
<< 5

name.length = 7; // try to change the length
<< 7

name.length; // check to see if it's changed
<< 5

A method is an action that a primitive data type or object can perform. To call
a method, we use the dot operator (.) followed by the name of the method,
followed by parentheses (this is a useful way to distinguish between a
property and a method ― methods end with parentheses). For example, we
can write a string in all capital letters using the toUpperCase() method:

name.toUpperCase();
<< 'ALEXA'

Or the toLowerCase() method, which will write my name in all lower-case
letters:

name.toLowerCase();
<< 'alexa'

If you want to know which character is at a certain position, you can use the
charAt() method:

name.charAt(1);
<< 'l'

This tells us that the character 'l' is at position 1. If you were thinking that it
should be 'A', this is because the first letter is classed as being at position 0
(you’ll find that counting usually starts at zero in programming!).

If you want to find where a certain character or substring appears in a string,
we can use the indexOf() method:

name.indexOf('A');
<< 0

If a character doesn’t appear in the string, -1 will be returned:

name.indexOf('z');
<< -1

If we want the last occurrence of a character or substring, we can use the
lastIndexOf() method:

name.lastIndexOf('a');
<< 4

If all we want to know if a string contains a certain character, then ES2016
provides the useful includes() method:

name.includes('a');
<< true

name.includes('z');
<< false

ES6 added a couple of methods to check if a string starts or ends in a

particular character.

To check if a string starts with a certain character, we can use the
startsWith() method. Be careful though, it's case-sensitive:

name.startsWith('A');
<< true

name.startsWith('a');
<< false

And we can use the similar endsWith() method to check if a string ends with
a particular character:

name.endsWith('A');
<< false

name.endsWith('a');
<< true

The concat() method can be used to concatenate two or more strings
together:

'JavaScript'.concat('Ninja');
<< 'JavaScriptNinja'

'Hello'.concat(' ','World','!');
<< 'Hello World!'

A shortcut for string concatenation is to use the + operator to add the two
strings together:

'Java' + 'Script' + ' ' + 'Ninja';
<< 'JavaScript Ninja'

The trim() method will remove any whitespace from the beginning and end
of a string:

' Hello World '.trim(); // the space in the middle will be preserved

<< 'Hello World'

' \t\t JavaScript Ninja! \r'.trim(); // escaped tabs and carriage returns are also removed
<< 'JavaScript Ninja!'

ES6 also introduced the repeat() method that will repeat a string the stated
number of times:

'Hello'.repeat(2);
<< 'HelloHello'

Template Literals
Template literals are a special types of string that were introduced in ES6.
Template literals use the backtick character, ` , to deliminate the string, as
shown in the example below:

`Hello!`;

This has the advantage of being able to use both types of quote mark within
the string:

`She said, "It's Me!"`

They also allow interpolation of JavaScript code. This means that a
JavaScript expression can be inserted inside a string and the result will be
displayed, as can be seen in the examples below:

const name = `Siri`;
`Hello ${ name }!`;
<< 'Hello Siri!'

const age = 39;
`I will be ${ age + 1 } next year`;
<< 'I will be 40 next year'

The JavaScript expression is placed inside the curly braces with a $ character
in front of them. This is then evaluated and the result is returned in the string
output.

Template literals can also contain line breaks, which are all converted into a
Line Feed (\n):

`This is the start ...

.... and this is the end`
<< 'This is the start ...\n\n\n.... and this is the end'

If you want to place a backtick inside a template literal, then it needs to be
escaped in the usual way, using a backslash:

`This character, \`, is a backtick`
<< 'This character, `, is a backtick'

Super-Powered Strings

Template literals can be thought of as super-powered strings as they behave
in the same way as normal string literals, but with the extra power of string
interpolation. For this reason, it is not uncommon to see backticks used to
create all strings in ES6 code.

Symbols
Symbols were introduced as a new primitive value in ES6. They can be used
to create unique values, which helps to avoid any naming collisions.

Symbols are the only primitives that don't have a literal form. The only way
to create them is to use the Symbol() function:

const uniqueID = Symbol();

It is recommended to add a description of the symbol inside the parentheses:

const uniqueID = Symbol('this is a unique ID');

Because symbols are primitive values, the typeof operator should return a
type of 'symbol':

typeof uniqueID;
<< 'symbol'

The description acts as a string representation of the symbol and is used to
log the symbol in the console, making it useful for debugging purposes:

console.log(uniqueID);
<< Symbol(this is a unique ID)

You can manually access the description using the String() function:

String(uniqueID)
<< 'Symbol(this is a unique ID)'

It is possible for two variables to point to the same symbol if the for()
method is used when the symbol is created:

const A = Symbol.for('shared symbol');

const B = Symbol.for('shared symbol');

The variables A and B now both point to the same symbol in memory. In this
case the description 'shared symbol' also acts as a shared identifier for the
symbol.

The main use-case for symbols is as object property keys, which will be
covered in Chapter 5. The uniqueness of symbols, mean that it’s impossible
for the names of any properties to clash with each other if they are symbols.

This article on SitePoint contains more information about symbols.

https://www.sitepoint.com/preparing-ecmascript-6-symbols-uses/

Numbers
Numbers can be integers (whole numbers, such as 3) or floating point
numbers (often referred to as just 'decimals' or 'floats', such as 3.14159). Here
are a couple of examples of number literals:

typeof 42; // integer
<< 'number'

typeof 3.14159; // floating point decimal
<< 'number'

As you can see in the examples above, JavaScript doesn’t distinguish
between integers and floating point decimals ― they are both given the type
of 'number', which is a different approach to most other programming
languages. This behavior is set out in the ECMAScript specification, but ES6
provides a handy method called Number.isInteger() that can be used to
check if a number is an integer:

Number.isInteger(42);
<<< true

Number.isInteger(3.142);
<< false

Constructor Function for Numbers

Just like strings, numbers also have a constructor function:

new Number(3)
<< [Number: 3]

This is much more verbose than simply writing the number 3, which is
known as a number literal, so it is recommended that you stick to using
number literals.

Octal and Hexadecimal Numbers

If a number starts with a 0x, it is considered to be in hexadecimal (base 16)
notation:

0xAF; // A represents 10, F represents 15
<< 175

Hexadecimal or "hex" numbers are often used for color codes on the Web.
You can read more about them on Wikipedia.

ES6 now supports octal literals: If a number starts with a zero, followed by
the letter o, then it is considered to be in octal (base 8) notation:

0o47; // 4 eights and 7 units
<< 39

ES6 also supports binary literals: If a number starts with a zero, followed by
the letter b then it is considered to be in binary (base 2) notation:

0b1010; // 1 eight, 0 fours, 1 two and 0 units
<< 10

Exponential Notation

Numbers can also be represented in exponential notation, which is shorthand
for "multiply by 10 to the power of" (you may have heard this referred to as
"scientific notation" or "standard form"). Here are some examples:

1e6; // means 1 multiplied by 10 to the power 6 (a million)
<< 1000000

2E3; // 2 multiplied by 10^3 (two thousand)
<< 2000

Decimal values can be created by using a negative index value:

http://en.wikipedia.org/wiki/Hexadecimal

2.5e-3; // means 2.5 multiplied by 10 to the power -3 (0.001)
<< 0.0025

Number Methods
Numbers also have some built-in methods, although you need to be careful
when using the dot notation with number literals that are integers because
JavaScript will confuse the dot with a decimal point. Don't worry though,
there are a few ways to deal with this, which we’ll demonstrate with the
toExponential() method; this returns the number as a string in exponential
notation.

Use two dots:

5..toExponential();
>> "5e+0"

Put a space before the dot:

5 .toExponential(); >> "5e+0"

Always write integers as a decimal:

5.0.toExponential(); >> "5e+0"

Place the integer in parentheses:

(5).toExponential(); >> "5e+0"

Assign the number to a constant:

const number = 5;
>> 5

number.toExponential();
>> "5e+0"

Now let's take a look at a couple of other number methods.

The toFixed() method rounds a number to a fixed number of decimal places:

const PI = 3.1415926;
<< undefined

PI.toFixed(3); // only one dot is needed when using constants or variables
<< "3.142"

Note that the value is returned as a string, rather than a number.

The toPrecision() method rounds a number to a fixed number of significant
figures that is once again returned as a string (and often using exponential
notation):

325678..toPrecision(2);
<< "3.3e+5"

2.459.toPrecision(2);
<< "2.5"

Arithmetic Operations

All the usual arithmetic operations can be carried out in JavaScript.

Addition:

5 + 4.3;
<< 9.3

Subtraction:

6 - 11;
>> -5

Multiplication:

6 * 7;
<< 42

Division:

3/7;
<<0.42857142857142855

Exponentiation:

2**3; // introduced in ES2017
<< 8

You can also calculate the remainder of a division using the % operator:

23%6; // the same as asking 'what is the remainder when 13 is divided by 6'
<< 5

This is similar to, but not quite the same as, modular arithmetic. That's
because the result always has the same sign as the first number:

-4%3; // -4 modulo 3 would be 2
<< -1

https://en.wikipedia.org/wiki/Modular_arithmetic

Changing The Value of Variables
If a variable has been assigned a numerical value, it can be increased using
the following operation:

let points = 0; // initialize points score to zero
<< 0

points = points + 10;
<< 10

This will increase the value held in the points variable by 10.

A shorthand for doing this is to use the compound assignment operator, +=:

points += 10;
<< 20

There are equivalent compound assignment operators for all the operators in
the previous section:

points -= 5; // decreases points by 5
<< 15

points *= 2; // doubles points
<< 30

points /= 3; // divides value of points by 3
<< 10

points %= 7; // changes the value of points to the remainder if its current value is divided by 7
<< 3

Incrementing Values

If you only want to increment a value by 1, you can use the ++ operator. This
goes either directly before or after the variable:

let points = 5;
points ++
<< 6

So what’s the difference between putting the ++ operator before or after the
variable? The main difference is the value that is returned by the operation.
Both operations increase the value of the points variable by 1, but points++
will return the original value then increase it by 1, whereas ++points will
increase the value by 1, then return the new value:

points++; // will return 6, then increase points to 7
<< 6

++points; // will increase points to 8, then return it
<< 8

There is also a -- operator that works in the same way:

points--; // returns 8, but has decreased points to 7
<< 8

--points; // decreases points to 6, then returns that value
<< 6

Infinity

Infinity is a special error value in JavaScript that is used to represent any
number that is too big for the language to deal with. The biggest number that
JavaScript can handle is 1.7976931348623157e+308:

1e308; // 1 with 308 zeroes!
<< 1e308

2e308; // too big!
<< Infinity

There is also a value -Infinity, which is used for negative numbers that go
below -1.7976931348623157e+308:

-1e309;
<< -Infinity

The value of Infinity can also be obtained by dividing by zero:

1/0;
<< Infinity

The smallest number that JavaScript can deal with is 5e-324. Anything below
this evaluates to either 5e-324 or zero:

5e-324; zero point (324 zeros) five
<< 5e-324

3e-325;
<< 5e-324

2e-325;
<< 0

NaN

NaN is an error value that is short for "Not a Number". It is used when an
operation is attempted and the result isn’t numerical, like if you try to
multiply a string by a number, for example:

'hello' * 5;
<< NaN

The result returned by the typeof operator is rather ironic, however:

typeof NaN; // when is a number not a number?!?
<< 'number'

Checking a Value is a Number

You can check if a value is a number that can be used by using the
Number.isFinite() method. This will return true if the value is a number
that isn't Infinity, -Infinity or NaN:

Number.isFinite(1/0);
<< false

Number.isFinite(-Infinity);
<< false

Number.isFinite(NaN);
<< false

Number.isFinite(42);
<< true

Type Coercion
Type coercion happens when the operands of an operator are of different
types. In this case, JavaScript will attempt to convert one operand to an
equivalent value of the other operand's type. For example, if you try to
multiply a string and a number together, JavaScript will attempt to coerce the
string into a number:

'2' * 8;
<< 16

This may seem useful, but the process is not always logical or consistent and
can cause a lot of confusion. For example, if you try to add a string and a
number together, JavaScript will convert the number to a string and then
concatenate the two strings together:

'2' + 8;
<< '28'

This can make it difficult to spot type errors in your code. The best approach
is to try to be very explicit about the types of values you are working with. If
you need to change the type, then do it manually, rather than relying on type
coercion to do it for you.

JavaScript Is Weakly Typed

JavaScript is known as a weakly typed or loosely typed language. This
means that you don't need to explicitly specify what data-type a variable is
when you declare it. This can lead to unexpected behavior and hard to find
bugs in code, particularly when type-coercion takes place in the background.

Strongly typed languages such as Java or Swift require the type of variables
to be specified when they are declared. Trying to use the wrong data-type will
cause an error.

TypeScript is an open source superset of JavaScript that is maintained by
Microsoft. It provides the option to specify the type of variables explicitly
when they are declared, effectively making it a strongly typed version of
JavaScript. It also adds some extra features and is designed to be make
building large-scale applications easier in JavaScript. Programs are written in
TypeScript and then transpiled into JavaScript.

http://www.typescriptlang.org

Converting Between Strings and Numbers
We can convert numbers to strings and vice versa using a variety of methods.

Converting Strings to Numbers

The best way to change a string to a number is to use the Number method.
This will convert the string form of a number into an actual number:

Number('23');
<< 23

This is the preferred way to convert strings to numbers as it avoids type
coercion in the background. The conversion is also explicit and makes it
obvious what is being done.

If the string cannot be converted into a number, then NaN is returned:

Number('hello');
<<< NaN

There are a few 'tricks' that can also be used to convert a string into a number
that use type coercion. For example we can multiply a numerical string by 1,
which will coerce it into a number:

const answer = '5' * 1;
<< 5

typeof answer;
<< "number"

Another trick is to simply place a + operator in front of it:

const answer = +'5';
<< 5

typeof answer;
<< 'number'

These methods are very hacky and not recommended, but you may see them
used every now and then in code examples.

Converting Numbers to Strings

The preferred way of changing a number to a string is to use the String
function:

String(3);
<< '3'

You can also use type coercion by 'adding' an empty string, although this isn't
recommended:

3 +'';
<< '3'

Another option is to use the toString() method:

10..toString();
<< '10'

This can also be used to change the base of the number. For example, if you
want to write the number 10 in binary (base two), you could write:

10..toString(2);
<< '1010'

You can go up to base 36, although after base 10, letters are used to represent
the digits:

> 28101..toString(36) // a million in base 36
<< 'lol'

Parsing Numbers

There is also a useful function called parseInt() that can be used to convert
a string representation of a numerical value back into a number. You can
specify the base of the number you are trying to convert, for example:

parseInt('1010',2); // converts from binary, back to decimal
<< 10

parseInt('omg',36);
<< 31912

parseInt('23',10);
<< 23

If a string starts with a number, the parseInt function will use this number
and ignore any letters that come afterwards:

const address = '221B Baker Street';
parseInt(address, 10)
<< 221

This is different to the Number function, which returns NaN:

Number(address);
<< NaN

And if you use parseInt with a decimal, it will remove anything after the
decimal point:

parseInt('2.4',10);
<< 2

Be careful not to think that this is rounding the number to the nearest integer;
it simply removes the part after the decimal point, as seen in this example:

parseInt('2.9',10);
<< 2

There is also a similar function called parseFloat() that converts strings into
floating point decimal numbers:

parseFloat('2.9',10);
<< 2.9

Undefined
Undefined is the value given to variables that have not been assigned a value.
We've already seen it used earlier in this chapter when variables are declared
without being assigned a value. It can also occur if an object’s property
doesn’t exist or a function has a missing parameter. It is basically
JavaScript’s way of saying "I can’t find a value for this."

Null
Null means 'no value'. It can be thought of as a placeholder that JavaScript
uses to say "there should be a value here, but there isn’t at the moment."

If this reminds you a lot of undefined then this is because they are both 'non-
value' values, meaning they are similar, but behave slightly differently. For
example, if you try to do sums with them:

10 + null; // null behaves like zero
<< 10

10 + undefined; // undefined is not a number
<< NaN

null is coerced to be 0, making the sum possible whereas undefined is
coerced to NaN, making the sum impossible to perform.

In general, values tend to be set to undefined by JavaScript, whereas values
are usually set to null manually by the programmer.

Booleans
There are only two Boolean values: true and false. They are named after
George Boole, an English mathematician who worked in the field of
algebraic logic. Boolean values are fundamental in the logical statements that
make up a computer program. Every value in JavaScript has a Boolean value
and most of them are true (these are known as truthy values).

To find the Boolean value of something, you can use the Boolean function
like so:

Boolean('hello');
<< true

Boolean(42);
<< true

Boolean(0);
<< false

Only 9 values are always false and these are known as falsy values:

* "" // double quoted empty string literal
* '' // single quoted empty string literal
* `` // empty template literal
* 0
* -0 // considered different to 0 by JavaScript!
* NaN
* false
* null
* undefined

Truthy? Falsy?

The fact that empty strings and zero are considered falsy can be problematic
at times, especially since most other programming languages don't behave in
the same way. For this reason, a ninja programmer needs to be especially

careful when dealing with numbers that might be zero, or strings that are
empty.

For more on truthy and falsy values, see this article on SitePoint.

http://www.sitepoint.com/javascript-truthy-falsy/

Logical Operators
A logical operator can be used with any primitive value or object. The results
are based on whether the values are considered to be truthy or falsy.

! (Logical NOT)

Placing the ! operator in front of a value will convert it to a Boolean and
return the opposite value. So truthy values will return false, and falsy values
will return true. This is known as negation:

!true; // negating true returns false
<< false

!0; // 0 is falsy, so negating it returns true
<< true

You can use double negation (!!) to find out if a value is truthy or falsy (it is
a shortcut to using the Boolean function we employed earlier because you are
effectively negating the negation):

!!'';
<< false

!!"hello";
<< true

!!3;
<< true

!!NaN;
<< false

!!"false";
<< true

!!'0';
<< true

&& (Logical AND)

Imagine a nightclub that only allows people inside if they are wearing shoes
AND over 18. This is an example of a logical AND condition: anybody going
into the club must satisfy both conditions before they are allowed in.

The logical AND operator works on two or more values (the operands) and
only evaluates to true if all the operands are truthy. The value that is
returned is the last truthy value if they are all true, or the first falsy value if at
least one of them is false:

'shoes' && 18; // both values are truthy
<< 18

'shoes' && 0; // returns 0 because it is falsy
<< 0

|| (Logical OR)

Now imagine that the club relaxes its rules and allows people in if they wear
shoes OR they're over 18. This means they only have to satisfy one of the
rules to be allowed in. This is an example of a logical OR condition.

The logical OR operator also works on two or more operands, but evaluates
to true if any of the operands are true, so it only evaluates to false if both
operands are falsy. The value that is returned is the first truthy value if any of
them are true, or the last falsy value if all of them are false:

'shoes' || 0;
<< 'shoes'

NaN || undefined; // both NaN and undefined are falsy, so undefined will be returned
<< undefined

Lazy Evaluation

Remember the rule that people going to the nightclub had to wear shoes and

be over 21? If a bouncer saw somebody wasn't wearing shoes, there'd be no
point in asking them for ID to check their age they wouldn’t be allowed in
anyway.

When the rules were relaxed, people were allowed in if they were wearing
shoes or if if they were over 18. If somebody arrived wearing shoes, there
would be no need for a bouncer to check their age, since only one of the
conditions needed to be met.

These are examples of lazy evaluation ― you only check the minimum
number of criteria that needs to be met. JavaScript performs a similar task
and uses lazy evaluation when processing the logical AND and OR operators.
This means it stops evaluating any further operands once the result is clear.

For example, for a logical AND expression to be true, all the operands have
to be true; if any of them are false, there is no point checking any
subsequent operands as the result will still be false. Similarly, for a logical
OR to be true, only one of the operands has to be true; hence, as soon as an
operand is evaluated to true, the result is returned as true and any
subsequent operands won’t be checked as the result is of no consequence.

An example of this being used is when the operands are used for assignment.
You have to be aware that some assignments might not be made because
JavaScript will not bother evaluating all of the operands.

This can be seen in the examples below:

let a = 0; // declare the variable a and assign the value of 0
<< 0

false && (a = 1); // (a = 1) is truthy, but it won't be evaluated, since the first operand is false
<< false

a // the value of a is still 0
<< 0

false || (a = 1); // this will evaluate both operands, so a will be assigned the value of 1, which is returned
<< 1

Bitwise Operators
Bitwise operators work with operands that are 32-bit integers. These are
numbers written in binary (base two) that have 32 digits made up of just 0s
and 1s. Here are some examples:

5 is written as 00000000000000000000000000000101
100 is written as 00000000000000000000000001100100
15 is written as 00000000000000000000000000001111

JavaScript will convert any values used with bitwise operators into a 32-bit
integer then carry out the operation. It then changes it back into a base 10
integer to display the return value.

Bitwise operators tend to only be used for low-level programming tasks or
applications that require a number of on-off states. They are unlikely to be
used often, but are included here for completeness.

Bitwise NOT

The bitwise NOT operator ~ will convert the number to a 32-bit integer, then
change all the 1s to 0 and all the 0s to 1s. It then returns the new value as an
integer.

For example, 2476 can be represented as:

00000000000000000000100110101100

Which will change to:

11111111111111111111011001010011

This is 4294964819, but the result actually uses negative values, as you can
see in the code:

~2476;
<< -2477

This means that in most cases, this operator will return an integer that adds to
the original operand to make -1.

Bitwise AND

The bitwise AND operator, &, will convert both numbers into binary, and
returns a number that in binary has a 1 in each position for which the
corresponding bits of both operands are 1s. Here’s an example:

12 & 10; // in binary this is 1100 & 1010, so only the first digit is 1 in both cases. This returns 1000, which is 8 in binary
<< 8

Bitwise OR

There is also the bitwise OR operator, |, which will convert both numbers
into binary and return a number that in binary has a 1 in each position for
which the corresponding bits of either operands are 1s. Here’s an example:

12 | 10; // in binary this is 1100 & 1010, so the first 3 digits contain a 1, returning 1110, which is 14 in binary
<< 14

Bitwise XOR

Another operation is the bitwise XOR operator, ^, which stands for
"eXclusive OR". This will convert both numbers into binary and return a
number that in binary has a 1 in each position for which the corresponding
bits of either operands are 1s, but not both 1s. Here’s an example:

12 ^ 10; // in binary this is 1100 & 1010, so only the second and third digits are exclusively 1s, so 0110 is returned, which is 6 in binary
<< 6

Don’t use ^ to notate exponents

The ^ character is often used as an informal notation for exponents, so be
careful not to use this mistakenly when programming in JavaScript. For
example 2^3 will not return 8. There is a specific Math method for doing this
that is covered in Chapter 5, and ES2017 introduced the exponent operator
, that allows you to write it as 23.

When using non-integer values, this evaluates to 1 if either operands are
truthy and evaluates to 0 if both operands are truthy or both are falsy:

1 ^ 0; // The first operand is truthy
<< 1

true ^ true; // if both operands are true then the result is false
<< 0

Bitwise Shift Operators

The bitwise shift operators, << and >>, will move the binary representation a
given number of places to the right or left, which effectively multiplies or
divides the number by powers of two:

3 << 1; // multiply by 2
<< 6

16 >> 1; // divide by 2
<< 8

5 << 3; multiply by 2 cubed (8)
<< 40

More information about bitwise operators can be found on the Mozilla
Developer Network

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators

Comparison
We often need to compare values when programming. JavaScript has several
ways to compare two values.

Equality

Remember earlier, when we assigned a value to a variable? We used the =
operator to do this, which would be the logical choice for testing if two
values are equal.

Unfortunately, we can’t use it because it’s used for assigning values to
variables. For example, say we had a variable called answer and we wanted
to check if it was equal to 5, we might try doing this:

const answer = 5;
<< 5

What we’ve actually done is assign the value of 5 to the variable answer,
effectively overwriting the previous value!

The correct way to check for equality is to use either a double equals
operator, ==, known as "soft equality" or the triple equals operator, ===,
known as "hard equality".

Soft Equality

We can check if answer is in fact equal to 5 using the soft, or lenient, equality
operator ==, like so:

answer == 5;
<< true

This seems to work fine, but unfortunately there are some slight problems

when using soft equality:

answer == "5";
<< true

As you can see, JavaScript is returning true when we are checking if the
variable answer is equal to the string "5", when in fact answer is equal to the
number 5. This is an important difference, but when a soft inequality is used,
JavaScript doesn't take into account the data type and will attempt to coerce
the two values to the same type when doing the comparison. This can lead to
some very strange results:

" " == 0;
<< true

" " == "0";
<< false

false == "0";
<< true

"1" == true;
<< true

"2" == true;
<< false

"true" == true;
<< false

null == undefined;
<< true

As you can see, some values that are not actually equal to each other have a
tendency to be reported as being equal when using the soft equality operator.

Hard Equality

The hard, or strict, equality operator, ===, tests for equality but only returns
true if and only if they are of the same data type:

answer === 5;
<< true

answer === '5';
<< false

null === undefined;
<< false

As you can see, hard equality reports that the variable answer is the number
5, but not the string "5". It also correctly reports that null and undefined are
two different values.

Hard Equality's One Quirk

The only strange result produced by hard equality is this:

NaN === NaN;
<< false

NaN is the only value in JavaScript that is not equal to itself! To deal with
this, there is a special Number method called Number.isNaN() to test it:

Number.isNaN(NaN);
<< true

Number.isNaN(5);
<< false

The Number.isNaN() method is new to ES6 and replaces the global isNaN()
method. This old method has the unfortunate property of reporting strings as
NaN as well as NaN itself, as can be seen in the example below:

isNaN('hello');
<< true

This is because of our old nemesis, type coercion! The function first of all
tries to convert the string to a number, and strings without numerals are

converted to NaN:

Number('hello');
<< NaN

Because of this, the new Number.isNaN() method should always be used to
check if a value is NaN.

A JavaScript ninja should always use hard equality when testing if two values
are equal. This will avoid the problems caused by JavaScript’s type coercion.

If you want to check whether a number represented by a string is equal to a
number, you should convert it to a number yourself explicitly rather than
relying on type coercion happening in the background:

Number('5') === 5
<< true

This can come in handy when you’re checking values entered in a form as
these are usually always submitted as strings.

Inequality

We can check if two values are not equal using the inequality operator. There
is a soft inequality operator, != and a hard inequality operator, !==. These
work in a similar way to the soft and hard equality operators:

16 != '16'; // type coercion makes these equal
<< false

16 !== '16';
<< true

As with equality, a ninja programmer should use the hard inequality operator
as this will give more reliable results unaffected by type coercion.

Greater Than and Less Than

We can check if a value is greater than another using the > operator:

8 > 4;
<< true

You can also use the "less than" < operator in a similar way:

8 < 4;
<< false

If you want to check if a value is greater than or equal to another value, you
can use the >= operator, :

8 >= 4;
<< true

8 >= 8;
<< true

But be careful; the equality test works in the same way as the soft equality
operator:

8 >= '8';
<< true

As you can see, type coercion means that strings can be confused with
numbers. Unfortunately, there are no "hard" greater-than or equal-to
operators, so an alternative way to avoid type coercion is to use a
combination of the greater-than operator, logical OR, and a hard equality:

8 > 8 || 8 === 8;
<< true

8 > '8' || 8 === '8';
<< false

There is also a similar "less-than or equal-to" operator:

-1 <= 1;
<< true

-1 <= -1;
<< true

These operators can also be used with strings, which will be alphabetically
ordered to check if one string is "less than" the other:

'apples' < 'bananas';
>> true

Be careful, though, as the results are case-sensitive, and upper-case letters are
considered to be "less than" lower-case letters:

'apples' < 'Bananas';
>> false

Quiz Ninja Project
Now that we have come to the end of the chapter, it’s time to put what we’ve
learned into practice in our Quiz Ninja project.

Since we’ve been learning all about JavaScript in this chapter, we’re going to
add some code in the main.js file. Open that file and add the following lines:

const question = "What is Superman's real name?"
const answer = prompt(question);
alert(`You answered ${answer}`);

Now let’s go through this code line by line to see what is happening:

const question = 'What is Superman's real name?';

This declares a variable called question and assigns the string 'What is
Superman's real name?' to it.

Next, we need to ask the question stored in the question variable, using a
prompt dialog:

const answer = prompt(question);

A prompt dialog allows the player to type in a response, which is then stored
in the variable it is assigned to, which is answer in this case.

Finally, we use an alert dialog to display the player's answer using string
interpolation to insert the value of answer into the template literal that is
displayed in an alert box:

alert(`You answered ${answer}`);

This shows the player the answer they provided. In the next chapter we'll
look at how to check if it's correct.

Have a go at playing the quiz by opening the index.html file in your
browser. It should look a little like the screenshot in below.

Let’s play Quiz Ninja!

You can also see a live example on CodePen.

This is a good example of using the prompt and alert dialogs, along with
variables to store the responses in to create some interactivity with the user.

https://codepen.io/daz4126/pen/OmapEN

Chapter Summary
Comments are ignored by the program, but make your program easier to
read and understand
Data types are the basic building blocks of all JavaScript programs.
There are six primitive data types: strings, symbols, numbers, Booleans,
undefined and null.
Non-primitive data types, such as arrays, functions and objects, all have
a type of 'object'.
Variables point to values stored in memory and are declared using the
const or let keywords.
Values are assigned to variables using the = operator.
Strings and numbers have various properties and methods that provide
information about them.
Symbols are unique, immutable values.
Boolean values are either true or false.
There are only seven values that are false in JavaScript and these are
known as 'falsy' values.
Data types can be converted into other data types.
Type coercion is when JavaScript tries to convert a value into another
data type in order to perform an operation.
Logical operators can be used to check if compound statements are true
or false.
Values can be compared to see if they are equal, greater than or less than
other values.

In the next chapter, we’ll be looking at data structures, logic, and loops.

Chapter 3: Arrays, Logic, and
Loops
In this chapter we’ll look at some of the data structures used in JavaScript to
store lists of values. These are called arrays, sets, and maps. We’ll also look
at logical statements that allow us to control the flow of a program, as well as
loops that allow us to repeat blocks of code over and over again.

This chapter will cover the following topics:

Array literals

Adding and removing values from arrays

Array methods

Sets

Maps

if and else statements

switch statements

while loops

do … while loops

for loops

Iterating over a collection

Project ― we'll use arrays, loops and logic to ask multiple questions in
our quiz

Arrays
An array is an ordered list of values. To create an array literal, simply write a
pair of square brackets:

const myArray = [];
<< []

You can also use an array constructor function:

const myArray = new Array();
<< []

Both of these produce an empty array object, but it’s preferable to stick to
using array literals because of a variety of reasons ... and they require less
typing!

Arrays are not primitive values but a special built-in object, as we can see
when we use the typeof operator:

typeof []
<< 'object'

You can read more about creating and manipulating arrays in this article.

Initializing an Array

We can create an empty array literal called heroes with the following code:

const heroes = [];

We can find out the value of element 0 in the heroes array using the
following code:

http://stackoverflow.com/questions/885156/whats-wrong-with-var-x-new-array
https://www.sitepoint.com/quick-tip-create-manipulate-arrays-in-javascript/

heroes[0]
<< undefined

To access a specific value in an array, we write its position in the array in
square brackets (this is known as its index). If an element in an array is
empty, undefined is returned.

Adding Values to Arrays

To place the string 'Superman' inside the first element of our heroes array,
we can assign it to element 0, like so:

heroes[0] = 'Superman';

Each item in an array can be treated like a variable. You can change the value
using the assignment operator =. For example, we can change the value of the
first item in the heroes array to 'Batman':

heroes[0] = 'Batman';

We can add more values to our array by assigning them to other indices:

heroes[1] = 'Wonder Woman';
heroes[2] = 'Flash';

We can use the index notation to add new items to any position in the heroes
array:

heroes[5] = 'Aquaman';

We can look at the heroes array by simply typing its name into the console:

heroes;
<< ['Batman', 'Wonder Woman', 'Flash', undefined, undefined, 'Aquaman']

Here we can see that the sixth item (with an index of 5) has been filled with
the string 'Aquaman'. This has made the array longer than it was before, so all
the other unused slots in the array are filled by the value undefined.

Creating Array Literals

We can create an array literal using square brackets that already contain some
initial values, so there’s no need to add each value one by one. Here's and
example:

const avengers = ['Captain America', 'Iron Man', 'Thor', 'Hulk'];
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk']

You don’t even have to use the same types of items inside an array. This
array contains a variety different data types, as well as an empty array object:

const mixedArray = [null, 1, [], 'two', true];

Removing Values from Arrays

The delete operator will remove an item from an array:

delete avengers[3];
<< true

If we look at the avengers array, we can see that the fourth entry, 'Hulk'
(with an index of 3), has indeed been removed ... but it has been replaced by a
value of undefined:

avengers;
<< ['Captain America', 'Iron Man', 'Thor', undefined]

Watch out for this as it can even trip up experienced programmers. The value
that was in position 3 ('Hulk') has been deleted from the array, but the space
that it occupied is still there and contains a value of undefined. This means

the array still has the same number of elements, and the position can still be
referenced as an index, but it will just return undefined:

avengers[3];
<< undefined

Destructuring Arrays

Destructuring an array is the concept of taking values out of an array and
presenting them as individual values.

Destructuring allows us to assign multiple values at the same time, using
arrays:

const [x,y] = [1,2];

Even though the assignment is made using arrays, each individual variable
exists on its own outside the array. We can see this by checking the value of
each variable:

x
<< 1

y
<< 2

Destructuring also gives us a neat way of swapping the value of two variables
over:

[x,y] = [y,x];
x
<< 2

y
<< 1

Before ES6, a temporary variable would have to be used to achieve the same

result:

const temp = x;
x = y;
y = temp;

You can read more about destructuring in this article.

Array Properties and Methods

Arrays are a powerful weapon in a JavaScript ninja’s toolkit and have some
useful methods. To demonstrate these, we’re going to use the following
avengers array that is similar to the one we produced earlier. You’ll need to
create a reference to it by entering the following into the console:

const avengers = ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow'];

To find the length of an array, we can use the length property:

avengers.length;
<< 6

The length property can be used as part of the index to find the last item in
an array:

avengers[avengers.length - 1];
<< 'Black Widow'

Notice that we have to subtract 1 from the length property. This is because
the index starts at 0, so the last item in the array will have an index of one
less than the array’s length.

The length property is mutable, meaning you can manually change it:

avengers.length = 8;
<< 8

https://www.sitepoint.com/preparing-ecmascript-6-destructuring-assignment/

avengers
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow', undefined, undefined]

As you can see, if you make the array longer, the extra slots will be filled in
with undefined:

avengers.length = 3
<< 3

avengers
<< ['Captain America', 'Iron Man', 'Thor']

If you make the array shorter than it already is, all the extra elements will be
removed completely.

Pop, Push, Shift, and Unshift

To remove the last item from an array, we can use the pop() method:

avengers.pop();
<< 'Thor'

The method returns the last item of the array, but the array no longer contains
that item. If we take a look at the avengers array, we'll see that it no longer
contains the string 'Thor':

avengers
<< ['Captain America', 'Iron Man']

The shift() method works in a similar way to the pop() method, but this
removes the first item in the array:

avengers.shift();
<< 'Captain America'

The push() method appends a new value to the end of the array.

avengers.push('Thor');
<< 2

The return value is the new length of the array:

The unshift() method is similar to the push() method, but this appends a
new item to the beginning of the array:

avengers.unshift('Captain America');
<< 3

Merging Arrays

The concat() method can be used to merge an array with one or more arrays:

avengers.concat(['Hulk','Hawkeye', 'Black Widow']);
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow']

Note that this does not change the avengers array, it simply creates another
array combining the two arrays. You can use assignment to update the
avengers array to this new array:

avengers = avengers.concat(['Hulk','Hawkeye', 'Black Widow']);
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow']

Now if we check the value of the avengers array we can see that it now
contains the strings 'Hulk', 'Hawkeye' and 'Black Widow':

avengers
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow']

An alternative is to use the new spread operator that was added to ES6. The
spread operator is three dots, ... that are placed in front of an array, with the
effect of spreading out the elements of that array. This can be used to spread
the elements of two arrays and put them together in a new array, like so:

avengers = [...avengers, ...['Hulk','Hawkeye', 'Black Widow']];
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow']

In the example above, the spread operator is used on the avengers array as
well as the new array literal. This has the effect of spreading out all the values
in each array, which allows them to be placed inside a new array.

The join() Method

The join() method can be used to turn the array into a string that comprises
all the items in the array, separated by commas:

avengers.join();
<< 'Captain America, Iron Man, Thor, Hulk, Hawkeye, Black Widow'

You can choose a separator other than a comma by placing it inside the
parentheses. Let’s try using an ampersand:

avengers.join(' & ');
<< 'Captain America & Iron Man & Thor & Hulk & Hawkeye & Black Widow'

Slicing and Splicing

The slice() method creates a subarray; effectively chopping out a slice of an
original array, starting at one position and finishing at another. For example,
if we wanted to find the 3rd and 4th item in our array we would use the
following code:

avengers.slice(2,4) // starts at the third item (index of 2) and finishes at the fourth (the item with index 4 is not included)
<< ['Thor', 'Hulk']

Note that this operation is non-destructive ― no items are actually removed
from the array, as we can see if we take a look at the avengers array:

avengers
<< ['Captain America', 'Iron Man', 'Thor', 'Hulk', 'Hawkeye', 'Black Widow']

The splice() method removes items from an array then inserts new items in
their place. For example, the following code removes the string 'Hulk' and
replaces it with 'Scarlett Witch'::

avengers.splice(3, 1, 'Scarlet Witch');
<< ['Hulk']

This is a destructive operation as it changes the value of the array, as we can
see below:

avengers
<< ['Captain America', 'Iron Man', 'Thor', 'Scarlet Witch', 'Hawkeye', 'Black Widow']

The first number in the parentheses tells us the index at which to start the
splice. In the example we started at index 3, which is the fourth item in the
array ('Hulk'). The second number tells us how many items to remove from
the array. In the example, this was just one item. Every value after this is then
inserted into the array in the same place the other items were removed. In this
case, the string 'Scarlet Witch' is inserted into the array, starting at the fourth
item. Notice the splice() method returns the items removed from the array
as a subarray. So in the example, it returned the array ['Hulk'].

The splice() method can also be used to insert values into an array at a
specific index without removing any items, by indicating that zero items are
to be removed:

avengers.splice(4,0,'Quicksilver');
<< []

Notice that an empty array is returned (because nothing was removed), but
the new value of 'Quicksilver' has been inserted at position 4, which we can
see if we look at the avengers array:

avengers
<< ['Captain America','Iron Man', 'Thor', 'Scarlet Witch', 'Quicksilver', 'Hawkeye', 'Black Widow']

The splice() method is a particularly flexible method as it can be used to
insert or remove values from an array. Be careful, though, as splice() is a
destructive method which means it changes the array permanently.

We saw earlier that we can use the delete operator to remove an item from
an array. Unfortunately, this leaves a value of undefined in its place. If you
want to remove a value completely, you can use the splice() method with a
length of 1 and without specifying any values to add:

avengers.splice(2,1); // will remove the item at index 2 (i.e. the third item in the array)
<< ['Thor']

As you can see, the value that is removed will be returned as an array
containing that value.

If we now look at the avengers array, we can see that the string 'Thor' has
been removed completely:

avengers;
<< ['Captain America', 'Iron Man', 'Scarlet Witch', 'Quicksilver', 'Hawkeye', 'Black Widow']

Reverse

We can reverse the order of an array using the reverse() method:

avengers.reverse();
<< ['Black Widow', 'Hawkeye', 'Quicksilver', 'Scarlet Witch', 'Iron Man', 'Captain America']

Note that this changes the order of the array permanently.

Sort

We can sort the order of an array using the sort() method:

avengers.sort();
<< ['Black Widow', 'Captain America', 'Hawkeye', 'Iron Man', 'Quicksilver', 'Scarlet Witch']

It is alphabetical order by default for String objects. Note that this also
changes the order of the array permanently.

Numbers Get Sorted Alphabetically

Numbers are also sorted alphabetically (that is, by their first digit, rather than
numerically), so 9 will come after 10 when you try to sort an array of
numbers:

[5, 9, 10].sort();
<< [10, 5, 9]

This can be fixed using a callback, which is a function that is passed as an
argument to the sort() method when it is called.

We’ll cover how to do this in Chapter 4

Finding if a Value is in an Array

We can find out if an array contains a particular value using the indexOf()
method to find the first occurrence of a value in an array. If the item is in the
array, it will return the index of the first occurrence of that item:

avengers.indexOf('Iron Man');
<< 3

If the item is not in the array, it will return -1:

avengers.indexOf('Thor');
<< -1

ES6 also introduced the includes() method. This returns a boolean value
depending on whether the array contains a particular element or not:

avengers.includes('Iron Man');
<< true

avengers.includes('Thor');
<< false

You can also add an extra parameter to indicate which index to start the
search from:

avengers.includes('Black Widow', 1); // will start the search from the second element in the array
<< false

Multidimensional Arrays

You can even have an array of arrays, known as a multidimensional array.
This could be used to create a coordinate system, for example:

const coordinates = [[1,3],[4,2]];
<< [[1,3],[4,2]]

To access the values in a multidimensional array, we use two indices: one to
refer to the item’s place in the outer array, and one to refer to its place in the
inner array:

coordinates[0][0]; // The first value of the first array
<< 1

coordinates[1][0]; // The first value of the second array
<< 4

coordinates[0][1]; // The second value of the first array
<< 3

coordinates[1][1]; // The second value of the second array
<< 2

The spread operator that we met earlier can be used to flatten multi-
dimensional arrays. Flattening an array involves removing all nested arrays
so all the values are on the same level in the array. You can see an example of
a flattened array below:

const summer = ['Jun', 'Jul', 'Aug'];
const winter = ['Dec', 'Jan', 'Feb'];
const nested = [summer, winter];
<< [['Jun', 'Jul', 'Aug'], ['Dec', 'Jan', 'Feb']]

const flat = [...summer, ...winter];
<< ['Jun', 'Jul', 'Aug', 'Dec', 'Jan', 'Feb']

A summary of creating and manipulating arrays can be found in this post on
SitePoint.

https://www.sitepoint.com/quick-tip-create-manipulate-arrays-in-javascript/

Sets
Sets were introduced to the specification in ES6. A set is a data structure that
represents a collection of unique values, so it cannot include any duplicate
values. They are similar in concept to a mathematical set, although (for the
time being at least) they don't contain mathematical set operations such as
union, intersection and product.

Sets offer a useful way to keep track of data without having to check if any
values have been duplicated. It's also quick and easy to check if a particular
value is in a set, which can be a slow operation if an array is used.

Creating Sets

An empty set is created using the new operator and Set() constructor:

const list = new Set();

There is, at the time of writing, no literal notation for creating sets.

Adding Values to Sets

Values can be placed into a set using the add method:

list.add(1);
<< Set { 1 }

Multiple items can be added to the set by repeating the add() method:

list.add(2).add(3).add(4);
<< Set { 1, 2, 3, 4 }

If you try to add a value that is already contained in the set, then the operation

https://en.wikipedia.org/wiki/Set_%28mathematics%29

is simply ignored:

list.add(1);
<< Set { 1, 2, 3, 4 }

Multiple values can be added to a set in one go by placing them inside an
array that is provided as an argument:

const numbers = new Set([1,2,3]);

To see the contents of a set, simply enter the name of the variable that refers
to it:

numbers
<< Set { 1, 2, 3 }

If any values are repeated in the array, then they will only appear once in the
set:

const moreNumbers = new Set([7,7,7,7,7,8,8,8,9,9]);

moreNumbers
<< Set {7,8,9}

This gives a convenient way of eliminating any duplicate values from an
array in a single operation.

If a string is used as the argument then each character will be added as a
separate element, with any repeated characters ignored:

const letters = new Set('hello');
letters
<< Set { 'h', 'e', 'l', 'o' }

If you want to add separate words, you need to use the add() method:

const words = new Set().add('the').add('quick').add('brown').add('fox')

words
<< Set { 'the', 'quick', 'brown', 'fox' }

All non-primitive values, such as arrays and objects, are considered unique
values, even if they contain the same values. On the face of it, this appears to
allow duplicate values appear in a set:

const arrays = new Set().add([1]).add([1]);

arrays
<< Set { [1], [1] }

The two arrays may look the same, but are considered different objects. This
can be seen with the following strict equality test:

[1] === [1];
<< false

Type coercion is not used when values are added to a set, so the string '2' will
be added as a new entry, even if the number 2 is already an element of the
set:

const mixedTypes = new Set().add(2).add('2');

mixedTypes
<< Set { 2, '2' }

Set Methods

The number of values in a set can be found using the size() method:

const jla = new Set().add('Superman').add('Batman').add('Wonder Woman');

jla
<< Set { 'Superman', 'Batman', 'Wonder Woman' }

jla.size();
<< 3

The has() method can be used to check if a value is in a set. This returns a
boolean value of true or false:

jla.has('Superman');
<< true

jla.has('Green Lantern');
<< false

The has() method that sets use is a very efficient operation and much faster
than using the includes() or indexOf() methods to check if a value is in an
array, as can be seen in this benchmark test.

Sets do not have index notation for inspecting individual entries, so you can't
find the value of the first element in a set like this:

jla[0]
<< undefined

Removing Values From Sets

The delete() method can be used to remove a value from a set. This returns
a boolean value of true if the value was removed from the set, or false if the
value wasn't in the set and couldn't be removed:

jla.delete('Superman');
<< true

jla.delete('Flash');
<< false

The clear() method can be used to remove all values from a set:

jla.clear();

jla
<< Set {}

jla.size

https://jsperf.com/set-has-vs-arr-includes

<< 0

Converting Sets to Arrays
A set can be converted into an array by placing the set, along with the spread
operator directly inside an array literal.

To demonstrate this, first we'll create a set of three items:

const shoppingSet = new Set().add('Apples').add('Bananas').add('Beans');

shoppingSet
<< Set { 'Apples', 'Bananas', 'Beans' }

Then we convert it into an array:

const shoppingArray = [...shoppingSet]

shoppingArray
<< ['Apples', 'Bananas', 'Beans']

It's also possible to use the Array.from() method to convert a set into an
array. The following code would achieve the same result as using the spread
operator above:

const shoppingSet = new Set().add('Apples').add('Bananas').add('Beans');

const shoppingArray = Array.from(shoppingSet);

By combining this use of the spread operator with the ability to pass an array
to the new Set() constructor, we now have a convenient way to create a copy
of an array with any duplicate values removed:

const duplicate = [3, 1, 4, 1, 5, 9, 2, 6 ,5,3,5,9];
<< [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9]

const nonDuplicate = [...new Set(repeatedArray)];
<< [3, 1, 4, 5, 9, 2, 6]

Weak Sets

When objects are added to sets, they will be stored there as long as the set
exists, even if the original reference to the object is removed. The technical
term for this is the object is prevented from being garbage-collected, which
can cause a memory leak. This can be seen in the following example:

let array = [1,2,3];
const strong = new Set().add(array);

array = null; // remove reference to the original

strong
<< Set { [1, 2, 3] }

The array still exists inside the set and we can get the original value of array
back using the spread operator:

array = [...strong][0];

array
<< [1,2,3]

Memory Leaks

A memory leak occurs when a program retains references to values that can
no longer be accessed in its memory. This means that memory is being used
to store values that are no longer required by the program, effectively wasting
system resources.

Memory leaks can cause problems by gradually reducing the overall memory
available, which can cause the program, or even the entire system, to run
more slowly.

Most modern programming language, including JavaScript, employ various
dynamic memory management techniques such as garbage collection, which
is the process of automatically removing items from memory that are no
longer required by the program. Some languages, such as C++, require the

programmer to manually manage memory by removing items from memory
once they are finished with.

Weak sets avoid this situation by garbage collecting any references to a 'dead
object' that’s had its original reference removed.

To create a weak set, the new operator and the WeakSet() constructor in the
same way that we created a set:

const weak = new WeakSet();

Only non-primitive data types can be added to weak sets. Trying to add
primitive values will throw a type error:

weak.add(2)
<< TypeError: Invalid value used in weak set

Apart from these restrictions, weak sets behave in the same way as regular
sets, and have the has(), add(), and delete() methods that work in the same
way.

In the next example we can see what happens if we add an array to a weak
set:

const array = [1,2,3];
weak.add(array);
<< WeakSet {}

Because weak maps use weak references to objects, they don't have access to
a list of values they contain. This makes the return value in the example look
as though the weak set is empty, when, in fact it isn't.

We can confirm it does indeed contain the array object by using the has()
method:

weak.has(array);
<< true

We can remove the array from the weak set using the delete() method:

weak.delete(array);
<< true

And check it’s been removed using the has() method again:

weak.has(array);
<< false

Maps
Maps were another data structure introduced in the ES6 specification. They
are a convenient way of keeping a list of key and value pairs, and are similar
to 'hashes', or 'hash tables' or 'dictionaries' in other programming languages.

At first glance, maps appear to be similar to JavaScript objects (covered in
Chapter 5), but they have some noticeable differences:

Objects are limited to using strings for key values, whereas maps can
use any data type as a key.
There is no efficient way to find the number of key-value pairs an object
has, whereas this is easy to do with maps using the size property.
Objects have methods that can be called (see Chapter 5) and prototypes
that can be used to create a chain of inheritance (see Chapter 12),
whereas maps are solely focused on the storage and retrieval of key-
value pairs.
The value of an object's properties can be accessed directly, whereas
maps restrict you to using the get() method to retrieve any values.

Creating Maps

An empty map object can be created using the new operator and Map()
constructor:

const romanNumerals = new Map();

There is, at the time of writing, no literal notation for creating maps.

Adding Entries To Maps

The set() method can be used to add a key and value pair to a map. The first
value is the key and the second is the value:

romanNumerals.set(1,'I');
<< Map { 1 => 'I' }

The return value shows the mapping with the key connected to the value
using the 'hash rocket' symbol (=>).

Multiple items can be added to the set by repeatedly calling the set() method
in one go:

romanNumerals.set(2,'II').set(3,'III').set(4,'IV').set(5,'V');
<< Map { 1 => 'I', 2 => 'II', 3 => 'III', 4 => 'IV', 5 => 'V' }

Map Methods

A map is a bit like a dictionary where you can look up a value based on the
key. To look up a value, we can use the get() method:

romanNumerals.get(4);
<< 'IV'

The has() method can be used to check if a particular key is in a map. This
returns a boolean value of true or false:

romanNumerals.has(5);
<< true

romanNumerals.has(10);
<< false

A map can be created with multiple values by using a nested array as a
parameter:

const heroes = new Map([['Clark Kent','Superman'],
['Bruce Wayne', 'Batman']
]);

The number of key and value pairs in a map can be found by querying the

size property:

heroes.size
<< 2

Removing Entries From Maps

The delete() method can be used to remove a key and value pair from a
map. This returns a boolean value of true if the value was removed or false
if it wasn't in the map. To delete a specific value, you need to specify the key
in parentheses:

heroes.delete('Clark Kent');
<< true

heroes.size
<< 1

The clear() method will remove all key and value pairs from a map:

heroes.clear();

heroes.size;
<< 0

Converting Maps to Arrays
Maps can be converted into a nested array of key-value pairs in a similar way
to sets; using either the spread operator:

[...romanNumerals]
<< [[1, 'I'], [2, 'II'], [3, 'III'], [4, 'IV'], [5, 'V']]

... or the Array.from() method:

Array.from(romanNumerals)
<< [[1, 'I'], [2, 'II'], [3, 'III'], [4, 'IV'], [5, 'V']]

Weak Maps

Weak maps work in the same way as weak sets. They are the same as maps,
except their keys cannot be primitives, and the garbage collector will
automatically remove any dead entries when the reference to the original
object is deleted.

To create a weak map, the new operator is used along with the WeakMap()
constructor:

const weak = new WeakMap();

Weak maps can use the has(), get(), set() and delete() methods in the
same way as a regular map.

Weak maps and sets are useful for optimizing memory usage and avoiding
memory leaks, but they’re also limited in that they don't have access to all the
methods their regular counterparts have. For example, you cannot use the
size() method to see how many entries they contain. The choice of which to
use will depend on what you plan to use them for.

Logic
In this section, we’ll begin to look at logical conditions that allow you to
control the flow of a program by running different blocks of code, depending
on the results of certain operations.

if Statements

An if statement has the following structure:

if (condition) {
// code to run if condition is true
}

The code inside the block will only run if the condition in parentheses is true.
If the condition is not a boolean value, it will be converted to a boolean,
depending on whether or not it is truthy or falsy (see Chapter 2).

Here is an example that will only display the alert message if the value of the
age variable is less than 18:

const age = 23;
if (age < 18) {
console.log('Sorry, you are not old enough to play this game');
}

Try changing the value of the age variable to a value below 18 as it does in
this code, and the alert box will show.

const age = 12;
if (age < 18) {
console.log('Sorry, you are not old enough to play this game');
}

else Statements

The else keyword can be used to add an alternative block of code to run if
the condition is false. An if ... else statement looks like this:

if (condition) {
// code to run if condition is true
} else {
// code to run if condition is false
}

As an example, we can test if a number is even or odd using the following
code:

const n = 12;
if (n%2 === 0) {
console.log('n is an even number');
} else {
console.log('n is an odd number');
}
<< 'n is an even number'

This uses the % operator that we met in the previous chapter to check the
remainder when dividing the variable n by 2. All even numbers leave no
remainder when divided by 2, so we can test to see if n%2 is equal to zero; if it
is, n must be even. If n is not even, then it must be odd.

Ternary Operator

A shorthand way of writing an if ... else statement is to use the ternary
operator, ?, which takes three operands in the following format:

condition ? (//code to run if condition is true) : (//code to run if condition is false)

Here’s the example for testing if the variable n is odd or even, rewritten to
use the ternary operator:

const n = 5;
n%2 === 0 ? console.log('n is an even number') : console.log('n is an odd number');
<< 'n is an odd number'

We could make the example even shorter by placing the ternary operator
inside a template string:

console.log(`n is a ${(n%2 === 0)? 'even' : 'odd'} number`);

This will evaluate the ternary operator and place the result directly inside the
template string that is then logged in the console.

The ternary operator can make your code more succinct, but can also make it
harder to read, so think carefully before using it.

Switch Statements

You can actually string lots of if and else statements together to make a
logical decision tree:

if (number === 4) {
console.log('You rolled a four');
} else if (number === 5) {
console.log('You rolled a five');
} else if(number === 6){
console.log('You rolled a six');
} else {
console.log('You rolled a number less than four');
}

The switch operator can be used to make your code easier to follow when
there are lots of conditions to test. The example above can be rewritten using
a switch statement like so:

switch (number) {
case 4:
console.log('You rolled a four');
break;
case 5:
console.log('You rolled a five');
break;
case 6:
console.log('You rolled a six');
break;

default:
console.log('You rolled a number less than four');
break;
}

The value you are comparing goes in parentheses after the switch operator.
A case keyword is then used for each possible value that can occur (4, 5, and
6 in the example above). After each case statement is the code that that needs
to be run if that case occurs.

It is important to finish each case block with the break keyword, as this stops
any more of the case blocks being executed. Without a break statement, the
program will "fall through" and continue to evaluate subsequent case blocks.
This is sometimes implemented on purpose, but it is a hack and can be
confusing. For this reason it should be avoided ― a ninja programmer always
finishes a case block with a break!

The default keyword is used at the end for any code than needs to be run if
none of the cases are true.

Loops
Loops will repeat a piece of code over and over again according to certain
conditions.

While Loops

We’ll start by looking at a while loop. This will repeatedly run a block of
code while a certain condition is true, and takes the following structure:

while (condition) {
// do something
}

Here’s an example that will count down from 10, logging a line from the
famous song each time:

let bottles = 10;
while (bottles > 0){
console.log(`There were ${bottles} green bottles, hanging on a wall. And if one green bottle should accidentally fall, there'd be ${bottles-1} green bottles hanging on the wall`);
bottles--;
}

We start by declaring a variable called bottles. Any variables that are used
in the loop must be initialized before the loop is run, otherwise there will be
an error when they are mentioned.

The loop starts here with the while keyword and is followed by a condition
and a block of code. The condition in the example is that the value of the
bottles variable has to be greater than zero. This basically means "keep
repeating the block of code, as long as the number of bottles is greater than
zero".

The block of code uses the alert function to display a message about the
number of bottles, then uses the decrement operator to decrease the bottles

variable by one.

Here’s a more concise way of writing the same loop that moves the increment
into the condition:

let bottles = 11;
while (--bottles){
console.log(`There were ${bottles} green bottles, hanging on a wall. And if one green bottle should accidentally fall, there'd be ${bottles-1} green bottles hanging on the wall`);
}

The reason this code works is because the loop will continue while the
bottles variable is true, and before each loop, the value of the bottles
variable decreases by 1. When the bottles variable reaches 0, it is not true
anymore (remember that 0 is a falsy value) so the loop will stop. Notice that
you have to start with one more bottle (11) as it will be decreased by one
even before the first block is run.

Infinite Loops

It is important that the condition in a while loop will be met at some point,
otherwise your code will get stuck in an infinite loop that could possibly
crash the program.

Consider the following loop:

let n = 1;
while(n>0){
console.log('Hello');
n++;
}

This loop will keep running, as the variable n will always be above zero.
Most browsers will warn you that there is a slow running script when this
happens and give you the option to stop it. If not, you can kill the process by
closing the tab or restarting the browser. Obviously you want to avoid this
happening, though; especially with public-facing code.

do ... while Loops

A do ... while loop is similar to a while loop. The only difference is that
the condition comes after the block of code:

do {
do something
} while(condition)

This means that the block of code will always be run at least once, regardless
of the condition being true or not.

Here’s the same example we saw before, rewritten as a do ... while loop:

let bottles = 10;
do {
console.log(`There were ${bottles} green bottles, hanging on a wall. And if one green bottle should accidentally fall, there'd be ${bottles-1} green bottles hanging on the wall`);
bottles--;
} while (bottles > 0)

For Loops

For loops are probably the most commonly type of loop used in JavaScript,
and take the following form:

for (initialization ; condition ; after) { do something }

The initialization code is run before the loop starts and is usually employed to
initialize any variables used in the loop. The condition has to be satisfied for
the loop to continue. The after code is what to do after each iteration of the
loop, and it is typically used to increment a counter of some sort.

Here’s the green bottles example written as a for loop:

for (let bottles = 10 ; bottles > 0 ; bottles--) {
console.log(`There were ${bottles} green bottles, hanging on a wall. And if one green bottle should accidentally fall, there'd be ${bottles-1} green bottles hanging on the wall`);
}

Each part of a for loop are optional, and the code could be written as:

let bottles = 10; // bottles is initialized here instead
for (; bottles > 0 ;) { // empty initialization and increment
console.log(`There were ${bottles} green bottles, hanging on a wall. And if one green bottle should accidentally fall, there'd be ${bottles-1} green bottles hanging on the wall`);
bottles--; // increment moved into code block
}

As you can see, it’s possible to use a while loop, a do ... while loop, or a
for loop to achieve the same results. A for loop is considered clearer, as all
the details of the loop (the initialization, condition and increment) are shown
in one place and kept out of the actual code block.

Nested for Loops

You can place a loop inside another loop to create a nested loop. It will have
an inner loop that will run all the way through before the next step of the
outer loop occurs.

Here’s an example that produces a multiplication table up to 12 x 12:

for(let i=1 ; j<13 ; i++){
for(let i=1 ; j<13 ; j++){
 console.log(`${j} multiplied by ${i} is ${i*j}`);
 }
}

The outer loop counts up from i=1 to i=12. For every iteration of the outer
loop, the inner loop counts up from j=1 to j=12. This means that it starts in
the first iteration with i = 1 and j = 1, producing the following output that
is logged to the console:

<< 1 multiplied by 1 is 1

In the next iteration, we are still inside the inner loop, so i remains as 1, but j
is incremented to 2, giving:

<< 1 multiplied by 2 is 2

j continues to increase until it reaches 12. After this, we leave the inner loop
and return to the outer loop, where i increases to 2. We then re-enter the
inner loop and j is reset back to 1 and begins counting up to 12 again. This
continues until the last iteration produces the line:

<< 12 multiplied by 12 is 144

Looping over Arrays

A for loop can be used to iterate over each value in an array. If we take our
avengers array example from earlier, we can create a for loop that outputs
each item in the array to the console using the following loop:

for(let i=0, max=avengers.length; i < max; i++){
console.log(avengers[i]);
}
<< 'Black Widow'
<< 'Captain America'
<< 'Hawkeye'
<< 'Iron Man'
<< 'Quicksilver'
<< 'Scarlet Witch'

There are a few points to note in this example. Array indices start their
numbering at zero, so make sure the value of the initial counter in the for
loop also starts at zero. We want the loop to continue until it reaches the
length of the array; this can be set as the variable max in the initialization part
of the for loop, then the condition becomes i < max. This is preferable to
using i < avengers.length because then the length of the avengers array
would have to be calculated after every pass through the loop. This might not
sound all that important, but it can make a big difference to the speed of the
program when using large arrays.

ES6 introduced an improved iterator function for arrays called a for-of loop
that uses a slightly different syntax:

for(const value of avengers){
console.log(value);
}
<< 'Black Widow'
<< 'Captain America'
<< 'Hawkeye'
<< 'Iron Man'
<< 'Quicksilver'
<< 'Scarlet Witch'

This replaces all of the setup of a ‘for’ loop with a variable (value in the
example above) that represents the value of each element in the array. Note
that this variable needs to be declared using const.

Looping Over Sets

Sets are enumerable, which means they have methods that allow you to loop
over each value in the set. The loop will iterate over each value in the same
order they were added to the set. To demonstrate this, we will use the set of
letters that we created earlier:

const letters = new Set('hello');

We can iterate over each value in the set using a for-of loop, like so:

for(const letter of letters) {
console.log(letter);
}
<< h
e
l
o

Note that weak sets are non-enumerable, so it's not possible to loop over
them in this way.

Looping Over Maps

Maps are also enumerable, so it's also possible to loop over a map in a similar
way to a set. The loop will iterate over each key-value pair in the same order
as they were added to the map. For example let's use the romanNumerals map
that we created earlier:

const romanNumerals = new Map();
romanNumerals.set(1,'I').set(2,'II').set(3,'III').set(4,'IV').set(5,'V');

romanNumerals
<< Map { 1 => 'I', 2 => 'II', 3 => 'III', 4 => 'IV', 5 => 'V' }

Every map object has a keys() method lets us iterate over each key with the
following for-of loop:

for(const key of romanNumerals.keys()) {
console.log(key);
}
<< 1
2
3
4
5

There is also a values() method that lets us iterate over the values in a
similar way:

for(const value of RomanNumerals.values()) {
console.log(value);
}
<< I
II
III
IV
V

If you want to access both the key and the value, you can use the entries()
method:

for(const [key,value] of RomanNumerals.entries()) {
console.log(`${key} in Roman numerals is ${value}`);
}

<< 1 in Roman numerals is I
2 in Roman numerals is II
3 in Roman numerals is III
4 in Roman numerals is IV
5 in Roman numerals is V

Note that weak maps are also non-enumerable, so it isn't possible to loop
over them using any of the methods shown above.

Quiz Ninja Project
Now we’ve reached the end of the chapter, it’s time to use what we’ve
learned to add some features to our Quiz Ninja project.

We'll start by creating an array called quiz that contains all the questions and
answers. Each element in quiz will be a nested array that contains the
question as its first element and the answer as its second element. Open up
main.js and add the following code at the top:

const quiz = [
 ["What is Superman's real name?","Clark Kent"],
 ["What is Wonder Woman's real name?","Diana Prince"],
 ["What is Batman's real name?","Bruce Wayne"]
];

Next, we’ll create and initialize a variable called score to keep track of how
many correct answers the player has given:

let score = 0 // initialize score

Then we'll loop through the array using a for-of loop, assigning the
variables question and answer to each key and value in the map.

The loop starts by asking the question using a prompt dialog that allows the
player to enter an answer that is stored in a variable called response. We can
then compare this to the actual answer stored as answer:

for(const [question,answer] of quiz){
const response = prompt(question);
if(response === answer){
 alert('Correct!');
 score++;
} else {
 alert(`Wrong! The correct answer was ${answer}`);
}
}

An if ... else block is then used to check if the answer is right or wrong.
If it’s right, an alert dialog is shown saying it is correct and the score is
incremented by 1, using score++. Otherwise, if the answer is wrong, an alert
dialog informs the player and also lets them know the correct answer.

When the loop has finished iterating through each question in the array, it
breaks out of the block and finishes by displaying another alert dialog to
inform the player the game is over and telling them how many questions they
answered correctly. This uses a template literal to display the score:

// At the end of the game, report the player's score
 alert(`Game Over, you scored ${score} point${score !== 1 ? 's' : ''}`);

Notice at the end of this template literal, we use the ternary operator to check
if the score is not equal to 1. If this is true, the letter 's' is appended to the end
of the word 'point' to make it plural. This is a neat trick that can sometimes be
overlooked, even on professional websites.

Have a go at playing the quiz in your browser by opening the index.html
file. It should look like the screenshot shown below.

Quiz Ninja scores

You can also see a live example on CodePen.

Our quiz now feels much more like an actual program, and demonstrates the
power of concepts such as arrays, logic and loops that we’ve learned about in
this chapter.

http://codepen.io/daz4126/pen/XRyMJe

Chapter Summary
Arrays are an ordered list of values

Multidimensional arrays are arrays that contain other arrays

Arrays have lots of methods that can be used to manipulate items in the
array

Sets are new in ES6 and are ordered lists of non-duplicate values

Maps are new in ES6 and are ordered lists of key-value pairs

We can use an if and else statement to control the flow of code

The switch statement can be used instead of multiple if and else
statements

A while loop and do ... while loop can be used to repeat a block of
code while a condition is still true

A for loop works in a similar way to a while loop, but has a different
syntax

A for-of loop can be used to iterate over an array

Sets and maps are enumerable, so can also be looped over using a for-
of loop

In the next chapter, we’ll be learning all about functions, a fundamental part
of the JavaScript language.

Chapter 4: Functions
A function is a chunk of code that can be referenced by a name, and is almost
like a small, self-contained mini program. Functions can help reduce
repetition and make code easier to follow.

In this chapter, we’ll be covering these topics:

Defining functions―function declarations, function expressions,
Function() constructors and the new arrow syntax

Invoking a function

Return values

Parameters and arguments

Hoisting―variables and functions

Callbacks―functions as a parameter

Project ― we’ll be using functions to make the Quiz Ninja code easier
to follow

In JavaScript, functions are considered to be first-class objects. This means
they behave in the same way as all the other primitive data types and objects
in the language. They can be be assigned to variables, stored in arrays and
can even be returned by another functions.

This makes functions a very important and powerful part of the JavaScript
language with many of its features relying on them. Fully understanding
functions is an essential skill of the JavaScript ninja.

Defining a Function
There are a number of ways to define a function in JavaScript. Three of the
most common are covered below. ES6 introduced a new way to define
functions, using what is known as 'arrow' notation. This is covered later in the
chapter.

Function Declarations

To define a function literal we can use a function declaration:

function hello(){
console.log('Hello World!');
}

This starts with the function keyword and is followed by the name of the
function, which in this case is called 'hello', followed by parentheses.
Following this is a block that contains the code for the function.

This is known as a named function as the function has a name: 'hello'.

Function Expressions

Another way of defining a function literal is to create a function expression.
This assigns an anonymous function to a variable:

const goodbye = function(){
console.log('Goodbye World!');
};

The function in this example is known as an anonymous function because it
doesn't have a name; it is simply created, then assigned to the variable
goodbye. Alternatively, we can create a named function expression instead:

const goodbye = function bye(){

console.log('Goodbye World!');
};

The name of this function is bye, and it has been assigned to the variable
goodbye.

Notice also that the example ends with a semicolon. This finishes the
assignment statement, whereas a normal function declaration ends in a block
(there's no need for semicolons at the end of blocks).

Every Function Has a Name

All functions have a read-only property called name, which can be accessed
like so:

hello.name
<< 'hello'

The name property is not actually part of the ECMAScript standard, although
most JavaScript engines support it and use it internally.

Anonymous functions have an empty string as their name property in most
browsers, although some versions of Internet Explorer use undefined.

The name property can be useful when debugging code, as the name of a
function will be used to indicate which functions are causing a problem.

Function() Constructors

A function can also be declared using the constructor Function(). The body
of the function is entered as a string, as shown in this example:

const hi = new Function('console.log("Hi World!");');

It's not recommended to declare functions in this way as there are numerous
problems associated with placing the function body inside a string. Even in

this simple example, we had to use different quotation marks for the
console.log method, as those used for defining the function body itself.
Functions created this way are also created in the global scope, regardless of
where they are actually declared. This can lead to some strange and
unexpected behavior.

A ninja programmer should always declare functions using function literals,
function declarations or function expressions. These two ways of creating
functions are similar, although there are some subtle differences that will be
covered later in the chapter. Some people prefer function declarations as they
are akin to how functions are declared in other languages. Others prefer
function expressions because it is clear that functions are just another value
assigned to a variable, rather than a special feature of the language. Whether
you use function declarations or function expressions is often a matter of
personal taste, but whatever you choose to do, be consistent!

You can read more about using function expressions or declarations in this
article

https://www.sitepoint.com/function-expressions-vs-declarations

Invoking a Function
Invoking a function is to run the code inside the function’s body. To invoke a
function, simply enter its name, followed by parentheses. This is how we’d
invoke the hello function:

hello();
<< 'Hello world!'

The function can be invoked over and over again just by typing its name
followed by parentheses. This is one of the advantages of using functions ―
there’s no need to write repetitive blocks of code. Another advantage is that
all the functionality is kept in one place. So if you want to change part of it,
you only need to update the one piece of code in the function declaration.
This is known as the DRY principle, which stands for Don’t Repeat Yourself.

Keep Your Code DRY

Don’t Repeat Yourself, or DRY, is a principle of programming that specifies
that every part of a program should only be written once. This avoids
duplication and means there’s no need to keep multiple pieces of code up to
date and in sync.

If you have assigned a function to a variable, you need to place parentheses
after the variable to invoke it as a function:

goodbye();
<< 'Goodbye World!'

Remember: you need parentheses to invoke a function ― either by name or
by reference to the variable it is assigned to. If you skip the parentheses, you
are simply referencing the function itself rather than invoking it, as you can
see here:

goodbye;

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

<< [Function: goodbye]

All that has been returned is the function definition that the variable goodbye
is pointing to, rather than running the code. This can be useful if you want to
assign the function to another variable, like so:

seeya = goodbye;
<< [Function: goodbye]

Now the variable seeya also points to the function called bye and can be used
to invoke it:

seeya();
<< 'Goodbye World!'

Return Values
All functions return a value, which can be specified using the return
statement, which comes after the return keyword. A function that doesn’t
explicitly return anything (such as all the examples we have seen so far) will
return undefined by default.

The function in this example will return the string 'Howdy World!':

function howdy(){
return 'Howdy World!';
}

This means we can now assign a function invocation to a variable, and the
value of that variable will be the return value of that function:

const message = howdy();
<< 'Howdy World!'

The variable message now points to the return value of the howdy() function,
which is the string 'Howdy World!'. This may seem trivial in this instance
(that is, why not just assign the variable to the string directly?), but we can
create a more complex function that has different return values depending on
certain conditions. This then allows us to assign different values to the
message variable depending on those conditions.

Parameters and Arguments
Parameters and arguments are terms that are often used interchangeably to
represent values provided for the function as an input. There is a subtle
difference though: any parameters a function needs are set when the function
is defined. When a function is invoked, it is provided with arguments.

To see an example of a function that uses parameters, we'll create a function
that squares numbers. In the example that follows, the square function takes
one parameter, x, which is the number to be squared. In the body of the
function, the name of the parameter acts like a variable equal to the value that
is provided when the function is invoked. As you can see, it is multiplied by
itself and the result is returned by the function:

function square(x){
return x*x;
}

When we invoke this function, we need to provide an argument, which is the
number to be squared:

square(4.5);
<< 20.25

You can use as many parameters as you like when defining functions. For
example, the following function finds the mean of any three numbers:

function mean(a,b,c){
return (a+b+c)/3;
}

mean(1, 3, 6);
<< 3.3333333333333335

Rounding Errors

You might have noticed that the answer to the last example was slightly
incorrect (it should be just 3.3 recurring, with no 5 on the end). This
highlights a problem when doing division in JavaScript (or calculations on
any computer, for that matter). The problem stems from the fact that
computers use base 2 in the background and therefore struggle to represent
any fractions where the denominator is not a power of 2. This means that
some division calculations can often have slight rounding errors. This usually
doesn’t cause a problem, but you should be aware of it.

If a parameter is not provided as an argument when the function is invoked,
the function will still be invoked, but the parameter will be given a value of
undefined. If we try to invoke the mean function with only two arguments,
we can see that it returns NaN because the function cannot do the required
operation with undefined:

mean(1,2)
<< NaN

If too many arguments are provided when a function is invoked, the function
will work as normal and the extra arguments will be ignored (although they
can be accessed using the arguments object that is discussed in the next
section):

mean(1,2,3,4,5); // will only find the mean of 1,2 and 3
<< 2

ES6 also made it possible to create default parameters that will use default
values for any parameter that isn't provided as an argument. This is covered a
little later in the chapter.

Variable Numbers of Arguments

As we have seen in the example above, it’s possible to enter as many
arguments as you like into a function, even if only some of them are used.
There are times when we don't know how many arguments will be entered.
For example, we could improve our mean() function by allowing a user to

calculate the mean of any number of values, rather than restricting them to
just 3.

Every function has a special variable called arguments. This is an array-like
object that contains every argument passed to the function when it is invoked.
We can create a simple function called arguments() that will return the
arguments object so we can see what it contains:

function arguments(){
return arguments;
}

Now let's invoke the arguments() function a couple of times to see the
results:

arguments('hello', NaN);
<< { '0': 'hello', '1': NaN }

arguments(1,2,3,4,5);
<< { '0': 1, '1': 2, '2': 3, '3': 4, '4': 5 }

As you can see, the arguments object that is returned contains every value
that was entered. These can then be accessed using an index notation like we
did with arrays, so the first argument would be accessed using arguments[0].

The problem is that arguments is not an array. It has a length property and
you can read and write each element using index notation, but it doesn’t have
array methods such as slice(), join(), and forEach(). There is a way of
'borrowing' methods from arrays, but it is clumsy and unnecessary.

A much better option is to use the rest operator. This was introduced in ES6
and can be used to deal with multiple arguments by creating an array of
arguments that are available inside the body of the function.

To use the rest operator, simply place three dots in front of the last parameter
in a function declaration. This will then collect all the arguments entered into
an array. For example, the following function will have access to an array of
all the arguments entered:

function rest(...args){
return args;
}

The args parameter is an actual array, and has access to the same methods.
For example we can use a for-of loop to iterate over each value given as an
argument:

function rest(...args){
for(arg of args){
 console.log(arg);
}
}

rest(2,4,6,8);
<< 2
4
6
8

Improved Mean Function

We can use a rest parameter to improve our mean() function so it accepts any
number of values:

function mean(...values) {
let total = 0;
for(const value of values) {
 total += value;
 }
return total/values.length;
}

This collects all the arguments that are entered into an array called values.
We can then loop over this array and add up all the values. The variable
total is used to keep the running total, and the += operator is used to add the
next value onto the total. At the end of the function we return the total divide
by the number of arguments entered, which we find by calling the length
property on the values array. Let's see if it works:

mean(2,8,13,11,4,2);
<< 6.666666666666667

Default Parameters

ES6 introduced a convenient way to specify default parameters for a function.
These are values that will be used by the function if no arguments are
provided when it is invoked. To specify a default parameter, simply assign
the default value to it in the function definition:

function hello(name='World') {
console.log(`Hello ${name}!);
}

Now if we call this function without an argument, it will use 'World' as the
name parameter:

hello();
<< 'Hello World!'

We can override the default value, by specifying our own argument:

hello('Universe');
<< 'Hello Universe!'

Prior to ES6

The way of assigning default values previous to ES6 was to use a line of code
similar to the following in the body of the function:

name = name || "World";

This uses the logical OR operator to check if the name parameter has a truthy
value. If it does, that means an argument was provided to the function and
name will stay as that value. If there was no argument provided, the value of

name will be undefined, which is falsy so it will take the value of 'World'.
This method is still used quite often, but it does have a pitfall in that it relies
on undefined being falsy. Unfortunately this is not the only falsy value,
however. If the name argument is meant to be a falsy value, such as 0, for
example, it won't be used, and the value will still be set to the default value of
'World' instead. For this reason, you should stick to using the ES6 method of
declaring default parameters whenever possible.

Default parameters should always come after non-default parameters,
otherwise default values will always have to be entered anyway. Consider the
following function for calculating a discounted price in a store:

function discount(price, amount=10) {
return price*(100-amount)/100;
}

This function takes two arguments: the price of an item and the percentage
discount to be applied. The store’s most common discount is 10%, so this is
provided as a default value. This means that the amount argument can be
omitted in most cases and a 10% discount will still be applied:

discount(20) // standard discount of 10%
<< 18

If a different discount is applied, the amount argument can be provided:

discount(15, 20) // discount of 20%
<< 12

This will fail to work, however, if the parameters are reversed:

function discount(amount=10, price) {
return price*(100-amount)/100;
}

Now if we try to use the function with just one argument, the function won’t
work, because price has not been set:

discount(20); // this sets amount = 20, but doesn't provide a value for price
<< NaN

It will work, however, if both values are entered:

discount(10,20);
<< 18

This somewhat defeats the object of having default parameters! The golden
rule to remember here is to always put default parameters after all the other
parameters.

Arrow Functions

ES6 introduced a new syntax for declaring functions called the arrow syntax.
These make declaring functions much more succinct by using less verbose
syntax.

Arrow functions can be identified by the 'arrow' symbol, => that gives them
their name. The parameters come before the arrow and the main body of the
function comes after. Arrow functions are always anonymous, so if you want
to refer to them, you must assign them to a variable. For example, the square
function we wrote earlier can be written like so:

const square = x => x*x;

Arrow functions have a number of advantages over other ways of declaring
functions:

They are much less verbose than normal function declarations.
Single parameters don't need putting into parentheses.
The body of the function doesn't need placing inside a block if it's only
one line.
The return keyword isn't required if the return statement is the only
statement in the body of the function.
They don't bind their own value of this to the function (we'll see why

this is a particularly useful property when we cover objects later in the
book).

In the square example above parameter, x didn't need to go in parentheses
because it's the only parameter. Multiple parameters need to go inside
parentheses, for example, the following function adds two numbers together:

const add = (x,y) => x + y;

If the function doesn't require any parameters, a pair of empty parentheses
must go before the arrow:

const hello = () => alert('Hello World!');

In all the examples, the main body of the function fits onto one line, so there
is no need to put it inside a block or explicitly use the return keyword.

Longer functions will still require curly braces to deliminate the body of the
function and the return keyword at the end, as can be seen in this (rather
simplistic) tax-calculating function:

const tax = (salary) => {
const taxable = salary - 8000;
const lowerRate = 0.25 * taxable;
taxable = taxable - 20000;
const higherRate = 0.4 * taxable;
return lowerRate + higherRate;
}

As you can see, a number of the benefits are lost, once the function body
becomes longer than one line.

Arrow functions make perfect candidates for short, anonymous functions, and
you will often see them used later in the book.

Function Hoisting

Hoisting is the JavaScript interpreter’s action of moving all variable and
function declarations to the top of the current scope, regardless of where they
are defined.

Functions that are defined using a function declaration are automatically
hoisted, meaning they can be invoked before they have been defined. For
example, in the following code the function hoist() can be invoked before it
is actually defined:

// function is invoked at the start of the code
hoist();

// ...
// ... lots more code here
// ...

// function definition is at the end of the code
function hoist(){
console.log('Hoist Me!');
}

This can be quite useful as it means that all function definitions can be placed
together, possibly at the end of a program, rather than having to define every
function before it is used.

Variable Hoisting

Variable declarations that use the var keyword are automatically moved to
the top of the current scope. Variable assignment is not hoisted, however.
This means that a variable assigned at the end of a function will have a value
of undefined until the assignment is made:

console.log(name); // will return undefined before assignment

// variable is defined here
var name = 'Alexa';

console.log(name); // will return 'Alexa' after assignment

Variable hoisting can cause quite a bit of confusion and also relies on using
var to declare variables. An error will be thrown if you attempt to refer to a
variable before it has been declared using const and let. It’s better practice
to use const and let to declare any variables at the beginning of a block so
hoisting is unnecessary.

A function expression (where an anonymous function is assigned to a
variable) is hoisted in a similar way to variables. So if it is declared using var
then the declaration will be hoisted, but not the actual function. This means
the function cannot be invoked until after it appears in the code:

// the variable helloExpression has a value of undefined, so the function cannot be invoked
helloExpression(); // throws an error

// the function declaration can be invoked before it is declared
helloDeclaration(); // returns 'hello'

// assign function expression to a variable
var helloExpression = function() {
console.log('hello')
}

// declare function declaration
function helloDeclaration() {
console.log('hello')
}

// The function expression can only be invoked after assignment
helloExpression(); // returns 'hello'

This is the major difference between the two ways of defining function
literals and it may influence your decision regarding which one to use. Some
people like that using function expressions means you’re required to define
all functions and assign them to variables prior to using them.

Hoisting can be a tricky concept to get your head around initially – you can
read more about it in this excellent SitePoint guide.

https://www.sitepoint.com/back-to-basics-javascript-hoisting/

Callbacks
Remember at the start of this chapter when we said that functions in
JavaScript are first-class objects, so they behave in just the same way as
every other object? This means that functions can also be given as a
parameter to another function. A function that is passed as an argument to
another is known as a callback.

Here’s a basic example of a function called sing(), which accepts the name
of a song:

function sing(song) {
console.log(`I'm singing along to ${song}`);
}

sing('Let It Go')
<< 'I'm singing along to Let It Go'

We can make the sing() function more flexible by adding a callback
parameter:

function sing(song,callback) {
console.log(`I'm singing along to ${song}.`);
callback();
}

The callback is provided as a parameter, then invoked inside the body of the
function.

But What if the Function Isn't Provided as an Agrument?

There is nothing to actually define a parameter as a callback, so if a function
isn't provided as an argument, then this code won't work. It is possible to
check if an argument is a function using the following code:

if(typeof(callback) === 'function'){

callback();
}

This will only attempt to invoke the callback if it is a function.

Now we can create another function called dance() that can be used as the
callback:

function dance() {
console.log("I'm moving my body to the groove.");
}

Now we can call our sing function, but we can also dance as well as sing:

sing('Let It Go',dance);
<< 'I'm singing along to Let It Go.'
'I'm moving my body to the groove.'

Note that the callback dance is passed as an argument without parentheses.
This is because the argument is only a reference to the function. The actual
callback is invoked in the body of the function, where parentheses are used.

Okay, so in these examples, the dance() function doesn't really do anything,
except log another message to the console, but hopefully it shows you could
do something very different with the sing() function depending on the
callback function that is provided as an argument, making it a much more
flexible function.

A function can also take an anonymous function as a callback. For example,
say we want to call the sing() function and also want to stand on our head
while singing, but we have no standOnHead() function. We can write an
anonymous function that does it instead:

sing('Let It Go',()=>{ console.log("I'm standing on my head.");});
<< 'I'm singing along to Let It Go.'
'I'm standing on my head.'

This is only really useful for one-off tasks. It’s often a better idea to keep

functions separate and named, so they can be reused. It’s also a bad idea to
use this method for long function definitions as it can be confusing where the
callback starts and ends. Named functions also make it easier to identify the
source of bugs in code. In this case, the fact we only needed a one-line
anonymous function made it a good candidate for using the arrow notation.

Callbacks are used extensively in many JavaScript functions and we’ll see
much more of them later in the book. In fact, here's a practical example that
solves a problem we encountered in the last chapter:

Sorting Arrays With A Callback

In the last chapter we saw that arrays have a sort() method that sorted the
items in the array into alphabetical order. This is fine for strings, but you
might recall that it didn't work so well for numbers:

> [1,3,12,5,23,18,7].sort();
<< [1, 12, 18, 23, 3, 5, 7]

The reason for this is that the numbers are converted into strings and then
placed in alphabetical order.

So how do you sort an array of numerical values? The answer is to provide a
callback function to the sort() method that tells it how to compare two
values, a and b. The callback function should return the following:

A negative value if a comes before b

0 if a and b are equal

A positive value if a comes after b

Here’s an example of a numerically function that can be used as a callback
to sort numbers:

function numerically(a,b){
return a-b;
}

This simply subtracts the two numbers that are being compared, giving a
result that is either negative (if b is bigger than a), zero (if a and b are the
same value), or positive (if a is bigger than b).

This function can now be used as a callback in the sort() method to sort the
array of numbers correctly:

> [1,3,12,5,23,18,7].sort(numerically);
<< [1, 3, 5, 7, 12, 18, 23]

Much better!

Overflow Errors

In some rare instances where an array includes some very large and negative
numbers, an overflow error can occur and the result of a-b becomes smaller
than the smallest number that JavaScript is able to cope with. If this is the
case, the following function can be used as a callback instead:

function numerically (a,b) {
if (a < b) {
 return -1;
} else if (a> b) {
 return 1;
} else {
 return 0;
}
}

Array Iterators
Arrays have a number of methods that utilize callbacks to make them more
flexible.

Use of Arrow Functions

You'll notice that arrow functions are frequently used to declare the callbacks
in these examples. This because they are short functions, often only taking up
one line, making them a good candidate for using the arrow notation.

forEach()

In the last chapter, we saw that a for loop could be used to loop through each
value in an array like so:

const colors = ['Red', 'Green', 'Blue']

for(let i = 0, max = colors.length ; i < max ; i++) {
console.log(`Color at position ${i} is ${colors[i]}`);
}
<< 'Color at position 0 is Red'
 'Color at position 1 is Green'
 'Color at position 2 is Blue'

An alternative is to use the forEach() method. This will loop through the
array and invoke a callback function using each value as an argument. The
callback function takes three parameters, the first represents the value in the
array, the second represents the current index and the third represent the array
that the callback is being called on. The example above could be written as:

colors.forEach((color,index) =>
 console.log(`Color at position ${index} is ${color}`));
<< "Color at position 0 is Red"
 "Color at position 1 is Green"
 "Color at position 2 is Blue"

map()

The map() method is very similar to the forEach() method. It also iterates
over an array, and takes a callback function as a parameter that is invoked on
each item in the array. This is often used to process data returned from
databases in array form, such as adding HTML tags to plain text. The
difference is that it returns a new array that replaces each value with the
return value of the callback function. For example, we can square every
number in an array using the square function we wrote previously as a
callback to the map() method:

[1,2,3].map(square)
<< [1, 4, 9]

An anonymous function can also be used as a callback. This example will
double all the numbers in the array:

[1,2,3].map(x => 2 * x);
<< [2,4,6]

The next example takes each item in the array and places them in uppercase
inside paragraph HTML tags:

['red','green','blue'].map(color => `<p> ${color.toUpperCase()}</p>`);
<< ['<p>RED</p>', '<p>GREEN</p>', '<p>BLUE</p>']

Notice in this and the previous example, the anonymous function takes a
parameter, color, which refers to the item in the array. This callback can also
take two more parameters ― the second parameter refers to the index number
in the array and the third refers to the array itself. It's quite common for
callbacks to only used the first, index, parameter, but the next example shows
all three parameters being used:

['red','green','blue'].map((color, index, array) => `Element ${index} is ${color}. There are ${array.length} items in total.`);
<< ['Element 0 is red. There are 3 items in total.',
'Element 1 is green. There are 3 items in total.',
'Element 2 is blue. There are 3 items in total.']

Reduce()

The reduce() method is another method that iterates over each value in the
array, but this time it cumulatively combines each result to return just a single
value. The callback function is used to describe how to combine each value
of the array with the running total. This is often used to calculate statistics
such as averages from data stored in an array. It usually takes two parameters.
The first parameter represents the accumulated value of all the calculations so
far, and the second parameter represents the current value in the array. The
following example shows how to sum an array of numbers:

[1,2,3,4,5].reduce((acc,val) => prev + val);
<< 15

In the example above, value of acc starts as 1 (the first item in the array) then
keeps track of the accumulated total. The next item in the array is then added
to this running total, and so on, until every item in the array has been added
together and the result is returned.

The reduce() method also takes a second parameter after the callback, which
is the initial value of the accumulator, acc. For example, we could total the
numbers in an array, but starting at 10, instead of zero:

[1,2,3,4,5].reduce((acc,val) => acc + val,10); // <---- second parameter of 10 here
<< 25

Another example could be to calculate the average word length in a sentence:

const sentence = 'The quick brown fox jumped over the lazy dog'
<< 'The quick brown fox jumped over the lazy dog'

The sentence can be converted into an array using the split() method:

<< ['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']

Now we can use the reduce() function to calculate the total number of letters

in the sentence, by starting the count at 0 and adding on the length of each
word in each step:

const total = words.reduce((acc,word) => acc + word.length,0);
<< 36

And a simple division sum tells us the average word length:

const average = total/words.length;
<< 4

Filter()

The filter() method returns a new array that only contains items from the
original array that return true when passed to the callback. For example, we
can filter an array of numbers to just the even numbers using the following
code:

const numbers = [2, 7, 6, 5, 11, 23, 12]

numbers.filter(x => x%2 === 0); // this returns true if the number is even

<< [2, 6, 12]

The filter() method provides a useful way of finding all the truthy values
from an array:

const array = [0, 1, '0', false, true, 'hello'];
array.filter(Boolean);
<< [1, '0', true, 'hello']

This uses the fact that the Boolean() function will return the boolean
representation of a value, so only truthy values will return true and be
returned by the filter() method.

To find all the falsy values, the following filter can be used:

array.filter(x => !x);

[0, false]

This uses the not operator, ! to return the compliment of a value's boolean
representation. This means that any falsy values will return true and be
returned by the filter.

There are other array methods that use callbacks that are worth investigating
such as reduceRight(), every(), find() and some(). More information
about them can be found at the Mozilla Developer Network.

Chaining Iterators Together

The various iterator functions can be used in combination to create some
powerful transformations of data stored in arrays. This is achieved by a
process called chaining methods together.

Chaining works because the iterator functions return an array, which means
that another iterator function can then be chained on to the end and it will be
applied to the new array.

For example, we can calculate the sum of square numbers using the map()
method to square each number in the array and then chain the reduce()
method on the end to add the results together:

[1,2,3].map(x => x*x).reduce((acc,x) => acc + x);
<< 14

Another more complex example could be used to take an array of orders,
apply a sales tax to them using map() and then use reduce() to find the total:

const sales = [100, 230, 55];
totalAfterTaxSales = sales.map((amount) => amount * 1.15).reduce((acc,val) => acc + val);
<< 442.75

There are some good examples of chaining iterators together in this SitePoint
article.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://www.sitepoint.com/filtering-and-chaining-in-functional-javascript/

Improving the mean() Function

Earlier in the chapter we created a mean() function that would calculate the
mean of any number of arguments. We can improve on this by using the
reduce() method to add up all the values provided:

function mean(array) {
const total = array.reduce((a, b) => a + b);
return total/array.length;
}

Our next improvement will be to add a callback as the last parameter that
specifies a function to be applied to all the numbers before the mean is
calculated. This will allow us to work out things such as the mean of all
numbers if they were doubled or squared.

Here is the code for the improved function that accepts a callback:

function mean(array,callback) {
 if (callback) {
 array.map(callback);
 }
const total = array.reduce((a, b) => a + b);
return total/array.length;
}

This code is similar to our previous mean() function, except in the following
if block where we check to see if a callback has been provided. If it has, then
the callback is applied to each value before being added to the total;
otherwise, the total is calculated using just the values from the array given as
the first argument:

Let’s have a go at using it:

mean([2,5,7,11,4]); // this should just calculate the mean
<< 5.8

Now let’s use an anonymous arrow function to double all the numbers before

calculating the mean:

mean([2,5,7,11,4],x => 2*x);
<< 11.6

This is the equivalent of calculating the mean of 2*2, 2*5, 2*7, 2*11, and
2*4.

Last of all, let’s use the square function we wrote earlier in this chapter as a
callback to square all the numbers before calculating the mean:

mean([2,5,7,11,4],square);
<< 43

This is the equivalent of calculating the mean of 2^2, 5^2, 7^2, 11^2, and
4^2.

Hopefully, these examples help to show how using callbacks can make
functions more powerful and flexible.

Quiz Ninja Project
Now we have a good understanding of functions, we’re going to have a go at
refactoring the code for our Quiz Ninja project so it uses functions to describe
the main parts of the program. Refactoring is the process of improving the
code’s structure and maintainability without changing its behavior.

What we’re going to do is replace some of the chunks of code with functions.
This will make the code easier to follow and maintain because if we want to
make a change to the functionality, all we need to do is change the code
inside the relevant function.

Open up the main.js file and replace all the code with the following:

const quiz = [
 ["What is Superman's real name?","Clark Kent"],
 ["What is Wonder Woman's real name?","Diana Prince"],
 ["What is Batman's real name?","Bruce Wayne"]
];

function start(quiz){
let score = 0;

// main game loop
for(const [question,answer] of quiz){
 const response = ask(question);
 check(response,answer);
}
// end of main game loop

gameOver();

// function declarations
function ask(question){
 return prompt(question);
}

function check(response,answer){
 if(response === answer){
 alert('Correct!');
 score++;

 } else {
 alert(`Wrong! The correct answer was ${answer}`);
 }
}

function gameOver(){
 alert(`Game Over, you scored ${score} point${score !== 1 ? 's' : ''}`);
}
}
start(quiz);

The first part of this code remains the same ― we create a map of questions
and answers and store it in the quiz variable.

Next we create a function called play(). This is the main game function that
contains all the steps of playing the game. This function also contains a
number of functions that help to describe how the game runs. It starts by
initializing a variable called score to 0.

After this, it iterates over the quiz array and invokes the ask() function for
each question. We then, invoke the check() function to check if the player's
response is correct. After we have looped through every question in the quiz
array, the game is over, so the gameOver() function is invoked.

This shows how code can be simplified by abstracting it into separate
functions that are descriptively named. Another benefit is that it allows us to
change the content of the functions at a later time. If we decide that the way
to check a question will change, for example, all we need to do is edit the
check() function.

The ask(), check() and gameOver() functions are defined at the end of the
body of the play() function. They need to be placed inside the play()
function as nested functions, as this gives them access to any variables
defined inside the play() function's scope. Because they are defined using
function declarations, they are hoisted, so they can be defined after they are
invoked.

The ask() function accepts a question parameter. This combination of
function name and parameter name is used to make the code very descriptive

― it reads almost like an English sentence: 'Ask the question'. It uses a
prompt dialog and returns the text entered by the player, which is then saved
in a variable called answer.

The check() function is written after the ask() function and has two
parameters: response and answer. This combination of function name and
parameter name again make the code read more like an English sentence.
Naming functions in this way means we don't need to use comments to
explain what the code does ― it's self-explanatory.

This function uses the same logic we used in the last chapter to check if the
answer entered by the player is the same as the answer stored in the map. If it
is, then we increase the score by 1 and if it isn't, we show an alert dialog to
tell them what the answer should have been.

When all the questions have been asked, and all the answers have been
checked, the loop terminates and the gameOver() function is invoked. This
uses an alert dialog to give some feedback about how many questions were
answered correctly, using the same code that we used in the previous chapter.

There is an important line at the end of the file:

start(quiz);

This invokes the start() function with the quiz variable passed to it as an
argument. This is required to actually start the quiz!

Once you’ve made these changes, have a go at playing the quiz by opening
the index.html file in your browser.

While you play, you might notice there’s been no change to the functionality
of the quiz. This is an example of refactoring code ― the functionality of the
application remains the same, but the underlying code has become more
flexible and easier to maintain, as well as being more readable and
descriptive due to the use of functions. We have abstracted much of the
internal game logic out into separate functions, which means we can change
the mechanics of different aspects of the quiz by updating the relevant
functions.

Quiz Ninja

You can see a live example on CodePen.

I hope this helps to demonstrate how descriptively named functions can make
your code more flexible, maintainable, reusable and easier to read.

https://codepen.io/daz4126/pen/QgmVKE

Chapter Summary
Functions are first-class objects that behave the same way as other
values.

Function literals can be defined using the function declaration, or by
creating a function expression by assigning an anonymous function to a
variable.

All functions return a value. If this is not explicitly stated, the function
will return undefined.

A parameter is a value that is written in the parentheses of a function
declaration and can be used like a variable inside the function’s body.

An argument is a value that is provided to a function when it is invoked.

The arguments variable is an array-like object that allows access to each
argument provided to the function using index notation.

The rest operator can be used to access multiple arguments as an array.

Default arguments can be supplied to a function by assigning them to
the parameters.

Arrow functions are a new shorthand notation that can used for writing
anonymous functions in ES6.

Function declarations can be invoked before they are defined because
they are hoisted to the top of the scope, but function expressions cannot
be invoked until after they are defined.

A callback is a function that is provided as an argument to another
function.

Everything that isn’t a primitive data type in JavaScript is an object ― which

is the topic of our next chapter.

Chapter 5: Objects
Everything in JavaScript is either one of the six primitive data types we met
in Chapter 2 (strings, numbers, booleans, symbols, undefined, and null) or an
object. We’ve actually met some objects already; arrays in Chapter 3 and
functions in Chapter 4 are both objects, although these are built-in objects
that are part of the language. In this chapter we’re going to look at user-
defined objects, as well as some of the other built-in objects.

In this chapter, we’ll cover the following topics:

Object literals

Adding properties to objects

Object methods

JSON

The Math object

The Date object

The RegExp object

Project ― we'll create quiz and question objects and ask random
questions

Object Literals
An object in JavaScript is a self-contained set of related values and functions.
They act as a collection of named properties that map to any JavaScript value
such as strings, numbers, booleans, arrays and functions. If a property’s value
is a function, it is known as a method.

One way to think about an object is that it’s like a dictionary where you look
up a property name and see a value. It's like a database of values (in fact,
some databases use JavaScript objects to store information). JavaScript
objects are similar to a hash or associative array in other programming
languages (or even a JavaScript map). They are, however, much more
flexible, as they can be employed to encapsulate code that can be reused
throughout a program. They can also inherit properties from other objects in a
similar way to object-oriented languages (we’ll cover how to do this in
Chapter 11).

Objects are often used to keep any related information and functionality
together in the same place. For example, if you wrote functions that found the
perimeter and area of a square, you might want to group them together as
methods of the same object that also included a length property.

A Super Example

An object literal is an object that is created directly in the language by
wrapping all its properties and methods in curly braces {}. Object literals are
a distinguishing feature of the JavaScript language, as they allow objects to
be created quickly without the need for defining a class. They also provide a
useful way of organizing your code without polluting the global namespace.

Here is an example of an object literal that describes the Man of Steel:

const superman = {
name: 'Superman',
'real name': 'Clark Kent',
height: 75,

weight: 235,
hero: true,
villain: false,
allies: ['Batman','Supergirl','Superboy'],
fly() {
 return 'Up, up and away!';
}
};

Each property is a key-value pair, separated by commas. In the example, the
first property is called name and its value is 'Superman', while the fly()
property is a method, as its value is a function, signified by the parentheses
placed after it. If there were further methods after this, they would be comma-
separated as well.

If a property’s name doesn’t follow the rules for naming variables described
in Chapter 2, it needs to be quoted. The property 'real name' in the example
above needs to be quoted because it contains a space.

Differing Naming Conventions

It’s very uncommon to use property and method names that don’t follow the
rules for naming variables. In a real-world app, it's likely the "real name"
property would actually be named real_name or realName.

All objects are mutable at any time when a program is running. This means
that its properties and methods can be changed or removed, and new
properties and methods can be added to the object, even if it was declared
using const.

Creating Objects
To create an object literal, simply enter a pair of curly braces. The following
example creates an empty object that is assigned to the variable spiderman:

const spiderman = {};

It’s also possible to create an object using a constructor function. This
example will also create an empty object:

const spiderman = new Object();

This method is not recommended, however, and the object literal notation is
the preferred way of creating objects. The obvious reason is because it
requires less typing and provides a concise way of initializing an object and
its properties in one statement.

ES6 provided a shorthand method of creating objects if a property key is the
same as a variable name that the property value is assigned to:

const name = 'Iron Man';
const realName = 'Tony Stark';

// long way
const ironMan = (name: name, realName: realName };

// short ES6 way
const ironMan = { name, realName };

Accessing Properties

You can access the properties of an object using the dot notation that we’ve
already seen in previous chapters. This will return the value of that property,
as can be seen in the example below:

superman.name
<< 'Superman'

You can also access an object’s properties using bracket notation ― the
property is represented by a string inside square brackets, so needs to be
placed inside single or double quotation marks:

superman['name']
<< 'Superman'

Dot notation is much more common, but bracket notation has a few
advantages: it's the only way to access nonstandard property and method
names that don’t follow the variable naming rules. It also lets you evaluate an
expression and use it as the property key:

superman["real" + " " + "name"] // the property is built using string concatenation
<< "Clark Kent"

If you try to access a property that doesn’t exist, undefined will be returned:

superman.city
<< undefined

Computed Properties

The ability to create objects with computed property keys was introduced in
ES6. This means that JavaScript code can be placed inside square brackets
and the property key will be the return value of that code. This can be seen in
the example below where the + operator is used to concatenate the strings
'catch' and 'phrase':

const hulk = { name: 'Hulk', ['catch' + 'Phrase']: 'Hulk Smash!' };

If we take a look at the hulk object, we can see the property key is named
'catchPhrase':

<< { name: 'Hulk', catchPhrase: 'Hulk Smash!' }

The value of a property has always been allowed to be a JavaScript
expression. In the example below a ternary operator is used to return a true
or false value for the hero property depending on the value of the bewitched
variable:

const bewitched = true;
 const captainBritain = { name: 'Captain Britain', hero: bewitched ? false : true };

captainBritain
<< { name: 'Captain Britain', hero: false }

The new Symbol date type can also be used as a computed property key:

const name = Symbol('name');

const supergirl = { [name]: 'Supergirl' };

You can access the property using the square bracket notation:

supergirl[name];
<< 'Supergirl'

A new property can be added to an object using a symbol as a key if the
square bracket notation is used:

const realName = Symbol('real name');

supergirl[realName] = 'Kara Danvers';
<< 'Kara Danvers'

The symbols used for property keys are not limited to being used by only one
object - they can be reused by any other object:

const daredevil = { [name]: 'Daredevil', [realName]: 'Matt Murdoch' };

Each symbol has a unique value, which means that using them as property
keys avoids any naming clashes if you mistakenly use the same value for two
different property keys. This might not seem likely in the examples we've
seen so far, but it can be a problem if you're working with an object that has a
large number of properties or if other developers are also working with the
code.

Calling Methods
To call an object’s method we can also use dot or bracket notation. Calling a
method is the same as invoking a function, so parentheses need to be placed
after the method name:

superman.fly()
<< 'Up, up and away!'

superman['fly']()
<< 'Up, up and away!'

Checking if Properties or Methods Exist
The in operator can be used to check whether an object has a particular
property. So, for example, we can check if the superman object has a property
called city using this code:

'city' in superman;
<< false

Alternatively, you could also check to see if the property or method doesn’t
return undefined:

superman.city !== undefined;
<< false

Another way is to use the hasOwnProperty() method. As mentioned earlier,
objects can inherit properties from other objects, so all objects have a method
called hasOwnProperty(). This can be used to check whether an object has a
property that is its own, rather than one that has been inherited from another
object:

superman.hasOwnProperty('city');
<< false

superman.hasOwnProperty('name');
<< true

This method will only return any properties that belong to that particular
object, whereas using in or !== undefined will return true, even if the
property has been inherited from another object (inheritance is covered later
in Chapter 12).

Finding all the Properties of an Object
We can loop through all of an object’s properties and methods by using a for
in loop. For example, to log all the properties of the superman object to the
console, we could use:

for(const key in superman) {
console.log(key + ": " + superman[key]);
}
<< "name: Superman"
<< "real name: Clark Kent"
<< "height: 75"
<< "weight: 235"
<< "hero: true"
<< "villain: false"
<< "allies: Batman,Supergirl,Superboy"
<< "fly: function (){
 console.log(\"Up, up and away!\");
}"

In this example, we create a variable called key. We then iterate over the
properties of the superman object and use key to log the property name and
superman[key] to look up the value of each property.

To make sure that only an object’s own properties are returned, a quick check
can be implemented beforehand:

for(const key in superman) {
if(superman.hasOwnProperty(key)){
 console.log(key + ": " + superman[key]);
}
}

The following methods will only iterate over an object's own properties, so a
check isn't required to ensure that inherited properties are ignored.

The Object.keys() method will return an array of all the keys of any object
that is provided as an argument. We can then iterate over this array to access

all the keys of an object:

for(const key of Object.keys(superman)) {
console.log(key);
}
<< name
 real name
 height
 weight
 hero
 villain
 allies
 fly

ES2017 also adds some the Object.values() that works in the same way,
but returns an array of all the object's value:

for(const value of Object.values(superman)) {
console.log(value);
}
<< Superman
 Clark Kent
 75
 235
 true
 false
 ['Batman','Supergirl','Superboy']
 [Function: fly]

Object.entries() is also part of ES2017 and returns an array of key-value
pairs. These key-value pairs are returned in arrays, but they can be
destructured and accessed individually using the following notation:

for(const [key,value] of Object.entries(superman)) {
console.log(`${key}: ${value}`);
}
<< name: Superman
 real name: Clark Kent
 height: 75
 weight: 235
 hero: true
 villain: false
 allies: ['Batman','Supergirl','Superboy']

 fly: [Function: fly]

Adding Properties

New properties and methods can be added to objects at any time in a
program. This is done by simply assigning a value to the new property. For
example, if we wanted to add a new city property to our superman object,
we would do it like so:

superman.city = 'Metropolis';
<< 'Metropolis'

Now if we take a look at the superman object, we can see that it has a city
property:

superman
<< { name: 'Superman',
 'real name': 'Clark Kent',
 height: 75,
 weight: 235,
 hero: true,
 villain: false,
 allies: ['Batman', 'Supergirl', 'Superboy'],
 fly: [Function: fly]
 city: 'Metropolis' }

It's important to note that properties don’t always appear in the order they
were entered. An object is not an ordered list like an array, set or map, so you
should never rely on the properties being in a certain order.

Changing Properties

You can change the value of an object’s properties at any time using
assignment. For example, we can change the value of the "real name"
property like this:

superman['real name'] = 'Kal-El';

<< 'Kal-El'

We can check the update has taken place by taking a look at the object:

superman
<< {'allies': ['Batman', 'Supergirl', 'Superboy'], 'city': 'Metropolis', 'fly': function (){
 console.log('Up, up and away!');
}, "height": 75, 'hero': true, 'name": 'Superman", 'real name': 'Kal-El", 'villain': false, 'weight': 235}

Removing Properties
Any property can be removed from an object using the delete operator. For
example, if we wanted to remove the fly method from the superman object,
we would enter the following:

delete superman.fly
<< true

Now if we take a look at the superman object, we can see that the Man of
Steel has lost his ability to fly:

superman
<< {"allies": ['Batman', 'Supergirl', 'Superboy'], 'city': 'Superman', 'real name': 'Kal-El', 'villain': false, 'weight': 235}

Nested Objects
It’s even possible for an object to contain other objects. These are known as
nested objects. Here’s an example of an object that contains a list of other
objects. It has been assigned to the variable jla:

const jla = {
superman: { realName: 'Clark Kent' },
batman: { realName: 'Bruce Wayne' },
wonderWoman: { realName: 'Diana Prince" },
flash: { realName: 'Barry Allen' },
aquaman: { realName: 'Arthur Curry' },
}

The values in nested objects can be accessed by referencing each property
name in order using either dot or bracket notation:

jla.wonderWoman.realName
<< "Diana Prince"

jla['flash']['realName']
<< "Barry Allen"

You can even mix the different notations:

jla.aquaman['realName']
<< "Arthur Curry"

Objects Are Copied By Reference

An important concept to get your head around is that objects are assigned by
reference. This means that if a variable is assigned to an object that already
exists, it will simply point to the exact same space in memory. So any
changes made using either reference will affect the same object.

In the example below, we create a new object called thor to represent The

Mighty Thor and make a copy of it called cloneThor:

const thor = { name: 'Thor'
// more properties here
};

const cloneThor = thor;

The variable cloneThor now has all the same properties as the thor object.
The problem is, we haven't created a new object that is a copy of thor; the
variables cloneThor and thor both reference exactly the same object!

We can see this, if we make a change to the name property of cloneThor:

cloneThor.name = 'Clor';

Now if we check the value of the name property of the thor object, we'll
discover a problem:

thor.name
<< 'Clor'

Changing the name property of cloneThor has resulted in the name property of
thor changing as well. This happens because the variables thor and
cloneThor both point to the same object in memory. Any changes made to
either variable will affect the other.

This doesn't happen when primitive values are used instead of objects, as can
be seen in the example below:

a = 1;
b = a;

At this point, both a and b will have a value of 1, but if the value of b is
changed, it won't affect the value of a:

b = 2;
// check the value of a hasn't changed

a
<< 1

Objects as Parameters to Functions

An object literal can be passed as a parameter to a function. This is useful
when there are a large number of parameters, as it allows the arguments to be
provided by name and in any order. This means you don't have to remember
the order to enter them when invoking a function.

The following example shows how this can be done using a function called
greet(). This accepts three parameters:

function greet({greeting,name,age}) {
return `${greeting}! My name is ${name} and I am ${age} years old.`;
}

Here’s an example of how the function can be used. Notice how the order of
the properties in the argument object differs from the order they are listed in
the object provided as a parameter to the function:

greet({ greeting: `What's up dude`, age: 10, name: `Bart` });
<< 'What\'s up dude! My name is Bart and I am 10 years old.'

We can provide default values for some of the parameters using assignment,
as we saw in the last chapter. In the following example, the greeting and age
parameters now have default values, but the name parameter still has to be
provided as an argument, otherwise it will be set as undefined:

function greet({greeting='Hello',name,age=18}) {
return `${greeting}! My name is ${name} and I am ${age} years old.`;
}

If we leave out the greeting argument it will be set to 'Hello', but the default
values can also be overridden, as we do with the age value in the example
below:

greet({ name: 'Lisa', age: 8 });
<< 'Hello! My name is Lisa and I am 8 years old.'

This technique is referred to as using named parameters and is often used
when a function has a large amount of optional parameters.

this

The keyword this refers to the object that it is within. It can be used inside
methods to gain access to the object’s properties.

To demonstrate using this, we'll create a dice object that has a sides
property and a roll() method that returns a number between 1 and the
number of sides.

Here’s the code to create our dice object:

const dice = {
sides: 6,
roll() {
 return Math.floor(this.sides * Math.random()) + 1;
}
}

This object has a sides property and a roll() method. Inside the roll()
method we use this.sides to refer to the value of the object's sides
property.

We also use the random() and floor() methods of the Math object to return a
number between 1 and the number of sides.

Let’s take it for a spin:

dice.roll();
<< 5

dice.roll();
<< 3

If we want to change the number of sides, all we need to do is modify the
sides property:

dice.sides = 20;
<< 20

Now the roll() method will return a random number between 1 and 20
instead, without us having to modify it:

dice.roll();
<< 12

dice.roll();
<< 18

Namespacing
Naming collisions occur when the same variable or function name is used for
different purposes by code sharing the same scope. This might not seem
likely, but imagine if you have lots of code that has been created over time –
you might end up reusing a variable name without realizing. The problem
becomes more likely if you use code libraries from other developers or work
on code in teams, as you might choose the same name for a function as
another member of the team.

A solution to this problem is to use the object literal pattern to create a
namespace for groups of related functions. This is done by creating an object
literal that serves as the namespace, then adding any values as properties of
that object, and any functions as methods.

For example, in the last chapter we created some functions for squaring
numbers and finding the mean. One of the functions used was called
square(). This is quite a generic name and it wouldn't be too far fetched to
imagine a situation where a square() function also existed for drawing
squares using the Canvas API (this is covered in Chapter 14). To prevent this
happening, we can place all our functions inside an object, thereby creating a
namespace for them. In the example below, the namespace is myMaths, which
is the name of the variable the object that contains the functions has been
assigned to:

const myMaths = {

square(x) {
 return x * x;
 },
 mean(array,callback) {
 if (callback) {
 array.map(callback);
 }
 const total = array.reduce((a, b) => a + b);
 return total/array.length;
 }
};

Now these functions need to be preceded by the namespace to be invoked:

myMaths.square(3)
<< 9

myStats.mean([1,2,3])
<< 2

This would avoid any clashes with any other functions called square() as
they would also be defined in their own namespace. For example, a function
that draws a square using the canvas API might be myCanvas.square().

Built-in Objects
We’ve already seen the two main built-in objects included in JavaScript:
arrays and functions. JavaScript has a number of other built-in global objects
that can be accessed from anywhere in a program. They provide a number of
useful properties and methods that we’ll cover in this section.

JSON

JavaScript Object Notation, or JSON, was invented by Douglas Crockford in
2001. It is an extremely popular lightweight data-storage format that is used
by a large number of services for data serialization and configuration. It is
often used to exchange information between web services, and is employed
by sites such as Twitter, Facebook and Trello to share information. The
beauty of JSON is that it manages to hit the sweet spot between being both
human- and machine-readable.

JSON is a string representation of the object literal notation that we have just
seen. There are, however, a couple of key differences:

1. Property names must be double-quoted
2. Permitted values are double-quoted strings, numbers, true, false, null,

arrays and objects
3. Functions are not permitted values

A JSON string representation the Caped Crusader is shown below:

const batman = '{"name": "Batman","real name": "Bruce Wayne","height": 74, "weight": 210, "hero": true, "villain": false, "allies": ["Robin","Batgirl","Superman"]}'

JSON is becoming increasingly popular as a data storage format, and many
programming languages now have libraries dedicated to parsing and
generating it. Since ECMAScript 5, there has been a global JSON object that
has methods to allow this to be done in JavaScript.

The parse() method takes a string of data in JSON format and returns a

http://www.json.org

JavaScript object:

JSON.parse(batman);
<< { name: 'Batman',
'real name': 'Bruce Wayne',
height: 74,
weight: 210,
hero: true,
villain: false,
allies: ['Robin', 'Batgirl', 'Superman'] }

The stringify() method does the opposite, taking a JavaScript object and
returning a string of JSON data, as can be seen in the example:

const wonderWoman = {
name: 'Wonder Woman',
'real name': 'Diana Prince',
height: 72,
weight: 165,
hero: true,
villain: false,
allies: ['Wonder Girl','Donna Troy','Superman'],
lasso: function(){
 console.log('You will tell the truth!');
}
}

JSON.stringify(wonderWoman);
<< '{"name":"Wonder Woman","real name":"Diana Prince","height":72,
"weight":165,"hero":true,"villain":false,"allies":["Wonder Girl",
"Donna Troy","Superman"]}'

Note that the lasso method is simply ignored by the stringify() method.

You can also add a space argument that will add new lines between each key-
value pair, which is useful when displaying the results in a browser:

JSON.stringify(wonderWoman, null, " ");
<< '{\n "name": "Wonder Woman",\n "real name": "Diana Prince",\n "height": 72,\n "weight": 165,\n "hero": true,\n "villain": false,\n "allies": [\n "Wonder Girl",\n "Donna Troy",\n "Superman"\n]\n}'

These methods are particularly useful when it comes to sending data to, and
receiving data from, a web server using Ajax requests (see Chapter 13) – or

when using localStorage to store data on a user’s machine (see Chapter 14).
JSON data is easy to exchange between different services, as most languages
and protocols are able to interpret data as strings of text – and they only need
to be stored as a basic text file.

The Math Object

The Math object is a built-in object that has several properties representing
mathematical constants, as well as methods that carry out a number of
common mathematical operations.

All the properties and methods of the Math object are immutable and unable
to be changed.

Mathematical Constants

The Math object has eight properties that represent a mix of commonly used
math constants. Note that they are all named in capital letters, as is the
convention for constant values:

Math.PI // The ratio of the circumference and diameter of a circle
<< 3.141592653589793

Math.SQRT2 // The square root of 2
<< 1.4142135623730951

Math.SQRT1_2 // The reciprocal of the square root of 2
<< 0.7071067811865476

Math.E // Euler's constant
<< 2.718281828459045

Math.LN2 // The natural logarithm of 2
<< 0.6931471805599453

Math.LN10 // The natural logarithm of 10
<< 2.302585092994046

Math.LOG2E // Log base 2 of Euler's constant
<< 1.4426950408889634

Math.LOG10E // Log base 10 of Euler's constant
<< 0.4342944819032518

Mathematical Methods

The Math object also has several methods to carry out a variety of useful
mathematical operations.

Absolute Values

The Math.abs() method returns the absolute value of a number. So if the
number is positive, it will remain the same, and if it’s negative, it will
become positive:

Math.abs(3);
<< 3

Math.abs(-4.6);
<< 4.6

Rounding Methods

The Math.ceil() method will round a number up to the next integer, or
remain the same if it is already an integer:

Math.ceil(4.2);
<< 5

Math.ceil(8);
<< 8

Math.ceil(-4.2);
<< -4

The Math.floor() method will round a number down to the next integer, or
remain the same if it is already an integer:

Math.floor(4.2);

<< 4

Math.floor(8);
<< 8

Math.floor(-4.2);
<< -5

The Math.round() method will round a number to the nearest integer:

Math.round(4.5);
<< 5

Math.round(4.499);
<< 4

Math.round(-4.2);
<< -4

ES6 also introduced the Math.trunc() method that returns the integer-part of
a number – that is, it gets truncated at the decimal point:

Math.trunc(4.9);
<< 4

Math.trunc(-4.2);
<< -4

Powers and Roots

The Math.exp() method will raise a number to the power of Euler’s constant:

Math.exp(1); // This is Euler's constant
<< 2.718281828459045

Math.exp(0); // Any number to the power of 0 is 1
<< 1

Math.exp(-3);
<< 0.049787068367863944

The Math.pow() method will raise any number (the first argument) to the
power of another number (the second argument):

Math.pow(3, 2); // 3 squared
<< 9

Math.pow(4.5, 0); // Any number to the power of 0 is 1
<< 1

Math.pow(27, 1/3); // A nice way to do cube roots
<< 3

The Math.sqrt() method returns the positive square root of a number:

Math.sqrt(121);
<< 11

Math.sqrt(2); // same as Math.SQRT2
<< 1.4142135623730951

Math.sqrt(-1); // imaginary numbers aren't supported!
<< NaN

The Math.cbrt() method was introduced in ES6, which returns the cube root
of numbers:

Math.cbrt(8);
<< 2

Math.cbrt(-1000);
<< -10

The Math.hypot() method was also introduced in ES6. It returns the square
root of the sum of the squares of all its arguments. This can be used to
calculate the hypotenuse of a right-angled triangle:

Math.hypot(3,4); // returns the square root of 3 squared + 4 squared
<< 5

Math.hypot(2,3,6); // more than 2 arguments can be used
<< 7

Logarithmic Methods

The Math.log() method returns the natural logarithm of a number:

Math.log(Math.E); // Natural logs have a base of Euler's constant
<< 1

Math.log(1); // log of 1 is zero
<< 0

Math.log(0); // You can't take the log of zero
<< -Infinity

Math.log(-2); // You can't take logs of negative numbers
<< NaN

Logarithms in base 2 and 10 were added in ES6:

Math.log2(8); // 8 is 2 to the power of 3
<< 3

Math.log10(1000000); // 1 million is 10 to the power 6
<< 6

Maximum & Minimum Methods

The Math.max() method returns the maximum number from its arguments:

Math.max(1,2,3);
<< 3

Math.max(Math.PI,Math.SQRT2, Math.E);
<< 3.141592653589793

And the Math.min() method unsurprisingly returns the minimum number
from the given arguments:

Math.min(1,2,3);
<< 1

Math.min(Math.PI,Math.SQRT2, Math.E);
<< 1.4142135623730951

Trigonometric Functions

The Math object also has the standard trigonometric functions, which are very
useful when working with geometrical objects. All angles are measured in
radians for these functions.

Radians

Radians are a standard unit of angular measurement, equal to the angle of the
circle’s center corresponding to the arc that subtends it.

Rounding Errors

Be careful if you require exact answers to these calculations, as rounding
errors in the background mean the returned value is often slightly inaccurate.

A number of these errors are highlighted in the examples below.

This is to be expected when dealing with floating-point decimal numbers.
Computers have lots of trouble dealing with decimal fractions (as they work
in binary), and the answers can vary from one platform to another.

Another problem is that the value of π using Math.PI is only given correct to
16 significant figures, which will affect the overall accuracy.

These issues are also implementation dependent, which means they rely on
the JavaScript engine and operating system they are running on rather than
the language itself. So you may get slightly different answers using a
different web browser on the same OS or using the same web browser on a
different OS!

These rounding errors shouldn't be a big deal for most web applications.
Whenever you perform any calculations, make sure your program doesn’t

http://en.wikipedia.org/wiki/Radian

rely on exact answers, and has some degree of tolerance instead.

If you find you need more precision, you could consider using decimal.js
library.

The Math.sin() returns the sine of an angle:

Math.sin(Math.PI/6); // this calculation contains rounding errors, it should be 0.5
<< 0.49999999999999994

The Math.cos() returns the cosine of an angle:

Math.cos(Math.PI/6);
<< 0.8660254037844387

The Math.tan() returns the tangent of an angle:

Math.tan(Math.PI/4); // another rounding error, this should be 1
<< 0.9999999999999999

Math.tan(Math.PI/2); // this should be NaN or Infinity
<< 16331778728383844

The Math.asin() returns the arcsine of a number. The result is an angle:

Math.asin(1);
<< 1.5707963267948966

The Math.acos() returns the arccosine of a number. The result is an angle:

Math.acos(0.5);
<< 1.0471975511965976

The Math.atan() returns the arctangent of a number. The result is an angle:

Math.atan(Math.sqrt(3)); // Same as Math.PI/3
<< 1.0471975511965976

https://github.com/MikeMcl/decimal.js/

Methods for the hyperbolic functions, sinh(), cosh() and tanh() were also
added in ES6, as well as their inverses:

Math.sinh(1);
<< 1.1752011936438014

Math.asinh(1.1752011936438014);
<< 1

Math.cosh(0);
<< 1

Math.acosh(1);
<< 0

Math.tanh(10);
<< 0.9999999958776927

Math.atanh(0.9999999958776927); // rounding error here
<< 9.999999995520374

Random Numbers

The Math.random() method is used to create random numbers, which can be
very useful when writing programs. Calling the method will generate a
number between 0 (inclusive) and 1 (exclusive), like so:

Math.random();
<< 0.7881970851344265

To generate a random number between 0 and another number, we can
multiply the value by that number. The following code generates a random
number between 0 and 6:

6 * Math.random();
<< 4.580981240354013

If we want to generate a random integer, we can use the Math.floor()
method that we saw earlier to remove the decimal part of the return value.
The following code generates a random integer between 0 and 5 (it will never

https://en.wikipedia.org/wiki/Hyperbolic_function

be 6, because it always rounds down):

Math.floor(6 * Math.random());
<< 4

It’s a useful exercise to try and write a function that will generate a random
number between two values.

The Date Object

Date objects contain information about dates and times. Each object
represents a single moment in time.

Constructor Function

A constructor function is used to create a new date object using the new
operator:

const today = new Date();

The variable today now points to a Date object. To see what the date is, we
use the toString() method that all objects have:

today.toString();
<< 'Tue Feb 14 2017 16:35:18 GMT+0000 (GMT)'

If an argument is not supplied, the date will default to the current date and
time. It’s possible to create Date objects for any date by supplying it as an
argument to the constructor function. This can be written as a string in a
variety of forms:

const christmas = new Date('2017 12 25');
christmas.toString();
<< 'Mon Dec 25 2017 00:00:00 GMT+0000 (GMT)'

const chanukah = new Date('12 December 2017');
// First day of Chanukah

chanukah.toString();
<< 'Tue Dec 12 2017 00:00:00 GMT+0000 (GMT)'

const eid = new Date('Sunday, June 25, 2017');
// Eid-al-Fitr
eid.toString();
<< 'Sun Jun 25 2017 00:00:00 GMT+0100 (BST)'

As you can see, the string passed to the Date constructor can be in a variety
of formats. However, in order to be more consistent, it’s better to provide
each bit of information about the date as a separate argument. The parameters
that can be provided are as follows:

new Date(year,month,day,hour,minutes,seconds,milliseconds)

Here is an example:

const solstice = new Date(2017, 5, 21);
// Summer Solstice
solstice.toString();
<< 'Wed Jun 21 2017 00:00:00 GMT+0100 (BST)'

Remember that computer programs start counting at zero, so January is 0,
February is 1, and so on up to December, which is 11.

An alternative is to use a timestamp, which is a single integer argument that
represents the number of milliseconds since the Epoch (1st January 1970):

const diwali = new Date(1508367600000);
diwali.toString();
<< 'Thu Oct 19 2017 00:00:00 GMT+0100 (BST)'

The Epoch

The Epoch is 1st January 1970. This is an arbitrary date that is used in
programming as a reference point in time from which to measure dates. This
allows dates to be expressed as an integer that represents the number of
seconds since the Epoch. It results in a very large number and there is a

potential problem looming in 2038 when the number of seconds since the
Epoch will be greater than 2,147,483,647, which is the maximum value that
many computers can deal with as a signed 32-bit integer. Fortunately, this
problem will not affect JavaScript dates because it uses floating-point
numbers rather than integers, so it can handle bigger values.

Getter Methods

The properties of date objects are unable to be viewed or changed directly.
Instead, they have a number of methods known as getter methods, which
return information about the date object, such as the month and year.

Once you’ve created a date object it will have access to all the getter
methods. There are two versions of most methods – one that returns the
information in local time, and the other that uses Coordinated Universal Time
(UTC). The getTime(), getTimezoneOffset() and getYear() methods don't
have UTC equivalents.

UTC

UTC is the primary time standard by which the world regulates clocks. It was
formalized in 1960 and is much the same as Greenwich Mean Time (GMT).
The main difference is that UTC is a standard that is defined by the scientific
community, unlike GMT.

The getDay() and getUTCDay() methods are used to find the day of the week
that the date object falls on. It returns a number, starting at 0 for Sunday, up
to 6 for Saturday:

diwali.getDay(); // it's on a Thursday
<< 4

The getDate() and getUTCDate()methods return the day of the month for
the date object (note that these values start counting from 1, not 0, so they
return the actual day of the month):

diwali.getDate(); // it's on the 19th

http://en.wikipedia.org/wiki/Year_2038_problem

<< 19

The getMonth() and getUTCMonth() methods can be used to find the month
of the date object. It returns an integer, but remember to count from 0; so
January is 0, February is 1, and so on up to December being 11:

diwali.getMonth(); // it's in October
<< 9

The getFullYear() and getUTCFullYear() methods return the year of the
date object. There is also a getYear() method, but it isn’t Y2K compliant, so
shouldn’t be used:

diwali.getYear(); // broken for years after 2000
<< 117

diwali.getFullYear(); // use this instead
<< 2017

There are also getHours(), getUTCHours(), getMinutes(),
getUTCMinutes(), getSeconds(), getUTCSeconds, getMilliseconds(), and
getUTCMilliseconds() methods that will return the hours, minutes, seconds
and milliseconds since midnight.

The getTime() method returns a timestamp representing the number of
milliseconds since the Epoch:

diwali.getTime();
<< 1508367600000

This can be useful for incrementing dates by a set amount of time. For
example, a day can be represented by 1000 * 60 * 60 * 24 milliseconds:

const christmasEve = new Date(christmas.getTime() - 1000 * 60 * 60 * 24) // one day before Christmas
christmasEve.toString();
<< Fri Dec 26 2014 00:00:00 GMT+0000 (GMT)"

The getTimezoneOffset() method returns the difference, in minutes,
between the local time on the computer and UTC. For example, my timezone
is currently the same as UTC, so it returns 0:

new Date().getTimezoneOffset();
<< 0

Setter Methods

Most of the getter methods covered in the previous section have equivalent
setter methods. These are methods that can be used to change the value of
the date held in a Date object. Each of the methods takes an argument
representing the value to which you update the date. The methods return the
timestamp of the updated date object.

As an example, we can change the value of the date stored in the diwali
variable so that it contains the date of Diwali in 2018, which is on
Wednesday, November 7, 2018:

diwali.setDate(7);
<< 1507330800000

diwali.setMonth(10); // November is month 10
<< 1510012800000

diwali.setFullYear(2018);
<< 1541548800000

Note that the values returned by these functions is the timestamp representing
the number of milliseconds since the Epoch. To see the actual date, we need
to use the toString() method:

diwali.toString();
<< 'Wed Nov 07 2018 00:00:00 GMT+0000 (GMT)'

There are also setHours(), setUTCHours(), setMinutes(),
setUTCMinutes(), setSeconds(), setUTCSeconds, setMilliseconds() and
setUTCMilliseconds() methods that can be used to edit the time portion of a

Date object.

Alternatively, if you know the date as a timestamp, you can use the
setTime() method:

diwali.setTime(1447200000000);
<< 1541548800000

Tricky Timezones

Working with dates and timezones can be tricky. The moment.js library gives
you a large number of methods that make it easier to work with dates, as well
as support for multiple locales.

The RegExp Object

A regular expression (or RegExp, for short) is a pattern that can be used to
search strings for matches to the pattern. A common use is 'find and replace'
type operations. For example, say you were looking for any word ending in
'ing', you could use the regular expression /[a-zA-Z]+ing$/.

If that example looks a bit confusing, don’t worry, it will become clear as we
move through this section. Regular expressions can look a little strange; in
fact, they're something of a dark art that could easily fill a whole book! They
are certainly useful when manipulating text strings, though, so we'll introduce
some of the basics here and recommend that you carry out further reading
once you've finished this book.

Here are a couple of resources for the curious:

Online Regex Tester

Regular Expressions 101

Mastering Regular Expressions by Jeffrey Fried

Regular Expressions Info

https://momentjs.com
http://www.regextester.com
https://regex101.com
http://www.amazon.com/Mastering-Regular-Expressions-Jeffrey-Friedl/dp/0596528124/
http://www.regular-expressions.info/

Creating Regular Expressions

There are two ways to create a regular expression. The first, and preferred
way, is to use the literal notation of writing the regular expression between
forward slashes that we’ve already seen:

const pattern = /[a-zA-Z]+ing$/;

Alternatively, you can create a new instance of the RegExp object using the
new operator and a constructor function:

const pattern = new RegExp('[a-zA-Z]+ing');

Notice that the backslash character needs to be used twice in the last example.

Using literal regular expressions takes less typing, but there are advantages to
using the constructor function as it lets you create regular expressions using
strings, which can be useful when the regular expression is provided from
user input; in a form, for example. Constructors also have the advantage of
letting you create a regular expression using a variable:

const language = 'JavaScript';
const pattern = new RegExp(language);

RegExp Methods

Once you’ve created a regular expression object, you can use the test()
method to see if a string (passed to the method as a parameter) matches the
regular expression pattern. It returns true if the pattern is in the string, and
false if it isn’t.

We can see an example of the test() method used below, using the same
pattern we created earlier that tests if a word ends in 'ing':

pattern.test('joke');
<< false

pattern.test('joking');
<< true

pattern.test('jokingly');
<< false

The exec() method works in the same way as the test() method, but instead
of returning true or false, it returns an array containing the first match
found, or null if there aren’t any matches:

pattern.exec('joke');
<< null

pattern.exec('joking');
<< ['joking', index: 0, input: 'joking']

Basic Regular Expressions

At the most basic level, a regular expression will just be a string of
characters, so the following will match the string 'JavaScript':

const pattern = /JavaScript/;
<< /JavaScript/

Character Groups
Groups of characters can be placed together inside square brackets. This
character group represents any one of the characters inside the brackets. For
example, the following regular expression matches any vowel:

const vowels = /[aeiou]/
<< /[aeiou]/

A sequence of characters can also be represented by placing a dash [-]
between the first and last characters; for example, all the uppercase letters can
be represented as:

/[A-Z]/

The digits 0-9 can be represented as:

/[0-9]/

If a \^ character is placed at the start of the sequence of characters with the
brackets, it negates the sequence, so the following regular expression
represents any character that is not a capital letter:

/[^A-Z]/

These groups can be combined with letters to make a more complex pattern.
For example, the following regular expression represents the letter J
(lowercase or capital) followed by a vowel, followed by a lowercase v,
followed by a vowel:

pattern = /[Jj][aeiou]v[aeiou]/;
<< /[Jj][aeiou]v[aeiou]/

pattern.test('JavaScript');
<< true

pattern.test('jive');
<< true

pattern.test('hello');
<< false

Regular Expression Properties

Regular expressions are objects, and have the following properties:

The global property makes the pattern return all matches. By default,
the pattern only looks for the first occurrence of a match.

The ignoreCase property makes the pattern case-insensitive. By default,
they are case sensitive.

The multiline property makes the pattern multiline. By default, a
pattern will stop at the end of a line.

The following flags can be placed after a regular expression literal to change
the default properties:

g sets the global property to true

i sets the ignoreCase property to true

m sets the multiline property to true

For example, the following regular expression will match 'JavaScript' or
'javascript' because the ignoreCase property is set to true:

pattern = /java/i
<< /java/i

pattern.test('JavaScript');
<< true

These properties can be checked using the dot notation, but cannot be

updated once the regular expression has been created, as can be seen in the
following example:

pattern = /java/i
<< /java/i

pattern.ignoreCase // checking it is true
<< true

pattern.ignoreCase = false // this won't work
<< false

pattern.ignoreCase // has it changed? Nope!
<< true

The only way to change the ignoreCase property to false is to redefine the
regular expression:

pattern = /java/
<< /java/

Special Characters

In a regular expression, there are a number of characters that have a special
meaning, commonly known as metacharacters:

. matches any character, except line breaks

\w matches any word character, and is equivalent to [A-Za-z0-9_]

\W matches any non-word character, and is equivalent to [\^A-Za-z0-
9_]

\d matches any digit character, and is equivalent to [0-9]

\D matches any non-digit character, and is equivalent to [^0-9]

\s matches any whitespace character, and is equivalent to [\t\r\n\f]

\S matches any non-whitespace character, and is equivalent to [^
\t\r\n\f]

Modifiers

Modifiers can be placed after a token to deal with multiple occurrences of
that token:

? makes the preceding token in the regular expression optional

* matches one or more occurrences of the preceding token

+ matches one or more occurrences of the preceding token

{n} matches n occurrences of the preceding token

{n,} matches at least n occurrences of the pattern

{,m}matches at most m occurrences of the preceding token

{n,m} matches at least n and at most m occurrences of the preceding
token

^ marks the position immediately before the first character in the string

$ marks the position immediately after the last character in the string

Any special characters or modifiers can be escaped using a backslash. So if
you wanted to match a question mark, ?, you would need to use the regular
expression /\?/.

For example, the following regular expression will match anything that starts
with J followed by one or more vowels, then any letters or numbers ending in
ing:

pattern = /^J[aeiou]+\w+ing$/
<< /J[aeiou]+\w+ing/

As we can see, it now matches the words 'Joking' and 'Jeering':

pattern.test('Joking');
<< true

pattern.test('Jeering');
<< true

Greedy and Lazy Modifiers

All the modifiers above are greedy, which means they will match the longest
possible string. They can be made into lazy modifiers that match the shortest
possible string by adding an extra '?' after the modifier.

For example, consider the string 'abracadabra':

const word = 'abracadabra';

The greedy pattern /a.+a/ will return the whole string because it is the
longest string that matches the pattern of 'a', followed by numerous characters
and finishing with an 'a':

const greedyPattern = /a.+a/;
greedyPattern.exec(word);
<< ['abracadabra', index: 0, input: 'abracadabra']

The lazy pattern /a.+?a/ changes the + modifier to +?. This will only return
the string 'abra' as this is the shortest string that matches the pattern 'a'
followed by some characters and ending in an 'a'.

const lazyPattern = /a.+?a/;
lazyPattern.exec(word);
<< ['abra', index: 0, input: 'abracadabra']

A Practical Example

If we were looking for PDF files and had a list of filenames, this regular
expression could be used to find them (assuming they have a .pdf extension,
of course):

const pdf = /.*\.pdf$/;

This looks for zero or more occurrences of any character, followed by an
escaped period, followed by the letters "pdf" that must come at the end of the
string:

pdf.test('chapter5.pdf');
<< true

pdf.test('report.doc');
<< false

String Methods

There are a number of string methods that accept regular expressions as a
parameter.

The split() method we saw in Chapter 2 can also accept a regular
expression that’s used to split a string into the separate elements of an array.
The following example uses a regular expression to split a string every time
there are one or more occurrences of a whitespace character:

'Hello World!'.split(/\s+/) //
<< ['Hello', 'World!']

The match() method returns an array of all the matches. By default, only the
first is returned:

'JavaScript'.match(/[aeiou]/); // return the first vowel
<< ['a']

We can use the g flag to return all the matches:

'JavaScript'.match(/[aeiou]/g); // return an array of all the vowels
<< ['a', 'a', 'i']

The search() method returns the position of the first match:

"I'm learning JavaScript".search(/java/i);
<< 13

It returns -1 if there is no match:

"I'm learning JavaScript".search(/ruby/i);
<< -1

The replace() method replaces any matches with another string. The
following example will replace all vowels with a '*' character:

'JavaScript'.replace(/[aeiou]/ig,'*');
<< 'J*v*Scr*pt'

Matched Groups

Sub-patterns can be created inside a regular expression by placing them
inside parentheses. These are known as capturing groups. Any matches to
these will then be stored in an array of matches.

Each capturing group is numbered according to the position it appears in the
pattern. For example, the first capturing group will be numbered 1, and the
second 2, etc. The matches will also be stored in special predefined variables
$1, $2 etc.

To demonstrate this, here's an example that searches a string and replaces any
HTML anchor tags with Markdown notation:

 const link = "Awesome Web Resources"

const mdLink = link.replace(/(.*?)<\/a>/g, "[$2]($1)");

https://daringfireball.net/projects/markdown/

mdLink
<< [Awesome Web Resources](https://www.sitepoint.com)

The example has two capturing groups – the first captures any text inside the
href attribute and stores it in the variable $1 and the second captures the text
inside the anchor tags and stores it in the variable $2. These matches can then
be used to create the link using Markdown.

Quiz Ninja Project
Now it's time to take another look at our Quiz Ninja project. We're going to
store our questions as objects inside an array. Open up main.js and enter the
following at the top of the file:

const quiz = [
 { name: "Superman",realName: "Clark Kent" },
 { name: "Wonder Woman",realName: "Diana Prince" },
 { name: "Batman",realName: "Bruce Wayne" },
];

Each element in the array contains information about the superheroes used in
our quiz. These objects replace the nested arrays we used in the previous
chapters, and have properties of name and realName that will be used to form
the questions and answers.

Now we’re going to namespace the functions we created in the last chapter.
We do this by placing them inside an object called game that will be the
namespace. This means that any references to the functions need to be
replaced with game.function() outside the object or this.function()
inside the object.

Add the following code below the array of questions:

const game = {
start(quiz){
 this.questions = [...quiz];
 this.score = 0;
 // main game loop
 for(const question of this.questions){
 this.question = question;
 this.ask();
 }
 // end of main game loop
 this.gameOver();
},
ask(){
 const question = `What is ${this.question.name}'s real name?`;

 const response = prompt(question);
 this.check(response);
},
check(response){
 const answer = this.question.realName;
 if(response === answer){
 alert('Correct!');
 this.score++;
 } else {
 alert(`Wrong! The correct answer was ${answer}`);
 }
},
gameOver(){
 alert(`Game Over, you scored ${this.score} point${this.score !== 1 ? 's' : ''}`);
}
}

After this, we have to edit the function that starts the game, so it includes the
namespace:

game.start(quiz);

Save these changes then have a go at playing the game again. Once again, we
haven't actually added any functionality, but we have made our code more
organized by placing all of the functions inside an object. This will make it
easier to expand on the functionality in later chapters.

Quiz Ninja

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/GExXBJ

Chapter Summary
Objects are a collection of key-value pairs placed inside curly braces {}.

Objects have properties that can be any JavaScript value. If it’s a
function, it’s known as a method.

An object’s properties and methods can be accessed using either dot
notation or square bracket notation.

Objects are mutable, which means their properties and methods can be
changed or removed.

Objects can be used as parameters to functions, which allows arguments
to be entered in any order, or omitted.

Nested objects can be created by placing objects inside objects.

JSON is a portable data format that uses JavaScript object literals to
exchange information.

The Math object gives access to a number of mathematical constants.

The Math object can be used to perform mathematical calculations.

The Date object can be used to create date objects.

Once you’ve created a Date object, you can use the getter methods to
access information about that date.

Once you’ve created a Date object, setter methods can be used to change
information about that date.

The Regex object can be used to create regular expressions.

Now we’ve reached the end of the first part of the book, you should have a
good grasp of the JavaScript programming language basics. But JavaScript

was originally designed to be used in the browser, so in the next chapter we’ll
look at how to use JavaScript to interact with web pages.

Chapter 6: The Document Object
Model
The Document Object Model (DOM) allows you to access elements of a web
page and enable interaction with the page by adding and removing elements,
changing the order, content and attributes of elements, and even altering how
they are styled.

In this chapter, we’ll cover the following topics:

Introduction to the DOM

Getting elements ―getElementById, getElementsByClassName,
getElementsByTagName, querySelector and querySelectorAll

Navigating the DOM

Getting and setting an element’s attributes

Updating the DOM by creating dynamic markup

Changing the CSS of an element

Our project ― we'll dynamically insert each question into the HTML

The Document Object Model

What is the DOM?

The Document Object Model, or DOM for short, represents an HTML
document as a network of connected nodes that form a tree-like structure.

The DOM treats everything on a web page as a node. HTML tags, the text
inside these tags, even the attributes of a tag are all nodes. The HTML tag is
the root node, and every other part of the document is a child node of this.

Take the following piece of HTML as an example:

<p class='warning'>Something has gone very wrong!</p>

This can be represented as the tree diagram shown below.

The DOM tree

The DOM is not actually part of JavaScript because it is language agnostic
(although JavaScript is, by far, the language most commonly used with it).
This means it can be used in any programming language, not just JavaScript.
We can use JavaScript to access and modify different parts of a web page
using a special built-in object called document.

History of the DOM
In the early days of the web, browser vendors such as Netscape and
Microsoft developed their own distinct ways of accessing and altering parts
of a web page. In the beginning, they tended to focus on common page
elements such as images, links and forms – this was known as Dynamic
HTML (DHTML). These methods became known as DOM level 0, or legacy
DOM. Some of the more common methods, such as those used for selecting
images and forms, can still be used in the current DOM.

The World Wide Web Consortium (W3C) started to standardize the process,
and created the DOM level 1 in 1998. This introduced a complete model for
web pages that allowed every part of them to be navigated.

The DOM level 2 specification was published in 2000 and introduced the
popular getElementById() method, which made it much easier to access
specific elements on a web page. The DOM level 3 specification was
published in 2004, and since then the W3C has abandoned using levels. The
DOM specification is developed as a living standard.

Despite the standardization process, browsers have not always implemented
the DOM consistently, so it’s been difficult to program for in the past.
Fortunately, since Internet Explorer 8, DOM support has been much more
consistent, and modern browsers now implement the current DOM level 3.
They’re also implementing more of the new DOM level 4 features with every
update.

https://www.w3.org/TR/dom/

An Example Web Page
To illustrate the DOM concepts covered in this chapter, we’ll use a basic web
page that contains a heading and three paragraph elements. Save the
following code in a file called heroes.html:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Justice League</title>
</head>
<body>
 <header>
 <h1 id='title'>Justice League</h1>
 </header>
 <ul id='roster'>
 <li class='hero'>Superman
 <li class='vigilante hero' id='bats'>Batman
 <li class='hero'>Wonder Woman

</body>
</html>

Below is a node tree diagram for the element with a class of roster:

The node tree

What's With the Extra Text Nodes?

There appear to be some extra #text nodes in this diagram, even in places
where there isn't any text. This is because the DOM also stores any
whitespace that is in the HTML document as text nodes.

Because we're using the browser, the best way to follow along with the
examples in this chapter is to use the console built into the web browser (we
discussed how to use this in Chapter 1). This will allow you to enter
commands that interact with the elements on the web page and see the
results. The screenshot below shows the page with the console open.

Using the console

Console Shortcuts

Here are a couple of useful shortcuts that will help speed things up when
you're using the console:

Pressing TAB will autocomplete any methods and should show you a
list of possible methods

Pressing the UP arrow key will select the previous command entered.

Getting Elements
The DOM provides several methods that allow us to access any element on a
page. These methods will return a node object or a node list, which is an
array-like object. These objects can then be assigned to a variable and be
inspected or modified.

For example, we can access the body element of a web page and assign it to
the variable body by entering the following code into the browser console:

const body = document.body;

Now we have a reference to the body element, we can check its type:

typeof body;
<< "object";

This is a special Node object with a number of properties and methods that we
can use to find information about, or modify, the body element.

For example, we can use the nodeType property to find out what type of node
it is:

body.nodeType;
<< 1

All nodes have a numerical code to signify what type they are. These are
summmarized in the table below.

Code Type
1 element
2 attribute
3 text
8 comment

9 body

There are other types not covered in the table, but these aren’t used in HTML
documents. As we can see from the table, a code of 1 confirms that body is an
element node.

We can also use the nodeName property to find the name of the element:

body.nodeName;
<< "BODY"

Note that the element name is returned in uppercase letters.

This is a live reference to what is displayed in the browser. You can see this
by hovering your cursor over the reference in the console and see it
highlighted in the main viewport, as illustrated in the screenshot below:

Highlighting the reference

Legacy DOM Shortcut Methods

There are some methods from DOM Level 0 that can still be employed to
access commonly used elements. These include:

Document.body returns the body element of a web page, as we saw in
the previous example.

Document.images returns a node list of all the images contained in the
document.

Document.links returns a node list of all the <a> elements and <area>
elements that have an href attribute.

Document.anchors returns a node list of all the <a> elements that have a
name attribute.

Document.forms returns a node list of all the forms in the document.
This will be used when we cover forms in Chapter 8.

Not Actually Arrays

Node lists are array-like objects, but they are not arrays. You can access each
item using index notation. For example, document.images[0] will return the
first image in the node list of all the images in the document.

They also have a length property, which can be used to iterate through every
element using a for loop, like so:

for (let i=0 ; i < document.images.length ; i++) {

// do something with each image using document.images[i]

}

Node lists don’t have any other array methods such as slice, splice and
join.

ES6 makes it very easy to turn a node list into an array, however. You can
either use the Array.from() method:

const imageArray = Array.from(document.images);

Or you can use the spread operator:

const imageArray = [...document.images];

Once the node list has been turned into an array, you can use all the array

methods on it.

Getting An Element By Its ID

The getElementById() method does exactly what it says on the tin. It returns
a reference to the element with a unique id attribute that is given as an
argument. For example, we can get a reference to the <h1> heading element
with the id of 'title' in the 'heroes.html' page by writing this in the console:

const h1 = document.getElementById('title');

Every id attribute should be unique to just one element (Make sure you
follow this rule – it's not enforced by the HTML parser, but odd things can
happen in your code if you have more than one element with the same ID).
This method will return a reference to the unique element with the ID
provided as an argument. For this reason, it’s a very quick way of finding
elements in a document. It’s also supported in all the major browsers, and is
probably the most commonly used method of accessing elements on a web
page.

If no element exists with the ID provided, null is returned.

Get Elements By Their Tag Name

getElementsByTagName() will return a live node list of all the elements with
the tag name that is provided as an argument. For example, we can get all the
list items (HTML tag of) in the document using this code:

const listItems = document.getElementsByTagName('li');

As this is a node list, we can use the index notation to find each individual
paragraph in the list:

listItems[0];
<< <li class='hero'>Superman

listItems[1];
<< <li class='vigilante hero' id='bats'>Batman

listItems[2];
<< <li class='hero'>Wonder Woman

If there are no elements in the document with the given tag name, an empty
node list is returned.

Get Elements By Their Class Name

getElementsByClassName() will return a live node list of all elements that
have the class name that is supplied as an argument. For example, we can
return a collection of all elements with the class of 'hero' using the following
code:

const heroes = document.getElementsByClassName('hero');

Note that, in this case, it is exactly the same collection that was returned
when we found all of the list items previously.

There are three elements on the page that have the class name of hero, which
we can test by querying the length property:

heroes.length;
<< 3

Note that if there are no elements with the given class, an HTML collection is
still returned, but it will have a length of 0:

document.getElementsByClassName('villain').length;
<< 0

document.getElementsByClassName is supported in all the major modern
browsers, but was only supported in Internet Explorer 9 and later.

Query Selectors

The document.querySelector() method allows you to use CSS notation to
find the first element in the document that matches that matches a CSS
selector provided as an argument. If no elements match, it will return null.

The document.querySelectorAll() method also uses CSS notation but
returns a node list of all the elements in the document that match the CSS
query selector. If no elements match, it will return an empty node list.

These are both very powerful methods that can emulate all the methods
discussed, as well as allowing more fine-grained control over which element
nodes are returned.

Query Selectors

You do have to know a bit about CSS query selectors to be able to use this
method! If you don’t know, or just need a reminder, you might want to check
this page out at SitePoint.

For example, the following could be used instead of
document.getElementById():

document.querySelector('#bats');
 << <li class="vigilante hero" id="bats">Batman

And this could be used instead of document.getElementsByClassName:

document.querySelectorAll('.hero');
 << NodeList [<li class="hero">, <li id="bats">, <li class="hero">]

Note that this is not a live node list. See the section later in this chapter for
more details about live node lists.

CSS query selectors are a powerful way of specifying very precise items on a
page. For example, CSS pseudo-selectors can also be used to pinpoint a
particular element. The following code, for example, will return only the last

http://www.sitepoint.com/web-foundations/css-selectors/

list item in the document:

const wonderWoman = document.querySelector('li:last-child');

The querySelector() method can be called on any element, rather than just
document. For example, we can get a reference to the element, using the
following code:

const ul = document.querySelector('ul#roster');

Now we can use the querySelector() method on this element, to find a
element with an id of 'bats':

const batman = ul.querySelector('li#bats')

All modern browsers support these methods, and Internet Explorer supported
it from version 8 onwards. Version 8 of Internet Explorer only understands
CSS2.1 selectors (because that is the highest level of CSS that it supports), so
complex CSS3 notations such as ul ~ p:empty (which finds any empty <p>
elements that are also siblings with a element) will fail to work.

jQuery

jQuery is a popular JavaScript framework that makes it very easy to find
elements on a page using a CSS-style syntax. It uses
document.querySelectorAll() in the background whenever it can. For
example, the jQuery code $('ul#roster').find('li#bats'); is basically
doing the same as our previous example:

const ul = document.querySelector('ul#roster');
ul.querySelector('li#bats')

Navigating the DOM Tree

Node objects have a number of properties and methods for navigating around

the document tree. Once you have a reference to an element, you can walk
along the document tree to find other nodes. Let's focus on a particular part of
the document tree in our example. The relationship each node has with the
Batman node is shown below.

Super Hero DOM tree

The childNodes property is a list of all the nodes that are children of the node
concerned. The following example will return all the child nodes of the
element with an id attribute of roster:

const heroes = document.getElementById('roster');

heroes.childNodes
<< NodeList [#text "
", <li class="hero">, #text "
", <li id="bats">, #text "
", <li class="hero">, #text "
", <li class="hero">, #text "

Note that the childNodes property returns all the nodes that are children of
an element. This will include any text nodes, and since whitespace is treated
as a text node, there will often be empty text nodes in this collection.

The children property only returns any element nodes that are children of

that node, so will ignore any text nodes. Note that this is only supported in
Internet Explorer from version 9 onwards:

heroes.children // this will only contain list items
<< HTMLCollection [<li class="hero">, <li id="bats">, <li class="hero">, <li class="hero">] (4)

heroes.children.length
<< 3

The firstChild property returns the first child of a node:

heroes.firstChild
<< #text " "

And the lastChild property returns the last child of a node:

heroes.lastChild
<< #text " "

Be careful when using these properties ― the first or last child node can
often be a text node, even if it’s just an empty string generated by some
whitespace (this can be seen in both of the examples above).

For example, you might expect the first child node of the element to be
a element, and the last child to also be a element, but they are both
in fact text nodes, generated by the whitespace characters in between the
 and tags:

The parentNode property returns the parent node of an element. The
following code returns the roster node because it’s the parent of the
wonderWoman node:

const wonderWoman = document.querySelector('ul#roster li:last-child');
wonderWoman.parentNode
<< <ul id='roster'>…

The nextSibling property returns the next adjacent node of the same parent.
It will return null if the node is the last child node of that parent:

wonderWoman.nextSibling
<< #text " "

The previousSibling property returns the previous adjacent node. It will
return null if the node is the first child of that parent:

wonderWoman.previousSibling
<< #text " "

Once again, these methods find the next and previous node, not element, so
they will often return a blank text node, as in the examples above.

Using these properties allows you to navigate around the whole of the
document tree.

Finding the Value of a Node

Finding the text contained within an element is actually trickier than it
sounds. For example, the variable wonderWoman has a DOM node that
contains the following HTML:

<li class='hero'>Wonder Woman

It clearly contains the text 'Wonder Woman', but this is held in a text node,
which is the first child of the element node:

const textNode = wonderWoman.firstChild;
<< "Wonder Woman"

Now we have a reference to the text node, we can find the text contained
inside it using the nodeValue method:

textNode.nodeValue;
<< "Wonder Woman"

We can also find this value using the textContent property. This will return

the text content of an element as a string:

wonderWoman.textContent
<< "Wonder Woman"

Note that Internet Explorer version 8 does not support the textContent
property, but has the innerText property, which works in a similar way.

Getting and Setting Attributes

All HTML elements have a large number of possible attributes such as 'class',
'id', src, and 'href'. The DOM has numerous getter and setter methods that
can be used to view, add, remove or modify the value of any of these
attributes.

Getting An Element’s Attributes

The getAttribute() method returns the value of the attribute provided as an
argument:

wonderWoman.getAttribute('class');
<< "hero"

If an element does not have the given attribute, it returns null:

wonderWoman.getAttribute('src');
<< null

Setting An Element’s Attributes
The setAttribute can change the value of an element’s attributes. It takes
two arguments: the attribute that you wish to change, and the new value of
that attribute.

For example, if we wanted to change the class of the element in the
wonderWoman variable to 'villain', we could do so using this code:

wonderWoman.setAttribute('class', 'villain');
<< undefined

wonderWoman.getAttribute('class');
<< "villain"

If an element does not have an attribute, the setAttribute method can be
used to add it to the element. For example, we can add an id of 'amazon' to
the wonderWoman element:

wonderWoman.setAttribute('id','amazon');

wonderWoman.getAttribute('id');
<< 'amazon'

Dot Notation

The legacy DOM allows access to attributes using dot notation, like so:

wonderWoman.id;
<< 'amazon'

Now if we take a look at the wonderWoman variable, we can see that the
changes have been made, as this is a live reference to the element:

wonderWoman
<< <li class="villain" id="amazon">Wonder Woman

This notation is still supported, although some attribute names such as class
and for are reserved keywords in JavaScript, so we need to use className
and htmlFor instead.

Classes Of An Element

The className Property

As we’ve seen, we can modify the class name of an element using the
setAttribute() method. There is also a className property that allows the
class of an element to be set directly. In addition, it can be used to find out
the value of the class attribute:

wonderWoman.className;
<< "villain"

We can change the class back to 'hero' with the following code:

wonderWoman.className = 'hero'
<< "hero"

Be Careful Updating className

Changing the className property of an element by assignment will overwrite
all other classes that have already been set on the element.

This problem can be avoided by using the classList property instead.

The classList Property

The classList property is a list of all the classes an element has. It has a
number of methods that make it easier to modify the class of an element. It’s
supported in all modern browsers and in Internet Explorer from version 10
onwards.

The add method can be used to add a class to an element without overwriting
any classes that already exist. For example, we could add a class of 'warrior'
to the wonderWoman element:

wonderWoman.classList.add('warrior');

Now we can check that it has been added:

wonderWoman.className;
<< "hero warrior"

The remove method will remove a specific class from an element. For
example, we could remove the class of 'warrior' with the following code:

wonderWoman.classList.remove('warrior');

The toggle method is a particularly useful method that will add a class if an
element doesn’t have it already, and remove the class if it does have it. It
returns true if the class was added and false if it was removed. For
example:

wonderWoman.classList.toggle('hero'); // will remove the 'hero' class
<< false

wonderWoman.classList.toggle('sport'); // will add the 'hero' class back
<< true

The contains method will check to see if an element has a particular class:

wonderWoman.classList.contains('hero');
<< true

wonderWoman.classList.contains('villain');
<< false

classList and Older Versions of IE

Unfortunately, the classList property is only available in Internet Explorer
version 10 and above, so if you want to support older versions of Internet
Explorer, you could create a function that will add an extra class to an
element, rather than just replace the current class. The addClass function
takes the element and the new class name to be added as parameters. It uses a
simple if block to check if the value of the element's className property is
truthy. If it is, it will append the new class to the end of the current class;
otherwise, it will simply set the new class as the element’s class:

function addClass(element,newClass){
if (element.className) {
 element.className = element.className + ' ' + newClass;
} else {
 element.className = newClass;
}
return element.className;
}

Let’s test this out on the wonderWoman element, which already has a class of
hero:

addClass(wonderWoman,'warrior');
<< "hero warrior"

Creating Dynamic Markup

So far we’ve looked at how to gain access to different elements of a web page
and find out information about them. We’ve also looked at how to change the
attributes of elements. In this section, we’re going to learn how to create new
elements and add them to the page, as well as edit elements that already exist
and remove any unwanted elements.

Creating An Element

The document object has a createElement() method that takes a tag name as
a parameter and returns that element. For example, we could create a new list
item as a DOM fragment in memory by writing the following in the console:

const flash = document.createElement('li');

At the moment, this element is empty. To add some content, we’ll need to
create a text node.

Creating a Text Node

A text node can be created using the document.createTextNode() method. It
takes a parameter, which is a string containing the text that goes in the node.
Let's create the text to go in our new element:

const flashText = document.createTextNode('Flash');

Now we have an element node and a text node, but they are not linked
together ― we need to append the text node to the paragraph node.

Appending Nodes

Every node object has an appendChild() method that will add another node
(given as an argument) as a child node. We want our newly created text node
to be a child node of the list element node. This means that it’s the flash
object that calls the method, with flashText as its argument:

flash.appendChild(flashText);

Now we have a element that contains the text we want. So the process
to follow each time you want to create a new element with text content is
this:

1. Create the element node

2. Create the text node

3. Append the text node to the element node

This can be made simpler by using the textContent property that every

element object has. This will add a text node to an element without the need
to append it, so the code above could have been written as the following:

const flash = document.createElement('li');
flash.textContent = 'Flash';

While this has cut the number of steps from three down to two, it can still
become repetitive, so it’s useful to write a function to make this easier. This
is what we’ll do next.

A Function To Create Elements

When we created our new list item element, all we specified was the type of
tag and the text inside it. These will form the parameters of our function. The
function will then perform the two steps we used to create the new element,
and then return that element:

function createElement (tag,text) {
const el = document.createElement(tag);
el.textContent = text;
return el
}

Let’s try it out by creating another new list item element:

const aquaman = createElement('li','Aquaman');

We can now create new elements in a single line of code rather than three.
It’s time to add these new elements to our example page.

Adding Elements to the Page

We have already seen the appendChild() method. This can be called on a
node to add a new child node. The new node will always be added at the end
of any existing child nodes. The following example will add the flash
element we created above to the end of the element, as shown below:

heroes.appendChild(flash);

Append child

The appendChild method is useful as you’ll often want to add a new element
to the bottom of a list. But what if you want to place a new element in
between two existing elements?

The insertBefore() method will place a new element before another
element in the markup. It’s important to note that this method is called on the
parent node. It takes two parameters: the first is the new node to be added,
and the second is the node that you want it to go before (it’s helpful to think
that the order of the parameters is the order they will appear in the markup).
For example, we can place the aquaman element that we created earlier before
the wonderWoman element with the following line of code:

heroes.insertBefore(aquaman,wonderWoman);

This will produce the output shown below.

Insert before

The appendChild() and insertBefore() methods can be used to move
markup that already exists in the DOM as well. This is because a reference to
a single DOM element can only exist once in the page, so if you use multiple
inserts and appends, only the last one will have an effect. If an element is
required to appear in several different places in the document, it would need
to be cloned before each insertion.

This can be seen by using the appendChild() method on the wonderWoman
element. Since it already exists, it just moves its position to appear at the end
of the element, as shown below:

heroes.appendChild(wonderWoman);

Moving an existing node

Somewhat annoyingly, there is no insertAfter() method, so you need to
ensure you have access to the correct elements to place an element exactly
where you want it.

Remove Elements From a Page

An element can be removed from a page using the removeChild() method.
This method is called on the parent node and has a single parameter, which is
the node to be removed. It returns a reference to the removed node. For
example, if we wanted to remove the aquaman element, we would use the
following code:

heroes.removeChild(aquaman);
<< Aquaman

As you can see below, it's been removed.

Remove a child node

Because we have a reference to the element, we can easily put it back into the
document if we need to:

heroes.appendChild(aquaman);

Replacing Elements on a Page

The replaceChild() method can be used to replace one node with another.
It’s called on the parent node and has two parameters: the new node and the
node that is to be replaced. For example, if we wanted to change the content
of the <h1> tag that makes the title of the page, we could replace the text node
with a new one, like so:

const h1 = document.getElementById('title');
const oldText = h1.firstChild;
const newText = document.createTextNode('Justice League of America');
h1.replaceChild(newText,oldText);

the figure below shows that the text has now changed to 'Justice League of
America'.

Replacing an element

innerHTML

The innerHTML element property was standardized as part of the HTML5,
although it was already supported by all the major browsers. It returns all the
child elements of an element as a string of HTML. If an element contains lots
of other elements, all the raw HTML is returned. In the following example,
we can see all the HTML that is contained inside the element with the id
of roster:

heroes.innerHTML
<<"
 <li class=\"hero\">Superman
 <li class=\"vigilante hero\" id=\"bats\">Batman
 <li class=\"hero\">Wonder Woman
 "

The innerHTML property is also writable and can be used to place a chunk of
HTML inside an element. This will replace all of a node’s children with the

raw HTML contained in the string. This saves you having to create a new text
node as it’s done automatically and inserted into the DOM. It’s also much
quicker than using the standard DOM methods. For example, the heading text
that we changed before could be changed in one line:

h1.innerHTML = 'Suicide Squad';

The power of the innerHTML property becomes even more apparent if you
want to insert a large amount of HTML into the document. Instead of
creating each element and text node individually, you can simply enter the
raw HTML as a string. The relevant nodes will then be added to the DOM
tree automatically. For example, we could change everything contained
within the element:

heroes.innerHTML = 'Harley QuinnDeadshotKiller CrocEnchantressCaptain BoomerangKatanaSlipknot';

This will now remove all the child elements of the element and replace
them with the string of HTML that was provided, as shown in below.

The innerHTML property

Scripts Inserted Using innerHTML Won't Run

To stop any malicious content being added to a page using innerHTML, any
code contained within <script> tags is not executed.

Live Collections

The node lists returned by the document.getElementsByClassName() and
document.getElementsByTagName() methods are live collections that will
update to reflect any changes on the page. For example, if a new element with
the class hero is added, or an existing one is removed, the node list updates
automatically without having to make another call to the method. Therefore,
its use is discouraged for performance reasons, but it can be useful.

To see an example of this, reload the page again to reset the DOM to its
original state. Let’s take a look at how many elements are in the

element:

const heroes = document.getElementById('roster');

const list = heroes.children;

list.length
<< 3

Now remove the batman element:

const batman = document.getElementById('bats');
<< undefined

heroes.removeChild(batman);

list.length;
<< 2

You also need to be careful when referring to elements by their index in a
collection, as this can change when markup is added or removed. For
example, wonderWoman element could originally be accessed using this line of
code:

heroes.children[2];
<< undefined

Yet now it refers to undefined, as nothing is at the index of 2 in the
collection; this is because the batman element was dynamically removed from
the DOM, which means the index of the remaining elements will now change
in the node list.

Updating CSS
Every element node has a style property. This can be used to dynamically
modify the presentation of any element on a web page.

To see an example of this, reload the page again to reset the DOM. We can
add a red border to the superman element with the following code:

const heroes = document.getElementById('roster');
const superman = heroes.children[0];

superman.style.border = "red 2px solid";
<< "red 2px solid"

Camel Case Properties

Any CSS property names that are separated by dashes must be written in
camelCase notation, so the dash is removed and the next letter is capitalized
because dashes are not legal characters in property names.

For example, the CSS property background-color becomes
backgroundColor. We can change the color of the superman background to
green using this code:

superman.style.backgroundColor = 'blue';
<< "blue"

Alternatively, the bracket notation that we saw in chapter 5 can also be used,
meaning that CSS properties can be provided as a string and don't need the
camelCase notation:

superman.style['background color'] = 'blue';
<< "blue"

You can see this change below.

Changing the style

Disappearing Act

One particularly useful CSS property often employed is the display
property. This can be used to make elements disappear and reappear on the
page as needed:

You can hide the superman element with the following code:

superman.style.display = 'none';
<< "none"

You can see the effect below.

Hiding the elements

The element can be made to 'reappear' by changing the display property
back to block:

superman.style.display = 'block';
<< "block"

Checking Style Properties

The style property can also be used to see what CSS styles have been set on
an element, but unfortunately it applies only to inline styles, and styles set
using JavaScript. This means it excludes styles from external stylesheets,
which is the most common way of setting styles.

There is a function called getComputedStyle() that will retrieve all the style
information of an element that is given as a parameter. This is a read-only
property, so is only used for finding out information about the style of an
element.

For example, if you wanted all the styles applied to the superman element,
you could use the following:

getComputedStyle(superman);
<< CSSStyleDeclaration {0: "alt", 1: "animation-delay", 2: "animation-direction", 3: "animation-duration", 4: "animation-fill-mode", 5: "animation-iteration-count", 6: "animation-name", 7: "animation-play-state", 8: "animation-timing-function", 9: "background-attachment", …}

As you can see, it returns an object (more specifically, it is a
CSSStyleDeclaration object) that contains a list of property-value pairs of
all the CSS styles that have been applied to the element in question. In this
example, there are over 200, although CSSStyleDeclaration objects have
some built-in methods to help extract the information. For instance, if I
wanted to find out about the element’s color property I could use this code in
the console:

getComputedStyle(superman).getPropertyCSSValue('color').cssText;
<< "rgb(0, 0, 0)"

This tells us that the color of the text is rgb(0, 0, 0), which is black.

You can read more on the Mozilla Developer Network about the
getComputedStyle() function and about CSSStyleDeclaration objects.

This Will Cause An Error in Some Browsers

Some browsers, such as Chrome, do not allow access to the methods of a
CSSStyleDeclaration object, such as getPropertyCSSValue(), so
attempting to use them will result in an error.

Use with Caution

While it may seem useful to be able to edit the styles of elements on the fly
like this, it is much better practice to dynamically change the class of an
element and keep the relevant styles for each class in a separate stylesheet.

For example, if you wanted to add a red border around the superman element
(to highlight it for some reason), you could do it in the way we saw earlier:

https://developer.mozilla.org/en/docs/Web/API/window.getComputedStyle
https://developer.mozilla.org/en-US/docs/Web/API/CSSStyleDeclaration

superman.style.border('red 2px solid');

A better alternative would be to add a class of 'highlighted':

superman.classList.add('highlighted');

And then add the following CSS in a separate stylesheet file:

.highlighted{
border: red 2px solid;
}

This would give more flexibility if it was later decided to change the look of
the highlighted elements. It could simply be changed at the CSS level, rather
than having to dig around in the JavaScript code. There may be times,
however, when you don't have access to a stylesheet or its classes, so in this
case you would have to change the CSS dynamically using JavaScript.

Quiz Ninja Project
Now we’ve learned about the Document Object Model, we can start to add
some dynamic markup to display the questions in our quiz. This will mean
we won't need as many alert dialogs.

The first thing to do is add some empty <div> elements to the HTML by
updating index.html to the following:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<meta name='description' content='A JavaScript Quiz Game'>
<title>Quiz Ninja</title>
<link rel='stylesheet' href='styles.css'>
</head>
<body>
<section class='dojo'>
 <div class='quiz-body'>
 <header>
 <div id='score'>Score: 0</div>
 <h1>Quiz Ninja!</h1>
 </header>
 <div id='question'></div>
 <div id='result'></div>
 <div id='info'></div>
 </div>
</section>
<script src='main.js'></script>
</body>

We've added four <div> elements that will be used to show the questions and
provide feedback about whether the user has answered a question correctly or
not. We've also added a <div> element inside the <header> that can be used
to display the score as the game is being played.

The ID attributes of these elements will act as hooks that allow us to easily
gain access to that element using the document.getElementById() method.

These will be namespaced inside an object called view, as they all relate to
the view. Add the following code at the start of the main.js file, just after the
array of questions:

// View Object
const view = {
score: document.querySelector('#score strong'),
question: document.getElementById('question'),
result: document.getElementById('result'),
info: document.getElementById('info'),
render(target,content,attributes) {
 for(const key in attributes) {
 target.setAttribute(key, attributes[key]);
 }
 target.innerHTML = content;
}
};

This uses the document.querySelector() method to access the elements we
require and assign them to a variable. So, for example, the div with an id of
question can be accessed in the Javascript code using view.question.

We've also added a helper function called render() that can be used to
update the content of an element on the page. This function has three
parameters: the first is the element that displays the content, the second is for
the content it’s to be updated with, and the last is an object of any HTML
attributes that can be added to the element.

The function loops through any attributes provided as the third argument, and
uses the setAttribute() method to update them to the values provided. It
then uses the innerHTML property to update the HTML with the content
provided.

Now we need to update some of the functions inside the game object to use
update the HTML.

We will still need to keep using dialogs for the time being, because without
them, the JavaScript won't stop running and the game would be unplayable.
Don't worry though, we won't need them for much longer.

We're going to update the HTML alongside showing the information. This
means that the following methods need updating:

 ask(){
 const question = `What is ${this.question.name}'s real name?`;
 view.render(view.question,question);
 const response = prompt(question);
 this.check(response);
},
check(response){
 const answer = this.question.realName;
 if(response === answer){
 view.render(view.result,'Correct!',{'class':'correct'});
 alert('Correct!');
 this.score++;
 view.render(view.score,this.score);
 } else {
 view.render(view.result,`Wrong! The correct answer was ${answer}`,{'class':'wrong'});
 alert(`Wrong! The correct answer was ${answer}`);
 }
},
gameOver(){
 view.render(view.info,`Game Over, you scored ${this.score} point${this.score !== 1 ? 's' : ''}`);
}

In most cases we have placed a call to view.render() wherever there is an
alert() or prompt() dialog that displays the same information in the HTML.
We've also used the view.render() method to update the score if a player
gains any points.

Unfortunately, if you have a go at playing the quiz by opening index.html in
a browser, you won't notice much difference until right at the end when all
the dialogs have finished displaying. You'll notice that the HTML has also
been updating in the background, as seen in the screenshot below:

Current quiz

This is definitely starting to look better, although it would be good if we
could see the results of our HTML updates all the way through the game.
Don't worry about this, though, because we'll not be using prompts for much
longer.

We have used our knowledge of the DOM to dynamically update the markup
on the page. We've also continued to keep our code organized by keeping any
properties and methods to do with the view in a separate object.

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/LLdJww

Chapter Summary
The Document Object Model is a way of representing a page of HTML
as a tree of nodes.

The document.getElementById(),
document.getElementsByClassName(),
document.getElementsByTagNames() and document.querySelector()
can be used to access elements on a page.

The parentNode(), previousSibling(), nextSibling(),
childNodes() and children() methods can be used to navigate around
the DOM tree.

An element’s attributes can be accessed using the getAttribute()
method, and updated using the setAttribute() method.

The createElement() and createTextNode() methods can be used to
create dynamic markup on the fly.

Markup can be added to the page using the appendChild() and
insertBefore() methods.

Elements can be replaced using the replaceChild() method, and
removed using the removeChild() method.

The innerHTML property can be used to insert raw HTML directly into
the DOM.

The CSS properties of an element can be changed by accessing the
style property.

Now we’ve learned how to navigate and dynamically update the markup of a
web page, it’s time to start interacting with it. In the next chapter we’ll be
covering a fundamental part of the JavaScript language: events.

Chapter 7: Events
We saw in the last chapter how the DOM is an interface that allows you to
use JavaScript to interact with a web page. Events are another part of the
DOM and they are what provides the link between the web page and user
interactions. Every time a user interacts with a web page, such as clicking on
a link, pressing a key, or moving a mouse, an event occurs that our program
can detect and then respond to.

In this chapter, we’ll cover the following topics:

Introduction to events

Adding event listeners

The event object

Mouse, keyboard and touch events

Removing event listeners

Stopping default behavior

Event propagation

Project – we'll add a 'start' button that can be clicked on to start the game

Event Listeners
Imagine you’re waiting for a really important email that you need to act upon
as soon as it arrives, but you also have some JavaScript programming to do.
You could keep checking your email every couple of minutes to see if the
message has arrived, but this will cause lots of interruptions to your progress
creating the next killer app. Not to mention you might be unable to check
your email at the exact moment the message arrives, so it might be too late to
act upon. The obvious answer is to set up a notification that will pop up as
soon as the email arrives. You can happily program away without the
distraction of constantly checking your email, because you'll receive a
satisfying 'ping' as soon as the email arrives.

Event listeners in JavaScript work in much the same way. They are like
setting a notification to alert you when something happens. Instead of the
program having to constantly check to see if an event has occurred, the event
listener will let it know when the event happens, and the program can then
respond appropriately. This allows the program to continue with other tasks
while it waits for the event to happen.

For example, say in your program you want something to happen when a user
clicks on the page. The code to check if a user has clicked might look like the
example below (JavaScript doesn’t actually work like this, so this code would
fail to work, although it is the way some programming languages work):

if (click) {
doSomething();
} else {
// carry on with rest of the program
}

The problem with this approach is that the program would have to keep
returning to this if block to check if the click had happened. It’s a bit like
having to check your email every few minutes. This is known as a blocking
approach to programming because checking for the click is blocking the rest
of the program from running.

JavaScript, on the other hand, uses a non-blocking approach that uses event
listeners to listen out for any clicks on the page. Every time the page is
clicked, a callback function will be called. So the program can continue
processing the rest of the code while it's waiting for the click event to happen.

The following code can be used to attach an event listener to the document
that fires when the user clicks anywhere on the page:

document.body.addEventListener("click", doSomething);

Event listeners are added to elements on the page and are part of the DOM
that we met in the last chapter. In the example above, the event listener has
been added to the document’s body element. It will call the function
doSomething() when any part of the page is clicked on. Until that happens,
the program will continue to run the rest of the code.

The click Event

The click event occurs when a user clicks with the mouse, presses the Enter
key, or taps the screen, making it a very useful all-round event covering many
types of interaction.

Inline Event Handlers

The original way of dealing with events in the browser was to use inline
attributes that were added directly into the markup. Here’s an example that
adds an onclick event handler to a paragraph element:

<p onclick="console.log('You Clicked Me!')">Click Me</p>

The JavaScript code inside the quote marks will be run when a user clicks on
the paragraph. This method will still work in modern browsers, but it isn’t
recommended for a number of reasons:

The JavaScript code is mixed up with the HTML markup, breaking the
concept of unobtrusive JavaScript, which advocates that JavaScript code

should be kept out of the HTML.

Only one event handler for each event-type can be attached to an
element.

The code for the event handlers is hidden away in the markup, making it
difficult to find where these events have been declared.

The JavaScript code has to be entered in a string, so you need to be
careful when using apostrophes and quote marks.

For these reasons, inline event handlers are best avoided, and have only been
included here for the sake of completion, and in case you see them in some
code examples online.

Older Event Handlers

Another method is to use the event handler properties that all node objects
have. These can be assigned to a function that would be invoked when the
event occurred. The following example would cause a message to be logged
to the console when the page is clicked:

document.onclick = function (){ console.log('You clicked on the page!'); }

This method is an improvement on the inline event handlers as it keeps the
JavaScript out of the HTML markup. It is also well-supported and will work
in almost all browsers. Unfortunately, it still has the restriction that only one
function can be used for each event.

Using Event Listeners

The recommended way of dealing with events, and the current standard, is to
use event listeners. These were outlined in DOM level 2 and allow multiple
functions to be attached independently to different events. They are supported
in all modern browsers, although only in Internet Explorer from version 9
onwards.

The addEventListener() method is called on a node object, the node to
which the event listener is being applied. For example, this code will attach
an event listener to the document’s body:

document.body.addEventListener('click',doSomething);

The addEventListener() method can also be called without a node, in which
case it is applied to the global object, usually the whole browser window.

Its first parameter is the type of event, and the second is a callback function
that is invoked when the event occurs. There is also a third parameter that
we'll cover later in the chapter.

In the next example, we are adding a click event listener to the whole page
(because the addEventListener method is called without a node reference
preceding it), and using an anonymous function as the callback:

addEventListener('click', () => alert('You Clicked!'));

Alternatively, a named function could be declared and then referenced in the
event listener:

function doSomething() {
alert('You Clicked!');
}

addEventListener('click',doSomething);

Note that the parentheses are not placed after the function when it's used as
the argument to an event listener; otherwise, the function will actually be
called when the event listener is set, instead of when the event happens!

Support in Old Versions of IE

All modern browsers now support these event listeners. Unfortunately, this
has not always been the case, and older versions of Internet Explorer (version
8 and below) use a different syntax. If you need to support these browsers

(and if you do, I feel for you!), John Resig has a simple solution for creating
cross-browser add and remove event functions.

https://johnresig.com/blog/flexible-javascript-events/

Example Code
To test the examples in this chapter, create a file called events.html that
contains the following HTML code. This includes some paragraph elements
to which we’ll attach event listeners throughout the chapter:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Events Examples</title>
<style>
 p {
 width: 200px;
 height: 200px;
 margin: 10px;
 background-color: #ccc;
 float: left;
 }

 .highlight {
 background-color: red;
 }
</style>
</head>
<body>
<p id='click'>Click On Me</p>
<p id='dblclick'>Double Click On Me</p>
<p id='mouse'>Hover On Me</p>
<script src='main.js'></script>
</body>
</html>

Now add the following code to a file called main.js that is saved in the same
folder as events.html:

function doSomething(){
console.log('Something Happened!');
}

addEventListener('click', doSomething);

Now try opening events.html in a browser with the console open and click
anywhere on the page. You should see this message in the console:

<< Something Happened!

The Event Object
Whenever an event handler is triggered by an event, the callback function is
called. This function is automatically passed an event object as a parameter
that contains information about the event.

To see an example of this, change the doSomething() function in the
main.js file to this:

function doSomething(event){
console.log(event.type);
}

Now refresh the events.html page in the browser and try clicking again.
You should see the following appear in the console every time you click:

<< click

In the example, the type property is used to tell us that the type of event
logged was a click event.

Parameter Naming

The parameter does not have to be called event. It can be given any legal
variable name, although calling it event can make it easier to read the code.
Many developers often abbreviate it to just e.

Types of Event

The type property returns the type of event that occurred, such as click in
the previous example. The different types of events will be discussed in the
next section.

The Event Target

The target property returns a reference to the node that fired the event. If
you change the doSomething() function to the following, it will show a
message in the console telling us the node that was clicked on:

function doSomething(event){
console.log(event.target);
}

For example, if you click on one of the paragraphs, you should see something
similar to the following in the console:

<< <p id='click'>Click On Me</p>

Coordinates of an Event

There are a variety of ways to find the position of where a mouse event
occurs.

The screenX and screenY properties show the number of pixels from the left
and top of the screen respectively where the event took place.

The clientX and clientY properties show the number of pixels from the left
and top of the client that is being used (usually the browser window).

The pageX and pageY properties show the number of pixels from the left and
top, respectively, where the event took place in the document. This property
takes account of whether the page has been scrolled.

All these event properties are similar, but subtly different. They are useful for
finding out the place where a click happened or the position of the mouse
cursor. To see the coordinates that are returned for these properties, change
the doSomething() function to the following:

function doSomething(event){
console.log(`screen: (${event.screenX},${event.screenY}), page: (${event.pageX},${event.pageY}), client: (${event.screenX},${event.screenY})`)
}

Types of Events
There are several types of events, ranging from when a video has finished
playing to when a resource has completed downloading. You can see a full
list on the Events page of the Mozilla Developer Network.

In this section, we’re going to focus on some of the more common events that
occur using the mouse, the keyboard and touch.

Mouse Events

We have already seen the click event that occurs when a mouse button is
clicked. There are also the mousedown and mouseup events. These both occur
before a click event is fired.

To see this in action, remove all the code in main.js and replace it with the
following:

const clickParagraph = document.getElementById('click');

clickParagraph.addEventListener('click',() => console.log('click'));
clickParagraph.addEventListener('mousedown',() => console.log('down'));
clickParagraph.addEventListener('mouseup',() => console.log('up'));

Try clicking anywhere on the page and you should see all three events fire in
the following order:

<< mousedown
mouseup
click

There is also the dblclick event, which occurs when the user doubleclicks
on the element to which the event listener is attached. To see an example of
this, we’ll attach an event listener to the second paragraph in our example
(with an ID of 'dblclick'). Add the following code to main.js:

https://developer.mozilla.org/en-US/docs/Web/Events

const dblclickParagraph = document.getElementById('dblclick');
dblclickParagraph.addEventListener('dblclick', highlight);

function highlight(event){
event.target.classList.toggle('highlight');
}

Now if you double-click on the second paragraph, it should change color as
the class of highlight is toggled on and off.

Using click and doubleclick On The Same Element

You should be very cautious of attaching both a click and doubleclick
event to the same element. This is because it’s impossible to tell if a click is
the first click of a doubleclick or just a single click. This means that a
doubleclick event will always cause the click event to fire.

The mouseover event occurs when the mouse pointer is placed over the
element to which the event listener is attached, while the mouseout event
occurs when the mouse pointer moves away from an element. This example
uses both the mouseover and mouseout events to change the color of the third
paragraph (with an ID of 'mouse') when the mouse pointer hovers over it, and
back again when it moves away from the paragraph:

const mouseParagraph = document.getElementById('mouse');
mouseParagraph.addEventListener('mouseover', highlight);
mouseParagraph.addEventListener('mouseout', highlight);

The mousemove event occurs whenever the mouse moves. It will only occur
while the cursor is over the element to which it’s applied. The following line
of code creates a log in the console whenever the mouse moves over the third
paragraph:

mouseParagraph.addEventListener('mousemove', () => console.log('You Moved!'));

Keyboard Events

Three events that occur when a user presses a key are: keydown, keypress
and keyup. When a user presses a key, the events occur in that order. They
are not tied to any particular key, although the information about which key
was pressed is a property of the event object.

1. The keydown event occurs when a key is pressed and will continue to
occur if the key is held down.

2. The keypress event occurs after a keydown event but before a keyup
event. The keypress event only occurs for keys that produce character
input (plus the 'Delete' key). This means that it’s the most reliable way
to find out the character that was pressed on the keyboard.

3. The keyup event occurs when a key is released.

To understand the differences in these events, it is important to distinguish
between a physical key on the keyboard and a character that appears on the
screen. The keydown event is the action of pressing a key, whereas the
keypress event is the action of a character being typed on the screen.

To see an example of this add the following to main.js:

addEventListener('keydown',highlight);

Now refresh the page and try pressing a key. It should result in the whole
document changing color, because event listener was applied to the whole
document. If you hold a key down, the event will continue to fire, creating a
psychedelic effect on the page.

To see the keyup event working, add the code that uses an anonymous arrow
function to show the exact time the key was released in the console:

addEventListener('keyup', (event) => console.log(`You stopped pressing the key on ${new Date}`));

Each of these keyboard events have an key property that returns the printed
representation of the key that was pressed, if it has one.

To see this in action, add the following code to main.js:

addEventListener('keypress', (event) => console.log(`You pressed the ${event.key} character`));

Now when you press a key, you should see a message similar to this in the
console:

<< You pressed the j character

Supporting Older Browsers

The key property has good support in modern browsers, but if you need to
support older browsers, then a library such as keycode.js will come in handy
as it normalizes the key codes returned. The jQuery library also has a which
property that does this as well.

Modifier Keys

Pressing the modifier keys such as Shift, Ctrl, Alt and meta (Cmd on Mac)
will fire the keydown and keyup events, but not the keypress event as they
don't produce any characters on the screen.

The name of the modifier key is still returned by the key property. To see
this, edit the event listener we just used to listen for a keydown event instead:

addEventListener('keydown', (event) => console.log(`You pressed the ${event.key} character`));

Now try pressing a modifier key:

<< "You pressed the Control character"

All event objects also contains information about whether a modifier key was
held down when the key event occurred. The shiftKey, ctrlKey, altKey,
and metaKey are all properties of the event object and return true if the
relevant key was held down. For example, the following code will check to

https://github.com/nostrademons/keycode.js/blob/master/keycode.js
https://api.jquery.com/event.which/

see if the user pressed the C key while holding down the Ctrl key:

addEventListener('keydown', (event) => {
if (event.key === 'c' && event.ctrlKey) {
 console.log('Action canceled!');
}
});

The following code checks to see if the Shift key was held down when the
mouse was clicked:

addEventListener('click', (event) => {
if (event.shiftKey) {
 console.log('A Shifty Click!');
}
});

Modifying Default Behavior

Modifier keys can often already have a purpose assigned in the browser or
operating system. And although it’s possible to prevent the default behavior
in the browser (see later in this chapter), it’s not considered best practice to
do so.

Touch Events

Many modern devices now support touch events. These are used on
smartphones and tablets, as well as touch-screen monitors, satellite navigators
and trackpads. Touch events are usually made with a finger, but can also be
by stylus or another part of the body. There are a number of touch events that
cover many types of touch interactions.

It’s important to support mouse events as well as touch events, so non-touch
devices are also supported. With so many different devices these days, you
can’t rely on users using just touch or a mouse. In fact, some devices, such as
touchscreen laptops, support both mouse and touch interactions.

The touchstart event occurs when a user initially touches the surface.

Using the touchstart Event

Be careful when using the touchstart event as it fires as soon as a user
touches the screen. They may be touching the screen because they want to
zoom in or swipe, and a touchstart event listener could prevent them from
doing this.

The click event is often a much safer option as it still fires when the screen
is touched, but there’s a slight delay of 300ms, allowing the user time to
perform another action with the device. The click event can be thought of as
a "tap" in the context of a touch event.

The touchend event occurs when a user stops touching the surface:

addEventListener('touchend', () => console.log('Touch stopped');

The touchmove event occurs after a user has touched the screen then moves
around without leaving. It will continue to occur as long as the user is still
touching the screen, even if they leave the element to which the event listener
is attached.

The touchenter event occurs when a user has already started touching the
surface, but then passes over the element to which the event listener is
attached.

The touchleave event occurs when the user is still touching the surface, but
leaves the element to which the event listener is attached.

The touchcancel event occurs when a touch event is interrupted, such as a
user’s finger moving outside the document window, or too many fingers
being used at once. A pop-up dialog will also cancel a touch event.

What About Swiping?

There are no 'swipe' events. These need to be created by using a combination

of touchstart, touchmove, and touchleave events that monitor the distance
and direction moved from start to finish of a touch event.

There were proposals for gesture events that may be supported in the future,
but it seems they are not scheduled to be part of the specification anytime
soon.

If you need to implement gestures, it's probably a good idea to use a library
such as Hammer.JS or zingtouch that makes events such as swipe, pinch and
rotate easy to implement.

Touch Event Properties

Because it’s possible to touch a surface many times at once, touch event
objects have a property called touches. This is a list of touch objects that
represents all the touches taking place on that device. It has a length property
that tells you how many touch points (usually the user's fingers, but could be
a stylus) are in contact with the surface. Each touch object in the list can be
accessed using index notation. For example, if a user touches the screen with
two fingers, events.touches.length would return 2. The first touch object
can be accessed using events.touches[0] and the second using
events.touches[1].

Each touch object has a number of properties, many similar to the event
object, such as touch.screenX and touch.screenY to find the coordinates of
the touch point. They have other properties such as touch.radiusX and
touch.radiusY, which give an indication of the area covered by the touch,
and touch.force, which returns the amount of pressure being applied by the
touch as a value between 0 and 1.

Each touch object has a touch.identifier property, a unique ID that can be
used to ensure you are dealing with the same touch.

Use Touch Events With Caution

Touch events are complex and difficult to implement. Many of the properties
and methods mentioned above are still marked as being experimental and not

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mouse_gesture_events
http://hammerjs.github.io/
https://zingchart.github.io/zingtouch/

widely implemented in browsers.

Removing Event Listeners
An event listener can be removed using the removeEventListener() method.
To see an example, add this line to events.html:

<p id='once'>A One Time Thing...</p>

Now add the following code to main.js:

const onceParagraph = document.getElementById('once');
onceParagraph.addEventListener('click', remove);

function remove(event) {
console.log('Enjoy this while it lasts!');
onceParagraph.style.backgroundColor = 'pink';
onceParagraph.removeEventListener('click',remove);
}

This adds a click event listener to a paragraph element, but then removes it
in the callback function named remove. This means it will only be called once
(try clicking on it again and nothing happens).

Using Anonymous Functions

Note that you shouldn't use anonymous functions as an argument to
addEventListener() if you want to remove it later. This is because there
needs to be a reference to the same function name in the arguments of
removeEventListener().

Stopping Default Behavior
Some elements have default behavior associated with certain events. For
example, when a user clicks on a link, the browser redirects to the address in
the href attribute and a form is submitted when the user clicks on the Submit
button.

preventDefault() is a method of the event object that can be used inside the
callback function to stop the default behavior happening. To see an example,
add the following line to the events.html file:

<p>
Broken Link
</p>

Then add the following event listener inside the main.js file:

const brokenLink = document.getElementById('broken');

brokenLink.addEventListener('click',(event) => {
 event.preventDefault();
 console.log('Broken Link!');
});

This will stop the page redirecting to the page specified in the href#39;
attribute, and show a message in the console instead.

Think Carefully Before Using preventDefault()

Make sure you think carefully before using preventDefault() to change
default behavior. Users will expect certain behaviors, and preventing them
may cause confusion.

Some events do not allow the default behavior to be prevented. This can vary
from browser to browser, but each event object has a property called
cancellable that returns false if it cannot be prevented.

You can also see if the default behavior has been prevented by checking the
defaultPrevented property.

Event Propagation
When you click on an element, you are actually clicking on all the elements
it’s nested inside of. To illustrate this, add the following piece of HTML to
the events.html file:

<ul id='list'>
one
two
three

If you click on one of the elements, you’re also clicking on the ,
<body> and <html> elements. An event is said to propagate as it moves from
one element to another.

Event propagation is the order that the events fire on each element. There are
two forms of event propagation: bubbling and capturing.

Bubbling is when the event fires on the element clicked on first, then bubbles
up the document tree, firing an event on each parent element until it reaches
the root node.

Capturing starts by firing an event on the root element, then propagates
downwards, firing an event on each child element until it reaches the target
element that was clicked on.

Capturing vs. bubbling

The capturing model was originally implemented by Netscape, and the
bubbling model was implemented in Microsoft browsers back in the 'bad old
days' of the Browser Wars. The W3C sensibly came down in the middle and
allowed developers to decide which method they prefer to use.

Bubbling

The default behavior is bubbling, which we can see happen if we add the
following code to main.js:

ulElement = document.getElementById('list');
liElement = document.querySelector('#list li');

ulElement.addEventListener('click', (event) =>
console.log('Clicked on ul'));

liElement.addEventListener('click', (event) =>
console.log('Clicked on li'));

Now try clicking on the first element in the list. There should be a
message in the console saying “Clicked on li" because this was the target
element. The event then bubbles up to the parent element and displays a
message in the console saying “Clicked on ul”. The event will continue to
bubble all the way to the root HTML element, but nothing will happen
because none of the other elements had event listeners attached to them.

If you click on the second or third elements in the list you will only see
the message "Clicked on ul". This is because, even though these elements
don't have an event listener attached to them, the click still bubbles up and is
captured by the element that does have an event listener attached.

Capturing

The addEventListener() method has a third parameter, which is a boolean
value that specifies whether capturing should be used or not. It defaults to
false, which is why bubbling happens by default. There may be instances
when you would rather capture the events instead; for example, you might
want events on outer elements to fire before any events fire on the element
that was actually clicked on.

To implement capturing instead, change the code to the following:

ulElement.addEventListener('click', (event) =>
console.log('Clicked on ul'),true);

liElement.addEventListener('click', (event) =>

console.log('Clicked on li'),true);

Now if you click on the first list item, "Clicked on ul" will be logged to the
console first. The events then propagate downwards to the child
element, so "Clicked on li" is logged to the console next.

If you want the event to both capture and bubble, you must set a separate
event handler for both cases, like so:

// capturing

ulElement.addEventListener('click', (event) =>
console.log('Clicked on ul'),true);

liElement.addEventListener('click', (event) =>
console.log('Clicked on li'),true);

// bubbling

ulElement.addEventListener('click', (event) =>
console.log('Clicked on ul'),false);

liElement.addEventListener('click', (event) =>
console.log('Clicked on li'),false);

Stopping the Bubbling Phase

The bubble phase can be stopped from occurring by adding the
event.stopPropagation() method into the callback function. In the
following example, the event will fail to propagate as the third argument is
false, which stops capturing, and the event.stopPropagation() method is
called, which stops bubbling:

liElement.addEventListener('click', (event) => {
console.log('clicked on li');
event.stopPropagation(); }, false);

Now clicking on the first element will only log one message, since the
click event will not propagate to the element.

Be Careful Not to Stop Other Event Listeners Firing

Be very wary of using the stopPropagation() method to stop the bubble
phase occurring. There may be other event listeners attached to elements
further up the chain that won’t fire as a result.

You can read more about event propagation in this article on SitePoint.

https://www.sitepoint.com/event-bubbling-javascript/

Event Delegation
Event delegation can be used to attach an event listener to a parent element in
order to capture events that are triggered by its child elements.

Let’s look at the list items in our example:

<ul id='list'>
one
two
three

If we wanted to attach event listeners to all the tags so they were
highlighted when clicked on, it would need more code to add a separate event
listener to each element. In this case, there isn't much difference, but imagine
if you had a list of 100 elements!

A better way is to attach the event listener to the parent element, then
use the target property to identify the element that was clicked on. Add the
following to main.js to see this in action (remember that the highlight()
function used the target property):

ulElement.addEventListener('click',highlight);

Now clicking on any list item will highlight that list item as if it was the
target of the click event.

This is a useful method if you are adding extra list elements to the DOM
dynamically. Any new list elements that are a child of the element will
automatically inherit this event listener, saving you from having to add an
event listener every time a new list item is added.

Quiz Ninja Project
Now that we’ve reached the end of the chapter, it’s time to add some events
to our Quiz Ninja Project. We’re going to add a button that can be clicked on
to start the game.

To start, add this line of code to index.html, just before the closing <body>
tag:

<button id='start'>Click to Start</button>

This will add a button to the markup. Now we need a reference to it in
main.js. Add the following line of property to the view object:

start: document.getElementById('start'),

Now we need to attach a 'click' event listener to the button that will start the
game when the button is clicked. Add the following code to the end of
main.js:

view.start.addEventListener('click', () => game.start(quiz), false);

We're also going to add a couple of utility functions that will show and hide
elements on a page. These also go in view object as they are only concerned
with the view:

show(element){
element.style.display = 'block';
},
hide(element){
element.style.display = 'none';
}

These work by simply changing the style.display property to none to hide
an element, and block to display it.

We can use these to make the start button disappear while the game is in
progress, then reappear once the game has finished. Add the following line of
code to the game.start() method:

view.hide(view.start);

Then add the following line to the game.gameOver() method:

view.show(view.start);

And that's it ― hopefully you can see that it wasn't too hard to add a start
button with its own event listener attached; especially since the function it
invoked was already written. Open index.html and have a go at playing the
game. It should look similar to the below.

Our start button

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/LLdJww

Chapter Summary
Events occur when a user interacts with a web page.

An event listener is attached to an element, then invokes a callback
function when the event occurs.

The event object is passed to the callback function as an argument, and
contains lots of properties and methods relating to the event.

There are many types of event, including mouse events, keyboard
events, and touch events.

You can remove an event using the removeEventListener method.

The default behavior of elements can be prevented using the
preventDefault() function.

Event propagation is the order the events fire on each element.

Event delegation is when an event listener is added to a parent element
to capture events that happen to its children elements.

In the next chapter, we’ll look at how we can use forms to enter information
into the browser, and use events to process that information.

Chapter 8: Forms
Forms are a very common method of interacting with a web page. A form is
the main component of Google’s home page, and most of us use forms every
day to log in to our favorite sites. In this chapter, we will look at how forms
can be used to interact with a JavaScript program.

In this chapter, we’ll cover these topics:

Form controls

Accessing form elements

Form properties and methods

Form events

Submitting a form

Retrieving and changing values from a form

Form validation

Our project ― add a form for answering the questions.

Forms
Forms are made up of a <form> element that contains form controls such as
input fields, select menus and buttons. These input fields can be populated
with information that is processed once the form has been submitted.

Traditionally, when a form was submitted, it would be sent to a server where
the information would be processed using a 'back end' language such as PHP
or Ruby. It’s possible, and becoming more and more common, to process the
information in a form on the 'front end' before it is sent to the server using
JavaScript, which is what we’ll be focusing on in this chapter.

Each form control has an initial value that can be specified in the HTML
code. This value can be changed by a user entering information or interacting
with the form’s interface (such as using a slider to increase or decrease a
value). The value can also be changed dynamically using JavaScript.

Forms UX

When it comes to forms, there are plenty of usability and accessibility
considerations to keep in mind, such as using correct and semantic markup,
making forms keyboard accessible and using WAI-AIRA labels. Most of
these fall outside the scope of this book, as we'll be keeping the focus on how
to use JavaScript to interact with the forms.

If you'd like to learn more about how to design forms that are accessible and
enhance the user experience then Designing UX: Forms by Jessica Enders is
well worth a read.

https://www.sitepoint.com/premium/books/designing-ux-forms

A Searching Example
We’ll start off with a simple example of a form that contains one input field,
and a button to submit a search query, not unlike the one used by Google.
This example doesn’t use any styles; you just need to create a file called
search.html that contains the following code:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Search</title>
</head>
<body>
<form name='search' action='/search'>
 <input name='searchInput'>
 <button type='submit'>Search</button>
</form>
<script src='main.js'></script>
</body>
</html>

This form has a name attribute ofsearch, and contains two controls: an input
field where a user can enter a search phrase, and a button to submit the form.
The form can also be submitted by pressing Enter.

The action attribute is the URL that the form will be submitted to so it can
be processed on the server side. The input field also has a name attribute of
searchInput that is used to access the information inside it.

You should also create a file called main.js to put the JavaScript in. This can
be saved in the same directory as search.html.

Accessing Form Elements

The legacy DOM had a useful property called document.forms that returns
an HTML collection of all the forms in the document in the order they appear

in the markup. Even though there is only one form in our example, a
collection will still be returned, so we have to use index notation to return the
first (and only) form object, like so:

const form = document.forms[0];

This is the equivalent of using the following method that we learned in
chapter 6:

const form = document.getElementsByTagname('form')[0];

Instead of using a numerical index, we can use the name attribute to identify a
form:

const form = document.forms.search;

Be careful referencing elements in this way, however. If the form had the
same name as any properties or methods of the document.forms object, such
as 'submit', for example, that property or method would be referenced instead
of the <form> element. This is unlikely to happen, as the document.form
object doesn't have many properties or methods, but it is something to be
aware of. To avoid this, square bracket notation can be used (this is also
required if the form’s name attribute contains any invalid characters, such as
spaces or dashes):

const form = document.forms['search'];

A form object also has a method called elements that returns an HTML
collection of all the elements contained in the form. In this case the form
contains two controls: an input element and a button element:

const [input,button] = form.elements;

We can also access the form controls using their 'name' attributes as if it was
a property of the form object. So, for example, the input field has a name
attribute of searchInput and can be accessed using this code:

const input = form.searchInput

The square bracket notation can also be used instead (again, this is useful if
there are any naming clashes with existing property and method names, or if
the name is an invalid variable name):

const input = form['searchInput']

Form Properties and Methods

Form objects have a number of useful properties and methods that can be
used to interact with the form.

The form.submit() method will submit the form automatically. Note that
submitting a form using this method won’t trigger the form submit event
that's covered in the next section.

A form can be submitted manually by the user employing a button or input
element with a type attribute of submit, or even an input element with a type
attribute of image:

<button type='submit'>Submit</button>
<input type='submit' value='Submit'>
<input type='image' src='button.png'>

The form.reset() method will reset all the form controls back to their initial
values specified in the HTML.

A button with a type attribute ofreset can also be used to do this without the
need for additional scripting:

<button type='reset'>Reset</button>

Reset Buttons

Reset buttons are generally considered poor for usability, as they are too easy
to click and then wipe out all the data that’s been entered. So think very
carefully before using one in a form.

The form.action property can be used to set the action attribute of a form,
so it’s sent to a different URL to be processed on the server:

form.action = '/an/other.url'

Form Events

Forms trigger a number of events like those discussed in the last chapter.
Some of these events are exclusive to forms.

The focus event occurs when an element is focused on. In the case of an
<input> element, this is when the cursor is placed inside the element (either
by clicking or tapping on it or navigating to it using the keyboard). To see an
example, add the following code to main.js:

const input = form.elements.searchInput;

input.addEventListener('focus', () => alert('focused'), false);

Open search.html in your browser and place the cursor inside the input
field. You should see an alert dialog similar to the one in the screenshot
below.

Our alert dialog

The blur event occurs when the user moves the focus away from the form
element. Add the following to main.js, reload the page, and then move the
cursor away from the search box:

input.addEventListener('blur', () => alert('blurred'), false);

The change event occurs when the user moves the focus away from the form
element after changing it. So if a user clicks in an input field and makes no
changes, and then clicks elsewhere, the change event won’t fire, but the blur
event will.

Add the following code to main.js and reload the page. You’ll notice the
alert message 'changed' only appears if you actually change the value inside
the search box, then move the cursor away from it:

input.addEventListener('change', () => alert('changed'), false);

Note that the blur event will also fire, but after the change event.

Submitting a Form

Possibly the most important form event is the submit event, occurring when
the form is submitted. Usually this will send the content of the form to the
server to be processed, but we can use JavaScript to intercept the form before
it’s sent by adding a submit event listener. Add the following code to the
main.js file:

const form = document.forms['search'];
form.addEventListener ('submit', search, false);

function search() {
alert(' Form Submitted');
}

Now reload the page and click on the Submit button. You should see an alert
dialog saying Form Submitted. After you click OK, the browser tries to load a
nonexistent page (the URL should end in something similar to '.../search?

searchInput=hello'). This is because when the event fired, our search()
function was invoked, displaying the alert dialog. Then the form was
submitted to the URL provided in the 'action' attribute for processing, but in
this case, the URL isn't a real URL, so it doesn't go anywhere. Back-end
processing isn't covered in this book, so we'll keep this as a 'dummy' URL
and focus on using JavaScript to process the information instead.

We can actually stop the form from being submitted to that URL altogether
by using the preventDefault() method that we saw in the last chapter. Add
the following line to the search function:

function search(event) {
alert('Form Submitted');
event.preventDefault();
}

Now reload search.html and try submitting the form. You’ll see that the
alert dialog still appears, but after you click OK, the form doesn't try to
submit itself to the dummy URL.

Retrieving and Changing Values From a Form

Text input element objects have a value property that can be used to retrieve
the text inside the field.

We can use this to report back what the user has searched for. Edit the
search() function to the following:

function search(event) {
alert(`You Searched for: ${input.value}`);
event.preventDefault();
}

Note that in this example, input is the variable that we defined at the start of
the main.js file that points to the input element in our form, but it could have
been called anything.

Now refresh the page, enter some text in the search box, and you should see a

similar sight to the screenshot shown below:

Reporting what the user searched for

It’s also possible to set the value using JavaScript. Add the following line of
code to the main.js file:

input.value = 'Search Here';

Now refresh the page and you should see that the string 'Search Here' is
displayed in the input field.

The problem with this is that the text remains in the field when the user clicks
inside it, so it has to be deleted before the user can enter their own text. This
is easily remedied using the focus and blur event handlers. Add the
following to main.js:

input.addEventListener('focus', function(){
if (input.value==='Search Here') {
 input.value = ''
 }
}, false);

input.addEventListener('blur', function(){
if(input.value === '') {
 input.value = 'Search Here';
 }
}, false);

Now the default text will disappear when the user clicks inside the input field
(the focus event) and reappear if the user leaves the field blank and clicks
away from it (the blur event).

The placeholder Attribute

Similar functionality can be produced in modern browsers using the
placeholder attribute in the HTML markup. Simply change the input field to
the following in search.html:

<input type='text' name='search-box' placeholder='Search Here'>

This has slightly different behavior in that the placeholder text is not actually
a value of the input field, so it won’t be submitted as the field’s value if the
user fails to fill it in.

Form Controls

In our previous search example, we only used the input and button form
controls. But there are others that can help to make our web pages more
interactive.

Some common types of form control are:

<input> fields, including text, passwords, check boxes, radio buttons,
and file uploads

<select> menus for drop-down lists of options

<textarea> elements for longer text entry

<button> elements for submitting and resetting forms

To demonstrate all these HTML form controls, we’ll create another form that
contains all these elements. Back in Chapter 5, we created a superman object
that had lots of properties associated with the Man of Steel. We're going to
design a form that allows a user to enter all these details into a browser, so
we'll create a similar hero object that describes a superhero (or villain).

Create a new project folder that contains the following code in a file called
hero.html:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Hero Form</title>
</head>
<body>
<form id='hero'>
 <label for='heroName'>Name:
 <input type='text' id='heroName' name='heroName' autofocus placeholder='Your Super Hero Name' maxlength=32>
 </label>
 <button type='submit'>Submit</button>
</form>
<script src='main.js'></script>
</body>
</html>

We’ll start with a basic form that’s fairly similar to our previous search
example, containing a text input field and button to submit the form.

New Attributes in HTML5

The input element includes some of the new attributes introduced in
HTML5.

The autofocus attribute give focus to this element when a page loads. It is
the equivalent to putting the following line of JavaScript in main.js:

document.forms.hero.heroName.focus();

The placeholder attribute will insert the value provided in the input field
until the user enters some text. This can be useful to place hints about how to
fill in the form.

The maxlength attribute will limit the number of characters that can be
entered in the field to the value given (in this case 32).

There are many new attributes that can be employed to make forms more
user-friendly. A good roundup of all the new form elements can be found in
this article on the SitePoint website.

We’ll also need a file called main.js that is saved in the same folder as the
hero.html file. In this file, let’s start off by assigning the form to a variable
and then adding an event listener for when the form is submitted:

const form = document.forms['hero'];
form.addEventListener('submit', makeHero, false);

The event listener will invoke the makeHero() function when the form is
submitted. This function will return an object based on the information
provided in the form. Let’s implement that function by adding this code to
main.js:

function makeHero(event) {

event.preventDefault(); // prevent the form from being submitted

const hero = {}; // create an empty object

hero.name = form.heroName.value; // create a name property based on the input field's value

alert(JSON.stringify(hero)); // convert object to JSON string and display in alert dialog
return hero;
}

This function uses the event.preventDefault() method to stop the form
from being submitted. We then create a local variable called hero and assign
it to an empty object literal. We’ll then augment this object with properties
from the form, although we only have the name property at the moment.

http://www.sitepoint.com/html5-forms-markup

Once the hero object is created, it would probably be returned by the function
then used elsewhere in the rest of the program. Since this is just for
demonstration purposes, we simple use the JSON.stringify() method to
convert the hero object into a JSON string and display it in an alert dialog.

Open up hero.html in a browser and enter the name of a superhero and you
should see a screenshot similar the below.

Entering our hero’s name

Now we know our code is working, let’s look at some of the other types of
form controls.

Input Fields
Input fields are the most common types of form control, but there are several
categories of input field as you’ll soon see:

Text Input Fields

The default type of input field is text, which is used for entering a short
piece of text, such as a username. In our example, we use a text input field to
enter the name of the superhero. The type='text' attribute isn’t required (we
didn’t use it in the search example as text is the default), but it is advisable
to use it as it makes the intended purpose of the field explicit, helping with
maintenance, readability and future-proofing.

The initial value of this field can be set in the HTML using the value
attribute. For example, you could pre-fill the 'recommended' donation on a
charity page like so:

<label for='donation-amount'>Enter amount to donate:
 <input type='text' id ='donation-amount' name='donationAmount' value='10'>
</label>

Password Input Fields

input type='password' is used to enter passwords or secret information.
This works in the same way as an input field with type='text', except the
characters are concealed as they are entered so they’re unable to be read on
the screen.

To see this in action, we will add a realName property to our hero object.
Obviously the real name of a superhero is secret information, so it needs to be
hidden from prying eyes when it is being entered. Add the following line to
the form in hero.html (just before the submit button):

<label for='realName'>Real Name:
<input type='password' name='realName' id='realName'></label>

To process this information, we add the following line to the makeHero()
function in main.js:

hero.realName = form.realName.value;

As you can see, values from a password input field are accessed in exactly
the same way as text input fields using the value property.

Checkbox Input Fields

Check boxes are created using input fields with type='checkbox'. They are
used to select different options that can be checked (true) or left unchecked
(false). The user can select more than one checkbox from a list.

We’ll use checkboxes to add a list of powers that the superhero can have.
Add the following lines of code to the form in hero.html:

<p>Super Powers:</p>
<label for='flight'>Flight:
 <input type='checkbox' id='flight' value='Flight' name='powers'>
</label>
<label for='strength'>Super Strength:
 <input type='checkbox' id='strength' value='Strength' name='powers'>
</label>
<label for='speed'>Super Speed:
 <input type='checkbox' id='speed' value='Super Speed' name='powers'>
</label>
<label for='energy'>Energy Blasts:
 <input type='checkbox' id='energy' value='Energy Blasts' name='powers'>
 </label>
<label for='telekinesis'>Telekinesis:
 <input type='checkbox' id='telekinesis' value='Telekinesis' name='powers'>
</label>

Notice that all the checkbox elements have the same 'name' property of
'powers'. This means they can be accessed as an HTML collection, like so:

form.powers;

We can then iterate over this collection using a for loop to see if each
checkbox was checked. Checkbox objects have a checked property that tells
us if it has been checked or not. It is a boolean property, so can only have the
values true or false. The value property is used to set the name of the power
that can be used if the checkbox has been checked. Add the following code to
the makeHero() function in main.js:

hero.powers = [];
for (let i=0; i < form.powers.length; i++) {
if (form.powers[i].checked) {
 hero.powers.push(form.powers[i].value);
}
}

This creates a powers property for our hero object that starts as an empty
array. We then iterate over each checkbox to see if it was checked in the
form. If it was, we add the 'value' property of the checkbox to the powers
array using the push method.

We can refactor this code to be much more succinct by using the array
iterators we saw in Chapter 4. The following code will achieve the same
result:

hero.powers = [...form.powers].filter(box => box.checked).map(box => box.value);

This uses the spread operator to turn the node list into an array. This then
allows us to use the filter() method that returns an array containing only
the check boxes that were checked (this is because their 'checked' property
will be truthy). We then chain the map() method to the end, which replaces
each checkbox in the array with its 'value' property. This array is then
returned and stored in the hero.powers variable.

Note that a checkbox can be set to true using JavaScript by setting its
'checked' property to true. For example, we could make the first checkbox in
the list of powers appear checked with this line of code:

document.forms.hero.powers[0].checked = true;

Checkboxes can also be checked initially using the 'checked' attribute in the
HTML:

<input type='checkbox' value='Flight' name='powers' checked>

Radio Button Input Fields

Radio buttons are created using input fields with type='radio'. Like
checkboxes they allow users to check an option as true, but they provide an
exclusive choice of options, so only one option can be selected.

This type of mutually exclusive option could be whether a superhero is a hero
or a villain... or even an antihero (you know, those who are unable to decide
whether to be good or bad!). Add this line of code to the form in hero.html:

<p>What type of hero are you?</p>
<label for='hero'>Hero:
 <input type='radio' name='category' value='Hero' id='hero'>
</label>
<label for='villain'>Villain:
 <input type='radio' name='category' value='Villain' id='villain'>
</label>
<label for='anti-hero'>Anti-Hero:
 <input type='radio' name='category' value='Antihero' id='anti-hero'>
</label>

All these radio buttons have the same 'name' attribute of 'category'. This is
used to group them together ― only one radio button can be checked in a
group that has the same name attribute. It also means we can access an
HTML collection of all the radio buttons in that group using the property of
the same name ― as can be seen in this line of code:

form.category;

If you examine this array after the form has been submitted, it will look

similar to the example below:

[input, input, input, value: "Antihero"]

The value of the radio button that was selected is stored in
form.category.value (in this case it is "Antithero"). This means we can
assign a category property to our hero object by adding the following code
to the makeHero() function in main.js:

hero.category = form.category.value;

Each radio button has a 'checked' property that returns the boolean values
true and false, depending on if it has been selected or not. It’s possible to
change the 'checked' property to true using JavaScript, but because only one
radio button can be checked at once, all the others with the same 'name'
property will change to false. So the following line of code would check the
'antihero' radio button, but the 'hero' and 'villain' radio buttons would then be
unchecked:

form.type[2].checked = true;

Radio buttons can also be checked initially using the 'checked' attribute in the
HTML:

<input type='radio' name='type' value='Villain' checked>

Hidden Input Fields

Hidden fields can be created using input fields with type='hidden'. These
are not displayed by the browser, but have a 'value' attribute that can contain
information that is submitted with the form. They are often used to send
information such as settings or information that the user has already
provided. Note that the information in these fields is in no way secret, as it’s
visible in the HTML, so shouldn’t be used for sensitive data. The value of a
hidden input field can be changed using JavaScript in the same was as any

other input field.

File Input Fields

A file input field can be created using input fields with type='file'. These
are used to upload files, and most browsers will provide a browse button or
similar that lets users select a file from their file system.

Other Input Types

There are lots of new input types included in HTML5, such as number, tel
and color. As browsers start to support these, they will implement different
user-interface elements depending on the input type. So a number field might
use a slider, whereas a date field will show a calendar. They will also validate
automatically, so an email input field will show an error message if there’s no
valid email address.

Let’s add an input type of 'number' to our form so we can enter the age of our
hero. Add the following to hero.html:

<label for='age'>Age:
 <input type='number' id='age' name='age' min=0 step=1></label>

Number input fields also have optional 'min' and 'max' attributes that can be
used to limit the input given. The 'step' attribute is used to specify how much
the value changes by each click. Most modern browsers will add controls at
the side of the input field so the value can be increased or decreased, as
shown below.

Using the number input field to specify our hero's age

We’ll also need some JavaScript to process the age information. Add the
following line to the makeHero() function in main.js:

hero.age = form.age.value;

These new input types are yet to be supported, but the good news is that you
can start using them now because they will still work; the browser will just
display a normal text input field if it doesn’t support a particular type. A good
roundup of all the new form elements can be found in this article on
SitePoint.

Select Drop-Down List

Select drop-down lists can be used to select one or more options from a list of
values. The 'multiple' attribute is required if more than one option is to be
selected. We’ll use one in our example to choose the city where our hero

http://www.sitepoint.com/html5-forms-markup

operates. Add the following line of code to the form in hero.html:

<label for='City'>Base of Operations:
<select name='city' id='city'>
<option value='' selected>Choose a City</option>
<option value='Metropolis'>Metropolis</option>
<option value='Gotham City'>Gotham City</option>
<option value='Keystone City'>Keystone City</option>
<option value='Coast City'>Coast City</option>
<option value='Star City'>Star City</option>
</select>
</label>

Note that the 'selected' attribute can be used to set the initial value in the
HTML. In this example, the blank option that provides the instructional
message 'Choose a City' has this attribute, so it’s shown when the page loads.

The 'name' attribute of the <select> element is used to access it in JavaScript
as a property of the form object:

form.city;

If only one item was selected, this will return a reference to that selection;
otherwise a collection will be returned containing each selection.

Each selection object has a value property that’s equal to the 'value' attribute
of the <option> tag that was selected. Add the following code to the
makeHero() function to set the city property:

hero.city = form.city.value;

It is also possible to find out the index of the option that has been selected,
using the selectedIndex property. For example, if a user selected 'Gotham
City' from the menu, form.city.selectedIndex would return 2 because it’s
the third option in the list. This can then be used to access the actual text
contained in the selected option:

form.city.options[form.city.selectedIndex].text

From the example above, it should be clear that you can access the text of
any option using index notation. For example, the following code returns the
text from the first option:

form.city.options[0].text
<< "Choose a City"

Text Areas

A <textarea> element is used to enter long pieces of text over multiple lines
such as a comment or blog post. They work in much the same way as input
fields. We access them using the 'name' attribute, and use the value property
to see what text was entered.

For example, we can add a text area to our form so the origin story of our
superhero can be entered. Add the following lines of code to the form in
hero.html:

<label for='origin'>Origin Story:
<textarea id='origin' name='origin' rows='20' cols='60'></textarea>
</label>

The text entered into this text area can now be added as a property of the
hero object by placing the following line of code to the makeHero() function
in main.js:

hero.origin = form.origin.value;

It is also possible to change the value in the form directly:

form.origin.value = 'Born as Kal-El on the planet Krypton...';

The initial value of a text area can be set in the HTML by placing the text
between the opening and closing tags:

<textarea name='origin' rows='20' cols='60'>Born as Kal-El on the planet Krypton...</textarea>

Buttons

We’ve already used a button to submit a form, but there are different types of
buttons. The default type is 'submit', which is why we didn’t have to specify
the type in the search example at the start of the chapter. Another type we’ve
already seen is 'reset', which will reset all the form fields to their initial
settings. Let’s add a reset button to our example by adding the following line
to hero.html, just before the submit button:

<button type='reset'>Reset</button>

Now have a go at filling in part of the form and pressing the reset button; all
the form fields should clear. Remember: this is not recommended good
practice for usability reasons!

The other type is simply 'button'. This doesn’t need to be inside a form
element and has no default behavior. It simply creates a clickable button that
can have an event listener attached to it:

<button type='button'>Click Me</button>

There is also a type of 'menu' that can be combined with <menu>, <menuitem>
and tags to create a dropdown menu when it’s clicked on, although
support for this is fairly patchy at present.

I Need a Hero!
Now that our example form is complete, have a go at filling it in and pressing
the Submit button. You should see something similar to the screenshot below.

Hero JSON

We’ve successfully created a JavaScript object from form inputs that could
then be used in the rest of our program. In this example we’ve used the
JSON.stringify() method to convert the object into a JSON representation
of the object, which could then be stored in a database or exported to an
external web service.

Form Validation
Form validation is the process of checking whether a user has entered the
information into a form correctly. Examples of the types of validation that
occur include ensuring that:

A required field is completed

An email address is valid

A number is entered when numerical data is required

A password is at least a minimum number of characters

Validation can occur on the client side using JavaScript, and on the server
side. It is advisable to use both client-side and server-side validation.
JavaScript should not be relied upon to validate any data before it’s saved to
a database. This is because it’s possible for a user to modify the JavaScript
code and bypass the validation rules. It's also very easy to bypass the front-
end completely and send arbitrary data to the application's backend. For these
reasons, JavaScript validation should be used to enhance the user experience
when filling in a form by giving feedback about any errors before it’s
submitted. This should then be backed up with more validation performed on
the server before the data is eventually saved to a database. Having said that,
it’s still useful to validate on the client side even if the data will be validated
again on the server side. This is because it will ensure that more valid data is
sent to the server, which helps to cut down the number of HTTP requests
required to send the form back and forward from the server to be corrected.

HTML5 has its own validation API that can be used, although it lacks the full
support from all browsers at the moment. The error messages that it produces
can look inconsistent across browsers and are difficult to style.

The API works by simply adding relevant attributes to the form fields. For
example, if a field is a required field that must be filled in, all you need to do
is add a 'required' attribute to that field and the browser will take care of the

rest.

To see an example of this in action, add a required attribute to the heroName
field in our hero form:

<input type='text' id='heroName' name='heroName' autofocus placeholder='Your Super Hero Name' maxlength=32 required>

Now refresh the page and leave the name field blank. As you click in another
field, you’ll notice that the blank name field is highlighted because it’s a
required field.

You can find more information about the HTML5 validation API in this
article by Craig Buckler on SitePoint.

It is also possible to implement custom form validation using JavaScript. For
example, say we wanted to exclude any superhero names that begin with an
'X'. This is not a standard form of validation, so we’d have to write our own.
Add this code to main.js to see an example of custom validation:

form.addEventListener('submit',validate,false);

function validate(event) {
const firstLetter = form.heroName.value[0];
if (firstLetter.toUpperCase() === 'X') {
 event.preventDefault();
 alert('Your name is not allowed to start with X!');

}
}

We start by finding the first letter of the value entered in the name field using
the index notation (remember that an index of 0 represents the first letter in a
string). It then checks to see if the first letter is equal to the string literal 'X',
and alerts the user if this is the case. It also uses the preventDefault()
method to stop the form from being submitted. Otherwise it returns true,
which means the form is submitted as normal.

If you refresh the page and enter a name beginning with 'X' in the name field,
then try submitting the form, you should receive an error alert dialog as in the

http://www.sitepoint.com/html5-forms-javascript-constraint-validation-api

screenshot shown below.

Validation error alert dialog

We can improve the usability of the form further by giving instant feedback,
instead of waiting for the form to be submitted. This can be achieved by
adding the event listener directly to the input field that will fire when the user
presses a key (using the keyup event). The feedback can then be inserted
inside the label element of the input field, along with a class of error for
more direct feedback. Add the following code to main.js:

const label = form.querySelector('label');
const error = document.createElement('div');
error.classList.add('error');
error.textContent = '! Your name is not allowed to start with X.';
label.append(error);

function validateInline() {
 const heroName = this.value.toUpperCase();
 if(heroName.startsWith('X')){
 error.style.display = 'block';
 } else {
 error.style.display = 'none';
 }
}

For this technique to work, we actually add the error message to the HTML
in the JavaScript file, regardless of whether the error has been made or not.
This is done in the first five lines above, using the DOM to create a <div>
element that contains the error message and has a class of 'error'. It’s then
added to the <label> element using the append() method. The trick here is
that the element will not be visible as it will start with a style declaration of
display: none;. This will be updated dynamically as the keyup event fires.

The validateInline() function is called every time the event is triggered.
We start by assigning the variable heroName to the value entered in the input
field, but we also apply the toUpperCase() method to it. This will allow us to
check if it begins with an 'x' or 'X' without having to check both separately.

We then use an if-else block to check if the error has been made using the
startsWith() method, which will return the first letter of a string. If it starts
with an 'X' then we change the style of the error element to display: block,
which will make it visible.

The code inside the else block is run if there is no error, so it resets the style
of the error element to display: none, making the error disappear.

To make this technique work, we need to add some custom styling to the
error element to make sure it isn't visible initially, and to make the message
stand out. Add the following <style> block inside the <head> section of
hero.html:

<style>
 .error{
 background: #f99;
 border: #900 1px solid;
 display: none;
 }
</style>

We're Not Using an External CSS File for Simplicity

It would be better to place any styles in an external CSS file, but for the
purposes of this example, it's easier to put it straight into the HTML file.

Now if you refresh the page and try to enter a name beginning with 'X', you
should see an error message above the input field as soon as you try to move
to another field. This can be seen in the screenshot below.

Showing an inline error message

This is a Specific and Perhaps Unrealistic Example

This was a very specific example of inline form validation – checking to see
if an input field began with the letter 'x', and it was only applied to one
element.

In a real application, you might end up having to validate many different
elements according to various different rules. If this is the case, it would
make sense to write some more generic addError() and removeError()
functions to deal with the different types of validation you might want to
apply to the various elements in a form.

Disabling the Submit Button

Another useful technique that can aid usability is to disable the submit button
if there are errors on the form. If the submit button is disabled then no action
is taken when it’s clicked. Most browsers will also display it in a lighter color
to indicate that it cannot be clicked on. This prevents users from submitting a
form containing any errors.

A submit button can be disable by added the disabled attribute to the
<input> element:

<button type='submit' id='submit' disabled>Submit</button>

This can be changed programmatically using the disabled property of the
<button> element. The following function will disable the button if an input
field is empty:

function disableSubmit(event) {
 if(event.target.value === ''){
 document.getElementById('submit').disabled = true;
 } else {
 document.getElementById('submit').disabled = false;
 }
}

We can apply this to the heroName field by adding the following event
handler that will fire every time a key is pressed:

form.heroName.addEventListener('keyup',disableSubmit,false);

Quiz Ninja Project
Now we're going to use forms in our Quiz Ninja game so that players can
enter their answers without using prompt dialogs. Our first task is to add a
form element with an ID of 'response' in the HTML. This goes in between the
question and result <div> elements in the index.html file:

<form id='response'>
<input name='answer' type='text'>
<button type='submit'>Submit Answer</button>
</form>

Now we add a reference to the form in our JavaScript. Add the following line
of code as a property of the view object in main.js:

response: document.querySelector('#response')

The next task is to remove the for-of loop we've been using to loop through
each question. This is because the prompt dialogs pause the execution of the
program and wait until the player has entered the answer. This won't happen
if we use a form to enter the answers, so the program would just loop through
each question without giving the player a chance to answer!

Instead, we're going to use use the pop() method to remove each question,
one at a time, from the this.questions array. Remove the main game loop
code from the game.start() method in main.js, so it looks like this:

start(quiz){
 this.score = 0;
 this.questions = [...quiz];
 this.ask();
}

This sets up the quiz as it did before, but it also calls the game.ask() method,
which results in the first question being asked.

Next, we need to change the game.ask() method, so it looks like the
following:

ask(name){
 if(this.questions.length > 0) {
 this.question = this.questions.pop();
 const question = `What is ${this.question.name}'s real name?`;
 view.render(view.question,question);
 }
 else {
 this.gameOver();
 }
}

This checks the length property of the this.questions array, to see if there
are any questions left to ask. If there are, the pop() method is used to remove
the last element of the array and assign it to this.question. We use the same
method as before to render the question in the HTML.

Next, we need to add an event handler that fires when the form is submitted.
Add the following line of code to the bottom of main.js:

view.response.addEventListener('submit', (event) => game.check(event), false);
view.hide(view.response);

This will call the game.check() method that’s used to check if the answer
submitted by the player is correct. We need to update this method so it has an
event object as a parameter. We can then use the event.preventDefault()
method to stop the form from actually being submitted:

 check(event){
 event.preventDefault();
 const response = view.response.answer.value;
 const answer = this.question.realName;
 if(response === answer){
 view.render(view.result,'Correct!',{'class':'correct'});
 this.score++;
 view.render(view.score,this.score);
 } else {
 view.render(view.result,`Wrong! The correct answer was ${answer}`,{'class':'wrong'});
 }
 this.ask();

},

We can grab the answer that was submitted by querying
view.response.answer.value, which is the value stored in the <input>
field. We then assign this to the variable response and use exactly the same
code as before to deal with the outcome of the player's answer being right or
wrong.

We also need to call the game.ask() function at the end of the method so the
next question is asked after the current question has been answered and
checked.

Players can now use the form instead of prompt dialogs to enter their
answers, but a lot of the elements are displayed when they are unnecessary.
For example, when the page loads, the form is displayed, even though there is
no question to answer. To remedy this, we can create a couple of helper
functions to update the view at the start and end of the game.

The first helper function is view.setup(), which will be used to set up the
view when the game starts. Add the following method to the view object:

setup(){
 this.show(this.question);
 this.show(this.response);
 this.show(this.result);
 this.hide(this.start);
 this.render(this.score,game.score);
 this.render(this.result,'');
 this.render(this.info,'');
 this.resetForm();
}

This function makes use of the view.show() and view.hide() methods we
created in the last chapter to make the 'question', 'response' and 'result' <div>
elements visible and hide the 'start' button. It also uses the view.render()
method to reset any HTML content in the 'result' and 'info' elements back to
an empty string. This will stop them displaying any messages from the
previous game. It also calls a view.resetForm() method. This also needs
adding to the view object:

resetForm(){
 this.response.answer.value = '';
 this.response.answer.focus();
}

This method resets the input field to an empty field and gives it focus, which
improves usability as it means the player is left to concentrate on just
answering the next question.

This will be useful to do after every question, so add a call to this method at
the end of the game.check() method:

 check(event){
 event.preventDefault();
 const response = view.response.answer.value;
 const answer = this.question.realName;
 if(response === answer){
 view.render(view.result,'Correct!',{'class':'correct'});
 this.score++;
 view.render(view.score,this.score);
 } else {
 view.render(view.result,`Wrong! The correct answer was ${answer}`,{'class':'wrong'});
 }
 view.resetForm();
 this.ask();
}

The view.setup() method needs calling at the beginning of every game, so it
needs adding to the game.start() method:

start(quiz){
 this.score = 0;
 this.questions = [...quiz];
 view.setup();
 this.ask();
}

The other helper method is view.teardown(). This is called at the end of the
game, and is responsible for hiding any elements that aren't required and
making the 'start' button visible again. Add the following method to the view
object:

teardown(){
 this.hide(this.question);
 this.hide(this.response);
 this.show(this.start);
}

The method needs calling at the end of the game, so we need to place it in the
game.gameOver() method:

gameOver(){
 view.render(view.info,`Game Over, you scored ${this.score} point${this.score !== 1 ? 's' : ''}`);
 view.teardown();
}

This should make the game look a lot more polished, so only the elements
that are required as part of the game are on display at the relevant time. Let's
see what it looks like by opening up index.html and trying it out. If
everything has gone to plan, it should look similar to the screenshot below.

Playing Quiz ninja-skills

You can see a live example on CodePen.

Our quiz is now shaping up nicely, and looking much more professional
without all the alert and prompt dialogs.

https://codepen.io/daz4126/pen/ZyoyOz

Chapter Summary
Forms are the primary method used for entering data into a browser.

Forms have a variety of controls that are used for entering different
types of information.

HTML5 has a large number of new input types that are beginning to be
implemented in modern browsers.

document.forms will return an HTML collection of all the forms on a
page.

form.elements will return an HTML collection of all the elements
contained within a form.

Forms have focus, blur, and change events that fire as a user interacts
with the form.

Forms also have a submit event that can be used to intercept a form
before it’s been submitted.

The information entered into a form can be read or updated using the
value property of the form controls.

The HTML5 form validation API can be used to automatically validate a
form, but only at a basic level, so a custom validation script may be
required.

In the next chapter, we’ll be taking a look at the window object.

Chapter 9: The Window Object
Every JavaScript environment has a global object. Any variables that are
created in the global scope are actually properties of this object, and any
functions are methods of it. In a browser environment the global object is the
window object, which represents the browser window that contains a web
page.

In this chapter, we’ll cover these topics:

The Browser Object Model

Finding out browser information

Browser history

Controlling windows

Cookies

Timing functions

Our project ― we'll add a countdown timer to our quiz

The Browser Object Model
The Browser Object Model (or BOM for short) is a collection of properties
and methods that contain information about the browser and computer screen.
For example, we can find out which browser is being used to view a page
(though, this method is unreliable). We can also find out the dimensions of
the screen it is viewed on, and which pages have been visited before the
current page. It can also be used for the rather dubious practice of creating
pop-up windows, if you’re into annoying your users.

There is no official standard for the BOM, although there are a number of
properties and methods that are supported by all the major browsers, making
a sort of de facto standard. These properties and methods are made available
through the window object. Every browser window, tab, popup, frame, and
iframe has a window object.

The BOM Only Makes Sense in a Browser Environment

Remember that JavaScript can be run in different environments. The BOM
only makes sense in a browser environment. This means that other
environments (such as Node.js) probably won't have a window object,
although they will still have a global object; for example, Node.js has an
object called global.

If you don't know the name of the global object, you can also refer to it using
the keyword this in the global scope. The following code provides a quick
way of assigning the variable global to the global object:

// from within the global scope
const global = this;

Going Global

All the way back in Chapter 2, we introduced the concept of global variables.

These are variables that are created without using the const, let or var
keywords. Global variables can be accessed in all parts of the program.

Global variables are actual properties of a global object. In a browser
environment, the global object is the window object. This means that any
global variable created is actually a property of the window object, as can be
seen in the example below:

x = 6; // global variable created
<< 6

window.x // same variable can be accessed as a property of the window object
<< 6

// both variables are exactly the same
window.x === x;
<< true

In general, you should refer to global variables without using the window
object; it’s less typing and your code will be more portable between
environments. An exception is if you need to check whether a global variable
has been defined. For example, the following code will throw a
ReferenceError if x has not been defined:

if (x) {
// do something
}

However, if the variable is accessed as a property of the window object, then
the code will still work, as window.x will simply return false, meaning the
block of code will not be evaluated:

if (window.x) {
// do something
}

Some functions we’ve already met, such as parseInt() and isNaN(), are
actually methods of the global object, which in a browser environment makes
them methods of the window object:

window.parseInt(4.2);
<< 4

window.isNaN(4.2);
<< false

Like variables, it’s customary to omit accessing them through the window
object.

Changes in ES6

ES6 made parseInt() and isNaN() methods of the Number object, so they
can be both be called using the following code:

Number.parseInt(4.2);
<< 4

Number.isNaN(4.2);
<< false

Dialogs

In Chapter 1, we introduced three functions that produced dialogs in the
browsers: alert(), confirm() and prompt(). These are not part of the
ECMAScript standard, although all major browsers support them as methods
of the window object.

The window.alert() method will pause the execution of the program and
display a message in a dialog box. The message is provided as an argument to
the method, and undefined is always returned:

window.alert('Hello');
<< undefined

Alert dialog

The window.confirm() method will stop the execution of the program and
display a confirmation dialog that shows the message provided as an
argument, and giving the options of OK or Cancel. It returns the boolean
values of true if the user clicks OK, and false if the user clicks Cancel:

window.confirm('Do you wish to continue?');
<< undefined

Confirm dialog

The window.prompt() method will stop the execution of the program. It
displays a dialog that shows a message provided as an argument, as well as
an input field that allows the user to enter text. This text is then returned as a
string when the user clicks OK. If the user clicks Cancel, null is returned:

window.prompt('Please enter your name:');

Prompt dialog

Use With Care

It’s worth reiterating again that these methods will stop the execution of a
program in its tracks. This means that everything will stop processing at the
point the method is called, until the user clicks 'OK' or 'Cancel'. This can
cause problems if the program needs to process something else at the same
time or the program is waiting for a callback function.

There are some occasions when this functionality can be used as an
advantage, for example, a window.confirm() dialog can be used as a final
check to see if a user wants to delete a resource. This will stop the program
from going ahead and deleting the resource while the user decides what to do.

It's also worth keeping in mind that most browsers allow users to disable any
dialogs from repeatedly appearing, meaning they are not a feature to be relied
upon.

Browser Information
The window object has a number of properties and methods that provide
information about the user’s browser.

Which Browser?

The window object has a navigator property that returns a reference to the
Navigator object. The Navigator object contains information about the
browser being used. Its userAgent property will return information about the
browser and operating system being used. For example, if I run the following
line of code, it shows that I am using Safari version 10 on Mac OS:

window.navigator.userAgent
 << "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/602.4.8 (KHTML, like Gecko) Version/10.0.3 Safari/602.4.8"

Don’t rely on this information though, as it can be modified by a user to
masquerade as a different browser. It can also be difficult to make any sense
of the string returned, because all browsers pretend to be others to some
degree. For example, every browser will include the string 'Mozilla' in its
userAgent property, for reasons of legacy Netscape compatibility. The
userAgent property has been deprecated from the official specification, but it
remains well supported in all major browsers.

Location, Location, Location

The window.location property is an object that contains information about
the URL of the current page. It contains a number of properties that provide
information about different fragments of the URL.

The href property returns the full URL as a string:

window.location.href
<< "https://www.sitepoint.com/premium/books/javascript-novice-to-ninja"

This property (as well as most of the others in this section) is a read/write
property, which means it can also be changed by assignment. If this is done,
the page will be reloaded using the new property. For example, entering the
following line into the browser console will redirect the page to the SitePoint
JavaScript channel:

window.location.href = 'https://www.sitepoint.com/javascript/'
<< "https://www.sitepoint.com/javascript/"

The protocol property returns a string describing the protocol used (such as
http, https, pop2, ftp etc.). Note that there is a colon (:) at the end:

window.location.protocol
<< "https:"

The host property returns a string describing the domain of the current URL
and the port number (this is often omitted if the default port 80 is used):

window.location.host
<< "www.sitepoint.com"

The hostname property returns a string describing the domain of the current
URL:

window.location.hostname
<< "www.sitepoint.com"

The port property returns a string describing the port number, although it
will return an empty string if the port is not explicitly stated in the URL:

window.location.port
<< ""

The pathname property returns a string of the path that follows the domain:

window.location.pathname
<< "/premium/books/javascript-novice-to-ninja"

The search property returns a string that starts with a '?' followed by the
query string parameters. It returns an empty string if there are no query string
parameters. This is what I get when I search for 'JavaScript' on SitePoint:

window.location.search
<< "?q=javascript&limit=24&offset=0&page=1&
content_types[]=All&slugs[]=all&states[]=available&order="

The hash property returns a string that starts with a "#" followed by the
fragment identifier. It returns an empty string if there is no fragment
identifier:

window.location.hash
<< ""

The origin property returns a string that shows the protocol and domain
where the current page originated from. This property is read-only, so cannot
be changed:

window.location.origin
<< "https://www.sitepoint.com"

The window.location object also has the following methods:

The reload() method can be used to force a reload of the current page.
If it’s given a parameter of true, it will force the browser to reload the
page from the server, instead of using a cached page.

The assign() method can be used to load another resource from a URL
provided as a parameter, for example:

window.location.assign('https://www.sitepoint.com/')

The replace() method is almost the same as the assign() method,
except the current page will not be stored in the session history, so the

user will be unable to navigate back to it using the back button.

The toString() method returns a string containing the whole URL:

window.location.toString();
<< "https://www.sitepoint.com/javascript/"

The Browser History
The window.history property can be used to access information about any
previously visited pages in the current browser session. Avoid confusing this
with the new HTML5 History API.

The window.history.length property shows how many pages have been
visited before arriving at the current page.

The window.history.go() method can be used to go to a specific page,
where 0 is the current page:

window.history.go(1); // goes forward 1 page
window.history.go(0); // reloads the current page
window.history.go(-1); // goes back 1 page

There are also the window.history.forward() and window.history.back()
methods that can be used to navigate forwards and backwards by one page
respectively, just like using the browser’s forward and back buttons.

Controlling Windows
A new window can be opened using the window.open() method. This takes
the URL of the page to be opened as its first parameter, the window title as its
second parameter, and a list of attributes as the third parameter. This can also
be assigned to a variable, so the window can then be referenced later in the
code:

const popup = window.open('https://sitepoint.com','
SitePoint','width=400,height=400,resizable=yes');

A popup window

The close() method can be used to close a window, assuming you have a
reference to it:

popup.close();

It is also possible to move a window using the window.moveTo() method.

This takes two parameters that are the X and Y coordinates of the screen that
the window is to be moved to:

window.moveTo(0,0); // will move the window to the top-left corner of the screen

You can resize a window using the window.resizeTo() method. This takes
two parameters that specify the width and height of the resized window’s
dimensions:

window.resizeTo(600,400);

Annoying Popups

These methods were largely responsible for giving JavaScript a bad name, as
they were used for creating annoying pop-up windows that usually contained
intrusive advertisements. It's also a bad idea from a usability standpoint to
resize or move a user's window.

Many browsers block pop-up windows and disallow some of these methods
to be called in certain cases. For example, you can’t resize a window if more
than one tab is open. You also can't move or resize a window that wasn't
created using window.open().

It’s rare that it would be sensible to use any of these methods, so think very
carefully before using them. There will almost always be a better alternative,
and a ninja programmer will endeavor to find it.

Screen Information
The window.screen object contains information about the screen the browser
is displayed on. You can find out the height and width of the screen in pixels
using the height and width properties respectively:

window.screen.height
<< 1024

window.screen.width
<< 1280

The availHeight and availWidth can be used to find the height and width of
the screen, excluding any operating system menus:

window.screen.availWidth
<< 1280

window.screen.availHeight
<< 995

The colorDepth property can be used to find the color bit depth of the user’s
monitor, although there are few use cases for doing this other than collecting
user statistics:

window.screen.colorDepth;
<< 24

More Useful on Mobile

The Screen object has more uses for mobile devices. It also allows you to do
things like turn off the device's screen, detect a change in its orientation or
lock it in a specific orientation.

Use With Care

Many of the methods and properties covered in the previous section were
abused in the past for dubious activities such as user-agent sniffing, or
detecting screen dimensions to decide whether or not to display certain
elements. These practices have (thankfully) now been superseded by better
practices, such as media queries and feature detection, which is covered in the
next chapter.

The Document Object
Each window object contains a document object. This object has properties
and methods that deal with the page that has been loaded into the window. In
Chapter 6, we covered the Document Object Model and the properties and
methods used to manipulate items on the page. The document object contains
a few other methods that are worth looking at.

document.write()

The write() method simply writes a string of text to the page. If a page has
already loaded, it will completely replace the current document:

document.write('Hello, world!');

This would replace the whole document with the string 'Hello, world!'. It is
possible to include HTML in the string and this will become part of the DOM
tree. For example, the following piece of code will create an <h1> tag node
and a child text node:

document.write('<h1>Hello, world!</h1>');

The document.write() method can also be used within a document inside
<script> tags to inject a string into the markup. This will not overwrite the
rest of the HTML on the page. The following example will place the text
"Hello, world!" inside the <h1> tags and the rest of the page will display as
normal:

<h1>
<script>document.write("Hello, world!")</script>
</h1>

The use of document.write() is heavily frowned upon as it can only be
realistically used by mixing JavaScript within an HTML document. There are

still some extremely rare legitimate uses of it, but a ninja programmer will
hardly ever need to use it.

Cookies

Cookies are small files that are saved locally on a user’s computer. They were
invented by Netscape as a way of getting round HTTP being a stateless
protocol. This means that a browser does not remember anything from one
request to another. So every time a user visits a page, nothing about any
previous visits is remembered. Cookies can be used to sidestep this problem
by storing information that can then be retrieved between requests.

A restriction of cookies is that they can only be read by a web page from the
same domain that set them. This is to stop sites being able to access
information about users, such as other sites they have visited. Cookies are
also limited to storing up to 4KB of data, although 20 cookies are allowed per
domain, which can add up to quite a lot of data.

Cookies can be used for personalizing a user’s browsing experience, storing
user preferences, keeping track of user choices (such as a shopping cart),
authentication and tracking users. The use of cookies for tracking purposes
has been much maligned in recent years. Their use for data storage is starting
to be replaced in many cases by the new HTML5 localStorage API as it
allows more data to be stored. This is covered in Chapter 14.. Cookies are
still useful for retaining state information (such as if a user is logged in)
because they’re passed between the client and server on every HTTP request.

Cookies take the form of a text file that contain a list of name/value pairs
separated by semicolons. For example, a cookie file might contain the
following information:

"name=Superman; hero=true; city=Metropolis"

EU Cookie Directive

The EU Cookie Directive is a piece of legislation that requires websites based

in an EU country to ask for permission before setting any cookies. It's
possible, however, that in the future this requirement may be part of a global
browser setting, rather than the onus being on each individual website to ask
for permission to set cookies.

Creating Cookies

To create a cookie, you assign it to JavaScript’s 'cookie jar', using the
document.cookie property, like so:

document.cookie = 'name=Superman';
<< "name=Superman"

The document.cookie property acts like a special type of string. Assigning
another cookie to it won’t overwrite the entire property, it will just append it
to the end of the string. So we can add more cookies by assigning them to
document.cookie:

document.cookie = 'hero=true';
<< "hero=true"

document.cookie = 'city=Metropolis';
<< "city=Metropolis"

Changing Cookie Values

A cookie’s value can be changed by reassigning it to document.cookie using
the same name but a different value. The following code will update the value
of two of the cookies that we set in the previous section:

document.cookie = 'name=Batman'
<< "name=Batman"
document.cookie = 'city=Gotham'
<< "city=Gotham"

Reading Cookies

To see the current contents of the cookie jar, simply enter document.cookie:

document.cookie:
<< "name=Batman; hero=true; city=Gotham"

We can use the split method to break the string into an array containing
each name/value pair, then use a for of loop to iterate through the array:

const cookies = document.cookie.split("; ");
for (crumb of cookies){
const [key,value] = crumb.split("=");
console.log(`The value of ${key} is ${value}`);
}
<< The value of name is Batman
The value of hero is true
The value of city is Gotham

To see an example of cookies used in the wild, you can visit almost any
website, open the browser console, and type document.cookie.

Cookie Expiry Dates

Cookies are session cookies by default. This means they are deleted once a
browser session is finished (when the user closes the browser tab or window).
Cookies can be made persistent ― that is, lasting beyond the browser session
― by adding "; expires=date" to the end of the cookie when it’s set, where
date is a date value in the UTC String format Day, DD-Mon-YYYY HH:MM:SS
GMT. The following example sets a cookie to expire in one day’s time:

const expiryDate = new Date();
const tomorrow = expiryDate.getTime() + 1000 * 60 * 60 * 24;
expiryDate.setTime(tomorrow);

document.cookie = `name=Batman; expires=${ expiryDate.toUTCString()}`;

An alternative is to set the max-age value. This takes a value in seconds, but
it wasn't supported in Internet Explorer before version 10:

document.cookie = 'name=Batman; max-age=86400' // 86400 secs = 1 day

Don't Rely On Cookie Expiry

Applications that contain sensitive information shouldn't rely on cookies
expiring using these methods. Browsers can sometimes hold on to
information stored in a cookie that should have expired when the 'session
restore' feature is used after a crash.

The Path and Domain of Cookies

By default, cookies can only be read by pages inside the same directory and
domain as the file was set. This is for security reasons so that access to the
cookie is limited.

The path can be changed so that any page in the root directory can read the
cookie. It’s done by adding the string '; path=/' to the end of the cookie when
it is set:

document.cookie = 'name=Batman; path=/'

It’s also possible to set the domain by adding "; domain=domainName" to the
end of the cookie:

document.cookie = 'name=Batman; domain=sitepoint.com';

A cookie can only be read by the domain that created it anyway, but doing
this will allow all subdomains of sitepoint.com (such as
javascript.sitepoint.com and books.sitepoint.com) to read it.

Secure Cookies

Adding the string '; secure' to the end of a cookie will ensure it’s only
transmitted over a secure HTTPS network:

document.cookie = 'name=Batman; secure';

Deleting Cookies

To remove a cookie, you need to set it to expire at a time in the past:

document.cookie = 'name=Batman; expires=Thu, 01 Jan 1970 00:00:01 GMT';

If a cookie is a session cookie, it will expire when the tab or window is
closed.

Cumbersome Cookies

JavaScript’s cookie handling is quite basic and can also be quite
cumbersome. Many developers use a library such as Cookies.js or jsCookie.
You could even have a go at developing your own set of functions to make
dealing with cookies easier.

https://github.com/ScottHamper/Cookies
https://github.com/js-cookie/js-cookie

Timing Functions
setTimeout()

The window object provides some useful methods for scheduling the
execution of a function, and for repeatedly executing functions at regular
intervals.

The window.setTimeout() method accepts a callback to a function as its first
parameter and a number of milliseconds as its second parameter. Try entering
the following example into a console. It should show an alert dialog after
three seconds (that’s 3000 milliseconds):

window.setTimeout(() => alert("Time's Up!"), 3000);
<< 4

Notice that the method returns an integer. This is an ID used to reference that
particular timeout. It can also cancel the timeout using the
window.clearTimeout() method. Try calling the code again and make a note
of the number that is returned:

window.setTimeout(() => alert("Time's Up!"), 3000);
<< 5

Now quickly enter the following code before the alert pops up, making sure
that you enter the number that was returned previously (it might not be 5 in
your case!):

window.clearTimeout(5);
<< undefined

If you were quick enough, and used the correct ID, the alert was prevented
from happening.

setInterval()

The window.setInterval() method works in a similar way to
window.setTimeout(), except that it will repeatedly invoke the callback
function after every given number of milliseconds.

The previous example used an anonymous function, but it is also possible to
use a named function like so:

function chant(){ console.log('Beetlejuice'); }

Now we can set up the interval and assign it to a variable:

const summon = window.setInterval(chant,1000);
<< 6

This should show the message 'Beetlejuice' in the console every second
(1,000 milliseconds).

To stop this, we can use the window.clearInterval() method and the
variable repeat as an argument (this is because the window.setInterval()
method returns its ID, so this will be assigned to the variable repeat):

window.clearInterval(summon);

Using the this Keyword

Be careful when using a method that uses the this keyword with either of
these timing methods. The binding of this is set to the window object, rather
than the method's object, so it can get some unexpected results:

const person = {
name: 'Superman',
introduce() {
 console.log(`Hi, I'm ${this.name}`);
}

};

setTimeout(person.introduce, 50);
<< Hi, I'm

In the example above, the value of this.name is undefined because the code
is looking for a property of the window object called name, which doesn't
exist.

There are ways to bind this to the object instead, and these are discussed in
chapter 12.

Animation

The setTimeOut() and setInterval() methods can be used to animate
elements on a web page. As an example, let’s create a web page that shows a
colored square, and make it rotate. Create a folder called 'animation' that
contains files called index.html, styles.css and main.js. Place the
following code inside index.html:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Animation Example</title>
<link rel='stylesheet' href='styles.css'>
</head>
<body>
<div id='square'></div>
<script src='main.js'></script>
</body>
</html>

This places a div on the page with an ID of 'square'.

Next, add the following styles.css:

#square {
margin: 100px;
width: 100px;

height: 100px;
background: #d16;
}

This will set the position, dimensions and color of the div. Now for the
animation ― add the following code to main.js:

const squareElement = document.getElementById('square');
let angle = 0;

setInterval(() => {
angle = (angle + 2) % 360;
squareElement.style.transform = `rotate(${angle}deg)`
}, 1000/60);

This code receives a reference to our square div, then sets a variable called
angle to 0. We then use the setInterval() method to increase the value of
angle by 2 (we also use the % operator so that it resets to 0 at 360), then set
the transform CSS3 property to rotate that number of degrees. The second
argument is 1000/60, which equates to a frame speed of 60 frames per
second.

Open animation.html in your browser and you should see a rotating square,
although it will probably be quite slow and not very smooth. This was the
only way to achieve animation using JavaScript until the
window.requestAnimationFrame() method was developed.

requestAnimationFrame

This method of the window object works in much the same way as the
window.setInterval() method, although it has a number of improvements
to optimize its performance. These include making the most of the browser’s
built-in graphics-handling capabilities, and not running the animation when
the tab is inactive, resulting in a much smoother performance. It’s supported
in all major browsers, including Internet Explorer from version 10 onwards.
Change the code in main.js to the following:

const squareElement = document.getElementById('square');

let angle = 0;

function rotate() {
angle = (angle + 2)%360;
squareElement.style.transform = `rotate(${angle}deg)`
window.requestAnimationFrame(rotate);
}

const id = requestAnimationFrame(rotate);

This is similar to the earlier code, but this time we place the rotation code
inside a function called rotate. The last line of this function uses the
window.requestAnimationFrame() method and takes the rotate() function
as an argument. This will then call the rotate() function recursively. The
frame rate cannot be set using requestAnimationFrame(); it’s usually 60
frames per second, although it’s optimized for the device being used.

To start the animation, we need to call the requestAnimationFrame()
method, giving the rotate() function as an argument. This will return a
unique ID that can be employed to stop the animation using the
window.cancelAnimationFrame() method:

cancelAnimationFrame(id);

Refresh the animation.html page and you should notice that the animation is
much faster and smoother than before, as shown below.

Animation in the browser

Consider Using CSS Instead

The rotation animation example demonstrates how JavaScript can be used to
perform animations in the browser. It could also be achieved using pure CSS
animation with the following style rules in styles.css:

 #square {
margin: 100px;
width: 100px;
height: 100px;
background: #cc0;
animation: spin 4s linear infinite;
}

@keyframes spin { from { transform:rotate(0deg); } to { transform:rotate(3600deg); } }

In general, it is typically better to use CSS for any animation effects, although
there may be times when JavaScript might be the better solution.

Quiz Ninja Project
We’re now going add a timer to give our quiz a 'beat the clock' element.
We’ll do this using the window object’s setInterval() method to add a time
limit. First of all, we’ll add an element to the HTML for the timer. Update the
<header> inside the index.html file to include an extra <div> element with
an id of 'timer':

<header>
 <h1>Quiz Ninja!</h1>
 <div id='timer'>Time: 20</div>
 <div id='score'>Score: 0</div>
</header>

We'll use this ID to add a reference to this element as a property of the view
object in the main.js file:

timer: document.querySelector('#timer strong')

Next, we need to add the following code to the game.start() method:

this.secondsRemaining = 20;
this.timer = setInterval(this.countdown , 1000);

This initializes a property of the game object called secondsRemaining to 20.
It is used to measure, in seconds, how the game will last. The next line sets
up an interval that calls a method called countdown() every second (1,000
milliseconds). This method needs adding to the game object:

countdown() {
 game.secondsRemaining--;
 view.render(view.timer,game.secondsRemaining);
 if(game.secondsRemaining < 0) {
 game.gameOver();
 }
}

This function decreases the secondsRemaining variable that we initialized
earlier by 1 using the -- operator, then calls the view.render() method so
the number of seconds remaining is displayed in the header. Last of all, we
check to see if the time has fallen below zero and, if it has, we call the
gameOver() function as time has run out!

Finally, we have to add a line at the end of the game.gameOver() method that
will remove the interval when the game has finished, otherwise it will
continue to keep counting down past zero! To stop this from happening, we
place the following line of code anywhere inside the gameOver() function:

 gameOver(){
 view.render(view.info,`Game Over, you scored ${this.score} point${this.score !== 1 ? 's' : ''}`);
 view.teardown();
 clearInterval(this.timer);
}

Try playing the game now by opening index.html in a browser and see how
you go with the added pressure of beating the clock.

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/YQaoWr

Chapter Summary
The window object is the global object in a browser.

Global variables are actually properties of the window object in a
browser environment.

alert, confirm(), and prompt() are all methods of the window object,
and open dialogs that halt the execution of the program.

The window.navigator object gives information about the user’s
browser and operating system, although it can be unreliable.

The window.location object provides information about the URL of the
current page.

The window.history object keeps information about the pages that have
been visited in the session.

You can open, close, resize, and move windows (although, this doesn’t
mean you should!).

The window.screen object provides information about the user’s screen.

document.write() is an archaic method of writing text to the document
and should be avoided.

Cookies can be used to store small pieces of information between
requests using the document.cookie property.

The window.setTimeout() method can be used to invoke a function
after a set amount of time. It can be canceled using the clearTimeout()
method.

The window.setInterval() method can be used to repeatedly invoke a
function. It can be stopped using the clearInterval() method.

The window.requestAnimationFrame() method can be used to produce
smooth and optimized animation by utilizing the browser's built-in
graphics capabilities. It can be canceled using the
cancelAnimationFrame() method.

In the next chapter, we’ll be looking at how to handle errors and write tests in
JavaScript.

Chapter 10: Testing and Debugging
Errors and bugs are a fact of life in programming ― they will always be
there. A ninja programmer will try to do everything to minimize errors
occurring, and find ways to identify and deal with them quickly.

In this chapter, we’ll cover the following topics:

Errors, exceptions, and warnings

The importance of testing and debugging

Strict mode

Debugging in the browser

Error objects

Throwing exceptions

Exception handling

Testing frameworks

Our project ― we'll add some log messages and tests to the Quiz Ninja
application

Errors, Exceptions, and Warnings
Errors are caused when something goes wrong in a program. They are usually
caused by one of the following:

System error ― there’s a problem with the system or external devices
with which the program is interacting.

Programmer error ― the program contains incorrect syntax or faulty
logic; it could even be as simple as a typo.

User error ― the user has entered data incorrectly, which the program is
unable to handle.

As programmers, we often have little influence over how external systems
work, so it can be difficult to fix the root cause of system errors. Despite this,
we should still be aware of them and attempt to reduce their impact by
working around any problems they cause. Programmer errors are our
responsibility, so we must ensure they are minimized as much as possible and
fixed promptly. We also should try to limit user errors by predicting any
possible interactions that may throw an error, and ensure they are dealt with
in a way that doesn’t negatively affect the user experience. It might even be
argued that user errors are in fact also programmer errors, because the
program should be designed in a way that prevents the user from making the
error.

Exceptions

An exception is an error that produces a return value that can then be used by
the program to deal with the error. For example, trying to call a method that
is nonexistent will result in a reference error that raises an exception, as you
can see in the example below when we try to call the mythical unicorn()
function:

unicorn();

<< ReferenceError: unicorn is not defined

Stack Traces

An exception will also produce a stack trace. This is a sequence of functions
or method calls that lead to the point where the error occurred. It’s often not
just a single function or method call that causes an error. A stack trace will
work backwards from the point at which the error occurred to identify the
original function or method that started the sequence. The example below
shows how a stack trace can help you find where an error originates from:

function three(){ unicorn(); }
function two(){ three(); }
function one(){ two(); }
one();

<< index.html:13 Uncaught ReferenceError: unicorn is not defined
 at three (index.html:13)
 at two (index.html:17)
 at one (index.html:21)
 at index.html:24`

In this example, we have three functions: function one() invokes function
two(), which then invokes function three(). Function three() then invokes
the unicorn() function that doesn't exist and causes an error. We can use the
stack trace to work backwards and see that this error was caused by invoking
the function one() in the first place.

Warnings

A warning can occur if there’s an error in the code that isn't enough to cause
the program to crash. This means the program will continue to run after a
warning. This might sound good, but it can be problematic, since the issue
that produced the warning may cause the program to continue running
incorrectly.

An example of a mistake that could cause a warning is assigning a value to a

variable that’s undeclared:

pi = 3.142;
<< JavaScript Warning: assignment to undeclared variable

Note that not all browsers will display a warning for the code in the example
above, so you might not see one if you try it out.

Warnings and exceptions are presented differently in various environments.
Some browsers will show a small icon in the corner of the browser window
to indicate that an exception or warning has occurred. Others require the
console to be open to see any warnings or exceptions.

When a runtime error occurs in the browser, the HTML will still appear, but
the JavaScript code will stop working in the background, which isn’t always
obvious at first. If a warning occurs, the JavaScript will continue to run
(although possibly incorrectly).

The Importance of Testing and Debugging
JavaScript is a fairly forgiving language when it comes to errors; it didn’t
implement exceptions at all until ECMAScript version 3. Instead of alerting a
user to an error in a program, it just failed silently in the background, and this
is sometimes still the case. It might seem like a good idea at first, but the
error might give unexpected or incorrect results that nobody spots, or lurk in
the background for a long time before causing the program to crash
spectacularly. Failing silently makes errors difficult to spot and longer to
track down.

For this reason, a ninja programmer should ensure that the code they write
fails loudly in development so any errors can be identified and fixed quickly.
In production, a ninja programmer should try to make the code fail gracefully
(although not completely silently ― we still need to know there’s an error),
so the user experience is not affected, if possible. This is achieved by making
sure exceptions are caught and dealt with, and code is tested rigorously.

Strict Mode
ECMAScript 5 introduced a strict mode that produces more exceptions and
warnings and prohibits the use of some deprecated features. This is due to the
fact that strict mode considers coding practices that were previously accepted
as just being 'poor style' as actual errors.

Increasing the chance of errors might seem like a bad idea at first, but it’s
much better to spot errors early on, rather than have them cause problems
later. Writing code in strict mode can also help improve its clarity and speed,
since it follows conventions and will throw exceptions if any sloppy code
practices are used.

Not using strict mode is often referred to as 'sloppy mode' as it’s forgiving of
sloppy programming practices. Strict mode encourages a better quality of
JavaScript to be written that befits a ninja programmer, so its use is
recommended.

Strict mode simply requires the following string to be added to the first line
of a JavaScript file:

'use strict';

This will be picked up by any JavaScript engine that uses strict mode. If the
engine does not support strict mode, this string will simply be ignored.

To see it in action, if you try to assign a value to a variable that is undeclared
in strict mode, you'll get an exception, instead of a warning:

'use strict';

e = 2.718;
<< ReferenceError: e is not defined

You can even use strict mode on a per-function basis by adding the line
inside a function. Strict mode will then only be applied to anything inside that

function:

function strictly(){
'use strict';
// function code goes here
}

In fact, the recommended way to invoke strict mode is to place all your code
into a self-invoking function (covered in more detail in Chapter 12), like so:

(function() {
'use strict';

// All your code would go inside this function

}());

Placing 'use strict' at the beginning of a file will enforce strict mode on
all the JavaScript in the file. And if you’re using anybody else’s code, there’s
no guarantee they’ve coded in strict mode. This technique will ensure that
only your code is forced to use strict mode.

Modules and 'use strict'

ES6 introduced JavaScript modules (covered later in chapter 15). These are
self-contained pieces of code that are in strict mode by default, so the 'use
strict' declaration is not required.

Linting Tools

Linting tools such as JS Lint, JS Hint, and ES Lint can be used to test the
quality of JavaScript code, beyond simply using strict mode. They are
designed to highlight any sloppy programming practices or syntax errors, and
will complain if certain style conventions are not followed, such as how code
is indented. They can be very unforgiving and use some opinionated coding
conventions, such as not using the ++ and -- increment operators (in the case
of JS Lint). Linting tools are also useful for enforcing a programming style
guide. This is particularly useful when you are working in a team, as it

http://jslint.com/
http://jshint.com/
http://eslint.org/

ensures everybody follows the same conventions.

It's possible to add a linting tool as a text-editor plugin; this will then
highlight any sloppy code as you type. Another option is to use an online
linting tool that allows you to simply paste onto a page for feedback. Another
option is to install linting software on your computer using npm. This can
then be run as part of your workflow.

Passing a lint test is no guarantee that your code is correct, but it will mean it
will be more consistent and less likely to have problems.

You can read more about how to use ESLint in this article on SitePoint.

https://www.sitepoint.com/up-and-running-with-eslint-the-pluggable-javascript-linter/

Feature Detection
Programming in JavaScript can be something of a moving target as the APIs
it uses are in a constant state of flux. And there are new APIs being
developed as part of the HTML5 specification all the time (more on these in
chapter 14). Browser vendors are constantly adding support for these new
features, but they don’t always keep up. What’s more, some browsers will
support certain features and others won’t. You can’t always rely on users
having the most up-to-date browser, either.

The recommended way to determine browser support for a feature is to use
feature detection. This is done using an if statement to check whether an
object or method exists before trying to actually call the method. For
example, say we want to use the shiny new holoDeck API (as far as I know,
this doesn't actually exist ... yet), we would wrap any method calls inside the
following if block:

if (window.holoDeck) {
virtualReality.activate();
}

This ensures that no error occurs if the browser doesn’t support the method,
because referencing a nonexistent object such as window.virtualReality
will return undefined. As it’s a falsy value, the if block won’t run, but
calling the method virtualReality.activate() outside of the if block
would cause an exception to be thrown. Feature detection guarantees that the
method is only called if it actually exists and fails gracefully, without any
exceptions being thrown, if the method doesn't exist.

Modernizr is a library that offers an easy way to implement feature detection
and Can I Use? is another useful resource for checking which features are
currently supported in different browsers.

The 'old-school' way of checking for browser support was known as browser
sniffing. This involves using the string returned by

https://modernizr.com/docs
http://caniuse.com

window.navigator.userAgent property that we met in the last chapter to
identify the user’s browser. The relevant methods can then be used for that
browser. This approach is not recommended, however, because the user agent
string cannot be relied upon to be accurate. Additionally, given the vast array
of features you might be developing for, and the shifting nature of support for
them across many browsers, this would extremely difficult to implement and
maintain.

Debugging in the Browser
Debugging is the process of finding out where bugs occur in the code and
then dealing with them. In many cases, the point at which an error occurs is
not always where it originated, so you’ll need to run through the program to
see what’s happening at different stages of its execution. When doing this, it
can be useful to create what are known as breakpoints, which halt the
progress of the code and allow us to view the value of different variables at
that point in the program. There are a number of options for debugging
JavaScript code in the browser.

The Trusty Alert

The most basic form of debugging is to use the alert() method to show a
dialog at certain points in the code. Because alert() stops a program from
running until OK is clicked, it allows us to effectively put breakpoints in the
code that let us check the value of variables at that point to see if they’re what
we expect them to be. Take the following example that checks to see if a
person’s age is appropriate:

function amIOldEnough(age){
if (age = 12) {
 alert(age);
 return 'No, sorry.';
} else if (age < 18) {
 return 'Only if you are accompanied by an adult.';
}
else {
 return 'Yep, come on in!';
}
}

The alert method inside the if block will allow us to see the value of the
age variable at that point. Once we click on OK, we can then check the
function returns the correct message.

If you try the example above, you will find that there is a bug in the code:

amIOldEnough(21)
<< 'No, sorry.'

Passing an argument of 21 should result in the string 'Yep, come on in!' being
returned, but it is returning 'No, sorry.' instead. If you tried running the
example, you would have seen the alert message show that the value of the
variable age is 12, even though the function was passed an argument of 21.
Closer inspection then reveals a classic mistake has been made. Instead of
checking if the value of age is equal to 12, we have inadvertently assigned it
the value of 12! To check for equality, we should use === instead of = which
assigns a value to a variable (even inside an if block).

In actual fact, we want to return the message 'No, sorry.' for all values of age
that are less than 12, so we could update the code to the following:

function amIOldEnough(age){
if (age < 12) {
 alert(age);
 return 'No, sorry.';
} else if (age < 18) {
 return 'Only if you are accompanied by an adult.';
}
else {
 return 'Yep, come on in!';
}
}

Try this again and it works as expected:

amIOldEnough(21)
 << 'Yep, come on in!'

Using alerts for debugging was the only option in the past, but JavaScript
development has progressed since then and their use is discouraged for
debugging purposes today.

Using the Console

Most modern JavaScript environments have a console object that provides a
number of methods for logging information and debugging. It's not officially
part of the ECMAScript specification, but is well supported in all the major
browsers and Node.js.

We've already seen and used the console.log() method. This can be
used to log the value of variables at different stages of the program,
although it will not actually stop the execution of the program in the
same way as alert() does. For example, we could add some
console.log() statements in the amIOldEnough() function, to log the
position in the function as well as the value of the age variable:

function amIOldEnough(age){
console.log(age);
 if (age < 12) {
 console.log(`In the if with ${age}`);
 return 'No, sorry.';
 } else if (age < 18) {
 console.log(`In the else-if with ${age}`);
 return 'Only if you are accompanied by an adult.';
 } else {
 console.log(`In the else with ${age}`);
 return 'Yep, come on in!';
}
}

The console.trace() method will log an interactive stack trace in the
console. This will show the functions that were called in the lead up to
an exception occurring while the code is running.

This SitePoint post also lists a few other useful but little-known methods of
the console object.

Debugging Tools

Most modern browsers also have a debugging tool that allows you to set
breakpoints in your code that will pause it at certain points. You can then

http://www.sitepoint.com/three-little-known-development-console-api-methods/

see the values of all the variables at those points and modify them. This can
be very useful when trying to track down bugs. Here are the links to the
debugger documentation for each of the major browsers:

Firefox

Edge

Chrome

Safari

One of the most useful commands is the debugger keyword. This will create
a breakpoint in your code that will pause the execution of the code and allow
you to see where the program is currently up to. You can also hover over any
variables to see what value they hold at that point. The program can then be
restarted by clicking on the 'play' button.

The example below shows how the debugger command can be used in the
amIOldEnough() function. If you try entering the code below into your
browser's console, then invoke the amIOldEnough() function, the browser's
debugging tool will automatically kick in and you'll be able see the value of
the age variable by hovering over it:

function amIOldEnough(age){
debugger;
 if (age < 12) {
 debugger;
 return 'No, sorry.';
 } else if (age < 18) {
 debugger;
 return 'Only if you are accompanied by an adult.';
 } else {
 debugger;
 return 'Yep, come on in!';
}
}

amIOldEnough(16);

https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://docs.microsoft.com/en-us/microsoft-edge/f12-devtools-guide/debugger
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.apple.com/library/mac/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Debugger/Debugger.html

Using the debugging tool

Remove Debugging Code Prior to Shipping

Remember to remove any references to the debugger command before
shipping any code, otherwise the program will appear to freeze when people
try to use it!

Error Objects
An error object can be created by the host environment when an exception
occurs, or it can be created in the code using a constructor function, like so:

const error = new Error();

This constructor function takes a parameter that’s used as the error message:

const error = new Error('Oops, something went wrong');

There are seven more error objects used for specific errors:

EvalError is not used in the current ECMAScript specification and only
retained for backwards compatibility. It was used to identify errors when
using the global eval() function.

RangeError is thrown when a number is outside an allowable range of
values.

ReferenceError is thrown when a reference is made to an item that
doesn’t exist. For example, calling a function that hasn't been defined.

SyntaxError is thrown when there’s an error in the code’s syntax.

TypeError is thrown when there’s an error in the type of value used; for
example, a string is used when a number is expected.

URIError is thrown when there’s a problem encoding or decoding the
URI.

InternalError is a non-standard error that is thrown when an error
occurs in the JavaScript engine. A common cause of this too much
recursion.

These error objects can also be used as constructors to create custom error
objects:

const error = new TypeError('You need to use numbers in this function');

All error objects have a number of properties, but they’re often used
inconsistently across browsers. The only properties that are generally safe to
use are:

The name property returns the name of the error constructor function
used as a string, such as 'Error' or 'ReferenceError'.

The message property returns a description of the error and should be
provided as an argument to the Error constructor function.

The stack property will return a stack trace for that error. This is a non-
standard property and it’s recommended that it is not safe to use in
production sites.

Throwing Exceptions

So far we’ve seen errors that are thrown automatically by the JavaScript
engine when an error occurs. It’s also possible to throw your own exceptions
using the throw statement. This will allow for any problems in your code to
be highlighted and dealt with, rather than lurk quietly in the background.

The throw statement can be applied to any JavaScript expression, causing the
execution of the program to stop. For example, all the following lines of code
will cause a program to halt:

throw 2;
throw 'Up';
throw { toys: 'out of pram' };

It is best practice, however, to throw an error object. This can then be caught
in a catch block, which is covered later in the chapter:

throw new Error('Something has gone badly wrong!');

As an example, let’s write a function called squareRoot() to find the square
root of a number. This can be done using the Math.sqrt() method, but it
returns NaN for negative arguments. This is not strictly correct (the answer
should be an imaginary number, but these are unsupported in JavaScript).
Our function will throw an error if the user tries to use a negative argument:

function squareRoot(number) {
'use strict';
if (number < 0) {
 throw new RangeError('You can't find the square root of negative numbers')
 }
return Math.sqrt(number);
};

Let’s test it out:

squareRoot(121);
<< 11

squareRoot(-1);
<< RangeError: You can't find the square root of negative numbers

Exception Handling
When an exception occurs, the program terminates with an error message.
This is ideal in development as it allows us to identify and fix errors. In
production, however, it will appear as if the program has crashed, which does
not reflect well on a ninja programmer.

It is possible to handle exceptions gracefully by catching the error. Any errors
can be hidden from users, but still identified. We can then deal with the error
appropriately ― perhaps even ignore it ― and keep the program running.

try, catch, and finally

If we suspect a piece of code will result in an exception, we can wrap it in a
try block. This will run the code inside the block as normal, but if an
exception occurs it will pass the error object that is thrown onto a catch
block. Here’s a simple example using our squareRoot() function from
earlier:

function imaginarySquareRoot(number) {
 'use strict';
try {
 return String(squareRoot(number));
} catch(error) {
 return squareRoot(-number)+'i';
}
}

The code inside the catch block will only run if an exception is thrown inside
the try block. The error object is automatically passed as a parameter to the
catch block. This allows us to query the error name, message and stack
properties, and deal with it appropriately. In this case, we actually return a
string representation of an imaginary number:

imaginarySquareRoot(-49) // no error message shown
<< '7i'

A finally block can be added after a catch block. This will always be
executed after the try or catch block, regardless of whether an exception
occurred or not. It is useful if you want some code to run in both cases. We
can use this to modify the imaginarySquareRoot() function so that it adds
"+ or -" to the answer before returning it:

function imaginarySquareRoot(number) {
 'use strict';
let answer;
try {
 answer = String(squareRoot(number));
} catch(error) {
 answer = squareRoot(-number)+"i";
} finally {
 return `+ or - ${answer}`;
}
}

You can read more about how to handle errors effectively in this article on
SitePoint.

https://www.sitepoint.com/proper-error-handling-javascript/

Tests
Testing is an important part of programming that can often be overlooked.
Writing good tests means your code will be less brittle as it develops, and any
errors will be identified early on.

A test can simply be a function that tests a piece of code runs as it should. For
example, we could test that the squareRoot() function that we wrote earlier
returns the correct answer with the following function:

function itSquareRoots4() {
return squareRoot(4) === 2;
}

Here we’re comparing the result of squareRoot(4) with the number 2. This
will return true if our function works as expected, which it does:

itSquareRoots4();
<< true

This is in no way a thorough test of the function – it might just be a fluke that
the function returns 2, and this might be the only value it works for. It does,
however, demonstrate how you would start to implement tests for any
functions that are written.

Test-driven Development

Test-driven development(TDD) is the process of writing tests before any
actual code. Obviously these tests will initially fail, because there is no code
to test. The next step is to write some code to make the tests pass. After this,
the code is refactored to make it faster, more readable, and remove any
repetition. The code is continually tested at each stage to make sure it
continues to work. This process should be followed in small piecemeal
chunks every time a new feature is implemented, resulting in the following
workflow:

1. Write tests (that initially fail)

2. Write code to pass the tests

3. Refactor the code

4. Test refactored code

5. Write more tests for new features

This is often referred to as the “red-green-refactor” cycle of TDD, as failing
tests usually show up as red, and tests that pass show as green.

Test-driven development is considered to be best practice, but in reality you'll
find most developers tend to be more pragmatic when it comes to writing
tests. The TDD mindset can be hard to always use, and at the end of the day,
any tests are better than no tests at all. In fact, this post by David Heinemeier
Hansson shows that even the very best coders don't always use TDD, and
make no apologies for not doing so. We cover an example in this chapter, but
won't be using it for the most of the examples in the rest of the book as it
would make it far too long!

Testing Frameworks

It is possible to write your own tests, as we saw earlier with the
itSquareRoots4() test function, but this can be a laborious process. Testing
frameworks provide a structure to write meaningful tests and then run them.
There are a large number of frameworks available for JavaScript, but we’ll be
focusing on the Jest framework.

Jest

Jest is a TDD framework, created by Facebook, that has gained a lot of
popularity recently. It makes it easy to create and run tests by providing
helper methods for common test assertions.

To use Jest, first we need to install it using npm. Enter the following command

http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
https://facebook.github.io/jest/

in a terminal:

npm install -g jest

This should install Jest globally. To check everything worked okay, try
running the following command to check the version number that has been
installed:

jest -v
<< v19.0.2

The version number might be different on your install, but if it returns a
value, it means Jest is installed correctly.

Next we'll create an example test to see if it works. Let's write a test to see if
our squareRoot() function from earlier works. Create a file called
squareRoot.test.js and add the following code:

function squareRoot(number) {
 'use strict';
if (number < 0) {
 throw new RangeError("You can't find the square root of negative numbers")
 }
return Math.sqrt(number);
};

test('square root of 4 is 2', () => {
expect(squareRoot(4)).toBe(2);
});

This file contains the squareRoot() function that we are testing, as well as a
test() function. The first parameter of the test() function is a string that
describes what we are testing, in this case that ‘square root of 4 is 2’. The
second parameter is an anonymous function that contains a function called
expect(), which takes the function we’re testing as an argument, and returns
an expectation object. The expectation object has a number of methods
called matchers. In the example above, the matcher is toBe(), which tests to
see if the value returned by our squareRoot() function is the same as the
value provided as an argument (2, in this case). These matchers are named so

they read like an English sentence, making them easier to understand (even
for non-programmers), and the feedback they provide more meaningful. The
example above almost reads as ‘expect the square root of 4 to be 2’. It’s
important to recognize that these are just functions at the end of the day, so
they behave in exactly the same way as any other function in JavaScript. This
means that any valid JavaScript code can be run inside the test function.

To run this test, simply navigate to the folder that contains the file
squareRoot.test.js and enter the following command:

jest -c {}

This will run all files that end in 'test.js' within that folder. The -c {} flag at
the end is shorthand for ‘configuration’. We don't need any extra
configuration, so we simply pass it an empty object.

If everything is working okay, it should produce the following output:

<< PASS ./squareRoot.test.js
✓ square root of 4 is 2 (2ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 2.996s

Hooray! This tells us that there was 1 test and it passed in a mere 2ms!

Crunching Some Numbers

To demonstrate the TDD process, we’ll have a go at creating a small library
called 'Number Cruncher' that will contain some functions that operate on
numbers. The first function we’ll try to implement will be called
factorsOf(). This will take a number as a parameter and return all the
factors of that number as an array.

Since we’re doing TDD, we need to start by writing the tests first, so create a
file called numberCruncher.test.js and add the following code:

test('factors of 12', () => {
expect(factorsOf(12)).toEqual([1,2,3,4,6,12]);
});

Use of toEqual()

We have used the toEqual() match in this test. This is because we are testing
an array.

This test says our factorsOf() function should return an array containing all
the factors of 12 in order, when 12 is provided as an argument. If we run this
test, we can see that it fails spectacularly:

jest -c {}
<< FAIL ./numberCruncher.test.js
● factors of 12

 ReferenceError: factorsOf is not defined

 at Object.<anonymous>.test (numberCruncher.test.js:2:10)
 at process._tickCallback (internal/process/next_tick.js:103:7)

✕ factors of 12 (6ms)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 1.424s

Well, what did you expect? We haven't written any code yet! Let’s have a go
at writing the factorsOf() function. Add the following to the top of the
numberCruncher.test.js file:

'use strict';

function factorsOf(n) {
const factors = [];
for (let i=1; i < n ; i++) {
 if (n/i === Math.floor(n/i)){
 factors.push(i);
 }
}

return factors;
}

This function creates a local variable called factors and initializes it as an
empty array. It then loops through every integer value from 1 up to n (the
number that was given as an argument) and adds it to the array of factors
using the push() method, if it’s a factor. We test if it’s a factor by seeing if
the answer leaves a whole number with no remainder when n is divided by
the integer 1 (the definition of a factor).

This Isn't Totally Realistic

To make things easier in this example, we're putting the code into the same
file as the tests, but in reality you'd usually keep them in separate files.

Try running the test again:

jest -c {}
<< FAIL ./numberCruncher.test.js
● factors of 12

 expect(received).toBe(expected)

 Expected value to be (using ===):
 [1, 2, 3, 4, 6, 12]
 Received:
 [1, 2, 3, 4, 6]

 Difference:

 - Expected
 + Received

 @@ -2,7 +2,6 @@
 1,
 2,
 3,
 4,
 6,
 - 12,
]

 at Object.<anonymous>.test (numberCruncher.test.js:14:25)
 at process._tickCallback (internal/process/next_tick.js:103:7)

✕ factors of 12 (12ms)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 0.801s, estimated 1s
Ran all test suites.

Oh dear, it still failed. This time, the failure message is a bit more specific. It
says it was expecting the array [1,2,3,4,6,12] but received the array
[1,2,3,4,6]― the last number 12 is missing. Looking at our code, this is
because the loop only continues while i < n. We need i to go all the way up
to and including n, requiring just a small tweak to our code:

function factorsOf(n) {
const factors = [];
for (let i=1; i <= n ; i++) { // change on this line
 if (n/i === Math.floor(n/i)){
 factors.push(i);
 }
}
return factors;
}

Now if you run the test again, you should get a nice message confirming that
our test has passed:

jest -c {}
<< PASS ./numberCruncher.test.js
✓ factors of 12 (7ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 3.012s
Ran all test suites.

Our test passed, but this doesn’t mean we can stop there. There is still one

more step of the TDD cycle: refactoring.

There are a few places where we can tidy up the code. First of all, we should
only really be testing for factors up to the square root of the number, because
if i is a factor, then n/i will be a factor as well. For example, if you’re trying
to find the factors of 36, when we test if 2 is a factor, we see that it divides
into 36, 18 times exactly. This means that 2 is a factor, but it also means 18 is
as well. So we’ll start to find factors in pairs, where one is below the square
root of the number, and the other is above the square root. This will have the
effect of reducing the number of steps in the for loop dramatically.

Secondly, the test to see if i is a factor of n can be written more succinctly
using the % operator. If i is a factor of n, then n%i will equal 0 because there’s
no remainder.

We’ll also need to sort the array at the end of the function, because the factors
are not added in order any more. We can do this using the sort() method
with a callback that we saw in Chapter 4.

Let's refactor our code in numberCruncher.test.js to the following:

function factorsOf(n) {
const factors = [];
for (let i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
}
return factors.sort((a,b) => a - b);
}

Now run the test again to confirm it still passes:

jest -c {}
<< PASS ./numberCruncher.test.js
✓ factors of 12 (8ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 1.615s

Ran all test suites.

Now our tests are passing, and our code has been refactored, it’s time to add
some more functionality. Let’s write another function called isPrime() that
will return true if a number is prime and false if it isn’t. Let’s start by
writing a couple of new tests for this at the end of numberCruncher.test.js:

test('2 is prime', () => {
expect(isPrime(2)).toBe(true);
});

test('10 is not prime', () => {
expect(isPrime(10)).not.toBe(true);
});

The first test checks whether true is returned when a prime number (2) is
provided as an argument, and another to check that true is not returned if a
non-prime number (10) is given as an argument. These tests use the toBe()
matcher to check if the result is true. Note the nice use of negation using the
not matcher (although we should probably be checking if it’s false because
this test will pass if anything but true is returned).

More Matcher Methods

You can see a full list of Jest's matcher methods here.

If you run the tests again, you’ll see that our new tests are failing, and our
factors test is still passing:

jest -c {}
<< FAIL ./numberCruncher.test.js
● 2 is prime

 ReferenceError: isPrime is not defined

 at Object.<anonymous>.test (numberCruncher.test.js:18:10)
 at process._tickCallback (internal/process/next_tick.js:103:7)

● 10 is not prime

http://facebook.github.io/jest/docs/expect.html

 ReferenceError: isPrime is not defined

 at Object.<anonymous>.test (numberCruncher.test.js:22:10)
 at process._tickCallback (internal/process/next_tick.js:103:7)

✓ factors of 12 (4ms)
✕ 2 is prime (1ms)
✕ 10 is not prime (1ms)

Test Suites: 1 failed, 1 total
Tests: 2 failed, 1 passed, 3 total
Snapshots: 0 total
Time: 0.812s, estimated 1s
Ran all test suites.

This is to be expected, since we’re yet to write any code for them.

We’d better write the isPrime() function. This will use the factorsOf()
function and check to see if the number of factors in the array returned by the
factorsOf() function is 2. This is because all prime numbers have precisely
two factors. Add the following code to the bottom of the
numberCruncher.test.js file:

function isPrime(n) {
return factorsOf(n).length === 2;
}

Now if we run the tests again, we can see that all three of our tests have
passed:

jest -c {}
<< PASS ./numberCruncher.test.js
✓ factors of 12 (6ms)
✓ 2 is prime (1ms)
✓ 10 is not prime (1ms)

Test Suites: 1 passed, 1 total
Tests: 3 passed, 3 total
Snapshots: 0 total
Time: 2.853s
Ran all test suites.

Our library of functions is growing! The next step is to again refactor our
code. It’s a bit brittle at the moment, because both functions accept negative
and non-integer values, neither of which are prime. They also allow non-
numerical arguments to be provided. It turns out that the factorsOf()
function fails silently and returns an empty array if any of these are passed to
it. It would be better to throw an exception to indicate that an incorrect
argument has been used. Let’s create some tests to check that this happens.
Add the following tests to the numberCruncher.test.js file:

it('should throw an exception for non-numerical data', () => {
 expect(factorsOf('twelve').toThrow();
 });

it('should throw an exception for negative numbers', () => {
 expect(() => factorsOf(-2)).toThrow();
 });

it('should throw an exception for non-integer numbers', () => {
expect(() => factorsOf(3.14159)).toThrow();
});

These tests all use the toThrow() method to check that an exception has been
thrown if the wrong data is entered as an argument.

While we’re at it, we can add some extra tests so the isPrime() function also
deals with any incorrect arguments. No exceptions are necessary in these
cases; non-numerical data, negative numbers and non-integers are simply not
prime, so the function should just return false. Add the following code to the
bottom of the numberCruncher.test.js file:

test('non-numerical data returns not prime', () => {
expect(isPrime('two')).toBe(false);
});

test('non-integer numbers return not prime', () => {
expect(isPrime(1.2)).toBe(false);
});

test('negative numbers return not prime', () => {
expect(isPrime(-1)).toBe(false);
});

If you run the tests again, you’ll see that the new tests for the factorsOf()
function fail as expected, but the new tests for the isPrime() function
actually pass. This is a happy accident because the factorsOf() function is
returning an empty array, which is conveniently not of length 2, so false is
returned by the function anyway.

Let’s try and make all the tests pass by throwing some exceptions in the
factorsOf() function. Change the factorsOf() function to the following in
numberCruncher.test.js:

function factorsOf(n) {
if(Number.isNaN(Number(n))) {
 throw new RangeError('Argument Error: Value must be an integer');
}
if(n < 0) {
 throw new RangeError('Argument Error: Number must be positive');
}
if(!Number.isInteger(n)) {
 throw new RangeError('Argument Error: Number must be an integer');
}
const factors = [];
for (let i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
}
return factors.sort((a,b) => a - b);
}

Now the function checks to see if a negative number or non-integer has been
provided as an argument, and throws an exception in both cases. Let’s run
our tests again:

jest -c{}
<< FAIL ./numberCruncher.test.js
● non-numerical data returns not prime

 RangeError: Argument Error: Value must be an integer

 at factorsOf (numberCruncher.test.js:5:11)
 at isPrime (numberCruncher.test.js:23:10)
 at Object.<anonymous>.test (numberCruncher.test.js:57:10)

● non-integer numbers return not prime

 RangeError: Argument Error: Number must be an integer

 at factorsOf (numberCruncher.test.js:11:11)
 at isPrime (numberCruncher.test.js:23:10)
 at Object.<anonymous>.test (numberCruncher.test.js:61:10)

● negative numbers return not prime

 RangeError: Argument Error: Number must be positive

 at factorsOf (numberCruncher.test.js:8:11)
 at isPrime (numberCruncher.test.js:23:10)
 at Object.<anonymous>.test (numberCruncher.test.js:65:10)

✓ Returns factors of 12 (4ms)
✓ 2 is prime (1ms)
✓ 10 is not prime
✓ Exception for non-numerical data
✓ Exception for negative numbers (1ms)
✓ Exception for non-integer numbers
✕ Non-numerical data returns not prime (2ms)
✕ Non-integer numbers return not prime
✕ Negative numbers return not prime (1ms)

Test Suites: 1 failed, 1 total
Tests: 3 failed, 6 passed, 9 total
Snapshots: 0 total
Time: 3.516s
Ran all test suites.

Oh, no! Our tests for the factorsOf() function all pass... but the exceptions
have caused the isPrime() function to choke and fail the tests. We need to
add code that handles any exceptions that might be thrown when the
factorsOf() function is called from within the isPrime() function. This
sounds like a job for a try and catch block! Change the isPrime() function
in the numberCruncher.test.js file to the following:

function isPrime(n) {
try{
 return factorsOf(n).length === 2;
} catch(error) {
 return false;
}

}

Now we’ve placed the original code inside a try block, so if factorsOf()
throws an exception, we can pass it on to the catch block and handle the
error. All we have to do here is simply return false if an error is thrown.

Now we’ll run our tests again, and hopefully you'll see the following
message:

jest -c{}
<< PASS ./numberCruncher.test.js
✓ Returns factors of 12 (4ms)
✓ 2 is prime (1ms)
✓ 10 is not prime
✓ Exception for non-numerical data (1ms)
✓ Exception for negative numbers
✓ Exception for non-integer numbers (1ms)
✓ Non-numerical data returns not prime
✓ Non-integer numbers return not prime (1ms)
✓ Negative numbers return not prime

Test Suites: 1 passed, 1 total
Tests: 9 passed, 9 total
Snapshots: 0 total
Time: 2.381s
Ran all test suites.

Hooray! All our tests are now passing. We’ll stop there, but hopefully this
demonstrates how TDD can be used to keep adding functionality in small
increments using the fail, pass and refactor cycle.

Quiz Ninja Project
We’re now going to use the console.log() method to log when some of the
important functions are called. This will help to make our code in the Quiz
Ninja project easier to debug. The main functions in the game are all methods
of the game object: game.start(), game.ask(), game.check(event), and
game.gameOver(). Add the following lines of code to the beginning of the
relevant functions:

console.log('start() invoked');
console.log('ask() invoked');
console.log('check(event) invoked');
console.log('gameOver() invoked');

These declarations will log a message in the console when each method is
invoked, so we can see where the program is in its runtime. There will be no
impact on the player, though, as we’re just using the console.

Try playing the game with the console open in the browser. You should see
the messages logged in the console as the program runs, as in the screenshot
shown below:

Playing Quiz Ninja with the console open

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/xrWoER

Chapter Summary
Bugs are unavoidable in code, and it’s best to find them early rather than
later.

JavaScript can be put into strict mode using the string "use strict".
This can be used in a whole file or just a single function.

Linting tools can be used to ensure your code follows good practice and
conventions.

Feature detection can check whether a method is supported before
calling it, helping to avoid an exception being thrown.

The console and browser’s built-in debugging tool can be used to
interactively find and fix bugs in code.

Exceptions can be thrown using the throw statement.

An error object is created when an exception occurs.

Any code placed inside a try block will pass any error objects to a
catch block when an exception occurs. Any code inside a finally
block will run if an exception does or does not occur.

Test-driven development is the practice of writing tests that fail, then
writing the code that passes the test, then refactoring the code every time
a new feature is implemented.

The Jest framework can be used to test your code.

In the next chapter, we’ll be taking our understanding of functions to the next
level and trying out some functional programming techniques in JavaScript.

Chapter 11: Further Functions
We covered functions back in chapter 4, but we were only just beginning to
scratch the surface. In JavaScript, functions are first-class objects, which
means they can be passed around in the same way as every other value. They
can have their own properties and methods, as well as accepting other
functions as parameters and being returned by other functions. This makes
them a very flexible tool to work with in JavaScript, and there are a variety of
techniques and patterns that can be used to make code cleaner.

In this chapter, we’ll cover the following topics:

Function properties and methods

Immediately Invoked function expressions

Self-defining functions

Recursive functions

Callbacks

Promises

Async functions

Functions that return functions

Closures

Introduction to functional programming

Currying

Project ― improve some of the functions using techniques from this
chapter

Function Properties and Methods
The fact that functions are first-class objects means they can have properties
and methods themselves. For example, all functions have a length property
that returns the number of parameters the function has.

Let’s use the square() function that we wrote in chapter 4 as an example:

function square(x) {
 return x*x;
}

If we query the length property, we can see that it accepts one parameter:

square.length
<< 1

Call and Apply Methods

The call() method can be used to set the value of this inside a function to
an object that is provided as the first argument.

In the following example, the sayHello() function refers to an unspecific
object called this that has a property called name:

function sayHello(){
return `Hello, my name is ${ this.name }`;
}

We can create some objects that have a name property, then use the call()
method to invoke the sayHello() function, providing each object as an
argument. This will then take the value of this in the function:

const clark = { name: 'Clark' };
const bruce = { name: 'Bruce' };

sayHello.call(clark);
<< 'Hello, my name is Clarke'

sayHello.call(bruce);
<< 'Hello, my name is Bruce'

If the function that’s called requires any parameters, these need to be
provided as arguments after the first argument, which is always the value of
this. For example, let's update the sayHello() function to give a more
generalized greeting that’s provided as an argument:

function sayHello(greeting='Hello'){
return `${ greeting }, my name is ${ this.name }`;
}

sayHello.call(clark, 'How do you do');
<< 'How do you do, my name is Clark'

sayHello.call(bruce);
<< 'Hello, my name is Bruce'

If a function doesn’t refer to an object as this in its body, it can still be called
using the call() method, but you need provide null as its first argument.
For example, we could call the square() function using the call() method,
like so:

square.call(null, 4)
<< 16

The apply() method works in the same way, except the arguments of the
function are provided as an array, even if there is only one argument:

square.apply(null, [4])
<< 16

This can be useful if the data you’re using as an argument is already in the
form of an array, although it's not really needed in ES6, as the spread
operator can be used to split an array of values into separate parameters.

These are two powerful methods, as they allow generalized functions to be
written that are not tied to specific objects by being methods of that object.
This gives flexibility over how the functions can be used.

Custom Properties

There is nothing to stop you adding your own properties to functions in the
same way that you can add properties to any object in JavaScript. For
example, you could add a description property to a function that describes
what it does:

square.description = 'Squares a number that is provided as an argument'
<< 'Squares a number that is provided as an argument'

Memoization

A useful feature of this is that it provides result caching, or memoization.

If a function takes some time to compute a return value, we can save the
result in a cache property. Then if the same argument is used again later, we
can return the value from the cache, rather than having to compute the result
again. For example, say squaring a number was an expensive computational
operation that took a long time. We could rewrite the square() function so it
saved each result in a cache object that is a property of the function:

function square(x){
square.cache = square.cache || {};
if (!square.cache[x]) {
 square.cache[x] = x*x;
}
return square.cache[x]
}

If we try calling the function a few times, we can see that the cache object
stores the results:

square(3);
<< 9

square(-11);
<< 121

square.cache;
<< {"3": 9, "-11": 121}

Immediately Invoked Function Expressions
An Immediately Invoked Function Expression – or IIFE – (pronounced
'iffy') is an anonymous function that, as the name suggests, is invoked as soon
as it’s defined. This is easily achieved by placing parentheses at the end of
the function definition (remember we use parentheses to invoke a function).
The function also has to be made into an expression, which is done by
placing the whole declaration inside parentheses, as in this example:

(function(){
const temp = 'World';
console.log(`Hello ${temp}`);
})();
<< 'Hello World'

IIFEs are a useful way of performing a task while keeping any variables
wrapped up within the scope of the function. This means the global
namespace is not polluted with lots of variable names.

Temporary Variables

There is no way to remove a variable from a scope once it’s been declared. If
a variable is only required temporarily, it may cause confusion if it’s still
available later in the code. Even worse, the name of the variable may clash
with another piece of code (an external JavaScript library, for example)
resulting in errors. Placing any code that uses the temporary variable inside
an IIFE will ensure it’s only available while the IIFE is invoked, then it will
disappear. The example that follows uses an IIFE to swap the value of two
global variables, a and b. This process requires the use of a temporary
variable, called temp, which only exists while the IIFE is invoked:

let a = 1;
let b = 2;

(()=>{
const temp = a;

a = b;
b = temp;
})();

a;
<< 2

b;
<< 1

console.log(temp);
<< Error: "temp is not defined"

This shows the variable temp does not exist after the function has been
invoked.

Note that this technique is not needed to swap the values of two variables in
ES6, as destructuring can be used, as shown below:

let [a,b] = [1,2];
[a,b] = [b,a];

a;
<< 2

b;
<< 1

Initialization Code

An IIFE can be used to set up any initialization code that there’ll be no need
for again. Because the code is only run once, there’s no need to create any
reusable, named functions, and all the variables will also be temporary. An
IIFE will be invoked once, and can set up any variables, objects and event
handlers when the page loads. The following example logs a welcome
message to the console, then eliminates all the temporary variables used in
putting the message together:

(function() {
const name = 'Peter Parker'; // This might be obtained from a cookie in reality

const days = ['Sunday','Monday','Tuesday','Wednesday','Thursday', 'Friday','Saturday'];
const date = new Date(),today = days[date.getDay()];
console.log(`Welcome back ${name}. Today is ${today}`);

})();
<< 'Welcome back Peter Parker. Today is Tuesday'

Note that much of this can be achieved in ES6 by simply placing the code
inside a block. This is because variables have block scope when const or let
are used, whereas in previous versions of JavaScript, only functions
maintained the scope of variables. The example above would work just as
well using the following code:

{
const name = 'Peter Parker'; // This might be obtained from a cookie in reality
const days = ['Sunday','Monday','Tuesday','Wednesday','Thursday', 'Friday','Saturday'];
const date = new Date(),today = days[date.getDay()];
console.log(`Welcome back ${name}. Today is ${today}`);
}
<< 'Welcome back Peter Parker. Today is Tuesday'

Safe Use of Strict Mode

In the last chapter we discussed using strict mode to avoid any sloppy coding
practices. One of the problems with simply placing 'use strict' at the
beginning of a file is that it will enforce strict mode on all the JavaScript in
the file, and if you’re using other people’s code, there’s no guarantee that
they’ve coded in strict mode.

To avoid this, the recommended way to use strict mode is to place all your
code inside an IIFE, like so:

(function() {
'use strict';

// All your code would go inside this function

})();

This ensures that only your code inside the IIFE is forced to use strict mode.

Creating Self-contained Code Blocks

An IIFE can be used to enclose a block of code inside its own private scope
so it doesn’t interfere with any other part of the program. Using IIFEs in this
way means code can be added or removed separately. The example shows
two blocks, A and B, that are able to run code independently of each other:

(function() {
// block A
const name = 'Block A';
console.log(`Hello from ${name}`);
}());

(function() {
// block B
const name = 'Block B';
console.log(`Hello from ${name}`);
}());

<< Hello from Block A
 Hello from Block B

Notice that both code blocks include a variable called name, but the modules
don’t interfere with each other. This is a useful approach for separating parts
of a program into discrete sections, especially for testing purposes.

Again, this can be achieved in ES6 by simply placing the different parts of
code into blocks. ES6 also supports a much more powerful module pattern
that is covered in Chapter 15.

Functions that Define and Rewrite
Themselves
The dynamic nature of JavaScript means that a function is able to not only
call itself, but define itself, and even redefine itself. This is done by assigning
an anonymous function to a variable that has the same name as the function.

Consider the following function:

function party(){
console.log('Wow this is amazing!');
party = function(){
 console.log('Been there, got the T-Shirt');
}
}

This logs a message in the console, then redefines itself to log a different
message in the console. When the function has been called once, it will be as
if it was defined like this:

function party() {
console.log('Been there, got the T-Shirt');
}

Every time the function is called after the first time, it will log the message
'Been there, got the T-Shirt':

party();
<< 'Wow this is amazing!'

party();
<< 'Been there, got the T-Shirt'

party();
<< 'Been there, got the T-Shirt'

If the function is also assigned to another variable, this variable will maintain

the original function definition and not be rewritten. This is because the
original function is assigned to a variable, then within the function, a variable
with the same name as the function is assigned to a different function. You
can see an example of this if we create a variable called beachParty that is
assigned to the party() function before it is called for the first time and
redefined:

function party(){
console.log('Wow this is amazing!');
party = function(){
 console.log('Been there, got the T-Shirt');
}
}

const beachParty = party; // note that the party function has not been invoked

beachParty(); // the party() function has now been redefined, even though it hasn't been called explicitly
<< 'Wow this is amazing!'

party();
<< 'Been there, got the T-Shirt'

beachParty(); // but this function hasn't been redefined
<< 'Wow this is amazing!'

beachParty(); // no matter how many times this is called it will remain the same
<< 'Wow this is amazing!'

Losing Properties

If any properties have previously been set on the function, these will be lost
when the function redefines itself. In the previous example, we can set a
music property, and see that it no longer exists after the function has been
invoked and redefined:

function party() {
console.log('Wow this is amazing!');
party = function(){
console.log('Been there, got the T-Shirt');
}
}

party.music = 'Classical Jazz'; // set a property of the function

party();
<< "Wow this is amazing!"

party.music; // function has now been redefined, so the property doesn't exist
<< undefined

This is called the Lazy Definition Pattern and is often used when some
initialization code is required the first time it’s invoked. This means the
initialization can be done the first time it’s called, then the function can be
redefined to what you want it to be for every subsequent invocation.

Init-Time Branching

This technique can be used with the feature detection that we discussed in the
last chapter to create functions that rewrite themselves, known as init-time
branching. This enables the functions to work more effectively in the
browser, and avoid checking for features every time they’re invoked.

Let’s take the example of our fictional unicorn object that’s yet to have full
support in all browsers. In the last chapter, we looked at how we can use
feature detection to check if this is supported. Now we can go one step
further: we can define a function based on whether certain methods are
supported. This means we only need to check for support the first time the
function is called:

function ride(){
 if (window.unicorn) {
 ride = function(){
 // some code that uses the brand new and sparkly unicorn methods
 return 'Riding on a unicorn is the best!';
 }
 } else {
 ride = function(){
 // some code that uses the older pony methods
 return 'Riding on a pony is still pretty good';
 }
 }
 return ride();
}

After we’ve checked whether the window.unicorn object exists (by checking
to see if it’s truthy), we’ve rewritten the ride() function according to the
outcome. Right at the end of the function, we call it again so that the
rewritten function is now invoked, and the relevant value returned. One thing
to be aware of is that the function is invoked twice the first time, although it
becomes more efficient each subsequent time it’s invoked. Let’s take a look
at how it works:

ride(); // the function rewrites itself, then calls itself
<< 'Riding on a pony is still pretty good'

Once the function has been invoked, it’s rewritten based on the browser’s
capabilities. We can check this by inspecting the function without invoking
it:

ride
<< function ride() {
 return 'Riding on a pony is still pretty good';
 }

This can be a useful pattern to initialize functions the first time they’re called,
optimizing them for the browser being used.

Recursive Functions
A recursive function is one that invokes itself until a certain condition is met.
It’s a useful tool to use when iterative processes are involved. A common
example is a function that calculates the factorial of a number:

function factorial(n) {
if (n === 0) {
 return 1;
} else {
 return n * factorial(n - 1);
}
}

This function will return 1 if 0 is provided as an argument (0 factorial is 1),
otherwise it will multiply the argument by the result of invoking itself with an
argument of one less. The function will continue to invoke itself until finally
the argument is 0 and 1 is returned. This will result in a multiplication of 1, 2,
3 and all the numbers up to the original argument.

Another example from the world of mathematics is the Collatz Conjecture.
This is a problem that is simple to state, but, so far, has not been solved. It
involves taking any positive integer and following these rules:

If the number is even, divide it by two

If the number is odd, multiply it by three and add one

For example, if we start with the number 18, we would have the following
sequence:

18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1,
...

As you can see, the sequence becomes stuck in a loop at the end, cycling
through “4,2,1”. The Collatz Conjecture states that every positive integer will
create a sequence that finishes in this loop. This has been verified for all

http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Collatz_conjecture

numbers up to 5 × 2⁶⁰, but there is no proof it will continue to be true for all
the integers higher than this. To test the conjecture, we can write a function
that uses recursion to keep invoking the function until it reaches a value of 1
(because we want our function to avoid being stuck in a recursive loop at the
end!):

function collatz(n, sequence=[n]) {
if (n === 1){
 return `Sequence took ${sequence.length} steps. It was ${sequence}`;
}

if (n%2 === 0) {
 n = n/2;
} else {
 n = 3*n + 1;
}

return collatz(n,[...sequence,n]);
}

This function takes a number as a parameter, as well as another parameter
called sequence, which has a default value of an array containing the first
parameter. The second parameter is only used when the function calls itself
recursively.

The first thing the function does is tests to see if n has a value of 1. If it does,
the function returns a message to say how many steps it took. If it hasn't
reached 1, it checks if the value of n is even (in which case it divides it by 2),
or odd, in which case it multiplies by 3 and then adds 1. The function then
calls itself, providing the new value of n and the new sequence as arguments.
The new sequence is constructed by placing the old sequence and the value of
n inside a new array and applying the spread operator to the old sequence.

Let's see what happens to the number 18:

collatz(18);
<< 'Sequence took 21 steps. It was 18,9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1'

As you can see, it takes 21 steps, but eventually it ends up at 1.

Have a go at using the function and see if you can find a value above 5 × 2⁶⁰
that doesn’t end at 1 — you’ll be famous if you do!

You can read more about recursive functions in this article on SitePoint.

https://www.sitepoint.com/recursion-functional-javascript/

Callbacks
We covered callbacks in Chapter 4. You’ll recall that they’re functions
passed to other functions as arguments and then invoked inside the function
they are passed to.

Event-driven Asynchronous Programming

Callbacks can be used to facilitate event-driven asynchronous programming.
JavaScript is a single-threaded environment, which means only one piece of
code will ever be processed at a time. This may seem like a limitation, but
non-blocking techniques can be used to ensure that the program continues to
run. Instead of waiting for an event to occur, a callback can be created that’s
invoked when the event happens. This means that the code is able to run out
of order, or asynchronously. Events can be DOM events, such as the click
and keyPress that we looked at in Chapter 7, but they can also be events such
as the completion of a file download, data returned from a database, or the
result of a complex operation. By using callbacks, we ensure that waiting for
these tasks to complete doesn't hold up the execution of other parts of the
program. Once the task has been completed, the callback will be invoked
before returning to the rest of the program.

Here’s an example of a function called wait() that accepts a callback. To
simulate an operation that takes some time to happen, we can use the
setTimeout() function to call the callback after a given number of seconds:

function wait(message, callback, seconds){
setTimeout(callback,seconds * 1000);
console.log(message);
}

Now let’s create a callback function to use:

function selfDestruct(){
console.log('BOOOOM!');
}

If we invoke the wait() function then log a message to the console, we can
see how JavaScript works asynchronously:

wait('This tape will self-destruct in five seconds ... ', selfDestruct, 5);
console.log('Hmmm, should I accept this mission or not ... ?');

<< 'This tape will self-destruct in five seconds ... '
<< 'Hmmm, should I accept this mission or not ... ? '
<< 'BOOOOM!'

When the wait() function is invoked, any code inside it is run, so the
message 'This tape will self destruct in five seconds ... ' is displayed. The
setTimeout() function is asynchronous, which means that the callback
provided as an argument is placed on top of a stack that gets cleared once the
rest of the program has run. This means that control is handed back to the
program and the next line in the program is run, which displays the message
‘Hmmm, should I accept this mission or not ... ?’ Then, after five seconds,
the callback is retrieved from the stack and invoked. This demonstrates that
the setTimeout() function did not block the rest of the program from
running. This is known as the JavaScript event-loop, and you can learn more
about it by watching this legendary video.

Remember, though, that JavaScript is still single-threaded, so only one task
can happen at once. If an event only takes a small amount of time to happen,
it will still have to wait until other parts of the program have executed before
the callback is invoked. For example, let’s see what happens if we set the
waiting time to be zero seconds:

wait('This tape will self-destruct immediately ... ', selfDestruct, 0);
console.log('Hmmm, should I accept this mission or not ... ?');

<< 'This tape will self-destruct immediately ... '
<< 'Hmmm, should I accept this mission or not ... ?'
<< 'BOOOOM!'

Notice the callback in the wait() function is still invoked last, despite the
wait time being set to zero seconds. We would have expected the callback to

https://www.youtube.com/watch?v=8aGhZQkoFbQ

have been invoked immediately, but a callback always has to wait for the
current execution stack to complete before it’s invoked. In this case, the
current execution stack is the rest of the function and code already entered in
the console. Once these have executed, the callback is invoked before
handing control back to the main program.

Callback Hell

The increase in the use of asynchronous programming in JavaScript has
meant that more and more callbacks are being used. This can result in messy
and confusing 'spaghetti code'. This is when more than one callback is used in
the same function, resulting in a large number of nested blocks that are
difficult to comprehend.

Callback hell is the term used to refer to this tangled mess of code, and it's
such a common issue that it even has its own website!

To illustrate this, let's say we had written a game that required the following
tasks to be completed:

The user logs in and a user object is returned
The user ID is then used to fetch player information from the server
The game then loads based on the player information

All these operations are asynchronous, so can be written as functions that use
callbacks invoked once each task has been completed.

The code might look like the snippet shown below:

login(userName, function(error,user) {
 if(error){
 throw error;
 } else {
 getPlayerInfo(user.id, function(error,info){
 if(error){
 throw error;
 } else {
 loadGame(info, function(error,game) {
 if(error){
 throw error;

http://callbackhell.com

 } else {
 // code to run game
 }
 });
 }
 });
}
});

You may have noticed there isn't much actual code in the example above.
The example only shows the flow from one function to the other, and yet it
still manages to look extremely complicated due to the large number of
nested if-else statements. In reality, there would be lots more code to
implement the actual functionality of the login(), getPlayerInfo() and
loadGame() functions.

Error-first Callbacks

The code example above uses the error-first callback style popularized by
Node.js. In this coding pattern, callbacks have two arguments. The first is the
error argument, which is an error object provided if something goes wrong
when completing the operation. The second argument is any data returned by
the operation that can be used in the body of the callback.

Promises

A promise represents the future result of an asynchronous operation.
Promises don't do anything that can't already be achieved using callbacks, but
they help simplify the process, and avoid the convoluted code that can result
from using multiple callbacks.

The Promise Life Cycle

When a promise is created, it calls an asynchronous operation and is then said
to be pending. It remains in this state while the operation is taking place. At
this stage, the promise is said to be unsettled. Once the operation has
completed, the promise is said to have been settled. A settled promise can

result in two different outcomes:

Resolved ― the asynchronous operation was completed successfully.

Rejected ― the asynchronous operation didn’t work as expected, wasn't
successfully completed or resulted in an error.

Both these outcomes will return any relevant data, and you can take the
appropriate action based on the outcome of the promise.

A Super Promise

Imagine if a shady character gave you a red pill, and promised that if you
took it, you'd be a superhero. Being an adventurous sort, you swallow the pill
and wait to see what happens. You're currently in the pending phase of a
promise, waiting to see what the result will be.

Suddenly you find that you have the power to dodge bullets as if time was
standing still! The promise has been resolved, and now you need to go off
and use your newly acquired powers.

But if nothing happens, you would reject the promise and warn people that a
stranger is wandering around giving out red pills and peddling a fanciful
story.

This scenario puts a comic-book spin on the phases of a promise. There is a
pending phase while you wait on the results of an operation (taking the pill).
Then once the promise is settled, you deal with the results in an appropriate
way ― by using your superpowers if the promise is resolved, or dealing with
any problems if it doesn't work out.

The Promise of a Burger Party is a brilliant post by Mariko Kosaka that
explains the concept of promises by comparing them to ordering a burger!

Creating A Promise

A promise is created using a constructor function. This takes a function called

http://kosamari.com/notes/the-promise-of-a-burger-party

an executor as an argument. The executor initializes the promise and starts
the asynchronous operation. It also accepts two functions as arguments: the
resolve() function is called if the operation is successful, and the reject()
function is called if the operation fails. The general layout of a promise can
be seen in the code below:

const promise = new Promise((resolve, reject) => {
 // initialization code goes here
 if (success) {
 resolve(value);
 } else {
 reject(error);
 }
});

A Dicey Example

Let's take a look at an example of a promise that uses the dice object we
created back in chapter 5:

const dice = {
sides: 6,
roll() {
 return Math.floor(this.sides * Math.random()) + 1;
}
}

Now let's create a promise that uses the dice.roll() method as the
asynchronous operation and considers rolling a 1 as a failure, and any other
number as a success:

const promise = new Promise((resolve,reject) => {
const n = dice.roll();
setTimeout(() => {
(n > 1) ? resolve(n) : reject(n);
}, n*1000);
});

This creates a variable called promise that holds a reference to the promise.

The promise calls the roll() method and stores the return value in a variable
called n. Next, we use an if-else block to specify the conditions for success
(rolling any number higher than 1) and failure (rolling a 1). The
setTimeout() method we met in Chapter 9 is used to add a short delay based
on the number rolled. This is to mimic the time taken for an asynchronous
operation to complete.

Notice that both the resolve() and reject() functions return the value of
the n variable. This can be used when dealing with the outcome of the
promise once it’s been settled.

Dealing With A Settled Promise

Once a promise has been settled, the then() method can be used to deal with
the outcome. This method accepts two arguments. The first is a fulfilment
function that’s called when the promise is resolved. Any data returned from
the resolve() function will be passed along to this function. The second
argument is a rejection function that’s called if the promise is rejected.
Similar to the fulfilment function, the rejection function receives any data
returned from the reject() function.

In the case of our dice example, both functions will receive the value of the
number rolled. Let's have a look at how we could deal with that:

promise.then(result => console.log(`Yes! I rolled a ${result}`), result => console.log(`Drat! ... I rolled a ${result}`));

The first argument is simply a function that logs a celebratory message to the
console, stating the number rolled (this is passed to the then() method as the
variable result). The second argument logs an annoyed message and, again,
states the number rolled.

Alternatively, the catch() method can be used to specify what to do if the
operation fails instead:

promise.catch(result => console.log(`Drat! ... I rolled a ${result}`));

The then() and catch() methods can be chained together to form a succinct

description of how to deal with the outcome of the promise:

promise.then(result => console.log(`I rolled a ${result}`))
 .catch(result => console.log(`Drat! ... I rolled a ${result}`));

To try this code out, paste the following code into your browser console or
use JS Bin with ES6/Babel enabled:

const dice = {
sides: 6,
roll() {
 return Math.floor(this.sides * Math.random()) + 1;
}
}

console.log('Before the roll');

const roll = new Promise((resolve,reject) => {
const n = dice.roll();
if(n > 1){
 setTimeout(()=>{resolve(n)},n*200);
} else {
 setTimeout(()=>reject(n),n*200);
}
});

roll.then(result => console.log(`I rolled a ${result}`))
.catch(result => console.log(`Drat! ... I rolled a ${result}`));

console.log('After the roll');

When you press the 'Run' button, you should see the following output in the
console:

before promise
promise pending...
after promise

Then there should be a pause, while the promise is resolved, followed by the
resulting message:

Drat! ... I rolled a 1

https://jsbin.com/lesaxafiya/edit?js,console

The messages in the console also give an insight into the asynchronous nature
of JavaScript. Notice that the last message 'after promise' is displayed before
the result of the settled promise. This shows that the language will continue
to process the rest of the code while the promise is being resolved, before
coming back and dealing with the result of the promise.

Chaining Multiple Promises

Promises come into their own when multiple asynchronous tasks are required
to be carried out one after the other. If each function that performs an
asynchronous operation returns a promise, we can chain the then() methods
together to form a sequential piece of code that’s easy to read. Each promise
will only begin once the previous promise has been settled.

For example, the player logging in to a game that produced the callback hell
earlier, could be written in a much nicer way by using promises:

login(userName)
.then(user => getPlayerInfo(user.id))
.then(info => loadGame(info))
.catch(throw error)

A number of new additions to the language return promises, and you’ll see
more examples of them used later in the book.

Async Functions

Async functions were added to the ES2017 specification. These functions are
preceded by the async keyword and allow you to write asynchronous code as
if it was synchronous. This is achieved by using the await operator before an
asynchronous function. This will wrap the return value of the function in a
promise that can then be assigned to a variable. The next line of code is not
executed until the promise is resolved.

The example below shows how the loadGame() function can be written an

async function:

async function loadGame(userName) {

 try {
 const user = await login(userName);
 const info = await getPlayerInfo (user.id);
 // load the game using the returned info
 }

 catch (error){
 throw error;
 }
}

In the example, the loadGame function is preceded by the async keyword,
meaning the function will run in an asynchronous fashion. We then wrap
each step of the process in a try block, so any errors are caught. Inside this
block, we can write each step in the order it’s meant to be processed, so we
start by assigning the variable user to the return value of the login()
function. The await operator will ensure the next line of code is not executed
until the login() function returns a user object. The getPlayerInfo()
function is also preceded by the await operator. Once this function returns a
result, it’s assigned to the variable info, and this can then be used to load the
actual game. A catch block is used to deal with any errors that may occur.

Generalized Functions

Callbacks can be used to build more generalized functions. Instead of having
lots of specific functions, one function can be written that accepts a callback.
For example, let's create a function that returns a random integer between two
values that are provided as arguments, a and b, or if only 1 argument is
provided, it will return a random integer between 1 and the argument
provided:

function random(a,b=1) {
// if only 1 argument is provided, we need to swap the values of a and b
if (b === 1) {
 [a,b] = [b,a];
}

return Math.floor((b-a+1) * Math.random()) + a;
}

random(6);
<< 4

random(10,20);
<< 13

This is an example of an abstraction, as it wraps all the logic cleanly away
inside the function.

We could refactor this function to make it more generic by adding a callback
parameter, so a calculation is performed on the random number before it’s
returned:

function random(a,b,callback) {
if (b === undefined) b = a, a = 1; // if only one argument is supplied, assume the lower limit is 1
const result = Math.floor((b-a+1) * Math.random()) + a
if(callback) {
 result = callback(result);
}
return result;
}

Now we have a function where more flexibility can be added using a
callback. For example, we can use the square() function from earlier in the
chapter to produce a random square number from one to 100:

function square(n) {
return n*n;
}

random(1,10,square);
<< 49

Or a random even number from two to ten:

random(1,5, (n) => 2 * n);
<< 8

Notice that in the last example, the callback is an anonymous function that is
defined inline as one of the random() function's arguments.

Functions That Return Functions

We've just seen that functions can accept another function as an argument (a
callback), but they can also return a function.

The example below shows a function called returnHello() that returns a
'Hello World' function:

function returnHello() {
console.log('returnHello() called');
return function() {
 console.log('Hello World!');
}
}

When the returnHello() function is invoked, it logs a message to the
console then returns another function:

returnHello()
<< returnHello() called

To make use of the function that is returned, we need to assign it to a
variable:

const hello = returnHello();
<< returnHello() called

Now we can invoke the 'Hello World' function by placing parentheses after
the variable that it was assigned to:

hello()
<< Hello World!

This might seem a bit pointless, but let's now take it a step further and use

this technique to create a generic 'greeter' function that takes a particular
greeting as a parameter, then returns a more specific greeting function:

function greeter(greeting = 'Hello') {
return function() {
 console.log(greeting);
}
}

const englishGreeter = greeter();
englishGreeter();
<< Hello

const frenchGreeter = greeter('Bonjour');
frenchGreeter();
<< Bonjour

const germanGreeter = greeter('Guten Tag');
germanGreeter();
<< Guten Tag

Closures
Closures are one of JavaScript’s most powerful features, but they can be
difficult to get your head around initially.

Function Scope

Back in Chapter 2, we saw the value of a variable was only available inside
the block it was created inside if the const or let keywords were used. This
also applies to the body of a function if the var keyword is used.

In the following example, there are two variables: outside, which is
available throughout the program, and inside, which is only available inside
the function:

const outside = 'In the global scope';
function fn() {
const inside = 'In the function scope';
}

outside
<< 'In the global scope'

inside
<< ReferenceError: inside is not defined

It appears we’re unable to access the variable inside outside the scope the
function.

This is because the variable inside is only kept 'alive' while the function is
active. Once the function has been invoked, any references to variables inside
its scope are removed.

It turns out, however, that we can gain access to variables outside the
function where it was created, and after the function has been invoked.

A closure is a reference to a variable that was created inside the scope of

another function, but is then kept alive and used in another part of the
program.

One of the key principles in creating closures is that an 'inner' function, which
is declared inside another function, has full access to all of the variables
declared inside the scope of the function in which it’s declared (the 'outer'
function). This can be seen in the example below:

function outer() {
const outside = 'Outside!';
function inner() {
 const inside = 'Inside!';
 console.log(outside);
 console.log(inside);
}
console.log(outside);
inner();
}

The outer() function only has access to the variable outside, which was
declared in its scope. The inner() function, however, has access to the
variable inside, declared in its scope, but also the variable outside, declared
outside its scope, but from within the outer() function.

We can see this when we invoke the outside() function:

outer()
<< Outside!
Inside!
Outside!

This means that whenever a function is defined inside another function, the
inner function will have access to any variables that are declared in the outer
function's scope.

Returning Functions

As we saw in the example above, functions declared from within another
function have access to any variables declared in the outer function’s scope.

A closure is formed when the inner function is returned by the outer
function, maintaining access to any variables declared inside the enclosing
function.

function outer() {
const outside = 'Outside!';
function inner() {
 const inside = 'Inside!';
 console.log(outside);
 console.log(inside);
}
return inner;
}

We can now assign a variable to the return value of the outer() function:

const closure = outer();

The variable closure now points to the inner() function that is returned by
the outer() function.

What makes this a closure is that it now has access to the variables created
inside both the outer() and inner() functions, as we can see when we
invoke it:

closure();
<< Outside!
Inside!

This is important as the variable outside should only exist while the outer()
function is running. The closure maintains access to this variable, however,
even though the outer() has been invoked.

A closure doesn't just have access to the value of a variable, it can also
change the value of the variable long after the function in which it was
originally declared has been invoked.

A Practical Example

A closure is formed when a function returns another function that then
maintains access to any variables created in the original function’s scope. In
the following example, two variables, a and b, are created in the scope of the
closure() function. This then returns an anonymous arrow function that
maintains access to the variables a and b even after the closure() function
has been invoked:

function closure() {
const a = 1.8;
const b = 32;
return c => c * a + b;
}

Now we can create a new function by invoking the closure() function and
assigning the return value to a variable called toFahrenheit:

const toFahrenheit = closure();

This new function can then be invoked with its own argument, but the values
of a and b from the original function are still kept 'alive':

toFahrenheit(30);
<< 86

A Counter Example

Closures not only have access to variables declared in a parent function's
scope, they can also change the value of these variables. This allows us to do
things like create a counter() function like the one in the example below:

function counter(start){
let i = start;
return function() {
 return i++;
}
}

This function starts a count using the variable i. It then returns a function that
uses a closure that traps and maintains access to the value of i. This function
also has the ability to change the value of i, so it increments i by one every
time it's invoked. The reference to the variable i that is defined in the original
function is maintained in the new function via a closure.

We can create a counter by assigning the return value of the counter()
function to a variable:

const count = counter(1);

The variable count now points to a function that has full access to the
variable i that was created in the scope of the counter() function. Every
time we invoke the count() function, it will return the value of i and then
increment it by 1:

count();
<< 1
count();
<< 2

Generators

ES6 introduced support for generators. These are special functions used to
produce iterators that maintain the state of a value.

To define a generator function, an asterisk symbol (*) is placed after the
function declaration, like so:

function* exampleGenerator() {
// code for the generator goes here
}

Calling a generator function doesn’t actually run any of the code in the
function; it returns a Generator object that can be used to create an iterator
that implements a next() method that returns a value every time the next()
method is called.

For example, we can create a generator to produce a Fibonacci-style number
series (a sequence that starts with two numbers and the next number is
obtained by adding the two previous numbers together), using the following
code:

function* fibonacci(a,b) {
let [prev,current] = [a,b];
while(true) {
 [prev, current] = [current, prev + current];
 yield current;
}
}

The code starts by initializing the first two values of the sequence, which are
provided as arguments to the function. A while loop is then used, which will
continue indefinitely due to the fact that it uses true as its condition, which
will obviously always be true. Every time the iterator’s next() method is
called, the code inside the loop is run, and the next value is calculated by
adding the previous two values together.

Generator functions employ the special yield keyword that is used to return
a value. The difference between the yield and the return keywords is that
by using yield, the state of the value returned is remembered the next time
yield is called. Hence, the current value in the Fibonacci sequence will be
stored for use later. The execution of the loop is paused after every yield
statement, until the next() method is called again.

To create a generator object based on this function, we simply assign a
variable to the function, and provide it with two starting numbers as
arguments:

const sequence = fibonacci(1,1);

The generator object is now stored in the sequence variable. It inherits a
method called next(), which is then used to obtain the next value produced
by the yield command:

sequence.next();
<< 2

sequence.next();
<< 3

sequence.next();
<< 5

It’s also possible to iterate over the generator to invoke it multiple times:

for (n of sequence) {
 // stop the sequence after it reaches 100
 if (n > 10) break;
 console.log(n);
}

<< 8
<< 13
<< 21
<< 34
<< 55
<< 89

Note that the sequence continued from the last value produced using the
next() method. This is because a generator will maintain its state throughout
the life of a program.

Functional Programming
Functional programming has gained momentum in recent years, with a
dedicated following. The popularity of purely functional languages, such as
Clojure, Scala and Erlang, sparked an interest in functional programming
techniques that continues to grow. JavaScript has always supported
functional-style programming due to functions being first-class objects. The
ability to pass functions as arguments, return them from other functions, and
use anonymous functions and closures, are all fundamental elements of
functional programming that JavaScript excels at.

Functional programming is a programming paradigm. Other examples of
programming paradigms include object oriented programming and procedural
programming. JavaScript is a multi-paradigm language, meaning that it can
be used to program in a variety of paradigms (and sometimes a mash-up of
them!). This flexibility is an attractive feature of the language, but it also
makes it harder to adopt a particular coding style as the principles are not
enforced by the language. A language such as Haskell, which is a purely
functional language, is much stricter about adhering to the principles of
functional programming.

Pure Functions

A key aspect of functional programming is its use of pure functions. A pure
function is a function that adheres to the following rules:

1) The return value of a pure function should only depend on the values
provided as arguments. It doesn't rely on values from somewhere else in the
program.

2) There are no side-effects. A pure function doesn't change any values or
data elsewhere in the program. It only makes non-destructive data
transformations and returns new values, rather than altering any of the
underlying data.

3) Referential transparency. Given the same arguments, a pure function will
always return the same result.

In order to follow these rules, any pure function must have:

At least one argument; otherwise the return value must depend on
something other than the arguments of the function, breaking the first
rule
A return value; otherwise there’s no point in the function (unless it has
changed something else in the program – in which case, it’s broken the
'no side-effects' rule).

Pure functions help to make functional programming code more concise and
predictable than in other programming styles. Referential transparency makes
pure functions easy to test as they can be relied on to return the same values
when the same arguments are provided. Another benefit is that any return
values can be cached, since they’re always the same (see the section on
Memoization above). The absence of any side-effects tends to reduce the
amounts of bugs that can creep into your code, because there are no surprise
dependencies as they only rely on any values provided as arguments.

The following example shows a pure function that writes the string provided
as an argument backwards:

function reverse(string) {
return string.split('').reverse().join('');
}

The function does not change the actual value of the argument, it just returns
another string that happens to be the argument written backwards:

const message = 'Hello JavaScript';
reverse(message);
<< 'tpircSavaJ olleH'

message // hasn't changed
<< 'Hello JavaScript'

This is an example of a non-destructive data transformation, as the value

stored in the variable, message, remains the same after it’s been passed
through the function as an argument.

One point to note is that using const to declare variables will help to avoid
destructive data transformations. This is because any variables that are
assigned to primitive values using const cannot be changed (although
variables that are assigned to non-primitive objects using const can still be
mutated, so it's not a complete solution).

Let's take a look at how not to write a pure function. The next example shows
an impure function that returns the value of adding two values together:

let number = 42;
let result = 0;

function impureAdd(x) {
result = number + x;
}

impureAdd(10);
result;
<< 52

The function impureAdd() is an impure function, as it breaks the rules
outlined above. It requires the value, number, which is defined outside of the
function, it has the side effect of changing the value of result, and it would
return a different value if the value of the variable number was different.

Here’s an example of a pure function that achieves the same result:

const number = 42;

function pureAdd(x,y) {
return x + y;
}

result = pureAdd(number,10);
<< 52

This function requires the two arguments that it’s adding together, so the

variable number has to be passed to it as an argument. There are no side-
effects to this function, it simply returns the result of adding the two numbers
together. This return value is then assigned to the variable, result, instead of
the function updating the value of the variable. This function will also always
return the same value given the same inputs.

Functional programming uses pure functions as the building blocks of a
program. The functions perform a series of operations without changing the
state of any data. Each function forms an abstraction that should perform a
single task, while encapsulating the details of its implementation inside the
body of the function. This means that a program becomes a sequence of
expressions based on the return values of pure functions. The emphasis is
placed on using function composition to combine pure functions together to
complete more complex tasks.

You can read more about function composition in this article on Sitepoint.

By only performing a single task, pure functions are more flexible, as they
can be used as the building blocks for many different situations, rather than
be tightly coupled with one particular operation. They also help to make your
code more modular, as each function can be improved upon or replaced
without interfering with any of the other functions. This makes it easy to
replace one function with another to either improve the behavior, modify it
slightly, or even change it completely.

As an example, we can use the square() function that we created in Chapter
4:

function square(x){
return x*x;
}

This function can then be used to create a hypotenuse() function that returns
the length of the hypotenuse of a right-angled triangle, given the lengths of
the other two sides as parameters:

function hypotenuse(a,b) {
return Math.sqrt(square(a) + square(b));
}

https://www.sitepoint.com/function-composition-building-blocks-for-maintainable-code/

hypotenuse(3,4);
<< 5

The hypotenuse() function uses the square() function to square the
numbers, rather than hard coding a*a and b*b into the function. This means
that if we find a more optimal way to square a number, we only have to
improve the implementation of the square() function. Or if we find an
alternative way of calculating the hypotenuse that doesn't rely on squaring
numbers (however unlikely that is!), we could just swap the square()
function for another.

To illustrate the point further, we can create another function called sum()
that takes an array as an argument as well as a callback. The callback is used
to transform the value of each item in the array using the map() method. Then
the reduce() method is used to find the sum of all items in the array:

function sum(array, callback) {
if(callback) {
 array = array.map(callback);
}
 return array.reduce((a,b) => a + b);
}

The callback makes the function more flexible as it allows a transformation to
be performed on all the numbers in the array before finding the sum. This
means it can be used to find the sum of an array of numbers:

sum([1,2,3]); // returns 1 + 2 + 3
 << 6

Alternatively, we can find the sum after the numbers have been squared by
adding the square() function as a callback:

sum([1,2,3], square); // returns 1^2 + 2^2 + 3^2
 << 14

The sum() function can also be used to create a mean() function that

calculates the mean of an array of numbers:

function mean(array) {
return sum(array)/array.length;
}

mean([1,2,3];
<< 2

We can now use the sum(), square() and mean() functions as the building
blocks to build a variance() function that calculates the variance of an array
of numbers:

function variance(array) {
 return sum(array,square)/array.length - square(mean(array))
 }

 variance([1,2,3])
 << 0.666666666666667

By separating each piece of functionality into individual functions, we’re able
to compose a more complex function. These functions can also be used to
create more functions that require the mean, sum or variance.

Higher-Order Functions

Higher-order functions are functions that accept another function as an
argument, or return another function as a result, or both.

Closures are used extensively in higher-order functions as they allow us to
create a generic function that can be used to then return more specific
functions based on its arguments. This is done by creating a closure around a
function's arguments that keeps them 'alive' in a return function. For example,
consider the following multiplier() function:

function multiplier(x){
return function(y){
 return x*y;
}

}

The multiplier() function returns another function that traps the argument x
in a closure. This is then available to be used by the returned function.

We can now use this generic multiplier() function to create more specific
functions, as can be seen in the example below:

doubler = multiplier(2);

This creates a new function called doubler(), which multiplies a parameter
by the argument that was provided to the multiplier() function (which was
2 in this case). The end result is a doubler() function that multiplies its
argument by two:

doubler(10);
<< 20

The multiplier() function is an example of a higher-order function. This
means we can use it to build other, more specific functions by using different
arguments. For example, an argument of 3 can be used to create a tripler()
function that multiplies its arguments by 3:

tripler = multiplier(3);

tripler(10);
<< 30

This is one of the core tenets of functional programming: it allows generic
higher-order functions to be used to return more specific functions based on
particular parameters.

Here's another example, where we create a higher-order power() function. It
returns a second function that calculates values to the power of a given
argument. To make this calculation, the second function uses a closure to
maintain a reference to the initial argument supplied to the power() function:

function power(x) {
return function(power) {
 return Math.pow(x,power);
}
}

Now we can create some more specific functions that use this higher-order,
generic function to build them. For example, we could implement a twoExp()
function that returns powers of 2, like so:

twoExp = power(2);
<< function (power) {
 return Math.pow(x,power);
}

twoExp(5);
<< 32

We can also create another function called tenExp() that returns powers of
10:

tenExp = power(10);
<< function (power) {
 return Math.pow(x,power);
}

tenExp(6);
<< 1000000

When a higher-order function returns another function, we can use a neat
trick to create an anonymous return function and immediately invoke it with
a value instead by using double parentheses. The following example will
calculate 3 to the power 5:

power(3)(5);
<< 243

This works because power(3) returns a function, to which we immediately
pass an argument of 5 by adding it in parentheses at the end.

Currying

Currying is a process that involves the partial application of functions. It’s
named after the logician Haskell Curry — not the spicy food — just like the
programming language Haskell is. His work on a paper by Moses
Schönfinkel lead to the development of this programming technique.

A function is said to be curried when not all arguments have been supplied to
the function, so it returns another function that retains the arguments already
provided, and expects the remaining arguments that were omitted when the
original function was called. A final result is only returned once all the
expected arguments have eventually been provided.

Currying relies on higher-order functions that are able to return partially
applied functions. All curried functions are higher-order functions because
they return a function, but not all higher-order functions are curried.

The power() function above is an example of a higher-order function that can
be curried as it will expects two arguments, but will return another, curried
function, if the only one argument is provided.

Currying allows you to turn a single function into a series of functions
instead. This is useful if you find that you’re frequently calling a function
with the same argument. For example, the following multiplier() function
is a generic function that returns the product of two numbers that are
provided as arguments:

function multiplier(x,y) {
 return x * y;
}

A basic use of this function could be to calculate a tax rate of 22% on a £400
sale using 0.22 and 400 as arguments:

const tax = multiplier(0.22,400);
<< 88

http://en.wikipedia.org/wiki/Haskell_Curry

We could make this function more useful by adding some code at the start
that allows it to be curried so it returns another function if only one argument
is provided:

function multiplier(x,y) {
if (y === undefined) {
 return function(z) {
 return x * z;
 }
} else {
 return x * y;
}
}

Now, if you found yourself frequently calculating the tax using the same rate
of 22%, you could create a new curried function by providing just 0.22 as an
argument:

calcTax = multiplier(0.22);
<< function (z){
 return x * z;
}

This new function can then be used to calculate the tax, without requiring
0.22 as an argument:

calcTax(400);
<< 88

By currying the more generic multiplier() function, we’ve created a new,
more specific function, calcTax(), that is simpler to use.

A General Curry Function

In the last example, we hard-coded the multiplier() function so it could be
curried. It’s possible to use a curry() function to take any function and allow
it to be partially applied. The curry function is the following:

function curry(func,...oldArgs) {

return function(...newArgs) {
 const allArgs = [...oldArgs,...newArgs];
 return func(...allArgs);
}
}

This function accepts a function as its first argument, which is stored as func.
The rest operator is used to collect all the other arguments together as
...oldArgs. These are the arguments of the function that is the first
argument. It then returns a function that accepts some new arguments that are
stored in the variable ...newArgs. These are then lumped together with
...oldArgs to make ...newArgs using the spread operator. The return value
of this function is obtained by invoking the original function, which is
accessed using a closure over func and passed the combined arguments
...allArgs.

Now let's create a generic divider() function that returns the result of
dividing its two arguments:

const divider = (x,y) => x/y;

If we test this out, we can see that it does indeed return the quotient of its two
arguments:

divider(10,5);
<< 2

We can now use our curry() function to create a more specific function that
finds the reciprocal of numbers:

const reciprocal = curry(divider,1);

This creates a new function called reciprocal() that is basically the
divider() function, with the first argument set as 1. If we test it out, we can
see that it does indeed find the reciprocal of the argument provided:

reciprocal(2);
<< 0.5

This example shows how currying uses generic functions as the building
blocks for creating more specific functions.

Getting Functional
Advocates of functional programming can be quite partisan about its benefits.
But even adopting some of its principles, such as keeping functions as pure as
possible, and keeping changes in state to a minimum, will help improve the
standard of your programming.

There's a lot more you can learn about functional programming. Find out
more by having a look at the numerous articles published on SitePoint or by
signing up for this excellent course on SitePoint Premium.

https://www.sitepoint.com/tag/functional-js/
https://www.sitepoint.com/premium/courses/functional-javascript-programming-2922

Quiz Ninja Project
Our quiz is shaping up nicely, but it's getting a little boring always answering
the questions in the same order. Let’s use the random() function that we
created in this chapter to shake things up a bit. We can use it to make the
questions appear at random, rather than just asking them in the order in which
they appear in the array. We'll do this by mixing up the array of questions
that we select the question from. Because the pop() method always removes
the last element in an array, this will mean the question selected will always
be selected at random.

Our first task is to add the random() function near the top of main.js:

function random(a,b=1) {
// if only 1 argument is provided, we need to swap the values of a and b
if (b === 1) {
 [a,b] = [b,a];
}
return Math.floor((b-a+1) * Math.random()) + a;
}

Now we need to create a shuffle() function. This will take an array and
change the position of each element. Add the following function declaration
underneath the random() function:

function shuffle(array) {
for (let i = array.length; i; i--) {
 let j = random(i)-1;
 [array[i - 1], array[j]] = [array[j], array[i - 1]];
}
}

This function uses a for loop and iterates backwards through the array,
selecting a random element to swap each element with. This ensures that the
array gets completely shuffled.

Now we have our functions, we can use them to select a question at random.

All we need to do is update the game.ask() method with an extra line that
invokes the shuffle() function on the game.questions array before we use
the pop() method to select a question. This can be achieved by updating the
game.ask() function to the following:

ask(name){
 console.log('ask() invoked');
 if(this.questions.length > 0) {
 shuffle(this.questions);
 this.question = this.questions.pop();
 const question = `What is ${this.question.name}'s real name?`;
 view.render(view.question,question);
}

Have a go at playing the game by opening index.html in a browser. The
random() and shuffle() functions have made it a bit more interesting to play
now that the question appears in a random order:

Random questions on Quiz Ninja

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/PjRrGB

Chapter Summary
Functions have built-in properties such as length, but can have custom
properties added.

All functions have call() and apply() methods that can invoke a
function with the value of this bound to an object that is provided as an
argument.

Immediately Invoked Function Expressions or IIFEs are functions that
are enclosed in parentheses and immediately followed by double
parentheses so they’re invoked. They are useful for namespacing
variables and setting default values.

Functions are able to dynamically redefine themselves in the body of the
function, depending on certain conditions.

A recursive function will keep invoking itself until a certain condition is
met.

A callback is a function that’s provided as an argument to another
function.

Callbacks are frequently used in asynchronous programming as part of
the event loop. This means that a program can continue to run in a single
thread while waiting for another task to be completed.

Promises can be used instead of callbacks to deal with multiple
asynchronous actions in sequence. They also provide a nicer mechanism
for handling errors.

Functions that return other functions are known as higher-order
functions.

A closure is the process of keeping a reference to a variable available
outside the scope of the function it was originally defined in.

A generator is created by placing an asterisk character (*) after the
function keyword.

A generator function will return an iterator object that provides a next()
method, which returns the next value in a sequence that is defined in the
generator function.

Functional programming involves breaking processes down into steps
that can be applied as a series of functions.

Pure functions are functions that don't rely on the state of the code they
are called from, have no side-effects, and always give the same result
when given the same arguments (referential transparency).

Currying or partial application is the process of applying one argument
at a time to a function. A new function is returned until all the arguments
have been used.

In the next chapter, we’ll be looking at the principles of object-oriented
programming in JavaScript.

Chapter 12: Object-Oriented
Programming in JavaScript
Object-oriented programming (OOP for short) is a style of programming that
involves separating the code into objects that have properties and methods.
This approach has the benefit of keeping related pieces of code encapsulated
in objects that maintain state throughout the life of the program. The objects
can also be reused or easily modified, as required. JavaScript obviously
supports objects, as we saw in Chapter 5, so it also supports an object-
oriented style of programming. In this chapter, we’ll look at what object-
oriented programming is and how to implement it in JavaScript.

In this chapter, we’ll cover the following topics:

An introduction to OOP

Constructor functions

Using classes in JavaScript

Prototypes

Public and private methods

Inheritance

Creating objects from objects

Adding methods to built-in objects

Mixins

Chaining functions

This and that

Borrowing methods from prototypes

Our project ― create questions in an OOP way

Object-Oriented Programming
Object-oriented programming is often used to model representations of
objects in the real world. There are three main concepts in OOP:
encapsulation, polymorphism and inheritance. I’m going to use my juicer to
illustrate how each of these concepts can be applied in a programming
environment, since the juicer can be considered an object. It’s a wonderful
machine that makes fresh juice for me every morning. In many ways, my
juicer can be thought of as an object, as it has properties such as speed and
capacity, and also has methods or actions it can perform, such as juicing,
switching on and switching off.

Encapsulation

When I use my juicer, I put the fruit into the machine, press the 'on' button
and out comes the juice. I haven’t a clue how it does it—only that it makes a
very loud noise! This demonstrates the concept of encapsulation: the inner
workings are kept hidden inside the object and only the essential
functionalities are exposed to the end user, such as the 'on' button. In OOP,
this involves keeping all the programming logic inside an object and making
methods available to implement the functionality, without the outside world
needing to know how it’s done.

Polymorphism

My juicer isn't the only appliance I own that has an 'on' button, although the
way the on button works is slightly different for each appliance. My juicer
also uses the same electrical outlet as other appliances in my kitchen. I can
also place various types of fruit into it and it still juices them. These examples
demonstrate the concept of polymorphism: the same process can be used for
different objects. In OOP, this means various objects can share the same
method, but also have the ability to override shared methods with a more
specific implementation.

Inheritance

I’d really like the next model up from my juicer, as it can deal with more
types of fruit and it’s a bit quieter. Even though it has these extra features,
I’m sure that inside it uses many of the same parts that my juicer has. This
demonstrates the concept of inheritance: taking the features of one object
then adding some new features. In OOP, this means we can take an object
that already exists and inherit all its properties and methods. We can then
improve on its functionality by adding new properties and methods.

Classes

Many object-oriented languages, such as Java and Ruby, are known as class-
based languages. This is because they use a class to define a blueprint for an
object. Objects are then created as an instance of that class, and inherit all the
properties and methods of the class. In my juicer example, the juicer class
would represent the design of the juicer, and each juicer that’s made on the
production line would be instances of that class.

JavaScript didn't have classes before ES6, and used the concept of using
actual objects as the blueprint for creating more objects. This is known as a
prototype-based language. In the juicer example, this might involve building
an actual prototype juicer then using this prototype as the basis for making all
the other juicers. The juicers based on the prototype would be able to do
everything the prototype could do, with some being able to do even more.
Even though ES6 now supports classes, it still uses this prototypal inheritance
model in the background.

Constructor Functions
In the objects chapter earlier in the book, we saw it was possible to create
new objects using the object literal notation. At the end of the chapter we
created a dice object:

const dice = {
sides: 6,
roll() {
 return Math.floor(this.sides * Math.random() + 1)
}
}

An alternative way to create objects is to use a constructor function.

This is a function that defines the properties and methods of an object. Here
is the dice example rewritten as a constructor function:

const Dice = function(sides=6){
this.sides = sides;
this.roll = function() {
 return Math.floor(this.sides * Math.random() + 1)
}
}

The keyword this is used to represent the object that will be returned by the
constructor function. In the previous example, we use it to set the sides
property to the argument that is provided to the constructor function, or 6, if
no argument is provided. It also adds a method called roll(), which returns a
random number from 1 up to the number of sides the dice has.

We can now create an instance of the dice constructor function using the new
operator.

const redDice = new Dice();
<< Dice { sides: 6, roll: [Function] }

When Parentheses Aren’t Required

The parentheses are not required when instantiating a new object using a
constructor function. The following code would also achieve the same result:

const redDice = new Dice;

The parentheses are required, however, if any default arguments need to be
provided.

For example, if we want to create another Dice object with four sides, we
would have to add 4 as an argument, like so:

const whiteDice = new Dice(4);

This returns an object that was assigned to the variable redDice, which is
said to be an instance of the Dice constructor function. We can confirm this
using the instanceof operator:

redDice instanceof Dice
<< true

Each new object that’s created using this function will inherit the properties
and methods defined in the function. This means that redDice will have a
sides property and roll() method:

redDice.sides
<< 6

redDice.roll()
<< 4

Built-In Constructor Functions

JavaScript contains a number of built-in constructor functions such as
Object, Array, and Function that can be used to create objects, arrays and

functions instead of literals.

The easiest way to create a new object is to use the literal syntax:

const literalObject = {};
<< {}

It is also possible to use the Object constructor function:

constructedObject = new Object();
<< {}

A literal is still considered to be an instance of the Object constructor:

literalObject instanceof Object;
<< true

Similarly, the easiest way to create an array is to use the literal syntax, like
so:

const literalArray = [1,2,3];
<< [1, 2, 3]

But an alternative is to use the Array constructor function:

constructedArray = new Array(1,2,3);
<< [1, 2, 3]

Array constructor functions exhibit some strange behavior regarding the
arguments supplied, however. If only one argument is given, it doesn’t create
an array with that argument as the first element, as you might expect. It sets
the array’s length property instead, and returns an array full of undefined!

new Array(5); // you might expect [5]
<< [undefined, undefined, undefined, undefined, undefined]

This results in an error being thrown if a floating point decimal number is

provided as an argument, because the length of an array must be an integer:

new Array(2.5);
<< RangeError: Invalid array length

This behavior is another reason why it’s recommended to always use literals
to create arrays.

ES6 Class Declarations

Before ES6, constructor functions were the only way of achieving class-like
behavior in JavaScript.

ES6 introduced the new class declaration syntax that does exactly the same
thing as a constructor function, but looks much similar to writing a class in a
class-based programming language. Here is the dice example again, using a
class declaration:

class Dice {
 constructor(sides=6) {
 this.sides = sides;
 }

 roll() {
 return Math.floor(this.sides * Math.random() + 1)
 }
}

Capitalizing Constructor Functions

By convention, the names of constructor functions or class declarations are
capitalized, which is the convention used for classes in class-based
programming languages.

To create an instance of the Dice class, the new operator is again used:

const blueDice = new Dice(20);
<< Dice { sides: 20 }

The variable blueDice now contains an instance of the Dice class and
behaves in exactly the same way as the redDice object:

blueDice instanceof Dice
<< true

blueDice.sides
<< 20

blueDice.roll()
<< 13

The class declaration syntax works in exactly the same way as the constructor
function syntax, because it’s actually just syntactic sugar that is implemented
in the same way in the background.

The ES6 class declarations are preferable to the constructor function syntax
because they are more succinct, easier to read and all code in a class
definition is implicitly in strict mode, so doesn't need the 'use strict'
statement. Using ES6 class declarations also avoids a number of pitfalls
associated with constructor functions. For example, an error is thrown when
trying to call a class constructor without using the new operator, whereas
doing the same thing with a constructor function can cause a lot of problems
that are hard to track down:

// Using constructor function - noDice is just set to undefined without any warning
const noDice = Dice();
noDice
<< undefined

// Using class - an error is thrown
const noDice = Dice();
<< TypeError: Class constructor Dice cannot be invoked without 'new'

You can read more about ES6 Classes in this article on SitePoint.

The Constructor Property

https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/

All objects have a constructor property that returns the constructor function
that created it:

blueDice.constructor
<< [Function: Dice]

When an object literal is used to create a new object, we can see that in the
background, the Object constructor function is being used:

const literalObject = {};
<< {}
literalObject.constructor
<< [Function: Object]

We can use the constructor property to instantiate a copy of an object,
without having to reference the actual constructor function or class
declaration directly. For example, if we wanted to make another copy of the
redDice object, but if the name of its constructor was unknown, we could use
the following:

const greenDice = new redDice.constructor(10);

greenDice instanceOf Dice
<< true

Static Methods
The static keyword can be used in class declarations to create a static
method. These are sometimes called class methods in other programming
languages. A static method is called by the class directly rather than by
instances of the class.

For example, the Dice class could have a method

class Dice {
 constructor(sides=6) {
 this.sides = sides;
 }

 roll() {
 return Math.floor(this.sides * Math.random() + 1)
 }

 static description() {
 return 'A way of choosing random numbers'
 }
}

This method is called from the Dice class like so:

Dice.description()
<< 'A way of choosing random numbers'

Static methods are not available to instances of the class. So, in our example,
the instances of Dice such as redDice and blueDice cannot call the static
description() method:

redDice.description
<< TypeError: red.description is not a function

Prototypal Inheritance
JavaScript uses a prototypal inheritance model. This means that every class
has a prototype property that is shared by every instance of the class. So any
properties or methods of a class’s prototype can be accessed by every object
instantiated by that class.

To see how this works, let’s create a class for creating ninja turtles:

class Turtle {
constructor(name) {
 this.name = name;
 this.weapon = 'hands';
 }
sayHi() {
 return `Hi dude, my name is ${this.name}`;
}
attack(){
return `Feel the power of my ${this.weapon}!`;
}
}

This can then be used to create a new turtle instance:

const leo = new Turtle('Leonardo');
<< Turtle { name: 'Leonardo' }

The variable leo points to an instance of the Turtle class. It has a name
property and a sayHi() method that references the name property:

leo.name;
<< 'Leonardo'

leo.sayHi();
<< 'Hi dude, my name is Leonardo'

The Prototype Property

When creating a class, you would normally add any default properties and
methods to the class declaration. But what if you want to augment the class
with extra methods and properties after it has been created? It turns out that
you can still do this using the prototype property of the class. This is
particularly useful if you don't have access to the class declaration, but still
want to add properties and methods to the class.

All classes and constructor functions have a prototype property that returns
an object:

Turtle.prototype;
<< Turtle {}

All instances of the the Turtle class share all the properties and methods of
its prototype. This means they can call any methods of the prototype and
access any of its properties. Since the prototype is just an object, we can add
new properties by assignment:

Turtle.prototype.weapon = 'Hands';
<< 'Hands'

We can also add a method to the prototype in a similar way:

Turtle.prototype.attack = function(){
return `Feel the power of my ${this.weapon}!`;
}
<< [Function]

Now if we create a new Turtle instance, we can see that it inherits the
weapon property and attack() method from the Turtle.prototype object, as
well as receiving the name property and sayHi() method from the class
declaration:

const raph = new Turtle('Raphael');

raph.name
<< 'Raphael'

raph.sayHi()

<< 'Hi dude, my name is Raphael'

raph.weapon
<< 'Hands'

raph.attack()
<< 'Feel the power of my Hands!'

Notice that there’s a reference to this.weapon in the prototype attack()
method, and when the instance calls the attack() method, it uses the
instance’s weapon property. This is because this in the prototype always
refers to the instance that actually calls the method.

Finding Out the Prototype

There are a number of ways to find the prototype of an object. One way is to
go via the constructor function’s prototype property:

raph.constructor.prototype;
<< Turtle { attack: [Function], weapon: 'Hands' }

Another way is to use the Object.getPrototypeOf() method, which takes
the object as a parameter:

Object.getPrototypeOf(raph);
<< Turtle { attack: [Function], weapon: 'Hands' }

Many JavaScript engines also support the non-standard __proto__ property.
This is known as dunder proto, which is short for 'double underscore proto':

raph.__proto__
<< Turtle { attack: [Function], weapon: 'Hands' }

The __proto__ property was formalized in ES6 because it was already
implemented in most browsers, and many JavaScript libraries already used it.
It is not considered part of the official specification, and it’s recommended
that getPrototypeOf() is used instead.

The __proto__ property can also be used to set the prototype of an object by
assignment, but its use has been deprecated in favor of the
setPrototypeOf() method.

Every object also has a isPrototypeOf() method that returns a boolean to
check if it’s the prototype of an instance:

Turtle.prototype.isPrototypeOf(raph)
<< true

Own Properties and Prototype Properties

In the previous example, the object raph had a name property that it inherited
from the class declaration, and a weapon property that it inherited from the
prototype property. The object raph has access to both these properties, but
the name property is considered to be its own property, while the weapon
property is inherited from the prototype. Every object has a
hasOwnProperty() method that can be used to check if a method is its own
property, or is inherited from the prototype:

raph.hasOwnProperty('name');
<< true

raph.hasOwnProperty('weapon');
<< false

So what’s the difference between an object's own properties and prototype
properties? Prototype properties are shared by every instance of the Turtle
class. This means they’ll all have a weapon property, and it will always be the
same value. If we create another instance of the Turtle class, we’ll see that it
also inherits a weapon property that has the same value of 'Hands':

const don = new Turtle('Donatello');
<< Turtle { name: 'Donatello' }

don.weapon;
<< 'Hands'

Every time an instance of the Turtle class queries the weapon property, it
will return 'Hands'. This value is the same for all the instances and only exists
in one place ― as a property of the prototype. This means that it only exists
in memory in one place, which is more efficient than each instance having its
own value. This is particularly useful for any properties that are the same.

The Prototype Is Live!

The prototype object is live, so if a new property or method is added to the
prototype, any instances of its class will inherit the new properties and
methods automatically, even if that instance has already been created. For
example, the raph object has a weapon property and attack() method that
are inherited from Turtle.prototype. But the leo object that was created
before we added these to the prototype will also have access to them:

leo.weapon;
<< 'Hands'

leo.attack();
<< 'Feel the power of my Hands!'

If we now change the value of the prototype’s weapon property, this will be
reflected in all instances of the Turtle class:

Turtle.prototype.weapon = 'Feet';
<< 'Feet'

leo.attack();
<< 'Feel the power of my Feet!'

raph.attack();
<< 'Feel the power of my Feet!'

don.attack();
<< 'Feel the power of my Feet!'

Overwriting a Prototype

It is not possible to overwrite the prototype by assigning it to a new object
literal if class declarations are used:

Turtle.prototype = {}
<< {}

Even though it looks like the prototype has been reassigned to an empty
object literal, we can see see it hasn't actually changed:

Turtle.prototype
<< Turtle { attack: [Function], weapon: 'Feet' }

It is possible to do this if constructor functions are used, and it can cause a lot
of headaches if you accidentally redefine the prototype. This is because any
instances that have already been created will retain the properties and
methods of the old prototype, but will not receive any of the new properties
and methods that are subsequently added to the redefined prototype.

This is another reason why it’s recommended to use class declarations instead
of constructor functions.

Overwriting Prototype Properties

An object instance can overwrite any properties or methods inherited from its
prototype by simply assigning a new value to them. For example, we can give
our turtles their own weapon properties:

leo.weapon = 'Katana Blades';
<< 'Katana Blades';

raph.weapon = 'Sai';
<< 'Sai'

don.weapon = 'Bo Staff';
<< 'Bo Staff'

These properties will now become an 'own property' of the instance object:

leo
<< Turtle { name: 'Leonardo', weapon: 'Katana Blades' }

Any own properties will take precedence over the same prototype property
when used in methods:

leo.attack();
<< 'Feel the power of my Katana Blades!'

When a property or method is called, the JavaScript engine will check to see
if an object has its own property or method. If it does, it will use that one;
otherwise, it will continue up the prototype chain until it finds a match or
reaches the top of the chain.

What Should the Prototype Be Used For?

The prototype can be used to add any new properties and methods after the
class has been declared. It should be used to define any properties that will
remain the same for every instance of the class. The weapon example was
unsuitable because all the turtles use a different weapon (we just used it in the
example above to demonstrate overwriting). They do, however, like the same
food — pizza! This makes a good candidate for a prototype property, if it
wasn't included in the original class declaration:

Turtle.prototype.food = 'Pizza';

Methods are likely to be the same for all instances of a constructor, so it's fine
to add methods to the prototype:

Turtle.prototype.eat = function() {
return 'Mmm, this ${this.food} tastes great!';
}

Use With Care When Setting Default Values

Be careful when using the prototype to set default values. They are shallow

(there’s more about shallow and deep copies later in the chapter). Any
changes to an array or object made by an instance will be reflected in the
prototype, and therefore shared between all instances.

A golden rule to remember is: Never use arrays or objects as a default value
in prototype.

This is not a problem if arrays or objects are set as default values from within
the constructor function in the class declaration.

To summarize, the following points should be considered when using classes
and prototypes to create instances:

Create a class declaration that deals with any initialization, shared
properties and methods.

Any extra methods and properties that need to be augmented to the class
declaration after it’s been defined can be added to the prototype. These
will be added to all instances, even those that have already been created.

Add any properties or methods that are individual to a particular
instance can be augmented using assignment to that object (a mixin
could be used to add multiple properties at once, as we’ll see later).

Be careful when overwriting the prototype completely ― the constructor
class needs to be reset.

To demonstrate, let’s create another Turtle instance. Use the class
constructor to initialize an instance:

const mike = new Turtle('Michelangelo');

Verify that the new instance has inherited properties and methods from the
prototype:

mike.eat();
<< 'Mmm, this Pizza tastes great!'

Augment the instance with its own individual weapon property:

mike.weapon = 'Nunchakus';
<< 'Nunchuks'

mike.attack();
<< 'Feel the power of my Nunchakus!'

Totally awesome!

Public and Private Methods
By default, an object’s methods are public in JavaScript. Methods and
properties are said to be public because they can be queried directly and
changed by assignment. The dynamic nature of the language means that an
object’s properties and methods can be changed after it has been created.

In our Ninja Turtle example, the name and weapon properties are said to be
public, as can be seen if we query their value:

raph.weapon
<< 'Sai'

This means they can also be changed to any value, using assignment:

raph.weapon = 3;
<< 3

This is something you may want to avoid if your objects are public facing ―
giving users or external services too much access to properties and methods
could be a recipe for disaster!

Fortunately, we can use the concept of variable scope to keep some properties
and methods private inside of a class declaration. This will prevent them from
being accessed or changed. Instead, we will provide a getter method to return
the values of any private properties.

In the example that follows, the Turtle() class has been modified to include
a private _color property (some of the other properties and methods have
also been removed for clarity):

class Turtle {
 constructor(name,color) {
 this.name = name;
 let _color = color;
 this.setColor = color => { return _color = color; }
 this.getColor = () => _color;

 }
}

The _color property is created as a variable inside the scope of the
constructor function inside the class declaration. This makes it impossible to
access outside of this scope. The getColor() and setColor() methods are
known as getter and setter methods and they form a closure over this variable
and provide controlled access to the property instead:

raph = new Turtle('Raphael','Red');
<< Turtle { name: 'Raphael', setColor: [Function], getColor: [Function] }

raph.getColor();
<< 'Red'

raph.setColor(4);
<< 4

In this example, things don't work much differently than before, except
functions are now being used to access and change the private properties. The
big change, however, is that now we have full control over the getter and
setter methods. This means that any private properties can only be changed in
a controlled way, so we can stop certain assignments from being made by
screening the data before any changes are made to a private property. For
example, we could insist that the color property is a string:

this.setColor = (color) => {
if(typeof color === 'string'){
 return _color = color;
 } else {
 throw new Error('Color must be a string');
 }
}

raph.setColor(4);
<< Error: Color must be a string

Inheritance
The examples we’ve seen so far have all demonstrated inheritance by
inheriting properties and methods from the prototype. But the prototype is
just another object, so it also has its own prototype, which in turn has its own
prototype... and so on, creating a chain of inheritance.

The Prototype Chain

We can see an example of a prototype chain by looking at the prototype of
the raph instance of the Turtle class that we created in the last section, using
the Object.getPrototypeOf() method:

Object.getPrototypeOf(raph)
<< Turtle {}

We can peer further down the prototype chain, but calling the
Object.getPrototypeOf() method recursively. This shows us that the
prototype of the prototype is an apparently empty object literal, although it's
actually an instance of the built-in Object() constructor function (more about
this in the next section):

Object.getPrototypeOf(Object.getPrototypeOf(raph))
<< {}

If we try find the next prototype, we receive null:

Object.getPrototypeOf(Object.getPrototypeOf(Object.getPrototypeOf(raph)))
<< null

This is the end of the prototype chain for our Turtle instance, and shows that
all prototype chains end at the Object() constructor function. This can be
seen in the diagram below:

The prototype chain

The Object Constructor
As we saw in the last example, all objects ultimately inherit from the
prototype of the Object() constructor function.

When an object calls a method, the JavaScript engine will check to see if the
object has that method. If it doesn’t, it will check if the object’s prototype has
the method. If not, it will check whether the prototype’s prototype has it. This
continues all the way up the prototype chain, until it reaches the prototype of
the Object() constructor function, from which all objects in JavaScript
inherit. If the prototype of Object() is without the method, an error will be
returned saying the object doesn’t exist:

raph.makePizza();
<< TypeError: raph.makePizza is not a function

But in the prototype chain example, Object.prototype was displayed as an
empty object, so it has no methods — right? Er, actually, that’s not the case.

The prototype of the Object constructor function has a large number of
methods that are inherited by all objects. The reason why the prototype
appears as an empty object literal is because all of its methods are not
enumerable.

Enumerable Properties

Properties of objects in JavaScript are said to be enumerable or non-
enumerable. If they aren't enumerable, this means they will not show up
when a for-in loop is used to loop through an object’s properties and
methods.

There is a method called propertyIsEnumerable() that every object has
(because it’s a method of Object.prototype) that can be used to check if a
property is enumerable. We can see in the following example that the eat()
method we created earlier is enumerable (in fact, all properties and methods

that are created by assignment are enumerable):

Turtle.prototype.propertyIsEnumerable('eat');
<< true

All objects inherit a toString() method from Object.prototype, but it’s not
enumerable, so it won’t show up in any objects:

Object.prototype.propertyIsEnumerable('toString');
<< false

In fact, the propertyIsEnumerable() method can be used to show that it
isn’t, itself, enumerable:

Object.prototype.propertyIsEnumerable('propertyIsEnumerable');
<< false

Good practice is for all built-in methods to be non-enumerable, and any user-
defined methods to be made enumerable. This is so all the built-in methods
don’t keep showing up when looking at an object’s methods, but user-defined
methods are easy to find.

Inheritance Using extends

A class can inherit from another class using the extends keyword in a class
declaration.

For example, say we decided to start again with our Turtle class as:

class Turtle {
constructor(name) {
 this.name = name;
 }
sayHi() {
 return `Hi dude, my name is ${this.name}`;
}

swim() {
 return `${this.name} paddles in the water`;

}
}

This class declaration is similar to before, and defines properties and methods
for a normal turtle. In our previous example, we then started adding more
specific properties such as weapons that don't really apply to normal turtles,
they are for ninja turtles. Instead of polluting the Turtle class with these
properties, it would be a good idea to create a sub-class or child class of the
Turtle class called ninjaTurtle. This is created in a similar fashion, using a
class declaration, but notice the use of the extends keyword:

class NinjaTurtle extends Turtle {
constructor(name) {
 super(name);
 this.weapon = 'hands';
}
attack() { return `Feel the power of my ${this.weapon}!` }
}

Inside the child class declaration, the keyword super refers to the parent
class, and can be used to access any properties and call any methods of the
parent class. In the example above we use it to call the constructor function of
the Turtle class.

Polymorphism
The concept of polymorphism means that different objects can have the same
method, but implement it in different ways. The Object.prototype object
has a toString() method that is shared by all objects. This means every
object created in JavaScript will have a toString() method. Polymorphism
means that objects are able to override this method with a more specific
implementation. So although every object has a toString() method, the way
it’s implemented can vary between different objects. For example, calling it
on an array object will return each value in a comma-separated string:

[1,2,3].toString()
<< '1,2,3'

Calling it on a primitive number will return a string containing that number:

2..toString; // remember 2 dot operators for integers!
<< '2'

Numbers, Strings, and Booleans

The number, string, and boolean primitive types that we met way back in
Chapter 2 have their own corresponding constructor functions: Number,
String, and Boolean respectively.

Rather bizarrely, though, these constructors don’t produce primitive values:

new Number(2); // the return value looks like a primitive
<< 2;

typeof Number(2); // but it's actually an object!
<< "object"

Similarly, primitive values are not instances of these constructor functions:

2 instanceof Number;
<< false

In fact, the two things are not strictly equal:

Number(2) === 2;
<< false

Primitives are actually without their own methods. The primitive wrapper
objects Number, String, and Boolean are used in the background to provide
primitive values with methods. When a method is called on a primitive value,
JavaScript creates a wrapper object for the primitive, which converts it into
an object and then calls the method on the object. This means it’s possible to
call methods on primitives, as we saw in Chapter 2:

2..toExponential();
<< '2e+0'

In the background, something similar to this is happening:

new Number(2).toExponential();
<< '2e+0'

Even custom objects, such as the Turtle objects we created earlier, have a
toString() method:

raph.toString();
<< '[object Object]'

It may convey little information, but it does return a string representation of
the object.

The toString() method is used by a number of built-in functions in the
background. It can be used without fear of causing an error because every
object has the method, as it’s inherited from Object.prototype.

One example of a function that uses the toString() method is the

console.log() method. If an object is given as an argument to this method
that isn’t a string, it will call toString() on that object in the background and
display the return value in the console. For example, the code:

console.log([1,2,3]);
<< [1, 2, 3]

It’s often a useful exercise to override the toString() method using the
prototype, so something more meaningful is displayed. For example, we
could edit the Turtle() class declaration so it includes a more descriptive
toString() method:

class Turtle {
// other turtle methods here

toString() {
 return `A turtle called ${this.name}`;
}
}

raph.toString();
<< 'A turtle called Raphael'

The toString() method is a good demonstration of polymorphism, since
different objects have the same method but implement it differently. The
advantage of this is that higher-level functions are able to call a single
method, even though it may be implemented in various ways.

Adding Methods to Built-in Objects
It is possible to add more methods to the prototype of JavaScript’s built-in
objects — such as Number, String, and Array — to add more functionality.
This practice is known as monkey-patching, but it’s mostly frowned upon in
the JavaScript community, despite it being an incredibly powerful technique
(the Ruby programming community, on the other hand, generally embrace
monkey-patching, so it is quite common in Ruby code examples).

As an example, we can add isOdd() and isEven() methods to the Number
wrapper object’s prototype. These methods will then be available to number
primitives:

Number.prototype.isEven = function() {
return this%2 === 0;
}

Number.prototype.isOdd = function() {
return this%2 === 1;
}

We can try a few more examples to check that these work:

42.isEven();
<< true

765234.isOdd();
<< false

Arrays are powerful objects, but seem to have some basic methods missing in
JavaScript that are found in other languages. We can add a first() and
last() methods that return the first and last items in the array:

Array.prototype.first = function() {
return this[0];
}

Array.prototype.last = function() {

return this[this.length -1];
}

Again, we can check that these work with a couple of examples:

const turtles = ['Leonardo', 'Donatello', Michaelangelo', 'Raphael'];

turtles.first();
<< 'Leonardo'

turtles.last();
<< 'Raphael'

Another useful method that arrays lack is a decent delete() method. There is
the delete operator that we met in Chapter 3, but the way this works is not
very intuitive as it leaves a value of null in place of the item that’s removed.
In that chapter, we saw that it’s possible to remove an item completely from
an array using the splice() method. We can use this to create a new method
called delete() that removes an item from the array at the index provided:

Array.prototype.delete = function(i) {
return self.splice(i,1);
}

A useful example of monkey-patching is to add support for methods that are
part of the specification, but not supported natively in some browsers. An
example is the trim() method, which is a method of String.prototype, so
all strings should inherit it. It removes all whitespace from the beginning and
the end of strings, but unfortunately this method is not implemented in
Internet Explorer version 8 or below. This can be rectified using this polyfill
code that will use the built in String.prototype.trim if it exists, and if it
doesn't, it monkey-patches the String prototype with the function provided
(this is because of lazy evaluation when using the || operator):

String.prototype.trim = String.prototype.trim || function() {
return this.replace(/^\s+|\s+$/,'');
}

' hello '.trim();

<< 'hello'

While monkey-patching built-in objects can seem a good way to add extra or
missing functionality, it can also add unexpected behavior. The current
consensus in the JS community is that this shouldn't be done, so you should
avoid monkey-patching any of the built-in object constructor prototypes,
unless you have a very good reason. Further problems could occur if the
method you’ve added is then implemented natively in the language.

If you do decide to do it, the suggested way is to check for built-in methods
first then try to mimic the built-in functionality from the specification, like in
the trim() polyfill shown above. This can still be problematic, though, if the
specification changes and is different from your implementation. Remember
also that you can never guarantee a method won’t be implemented at some
point in the future.

You can read more about monkey-patching in this article on SitePoint.

An alternative way to avoid causing problems is to use extends to subclass a
built class and create your own class. For example, you could create your
own array class by extending the built in array class, like so:

class myArray extends Array {
constructor(...args){
 super(...args);
 }
delete(i) {
 return this.splice(i,1);
 }
}

To create one of your new array objects, use the new keyword:

const list = new myArray(1,2,3);
 << myArray [1,2,3]

Now we can check that our delete() method works:

list.delete(1);

https://www.sitepoint.com/pragmatic-monkey-patching/

myArray [2]

list
<< myArray [1, 3]

An obvious problem with this is that you would have to use this more
unwieldy syntax instead of array literals, although it has the advantage of not
interfering with the built-in array class at all.

Property Attributes and Descriptors
We’ve already seen that all objects are collections of key-value paired
properties. It turns out that each property has a number of attributes that
provide information about the property. These attributes are stored in a
property descriptor, which is an object that contains values of each attribute.

All object properties have the following attributes stored in a property
descriptor:

value ― This is the value of the property and is undefined by default

writable ― This boolean value shows whether a property can be
changed or not, and is false by default

enumerable ― this boolean value shows whether a property will show
up when the object is displayed in a for in loop, and is false by
default

configurable ― this boolean value shows whether you can delete a
property or change any of its attributes, and is false by default.

So far, we’ve just set properties by assignment, which only allows you to set
the value attribute of the property. It’s also possible to set each of the
property attributes by using a property descriptor. For example, consider the
following object, which has the single property of name:

const me = { name: 'DAZ' };

The property descriptor for the name property might look like this:

{ value: 'DAZ', writable: true, enumerable: true, configurable: true }

We’ve already seen how to add more properties by assignment:

me.age = 21;
<< 21

The disadvantage with this is that it can only be used to set the value
attribute of the property. In this case the value attribute of the age property
has been set (rather optimistically) as 21. But it’s not possible to set the
writable, enumerable, and configurable attributes in this manner. These
will be set as true when an assignment is made. Note that these are the exact
opposite of the default values for those attributes.

Getting and Setting Property Descriptors

The Object() constructor function has a number of methods for getting and
defining property descriptors. We can see these values using the
Object.getOwnPropertyDescriptor() method:

Object.getOwnPropertyDescriptor(me,'name');
<< { value: 'DAZ',
writable: true,
enumerable: true,
configurable: true }

Instead of using assignment, we can add properties to an object using the
Object.defineProperty() method. This provides more fine-grained control
when adding new properties, as it allows each attribute to be set. The first
argument is the object to which you want to add the property, followed by a
property descriptor containing the attributes you want to set. Any attributes
left out will take the default values:

Object.defineProperty(me, 'eyeColor', { value: 'blue', writable: false, enumerable: true });
<< { name: 'DAZ', age: 21, eyeColor: 'blue' }

As you can see, the object is returned with the new property added. The
example above has created a property called eyeColor that is effectively
read-only (because the writable attribute was set to false). If we try to
change it by assignment, it will look as if it has changed:

me.eyeColor = 'purple'
<< 'purple'

But in reality, it hasn’t:

me.eyeColor
<< 'blue'

Getters and Setters

An object property descriptor can have get() and set() methods instead of a
value attribute. All objects must have one or the other, they can't have both.
The get() and set() methods can be used to control how a property is set
using assignment and the value that is returned when a property is queried.

They are particularly useful if a property relies on the value of another
property.

For example, if we add age and retirementAge properties to the me object,
we can then create a yearsToRetirement property that depends on these
properties:

me.age = 21;
me.retirementAge = 65;

Object.defineProperty(me, 'yearsToRetirement',{
get() {
if(this.age > this.retirementAge) { return 0; }
else { return this.retirementAge - this.age; }
},
set(value) {
this.age = this.retirementAge - value;
return value;
}
});

The getter bases the yearsToRetirement property on the age and
retirementAge properties, so returns the relevant value when queried:

me.yearsToRetirement
<< 44

The setter also allows the age to be changed by setting the
yearsToRetirement property:

me.yearsToRetirement = 10;
<< 10

me.age
<< 55

These getter and setter methods allow much more fine-grained control over
how assignment works. It also means we can change the way assignment
works, and use the get() method to return anything we like, regardless of
what value was set using assignment. For example, we could change the
property to the following in a bid to stay forever young:

Object.defineProperty(me, 'age', {
 get() {
 return 21;
 },
 set(value) {
 return value;
 }
});

If we test this out, we can see that querying the property always returns 21,
despite it appearing to be assigned to different values:

me.age = 30;
<< 30

me.age
<< 21

The get and set property descriptors are particularly useful for controlling
the getting and setting of properties in classes.

The next example shows how we can create a Dice class that uses a get
function that will return a description of the number of sides, rather than just
the actual number, and a set function that prohibits a non-positive number of
sides to be set:

class Dice {
constructor(sides=6){
 Object.defineProperty(this, 'sides', {
 get() {
 return `This dice has ${sides} sides`;
 },
 set(value) {
 if(value > 0) {
 sides = value;
 return sides;
 } else {
 throw new Error('The number of sides must be positive');
 }
 }
 });

 this.roll = function() {
 return Math.floor(sides * Math.random() + 1)
 }
 }
}

The number of sides can now be assigned in the usual way, but it will act a
little differently:

const yellowDice = new Dice;

yellowDice.sides
<< "This dice has 6 sides"

yellowDice.sides = 10;
<< 10

yellowDice.sides
<< "This dice has 10 sides"

yellowDice.sides = 0;
<< Error: "The number of sides must be positive"

These getter and setter methods give you much more power in controlling the
way property assignment works. However, they should be used sparingly and
with care, as changing the expected behavior of an assignment has the
potential to cause a lot of confusion.

Creating Objects from Other Objects
It’s possible to avoid using classes altogether, and create new objects based
on another object that acts as a 'blueprint' or prototype instead.

The Object() constructor function has a method called create that can be
used to create a new object that is an exact copy of the object that is provided
as an argument. The object that is provided as the argument acts as the
prototype for the new object.

For example, we can create a Human object that will form the basis for other
Human objects. This is simply created as an object literal:

const Human = {
arms: 2,
legs: 2,
walk() { console.log('Walking'); }
}

This will act as the prototype for all other Human objects. Its name is
capitalized as it acts in a similar way to a class in class-based programming
languages, and it’s only used to create Human objects. It should follow the
same rules for prototypes that we saw earlier ― it will contain all the
methods that Human objects have, as well as any properties that won’t change
very often. In this case, the properties are arms and legs, and the method is
walk().

We can create an instance of Human using the Object.create() method:

const lois = Object.create(Human);

This will create a new object that inherits all the properties and methods from
the Human object:

lois.arms
<< 2

lois.legs
<< 2

lois.walk()
<< Walking

This is because the Human object is the prototype of the lois object:

Human.isPrototypeOf(lois);
<< true

Extra properties can then be added to each instance using assignment:

lois.name = 'Lois Lane';
<< 'Lois Lane'

lois.job = 'Reporter';
<< 'Reporter'

An alternative way is to add a second argument to the Object.create()
method containing properties that are to be added to the new object:

const jimmy = Object.create(Human, { name: { value: 'Jimmy Olsen', enumerable: true }, job: { value: 'Photographer', enumerable: true } });

This method is a little unwieldy as the properties have to be added using
property descriptors, making the syntax awkward and overly verbose. It’s
often easier to create the object, then add each new property one by one. This
can be made quicker using the mixin() function that is covered later.

The Human Object Is a Prototype

The Human object will be the prototype for any objects created using it as an
argument and remember that prototypes are live. This means that any
changes made to the Human object will be reflected in all the objects created
this way.

Object-Based Inheritance

The Human object can also act like a ‘super-class’, and become the prototype
of another object called Superhuman. This will have all the properties and
methods that the Human object has, but with some extra methods:

const Superhuman = Object.create(Human);

Superhuman.change = function() {
return `${this.realName} goes into a phone box and comes out as ${this.name}!`;
};

This method relies on the name and realName properties. It can be a good idea
to create default values in the prototype so the method will still work. In this
case, we can use names that prompt some real data to be added:

Superhuman.name = 'Name Needed';
<< 'Name Needed'

Superhuman.realName = 'Real Name Needed';
<< 'Real Name Needed'

Now we can use the Superhuman object as a prototype to create more objects
based on it:

const superman = Object.create(Superhuman);

Once a Superhuman object has been created, we can overwrite the default
properties by assignment:

superman.name = 'Superman';
superman.realName = 'Clark Kent';

Now we can see that it has inherited the change() method from the
Superhuman object:

superman.change()
 << Clark Kent goes into a phone box and comes out as Superman!

This method of adding custom properties is certainly more long-winded than
using a constructor function, where the initial values are passed as an
argument to the constructor function. This can be fixed by adding a init()
method to the Superhuman object that accepts initialization properties:

Superhuman.init = function(name,realName){
this.name = name;
this.realName = realName;
this.init = undefined; // this line removes the init function, so it can only be called once
return this;
}

Now a new object can easily be created and initialized:

const batman = Object.create(Superhuman);
batman.init('Batman','Bruce Wayne');

batman.change();
<< 'Bruce Wayne goes into a phone box and comes out as Batman!'

A new object can also be created and initialized in a single line by adding the
call to the init() method at the end of the line that creates the object. This is
an example of chaining (a technique that will be explained in more detail
later in the chapter):

const aquaman = Object.create(Superhuman).init('Aquaman', 'Arthur Curry');

aquaman.change();
<< 'Arthur Curry goes into a phone box and comes out as Aquaman!'

Object Prototype Chain

Creating objects from objects will create a prototype chain.

Every time a new object is created using the Object.create() method, the
new object inherits all the properties and methods from the parent object,
which becomes the new object’s prototype. For example, we can see that the

prototype of the superman object is the Superhuman object using this code:

Superhuman.isPrototypeOf(superman);
<< true

And we can also see that the prototype of the Superhuman object is the Human
object:

Human.isPrototypeOf(Superhuman);
<< true

Additionally, we can verify that the Superhuman object is the prototype of any
other objects created using it:

Superhuman.isPrototypeOf(batman);
<< true

The instanceof Operator Won’t Work Here

The instanceof operator will not work when objects have been created this
way. It only works when using constructor functions to create objects.

This produces the chain of inheritance shown in the diagram below:

The prototype chain

Because of this chain, the superman object has all the properties and methods
of the Human and Superhuman objects:

superman.walk();
<< Walking

superman.change();
<< 'Clark Kent goes into a phone box and comes out as Superman!'

Mixins
A mixin is a way of adding properties and methods of some objects to
another object without using inheritance. It allows more complex objects to
be created by ‘mixing’ basic objects together.

Basic mixin functionality is provided by the Object.assign() method. This
will assign to the object provided as the first argument all of the properties
from any objects provided as further arguments:

const a = {};

const b = { name: 'JavaScript' };

Object.assign(a,b);
<< { name: 'JavaScript' }

a.name
<< 'JavaScript'

There is a problem with this method, however. If any of the properties being
mixed in are arrays or nested objects, only a shallow copy is made, which can
cause a variety of issues (see note).

Copying By Reference

When objects are copied by assignment, they are only copied by reference.
This means that another object is not actually created in memory; the new
reference will just point to the old object. Any changes that are made to either
objects will affect both of them. Arrays and functions are objects, so
whenever they’re copied by assignment they will just point to the same
object. And when one changes, they all change. This is known as making a
shallow copy of an object. A deep or hard copy will create a completely new
object that has all the same properties as the old object. The difference is that
when a hard copy is changed, the original remains the same. But when a
shallow copy is changed, the original changes too.

This affects our mixin function when we try to copy a property that is an
array or object, as can be seen in this example:

const a = {};
const b = { numbers: [1,2,3] };

Object.assign(a,b);
<< { numbers: [1,2,3] }

a now has a reference to the numbers property in the b object, rather than its
own copy. Any changes made to either object will affect them both:

b.numbers.push(4);
<< 4

b.numbers
<< [1,2,3,4]

a.numbers // This has also changed
<< [1,2,3,4]

To avoid only a shallow copy, we're going to create our own mixin()
function that will assign all properties of an object to another object as a deep
copy.

This means that every object will inherit this method and be able to use it to
augment itself with the properties and methods from other objects.

function mixin(target,...objects) {
 for (const object of objects) {
 if(typeof object === 'object') {
 for (const key of Object.keys(object)) {
 if (typeof object[key] === 'object') {
 target[key] = Array.isArray(object[key]) ? [] : {};
 mixin(target[key],object[key]);
 } else {
 Object.assign(target,object);
 }
 }
 }
 }
 return target;

}

This code looks very complicated at first glance, so let's dive into it and see
what’s happening.

The first parameter is the object that we are applying the mixin to. The
second parameter uses the rest parameter ...objects to allow multiple
objects to be 'mixed in' at once. These will be available in the function as an
array called objects.

We then use a for-of loop to iterate through each object in this array.

Next we iterate through each property in the object using the Object.keys()
iterable.

The next line is the important part that ensures a deep copy. The problematic
properties that are not deep copied are arrays and objects. Both of these return
'object' when the typeof operator is used. If that is the case, we need to do
something different than just use Object.assign() to copy the property.

If the property is an object, we use a ternary operator to check whether it is an
array or an object using the Array.isArray() method. If it is an array, then
its constructor function will be Array. We create a new array literal,
otherwise we create a new object literal.

Then we apply the mixin method recursively to add each property one at a
time to the literal that was just created, instead of just using assignment.

And finally, the else statement states that Object.assign should still be used
for any properties that are not arrays or objects because a shallow copy will
work fine for those.

Let’s test this to see if it makes a deep copy:

const a = {}, b = { foo: 'bar' }, c = { numbers: [1,2,3] };

mixin(a,b,c);
<< { foo: 'bar', numbers: [1, 2, 3] }

c.numbers.push(4);
<< 4

a.numbers
<< [1, 2, 3]

c.numbers
<< [1, 2, 3, 4]

It works as expected ― all the properties from the objects b and c are mixed
into the object a, and the array numbers is not copied by reference ― any
changes to it only affect the object they are acted on.

The mixin() function is a particularly powerful way of dealing with objects,
and has a number of uses.

Using Mixins to Add Properties

One use for the mixin() function is to add a large number of properties to an
object all at once. For example, we can instantiate a new Superhuman object,
then add all its individual properties in one go, instead of one at a time, as we
did earlier, while avoiding having to use the more verbose property descriptor
notation:

const wonderWoman = Object.create(Superhuman);

Instead of assigning each property, one at a time:

wonderWoman.name = 'Wonder Woman';
<< 'Wonder Woman'

wonderWoman.realName = 'Diana Prince';
<< 'Diana Prince'

We can just mix in an object literal and add both properties at once:

mixin(wonderWoman,{ name: 'Wonder Woman', realName: 'Diana Prince' });

wonderWoman.change()

<< 'Diana Prince goes into a phone box and comes out as Wonder Woman'

Using Mixins to Create a copy() Function

Another use of the mixin() function is to create a copy() method that can be
used to make an exact, deep copy of an object:

function copy(target) {
 const object = Object.create(Object.getPrototypeOf(target));
 mixin(object,target);
 return object;
}

The copy function also takes a parameter called target, which is the object
to be copied. The first thing we do is create a new object based on the
prototype of the object that we are copying.

The mixin() function is then used to add all the properties and methods of
the object to this new object, effectively making an exact copy of itself.

We can now use this function to make exact copies of objects, as
demonstrated below with a clone of the superman object:

const bizarro = copy(superman);

bizarro.name = 'Bizarro';
<< 'Bizarro';

bizarro.realName = 'Subject B-0';
<< 'Subject B-0'

bizarro.change()
<< 'Subject B-0 goes into a phone box and comes out as Bizzaro!'

Note that this is a deep copy and isn’t copied by reference, so any subsequent
changes to the superman or bizarro objects will not affect the other.

Factory Functions

Our copy() function can now be used to create a factory function for
superheroes. A factory function is a function that can be used to return an
object.

Our factory function will be based on the Superhuman object:

function createSuperhuman(...mixins) {
const object = copy(Superhuman);
return mixin(object,...mixins);
}

This uses our copy() function to make a copy of the Superhuman object, then
uses the mixin() function to augment any properties and methods of any
objects that are provided as arguments. These properties and methods
overwrite any default properties of the superHuman object. This allows us to
provide an initialization object literal as an argument:

const hulk = createSuperhuman({name: 'Hulk', realName: 'Bruce Banner'});

hulk.change()
<< 'Bruce Banner goes into a phone box and comes out as Hulk!'

The createSuperhuman() function is an example of a factory function that
can now be used to create as many superhuman objects as required.

You can read more about factory functions in this article on SitePoint.

Using the Mixin Function to Add Modular
Functionality

Inheritance allows us to add functionality to objects by inheriting properties
and methods from other objects. While this is useful, it can be undesirable to
create a chain of inheritance ― sometimes we just want to add properties and
methods without linking the two objects together. The mixin() function lets
us encapsulate properties and methods in an object, then add them to other
objects without the overhead of an inheritance chain being created.

https://www.sitepoint.com/factory-functions-javascript/

One way to think about the difference between prototypal inheritance and
inheritance from mixin objects is to consider whether an object is something
or whether it has something. For example, a tank is a vehicle, so it might
inherit from a Vehicle prototype. The tank also has a gun, so this
functionality could be added using a gun mixin object. This gives us extra
flexibility, since other objects might also use a gun, but not be a vehicle, such
as a soldier object, for example. The soldier object might inherit from a
Human prototype and also have the gun mixin.

We can use this idea to add superpowers to our superhero objects used
earlier. All the superheroes are super human, so they inherited any common
traits from a Superhuman prototype. But they also have superpowers, and
each superhero has a different mix of powers. This is a perfect use case for
mixin objects: we can create some superpower mixin objects that can then be
added to any of our superhero objects as required.

Here are some examples of superpowered mixin objects:

const flight = {
fly() {
 console.log(`Up, up and away! ${this.name} soars through the air!`);
 return this;
}
}

const superSpeed = {
move() {
 console.log(`${this.name} can move faster than a speeding bullet!`);
 return this;
}
}

const xRayVision = {
xray() {
 console.log(`${this.name} can see right through you!`);
 return this;
}
}

Returning this

Each of the mixins above has a return value of this ― you'll see why a littler
later in the chapter!

Now we can add the relevant superpowers to each object in a modular
fashion using the mixin() function:

mixin(superman,flight,superSpeed,xRayVision);

mixin(wonderwoman,flight,superSpeed);

Now we can see they have gained some extra methods:

superman.xray();
<< 'Superman can see right through you!'

wonderWoman.fly();
<< 'Up, up and away! Wonder Woman soars through the air!'

We can also add the mixins as an argument to the createSuperhero()
factory function that we made earlier to create a superhero object with all the
relevant methods from the start:

const flash = createSuperhuman({ name: 'Flash', realName: 'Barry Allen' }, superSpeed);

In one assignment we have created a superhero object that’s inherited all the
default properties from the Superhuman object, has the correct name details
and any relevant powers:

flash.change()
<< 'Barry Allen goes into a phone box and comes out as Flash!'

flash.move()
<< Flash can move faster than a speeding bullet!

Chaining Functions
If a method returns this, its methods can be chained together to form a
sequence of method calls that are called one after the other. For example, the
superman object can call all three of the superpower methods at once:

superman.fly().move().xray();
<< Up, up and away! Superman soars through the air!
 Superman can move faster than a speeding bullet!
 Superman can see right through you!

This is a technique that is commonly used by a number of JavaScript
libraries, most notably jQuery. It helps to make code more concise by
keeping multiple method calls on the same line, and with some clever method
naming it can make the calls read almost like a sentence; the Jest testing
library that we used in Chapter 10 makes use of this.

A big drawback with this technique is that it can make code more difficult to
debug. If an error is reported as occurring on a particular line, there is no way
of knowing which method caused the error, since there are multiple method
calls on that line.

It’s worth keeping in mind that if a method lacks a meaningful return value, it
might as well return this so that chaining is possible.

Binding this
We saw earlier that the value of this points to the object calling a method. It
allows us to create generalized methods that refer to properties specific to a
particular object. Be aware of a certain problem when a function is nested
inside another function, which can often happen when using methods in
objects, especially ones that accept callback functions. The problem is that
the value of this loses its scope, and points to the global object inside a
nested function, as can be seen in this example:

superman.friends = [batman,wonderWoman,aquaman]

superman.findFriends = function(){
this.friends.forEach(function(friend) {
 console.log(`${friend.name} is friends with ${this.name}`);
}
);
}

superman.findFriends()
<< Batman is friends with undefined
 Wonder Woman is friends with undefined
 Aquaman is friends with undefined

The findFriends() method fails to produce the expected output because
this.name is actually referencing the name property of the global window
object, which has the value of undefined.

There are a couple of solutions to this problem.

Use that = this

A common solution is to set the variable that to equal this before the nested
function, and refer to that in the nested function instead of this. Here is the
example again, using that:

superman.findFriends = function(){

const that = this;
this.friends.forEach(function(friend) {
 console.log(`${friend.name} is friends with ${that.name}`);
}
);
}

superman.findFriends();
<< Batman is friends with Superman
 Wonder Woman is friends with Superman
 Aquaman is friends with Superman

You might also see self or _this used to maintain scope in the same way.

Use bind(this)

The bind() method is a method for all functions and is used to set the value
of this in the function. If this is provided as an argument to bind() while
it’s still in scope, any reference to this inside the nested function will be
bound to the object calling the original method:

superman.findFriends = function() {
this.friends.forEach(function(friend) {
 console.log(`${friend.name} is friends with ${this.name}`);
}.bind(this);)
}

superman.findFriends();
<< Batman is friends with Superman
 Wonder Woman is friends with Superman
 Aquaman is friends with Superman

Use for-of Instead Of forEach()

ES6 introduced the for-of syntax for arrays and this does not require a
nested function to be used, so this remains bound to the superman object:

superman.findFriends = function() {
for(const friend of this.friends) {
 console.log(`${friend.name} is friends with ${this.name}`);

};
}

superman.findFriends();
<< Batman is friends with Superman
 Wonder Woman is friends with Superman
 Aquaman is friends with Superman

Use Arrow Functions

Arrow functions were introduced in ES6, and one of the advantages of using
them is that they don't have their own this context, so this remains bound to
the original object making the function call:

superman.findFriends = function() {
this.friends.forEach((friend) => {
 console.log(`${friend.name} is friends with ${this.name}`);
}
);
}

superman.findFriends();
<< Batman is friends with Superman
 Wonder Woman is friends with Superman
 Aquaman is friends with Superman

For this reason, arrow functions should be used when anonymous functions
are required in callbacks (and they require less typing as well!)

Borrowing Methods from Prototypes
It’s possible to borrow methods from objects without having to inherit all
their properties and methods. This is done by making a reference to the
function that you want to borrow (that is, without parentheses so that it isn’t
invoked).

For example, the batman object doesn’t have any of the superpower methods
that the superman object has, but we can create a reference to them that can
then be used by another object. For example, we can create a fly() function
by referencing the superman object’s fly method:

const fly = superman.fly;
 <<

This method can now be called on another object using the call method that
all functions have, and that we learned about in Chapter 11:

fly.call(batman);
<< Up, up and away! Batman soars through the air!

Borrowing Array Methods

One of the most common uses of borrowing methods was to borrow methods
from arrays in ES5. There are many array-like objects in JavaScript, such as
the arguments object that’s available in functions, and the node lists that
many of the DOM methods return. These act like arrays but are missing a lot
of the methods arrays have — often it would be convenient if they had them.

For example, the arguments object can use the slice() method from the
Array constructor’s prototype by assigning a variable that points to it:

const slice = Array.prototype.slice;

This method can then be called on the arguments object using the call()
method:

slice.call(arguments, 1, 3);

The call() method takes the object that the function is to be applied to as its
first argument, then the usual arguments come afterwards.

The method can also be borrowed directly from an array literal, like so:

[].slice.call(arguments, 1, 3)

An array-like object can effectively be turned into an array using the slice()
method with no arguments:

const argumentsArray = Array.prototype.slice.call(arguments);

This will return the arguments object as an array (since the slice() method
returns an array).

Most of these techniques are not needed from ES6 onwards as the
Array.from() method can be used to turn an array-like object into an array:

const argumentsArray = Array.from(arguments);

Alternatively, the spread operator can be used to easily turn an array-like
object into an array like so:

const argumentsArray = [...arguments];

You will still see a lot of the 'array method borrowing' techniques used in the
wild, and transpilers also use these techniques to replicate ES6 functionality.

Composition Over Inheritance
There are a number of benefits to object-oriented programming, but there are
also some problems that come with inheritance.

Earlier in the chapter we created a Turtle class, then extended that class to
create a child class called ninjaTurtle. But should the ninjaTurtle class be
a child of a Turtle class or a Ninja class? Some languages use multiple
inheritance (although JavaScript is not one of them), but this can cause more
problems than it solves.

The 'Gorilla Banana' problem occurs when you need a method from an
object, so you inherit from that object. The name comes from a quote by Joe
Armstrong, the creator of the Erlang programming language:

You wanted a banana but what you got was a gorilla holding the banana
and the entire jungle.

The problem he describes is that if an object requires a banana() method that
belongs to the Gorilla class, you have to inherit the whole class to gain
access to that method. But as well as the method you wanted, the object also
inherits a lot of other properties and methods that are not needed, causing it to
become unnecessarily bloated.

A design pattern that seeks to solve these problems is to use 'composition
over inheritance'. This approach advocates creating small objects that
describe single tasks or behaviors and using them as the building blocks for
more complex objects. This is similar to the idea of pure functions that we
discussed in the last chapter. These single-task objects are easier to test and
maintain and can be combined together, using a mixin function, to create
more complex objects. Composition over inheritance sees objects as building
blocks that go together to make other objects rather than classes that are
monolithic structures layered on top of each other.

If you do decide to use classes, it’s recommended to make them 'skinny' ―
meaning they don't have too many properties and methods. Another good

practice when creating classes is to keep inheritance chains short. If you have
long lines of inheritance, the objects at the end of these chains will usually
end up being bloated with properties and methods they don't need. It also
causes problems if any of the objects in the chain need to change, as these
changes will also affect other objects in the chain. A good rule of thumb is to
only inherit once, keeping the inheritance chain to just two objects makes
unpicking any issues far easier.

If you want to use a particular method from a class, but it has lots of
properties and methods you don't need, then it would be preferable to just
'borrow' the method instead, as we saw in the last section. So, borrow the
banana method from the Gorilla class instead of inheriting the whole Gorilla!

banana = Gorilla.prototype.banana;

An even better approach would be to move the banana() method into a
separate object then add it as a mixin to the Gorilla class, and any other
objects that required it.

The author (and general all-round JavaScript genius) Eric Elliot has a lot to
say about this that is worth reading.

https://medium.com/javascript-scene/the-two-pillars-of-javascript-ee6f3281e7f3

Quiz Ninja Project
We're going to make a big change to the user interface of the quiz game in
this chapter. Instead of using a text input to answer the question, we're going
to provide three options that the player can choose from by simply clicking
on the answer. This involves making the most changes to our code so far, so
let's get started.

The first thing we have to do is update the index.html file to replace the
form with an empty <div> element. This will still have an ID of 'response' as
it will be where we place the buttons that contain the answers for the player
to click on:

<div id='response'></div>

Then we have to remove the form helper methods in the view object. The
view.resetForm() method can be deleted, as well as the call made to it in the
view.setup() method. The following code needs removing:

resetForm(){
 this.response.answer.value = '';
 this.response.answer.focus();
}

// inside setup()

this.resetForm();

We can also remove this line from the end of main.js as we don't need to
hide the form at the start of the game anymore:

view.hide(view.response);

Next we need to update the ask() function to the following:

 ask(name){

 console.log('ask() invoked');
 if(this.questions.length > 2) {
 shuffle(this.questions);
 this.question = this.questions.pop();
 const options = [this.questions[0].realName, this.questions[1].realName, this.question.realName];
 shuffle(options);
 const question = `What is ${this.question.name}'s real name?`;
 view.render(view.question,question);
 view.render(view.response,view.buttons(options));
 }
 else {
 this.gameOver();
 }
}

First of all, this needs to check if the quiz.questions.length property is
greater than 2, rather than 0, as we need at least three options in our array of
questions in order to ask a question and present three possible answers. Then
we shuffle the array of questions and select a question as before.

The next section involves selecting the three options that we will present to
the player. These are placed inside an array called options. Obviously one of
the options has to be the correct answer, which is this.question.realName.
The other two options are simply the first and second elements in the shuffled
array. The fact that we shuffled the array in order to choose a question at
random means that the first two elements will also be different every time we
select the options. These options now need displaying, so we need to use the
view.render() method, although we need to use a helper method called
view.buttons() to create the HTML to be rendered. Add the following code
to the view object:

buttons(array){
 return array.map(value => `<button>${value}</button>`).join('');
}

This method accepts an array as an argument, then uses the map() method to
surround each value in the array with an HTML <button> tag. It then joins
each element of the array together to produce a string of HTML. For
example, if the array ['Clark Kent' , 'Bruce Wayne' , 'Diana Prince'
] was provided as an argument to the function, it would return the following

string of HTML:

<button>Clark Kent</button> <button>Bruce Wayne</button> <button>Dianna Prince</button>

This can then be used as an argument for the view.render() method to
display a list of buttons inside the response <div>.

The answer will be submitted when the player clicks on one of these buttons.
This means we need to change the event listener to fire on click events
instead of the submit event. Change the code at the bottom of main.js to the
following:

view.response.addEventListener('click', (event) => game.check(event), false);

It still calls the game.check() method, but only when the player clicks on a
button inside the 'response' <div>.

We'll also have to update the game.check() method to take into account that
the response from the player comes from clicking on a button rather than
submitting a form. Update the function definition so that it looks like the
following:

check(event){
 console.log('check(event) invoked');
 const response = event.target.textContent;
 const answer = this.question.realName;
 if(response === answer){
 view.render(view.result,'Correct!',{'class':'correct'});
 this.score++;
 view.render(view.score,this.score);
 } else {
 view.render(view.result,`Wrong! The correct answer was ${answer}`,{'class':'wrong'});
 }
 this.ask();
}

We have removed the event.preventDefault() line, as this is no longer
needed as we are not using a form to submit the answer. We also need to
remove the call to view.resetForm() at the end of the method. Since we're

not using a form, we don't need to reset it. The response variable needs to
updated to point to the text contained inside the button element, which is
stored in event.target.textContent. We can then use this to compare the
player's response with the actual answer.

Finally, we should probably update the quiz object that contains the
questions so it includes more questions, as with only three, we can only ask
one round before the game ends:

const quiz = [
 { name: "Superman",realName: "Clark Kent" },
 { name: "Wonder Woman",realName: "Diana Prince" },
 { name: "Batman",realName: "Bruce Wayne" },
 { name: "The Hulk",realName: "Bruce Banner" },
 { name: "Spider-man",realName: "Peter Parker" },
 { name: "Cyclops",realName: "Scott Summers" }
];

You might like to add some extra questions of your own, as it will make the
game more interesting to have more than three options!

Have a go at playing the quiz by opening index.html in your browser.
Providing options that the player can choose from makes the game much
easier to play by not requiring any typing:

Multiple-choice options in the quiz

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/Kqojgj

Chapter Summary
Object-oriented programming (OOP) is a way of programming that uses
objects that encapsulate their own properties and methods.

The main concepts of OOP are encapsulation, polymorphism and
inheritance.

Constructor functions can be used to create instances of objects.

ES6 introduced class declarations that use the class keyword. These can
be used in place of constructor functions.

Inside a constructor function or class declaration, the keyword this
refers to the object returned by the function.

All instances of a class or constructor function inherit all the properties
and methods of its prototype.

The prototype is live, so new properties and methods can be added to
existing instances.

The prototype chain is used to find an available method. If an object
lacks a method, JavaScript will check whether its prototype has the
method. If not, it will check that function’s prototype until it finds the
method or reaches the Object constructor function.

Private properties and methods can be created by defining variables
using const and defining a function inside a constructor function. These
can be made public using getter and setter functions.

Monkey-patching is the process of adding methods to built-in objects by
augmenting their prototypes. This should be done with caution as it can
cause unexpected behavior in the way built-in objects work.

A mixin method can be used to add properties and methods from other

objects without creating an inheritance chain.

Methods can be chained together and called in sequence if they return a
reference to this.

Polymorphism allows objects to override shared methods with a more
specific implementation.

The value of this is not retained inside nested functions, which can
cause errors. This can be worked around by using that = this, using
the bind(this) method and using arrow functions.

Methods can be borrowed from other objects.

Composition over inheritance is a design pattern where objects are
composed from 'building-block' objects, rather than inheriting all their
properties and methods from a parent class.

In the next chapter, we’ll be looking at how to send and receive data using
JavaScript.

Chapter 13: Ajax
Ajax is a technique that allows web pages to communicate asynchronously
with a server, and it dynamically updates web pages without reloading. This
enables data to be sent and received in the background, as well as portions of
a page to be updated in response to user events, while the rest of the program
continues to run.

The use of Ajax revolutionized how websites worked, and ushered in a new
age of web applications. Web pages were no longer static, but dynamic
applications.

In this chapter, we’ll cover the following topics:

Clients and servers

A brief history of Ajax

Communicating with the server using the Fetch API

Receiving data with Ajax

Sending data with Ajax

Form data

Our project ― obtain questions using Ajax

Clients and Servers
The web of computers known as the internet can be separated into two parts:
clients and servers. A client, such as a web browser, will request a resource
(usually a web page) from a server, which processes the request and sends
back a response to the client.

JavaScript was originally designed as a client-side scripting language,
meaning that it ran locally in the browser, adding dynamic features to the
web page that was returned from the server. Ajax allows JavaScript to request
resources from a server on behalf of the client. The resources requested are
usually JSON data or small fragments of text or HTML rather than a whole
web page.

Consequently, a server is required when requesting resources using Ajax.
Typically this involves using a server-side language, such as PHP, Ruby,
Node.js, or .NET to serve the data response following an Ajax request
(usually from a back-end database). To practice using Ajax, you can either set
up a local development server on your own computer, or request the files
from an external website that uses cross-origin resource sharing (CORS) in
order to avoid the same-origin policy that browsers enforce. All the examples
in this chapter can be run without having to set up a local development
server, although it may be worth looking into if you wish to do a lot of Ajax
or server-side development.

Same-Origin Policy

The same-origin policy in browsers blocks all requests from a domain that is
different from the page making the request. This policy is enforced by all
modern browsers and is to stop any malicious JavaScript being run from an
external source. The problem is that the APIs of many websites rely on data
being transferred across domains.

Cross-origin resource sharing (CORS) is a solution to this problem as it
allows resources to be requested from another website outside the original

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

domain. The CORS standard works by using HTTP headers to indicate which
domains can receive data. A website can have the necessary information in its
headers to allow external sites access to its API data. Most modern browsers
support this method and respect the restrictions specified in the headers.

A Brief History of Ajax
When the World Wide Web started, web pages contained static content. Any
changes to the content on the page required a full page reload, often resulting
in the screen going blank while the new page loaded. Remember, this was
back in the 1990s, when dial-up modems were the norm.

In 1999, Microsoft implemented the XMLHTTP ActiveX control in Internet
Explorer 5. It was developed initially for the Outlook web client, and allowed
data to be sent asynchronously in the background using JavaScript. Other
browsers implemented this technique, although it remained a relatively
unknown feature, and was rarely used.

Asynchronous loading techniques started to be noticed when Google
launched Gmail and Google Maps in 2004 and 2005 respectively. These web
applications used asynchronous loading techniques to enhance the user
experience by changing the parts of the page without a full refresh. This gave
them a much snappier and responsive quality that felt more like a desktop
application.

The term 'Ajax' was coined by Jesse James Garrett in 2005 in the article
“Ajax: A New Approach to Web Applications,” where he referred to
techniques being used by Google in its recent web applications. Ajax was a
neat acronym that referred to the different parts of the process being used:
Asynchronous JavaScript and XML:

Asynchronous
When a request for data is sent, the program doesn’t have to stop and
wait for the response. It can carry on running, waiting for an event to
fire when a response is received. By using callbacks to manage this,
programs are able to run in an efficient way, avoiding lag as data is
transferred back and forth.

JavaScript
JavaScript was always considered a 'front-end' language, not used to
communicate with the server. Ajax enabled JavaScript to send requests

https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php

and receive responses from a server, allowing content to be updated in
real time.

XML
When the term Ajax was originally coined, XML documents were often
used to return data. Many different types of data can be sent, but by far
the most commonly used in Ajax nowadays is JSON, which is more
lightweight and easier to parse than XML. (Although it has never really
taken off, the term Ajaj is sometimes used to describe the technique.)
JSON also has the advantage of being natively supported in JavaScript,
so you can deal with JavaScript objects rather than having to parse XML
files using DOM methods.

After the publication of Garrett's article, Ajax use really started to take off.
Now users could see new content on web pages without having to refresh the
page. Shopping baskets could be updated in the background, partial page
content could be loaded seamlessly, and photo galleries could dynamically
load images.

Today, it’s unusual for Ajax not to be used when a partial web page update is
required. The explosion in the use of public APIs also means that Ajax is
used more than ever to transport data back and forth between sites.

APIs

An application programming interface (API) is a collection of methods that
allows external access to another program or service. Many websites allow
controlled access to their data via public APIs. This means that developers
are able to interact with the data and create mashups of third-party services. A
weather site, for example, might have an API that provides methods that
return information about the weather in a given location, such as temperature,
wind speed, and so on. This can then be used to display local weather data on
a web page. The information that’s returned by APIs is often serialized as
JSON. Since the data is being provided by an external site, CORS will have
to be enabled in order to access information from an API. Some services may
also require authentication in order to access their APIs.

http://en.wikipedia.org/wiki/AJAJ

The Fetch API
The XMLHttpRequest object was finally standardized by the WHATWG and
W3C as part of the HTML5 specification, despite it originally being
implemented by Microsoft many years earlier, and already available in most
browsers.

It has since been superseded by the Fetch API, which is currently a living
standard for requesting and sending data asynchronously across a network.
The Fetch API uses promises to avoid callback hell, and also streamlines a
number of concepts that had become cumbersome when using the
XMLHttpRequest object.

We're going to start by taking a look at how the Fetch API works and the
different interfaces that it uses. After this we'll build a page that demonstrates
the ideas we've looked at.

Basic Usage

The Fetch API provides a global fetch() method that only has one
mandatory argument, which is the URL of the resource you wish to fetch. A
very basic example would look something like the following piece of code:

fetch('https://example.com/data')
 .then(// code that handles the response)
 .catch(// code that runs if the server returns an error)

As you can see, the fetch() method returns a promise that resolves to the
response returned from the URL that was provided as an argument. In the
example above, the promise will be resolved when a response is received
from the URL 'https:example.com/data'. Because it’s a promise, we can also
use a catch statement at the end to deal with any errors that may occur.

Response Interface

The Fetch API introduced the Response interface that deals with the object
that’s returned when the promise is fulfilled. Response objects have a number
of properties and methods that allow us to process the response effectively.

For example, each response object has an ok property that checks to see if the
response is successful. This is based on the HTTP status code, which can be
accessed using the status property. This will usually be 200 if the response
was successful, 201 if a resource was created, or 204 when the request is
successful but no content is returned. The ok property will return true if the
status property is between 200 and 299. We need to manually check if this
happens because the promise will only be rejected in the case of a network
error, rather than something like a '404 page not found error', which is still
considered a successful request in terms of the promise.

This means that we can use an if block to check if the request was
successful, and throw an error otherwise:

const url = 'https:example.com/data';

fetch(url)
.then((response) => {
if(response.ok) {
return response;
}
throw Error(response.statusText);
})
.then(response => // do something with response)
.catch(error => console.log('There was an error!'))

Notice that the error thrown refers to the statusText property of the response
object and specifies the status message that corresponds to the code returned,
for example it might be 'Forbidden' for a status code of 403.

Some other properties of the Response object are:

headers – A Headers object (see later section) containing any headers
associated with the response
url – A string containing the URL of response
redirected – A boolean value that specifies if the response is the result

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

of a redirect
type – A string value of 'basic', 'cors', 'error' or 'opaque'. A value of
'basic' is used for a response from the same domain. A value of 'cors'
means the data was received from a valid cross-origin request from a
different domain. A value of 'opaque' is used for a response received
from 'no-cors' request from another domain, which means access to the
data will be severely restricted. A value of 'error' is used when a network
error occurs.

The response object also contains a number of methods that return promises
that can then be chained together.

Redirects

The redirect() method can be used to redirect to another URL. It creates a
new promise that resolves to the response from the redirected URL.

Here is an example of how a redirect response promise would be resolved:

fetch(url)
.then(response => response.redirect(newURL)); // redirects to another URL
.then(// do something else)
.catch(error => console.log('There was an error: ', error))

At the present time, there is no support for the redirect() method in any
browser.

Text Responses

The text() method takes a stream of text from the response, reads it to
completion and then returns a promise that resolves to a USVSting object that
can be treated as a string in JavaScript.

Here is an example of how a text response promise would be resolved:

fetch(url)
.then(response => response.text()); // transforms the text stream into a JavaScript string
.then(text => console.log(text))

.catch(error => console.log('There was an error: ', error))

In this example, once the promise has been resolved, we use the string()
method to return a promise that resolves with a string representation of the
text that was returned. In the next statement, we take the result of the promise
and use console.log() to display the text in the console.

File Responses

The blob() method is used to read a file of raw data, such as an image or a
spreadsheet. Once it has read the whole file, it returns a promise that resolves
with a blob object.

Here is an example of how a file response promise would be resolved:

fetch(url)
.then(response => response.blob()); // transforms the data into a blob object
.then(blob => console.log(blob.type))
.catch(error => console.log('There was an error: ', error))

This example is similar to the text example above, but we use the blob()
method to return a blob object. We then use the type property to log the
MIME-type to log what type of file we have received.

JSON Responses

JSON is probably the most common format for AJAX responses. The json()
method is used to deal with these by transforming a stream of JSON data into
a promise that resolves to a JavaScript object.

Here is an example of how a JSON response promise would be resolved:

fetch(url)
.then(response => response.json()); // transforms the JSON data into a JavaScript object
.then(data => console.log(Object.entries(data)))
.catch(error => console.log('There was an error: ', error))

Again, this is very similar to the earlier examples, except this response
returns some JSON data that is then resolved as a JavaScript object. This
means we can manipulate the object using JavaScript. In the example below,
the Object.entries() method is used to view the key and value pairs in the
returned object.

Creating Response Objects

Although most of the time you will be dealing with a response object that is
returned from a request you make, you can also create your own response
objects using a constructor function:

const response = new Response('Hello!', {
ok: true,
status: 200,
statusText: 'OK',
type: 'cors',
url: '/api'
});

The first argument is the data that is to be returned (for example a text stream,
file or JSON data). The second argument is an object that can be used to
provide values for any of the properties listed above.

These can be useful to use if you are creating an API that needs to send a
response, or if you need to send a dummy response for testing purposes.

Request Interface

We can get more fine-grained control over the request being made by
providing a Request object as an argument. This allows a number of options
to be set about the request.

Request objects are created using the Request() constructor, and include the
following properties:

url – The URL of the requested resource (the only property that is
required).

method – a string that specifies which HTTP method should be used for
the request. By default, this is 'GET'.
headers – This is a Headers object (see later section) that provides
details of the request's headers.
mode – Allows you to specify if CORS is used or not. CORS is enabled
by default.
cache – Allows you to specify how the request will use the browser's
cache. For example, you can force it to request a resource and update the
cache with the result, or you can force it to only look in the cache for the
resource.
credentials – Lets you specify if cookies should be allowed with the
request.
redirect – Specifies what to do if the response returns a redirect.
There’s a choice of three values: 'follow' (the redirect is followed), 'error'
(an error is thrown) or 'manual' (the user has to click on a link to follow
the redirect).

Hypertext Transfer Protocol

The Web is built upon the Hypertext Transfer Protocol, or HTTP. When a
client (usually a browser) makes a request to a server, it contains information
about which HTTP verb to use. HTTP verbs, also known as HTTP methods
are the what HTTP uses to tell the server what type of request is being made,
which then determines the server will deal with the request.

The five most commonly used verbs when dealing with resources on the web
are:

GET requests to retrieve resources

POST requests, usually used to create a resource but can actually
perform any task

PUT requests to upsert, which means insert a resource or update it
entirely

PATCH requests to make partial updates to a resource

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

DELETE requests to delete a resources.

By default, a link in a web page will make a GET request. Forms are also
submitted using a GET request by default, but they will often use a POST
request.

This excellent blog post by Rob Miller explains each of these verbs in more
depth if you're interested in learning more about them.

A constructor function is used to create a new Request object. An example is
shown below:

const request = new Request('https://example.com/data', {
method: 'GET',
mode: 'cors',
redirect: 'follow',
cache: 'no-cache'
});

The url property is the first argument, and is required. The second argument
is an object made up of any of the other properties listed above.

Once the Request object is assigned to a variable, it can then be used as the
parameter of the fetch() method:

fetch(request)
.then(// do something with the response)
.catch(// handle any errors)

Alternatively, you can enter the URL and object directly as arguments of the
fetch() method, without having to create a Request object:

fetch('https://example.com/data', {
 method: 'GET',
 mode: 'cors',
 redirect: 'follow',
 cache: 'no-cache'
})
.then(// do something with the response)
.catch(// handle any errors)

https://robm.me.uk/web-development/2013/09/20/http-verbs.html

Headers Interface

HTTP headers are used to pass on any additional information about a request
or response. Typical information contained in headers includes the file-type
of the resource, cookie information, authentication information and when the
resource was last modified.

The Fetch API introduced a Headers interface, which can be used to create a
Headers object, which can then be added as a property of Request and
Response objects.

A new Headers instance is created using a constructor function, as seen in the
example below:

const headers = new Headers();

The constructor function can be provided with an optional argument
containing any initial header values:

const headers = new Headers({ 'Content-Type': 'text/plain', 'Accept-Charset' : 'utf-8', 'Accept-Encoding':'gzip,deflate' })

A Headers object includes the following properties and methods that can be
used to access information about the headers, as well as edit the header
information.

has() – Can be used to check if the headers object contains the header
provided as an argument.

For example:

headers.has('Content-Type');
<< true

get() - Returns the value of the header provided as an argument

For example:

headers.get('Content-Type');
<< 'text/plain'

set() – Can be used to set a value of an already existing header, or create a
new header with the value provided as an argument if it does not already
exist.

For example:

headers.set('Content-Type', 'application/json');

append() – Adds a new header to the headers object.

For example:

headers.append('Accept-Encoding','gzip,deflate');

delete() – Removes the header provided as an argument.

For example:

headers.delete('Accept-Encoding')

keys(), values() and entries() – Iterators that can be used to iterate over
the headers key, values or entries (key and value pairs).

For example:

for(const entry of headers.entries(){
console.log(entry);
}
<< ['Content-Type', 'application/json']

Putting It All Together

We can use the Headers, Request and Response objects to put together a

typical example that sets up the URL, Request and Headers before calling the
fetch() method:

const url = 'https:example.com/data';
const headers = new Headers({ 'Content-Type': 'text/plain', 'Accept-Charset' : 'utf-8', 'Accept-Encoding':'gzip,deflate' })

const request = (url,{
headers: headers
})

fetch(request)
.then(function(response) {
if(response.ok) {
return response;
}
throw Error(response.statusText);
})
.then(response => // do something with response)
.catch(error => console.log('There was an error!'))

Receiving Information
To demonstrate how to update a web page using Ajax, we’ll need to set up a
demonstration page. Create a file called 'ajax.html' that contains the following
code:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Ajax Example</title>
</head>
<body>
<button id='number'>Number Fact</button>
<button id='chuck'>Chuck Norris Fact</button>
<div id='output'>
 Ajax response will appear here
</div>
<script src='main.js'></script>
</body>

This is a standard HTML5 web page that contains two buttons and a <div>
element. Each button will be used to make a different type of Ajax request.
One will request plain text and the other will request a JSON string from an
external API. The div with an id of 'output' will be where we’ll insert the
response we receive from the Ajax request.

For our Ajax requests, we'll be using a couple of online APIs. The first is
NumbersAPI, which returns facts about random numbers as a text string. The
second is chucknorris.io, which returns a JSON string, containing a random
satirical factoid about everybody's favorite hard man, Chuck Norris.

Not All These "Facts" Are Safe For Work

Some of the 'facts' returned by chucknorris.io can be mildly offensive and use
inappropriate language, so proceed with caution!

http://numbersapi.com/
https://api.chucknorris.io

Now we need a JavaScript file. This should be called main.js and can be
saved in the same directory as the other files. Add the following code to start
with:

const textButton = document.getElementById('number');
const apiButton = document.getElementById('chuck');
const outputDiv = document.getElementById('output');

This assigns each of the buttons in the HTML file to a variable, so we can
refer to them later in the file.

Next, we'll assign some URLs to variables:

const textURL = 'http://numbersapi.com/random';
const apiURL = 'https://api.chucknorris.io/jokes/random';

And finally, we'll assign an event handler to each button. Let's start with the
Number Fact button:

textButton.addEventListener('click', () => {
fetch(textURL)
.then(response => {
outputDiv.innerHTML = 'Waiting for response...';
if(response.ok) {
return response;
}
throw Error(response.statusText);
})
.then(response => response.text())
.then(text => outputDiv.innerText = text)
.catch(error => console.log('There was an error:', error))
},false);

This uses the format we saw earlier to construct a fetch request. This returns a
promise that resolves to a string. We can then place that string inside the
<div> with an id of 'output' by assigning it its innerText property.

A number fact

And now for the Chuck Norris Fact button:

apiButton.addEventListener('click', () => {
fetch(apiURL)
.then(response => {
outputDiv.innerHTML = 'Waiting for response...';
if(response.ok) {
return response;
}
throw Error(response.statusText);
})
.then(response => response.json())
.then(data => outputDiv.innerText = data.value)
.catch(error => console.log('There was an error:', error))

},false);

This is almost identical to the Number example, except the response returns
JSON, so we use the json() method to return a promise that resolves as a
JavaScript object. This object has a value property that contains the Chuck
Norris fact, so we insert it into the <div> with an id of 'output' using
innerText again.

This example shows how easy it is to request data from a server, then insert it
into a web page, although there are some subtle differences depending on
what type of data is returned.

Spinners

In the previous example we displayed a message to say we were waiting for a
response. It is common for sites to use spinners (or egg timers in the old
days!) to indicate that the site is waiting for something to happen. Ajax Load
and Preloaders.net are both good resources for creating a spinner graphic for
your site.

Let’s try this out. Open ajax.html in a browser and try pressing each button.
You should see a similar sight to the screenshot below:

http://www.ajaxload.info/
http://preloaders.net/

A Chuck Norris "Fact"

Sending Information
We can also use Ajax to send information. This can be a variety of formats,
but is usually a JSON string.

To illustrate this, we're going to create a very simple To Do list application
that sends information about a task to a server in JSON format, then receives
a response to confirm that the task has been saved on a server.

Unfortunately, we don't have a database to save our tasks to, so we're going
to have to use a dummy site called JSONPlaceholder. This spoofs the process
of sending JSON data to a server, then receiving JSON data in response. It
has a number of fake APIs that can be used to create fake examples of posts,
comments, albums, photos, todos and users. We'll be using the fake todo API.

To get started, create an HTML document called 'todo.html' that contains the
following code:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>To Do List</title>
</head>
<body>
<form id='todo' action='https://jsonplaceholder.typicode.com/todos' method='POST'>
 <input type='text' name='task' placeholder='Add Task' autofocus required>
 <button type='submit'>Add Task</button>
</form>
<script src='main.js'></script>
</body>
</html>

This is a simple HTML page that contains a form with a text input element
for adding a task, and a button to submit it.

https://jsonplaceholder.typicode.com

A simple To-Do List

Next, we need to create a JavaScript file called main.js and add the
following code:

const form = document.forms['todo'];
form.addEventListener('submit', addTask, false);

function addTask(event) {
event.preventDefault();
const number = form.task.value;
const task = {
 userId: 1,
 title: form.task.value,
 completed: false
}
const data = JSON.stringify(task);
const url = 'https://jsonplaceholder.typicode.com/todos';

const headers = new Headers({
 'Accept': 'application/json',
 'Content-Type': 'application/json'
});

const request = new Request(url,
{
method: 'POST',
header: headers,
body: data
}
)

fetch(request)
.then(response => response.json())
.then(task => console.log(`Task saved with an id of ${task.id}`))
.catch(error => console.log('There was an error:', error))

}

This code creates an event listener that first of all prevents the default
behavior of the form, so it doesn't get submitted when the Add Task button is
clicked. Next it creates a task object with a title property that is taken from
what was entered in the form. It also has a completed property that has a
default value of false. This object is then transformed into a JSON string
using the JSON.stringify method and assigned to the variable data.

After this, we build the Headers and Request objects. Because we are sending
JSON, we need to add headers of 'Accept': 'application/json' and 'Content-
Type': 'application/json'. Because we are sending data, we need to ensure that
the method property of the request object is POST so that a POST request is
used to send the data. The most important property of the request object is
body – this is where the data we want to send is placed. We use the data
variable here, so that JSON is sent to the server.

Then we use the fetch() method to send the request and deal with the
response. This creates a promise that resolves to a JSON object, so we use the
json() method to create another promise that resolves to a JavaScript object.
This object has a single property of id to mimic successfully saving the task
to a database (as this would result in it being assigned an ID by the database).

We can use this to log a message to the console that refers to the id property
that was returned.

If you open up the 'todo.html' file, add a task in the form and then submit it,

you should see a message in the console similar to the one below.

<< Task saved with an id of 201

This fakes the fact that the task has been saved to a database and the relevant
data has been returned. In reality, the data hasn’t been saved, and the ID
property has just been randomly generated for demonstration purposes.

Not Quite A Realistic Example

If this was a real live site that was saving to an actual database, you would
probably expect more data to be returned than just the id, including more
information about the task itself, such as a timestamp of when it was created.

Most forms will have an action attribute that specifies the URL to use if the
form is sent without using Ajax. It will also have a method attribute that will
specify the HTTP verb to use. These methods are available as properties of
the form object, so we could use these properties to create a more generalized
request object, as follows:

const request = new Request(form.action,
{
method: form.method,
header: headers,
body: data
}
)

FormData

The Fetch API includes the FormData interface, which makes it much easier
to submit information in forms using Ajax.

A FormData instance is created using a constructor function:

const data = new FormData();

If a form is passed to this constructor function as an argument, the form data
instance will serialize all the data automatically, ready to be sent using Ajax.
In our last example, we created the task manually based on the data provided
in the form. The FormData interface helps to reduce the amount of code
needed when submitting forms.

We can use this to cut down the amount of code in main.js by changing it to
the following:

const form = document.forms['todo'];

form.addEventListener('submit', addTask, false);

function addTask(event) {
event.preventDefault();
const task = new FormData(form);
const url = `http://echo.jsontest.com/id/1/title/${form.task.value}`;
const headers = new Headers({
 'Accept': 'application/json',
 'Content-Type': 'application/json'
});
const request = new Request(url,
{
method: 'POST',
mode: 'cors',
header: headers,
body: JSON.stringify(task)
}
)

fetch(request)

.then(response => response.json())

.then(data => console.log(`${data.title} saved with an id of ${data.id}`))

.catch(error => console.log('There was an error:', error))

}

In this function, we create a new FormData instance using the FormData()
constructor function and provide the form as an argument. This does all the
hard work of creating the task object for us.

It’s also possible to add data to the form data instance as key-value pairs
using the append() method:

data = new FormData(); // no form provided as an argument creates an empty form data instance

data.append('height', 75);

The FormData interface really comes into its own when a form contains files
to upload. This was a notoriously difficult task in the past, often requiring the
use of Flash or another third-party browser plugin to handle the upload
process. The FormData instance will automatically create the necessary
settings required, and take care of all the hard work if any file uploads are
present in the form.

You can find more information about the FormData interface in this SitePoint
article by Craig Buckler and on the Mozilla Developer Network.

http://www.sitepoint.com/easier-ajax-html5-formdata-interface/
https://developer.mozilla.org/en-US/docs/Web/API/FormData

A Living Standard
The Fetch API is, at the time of writing, what is known as a 'living standard',
which means that the specification is being developed 'in the wild'. This
means that, despite it being available to use, it’s still subject to change as
developers, browser vendors and end-users provide feedback about how it
works. It’s an experimental technology, and new features might get added, or
the syntax and behavior of some properties and methods might change in the
future. Don't let this put you off though – living standards often stay
relatively stable, especially once they are implemented in browser engines.
The latest versions of most browsers already support it (all, except Internet
Explorer, anyway), but you should check the level of support before using it
in production. By using it you are helping to develop future standards. Just
make sure you keep up-to-date with the current specification.

If you don't want to 'live on the edge', you could consider using a library to
take care of Ajax requests. The advantage of this approach is that the library
will take care of any implementation details behind the scenes – it will use
the most up-to-date methods, such as the fetch API, if it's supported, and
fallback on using older methods, if required.

The jQuery library is a good option for this – it has the generic ajax()
method that can be used in a very similar way to the fetch() method. For
example, if you want to get the data from the number API, you would use the
following code:

$.ajax('http://numbersapi.com/random')
.done(text => outputDiv.innerHTML = text);

For more information, see the jQuery documentation.

http://api.jquery.com/jquery.ajax/

Quiz Ninja Project
We can use Ajax to fetch the questions from a server, instead of keeping
them in an object inside our JavaScript file. First of all, we need to remove
the array of objects stored in the quiz variable at the start of the main.js file,
and transfer the information into a separate file. This information has been
saved in the JSON format on SitePoint’s S3 account, and can be found at the
following URL (it also contains lots more questions than the three we’ve
been using so far): http://spbooks.github.io/questions.json

To access this JSON data, use the Fetch API. Add the following code to the
top of file:

const url = 'http://spbooks.github.io/questions.json';

fetch(url)
.then(res => res.json())
.then(quiz => {
 view.start.addEventListener('click', () => game.start(quiz.questions), false);
 view.response.addEventListener('click', (event) => game.check(event), false);
});

First of all we create a variable called url to store a reference to the URL.
Then we use the Fetch API, which returns a promise. If this is successful,
then we use the json() method, which returns the data as a JavaScript object.
If this is successful, then we register the two event handlers that were initially
at the end of the file (these need removing from the end of the file). This
means the 'start' button won't work until the data has finished loading.

Everything else in the file stays the same. Keeping the quiz data in a separate
file and loading it using Ajax is beneficial as it keeps the question data
separate from the actual application logic. It means it’s much easier to edit all
in one place. It also means we could potentially create lots of different JSON
quiz files that could be linked to, enabling a variety of different quizzes to be
played.

Ajaxed Quiz Ninja

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/LLdKby

Chapter Summary
Ajax is a technique for sending and receiving data asynchronously in the
background.

The data can be sent in many forms, but it is usually in JSON.

Ajax can be used for making partial page updates without having to do a
full page reload.

Ajax can be used for communicating with external APIs.

Ajax requests can be made using the Fetch API.

The Response interface allows you to control the response received from
a request or to create your own response objects.

The Request interface allows you to create a request object that contains
information about the request being made, such as the URL and headers.

The Headers interface allows you to create HTTP headers that can be
added to a request or response object.

Requests can retrieve data using a GET request, or send data using a
POST request.

The FormData interface makes it easier to send data from forms.

In the next chapter, we’ll look at some APIs that comprise part of the
HTML5 specification, then learn how to implement them.

Chapter 14: HTML5 APIs
HTML5 is the latest version of the Hypertext Markup Language used to
create web pages. The latest iteration is HTML 5.1, which finally became a
W3C recommendation in November 2016.

HTML5 was for HTML what ES6 was for JavaScript – it added a large
number of new features to the specification. It also went beyond the actual
markup language and brought together a number of related technologies such
as CSS and JavaScript. We’ve already seen in Chapter 8 some of the new
form elements as well as the validation API that has been introduced. In this
chapter, we’ll be looking at some of the other APIs that were made available
in HTML5 and beyond.

In this chapter, we’ll cover the following topics:

The development of HTML5 and the JavaScript APIs

The data- attribute

HTML5 APIs―local storage, geolocation, web workers, and
multimedia

Drawing shapes with canvas

Shims and polyfills ― how to make the most of HTML5 APIs, even
when they’re without browser support

HTML5
The W3C plans to develop future versions of HTML5 much more frequently
than previously, using smaller version increments. HTML 5.1 has already
become the latest standard, and HTML 5.2 is in development. You can read
more about the new features in HTML5.1 and what to expect in HTML 5.2 in
this post on SitePoint.

The HTML5 specification is separated into modules that allow different
features to be developed at different paces then implemented without having
to wait for other features to be completed. It also means that when a
previously unforeseen development occurs, a new module can be created to
cater for it. Modules can be at different stages of maturity, from ideas to full
implementation. A useful site that checks to see if a specific feature can be
used is Can I Use.

You can find out more about the HTML5 standard by reading Jump Start
HTML5 by Tiffany Brown, Kerry Butters, and Sandeep Panda.

https://www.sitepoint.com/whats-new-in-html-5-1/
http://caniuse.com/
https://www.sitepoint.com/premium/books/jump-start-html5

The data- Attribute
The data- attribute is a way of embedding data in a web page using custom
attributes that are ignored by the browser. They’re also private to a page, so
are not intended to be used by an external service – their sole purpose is to be
used by a JavaScript program. This means they’re perfect for adding data that
can be used as a hook that the program utilizes to access information about a
particular element on the page.

The names of these attributes can be decided by the developer, but they must
use the following format:

Start with data-.

Contain only lowercase letters, numbers, hyphens, dots, colons or
underscores.

Include an optional string value.

Examples could be:

data-powers = 'flight superSpeed'
data-rating = '5'
data-dropdown
data-user = 'DAZ'
data-max-length = '32'

The information contained in the attributes can be used to identify particular
elements. For example, all the elements with an attribute of data-dropdown
could be identified as dropdown menu. The values of the attributes can also
be used to filter different elements. For example, we could find all the
elements that have a data-rating value of 3 or more.

Each element has a dataset property that can be used to access any data-
attributes it contains. Here’s an example of some markup:

<div id='hero' data-powers='flight superSpeed'>

Superman
</div>

The data-powers attribute can be accessed using the following code:

const superman = document.getElementById('hero');
const powers = superman.dataset.powers;
<< 'flight superSpeed'

Notice that the data- prefix is dropped. To access the attribute, powers is
used as if it’s a property of the dataset object. If a data- attribute’s name
contains hyphens, they are replaced with camel-case notation, so data-max-
length would be accessed using dataset.maxLength.

Browser Support

The support for the data- attribute is generally very good in modern
browsers. Even Internet Explorer 8 has partial support! Some older browsers
are unable to understand the dataset property, however, but any data-
attribute can be found using the standard getAttribute method. So the
previous code could be replaced with the following if you still need to
support older browsers:

const powers = superman.getAttribute('data-powers');

The restriction of only using a string value can be overcome by encoding any
JavaScript object or value as a JSON string, then performing type-conversion
later, as required. For example, the value of data-max-length will return a
string, but can easily be converted into a number using the following code:

const maxLength = Number(element.dataset.maxLength);

Data attributes provide a convenient way of adding data directly into the
HTML markup, enabling a richer user experience. More information about
data attributes can be found in this post on SitePoint.

https://www.sitepoint.com/how-why-use-html5-custom-data-attributes/

HTML5 APIs
The HTML5 specification contains a number of APIs that help to gain access
to hardware, such as cameras, batteries, geolocation, and the graphics card.
Hardware evolves quickly, and APIs are frequently introduced to give
developers access, and control new features that appear in the latest devices.

In this section, we’ll look at some of the more popular APIs that are already
supported in most modern browsers. However, due to the ever-changing
nature of most APIs, it’s still best practice to use feature detection before
using any of the API methods.

HTML5 Web Storage

The Web Storage API provides a key-value store on the client’s computer
that is similar to using cookies but has fewer restrictions, more storage
capacity, and is generally easier to use. This makes it perfect for storing
information about users, as well as storing application-specific information
that can then be used during future sessions.

The Web Storage API has some crucial differences with cookies:

Information stored is not shared with the server on every request.

Information is available in multiple windows of the browser (but only if
the domain is the same).

Storage capacity limit is much larger than the 4KB limit for cookies
(there is no actual limit in the specification, but most browsers have a
limit set at 5GB per domain).

Any data stored does not automatically expire as it does with cookies.
This potentially makes cookies a better choice for something like
showing a popup once a day.

If a browser supports the Web Storage API, the window object will have a
property called localStorage, which is a native object with a number of
properties and methods used to store data. The information is saved in the
form of key-value pairs, and the values can only be strings. There is also a
sessionStorage object that works in the same way, although the data is only
saved for the current session.

Here is a basic example of storing information. To save a value locally, use:

localStorage.setItem('name', 'Walter White');

To illustrate that it’s being saved locally, try completely closing your
browser, reopening it, and entering the following code in the console:

localStorage.getItem('name');
<< "Walter White"

Rather than using the getItem() and setItem() methods, assignment can be
used instead. In the next example, we simply reference localStorage.name
as if it was a variable to change its value:

localStorage.name = 'Heisenberg';

console.log(localStorage.name);
<< "Heisenberg";

To remove an entry from local storage, use the removeItem method:

localStorage.removeItem('name');

Alternatively, this can be done using the delete operator:

delete localStorage.name;

To completely remove everything stored in local storage, use the clear()
method:

localStorage.clear();

Every time a value is saved to local storage, a storage event is fired. Note
that this event is only fired on any other windows or tabs from the same
domain, and only if the value of the item being saved changes. The event
object sent by the event listener to the callback has a number of properties
that provide information about the updated item:

key tells us the key of the item that changed

newValue tells us the new value to which it has been changed

oldValue tells us the previous value before it was changed

storageArea tells us if it is stored in local or session storage.

The code following will add an event listener that logs information about any
changes to the Web Storage (note that this example won't work locally as it
needs to be running on a server):

addEventListener('storage', (event) => {
console.log(`The ${event.key} was updated from ${event.oldValue} to ${event.newValue} and saved in
${event.storageArea}`) }, false);

The fact that only strings can be saved might seem like a restriction at first,
but by using JSON, we can store any JavaScript object in local storage. For
example, we could save the hero object that we created using a form in
Chapter 8 by adding the following line of code to the end of the makeHero()
function:

localStorage.setItem('superman', JSON.stringify(hero);

This will save the hero object as a JSON string using the string 'superman' as
the key. To retrieve the superhero as a JavaScript object:

superman = JSON.parse(localStorage.getItem('superman'));

The Web Storage API provides a useful way of storing various types of
information on a user’s computer without the restriction of cookies. More
information about it can be found in this article on SitePoint.

Geolocation

The Geolocation API is used to obtain the geographical position of the
device. This means it can be used to find the user’s exact location, then link
to nearby places or measure the speed at which the user is moving. This
information can then be used to filter data based on the user's location or
speed and direction of travel. An example of this might be a search function
that returns results based on your location. Because of privacy concerns,
permission to use this has to be granted by the user first.

If geolocation is available, it will be a property of the navigator object that
we met in Chapter 9. This property has a method called
getCurrentPosition() that will return a position object to a specified
callback function, called youAreHere() in the example:

navigator.geolocation.getCurrentPosition(youAreHere);

The position object passed to the youAreHere() function has a coords
property with a latitude and longitude property, which together give the
coordinates of the device. These coordinates can then be used in conjunction
with other applications or web services (such as a mapping service) to obtain
the user’s exact location. In this example, we simply show an alert dialog that
displays the user’s coordinates:

function youAreHere(position) {
console.log(`Latitude: ${position.coords.latitude}, Longitude: ${position.coords.longitude}`);
}

The position object has several other properties that can be used to find out
information about the location and movement of the device:

position.speed property returns the ground speed of the device in
meters per second.

http://www.sitepoint.com/an-overview-of-the-web-storage-api/

position.altitude property returns an estimate of the device’s altitude
in meters above the WGS84 ellipsoid, which is a standard measurement
for the center of the Earth.

position.heading property returns the direction the device is moving
in. This is measured as a bearing in degrees, clockwise from North.

position.timestamp property returns the time that the position
information was recorded.

The position object also has properties that calculate the accuracy of the
measurements. These can be useful, as sometimes you only need to know the
town or city users are in, while at other times you may need their exact
position. position.accuracy property returns the accuracy of the latitude
and longitude properties in meters. The lower the returned value, the more
accurate the measurements are, as is the case for the
position.altitudeAccuracy property, which returns the accuracy of the
altitude property in meters.

In addition, the geolocation object has a watchPosition() method that will
call a callback function every time the position of the device is updated. This
method returns an ID that can be used to reference the position being
watched:

const id = navigator.geolocation.watchPosition(youAreHere);

The clearWatch() method can be used to stop the callback being called,
using the ID of the watch as an argument:

navigator.geolocation.clearWatch(id);

The Geolocation API provides a useful interface for adding location-based
information to a website or application. More information can be found at the
Mozilla Developer Network.

Web Workers

http://en.wikipedia.org/wiki/World_Geodetic_System
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

We saw in earlier chapters that JavaScript is a single-threaded language,
meaning that only one process can run at one time. Web workers allow
processes to be run in the background, adding support for concurrency in
JavaScript. The idea is that any processes that could take a long time are
carried out in the background, so a website will continue to function without
fear of the dreaded 'script has become unresponsive' message that occurs
when a script runs for too long, shown below.

An unresponsive script

To get started, use the Worker() constructor function to create a new worker:

const worker = new Worker('task.js');

Chrome Support

At the time of writing, the Chrome browser won't let you run workers from
local files like this. A workaround is start Chrome using the --allow-file-
access-from-files flag, or simply use a different browser for this example.

If you decide to use the --allow-file-access-from-files flag, make sure
you only use this for development, rather than for regular browsing.

This function takes the name of another JavaScript file as an argument. In the
example, this is a file called task.js. If this file exists, it will be downloaded

asynchronously. The worker will only start once the file has finished
downloading completely. If the file doesn’t exist, an error is thrown.

The variable that’s assigned to the constructor function (worker in our
example) can now be used to refer to the worker in the main program. In the
worker script (task.js), the keyword self is used to refer to the worker.

Web workers use the concept of messages to communicate back and forth
between the main script and worker script. The postMessage() method can
be used to send a message and start the worker working. The argument to this
method can send any data to the web worker. To post a message to the
worker, the following code is used inside the main script:

worker.postMessage('Hello');

To post a message from the worker, the following is used in the worker
script:

self.postMessage('Finished');

When a message is posted, a message event is fired, so they can be dealt with
using an event listener. The data sent with the message as an argument is
stored in the data property of the event object that’s passed to the callback
function. The following example would log any data returned from the
worker to the console:

worker.addEventListener('message', (event) => {
console.log(event.data);
}, false);

When a worker has completed its task, it can be stopped using the
terminate() method from within the main script:

worker.terminate();

Or using the close() method from inside the worker script:

self.close();

A Factorizing Example

Back in Chapter 10, we created a function that found the factors of a given
number. This works well, but can take a long time to find the factors of large
numbers. If it was used in a website, it would stop any other code from
running while it calculated the factors. To demonstrate this, save the
following code in a file called 'factors.html':

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Factorizor</title>
</head>
<body>
<button id='rainbow'>Change Color</button>
<form>
 <label for='number'>Enter a Number to Factorize:</label>
 <input id='number' type='number' name='number' min=1 value='20'>
 <button type='submit'>Submit</button>
</form>
<div id='output'></div>
<script src='main.js'></script>
</body>
</html>

This web page has a button that will change the background color of the
page, and an input field where a number can be entered. The factors will be
displayed inside the output div. To get this working, create a file called
main.js in the same directory as 'factors.html' that contains the following
code:

const btn = document.getElementById('rainbow');

const rainbow = ['red','orange','yellow','green','blue','rebeccapurple','violet'];

function change() {
document.body.style.background = rainbow[Math.floor(7*
Math.random())];

}
btn.addEventListener('click', change);

This first piece of code was covered way back in Chapter 1 and uses an event
listener to change the background color if the button is clicked. We also need
to factorize the number entered in the form, so add this code to the end of
main.js:

const form = document.forms[0];
form.addEventListener('submit', factorize, false);

function factorize(event) {
// prevent the form from being submitted
event.preventDefault();

const number = Number(form.number.value);
document.getElementById('output').innerText = factorsOf(number);
}

function factorsOf(n) {
if(Number.isNaN(Number(n))) {
 throw new RangeError('Argument Error: Value must be an integer');
}
if(n < 0) {
 throw new RangeError('Argument Error: Number must be positive');
}
if(!Number.isInteger(n)) {
 throw new RangeError('Argument Error: Number must be an integer');
}
const factors = [];
for (let i=1 , max = Math.sqrt(n); i <= max ; i++) {
 if (n%i === 0){
 factors.push(i,n/i);
 }
}
return factors.sort((a,b) => a - b);
}

This uses the same factorsof() function from Chapter 10 and adds a submit
event listener to the form. When the form is submitted, it will find the factors
of the number in the input field, then place the result inside the output div.

This works well, even coping with some large numbers, as can be seen in the

screenshot below.

Our Factorizor in action

But if you enter a sizable number (around 18–20 digits), it takes longer to
process the answer, and the browser will display a warning or the dreaded
'rainbow-whirl' that means something is taking a long time.

To make matters worse, it’s impossible to click on the 'Change Color' button
while the factors are being calculated ― the whole program freezes until the
operation is complete. (If you recklessly decided to try a huge number and
now have an unresponsive web page on your hands, you can simply close the
tab and reopen it, or use the Chrome Task Manager to kill the process.)

The good news is that we can use web workers to solve this problem.

Running This Example

The file containing the worker code is expected to be hosted on a server. This
is the best option, but if you want to run an example locally you need to turn
off the same origin policy setting in the browser.

https://developer.mozilla.org/en-US/docs/Same-origin_policy_for_file:_URIs

Firstly, we create a new file called factors.js; and save it in the same folder
as main.js. Then we remove the factorsOf() function from the main.js file
and add it into our new factors.js; file. We’ll be adding more to this file
later, but first we need to edit the factorize() function in the main.js file so
it looks like the following:

function factorize(event) {
// prevent the form from being submitted
event.preventDefault();
document.getElementById('output').innerHTML = '<p>This could take a while ...</p>';
const number = Number(form.number.value);

if(window.Worker) {
 const worker = new Worker('factors.js');
 worker.postMessage(number);
 worker.addEventListener('message', (event) => {
 document.getElementById('output').innerHTML = event.data;
 }, false);
}
}

We start by preventing the form from being submitted, then display a
message that says 'This could take a while ...'. This message is displayed until
the worker returns a result, so in the cases of small numbers, this will hardly
be seen.

After checking whether web workers are supported, it adds a new web
worker. It then uses the postMessage() method to send a message to the
worker, which is the number we want to factorize. When the number has
been factorized, the worker will send a message back to say it has finished.

To deal with this, we set up an event listener that will fire when a message is
received back from the worker. The information sent from the worker is
stored in the data property of the event object, so we use innerHTML to insert
the data into the output div.

Now we go back to the factors.js; file and add this event listener code to
the end of the file:

self.addEventListener('message', (event) => {

const factors = String(factorsOf(Number(event.data)));
self.postMessage(factors);
self.close();

}, false);

This will fire when the worker receives a message, occurring when the form
is submitted. The number to be factorized is stored in the event.data
property. We use the factorsOf() function to find the factors of the number,
then convert it into a string and send a message back containing the answer.
We then use the close() method to terminate the worker, since its work is
done.

Now if we test the code, it will still take a long time to factorize a long
number, but the page will not freeze. You can also continue to change the
background color while the factors are being calculated in the background.

Shared Web Workers

The examples we have seen so far are known as dedicated web workers.
These are linked to the script that loaded the worker, and are unable to be
used by another script. You can also create shared web workers that allow
lots of different scripts on the same domain to access the same worker object.
You can read more about shared web workers in this post on SitePoint.

Web workers allow computationally complex operations to be performed in a
separate thread, meaning that the flow of a program won’t suffer
interruptions, and an application will not freeze or hang. They are a useful
feature that help to keep sites responsive, even when complicated operations
are being carried out. You can find more information about them at the
Mozilla Developer Network.

Service Workers

The Service Worker API allows a worker script to run in the background with
the added benefit of being able to intercept network requests. This allows you
to take alternative action if the network is offline, and effectively create app-

http://www.sitepoint.com/javascript-shared-web-workers-html5/
https://developer.mozilla.org/en-US/docs/Web/Guide/Performance/Using_web_workers

like offline experiences. Service workers also allow access to push
notifications and background syncing. Service workers require a secure
network to run on HTTPS to avoid any malicious code hijacking network
requests.

There are a large number of different examples of using the Service Worker
API in The Service Worker Cookbook, which is maintained by Mozilla.

Websockets

As we saw in the last chapter, the main form of communication on the web
has always been the HTTP protocol. This uses a system of request and
response to send data back and forth. A problem with this method of
communication is when you only get a response when a request is sent. But
what if the response comes later? For example, imagine a chat application.
You send a message to somebody then wait for a reply, but you can't get a
reply unless you send them another request... and you'll only get the reply if
they have sent the response when you send your request. How long do you
wait until you send the next request? This was partially solved using Ajax
and a method called ‘polling’ where a request was periodically sent to see if
there had been a response.

Websocket is a new protocol that allows two-way communication with a
server – also known as push messaging. This means that a connection is kept
open and responses are ‘pushed’ to the client as soon as they are received.

To see this in action, we’ll create a mini-messaging application that uses the
websocket protocol to communicate with an Echo server. This sends a
response that is exactly the same as the message it receives.

Create a file called websocket.html and add the following HTML code:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Websocket Example</title>
</head>
<body>

https://serviceworke.rs

<form>
 <label for='message'>Enter a Message:</label>
 <input type='text' name='message'>
 <button type='submit'>Submit</button>
</form>
<div id='output'></div>
<script src='main.js'></script>
</body>
</html>

Apart from the usual standard HTML elements, this has a form for entering
and submitting a short message and an empty output <div> element, where
the message and responses will be displayed.

Next we need to place our JavaScript code inside a file called main.js:

const URL = 'wss://echo.websocket.org/';
const outputDiv = document.getElementById('output');
const form = document.forms[0];
const connection = new WebSocket(URL);

This sets up some variables to store information. The first is URL, which is the
URL we’ll be using to connect to the websocket. Notice that it starts 'wss://'
instead of 'https://' This is the secure protocol used by websockets instead of
HTTP. The site is the Echo server hosted at websocket.org. This accepts
messages then returns the same message (like an echo).

The next variable is outputDiv and it's used to store a reference to the <div>
element where we will be displaying the messages. The form variable is also
used to store a reference to the form element.

Last of all, we create a variable called connection that stores a reference to
our websocket object. This is created using a constructor function, and takes
the URL as a parameter. We will use the variable connection to refer to the
websocket connection throughout the program.

When the code new WebSocket(URL) runs, it creates an instance of a
WebSocket object and tries to connect to the URL. When this is successful, it
fires an event called 'open'. This is one of a number of events that a

http://websocket.org

WebSocket object can emit. To deal with it, we can add an event handler to
main.js:

connection.addEventListener('open', () => {
 output('CONNECTED');
}, false);

This works in the same way as the event handlers we’ve seen previously, and
is called on the connection object. In this case, we call a function called
output() with the string 'CONNECTED' provided as an argument. The
output() is used to output messages to the screen. We need to add that
function next:

function output(message) {
const para = document.createElement('p');
para.innerHTML = message;
outputDiv.appendChild(para);
}

This function takes a string as an argument then appends a new paragraph
element to the <div> with an ID of 'output'. The message is then placed inside
this paragraph. This has the effect of producing a constant stream of
messages inside this <div>.

Now we need to add some code to allow us to add some messages. We'll start
by adding an event listener to deal with when the form is submitted:

form.addEventListener('submit', message, false);

This invokes a function called message(), so let's write that now:

function message(event) {
event.preventDefault();
const text = form.message.value;
output(`SENT: ${text}`);
connection.send(text);
}

First of all we stop the default behavior, so the form doesn't actually get
submitted. Then we grab the value of the text input and store it in a local
variable called text. We then use the output() function again to add the
message to the 'output' <div>, with the phrase 'SENT:' at the start.

The last line is an important one. This calls a method of the connection
object called send(). This sends the message to the URL that the websocket
is connected to. When this message is received, the server will process it and
send a response. The connection object waits for the response, and when it
receives one, a 'message' event is fired. The 'echo.websocket.org' server
simply responds with the same message, but any message could be processed
in a variety of ways before sending a response.

Let's create an event handler to deal with the response:

connection.addEventListener('message', (event) => {
output(`RESPONSE: ${event.data}`);
}, false);

This uses the event object that is provided as an argument to the event, and
we can use the data property to access the data that was returned. It's then a
simple case of using the output() function again to add this message to the
growing stream of messages in the 'output' <div>, but this time with the
phrase 'RESPONSE:' added to the beginning.

If you open websocket.html in a browser, you should see something similar
to in the screenshot below:

Websocket messages

There are a couple of other events that the connection object responds to that
are worth knowing about: The close event occurs when the connection is
closed, which can be done using the close() method. The error event is
fired when any sort of error occurs with the connection. The information
about the error can be accessed in the data property of the event object.

Typical event listeners for these events might looks like the ones below:

connection.addEventListener('close', () => {
 output('DISCONNECTED');
}, false);

connection.addEventListener('error', (event) => {
output(`ERROR: ${event.data}`);
}, false);

Websockets are an exciting technology, and you can see lots of examples of
how they can be used, as well as finding out more about them at

websocket.org and in this article on SitePoint.

Notifications

The Notification API allows you to show messages using the system's
notifications. This is usually a popup in the corner of the screen, but it
changes depending on the operating system. An advantage of using the
system notification is that they will still be displayed even if the web page
that calls them isn't the current tab.

Before you can send notifications, you need to get permission granted by the
user. This can be achieved using the requestPermission() method of a
Notification global object. To try this out, visit any website in your browser
(https://sitepoint.com for example), and enter the following code in the
console:

if(window.Notification) {
 Notification.requestPermission();
}

This will ask for permission, similar to in the screenshot below:

Permission for notifications

This returns a promise with the permission property of the Notification
object set to either 'granted' or 'denied'. If it’s set to granted, you can create a
new notification using a constructor function, like so:

if(window.Notification) {
Notification.requestPermission()
.then((permission) => {
 if(Notification.permission === 'granted') {

https://www.websocket.org/demos.html
https://www.sitepoint.com/real-time-apps-websockets-server-sent-events/

 new Notification('Hello JavaScript!');
 }
});
}

This will produce a system notification with the title 'Hello JavaScript!'.

The constructor function's first parameter is the title of the notification, and is
required. The function also accepts a second parameter, which is an object of
options. These include body that specifies any text that you want to appear
below the title, and icon where you can specify a link to an image that will
be displayed as part of the notification:

const notification = new Notification('JavaScript: Novice to Ninja',{
 body: 'The new book from SitePoint',
 icon: 'sitepointlogo.png'
});

Depending on your browser and operating system, some notifications close
automatically after a short period of time, and some will stay on the screen
until the user clicks on them. You can close the notification programmatically
using the close() method:

notification.close();

The notification instance has a number of events that it can react to, including
click (when a user clicks on it), show (when the notification appears) and
close (when the notification is closed).

For example, you could open a new window when the user clicked on the
notification using the following code:

notification.addEventListener('click', () => {
window.open('https://sitepoint.com')
}, false);

You can read more about the Notification API on MDN and this article on
SitePoint.

https://developer.mozilla.org/en/docs/Web/API/notification
https://www.sitepoint.com/browser-notification-api/

Multimedia

Before HTML5, it was notoriously difficult to display audio and video in
browsers, and plugins such as Flash often had to be used. HTML5 introduced
the <audio> and <video> tags used to insert audio and video clips into a web
page. It also introduced a Media API for controlling the playback of the clips
using JavaScript.

An audio clip can be inserted into a page with the <audio> tag, using the src
attribute to point to the audio file:

<audio src='/song.mp3' controls>
Your browser does not support the audio element.
</audio>

A video clip can be inserted with the <video> tag, using the src attribute to
point to the movie file:

<video src='http://movie.mp4' controls>
Your browser does not support the video element.
</video>

Any content inside the <audio> or <video> tags will only display if the
browser does not support them; hence, it can be used to display a message to
users of older browsers without support for these features. The controls
attribute can be added (without any value) and will display the browser’s
native controls, such as play, pause, and volume control, as can be seen in the
screenshot below.

Browser video controls

The audio or video element can be referenced by a variable using one of the
DOM methods we saw in Chapter 6:

const video = document.getElementsByTagName('video')[0];

Audio and video elements have a number of properties and methods to
control the playback of the clip.

The play() method will start the clip playing from its current position:

video.play();

The pause() method will pause the clip at its current position:

video.pause();

The volume property is a number that can be used to set the audio volume:

video.volume = 0.9;

The muted property is a boolean value that can be used to mute the audio:

video.muted = true;

The currentTime property is a number value that can be used to jump to
another part of the clip:

video.currentTime += 10; // jumps forward 10 seconds

The playbackRate property is used to fast-forward or rewind the clip by
changing its value. A value of 1 is playback at normal speed:

video.playbackRate = 8; // fast-forward at 8 times as fast

The loop property is a boolean value that can be set to true to make the clip
repeat in a loop:

video.loop = true;

The duration property can be used to see how long the clip lasts:

video.duration;
<< 52.209

Checking Properties Are Available

Some of the properties are only available once the browser has received all
the metadata associated with the video. This means that, in order to ensure a
value is returned, you should use an event listener that fires once the
metadata has loaded, like the one shown below:

video.addEventListener('loadedmetadata', () => { console.log(video.duration); });

Audio and video clips also have a number of events that will fire when they
occur, including:

The play event, which fires when the clip starts and when it resumes
after a pause.

The pause event, which fires when the clip is paused.

The volumechange event, which fires when the volume is changed.

The loadedmetadata event, which we saw in the note above, and which
fires when all the video's metadata has loaded.

These events allow you to respond to any interactions the user has with the
video. For example, the following event listener can be added to check
whether the user has paused the video:

video.addEventListener('pause', () => {
console.log('The video has been paused'); }, false)

The audio and video elements bring native support for multimedia into the
browser, and the API gives developers full control of the playback of audio
tracks and video clips.

This page on the W3C has a full list of all the properties, methods and events
that are available for video elements.

https://www.w3.org/2010/05/video/mediaevents.html

Other APIs
The list of APIs is constantly growing, and includes APIs for accessing a
device’s camera, uploading files, accessing the battery status, handling push
notifications, building drag-and-drop functionality, creating 3D effects with
WebGL, and many more! A comprehensive list of HTML5 APIs can be
found at the Mozilla Developer Network.

Privacy Concerns

There are some security and privacy considerations to keep in mind when
considering some HTML5 APIs – especially those on the cutting edge that
haven't been used 'in the wild' for long. For example, there are concerns that
the ambient light API might make it possible to steal data and the battery API
has been dropped by Apple and Mozilla due to concerns over user profiling.

You can also read more about HTML5 standards and APIs in these SitePoint
books:

Jump Start HTML5 by Tiffany Brown, Kerry Butters, and Sandeep
Panda

HTML5 and CSS3 for the Real World by Alexis Goldstein, Louis
Lazaris, and Estelle Weyl

https://developer.mozilla.org/en-US/docs/WebAPI
https://www.theregister.co.uk/2017/04/20/ambient_light_sensors_can_steal_data_says_security_researcher/
http://www.theregister.co.uk/2016/11/07/apple_mozilla_kill_api_to_batter_battery_snitching/
https://www.sitepoint.com/premium/books/jump-start-html5
https://www.sitepoint.com/premium/books/html5-css3-for-the-real-world-2nd-edition

Drawing with Canvas
The canvas element was introduced to allow graphics to be drawn onto a web
page in real time using JavaScript. A canvas element is a rectangular element
on the web page. It has a coordinate system that starts at (0,0) in the top-left
corner. To add a canvas element to a page, the <canvas> tag is used
specifying a height and width. Anything placed inside the tag will only
display if the canvas element is unsupported:

<canvas id='canvas' width='400' height='400'>Sorry, but your browser does not support the canvas element</canvas>

This canvas can now be accessed in a JavaScript program using the
document.getElementById() method:

const canvasElement = document.getElementById('canvas');

The next step is to access the context of the canvas. This is an object that
contains all the methods used to draw onto the canvas. We'll be using a 2-D
context, but it’s also possible to render in 3-D using WebGL.

The getContext() method is used to access the context:

const context = canvasElement.getContext('2d');

Now we have a reference to the context, we can access its methods and draw
onto the canvas. The fill and stroke colors can be changed by assigning a CSS
color to the fillStyle and strokeStyle properties respectively:

context.fillStyle = "#0000cc"; // a blue fill color
context.strokeStyle = "#ccc"; // a gray stroke color

These colors will be utilized for everything that’s drawn onto the canvas until
they’re changed.

https://developer.mozilla.org/en/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_WebGL

The lineWidth property can be used to set the width of any line strokes
drawn onto the canvas. It defaults to one pixel and remains the same until it’s
changed:

context.lineWidth = 4;

The fillRect() method can draw a filled-in rectangle. The first two
parameters are the coordinates of the top-left corner, the third parameter is
the width, and the last parameter is the height. The following produces a
filled-in blue rectangle in the top-left corner of the canvas at coordinates
(10,10) that is 100 pixels wide and 50 pixels high:

context.fillRect(10,10,100,50);

The strokeRect() method works in the same way, but produces a rectangle
that is not filled in. This will draw the outline of a rectangle underneath the
last one:

context.strokeRect(10,100,100,50);

Straight lines can be drawn employing the moveTo() and lineTo() methods.
These methods can be used together to produce a path. Nothing will actually
be drawn onto the canvas until the stroke() method is called. The following
example will draw a thick red T shape onto the canvas by moving to the
coordinates (150,50), then drawing a horizontal line 30 pixels long, and
finally moving to the middle of that line and drawing a vertical line 40 pixels
long:

context.beginPath();
context.moveTo(130, 50);
context.lineTo(180, 50);
context.moveTo(155, 50);
context.lineTo(155, 90);
context.strokeStyle = '#c00';
context.lineWidth = 15;
context.stroke();

The arc() method can be used to draw an arc of a given radius from a
particular point. The first two parameters are the coordinates of the center of
the arc; the next parameter is the radius, followed by the start angle, then the
finish angle (note that these are measured in radians). The last parameter is a
boolean value that says whether the arc should be drawn counter-clockwise.
The following example will draw a yellow circle of radius 30 pixels at center
(200,200), since Math.PI * 2 represents a full turn:

context.beginPath();
context.arc(200, 200, 30, 0, Math.PI * 2, false);
context.strokeStyle = '#ff0';
context.lineWidth = 4;
context.stroke();

The fillText() method is used to write text onto the canvas. The first
parameter is the text to be displayed, while the next two parameters are the x
and y coordinates, respectively. The font property can be used to set the font
style used, otherwise the style is inherited from the canvas element’s CSS
setting (note that it needs to be changed before the fillText() method is
used to draw the text). The following example will draw the text “Hello” in
green at coordinates (20,50), as shown below.

context.fillStyle = '#0c0'; // a blue fill color
context.font = 'bold 26px sans-serif';
context.fillText('Hello', 20, 200);

Drawing on a canvas

This is only a short introduction to what the canvas element can do. It is
being used more and more in websites to draw data charts that are updated in
real-time, as well as to animate HTML5 games. Much more information can
be found in the excellent Jump Start HTML5 by Tiffany Brown, Kerry
Butters, and Sandeep Panda.

https://www.sitepoint.com/premium/books/jump-start-html5

Shims and Polyfills
HTML5 APIs progress at a rapid rate ― new APIs are constantly being
introduced, and existing APIs often change. Modern browsers are very quick
to update and implement many of the changes, but you can’t always
guarantee that users will have the most up-to-date browser. This is where a
shim or a polyfill comes in handy. These are libraries of code that allow you
to use the APIs as usual. They then fill in the necessary code that's not
provided natively by the user’s browser.

The terms shim and polyfill are often used interchangeably. The main
difference between them is that a shim is a piece of code that adds some
missing functionality to a browser, although the implementation method may
differ slightly from the standard API. A polyfill is a shim that achieves the
same functionality, while also using the API commands that would be used if
the feature was supported natively.

This means that your code can use the APIs as normal and it should work as
expected in older browsers. The advantage here is that the same set of
standard API commands can be used ― you don’t need to write additional
code to deal with different levels of support. And when users update their
browsers, the transition will be seamless, as their experience will remain the
same. Once you are confident that enough users have up-to-date browsers,
you can remove the polyfill code without having to update any actual
JavaScript code.

A comprehensive list of shims and polyfills is maintained by the Modernizr
team.

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Quiz Ninja Project
We’re going to use the Web Storage API to store the high score of the game.
This will be stored locally even after the browser has been closed, so players
can keep a record of their best attempt and try to beat it. To do this, we first
add an extra <div> element to the header to show the high score. Change the
<header> element in index.html to the following:

<header>
<div id='timer'>Time: 20</div>
<div id='score'>Score: 0</div>
<div id='hiScore'>High Score: </div>
<h1>Quiz Ninja!</h1>
</header>

Now we need to add a method to the game object updates, and return the high
score. Add the following to the end of the game object:

hiScore(){
 const hi = localStorage.getItem('highScore') || 0;
 if(this.score > hi || hi === 0) {
 localStorage.setItem('highScore',this.score);
 ** NEW HIGH SCORE! **');
 }
 return localStorage.getItem('highScore');
}

This method sets a local variable called hi to the value that’s stored inside the
object under the key highScore. If a high score is yet to be set already, it will
be null, so we’ll initialize it to 0 in this case using lazy evaluation. Next, we
check to see if value of this.score (which will be the player's final score) is
bigger than the current high score that we just retrieved. If it is, we show a
message to congratulate the player, and also update the value stored in
localStorage using the setItem() method.

Have a go at playing it by opening up index.html, as shown below, and try
to get a new high score.

High scores in action

You can see a live example on CodePen.

https://codepen.io/daz4126/pen/ZyxdLY

Chapter Summary
HTML5.1 is the latest incarnation of the Hypertext Markup Language. It
covers a variety of technologies, including several APIs that are
accessible using JavaScript.

data- attributes help to embed custom data into a web page that can
then be used to enhance the user experience with JavaScript.

The Web Storage API allows key-value pairs to be stored on the user’s
device in a similar way to cookies, but without the same storage
restrictions.

The Geolocation API allows you to access the geographic coordinates of
the user’s device, as long as the user gives permission.

The Web Worker API can be used to perform computationally intensive
tasks in the background, which helps to avoid websites becoming
unresponsive.

Websockets are a new protocol for communicating over the internet, and
allow real-time, two-way communication.

The Notification API allows you to display notifications on the user's
system.

The <audio> and <video> elements can be employed to embed audio
tracks and video clips in a web page. They also have a Media API that
can help control the playback using JavaScript.

The canvas element can be used to dynamically draw geometric shapes,
text, and images on a web page in real-time using JavaScript.

A shim or polyfill is a piece of code that adds support of missing
features to older browsers.

In the next chapter, we’ll cover how to organize and optimize your code.

Chapter 15: Modern JavaScript
Development
As you build more and more complex JavaScript projects, you’ll find the
amount of code you’re using increases into hundreds and then thousands of
lines. This can be difficult to manage without some sort of organizing. The
first step is to break the code into separate files, but this presents its own
problems, such as how to include all the files on a web page, and which code
to put in which files. Indeed, how do you ensure that a file has access to the
code in another file?

Just as real-life ninjas have lots of nifty weapons such as nunchakus and
shuriken stars, there are lots of cool tools that a JavaScript ninja can use to
help organize code and make it run more efficiently. In this chapter, we’ll
look at the various frameworks and tools that can be employed to improve the
quality of your code. In turn, it will make it more organized and easier to
maintain, promoting reuse. We’ll also look at how to make your applications
ready for production.

In this chapter, we’ll cover the following topics:

Libraries

Modular JavaScript

MVC frameworks

Package managers

Optimizing your code with minification

Build processes using Webpack

Our project ― we'll separate our code into a modular architecture and
prepare for it for deployment.

Libraries
A JavaScript library is a piece of code that provides several methods that
make it easier to achieve common tasks. JavaScript is an extremely flexible
language that can accomplish most programming tasks – but not all
undertakings are as easy to do as they should be. A library will abstract
functionality into easier-to-use functions and methods. These can then be
used to complete common tasks without having to use lots of repetitive code.

DOM Manipulation Example

A good example of how libraries can help save time is in DOM manipulation.
The DOM API provides all the tools required to manipulate the DOM, but
some can be verbose and take several lines of code to attain even the most
basic of tasks.

For example, if we wanted to add a class to a paragraph element referenced
by the variable para, then append another paragraph on the end, we could do
it using the following:

para.classList.add('important');
const newPara = document.createElement('p');
newPara.textContent = 'Another Paragraph';
para.appendChild(newPara);

Yet by using the jQuery library, we can achieve the same result using a single
line of code:

$(para).addClass('important').append('<p>Another Paragraph</p>');

This shows how using a library can reduce the amount of code you have to
write, as well as making common tasks easier to implement. Popular libraries
such as jQuery are often well-tested, and help to iron out edge cases and bugs
in older browsers that would be difficult to do with your own code. They also
unify a number of implementations of the same feature that are different

across different browsers. For example, adding event listeners uses a different
syntax in some older browsers, but you can use a single method in jQuery
that will select the implementation depending on the browser.

jQuery

jQuery is the most popular of all the JavaScript libraries used today, as seen
in these statistics on W3Techs and Built With.. It is used in a huge number of
commercial websites and has a plugin system that makes it easy to extend
and use to build common web page elements, such as a lightbox or carousel
widget.

jQuery was released in 2006, originally as a DOM manipulation library. It
has since grown much bigger, and now provides hundreds of methods for
selecting nodes, as well as traversing the DOM, animation effects, Ajax and
events. It also has its own testing library: QUnit.

A big advantage of using jQuery is its support for older browsers, particularly
Internet Explorer. If you find yourself having to support these browsers then
jQuery could save you a huge amount of time and headache. For example,
classList isn't supported in older versions of Internet Explorer, so you'd
have to write your own polyfill code to fix it. But if you used jQuery, you'd
just have to use the addClass() method and it would make sure the code
worked in most browsers.

jQuery is a very powerful and polished library that provides a considerable
number of useful methods. It has become so popular that many online
tutorials assume you’re using jQuery rather than just JavaScript. You can
learn more about jQuery by reading the excellent jQuery: Novice to Ninja:
New Kicks and Tricks by Earle Castledine and Craig Sharkie.

Dollar Symbols

The jQuery library uses the $ symbol as a convenient alias for the the global
jQuery object that contains all of jQuery's methods. This prevents the global
scope from being polluted with any of jQuery’s methods. The $ symbol has
become synonymous with jQuery, and you can confidently expect that any

http://w3techs.com/technologies/overview/javascript_library/all
http://trends.builtwith.com/javascript/jQuery
http://qunitjs.com/
https://www.sitepoint.com/premium/books/jquery-novice-to-ninja-new-kicks-and-tricks

mention of it implies that jQuery is being used.

Underscore & Lodash

Underscore and Lodash are very similar libraries of functions that provide
additional functionality to the language. They both provide a large number of
utility functions under the namespace _ (this is where they get their name
from as the _ character is often referred to as an 'underscore' or a 'lodash'). A
number of JavaScript libraries list one of these as a core dependency.

It’s worth considering using one of these libraries in your projects as it will
give you access to a large number of well-tested utility functions that are
often required in projects, and particularly geared towards a functional style
of programming that was discussed in Chapter 11. Some of these functions
have been added in recent versions of ECMAScript (You can read about
which ones in this post on SitePoint), but there are still a large number that
will help save you the time of writing your own implementation and
effectively reinventing the wheel. A good example can be seen by looking at
some of the functions that act on arrays. These provide some very useful
functionality that is often required and, some may argue, criminally missing
from language itself:

// flatten an array
_.flatten([1, [2, [3, [4]], 5]]);
<< [1, 2, [3, [4]], 5]

// return the last element in an array
_.last([1, 2, 3]);
<< 3

// randomly shuffle an array
_.shuffle([1, 2, 3, 4]);
// => [4, 1, 3, 2]

Both of these libraries are very similar. In fact, Lodash started life as a fork of
Underscore. Since then, they have diverged a little, but still have many
similarities. The underlying code, however, has become quite different.
Lodash can be thought of as a 'superset' of Underscore as it does everything

http://underscorejs.org/
https://lodash.com
https://www.sitepoint.com/lodash-features-replace-es6/

Underscore does, but also adds some extra features. Lodash also has a
modular architecture that allows you to selectively use only the functions that
you require in your projects, rather than having to include the whole library.

Advantages and Disadvantages of Libraries

A big advantage of utilizing a popular library is that it will be used by lots of
people and thoroughly tested. It will most likely have been optimized and
battle-tested for nearly every eventuality. Using a library means you can be
confident that your code will be as bullet-proof as possible in many browsers.
In addition, there will usually be lots of online documentation and a strong
community ready to help out if you become stuck. The popularity of libraries
often means that others will have encountered the same problem as you, often
making it easy to find a solution by searching on the internet.

There are some disadvantages to using libraries, however. You need to
include the code for the library as well as your own code. This increases the
amount of code that needs to be downloaded by a website, which in some
cases can cause performance issues. Thankfully, most modern libraries are
relatively small once server-side optimizations are made (such as gzip
compression), minimizing any latency issues. Another problem with libraries
is that they might fail to implement the functionality in the precise way that
you want it to perform. This might not be a problem, but sometimes you’ll
have to get your hands dirty and write your own functions in order to achieve
the functionality for which you are looking. Using a library can also make
your code slower than using plain vanilla JavaScript. This is because there
are often more lines of code in using the abstracted functions in a library
rather than writing a direct implementation in just JavaScript, which is 'closer
to the metal', so to speak. These speed differences can be barely noticeable,
although there are occasions when using a library is a poor choice for some
operations. Using plain JavaScript can be significantly faster than a library, as
seen in these examples in this post by Craig Buckler.

The debate about whether to use a library or not is a big one that stretches
back to the start of programming, and refuses to go away. Indeed, there has
been a movement towards using plain JavaScript in recent years.
Additionally, the Vanilla JS website showcases plain JavaScript as if it were

http://www.sitepoint.com/jquery-vs-raw-javascript-1-dom-forms/
http://vanilla-js.com/

a library, highlighting that many tasks can be accomplished with a similar
amount of code but much better performance. This is now truer than ever
since ES6, as a lot of problems that some libraries addressed have been fixed
in the vanilla flavor of JavaScript. The relatively fast uptake and adoption of
ES6 means there are less reasons to use a library for some functionality.
Having said that, the native implementation of some functions and APIs can
often be awkward and difficult to use as well as lacking support in older
browsers. This means that libraries will continue to be used by developers as
an aid to productivity and consistency.

You only need to look at any professionally produced website to see that
some sort of library has been used in its production. Libraries are often the
pragmatic choice to complete a project in a realistic time frame, especially
when working in a large team. They can also be useful in supporting older
browsers and ironing out any browser-specific bugs or quirks, or if
performance isn’t the most important factor (when prototyping sites, for
example).

When to Use a Library

It can be helpful to use a library, but you should certainly question whether
it’s worth the extra work. You have to learn the library’s notation, which can
either be similar or very different to standard JavaScript. Every library you
use will add to the total file size that’s downloaded so you need to assess
whether the extra overhead is worth it. Having said that, browsers will cache
it after the first download, and if you use a CDN, the chances are it will
already be in the browser's cache.

It’s also advisable to consider that the popularity of a particular library can be
'here today, gone tomorrow'. Some of the most popular libraries of the past
have fallen out of favor and even discontinued, almost overnight. This can
potentially cause problems if you’ve relied on one particular library in most
of your projects.

Many libraries have become monolithic, with a plethora of methods that try
to do everything. An example of this is jQuery. While it contains a large
number of useful methods, it also provides many features that are often

unnecessary. jQuery's modular structure means that you can include only the
parts you need on a module-by-module basis. But if you find that you’re not
using many of the methods a library offers, you should consider using a
lighter alternative that only focuses on solving one problem (some
suggestions are given below). And if you’re only using a handful of methods,
maybe avoid using a library altogether and try using plain old JavaScript.
You could even package together useful functions you’ve created in a module
that serves as your own personal library.

Finding Libraries

It is certainly worth considering using a library to make some common tasks
easier. There’s a large number of high-quality JavaScript libraries in this list
on Wikipedia, while MicroJS is a high-quality repository of small JavaScript
libraries that focus on specific tasks, and Just is a library of functions that just
do one task without depending on any other functions or libraries.

Be careful not to rely on a library and find that you’re learning how to use the
library's methods, rather than the language itself. A library should not be used
because of a lack of understanding of JavaScript. Instead, it should be used to
speed up JavaScript development by making it easier to complete common
tasks. Using a library can sometimes make your code more sloppy. It’s easy,
for example, to write short jQuery expressions that look concise but are
spectacularly inefficient. And even if you do choose to use a library,
remember that a ninja should always be inquisitive as to how things work. In
fact, reading a library’s source code is a great way of learning some powerful
JavaScript programming techniques.

https://en.wikipedia.org/wiki/List_of_JavaScript_libraries
http://microjs.com/
http://anguscroll.com/just/

Modular JavaScript
A module is a self-contained piece of code that provides functions and
methods that can then be used in other files and by other modules. This helps
to keep code organized in separate, reusable files, which improves code
maintainability. The code in a module should have a single purpose, and
group together functions with distinct functionality. For example, you might
keep any functions used for Ajax in their own module. This could then be
used in any projects where Ajax was required. Keeping code modular helps
to make it more loosely coupled and interchangeable, meaning you can easily
swap one module for another without affecting other parts of a project.
Indeed, small single-purpose modules are the exact opposite of large
monolithic libraries as they enable developers to use only the modules that
are needed, avoiding any wasted code. Modules also allow a public API to be
exposed, while keeping the implementation hidden away inside the module.

Coupling

The coupling of code refers to how dependent certain elements or modules of
code are on each other. Two pieces of code are said to be tightly coupled if
one relies on the other to run. This often occurs if a piece of code makes
hard-coded references to another piece of code, requiring it to be used. This
will often mean that changes to one piece of code will necessitate changes in
the other. On the other hand, two pieces of code are said to loosely coupled if
one piece of code can be easily substituted by another without affecting the
final outcome. This is often achieved by referring to common methods that
are shared by the alternative modules. For example, you might have a choice
of two modules that simplify the process of connecting to a websocket. Both
of these modules would likely implement a connect() method, so your code
could simply refer to connect() rather than having to explicitly refer to a
particular module. This would then allow you change between the two
modules without having to change any of the underlying code. It is
considered good design to keep code as loosely coupled as possible as this
allows for the most flexibility in developing systems of code, as different
modules can be used independently and in a variety of different applications,

rather than being restricted to a single use-case.

ES6 Modules

For a long time, JavaScript didn't support modules, but native support for
them was finally added in ES6. They allow you to keep parts of code in self-
contained files.

There are a few important points about modules that are worth keeping in
mind:

All code in modules is always in strict mode without the need for 'use
strict' and there is no way to opt out of this.
A module has its own global scope, so any variables created in the top-
level of a module can only be accessed within that module.
The value of this in the top level of a module is undefined, rather than
the global object.
You can't use HTML-style comments in modules (although this isn't
very common in any JavaScript program these days).

A ES6 module file is just a normal JavaScript file, but uses the keyword
export to specify any values or functions that are to be made available from
the module. This highlights another important fact about modules – not
everything in the module needs to be used.

Browser Support

At the time of writing, most major browsers are on the cusp of supporting
ES6 modules, so you should be able to run these examples straight in your
browser. If they don't work, however, you can use a build process that
packages all the modules together into one file. We explain how to do this
later in this chapter.

For example, a very simple Pi module would have the following code saved
in a file called 'pi.js':

export const PI = 3.1415926;

https://jakearchibald.com/2017/es-modules-in-browsers/

This would then be imported into your main JavaScript file, main.js using
the following code:

import { PI } from './pi.js';

This would then allow you to use the variable PI inside the main.js file.

Functions can also be exported from a module. For example, we could create
a library for our stats functions that we used earlier:

function square(x) {
return x * x;
}

function sum(array, callback) {
if(callback) {
 array = array.map(callback);
}
return array.reduce((a,b) => a + b);
}

function variance(array) {
return sum(array,square)/array.length - square(mean(array))
}

function mean(array) {
return sum(array) / array.length;
}

export {
variance,
mean
}

Notice that an alternative to using export when the function is defined is to
add the export directive after the function definition, as seen in the example
above with the variance() function.

To import these functions into the main.js file, you’d add this line of code:

import { mean, variance } from './stats.js';

Now the mean() and variance() functions can be used in the main.js file.
Notice that the square() and sum() functions are not available because they
were not exported in the module. This effectively makes them private
functions of the stats module.

You can be selective in which values or functions to import from the module.
For example, if you only wanted to use the mean() function, you could use
the following line of code instead:

import { mean } from './stats.js';

If there are lots of values and functions that need to be imported, then
everything in a module file can be imported using the wildcard symbol *
along with a namespace for the imported values and functions using the
following notation:

import * as stats from './stats.js';

This will then import all the functions from the stats.js module and they’ll
be given a namespace of stats. So, the mean function could be used as
follows:

stats.mean([2,6,10]);

Default Exports

Default exports refer to a single variable, function or class in a module that
can be imported without having to be explicitly named. The syntax for
default exports is purposely easier to read because this is how modules were
designed to be used.

The following example demonstrates how this would be done for a variable:

const PI = 3.145926;

export default PI;

The next example demonstrates exporting a single default function:

function square(x) {
 return x * x;
}

export default square;

The last example shows how to export an object as the default value:

const stats = {

square(x) {
 return x * x;
},

 sum(array, callback) {
 if(callback) {
 array = array.map(callback);
 }
 return array.reduce((a,b) => a + b);
 },

mean(array) {
 return this.sum(array) / array.length;
},

variance(array) {
 return this.sum(array,this.square)/array.length - this.square(this.mean(array))
}
}

export default stats;

Don't Use More Than One Default Export

Having more than one default export will result in a syntax error.

To import these default values, you would use the following code:

import PI from './pi.js';
import square from './square.js';
import stats from './stats.js';

The big difference with default exports is that you don't need to use curly
braces or make any mention of the value that is being imported, making the
statement read more elegantly.

Aliases

The alias that is assigned to the imported module does not have to match its
name in the actual module. For example, you could import the square
function in the following way:

import sq from './square.js';

The function would then be called using sq() rather than square():

sq(8)
<< 64

Node.js Modules

Node.js had already implemented modules before they were introduced in
ES6, and used a slightly different notation called Common JS modules. At
the time of writing it is proving difficult to merge the two notations in an
elegant way, although it is expected that Node.js will support ES6 modules in
some way in the future. Despite this, I expect you will continue to see the
Common JS module pattern used by Node.js tutorials for a long time to
come.

A Common JS module is created in a separate file, and the module.exports
method is used to make any functions available to other files, in a similar way
to ES6 modules. For example, we could create a module for squaring
numbers using the following code inside a file called squareFunction.js:

http://wiki.commonjs.org/wiki/Modules/1.1

module.exports = x => x * x;

This is simply the square() function we saw earlier in the chapter written as
an anonymous function that’s assigned to module.exports as if it was a
variable.

To use the module, it needs to then be required inside the another JS file (or
from within the Node REPL). This is done using the require() method. This
takes the file that contains the module as an argument and returns the
function that was exported:

const square = require('./squareFunction');

The function that was exported in the module is now assigned to the variable
square, which is then used to call the function in the usual way:

square(6);
<< 36

MVC Frameworks
Model-View-Controller (MVC) is a design pattern that’s been used for a long
time in server-side languages. It’s a common way of designing software, and
used by server-side frameworks such as Ruby On Rails and Django. In recent
years it has been used in JavaScript code to make it easier to organize large-
scale web applications.

MVC separates an application into three distinct, independent components
that interact with each other:

Models are objects that implement the functionality for creating,
reading, updating and deleting (known as CRUD tasks) specific pieces
of information about the application, as well as any other associated
logic and behavior. In a to-do list application, for example, there would
be a task model providing methods to access all the information about
the tasks such as names, due dates and completed tasks. This data will
often be stored in a database or some other container.

Views provide a visual representation of the model showing all the
relevant information. In a web application, this would be the HTML
displayed on a web page. Views also provide a way for users to interact
with an application, usually via forms. In a to-do list application, the
views would display the tasks as an HTML list with checkboxes that a
user could tick to say a task had been completed.

Controllers link models and views together by communicating between
them. They respond to events, which are usually inputs from a user
(entering some data into a form, for example), process the information,
then update the model and view accordingly. In a to-do list application,
the controller functions would respond to the event of a user clicking on
a check box and then inform the model that a task had been completed.
The model would then update the information about that task.

MV*

It is quite common to see the acronym MV* used to describe JavaScript
frameworks, rather than MVC. This is because many JavaScript
implementations do not strictly follow the controller pattern. Sometimes
controller code is mixed into the views, and sometimes other patterns are
used, such as Model-View-Presenter (MVP), Model-View-ViewModel
(MVVM), and AngularJS, which calls itself a Model-View-Whatever
(MVW) framework. These tend to be only slight variations on the MVC
pattern, but for simplicity, MV* is used as a catch-all term. There has been a
recent trend for many of these frameworks to embrace a more component-
based architecture, which can be found in Angular (from version 2 onwards)
and Ember 2.

A Quick List Example

Here’s an example of how the MVC architecture can be implemented using
JavaScript. It will be a simple list creator that allows the user to add items to
a list by entering them into a form field.

To start, create a folder called MVC and save the following as list.html:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>MVC List</title>
</head>
<body>
<form id="input">
 <label for='name'>Name:</label>
 <input type='text' name='name' autofocus required >
 <button type='submit'>Submit</button>
</form>
<ul id='list'>
<script src='main.js'></script>
</body>
</html>

This is a basic HTML web page containing a form with a single input field
for entering a list item. It also contains an empty element in which to
place the list items. Now we need to create the JavaScript file. Create a file

called main.js saved in the same folder.

In JavaScript, a model is often represented by a class that can create new
instances of an object. This will keep track of any properties the list item has,
as well as any methods. In this example, we’ll create an Item class, and use
the constructor function to instantiate an Item object with a name property
provided as an argument to the constructor function. We also assign a
reference to the form to a variable called form. Add this code to main.js:

'use strict'

const form = document.forms[0];

class Item {
constructor(name) {
 this.name = name;
 }
}

Each new list item that is created will be an instance of the Item class.

Next we’ll create a controller object. This will be responsible for adding an
event listener to the form to see when the user adds information. When this
happens, it will create a new instance of the model and then render the
updated view. Add the following code to main.js:

const controller = {
watch(form) {
 form.addEventListener('submit', (event) => {
 event.preventDefault(); // prevent the form from being submitted
 this.add(form.name.value);
 }, false);
},

add(name) {
 const item = new Item(name);
 view.render(item);
}
};

After this, we create a view object with a render() method. This is used to

produce an HTML fragment that shows the instance’s name (from the name
property stored in the model). It is dynamically inserted into the list using
DOM API methods. Add the following code to the main.js file:

const view = {
render(item) {
 const list = document.getElementById('list');
 const li = document.createElement('li');
 li.innerHTML = item.name;
 list.appendChild(li);
 // reset the input field
 form.name.value = '';
}
};

Finally, we have to call the watch() method of the controller. This keeps an
eye on the form and checks when it is submitted. Add the following line to
the end of the main.js file:

controller.watch(form);

Open up list.html in your browser and have a go at adding some items to
the list. It should look a little like the screenshot shown below.

An MVC to-do list

This is just a small and simple example of the MVC pattern to give an idea of
how it works. In reality, the model would contain many more properties and
methods. The controller would also contain more methods for editing and
deleting instances of the model. There’s also likely to be more views to
display the different states of the model, and there would need to be more
robust code used in order for the controller to monitor the changes that may
happen in the views. Most MVC implementations also tend to be more
generalized in their implementation and avoid hard-coding details about
which elements are being updated on the page (such as the reference to the
'list' id in the example). Despite this, I hope the example demonstrates how to
separate code into the three distinct components of MVC.

Persistence

Most web applications will need some form of persistence to save the
information held in the models in order to maintain state. This could be done
using the Web Storage API that we covered in the last chapter. Another

option that’s often used in real-world applications is to send a JSON
representation of the model to a back-end database using Ajax whenever a
model changes.

MV* Frameworks

An MVC architecture can take a lot of code to implement, and many
frameworks have emerged that take care of much of the setup code for you.
One of the main features of MVC frameworks is data binding, which is the
process of linking the model and view together. As a result, a large amount of
boilerplate controller code is not needed as the framework takes care of it all
in the background for you. One-way data binding is when a change in the
model will automatically result in the view being updated. And two-way data
binding is when a change in the view automatically updates the model.

The views are simply web pages written in HTML, although it is common to
use templating languages so dynamic data can be inserted into the page (more
about these in the section that follows):

Aurelia is a modern framework that uses ES6, and focuses on letting you
write dynamic web applications while keeping the implementation
details in the background.

Angular is a powerful framework by Google to make creating dynamic
web applications easier. This is done by extending the HTML language
using custom ng- attributes.

Ember is a framework designed to make building large web applications
easier. It does this by using common conventions that avoid the need for
lots of set-up code, though it can become more difficult if you don’t
follow these conventions.

The website TodoMVC has lots of examples of to-do list applications written
in many of the popular MVC frameworks.

http://aurelia.io
https://angular.io/
http://emberjs.com/
http://todomvc.com/

Templates
Many MVC frameworks use templating languages to insert dynamic data into
the page. Templates can be written in HTML or another language, such as
markdown, which compiles into HTML. They can be whole web pages, but
are often just partials — parts of a page. This means that the application can
update part of the page without having to make a request to the server, saving
an HTTP request. This is usually done by dynamically inserting the fragment
of HTML into the DOM.

Templating languages allow HTML to be separated from the JavaScript
program, making maintenance easier because they’re no longer tightly
coupled. The templates are often stored in separate files or inside their own
script tags, so they can be reused and quickly edited in one place if changes
need to be made. It also means that inserting large strings of HTML into a
document (which can have adverse effects on performance) is avoided. All
that’s needed is a reference to the relevant file that contains the template.

Templating languages often have a mechanism for inserting dynamic data
into the HTML. These tend to fall into two camps: placing dynamic code
inside curly braces (the 'mustache' symbol) or inside the special <% %> tags
made popular by Embedded Ruby (ERB).

For example, Mustache, Pug and Handlebars would use this to insert the
value of the variable name into a heading tag:

<h1>Hello {{ name }}</h1>

EJS, on the other hand, would use the following to achieve the same result:

<h1>Hello <%= name %></h1>

Templating languages also enable you to insert basic programming logic into
views, allowing you to conditionally show different messages or use loops to
show multiple pieces of similar code.

https://github.com/janl/mustache.js
https://github.com/pugjs/pug
http://handlebarsjs.com/

For example, say we wanted to display the following array of to-do objects:

const tasks = [
 { name: 'Get Milk' },
 { name: 'Go for a run' },
 { name: 'Finish writing last chapter' },
 { name: 'Phone bank' },
 { name: 'Email Craig' }
]

Mustache implements 'logic-less' templates that don’t require any lines of
logic to be explicitly written in JavaScript; instead, it is inferred from the
context. This is how it would iterate over the task array to display a list of
tasks:

{{#tasks}}
{{name}}
{{/task}}

EJS uses more explicit JavaScript coding to achieve the same result. Each
line of JavaScript code is placed inside the special <% %> tags. If any values
need to be evaluated, they are placed inside <%= %> instead:

 <% tasks.forEach(function(task) { %>
 <%= task.name %>
 <% }); %>

 <% } %>>

Both of these templates would return this HTML code:

 Get Milk
 Go for a run
 Finish writing last chapter
 Phone bank
 Email Craig

There are a number of popular templating languages to choose from, a
selection of some of the most popular are shown in the list below:

Handlebars

Pug

EJS

Mustache

Nunjucks

Web Components

The W3C are working on developing a standard called Web Components that
attempts to extend HTML and introduce new features such as templates,
custom tags, the ability to import HTML partials, and a shadow DOM. The
idea is to use it to develop modular and self-contained components that can
be reused in different applications. The proposal is currently a living
standard. The Polymer Project is a JavaScript library that attempts to
implement web components.

View Libraries

Over the past few years, a number of libraries have sprung up that deal with
just the view layer of MVC. They have the single goal of making it easier to
update the user interface while also keeping what is displayed synchronized
with underlying data that it’s representing. This means they can be integrated
into a project and used either on their own or alongside other libraries that
deal with other aspects of the application. The two view libraries that have
emerged as the most popular so far are React and Vue.js.

React is developed by Facebook and it has been hugely successful; quickly
becoming one of the most popular JavaScript libraries that’s used by a large

http://handlebarsjs.com/
https://github.com/pugjs/pug
http://www.embeddedjs.com/
https://github.com/janl/mustache.js
http://mozilla.github.io/nunjucks/
https://www.webcomponents.org/introduction
https://www.polymer-project.org
https://facebook.github.io/react/

number of popular websites such as the BBC, PayPal and Netflix. Vue.js was
developed by Evan You after he worked on AngularJS at Google. His idea
was to design a lightweight view library that built on all the good things
about AngularJS. It has become a very popular library (second only to React
in terms of GitHub stars) and is starting to be adopted by a number of large
websites.

Both React and Vue.js have changed the way developers think about the way
user interfaces are built; particularly the way in which JavaScript is used.
They have a number of similarities, but also solve the problems in very
different ways.

React and Vue.js both use the concept of a virtual DOM to speed up the
process of updating HTML pages. Instead of directly changing the DOM, as
we did in Chapter 6, a virtual DOM is updated in memory. The real DOM is
only updated when it needs to be and this is done by comparing any
differences between the virtual DOM and actual DOM and only updating
those elements that have actually changed. This is a process known as
reconciliation and it's what makes React and Vue extremely fast at rendering
web pages.

They also use the concept of components to represent visual elements. This
means you can create multiple components that can then be reused in other
projects as well as being combined to make larger components. Each
component is entirely self-contained, with all the HTML, CSS and JavaScript
being defined inside the component itself.

The main differences between React and Vue.js are to do with their
respective implementations. React uses its own language called JSX. This
allows HTML and JavaScript to be mixed together in an elegant and concise
way. The result is transformed into JavaScript that is then used to produce the
HTML views. Vue.js uses HTML-like templates that can contain logic and
directives along with JavaScript objects to store any data.

There has been a certain amount of controversy created by view libraries such
as React and Vue.js regarding the mixing of HTML and JavaScript and the
use of inline JS and CSS in HTML files. This directly contradicts the 'Three
Layers of the Web' separation of concerns principle that was discussed all the

https://vuejs.org

way back in Chapter 1, and for a long time represented the gold-standard,
best practice of web development. Many people have now started to feel that
this is an outdated belief that worked for web pages that are just documents
that use JavaScript to add extra functionality to the top. React and Vue.js
were designed primarily for building dynamic web applications where the
line between presentation and logic becomes much more blurred, since
you’re dealing with interactive elements. The stance that many React and
Vue.js developers take is that everything to do with those interactive
components should be encapsulated together in the component: presentation,
markup and logic. This is an argument that looks like it will rage on for a
long time though!

React and Vue.js aren't the only view libraries available. There are a number
of alternatives that have a similar goal of managing the view layer and
keeping data synchronized, but go about it in a slightly different way. Some
focus on improving the rendering speed, while others use different notations.

Some popular alternatives are:

Svelte
Inferno
Deku
Preact
Virtual-DOM
Moon

View libraries are worth considering if you find your user interface is starting
to become more complicated or has to react quickly to changes in data. They
also make it easier to build more modular user interfaces with reusable
components that can be combined together in different ways. There are a
number of options available, and it’s worth experimenting with a few of them
in order to find one that fits your needs.

https://svelte.technology
https://www.infernojs.org
https://github.com/anthonyshort/deku
http://developit.github.io/preact/
https://github.com/Matt-Esch/virtual-dom
http://moonjs.ga

Package Managers
As modules have become more widely used in JavaScript, there’s been a
need for tools to manage them. Package managers allow developers to
download modules from a central repository. A package is just a directory
with one or more files of code, as well as a package.json file that contains
information about the code in the package. Developers can also share any
modules they create by uploading them to the central repository for others to
use. A package manager makes it easy to install, upgrade and remove any
packages that are used in a project. They also allow you to manage different
versions of packages.

When you start to use more modules, you’ll find that some of them depend
on other modules to work. These are known as dependencies. Dependency
management is the process of ensuring that all the dependencies a module
requires are met. This can be difficult to do manually once a project becomes
large, so package managers can also help with dependency management.

npm

The Node Package Manager was developed soon after Node.js was
introduced to allow JavaScript code to be shared by developers. It has since
grown into the largest repository of code libraries available.

npm allows you to install JavaScript packages onto your machine. Some
packages rely on other packages, so npm acts as a dependency manager. For
example, if you use npm to install a package, it will also install all the
packages that the original package depends on as well.

If you followed the instructions to install Node.js all the way back in Chapter
1 then you'll already have npm installed. If you didn't, you'll need to go back
and do that before moving on, if you want to follow the examples in this
section.

Searching for Packages

The npm repository is huge – it contains almost half a million different
packages, ranging from popular libraries, such as jQuery and Lodash, to tiny
modules that are literally a single line of code.

To find a package, you can use the search command. For example, if you
wanted to find a package for testing, you could use the command npm search
test. This will return a list of packages, including a description, the author
and the date they were last updated.

You can also search for a package on the npm website.

npm init

The npm init command is used when you start a project. It walks you
through creating a package.json file. This is a file that contains information
about a JavaScript project in JSON format. This includes meta-information,
such as the name and version number. It also includes information about any
dependencies the project has, and can be used to specify how tests will be
run.

To try it out, create a new directory called 'project-x' and navigate to it in a
terminal. Then enter the following command:

npm init

You'll then be walked through a number of questions about the project. Enter
'project-x' as the name, then you can just accept the default suggestions for all
the other questions by simply pressing ENTER. This should result in a file
called package.json saved in the root of the directory, with contents similar
to those shown below:

{
"name": "project-x",
"version": "1.0.0",
"description": "",
"main": "index.js",

https://www.npmjs.com

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC"
}

This file will be updated by npm when you use it to install packages, so it
keeps track of any packages used by the project and which dependencies it
has. You can also edit it manually to specify any information about the
project that might be required by other tools.

Installing Packages Locally

By default, any packages that are installed by npm are only installed in the
current directory. They are all saved in a folder called 'node_modules' in the
root of the project directory. Any files in here can then be imported into your
main JavaScript file and used.

To install a package locally, the install command is used. Adding the --
save flag will ensure the package.json file is updated with the relevant
information about the package.

For example, if we wanted to install the Lodash library we met in Chapter 11,
we'd use the following command, from inside our project directory:

npm install --save lodash

Now, if you take a look inside the package.json file, you'll see that the
following properties have been added:

 "dependencies": {
 "lodash": "^4.17.4"
}

This states that the lodash package is now a dependency of this project. The
value of "^4.14.4" refers to the version of Lodash that has been installed. This

uses semantic versioning where the first number refers to the major version
number, the second is the minor version number, and the third number is for
patches. The caret symbol (^) means that when npm is installing the package,
it install the latest version that matches the major version number only.

Dependencies

When you install a package using npm it will become a dependency of your
project by default. This will get listed under "dependencies" in the
package.json file as we saw in the example above. If a package is a
dependency, it means the application requires it to run.

Alternatively you can install a package as a devDependency. These are
packages that aren't required by the application itself but are used in
development to complete tasks to do with the application. Examples of these
could be running tests or transpiling the code. Any packages installed as a
devDependency will not be packaged in the final build of an application that
is deployed.

To install a package as a devDependency, you need to add the --save-dev
flag, like so:

npm install --save-dev jest

This will install the Jest testing framework that we met in chapter 10 and add
the following lines to the package.json' file:

 "devDependencies": {
 "jest": "^20.0.4"
}

You can also install a specific version of a package by placing the @ symbol
after the package name, followed by the version you require. For example,
you could install version 18.1.0 of Jest, using the following command:

npm install --save-dev jest@18.1.0

http://semver.org

Which Version?

It is usually best to just install the latest version of a package, although there
may be times when you need to install a specific version of a package so it’s
compatible with other packages.

The package.json File

The package.json file is used to manage any packages that are installed
locally. It keeps track on which packages are installed, and what
dependencies they rely on. It also allows you to specify specific versions of
packages to use.

All package.json require the following pieces of information:

"name" – This must be all in lowercase and contain no spaces.
"version" – This uses semantic versioning of the form
major.minor.patch.

You can create a package.json file inside a directory by running the npm
init command. This will ask you some questions that will be used to
populate the file. If you don't want to go through the process of answering all
the questions, you can use the --yes or -y flag to bypass the questions and
use the default options:

npm install --yes

You can also set most of the default options using npm set command:

npm set init.author.email "daz@sitepoint.com"
npm set init.author.name "DAZ"
npm set init.license "MIT"

README

Most projects will have a file in the root directory called 'README'. This

files serves as the application's documentation and contains information about
it. If you leave the description field blank, then npm will use the first line of
the README file as the description.

One of the most powerful features of the package.json file is that it contains
all the information about a project's dependencies. So if you clone somebody
else's project, all the information about the packages it requires are contained
inside the package.json file. npm also makes it trivially easy to then install
all the packages that are required to run the application by simply entering the
following command from inside the root directory of the project:

npm install

This will then download and install all the necessary packages, as well as any
dependencies.

Version 5 of npm introduced the 'package-lock.json' file, which is
automatically created when any changes are made to the 'node_modules'
directory or the package.json file. This acts as an exact snapshot of the
packages used in a project at any single point in time, and helps avoid
problems that were caused when a package updated and conflicted with the
latest versions of some of its dependencies.

Installing Globally

It is also possible to install packages globally so they’re available system-
wide from any directory on your machine. While this might sound like a
good idea at first, it isn't usually recommended, as the package files are not
saved with the project (they are installed in the system folders on your
machine) and there will be no reference to the package as a dependency in the
package.json file.

There are some cases, however, when it makes sense to install a package
globally. This is usually when the package is to be used on a system-wide
basis, rather than just for a specific project.

To install a package globally, the global flag needs to be added to the

install command:

npm install --global lodash

There are also some cases where it makes sense to have a global install as
well as a local install. Lodash is a good example of this. You might want it
available on your system so you can have quick access to the library when
you’re experimenting with code in the Node REPL, but you might also want
it as a specific dependency in a web application you build. If you didn't install
it locally, this would mean the code would work fine on your machine
(because you have a global install), but it wouldn't work on a machine that
didn't have a global install of Lodash. The easiest solution to this is to install
the package both globally and locally. There is nothing wrong with this, it
just means the files exist in two (or more) different places on your machine.

Permissions

You need to be careful about permissions when installing packages globally.
When you install locally, you are installing packages to a directory that the
current user owns and has permission to alter. When you install globally you
are sometimes required to install the package into a system directory that you
don't have permission to access. This means you often need to sign in as a
'super user' to install them. There are some security issues with doing this,
and there can also be permission issues if packages try to alter or write to any
files.

Three ways to fix this problem are explained on the npm website.

Listing Installed Packages

You can list all the packages that have been installed locally using the list
command:

npm list

This will often produce a much longer list than expected, as it also lists the

https://docs.npmjs.com/getting-started/fixing-npm-permissions

packages that have also been installed as dependencies. The list is presented
as a tree that shows the dependency hierarchy.

If you only want to see the packages that you have installed directly, you can
use the depth flag, with a value of 0:

npm list --depth=0

This will only list the direct dependencies of the application (including
devDependencies).

You can find out which packages have been installed globally by adding the
--global or -g flag:

npm list --global

Updating A Package

You can find out if any of the packages you have installed have been updated
by running the following command:

npm outdated

This will display a list of any packages that are listed in package.json and
have a more recent version available than what’s currently installed.

It's worth using this command every now and then to check if any updates are
available, as it is often beneficial to keep the packages up to date.

npm makes it easy to update a package to the latest version using the update
command. For example, you can update to the latest version of Jest using the
following command:

npm update jest

You can update all the packages in the directory by simply entering the

following command:

npm update

To find out if any packages that have been installed globally are out of date,
run the following command:

npm outdated -g

If any global packages need updating, this is done using the update
command, but you need to add the --global or -g flag:

npm update --global

Uninstalling Packages

You can use npm to uninstall a package using the uninstall command:

npm uninstall lodash

This will remove the package from the 'node_modules' directory.

Use npm To Remove Packages

You can easily remove a package that has been installed locally by simply
deleting its directory from the 'node_modules' directory, but it is preferable to
use npm as this will also take care of removing any redundant dependencies
as well as updating the package.json file to reflect the changes.

To remove it from the dependencies in package.json, you will need to use the
save flag:

npm uninstall --save lodash

If it was installed as a devDependency, you will need to add the --save-dev

flag to remove it from the package.json file:

npm uninstall --save-dev jest

Global packages can be uninstalled by adding the --global or -g to the
uninstall command:

npm uninstall --global lodash

Aliases

npm uses a number of aliases for common commands that can be used to cut
down on a few keystrokes.

i is an alias for install un is an alias for uninstall up is an alias for update
ls is an alias for list

You can find out more about npm in this detailed post on SitePoint.

Yarn

Yarn has emerged recently as a popular alternative to npm. It was developed
to try and get around some problems that npm had with the speed and
consistency of installing packages, as well as some security concerns to do
with npm allowing packages to run on installation.

Yarn generally installs packages much faster than npm due to the fact that it
caches packages. It has a slightly different set of commands, but generally
works in the same way as npm. A comparison between Yarn and npm can be
seen in this post on SitePoint.

Content Delivery Networks

Content delivery networks (CDNs) are systems of distributed servers that
can deliver web resources, such as JavaScript, CSS or image files to a user

https://www.sitepoint.com/beginners-guide-node-package-manager/
https://github.com/yarnpkg/yarn
https://www.sitepoint.com/yarn-vs-npm/

based on their geographic location. This means they’re able to deliver the
content quickly and efficiently with a high degree of availability. These
resources also get cached on the user's machine, meaning that less requests
need to be made to download the resource. This is particularly beneficial
when using a CDN for a popular library such as jQuery. This is because once
the user has downloaded the file from a site, it will be cached, and can then
be used again by other sites without the need for another network request.

unpkg is a global content delivery network (or CDN) that allows you to
include any package from npm in a web page without having to install it on
your own machine. Using a CDN, such as unpkg, is a good way to quickly
add a npm package to your project, especially if you just want to test it out.
But using this approach has some drawbacks. Some libraries, such as React,
put the burden of processing onto the browser, rather than when the code is
transpiled. This is fine when experimenting, but in a production environment,
this would take too much toll on the browser, and result in a sub-optimal
experience for the user. For this reason, you will eventually need to consider
using a build tool such as Webpack to take care of managing any external
libraries that you use, and for that reason, this is covered later in the chapter.

https://unpkg.com

Deploying JavaScript
When it comes to deploying your JavaScript program, it’s time to think about
optimizing the code. If you’ve used multiple external libraries and lots of
modules, you might have a large number of files that need to be included in
your HTML file. One way of doing this is to simply include a different
<script> tag for each JavaScript file. However, this is not optimal for a
number of reasons:

The scripts must be included in the correct order.

Each file represents a separate request to the server.

The files will be large.

The solution is to combine all the scripts into a single minified and
compressed file. This file is often named 'bundle.min.js' to signify that it’s a
number of files bundled together and has also been minified. Once you’ve
combined all the files into a single file, and minified and compressed it, the
next step is to add it to the HTML file. The optimal position for the <script>
tag is right at the end of the page, just before the closing <body> tag, which
we have used in all our examples:

<!doctype html>
<html lang='en'>
<head>
 <meta charset='utf-8'>
 <title>Ninja JavaScript</title>
</head>
<body>

 ...

 <script src='bundle.min.js'></script>
</body>
</html>

This will ensure the page has finished loading before the JavaScript code is

processed.

Transpiling Code

Code transpilers take JavaScript code and turn it into JavaScript code! That
might sound strange but it’s all to do with the fact that browsers struggle to
keep up with the fast-moving pace of ECMAScript versions. A code
transpiler allows you to write your code in the latest version of ECMAScript,
using all the latest features, then convert it into an older variant of JavaScript
that is compatible with most browsers.

The most common use of transpilers recently has been to allow developers to
write in ES6 code then transpile it into ECMAScript 5, which was widely
supported by most browsers. This has helped to facilitate the swift adoption
of ES6 code, and meant it could be used in production code and tutorials.
This, in turn, probably contributed to browser vendors implementing ES6
features into their browser engines quickly.

Most ES6 features have now been implemented in the most up-to-date
browsers, but this probably won't make transpilers redundant. Developers
will always want to use the most up-to-date language features, and browser
engines will always be slightly behind the curve (although browser vendors
are getting much faster at implementing features these days). It also means
you can ensure your deployed code will still work on any older browsers that
some of your audience might still be using.

Babel is the most popular transpiler for converting the most up-to-date
version of ECMAScript into an older flavor of JavaScript.

There are also a number of transpilers that allow you to write in a different
language then compile it into JavaScript. This is useful if you prefer using an
alternative coding style – for example, CoffeeScript, which has many
similarities to the Ruby language. Some more examples are listed below:

CoffeeScript (There's a good book about this).
TypeScript
Dart

https://babeljs.io
http://coffeescript.org
https://www.sitepoint.com/premium/books/jump-start-coffeescript
https://www.typescriptlang.org
https://www.dartlang.org

Minification

Minification is the process of removing any unnecessary characters from
your code to reduce the file size. This includes all comments, whitespace, and
other characters that are superfluous.

Tools are available to do this, known as minifiers. Some popular choices
include:

YUI Compressor

Google’s Closure

UglifyJS

These tools can also change variable and function names to single letters.
This is often referred to as code obfuscation as it can make the code more
difficult to read. They will also try to employ optimizations to make the code
run faster. For example, here is the myMaths object that we created at the
start of this chapter after it has been converted to ES5 and then minified using
UglifyJS:

var myMaths={square:function(n){return n*n},sum:function(n,t){return t&&(n=n.map(t)),n.reduce(function(n,t){return n+t})},mean:function(n){return this.sum(n)/n.length},variance:function(n){return this.sum(n,this.square)/n.length-this.square(this.mean(n))}};

As you can see, it is significantly smaller in size, but much more difficult to
read and make sense of!

Minifying your code can have a major effect on the overall size of your files,
making them download and run faster. It also means that your code can use
descriptive naming conventions and be well-commented, as these will be
stripped away by the minifier tools. As a general rule, you should aim to use
well-commented and descriptive code in development and minified code in
production (since there’s no need for end users to read comments).

Files can also be compressed on the server using a file-compression tool such
as gzip, which can have a dramatic effect reducing the file size. Using both
minification and compression in production means that JavaScript files are a

https://www.npmjs.org/package/yui
https://developers.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS

mere fraction of their original size, making them much quicker to download.

Folder Structure

As you application gets larger, you will need to start thinking about having a
more structured approach to organizing your files. You can organize your
files in any way you like, but there are some conventions that are often used
for directory names that are worth knowing about.

Root Files

In the root of any folder structure you will find a file called index.html. This
is traditionally the page that a web browser will load by default, although it is
possible to instruct it to load any file by programming how the server
responds to requests.

For small projects, such as most of the examples in this book, it is usually
okay to put all the JavaScript into a single file in the root directory. It is
usually called main.js, 'index.js', 'app.js' or something similar. As a project
gets bigger, you'll find that it helps to separate different parts of functionality
into different modules then use this file as an entry-point for loading any
modules. You might also want to move all of your JavaScript into a separate
folder, called 'js', 'scripts' or something similar.

In a similar way, it is customary to have a single CSS file in the root directory
or keep multiple CSS files saved in a folder called 'CSS', 'stylesheets' or
similar.

src folder

Code that needs to be transpiled is often placed inside a folder called src
(short for 'source'). The transpiler can then compile the JavaScript code into a
single file in a different location (usually this is either the root directory or the
'dist' folder).

dist folder

The output of any transpiled code from the src folder is usually placed inside
a folder called 'dist' (short for 'distribution'). This is the only part of the
application code that is actually distributed when it is deployed. Even though
there might be many different files inside the src folder, the result of
transpilation means there is usually only a single JavaScript file inside the
'dist' folder, usually called budle.js or 'bundle.min.js' if it has also been
minified.

lib folder

Any modules are usually stored in a folder called lib (short for 'library') that
is usually placed inside the src folder. Third-party libraries are often placed
inside a folder called vendor, although they are sometimes also placed inside
the lib folder.

Third-Party Code

Any third-party code installed using npm will be installed into a directory
called node_modules. This can be configured to use a different folder name,
but for consistency it is best to stick to this convention.

If you only use a small number of modules, you can just keep them all in the
root of the lib directory, but as the size of your application grows, you might
need to start thinking about how to organize the modules into separate
folders.

Organization By Type

This structure has folders for the different types of file that will be used in
your project such as Javascript, CSS, Images and Tests. All your JavaScript
files then go in the JS folder, all your stylesheet files go in the CSS folder, all
your HTML files go in the views folder etc.

A typical folder structure based on type might look like the following:

src
CSS

JS
views
tests

dist
index.html
bundle.min.js

package.json
node_modules
README

Modular Organization

This structure groups files by feature rather than type. So instead of placing
all the JavaScript files in one place (based on type), we would put all the files
associated with a certain feature together in a single folder. So all the
JavaScript files, stylesheets, views and tests associated with 'feature X' would
go in a folder called featureX, for example.

There are a number of advantages to this approach, particularly in big
projects:

It keeps all the code related to that particular feature all in one place,
making it easy to find.
It's extensible – modules can grow to incorporate their own file structure
and sub-directories as required.
It allows developers to work on a specific feature without affecting
another feature. This is particular useful when you’re working in teams.
The modular nature of this approach makes it easy to switch one feature
for another, without affecting the rest of the project.
Each module is self-contained, making them easy to test.

A typical modular folder structure might look like the following:

src
index.html
lib

app

app.js
app.css
app.test.js

moduleA
moduleA.html
moduleA.js
moduleA.css
moduleA.test.js

moduleB
moduleB.html
moduleB.js
moduleB.css
moduleB.test.js

dist
index.html
bundle.min.js

package.json
node_modules
README

Note that the app folder is for shared resources that are used by the main
application itself.

Note also that inside each module's directory, you might begin to have sub-
directories for JavaScript, CSS and tests rather than single files, if the
modules start to become large themselves.

Start Small

Personally I would recommend that you start any project with just the root
files: index.html, main.js and main.css.

As the project starts to grow, you could progress using an 'application' folder
to place the application specific JavaScript and CSS code, as well as any tests
and HTML views.

If you start to transpile your code, you should consider keeping your original

code in a src directory and transpiling the code into a 'dist' directory.

If the project grows further still, you might begin to separate the code into
separate modules that require their own folders, particularly if the project is
being worked on by a team of developers.

The important thing when choosing a directory structure is that it works for
you and remains consistent. Also remember that your code structure will
have to fit in with any third-party tools that you choose to use. Most tools
will allow you to configure the directory structure to suit your needs,
although sometimes it’s easier to stick to the conventions that they used.

Webpack

Webpack is a module bundler that takes all the JavaScript files used in your
project and bundles them altogether in one file.

Webpack also uses the concept of 'loaders', which allows you to perform
tasks such as:

Transpiling code

Minifying code

Linting code

Testing code

Compiling CSS preprocessor files (such as Sass, Less or Stylus) into
standard CSS files.

Webpack’s loaders also let you compile multiple CSS and image files into a
single destination folder. It's also possible to write your own loader file to
automate a specific task.

Webpack is an important tool for managing a modern JavaScript project and
getting it ready for deployment. We're going to have a look at how to install
Webpack, as well as a few examples of how to use it. We'll only be focusing

on bundling JavaScript files in these examples, but you can see how to do the
same with your CSS by checking out the Webpack documentation.

A Webpack Example

To get started, we need to create a new folder called webpack-example, then
navigate to that folder in the terminal and create a package.json file:

npm init -y

Next, we use npm to install Webpack. Since it's only used as part of the
development process, we use the --save-dev flag:

npm install --save-dev webpack

Webpack should now be added to the devdependencies property in the
package.json file.

Webpack basically bundles files together into an output file. To test it out,
we're going to try and use our installation of Lodash. If you didn't install
Lodash earlier, do it now, using the following command:

npm install lodash --save

Now create a simple HTML file called webpack.html that includes the
following code:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Webpack Example</title>
</head>
<body>
<script src=budle.js></script>
</body>
</html>

https://webpack.js.org/configuration/

This page doesn't really do anything, although it refers to a file called
budle.js. This is going to be created by Webpack. It is convention to call the
output file budle.js as it’s all the JavaScript files bundled together as a
single file.

Next we need to create a JavaScript file called main.js that contains the
following code:

import _ from 'lodash';
console.log(_.now());

This uses the ES6 module syntax to import the Lodash library, and assigns it
to the variable _, which acts as a namespace for the library (you could assign
it to any variable name, but the _ symbol is the convention, due to the name
of the library). We then call the now() from Lodash and use console.log()
to display the result in the console. The now() method simply returns the
number of seconds since the Epoch.

On its own, this code won't work, but we can use Webpack to sort out
importing the Lodash library from the 'node_modules' directory. To do this,
we simply need to run the following command in the terminal:

./node_modules/.bin/webpack main.js bundle.js

The first argument is the file that contains our code ('main.js), and the second
argument is the file that we want the output to be written to (bundle.js).

After you run this code, you should notice that a new file called budle.js has
been created. Now, if you open 'webpack.html' and open the console, it
should display a number that represents the number of seconds since the
epoch (at the time of writing, it was around 1,500,000,000,000). This means
the Lodash library has been successfully imported into our main.js file and
can now be used.

To make things simpler, going forward, we can create a webpack
configuration file called 'webpack.config.js'. This is actually just a standard
JavaScript file and should be saved in the root of the directory and contain

the following code:

module.exports = {
entry: './main.js',
output: {
 filename: budle.js,
 path: __dirname
}
};

This can be run using the following line of code in the terminal:

./node_modules/.bin/webpack

We can use npm to simplify this process. Update the "scripts" property in
your package.json file to the following:

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "build": "webpack"
}

Now you can run Webpack using the following command:

npm run build

Running Other Processes, Too

The technique above can be used to run other processes, by adding them as
properties of the "scripts" object. npm's run command can then be used to run
the code specified.

The property name "build" is arbitrary (although it is the convention), and it
could be named anything ... even "webpack".

Quiz Ninja Project
We’ll now put some of the ideas we’ve learned in this chapter into practice in
our quiz project. First of all we'll move our code into separate modules. We'll
create a module for the view object, another for the game object and one more
for our utility functions, random() and shuffle(). We'll also update our file
structure to keep all our source files in a src folder then use Webpack to
compile them all together into a 'dist' folder.

To get started, create a folder called 'quiz' (or something similar), navigate to
it in the terminal and enter the following code:

npm init

Answer all the questions to create a package.json file that is similar to the
one below.

{
"name": "quiz-ninja",
"version": "1.0.0",
"description": "A JavaScript quiz.",
"main": "main.js",
"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [
 "quiz",
 "ninja",
 "javascript"
],
"author": "DAZ",
"license": "MIT"
}

Now we need to create our directory structure. Create a folder called 'dist' at
the root of the directory and copy the index.html and styles.css files
inside it.

A Simulated Example

The 'dist' directory is normally only used for files that have been compiled
from the src directory. In reality you would probably use some sort of pre-
processors to create your HTML and CSS files. In this example, we’re just
going to pretend that this has happened and index.html and styles.css
have been compiled into the 'dist' directory.

We will also need to make a small update to the index.html file so that it
loads a JavaScript file called 'bundle.min.js' in the 'dist' directory, which is
the file that Webpack will build:

<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<meta name='description' content='A JavaScript Quiz Game'>
<title>Quiz Ninja</title>
<link rel='stylesheet' href='styles.css'>
</head>
<body>
<section class='dojo'>
 <div class='quiz-body'>
 <header>
 <div id='timer'>Time: 20</div>
 <div id='score'>Score: 0</div>
 <div id='hiScore'>High Score: </div>
 <h1>Quiz Ninja!</h1>
 </header>
 <div id='question'></div>
 <div id='response'></div>
 <div id='result'></div>
 <div id='info'></div>
 <button id='start'>Click to Start</button>
 </div>
</section>
<script src='bundle.min.js'></script>
</body>
</html>

Now we're going to create our JavaScript modules in the src directory.
Create src folder in the root directory and save the following in a file called

'utilities.js':

function random(a,b=1) {
// if only 1 argument is provided, we need to swap the values of a and b
if (b === 1) {
 [a,b] = [b,a];
}
return Math.floor((b-a+1) * Math.random()) + a;
}

function shuffle(array) {
for (let i = array.length; i; i--) {
 let j = random(i)-1;
 [array[i - 1], array[j]] = [array[j], array[i - 1]];
}
}

export {
random,
shuffle
}

This contains our utility functions random() and shuffle() that we will use.
Separating them into their own module is a good move as it will make it
easier to update and use them in future projects.

The next module will include the code for the quiz itself. Save the following
code in 'quiz.js':

import { random, shuffle } from './utilities.js';

const view = {
score: document.querySelector('#score strong'),
question: document.querySelector('#question'),
result: document.querySelector('#result'),
info: document.querySelector('#info'),
start: document.querySelector('#start'),
response: document.querySelector('#response'),
timer: document.querySelector('#timer strong'),
hiScore: document.querySelector('#hiScore strong'),
render(target,content,attributes) {
 for(const key in attributes) {
 target.setAttribute(key, attributes[key]);
 }

 target.innerHTML = content;
},
show(element){
 element.style.display = 'block';
},
hide(element){
 element.style.display = 'none';
},
setup(){
 this.show(this.question);
 this.show(this.response);
 this.show(this.result);
 this.hide(this.start);
 this.render(this.score,game.score);
 this.render(this.result,'');
 this.render(this.info,'');
 this.render(this.hiScore, game.hiScore());
},
teardown(){
 this.hide(this.question);
 this.hide(this.response);
 this.show(this.start);
 this.render(this.hiScore, game.hiScore());
},
buttons(array){
 return array.map(value => `<button>${value}</button>`).join('');
}
};

const game = {
start(quiz){
 console.log('start() invoked');
 this.score = 0;
 this.questions = [...quiz];
 view.setup();
 this.secondsRemaining = 20;
 this.timer = setInterval(this.countdown , 1000);
 this.ask();
},
countdown() {
 game.secondsRemaining--;
 view.render(view.timer,game.secondsRemaining);
 if(game.secondsRemaining <= 0) {
 game.gameOver();
 }
},
ask(name){
 console.log('ask() invoked');

 if(this.questions.length > 2) {
 shuffle(this.questions);
 this.question = this.questions.pop();
 const options = [this.questions[0].realName, this.questions[1].realName, this.question.realName];
 shuffle(options);
 const question = `What is ${this.question.name}'s real name?`;
 view.render(view.question,question);
 view.render(view.response,view.buttons(options));
 }
 else {
 this.gameOver();
 }
},
check(event){
 console.log('check(event) invoked')
 const response = event.target.textContent;
 const answer = this.question.realName;
 if(response === answer){
 console.log('correct');
 view.render(view.result,'Correct!',{'class':'correct'});
 this.score++;
 view.render(view.score,this.score);
 } else {
 console.log('wrong');
 view.render(view.result,`Wrong! The correct answer was ${answer}`,{'class':'wrong'});
 }
 this.ask();
},
gameOver(){
 console.log('gameOver() invoked')
 view.render(view.info,`Game Over, you scored ${this.score} point${this.score !== 1 ? 's' : ''}`);
 view.teardown();
 clearInterval(this.timer);
},
hiScore(){
 const hi = localStorage.getItem('highScore') || 0;
 if(this.score > hi || hi === 0) localStorage.setItem('highScore',this.score);
 return localStorage.getItem('highScore');
}
};

export {
view,
game
}

This is the same code for the view and game objects that we used previously
in main.js, but made into a module by using the export declaration at the
end. We also imported the 'utilities.js' module at the start, which allows us to
use the random() and shuffle() functions in this module.

Now that we have our modules in place, we need to update main.js to import
them:

import { view, game } from './quiz.js';

const url = 'http://spbooks.github.io/questions.json';

fetch(url)
.then(res => res.json())
.then(quiz => {
 view.start.addEventListener('click', () => game.start(quiz.questions), false);
 view.response.addEventListener('click', (event) => game.check(event), false);
});

This file will serve as an 'entry' point, in that Webpack will look at this file
and determine which modules to load.

Next, we’ll use Webpack to prepare our code for deployment. This will
involve transpiling our code into ES5 using Babel, and minifying the code
using the Babili plugin. The minified code will then be placed inside a single
file in the 'dist' directory.

To do this, we need to install Webpack locally, as well as Babel, some Babel
modules and the Babili plugin:

npm install --save-dev webpack babel-core babel-loader babel-preset-env babili-webpack-plugin

We use the --save-dev flag to install these modules as all of them are only
used in development.

Next, we need to configure WebPack. Create a file called webpack.config.js
in the root directory and add the following code:

const webpack = require('webpack');
const BabiliPlugin = require("babili-webpack-plugin");

https://babeljs.io/blog/2016/08/30/babili

module.exports = {
context: __dirname + '/src',
entry: './main.js',
output: {
 path: __dirname + '/dist',
 filename: 'bundle.min.js'
},

module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader: 'babel-loader',
 options: {
 presets: ['env']
 }
 }
 }
]
},
plugins: [
 new BabiliPlugin(),
 new webpack.DefinePlugin({
 'process.env': {
 'NODE_ENV': JSON.stringify('production')
 }
})
]
};

The context and entry properties tell WebPack to take the code found in
'/src/main.js', and the output property tells it to place the transpiled code in
'/dist/bundle.min.js'. The rules property contains the standard rules to
transpile from the latest version of ECMAScript into ES5 code. We have also
added a reference to the Babili plugin in the plugins property that will
minify the output.

To run this as a build script, add the following line to the "scripts" property of
your package.json file:

"build": "webpack --progress --colors --profile"

Flags

The flags used with the webpack command above are quite common when
transpiling JavaScript. --progress will display what is happening as
WebPack does its thing, and --colors will display it all in different colors.
The --profile flag will make WebPack show how long each part of the
build takes, which can be helpful in identifying any bottlenecks in the build
process.

Our last job is to run the build script:

npm run build

This should create a file called 'bundle.min.js' inside the 'dist' directory. This
contains all the JavaScript the application needs in just one, minified file
without having to load any external libraries at runtime.

Have a go at playing the game by loading index.html in your browser:

Quiz Ninja

Although we haven’t changed the functionality of the quiz game in this
chapter, we have created a modular structure and separated the source files
from the files that are deployed. If this project was to be deployed in public,
then only the files in the 'dist' directory would actually be distributed. The
files in the src directory would only be used for development.

This makes the code easier to maintain in the future, as well as ensuring that
the distributed code uses the optimal file size and works in a large number of
browsers. These are both important tasks to consider when writing JavaScript
that will be deployed to a server.

Chapter Summary
JavaScript libraries provide methods to make common tasks easier to
achieve.

Libraries can make programming much easier, but you should think
carefully about whether you require a library, and which one is best for
your needs.

jQuery and Lodash are two popular libraries that provide a large number
of useful and well-tested functions.

npm and Yarn are package managers that can be used to install
JavaScript packages, as well as any dependencies that they require.

A module is a self-contained piece of code that provides functions and
methods that can then be used in other files and by other modules.

ES6 added support for modules, allowing code to be abstracted into their
own self-contained files and imported into another file.

The MVC pattern is used to organize code into distinct sections that are
responsible for different elements of an application.

Template files can be used to separate view code from JavaScript; they
also enable dynamic code and programming logic to be used to generate
markup.

React and Vue.js are popular JavaScript view libraries that render
components and keep track of their state.

Minification is the process of removing any redundant characters from
the code in order to reduce its file size.

Files can be compressed on the server using the gzip compression tool.

Webpack can be used to bundle multiple files into a single bundle, and
automate common tasks such as transpiling, minifying code and running
tests.

Before code is deployed, it should be concatenated into a single file,
minified and compressed. The script tag should be placed just before the
closing </body> tag to ensure that all elements on the page have loaded
before the script runs.

In the next chapter, we’ll be looking at some of the features in the next
version of JavaScript, as well as some ideas of what you can build using
JavaScript.

Chapter 16: Next Steps
We are nearing the end of the road to becoming a JavaScript ninja. But as one
journey finishes, a new one begins. Now it’s time to level up your JavaScript
ninja skills. In this final chapter, we’re going to see what’s in store for
JavaScript in the future. We’ll also look at how to become a better
programmer, as well as offer some ideas of what to do with your newfound
JavaScript programming skills.

In this chapter, we’ll cover the following topics:

The future of JavaScript

Ninja skills to take you to the next level

Project ideas for JavaScript development.

What’s Next For JavaScript?
This is an exciting time for the JavaScript language. It is developing at a
rapid rate and its new annual release schedule means that it’s able to adapt
quickly to the changing needs of developers. JavaScript engines are also
getting quicker at implementing the latest features, so they become available
sooner. The yearly release cycle means that not as many new features make it
into each release, and so far, there aren't any big changes on the horizon for
ES2018. The changes proposed so far include:

Allowing dynamic importing of modules using conditional code.
New features for the spread operator.
A standard way of accessing the global object.
Support for asynchronous iteration that will allow you to perform a loop
asynchronously. This means that the code can move on to the next
iteration in the loop before the last task has completed.
Numerous other improvements, particularly with regular expressions.

As you can see, there are no major changes, but over time, JavaScript will
continue to evolve as a language with each increment. The yearly release
cycle should give developers time to learn any new features and keep their
skills up to date.

WebAssembly

WebAssembly is an emerging standard that provides the ability to compile a
low-level programming language such as C or C++ into code that can run in
the browser. WebAssembly is significantly faster than JavaScript due to it
being in a binary format. This means applications that require more raw
speed and processing power can run in a browser without the need for a
plugin.

WebAssembly is not a replacement for JavaScript. Rather it is a
complementary technology. JavaScript will still be used for most web
applications, but WebAssembly code will be able to run from within a

JavaScript application when the need arises. WebAssembly offers the
exciting prospect that the browser will be able to run even more powerful
applications that operate on a similar level to native applications. It will be
particularly useful for improving the standard of online gaming, as well as
uses in scientific modeling and the Internet of Things. As WebAssembly
becomes more available, there is a chance that, slowly but surely, it will start
to replace JavaScript as a compile target. Developers will eventually start
using tools to compile code into WebAssembly instead of JavaScript before
deploying it.

JavaScript Fatigue

JavaScript fatigue is a term coined over the last few years to describe the
explosive growth of JavaScript libraries, tools and frameworks, and the speed
at which they come and go out of fashion. Keeping up to date with the
current JavaScript trends can be very hard and tiring, especially when there's
work to be done!

Many people, particularly beginners, can often feel overwhelmed by the
sheer volume of different technologies that now need to be learned just to
produce a simple web app. It is not uncommon to read an online tutorial that
is overflowing with technical jargon and acronyms such as ES6, jQuery,
React, Redux, WebPack, Babel, TDD, Jest, Git, async, OOP, functional-style,
npm, Node.js, Yarn, SQL, NoSQL, Graph databases ... it's no wonder that
some people find it all so confusing!

Hopefully, reading this book has gone a long way to explaining what a lot of
the terms mean and how different libraries and frameworks fit into your
workflow. You should also keep in mind that you can achieve a lot with just
plain old vanilla JavaScript. You can go a long way with some HTML files, a
sprinkling of CSS and a single JavaScript file.

Modern JavaScript certainly has a rich and diverse ecosystem, and this means
there is a huge choice of tools to use. This can seem daunting at first, but in
reality it’s a good thing that there is a large choice on offer. You just need to
be disciplined about when and how you choose which tools to use.

Of course, it's useful to keep up to date about modern JavaScript practices,
but you also need to accept that you can't do it all. Try to keep up to date with
any emerging trends and developments, but don't feel you have to adopt them
straight away. If you start to develop magpie syndrome (when you can't help
but be attracted to the latest shiny JavaScript framework) then you’ll never
have any time to master anything.

The best way to move forward is to avoid paralysis by analysis and get
coding! The more code you write, the more you will start to recognise where
a certain tool might help to improve your workflow. As you become more
experienced, you will soon know when it’s time to introduce a new tool into a
project. And if everything is working fine with your current setup, there's no
need to change it. The old adage of 'if it ain't broke, don't fix it' still holds!

Some interesting thoughts on the matter can be found in the following
articles:

JavaScript Is A Buffet, Not The Enemy
Why I'm Thankful for JS Fatigue

https://scriptconf.org/blog/javascript-is-a-buffet-not-the-enemy-chris-heilmann/
https://medium.com/javascript-scene/why-im-thankful-for-js-fatigue-i-know-you-re-sick-of-those-words-but-this-is-different-296fae0c888f

Ninja Skills
At this stage of the book, you should be well on your way to becoming a
proficient JavaScript programmer. But as JavaScript has matured, a whole
ecosystem has built up around it, which means that a Ninja programmer
needs to do more than just know the basics of the language. You'll need to
develop further skills that set you apart from regular programmers. This
section outlines a few key skills that are well worth mastering to help take
your programming to the next level.

Version Control

Version control software allows you to track all the changes that are made to
your code, because every version of your code is kept and can be recalled at
any time. Many people use a crude form of version control by saving
different versions of code with different file names such as 'projectV1.js',
'projectV2.js', 'projectV3.js'... and so on. This is a reasonable method, but it
can be error-prone. (If you’ve used this method before, how many times have
you forgotten to change the name before saving?) It also doesn’t offer the
same benefits that can be gained by using a source control management tool.

One of the most popular source control management tools is Git, written by
Linus Torvalds, the creator of Linux. Git enables you to roll back to a
previous version of your code. You can also branch your code to test new
features without changing the current stable codebase. Git is a distributed
source control system, which means that many people can fork a piece of
code, develop it independently, then merge any of their changes back into the
main codebase.

Git uses the command line to issue commands, but there are a large number
of GUI front ends that can be installed to give a visual representation of the
code.

Source control is invaluable if you’re working in a team, as it means that
different developers can work on the same piece of code without worrying

http://git-scm.com/

about causing any errors in the main codebase. If any mistakes do
accidentally end up in the main codebase, they can easily be rectified by
rolling back to the last stable version. It also prevents you from overwriting
somebody else's code.

There are a number of online services that can host Git repositories, including
GitHub, Kiln, Bitbucket and Codeplane. They can be used to host an online
Git repository that can then be forked by other developers, making it
particularly useful for team projects. Some of these services make all the
code public, so they’re often used by open-source projects to host source
code; others keep the code private, and are used to host personal or business
projects.

As a ninja JavaScript developer, your life will be made much easier by
integrating Git into your everyday workflow. You can find out more about
Git in Jump Start Git by Shaumik Daityari.

Keep Your Knowledge Up to Date

The world of JavaScript is fast-moving, and it’s getting faster every year.
You need to ensure that you keep up to date with recent developments and
best practices. Here are some suggestions of how you can keep your
knowledge current:

Subscribe to blogs such as SitePoint’s JavaScript channel.

Write your own blog.

Follow other JavaScript developers on Twitter.

Attend conferences or local meetups.

Read magazine articles.

Contribute to an open-source project.

Join a local or online user group.

https://github.com/
https://www.fogcreek.com/kiln/
https://bitbucket.org/
https://codeplane.com/
https://www.sitepoint.com/premium/books/jump-start-git
http://www.sitepoint.com/javascript/

Sign up for the SitePoint JS newsletter.

Listen to podcasts, such as JavaScript Jabber.

Read books or watch videos on more advanced topics, such as those by
Eggheads and the You Don't Know JS series of books.

Use Common JavaScript Coding Patterns

A pattern is a piece of code that solves a common problem and represents
best practice. In the time that JavaScript has existed, a number of patterns
have emerged that help to write maintainable code that has been proven to
work. In JavaScript development, a pattern is the generally accepted way of
achieving a specific goal, often because it’s the best way of doing it.

Another advantage of using standard coding practices is that it makes sharing
code between developers far less painful. If you use the same style and
terminology, developers will find it much easier to follow your code. Patterns
often have names attached to them (for example, the IIFE pattern that we've
seen previously). This makes it easier to discuss different patterns, since the
name can be referred to explicitly.

An antipattern is a piece of code that’s accepted bad practice. They generally
cause more problems than they solve and should be avoided. Not using
const, let or var to declare variables is an example of an antipattern. This
pollutes the global namespace and makes the likelihood of naming collisions
much more likely. Another example of an antipattern is to fork your code
based on 'browser sniffing' instead of user feature detection. Other examples
that have been mentioned already in this book are declaring functions using
the Function() constructor, using document.write(), using new Array()
and new Object() constructor functions to create arrays and objects instead
of the literals [] and {} and not ending statements with a semicolon. What is
considered an antipattern can also become a little evangelical: Many
developers consider extending Object.prototype (monkey patching) to be
an antipattern, and a sizeable majority will argue that having complex, deeply
nested classes is also an antipattern.

https://www.sitepoint.com/newsletter/
https://devchat.tv/js-jabber
https://egghead.io/technologies/js
https://github.com/getify/You-Dont-Know-JS

As you write more JavaScript, it’s a good idea to try and follow as many
patterns and conventions as possible. They’ll save you from having to
reinvent the wheel, and help you to write reusable code that is easier for
others to read. A good resource for learning more about JavaScript patterns is
Learning JavaScript Design Patterns by Addy Osmani.

Another good practice is to follow a coding style-guide. These are usually
written by teams of developers to ensure they agree on how they write code.
Airbnb make theirs publicly available and it not only includes coding style
recommendations, but also explains the justification behind them. It would
certainly make a good starting point or template for your own style guide.
You can also configure some code linters to help you stick to a particular
style-guide.

The post Elements of Javascript Style by Eric Elliot contains some excellent
guidelines that will help to improve your coding style (and hopefully
understand the reasoning behind them).

Build Things

You can learn all the theory you want, but the only way you’ll actually
develop your coding style is to go out and build things. By putting ideas into
practice and solving real problems, you’ll really start to get a feel for the
language. There is nothing better for improving your technique than writing
code. So get writing! In the next section, there are some ideas for what you
could do.

http://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://github.com/airbnb/javascript
https://medium.com/javascript-scene/elements-of-javascript-style-caa8821cb99f

Pair Programming
A great way to level up your skills is to pair program. This involves
working together with another developer on a project, either sat together in
person or (more usually) by connecting machines remotely. It can be between
a novice and a more experienced programmer, where the focus is on the
experienced programmer helping the novice improve their programming style
and teaching them new tricks. This might seem like a one-sided experience,
but it can be tremendously helpful for an experienced programmer to try and
explain difficult concepts, and often leads to them developing a deeper
understanding themselves. It can also speed up the development of a beginner
programmer as they can be guided away from common pitfalls by the more
experienced programmer.

Pair programming can also be between two programmers of a similar ability
where they are working together to try and solve a problem. The benefit here
is that they can discuss the different strategies they would use, and compare
different approaches to solving a problem. Having two sets of eyeballs
looking over code can also help identify careless errors that can take a long
time to find when you're on your own.

Codeshare is a site that lets you connect with other programmers

Contribute to Open Source Projects

The Open Source community is responsible for creating some excellent
software that many of us use every day. It also gives us an excellent
opportunity to give something back by contributing to a project, and provides
the chance to gain some experience of working on a big project with a large
number of users.

There are many ways you can contribute to an open-source project, which
will help to develop your skills as a programmer and give you an appreciation
of the processes involved in developing software. Here are some ideas of how
you can get involved:

https://codeshare.io

Help fix a bug that has been identified
Run benchmark tests
Write documentation or help to translate it
Suggest a new feature
Implement a new feature
Help to test a new feature
Moderate the project's message boards
Provide 'unofficial' support for the project.

If you want some ideas about what you can do then take a look at Contributor
Ninja, which provides a running list of issues that need fixing.

https://contributor.ninja/js/

JavaScript Development Ideas
Now that you’ve learned how to program in JavaScript, you might be
thinking, ‘what next?’ You need a project! In this section, we’ll look at what
you can do with your newly acquired programming skills.

JavaScript has evolved so much in recent years. It’s no longer considered just
an easy scripting language used to add a drop-down menu and a few effects
to a web page (although it is still perfectly fine to use it for this).

The following ideas are intended to get your creative juices flowing and, I
trust, spark an idea for a project. It is by no means a complete list of what you
can do with JavaScript — the possibilities are endless and only limited by
your imagination.

HTML5 Game Development

The advent of HTML5 has heralded a massive growth in online games
written in JavaScript and using other HTML5 technologies. Previously, most
online games were written using Flash, as JavaScript was considered too
slow. The adoption of Canvas as well as faster JavaScript engines now means
that HTML5 games can compete with native applications. The development
of WebGL and browser GPUs means that fast, rendered 3D games in the
browser are now a realistic possibility.

Modern online classics such as HexGL, Word's Biggest Pacman and Swooop
serve to highlight just what is possible using just HTML5 technologies.
These are great examples of what can be done, but games need not be overly
complex; the success of Flappy Bird shows that a good idea that’s well
implemented can be incredibly popular.

There are lots of examples of different styles of game at js13kGames – an
annual competition where all the games must be written in 13 kilobytes or
less (including all the code, graphics and sounds!).

http://hexgl.bkcore.com
http://worldsbiggestpacman.com
http://swooop.playcanvas.com
http://flappybird.io/
http://js13kgames.com/

There are many libraries that help to write HTML5 game code. A couple of
excellent ones are Jaws and Phaser.

If you’re interested in writing an HTML5 game, you can find lots of useful
information at the HTML5 Game Development website.

http://jawsjs.com/
http://phaser.io/
http://www.html5gamedevelopment.com/

Single-page Web Applications
A single-page web application is an application that, as the name suggests,
runs on a single web page in a browser. They aim to create a seamless
experience as users navigate around the application and avoid the feeling that
they are moving from one page to another. This is often achieved by
preloading data in the background using data stored in a back-end database
and retrieved as JSON using Ajax. Alternatively, the data can be stored
locally using the Local Storage API that we met in Chapter 14. An MVC
framework will often be used to ensure that the interface is updated quickly.
Many applications are now using the single-page web application model, a
couple of good examples are the Strike to-do list app and the Stack Edit
MarkDown editor.

Progressive Web Applications

Progressive Web Apps (PWAs) are an evolution of single-page web
applications that are being developed by Google. The idea is that web
applications can be made more reliable and responsive by caching key
resources in advance. This will make them load quicker and appear snappier
to use, without the need for a constant network connection. PWAs achieve
this goal by using a variety of modern web APIs to make web applications
feel more like a native application, resulting in a much better app-like
experience for users.

Mobile App Development

Android and iOS don’t use JavaScript as their native programming language.
However, it’s still possible to build an application using HTML5
technologies and JavaScript, then use a conversion tool such as CocoonJS,
Cordova, or PhoneGap. These will convert an HTML5 application into native
code that can be run on the Android and iOS platforms. So you can build
using just HTML5 technologies and JavaScript, but then deploy on multiple
devices.

http://www.strikeapp.com/
https://stackedit.io
https://developers.google.com/web/progressive-web-apps/
https://www.ludei.com/cocoonjs/
http://cordova.apache.org/
http://phonegap.com/

Desktop App Development

Electron is an open-source library that allows you to build desktop
applications using just HTML, CSS and JavaScript. It uses Chromium (the
open-source version of Google Chrome) and Node.js to create applications
that can run on Windows, MacOS and Linux. This means that if you have an
idea for a desktop application, you already have the skills needed to produce
one.

Electron was developed by GitHub when they built their own text editor,
Atom. Since then, it has become a popular option for developers who want to
create a desktop version of a web app. It has been used to create desktop
applications such as Slack, Microsoft Visual Studio Code and Insomnia.

Node.js Development

JavaScript has been traditionally thought of as a front-end programming
language used for client-side programming in the browser. That all changed
when Node.js was released and transformed the JavaScript landscape.
Node.js means that JavaScript can be run without using a browser, so
JavaScript can now be used to write server-side code or command-line tools
that interact with the file system.

As a JavaScript ninja, you’ll probably install Node anyway to use the many
tools that will make your life easier (such as React and WebPack, which we
saw in the previous chapter). Node.js can also be used to write your own
tools that help to automate your workflow, or to build server-side
applications, dynamic websites that link to back-end databases, and web API
services. Node.js is increasingly being used to develop large-scale websites
and applications, with companies such as PayPal, Groupon, and Yahoo using
it to deliver parts of their sites.

Due to the asynchronous nature of JavaScript, Node.js has a number of
advantages over traditional server-side languages such as PHP, Python and
Ruby. It’s ideally suited for real-time update applications with lots of
concurrent users as it’s able to quickly deal with requests in a non-blocking

https://electron.atom.io

way.

If you want to learn more about Node.js, you can learn more about it by
reading Node.js 8 the Right Way by Jim R Wilson.

And There’s More!

And it doesn’t stop there ― JavaScript is becoming the language of choice
for communicating with devices via APIs provided by the manufacturers. The
so-called 'Internet of Things' includes a range of devices, from watches and
virtual-reality headgear to home automation devices and even robots!
Knowledge of JavaScript will enable you to program an ever-growing list of
electronic devices.

https://pragprog.com/book/jwnode2/node-js-8-the-right-way
http://en.wikipedia.org/wiki/Internet_of_Things

Chapter Summary
New versions of ECMAScript will continue to ship every year. Each
version should help to make the language more expressive and easier to
use. This rapid release cycle should mean that new features are
implemented sooner in browsers.

WebAssembly is a new low-level language that will allow browsers to
run compiled code on the web. This will make it possible to run
processor-heavy applications on the web.

A JavaScript ninja should use version control such as Git to manage
their projects.

A JavaScript ninja’s knowledge can be kept up to date by subscribing to
mailing lists, listening to podcasts, attending talks and conferences,
following developers on Twitter, and reading books and blog posts.

A JavaScript ninja should use common JavaScript coding patterns that
are proven best practice. This also makes it easier to communicate about
code.

A JavaScript ninja should write lots of code and build things!

There are many different uses for JavaScript, such as HTML5 games,
server-side development using Node.js, progressive web apps and even
desktop apps using Electron.

JavaScript is increasingly being used as a scripting language for the
Internet of Things (IoT), meaning it can be used to program a variety of
devices.

And that brings us to the end of our journey! I hope you have enjoyed
learning JavaScript and will continue to develop your skills in the future.

JavaScript has moved beyond its humble beginnings as a basic scripting

language for adding effects to web pages. It now occupies a unique position
as a powerful language that can be used to program on the client-side and the
server-side. JavaScript is now becoming increasingly available on several
other platforms, extending its reach beyond the Web. The future certainly
seems bright for the language as it offers various opportunities to interact
with technology. The only limit to what you can do is your imagination. So
what are you waiting for? Get programming, ninja!

	Chapter 1: Hello, JavaScript
	Chapter Summary
	Chapter 2: Programming Basics
	Chapter Summary
	Chapter 3: Arrays, Logic, and Loops
	Chapter Summary
	Chapter 4: Functions
	Chapter Summary
	Chapter 5: Objects
	Chapter Summary
	Chapter 6: The Document Object Model
	Chapter Summary
	Chapter 7: Events
	Chapter Summary
	Chapter 8: Forms
	Chapter Summary
	Chapter 9: The Window Object
	Chapter Summary
	Chapter 10: Testing and Debugging
	Chapter Summary
	Chapter 11: Further Functions
	Chapter Summary
	Chapter 12: Object-Oriented Programming in JavaScript
	Chapter Summary
	Chapter 13: Ajax
	Chapter Summary
	Chapter 14: HTML5 APIs
	Chapter Summary
	Chapter 15: Modern JavaScript Development
	Chapter Summary
	Chapter 16: Next Steps
	Chapter Summary
	Blank Page
	Blank Page

