

Jump Start Git, Second Edition
Copyright © 2020 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-35-6

Product Manager: Simon Mackie

Technical Editor: Craig Buckler

English Editor: Ralph Mason

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be

reproduced, stored in a retrieval system or transmitted in

any form or by any means, without the prior written

permission of the publisher, except in the case of brief

quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to

ensure the accuracy of the information herein. However,

the information contained in this book is sold without

warranty, either express or implied. Neither the authors

and SitePoint Pty. Ltd., nor its dealers or distributors will

be held liable for any damages to be caused either

directly or indirectly by the instructions contained in this

book, or by the software or hardware products described

herein.

Trademark Notice
Rather than indicating every occurrence of a

trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the

trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

Level 1, 110 Johnston St

Fitzroy VIC Australia 3065

Web: www.sitepoint.com

Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and

easy-to-understand content for web professionals. Visit

http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find

a stack of information on JavaScript, PHP, design, and

more.

About Shaumik Daityari
Shaumik is an optimist, but one who carries an umbrella.

He is currently working at American Express as a

business analyst. Co-founder of The Blog Bowl, he loves

writing, when he's not busy keeping the blue flag flying

high.

http://www.sitepoint.com/

Preface
Most organizations involved with software development

make use of version control. However, despite it being so

useful, developers often think of version control as a

separate skill, and only learn the bare minimum to get

by, or put off learning version control until absolutely

necessary. This is to miss out on some of the powerful

utilities that version control provides.

This book is about Git―a free, open-source version

control system. The aim of this book is to help beginners

get up and running with version control quickly, and

then to take a deeper dive into its mechanics if they so

desire.

Who Should Read This Book?
This book is suitable for anyone interested in managing

multiple revisions of code, data and documents. It's ideal

for beginners who plan to start working with Git, but it's

also useful for seasoned developers who are looking to

consolidate their understanding of Git.

Conventions Used

CODE SAMPLES

Code in this book is displayed using a fixed-width font,

like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back
at school.</p>

Where existing code is required for context, rather than

repeat all of it, ⋮ will be displayed:

function animate() {
 ⋮
new_variable = "Hello";
}

Some lines of code should be entered on one line, but

we’ve had to wrap them because of page constraints. An

➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

You’ll notice that we’ve used certain layout styles

throughout this book to signify different types of

information. Look out for the following items.

TIPS, NOTES, AND WARNINGS

Hey, You!
Tips provide helpful little pointers.

Ahem, Excuse Me ...
Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...
... pay attention to these important points.

Watch Out!
Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://github.com/spbooks/jsvuejs1 is the book’s code archive,

which contains code examples found in the book.

https://www.sitepoint.com/community/ are SitePoint’s forums,

for help on any tricky problems.

books@sitepoint.com is our email address, should you need to

contact us to report a problem, or for any other reason.

https://github.com/spbooks/jsvuejs1
https://www.sitepoint.com/community/

Chapter 1: Introduction

Chapter

Introduction
In my freshman year in college, I started work on my

first intranet application. The files in the main directory

of the partially functioning application looked something

like Figure 1-1.

Looking at the file names in this directory, you can see

that I used some very similar names, such as exam.php,

exam1.php and examfile.php. The purpose of that

naming convention was to create new versions of my

application without losing the old, working logic—in case

the new ideas failed! I assumed that, because I

understood what each of those files did, it should be fine

to have a bunch of similarly named files.

However, there were two flaws in that thinking. Firstly,

anyone else examining this code wouldn’t be able to

make sense of this mess. Secondly, after a few months,

even I was struggling to recall what each version of these

files was for. Clearly, I needed a better system for

managing the various versions of my files.

If I had this much trouble working on a small, personal

project, imagine how difficult it must have been for

larger software projects, with thousands of files and

contributors distributed all over the world! Developers

once used emails to coordinate changes among team

members. When they made changes to a project, they

would each create a “diff” file with all their changes and

email it to the lead developer, who would incorporate

them into the project if everything worked properly.

When you’re working on the same files as other

developers, keeping track of what you’ve changed and

trying to merge it with work done by your peers becomes

very difficult. It can result in a lot of confusion and time

wasting.

Imagine another situation, where you’re working on an

idea and your boss wants to see what you’ve already

completed. Ideally, you’d want to be able to do the

following:

stash away the changes and revert to the last stable state

show your boss the latest completed work

resume your work with the current state once that’s done

All of the situations I’ve described above give rise to the

need for what’s known as “version control”. So let’s find

out what that is.

Version Control
Version control (or revision control) is a system

that records changes to a file or a group of files and

directories over time, so that you can review or go back

to specific versions later. Over the course of this book, I’ll

demonstrate how this works. But first, let’s examine in

more detail what version control is.

Quite literally, version control means maintaining

versions of your work—perhaps most commonly in the

form of source code, though it can be used for other

kinds of work too. You may like to think of version

control as a tool that takes snapshots of your work across

time, creating checkpoints. You can return to those

checkpoints any time you want. Not only are the changes

recorded in these checkpoints, but also information

about who made the changes, when they made them, and

the reasons behind the changes.

I’ve already mentioned the first objective of version

control—to back up and restore. Version control

eliminates the need to create backup files like I was

doing in my college days (that is, endless duplicates with

different names). Version control also gives you the

ability to return to previous states of your work without

losing the current state.

Version Control Doesn’t Replace the Need for a Regular
Backup Solution
The word “backup” above, as noted, refers to the process of creating multiple
copies of the same file. Git removes the need for that. However, this is different
from regularly backing up your files to an external source—such as a portable
drive or cloud storage—to ensure you don’t lose anything following a disk
failure.

Next, version control lets you synchronize your work

with peers who are working on the same projects. In

other words, it enables you to collaborate with others

without the possibility of someone’s changes overwriting

someone else’s work accidentally.

Version control also tracks changes to a project and other

data associated with the changes. It makes the process of

debugging your code easy too, which we’ll explore in

some detail.

Conflicts in files can also be resolved through version

control—such as when multiple people have made

changes to a file that clash. A version control system

highlights the conflicts and provides an opportunity to

fix them.

Yet another feature of version control is that it enables

work on multiple features of a project at the same time.

This gives great scope for experimentation, trial and

error. Each feature can be developed independently of

the others, and can easily be removed if it doesn’t work

out.

Now that you’ve been introduced to the concept of

version control, let’s look at how we may already be using

version control in our daily lives.

Examples of Version Control in Daily
Life
You’ve probably visited the Wikipedia site at some point.

You may even have taken the opportunity to update its

content, too—as we’re all invited to do. When editing a

page, you may also have checked its history. That’s where

things get really interesting.

https://en.wikipedia.org/wiki/Main_Page

The history page shown in Figure 1-2 lists changes to that

page. It also records the time of the change, the user who

made it, and a message associated with the change. You

can examine the complete details of each edit, and even

revert back to an older version of the page. This is a good

example of a simple form of version control.

Google Docs provides another example of version control

that you might experience in daily life. If you check the

revision history of a file in Google Docs, shown the figure

above, you’ll notice that Google saves the state of your

file after every few changes. You can preview the status of

the document in any of those previous states—and

choose to revert back to it, if needed.

Version Control Systems: the
Options
There are two types of version control systems (VCS),

known as “centralized” and “distributed”.

Centralized systems have a copy of the project hosted

on a centralized server, to which everyone connects to in

order to make changes. Here, the “first come, first

served” principle is adopted: if you’re the first to submit

a change to a file, your code will be accepted.

In a distributed system, every developer has a copy of

the entire project. Developers can make changes to their

copy of the project without connecting to any centralized

server, and without affecting the copies of other

developers. Later, the changes can be synchronized

between the various copies.

In the earliest version control systems, files were tracked

only locally, and only one person could work on a file at a

time. Examples of these include Source Code Control

System (SCCS) and Revision Control System (RCS),

which were common in the 1970s and 1980s.

The next step forward was the introduction of client-

server version control systems, which enabled multiple

authors to work on the same file (although some still

worked on the first come, first served basis). Examples of

such systems include Concurrent Versions System (CVS)

and Subversion, which are still in use today.

Since around 2005, distributed systems have gained

widespread acceptance, with the emergence of systems

such as Git, Mercurial and Bazaar.

VCS Is Not CVS
Don’t confuse the abbreviations VCS (version control system) and CVS
(concurrent versions system). CVS is just one of the many kinds of VCS.

Back in my freshman year, version control systems were

available. However, in the example of my small project, I

didn’t use one, simply because I was a beginner and

didn’t know they existed. Many people first get

introduced to version control systems when they start

working with a team. Nowadays, most people get the first

taste of version control when dealing with open-source

projects.

Enter Git
This book is about Git, a distributed version control

system. Git tracks your project history, enabling you to

access any version of it back in time. It also allows

multiple people to work on the same project, helping

avoid confusion when more than one person tries to edit

the same file.

Git was created by Linus Torvalds (who is also known for

the Linux kernel), and Junio Hamano is its primary

developer. Git, as described on the Git website, is a

source code management (SCM) solution, but essentially

it’s just a type of version control system.

The primary objective behind Git was to implement and

design a version control system that was distributed,

reliable and fast. While working on Linux, Torvalds

needed a version control system to manage the Linux

codebase. BitKeeper was a distributed system at that

time, but Torvalds believed that, although BitKeeper was

a good option, being a commercial product made it

http://git-scm.com/
https://mercurial.selenic.com/
http://bazaar.canonical.com/en/

unsuitable for the development of an open-source project

like Linux.

Torvalds had three criteria for a version control system:

it had to be distributed, efficient and safe from

corruption. There was no open-source, distributed

version control system in the mid 2000s that could

satisfy all these conditions. Hence, Git was developed out

of necessity.

Git’s Philosophy
Torvalds once explained in a Google Tech Talk his reasons for creating Git. He
has very strong views on the subject of version control, and I suggest you go
through the talk once to understand the philosophy of Git. In this talk, Torvalds
explains that he came up with the name Git because he believes the silliest
names are our best creations. However, I recommend that you only watch the
talk after you’re comfortable with the basic Git operations, as it’s not a tutorial:
it’s aimed at users who have some knowledge of Git or other version control
systems.

ADVANTAGES OF DISTRIBUTED VERSION
CONTROL SYSTEMS

Torvalds insisted on a distributed system because of the

independence it affords to developers. With a distributed

system, you can work on your copy of the code without

having to worry about ongoing work on the same code by

others. What makes it even better is that any distributed

copy of the project can contain all the history of the

project. A distributed system also lets you work offline,

meaning you can make changes without having access to

the server that stores the central repository.

Another advantage of distributed systems is that you can

sync your repositories among yourselves, bypassing the

central location. Let’s say the access to the main server

goes down and you have to collaborate with a colleague.

You can share changes with your colleague and continue

to work on the project together, and then later push all

your changes to the location everyone has access to.

https://www.youtube.com/watch?v=4XpnKHJAok8

In a centralized system, anyone who makes a change

needs to be given access to the central location. In

contrast, in a distributed system, new developers can

make changes to their own repositories without being

granted write access, while more experienced

contributors can be given write access and the ability to

review other contributions before merging them into the

repository. Managing access is easier in distributed

systems.

Git and GitHub
Since its creation, Git has become immensely popular—

not only due to its own merits and the fact that Torvalds

created it, but also because of the popular code sharing

site GitHub.

People often confuse Git and GitHub, but they are quite

different things. GitHub provides services that are

related to Git. It’s a website that helps you manage Git-

controlled projects.

GitHub allows users to put their Git repositories on the

cloud, and to perform Git-based operations through a

web interface. It also provides desktop and mobile apps

that offer the same services. GitHub was launched a few

years after Git, and remains very popular among

enthusiasts of open source.

There are many other websites like GitHub, such as

Bitbucket and GitLab. GitHub and Bitbucket are cloud-

based solutions, but GitLab allows you to set up this

functionality on your own servers. Other, similar services

have come and gone, but these options have remained

popular over the last few years. We’ll explore these code

sharing websites in a later chapter, and discuss how you

can make use of them.

Conclusion

WHAT HAVE YOU LEARNED?

What is version control?

How do we unknowingly use version control in our lives?

What are the types of VCS?

What is Git? What are its capabilities?

WHAT’S NEXT?

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/

Now that we have a basic concept of what a version

control system does, let’s get our feet wet with Git. In the

next chapter, we’ll look at how to install Git and use it in

a project.

Chapter 2: Getting Started
with Git
The first step is to install Git. Git’s official website

provides detailed instructions on installing Git on your

local machine, depending on your operating system.

The easiest way to install Git is through a package

manager based on your operating system. Package

managers usually have older but more reliable versions

of Git.

If you’re using Linux, you can install Git through the terminal

using a package manager. For the popular Linux distro Ubuntu,

Git can be installed using apt-get:

 apt-get install git

In macOS, if you have Homebrew, you can install Git using the

command line through the following command:

 brew install git

If you’re on Windows, the official build of Git can be downloaded

from the Git website.

GUI Tools
For Windows and macOS, you can also install Git as a part of a GUI tool such
as GitHub for Desktop and Sourcetree. We’ll cover GUI tools in detail in
Chapter 9. However, for most parts of this book, we’ll stick to the command-line
interface to really understand how Git works.

If you’re using an operating system other than these

three, like Minix or HelenOS, or if you want to get the

latest development version of Git for testing and

development, you can install Git from its source. Grab a

tarball of the desired version of Git from GitHub, untar it

and check the README file for instructions on how to

install Git. However, I wouldn’t recommend following

http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://brew.sh/
http://git-scm.com/download/win
https://desktop.github.com/
https://www.sourcetreeapp.com/download/
http://www.minix3.org/
http://www.helenos.org/
https://github.com/git/git/releases

this process unless you know what you’re doing, as it can

lead to errors, and development versions may be

unstable.

The Git Workflow
Git doesn’t track all of the files stored on your computer.

You need to instruct Git to track certain files and

directories. This process is called initialization. The

parent directory containing your project—all the files and

directories to be tracked by Git—is called a repository.

This repository might contain many files and directories,

or even just a single file.

There are three basic operations performed by Git on

your project (shown in Figure 2-1 below): track, stage,

and commit.

Track. Once you’ve initialized your repository, you’ll need to add

files to your project. Any files you add are initially untracked by

Git. You need to specify that you want Git to track them. Git

monitors tracked files for changes and ignores untracked files.

Stage. After making the required changes to your files, you need

to stage them. Staging is a way of tagging certain (or all) changes

that you want to keep a record of.

Commit. The next step is to create a commit. A commit is like a

photograph that records the current state of your code. You can go

back to a certain commit at a later time, view the status of the

repository with respect to that commit, and check the changes that

were made in the commit. The commit records the changes in a

repository since the last commit. You can revert back to any

commit at any point of time. Each commit contains a commit

hash that uniquely identifies the commit, the author details, a

commit message, and the list of changes in that commit.

Once you’ve committed your files, you may wish to push

them to a remote location. A push refers to the process of

sending the changes you’ve made in your local repository

to a remote location. A remote location is a copy of your

repository stored on a remote server. (We’ll set up a

remote repository later in this chapter.)

Essentially, the flow chart in Figure 2-2 below illustrates

the steps we’ll follow in this chapter.

Baby Steps with Git: First
Commands

SET CONFIGURATION SETTINGS

Before we proceed with using Git in a project, let’s define

a few global settings:

git config --global user.name "Shaumik"
git config --global user.email
"sdaityari@gmail.com"
git config --global color.ui "auto"

The commands are fairly self-explanatory. We set the

default name and email to be associated with our

commits. We also set the color.ui to "auto" to enable

Git to color-code the output of Git commands on the

terminal. The --global setting allows these settings to

be applied to any other repository you work on locally.

If you don’t set the values for name and email, they’re

left empty. When you make a commit, it takes different

values depending on the OS or the GUI tool you use.

When you make a commit without setting these

parameters, Git will automatically set them based on the

username and hostname. For instance, the name is set to

the name of the user that’s logged in to the computer in

macOS, whereas in Linux, the name is set to be the

username of the active user account. In both cases, the

email is set as username@hostname.

If you want to check all the configuration settings for

your repository, you can run the following command:

git config --list

Also, if you want to edit any of your configuration

settings, you can do so by editing the ~.gitconfig file

in Linux and macOS, where ~ refers to your home

directory. In Windows, it’s located in your home

directory: C:\Users\<username>\.gitconfig.

CREATE A GIT PROJECT

Let’s first create a directory where we’ll store the files for

our project:

mkdir my_git_project
cd my_git_project

The first command creates a new directory, and the

second changes the active directory to the newly created

one. These two commands work on all operating systems

(Windows, macOS, and Linux).

So, my_git_project is the parent directory that will

contain all the files for this project. From now on, we’ll

refer to it as our project’s repository.

Now that we’re in the repository, we need to initiate Git

for that directory using the following command:

git init

Issuing Git Commands
Just like git init, all Git commands start with the keyword git, followed by
the command.

Git Autocomplete
When working in the terminal, developers often use the Tab key for
autocompletion. However, this doesn’t work on Git commands by default. You
can install an autocomplete script for Git using the following commands. Note
that this only works on Linux and macOS.

Download the autocomplete script and place it in your home
directory:

curl
https://raw.githubusercontent.com/git/git/ma
ster/
 contrib/completion/git-completion.bash -o
 ~/.git-completion.bash

Add the following lines to the file ~/.bash_profile:

if [-f ~/.git-completion.bash]; then
 . ~/.git-completion.bash
 fi

If you’re using Git Bash on Windows, autocompletion is preconfigured. If you’re
using Windows command prompt (cmd.exe), you’ll need to install Clink.

CREATE OUR FIRST COMMIT

Let’s look at the repository again. Notice the newly

created .git directory, the output of which is shown

below (line 2). All information related to Git is stored in

this repository. The .git directory, and its contents, are

normally hidden from view:

https://raw.githubusercontent.com/git/git/master/
http://mridgers.github.io/clink/

$ my_git_project shaumik$ git init
Initialized empty Git repository in
/Users/shaumik/test/my_git_project/.git/
$ my_git_project shaumik$ ls -al
total 0
drwxr-xr-x 3 shaumik staff 96 Mar 21 23:05 .
drwxr-xr-x 3 shaumik staff 96 Mar 21 23:05 ..
drwxr-xr-x 9 shaumik staff 288 Mar 21 23:05
.git

Don’t Edit .git
Never edit any files in the .git directory. It can corrupt the whole repository.
This book doesn’t discuss the internals of Git, and thus doesn’t include working
on this hidden .git directory.

Now that we’ve initialized Git, let’s add a few files to our

repository. On your computer, navigate to the

my_git_project directory and add three text files with

the following names: my_file, myfile2 and myfile3.

Place some content in each one, such as a simple

sentence.

Demonstration Only
The file names my_file, myfile2 and myfile3 are used for demonstration
purposes. They signify three different files and not different versions of the
same file.

After adding the files, let’s return to the terminal and run

the following command to see how Git reacts:

git status

You can see the output below:

$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will
be committed)

 my_file
 myfile2
 myfile3

nothing added to commit but untracked files
present (use "git add" to track)

Checking the Status
git status is perhaps the most-used Git command—as you’ll see over the
course of this book. In simple terms, this command shows the status of your
repository. It provides a lot of information, such as which files are untracked,
which are tracked and what their changes are, which is the current “branch”,
and what the status of the current branch is with respect to a “remote” (we’ll
discuss branches and remotes later). You should frequently check the status of
your repository.

In a Git repository, any file that’s added is either

“tracked” or “untracked”. A file is said to be tracked

when Git monitors the changes being made to that file,

whereas the changes to an untracked file are ignored by

Git and don’t form a part of any commits.

Checking the status of our repository, we can see that

three files are currently marked in red. They’re also

grouped as untracked. Git doesn’t track all files in a

repository. You can explicitly tell Git which files to track

and which to ignore.

In order to track these files, we run the following

command:

git add my_file myfile2 myfile3

As an alternative, you can simply run the following:

git add .

The . (period) is an alias for the current directory.

Running git add . tells Git to track the current

directory, as well as any files or subdirectories within the

current directory.

Beware of Adding Unwanted Files
Don’t make a habit of using git add ., as you may end up adding
unnecessary files to the repository. You should add only those files that are a
part of your package. Adding files like compiled files and configuration files just
increases the size of your repository. Configuration files may also contain
database passwords, which could lead to a security risk if committed to a
repository that’s open to the public.

Now that we’ve set our new files to be tracked by Git, let’s

check the status of the repository again:

$ git add my_file myfile2 myfile3
$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: my_file
 new file: myfile2
 new file: myfile3

We’re now ready to make a commit:

$ git commit -m "First Commit"
[master (root-commit) ed90340] First Commit
 3 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 my_file
 create mode 100644 myfile2
 create mode 100644 myfile3

The -m option specifies that you’re going to add a

message within the command. (The message is the text

in quotes after -m: “First Commit”.) Alternatively, you

can just run git commit, and a text editor will open up

and ask you to enter a commit message.

Make Your Commit Messages Meaningful!

A meaningful commit message is an essential part of

your commit. You can give a meaningless commit

message like “Commit X”, but in the future, it might be

difficult for someone else (or even you) to understand

why you created that commit.

Notice the string ed90340 shown in the code above

(second line). It’s the hash of the commit, or its identity.

A hash is a unique, identifying signature for each

commit, generated automatically by Git. If you’re

interested in how a commit hash is formed, you may

want to check out “The anatomy of a Git commit”. What’s

shown here is a short version of a considerably longer

string, which we’ll look at further below.

Further Commits with Git
The first commit in a Git repository is a little different

from subsequent commits. In subsequent commits, Git is

already tracking the files you’re working on (unless

you’re adding new files). So we’ll need another important

command, git diff, which shows you the changes in

the tracked files since the last commit.

Let’s make some changes to the files and see how Git

reacts. For demonstration purposes, I’ve added a line to

my_file, and some extra words to an existing line in

myfile2. Let’s check the status of the repository by

running the following command:

$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git restore <file>..." to discard changes
in working directory)
 modified: my_file
 modified: myfile2

As shown here, Git shows that certain changes have been

made to two files. We can also see exactly what was

changed in the files by running the following command:

$ git diff
diff --git a/my_file b/my_file
index e69de29..e32ce9e 100644
--- a/my_file
+++ b/my_file

https://blog.thoughtram.io/git/2014/11/18/the-anatomy-of-a-git-commit.html

@@ -0,0 +1 @@
+Sample line
diff --git a/myfile2 b/myfile2
index e69de29..d00491f 100644
--- a/myfile2
+++ b/myfile2
@@ -0,0 +1 @@
-Some more info
+Some more info! Changing this file too.

The diff command shows the changes that have been

made to the tracked files in the repository since the last

commit. In the output shown above, lines starting with a

+ sign (colored green) show what’s been added, and the

line starting with a - sign (colored red) shows what’s

been removed. (When you edit a line of code, the same

thing happens: the old line is shown in red with a - sign,

and the new version of the line is shown in green with a

+.)

If you want to check the changes in a single file, add the

file name after the diff command. For instance:

git diff my_file

Diff Only Shows Changes in Tracked Files
As mentioned earlier, Git tracks only the files that you ask it to. The git diff
command shows the changes only in tracked files.

After you’ve reviewed the changes you made, you need to

“stage” the changes to be committed:

git add my_file myfile2

Alternately, you can add all tracked files like so:

git add -u

You can go one step further and add only parts of the

changes to a file to the commit. This process is a bit

complex, though, and we’ll tackle it in Chapter 6,

“Correcting Errors While Working with Git”.

Now that you’ve staged the files, they’re ready to be

committed:

git commit -m "Made changes to two files"

Beware of Shortcuts
You can skip the adding (staging) of a modified file by postfixing -a to the git
commit, which performs the add operation. However, you should avoid doing
this, because it can lead to mistakes. Firstly, postfixing -a only adds tracked
files—so you’d miss any untracked files that you may have wanted in the
commit. Secondly, it may be that you’ve modified two files but want them to
appear in separate commits. A git commit -a would add both files to the
same commit.

Always Review Your Changes

I mentioned earlier that git status is perhaps the

most-used command. However, the most important

command is probably git diff. Never stage files for

commit before reviewing the changes you’ve made in

them. Also, stage files for commit individually after

carefully reviewing the changes that were made to them.

WHY GIT ADD AGAIN?

At this point, you may think “Why add tracked files

again?” Well, before you commit, Git needs you to

specify which files you want to commit. It may happen

that you’ve made changes to two files but only want to

commit one of those files.

The process is like sending a package. git add is

adding an item to the package. git commit is sealing

the package and writing a note on it. git push (which

I’ll explain shortly) is sending the package to the

recipient.

Commit History
Now that we have more than one commit, let’s explore a

new area of Git—the history of the project. The simplest

way of reviewing the history of a project is by running

git log, which shows the commits that we’ve made so

far:

$ git log
commit 870e4d76e6dc6539315992f16a20f47a49e2ea79
(HEAD -$ master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sat Mar 21 23:31:16 2020 +0530

 Made changes to two files

commit ed90340105b9511381d76706f8e5d4e7df3f6458
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sat Mar 21 23:16:28 2020 +0530

 First Commit

The history shows the list of commits, each with a unique

hash, an author, a timestamp and a commit message.

Previously in this chapter, we encountered a commit

hash that was truncated. Although the long, 40-character

commit hash uniquely identifies each commit, usually

five or six characters are enough to identify them in a

repository:

git show ed90340

The git show command lists information about a

commit. Let’s see how short we can go until Git fails to

identify the hash:

git show ed90340
git show ed9034
git show ed903
git show ed90
git show ed9

It’s only once we’re down to the first three characters

that Git gives us a fatal error:

ambiguous argument 'ed9': unknown revision or path
not in the working tree.

Although it only failed at three characters in our

repository with a very short history, it will probably need

to be longer in repositories with a considerably longer

history.

The .gitignore File
Although I’ve mentioned that Git only tracks files you

explicitly ask it to, it could happen that you ask it to track

some files by mistake. You need a way to hide certain

files, directories, or file extensions from Git that you

know you’ll never want it to track. This is exactly what a

.gitignore file does.

A .gitignore file is added to the root directory of the

repository, and it lists files you don’t want Git to track or

display as part of git status. You can add items to the

.gitignore file and commit them.

Unintentionally Tracking a File Listed in .gitignore
Although a file listed in .gitignore is not meant to be tracked, it’s possible
that you could accidentally tell Git to track a file that’s listed in there. In earlier
versions of Git (before Git 1.5.3.6), you won’t get any error message. This is
another reason you should avoid running git add ., as it may cause files to
be tracked by Git unintentionally.

Examples of files that you might want to add to

.gitignore include compiled files with extensions like

.exe and .pyc, local configuration files, macOS

.DS_Store files, Thumbs.db on Windows, directories

of node modules in Node.js, and build folders of Grunt or

gulp.js.

Let’s have a look at what a .gitignore file looks like:

configuration/
some_file.m
*.exe

https://github.com/git/git/blob/master/Documentation/RelNotes/1.5.3.6.txt#L39

The three lines in this sample file are used to tell Git to

ignore a whole repository and its contents (the

configuration directory), a single file some_file.m,

and all files with a .exe extension.

The code sample below shows the effect of a

.gitignore file that tells Git to ignore *.exe files that

have already been committed to the repository. I’ve

created a new file called somefile.exe in our project

directory, but Git is ignoring it. git status shows that

there is nothing to commit:

$ echo "some line" > somefile.exe
$ git status
On branch master

nothing to commit, working tree clean

Hiding .gitignore from Git
Although it’s advisable to add the .gitignore file to your repository, you can
even hide the .gitignore file from Git. Just add a line .gitignore to the
file and Git will ignore the .gitignore file. However, in such a situation, the
file will only reside in the local copy of the repository.

Nowadays, many .gitignore templates are available

online, depending on the framework you’re working on,

such as Rails. You may want to browse through this huge

collection of .gitignore files on GitHub. These

.gitignore templates serve as handy starting points

for new projects.

Set up Your .gitignore Early
Beginners often have a tendency to add a .gitignore file at the late stages
of a project. However, if a file is already committed and you add it to the
.gitignore file, it will continue to be committed in your repository and
tracked by Git. The only way out in this case is to explicitly untrack the file in
Git—after which Git will ignore the file. We’ll discuss how to untrack a tracked
file in Git in a later chapter.

Remote Repositories

https://github.com/github/gitignore/blob/master/Rails.gitignore
https://github.com/github/gitignore/

As we’ve seen so far, you can use Git on your local

machine to manage versions of your work. However,

because Git is a distributed version control system, many

copies of the same repository can exist. So rather than

just keep your repository locally, it’s common to store

another copy in a centralized location on a centralized

server (or in the cloud).

This also enables you to work in a team, as others can

access the repository from the centralized copy. Any such

copy of your repository can be linked to your repository

to enable synchronization. Such an external copy is

called a remote. A remote is simply a copy of your

repository. It can be on a remote server, on a peer’s

system, or even on a different location within your local

system. Interestingly, if you have access to your co-

worker’s repository (through SSH for instance), even that

can be added as a remote.

For demonstration purposes, let’s create such a copy on

GitHub.

GitHub Isn’t the Only Option

GitHub isn’t the only option for setting up a remote. A

remote may also be on your own server. However, using

cloud services like GitHub offers benefits like eliminating

the need to run a separate server. You could also create

remotes on GitLab or Bitbucket.

To set up a remote repository on GitHub, you first need

to create an account on GitHub, or log in to GitHub with

your credentials if you already have an account. After

login, click on the + arrow on the top right and select

New repository to create a new repository in the cloud,

shown in the figure below.

Choose a name for your repository. You can also choose

whether to display your repository publicly or to keep it

private.

Once the repository has been created, we have three

options: create a new repository from the command line

and push to GitHub; push the code from an existing

repository from the command line; or import code from

another GitHub repository. We’ll take the second option

here.

GitHub Offers Student Pricing
If you’re a student, you can apply for the GitHub Student Developer Pack to get
a free GitHub Pro account, in addition to a lot of other services—which lasts as
long as you’re a student.

Returning to your local repository, run the following

command to synchronize it with the remote repository:

git remote add origin
https://github.com/sdaityari/my_git_project.git
git push -u origin master

We first add a remote named origin to our repository,

which points to the GitHub location. Next, the push
command sends the commits from your local repository

to the cloud repository. The -u option links your

https://education.github.com/pack

repository to the remote for future reference. When you

add commits later, Git will show the status of your local

copy in relation to this remote repository. master is the

name of the branch that we want to synchronize with the

origin remote. We’ll discuss branches in detail in the

next chapter.

Conclusion

WHAT HAVE YOU LEARNED?

In this chapter, we covered the basics of Git:

the various ways to install Git on your system

the three basic operations of track, stage, and commit

the Git workflow of initialization, tracking, committing and

pushing a repository

starting a Git project from scratch

the history of a repository

the use of .gitignore

setting up a remote on GitHub and pushing your code to the cloud

WHAT’S NEXT?

In the next chapter, we’ll explore a few more Git

commands, focusing on the use of branches in Git.

You’ve encountered quite a few new things in this

chapter, especially if you’re new to version control. I

think you may want to call it a day. Get a coffee and enjoy

a well-deserved break!

Chapter 3: Branching in
Git
In Chapter 1, I talked about my one-time fear of trying

out new things in a project. What if I tried something

ambitious and it broke everything that was working

earlier? This problem is solved by the use of branches in

Git.

What Are Branches?
Creating a new branch in a project essentially means

creating a new copy of that project. You can experiment

with this copy without affecting the original. So if the

experiment fails, you can just abandon it and return to

the original—the master branch.

But if the experiment is successful, Git makes it easy to

incorporate the experimental elements into the master.

And if, at a later stage, you change your mind, you can

easily revert back to the state of the project before this

merge.

So a branch in Git is an independent path of

development. You can create new commits in a branch

while not affecting other branches. This ease of working

with branches is one of the best features of Git.

(Although other version control options like CVS had this

branching option, the experience of merging branches on

CVS was a very tedious one. If you’ve had experience

with branches in other version control systems, be

assured that working with branches in Git is quite

different.)

In Git, you find yourself in the master branch by

default. The name “master” doesn’t imply that it’s

https://en.wikipedia.org/wiki/Concurrent_Versions_System

superior in any way. It’s just the convention to call it

that.

Branch Conventions
Although you’re free to use a different branch as your base branch in Git,
people usually expect to find the latest, up-to-date code of a particular project
in the master branch.

You might argue that, with the ability to go back to any

commit, there’s no need for branches. However, imagine

a situation where you need to show your work to your

superior, while also working on a new, cool feature that’s

not a part of your completed work. As branching is used

to separate different ideas, it makes the code in your

repository easy to understand. Further, branching

enables you to keep only the important commits in the

master branch or the main branch.

Yet another use of branches is that they give you the

ability to work on multiple things at the same time,

without them interfering with each other. Let’s say you

submit feature 1 for review, but your supervisor

needs some time before reviewing it. Meanwhile, you

need to work on feature 2. In this scenario, branches

come into play. If you work on your new idea on a

separate branch, you can always switch back to your

earlier branch to return the repository to its previous

state, which doesn’t contain any code related to your

idea.

Further, imagine your team suddenly discovers a bug in

your project and you urgently need to fix it. A new

branch would have to be created for this fix and merged

with all existing branches once it’s fixed. You’ll learn

more about branch naming conventions in Chapter 5,

“Git Workflows”.

Let’s now start working with branches in Git. To see the

list of branches and the current branch you’re working

on, run the following command:

git branch

Cloning is the process of creating a local copy of a

repository from a different source. If you’ve cloned your

repository or set a remote, you can see the remote

branches too. Just postfix -a to the command above:

$ git branch
* master
$ git branch -a
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/another_feature
 remotes/origin/master
 remotes/origin/new_feature

As shown above, the branches that start with “remotes”

signify that they’re on a remote. In our case, we can see

the various branches that are present in the origin
remote.

Create a Branch
There are various ways of creating a branch in Git. To

create a new branch and stay in your current branch, run

the following:

git branch test_branch

Here, test_branch is the name of the created branch.

However, on running git branch, it seems that the

active branch is still the master branch. To change the

active branch, we can run the checkout command:

$ git checkout test_branch
$ git branch
git branch
 master
* test_branch

What Does checkout Do?
checkout is used for multiple purposes in Git. You’ll come across many such
examples over the course of this book. In this example, checkout enables
you to change the current branch of the repository, essentially “checking out” to
a new branch.

You can also combine the two commands above and

thereby create and checkout to a new branch in a single

command by postfixing -b to the checkout command:

$ git checkout -b new_test_branch
Switched to a new branch 'new_test_branch'
$ git branch
 master
* new_test_branch
 test_branch

The branches we’ve just created are based on the latest

commit of the current active branch—which in our case

is master. If you notice an unwanted change or error in

the latest commit and would like to explore an earlier

version of the repository, you can create a branch from

an older commit. To create a branch (say

old_commit_branch) based on an older commit—such

as cafb55d—you can run the following command:

$ git checkout -b old_commit_branch cafb55d
Switched to a new branch 'old_commit_branch'
$ git log --oneline
cafb55d (HEAD -> old_commit_branch) Merge commit
'5ef655a4caf8'
cc48fb3 Added lines 1 and 3 using add -p
5ef655a Fixed conflict from another_feature branch
96f7c5e Another change in the master branch
7534bc2 Some change in the master branch
49ed357 Added another feature
7e0eea2 (origin/new_feature) Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a
cooler interface to write commit messages
8dd76fc My first commit

The --oneline option shows a compact form of the Git

history, with one line for each commit.

To rename the current branch to renamed_branch, run

the following command:

git branch -m renamed_branch

Delete a Branch
To delete a branch, run the following command:

git branch -D new_test_branch

Don’t Delete Branches Unless You Have To
As there’s not really any downside to keeping branches, as a precaution I’d
suggest not deleting them unless the number of branches in the repository
becomes too large to be manageable.

The -D option used above deletes a branch even if it

hasn’t been synchronized with a remote branch. This

means that, if you have commits in your current branch

that haven’t been pushed yet, -D will still delete your

branch without providing any warning. To ensure you

don’t lose data, you can postfix -d as an alternative to -
D. -d only deletes a branch if it’s been synchronized with

a remote branch. Since our branches haven’t been synced

yet, this is what happens if we postfix -d:

$ git branch -d new_test_branch
The branch 'new_test_branch' is not fully merged.
If you are sure you want to delete it, run 'git
branch -D test_branch'.

As you can see, Git gives you a warning and aborts the

operation, as the data hasn’t been merged with a branch

yet.

BRANCHES AND HEAD

Now that we’ve had a chance to experiment with the

basics of branching, let’s spend a little time discussing

how branches work in Git, and also introduce an

important concept: HEAD.

As mentioned above, a branch is just a link between

different commits, or a pathway through the commits.

The HEAD of a branch points to the latest commit in the

branch. In other words, it refers to the tip of a branch.

We’ll refer to HEAD a lot in upcoming chapters.

A branch is essentially a pointer to a commit, which has a

parent commit, a grandparent commit, and so on. This

chain of commits forms the pathway I mentioned above.

How, then, do you link a branch and HEAD? Well, HEAD
and the tip of the current branch point to the same

commit. The following diagram illustrates this idea.

As shown in Figure 3-1, BRANCH_ONE initially is the

active branch and HEAD points to commit C. Commit A is

the base commit and doesn’t have any parent commit, so

the commits in BRANCH_ONE in reverse chronological

order (which also forms the pathway I’ve talked about)

are C → B → A. The commits in BRANCH_TWO are E → D

→ B → A. The HEAD points to the latest commit of the

active BRANCH_ONE, which is commit C. When we add a

commit, it’s added to the active branch. After the

commit, BRANCH_ONE points to F, and the branch

follows F → C → B → A, whereas BRANCH_TWO remains

the same. HEAD now points to commit F. Similarly, the

changes when we add yet another commit are

demonstrated in the figure.

Advanced Branching: Merging
Branches
As mentioned earlier, one of Git’s biggest advantages is

that, compared to Subversion, merging branches is

especially easy. For instance, it’s difficult to store

linkages between branches and the master branch (called

trunk) in Subversion. Working on a branch for a long

time makes it really difficult to go back and merge with

the trunk, as it requires the developer to figure out where

to merge. All of these issues are fixed in Git.

Let’s now look at how branching works in Git.

We’ll create two new branches—new_feature and

another_feature—and add a few dummy commits.

Checking the history in each branch shows us that the

branch another_feature is ahead by one commit, as

shown below:

$ git checkout another_feature
Switched to a new branch 'another_feature'
$ git log --oneline
49ed357 Added another feature
7e0eea2 Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a
cooler interface to write commit messages
8dd76fc My first commit
$ git checkout new_feature
Switched to a new branch 'new_feature'
$ git log --oneline
7e0eea2 Removed line
f87d1a5 Dummy change
f934591 - Changed two files - This looks like a

cooler interface to write commit messages
8dd76fc My first commit

This situation is illustrated in Figure 3-2. Each circle

represents a commit, and the branch name points to its

HEAD (the tip of the branch).

To merge new_feature with master, run the following

(after first making sure the master branch is active):

git checkout master
git merge new_feature

The result is illustrated in Figure 3-3.

To merge another_feature with new_feature, just

run the following (making sure that the branch

new_feature is active):

git checkout new_feature
git merge another_feature

The result is illustrated in Figure 3-4.

Watch Out for Loops

The diagram above shows that this merge has created a

loop in your project history across the two commits,

where the workflows diverged and converged,

respectively. While working individually or in small

teams, such loops might not be an issue. However, in a

larger team—where there might have been a lot of

commits since the time you diverged from the main

branch—such large loops make it difficult to navigate the

history and understand the changes. We’ll explore a way

of merging branches without creating loops using the

rebase command in Chapter 7, “Unlocking Git’s Full

Potential”.

This merge happened without any “conflicts”. The simple

reason for that is that no new commits had been added

to branch new_feature as compared to the branch

another_feature. Conflicts in Git happen when the

same file has been modified in non-common commits in

both branches. Git raises a conflict to make sure you

don’t lose any data.

We’ll discuss conflicts in detail in the next chapter. I

mentioned earlier that branches can be visualized by just

a simple pathway through commits. When we merge

branches and there are no conflicts, such as above, only

the branch pathway is changed and the HEAD of the

branch is updated. This is called the fast-forward type

of merge.

The alternate way of merging branches is the no-fast-

forward merge, by postfixing --no-ff to the merge
command. In this way, a new commit is created on the

base branch with the changes from the other branch.

You’re also asked to specify a commit message:

git checkout master
git merge --no-ff new_feature

In the example above, the former (merging

new_feature with master) was a fast-forward merge,

whereas the latter was a no fast-forward merge with a

merge commit.

While the fast-forward style of merges is default, it’s

generally a good idea to go for the no-fast-forward

method for merges into the master branch. In the long

run, a new commit that identifies a new feature merge

might be beneficial, as it logically separates the part of

the code that’s responsible for the new feature into a

commit.

Conclusion

WHAT HAVE YOU LEARNED?

In this chapter, we discussed the following

characteristics about branches in Git:

what branches are in Git

how to create new branches from existing branches

the process of merging branches, and how Git’s history is affected

WHAT’S NEXT?

I’ve already spoken about how Git is beneficial to

developers working in teams. The next chapter will look

at this in more detail, as well as specific Git actions and

commands that are frequently used while working in a

distributed team.

So far, we’ve looked at managing source code by starting

a Git project, working with branches, and pushing code

to a remote repository. In the following chapter, we’ll

focus on the features of Git that help you contribute in a

team.

We’ve seen how useful Git’s version control tools can be

for a sole coder. Git’s power is even more evident when it

comes to managing a project with many contributors. It

enables members of a team to work independently on a

project and stay in sync—even when they’re located far

apart from each other.

Chapter 4: Using Git in a
Team
Earlier, we performed a push operation to GitHub,

sending a copy of our local repository to the cloud. This

is the process you follow when the repository has been

created on your local system.

However, if you’re working on a team, it’s possible that

some work has already been done on the repository when

you join. In this scenario, you need to grab a copy of the

code from a central repository and work on it. The

process of grabbing this repository is called “cloning”.

Cloning is the process of creating a copy of a remote

repository. The copy (or clone) that you create has its

own project history, and any work done on it is

independent of the development on the remote.

The Source Is the origin

If you clone a repository, the source you clone it from is

designated as the origin remote by default.

Think of cloning as creating photocopies of a document.

If you overwrite something in the photocopy, the original

document remains untouched. Similarly, if you change

the original document after making the photocopy, the

photocopy retains the contents of the original document.

Until you merge the clone with the original remote, they

are separate entities.

To clone a remote repository, you need to know its

location. This location usually takes the form of a URL.

In GitHub, you can find the URL of a project on the

bottom-right corner of the home page of that project.

Let’s look at an example of a repository on my own

GitHub account, as shown in Figure 4-1.

To clone this project, we need to run the following

command:

git clone
https://github.com/sdaityari/my_git_project.git

When the repository is successfully cloned, a local

directory is created with the same name as the project

name (in our case, my_git_project), and all the files

under the repository are present in that directory. It’s not

necessary to keep the directory name; you can change it

any time. If you want to change the root directory name

of the repository while cloning it—let’s say to

my_project—you’ll need to provide the name to the

clone command:

git clone
https://github.com/sdaityari/my_git_project.git
my_project

You may also rename the directory after you’ve cloned

the repository.

If you wish, you can verify that the origin remote

points to the URL you just cloned:

$ git remote -v
origin
https://github.com/sdaityari/my_git_project.git
(fetch)
origin
https://github.com/sdaityari/my_git_project.git
(push)

The -v option is short for --verbose, and tells Git to

display the URLs of the remotes next to the names.

OPTIONAL: DIFFERENT PROTOCOLS
WHILE CLONING

In the command we used to clone the repository, you

may have noticed that the URL starts with https.

However, a situation may arise where this protocol won’t

be useful. Perhaps your organization doesn’t use cloud

services to host its projects, or a certain protocol may be

restricted by the firewall.

In these situations, it makes sense to know about Git’s

other protocols. The available options for any Git remote

are as follows:

local protocol

Git protocol

HTTP/HTTPS protocol

SSH protocol

The local protocol involves cloning in the same local

network. This protocol is helpful when all team members

have access to a shared file system. For instance, if you’re

working on a sensitive project that should remain in the

confines of a single server, you could have team members

remotely log in to the common system and continue their

development.

You can clone a repository like so:

git clone /Users/donny/my_git_project

The biggest disadvantage is the access this protocol

provides, which is limited to the local computer.

If you clone over the Git protocol, your URL starts with

git instead of https:

git://github.com/sdaityari/my_git_project.
git. This doesn’t provide any security. You only get

read-only access over the git protocol, and therefore

you can’t push changes.

With the https protocol, your connection is encrypted.

GitHub allows you to clone or pull code anonymously

over https if the repository is public. However, for

pushing any code, your username and password are

verified first. GitHub recommends using https over

ssh, because the https option always works, even if

you’re behind a firewall or a proxy.

If you’re using the https protocol, you need to type in

your credentials every time you push code. However, if

you push your code frequently, you can make Git

remember your credentials for a given amount of time

after you successfully enter them once. This is done with

the credential.helper setting. Run the following to

enable credential storage:

git config --global credential.helper cache

By default, Git stores your credentials for 15 minutes.

You may also set the timeout limit in seconds:

git config --global credential.helper "cache --
timeout=3600"

This command makes Git store your credentials for an

hour.

Alternative Credential Storage

An alternative but less secure way of saving the username and password
indefinitely would be to store them within the remote path itself. In such a case,
your remote would look like this:
https://sdaityari:password@github.com/sdaityari/my_git_pro
ject.git.

The ssh protocol, on the other hand, authenticates your

requests using public key authentication. You establish a

connection with the remote server over ssh first, and

then you request the resource. To set up authentication

using ssh, you need to generate your public/private key

pair.

In Linux or macOS, the following command generates a

key pair:

ssh-keygen -t rsa -C "sdaityari@gmail.com"

In Windows, you need either PuTTY or Git Bash to

generate the key. GitHub provides detailed instructions

on the process of generating the key pair on Windows.

Git GUI Tools Can Generate Keys for You
If you use a Git GUI desktop client, the process of generating a key pair and
linking it with your GitHub account is done automatically by the client. We’ll
review clients in Chapter 9.

Your public key is stored in the file

~/.ssh/id_rsa.pub. You can view it using the cat
command:

cat ~/.ssh/id_rsa.pub

The cat command prints the contents of a file in the

terminal. ~ stands for the home directory of the current

active user. For instance, if your username is donny, ~
points to /Users/donny/ on macOS and

/home/donny on Linux.

https://help.github.com/articles/generating-ssh-keys/#platform-windows

You need to add the contents of the public key to your

GitHub SSH settings in order to establish ssh
connections to GitHub, as shown in Figure 4-2.

Contributing to the Remote: Git Push
Revisited
Earlier in this book, we created a repository in the cloud

and pushed our local code to it. Once you’ve made

changes to a repository, they need to be pushed to the

remote if the central repository is to reflect them. git
push is a simple command that does the trick:

git push

We’ll now explore push a little further. There are various

ways to push code to a remote.

A git push simply pushes the code in the current

branch to the origin remote branch of the same name.

https://github.com/settings/ssh

A branch is created if the branch with the same name as

the current local branch doesn’t exist on the origin.

git push remote_name

This command pushes the code in the current branch to

the remote_name remote branch. A branch is created

on the remote if the branch with the same name as the

current local branch doesn’t exist on the remote_name
remote.

git push remote_name branch_name

This command pushes the code on the branch_name
branch (irrespective of your current branch) to the

remote branch of the same name. If branch_name
doesn’t exist on the remote, it’s created. If branch_name
doesn’t exist on the local repository, an error is shown.

git push remote_name local_branch:remote_branch

This command pushes the local_branch from the

local repository to the remote_branch of the remote

repository. Although it involves typing a longer

command, I would always advise that you use this syntax

for pushing your code, as it avoids mistakes.

Figure 4-3 gives a rough idea of how the states of the

master and origin/master look before and after a

push operation.

You Can Delete Branches Using git push
You can modify the syntax listed above to delete a branch on the remote:

git push remote_name :remote_branch

In this command, you’re essentially sending an empty branch to the
remote_branch branch of remote_name, which empties the
remote_branch, or in other words deletes it on the remote. You should
therefore be careful while attempting this operation.

Keeping Yourself Updated with the
Remote: Git Pull
Now that we’ve looked at how to push the changes to the

remote, let’s explore the situation where others are

working on the same project and you need to update

your local repository with the changes other contributors

have made.

The ideal way to update your local repository with the

commits others have made to the remote is, firstly, by

downloading the new data, and then by merging it with

the appropriate branches.

To download the changes that have appeared in the

remote, we run the following command:

git fetch remote_name

This updates our local branches from the remote

remote_name. (We can skip the name of the remote by

running just git fetch, and the command will update

the branches of the local repository from the remote

origin.)

When you clone a repository, local versions of its

branches are also maintained. The fetch command

updates these local versions with the latest commits from

the remote.

Following a fetch, to update your local branch you need

to merge it with the appropriate branch from the remote.

For instance, if you’re planning to update the local

master branch with the remote’s master branch, run the

following command:

git merge origin/master

This is basically merging the branch origin/master
with your current active branch. Following the fetch,

your origin/master is updated with the latest

commits of the branch on the remote. You’ve therefore

succeeded in updating a local branch with the latest

commits from a remote branch.

To understand what’s going on, let’s explore further with

the help of a diagram.

Alternatively, a shorter way of updating the local branch

by downloading and merging a remote branch is by using

pull. The git pull command is essentially a git
fetch followed by a git merge. To update the current

active branch through pull, run the following:

git pull origin master

Pulls Are Fast-forward by Default
Just as with merging, you can specify whether or not a pull should be a fast-
forward. It is by default, but this can be overridden with the --no-ff postfix.

As with git push, it’s possible to specify different local

and remote branches for git pull too:

git pull

A git pull simply downloads the code from the

master branch of the origin remote branch. It then

merges the code with the current active branch.

git pull remote_name

The command above first downloads the code from the

master branch of the remote_name remote branch. It

then merges the code with the current active branch.

git pull remote_name branch_name

The command above first downloads the code from the

branch_name branch of the remote_name remote

branch. It then merges the code with the current active

branch.

git pull remote_name local_branch:remote_branch

This command first downloads the code from the

remote_branch branch of the remote_name remote

branch. It then merges the code with the local_branch
in the local repository.

To help visualize the process of a git pull, the

following diagram shows the status of the local

repository before and after a pull.

Here Be Conflicts!
A fetch-merge or pull may result in a conflict. Git raises a conflict when a
change is made to similar lines in the same file in both branches that you’re
trying to merge. In such a case, you’ll need to resolve the conflicts before
completing the merge or pull. We’ll discuss conflicts later in this chapter.

Dealing with a Rejected Git Push
Now that you have the knowledge of both sending and

receiving updates in your local repository, let’s look at a

special situation. It involves pushing new code to a

remote branch that’s been updated since your last

synchronization. In this case, your push would be

rejected—with the message that it’s “non-fast-forward”.

This simply means that, since changes were made to both

the remote and your local copy, Git is not able to

determine how to merge them.

In such a situation, you last synced the master branch

from origin (hence referred to as origin/master)

when it was at commit B (as named in the diagram

below). You’ve proceeded with two commits, D and E.

Since your last sync, a new commit C has been added to

origin/master. Git doesn’t merge both these

workflows, as they’ve taken different pathways.

Therefore, you should first pull from origin/master
and merge it with master, resolving any conflicts that

appear. This would make commit C appear in your

master branch. Git will then be able to accept the push.

Rebase?
In this example, we demonstrate a pull --rebase in Figure 4-6 rather than
just a pull. For now, just ignore this, as I’ll explain rebase in Chapter 7,
“Unlocking Git’s Full Potential”.

Conflicts
Let’s now address conflicts—the topic perhaps most

dreaded by people working with Git.

Conflicts can occur when you’re trying to merge two

branches or to perform a pull. However, as a pull

operation essentially involves merging, we’ll address

conflicts only during a merge. If you encounter a conflict

during a pull, the process of resolving it remains the

same.

A conflict arises when your current branch and the

branch to be merged have diverged, and there are

commits in your current branch that aren’t present in the

other branch, and vice versa. Git isn’t able to determine

which changes to keep, so it raises a conflict to ask the

user to review the changes. The last common commit

between the two branches—which is also the point where

they diverged—is called the base commit.

When Git merges the two branches, it looks at the

changes in each branch since the base commit. When

there are unambiguous differences—like changes to

different files, and sometimes different parts of the same

file—the changes are applied. However, if there are

changes to the same parts of the same file, and Git can’t

determine which changes to keep, it raises a conflict.

To understand conflicts properly, let’s try to create an

example conflict ourselves. We’ll create a reference

branch named base_branch. Let’s also create a sample

program in Python—sample.py—the contents of which

are shown below:

CONSTANT = 5

def add_constant(number):
 return CONSTANT + number

It’s a simple program that adds a constant to a provided

number. Now imagine a scenario where you make a

branch, conflict_branch, where you change the value

of CONSTANT to 7. And suppose a friend has worked on

the same line numbers of the same file on the branch

friend_branch, and changed the CONSTANT to 9. We

can visualize this with Figure 4-7.

Now, let’s see what happens when we try to merge the

friend_branch with our conflict_branch:

$ git merge friend_branch
Auto-merging sample.py
CONFLICT (content): Merge conflict in sample.py
Automatic merge failed; fix conflicts and then
commit the result.

Git shows a message that the automatic merge failed,

and that there are conflicts in sample.py that need to

be resolved.

That doesn’t sound so great! Let’s do a git status to

see what’s wrong:

$ git status
On branch conflict_branch

You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

Unmerged paths:
 (use "git add <file>..." to mark resolution)
 both modified: sample.py

no changes added to commit (use "git add" and/or
"git commit -a")

Git shows that both files have been modified, and that we

need to make a commit after fixing the conflicts.

Naturally, this isn’t a fast-forward commit, as Git has

failed to automatically resolve the merge. A new commit

will be created once you fix the conflicts and commit

your changes.

Note that a conflict arises only when Git is unable to

determine which lines to keep. To make sure no data is

lost, you’re asked which lines should be kept.

Look at the contents of the file now. Since you initiated

the merge, Git has modified the file to show you the

changes in the two versions of the same file:

<<<<<<< HEAD
CONSTANT = 7
=======
CONSTANT = 9
>>>>>>> friend_branch

def add_constant(number):
 return CONSTANT + number

The lines between <<<<<<< HEAD and =======
contain your version of the part of the file, whereas the

lines between ======= and >>>>>>> friend_branch
contain the part of the file that’s present in the

friend_branch. You should review these lines and

decide which lines to keep. You may need to take up the

issue with your team before you decide which version to

keep. In our case, let’s keep the change we made in the

branch friend_branch. In this case, the conflict is

solved by keeping one set of changes. However, in a real-

life situation, you may need to combine the two sets of

changes as well.

Here are the contents of the edited file before we commit

changes:

CONSTANT = 9

def add_constant(number):
 return CONSTANT + number

Multiple Conflicts
In our simple example, there was just one conflict in a single file. If there are
conflicts in multiple files, they’ll appear when you run git status. You need
to edit them individually to check which version to keep. If there are multiple
conflicts in the same file, you should search for the word HEAD or <<<<<
(multiple “less than” signs together are rarely used in your source code) to find
out the instances within a file where conflicts have arisen, and then work on
them individually.

After you’ve resolved the conflicts, you should stage the

changed files for commit. In our case, there’s only a

single file:

git add sample.py

You should then proceed to making a commit, as shown

in the line of code below:

git commit -m "Concluded merge with friend_branch"

Aborting a Merge with Conflicts
After initiating a merge that’s resulted in conflicts, if you’re overwhelmed and
want to go back to the pre-merge state, you can do so by aborting the merge:

$ git merge --abort
 $ git status
 On branch master

 nothing to commit, working tree clean

Conclusion
With this, we come to the end of another fairly lengthy

chapter. Let’s briefly review the things we’ve covered.

WHAT HAVE YOU LEARNED?

In this chapter, we covered how to:

clone from a remote repository

create, update, merge and delete branches

keep a local repository updated

send the changes from a local repository to a remote

manage conflicts during merges

We also looked at general workflows while working with

organizations.

WHAT’S NEXT?

In the next chapter, we’ll discuss Git workflows—a set of

guidelines to follow when using Git in an organization.

Chapter 5: Git Workflows
So far, we’ve covered the basics of Git and how to use

them as part of a team. But teams differ in the way they

utilize Git in their projects. A Git workflow is a set of

guidelines that a team should follow to manage a project.

In this chapter, we’ll explore the most commonly used

Git workflows. A workflow generally provides guidelines

on the following items:

the architecture of the project

how contributions are made to the project

how the work of others is merged into the project

Git’s flexibility allows you to set up diverse guidelines for

your project. This can potentially lead to a large number

of workflows. How do you ensure that team members

follow these guidelines? It may be a good idea to follow a

specific, well-defined workflow.

As workflows are described in this chapter, remember

that they represent broad guidelines for using Git in your

project, and that developers often make minor changes

to these guidelines for their convenience. When you’re

assessing a workflow, make sure you ask the following

questions:

How difficult is it for a new team member to get started?

How much effort goes into reverting the status of the repository

after an unwanted change?

Does the workflow scale up well to your team size growth

projections?

As each workflow is described, the discussion will be

structured around these items.

The Centralized Workflow

FEATURES

While Git is a distributed version control system, it’s still

possible to implement a centralized workflow, inspired

by centralized version control systems like Subversion. A

centralized workflow is the simplest of Git workflows,

in which just a single branch (typically the master
branch) is used for all operations. It’s called a

“centralized” workflow because a single copy of the

repository is treated as the main copy, into which every

developer syncs their changes. The centralized workflow

is also called the “trunk” workflow, as subversion’s

master branch is called trunk. For this workflow to

work seamlessly, you need to give every team member

access to your master branch. The central repository

can be on a local server at a location every developer can

access, or it can be hosted on a central platform like

GitHub or Bitbucket.

NEW TEAM MEMBER ORIENTATION

If you’re a new team member, you start by cloning the

central repository. All you need to do is make changes to

your master branch and push it to the central

repository. If someone has updated the master since

you last updated your local branch, you’re prompted to

merge the changes first and then push them.

PROS AND CONS

The biggest advantage of this workflow is its simplicity.

The centralized workflow doesn’t use the branching

feature of Git. Beginners often find the branching feature

of Git to be the most difficult to understand, so the

simplicity of this workflow works best for beginners.

Developers who are familiar with Subversion and new to

Git also find this workflow very intuitive. It’s also ideal

for smaller teams that require minimal code review

before a merge. If you’re managing a personal project,

the centralized workflow is an intuitive choice as well.

On the other hand, the centralized workflow gets tedious

with an increase in team size. Managing changes in code

is a challenge if you have multiple people working on the

same branch at the same time.

Finally, giving all team members access to the master
branch may not be a good idea in a large team. A single

error, if introduced in the codebase, can corrupt the

whole repository. No one can really make changes to the

codebase until it’s fixed. Therefore, a more robust

workflow is needed as your team grows in size.

WHO SHOULD USE THE CENTRALIZED
WORKFLOW

The simplicity of the centralized workflow makes it

perfect for two types of users. If you’re new to Git and

your team is exploring the use of version control in your

projects, you should start with the centralized workflow.

Secondly, if you use Git to manage a personal project, the

centralized workflow is ideal. For instance, if you’re a

student who manages academic assignments, or an

author managing your texts, the centralized workflow fits

into your needs perfectly.

The Feature-branch Workflow

FEATURES

Because the centralized workflow doesn’t utilize the

branching features of Git, the next logical step up from

that is to introduce branches for specific changes in your

codebase. This results in what’s known as the “feature-

branch” workflow. The feature-branch workflow

follows the concept of feature development in separate

branches, without affecting the master branch. You can

either merge or rebase the feature branch into the

master, as shown above (we'll cover rebase in detail

later in the section "Rebase" in Chapter 7).

NEW TEAM MEMBER ORIENTATION

You must maintain a repository at a central location in

the feature-branch workflow, with read access to the

master branch to all developers. A new developer must

first clone the master branch and create a new local

branch for every feature they start. While the definition

of a feature differs from project to project, it’s a good

idea to logically separate each “feature” before starting

development on it. When a feature is ready, a developer

should request the core developers to pull changes from

this feature branch to the master of the core. This

initiates the code review, which concludes with the

merge of the feature into the master.

The separation of feature development from the

codebase allows for a detailed code review process before

merging into the main codebase. This allows the core

developers to comment on proposed changes in a review

and to request further action before merging them into

the main codebase. Code reviews are interactive and easy

if you’re using a cloud-based solution to host your central

repository, allowing feature-rich discussions before

merging the code into the main repository.

PROS AND CONS

Interestingly, a consequence of this workflow is that a

developer must never directly commit to the local

master branch. When their feature is accepted into the

core repository, they should pull changes from the core

master to the local master to keep it up to date.

The departure from the centralized workflow makes it

easy for developers to work on multiple features, while

keeping the core codebase operational. At the same time,

any critical bug fixes are directly committed to the

master branch, and pulled into the feature branches

being worked on.

As the core developers have a final say before a merge

into the main codebase, you can selectively give write

access to your master branch, thus making the process

secure. An open-source project must follow at least a

feature-branch workflow to ensure code reviews happen

before code merges from contributors. Finally, this

workflow gives you more control over your code, and

therefore solves the issues of scaling up.

WHO SHOULD USE THE FEATURE-
BRANCH WORKFLOW

The feature-branch workflow provides a key benefit over

centralized workflows: the ability to logically manage

multiple changes and multiple contributors. If you

initially followed the centralized workflow because your

team was small, you may need to switch to the feature-

branch workflow as your team grows. The target of every

team project following the centralized workflow should

be to eventually migrate to the feature-branch workflow.

Gitflow Workflow

FEATURES

While the feature-branch workflow works well for any

project, adding specific roles for different types of

branches can further tighten up your development cycle.

The Gitflow workflow was initially tested and

popularized by Vincent Driessen at nvie.com. The core

Git concepts involved in the Gitflow workflow remain the

same as the feature-branch workflow.

https://nvie.com/posts/a-successful-git-branching-model/

As mentioned, the Gitflow workflow works as an

extension of the feature-branch workflow. A primary

issue with the feature-branch workflow is the loose

definition of the term “feature”: it could potentially be

interpreted differently depending on the developer,

culture, or project. Further, there was no well-defined

provision for other tasks such as regular maintenance

and bug fixes. The Gitflow workflow essentially solves

this by defining many types of branches and their

functions.

There are two core branches in the Gitflow workflow—

the master and develop branches. The develop
branch serves as the latest development version of the

software, while the master branch contains only the last

stable release.

If you want to work on a new feature, you create a

feature branch from the develop branch. Once you’ve

finished working on your feature, you request a merge to

the develop branch. As a developer, you’re essentially

never directly involved with the master branch, treating

the develop branch as a pseudo master.

In addition to a feature branch, the Gitflow workflow

also defines a release branch. All the planned changes,

based on your roadmap for what should feature in the

next release cycle, go into the release branch. A

release branch is created from the develop branch.

When all the changes for a release are done, it’s merged

with the master with a relevant tag attached to it. Only

the core developers get to work on the release branch

by choosing which merges should go into it.

Finally, the next type of branch in the Gitflow workflow

is the hotfix branch. Any critical bug that’s identified

needs to be fixed immediately, so a hotfix branch is

created from the master branch to solve the bug. Once

it’s solved, the hotfix branch is merged with the

master and develop branches to ensure the changes

are reflected in both of these.

NEW TEAM MEMBER ORIENTATION

Because of the concepts involved, the Gitflow workflow is

certainly more complex than the feature-branch

workflow. Even so, getting started is arguably not very

difficult. A developer working on just a single feature

only needs to be concerned with the develop branch

and a corresponding feature branch. Once the

developer’s role in the project grows, they may be

introduced to new tasks and given further

responsibilities.

PROS AND CONS

The Gitflow workflow shares the same advantages as the

feature-branch workflow, with the added clarity of

handling various scenarios in the software development

cycle. Even if you’re encouraged to adopt this workflow

from the start, you may consider moving to it from the

feature-branch workflow once your project has matured

a bit.

WHO SHOULD USE THE GITFLOW
WORKFLOW

The Gitflow workflow allows a team to manage a number

of scenarios effectively. As the Gitflow workflow is an

extension of the feature-branch workflow, the transition

is easy to handle. Imagine that you have a project with a

good mix of new and experienced developers. The end

product also has a significant number of users, who may

be using multiple versions of it. Such a project demands

the use of the Gitflow workflow to effectively handle any

situation that may come up. Popular open-source

projects often use the Gitflow workflow.

Forking Workflow

FEATURES

The forking workflow is an implementation of the

feature-branch workflow—in the cloud. It introduces an

extra layer between the central repository of the

organization and the local repository of a developer—

known as a “fork”.

A fork is a developer’s personal copy of the central

repository within the cloud. When you use a cloud-based

Git solution, a developer clones their own fork from the

cloud. Any changes they make on the local repository are

pushed to this fork. To merge the code into the main

repository, the developer creates a pull request from the

fork to the main repository. This pull request initiates a

code review, which the administrators of the repository

assess before merging into the main repository.

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests

NEW TEAM MEMBER ORIENTATION

A new member first creates a fork of the main repository

on the cloud, and then clones this fork to a local

machine. Changes are made to a new feature branch and

pushed to the developer’s fork on the cloud. Next, the

developer creates a pull request from a feature branch of

the fork to a corresponding branch in the main

repository. This initiates a review and conversation with

the core developers to get the changes merged into the

codebase.

The origin remote of the local repository typically

points to the fork, and the upstream remote points to

the central repository.

PROS AND CONS

Code management and review through pull requests is

much easier when it’s done on the cloud with the help of

the web GUI of cloud hosts. Multiple developers can also

get involved in the review process through a pull request.

At the same time, it may be overwhelming for a new

member to work around Git’s features and related cloud

concepts towards the beginning of their project tenure.

WHO SHOULD USE THE FORKING
WORKFLOW

Anyone using the cloud for their Git repositories should

implement the forking workflow! This workflow serves as

an additional layer to any other workflow. Thus, it allows

you to incorporate features of other workflows without

any issues.

If your project is open source, you shouldn’t have any

issue with hosting the code on the cloud. However, if you

don’t want the code of your project to be publicly

available, you can use private repositories on the cloud.

Further, if your code is highly sensitive and you can’t

afford to have it on a public cloud, you can try the

enterprise solutions of GitHub or Bitbucket, which allow

you to host your code on your own servers.

Conclusion
Now that we’ve discussed various workflows, you may

wonder which is right for you. As mentioned earlier, a

workflow is supposed to serve as a set of guidelines that

you follow when managing your code with Git.

Therefore, you don’t really need to be tied to a specific

workflow to use Git. For instance, you may follow the

Gitflow workflow but never use a release branch.

WHAT HAVE YOU LEARNED?

In this chapter, we covered:

what workflows are

the centralized workflow

the feature-branch workflow

the Gitflow workflow

the forking workflow

WHAT’S NEXT?

In the next chapter, we’ll explore common mistakes in

Git. First, we’ll focus on amending errors while working

with Git. Then we’ll move on to debugging in Git with

two useful commands—blame and bisect.

https://github.com/enterprise
https://confluence.atlassian.com/bitbucketserver/using-bitbucket-server-in-the-enterprise-776640933.html

Chapter 6: Correcting
Errors While Working with
Git
In the last few chapters, we’ve built a good foundation in

Git basics. We’ve gone through the basic Git commands,

followed by some more advanced processes that help you

contribute to an organization. Up to this point, we

haven’t discussed how to fix mistakes you might make

while working with Git.

Alexander Pope once said “To err is human”—and it’s

only human to commit mistakes during the Git workflow.

Git makes it possible to correct mistakes at each stage of

a project—which is yet another reason why it’s so popular

with developers.

In this chapter, we’ll first look at how you can correct

your own mistakes. Then we’ll look at how to weed out

bugs introduced at various points into a repository either

by you or by others.

Amending Errors in the Git Workflow
With Git, it’s fairly easy to undo changes you’ve made. In

this section, we’ll look at three examples: undoing a stage

operation; undoing a commit, by reverting back to an

older commit; and undoing a push, by rewriting the

history of a remote repository.

UNDO GIT ADD

The git add command either tells Git to track an

untracked file, or to stage the changes in a tracked file for

a commit.

If you’ve just asked Git to track a new file that you’ve

created but not yet committed—let’s call it

mistake_file—you can undo the operation by running

the following command:

git rm --cached mistake_file

Here, rm stands for remove (just like the regular terminal

command rm). When we postfix --cached, we ask Git

to untrack the file, but let it remain in the file system.

Why Can’t I Just Delete the File?
If we simply delete the file, Git will show that a tracked file has been deleted—a
change that needs to be staged and committed to appear in the history.

You can check the status of the repository to confirm that

the file is untracked again:

$ echo "something" >mistake_file
$ git add mistake_file
$ git status
On branch master

Changes to be committed:
 (use "git restore --staged <file>..." to
unstage)
 new file: mistake_file

$ git rm --cached mistake_file
rm 'mistake_file'
$ git status
On branch master

Untracked files:
 (use "git add <file>..." to include in what will
be committed)
 mistake_file

nothing added to commit but untracked files
present (use "git add" to track)

The command git rm --cached can also be used to

remove a file from the repository. Once a file has been

removed, you need to commit the changes for them to

take effect.

Forced Removal
If you run just git rm without the --cached option, it will lead to an error.
The other option that can be postfixed with git rm is -f for forced removal.
The -f option untracks the file and then removes it from your local system
altogether. Therefore, you should be careful when you’re removing tracked files
if you use this option. All the same, there is way to backtrack from rm -f too.
Even if you commit after using rm -f on a file, you can still get the file back by
reverting to an old commit. We’ll discuss the process of reset and reverting to
an old commit shortly.

Let’s say you make changes to a tracked file (myfile2),

and then run git add to stage it for commit. Then you

realize you made a mistake before committing it. You can

run the following command to unstage the changes:

$ git status
On branch master

Changes to be committed:
 (use "git restore --staged <file>..." to
unstage)
 modified: myfile2

$ git reset HEAD myfile2
Unstaged changes after reset:
M myfile2
$ git status
On branch master

Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git restore <file>..." to discard changes
in working directory)
 modified: myfile2

no changes added to commit (use "git add" and/or
"git commit -a")

This command resets a file to the state where the HEAD,

or the last commit, points to. This is the same as

“unstaging” the changes in a file.

Once you’ve unstaged the changes in a file, you can undo

the changes you made in the file as well, reverting it back

to the state during the last commit. This is where the

following command comes in:

$ git checkout myfile2
Updated 1 path from the index
$ git status
On branch master
 (use "git push" to publish your local commits)
nothing to commit, working tree clean

We’ve seen the checkout command used previously

during the process of branching. It’s also used to restore

any unstaged changes in a file, as seen above.

What Does checkout Really Do?
Basically, checkout updates the file(s) in the current status of the repository
to an earlier version.

When we were changing branches, checkout changed the status of files to a
different branch. In this case, checkout restores the file to its version at the
time of the last commit in the branch.

UNDO GIT COMMIT

If you’ve already committed your changes and then

realize your mistake, there’s a way to undo that too. Let’s

make an unnecessary commit and try to revert back to

the original. Run the following command to see Git do

some magic:

$ git reset --soft HEAD~1
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git restore --staged <file>..." to
unstage)
 modified: tests.py

The --soft option undoes a commit, but it lets the

changes you made in that commit remain staged for you

to review. HEAD~1 means that you want to go back one

commit from where your current HEAD points (which is

the last commit).

What’s with HEAD~1?
We encountered HEAD earlier, and we know that it points to the last commit in
the current branch. I’ve added ~ to HEAD in the example above. This refers to
the parent of the last commit in the current branch. You can also use ^. Using
either ~ or ^ refers to the parent of the last commit in the current branch, while
~~ and ^^ both refer to the grandparent of the last commit in the current
branch. You can also add numbers to move back a specific number of commits
in the hierarchy. However, adding numbers after either ~ or ^ can mean
different things:

~2 goes up two levels in the hierarchy of commits, via the first

parent if a commit has more than one parent.

^2 refers to the second parent, where a commit has more than one

parent (which could be the result of a merge).

You can also combine these postfixes. For instance, HEAD~3^2 refers to the
second parent of the great-grandparent commit, which you reached through
the first parent and grandparent.

The second option here is postfixing the --hard option

to permanently undo commits. It’s generally advised that

you avoid using the --hard option—unless you’re

absolutely sure you want to do away with the commits.

A third option of reset is --mixed, which is also the

default option. In this option, the commit is reverted,

and the changes are unstaged.

The process of committing involves three steps: making

changes in a file, staging it for a commit, and performing

a commit operation. The --soft option takes us back to

just before the commit, when the changes are staged. The

--mixed option takes us back to just before the staging

of the files, where the files have just been changed. The -
-hard option takes us to a state even before you changed

the files.

There’s yet another Git command that could help you in

case you’ve committed changes by mistake. This is the

revert command. The reset command changes the

history of the project, but revert undoes the changes

made by the faulty commit by creating a new commit

that reverses the changes. Figure 5-1 shows the

difference between revert and reset.

The following code shows how to go back one commit

using revert. You can also modify the commit message

for the commit that reverses the changes of the

unwanted commits:

$ git revert HEAD~1
[master 623a519] Revert "Update data.csv"
 1 file changed, 6 insertions(+), 6 deletions(-)
$ git log --oneline
623a519 Revert "Update data.csv"
25313e5 Added new CSV file
c76ee85 Update data.csv
0d0d493 Added csv data

You can change the commit message of the last commit

by running the following command:

$ git commit --amend -m "New Message"
[master 8a15b20] New Message
 Date: Sun Mar 22 00:48:43 2020 +0530
 1 file changed, 6 insertions(+), 6 deletions(-)
$ git log --oneline
8a15b20 New Message
25313e5 Added new CSV file
c76ee85 Update data.csv
0d0d493 Added csv data
083e7ee Added yet another test

The --amend -m option changes the commit message of

the last commit. Notice that the hash changes too,

effectively rewriting the history.

UNDO GIT PUSH

In case you’ve also pushed your changes to a remote, it’s

possible to revert changes in the push too.

The simplest way is to go for a revert and push the new

commit that undoes the changes:

git revert HEAD~1
git push origin master

However, if you also want the other commit(s) to vanish

from the remote repository, you first need to go for a

reset command—deleting the unwanted commit—and

then push the changes to the remote. If you perform a

normal git push, the push will be rejected, because the

origin HEAD is at a more advanced position than your

local branch. Therefore, you need to force the change

with a postfix—-f—which forces the push on the remote

origin:

git reset --hard HEAD~2
git push -f origin master

Use -f with Caution
Postfixing -f is a dangerous move, as it rewrites the remote without confirming
it. Make sure you double-check your local changes before going for an -f
push.

Debugging Tools
The scenarios we’ve discussed so far help you to undo

changes in Git. They’ve dealt with mistakes you’ve

committed in the near past and want to correct. Now

we’ll look at dealing with bugs introduced by you or

others in the past. This will involve exploring tools in Git

that help in the process of debugging. These tools are

required when you’re working on a relatively large

codebase with a large number of contributors.

You may or may not know the location of the bug. If you

know which file or set of files is the source of the bug,

you can debug with git blame. If you don’t know the

source of the bug, you can debug with git bisect. If

you’ve written unit tests, you can also automate the

process of debugging. So let’s explore the different ways

of debugging your code in Git.

GIT BLAME

Running the git blame command on a file gives you

detailed information about each line in the file. git
blame lists the commits that introduced changes in a

file, along with basic information about the commit, like

the commit hash, author and date.

git blame is usually used when you know which file is

causing a bug. Let’s see how it works:

$ git blame my_file
^8dd76fc (Shaumik 2019-05-06 15:28:03 +0530 1)
This is some information!
f934591c (Shaumik 2019-05-06 15:31:00 +0530 2)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 3)
Adding Line 1.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 4)
f934591c (Shaumik 2019-05-06 15:31:00 +0530 5)
Changing the content of this file.
7534bc23 (Shaumik 2019-05-15 03:16:48 +0530 6)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 7)
Adding Line 2.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 8)
7534bc23 (Shaumik 2019-05-15 03:16:48 +0530 9)
This change is in the master branch!
96f7c5e6 (Shaumik 2019-05-15 03:17:18 +0530 10)
Another line in the master branch.
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 11)
cc48fb3c (Shaumik 2019-06-11 22:38:21 +0530 12)
Adding Line 3.
b1175163 (Shaumik 2019-05-10 00:44:48 +0530 13)
b1175163 (Shaumik 2019-05-10 00:44:48 +0530 14)
Adding yet another line after sum.py

As you can see in the code above, the command git
blame displays each line of the file. These lines are

prepended with information in the following order: the

hash of the commit that added the line, and the commit

author, date, time and time zone.

In this scenario, as you already know where the faulty

code is, you can just display the details of the required

commit to find out more about the bug that was created.

Let’s assume it was commit f934591c that introduced

the bug. You should therefore run the following:

$ git show f934591c
commit f934591cd1c04e4009dfa76a9684dda73cb30260
Author: Shaumik <sdaityari@gmail.com>
Date: Tue May 6 15:31:00 2019 +0530

 - Changed two files
 - This looks like a cooler interface to write
commit messages

diff --git a/my_file b/my_file
index 362eab3..0a0bd57 100644
— a/my_file
+++ b/my_file
@@ -1 +1,3 @@
 This is some information!
+
+I am changing the content of this file.
diff --git a/myfile2 b/myfile2
index d4a2d15..ec4dcc2 100644
— a/myfile2
+++ b/myfile2
@@ -1 +1 @@
-This is another file!
+This is another file! Changing this file too.

The git show commands shows the author of the

commit, the date of the commit and the changes that

constitutes the commit. Once you’ve figured out what

caused the error, you can go ahead and fix it in your

repository and then commit the changes.

Normally, though, you’ll most likely have no idea what

caused the bug. So we need to explore some more

debugging tools.

GIT BISECT

There’s probably no better way to search for a bug than

with bisect. Even if you have a thousand commits to

check, bisect can help you do it in just a few steps.

Let’s assume you have no idea what’s causing an error.

However, you do know that, at a certain point in time—

after a particular commit—the bug wasn’t present in your

code. Git’s bisect helps you quickly traverse between

these stages to identify the commit that introduced the

bug. bisect essentially performs a binary search

through these commits.

To start the process, you select a “good” commit from the

history, where you know the bug wasn’t present, and a

“bad” commit (which is usually the latest commit). Git

then changes the state of your repository to an

intermediate commit and asks you if the bug is present

there. You search for the bug and assign that commit as

“good” or “bad”. This process continues until Git finds

the faulty commit. Since a binary search algorithm is

used, the number of steps required is a logarithmic value

of the number of commits in between the initial “good”

and “bad” commits.

An example will help explain how git bisect works.

Let’s create a file in our repository—sum.py—containing

a function that adds two numbers in Python. The

contents of the file are as follows:

#sum.py
def add_two_numbers(a, b):
 '''
 Function to add two numbers
 '''
 addition = a + b
 return addition

if __name__ == '__main__':
 a = 5
 b = 7
 print(add_two_numbers(a, b))

I’ve intentionally added the second block of code to print

the response of the function to two dummy values. We

can run the program with the following:

python sum.py

After adding a few more commits, let’s change the file

sum.py to introduce an error:

#sum.py
def add_two_numbers(a, b):
 '''
 Function to add two numbers
 '''
 addition = 0 + b
 return addition

if __name__ == '__main__':
 a = 5
 b = 7
 print(add_two_numbers(a, b))

Running the program now, we can see that the result is

not 12, but 7. Let’s now demonstrate the use of git
bisect. To decide the good and bad commits, we need

to have a look at the commit history:

$ git log --oneline
083e7ee Added yet another test
49a6bec Added more tests
5199b4e ERROR COMMIT: Introduced error in sum.py
b00caea Added tests.py
b117516 Dummy Commit after adding sum.py
7d1b1ec Added sum.py

As is evident from the history, the latest commit

083e7ee (at the top) is “bad”, whereas the commit two

positions before we introduced the bug—7d1b1ec—is

“good”. To better identify the bug, I’ve mentioned in the

commit message which commit introduced the error. We

must now undertake the following steps to find out the

bug:

start the Git bisect wizard

select a good commit

select a bad commit

assign commits as good or bad as the wizard takes you through the

commits

end the Git bisect wizard

Let’s go ahead and start the Git bisect wizard:

git bisect start

This takes Git into a binary search mode. Next, we need

to tell Git the last known commit where the bug was

absent, which in our case is 7d1b1ec:

git bisect good 7d1b1ec

Now assign the latest commit as the bad one:

$ git bisect bad 083e7ee
Bisecting: 2 revisions left to test after this
(roughly 1 step)
[b00caea53381979ec1732d919d6f76e3baaf80fc] Added
tests.py

Why is git bisect So Fast?
Notice that, in the code above, the bisect wizard tells you that there are two
revisions left for us to perform in this process until it ends. Because bisect
essentially performs a binary search, at each step it tries to cut the number of
revisions to check by half. In our case, there are six commits to check, which
will take about two steps. But 100 commits would require roughly seven steps,
and 1000 commits would require about ten steps.

To combine the last three commands (start, good, and

bad) into one, you may instead start the wizard with the

following command:

git bisect start 083e7ee 7d1b1ec

As soon as you assign the good and bad commits, git
bisect starts its work and takes the state of your

repository to an intermediate commit. At this point,

you’re shown the commit hash and commit message, and

you’re asked whether or not the bug is present in that

commit.

Learn More About Each Commit
If you want to know more about a commit during the time the bisect wizard is
running, you can run git show for the commit.

In our situation, we just run the file sum.py to find out if

the bug is present. For the commit b00caea, we see that

the output is 12. So the bug is absent, and we mark it as

good:

git bisect good

In the next step, we’re asked whether commit 49a6bec
is good. We check the commit by running sum.py again

and assign it as bad:

git bisect bad

Once we’re done with this, Git shows us the faulty

commit as 5199b4e, which is also evident from the

commit message I added when I introduced the error:

$ git bisect bad
Bisecting: 0 revisions left to test after this
(roughly 0 steps)
[5199b4e10ba04b63ed1e76118259913123fbf72d] ERROR
COMMIT: Introduced error in sum.py

Once you’ve found your faulty commit, you can exit the

wizard by running the following:

git bisect reset

In this case, the use of git bisect was overkill and not

necessary (as we knew the source of the bug already).

However, in real life there are often bugs that are

difficult to trace back to a file, but the bug is visible only

in the way your code functions. For instance, you have a

complex algorithm to find out the popularity of a person

in social media and you find out that the results aren’t

right. In such cases, you employ the bisect tool to find

out which commit first introduced the error to rectify it.

AUTOMATED BISECT WITH UNIT TESTS

We’ve just seen how bisect helps you find the commit

that introduced a bug. However, this process is tedious,

as you need to check for the bug at every single step of

the wizard.

The easiest way to automate the process is to write unit

tests. You can also write custom scripts that test the

required functionalities. In our case, we’ll write a custom

file—test_sum.py—that tests the functionality of the

function in sum.py. This file is just for demonstrating

the functionality of bisect. (You don’t need to

understand the code here. To learn more about testing in

Python, you can read about Python’s unittest
module.)

Exit Codes in Custom Shell Scripts
If you create a custom shell script to perform your tests, make sure it has
custom exit codes, in addition to printing messages on the terminal about the
status of the tests. In general, the 0 exit code is considered a success,
whereas everything else is a failure.

#test_sum.py
import unittest
from sum import add_two_numbers

class TestsForAddFunction(unittest.TestCase):

 def test_zeros(self):
 result = add_two_numbers(0, 0)
 self.assertEqual(0, result)

 def test_both_positive(self):
 result = add_two_numbers(5, 7)
 self.assertEqual(12, result)

 def test_both_negative(self):
 result = add_two_numbers(-5, -7)
 self.assertEqual(-12, result)

 def test_one_negative(self):
 result = add_two_numbers(5, -7)
 self.assertEqual(-2, result)

if __name__ == '__main__':
 unittest.main()

https://docs.python.org/3/library/unittest.html

Running the file test_sum.py runs the tests specified

in it:

python test_sum.py

Running it on our current code shows errors.

Let’s start the bisect process again:

git bisect start 083e7ee 7d1b1ec

We next inform Git about the command that runs the

tests:

git bisect run python test_sum.py

If you have a custom command to run your tests, replace

python test_sum.py with your command.

On informing Git about the command that tests our

code, the wizard runs it against the remaining commits

and figures out which commit introduced the error.

Once the bug has been identified, reset the wizard:

git bisect reset

Beware of Using Old Test Files
If you’re using a testing script for the process of running bisect, be aware that
when Git is testing an old commit, it’s also checking against the old version of
the testing script.

You can instead provide your new test to the command by copying it outside
the repository and modifying the test command. Even when old commits are
being tested, your latest test files will be used for the testing process.

Once you’ve found out which commit introduced the

error, you can look carefully into it to see the faulty code.

Once you identify that, you can fix it and commit it to the

repository.

Conclusion

WHAT HAVE YOU LEARNED?

In this chapter, we looked at how Git lets you undo

mistakes:

undo git add

undo git commit

undo git push

We’ve also looked at two debugging tools, which help you

find bugs in your Git workflow:

blame

bisect

WHAT’S NEXT?

In the next chapter, we’ll look at a list of useful

commands that help you use Git to its fullest.

Chapter 7: Unlocking Git’s
Full Potential
So far in this book, we’ve covered the fundamentals of

Git and some of its advanced commands. In this chapter,

we’ll look at more of these advanced commands.

Advanced Use of log
We saw earlier that you can view the history of your

project in Git using the log command. However, in busy

repositories that handle hundreds to thousands of

commits each day, a long list of commits isn’t going to be

useful unless you know how to navigate through them.

The manual entry for the log command shows the

different options that can be postfixed to this command

to get a desired output. We’ll look at a few tweaks to the

log command, which could prove useful in such

situations.

Since our dummy project doesn’t have a considerable

number of commits, we’re going to use the open-source

repository of an e-learning management system—ATutor

—to explore the different capabilities of the log
command.

SHORT VERSION

In general, the log command shows a list of commits in

the active branch, each with the commit hash, author,

date and commit message. Depending on your screen

size and text size of the output, you get around five to ten

commit details in a screen. Each commit occupies four to

five lines on the screen, or even more if the size of the

commit message is large:

http://git-scm.com/docs/git-log
https://github.com/sdaityari/my_git_project
https://github.com/atutor/atutor/

commit 8a15b207acabf8abdd1750be48f1d748d51fb857
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

 New Message

In case you want to have a quick glance at the list of

commits, you can format the output to show only the

commit hashes and single-line messages, using the --
oneline option:

git log --oneline

A single commit is displayed on each line, and thus many

more commits fit onto the screen at once:

8a15b20 New Message
cc251c6 Updates analytics account
31fb3d7 Addes 301 header to redirects
af519cf Created a more general function to check
referrer

BRANCHES AND HISTORY

The log command can also be used to view the workflow

and commits in branches other than the current active

branch. If you want to view the commits in all branches,

just postfix --all to the command:

$ git log --all
commit 8a15b207acabf8abdd1750be48f1d748d51fb857
(HEAD -> master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

 New Message

commit d04ec3fa6e136d37ae16459ff8bde3ba8f0924a7
(origin/another_feature)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Feb 9 01:24:48 2020 +0530

 Commit Message

commit 25313e5016bea8b3ae470230b343c9ae1ebccc87
(origin/master, origin/HEAD)
Author: Shaumik Daityari

<sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

 Added new CSV file

commit c76ee85387b5dcaf82ac676d15ccc952c927528b
Author: Shaumik Daityari
<sdaityari@users.noreply.github.com>
Date: Sun Sep 2 02:51:40 2018 +0530

 Update data.csv

This doesn’t look very appealing, as you have no idea

which commit came from which branch. You can add the

--decorate option to view which branch each commit

belongs to. It also shows the remote branches. Note that

I’ve used --oneline to accommodate more commits:

$ git log --all --decorate --oneline
8a15b20 New Message
d04ec3f (origin/another_feature) Commit Message
25313e5 (origin/master, origin/HEAD) Added new CSV
file
c76ee85 Update data.csv
0d0d493 Added csv data
083e7ee Added yet another test
49a6bec Added more tests
5199b4e ERROR COMMIT: Introduced error in sum.py

The --graph option shows you the commit history, with

a graphical representation interconnecting the links

between commits of different branches (if any).

Combining it with --all shows you how the different

branches in your repository have progressed:

$ git log --all --decorate --oneline --graph
* 8a15b20 New Message
* 25313e5 (origin/master, origin/HEAD) Added new
CSV file
* c76ee85 Update data.csv
* 0d0d493 Added csv data
* 083e7ee Added yet another test
* 49a6bec Added more tests
* 5199b4e ERROR COMMIT: Introduced error in sum.py
* b00caea Added tests.py
* b117516 Dummy Commit after adding sum.py
* 7d1b1ec Added sum.py
* b198692 Cleaned junk
* 7ac171f Made some change to myfile2

* cafb55d Merge commit '5ef655a4caf8'
|\
| * 5ef655a Fixed conflict from another_feature
branch
* | cc48fb3 Added lines 1 and 3 using add -p
* | 96f7c5e Another change in the master branch
* | 7534bc2 Some change in the master branch
| | * d04ec3f (origin/another_feature) Commit
Message
| |/
| * 49ed357 Added another feature
|/
* 7e0eea2 (origin/new_feature) Removed line
* f87d1a5 Dummy change
* f934591 - Changed two files - This looks like a
cooler interface to write commit messages
* 8dd76fc My first commit

To understand this concept better, let’s take a look at the

output again. 8dd76fc is the first commit of this

repository, which appears at the bottom of the output. As

you traverse upwards from the bottom of the figure,

notice that commit 49ed357 diverges from the master

branch into a new branch, another_feature.

Following the path of another_feature shows us that

commit 5ef655a is the last commit in the branch,

before it merges back with master at commit cafb55d.

FILTER COMMITS

When you view the history, you’re shown all the commits

in the history’s branch. However, if you wish to view only

a few of the latest commits, postfix -n, followed by the

number of commits you want to see:

git log -n 2

Alternatively, you can use the following command as

well, which serves as a shortcut for the previous

command:

$ git log -2
commit 8a15b207acabf8abdd1750be48f1d748d51fb857
(HEAD -> master)
Author: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 22 00:48:43 2020 +0530

 New Message

commit 25313e5016bea8b3ae470230b343c9ae1ebccc87
(origin/master, origin/HEAD)
Author: Shaumik Daityari
<sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

 Added new CSV file

You can also view the commits in a specified time range.

This can be achieved by postfixing --after and --
before to the log command:

$ git log --after='2019-3-1' --before='2020-3-1'
commit 25313e5016bea8b3ae470230b343c9ae1ebccc87
(origin/master, origin/HEAD)
Author: Shaumik Daityari
<sdaityari@users.noreply.github.com>
Date: Tue Oct 8 21:09:00 2019 +0530

 Added new CSV file

--after and --before can be replaced by --since
and --until. For instance, the following pairs of

commands will produce the same results:

git log --after='2019-3-1'
git log --since='2019-3-1'

git log --before='2020-3-1'
git log --until='2020-3-1'

git log --after='2019-3-1' --before='2020-6-1'
git log --since='2019-3-1' --until='2020-6-1'

You Must Specify a Range
The specified dates have to signify a date range, as it doesn’t make sense for
Git to search for a commit at a point in time. If you want to find the commits on
a particular day, you need to specify the whole day in the range.

You can also use date references such as “Yesterday” or

“1 week ago”, as explained by Alex Peattie on his blog.

TRACE CHANGES IN A SINGLE FILE

http://alexpeattie.com/blog/working-with-dates-in-git/

If you want to check the commits that resulted in

changes in a single file, you can use the --follow
option:

$ git log --oneline --follow tests.py
083e7ee Added yet another test
49a6bec Added more tests
b00caea Added tests.py

Tracing the changes in a file may be useful while

debugging, especially if you want to see if anyone has

changed a particular file since a certain time. It also

helps you to check if parts of a file were removed in

previous commits.

How Is Tracing Different from git blame?

We used the blame command earlier to get more

information about each line in a file, and which commit

it’s associated with. blame enables you to check only the

current contents of a file. The log --follow
command, on the other hand, lists the changes the file

has gone through since Git started tracking the file.

Therefore, any part of the file that was removed in an

earlier commit will show up on the output of log --
follow, but not on blame.

TRACK YOUR PEERS

The shortlog is a command that shows the authors

who’ve contributed to the repository, their commits and

commit messages. You can use this command if you’re

interested in knowing the contributions of different

developers.

The output of this command is sorted by name, and you

can postfix -n to sort it by the number of commits:

$ git shortlog
git shortlog
Shaumik (18):

 My first commit
 - Changed two files - This looks like a
cooler interface to write commit messages
 Dummy change
 Removed line
 Added another feature
 Some change in the master branch
 Another change in the master branch
 Fixed conflict from another_feature branch
 Added lines 1 and 3 using add -p

Shaumik Daityari (4):
 Added csv data
 Update data.csv
 Added new CSV file
 New Message

Notice that there are two different authors with the same

name, as the second set of commits was created on

GitHub.

You can also view the commits by a single author by

using the --author option:

git log --author='Shaumik'

You only need to type just enough of the name for Git to

identify the author. If there are two authors matching the

string you’ve provided, both their commits will be

displayed. If there are two authors with the same name

committing to the same repository, Git differentiates

them through other details—such as their email address,

or the system the commit was generated from.

SEARCH IN COMMIT MESSAGES

Imagine a situation where you’d like to know when a

certain feature was introduced. Searching for a commit

through its commit message would be useful. Git enables

searching in the commit messages by using the --grep
option. For instance, if you want to search for the word

“redirect” in your commit history, you should use the

following command:

$ git log --oneline --grep='test'
083e7ee Added yet another test
49a6bec Added more tests
b00caea Added tests.py

In the search term, you can also use regular expressions

to search in commit messages. This would be useful in a

situation where, for example, you’d like to search for all

commits that refer to a certain feature name.

The Importance of Meaningful Commit Messages

When I introduced commits in this book, I mentioned

the importance of writing meaningful commit messages,

even though it’s not mandatory. Imagine how difficult it

would be to search through commits if your commit

messages weren’t meaningful!

You can also use regular expressions while using the

grep command.

Using the grep Terminal Command
You can also use the terminal command grep (not to be confused with Git’s
grep option!) to search commit messages. The command for that is:

git log --oneline | grep 'redirect'

The pipe (|) passes on the output of the command git log --oneline to
the second part, which searches for the word “redirect” in it.

The terminal grep command works on Linux and macOS, but has no native
command substitute in Windows, although there’s a Findstr command that
performs a similar task. You can, however, install third-party utilities like Cygwin
and UnxUtils, which enable the use of the grep command on Windows.

Tagging in Git
You’ve most likely noticed that software updates

normally come with a version number. For instance, as

of March 2020, the version number of popular screen

recording software ScreenFlow is 9.0.0, which was

released in November of 2019.

https://www.geeksforgeeks.org/regular-expression-grep/
https://technet.microsoft.com/en-us/library/bb490907.aspx?f=255&MSPPError=-2147217396
http://www.cygwin.com/
http://unxutils.sourceforge.net/

Git allows you to associate these version numbers with

specific milestone commits in your repositories, by

attaching labels to these commits. The labels are called

tags. Let’s again visit the ATutor repository to check its

use of tags.

Tagging can be used to easily find any commit that’s

important to a developer. Tags can also be used to mark

a breakthrough after debugging, or a milestone in

development. They can also be used to mark changes

being made without creating an extra branch. Tags

provide an easy way to go back in branch history if

something didn’t work out right.

To list the tags in alphabetical order, run git tag,

which results in the following output:

$ git tag
Atutor_1.4.1
atutor_1_3_1
atutor_1_3_1_rc1
atutor_1_3_2
atutor_1_3_2_rc1
atutor_1_3_2_rc3
atutor_1_4_1
atutor_1_4_2
atutor_1_4_3
atutor_1_4_rc2
atutor_1_5

There are two types of tags—“lightweight” and

“annotated”. Lightweight tags contain only the tag

name and point to a commit. Annotated tags contain

the tag name, information about the tagger, and a

message associated with the tag.

Annotated tags are generally preferred in organizations,

because they contain information about the tagger, when

the tag was created, and why. Lightweight tags are handy

for tagging special commits when you’re working on your

personal projects.

To view the details of a tag—say Atutor_1.4.1—run

the following command:

git show Atutor_1.4.1

You can create a lightweight tag latest_commit,

associated with the latest commit, by running the

following:

git tag latest_commit

To create an annotated tag, you need to postfix -a for

annotated and -m for an associated message:

$ git tag -a latest_commit -m "this is the latest
commit"
$ git show latest_commit
Tagger: Shaumik Daityari <sdaityari@gmail.com>
Date: Sun Mar 15 23:50:25 2020 +0530

this is the latest commit

commit 155526c8a4c35bc15716157837d02c9566b0941e
(HEAD -> master, tag: latest_commit,
origin/master, origin/HEAD)
Merge: da5f598c6 3335389bf
Author: Greg Gay <gregrgay@gmail.com>
Date: Mon Sep 9 14:06:40 2019 -0400

 Merge pull request #170 from
MostafaSoliman/patch-1

 Update header.php, thanks for the fix.

You can also checkout to a tag Atutor_1.4.1 by

creating a new branch version_1_4_1 (just like you

checkout to a commit):

git checkout -b version_1_4_1 Atutor_1.4.1

When you push your code, your tags aren’t pushed to the

remote. If you specifically want to push newly created

tags to the remote origin, you can run the following:

git push origin --tags

If you specifically want to push a tag to a remote, run the

following:

git push origin Atutor_1.4.1

Refs and reflog
Now that we’ve explored the log command in detail,

let’s now have a look at something new: refs. You already

know that a commit is identified by its hash—a long

string unique to a commit. A ref, short for a “reference”,

is a way of referencing a commit. In other words, the

hash is a name, whereas a ref is a pointer.

Refs are stored internally in Git, and we won’t go into

how Git treats refs. We will, however, use the reflog
command to utilize refs.

We’ve discussed what a HEAD in Git points to. At this

point, it’s important to note that HEAD is also a ref. There

are other such special refs like ORIG_HEAD,

MERGE_HEAD and FETCH_HEAD.

This brings us to the reflog. It’s a “log of refs”. That is,

any change you make in Git is recorded and accessible

via the reflog command. For instance, if you create a

commit, checkout to a new branch, merge two branches,

pull, push or even make a failed merge, reflog records

them all:

$ git reflog
8a15b20 (HEAD -> master) HEAD@{0}: checkout:
moving from 5199b4e10b to master
5199b4e HEAD@{1}: checkout: moving from 49a6bec7c6
to 5199b4e
49a6bec HEAD@{2}: checkout: moving from b00caea to
49a6bec
b00caea HEAD@{3}: checkout: moving from master to
b00caea

8a15b20 (HEAD -> master) HEAD@{4}: commit (amend):
New Message
623a519 HEAD@{5}: revert: Revert "Update data.csv"
25313e5 (origin/master, origin/HEAD) HEAD@{6}:
clone: from
https://github.com/sdaityari/my_git_project

The reflog command stores the records for each action

you perform in your repository. When you push the

changes, this data isn’t synced with the server. Using the

reflog command is necessary if you want to review

changes to your local repository. It could also be used to

recover lost commits.

reflog Can Act as Insurance
If you make a hard reset and lose a commit or two, you can safely go back to
any commit you made earlier. For instance, you can run the reflog
command, which would have a record corresponding to the time when the
commit was created, mentioning the commit hash. When you know the hash,
you can start a new branch based on that commit to go back to the state of that
commit.

The reflog command is like an insurance policy in Git.

reflog Only Tracks Commits for a Certain Period of
Time
The reflog command only tracks changes back for a certain amount of time.
Git is responsible for cleaning up the reflog data periodically, which by default
is 90 days. You can modify this value by specifying the expire option of the
command. If you want reflog never to forget any action, run the following
command:

git reflog expire --expire=never

Checking for Lost Commits
We’ve just seen how reflog can help you search for

commits that might be lost because of the use of a hard

reset. However, it’s difficult to search specifically for lost

commits in a repository with a huge history.

A commit is lost when it’s not a part of any branch. The

log command fails to search and show lost commits.

One way of losing commits from your branch history is to

do a hard reset. However, deleting a branch without

merging it with a different one can also lead to commits

that are recorded by Git but not present anywhere in any

of your branches.

You can search for commits that aren’t a part of any

branch by using the fsck (file system check) command:

>git fsck --lost-found
Checking object directories: 100% (256/256), done.
dangling commit
623a5196c885b7e8fc26d1519f3bf3d38cc97cf1

Not to be Confused with the Unix Command
fsck is also a Unix command to check for and repair inconsistencies in your
file system. Don’t confuse it with the git fsck command, which checks for
inconsistencies in your commits.

If you want to recover a lost commit—say c9067—from

the list to your current branch, you can run the

following:

git merge c9067

fsck versus reflog
fsck has an advantage over reflog. Imagine you cloned a remote branch
and deleted it. The commits present there would never show up on reflog,
because they were never done on your local system. However, fsck will list all
the lost commits from that branch.

Rebase
We saw earlier how merge works: it creates loops in the

commit history of a project. These loops don’t really

cause any problems for Git, though over time they can

make project histories difficult to understand and

navigate. For the central repository of a project, it’s

preferable to have a linear history, rather than a bunch of

interconnected loops.

In this section, we’ll discuss a merging mechanism—

rebase—that avoids loops in the project history. I

mentioned rebase earlier, when I used it with the git
pull command. Quite literally, the process of rebasing

is a way of rewriting the history of a branch by moving it

to a new “base” commit.

If you’re rebasing a master into new_feature, the new

commits in master are put before the new commits in

new_feature that aren’t common to master. To do so,

run the following command from the new_feature
branch:

git rebase master

Working in a Team

If you’re working in a team, you should first checkout to

master, pull from the upstream branch to update your

master with the latest commits, and then switch back to

new_feature before running the above command.

This can also be accomplished by the following:

git merge --rebase master

The above command is illustrated in Figure 7-1.

One important observation from the diagram is the

presence of a linear commit history, which is not present

in a merge. Figure 7-2 shows the difference between a

merge and a rebase for two branches.

A rebase operation may lead to conflicts, just like a

merge operation. The process of resolving a conflict is

exactly the same as we discussed earlier.

You can use rebase when you’re pulling changes. It

essentially puts the new commits in the master of the

remote in your history, and then superimposes your

commits on them. Any conflicts that arise can be fixed

easily, because they’ve been raised by your code. You can

rebase with a pull using the following command:

git pull --rebase origin master

Just for Illustration

The last command assumes that you added commits to

your master branch and then updated it from the

central repository. This is just for the sake of argument,

and not the best way to work in Git. Ideally, when you

work in your own branch and keep it updated using pull

operations, no conflicts would arise in the master
branch.

SQUASH COMMITS TOGETHER

When you’re contributing to a codebase by working on a

different branch, the code may not be accepted at the

first go. Once changes in your code have been suggested,

you create a new commit with the changes. You may,

however, be asked to make more changes and, before you

know it, you may have added multiple commits to the

pull request. Since you created the pull request asking for

your code to be merged, all of the commits would also get

merged.

In such a situation, you might have a list of commits, the

first of which was an attempt to resolve a bug, whereas

the latter were attempts at refactoring the code to follow

best coding practices. The group of commits as a whole

signifies a single task that’s been accomplished, and

hence, it makes logical sense to package them together as

a single commit (rather than merging these multiple

commits into the main project history).

This can also be done through the rebase command

(essentially rebasing your current branch). If you want to

squash the last two commits, run the following

command:

git rebase -i HEAD~2

The HEAD~2 refers to the last two commits in the current

branch, and the -i option stands for interactive (which

can be replaced by --interactive). You’re then taken

to an interactive screen, where you need to pick the old

commit and squash the latest commit.

You then proceed to provide a commit message.

Let’s look at the repository after the squash operation, to

make sure the last two commits have been converted into

one.

Aborting a Squash
If a squash operation gets overwhelming, you can safely run git rebase --
abort to get back to the pre-squash state.

Squash Modifies the Branch History

A squash operation changes the history of your branch. If you need to push
your changes after a squash operation, you need to use the -f option, or your
push will be rejected.

Stash Changes
Imagine a situation where you’re working on a bug or a

feature, and many files have been edited since the last

commit. However, you need to switch branches to work

on something else, or you need to demonstrate the state

of the repository at the last commit to your boss. You

can’t commit your current changes, as they’re not

complete yet. How do you solve this problem? stash
allows you to save the changes you’ve made in your

repository and revert back to the state of the last commit.

At a later stage, you can get back your changes if you

wish. To stash uncommitted changes, run the following

command:

git stash

You can check the list of stashes in your Git repository by

running the following:

$ git stash list
stash@{0}: WIP on master: 8a15b20 New Message
stash@{1}: WIP on master: 8a15b20 New Message

In the code above, note the serial numbers associated

with each stash, which Git uses to identify it. The commit

hash and message refer to the last commit of the active

branch when you stashed the changes.

To apply the changes that were stored in the last stash,

you can use the following command:

git stash apply

To restore an old stash, you need to mention the serial

number next to the stash in the list of stashes:

git stash apply stash@{1}

A stash can only be applied if no files have been modified

since the last commit. To apply multiple stashes, you first

need to commit the changes from a stash. Applying a

stash may raise a conflict if a file in the stash has since

been modified in a commit.

stash Untracked Files
The stash command stashes the changes that have been made to tracked
files only. If you want to add an untracked file to the stash as well, just start
tracking it with git add before running the stash command.

In newer versions of Git (1.7.7+), you can add the -u option to stash untracked
files without tracking them.

Advanced Use of add
In Chapter 6, “Correcting Errors”, we saw that we can

instruct Git to track a new file, or stage changes to a

modified tracked file, using the add command. In this

section, we’ll go a step further and see how we can stage

only a part of our modifications to the same file.

It’s generally a good idea to associate a commit with a

single bug fix or feature, as commits can then be used to

separate different logical ideas. If you’ve solved two bugs

by changing parts of the same file and want those

changes to appear in different commits, you can do so as

follows.

To simplify the process, I’ll add three lines at three

different positions in the same file and view the changes

that I’ve just added (Figure 7-6):

git diff

Let’s say I want to add the second line among the three

added lines to my commit. We can start the process with

git add. Note the -p postfix to the add command to

initiate this process:

>git add -p
diff --git a/tests.py b/tests.py
index 3a722f0..57e1cfc 100644
— a/tests.py
+++ b/tests.py
@@ -3,15 +3,15 @@ import unittest
 from sum import add_two_numbers

 class TestsForAddFunction(unittest.TestCase):
-
+ # First comment
 def test_zeros(self):
 result = add_two_numbers(0, 0)
 self.assertEqual(0, result)
-
+ # Second comment
 def test_both_positive(self):
 result = add_two_numbers(5, 7)
 self.assertEqual(12, result)
-
+ # Third comment
 def test_both_negative(self):
 result = add_two_numbers(-5, -7)
 self.assertEqual(-12, result)
$ Stage this hunk [y,n,q,a,d,s,e,?]? s

Git has clubbed all the changes together into a “hunk”. A

hunk is a group of changes in a file. Notice that Git now

asks us to enter an option. These are the options and

their uses:

y: stage the hunk

n: don’t stage the hunk

e: edit the hunk

d: exit the process

s: split the hunk

In this case, we want to add only the second line, but

because all three lines are a part of the same hunk, we

need to split it:

$ Stage this hunk [y,n,q,a,d,s,e,?]? s
Split into 3 hunks.
@@ -3,7 +3,7 @@
 from sum import add_two_numbers

 class TestsForAddFunction(unittest.TestCase):
-
+ # First Comment
 def test_zeros(self):
 result = add_two_numbers(0, 0)
 self.assertEqual(0, result)

After splitting the larger hunk, we’re provided the first of

the three smaller hunks. We wish to add only the second

one. Therefore, we go to the next one by selecting option

n:

$ Stage this hunk [y,n,q,a,d,j,J,g,/,e,?]? n
@@ -7,7 +7,7 @@
 def test_zeros(self):
 result = add_two_numbers(0, 0)
 self.assertEqual(0, result)
-
+ # Second Comment
 def test_both_positive(self):
 result = add_two_numbers(5, 7)
 self.assertEqual(12, result)
$ Stage this hunk [y,n,q,a,d,j,J,g,/,e,?]? y

Next, we’re asked if we want to stage the second line.

Therefore, we select option y, followed by option n for

the third line. You can run git status to check how

the repository looks:

$ git status
On branch master
Your branch is ahead of 'origin/master' by 1
commit.
 (use "git push" to publish your local commits)

Changes to be committed:
 (use "git restore --staged <file>..." to
unstage)
 modified: tests.py

Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git restore <file>..." to discard changes
in working directory)
 modified: tests.py

As you can see, the same file shows up in the list of

modified files and in files staged for commit. This means

you successfully staged a part of a modified file. You can

proceed to commit your changes now.

Don’t Commit with the -a Option

After staging a part of a modified file, you shouldn’t

commit the changes by postfixing -a. This would add the

rest of the modified file too!

Cherry Pick
Let’s say our work is progressing in two branches. If you

want to merge a single commit from one branch into

another, merge or rebase won’t suffice. The cherry-
pick command allows you to pick a certain commit from

a different branch and merge it into your current branch.

Just like in merging and rebasing, cherry-pick can

also result in conflicts, which should be resolved as

discussed earlier.

How Does cherry-pick Differ from merge or
rebase?

In merge or rebase, you join your current branch with

a different branch. All the commits of the other branch—

that have happened since it diverged from your branch—

appear in your branch after the merge. However, as the

name suggests, you can pick a single commit from a

different branch and make it appear in your branch using

cherry-pick.

The idea of a cherry-pick is illustrated in Figure 7-7.

To merge a commit 30dc1fa2d from a different branch

to your current branch, run the following command:

git cherry-pick 30dc1fa2d

GitHub CLI
While we’ve looked at various advanced Git commands,

you may have noticed that you still need to access

GitHub’s website to create pull requests or raise issues.

GitHub has an in-built bug tracker where you can create

issues. An issue is a task, enhancement, or a bug in your

project. GitHub has now launched a new CLI tool that

allows you to perform GitHub-related operations from

the command line.

To use the command-line tool, you need to download

and install a GitHub client that enables the use of the gh
command. On Windows, you can download the MSI

installer from the releases page.

On macOS, you can use Homebrew to install GitHub

CLI:

brew install github/gh/gh

On Linux, visit the releases page and download the

installer corresponding to your distro, and run the

installation.

You can find detailed installation instructions for GitHub

CLI on GitHub.

Navigate to a local clone of a GitHub repository, and run

a gh command. The first time you run it, you’re

redirected to GitHub on the browser to authenticate the

tool:

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://help.github.com/en/enterprise/2.15/user/articles/about-issues
https://cli.github.com/
https://github.com/cli/cli/releases/tag/v0.5.7
https://github.com/cli/cli/releases/latest
https://github.com/cli/cli#installation-and-upgrading

Notice: authentication required
Press Enter to open github.com in your browser...
Authentication complete. Press Enter to
continue...

There are two broad categories of commands that you

can run: pull requests (the pr subcommand) and issues

(the issue subcommand). To check the list of pull

requests on your browser, run the following command:

gh pr list

To check the status of pull requests, use the status

keyword:

>$ gh pr status

Relevant pull requests in sdaityari/my_git_project

Current branch
 There is no pull request associated with
[sdaityari:2e-consolidated-first-draft]

Created by you
 #3 Added first draft of git dev cycle
[sdaityari:git-dev-cycle]
 #2 Rewrite code [sdaityari:code-rewritten]
 #1 Added Git Workflow [sdaityari:new-git-
workflows]

Requesting a code review from you
 You have no pull requests to review

To create a new pull request, run the following

command:

gh pr create

It creates a pull request from the current active branch to

the master branch. If your local clone is of a fork, the

pull request is created on the master branch of the main

repository.

After you run the command, you’re asked to enter details

of the pull request, like title and body. You can optionally

enter the text of the body in a text editor. Similarly, you

can create, list and check the status of issues on a

repository using the issue subcommand. For instance,

the following command shows the status of all issues:

gh issue status

While Git in itself is powerful, completing actions on

GitHub without leaving the terminal makes the process

convenient and more efficient. You can check the latest

commands for GitHub CLI in its manual.

Conclusion

WHAT HAVE YOU LEARNED?

We’ve reached the end of another chapter! In this

chapter, we discussed various commands and their uses

to make your Git experience easier. In addition to

GitHub CLI, here’s a list of the commands we covered:

log

shortlog

reflog

fsck

rebase

stash

add

cherry-pick

You should try to incorporate these into your daily

workflow to gain the most out of them.

WHAT’S NEXT?

In the next chapter, we’ll explore how Git fits into your

DevOps strategy and how to incorporate it into your

continuous integration process.

https://cli.github.com/manual/

Chapter 8: Integrate Git in
Your Development Cycle
In earlier chapters, we looked at various Git concepts,

managing a codebase in a team environment, and

commonly used Git techniques to make your workflow

efficient. These things help you become better at

managing your code with Git, but one thing we haven’t

discussed yet is how to integrate Git into your

development cycle.

This chapter focuses on using Git to bring efficiency into

your entire software development cycle. If you’re using

Git for your personal projects, you may still find the

concepts discussed here relevant.

Git and DevOps
How did DevOps come into being? Traditionally, there

was a clear distinction between teams that were

responsible for development, testing, deployment, and

maintenance. While this distribution of functions was

based on the skills required, teams realized over the

years that inefficiencies were introduced due to the

friction between these teams. This led to the birth of

DevOps, a cross between development, operations and

QA (quality assurance). DevOps is a set of guidelines

that automates processes in the software development

cycle, thus lowering the time to market. A DevOps

engineer oversees the code release cycle and ensures that

the process is smooth.

Though the stages in the DevOps cycle can vary, it

generally involves the following seven steps:

Continuous development. This involves planning a roadmap

depending on the end-user’s requirements, and then starting

development.

Continuous integration. This involves testing all code on every

push, and merging with the main codebase if all tests pass. An

additional code-review process may be included.

Continuous testing. This involves testing the application in a

live environment to verify the product’s functionality.

Continuous monitoring. In this phase, critical metrics of a

product’s output and usage are monitored in order to identify any

anomalies.

Continuous feedback. Feedback from earlier stages is used to

update the roadmap and proactively include features and bug

fixes.

Continuous deployment. This ensures that the availability of

the end product isn’t affected by releases.

Continuous operations. The objective of this step is the

automation of the release process, which leads to a shorter

development cycle.

The use of Git is critical in the early stages of the DevOps

cycle. Git ensures proper code management, attribution,

and integration with other stages. Git can trigger a set of

processes at the onset of an action, like a code push or a

pull request. Without the use of any version control, it

would be difficult to create triggers based on code

changes.

Using Git Hooks
While we’ve seen that Git is important to DevOps, this

section deals with “Git hooks”, a technique to seamlessly

integrate Git with the DevOps cycle. A Git hook is a

custom script that executes when a pre-defined action or

event occurs. Git hooks are of two types: client-side and

server-side. A client-side Git hook is reactive to local

changes: it happens on actions such as a commit or

merge. A server-side Git hook gets initiated on a

network-based action, like a push to a remote.

As Git hooks are executable scripts, there’s no limit to the

actions you can perform with them. The simplest use

case of a Git hook is to send an email on every new

commit. You could initiate unit tests to be run on every

commit. You could raise a pull request on every push to a

new branch.

Git hooks reside in the .git/hooks directory of your

repository. When you initialize a Git repository, Git

populates this directory with sample scripts with the

.sample extension.

If you’d like to create a hook, remove the .sample
extension from any of them. Since they’re executed on an

action or event, double-check the file permissions to

ensure they’re executable.

If you view the contents of any of these files, you’ll notice

that they’re Bash scripts with an opening line of

#!/bin/sh. While the sample files are Bash scripts, you

can change the first line to change the language of the

script. While local Git hooks generally work around

changes (pre-commit, commit-msg, post-commit), server

hooks (pre-receive, update, post-update) are mostly

centered around updates. Here’s a list of common hooks

and when they’re triggered:

pre-commit: before a commit message is entered

commit-msg: with the commit message (it’s a path to a

temporary file)

post-commit: after a commit process is complete

pre-push: before changes are sent to a remote

post-merge: after a merge is complete

pre-receive: before a push from a client

post-receive: after a push from a client is completed

The most important Git hook is the pre-commit, where

you can integrate unit tests:

#!/usr/bin/env bash

echo "Running pre-commit Git hook to run unit

tests"
python ../../tests.py

$? stores exit value of the last command
if [$? -ne 0]; then
 echo "Tests did not pass! Aborting commit."
 exit 1
fi

While using Git hooks provides you with a lot of

functionality to integrate with the software development

cycle, it may be difficult for the average user to write

custom scripts to achieve the objectives. However, you

can utilize continuous integration (CI) tools to achieve

this task.

Integrating Travis CI with GitHub
Continuous integration is the second step in the DevOps

cycle, and it involves substantial use of Git. Continuous

integration ensures a smooth transition between the

code push and beta testing. It ensures that any new

changes to the repository won’t break things.

Travis CI is a popular, hosted continuous integration tool

for GitHub repositories. It’s free to use for open-source

GitHub projects, with paid plans for commercial

projects. You can only test repositories hosted on GitHub

with Travis CI. However, you can create a workaround by

adding submodules to test repositories hosted on other

platforms.

Travis CI works like this: on every push to GitHub, the

tool essentially clones the repository on a virtual

machine on the cloud, installs the requirements on the

fly, and runs pre-defined unit tests to determine if the

new code breaks the existing functionality of your

project.

GETTING STARTED WITH TRAVIS CI

https://travis-ci.com/
https://travis-ci.com/plans
https://medium.com/@blcsntb/travis-ci-for-bitbucket-32e776362baf

To integrate Travis CI with your GitHub repository, you

need to first create an account on the Travis CI website.

If you log in through your GitHub account, you can skip

the additional step of linking GitHub with Travis CI.

After logging in, go to the settings page of your Travis CI

account to view the list of public repositories in your

connected GitHub account. Search the repository you’d

like to link to Travis CI and select the toggle button next

to the repository.

https://travis-ci.org/
https://travis-ci.org/account/repositories

Next, you need to add a configuration file to the root

directory of your repository. Name the configuration file

.travis.yml. Here are the minimal settings for your

Travis CI configuration file:

language: python
python:
 - "3.7"
 - "3.8"

command to install dependencies
install: "pip install -r requirements.txt"

command to run tests
script: python tests.py

First, you instruct Travis CI to test each build on Python

and then specify the versions 3.7 and 3,8. Note that, for

each version you specify, a new build will be created and

tested, thereby increasing the time to perform the test.

Next, you provide the command to install the

dependencies of the repository. Finally, you provide the

command to run the unit tests, against which the push

will be evaluated.

After you’ve created the configuration file, push a

commit to the repository to trigger a Travis CI build.

Interestingly, without the configuration file in your

repository earlier, the commit that introduces this file in

the repository would also trigger a build on Travis CI.

TRAVIS CI BUILD RESULTS

How long Travis CI takes to run tests on a single commit

depends on a few factors:

how many versions your build needs to be tested on

how many requirements your repository has

how detailed your unit tests are

Once your tests are complete, you receive an email with

the results of the test. You can also view the status of

your recent tests on your Travis dashboard.

https://travis-ci.org/dashboard

If the tests are still running, Travis CI shows the live

information about the test. You can cancel the build if it’s

taking a long time, or even restart a build after it has

completed. You can view the configuration file from

within the build page to ensure the tests ran the way you

intended them to.

ADVANCED CONFIGURATION SETTINGS

Now that we’ve run a successful test on Travis CI, let’s

examine some advanced features of Travis CI and their

use cases. (You can view a full list of Travis CI

configuration settings in the Travis documentation.)

Imagine you intend to run Git-related operations in the build. If a

unit test fails, you’d like to automate the process of git bisect
within this build to find out which commit introduced a bug. To go

ahead in this scenario, it isn’t necessary to download the full

history of the project. With the depth option, you can set the

number of Git commits to clone through the following setting:

 git:
 depth: 3

Next, while unit tests test how your code runs, your project may

have detailed requirements before installation of the prerequisites.

In such cases, you may feel the need to run custom configuration

commands on the server before running your projects’s build. You

can also set a list of commands to run before installing the

prerequisites. You can pass terminal commands as a list to run in

this setting. The echo command in the example below prints a

message in your log:

 before_install:
 - echo "running before_install
commands"
 - python -c '# some_python_command'
 - echo "pre-installation config
complete"

On similar lines, you can set a list of commands to run after the

build is complete. For instance, did the right version of your

project execute? Do you want to check if data integrity is

maintained on your server? The following terminal commands are

sequentially run after the build is complete:

 after_script:
 - echo "running after_script commands"
 - python -c "#some_python_command"
 - echo "after_script commands executed"

It’s possible that, during the process of a build, you may only be

interested in how the current version of your project runs. To

make the debugging process easier, you may wish to remove Git-

https://docs.travis-ci.com/user/customizing-the-build/

related messages from your logs altogether. To ignore Git-related

messages in your log files, you can set the quiet option in git to

true:

 git:
 quiet: true

While multiple developers work on their own features, you

probably won’t want to trigger a build every time a developer

sends a push. You can safelist and blacklist branches to trigger

builds for, or ignore changes to specific branches:

 # blocklist
 branches:
 except:
 - some_experimental_feature

 # safelist
 branches:
 only:
 - master
 - dev

While safelisting branches makes sense for a smaller team, you

may still be dealing with a large number of push operations.

There’s an option to ignore build triggers with every push

altogether — by setting up cron jobs on Travis CI to run a set of

tasks periodically. Go to the Cron Jobs section on the settings

tab of any repository to set up cron jobs.

Travis can integrate with Docker to create a custom build

environment to test your code on. You need to enable Docker

under services and set up custom Docker commands in the

before_install section:

 services:
 - docker

 before_install:
 # Custom docker commands

Conclusion

WHAT HAVE YOU LEARNED?

In this chapter, we covered the integration of Git with

DevOps to enable you to bring more efficiency into your

software development cycle. We first looked at custom

scripts that can be used through Git hooks for various

events and actions in Git. We then discussed how to

integrate Git with Travis CI to perform the task of

continuous integration, one of the critical steps in the

DevOps cycle.

WHAT’S NEXT?

In the next chapter, we’ll look at some GUI tools for Git,

examining how they handle the commands we’ve already

discussed.

Chapter 9: Git GUI Tools
Until now, we’ve performed all our Git-related actions

through the terminal, looking in detail at what each

command does. The advantage of terminal commands is

that they work across all platforms.

In Chapter 1, I mentioned that there are various GUI

(graphic user interface) tools that can be used instead of

the terminal. Although GUI tools can appear to make life

simpler, applications can use differing UIs, terminology,

and Git concepts. GUI tools also lack some of the power

and features of the terminal, and terminal commands

execute more quickly. For these reasons, I’ve avoided the

use of Git GUI tools so far.

In this chapter, we’ll look at the GUI tools that serve as

Git clients. First, we’ll review GitHub Desktop, GitHub’s

own GUI tool, and then Atlassian’s Sourcetree. Both of

these applications have macOS and Windows versions,

but neither supports Linux. Other popular GUI clients

are Tower (macOS), GitBox (macOS), SmartGit

(Windows, macOS, Linux), Fork (Windows, macOS,

Linux), and GitKraken (Windows, macOS, Linux). All of

these applications are either free or have free trial

versions.

You can also use Git’s capabilities through extensions in

your text editor. Atom, a text editor by GitHub, has built-

in Git and GitHub functionality. Sublime Text’s Git

Integration package enables the use of many Git-related

features from within the confines of the text editor.

Visual Studio’s version control tools enable you to

integrate with multiple version control systems to

manage repositories hosted in remote locations.

https://desktop.github.com/
https://www.sourcetreeapp.com/
http://www.git-tower.com/
http://www.gitboxapp.com/
http://www.syntevo.com/smartgit/index.html
https://git-fork.com/
https://www.gitkraken.com/
https://atom.io/
https://github.atom.io/
https://www.sublimetext.com/docs/3/git_integration.html
https://code.visualstudio.com/docs/editor/versioncontrol

GUI tools are an attractive option to many developers, as

they provide an easy interface for managing a project

with Git. Though we arguably gain a deeper

understanding of Git by learning it through the

command line, GUI tools have their place, especially in

simple situations. One issue with using GUI tools is that

it’s easy to forget proper Git commands. This is

problematic if you find yourself in an environment

without GUI software, or if you need to run emergency

commands from the command line—such as working on

a remote server. I suggest using a combination of GUI

tools and the command line, utilizing the advantages of

each.

I’ll now look at GitHub Desktop and Sourcetree in turn,

evaluating their features and ease of use. Note that Git

GUI tools frequently change their UI, so the screenshots

below may differ a little across versions and operating

systems.

GitHub Desktop
Let’s first take a look at the GUI client of GitHub itself. It

supports both Windows and macOS. The Windows and

macOS versions of GitHub’s previous clients differed, but

in August 2015 GitHub launched GitHub Desktop as a

new, unified client for both platforms.

After installation, you should add your GitHub account

details.

Not Just for GitHub
You can manage other local Git repositories with GitHub Desktop too, but it’s
tailor made for GitHub repositories. Although a bit confusing, you can even
manage Bitbucket repositories through the GitHub GUI tool!

When you successfully log in to your account, all your

repositories are linked to your GUI tool. You can create a

new repository through the New Repository… option

https://desktop.github.com/
http://www.binarymoon.co.uk/2013/10/use-bitbucket-github-mac/

from the File menu. You can also see a list of your

repositories under the Clone Repository… option.

Select the repository you want to clone, and click on

Clone to clone it.

Alternatively, you can add a local Git repository by

choosing the Add Local Repository… option in the

File menu. You’re then asked to select the path to an

existing Git repository on your local system.

Once you’ve added your repository, you’ll notice that it’s

now listed among the tracked repositories in the

repositories list (Current Repository tab, top-left). If

you add a GitHub repository, it will be listed under your

username on GitHub, whereas if you add a local

repository, it will be listed under Other.

Once a repository is selected, the commits in the current

branch are listed. The UI resembles the GitHub website.

If any commit is selected, the commit details are shown

too. The workflow in the current branch is shown at the

top.

On selecting Show History from the View menu,

you’re shown the commits in the active branch. On

selecting a specific commit, you’re shown the changes

that were made in that commit:

Let’s move on from comparing branches to creating or

changing a branch. To create a branch, click on the

Current Branch tab and enter the name of the new

branch. It will be created from the current active branch.

To change your current active branch to a different one,

simply select a new branch from the list of branches.

On the top right of the window, there’s the Fetch

Origin option, which gets the latest commits from your

origin remote. You can create a pull request from

within the GUI client by first comparing two branches

and then creating the pull request, just like you do on the

GitHub website.

Any changes made to the repository are visible in the

Changes tab (top left). It lists the changes in the files,

but note that there’s no mention of the term “staging”.

You simply select the files you want to include in the

commit and add a commit message before committing

the changes, which makes the process simpler for

beginners.

Once you’ve committed the changes, the Fetch Origin

button changes to Push Origin, which first fetches

commits from the origin and then pushes your new

commits. On pushing to a branch of origin that’s not

the master branch, a Create Pull Request button

comes up, which redirects you to the appropriate link on

the GitHub website.

GitHub Desktop tries to simplify the process of source

code management, which is good for a beginner who’s

trying to learn Git. Let’s now explore Sourcetree, which

has a wider range of functions.

Sourcetree
Sourcetree is a GUI client developed by Atlassian. It’s

compatible with repositories managed by both Git and

Mercurial, another distributed VCS. Sourcetree can use

the version of Git already installed on your local system,

or a version that’s bundled with Sourcetree itself. You

can download and install the application from the

Sourcetree website.

Sourcetree offers a wider range of features than GitHub’s

tool, and gives you more control over your repositories.

Its various options also better match the corresponding

terminal commands.

During installation, you’re invited to add details of any

accounts you hold at code sharing websites like GitHub

and Bitbucket. If you skip this step, you can add accounts

later in the Accounts tab of Preferences.

https://www.sourcetreeapp.com/

After adding your cloud accounts, you’re shown the list

of repositories in your connected accounts.

The repositories listed here are present only on the

cloud, so they need to be cloned before you can start

working on them locally. Click on the Clone link on the

right of any repository to clone it.

After confirming the details, the remote repository is

cloned to the location you specified in the last step.

Alternatively, you can add a local repository to

Sourcetree by clicking on the +New Repository

button. Once you’ve added a repository, a new window

opens with the details of the repository.

As highlighted in the image above, the window has three

parts: the top menu, the left menu, and the main body.

The top menu contains buttons that perform important

actions in Git. The left menu lists the branches, remotes,

stashes and submodules. The main body contains the list

of commits in the active branch and the details of each

commit.

If you look at the top menu (Figure 9-11 below), you’ll

notice that it contains buttons for performing basic Git

actions like commit, pull and push. There’s also an

option to open up a terminal in case you want to run a

custom command.

The Branch button helps you checkout to a new or an

existing branch.

When you make changes to any file, the list of changed

files pops up in the space for unstaged files (Figure 9-13

below). You can stage them by clicking the Add button

on the top—after which they appear in the staged list.

You can also remove staged files using the Remove

button at the top.

Once you’re ready to make a commit, click on the

Commit button. For your first commit, you’re asked to

nominate a name and email address to be associated

with your commits (Figure 9-14 below). This is similar to

setting the global configuration settings through the

terminal. From now on, your email address and name

will be associated with this commit, as well as any future

commits.

After adding your name and email, you’re asked to add a

message describing your commit.

After a successful commit, notice the state of the

repository and the change in the branch workflows: the

blue color shows the current commit—which hasn’t been

merged with origin/master, denoted by yellow.

You can add or remove branches by clicking the Branch

button in the top menu. You can force delete a branch

even if it hasn’t been merged yet, as shown in Figure 9-17

below. (This is analogous to the -D option in the

terminal.) You can merge branches through the Merge

button in the top menu. If you want to merge branch_A
into branch_B, make sure branch_B is active when you

perform the merge operation.

Let’s now have a look at the left menu, shown in Figure

9-18 below. It shows a list of branches, tags, remotes,

stashes and submodules.

In this case, master and gh-pages are the two

branches, and origin is the only remote. We also have

one stash created on the master branch, which is shown

in the screenshot above. Sourcetree’s stash option is a

powerful, easy-to-use feature. You can apply any stash to

your HEAD, with the option of keeping or removing the

stash. Submodules are Git repositories within a parent

repository. We haven’t covered submodules in this book.

This repository uses a google_app submodule.

In addition, commit-based actions like checking out to

the commit, cherry picking or creating a patch can be

performed by right-clicking on a commit, as shown

below.

Sourcetree versus GitHub Desktop
Both Sourcetree and GitHub Desktop are free to use.

Sourcetree has a lot of features, with an information-rich

display that directly relates to Git’s terminal commands.

Desktop, on the other hand, focuses more on bridging

the gap between a local GitHub repository and the

GitHub website, often substituting standard Git terms

and processes with easier terms for beginners. It eases

the process of hosting your repositories on GitHub, but

makes it difficult—though not impossible—to host your

repository elsewhere.

Finally, Desktop simplifies the whole process by cutting

down on certain features, whereas Sourcetree offers a

full-featured dashboard that might be overwhelming for

beginners. I encourage you to try both GUI tools,

perhaps along with a few more listed at the beginning of

this chapter, to work out which best suits your needs.

Conclusion
In this chapter, I reviewed two GUI tools for Git—

Sourcetree and GitHub Desktop.

GUI tools are definitely useful. When using them, the

history of a project, with respect to the different

branches, is easily visualized. Even when you’re working

on a project, it’s useful to graphically analyze the changes

you’ve made before committing them into the project

history. Even when you’re reviewing the work of others,

it’s a good idea to use a GUI tool to quickly review the

changes.

Even though I find GUI tools to be great, if you’re a

beginner, I’d still recommend you learn the terminal

commands first. As I mentioned above, GUI tools aren’t

cross platform, whereas terminal commands are. There’s

no single tool that works the same in Windows, macOS

and Linux. Also, if you’re working on a remote server

(which is often a virtual machine), only command-line

tools can help you work with Git. And knowing terminal

commands will help you understand how these GUI tools

work.

So for beginners and experienced users alike, I

recommend using a combination of GUI tools and the

terminal. Each has its pros and cons, which you’ll

discover through practice.

Chapter 10: Conclusion
As this book has guided you through the uses of Git, the

focus has been on using it to manage a codebase. This is

the most common use for Git, but certainly not the only

one. In this concluding chapter, I’d like to discuss Git’s

meteoric rise, and then give you a glimpse of other

innovative uses of Git, as well as its limitations,

alternatives to Git, and what the future holds.

Git’s Meteoric Rise
Back in 2009, over 57.5% of repositories used

Subversion, whereas Git only had a 2.4% share of the

SCM market, according to the Eclipse Community

Survey. Git’s rise in popularity has been so tremendous

that the question of a primary source code management

system typically doesn’t appear in recent developer

surveys, with tools like fancy text editors and cloud-

based IDEs taking over as questions. Google Search

trends indicate that Git and Subversion had roughly the

same interest around the year 2011 (Figure 10-1).

However, since then, the popularity of Subversion has

declined, whereas that of Git has grown steadily.

http://www.eclipse.org/org/press-release/Eclipse_Survey_2009_final.pdf
http://www.google.com/trends/explore#q=git,svn

From these data sources, one thing is obvious: Git’s

meteoric rise proves it’s doing something right. The

future is definitely Git. Over the last decade, Git has

solidified its position as the top choice for version control

among developers. In my opinion, these are the aspects

of Git that have most led to its rise:

the concept of a distributed system

a powerful branching system

the introduction of a staging area

its functional, easy-to-use cloud-based systems

Will Git Continue to be Popular in the
Future?
A significant contributor to Git’s rise is GitHub. While

GitHub only started out as a company in 2008, Microsoft

acquired it in 2018. This ensures that the future of

GitHub is secure and that it will continue to scale based

on demand.

Git is a great tool, and is often the first choice among

developers. Naturally, organizations big and small

choose Git to manage their projects, which is evident

from the “Companies & Projects Using Git” section of the

Git website.

However, one of Git’s major failings becomes evident

when it’s used in very large projects: it doesn’t manage

large repositories in the most efficient way. How large

are we talking about here? Facebook large. Facebook

eventually shifted from Git to Mercurial, another

distributed VCS. Let’s look at why.

When engineers at Facebook extrapolated their future

growth, they found that file status operations in Git

would become a major bottleneck, as Git examines each

file for changes. With thousands of commits every day, it

https://blogs.microsoft.com/blog/2018/10/26/microsoft-completes-github-acquisition/
http://git-scm.com/#companies-projects
https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
https://www.mercurial-scm.org/

would have taken a few seconds to run even a git
status. Integrating their own file monitor with

Mercurial made for a much more efficient process, which

is why Facebook shifted to Mercurial, and why their

developers still contribute significantly to its

development. However, even though Facebook shifted its

main codebase to Mercurial, it’s interesting that many of

their important side projects like React and RocksDB are

still managed through Git.

Prasoon Shukla, a Mercurial contributor, has described

the differences between how Git and Mercurial work, and

why Mercurial is more efficient when you scale to the

size of Facebook. However, few developers will ever work

with repositories the size of Facebook.

In recent times, Git has made progress in the

management of large repositories—both in terms of

history and the size of files in a repository. If you have a

codebase with a very large history, you can perform a

shallow clone, which enables you to clone only a

specified number of latest commits. For instance, if you

want to clone only the ten latest commits from our

dummy project, you can specify 10 using the --depth
option:

git clone --depth 10
https://github.com/sdaityari/my_git_project

Previously, Git had only limited support for shallow

clones, especially if your shallow history wasn’t long

enough. You often wouldn’t be able to push from your

shallow clone. However, recent versions (Git 1.9+) give

you a greater ability to push and pull.

Another way of managing a large repository is to clone

only a single branch. You can do so using the --
single-branch option. To clone only the master

branch of your dummy project, run the following:

http://facebook.github.io/react/
http://rocksdb.org/
http://blog.prasoonshukla.com/mercurial-vs-git-scaling

git clone
https://github.com/sdaityari/my_git_project --
branch
↵ master --single-branch

Beyond Source Code Management
After reading this book, you hopefully feel very safe with

Git. Once you create a commit, there’s no way you can

lose it (unless, of course, someone messes with the .git
directory). You’ve seen the potential of Git. So isn’t it

natural that people are starting to use Git for tasks other

than just managing code?

If you’re a student, you can safely use Git to manage your

academic assignments. As a tech blogger, I write my

articles in Markdown in GitHub’s text editor Atom, while

maintaining a private repository on GitHub with all of

those articles.

Git can be used to efficiently manage any project that

contains text-based files. It’s even used in publishing. In

fact, the team behind this book worked on it using Git! I

created pull requests on GitHub, where the editors then

suggested changes.

Git can also be useful for designers. Even though

Photoshop or CorelDRAW files aren’t comparable to

source code, they can be tracked by Git efficiently

through LFS. And of course, any front-end code you

write can be tracked using Git.

I mentioned in Chapter 1 that Google Docs is a good

example of version control in action. There are many

other applications built using Git with a similar premise

of enabling change tracking. An example is the

WordPress plugin VersionPress, which tracks changes in

a WordPress site using Git in the background.

http://versionpress.net/

The End
Although we’ve now come to the end of this book, you

should be just beginning your journey with Git. Get out

there and do some amazing things with version control! I

hope you’ve enjoyed reading this book as much as I’ve

enjoyed writing it.

	Jump Start Git, Second Edition
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About Shaumik Daityari
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Chapter 1: Introduction
	Introduction
	Version Control
	Version Control Doesn’t Replace the Need for a Regular Backup Solution

	Examples of Version Control in Daily Life
	Version Control Systems: the Options
	VCS Is Not CVS

	Enter Git
	Git’s Philosophy
	Advantages of Distributed Version Control Systems

	Git and GitHub
	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 2: Getting Started with Git
	GUI Tools
	The Git Workflow
	Baby Steps with Git: First Commands
	Set Configuration Settings
	Create a Git Project
	Issuing Git Commands
	Git Autocomplete

	Create Our First Commit
	Don’t Edit .git
	Demonstration Only
	Checking the Status
	Beware of Adding Unwanted Files
	Make Your Commit Messages Meaningful!

	Further Commits with Git
	Diff Only Shows Changes in Tracked Files
	Beware of Shortcuts
	Always Review Your Changes
	Why git add Again?

	Commit History
	The .gitignore File
	Unintentionally Tracking a File Listed in .gitignore
	Hiding .gitignore from Git
	Set up Your .gitignore Early

	Remote Repositories
	GitHub Isn’t the Only Option
	GitHub Offers Student Pricing

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 3: Branching in Git
	What Are Branches?
	Branch Conventions

	Create a Branch
	What Does checkout Do?

	Delete a Branch
	Don’t Delete Branches Unless You Have To
	Branches and HEAD

	Advanced Branching: Merging Branches
	Watch Out for Loops

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 4: Using Git in a Team
	The Source Is the origin
	Optional: Different Protocols While Cloning
	Alternative Credential Storage
	Git GUI Tools Can Generate Keys for You

	Contributing to the Remote: Git Push Revisited
	You Can Delete Branches Using git push

	Keeping Yourself Updated with the Remote: Git Pull
	Pulls Are Fast-forward by Default
	Here Be Conflicts!

	Dealing with a Rejected Git Push
	Rebase?

	Conflicts
	Multiple Conflicts
	Aborting a Merge with Conflicts

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 5: Git Workflows
	The Centralized Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Centralized Workflow

	The Feature-branch Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Feature-branch Workflow

	Gitflow Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Gitflow Workflow

	Forking Workflow
	Features
	New Team Member Orientation
	Pros and Cons
	Who Should Use the Forking Workflow

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 6: Correcting Errors While Working with Git
	Amending Errors in the Git Workflow
	Undo Git Add
	Why Can’t I Just Delete the File?
	Forced Removal
	What Does checkout Really Do?

	Undo Git Commit
	What’s with HEAD~1?

	Undo Git Push
	Use -f with Caution

	Debugging Tools
	Git Blame
	Git Bisect
	Why is git bisect So Fast?
	Learn More About Each Commit

	Automated Bisect with Unit Tests
	Exit Codes in Custom Shell Scripts
	Beware of Using Old Test Files

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 7: Unlocking Git’s Full Potential
	Advanced Use of log
	Short Version
	Branches and History
	Filter Commits
	You Must Specify a Range

	Trace Changes in a Single File
	How Is Tracing Different from git blame?

	Track Your Peers
	Search in Commit Messages
	The Importance of Meaningful Commit Messages
	Using the grep Terminal Command

	Tagging in Git
	Refs and reflog
	reflog Can Act as Insurance
	reflog Only Tracks Commits for a Certain Period of Time

	Checking for Lost Commits
	Not to be Confused with the Unix Command
	fsck versus reflog

	Rebase
	Working in a Team
	Just for Illustration
	Squash Commits Together
	Aborting a Squash
	Squash Modifies the Branch History

	Stash Changes
	stash Untracked Files

	Advanced Use of add
	Don’t Commit with the -a Option

	Cherry Pick
	How Does cherry-pick Differ from merge or rebase?

	GitHub CLI
	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 8: Integrate Git in Your Development Cycle
	Git and DevOps
	Using Git Hooks
	Integrating Travis CI with GitHub
	Getting Started with Travis CI
	Travis CI Build Results
	Advanced Configuration Settings

	Conclusion
	What Have You Learned?
	What’s Next?

	Chapter 9: Git GUI Tools
	GitHub Desktop
	Not Just for GitHub

	Sourcetree
	Sourcetree versus GitHub Desktop
	Conclusion

	Chapter 10: Conclusion
	Git’s Meteoric Rise
	Will Git Continue to be Popular in the Future?
	Beyond Source Code Management
	The End

