
Safety Area: All Text, Logos & Barcode should remain inside the Pink Dotted Lines

Bleed Area: All Backgrounds should extend to, but not past, the Blue Dotted Lines

JUMP START

RESPONSIVE
WEB DESIGN

BY CHRIS WARD

MODERN RESPONSIVE SOLUTIONS

R
W

D
JU

M
P

 S
TA

R
T R

E
S

P
O

N
S

IV
E

 W
E

B
 D

E
S

IG
N

W
A

R
D

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9943470-9-1

EBOOK ISBN: 978-0-9953827-2-5

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $29.95 CAD $39.95

The pixel-perfect web is dead. The days of positioning elements
on a web page and expecting them to always display exactly how
we wanted are a distant memory; we now cope with the constant
barrage of new and varied devices that our designs need to look
fantastic on. Responsive web design is no longer a nice-to-have
bonus feature, it’s an expected must-have.

This book aims to get you started understanding, and using,
the suite of CSS and HTML tools available for responding to this
new world of devices. Offering practical guidelines, with plenty of
detailed examples, this book covers:

• Use the responsive building blocks that help your pages adapt

• Develop responsive grids to make your layouts work on any device

• Add great-looking responsive text to your designs

• Use responsive image and video that will work on any device

• Respond to user context: orientation, ambient light, local time, and

 more

BUILD YOUR OWN FULLY-FEATURED
RUBY ON RAILS WEB APPLICATION

YOUR AUTHORS

CHRIS WARD

Chris Ward explains cool tech to the
World. He’s a technical writer and
blogger. He has crazy projects in
progress and will speak to anyone
who listens.

2ND EDITION

Jump Start Responsive Web Design, 2nd Edition
by Chris Ward

Copyright © 2017 SitePoint Pty. Ltd.

Product Manager: Simon Mackie

English Editor: Ralph Mason

Technical Editor: Craig Buckler

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information

herein. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or

distributors will be held liable for any damages to be caused either directly or indirectly by

the instructions contained in this book, or by the software or hardware products described

herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the

names only in an editorial fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: books@sitepoint.com

ISBN 978-0-9943470-9-1 (print)

ISBN 978-0-9953827-2-5 (ebook)

Printed and bound in the United States of America

i

About Chris Ward
Chris explains cool tech to the World. He’s a technical writer and blogger. He has

crazy projects in progress and will speak to anyone who listens.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content

for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find a stack of information on

JavaScript, PHP, Ruby, mobile development, design, and more.

ii Jump Start Responsive Web Design

http://www.sitepoint.com/

This book is dedicated to 2016, as that was the year I was supposed to finish it,

but life got in the way. It was also a pretty interesting year, wasn’t it?

I should probably also dedicate this book to my wife for putting up constantly

with “Can’t do anything this weekend, got to work on the book.”

iii

Table of Contents

Preface ... ix

Who Should Read This Book .. ix

Conventions Used .. ix

Tips, Notes, and Warnings ... xi

Supplementary Materials.. xi

Chapter 1 The Meaning and Purpose of

Responsive Web Design ..1

History...4

Schools of Thought Within Responsive Design5

Progressive Enhancement ..5

Graceful Degradation..5

Mobile First ...5

What Do You Need To Support? ...6

Computers ...6

Mobile Phones ..7

Tablets ..7

Hybrid Devices..7

iv Jump Start Responsive Web Design

Wearables ..8

TV ..8

Cars...8

Game Consoles ...8

Print ...9

Sample Application...9

Introducing RWDFlix ...9

Computer Version ..9

Tablet Version ...10

Mobile Version.. 11

TV Version ..12

Structuring a Page with HTML5 ...13

Ready to Respond? ...20

Chapter 2 The Building Blocks of Responsive

Design...21

Media Types..22

Creating a Query ...23

Logical Queries with Only and Not...28

Query Features ...29

Streamlining the Example App ...32

Table of Contents v

Mobile First ..38

The Viewport Meta Element..39

Any Queries? ..46

Chapter 3 Better Responsive Structures with

Grid Systems ..47

What Is a Grid? ..53

Creating Your Own Grid...54

Flexbox ..65

CSS Grid Layout...71

Making Grids Easier with Frameworks ..80

Bootstrap...80

Foundation..81

What About the Demo App?...83

Wrap Up ..83

Chapter 4 Responsive Text.....................................84

The History of Text..84

Responsive Typographical Properties in CSS ..86

Fixed Sizing ...88

vi Jump Start Responsive Web Design

Relative Sizing ..91

Creating Readable Text ..99

Read On ... 103

Chapter 5 Responsive Images and Video104

Images .. 105

Responsive Dimensions .. 109

The Right Image for the Right Device ... 111

srcset..112

The picture Element ..114

Responsive Video...115

The video Element...116

Get Visual .. 126

Chapter 6 Responding to User Context127

An API for Everything ... 127

Based on Time... 128

Battery Level ... 130

Geolocation ... 135

Based on Network .. 138

User Preference .. 139

Table of Contents vii

Ambient Light ... 140

Vibration .. 143

Device Orientation ... 144

Responding to All... 150

viii Jump Start Responsive Web Design

Preface

The pixel-perfect web is dead. The days of positioning elements on a web page

and expecting them to always display how we wanted are a distant memory; we

now cope with the constant barrage of new and varied devices that our designs

need to look fantastic on.

This book aims to get you started understanding and using the suite of CSS and

HTML tools for responding to this new world of devices. It will introduce you to

the building blocks that help your pages adapt to different devices, take this a

step further with grids, show you how to make text and images readable on all

devices, and, in the final chapter, cover how to utilize more esoteric device

capabilities.

Let’s get started.

Who Should Read This Book

This book is for web designers and front-end developers. You’ll need to be

familiar with HTML and CSS, but no previous responsive web design experience

is required. Some JavaScript familiarity is useful for the latter parts of the book.

Conventions Used

You’ll notice that we’ve used certain typographic and layout styles throughout

this book to signify different types of information. Look out for the following

items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park. The

Preface ix

➥ birds were singing and the kids were all back at
➥ school.</p>

If the code is to be found in the book's code archive, the name of the file will

appear at the top of the program listing, like this:

0-1. example.css

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

0-2. example.css (excerpt)(excerpt)

.footer {

background-color: #CCC;

border-top: 1px solid #333;

}

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {

⋮
new_variable = "Hello";

x Jump Start Responsive Web Design

}

Some lines of code should be entered on one line, but we've had to wrap them be-

cause of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real

➥ -user-testing/?responsive1");

Tips, Notes, and Warnings

Supplementary Materials

The book’s code archive contains downloadable code and sample videos to

accompany the examples presented.

https://www.sitepoint.com/community/ are SitePoint’s forums, for help on

any tricky web problems.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Preface xi

https://github.com/spbooks/responsive2
https://www.sitepoint.com/community/

books@sitepoint.com is our email address, should you need to contact us to

report a problem, or for any other reason.

xii Jump Start Responsive Web Design

1Chapter

The Meaning and Purpose of Responsive
Web Design

It used to be so simple: you’d design a website or application for a 15-inch

monitor, and—incompatibilities between browsers aside—you were done.

Then mobile phones with web browsers came along and ruined our easy lives.

Worst of all, people loved browsing the Web on them!

Just as developers and designers got used to building websites for phones, along

came tablets, watches, TVs, cars, glasses, larger desktop screens, high-resolution

The Rise of Mobile

In 2016, browsing the web on mobile devices overtook desktop browsing for the

first time.

The Meaning and Purpose of Responsive Web Design 1

https://www.sitepoint.com/browser-trends-december-2016-mobile-overtakes-desktop/

screens, and even web browsers built into walls. (Okay, I made that last one up.)

Supporting this seemingly endless stream of new devices is becoming ever more

challenging.

So how do we support this ever-increasing array of devices? The answer is

responsive web design, which harnesses technologies that allow websites to adapt

to screens of all sizes.

A lot of older sites, or projects maintained by people with little spare time, are

unresponsive. For example, the site for the Vassal game engine:

1-3. The Vassal website is unresponsive

2 Jump Start Responsive Web Design

Many other sites, like SitePoint.com, are fully responsive:

1-4. SitePoint.com is responsive, valuing readers on all devices

Responsive web design (RWD) subscribes to the popular development maxim

“Don’t Repeat Yourself” (usually abbreviated to “DRY”). Instead of maintaining

multiple codebases for each device that you wish to support, RWD aims to use a

single codebase that adapts appropriately to each device. Using RWD techniques,

you write one set of HTML, CSS, and JavaScript, and display elements

appropriately for each platform. Many of these styles and elements can even be

reused or built upon for maximum code efficiency.

The Meaning and Purpose of Responsive Web Design 3

Sound good to you? To begin, let’s go back in time a few years.

History

“Responsive” design is not necessarily new and is a term that can mean different

things to different people, making its exact history hard to track down.

In theory, developers have been creating responsive designs since there was more

than one browser. Browsers have always had subtle (and not so subtle) rendering

differences between them, and developers have been learning how to cope with

these quirks for decades. If you’re new(er) to web development, be thankful the

dominance of Internet Explorer’s earlier versions is mostly over. The days of

dealing with their quirks were dark.

Since 2004, responsive design has adopted the more specific meaning of adapting

your designs to suit a user’s device of choice—typically based on screen size, but

also other capabilities. The concepts for responsive design solidified in 2008, but

the term is also referred to as “flexible”, “liquid”, “fluid”, and “elastic” design.

It was the inclusion of media queries in the CSS3 specification that fully gave

responsive design the potential it needed to be a genuine and more usable

concept. We’ll cover media queries in detail in Chapter 2, but in summary, they

allow you to change what you show in a web page based on pre-defined screen

sizes or types. Ethan Marcotte formally coined the term “responsive web design”

in an article for A List Apart in 2010.

This led to a growth and consolidation of other techniques and technologies

alongside media queries, such as flexible images and grids, all of which we’ll

cover in this book.

To me, “responsive design” is something of a combination of all these ideas and

principles. It’s not just adapting a design to screen sizes, but also to other factors

such as color depth, media type (say, a laptop screen, or an eReader), or location.

4 Jump Start Responsive Web Design

http://alistapart.com/article/responsive-web-design

Schools of Thought Within Responsive Design

There are as many schools of thought about how to use responsive design as there

are interpretations of it. Some have come and gone, and others have stuck. We

won’t cover any in detail explicitly in this book, but we’ll touch upon their

practical applications. Let’s quickly cover a few of them now.

Progressive Enhancement

When following the more traditional principle of progressive enhancement, your

primary focus is on making the site content available to all users, however simple

their device or slow their connection. Then extra features—such as more

sophisticated design and functionality—are added for devices that can utilize

them.

Graceful Degradation

The proliferation of mobile browsing has reversed the more traditional path of

design. In the past, you started a design on the platform you worked on (typically

a computer) and then stripped away style and functionality to support devices

with smaller screens or less support for certain features.

While graceful degradation is typically applied to the lack of browser support for

particular features, you can also think of it more generally. Its principle is that

you start with a fully featured version of a site, running on your ideal device and

browser, while also ensuring that essential functionality will work for any user on

any (supported) device, even if they lose out on nice-to-have features.

Mobile First

Mobile first is similar to progressive enhancement, but more specific to

responsive design. It proposes that you start with your smallest or least capable

supported device (typically a phone when the principle was created) and then

add functionality and style as you increase the device scale.

The Meaning and Purpose of Responsive Web Design 5

What Do You Need To Support?

Before starting or enhancing any web-based project, it’s important to know if it’s

worthwhile, and to assess the (potential) userbase for all your hard work.

If you have an existing website, it may be worth analyzing website traffic to see

what types of devices your visitors are using to access your website. If 90% of

visitors have consistently visited on a desktop machine, this shows that either

your mobile experience is poor, or that your visitors are not big mobile device

users. You could embark on extensive research to find out the exact answer, or

simply use responsive design techniques to build a mobile-friendly site that may

attract new visitors.

If you’re working on a new project, analyzing the needs of your potential users is

equally important. This can be done by using traditional market research

techniques, creating simple test sites, or looking at your competitors to build a

picture of who your customers will be.

Computers

Despite the slow decline in sales, there are still lots of desktop and laptop

computers out there, and lots of web browsers running on them. These computers

include everything from low-quality (and low-resolution) 11-inch netbooks to

high-powered desktops with 28-inch, high-resolution monitors in a variety of

proportions and orientations, all of which greatly affect the screen area you have

to work with.

Mobile First

As a term, “mobile first” can be confusing, especially to non-designer/developer

audiences, giving a skewed impression of the priority that mobile will receive in a

project.

In theory, the practice ensures that smaller devices don’t end up getting second

best—that all devices are treated with equal importance.

6 Jump Start Responsive Web Design

Mobile Phones

The percentage of people browsing websites on mobile phones has now reached

parity with desktop browsing, so catering for users of mobile browsers is of equal

(and likely, growing) importance.

On iOS, this is generally through just one browser, and the device’s sizes are more

consistent.

Android has a wide variety of browsers and screen dimensions available.

Increasing numbers of devices running mobile operating systems also have high-

density screens of varying resolutions.

You also need to consider that users are largely browsing with touch and not

point-and-click devices, which affects behavior a great deal.

Tablets

Tablet sales may be shrinking, but there will still be a significant userbase for the

foreseeable future, and you shouldn’t think of tablets as large mobile phones or

small desktops. Also, users may be using touch screens or mice to interact with

your site.

Hybrid Devices

If handling computers and tablets wasn’t enough for you, there are now hybrid

devices, such as Microsoft’s Surface Pro, that can switch between being a

computer and a tablet. While each mode can be treated discretely, it’s worth

noting that users may switch context while using your site.

Mobile Browsing Stats

For more details on the rise of mobile web browsing, I recommend the Smart

Insights report on Mobile Marketing Statistics and Statcounter’s desktop and mobile

usage comparison

The Meaning and Purpose of Responsive Web Design 7

http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201501-201706
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201501-201706

Wearables

Most wearables are yet to gain a web browser, but it may happen. In the

meantime, it’s still possible to re-purpose parts of your content on wearables, and

these will need to be delivered in short bursts with an easy follow-up action.

TV

Smart TVs and related devices such as Apple TV come with simplified web

browsers, and users will generally use them for browsing particular sites, but

they’re likely to become increasingly popular. TVs have very large screens, often

with low resolution, so sites viewed on them need to be clear enough to see

properly and also usable from a distance.

Cars

Really? Yes, really. This is new territory, but an increasing number of cars now

have dashboards with access to the internet in some form or another. For the time

being, sites rendered on car dashboards will need to present information clearly

on a small screen, and be designed not to distract or overwhelm a driver and thus

cause an accident. However, many cars now have screens for passengers, who

will have much fuller access to the web and content.

Game Consoles

Most modern game consoles spend some of their time connected to the internet,

and some of that time with a web browser. This is typically for media

consumption and social networks. Browsers on these devices will likely be

limited, and a physical keyboard may not be available. For home consoles, design

principles from TV will apply, and for handhelds, a limited mobile experience.

In summary, you can’t predict how and where anyone will view your website, so

build it to be adaptable, flexible, and responsive.

8 Jump Start Responsive Web Design

Print

Print? Isn’t this a web design book? Yes, but print versions of your web pages will

still be frequently accessed, whether for actual physical printing or for rendering

your content on offline readers such as Instapaper or Pocket. For certain content,

“print” is still relevant.

Sample Application

In my experience, learning by example is always the best way to learn, so for this

book, we’ll create a demo website and optimize it for the wide range of devices it

might be accessed on. In each chapter, we’ll build upon the same website to

illustrate the topic under discussion.

Introducing RWDFlix

RWDFlix is a fictional video streaming service that contains local, national and

global TV shows for people to watch online. Which shows a user can watch will

depend on their location and the time of day.

Computer Version

The layout of the site for desktop computers will show image thumbnails, a video

player, a title of the program, the length of the video, and a description of the

show. While network speeds vary less for desktop users, this version will check

for sufficient bandwidth before letting the user play a video.

Books, Too

The page you’re reading was also rendered with HTML and CSS. Yes, even the dead

tree version.

The Meaning and Purpose of Responsive Web Design 9

1-5. Final desktop example

Tablet Version

The layout for tablets will focus on allowing users to find a show easily, and,

network permitting, to watch it. It will display large thumbnails, the title of the

show, the length of the show, the estimated file size, and a description of the

show. It will offer to play the video if the user has a data connection or to add the

video to a watch list if there’s no connection.

10 Jump Start Responsive Web Design

1-6. Final tablet example

Mobile Version

The mobile version will focus on allowing users to find a show easily, and,

network permitting, to watch it. It will display smaller thumbnails, the title of the

show, the length of the show, and an estimated file size. As with the tablet

version, it will offer to play the video if there’s a data connection, or add it to a

watch list if there’s not.

The Meaning and Purpose of Responsive Web Design 11

1-7. Final phone example

TV Version

The layout for TVs will display large thumbnails, a video player, a title of the

program, the length of the video, and a description of the show. To allow for

distance viewing and use, the interface will be large and obvious. While out of

the scope of this book, it’s also possible that the interface may be controlled and

navigated by a physical remote or remote app.

12 Jump Start Responsive Web Design

1-8. Final TV example

Structuring a Page with HTML5

Before we get started creating responsive designs and using CSS to implement

them, it’s important to understand the underlying HTML structure that you’ll be

manipulating. Recent developments with HTML have made changes to concepts

and page structure, so it’s useful to recap the tools and options now available to a

modern web designer.

Before HTML5, logical sections of HTML pages were structured and organized

using generic elements like divs and spans. These worked fine for many years,

but were too broad and didn’t help designers or web browsers understand

increasingly complex page structures.

Among other things, HTML5 introduced new, more semantic elements that

describe their use more fully than a simple div. The aim of these new elements

was to help with things like accessibility and multi-purposing content, but they

also help with responsive web design. They include definitions such as the

header, navigation or main content area of the page, as well as specific elements

for video and audio. Responsive web design is fundamentally about manipulating

page layouts to suit different use cases, and better organization and structure of

pages helps you target the elements you need to with CSS and media queries

(covered in Chapter 2).

The Meaning and Purpose of Responsive Web Design 13

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

Let’s look at a simplified version of the desktop site. It’s a stripped back copy

we’ll start working with in the next chapter:

1-9. The current desktop version of the site

And the code:

14 Jump Start Responsive Web Design

1-10. Base/index.html (excerpt)(excerpt)

<body>

<header><h1>Site Name</h1></header>

<nav>…</nav>

<main>

<section>…</section>

<aside>…</aside>

</main>

<footer>…</footer>

</body>

</html>

Here’s where the HTML elements are on the page:

1-11. Marking the individual areas of the page

Here are the functions they perform:

A header element is used for the site name, logo etc. Other sections of the

page can also have their own header element.

A nav element is used for navigation links, such as a top, side or footer menu.

The Meaning and Purpose of Responsive Web Design 15

A section element is used to contain the main content of an article or a

significant area of a page.

An aside element defines a small sub-section that relates to a main section.

A main element wraps other elements unique to the page. In our example,

these are the section and aside elements. The other elements will repeat

across other pages.

A footer element is used for the site’s legal name, dates etc. Other sections of

the page can also have their own footer element.

The HTML5 specification lists other semantic elements that perform specific

functions, and we’ll cover many of them in this book. A well-structured page is

very important for responsive design, and also helps with accessibility and SEO.

Here’s more page content organized in a semantic way:

1-12. The TV Shows page

First, I’ve added a heading for the page, which is an h2, as it’s the second-level

heading on the page, after the main site title which is an h1.

16 Jump Start Responsive Web Design

Each individual TV show is in its own section, under another heading (but an h3

this time, as it’s a level down from the h2), along with an image and short

description.

1-13. Marking the individual parts of a Show section

1-14. Base/index.html

<section class="left">

<h3>Show</h3>

<img src="http://placehold.it/350x150"

class="thumbnail">

<p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit.</p>

</section>

A typical modern application consists of a back end (which stores the data) and

one or more applications that display or consume that data. They include

responsive web pages, native mobile apps, and other back-end systems. As you’ll

see throughout this book, not all contexts will use or display all available data,

but instead just the data most relevant to their use case. For example, a TV show

episode might have the following values stored in a back end:

episode name

series

length

age rating

The Meaning and Purpose of Responsive Web Design 17

file size

show title

year

country of origin

description

tags

categories

But the mobile version of the site will only display the values most relevant to a

user on a mobile device, ignoring other values only relevant in a different

context:

18 Jump Start Responsive Web Design

1-15. Mobile version of site

<section class="left">

<h3>Show</h3>

<img src="http://placehold.it/125x150"

class="thumbnail">

</section>

The aside is for supplemental information, such as contacting support and

account information. The mobile version of the site is optimized for browsing and

watching videos, so the aside isn’t displayed. This layout isn’t the only

The Meaning and Purpose of Responsive Web Design 19

possibility, of course. You could, for example, choose to display the aside at the

bottom of the screen (which we’ll cover when looking at grid systems).

As the screen size decreases, the TV show descriptions get increasingly curtailed

to bring more attention to the thumbnails, which are resized appropriately for a

mobile device.

If you're interested in learning more about HTML5 and page structure, I

recommend you read SitePoint's Jump Start HTML5..

Ready to Respond?

In this chapter, I’ve looked at the need for, and history of, responsive design. I’ve

covered the sorts of devices your website now needs to support, and introduced

the demo site I’ll use to demonstrate responsive web design principles

throughout the rest of the book. We also took a brief look at structuring a page

with HTML5. Now we’re ready to dig into the building blocks of responsive

design, which is the focus of the following chapter.

20 Jump Start Responsive Web Design

https://www.sitepoint.com/premium/books/jump-start-html5

2Chapter

The Building Blocks of Responsive Design

There are two main building blocks at the heart of responsive web design: media

queries and viewports.

Media queries represent the glue that joins a lot of other responsive concepts and

tools together. They’re a simple but powerful concept, allowing you to detect

device properties, define rules, and load different CSS properties based on them.

For example, you can optimize a navigation menu for different devices,

converting a full horizontal menu on desktop browsers to the “hamburger” menu

often encountered on mobile devices.

Viewports are less complex, allowing you to define the size and scaling factor of a

web page appropriately, no matter what the size of the device being used to view

the page is. Without them, media queries would only be partially useful.

The Building Blocks of Responsive Design 21

This chapter will introduce media queries first, and then show how you can make

them work better for you by defining a viewport.

Media Types

You can invoke media query dependent styles in several ways, most commonly

with the HTML link element linking to one or more CSS files, or from directly

within a CSS file with @import.

In HTML, this example will load the style.css file if the query is true, which it

will be on all device types:

<link rel="stylesheet" media="all" href="/style.css">

In the following example, @import does the same, but from within a CSS file:

@import url("/style.css") all;

In the example below, the @media CSS rule contains a specific set of selectors that

will load if the query is true:

@media all {

…

}

The all in these queries is the media type. There are four media types available

(at the time of writing):

print: for print versions of pages

screen: for computer, tablet and phone screens

speech: for screen readers that read pages to the user

all: for all of the above

22 Jump Start Responsive Web Design

Adding a media type allows you to specify what types of devices the query

applies to. These are broad and don’t allow for a lot of control. To target devices

more specifically, you add expressions to these media types.

Creating a Query

Let’s try something more useful. The aside to the main content in RWDflix is

designed to show announcements and news. Mobile and tablet visitors probably

want to focus on watching shows and nothing else, so let’s hide this element for

users of smaller screened devices.

Remove the current aside CSS class and replace it with the following media

queries:

@media screen and (min-width: 680px) {

aside {

width: 33%;

}

}

@media screen and (max-width: 680px) {

aside {

display: none;

}

}

This pair of media queries sets the aside element to a width of 33% if the screen

is wider than 680px (by asking if the screen is at least 680px wide with

min-width), and hides it if the screen is narrower than 680px (asking if the screen

is at most 680px wide with max-width).

Method Used in This Book

For the remainder of this chapter, I’ll use the @media method shown above for

media queries. It’s a personal preference, and as an experiment, you might like to

try re-writing the examples using other methods.

The Building Blocks of Responsive Design 23

2-1. The aside element hidden on smaller screens

Next, make the TV listings fill the screen width when the aside isn’t showing:

section.showslisting {

margin-bottom: 25px;

}

@media screen and (min-width: 680px) {

section.showslisting {

width: 66%;

}

24 Jump Start Responsive Web Design

}

@media screen and (max-width: 680px) {

section.showslisting {

width: 100%;

}

}

2-2. The main content now set to full width

If you resize the page in your desktop browser, you’ll see the aside appearing and

disappearing as you widen and narrow the browser window, the main content

adjusting appropriately.

The Building Blocks of Responsive Design 25

You can use basic logic in your media queries. This allows you to combine

multiple conditions. For example, you can use a logical AND:

@media only screen and (min-width: 640px) and (max-width:

➥ 1136px) {
…

}

The code above will invoke the CSS styles within the query if a device’s screen

width is between 640px and 1136px. The min-width property is the minimum

width of the screen, and max-width the maximum.

For this media query to match, both conditions need to be true. It’s also possible

to match queries if only one condition is true with a logical OR, which

(confusingly) is represented with a comma. The query below will apply on

screen or print devices:

@media only screen, print {

…

}

You can also combine ANDs with ORs to make more complex queries. Here’s the

current page rendered on a larger sized phone, but in landscape mode:

26 Jump Start Responsive Web Design

2-3. The current phone layout in landscape mode

In the screenshot above, the screen is 732px wide, which is above the 640px set

above. Still, the aside doesn’t quite fit into the window, so let’s hide it if the

screen size is below 640px, or if the device is in landscape mode:

@media screen and (max-width: 680px), screen and

➥ (orientation: landscape) and (max-width: 750px) {
aside {

display: none;

}

}

And the corresponding media query for the listings section:

@media screen and (max-width: 680px), screen and

➥ (orientation: landscape) and (max-width: 750px) {
section.showslisting {

width: 100%;

}

}

The Building Blocks of Responsive Design 27

You’ll see that I added a max-width check, to show the aside on tablets in

landscape mode, but also to show how you can combine logical checks together.

2-4. The aside removed from landscape device orientation

Logical Queries with Only and Not

You can also make precise media queries using only and not. For example, this

media query will match devices that are at least 640px wide and exclude the print

media type:

@media not print and (min-width: 640px) {

…

}

In contrast, this query will only apply to screen devices that are at least 640px

wide:

@media only screen and (min-width: 640px) {

…

}

28 Jump Start Responsive Web Design

Query Features

The width and height queries we’ve looked at so far are some of the most widely

used, but there are several other media features that are also useful for checking

against device features. These include color capabilities, aspect ratio, orientation,

resolution, and vendor-specific features for Mozilla- and WebKit-based browsers.

Most of these accept min- and max- prefixes that work in a similar way to the

dimension queries above.

aspect-ratio

The aspect-ratio feature allows you to check the ratio of horizontal pixels to

vertical pixels, separated by a slash. For example:

@media screen and (min-aspect-ratio: 1/1) {

…

}

The above rule will match a device where the screen’s width to height ratio is 1:1

or more, so square or landscape.

A common use for this would be to detect wider screens, useful when you’re

displaying videos:

@media screen and (min-aspect-ratio: 16/9) {

…

}

orientation

As shown earlier, this feature checks if the device is in landscape or portrait

mode. For example:

The Building Blocks of Responsive Design 29

@media all and (orientation: landscape) {

…

}

And:

@media all and (orientation: portrait) {

…

}

color

This feature checks if a device can support a certain bit-level of color. For

example, this is how to check that a device supports at least 8-bits of color (that

is, 256 colors):

@media all and (min-color: 8) {

…

}

color-index

This plays a role similar to color, but lets you check for the number of colors

instead of the bit-level:

@media all and (min-color-index: 256) {

…

}

30 Jump Start Responsive Web Design

monochrome

Again, similar to color, monochrome lets you check for the levels of gray in a

device:

@media all and (min-monochrome: 8) {

…

}

resolution

This feature targets devices that have high-resolution screens:

@media all and (min-resolution: 120dpi) {

…

}

scan

The scan media feature lets you check the scanning process of TVs, the options

being interlace or progressive:

@media all and (scan: progressive) {

…

}

grid

grid is used for checking if a device is a terminal-like device. This also includes

older phones (that is, non-smartphones), accessible phones (for those with poor

vision), and braille devices. It returns a boolean value if true:

The Building Blocks of Responsive Design 31

@media grid {

…

}

As you can see, through combinations of dimension- and feature-based queries,

you can construct complex stylesheets to target a multitude of devices effectively

with styles that work most efficiently for them. This is the main point of media

queries: they allow you to selectively load CSS styles for particular device

configurations.

Streamlining the Example App

Now that you have a basic understanding, let’s continue to build upon the media

queries added earlier to make the example site tidier.

First, you can consolidate the queries already written, moving the classes into

two groups of media queries:

/* Media Queries */

/* For example, desktop devices */

@media screen and (min-width: 680px) {

aside {

width: 33%;

}

section.showslisting {

width: 66%;

}

}

/* For example, medium-width screens or smaller screens in

➥ landscape */
@media screen and (max-width: 680px), screen and

➥ (orientation: landscape) and (max-width: 750px) {
aside {

display: none;

}

32 Jump Start Responsive Web Design

section.showslisting {

width: 100%;

}

}

Much tidier! You can keep adding new styles for each query into these sections.

Let’s look back to our demo site specification outlined in Chapter 1 for what else

needs to be optimized for each screen size. The next step will be hiding the TV

show description on small screens, and shorten it on medium-sized screens.

It would be a lot easier to do this if the description text had a class, so add one to

each instance of the p tag that contains the show description:

<section class="tvshow">

<h3>Show</h3>

<img src="http://placehold.it/350x150"

class="thumbnail">

<p class="showdescription">Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

</section>

Let’s add new media queries to accommodate the various sizes we aim to support,

and, in doing so, tidy up the existing ones.

The specific widths at which we want our design to reflow are known as

breakpoints. The breakpoints we’ll add are not exhaustive: there’s a huge range of

device sizes, and more are appearing all the time, so it’s futile to try to target each

device with separate queries. A better approach is to assess the points at which

your design needs to reflow, and then create media queries for those breakpoints.

This is the beauty of responsive web design: you can ensure that each device will

get an appropriate layout without having to design separately for each device.

Add the following breakpoints and refactor our existing styles into them:

The Building Blocks of Responsive Design 33

2-5. Chapter2/demo_create/layout.css (excerpt)(excerpt)

/* Media Queries */

/* For example, older phones */

@media only screen and (min-width: 320px) {

aside {

display: none;

}

section.showslisting {

width: 100%;

}

.showdescription {

display: none;

}

}

/* For example, newer phones */

@media only screen and (min-width: 480px) {

}

/* For example, small computer screens and larger tablets */

@media only screen and (min-width: 768px) {

.showdescription {

text-overflow: ellipsis;

display: block;

white-space: nowrap;

width: 100px;

overflow: hidden;

}

}

/* For example, typical desktop monitors or larger tablet

➥ devices */
@media only screen and (min-width: 992px) {

aside {

width: 33%;

display: block;

}

34 Jump Start Responsive Web Design

section.showslisting {

width: 66%;

}

.showdescription {

white-space: normal;

width: 125px;

}

}

/* Large Devices, for example large monitors and TVs */

@media only screen and (min-width: 1200px) {

}

The media queries should now be self-explanatory. They define queries for a

selection of devices, defined using screen sizes. As the C in CSS implies, the

media queries cascade: you can build upon styles defined in a breakpoint for a

smaller device size and change the properties that are different.

Notice that between the @media only screen and (min-width: 320px)

breakpoint for smaller devices and the @media only screen and (min-width:

768px) breakpoint for medium-sized devices, all that changes is the

showdescription class, showing text, but truncating it. Then in the @media

only screen and (min-width: 992px) breakpoint for larger screens, all

elements are revealed.

The Building Blocks of Responsive Design 35

2-6. The layout generated by the small-screen breakpoint

36 Jump Start Responsive Web Design

2-7. The layout generated by the medium breakpoint

2-8. The layout generated by the medium to large breakpoint

The Building Blocks of Responsive Design 37

Mobile First

In Chapter 1, I introduced the “mobile first” concept. Currently, the page works

on different device sizes but is not mobile first, because the “default” styles—that

is, those not inside media queries—are really designed for larger devices. So let’s

do some rearranging and refactoring to make the design mobile first. This won’t

involve too much work.

Make the following changes to the classes outside of the media queries:

aside {

display: none;

}

section.showslisting {

margin-bottom: 25px;

width: 100%;

}

.showdescription {

display: none;

}

You can now remove the corresponding classes from inside the @media only

screen and (min-width: 320px) media query.

That’s it! In essence, all “mobile first” means is to make the default styles relevant

to mobile devices and older browsers that don’t support media queries and add

more specific styles (via media queries) from there.

There’s another, more hidden advantage to the mobile first approach. While all

modern browsers now support media queries, some older versions (Internet

Explorer 8, for example) don’t, and in this case, the default CSS styles will still be

loaded.

38 Jump Start Responsive Web Design

The Viewport Meta Element

In the last section, I covered making the demo page mobile first with media

queries. If you try the example in your desktop browser and resize the window,

everything looks as you would expect. But if you try it in a mobile browser, or

with an emulated mobile browser, you’ll probably see something like the

screenshot below and be disappointed. Aren’t media queries supposed to make

pages better in a mobile browser?

2-9. Mobile first with no viewport

The Building Blocks of Responsive Design 39

Media queries allow us to set different styles for different screen sizes. So, if your

desktop browser’s viewport is 1200px wide, any media query styles targeting that

screen width will apply. If you’re on a mobile device with a viewport width of

320px, you'd expect that any styles targeting a 320px wide viewport would kick

into action. But there's a very big catch. By default, many devices, such as mobile

phones and tablets, act as if they have a wider screen than they really do.

To explain what’s going on here, let’s look at the iPhone, where this behavior

originated. The first iPhone had a screen/viewport width of 320px. However,

most websites designed for desktops were much wider than that. To avoid only

seeing the top left corner of these sites on initial load, Apple developed the

concept of a “virtual viewport” or “layout viewport”. Websites were loaded onto

this much wider viewport, which was then scaled down to fit on the screen. So

most sites got rendered on iPhones with tiny text that you had to zoom to be able

to read.

Apple’s virtual viewport was set at 980px, so as long as a website was no wider

than that, the whole layout would appear on screen. Any layouts wider than

980px would still be partly hidden off to the right, requiring sideways scrolling.

And that's still the case today. The virtual viewport idea has been adopted by

other device makers as well, though the default width varies.

When designing a responsive site, we really don’t want this default behavior on

mobile devices. We want to know that the canvas we're working with is the actual

screen area of each device. Fortunately, there's a simple way to tell these devices

not to behave in the default way. All we need to do is add a special meta element

to the head of each page. Here's a typical example:

<meta name="viewport" content="width=device-width,

➥ initial-scale=1">

As a general rule, the line above is all you need to ensure your media queries do

what you expect on mobile devices. The name attribute specifies that we’re

targeting the virtual viewport, and the content attribute specifies how we want

the device to behave. In the example above, we're specifying that the virtual

viewport should match the actual width of the screen, and that there should be

no zoom applied to the content.

40 Jump Start Responsive Web Design

With the viewport declaration in place, you can be sure that media queries

targeting a device that’s 320px wide will actually be recognized by that device.

Let’s modify our demo site to add a viewport declaration. Add the following meta

tag inside your current head element:

2-10. Chapter2/demo_viewport/index.html (excerpt)(excerpt)

<head>

<meta charset="UTF-8">

<title>App Name</title>

<link rel="stylesheet" type="text/css" media="all"

href="layout.css">

<meta name="viewport" content="width=device-width,

initial-scale=1.0">

</head>

Refresh the page:

The Building Blocks of Responsive Design 41

2-11. Demo page with viewport

Much better!

42 Jump Start Responsive Web Design

Generally, you set the viewport to the width of the current device (with

width=device-width) and leave the content unscaled (with initial-scale=1.0).

The width attribute is a pixel value, and the device-width constant detects the

current device width, meaning you don’t need to handle the myriad sizes that

may be available; the meta element will take care of it for you. The same applies

for different screen orientations: changes between landscape and portrait are also

handled for you. There’s still a lot more work needed to make a design fully

responsive, but media queries plus this viewport setting give you a fantastic start.

2-12. Demo page with viewport

The Viewport

Viewport is an old term in computer graphics to define the (typically rectangular)

screen area used to render the elements that users see in a browser. When web

browsing was limited to desktop browsers, the viewport still existed but was rarely

changed by designers. With the increasing variety of browser dimensions, HTML5

introduced a viewport attribute to the meta element that allowed designers to set

and manipulate this area.

The viewport meta element was initially proposed by Apple to set the initial state

of the page to the correct size and was later introduced as part of the HTML5

standard.

The Building Blocks of Responsive Design 43

The content attribute of the tag also accepts standard methods for setting the

width. For example:

<head>

…

<meta name="viewport" content="width=500,

initial-scale=1.0">

…

</head>

Which will result in:

44 Jump Start Responsive Web Design

2-13. Manually setting HTML width

This is still a better result than a page without the viewport, but as you can see, if

the page content is wider than the width you define, it will continue anyway. One

use case for setting a manual width is if you’re certain of screen dimensions, and

certain that your page content will fit perfectly—for example, if you’re only

targeting one device, like an eReader, or kiosk application.

There are other, less frequently used attributes for the viewport meta element that

have limited use, but which you might need for more fine-grained control over

your page layout:

The Building Blocks of Responsive Design 45

minimum-scale: the minimum zoom level, or how much the user can zoom

out.

maximum-scale: the maximum zoom level, or how much the user can zoom in.

user-scalable=no: disables zooming. While this has a limited number of use

cases, it significantly reduces the accessibility of your page.

Any Queries?

The selective nature of media queries makes them an essential tool in your

responsive toolbox, and in this chapter, we’ve learned how to create and use

them.

Every modern browser now supports them, and they offer the potential to target

any specific environments you need to design for.

In coming chapters, we’ll leverage the responsive foundation that media queries

and the viewport offer to add polish and shine to our responsive designs.

46 Jump Start Responsive Web Design

https://codepen.io/absolutholz/post/user-scalable-no-evil-or-slightly-not-evil
https://codepen.io/absolutholz/post/user-scalable-no-evil-or-slightly-not-evil

3Chapter

Better Responsive Structures with Grid
Systems

So far, we’ve looked at the underlying principles of responsive design and the

power of media queries to build page structures optimized for different devices.

In this chapter, we’ll see how grid systems can supplement and even replace

some of the techniques we’ve covered so far, providing more flexibility for how

pages display across different devices.

While flexibility in design is endless in theory, a common design ethic in print

and digital design has been to use loose horizontal and vertical grids for element

layout. They help break up sections of a page into logical areas that are easier to

manage, and our brains like to see items in a composition in predictable lines.

Composition in artwork and photos is a long-standing field of study, and many of

its theories continue into web design.

Better Responsive Structures with Grid Systems 47

If you look at the current demo page on a desktop, it’s effectively a grid consisting

of four rows and two columns:

3-1. The initial page grid

When you resize the page, the media queries added in the last chapter take care

of changing the row and column layouts to fit accordingly.

This is because the current layout is a simple example of what’s called a fluid

grid. The main sections of the page have widths that are percentages of the

viewport width, and thus will resize accordingly.

On a desktop, the main listing of the TV shows takes up 66% (or two thirds) of

the web page, and the menu 33% (or one third).

48 Jump Start Responsive Web Design

3-2. Chapter3/start/layout.css (excerpt)(excerpt)

@media only screen and (min-width: 992px) {

aside {

width: 33%;

display: block;

}

section.showslisting {

width: 66%;

}

.showdescription {

white-space: normal;

width: 125px;

}

}

The fluidity of the design can go further than this. Layouts inside a page area can

also take up a percentage of the available space. For example, you could set the

individual TV listings to have a flexible width:

section.tvshow {

width: 20%;

height: 150px;

display: inline-block;

}

This means that each subsection will take up 20% of the main content area, no

matter what the screen size is. This can start to get fiddly, and is more of an

example to show that percentage-based sizes can go anywhere—on text and even

media elements (both of which we’ll cover in later chapters).

While the current page layout is a grid, it could be better, with more meaningful

class names and a better structure.

Create a new div element with a class of container that wraps all the current

content within the body element:

Better Responsive Structures with Grid Systems 49

3-3. Chapter3/vanilla_final/index.html (excerpt)(excerpt)

<body>

<div class="container">

…

</div>

</body>

Add the following styles for this div to your stylesheet:

3-4. Chapter3/vanilla_final/layout.css (excerpt)(excerpt)

.container {

width: 95%;

margin-left: auto;

margin-right: auto;

max-width: 1180px;

}

3-5. The layout with the extra container

50 Jump Start Responsive Web Design

This is a common way to set up a containing element for page content. It sets a

maximum width of 1180px, a width of 95% of the browser window, and centers

the container in the window using the handy left and right auto margins.

Next, add a row class to the header, navigation, listings and footer elements. You

can also now remove the left class from these elements, as you’ll consolidate its

CSS properties:

<header class="row">

…

</header>

<nav class="row">

…

</nav>

<main class="row">

…

</main>

<footer class="row">

…

</footer>

And define the row CSS class:

Why 1180px?

Why is the max-width set to 1180px? This is an arbitrary value and based upon

current trends in desktop screen sizes; it's added to make sure the page doesn't get

too wide on giant screens. For a long time, it was 960px, reflecting that most screen

widths were at most 1024px wide. As screen dimensions and resolutions have

grown, this maximum width has become larger, but is still open to different

opinions. Media queries (covered in Chapter 2) have made this maximum width

less relevant than it used to be. For now, stick with this 1180px value.

Better Responsive Structures with Grid Systems 51

.row {

clear: both;

float: left;

}

This row fills the width of the container and floats to the left, meaning that as a

browser window resizes, it will flow with it, fixed to the left side. As you haven’t

yet defined the columns in the rows, the aside menu is pushed to the bottom on

larger screen sizes.

3-6. The new page structure

Now that everything horizontal on the page is in four rows, it’s time to define the

columns inside the rows. Some of the rows are a single, full-width column, while

others are subdivided.

52 Jump Start Responsive Web Design

To start afresh, remove the simpler percentage widths set earlier (from all media

queries), so that you have the following:

@media only screen and (min-width: 320px) {

aside {

display: none;

}

section.showslisting {

}

.showdescription {

display: none;

}

}

…

@media only screen and (min-width: 992px) {

aside {

display: block;

}

section.showslisting {

}

.showdescription {

white-space: normal;

width: 125px;

}

}

The page is no longer flowing so well at larger screen sizes, but you'll fix this

soon.

What Is a Grid?

Before you restructure the page into a fluid grid, let’s take a quick aside to discuss

what a grid is.

Better Responsive Structures with Grid Systems 53

A grid is a series of columns and rows. But how many rows and columns do you

need for your site? The number of rows is more clear: it’s as many as you need to

fit your header, navigation, content, footer etc. What about columns? Well, as

with other topics in this book (and technology generally), there are different

opinions on this. It’s typically an even number, because this makes it easier to

divide the page. Numbers divisible by three are most used. (If you’re interested in

knowing why, the Wikipedia article on the golden ratio provides a nice

explanation). Popular column values are 12, 16 and 24, but I’ll focus on the

12-column grid system here. 12 is popular, as it can be divided into a variety of

commonly used sizes, such as a half, a third, and a quarter.

Creating Your Own Grid

You may be wondering how a 12-column layout helps you create a 3-column

layout like our example page—and yes, it’s confusing at first.

The columns are more used as structural underpinnings, and through CSS you

define how many columns you want your elements to span. To make this clearer,

here’s an example of the 12-column 1180px grid:

54 Jump Start Responsive Web Design

http://en.wikipedia.org/wiki/Golden_ratio

3-7. A 12-column, 1180px grid

And here’s how the grid will represent this page (yes, grids within grids, or

“nested grids”, are okay):

Better Responsive Structures with Grid Systems 55

3-8. The page as a grid

You could set up all these columns and grids manually for each project, but it’s a

much better idea to make something more usable and reusable. We’re going to

create a lot of new styles and changes to our HTML and CSS files now. Then I’ll

show easier ways to achieve the same result. Sometimes it’s a good idea to learn

the hard way before knowing how to make it easier.

Set up the base styles for the columns and rows, and replace any existing

matching classes:

56 Jump Start Responsive Web Design

3-9. Chapter3/vanilla_final/layout.css (excerpt)(excerpt)

.row,

.column {

box-sizing: border-box;

}

.row:before,

.row:after {

content: " ";

display: table;

}

.row:after {

clear: both;

}

.column {

position: relative;

float: left;

}

.column + .column {

margin-left: 1.6%;

}

The first step is to define the width of one column, not forgetting the margin

between each column.

A single column width is equal to 100 (as we’re working with percentages) minus

the margin value, multiplied by the number of columns minus 1 (you don’t need

a left margin in the first column), all divided by the number of columns.

Using the Adjacent Sibling Selector

The adjacent sibling selector (+) above is a useful CSS trick that adds a margin only

to the matching element following another matching element. In our case, it means

that the first column won’t have a left margin.

Better Responsive Structures with Grid Systems 57

If you prefer to look at formulas:

SingleColumnWidth = (100 – (MarginValue * (NumberOfColumns –

➥ 1))) / NumberOfColumns

3-10. An explanation of the formula

This should give the nice, memorable result of 6.86666666667% … but don’t

worry: a number like this is what’s expected, and after the initial setup, you won’t

need to remember these values.

Next, apply this number into a new formula for each of the columns. You want to

know the width values of column spans—that is, how to spread content across

more than one column.

A column width is equal to the SingleColumnWidth value multiplied by the

current column, added to the margin value multiplied by the number of columns

minus 1.

Or as a formula:

58 Jump Start Responsive Web Design

ColumnWidth = (SingleColumnWidth * CurrentColumn) +

➥ (MarginValue * (CurrentColumn – 1))

As an example. here’s how to find the value required to span two columns:

(SingleColumnWidth * CurrentColumn)

6.86666666667 * 2 = 13.733333333

(CurrentColumn – 1)

2 - 1 = 1

(MarginValue * (CurrentColumn – 1))

1.6 * 1 = 1.6

(SingleColumnWidth * CurrentColumn) + (MarginValue *

➥ (CurrentColumn – 1))
13.733333333 + 1.6 = 15.333333333

This will result in the following column styles, with the column-n class

representing the number of columns you want to span. Add these to layout.css:

Better Responsive Structures with Grid Systems 59

3-11. Chapter3/vanilla_final/layout.css (excerpt)(excerpt)

.column-1 {

width: 6.86666666667%;

}

.column-2 {

width: 15.3333333333%;

}

.column-3 {

width: 23.8%;

}

.column-4 {

width: 32.2666666667%;

}

.column-5 {

width: 40.7333333333%;

}

.column-6 {

width: 49.2%;

}

.column-7 {

width: 57.6666666667%;

}

.column-8 {

width: 66.1333333333%;

}

.column-9 {

width: 74.6%;

}

.column-10 {

width: 83.0666666667%;

}

60 Jump Start Responsive Web Design

.column-11 {

width: 91.5333333333%;

}

.column-12 {

width: 100%;

}

Again, don’t worry about remembering what these values are. Once they’re

defined, all that’s needed is to use the CSS class.

Now you want the header and nav bar to always take up 12 columns to better fit

into the grid model, so let’s rearrange the header and navigation elements into

rows and add appropriate column classes. These are the base column class and a

column-12 class to fill 12 columns:

<header class="row">

<h1 class="column column-12">Site Name</h1>

</header>

<nav class="row">

<ul class="column column-12">

Menu Item

Menu Item

Menu Item

</nav>

The left content area needs to be nine columns wide, and the aside three

columns, so add those classes:

Saving Some Legwork

You could also use a CSS preprocessor—such as Sass or Less—that provides an

extra framework to help generate repetitive and complex CSS for you. Among other

features, this includes making the calculations above for you.

Better Responsive Structures with Grid Systems 61

http://sass-lang.com/
http://lesscss.org/

<section class="showslisting column column-9">

…

</section>

<aside class="column column-3">

…

</aside>

Now add column classes to the TV shows inside the content area:

<section class="tvshow column column-2">

…

</section>

In the tvshow class you can now remove the width and display properties and

change the height to auto for more responsive magic:

section.tvshow {

height: auto;

}

The page layout doesn’t look too much different from how it did before, but these

crucial changes allow for increased flexibility. Want to make the TV show listings

tighter? Then change the class to column-3.

Want a wider aside menu? Change its class to column-4 and change the listings

width class to column-8:

62 Jump Start Responsive Web Design

3-12. The page with a wider aside

As the browser window changes size, you’ll see page elements shrink and grow

smoothly, perfect for responsive web design. But notice what happens when you

get to a smaller screen size:

Better Responsive Structures with Grid Systems 63

3-13. What happens on a smaller screen size

Not a great look: the TV show elements have become squashed. Some of this is

due to the images not having reduced appropriately in size yet—a topic we’ll

cover further in Chapter 5. This is also a problem with a fluid grid. In theory,

what should happen at smaller screen sizes is that the main content column

should instead fill 100% of the screen’s width, or the class should change to

column-12 to fill the full width of the screen.

One solution is to override the percentage width of the column-8 class at relevant

breakpoints. For example:

64 Jump Start Responsive Web Design

section.showslisting.column-8 {

width: 100%;

}

…

@media only screen and (min-width: 992px) {

…

section.showslisting.column-8 {

width: 66%;

}

…

}

But this is a poor solution, and you’ll soon lose track of what class equals what

size.

You could change the class applied to the div with JavaScript, and in the past,

this was a solution to the problem. But instead, I’ll show you some more modern

(and better) options that will make the principle of grids more useful for

responsive design.

Flexbox

While the “column method” above isn’t that hard to understand and implement,

as your layouts become more complex you can start to introduce a lot of nested

divs and CSS styles to support them. The example above used float to position

page elements into the desired position. As the example was simple, it wasn’t too

hard to achieve this, but as grids get more complex, especially nested grids,

floats quickly become messy, and the solutions to cope with this aren’t ideal.

The CSS Flexible Box (“flexbox”) Layout Module is a recent part of the CSS spec

and already enjoys good browser support. It was designed to provide a better and

more modern solution for this type of layout, offering you specific functionality

for the task.

After an initial page restructure and learning new concepts, you’ll find that using

flexbox for your page components will drastically simplify your HTML structure

and CSS classes.

Better Responsive Structures with Grid Systems 65

Everything that you want flexbox to manage is contained within a “flex

container”. Much like earlier examples, begin with the code from the start of this

chapter and continue to use a containing div:

<div class="container">

…

</div>

And the CSS for this container:

3-14. Chapter3/flexbox/layout.css (excerpt)(excerpt)

.container {

display: flex;

flex-flow: row wrap;

}

The display property is set to flex to enable flexbox layout. The flex-flow

property is shorthand for two other properties.

The first of these properties is flex-direction, which defines how the individual

items inside a flex container will be placed. The two most common values are row

and column. Using row will place items horizontally (left to right or right to left,

depending on your preference). And column works similarly, but instead places

elements from top to bottom. You can reverse the direction by appending with

-reverse.

The flex display mode is one-dimensional (running either horizontally or

vertically) and will attempt to keep fitting items on one line. The flex-wrap

property determines what will happen if the container can’t fit all items on one

line. The items can be set to wrap to the next line or be forced into one line with

nowrap.

Next, let’s handle the header, nav, and footer page elements, which fill the

entire width of the page container. Replace any existing styles with the following:

66 Jump Start Responsive Web Design

3-15. Chapter3/flexbox/layout.css (excerpt)(excerpt)

header, nav, footer {

flex: 1 100%;

}

flex is shorthand for three combined properties, in the following order:

flex-grow determines how much space an item is allowed to use in a

container, and the sizes are relative to each other. If every item in a container

has a flex-grow value of 1, then each item is evenly distributed. If one item

has a value of 2, it will take up twice as much space as the other items.

flex-shrink determines whether or not an item can shrink to less than its

flex-grow value, and if so, to which value. The default is 1, so if you want to

keep proportions no matter what, leave the value empty.

flex-basis allows you to set a default item size before space is distributed, in

any of the typical CSS sizing units.

Moving to the main content area, again replacing any existing styles, you can also

remove any of the previous methods for resizing elements inside media queries:

Better Responsive Structures with Grid Systems 67

3-16. Chapter3/flexbox/layout.css (excerpt)(excerpt)

main {

flex-grow: 2;

flex-basis: 66%;

}

aside {

flex-grow: 1;

flex-basis: 33%;

}

...

@media only screen and (min-width: 320px) {

aside {

display: none;

}

section.showslisting {

}

.showdescription {

display: none;

}

}

…

@media only screen and (min-width: 992px) {

aside {

display: block;

}

section.showslisting {

}

.showdescription {

white-space: normal;

width: 125px;

}

}

68 Jump Start Responsive Web Design

Resize the page. Notice that you now have the same effect as with the first fluid

grid example, but have removed a lot of CSS from the media queries. With one set

of flex properties, the sizing of page elements is handled for us. All without the

need for any JavaScript!

If you were to restructure the page, you could remove the flex-basis properties,

but nesting flex containers with different row/column directions would involve

further div elements, so weigh up your HTML complexity versus CSS

complexity.

Next, here are the styles for the TV show listing:

3-17. Chapter3/flexbox/layout.css em>(excerpt)

section.showslisting {

display: flex;

flex-wrap: wrap;

flex-direction: row;

margin-bottom: 25px;

}

section.tvshow {

width: 125px;

height: auto;

}

This sets the showlistings section as another flex container that wraps any items

that don’t fit onto one line—since, by default, flex will try to fit all items onto one

line.

At this point, you can also delete the left class from your HTML and CSS, as it’s

no longer needed.

Better Responsive Structures with Grid Systems 69

3-18. The final flexbox layout

One other cool flexbox trick is to set the order of elements using the order

property, and a number that defines its position. For example, you could use the

following to rearrange page elements on a mobile device:

nav { order: 1;}

header { order: 2;}

main { order: 3;}

footer { order: 4;}

70 Jump Start Responsive Web Design

3-19. Setting the order of page elements

But if you wanted to remove page elements, you’d still need to use media queries.

This has been a brief example of how to use flexbox, but as you can see, once

you’ve restructured your page, flexbox handles a lot of the manual page reflowing

work for you.

CSS Grid Layout

Complementary to flexbox is the CSS Grid Layout Module, which helps you

define and lay out the regions of a page. In the past, the main option open to web

Better Responsive Structures with Grid Systems 71

developers for flexible (I use this term loosely) page layouts was using HTML

tables to define page areas with rows and columns, but these were terrible for

accessibility. The grid layout is something of a modern re-interpretation of that

concept.

Let’s try applying the grid layout to the demo site, starting with the code from the

beginning of this chapter.

Again, make a container div inside the body to contain the layout:

…

<div class="container">

…

</div>

…

Move the aside from inside main to outside of it. This lets you treat it like a

proper column in its own right:

3-20. Chapter3/grid/index.html (excerpt)(excerpt)

…

</main>

<aside class="left">

one

two

three

</aside>

Browser Support for Grid Layout

Grid shipped for all the newest versions of the major browsers in early 2017, so a

fallback strategy is required if your layouts need to be supported in older browsers.

You can check online for details on which browser versions do and don’t support

Grid.

72 Jump Start Responsive Web Design

https://caniuse.com/#feat=css-grid
https://github.com/spbooks/responsive2/blob/master/code/Chapter3/chapter_start/index.html
https://github.com/spbooks/responsive2/blob/master/code/Chapter3/chapter_start/index.html

In the CSS, change the display type to grid:

.container {

display: grid;

}

Now the grid display gets really cool. Add the following:

3-21. Chapter3/grid/layout.css (excerpt)(excerpt)

.container {

display: grid;

grid-template-columns: 66% 33%;

}

And in one simple CSS property, you’ve removed the need for two of the CSS

classes used so far. The grid-template-columns property gives you even more

possibilities. For example:

You can use any standard sizing unit for defining the column, including auto

to fill remaining space.

You can use fr (“fractional units”) to let the grid proportionately fill space. So

you could rewrite this grid as grid-template-columns: 2fr 1fr;, which

means that the first column will fill two-thirds of the space, and the second

one third.

Great, but if you look at the demo site now, you’ll notice that the rows in the

design that don’t have a 66/33 split don’t look right. This is because you also

need to define the rows with similar syntax:

Removing Sizing Overrides

As with the flexbox layout, you can also take this opportunity to remove all the

other sizing overrides in media queries.

Better Responsive Structures with Grid Systems 73

3-22. Chapter3/grid/layout.css (excerpt)(excerpt)

.container {

display: grid;

grid-template-columns: 66% 33%;

grid-template-rows: 80px 80px auto 20px;

}

This syntax specifies a set height for three elements and then lets the remaining

TV shows element fill the remaining empty space.

But again, if you load the page in the browser, little has changed. In fact, the

footer has now jumped up the page. This is because there’s one more step

needed—to add the sub-elements into the grid:

How Many Rows?

This is the first example where we’ve needed to explicitly define rows, and there

are a couple of ways you could do it. I suggest that there are four rows: the title, the

top menu, the introductory text and TV shows, and the footer. If you want to

change these divisions (for example, splitting the description and TV shows), feel

free to do so.

74 Jump Start Responsive Web Design

3-23. Sub-elements not yet added

The grid display layout has two interesting methods for defining where you can

place an item.

1. The first is similar to flexbox, allowing you to specify an order number.

2. The second lets you place items at named locations. To use this method, you

need to define what are called line names.

The code below sets the display style to grid, then defines the columns and

rows you need. For the columns, this is a column named left that’s 66% of the

page width, and a column named right that fills 33%. For the rows this defines

three with a fixed height (header, main-nav and footer) and shows will

automatically fill any remaining space.

.container {

display: grid;

Better Responsive Structures with Grid Systems 75

grid-template-columns: [left] 66% [right] 33%;

grid-template-rows: [header] 80px [main-nav] 40px [shows]

auto [footer] 20px;

}

At this point, now you understand what’s going on, it’s time to make this mobile

first. Change the current container class to the following:

.container {

display: grid;

grid-template-columns: [left] 100%;

grid-template-rows: [header] 80px [main-nav] 40px [shows]

auto [footer] 20px;

}

And for larger screen sizes:

@media only screen and (min-width: 992px) {

.container {

grid-template-columns: [left] 66% [right] 33%;

}

…

}

If you’ve ever created tables in a desktop publishing application (or remember

using tables for layout in the dark days of web design), you’ll know that you need

to define how an item “spans” across multiple cells or rows. The technique is the

same with the grid display. Take the header as an example:

header {

grid-column-start: left;

grid-column-end: right;

grid-row-start: header;

grid-row-end: header;

76 Jump Start Responsive Web Design

}

This declaration block states that the column should start at the left and span all

the way to the right, as well as span from the top to the bottom of that row.

The other page elements follow a similar pattern:

Better Responsive Structures with Grid Systems 77

3-24. Chapter3/grid/layout.css (excerpt)(excerpt)

…

nav {

grid-column-start: left;

grid-column-end: right;

grid-row-start: main-nav;

grid-row-end: main-nav;

}

…

main {

grid-column-start: left;

grid-column-end: right;

grid-row-start: shows;

grid-row-end: shows;

}

…

footer {

grid-column-start: left;

grid-column-end: right;

grid-row-start: footer;

grid-row-end: footer;

}

…

@media only screen and (min-width: 992px) {

…

aside {

display: block;

grid-column-start: right;

grid-column-end: right;

grid-row-start: header;

grid-row-end: header;

}

}

And now you have a grid defined. Initially, the syntax seems verbose, but it’s

more human readable.

78 Jump Start Responsive Web Design

3-25. The final grid layout

There are lots of other grid layout features, including repeating layouts, nested

grids, content alignment, and the ability to define margins and spacing in your

grids. One final advantage of the grid display is that it also makes floating and

clearing unnecessary, so remove the left class from the HTML and any clearing

styles that were used.

Better Responsive Structures with Grid Systems 79

Making Grids Easier with Frameworks

In many cases, creating a grid in the way described in this chapter isn’t too much

work, but developers and designers like to reduce repetitive tasks as much as

possible. A simple solution is to create your own grid system that works for you

and reuse it across your projects. But of course, other developers and designers

have thought the same thing and have provided their grid systems (or

frameworks) on the internet. I’ll present two of the popular ones, but it’s a topic

where opinions are many and change is rapid. My aim here is to show you how

frameworks may be able to help you save time on repetitive tasks, rather than go

into detail over which one is “better” (a decision you’ll have to make for

yourself). Many of these frameworks supply more than responsive grids,

providing other responsive elements such as fonts, icons, and reusable widgets.

You may prefer one framework over another because it gives you better options

for other aspects of your web pages.

Bootstrap

While not the first framework for responsive design, Bootstrap is the most widely

used. You’ve probably seen it in action without realizing. Released in 2011 by

Twitter, it uses a 12-column grid, offers flexbox layout, and has periodically had

one of the most popular repositories on GitHub.

Popularity is Bootstrap’s biggest advantage and disadvantage. It’s easy to use,

encourages positive layout and CSS practices, and has plenty of documentation

and community help. But your site can easily end up looking a lot like every

other Bootstrap-powered site.

Installing Bootstrap

The default download of Bootstrap can add a lot to the weight of your page, so I

recommend you take a good look at the instructions to ensure you get a copy

that’s best optimized for your use. For this example, I’ll use the CDN option, as

it’s the simplest. If you want to follow along, add the lines provided on the

Bootstrap page, and remove the link to the current CSS file.

80 Jump Start Responsive Web Design

http://getbootstrap.com/
http://getbootstrap.com/getting-started/#download

You can find the simplified (no media queries) refactored index.html page here

as an example. You’ve lost the custom font and background colors, which would

be easy to re-add, but you have a responsive grid (Bootstrap also uses a

12-column grid) without too much effort, and that works in a similar way to our

custom grid. Bootstrap also has a lot of other styles available for handling images,

determining what grid elements to display at different grid sizes, and much,

much more.

3-26. A Bootstrap example

If you’re interested in learning more about Bootstrap, I recommend SitePoint’s

Jump Start Bootstrap.

Foundation

Foundation was created in 2011 by Zurb (an interactive design agency). It also

offers a lot of features (including optional flexbox), has regular releases, and a

good community, but is less widely used. It provides more flexibility to create

layouts (based on a 12-column grid), but generally requires more classes and

layout elements to achieve this.

Better Responsive Structures with Grid Systems 81

https://github.com/spbooks/responsive2/blob/master/code/Chapter3/bootstrap/index.html
https://www.sitepoint.com/premium/books/jump-start-bootstrap
http://foundation.zurb.com/

Installing Foundation

Like Bootstrap, Foundation can add a lot of page weight, so make sure you

download the best configuration for you.

Remove the current stylesheet and add links to the new stylesheets:

<link rel="stylesheet"

➥ href="foundation/css/foundation.css">
<link rel="stylesheet" href="foundation/css/app.css">

You can find the Foundation simplified (no media queries) refactored index.html

file here as an example. Again, you’ve lost the custom colors that can be replaced,

but you should be able to see the extra elements and classes you need to add.

3-27. A Foundation example

If you’re interested in learning more about Foundation, then I recommend

SitePoint’s Jump Start Foundation.

82 Jump Start Responsive Web Design

http://foundation.zurb.com/sites/download.html/
https://github.com/spbooks/responsive2/blob/master/code/Chapter3/foundation/index.html
https://www.sitepoint.com/premium/books/jump-start-foundation

What About the Demo App?

I’ve used sections of the demo app so far in examples for this chapter, but the rest

of the book will not use any grid systems. This is for clarity, so you can more

easily see the examples covering other topics without the grids getting in the way,

but also to reduce compatibility issues with certain browsers.

As an exercise, try picking your favorite grid system from this chapter and

rewriting future examples using it.

Wrap Up

Now you know how to make a page layout that can respond to any browser size

and always fit proportionally. In the next chapter, we’ll look at making the

content inside the layout responsive—because, without readable and presentable

content on all devices, your work is not yet complete.

Better Responsive Structures with Grid Systems 83

4Chapter

Responsive Text

If web pages are to be truly responsive, then the content of pages should also flow

and change to suit the dimensions of the device a user is viewing it on. While

web pages are becoming more image and media heavy, text is still a crucial

component, and there are numerous techniques to help make it as readable as

possible, no matter the current device.

To understand better the ways you can represent text on a web page, it’s best to

take a trip into the long history of text.

The History of Text

The principles of typography (the arranging and styling of text) have been

evolving for as long as people have been printing words on pages. Measurements

84 Jump Start Responsive Web Design

such as leading (the space between lines of text), kerning (the space between

letters) and tracking (the space between words) have carried over to desktop

publishing, and anyone who’s used QuarkXpress, InDesign, or their predecessors,

will know how they affect text.

4-1. Text formatting in Adobe InDesign

Manual typesetting was a laborious process, as it involved tweaking the leading,

kerning and tracking of every line of text. Desktop publishing, and more recently

setting type with CSS, has made it far easier to play with these properties in an

attempt to get the “perfect” text.

CSS typography shares many of the same properties as print typography but has

some different names. In fact, it has more descriptive names than the older print

version.

Responsive Text 85

In the early days of the Web, the level of typographic control was limited, but

CSS3 has helped greatly, giving us more tools to realize our designs.

Responsive Typographical Properties in CSS

There are lots of text-related properties you can set with CSS. Here are some that I

consider the most useful for responsive design:

font-size: the size of the font.

line-height: specifies the minimum height of lines within block elements,

and the actual line height of inline elements.

font-weight: the “weight” of the font, or how bold and strong it is.

text-decoration: used to set either underline or strike-through.

text-align: used to set text alignment of left, right, center, or justified

(aligned to the left and right margins equally).

text-transform: used to make text display as uppercase, lowercase or

capitalized.

letter-spacing: specifies the spacing between letters, much like leading.

word-spacing: specifies the spacing between words, much like tracking.

It’s common to set some or all of these properties with pixel values. For example,

you could add the following to the body selector of the current demo site:

body {

font-size: 18px;

line-height: 22px;

letter-spacing: 4px;

}

This will result in text that looks like this:

86 Jump Start Responsive Web Design

4-2. A strange text example

Other properties you may find useful in your designs are:

font-style: sets text to italic or oblique. Italic text may not be as readable on

small screen as on large screens.

text-indent: sets the indentation (mostly) of the first line of text in a block of

text. With space at a premium on smaller devices, it may be better to indent

paragraphs than to set spaces between them.

text-align-last: sets the alignment of the last line of a text block. Again, at

different devices sizes, you may want to handle this differently.

white-space: defines the handling of white space and wrapping in a block of

text.

word-wrap: specifies if words are allowed to break over lines. This could be

useful for optimizing text based on display size.

You may be wondering how setting text at fixed sizes could be responsive. 18px

is 18px whether it’s rendered on a desktop computer or a mobile screen. You

Responsive Text 87

could use media queries to set different font sizes at various screen sizes, but this

would become arduous, and there’s potentially a better method.

CSS allows you to use different units for sizing elements, but especially with text.

They fall into two camps: fixed sizing and relative sizing.

Fixed Sizing

Fixed sizing means that the size is always the same. There are seven possible

units you can use, but I’ll focus on the two most common, px and pt values.

Pixels

Pixels are those little dots of color that comprise the screens of every device.

When you need to set the size of an element in HTML, one CSS pixel equals one

device pixel, right? Well, no…

Device pixels (also called screen pixels) are the actual pixels comprising your

screen, and traditionally this was the number of pixels in the width by height of a

user’s screen. This may not be the same as the size of their browser window, as

desktop users frequently resize it, and browsers don't typically operate in full-

screen mode.

88 Jump Start Responsive Web Design

4-3. Screen size vs browser size

The newer, high-resolution screens—such as Apple’s “Retina”

displays—complicate matters, as they use a larger number of pixels over the same

screen area. Typically, this is achieved by doubling the number of pixels

vertically and horizontally—though increasing numbers of screens have four

times as many pixels in each direction.

Complicating this further are users who scale or zoom their browser windows for

accessibility or other reasons. For example, the screenshot below is the current

demo site zoomed to 125%, where one CSS pixel now covers 1.25 device pixels.

Responsive Text 89

4-4. A page zoomed to 125%

For these reasons, it’s best to ignore actual device pixels and focus on CSS

pixels—the pixel values you set in your CSS file. The CSS pixel value is a more

accurate number, which takes into account the factors outlined above. Browsers

also handle a lot of the scaling issues for you.

The pixel (px) sizing unit theoretically represents the size of one pixel of a screen.

In relation to text, this means that when setting text to 16px, the length of the

lowest point in the text (such as the bottom of a lowercase ‘g’) to the highest point

(such as the top of a lowercase ‘h’) is 16px.

90 Jump Start Responsive Web Design

4-5. Text height includes ascenders and descenders

For other properties, such as letter-spacing, this literally means the number of

pixels between characters at their widest point.

Points

As you saw in the earlier screenshot from InDesign, the point (pt) sizing unit has

its heritage in print text and is more confusing to understand. It represents a

similar size to the pixels example, but as different operating systems and screens

represent pixels to points in different ways, they are best reserved for print styles.

Relative Sizing

Relative sizing is more suited to web and responsive design, as sizes will change

relative to a base size. But it’s useful to understand fixed sizing (at least pixels) to

appreciate how these sizing methods work. The most popular units for relative

font sizing are the %, em, and rem values.

The first important fact to know when using relative sizes is what these sizes are

relative to. By default in all browsers, it’s 16px, but if a user has changed this

default—for example, to compensate for low vision—then relative sizes will still

scale up and down proportionally.

Responsive Text 91

4-6. Default font sizes

Percent

Setting a percentage value for a font size means making it a percentage of the

default font size, so if a user has the font size of their browser set at 16px, then

font-size: 100%; will still equal 16px, and font-size: 50% will equal 8px.

As an example, let’s try applying percentage sizing to the demo site, again with a

mobile first approach, setting the base font size for users of devices with smaller

screens.

Add a base font size to the body element that sets the default font size to 75% of

16px, which is 12px:

body {

font-size: 75%;

}

Then, in the tablet and desktop media queries, add font sizes for the larger screen

sizes:

We’re Assuming a Base Font Size of 16px

For these examples, I’ll assume that the base font size is the default 16px. If it’s

different in your browser, then the sizes stated will be different.

92 Jump Start Responsive Web Design

…

@media only screen and (min-width: 768px) {

body {

font-size: 100%;

}

}

@media only screen and (min-width: 992px) {

body {

font-size: 125%;

}

}

This results in a subtly more pixelated font rendering on larger screens than on

medium-sized screens.

Em

Despite its recent rise in popularity with web designers, the em unit is an old

typographical unit named after the letter “M”. The base value of an em unit is

equal to the current typeface size in points. For example, one em in a 16-point

typeface is 16 points.

In practice, it works in a similar way to percentage sizing, but the units are

smaller. So, for example, assuming a default font size of 16px, font-size: 1em

will still equal 16px, and font-size: 0.5em will equal 8px.

The unit values are smaller with ems, but it’s easy for styles to result in large font

sizes accidentally. For example, consider font-size: 4em: while the number

doesn’t look large, it actually equals 64px. Of course, you could set your default

font size to something smaller, and then increasing ems won’t result in such large

variations.

As an example, let’s try applying em sizing to the demo site, again with a mobile

first approach.

Responsive Text 93

Add a base font size to the body element that sets the default font size to .75em of

16px, which is 12px:

body {

font-size: 0.75em;

}

Then, in the tablet and desktop media queries, add font sizes for the larger screen

sizes:

@media only screen and (min-width: 768px) {

body {

font-size: 1em;

}

}

@media only screen and (min-width: 992px) {

body {

font-size: 1.25em;

}

}

I won’t add screenshots, as the results should look exactly the same as with the

percentage examples.

One neat trick with ems is that the relative sizing cascades down nested

elements. For example, modify the page’s aside element to have some nested list

items:

<aside class="left">

one

sub item

sub item

94 Jump Start Responsive Web Design

two

sub item

sub item

three

sub item

sub item

</aside>

Then add the following style:

aside ul {

font-size: 0.75em;

}

4-7. Em cascade example

Responsive Text 95

You’ll see that the font size for the outer ul is .75em (15px) of the current default

size (in the screenshot this is 20px), and the inner ul is .75em of that size

(11.25px). While this technique allows for a fantastic shorthand way of creating

responsive text sizes that can cascade through your page structure, it requires

careful planning, as an element several levels deep may end up smaller or larger

than you expect.

Rem

The rem unit stands for “root em”, and the sizing representation of the unit is the

same. But “root” implies that the relative sizing is calculated from one base

element—which is the html element—rather than the immediate containing

element. This gives you a more predictable alternative to ems, as it’s easier to tell

what the size is relative to.

As an example, let’s try applying rem sizing to the demo site.

Add a base font size to the html of 12px (assuming a default of 16px):

html {

font-size: 75%;

}

Then inside the tablet and desktop media queries, add font sizes for the larger

screen sizes:

@media only screen and (min-width: 768px) {

html {

font-size: 1rem;

}

}

@media only screen and (min-width: 992px) {

html {

font-size: 1.25rem;

}

96 Jump Start Responsive Web Design

}

Not much changes when applied to the demo site, as it’s effectively the same

sizing. Now add the following styles to the nested list example from above:

aside ul {

font-size: 0.75rem;

}

Now the sizing is 3/4 of the current base font size.

4-8. Rem cascade example

Responsive Text 97

Other Relative Sizes

Sizes based on percentages, ems and rems are not the only options available to

you. There are actually nine in total. Some are quite obscure, or not really

necessary, but others are more useful after an initial learning curve. Take, for

example, the vw and vh units, which are a percentage of the width and height of

the viewport respectively.

There is also vmin (based on which is smallest of the viewport height and width)

and vmax (based on which is largest of the viewport height and width). These are

amazingly flexible, as the size will automatically react to the size of the viewport,

but you can lose track of what sizes fonts actually are.

Take a viewport that’s 1000px wide and 800px high:

1vw is 1% of the total width, i.e. 10px

100vw is 100% of the width, i.e. 1000px

50vw is 50% of the width, i.e. 500px

1vh is 1% of the height, i.e. 8px

1vmin is 1% of the smallest of the two sizes, i.e. 1% of 800px, which is 8px

1vmax is 1% of the largest of the two sizes, i.e. 1% of 1000px, which is 10px

Try adding the following to the body element:

body {

font-size: 1.5vw;

}

Your base font size will now be 1.5% of your body width, which will depend on

the width of your browser window.

At first, it looks like viewport sizing is the answer to your responsive dreams, but

you’ll notice that, as you shrink the browser window, the font size becomes

unreadable, as 1.5% of a small viewport width is a tiny font size.

98 Jump Start Responsive Web Design

Of course, you could fix this with breakpoints, but then that defeats the purpose

of using this sizing unit in the first place. There’s a clever workaround for this,

thanks to Zell Liew and Mike Riethmuller:

body {

font-size: calc(16px + 0.25vw);

}

/* The above won’t work in Safari, but the below does */

body {

font-size: calc(100% + 0.25vw)

}

This works by using the CSS3 calc function to calculate a base font size (16px or

100%) and then adding 0.25% of the viewport width to it, reducing the amount

of variation between sizes as the viewport dimensions change. You’re free to

change both the values in the calculation to suit your needs.

For the remainder of this chapter, I’ll use the em unit, but before refactoring the

demo site text, let’s return to typography and optimizing it for the web.

Creating Readable Text

You can use all the typographical properties outlined earlier in this chapter in

conjunction with the sizing units also discussed, allowing for fine-grained

tweaking of text to make it the most readable on any device.

There are, of course, many schools of thought on what “good text” looks like, and

it depends on how much text your pages show and how important it is to those

pages. The example site in this book has a small amount of text, so it’s relatively

Browser Support

Some viewport sizing and the calc functions are not fully supported in all browsers,

with even recent versions of Internet Explorer and Edge not supporting the vmax

property, and older versions of the Android browser not supporting all calculation

types in calc.

Responsive Text 99

http://zellwk.com/blog/viewport-based-typography/
http://caniuse.com/#feat=viewport-units
http://caniuse.com/#feat=viewport-units
http://caniuse.com/#feat=viewport-units
http://caniuse.com/#search=calc
http://caniuse.com/#search=calc

easy to make it readable. Text-heavy sites such as a blog will need more thought

and consideration.

You should consider what font faces, styles, sizes, and layouts suit various screen

sizes and resolutions and balance this with any style guides your project may

have.

Let’s start overhauling the text of the demo site by tweaking the base text

properties:

body {

font-size: 1em;

}

4-9. Setting the font size

This sets the default font size to be the browser default, likely 16px as discussed

earlier.

100 Jump Start Responsive Web Design

For the small-screen version of the page (that is, the default styles) the show

description text is actually hidden, so we needn’t worry about formatting it.

However, the main site description is taking up way too much space when screen

real estate is limited, so use a :not pseudo-class to reduce the default font size

and exclude the show descriptions:

section.showslisting p:not(.showdescription) {

font-size: 0.8em;

}

4-10. The site’s intro text resized

As the screen size grows, apart from watching the videos, the show descriptions

are likely what people want to access, so let’s make the text slightly bigger to

stand out more. With this medium screen size, still only a text summary is

shown, so this is enough to make it more readable:

@media only screen and (min-width: 768px) {

.showdescription {

font-size: 1.2em;

}

}

Responsive Text 101

4-11. Show descriptions are now larger

As the screen gets larger, let’s increase the text size and tighten the line spacing,

especially as people may now be reading these descriptions from across the room

as they settle in for an evening of entertainment.

/* Medium devices and desktops */

@media only screen and (min-width: 992px) {

.showdescription {

font-size: 1.3em;

line-height: 1.1em;

}

}

4-12. The full description text

102 Jump Start Responsive Web Design

Read On

In this chapter, I’ve introduced typographical concepts that are relevant to

responsive design, and I’ve shown how they are represented in CSS. I’ve also

covered the different sizing units that you can use to set these properties, and

how to make important text on your pages readable. In the next chapter, I’ll look

at how to do the same with the rest of your page content, such as images and

videos.

Responsive Text 103

5Chapter

Responsive Images and Video

The exchange of text-based content brought the web into existence, but images

and other rich media have kept it evolving and made it what we all know/love/

dislike.

Options for making images responsive has developed rapidly in recent years,

with the ability to load images perfectly suited to users’ devices. And the

addition of new HTML elements like video has opened up new options for

responsive design. It’s fresh territory, but with pitfalls, compromises, and new

techniques to learn. So let’s get going!

104 Jump Start Responsive Web Design

Images

Images are a powerful communication device, portraying a message, intent,

explanation, and bringing life to your web pages.

Images have also been a constant source of anguish for designers (web and print)

for many years, and while HTML5 has brought a lot of improvements, adding

responsive images to your web page still requires planning and preparation.

For this chapter, I’ve replaced the placeholder graphics used up to this point on

the site with images from royalty free sites to represent what a site with real TV

shows might look like.

5-1. Adding show images

There are issues with the page now that we’ve added real images. The most

obvious is that, while the layout is still fine, all the images are forced into the

same dimensions, which means they aren’t taking advantage of the available

Responsive Images and Video 105

screen space. The example site is for browsing and watching videos, so it makes

sense to make the visual content as prominent and easy to see as possible.

To show how to use responsive images, we’ll change the demo site to have

different image sizes and layouts suited to each use case at the breakpoints

defined in Chapter 3.

First, change the CSS and HTML to better accommodate the images we’ll be

adding. Let’s give the main content area more space and reduce the size of the

aside menu:

@media only screen and (min-width: 992px) {

aside {

width: 15%;

display: block;

}

section.showslisting {

width: 75%;

}

}

Add the mobile first styles for the divs that contain details about a show. This

sets a maximum width of 480px, centered, with an ideal width of most of the

screen:

section.tvshow {

width: 90%;

max-width: 480px;

margin: 0 auto;

display: block;

}

Next, add a media query for the same div when displayed on larger screens—still

centered and filling most of the screen:

106 Jump Start Responsive Web Design

@media only screen and (min-width: 480px) {

section.tvshow {

max-width: 768px;

}

}

As we jump to a larger screen, let’s start showing more than one thumbnail in a

row. This actually means that images will now be smaller, and the max-width of

each div should be half the maximum screen size for this media query:

@media only screen and (min-width: 768px) {

section.tvshow {

width: 46%;

margin-right: 15px;

display: inline-block;

max-width: 496px; /* The next break point divided by 2*/

}

}

Next is the media query for larger screens, where we now show four items per

row and adjust the div and image sizes accordingly:

@media only screen and (min-width: 992px) {

section.tvshow {

width: 22%;

margin-right: 15px;

display: inline-block;

}

}

Finally, change the media query for TV and larger screens:

Responsive Images and Video 107

5-2. Chapter5/image_width/layout.css (excerpt)(excerpt)

/* Large Devices, Wide Screens, TVs */

@media only screen and (min-width: 1800px) {

section.tvshow {

width: 46%;

margin-right: 15px;

display: inline-block;

max-width: 900px; /* The next break point divided by 2 */

}

}

Okay, now that the containers for the images are sorted, we can focus on the

images.

108 Jump Start Responsive Web Design

5-3. The page restructured at medium screen size

Responsive Dimensions

Change the image sizing to the following:

.thumbnail {

width: 100%;

height: auto;

}

Responsive Images and Video 109

5-4. The effect of the changed image styles

This will set the image width to 100% of its container’s width, and setting

image’s height to auto allows the image to occupy as much vertical space as

needed to maintain its natural proportions. You’ll notice that this means the

images don’t currently all have the same height, which affects the layout. You

could swap these values to instead fill 100% of the height and fill the width

automatically. Attempting to make images always fit precise dimensions can be a

compromising challenge that depends a lot on the source of the images. If you’re

able, it might be best to edit them first so they all have the same dimensions.

Using width: 100% can mean that images will scale larger than their original size

and render pixelated. To prevent this, try using max-width or max-height on the

thumbnail styles relevant to each breakpoint.

110 Jump Start Responsive Web Design

So that’s it, you’re done, right? Unfortunately, no. Inspect one of the images in

your web inspector and you’ll notice that all we’re doing is resizing a very large

image. Even though it looks small, the actual file is still large, adding a lot of page

weight. Look at the network requests: these five images total nearly 4MB, which

is a lot of data for a mobile user to load. To make your images fully responsive,

you need to make sure the right file is served to the right device.

5-5. Image sizes

The Right Image for the Right Device

There are two methods for handling images responsively. One is srcset, an

attribute to the img tag you know already, and the other is the new HTML5

picture element. Both methods use media query like syntax to select the image

most suited to the device capabilities, but srcset allows the browser to make the

final decision on what image to render, and picture explicitly tells the browser

which image to render. For most use cases, srcset will be all you need, but for

design heavy sites when you want more control over how a browser renders an

image (e.g. cropping an image instead of resizing it) then using the picture tag

will suit you better.

Much like the CSS rules loaded by your media queries, what image sizes you use

and support is up to you and your use case. The example project is moderately

well optimized, but could be better. For example, we could reduce the maximum

size of images loaded on smaller screens. The queries can take the same format as

those outlined in Chapter 2.

I created each of the images needed for the design manually, giving them a width

roughly matching the maximum width the image will be displayed at:

Small Image: 320px wide.

Responsive Images and Video 111

Medium Image: 480px wide.

Large Image: 768px wide.

Creating different versions of images manually is tedious, but gives you control

over what gets shown in each image size. If you’d rather automate the generation

of these images, there are several options, such as:

batch processing in an image editor like Photoshop or XnView (Windows).

batch processing with a build tool such as Gulp.

using a plugin for your CMS or static site generator, which is likely a wrapper

around the popular imagemagick or OptiPNG libraries.

srcset

Replace the existing image element with the following:

5-6. Chapter5/srcset/index.html (excerpt)(excerpt)

<section class="tvshow">

<h3>Show 1</h3>

<img src="../images/show1-medium.jpg"

srcset="../images/show1-medium.jpg 480w,

../images/show1-small.jpg 320w,

../images/show1-large.jpg 768w"

sizes="(max-width: 768px) 480px,

(max-width: 1800px) 320px, 768px"

class="thumbnail" />

<p class="showdescription">Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

</section>

This requires breaking down, and the layout we're using also adds complexity.

Some Homework

This example replaces one image, and to reduce repetition, I haven’t included code

for replacing the other four images. You can find the code for the remaining images

in the code archive if you want to try replacing the others too. Keep the media

queries the same and replace the images with the appropriate files.

112 Jump Start Responsive Web Design

https://helpx.adobe.com/photoshop/using/processing-batch-files.html
http://www.xnview.com/en/
http://gulpjs.com/
http://imagemagick.org
http://optipng.sourceforge.net/
https://github.com/spbooks/responsive2/blob/master/code/chapter5/srcset/index.html

The first part of the element is normal, as is the last class property, the second

and third lines are the new syntax. srcset is designed to allow the browser to

make the best decisions about what image to display based on information you

provide it. Each pair in the second line defines the images available and tells the

browser its width, appended with a w. The third line defines the viewport sizes

you want to load a particular image at, and what image to load.

The example above declares:

Up to a viewport width of 768px, load an image of 480px width.

Between a viewport width of 768 and 1800px, load an image of 320px width.

If no other rule applies, then load an image of 768px.

You can be more subtle with these declarations, for example:

<img src="../images/show1-medium.jpg"

srcset="../images/show1-medium.jpg 480w,

../images/show1-small.jpg 320w,

../images/show1-large.jpg 768w"

sizes="(max-width: 768px) 90vw,

(max-width: 1800px) 24vw, 50vw"

class="thumbnail" />

This instead declares that at the different viewport sizes pick an image that suits

best a certain viewport width (vw) size. For this design, they are essentially the

same, but it gives you an idea of how smart you can let your browser be. It's

worth noting that this smartness can actually cause confusion when testing; I

have frequently found myself wondering why the tag wasn't working how I

expected it to, only to realize that it was due to the browser holding on to cached

version of the images, or optimizing for a retina screen, and again caching those

images. To debug what's happening while figuring out your srcsets, I

recommend using incognito / private windows, double-checking your screen

resolution, and keeping developer tools open to see what files the browser is

actually loading.

If this smartness is too unpredictable for you and you find yourself needing more

control, then the picture tag is for you.

Responsive Images and Video 113

The picture Element

Try replacing the img tags with the below:

5-7. Chapter5/picture_tag/index.html (excerpt)(excerpt)

<picture>

<source srcset="../images/show1-small.jpg"

media="(max-width: 320px)" class="thumbnail">

<source srcset="../images/show1-medium.jpg"

media="((min-width: 320px) and (max-width: 480px))"

class="thumbnail">

<source srcset="../images/show1-large.jpg"

media="(min-width: 480px)"

class="thumbnail">

<img src="../images/show1-medium.jpg"

class="thumbnail">

</picture>

We’ve replaced the default img with the HTML5 picture element. This element

is still considered experimental (especially with Microsoft and older Android

browsers) but should be widely used soon. Helpfully, the img inside the picture

is a fallback image for browsers that don’t support picture, meaning that the

browser will load a default image if it doesn’t support the newer element.

I chose the medium-sized image, as it’s not too large or small, allowing for a

reasonable level of responsiveness on unsupported browsers.

More Homework

As with the previous section, this example replaces one image, and to reduce

repetition, I haven’t included code for replacing the other four images. You can find

the code for replacing the remaining images here if you want to try replacing the

others too. Keep the media queries the same and replace the images with the

appropriate files.

114 Jump Start Responsive Web Design

https://github.com/spbooks/responsive2/blob/master/code/chapter5/picture_tag/index.html

One other useful application of the picture element, enabled through its inner

source element, is to load different image formats, such as scaleable vector

images (SVGs):

<picture>

<source srcset="logo.svg" type="image/svg+xml">

</picture>

If the browser doesn’t support SVG images, then it will load the PNG instead.

Another option is to load higher resolution images for high resolution screens:

<picture>

<source srcset="../images/show1-2x.jpg"

media="(min-resolution: 120dpi)" class="thumbnail">

<img src="../images/show1-medium.jpg"

class="thumbnail">

</picture>

Responsive Video

Continuing the theme of semantic elements in HTML5, the respective elements

for video and audio are video and audio. Since we’re building a video site in this

book, I won’t focus too much on the audio element, but I think after using the

picture and video elements, you’ll understand how to use it.

Supporting Older Browsers

If you want to add better support for older browsers, you can use a “polyfill” (a

term for a library that plugs missing functionality). Specifically, in this case, that’s

Scott Jehl’s picturefill.

Responsive Images and Video 115

https://github.com/scottjehl/picturefill

The video Element

Many years ago, I made a site of music videos. This was prior to the widespread

availability of broadband, and I spent a long time optimizing videos as much as

possible to make them viewable on slow connections. I also had to decide what

video plugin to use to display the video. Would it be best with Quicktime?

RealPlayer? Or the tool that everyone loves to hate now (but which was popular

at the time), Flash?

Those video format wars are largely over now, replaced by a series of standard

formats and HTML5 elements, making a designer’s life much easier, and also

reducing that user-experience-killing process of having to download a plugin to

view a video. The video element has a lot wider support than picture, with only

IE8 and early Android versions likely to cause you problems.

However, the file formats supported by the video element still present problems,

mostly thanks to vendors’ differing attitudes to DRM and to which format is the

“best” to use (each vendor preferring the format it supports or helped to develop).

All browsers that support the video element support MPEG-4/H.264, which is a

compressed format. But it’s also proprietary, which means browser manufacturers

must pay a license to use it. Support for the WebM and Ogg/Theora formats

(which are open formats) is less common, with really only Chrome, Firefox, and

Opera supporting them.

Here’s an example of the video element in use:

<video width="320" height="240" autoplay>

<source src="file.mp4" type="video/mp4">

<source src="file.ogg" type="video/ogg">

Your browser does not support the video tag.

</video>

It’s a much simpler and consolidated HTML element than the options that existed

before. It loads whichever video format is supported by the user’s browser, or a

default string of text if the the video element or the file formats it contains aren’t

supported. The source elements are processed in the order presented. So, in the

example above, if the browser supports both formats, it will load the first one it

116 Jump Start Responsive Web Design

sees. That’s about it; there isn’t much particularly responsive about the video

element, except that it loads suitable video files with controls for them.

There are a few tricks you can try to make videos more responsive, but let’s start

simply by making the video player controls visible, adding a poster image (a

thumbnail shows before the video plays), and removing the manual size.

<video controls poster="../images/show1-medium.jpg">

<source src="../videos/show1.ogv" type="video/ogg">

<source src="../videos/show1.mp4" type="video/mp4">

Your browser does not support the video tag.

</video>

Early proposals for the video element included having its own media queries

(like the picture element has, as we saw above). But the idea was dropped,

meaning that different video files can’t be swapped out for different devices. So

the only real way to make the video responsive in any way is to use percentage

widths, for example:

video {

width: 100%;

height: auto;

}

This will make the video scale to fit its containing element, and you could use a

max-width property to limit the dimensional size it could grow to, or a smaller

value, such as 50%. However at larger screen sizes it won’t prevent upscaling of

the video, meaning it could look pixelated if sized too large.

Unless you specify otherwise, a video will start to download to your browser

once the page is loaded (so that it’s ready to view if a user chooses to watch it).

Notice the potential network overhead with a video, which isn’t great for mobile

users:

Responsive Images and Video 117

5-8. The video file size shown in the web inspector

There’s a partial solution to this problem: add preload="none" to the video tag:

<video controls poster="../images/show1-medium.jpg"

preload="none">

…

</video>

Now the video will only load when a user clicks the play button, allowing the

user to choose when/if it’s loaded.

In our code files, go ahead and comment out the picture element (for now) and

replace it with the video element as shown above.

118 Jump Start Responsive Web Design

5-9. Videos loaded on a tablet device

If you use a larger video, then the video scales quite well at larger sizes. But

you’ll notice that at larger player sizes (the tablet and TV breakpoints) the poster

image is pixelated.

There are no ideal solutions to this problem, and hopefully, better solutions will

emerge as the element evolves. (One possible solution I’d like to see would be the

option to set the poster image along with the source sub-elements inside the

video tags, ideally with support for breakpoints and media format selective

loading.)

Responsive Images and Video 119

Using a Larger Image as a Poster

Replacing the poster image with the large variant will mean the poster image

scales across all file sizes, but it does mean that we’re loading an unnecessarily

large file at certain breakpoints.

If you want to style the poster element further (to change the dimensions or add

padding), you can target it directly with the following selector:

video[poster] {

…

}

Background Image

A way to create a responsive image representation of the video is to remove the

poster image and then instead set a background image for the video, allowing you

use media queries to load the appropriate image.

You’ll need to set a background image inline within the video tag, or create a CSS

style for each video to set the image, because each video needs a different image

set as a background.

With an inline style:

<video controls preload="none"

style="background: transparent

url('../images/show1-large.jpg')

0 0 / cover no-repeat;">

…

</video>

And with a CSS class:

120 Jump Start Responsive Web Design

<video controls preload="none" class="show1">

…

</video>

.show1 {

background: transparent url("../images/show1-large.jpg")

0 0 / cover no-repeat;

}

Using specific styles isn’t a scalable option as you add more content, but for our

example it’s the best option. To avoid repeated typing on a production site, you’d

probably use a templating system such as Twig or Mustache, which would loop

through the videos you want to display and populate the various file names as

required.

If you don’t want to use inline styles you could use a CSS pre-processor such as

Less or Sass, which allows you to use functions and arguments (in this case, the

background image) to generate the necessary CSS classes for you, but this will

result in a lot of CSS classes.

To demonstrate the principle, let’s take an approach somewhere between the two

mentioned above, but without using any new dependencies. Add a class to each

video, and then create the styles needed for the background image at each

breakpoint. First, remove all the poster attributes from the video tags and add

the class. For example:

<video controls preload="none" class="show1">

…

</video>

And the CSS for the mobile-first layout:

.show1 {

background: transparent url("../images/show1-medium.jpg")

Responsive Images and Video 121

http://twig.sensiolabs.org/
https://mustache.github.io/
http://lesscss.org/
http://sass-lang.com/

0 0 / cover no-repeat;

}

Then for larger mobile devices:

@media only screen and (min-width: 480px) {

.show1 {

background: transparent url("../images/show1-large.jpg")

0 0 / cover no-repeat;

}

}

For larger tablets and desktop devices:

@media only screen and (min-width: 992px) {

.show1 {

background: transparent url("../images/show1-small.jpg")

0 0 / cover no-repeat;

}

}

And finally for large screens and TVs:

@media only screen and (min-width: 1800px) {

.show1 {

background: transparent url("../images/show1-large.jpg")

0 0 / cover no-repeat;

}

}

Now create matching classes and styles for each other video thumbnail. Phew!

That’s great for responsiveness, but a lot of code! You can find the complete

example in the code archive.

122 Jump Start Responsive Web Design

https://github.com/spbooks/responsive2/blob/master/code/chapter5/video_tag/index.html

Clickable Image

Another different solution to creating a fully responsive video is to replace the

video player with a picture tag that, when clicked, loads the player. This allows

you to use the best of all responsive worlds, but will need JavaScript. It will also

allow you to add features such as opening the video in a layer above the web

page.

First, add the picture and video tags together for each TV show:

<section class="tvshow">

<h3>Show 1</h3>

<picture>

<source srcset="../images/show1-small.jpg"

media="(max-width: 320px)" class="thumbnail">

<source srcset="../images/show1-medium.jpg"

media="((min-width: 320px) and (max-width: 480px))"

class="thumbnail">

<source srcset="../images/show1-large.jpg"

media="(min-width: 480px)" class="thumbnail">

<img src="../images/show1-medium.jpg"

class="thumbnail">

</picture>

<video controls poster="../images/show1-medium.jpg"

preload="none">

<source src="../videos/show1.mp4" type="video/mp4">

<source src="../videos/show1.ogv" type="video/ogg">

Your browser doesn’t support HTML5 video tag.

</video>

<p class="showdescription">Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

</section>

Do the same for each other show, replacing the images and video sources.

Now set the video element to be hidden by default:

Responsive Images and Video 123

video {

display: none;

width: 100%;

height: auto;

}

Next, add the following JavaScript that adds a click event listener to the page. If a

click is detected, the code will check if the click was on a thumbnail. If it was,

then it calls a toggle_visibility function. This function shows the hidden

video, plays it and then hides the image that was clicked.

Add the following JavaScript inside a script tag to the index.html file, which

adds the event listener:

(function () {

document.addEventListener('click', toggle_visibility,

false);

Once inside the function, if the element clicked was one of the video thumbnails,

then continue, ignoring all other elements:

function toggle_visibility(id) {

clickedElement = id.target;

if (clickedElement.classList.contains('thumbnail')) {

Next, you need to detect which image was clicked, find the relevant video for the

thumbnail, start playing it and hide the thumbnail image.

A Note on JavaScript

The JavaScript code in this chapter and in Chapter 6 are mostly presented in

isolation, as they offer separate options to experiment with. If you wanted to

combine and use all of the examples together, you’d need to plan further, especially

in trying to minimize the number of event handlers required.

124 Jump Start Responsive Web Design

var v =

➥ clickedElement.parentNode.parentNode.querySelector('video');
v.style.display = 'block';

v.play();

clickedElement.style.display = 'none';

}

}

})();

And now, responsive images are replaced with a video player that by design

stretches to fit. You could improve this by reversing the process when the video is

paused.

5-10. Clickable image and resulting video player

Responsive Images and Video 125

Get Visual

And there you have it: in this chapter, we’ve added a lot to flesh out the sample

site with images and video, making it feel much more like a proper web page. As

you can see, pictures are now a lot easier to make responsive. New tools and

libraries have made responsive images much simpler and comprehensive than

they used to be. Videos still require more work, but at least the days of complex

media plugins are behind us.

In the next chapter, we’ll polish the page with techniques for reacting to the

capabilities of a user’s browser, location, data and other “adaptive” techniques.

126 Jump Start Responsive Web Design

6Chapter

Responding to User Context

Our example page is now responsive, and will work well on a wide variety of

devices—scaling layout, images, media and text to suit.

In this final chapter, we’ll look at techniques for adjusting user experience based

on user context or preference. A real-world application would react to a lot of

these situations from the back end, serving appropriate content to suit each case.

Still, it’s interesting to understand the different ways and reasons an interface can

change, and I hope this chapter gives an idea of what’s possible.

An API for Everything

Modern HTML and JavaScript let you check for a wide variety of parameters and

then adapt what users see. The media-heavy nature of our demo site gives a lot of

Responding to User Context 127

potential to vary how content is served to users. For example, family-friendly

shows can be served up before a certain time of day, and more adult shows

afterward; users can be offered the choice to play a video only if there’s an

appropriate internet connection available.

Based on Time

Some of the TV shows listed contain more adult content than others, and we

should highlight them in the listings if it’s earlier than 7.00 p.m. in the user’s

location, to indicate they shouldn’t be watched by younger members of the

family.

In index.js, add the following code to get the local time, and then extract the

hour:

var localNow = new Date();

var localTime = localNow.getHours();

Now, build an array of all the elements with the tvshow class:

tvShows = document.getElementsByClassName('tvshow');

Loop through the array of TV shows and add the highlight class to any show if

the time is earlier than 7.00 p.m. and it has the evening class:

Modifying the HTML

I added the evening class to a couple of the tvshow sections. Go ahead and add

the class to several of the section elements before adding the JavaScript below.

128 Jump Start Responsive Web Design

6-1. Chapter6/time/index.js (excerpt)(excerpt)

var j;

for (j = 0; j < tvShows.length; j++) {

if ((localTime <= 19) &&

➥ (tvShows[j].classList.contains('evening'))) {
tvShows[j].classList.add('highlight')

}

}

Next, write a CSS rule that adds a subtle highlight to shows you might want to

exercise caution over:

section.tvshow.evening.highlight {

background: rgba(255, 0, 0, 0.2);

}

Add a new div to index.html to let users know what the highlight means:

<section class="showslisting left">

<h2>Welcome</h2>

<p>RWDFlix brings you the best videos where and when

you want them. <i>You are advised that shows

highlighted contain more mature content.</i></p>

Another idea for responding to the time of day is to filter the level of blue light in

the site to reduce eye strain or aid sleep, and the example later in this chapter

that covers the Ambient Light Sensor API does something similar. You may have

used applications like Flux that perform this function on a system level. If you do

offer this option, it should be something a user opts into and that doesn’t happen

automatically.

Responding to User Context 129

https://justgetflux.com/

Battery Level

The HTML5 Battery Status API allows you to check the current battery level of a

device and respond accordingly.

Mobile devices (and laptops) are prone to running out of battery power just when

you need it, so for this (mostly illustrative) example, let’s help our users by

noticing when their battery level is low and making the page less consumptive.

Darker colors can help reduce the battery impact on certain device screens

(especially AMOLED screens), so the colors for the page are already reasonably

battery friendly, but let’s see how we can react to the battery level.

A JavaScript method is available to get a variety of information about a device’s

battery.

Add the following code inside the index.js file to check if the browser supports

the feature. If it does, then get the battery level, which is a value between 0

(empty) and 1 (full):

navigator.getBattery().then(function (battery) {

var level = battery.level;

console.log(level);

});

If it’s less than 20% (0.2), add a CSS class that reduces color brightness, and

remove images from the DOM (since loading and displaying images can impact

battery life, and every little bit helps):

if (level < 0.2) {

body = document.getElementsByName('body');

Security Concerns

There have been recent security concerns surrounding the Battery Status API, so

read the W3C specification for news on its future.

130 Jump Start Responsive Web Design

https://developer.mozilla.org/en-US/docs/Web/API/Battery_Status_API
https://www.w3.org/TR/battery-status/#security-and-privacy-considerations

body.classList.add('battery-save');

images = document.getElementsByName('img');

var i;

for (i = 0; i < images.length; i++) {

images[i].remove();

}

}

Add the new battery-save styling to your CSS, reducing the brightness of the

page text:

.battery-save {

color: gray;

}

Whether color schemes actually save battery life is a controversial topic that

depends a lot on the device screen, but it might be worth experimenting. Other,

more definite ideas for helping users save battery are:

reducing network calls and traffic

reducing animations and effects

reducing the amount of client-side processing by removing less essential

JavaScript.

Although we removed images from the DOM with JavaScript, they’re still loaded

before being hidden. This contradicts the maxim of reducing network calls. As

JavaScript only allows you to change an already existing page structure, you need

to change what gets delivered to the browser in the first place. To make this work,

you need to rethink the page structure to make it more mobile friendly.

Add classes to the current HTML to identify each TV show:

<section class="show1">

…

</section>

Responding to User Context 131

<section class="show2">

…

</section>

Now remove all the picture and video tags from each tvshow section, massively

reducing the HTML file. Back in index.js, replace what is already there with the

following code, which takes concepts we’ve already used in previous chapters

(clicking the image for a video) and consolidates it:

132 Jump Start Responsive Web Design

6-2. Chapter6/battery_mobile_first/index.js

window.addEventListener("load",function(event) {

navigator.getBattery().then(function (battery) {

// Get the battery level, and load images if enough

var level = battery.level;

if (level > 0.2) {

// Find all 'tvshow' divs and loop through them all

tvShows = document.getElementsByClassName('tvshow');

var i;

for (i = 0; i < tvShows.length; i++) {

tvShow = tvShows[i];

// Get the show name

showName = tvShow.classList[1];

// Create a picture element

var newPictureNode = document.createElement("picture");

// Set the source and classes for the picture, the code is

➥ identical to earlier examples, but the show name is passed to
➥ generate for each show

var pictureInnerHTML = '<source srcset="../images/' +

showName + '-small.jpg" media="(max-width: 320px)"

class="thumbnail"><source srcset="../images/' +

showName + '-medium.jpg" media="((min-width: 320px) and

(max-width: 480px))" class="thumbnail"><source

srcset="../images/' + showName + '-large.jpg"

media="(min-width: 480px)" class="thumbnail"><img

src="../images/' + showName + '-medium.jpg"

class="thumbnail">';

newPictureNode.innerHTML = pictureInnerHTML;

// Add an event listener to the picture

newPictureNode.addEventListener('click',

toggle_visibility, false);

// Also generate the video HTML in the same way

var newVideoNode = document.createElement("video");

var videoInnerHTML = '<source src="../videos/' + showName

+ '.mp4" type="video/mp4"><source src="../videos/' +

showName + '.ogv" type="video/ogg">Your browser doesn\'t

support HTML5 video tag.';

newVideoNode.setAttribute("controls", "controls");

newVideoNode.setAttribute("poster", '../images/' +

Responding to User Context 133

showName + '-medium.jpg');

newVideoNode.setAttribute("preload", "none");

newVideoNode.innerHTML = videoInnerHTML;

// Insert the new image and video in the correct place

var nextNode =

➥ tvShow.getElementsByClassName('showdescription');
tvShow.insertBefore(newVideoNode, nextNode[0]);

tvShow.insertBefore(newPictureNode, newVideoNode);

}

}

});

},false);

function toggle_visibility(id) {

var e = this;

var v = e.nextSibling;

v.style.display = 'block';

v.play();

e.style.display = 'none';

}

When the page loads, it checks to see if the battery level is above 20%. If so, then

image and video nodes (elements inside the DOM) are added inside each tvshow

class, using the class name for the TV show to ensure the correct media files are

loaded. If the battery is below 20%, only text is displayed. Ideally, you should

add this functionality to a preference setting, so that users don’t get an unwanted

surprise.

This took some reorganizing, but now the page starts in a more mobile friendly

state, only loading the heaviest page elements when the device is in a good state

to do so. For the rest of the examples in this chapter, we’ll use this concept to

show how to add different detection capabilities. In fact, before continuing, try

refactoring the time example to use the framework above.

134 Jump Start Responsive Web Design

Geolocation

The HTML5 Geolocation API allows you to detect the rough latitude and

longitude of a user’s current location.

As well as providing great video content, RWDFlix also likes to recommend

shows that may interest a user. This example will use the current location of the

user to highlight shows that contain content about that location.

6-3. Shows highlighted that match user location

In index.js, replace the existing contents of the file with the following code that

checks if the browser supports geolocation, informing the user if it doesn’t:

Responding to User Context 135

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation

window.addEventListener("load",function(event) {

if ("geolocation" in navigator) {

} else {

alert("RWDFlix uses geolocation to recommend shows that may

be relevant to you.")

}

},false);

If the browser does support geolocation, get the current position of the user and

pass the values to a new function:

if ("geolocation" in navigator) {

navigator.geolocation.getCurrentPosition(getPosition);

} else {

alert("RWDFlix uses geolocation to recommend shows that may

be relevant to you.")

}

The API method returns the current latitude and longitude, which is not that

useful to us, as we really want to know the current country of a user. Use the

Google Maps API to turn it into a more useful country code:

function getPosition(position) {

// Define the URL with the current latitude and longitude

var url =

"http://maps.googleapis.com/maps/api/geocode/json?latlng=" +

position.coords.latitude + "," + position.coords.longitude +

"&sensor=false";

// Create a request and send the URL

var xmlhttp = new XMLHttpRequest();

xmlhttp.open("GET", url, true);

xmlhttp.send();

// When the request returns, process the response

xmlhttp.addEventListener("readystatechange", processRequest,

false);

136 Jump Start Responsive Web Design

https://developers.google.com/maps/

}

Now that we have a result from Google Maps, we can process the results. We

need to find the array that contains the country value, and then highlight TV

shows that match that country in a similar way to the time example:

function processRequest() {

// Is the response OK?

if (this.readyState == 4 && this.status == 200) {

// Parse the JSON response

var myArr = JSON.parse(this.responseText);

var i;

for (i = 0; i < myArr.results.length; i++) {

// Loop through the array of results and find the element we

➥ want, then continue when we find it
if (myArr.results[i].types[0] == "country") {

country = myArr.results[i].formatted_address;

tvShows = document.getElementsByClassName('tvshow');

var j;

// Loop through TV Shows and highlight any that match this

➥ value
for (j = 0; j < tvShows.length; j++) {

tvShow = tvShows[j];

if (tvShow.classList[1] == country ||

tvShow.classList[2] == country) {

tvShows[j].classList.add('highlight')

}

}

}

}

}

}

Modifying the HTML

I added country classes to the tvshow sections. Go ahead and add some of your

own before running this example. They need to begin with a capital letter.

Responding to User Context 137

Based on Network

The example site is a video site, and while we currently have the clickable

images allowing a viewer to only load a video file when they wish too, we could

make this more flexible based on the device’s network connection. Or even better,

we could create a preference that users can set if they want this feature.

The Network Information API is not widely supported (currently only Chrome on

Android), but browser manufacturers move quickly, so it may be better supported

by the time you decide to implement it.

First, the easiest (and most supported) check is to see if the user is online at all:

if (navigator.onLine) {

// Do something

}

Granted, this has limited use in the example, unless you want to check if the user

has become disconnected before attempting to play a video. Still, it’s a good idea

to cover all bases.

While the Network Information API lets you check all sorts of values, it’s not

much use right now. There are third-party (paid) services for checking internet

speeds, but currently, the “best” solution is using complex code to check how

long an image takes to load, and calculate speed from that. I won’t reproduce it

here, but if you’re interested, there’s some helpful information on Stack Overflow.

Browser Support

While the Network Information API is still in a draft state, it’s an active proposal, so

by the time of reading it may be better supported. You can find out its current status

on the API’s community group site.

138 Jump Start Responsive Web Design

https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
http://stackoverflow.com/questions/5529718/how-to-detect-internet-speed-in-javascript
http://wicg.github.io/netinfo/

User Preference

You have likely experienced cookies in your day-to-day web browsing. Cookies

are typically used to retain state such as preferences. They can be set or read by

the client or server and are transmitted within every HTTP request. This example

will read user preferences and display page elements accordingly.

Often the browser will write a cookie when a user submits a form or undertakes

some other action. For this example, we’ll write a setting manually:

window.addEventListener("load",function(event) {

document.cookie = "mature=no";

…

},false);

This determines if the user wants to see videos considered “mature” content.

Using this value, we can use the same technique for selectively rendering TV

shows.

To test, add the mature class to the end of the class list of a couple of the tvshow

sections, and add all-ages to the end of all the others. In the index.js loop that

renders the TV shows, read the cookie value and hide/show the appropriate

shows:

for (i = 0; i < tvShows.length; i++) {

tvShow = tvShows[i];

var mature = getCookie('mature');

if (mature == 'no' && tvShow.classList[2] !=

'mature') {

…

}

}

As all cookies are stored in the same property, you can use a regular expression to

find and read the particular cookie you want:

Responding to User Context 139

function getCookie(name) {

var regexp = new RegExp("(?:^" + name + "|;\s*"+ name +

")=(.*?)(?:;|$)", "g");

var result = regexp.exec(document.cookie);

return (result === null) ? null : result[1];

}

Ambient Light

Combining the Ambient Light Sensor API with time detection could be a great

way to adjust page or video brightness dependent on the time of day and the light

available to a viewer. On many mobile devices, this is now handled by the

operating system, but you could give it a boost or add similar functionality for

computer users.

Let’s make an example that changes the colors of the page based on the current

ambient luminosity (or the brightness of the surrounding area).

Replace the contents of the current index.js file with the following, which adds

a class to the page body depending on the level of ambient light—the luminosity

value:

window.addEventListener("devicelight", function (event) {

var luminosity = event.value;

if (luminosity <= 5) {

document.body.className = "darkness";

} else if (luminosity <= 50) {

document.body.className = "dim";

} else if (luminosity <= 1000) {

document.body.className = "bright";

Security Concerns

There have been security issues recently highlighted with the Ambient Light Sensor

API. I recommend you read the W3C specification to check its future.

140 Jump Start Responsive Web Design

https://www.w3.org/TR/ambient-light/
https://www.w3.org/TR/2016/WD-ambient-light-20160830/

}

});

Add these styles to your CSS file, for when a light is brightest:

.bright {

background-color: #fff;

color: #000;

}

This is how the page looks when this class is applied:

6-4. Setting high contrast in bright light

This styling inverts the current color scheme to black on white to make it higher

contrast and more readable in bright sunlight. If you have a modern device, you

might have noticed a similar thing happening to the screen.

Next, add styles for the dimmest light level:

Responding to User Context 141

.dim {

background-color: #6600b4;

color: #b5aaff;

}

And here’s how the page looks:

6-5. Setting low contrast in dim light

This makes the background and text easier to read in lower light situations.

Next, in a very dark situation, add a class that makes the contrast between text

and background even less:

.darkness {

background-color: #2d004f;

color: #b5aaff;

}

142 Jump Start Responsive Web Design

6-6. Setting low contrast for a dark setting

Rapid transitions between color schemes are disconcerting to users, so to make

this less harsh, add the following CSS to the body element that eases the

transitions between colors:

body {

-webkit-transition: all 0.5s ease-in-out;

-moz-transition: all 0.5s ease-in-out;

-o-transition: all 0.5s ease-in-out;

transition: all 0.5s ease-in-out;

}

Vibration

Another W3C innovation is the Vibration API, which provides access to a mobile

device’s vibration mechanism to provide tactile feedback. We could use this to

add a more immersive experience to video playback by adding vibration to a

soundtrack, but it would require a lot of work. There are other uses for this API

that are handy for accessibility. For example, it can be useful if a device vibrates

slightly when a button is tapped, letting the user know the action was detected.

Responding to User Context 143

https://www.w3.org/TR/vibration/

Device Orientation

We’ve already seen how to detect and react to device orientation with media

queries, but we could also react dynamically to device orientation. For example,

we could switch a video file to a format more suitable for a landscape or portrait

video.

If you want to get more experimental, what about controlling playback of a video

based on the orientation of a device? For example, if a user tilts their phone in

one direction, we could pause the video, and vice versa.

For this example, we’ll create a new, simplified version of the page that’s purely

for playing one video.

Here’s the HTML:

144 Jump Start Responsive Web Design

6-7. Chapter6/oreintation/index.html (excerpt)(excerpt)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width,

initial-scale=1.0, user-scalable=no">

<title>RWDFLix</title>

<link rel="stylesheet" type="text/css" media="all"

href="layout.css">

</head>

<body>

<header><h1>RWDFlix</h1></header>

<main>

<section class="showslisting">

<section class="tvshow">

<h3>Show 1</h3>

<video controls poster="../images/show1-medium.jpg"

preload="none" id="show1">

<source src="../videos/show1.mp4" type="video/mp4">

<source src="../videos/show1.ogv" type="video/ogg">

Your browser doesn’t support HTML5 video tag.

</video>

<p class="showdescription">Lorem ipsum dolor sit amet,

consectetur adipiscing elit.</p>

</section>

</section>

</main>

<footer>

I am a footer

</footer>

</body>

</html>

And the CSS is equally simplified:

Responding to User Context 145

6-8. Chapter6/orientation/layout.css (excerpt)(excerpt)

body {

background: black;

color: white;

font-family: ’Helvetica Neue’, Helvetica, Arial, sans-serif;

font-size: 1em;

}

section.showslisting {

width: 100%;

margin-bottom: 25px;

}

section.showslisting p {

line-height: 1.2em;

word-spacing: 0.2em;

}

section.tvshow {

width: 100%;

margin: 0 auto;

display: block;

}

video {

width: 100%;

height: auto;

}

.thumbnail {

width: 100%;

height: auto;

}

footer {

clear: both;

}

/* Media Queries */

146 Jump Start Responsive Web Design

/* Extra Small Devices and Phones */

@media only screen and (min-width: 480px) {

section.tvshow {

margin: 0 auto;

display: block;

}

}

/* Small Devices and Tablets */

@media only screen and (min-width: 768px) {

section.tvshow {

margin-right: 15px;

display: inline-block;

}

section.showslisting p {

line-height: 1.4em;

word-spacing: 0em;

}

}

/* Medium Devices and Desktops */

@media only screen and (min-width: 992px) {

section.tvshow {

margin-right: 15px;

display: inline-block;

}

.showdescription {

white-space: normal;

}

}

/* Large Devices, Wide Screens, TVs */

@media only screen and (min-width: 1800px) {

section.showslisting {

width: 100%;

Responding to User Context 147

margin-bottom: 25px;

}

section.tvshow {

margin-right: 15px;

display: inline-block;

}

}

This results in the following layout for one video:

6-9. The video playback layout

148 Jump Start Responsive Web Design

Now add a script element below the page footer, containing the following code.

This script initiates when the page loads, and accesses the video element,

listening to whether it’s playing:

<script>

(function () {

var video = document.getElementById("show1");

video.addEventListener("play", control_video, false);

})();

</script>

Add the control_video function, and assign the video clicked to a variable:

function control_video(e) {

var v = e.target;

}

Check if the device supports the orientation API and if so, listen for changes to

orientation. If it doesn’t, then warn the user:

if (window.DeviceOrientationEvent) {

window.addEventListener("deviceorientation", function (e) {

}, false);

} else {

alert("Sorry, your browser doesn't support Device

Orientation");

}

Finally, react to the changes in orientation, pausing the video if a user rotates

their phone to the right, and playing it again if they rotate to the left:

if ((e.gamma < -45) && (e.gamma > -90)) {

v.play();

Responding to User Context 149

}

if ((e.gamma > 45) && (e.gamma < 90)) {

v.pause();

}

Responding to All

In this chapter, we’ve seen hypothetical examples of how we can change the

contents of our pages to respond to the variety of sensors found in modern

devices. These are always evolving, and I encourage you to keep up to date on the

new APIs you can take advantage of in your designs to deliver tailored

experiences to users.

This brings us to the end of our journey with this book. Responsive design is

fundamentally about crafting pages that are usable by anyone, no matter what

their device or circumstances. Whether it be screen size, performance or other

factors, it’s our responsibility to ensure that the user’s experience is as good as it

can be.

You’re beginning your responsive adventure at a good time. There have never

been better features available and soon to arrive in the HTML and CSS

specifications—features for crafting experiences to suit the ever-changing

landscape of modern web design. Some of these features are in flux, and their

final forms undecided, but this also means you have the opportunity to test and

shape their future. Get involved, and help create the Web you want to see.

Getting Oriented

If you’re interested in learning more about the three-rotation axis that exist in the

Orientation API, I recommend reading “Using Device Orientation in HTML5”.

150 Jump Start Responsive Web Design

https://www.sitepoint.com/using-device-orientation-html5/
https://www.w3.org/participate/
https://www.w3.org/participate/

Responding to User Context 151

	Jump Start Responsive Web Design, 2nd Edition
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Chris Ward
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	The Meaning and Purpose of Responsive Web Design
	The Rise of Mobile
	History
	Schools of Thought Within Responsive Design
	Progressive Enhancement
	Graceful Degradation
	Mobile First
	Mobile First

	What Do You Need To Support?
	Computers
	Mobile Phones
	Mobile Browsing Stats

	Tablets
	Hybrid Devices
	Wearables
	TV
	Cars
	Game Consoles
	Print
	Books, Too

	Sample Application
	Introducing RWDFlix
	Computer Version
	Tablet Version
	Mobile Version
	TV Version

	Structuring a Page with HTML5
	Ready to Respond?

	The Building Blocks of Responsive Design
	Media Types
	Creating a Query
	Method Used in This Book
	Logical Queries with Only and Not
	Query Features
	aspect-ratio
	orientation
	color
	color-index
	monochrome
	resolution
	scan
	grid

	Streamlining the Example App
	Mobile First
	The Viewport Meta Element
	The Viewport

	Any Queries?

	Better Responsive Structures with Grid Systems
	Why 1180px?
	What Is a Grid?
	Creating Your Own Grid
	Using the Adjacent Sibling Selector
	Saving Some Legwork

	Flexbox
	CSS Grid Layout
	Browser Support for Grid Layout
	Removing Sizing Overrides
	How Many Rows?

	Making Grids Easier with Frameworks
	Bootstrap
	Installing Bootstrap

	Foundation
	Installing Foundation

	What About the Demo App?
	Wrap Up

	Responsive Text
	The History of Text
	Responsive Typographical Properties in CSS
	Fixed Sizing
	Pixels
	Points

	Relative Sizing
	Percent
	We’re Assuming a Base Font Size of 16px
	Em
	Rem
	Other Relative Sizes
	Browser Support

	Creating Readable Text
	Read On

	Responsive Images and Video
	Images
	Responsive Dimensions

	The Right Image for the Right Device
	srcset
	Some Homework

	The picture Element
	More Homework
	Supporting Older Browsers

	Responsive Video
	The video Element
	Using a Larger Image as a Poster
	Background Image
	Clickable Image
	A Note on JavaScript

	Get Visual

	Responding to User Context
	An API for Everything
	Based on Time
	Modifying the HTML

	Battery Level
	Security Concerns

	Geolocation
	Modifying the HTML

	Based on Network
	Browser Support

	User Preference
	Ambient Light
	Security Concerns

	Vibration
	Device Orientation
	Getting Oriented

	Responding to All

