

Jump Start Web Performance
Copyright © 2020 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-33-2

Product Manager: Simon Mackie

Technical Editor: James Hibbard

English Editor: Ralph Mason

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced,
stored in a retrieval system or transmitted in any form or by
any means, without the prior written permission of the
publisher, except in the case of brief quotations embodied in
critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the
accuracy of the information herein. However, the information
contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its
dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware
products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked
name as such, this book uses the names only in an editorial
fashion and to the benefit of the trademark owner with no
intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

Level 1, 110 Johnston St, Fitzroy
VIC Australia 3065
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-
understand content for web professionals. Visit
http://www.sitepoint.com/ to access our blogs, books,
newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About SiteGround
This ebook was created in collaboration with SiteGround Web
Hosting. For more than 15 years, SiteGround has been
providing hosting solutions with a focus on website speed and
performance, top-notch security, and exceptional Customer
Support service. If you have a great idea for a personal, client,
or e-commerce site, SiteGround will help you start your
project on the web quickly and easily. They offer a full
solution, including quick domain and CMS setup, handy site
management tools, and various dev features. Enjoy essential
website must-haves like free CDN, Let’s Encrypt SSL
certificate, free email accounts, automated daily backup, Git
integration, staging tool, and many others! Learn more at
siteground.com.

About Craig Buckler

http://www.sitepoint.com/
http://siteground.com/

Craig is a freelance developer, author, and speaker who never
shuts up about the web.

He started coding in the 1980s when applications had to
squeeze into a few kilobytes of RAM. His passion for the Web
was ignited in the mid 1990s when 28K modems were typical
and 100KB pages were considered extravagant.

Over the past decade, Craig has written 1,200 tutorials for
SitePoint as web standards evolved. Despite living in a
technically wondrous future, he has never forgotten what
could be achieved with modest resources.

https://craigbuckler.com/

Preface
Despite working on the web every day, few developers have a
good word to say about the monster they’ve created. Achingly
slow sites with annoying overlays, cookie agreements, instant
notifications, and obtrusive ads litter the web landscape.

While there may be some excuses for complex web
applications, there’s little justification for sluggish content-
based and ecommerce sites. People are notoriously impatient,
and an unresponsive site receives fewer visitors and
conversions.

This book provides advice, tips, and best practice for
improving website performance.

Who Should Read This Book?
The performance options described in the following chapters
range from quick, five-minute configuration changes to major
website overhauls. We primarily concentrate on front-end
activities and server configurations to optimize the code
delivered to a browser.

Some back-end tips are provided, but this is often specific to
your application, framework, database, and usage patterns.
Server-side performance can often be improved with
additional or more powerful computing resources.

Ideally, everyone involved in a project would consider
performance from the start. Somewhat understandably, that
rarely occurs, because no one can appreciate the speed of a
website or application before it’s been created. Many of the
tips can therefore be applied after your project has been
delivered.

Conventions Used

CODE SAMPLES

Code in this book is displayed using a fixed-width font, like
so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back
at school.</p>

Where existing code is required for context, rather than repeat
all of it, ⋮ will be displayed:

function animate() {
 ⋮
new_variable = "Hello";
}

Some lines of code should be entered on one line, but we’ve
had to wrap them because of page constraints. An ➥ indicates
a line break that exists for formatting purposes only, and
should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

You’ll notice that we’ve used certain layout styles throughout
this book to signify different types of information. Look out
for the following items.

TIPS, NOTES, AND WARNINGS

Hey, You!
Tips provide helpful little pointers.

Ahem, Excuse Me ...
Notes are useful asides that are related—but not critical—to the topic at hand. Think of
them as extra tidbits of information.

Make Sure You Always ...
... pay attention to these important points.

Watch Out!
Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky problems.

books@sitepoint.com is our email address, should you need to contact
us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

Chapter 1: Web
Performance Matters

The Cost of Poor Performance
Web obesity, slow downloads, and poor performance hit
everyone—site users, online business owners, and even those
who’ve never accessed the Web.

USER COSTS

At the start of 2020, the average web page comprises:

27KB of HTML content

64KB of CSS split over seven style sheets

four fonts, totaling 122KB

410KB of JavaScript in 20 source files

31 images, requiring 980KB of bandwidth (a third of these are off screen
and may never be viewed!)

The total: 1,940KB of data made over 74 HTTP requests,
which takes seven seconds to fully appear on the average
user’s desktop worldwide. This increases to a frustrating 20
seconds on mobile devices. (Source: HTTP Archive, which
analyzes five million popular content websites.)

Downloading this web page on a typical mobile phone costs
US users $0.20. Those browsing in Vanuatu, Mauritania, and
Madagascar pay more than 1% of their daily income for the
privilege of viewing a single page—despite it containing a
mere 27KB of potentially readable content. (Source:
whatdoesmysitecost.com.)

BUSINESS COSTS

Slow, bloated pages are bad for business:

https://httparchive.org/reports/loading-speed#ol
https://whatdoesmysitecost.com/

1. The larger the page download, the slower the user experience, and the
less likely that person will consider making a purchase or returning.

2. 55% of visitors use a mobile device. These have more limited
capabilities and may be connected to a slower network, which
exacerbates the problem. (Source: statcounter.com.)

3. Google’s page speed algorithms downgrade slower sites, which harms
search engine optimization efforts.

4. More data results in higher hosting, storage, and bandwidth costs.
5. The larger your codebase, the longer it takes to update and maintain.

ENVIRONMENTAL COSTS

The Internet consumes 420TWh—or up to 10%—of the
world’s electricity consumption. This accounts for 4% of
global greenhouse gas emissions, which is comparable to the
aviation industry. Taking the web infrastructure and traffic into
account, a single page load is estimated to emit 1.3g of CO².
(Source: websitecarbon.com.)

While the Web has reduced energy use by providing a virtual
alternative to travel and postage, those 1MB hero images still
have an environmental impact.

The Reason for the Woeful Web
How have badly performing sites become ubiquitous when
they cost more money to run, receive fewer visitors, and
decrease conversions?

The main reason: performance is a lower priority compared to
other features.

It’s easy to add more stuff. Optimizing or removing
unnecessary junk is more difficult. We fear breaking the site or
visitor usage patterns, so it becomes easier to make excuses for
not addressing performance.

EXCUSE #1: “WE DON’T HAVE A
PERFORMANCE PROBLEM!”

Are you using the latest PC or smartphone on a fast network?
Try a mid-range, two-year-old device. Try limiting bandwidth

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://www.websitecarbon.com/

to your country’s average speed. Try using your site on a VPN
or hotel Wi-Fi.

EXCUSE #2: “OUR USERS NEVER
COMPLAIN?”

Possibly because they abandon your site and never return. Few
people bother to make a complaint when competing content
and services are a few clicks away.

EXCUSE #3: “OUR USERS HAVE HIGH-
END DEVICES”

This presumption becomes a self-fulfilling prophecy when a
site can only be viewed by those with a recent device on a fast
connection.

Would your revenues increase if more people could access
your service? Are you considering explosive web growth in
markets such as Asia, Africa, and South America, where
smartphone and network capacity may be more limited?

EXCUSE #4: “OUR CUSTOMERS USE
MODERN BROWSERS”

There’s a common myth that 1% of users disable JavaScript or
block other browser features such as images or CSS—for
example, those using screen readers. This could be a
considerable number, yet it’s used as an excuse to discriminate
against certain groups in order to make development easier
and avoid addressing performance on less capable devices.

In reality, it’s not 1% of users blocking assets, but 1% of visits.
Every user will eventually encounter a situation where
something breaks, such as when:

one or more files fail to download

firewalls or ISPs block certain assets

a screen reader or older device is used

the browser doesn’t support specific features

a browser extension blocks, breaks, or modifies code

the browser disables JavaScript on slow connections

It is possible to build robust, high-performance applications
that can cope with these situations. Does yours?

EXCUSE #5: “WE’LL ADDRESS
PERFORMANCE LATER”

Premature optimization is the root of all evil.

This quote is attributed to Donald Knuth, from his paper
“Structured Programming with go to Statements”. It relates
to programmers wasting time on efficiencies that aren’t an
immediate problem—such as a small start-up trying to ensure
their application scales to millions of users.

The full quote in context:

We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.

Before you reach millions of users, you need to ensure the first
few dozen people want to use your product. Back-end server
or database inefficiencies are unlikely to be a major issue in
the early days.

However, front-end performance can make or break an
application. It could be part of your “critical 3%”, and it’s
easier to address optimization from the start.

EXCUSE #6: “SOME SYSTEMS REQUIRE
MORE BANDWIDTH AND PROCESSING”

Complex web apps such as Gmail, maps, social networks,
games, and image galleries will require more bandwidth and
processing capacity than content websites. Performance
remains a critical issue, but a higher page weight and slower
load time can be expected.

However, the HTTP Archive crawls articles and online shops.
It’s not looking at web applications. The average 2MB website
page weight is the equivalent of half of all Shakespeare’s
plays, or the 1993 disk-based distribution of DOOM—on a
single page often containing only a few paragraphs of content.
There’s little excuse for not addressing performance.

EXCUSE #7: “EXPANDING PAGE WEIGHT
IS THE PRICE OF PROGRESS”

This may be true for some edge cases. However, developers
strived to keep pages under 100KB during the dial-up days of
the late 1990s. Has web content become 20x better or faster
since that time?

EXCUSE #8: “SLIMMING PAGES MEANS
DUMBING DOWN, WITH FEWER
FEATURES AND EFFECTS”

Performance can often be improved with minimal effort and
no loss of functionality.

You can do more with less as web browsers evolve. Consider
the CSS3 border-radius property: adding rounded
corners now requires a few bytes of code compared to the
multiple image shenanigans of a decade ago.

EXCUSE #9: “IMPROVING PERFORMANCE
INCREASES COMPLICATIONS AND
MAINTENANCE”

Removing unused or unnecessary images, videos, fonts, CSS,
and JavaScript will simplify your site. It should result in fewer
complications and less maintenance.

EXCUSE #10: “OUR CLIENT IS HAPPY!”

Clients employ you for your expertise, and pitching
optimization as a selling point will differentiate your business
from others.

https://httparchive.org/
https://en.wikipedia.org/wiki/Doom_(1993_video_game)

Web performance is an essential part of a web developer’s job.
A little effort can reap considerable rewards for everyone:

less code is required

users receive a slicker experience

search engine rankings improve

conversions increase

hosting costs decrease

No one will criticize you for building a super-fast, responsive
site!

Where do I Start?
The next chapter introduces tools to help you identify issues.
This is followed by a delicious buffet of food-inspired
chapters:

Chapter 3: Quick Snacks A selection of simple, practical,
cost-effective performance solutions that can be implemented
on any site in minutes.

Chapter 4: Simple Recipes Some more complex
development options that may take a few hours or days to
implement but could have a larger positive impact.

Chapter 5: Life-changing Diets More radical development
considerations and techniques that are best adopted from the
start of your project.

Page weight reduction and optimization tips are generally
grouped into similar concepts, with the easiest or most
beneficial covered first.

Those attempting to improve an existing site should read each
chapter in order. Those starting a new project may benefit
from reading the chapters in reverse order, since more radical
approaches then become viable.

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch3.xhtml
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml

Chapter 2: Testing Tools
Admitting your site has a performance problem is the first step
on the road to recovery! This chapter provides a list of testing
tools to help you understand issues using real data, showing
how:

1. the largest assets can be discovered
2. the slowest network responses can be identified
3. the reasons for poor browser performance can be diagnosed

It may be necessary to run tests a few times to establish a
measurable performance baseline. The same tests can then be
rerun to evaluate performance improvements—or
deteriorations—after code has been updated.

Create a Test Plan
You should test your websites and applications for defects,
ease of use, accessibility, quality assurance, and other factors.
Evaluating performance is no different, and it’s best to follow
a plan that lays out:

1. who’s responsible for running tests
2. what tools and settings will be used for each test
3. how results will be recorded and fed back into the development process

Use performance analysis tools manually at first to understand
the reports and determine optimization priorities.

As your processes evolve, it may become possible to automate
these tests so developers are warned about potential problems
and perhaps blocked from committing poorly optimized code.
Chapter 5 describes several options for improving your
workflow with build processes and performance budgets.

Automated vs Manual Testing

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml

Automated tests are never a substitute for manual user testing! Tests are good at
repeating operations to report faults, but they’re unlikely to discover issues you weren’t
expecting.

It’s possible to build a wholly unusable site that fully passes automated testing. For
example, a button could trigger a fast change to the page that shows skeleton content,
while the real results take an hour to appear!

Identify Performance Bottlenecks
Knowing you have a performance problem is one thing.
Finding and fixing the causes is another matter.

The first step is to identify whether the fault occurs server-side
or client-side. A slow network response, either on the initial
page load or during an Ajax request, will normally indicate a
server issue. Database queries are often the culprit, but you’ll
need to prove that! Existing tools and logs can help, but it may
be necessary to output diagnostic information to a file in a
similar way to other debugging activities.

Client-side issues can be diagnosed using browser developer
tools, as described below. Performance is affected when the
browser has considerable work to do—such as a long-running
JavaScript function, a DOM update that causes the page to re-
layout, or CSS changes that affect many elements. The tips in
Chapters 3, 4, and 5 provide solutions to typical problems.

Performance Tool Concepts
Most of the tools described in this chapter diagnose a
particular “page” in your site within the context of a web
browser. They primarily analyze front-end performance,
although a back-end server or database could be to blame for a
large or slow response. (Chapter 4 provides further
information about potential back-end issues and database
tools.)

THE BROWSER RENDERING PROCESS

When a site or app is first accessed by a user, the following
steps occur:

https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-with-a-perfect-lighthouse-score/
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml

1. The browser makes an HTTP request for a specific URL. Under the
hood, several network processes are taking place to resolve the domain
name to an IP address and route the request to a server.

2. The server receives and parses the request. It will reference a specific
URL and may have data appended as a query string, in the HTTP header,
or message body. It returns a response which, in this case, we’ll presume
is HTML content.

3. The browser starts to receive HTML data, which it parses. The document
may reference further assets, such as images, fonts, style sheets, and
JavaScript, which trigger additional HTTP requests to the same or
another server.

4. Eventually, the browser has enough information to start the rendering
process. Behind the scenes, it has started to build the HTML DOM
(document object model) which defines the page in a hierarchical tree
structure. Style calculations also determine which CSS rules apply to
each DOM node, and a CSSOM (CSS object model) is created for
JavaScript interaction.

5. The browser initiates the layout (or reflow) phase. This calculates the
dimensions of each element and how it affects the size or positioning of
elements around it.

6. The layout is followed by a paint phase. This draws the visual parts of
each element onto separate layers—that is, text, colors, images, borders,
shadows, and so on.

7. Finally, a composite phase draws each layer to the screen in the correct
order.

The page is now in an initial viewable state. During or after
the render, JavaScript can run to make further HTTP requests
(Ajax or WebSocket calls), perform calculations, update the
DOM, or apply CSS rules. This could trigger further layout,
paint, and/or composite phases.

Most tools make reference to these phases, while also
introducing their own metrics that often combine two or more
stages. In essence, the fewer steps you require, the better the
performance. Taking steps to minimize HTTP requests and
reduce browser processing will result in a snappier user
experience.

Google Lighthouse/Chrome Audits
Lighthouse is an open-source tool that helps evaluate the
performance and quality of your page or app. You can access it
in the following ways:

1. from within Chrome’s DevTools

https://developers.google.com/web/tools/lighthouse

2. as the online web.dev or PageSpeed Insights tools
3. as a Node.js module, through which command-line and automated tests

can be executed

It’s easiest to start with Chrome’s DevTools. Navigate to any
page in Chrome, press Ctrl|Cmd + Shift + I or F12 to open
the DevTools panel, and click the Audits tab:

https://web.dev/measure/
https://developers.google.com/speed/pagespeed/insights/
https://www.npmjs.com/package/lighthouse

Select the device, audit types, network speed, and check Clear
storage to ensure there’s no influence from browser caching.
The results screen appears shortly after clicking Run audits:

Browser Extensions

Browser extensions can affect results, but Chrome will warn you about potential issues.
It may be necessary to run tests in an Incognito window since it disables extensions by
default.

The Performance, Accessibility, Best Practices, and SEO
scores provide a quick-view percentage result, which can be
clicked for more information.

Performance information includes:

Performance Metric Description

First Contentful Paint the time when the first text or image is
painted

First Meaningful Paint when the primary content is visible

Speed Index how quickly the contents of a page are
visibly populated

First CPU Idle the time when the main thread is able to
handle input

Time to Interactive the time taken for the page to become fully
interactive

Max Potential First
Input Delay

the time when the browser is able to respond
to interaction

The lower the figures, the better the page performance. This is
followed by an Opportunity section, which suggests potential
improvements and estimated savings.

Progressive Web Apps
The PWA section in Chapter 4 describes the benefits of progressive web app
technologies, which allow a web application to be installed and cached, and to work
offline.

DevTools’ Network Panel

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml

The developer tools in most browsers provide a Network
panel that shows a log of all network activity during page load
and any subsequent file, Ajax, or WebSocket data flows.

The status bar at the bottom summarizes the number of
requests, total data transfer (possibly compressed), the total
size of all uncompressed resources, the total download time,
and the time when the document DOMContentLoaded and
window load events were triggered.

Further options are provided at the top:

Preserve log: don’t clear the log between page loads

Disable cache: load all files from the network to make a better
assessment of first-time page access

Throttle network speed: select or define download speed profiles

Assets can be displayed, hidden, or reordered by clicking a
table heading. Ordering by size or download time will help
find the largest or most costly resources.

The Filter box allows you to search for specific assets or enter
criteria such as:

is:running: show any incomplete or unresponsive requests

larger-than:S: limit to files larger than S, which can be expressed
as bytes (10000) Kilobytes (1000k), or megabytes (1M)

-larger-than:S: limit to files smaller than S

-domain:*.yourdomain.com: show third-party requests that aren’t
from your primary domain

Assets from Other Domains
Most sites request assets from other domains, such as CDNs (content delivery
networks), fonts repositories, analytics trackers, advertising networks, social media
share buttons, and so on. While useful, those resources can have a negative impact on
performance, privacy, and security. Refer to Chapter 4 for further information.

Chrome’s Performance Monitor
Chrome’s new Performance Monitor can be accessed from
the DevTools’ More tools sub-menu (although this may vary
across Chrome versions).

https://developer.mozilla.org/docs/Web/API/Document/DOMContentLoaded_event
https://developer.mozilla.org/docs/Web/API/Window/load_event
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml

It appears in the lower Console drawer panel, and charts are
updated in real time as you use a page.

Monitors can be displayed and hidden by clicking the heading
in the left:

Performance Monitor Description

CPU usage processor utilization from 0% to 100%

JS heap size memory required for JavaScript objects

DOM Nodes the number of elements in the HTML document

JS event
listeners the number of registered JavaScript event listeners

Documents the number of document resources including the page,
CSS, JS, etc.

Document
Frames the number of frames, iframes, and worker scripts

Layouts / sec the rate at which the browser has to re-layout the DOM

Style recalcs /
sec the rate at which the browser has to recalculate styles

The Performance Monitor could be used to discover unusual
spikes in activity—such as rising memory use or layout
recalculations when an element has been added to the page.
Further investigation can then be carried out in the
Performance Panel.

Developer Tools’ Performance Panel
The developer tools provided in Chrome, Firefox, Safari, and
Edge provide a Performance tab that allows you to record a
snapshot of browser activity when particular actions are made.
Unlike the Performance Monitor, you must record a profile
before it can be analyzed.

To use Chrome’s version, open DevTools and navigate to the
Performance pane. The Settings cog allows you to select
network and CPU throttling options before clicking the
Record icon.

Load or use your site as required, then hit Stop to generate the
performance report.

The report can be daunting, but it can be saved and reloaded
later for further analysis.

The top timeline chart shows frames per second, CPU usage,
network usage, screenshots, and the heap memory size. An
area can be selected with the mouse to focus on a specific
point.

Result panes can be expanded and collapsed. Versions of
Chrome differ, but panes may include:

Network: loading times for individual files

Frames: screenshots at points on the timeline

Interactions: input and animation timings

Timings: events such as DOMContentLoaded and the First Meaningful
Paint

Main: thread activities such as function calls and event handlers

These are followed by a chart showing the JavaScript memory
heap, number of documents, number of nodes, event listeners,
and GPU memory usage.

The final Summary panel changes as you click items in the
upper panes. The breakdown may include function call and
event details as well as timings where appropriate:

Loading: time to load assets from the network

Scripting: JavaScript execution resulting in visual changes (which can
also include CSS animations and transitions)

Rendering: the browser process of calculating which CSS rules apply
and how layout is affected

Painting: the browser process of filling in pixels and drawing layers in
the correct order

System: other browser activities

Idle: no activity

The panel can typically be used to discover inefficient
activities, including:

expensive event handlers, such as those attached to scroll or mouseover
actions

long-running JavaScript functions

slow or badly throttled network requests

a continually rising JavaScript Heap, which could result from memory
leaks or poor garbage collection

style changes that affect many DOM elements

animations that incur frequent layout changes

Chapters 4 and 5 provide common solutions to these issues.

DevTools’ Console Logs
Performance monitoring can help discover problems when
specific actions are performed in a site or app. However, it
may become necessary to profile JavaScript execution by
logging messages to the console when events occur. Modern
browsers support various Performance Timing APIs that can
help to analyze code.

PERFORMANCE.NOW()

performance.now() returns the elapsed time in
milliseconds since the page was loaded. Unlike
Date.now(), it returns a floating-point number representing
fractions of a millisecond:

let t0 = performance.now();
doSomething();
let t1 = performance.now();
console.log(`doSomething() executed in ${ t1 - t0
}ms`);

PERFORMANCE MARKS AND MEASURES

performance.now() can become arduous to manage as
an application grows. The API also allows you to mark when
an event occurs and measure the time elapsed between two
marks. A mark is defined by passing a name string to
performance.mark():

https://developer.mozilla.org/docs/Web/API/Performance
https://developer.mozilla.org/docs/Web/API/Performance/now
https://developer.mozilla.org/docs/Web/API/Performance/mark

performance.mark('script:start');

performance.mark('doSomething1:start');
doSomething1();
performance.mark('doSomething1:end');

performance.mark('doSomething2:start');
doSomething2();
performance.mark('doSomething2:end');

performance.mark('script:end');

Each mark() call adds a PerformanceMark object to an
array, which defines the name and startTime.

Navigation and Resource Entries
The array is likely to contain other automatically generated browser entries for
navigation and resource timings.

A mark can be cleared with
performance.clearMarks(markName). All marks are
cleared when no name is passed.

The elapsed time between two marks can be calculated by
creating a performance.measure() by passing the
measure name, start mark, and end mark:

performance.measure('doSomething1',
'doSomething1:start', 'doSomething1:end');
performance.measure('script', 'script:start',
'doSomething1:end');

Omitting the start mark measures from the moment the page
loaded. Omitting the end mark measures to the current time.
Each measure() call adds a PerformanceEntry object
to the same array, which defines the name, startTime, and
duration.

A measure can be cleared with
performance.clearMeasures(measureName). All
measures are cleared when no name is passed.

https://developer.mozilla.org/docs/Web/API/PerformanceMark
https://developer.mozilla.org/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/docs/Web/API/Resource_Timing_API
https://developer.mozilla.org/docs/Web/API/Performance/clearMarks
https://developer.mozilla.org/docs/Web/API/Performance/measure
https://developer.mozilla.org/docs/Web/API/PerformanceEntry
https://developer.mozilla.org/docs/Web/API/Performance/clearMeasures

Marks and measures can be accessed with:

1. performance.getEntriesByType(type), where type is either
"mark" or "measure"

2. performance.getEntriesByName(name), where name is a
mark or measure name

3. performance.getEntries(), to access all items in the array.

The name and duration of every measure can therefore be
output:

performance.getEntriesByType('measure')
 .forEach(m => console.log(`${m.name}:
${m.duration}ms`));

WebPageTest.org
Despite its retro look, WebPageTest.org reports performance
information from global locations using emulated devices with
a range of settings.

https://developer.mozilla.org/docs/Web/API/Performance/getEntriesByType
https://developer.mozilla.org/docs/Web/API/Performance/getEntriesByName
https://developer.mozilla.org/docs/Web/API/Performance/getEntries
https://webpagetest.org/

DevTool-like reports take a few minutes to generate.

An A (good) to F (bad) report is shown at the top:

First byte time: the time taken for the first byte to be received

Keep-alive enabled: are persistent HTTP connections used?

Compress transfer: are assets gzip compressed?

Compress images: can images be compressed further?

Cache static content: does the site leverage browser caching?

Effective use of a CDN: are content delivery networks used?

Content Delivery Networks
The benefits of using a CDN are described in Chapter 3.

The Summary and Details panels provide a table and
waterfall chart showing network metrics, where lower figures
indicate better performance:

Performance Metric Description

Load
Time the time taken from the initial request to the browser load event

First
Byte the time taken for the first byte to be received

Start
Rend
er

the time taken for the browser to start rendering content on the
page

Speed
Index

the average time at which visible parts of the page are
displayed (more information)

DOM
Elem
ents

the number of DOM elements

Docu
ment
Comp
lete

a set of metrics relating to the DOMContentLoaded event,
when the HTML has fully loaded but other assets such as
images and fonts may still be in progress

Fully
Load
ed

a set of metrics relating to the window load event when all page
assets have been downloaded and rendered

The Performance Review panel shows information about
effective use of file compression, browser caching, and CDN
usage.

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch3.xhtml
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://developer.mozilla.org/docs/Web/API/Document/DOMContentLoaded_event
https://developer.mozilla.org/docs/Web/API/Window/load_event

The Content Breakdown panel provides a list of assets by
type (HTML, CSS, JavaScript, images, and others) with
requests, size, network response times, and rendering events.

The Domains panel shows the number and size of requests
made to the page and third-party domains such as CDNs, font
repositories, analytics, advertisers, social media widgets, and
so on.

The Processing Breakdown panel shows the time taken for
browser processes including loading, scripting, layout, and
painting.

The Screenshot panel shows frames and/or a video at specific
points, such as the time the first content appeared, when a hero
image was shown, and the fully loaded view.

Other panels provide links to additional services such as image
optimizers and domain request maps.

For more information, refer to:

WebPageTest documentation

Lean Websites, Chapter 3

WEBPAGETEST API

WebPageTest offers a REST API to programmatically
automate tests or obtain results during a build process.

Tests are limited to 200 page loads per day. Repeated views to
evaluate cached loading factors also count as a page load.
Developers must apply for an API key to get started.

Tests are initiated by requesting a URL. In this example,
mysite.com tests are run twice:

http://www.webpagetest.org/runtest.php?k=my-api-
key&url=mysite.com&runs=2&f=json

https://sites.google.com/a/webpagetest.org/docs/
https://www.sitepoint.com/premium/books/lean-websites
https://sites.google.com/a/webpagetest.org/docs/advanced-features/webpagetest-restful-apis
http://www.webpagetest.org/getkey.php

A successful request returns a JSON response with a test ID
and a set of result URLs:

{
 "data": {
 "testId": "1234567890",
 "ownerKey": "ceb6128dbf05e09a1969ad",
 "jsonUrl":
"https://www.webpagetest.org/jsonResult.php?
test=1234567890",
 "xmlUrl":
"https://www.webpagetest.org/xmlResult/1234567890/
",
 "userUrl":
"https://www.webpagetest.org/result/1234567890/",
 "summaryCSV":
"https://www.webpagetest.org/result/1234567890/pag
e_data.csv",
 "detailCSV":
"https://www.webpagetest.org/result/1234567890/req
uests.csv"
 }
}

The status of a test can be checked by passing the testId to
the testStatus.php URL. An HTTP 200 is returned when
the result URLs are ready:

http://www.webpagetest.org/testStatus.php?k=my-
api-key&f=json&test=1234567890

The completed results are stored for up to 30 days and can be
accessed from the URLs shown in the initial runtest.php
request.

A Node.js webpagetest module is available to help with API
processing.

More Performance Assessment Tools
A variety of other free tools, browser extensions, and
commercial services (often with free tiers or trials) are
available, which can provide performance monitoring, usage
tracking, and improvement advice:

sitespeed.io

https://www.npmjs.com/package/webpagetest
https://www.sitespeed.io/

webhint

Pingdom Website Speed Test

GMetrix

Uptrends

Sentry.io

Finally, don’t forget to test your system using a combination of
real devices, operating systems, input types, and browsers on a
range of network speeds. Consult your analytics reports to help
determine what systems and connections your visitors
typically use.

https://webhint.io/
https://tools.pingdom.com/
https://gtmetrix.com/
https://www.uptrends.com/
https://sentry.io/

Chapter 3: Quick Snacks
This chapter lists a selection of tasty yet simple, practical, and
cost-effective performance solutions that can be implemented
on any site within a few minutes. It’s best to read the following
sections in order, since they start with simpler hosting and
server settings before moving on to quick image, CSS, and
JavaScript improvements.

Consider Your Hosting Plan
Hosting will affect the performance of your website or
application. The range of choices and prices may be
bewildering, but hosting services are segregated into four
primary types.

SHARED HOSTING

Your website is hosted on a physical server alongside
hundreds, if not thousands, of other sites. Each customer
shares resources, so disk space, RAM, CPU time, and other
facilities may be limited to ensure the server remains
responsive.

Pros:

They’re inexpensive, with services starting from a few dollars per month.

They offer fully managed backups, security, maintenance, and upgrades.

They may provide simple, one-click installations for CMS, forum, wiki
and other applications.

They sometimes offer specialist expertise, such as WordPress
management.

Technical support is often included in the price.

Cons:

Servers may be over-sold, in which case performance and page load
times can suffer.

A problem with another site can affect yours—such as high traffic, denial
of service attacks, and so on.

Hardware failures can take your site offline for a considerable period.

It can be difficult to scale anything other than disk space or bandwidth.

Support expertise and response times will vary from host to host.

DEDICATED SERVER HOSTING

Your website is hosted on a physical server (or servers) which
you own. The hardware is exclusively used by you, so it can
be configured to your exact requirements.

Pros:

You get fast performance, with little possibility of other sites affecting
speed.

You have access to further resources such as RAM, disks, CPUs, and
other servers can be added.

Cons:

Unless the server is fully managed, skilled technical staff will be required
to maintain server updates, backups, security, and so on.

Hardware failures can still occur.

They’re expensive—typically a few hundred dollars per month.

VIRTUAL PRIVATE SERVER (VPS)
HOSTING

A VPS is your own remote virtual machine. It feels like a
dedicated server, but is effectively a software emulation
running on one or more real servers.

Pros:

A VPS is quicker to set up and more affordable than a dedicated server.

It’s fast, flexible, and easier to scale.

It’s more robust: your server is just data that can be moved to or run from
other hardware.

Cons:

Resources are still shared and the host’s network can be swamped.

A VPS still requires skilled technical staff to maintain server updates,
backups, security, and so on (unless you pay extra for a “managed”
VPS).

CLOUD HOSTING

Cloud hosting comes in many different guises, but it normally
abstracts the hardware infrastructure into a set of services that
can be accessed on demand. For example, your web
application may require server-side processing, a database, and
file store services, which are provisioned separately. You could
opt to use serverless functions, which implement an
application as a series of small micro-services rather than as a
single monolithic program.

Pros:

It’s robust and reliable.

It offers scalability and flexibility, as resources can be instantly scaled up
when demand increases.

It’s cost efficient, as you only pay for what you use.

Cons:

Cloud hosting has a steep learning curve, with each host offering a
different service, concepts, and terminology.

Costs can be extremely difficult to determine up front.

There’s vendor lock-in, as it can be more difficult to move away from
bespoke services.

Support can be a costly extra service.

SWITCH TO A MORE APPROPRIATE
HOSTING OPTION

Performance will be affected as your site increases in
popularity. Shared hosting plans are especially susceptible to
surges in demand, such as links from Reddit, Hacker News,
and so on. Your site could be blocked as soon as it reaches
processing, storage, or bandwidth thresholds.

Contact your host first, as they may be able to suggest options
for switching your site to another service or platform. For

example, SiteGround provides standard web hosting accounts
where you can manually install a WordPress CMS. However,
they also offer fully managed WordPress hosting in the US,
UK, Europe, and Australia. Your site can be transferred for
free to take advantage of application-specific performance
optimizations such as caching, compression, minification,
image optimization, and lazy loading.

However, be aware that you’ll always be limited by your
host’s infrastructure and location. For example, a European
company should consider a US-based host if the majority of
their clients are based in North America.

CDNs to the Rescue
The next section describes content delivery networks, which can offset the effects of
physical server locations.

SCALE RESOURCES

Most hosting services provide scaling options to increase
processor, memory, disk space, or bandwidth capacity. This is
usually simpler with cloud and VPS hosting, which have less
reliance on physical hardware. It may even be possible to
move resources to alternative geographical locations.

An additional monthly fee for extra resources will normally
apply, although dedicated server providers can make a one-off
charge. Some cloud services scale and charge according to
demand, although there are often fixed-price elements such as
disk space.

SWITCH HOSTS

Switching hosts can have a positive impact on performance if
your new host has a faster infrastructure based in a location
closer to users. Improved hosting is unlikely to solve all your
performance problems, but it can be a cost-effective solution
for back-end speed issues.

https://www.siteground.com/

What to Look for in a New Host
These are some performance-related features to look for in a new host:

a global infrastructure, or data centers geographically close to your main users

specialist support for applications you’re using, such as WordPress

HTTP/2 and simple SSL certificate installation

domain nameserver and DNS configuration

gzip and Brotli compression enabled

options for automatic minification, caching, and image optimization

attack detection and prevention

usage and speed reports

automated issue alerts

good, independent reviews

a knowledgeable and fast support service

Don’t be swayed by worthless 99.9% up-time claims. Reputable hosts are reliable and
those that aren’t won’t provide proof or guarantees. Besides, it still equates to nine
hours of downtime per year, which will inevitably coincide with your product launch!

Use a Content Delivery Network
A content delivery network can provide a performance boost
to any website by distributing the load and serving assets from
locations geographically closer to users. If your site is hosted
on servers in California, for example, and you don’t have a
CDN, all users must connect to the server in California
directly:

Using a CDN service allows a user from Australia to access
assets from closer servers hosted in Melbourne:

The response is faster, users are happier, and your hosting
requirements may be reduced.

You may already be using a CDN for static assets such as CSS
or JavaScript frameworks. For example, jQuery can be
referenced at https://code.jquery.com/jquery-
3.4.1.slim.min.js in a script tag. This type of CDN
offers several benefits:

Files are available on fast servers replicated across the globe.

Files are hosted on a domain other than your website’s, which increases
the number of concurrent assets the browser can download.

Files may already be cached in the user’s browser, since many sites may
reference that URL.

Unfortunately, simple static-file CDNs can be frustrating to
manage, and third-party scripts have performance, privacy, and
security risks (see Chapter 4).

More recently, CDN services have appeared that automatically
proxy requests to your site. This usually requires your domain
to point at the CDN’s name servers or set specific DNS
records. The benefits of this include:

a faster, high-capacity infrastructure with more efficient delivery from
many locations around the globe

high availability: a CDN can continue to deliver cached files even when
a host’s server fails

improved SEO: Google rewards sites with faster response times

cheaper costs: adopting a CDN is likely to cost less than scaling server
resources

CDNs may provide additional services regardless of your
host’s server facilities and limitations, such as:

SSL certificates for HTTPS encryption

load balancing, data compression, and the HTTP/2 protocol for faster
transmission

automatic file minification, image optimization, video transcoding, and
email obfuscation

attack detection and distributed denial of service (DDoS) prevention

access blocking to specific IP addresses, countries, etc.

server-based visitor analytics that don’t rely on client-side JavaScript

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml

custom error pages, redirects, authentication, AMP site generation,
serverless APIs, and more

Many services offer free plans or time-limited trials so you can
assess performance with the tools mentioned in Chapter 2
before making a commitment. Popular options include:

Akamai

Alibaba Cloud CDN

Azure (Microsoft)

BelugaCDN

BunnyCDN

CacheFly

CDN.net

CDN77

CDNetworks

Cloud CDN (Google)

Cloudflare

CloudFront (Amazon)

Edgecast (Verizon)

Fastly

G-Core Labs CDN

Hostry

Imperva

KeyCDN

Limelight

Medianova

StackPath

Use Image and Video CDNs
Specialist image and video CDNs can be used in addition to or
instead of a standard CDN. Popular options include:

Cloudimage

Cloudinary

ImageEngine

imgix

piio

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch2.xhtml
https://www.akamai.com/
https://www.alibabacloud.com/product/cdn
https://azure.microsoft.com/en-us/services/cdn/
https://www.belugacdn.com/
https://bunnycdn.com/
https://www.cachefly.com/
https://cdn.net/
https://www.cdn77.com/
https://www.cdnetworks.com/
https://cloud.google.com/cdn/
https://www.cloudflare.com/
https://aws.amazon.com/cloudfront/
https://www.verizondigitalmedia.com/platform/edgecast-cdn/
https://www.fastly.com/products/cdn
https://gcorelabs.com/cdn/
https://hostry.com/products/cdn/
https://www.imperva.com/products/cdn-content-delivery-network/
https://www.keycdn.com/
https://www.limelight.com/
https://www.medianova.com/content-delivery-and-optimization/
https://www.stackpath.com/products/cdn/
https://www.cloudimage.io/
https://cloudinary.com/
https://imageengine.io/
https://www.imgix.com/
https://piio.co/

imagekit.io

pixboost

Uploadcare

The main benefits are described in the following sections.

ASSET MANAGEMENT

Image CDNs allow you to upload original images—perhaps
directly from users—where they can be stored, optimized, and
managed via a user interface or API.

OPTIMAL FORMATTING AND
COMPRESSION

Regardless of the media uploaded, an image CDN can serve
the file in the most optimal format. For example, you could
upload a JPG image but have it served to Chrome and Firefox
users in the more efficient WebP format. Browsers without
WebP support would receive the next most appropriate image
format.

Video can also be transcoded using a range of alternative
codecs so all popular browsers are supported.

ART DIRECTION, SIZING, AND EFFECTS

Some image CDNs offer an API that allows you to crop,
resize, transform, or apply filters without affecting the original
image. For example, Cloudinary’s URL-based API allows an
image of a person to be cropped to 400px around any detected
face, resized to 200px, and served in the most appropriate
format:

https://res.cloudinary.com/demo/image/upload/w_400
,h_400,g_face,r_max/w_200/f_auto/portrait

Activate Server Compression
Assets can be compressed on a web server prior to
transmission, then uncompressed on the browser. For text-

https://imagekit.io/
https://pixboost.com/
https://uploadcare.com/
https://cloudinary.com/documentation/image_transformations

based files such as HTML, SVG, CSS, and JavaScript, this can
often reduce bandwidth by 60% or more. According to
W3Techs 2019 reports, compression was not activated on one
in five websites.

Compression Won’t Fix Bloated Code
Compression reduces network transfer times, but the file must still be uncompressed
and parsed when it reaches the browser. Bloated code may arrive sooner, but it won’t
magically become more efficient!

Most good web hosts enable compression by default, or do the
work for you. Gzip compression can be activated on all
popular web servers including Apache, NGINX, IIS, and
Express.js compression middleware.

Brotli is a more modern compression algorithm that reduces
file sizes further. It can be enabled on all popular web servers
alongside gzip, which must be provided for IE and older
browsers that don’t support newer standards.

CDNs and Asset Compression
A CDN can implement asset compression even if it’s not enabled on your primary
server.

Activate HTTP/2
HTTP/2 improves upon the HTTP transmission protocol
originally devised by Sir Tim Berners-Lee when he invented
the Web in 1989. HTTP/2 reduces latency by:

sending data in a binary rather than text format

compressing HTTP headers

sending more than one file on the same TCP connection

implementing Server Push, which can send a file before it has been
requested

All popular servers and CDNs support HTTP/2 but fall back to
HTTP/1.1 for older browsers. More recently, HTTP/3 has been

https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://httpd.apache.org/docs/current/mod/mod_deflate.html
https://docs.nginx.com/nginx/admin-guide/web-server/compression/
https://docs.microsoft.com/en-us/iis/extensions/iis-compression/using-iis-compression
https://github.com/expressjs/compression
https://github.com/google/brotli
https://caniuse.com/#feat=brotli
https://en.wikipedia.org/wiki/HTTP/2
https://caniuse.com/#feat=http2
https://en.wikipedia.org/wiki/HTTP/3

announced, which will further optimize performance. Browser
and server support will increase over the coming years.

Leverage Browser Caching
When a browser downloads an asset from a URL, it stores that
file locally so it can be referenced and used again.
Infrequently-changing files such as images, CSS, and
JavaScript are therefore downloaded once and used across
multiple pages on a site. Without caching, the Web would be
considerably slower and more unreliable.

The server should set appropriate Expires headers, Last-
Modified dates, and/or adopt ETag hashes in the HTTP header.
Most servers should have reasonable defaults, but you can set
custom options. For example, in an Apache .htaccess file
you can do this:

<IfModule mod_expires.c>

ExpiresActive On

Expire images after one year
<FilesMatch "\.(jpg|jpeg|png|gif|svg|ico)$">
ExpiresDefault "access plus 1 year"
</FilesMatch>

Expire CSS and JavaScript after one month
ExpiresByType text/css "access plus 1 month"
ExpiresByType text/javascript "access plus 1
month"

default expiry to one week
ExpiresDefault "access plus 1 week"

</IfModule>

Enable CMS Page Caching
By default, content management systems such as WordPress
construct and return a page on every user visit:

1. The URL is examined.
2. The appropriate content is extracted from the database.
3. The content is inserted into template code and returned to the user.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29
http://en.wikipedia.org/wiki/HTTP_ETag

This process is repeated every time—even when the same page
content is seen by all site visitors.

Fortunately, caching plugins are available, which store the
generated HTML after the first visit so all subsequent visitor
requests receive the same page. The cached page is then
invalidated when content is changed or after a specific time
has elapsed. CMS caching can have a dramatic effect on
performance and site reliability.

Popular caching plugins for WordPress include:

LiteSpeed Cache

W3 Total Cache

WP Fastest Cache

WP-Optimize

WP Super Cache

CDN vs Plugin Caching
A CDN can also cache the HTML page, but most CMS plugins perform other
optimizations such as cleaning databases, minifying code, adding HTTP expiry headers,
and so on.

ARE VIDEOS NECESSARY?

Videos can offer an engaging experience. Few do, yet they
have a higher bandwidth and performance cost than any other
web asset. Here are some recommendations:

1. Do you really need to show that tedious CEO presentation to every
visitor? Remove all media assets where possible.

2. Ensure the video is as short as possible, removing scenes where practical.
3. Transcode the video into multiple formats using the minimum

dimensions with optimal compression. Many video CDNs and services
will handle this for you.

4. Only play the video on demand—not as the user accesses the page (see
Chapter 4).

Check Your Primary Images

https://wordpress.org/plugins/tags/caching/
https://wordpress.org/plugins/litespeed-cache/
https://wordpress.org/plugins/w3-total-cache/
https://wordpress.org/plugins/wp-fastest-cache/
https://wordpress.org/plugins/wp-optimize/
https://wordpress.org/plugins/wp-super-cache/
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml

While images don’t have the same processing and rendering
overheads as HTML, CSS and JavaScript, they usually
account for a large proportion of page weight and perceived
performance.

Examine your regularly used images, such as those appearing
in headers, footers, home page hero blocks. The following tips
can dramatically reduce file sizes, although using an image
CDN can do some of the hard work for you.

RESIZE LARGE BITMAPS

An entry-level smartphone or digital camera takes multi-
megapixel images that can’t be displayed in full on the largest
screens. Few sites require images of more than 1,600 pixels in
width or height.

Resizing has a dramatic effect on image files, since halving the
dimensions reduces the size by 75%. You may also be able to
crop areas that aren’t normally shown or contain large blocks
of single colors.

CHOOSE AN APPROPRIATE IMAGE
FORMAT

Choosing the correct format will radically reduce image file
sizes. In general:

1. The JPG/JPEG format is best for photographs with intricate details.
2. The PNG format is best for logos, diagrams, and charts with solid blocks

of color. The 8-bit 256-color format will normally result in smaller files
if you don’t require 24-bit true-color or alpha transparency.

You should also consider:

1. SVG: Scalable Vector Graphics define lines, paths, and shapes in XML
rather than individual pixels. They’re best suited to logos and diagrams,
since they can be scaled to any size without loss of quality.

2. GIF: these can be animated and sometimes result in smaller files than
similar 8-bit PNGs.

3. WebP: this format can compress any type of image, but is not currently
supported in IE, Safari, and older browsers.

https://caniuse.com/#feat=webp

New image formats such as HEIC and AVIF may become
viable in future.

AVOID BASE64 ENCODING

Images can be encoded into a base64 string within a data URI
defined in an HTML tag or CSS background
property:

.myimg {
 background-image:
url('');
}

This reduces the number of HTTP requests, but it rarely boosts
performance:

1. Base64 encoding is typically 30% larger than the binary equivalent.
2. The browser must parse the string before an image can be used.
3. Altering an image invalidates the whole (cached) HTML or CSS file.

Only consider base64 encoding if:

it’s a practical option for your application—such as when images are
generated

the encoded string is very small—perhaps not much longer than a URL

There may also be a case for reusable SVG icons defined as
CSS background-image properties. For example:

.mysvgbackground {
 background-image: url('data:image/svg+xml;utf8,
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0
0 800 600"><circle cx="400" cy="300" r="50"
stroke-width="5" stroke="#f00" fill="#ff0" />
</svg>');
}

COMPRESS IMAGES EFFECTIVELY

Image tools can reduce file sizes by stripping metadata,
simplifying details, and increasing compression factors.
Ideally, image compression will be handled automatically in a
build process using options such as imagemin and svgo (see

https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/svgo

Chapter 5), but several online tools are available for one-off
tasks:

Compressor.io: online, all image types

jpeg.io: online, any format to JPG

RIOT: Windows application, bitmaps

ShrinkMe: online, all

Squoosh: online, all

SVGOMG: online, SVGs

TinyPNG / TinyJPG: online, bitmaps

Concatenate and Minify CSS
Multiple style sheets can be loading using HTML <link>
elements and CSS @import at-rules.

Loading separate files is usually inefficient, because each
@import blocks the browser’s rendering process; the
imported file could have further nested @import rules.
Performance can therefore be improved using:

1. Concatenation: all partials are combined into a single large file in the
necessary source order.

2. Minification: unnecessary comments, whitespace, and characters are
removed to minimize the file size.

A build process (see Chapter 5) or pre-processor can automate
CSS concatenation and minification, but online tools are also
available:

CSS Minifier

minifier.org

CSS Compressor

CSS Minify

Online Compressor

HTTP/2 and Multiple Files
HTTP/2 lessens the need for file concatenation because it reduces the overhead of
transmitting multiple files:

pipelining allows the server to send responses in any order

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml
https://compressor.io/compress
https://www.jpeg.io/
https://riot-optimizer.com/
https://shrinkme.app/
https://squoosh.app/
https://jakearchibald.github.io/svgomg/
https://tinypng.com/
https://developer.mozilla.org/docs/Web/HTML/Element/link
https://developer.mozilla.org/docs/Web/CSS/@import
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml
https://cssminifier.com/
https://www.minifier.org/
https://csscompressor.com/
https://www.cleancss.com/css-minify/
https://refresh-sf.com/

multiplexing permits any number of request and response messages on the same TCP
connection at the same time

the server can use Server Push to send assets before they’re requested

In theory, separate files may be a benefit on large, regularly updated applications,
because just the modified assets can be sent. However, testing is recommended. There
are unlikely to be many downsides of concatenation and minification.

Concatenate and Minify JavaScript
Application code is normally split into multiple files with
related or self-contained functionality. This makes
development more practical: files are easier to understand,
each can be tested individually, and reuse in other projects is
easier. However, dependencies must be declared in some way
to ensure script A is loaded before it’s referenced in script B.

Multiple JavaScript files can be loaded in a single web page
using:

1. more than one HTML <script> element defined in dependency order
2. ES6 modules, which import dependencies when they’re required

within a script
3. older run-time module loaders such as RequireJS, which provide

dependency management in ES5 and below

Like CSS, JavaScript benefits from concatenation and
minification: dependencies can be determined at build time, a
single HTTP request is required, and the download file is
smaller. Some minification tools can also optimize code for
improved performance.

A build process using modules such as Babel, rollup.js, or
preprocess can manage dependencies and create a single
JavaScript file that’s minified with terser (see Chapter 5).
Alternatively, the process can be handled manually to improve
performance on an existing site:

JSCompress

minifier.org

Minify your JavaScript

Online Compressor

https://developer.mozilla.org/docs/Web/HTML/Element/script
https://www.sitepoint.com/understanding-es6-modules/
https://requirejs.org/
https://babeljs.io/
https://rollupjs.org/
https://github.com/jsoverson/preprocess
https://terser.org/
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml
https://jscompress.com/
https://www.minifier.org/
https://javascript-minifier.com/
https://refresh-sf.com/

Packer

Pre-minified Third-party Code
Third-party JavaScript frameworks and libraries often provide pre-minified versions of
the source code. Consult the documentation or look for file names containing min, such
as jquery-3.4.1.min.js.

Minify HTML
HTML can also be minified to remove comments, white space,
and even unnecessary quotes around attributes. HTML code is
often smaller than CSS and JavaScript, so performance gains
will be less noticeable, but minification can be simple with a
CMS plugin, framework module, or build system (refer to
Chapter 5).

Load JavaScript at the End of the
Page
When the browser encounters a <script> tag in the HTML,
it halts all other operations while it downloads and parses the
code. This is known as a render-blocking process.

It’s normally more effective to place <script> tags at the
bottom of the page before the closing <\body> tag. This
improves page performance, since the content is viewable
before an attempt is made to process JavaScript.

Two attributes can be added to a <script> tag to ensure
JavaScript is loaded in the background without blocking the
render process:

1. defer: the script is executed when the DOM is ready and shortly before
the DOMContentLoaded event. All deferred scripts are run in the order
they’re referenced on the page.

2. async: the script is executed once it has downloaded. This could occur
at any point during or after the page has loaded, so it can’t have other
script dependencies.

http://dean.edwards.name/packer/
file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml
https://developer.mozilla.org/docs/Web/API/Window/DOMContentLoaded_event

Both attributes are well supported across modern browsers, but
they’re not suited to all scripts. For example, deferred scripts
run when the DOM is ready, but this can occur before the CSS
Object Model has been parsed. A script that analyses applied
CSS colors can therefore fail randomly. Scripts placed at the
bottom of the page are never affected by this issue, and
preloading may help (discussed next).

Loading CSS
CSS is also render-blocking. However, if it were loaded at the end of the page, the
browser would show unstyled HTML as the page loaded, then re-layout the content after
the CSS had been parsed. This looks somewhat ugly and has a negative effect on
performance. An alternative option is “critical CSS”, as described in Chapter 4.

Preload Assets
The HTML <link> tag has a preload attribute. This
specifies resources the page requires so downloading can start
immediately rather than waiting for its reference in the HTML.

For example, a page with a <script> tag just before the
closing </body> can be preloaded in the HTML <head>:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>My page</title>

 <!-- preload script -->
 <link rel="preload" href="script.js" as="script"
/>

 <link rel="stylesheet" href="styles.css" />
</head>
<body>

 <h1>My page</h1>
 <p>Lots of content...</p>

 <!-- load script (may be ready) -->
 <script src="script.js"></script>

</body>
</html>

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch4.xhtml
https://developer.mozilla.org/docs/Web/HTML/Preloading_content

The larger the HTML page, the greater the preloading benefit.

The optional as attribute allows the browser to prioritize and
cache assets more effectively. That is, a script is downloaded
before a video because it’s more critical to the page’s
operation. Permitted values are:

audio: an audio file used in an <audio> element

document: an HTML document embedded in a <frame> or
<iframe>

embed: a resource embedded inside an <embed> element

fetch: a URL required by an Ajax fetch or XHR request

font: a font file

image: an image file

object: a resource embedded in an <object> element

script: a JavaScript file

style: a CSS style sheet

track: a video subtitle WebVTT file

video: a video file used in a <video> element

worker: a JavaScript web worker or shared worker

A further optional type attribute defines the resource’s
MIME type, so the browser can make further optimizations or
avoid downloading unsupported assets. For example:

<link rel="preload" href="video.mp4" as="video"
type="video/mp4" />

Other Attributes and an API
The prefetch attribute is similar to preload, except that it’s intended to fetch
resources that will be in the next navigation/page load. Browsers give prefetch a
lower priority.

Similarly, prerender can be used to render a specified web page in the background.
Since this potentially wastes bandwidth, browsers often limit processing and memory
use.

The dns-prefetch attribute can be used to resolve a domain name to an IP address
before resources are requested, while preconnect establishes a connection to a
server.

Finally, look out for Portals, which renders a page in the background and allows the user
to instantly navigate to it. The technology is new and yet to be fully implemented in any

https://developer.mozilla.org/docs/Glossary/Prefetch
https://developer.mozilla.org/docs/Glossary/prerender
https://developer.mozilla.org/docs/Learn/Performance/dns-prefetch
https://web.dev/hands-on-portals/

browser.

Remove Unused Assets
Features will be added and dropped as your website or
application evolves. Unfortunately, it’s easy to leave stray,
unused resources lingering in the codebase, which negatively
affects performance. Easier assets to remove include:

CMS plugins. Disable or delete CMS (WordPress) plugins you’re no
longer using.

Unused fonts, weights, and styles. Try removing suspicious fonts and
retest the site. This can improve page weight by several hundred
kilobytes, and critical fonts will normally fall back to reasonable
alternatives.

Unused CSS and JavaScript. Check that any removed HTML
components have their associated styles and functionality deleted.

Duplicate dependencies. Make sure you aren’t including similar assets
more than once. This can be an issue in a CMS where different plugins
use slightly different versions of Bootstrap or jQuery.

Code for Specific Pages
Consider removing code from pages that don’t use a particular feature. For example, if a
page doesn’t require a carousel, its styles and functionality could be omitted.

This is less beneficial when concatenated CSS and JavaScript files have been
downloaded and cached in the browser. These would contain unnecessary code for that
page, but providing a smaller alternative would incur a further download. Analyze your
code to determine what could offer the best performance:

1. A single, concatenated file served to every page that can be cached on first use.
2. Multiple source files served over HTTP/2.
3. A compromise solution, such as core styles loaded on every page, plus article styles

used on news pages, pagination styles used on search results, and so on.

Assess Analytics Performance
Site owners should be given an easy way to measure page
views, journey flows, and feature usage. Tracking via server
access logs is possible, but richer statistics are normally
available using client-side systems such as Google Analytics.
These systems may be free to use, but can have a negative

https://analytics.google.com/

impact on page performance. Try temporarily removing all
analytics code from your site to assess the speed gains.

Fortunately, it is possible to retain your statistics and improve
performance:

1. Use a single analytics provider. Using more than one will adversely
affect speed and give mismatching reports. Traffic analysis is based on a
stack of assumptions; it’s often impossible to compare results.

2. Test analytics systems to determine which offers the best performance
for the information provided. Google alternatives include Matomo,
Clicky, Heap, FoxMetrics, and Woopra. Some can be hosted locally to
improve performance further.

3. Consider alternative code. For example, minimalanalytics.com removes
lesser-used features to provide a 1.5KB, Analytics-compatible script
compared to Google’s 73KB original (although it will be more stable).

4. Load analytics scripts after all other JavaScript functionality has
completed. Rather than placing code in the <head>, the analytics scripts
could be the last in the page or loaded after a timeout:

<script>
// load Google analytics after one second
setTimeout(() => {

 let
 uaId = 'UA-12345678-9', // Analytics ID
 script = document.createElement('script');

 script.src =
'https://www.googletagmanager.com/gtag/js?id=' +
uaId;
 script.async = 1;
 script.onload = function() {

 // initialize Analytics
 window.dataLayer = window.dataLayer || [];
 window.gtag = function() {
dataLayer.push(arguments); }
 gtag('js', new Date());
 gtag('config', uaId);

 };

 document.head.appendChild(script);

}, 1000);
</script>

Something More Substantial?

https://matomo.org/
https://clicky.com/
https://heap.io/
https://www.foxmetrics.com/
https://www.woopra.com/
https://minimalanalytics.com/

Tasty snacks may satisfy hunger for a while, but you’ll soon be
ravenous again! The next chapter provides more substantial,
performance-improving recipes.

Chapter 4: Simple Recipes
The tips provided in this chapter will require a little more
effort, but the performance results on new and existing sites
may be more dramatic. Some of the simplest but most
effective database optimizations are tackled first before
delving into images, media, fonts, CSS animations, and some
controversial topics.

Optimize Your Database
Database access is often the biggest processing bottleneck on
the server. Optimizing front-end performance may be futile if
your database is struggling to cope with user demand.

There are a vast array of database types, but common
performance solutions are described in the following sections.

USE A QUERY ANALYZER

Most databases provide tools that describe how a query has
been processed. These can identify missing indexes or other
performance issues. Many SQL and NoSQL databases offer an
EXPLAIN clause or option:

MySQL EXPLAIN

PostgreSQL EXPLAIN

SQLite EXPLAIN

SQL Server EXPLAIN

Oracle EXPLAIN PLAN

MongoDB .explain()

Couchbase EXPLAIN

The output can be complex, verbose, and beyond the scope of
this book. Consult the documentation and look for tools that
can help understand the issues.

https://dev.mysql.com/doc/refman/en/using-explain.html
https://www.postgresql.org/docs/current/sql-explain.html
https://www.sqlite.org/lang_explain.html
https://docs.microsoft.com/en-us/sql/t-sql/queries/explain-transact-sql
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm
https://docs.mongodb.com/manual/tutorial/analyze-query-plan/
https://docs.couchbase.com/server/current/n1ql/n1ql-language-reference/explain.html

The database logs can usually be tuned to record long-running
queries, and you may find open-source or commercial
products to help optimize data.

CREATE INDEXES

Many database performance issues will be solved with an
index. An index works identically to those in a book: it allows
a database to quickly jump to a record given a list of items
defined in a specific order.

Consider a user table containing an ID (number), name,
email, and hashed password. The ID is likely to be the primary
key and the table is ordered by that value. A query for a
specific ID is fast, because the database can use an efficient
searching algorithm. For example, it can start at the middle
record and, if its ID is higher, it knows the record must be in
the first half of the table.

However, a login form requesting a user’s email address and
password must query by that email. Those will be randomly
ordered in the user table, so the database has to check every
record until it locates a match. The larger the table, the slower
the query. An index can define a list of emails in alphabetical
order (or any order that’s practical). The searching algorithm
can then use that index to locate a record by email, just as fast
as searching by ID.

Indexes should therefore be considered on any field commonly
used in search queries (typically WHERE or JOIN clauses in an
SQL SELECT). It’s tempting to add indexes for every field,
but the more you create, the more space is required, and the
slower write operations become, as all indexes must be
updated.

SIMPLIFY QUERIES

The less work the database has to do, the faster a result will be
returned. Examine your codebase for complex or multiple
dependent queries, especially those that are generated or

contain sub-queries. It will usually be possible to make the
search more efficient.

For example, consider a query that retrieves the top five
selling books. In MySQL-compatible SQL:

SELECT title, author_id FROM book ORDER BY sales
DESC LIMIT 5;

The results contain an author_id reference, so five further
queries are made to fetch author names. For example:

SELECT firstname, lastname FROM author WHERE
author_id = 14;
SELECT firstname, lastname FROM author WHERE
author_id = 52;
SELECT firstname, lastname FROM author WHERE
author_id = 50;
SELECT firstname, lastname FROM author WHERE
author_id = 22;
SELECT firstname, lastname FROM author WHERE
author_id = 20;

This is known as the N+1 problem: a large set of queries must
be made for the parent records and each result.

A more efficient option would be to fetch all the authors in a
single query:

SELECT firstname, lastname FROM author WHERE
author_id IN (14,52,50,22,20);

Performance can be improved further with a single query that
can be optimized by the database:

SELECT book.title, author.firstname,
author.lastname
FROM book
LEFT JOIN author ON book.author_id = author.id
ORDER BY sales DESC LIMIT 5;

CREATE ADDITIONAL DATABASE
CONNECTIONS

Many web applications create a single database connection
object that’s used for all queries and updates. Unfortunately,
some databases queue all incoming requests from a single
connection and process them in order. If one user runs a
complex operation that takes 20 seconds to complete, every
other user will have to wait at least 20 seconds for their
operation to be processed.

Connection queuing issues will be more evident on continually
running applications such those implemented in Node.js. PHP
applications are usually served by a web server, which creates
separate threads with new connection objects on every request,
although pooling solutions may be in place.

To prevent database request queuing problems, consider these
options:

1. creating single-use connection objects for queries that could take time
2. creating multiple connection objects for specific uses or which can be

used in request order

However, be wary of creating too many in-memory connection
objects, which could lead to stability issues.

CONSIDER A SERVER OR MEMORY
UPGRADE

Databases work more effectively when they have plenty of
RAM. RAM allows the system to optimize frequently used
queries and cache results in memory for fast access.

Alternatively, you could consider using either:

1. a separate database server
2. multiple servers that either share processing or shard data into smaller

silos
3. a third-party database provider that handles the hard work for you

CACHE RESULTS

It may not be necessary to perform queries every time a user
requests a resource. Consider a statistical dashboard displaying
various charts that are computationally expensive to create.

The data could be fetched once from the database, cached in
memory or a file, then returned on every subsequent request.
The charts would be updated either when:

1. data has changed
2. a specific time has elapsed (such as ten minutes)
3. a combination of factors is satisfied (such as when data has changed and

it’s at least five minutes since the last calculation)

Solutions such as Redis and memcached are often used for
caching purposes.

USE BACKGROUND PROCESSING

Consider a web application where a user can upload multiple
images. These have metadata extracted, are resized, and have
filters applied before data is stored in various tables.

Rather than doing all this work in the web application at the
point the request is made, the server could return a result
immediately and offload processing to one or more
background tasks. The application will feel more responsive,
even though the final results may take a short while to appear.

USE ALTERNATIVE DATA SYSTEMS

Examine alternative systems such as Elasticsearch, which
provides faster, richer, and more appropriate search results
than standard, full-text database queries. Background
processes could populate Elasticsearch indexes, which are then
used for search queries. While this now means you have two
database systems to manage and optimize, it could reduce
bottlenecks and improve functionality.

Remove or Optimize Social Media
Buttons
Social media sharing buttons are regularly added to websites
to improve engagement and publicize content on other
platforms:

https://redis.io/
https://memcached.org/
https://www.elastic.co/

Those innocent buttons have a high cost: Facebook’s share
button downloads 786KB of code (216KB gzipped). Twitter
adds a further 151KB (52KB) and LinkedIn 182KB (55KB).
Adding a few buttons considerably increases page weight, and
processing a megabyte or two of JavaScript has a detrimental
effect on performance—especially on mobile devices. That
could be the start of your problems, for various reasons listed
below.

The code is not sitting idle. Regardless of whether or not someone clicks
a button, your visitors are being monitored across your site and others.

You may be liable for the use—or misuse—of personal data. The
European Court of Justice ruled in 2019 that sites voluntarily sharing
visitor information with a social network are considered joint data
controllers.

Third-party JavaScript is a security risk (see the next section).

Supporting every social media platform is impossible. You’re likely to
miss options, and some services don’t provide sharing facilities.

Site engagement can be reduced if your visitors are tempted to stay on
the social network.

The risks are high, given just 0.2% of visitors use the buttons.
(Sources: GOV.UK and Moovweb.)

If your site owners understand the hazards but still want to
keep the buttons, there’s a couple of options for retaining
sharing without adversely affecting performance, privacy, and
security.

USE URL-BASED SHARE LINKS

Any page can be shared on Facebook with a link like this:

https://www.facebook.com/sharer/sharer.php?
u=${url}

Likewise for Twitter:

https://twitter.com/intent/tweet?
url=${url}&text=${title}

https://developers.facebook.com/docs/plugins/faqs#faq_574746276036649
https://curia.europa.eu/jcms/upload/docs/application/pdf/2019-07/cp190099en.pdf
https://insidegovuk.blog.gov.uk/2014/02/20/gov-uk-social-sharing-buttons-the-first-10-weeks/
https://www.moovweb.com/anyone-use-social-sharing-buttons-mobile/

And LinkedIn:

https://www.linkedin.com/shareArticle?
mini=true&url=${url}&title=${title}

In these examples, ${url} is the page URL and ${title}
is the title (perhaps the text contained in the page’s <title>
tag).

Most social networks offer similar URL-based APIs. They’re
lightweight and only activate when a user chooses to engage
with the platform. You can implement these in standard <a>
tags and, if necessary, intercept the click with JavaScript to
open the link in a new window.

USE THE WEB SHARE API

Visitors can use their browser’s Share facility to post URLs to
social media apps as well as email, messaging, Pocket,
WhatsApp, and more.

The option is normally provided on mobile browsers, but it
may not be obvious to users. Progressive Web Apps (see
Chapter 5) can also hide the browser interface.

Fortunately, the Web Share API was introduced in Chrome 76
on Android, Safari 12.3 on iOS, and Safari 12.1 on macOS.
The API hands information to the host operating system,
which knows which apps support sharing.

The sharing UI can be shown in response to a user click. The
following JavaScript checks whether the Web Share API is
supported, then adds a button click handler that passes a
ShareData object to navigator.share():

// is the Web Share API supported?
if (navigator.share) {

 // share button click handler

document.getElementById('share').addEventListener(
'click', () => {

 // share page information
 navigator.share({
 url: 'https://example.com/',
 title: 'My example page',
 text: 'An example page implementing the Web
Share API.'
 });

 });

}

The ShareData object contains:

url: the URL being shared (an empty string denotes the current page)

title: the document title (perhaps the page’s HTML <title> string)

text: arbitrary body text (perhaps the page’s description meta tag)

Unlike with share buttons, it’s possible to share a page
#target such as an individual section or comment rather
than the primary URL.

file:///tmp/calibre_5.12.0_tmp_nv46rvee/v3az_nop_pdf_out/Text/jsperf1-ch5.xhtml
https://w3c.github.io/web-share/
https://caniuse.com/#feat=web-share

navigator.share() returns a Promise so .then() and
.catch() blocks can be used if you need to perform other
actions or react to failures.

Be Wary of Third-party Scripts
Analytics systems, advertising platforms, social media buttons,
and custom widgets often require you to add a third-party
<script> (from another domain). Those scripts may be
huge or grow without you realizing.

Third-party scripts also run with the same site-wide rights and
permissions as your own code. As well as hindering
performance, they can track users, upload data elsewhere,
change your content, redirect to other pages, trigger
ecommerce transactions, auto-click advertisements, or perform
any other malicious actions.

Your performance, privacy, and security is only as good as the
weakest provider. Ensure third-party scripts:

are delivered over HTTPS to eliminate man-in-the-middle attacks

use <script crossorigin="anonymous"> to ensure there’s no
exchange of user credentials via cookies or other technologies

set a <script> integrity attribute with a file hash to reject any
script that’s been changed by the provider (refer to Subresource Integrity
on MDN)

Ideally, move the script to your domain or remove it entirely.

Third-party Script Used to Target Site
British Airways was fined US$232 million in 2018 when 500,000 customers had their
names, email addresses, and full credit card information stolen during website
transactions. The attack originated from a third-party script that was modified to target
BA, possibly without the knowledge or consent of its supplier.

Use Responsive Images

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://www.bbc.co.uk/news/business-48905907

The tag offers optional srcset and size attributes
which are well-supported in most browsers (except IE). These
allow specific images to be requested according to the size of
the element and pixel density.

CSS Resolution
Modern smartphones offer screens with very high native resolutions, known as HiDPI or
Retina displays. Each pixel is almost invisible to the naked eye, so the browser
implements a CSS resolution such as 360x760px, where the native resolution could be
1440x3040px. The display density is therefore 4x, and a single CSS pixel will be using
4x4 (16) physical pixels.

Given a 100x100px space, it’s usually optimal to load a
100x100px image. However, the image quality can look
comparatively poor on a 4x display density, so a 400x400px
image could be preferable. The srcset attribute can define
appropriate images in a standard tag:

 <img width="100" height="100"
 alt="responsive image"
 src="img-100.jpg"
 srcset="img-100.jpg 1x,
 img-200.jpg 2x,
 img-300.jpg 3x,
 img-400.jpg 4x" />

The browser will select and download the most appropriate
image for the display density. This ensures the best image
quality without end users having to download unnecessarily
large images on all devices.

The image referenced in the src attribute is used when the
browser doesn’t support srcset.

image-set() and Media Queries
The CSS image-set() function offers similar options for background images, but
support is currently limited.

An alternative that works in most browsers is the CSS resolution media query,
although the code is more verbose.

https://caniuse.com/#feat=srcset
https://developer.mozilla.org/docs/Web/CSS/image-set
https://caniuse.com/#feat=css-image-set
https://developer.mozilla.org/docs/Web/CSS/@media/resolution

Alternatively, you can target images based on the rendered
width of the element:

 <img alt="responsive image"
 src="small.jpg"
 srcset="small.jpg 400w
 large.jpg 800w" />

The w unit defines the image file’s actual width in pixels.
Don’t use px as you would normally expect.

small.jpg is used when the viewport is below 400px, but
large.jpg is used on screens where the CSS or physical
pixels exceed 400px.

This example is only practical when the image is the full width
of the viewport. The sizes attribute defines the size of the
image in relation to the viewport so the width can be
calculated:

 <img alt="responsive image"
 src="small.jpg"
 srcset="small.jpg 200w
 large.jpg 400w"
 sizes="50vw" />

The image width is 50vw—half the viewport. small.jpg is
used when the image width is 200px or less (the viewport is
therefore less than 400px), but large.jpg is used when the
image width is greater.

The sizes attribute can contain complex media queries and a
final fallback size to determine the image width in multiple
viewport dimensions. For example:

 <img alt="responsive image"
 sizes="(max-width: 299px) 100vw,
 (min-width: 300px) and (max-width:
799px) calc(100vw - 60px),
 50vw" />

The Bandwidth Cost of Larger Images
A 400x400px image could have a file size 16x greater than its 100x100px equivalent. It
requires considerably more bandwidth, which could lead to a poor experience on a
mobile network.

Presume smaller images are 20KB and the larger version is 200KB. Each page contains
five images and 1,000 page views are made per day. The daily bandwidth saved by
using smaller images is 900MB—or 330GB per year.

A compromise—perhaps 200x200px—could look reasonable without adversely affecting
performance.

Define Responsive Image Aspect
Ratios
Since the advent of responsive web design, developers have
been advised not to set width and height attributes on
 tags. The CSS then sets width: 100% or max-
width: 100% to ensure the image is sized to the width of its
container or the maximum dimensions of the image
accordingly.

The technique has an unfortunate side-effect: when images
start to load, the page must reflow to allocate space. You’ll
often experience this on mobile devices, where the text you’re
reading suddenly moves off-screen because an image suddenly
appears further up the page.

An aspect ratio defines the relationship between the height and
width, so it becomes possible to calculate the size when only
one dimension is known. From Firefox 71 and Chrome 79, the
browser parses width and height attributes to
calculate the aspect ratio. The appropriate space can then be
reserved so reflows aren’t required:

<!-- image has a 4:3 aspect ratio -->
<img src="image.jpg" width="400" height="300"
alt="my image" />

Choosing Height and Width

Any appropriate width or height can be used to set the aspect ratio, since it will be
resized using CSS. For example, width="4" height="3". That said, it’s best to set a
reasonable size to ensure the image is visible in very old browsers, or when CSS fails to
load or is disabled.

The following CSS ensures the image uses the full width of its
container and sets a height according to the aspect ratio:

img {
 width: 100%;
 height: auto; /* this is essential */
}

The browser will reserve appropriate space on the page so re-
flows become unnecessary. Browsers that don’t calculate the
aspect ratio won’t reserve any space, but there are no
downsides. The image will remain responsive.

HTML and CSS Proposals for Defining Aspect Ratios
There are also proposals to define aspect ratios using an HTML
intrinsicsize="400x300" attribute or a CSS aspect-ratio: 4/3 property.
These would provide alternative options for avoiding reflows, so keep an eye on new
browser releases!

Implement Art Direction
The HTML <picture> element is similar to <audio> and
<video> in that it will request one of its child elements
according to browser support and conditions. For example, it
can be used to load a smaller WebP image or fall back to a
standard JPG:

<picture>
 <source type="image/webp" srcset="image.webp" />

</picture>

CDN and Server-side Solutions
Some image CDNs and server-side solutions can deliver the most optimum image
based on the HTTP request, so just an tag would be required.

https://github.com/WICG/intrinsicsize-attribute
https://drafts.csswg.org/css-sizing-4/#ratios

The <picture> element can also be used for art direction.
Different images are requested according to the dimensions
and orientation of a device. Consider the following hero
photograph:

The landscape image looks reasonable on a typical desktop
monitor, but detail is lost on smaller devices held in portrait
orientation. It would also become difficult to overlay text in
the smaller space.

Using art direction, we can serve a more appropriate image
showing the main subject with less background detail:

This looks better on a smartphone held in portrait orientation
and, in this case, the file size is 65% smaller (59KB compared
to 168KB):

The <source> items in a <picture> element can set
media queries to determine which image is requested. For
example, use landscape.jpg when the viewport width is
greater than the height, or fall back to portrait.jpg
otherwise:

<picture>
 <source srcset="landscape.jpg"
 media="(min-aspect-ratio:1/1)" />

</picture>

Any number of <source> images can be defined with
differing media queries. Each is processed in the specified
order until a match is found. A default should always
be set as a fallback when no match is available, or for older
browsers that don’t support <picture>.

Lazy Load Images and Iframes
The average web page requests almost 1MB of images. Half of
all websites load significantly more! These images (and
embedded <iframe> elements) download regardless of
whether they’re viewed or not. A large off-screen image
requires bandwidth and processing even when the user clicks a
link at the top of the page and never scrolls down.

Load times, bandwidth, and device requirements can be
reduced by lazy loading images and iframes when they’re
scrolled into the viewport. Chrome 76 and above support
native lazy loading with the new loading attribute:

<img src="image.png" loading="lazy" alt="lazy
load" />
<iframe src="https://site.com/" loading="lazy">
</iframe>

The following values can be set:

auto: the browser’s default behavior (identical to not using the
attribute)

lazy: defer loading until the resource reaches a distance from the
viewport

eager: load the resource immediately

The distance from the viewport can vary according to the type
of resource, the network connection, and whether Lite
mode/Save-Data is enabled. (Lite mode/Save-Data is covered
later in this chapter.)

Native lazy loading is new, so non-Chrome and older browsers
require JavaScript-based solutions such as progressive-
image.js. These analyze scroll and resize events or use the
Intersection Observer API to determine when an element is in
view. As well as supporting more browsers, they can also
implement attractive loading effects.

https://github.com/craigbuckler/progressive-image.js
https://developer.mozilla.org/docs/Web/API/Intersection_Observer_API

Play Audio and Video on Demand
Auto-playing media saps bandwidth, degrades performance,
and is unlikely to be appreciated by users. Modern browsers
will also block or silence auto-playing by default.

In most cases, it’s preferable to show a thumbnail image—
perhaps with a play icon overlay—which the user can click to

start the media. Both the <video> and <audio> elements
support this feature with the following attributes:

autoplay="false" to stop auto-playing

preload="none" to prevent media preloading or
preload="metadata" to fetch meta data such as the video duration

poster="image.jpg" to show a thumbnail image

controls="true" to enable native playback controls

Here’s an example:

<video controls="true"
 autoplay="false"
 preload="metadata"
 poster="videothumb.jpg">
 <source src="video.mp4" type="video/mp4">
 <source src="video.webm" type="video/webm">
</video>

Alternatively, a JavaScript solution could be implemented that
replaces a (lazy loaded) with appropriate <video> or
<audio> elements when clicked. The solution could also
work for third-party video providers such as YouTube and
Vimeo, which provide custom video players.

Replace Images with CSS3 Effects
The days of slicing and dicing images in a graphic package to
create custom fonts, rounded corners, shadows, linear
gradients, and transparency effects have long gone. CSS3
options such as web fonts, border-radius, text-shadow, box-
shadow, color gradients, and opacity are quicker to implement,
easier to change, and require far fewer bytes than images.

An element, image, or background image can be manipulated
using CSS3 effects rather than having to create multiple
variations. For example:

The clip-path and mask properties can partially or fully hide parts of an
image or element to create non-rectangular shapes.

The shape-outside, shape-margin, and shape-image-threshold properties
can be used to define non-rectangular text flows around or within an

https://developer.mozilla.org/docs/Learn/CSS/Styling_text/Web_fonts
https://developer.mozilla.org/docs/Web/CSS/border-radius
https://developer.mozilla.org/docs/Web/CSS/text-shadow
https://developer.mozilla.org/docs/Web/CSS/box-shadow
https://developer.mozilla.org/docs/Web/CSS/CSS_Images/Using_CSS_gradients
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/clip-path
https://developer.mozilla.org/docs/Web/CSS/mask
https://developer.mozilla.org/docs/Web/CSS/shape-outside
https://developer.mozilla.org/docs/Web/CSS/shape-margin
https://developer.mozilla.org/docs/Web/CSS/shape-image-threshold

element.

The transform property can rotate, scale, and skew an element.

The filter property offers possibilities such as blurring, brightness,
contrast, hue rotation, inversion, saturation, grayscale, sepia, opacity, and
shadows.

Both background-blend-mode and mix-blend-mode control how
backgrounds and images blend with each other in a similar way to
Photoshop layers. Options include normal, multiply, screen, overlay,
darken, lighten, color-dodge, color-burn, hard-light, soft-light, difference,
exclusion, hue, saturation, color, and luminosity.

CSS3 Effects Can Be Costly
CSS shadows, gradients, and filters may be costly during browser repaints. Use the
effects sparingly and test their impact on scrolling and animation performance.

Use SVGs Effectively
Scalable Vector Graphics define points, lines, and shapes as
vectors in XML. Unlike bitmaps, SVG images can be scaled to
any dimensions without increasing the file size or losing
quality. This makes them ideal for logos, charts, and diagrams.

It’s possible to create and manipulate SVGs manually, on the
server, or in client-side JavaScript. However, more complex
images will require a graphics package such as Adobe
Illustrator, Affinity Designer, Inkscape, or SVG edit, followed
by an optimization clean-up in svgo or SVGOMG.

There are three primary ways to add an SVG to a web page.
Choose the most appropriate option for each graphic you’re
using.

1. ADD SVGS USING AN TAG

The SVG acts like any normal image: it can be cached and
reused on other pages.

For security reasons, browsers will disable embedded scripts,
links, and other types of interactivity. Some browsers won’t
apply style sheet rules defined in a separate CSS file.

https://developer.mozilla.org/docs/Web/CSS/transform
https://developer.mozilla.org/docs/Web/CSS/filter
https://developer.mozilla.org/docs/Web/CSS/background-blend-mode
https://developer.mozilla.org/docs/Web/CSS/mix-blend-mode
https://www.adobe.com/products/illustrator.html
https://affinity.serif.com/en-us/designer/
http://www.inkscape.org/
https://svg-edit.github.io/svgedit/releases/latest/editor/svg-editor.html
https://www.npmjs.com/package/svgo
https://jakearchibald.github.io/svgomg/

The lesser-used <object>, <embed>, and <iframe>
elements can circumvent these restrictions, but the browser
treats the image as another document, so performance could be
affected.

2. ADD SVGS AS CSS BACKGROUND
IMAGES

An SVG can be referenced as a URL in a background image:

.mysvgbackground {
 background-image: url('image.svg');
}

It can also be embedded inline:

.mysvgbackground {
 background-image: url('data:image/svg+xml;utf8,
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0
0 800 600"><circle cx="400" cy="300" r="50"
stroke-width="5" stroke="#f00" fill="#ff0" />
</svg>');
}

Like , the browser will block embedded scripts, links,
and other SVG interactions, but backgrounds can be useful for
regularly used icons.

Inline Data for Larger Images
Inline data should be avoided for larger images, especially when regular changes will
invalidate the whole style sheet cached in the browser.

3. EMBED SVGS INTO THE PAGE

An SVG can be embedded directly into the HTML:

<body>
 <svg class="mysvg"
xmlns="http://www.w3.org/2000/svg" viewBox="0 0
800 600">
 <circle cx="400" cy="300" r="50" />
 <svg>
</body>

The SVG nodes become part of the DOM and can be styled or
animated directly using CSS:

circle {
 stroke-width: 1em;
}

.mysvg {
 stroke-width: 5px;
 stroke: #f00;
 fill: #ff0;
}

This reduces SVG code weight by reusing CSS styles, and it
offers additional flexibility such as alternative colors, hover
effects, animation of specific elements, and so on.

Unfortunately, the SVG must be embedded into every page
where it’s required. This will increase HTML weight, so
embedding is generally best for small or infrequently used
SVGs.

Consider Image Sprites
Often-used images can be packaged into a single sprite file so
individual items can be accessed in CSS. This is an old
optimization technique, but it continues to offer advantages:

1. A single HTTP request is required for many images (although this is less
beneficial with HTTP/2).

2. A single image will normally result in a smaller overall file size than the
total weight of the individual images.

3. All referenced images appear instantly after the sprite has loaded.

The following image defines five 64x64px icons in a single
320x64px 24-bit PNG:

Background position offsets are then defined in CSS:

.sprite {
 width: 64px;
 padding: 64px 0 10px 0;
 text-align: center;
 background: url("browser-sprite.png") 0 0 no-
repeat;
}

.sprite.edge { background-position: -64px 0; }
.sprite.firefox { background-position: -128px 0; }
.sprite.opera { background-position: -192px 0; }
.sprite.safari { background-position: -256px 0; }

Individual images can then be referenced in HTML using class
names:

<div class="sprite chrome">Chrome</div>
<div class="sprite edge">Edge</div>
<div class="sprite firefox">Firefox</div>
<div class="sprite opera">Opera</div>
<div class="sprite safari">Safari</div>

The result:

Image sprites can be generated in a graphics package, using
tools such as SpriteCow or Instant Sprite, or in your build
process.

Consider OS Fonts
It’s possible to add dozens of fonts to a page … but that
doesn’t mean you should!

1. Designers recommend using fonts sparingly, with one or two typefaces
per document.

2. A custom font typically requires a few hundred kilobytes of data. The
more you add, the larger the page weight, and the worse the performance.

3. The days of every site using standard OS fonts are over. Perhaps
Helvetica, Times New Roman, or Comic Sans would look good on your
site?!

Using an OS font provides a noticeable performance boost;
there’s no download delay or flash of unstyled or invisible

http://www.spritecow.com/
https://instantsprite.com/
https://webplatform.github.io/docs/concepts/web_typography/

text.

Each platform supplies different default fonts, but fallbacks
can be specified as well as the generic font family names of
serif, sans-serif, monospace, cursive, fantasy,
and system-ui. For example:

body {
 font-family: Arial, Helvetica, sans-serif;
}

Web apps may also feel more native if they use a standard
system font. The following stack implemented on GitHub.com
targets system fonts available across all popular platforms:

body {
 font-family: -apple-system, BlinkMacSystemFont,
"Segoe UI", Roboto, Helvetica,
 Arial, sans-serif, "Apple Color Emoji", "Segoe
UI Emoji", "Segoe UI Symbol";
}

Similar variations are used by Medium.com and the WordPress
administration panels:

body {
 font-family: -apple-system, BlinkMacSystemFont,
"Segoe UI", Roboto, Oxygen-Sans, U
 buntu, Cantarell, "Helvetica Neue", sans-serif;
}

Alternatively, the CSS @font-face local() function can
be used to locate a font on the user’s system first, but load
from a URL when it can’t be found:

@font-face {
 font-family: MyHelvetica;
 src: local("Helvetica Neue"),
 local("HelveticaNeue"),
 url("/fonts/Helvetica-webfont.woff2")
format("woff2"),
 url("/fonts/Helvetica-webfont.woff")
format("woff");
}

https://www.granneman.com/webdev/coding/css/fonts-and-formatting/default-fonts
https://developer.mozilla.org/docs/Web/CSS/@font-face

An OS font should be your first choice if it closely matches
branding requirements.

Embed Web Fonts with <link>
Many designers will be horrified by the suggestion of using
OS fonts, so web font use is inevitable. The most popular
option is to use a repository that serves fonts from a CDN.
Popular options include:

Google Fonts: fonts.google.com

Font Library: fontlibrary.org

Adobe Edge: edgewebfonts.adobe.com

Where possible, load fonts using a <link> in your HTML
<head>. For example:

<link href="https://fonts.googleapis.com/css?
family=Open+Sans" rel="stylesheet">

This downloads the font in parallel with other fonts and style
sheets.

A CSS @import method may be offered by the repository,
but this blocks processing of the style sheet until the font has
been downloaded and parsed.

Limit Font Styles and Text
Only request the fonts, weights, and styles you require—and
definitely remove any fonts you aren’t using!

Here’s an example of two Google Font URLs:

https://fonts.googleapis.com/css?
family=Inconsolata:500,700

https://fonts.googleapis.com/css?
family=Roboto:bolditalic

Both fonts can be contained in a single URL:

https://fonts.google.com/
https://fontlibrary.org/
https://edgewebfonts.adobe.com/

https://fonts.googleapis.com/css?
family=Inconsolata:500,700|Roboto:bolditalic

In some cases, you may only need specific characters—
perhaps for a regularly used title or logo. The text “Hello”
requires just four characters from a specific font:

https://fonts.googleapis.com/css?family=Inconsolata&text=Helo

Finally, you could benefit from hosting the fonts locally or
using more popular fonts that have a higher chance of being
pre-cached in the user’s browser.

Use a Good Font-loading Strategy
A web font can take several seconds to download. The
browser will choose one of two options:

1. Show a flash of unstyled text (FOUT). The first available font fallback
is used immediately. It’s replaced by the web font once it’s loaded. This
process is used by IE, Edge 18 and below, and older editions of Firefox
and Opera.

2. Show a flash of invisible text (FOIT). No text is displayed until the web
font has loaded. This process is used in all modern browsers, which
typically wait three seconds before reverting to a fallback.

Either option can be jarring and affect perceived performance.

The CSS font-display property allows you to define the font-
handling process. The options are:

auto: the browser’s default behavior (usually FOIT).

block: effectively FOIT. The text may be invisible for up to three
seconds. There’s no font swap, but text can’t be read immediately.

swap: effectively FOUT. The first fallback is used until the web font is
available. Text can be read immediately, but the font swap effect may be
jarring if not managed effectively.

fallback: a compromise between FOIT and FOUT. Text is invisible
for a short period (typically 100ms) then the first fallback is used until
the web font is available. Text is readable as the page loads, but the font
swap can still be problematic.

optional: the same as fallback, except no font swapping occurs.
The web font will only be used if it’s available within the initial period.

https://fonts.googleapis.com/css?family=Inconsolata&text=Helo
https://fonts.google.com/analytics
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

The first page view is likely to show a fallback font while the web font is
downloaded and cached. Subsequent page views will use the web font.

Similar Web and OS Fonts
optional could be a reasonable choice if the web and OS fallback fonts are similar,
but if that’s the case, using an OS font throughout would offer better performance!

Example CSS:

@font-face {
 font-family: 'mytypeface';
 src: url('mytypeface-webfont.woff2')
format('woff2'),
 url('mytypeface-webfont.woff')
format('woff');
 font-weight: 500;
 font-style: normal;
 font-display: swap;
}

Google Fonts also provides a display URL query string
parameter. For example:

https://fonts.googleapis.com/css?
family=Inconsolata:500,700&display=swap

Settings for Specific Text Types
Different text blocks could use different font-display settings. For example, body
text could use swap (FOUT) so it can be read immediately, while menus and heading
text use block (FOIT).

A pragmatic compromise could be considered, which uses a
fallback font with similar weights, line heights, and spacing to
the web font. font-display: swap (FOUT) can then be
used, but the replacement effect is less noticeable.

A tool such as Font Style Matcher can be used to find suitable
fallback parameters.

https://fonts.googleapis.com/css?family=Inconsolata:500,700&display=swap
https://meowni.ca/font-style-matcher/

Consider Variable Fonts
OpenType 1.8 introduced variable fonts, and they’re
supported in most browsers (except IE). Rather than creating
multiple files for each variation of the same typeface, a font is
defined with minimum and maximum vector limits along an
axis.

https://caniuse.com/#feat=variable-fonts

Any weight between the two extremes can be interpolated. A
single variable font can therefore be used instead of several
variations in order to reduce page weight and improve
performance.

Open-source and commercial variable fonts can be found at
sites including:

Variable Fonts

Axis Praxis

Font Playground

Recursive—a revolutionary font that includes monospace and casual
settings

These can then be loaded using @font-face with a woff2-
variations format and the allowable ranges. For example:

@font-face {
 font-family: 'VariableFont';
 src: 'variablefont.woff2' format('woff2-
variations');
 font-weight: 200 800;
 font-stretch: 75% 125%;
 font-style: oblique 0deg 20deg;
}

https://v-fonts.com/
https://www.axis-praxis.org/specimens/
https://play.typedetail.com/
https://www.recursive.design/

Browser support for variable fonts can be tested using
@supports with font-variation-settings:

body {
 font-family: sans-serif;
}

@supports (font-variation-settings: 'wght' 500) {

 body {
 font-family: 'VariableFont';
 }

}

Aspects of the typeface can then be adjusted in CSS, including
the weight (typically 0 to 1000):

font-weight: 500;
/* or */
font-variation-settings: 'wght' 500;

Also width—or stretch—can be adjusted to produce
condensed and extended variations (100% is normally the
default, with lower values creating narrower fonts and higher
values creating wider fonts):

font-stretch: 80%;
/* or */
font-variation-settings: 'wdth' 80;

Whether or not italics are required can also be set (either on or
off, since italics are often defined as a different character set):

font-style: italic;
/* or */
font-variation-settings: 'ital' 1;

Also slant—or oblique—can be adjusted, which modifies the
axis in a different way from italic (typically between 0 and 20
degrees):

font-style: oblique 10deg;
/* or */
font-variation-settings: 'slnt' 10;

https://developer.mozilla.org/docs/Web/CSS/@supports

The shorthand font-variation-settings property allows multiple
font aspects to be set:

font-variation-settings: 'wght' 300, 'wdth' 100,
'slnt' 0;

OS Fonts as Variable Font Fallback
It’s possible to download a single variable font but retain multiple fonts for older
browsers. Unfortunately, modern browsers will download every font specified, which
negates any performance benefit. It’s therefore preferable to use an OS font as the
fallback.

Use Modern CSS3 Layouts
For many years, it’s been necessary to use CSS floats to lay
out pages. The technique was always a hack and required
considerable code, along with endless margin/padding
tweaking to make the layout work. Even then, floats break at
smaller screen sizes unless media queries are used.

Floats are no longer necessary:

Flexbox should be used for one-dimensional layouts, which (can) wrap
to the next row according to the widths of each block. It’s ideal for
menus, image galleries, cards, etc. Flexbox is supported by most
browsers including IE10+.

Grid is for two-dimensional layouts with explicit rows and columns. It’s
ideal for page layouts. Grid is supported by most browsers, although
IE10/11 use an older version of the standard.

Both options are simpler to develop, use far less code, can
adapt to any screen size, can remove the need for media
queries, and render faster than floats because the browser can
natively determine an optimum layout.

Fallbacks for Older Browsers
It’s possible to use float-based fallbacks for older browsers. However, it’s often better to
use a simpler, single-column layout rather than trying to emulate what you achieved
using Flexbox or Grid. Pixel perfection is futile!

https://developer.mozilla.org/docs/Web/CSS/font-variation-settings
https://developer.mozilla.org/docs/Web/CSS/float
https://www.sitepoint.com/flexbox-css-flexible-box-layout/
https://caniuse.com/#feat=flexbox
https://www.sitepoint.com/introduction-css-grid-layout-module/
https://caniuse.com/#feat=css-grid

Remove Unused CSS
The smaller your style sheet, the quicker it will download, the
sooner it will parse, and the faster your page will become.

We all start with good intentions, but CSS can bloat over time
as the number of features increases. It’s easier to retain old,
unnecessary code than remove it and risk breaking something.
Those using a CSS framework such as Bootstrap may find
they’re only using a fraction of the facilities.

CSS removal recommendations:

1. Organize CSS into smaller files (partials) with clear responsibilities
(which can be concatenated into a single file at build time). It’s easier to
remove a carousel widget if the CSS is clearly defined in
widgets/_carousel.css.

2. Consider naming methodologies such as BEM to aid the development of
discrete components.

3. Avoid deeply nested Sass/pre-processor declarations. The expanded code
can become unexpectedly large.

4. Avoid using !important to override the cascade.
5. Avoid inline styles in HTML.

Chrome’s Coverage panel helps locate unused CSS and
JavaScript code. Select Coverage from the DevTools More
tools sub-menu, then hit the record button and browse your
application. Click any file to open its source. Unused code is
highlighted in red in the line number gutter.

https://bem.info/

Coverage for Single Pages Only
Chrome doesn’t remember used/unused code as you navigate to new pages! The
Coverage panel is only practical for single-page applications.

The following tools provide options to analyze HTML and
CSS usage either at build time or by crawling URLs so that
redundant code can be identified. Note that some configuration
will be required to ensure styles triggered by JavaScript and
user interactions are whitelisted.

PurifyCSS (there’s also an online version)

PurgeCSS

UnCSS

UnusedCSS

https://github.com/purifycss/purifycss
https://purifycss.online/
https://www.purgecss.com/
https://github.com/uncss/uncss
https://unused-css.com/

Alternatively, a visual regression system such as Percy could
be used to compare old and new screenshots.

Those preferring a manual—and considerably more hardcore
—process could add an invisible background image to
suspicious selectors. For example:

/* check usage */
.amiused1 {
 color: #abc;
 background-image: url(/used.png?.amiused1/);
}

#another .suspect {
 color: #123;
 background-image: url(/used.png?
#another-.suspect/);
}

Either selector can be removed if no reference to their
background image appears in server logs over a reasonable
usage period.

Be Wary of Expensive CSS
Properties
Not all CSS properties are created equally. Those that take
longer to paint than others include:

border-radius

box-shadow

opacity

transform

filter

position: fixed

This does’t mean you shouldn’t use them, but be wary of
applying expensive effects to hundreds of elements, as it will
affect rendering and scrolling performance.

Keeping Selectors Simple
Try to simplify CSS selectors where possible. CSS performance improvements may be
negligible, but simpler selectors are easier to maintain, reduce page weight, and have a

https://percy.io/
https://developer.mozilla.org/docs/Web/CSS/border-radius
https://developer.mozilla.org/docs/Web/CSS/box-shadow
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform
https://developer.mozilla.org/docs/Web/CSS/filter
https://developer.mozilla.org/docs/Web/CSS/position

better chance of working in older browsers.

Embrace CSS3 Animations
Native CSS3 transitions and animations will always be faster
and require less code than JavaScript-powered equivalents. It
shouldn’t be necessary to add a library or framework for
typical fade, show, hide, and move effects. Very old browsers
may not support the properties, but CSS degrades gracefully,
and users will rarely know they’re missing anything.

JavaScript animations should only be considered when fine-
grained control is required—such as for HTML5 games,
interactive charts, <canvas> manipulation, and so on.

Avoid Animating Expensive
Properties
Once the browser has parsed the HTML document and styles,
it renders elements in three stages:

1. Layout: the calculation of how much space an element requires and how
it affects elements around it

2. Paint: the filling of pixels with color
3. Composite: the drawing of layers in the correct order when they overlap

Animating the dimensions or position of an element can cause
the whole page to re-layout on every frame. Performance can
therefore be improved if an animation only affects the
compositing stage. The most efficient animations only use:

1. opacity and/or
2. transform to translate (move), scale, skew, or rotate an element (the

original space the element used is not altered so the layout is not
affected)

Browsers often use the hardware-accelerated GPU to render
these effects in their own layer. If neither property is ideal for
your animation, consider taking the element out of the page
flow with position: absolute; or similar to avoid
complex layout changes.

https://developer.mozilla.org/docs/Web/CSS/transition
https://developer.mozilla.org/docs/Web/CSS/animation
https://developer.mozilla.org/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform

Indicate Which Elements Will
Animate
The will-change property allows CSS authors to indicate how
an element will be animated so the browser can make
performance optimizations in advance—for example, to
declare that an element will have a transform applied:

.myelement {
 will-change: transform;
}

Any number of comma-separated properties can be defined.
However:

Only use will-change as a last resort to fix animation issues. It
should not be used to anticipate performance problems.

Don’t apply it to too many elements.

Give it sufficient time to work. Don’t begin animations immediately.

Use CSS Containment
CSS Containment is a new (experimental) feature that
indicates when an element’s subtree is independent from the
rest of the page. This can improve rendering performance
during animations or when elements are added, modified, or
removed from the DOM. The new CSS contain property
accepts one or more of the following values in a space-
separated list:

none: containment is not applied.

layout: the internal layout of the element is isolated from the rest of
the page. Its content cannot have any effect on ancestor elements.

paint: children of the element will not be displayed outside its
boundary. Any overflows will not be visible (similar to overflow:
hidden;).

size: the size of the element can be determined without checking its
children. The dimensions are independent of the content.

style: counters and quotes cannot appear outside the element. (This
value may be dropped from the specification.)

Two special values are also available:

https://developer.mozilla.org/docs/Web/CSS/will-change
https://developer.mozilla.org/docs/Web/CSS/contain

strict: all containment rules except style are applied. This is
equivalent to contain: layout paint size;.

content: all containment rules except size and style are applied.
This is equivalent to contain: layout paint;.

Imagine you have a page with an unordered list
containing one thousand child list elements. If you
change the contents of a single item that has contain:
strict; applied, the browser won’t attempt to recalculate
the size or position of that item, others in the list, or any other
elements on the page.

Check the Save-Data Header
The Save-Data field is an HTTP request header indicating
that reduced data usage is preferred. It’s named Lite mode in
Chrome and can be enabled or disabled by the user.

When enabled, the Save-Data header is sent with every
browser request. For example:

GET /image.jpg HTTP/1.0
Host: example.com
Save-Data: on

A server can respond accordingly when Save-Data is
detected. For example, it can respond by:

reducing the volume of HTML content—such as returning 100 rows of
table data rather than 500

providing low-resolution versions of an image even when high-resolution
options are requested

removing non-essential JavaScript such as trackers or advertising scripts

To ensure the minimal content is not cached and reused after
the user disables Save-Data, the server should set the
following header in the HTTP response:

Vary: Accept-Encoding, Save-Data

The Save-Data header can also be detected using client-side
JavaScript:

if ('connection' in navigator &&
navigator.connection.saveData) {
 // Save-Data enabled
}

An optimum solution could presume data-saving by default,
but add a full-data class to the HTML element when the
header is not enabled:

if ('connection' in navigator &&
!navigator.connection.saveData) {
 document.documentElement.classList.add('full-
data');
}

CSS and JavaScript components could then react accordingly.
For example:

header {
 background-image: url("low-res-hero.jpg");
}

.full-data header {
 background-image: url("high-res-hero.jpg");
}

Adopt Progressive Web App
Technologies
Progressive web apps (PWAs) can enhance performance by
caching essential files locally. They’re usually more
responsive than standard web apps and can even be faster than
native apps.

PWAs comprise a mixture of technologies that make web apps
function like native mobile apps and overcome the constraints
imposed by web-only and native-only solutions:

1. The app requires a single codebase developed with open, standard W3C
web technologies.

2. Users can discover and install a PWA from the Web. There’s no need to
abide with app store rules or fees.

3. PWAs can work offline and update automatically.

Most tutorials describe how to build a native-looking, single-
page, mobile-like app. However, any site can benefit from
PWA technologies and be working within a few hours. There
are three essential requirements …

1. ENABLE HTTPS

PWAs require an HTTPS connection, although Chrome, for
example, permits an HTTP localhost or 127.x.x.x
address during testing.

2. CREATE A WEB APP MANIFEST

The web app manifest provides information about your
application, such as the name, description, and images. These
are used by the OS to configure home screen icons, splash
pages, and viewport settings.

The manifest is a JSON text file in the root of your app. It
must be served with a Content-Type:
application/manifest+json or Content-Type:
application/json HTTP header:

{
 "lang" : "en-US",
 "dir" : "ltr",
 "name" : "Standard Name",
 "short_name" : "Short Name",
 "description" : "A description of the
site/app",
 "scope" : "/",
 "start_url" : "/",
 "display" : "minimal-ui",
 "theme_color" : "#fff",
 "background_color" : "#fff",
 "icons": [
 {
 "src" : "https://site.com/icon-
076.png",
 "sizes" : "76x76",
 "type" : "image/png"
 },
 {
 "src" : "https://site.com/icon-

192.png",
 "sizes" : "192x192",
 "type" : "image/png"
 },
 {
 "src" : "https://site.com/icon-
512.png",
 "sizes" : "512x512",
 "type" : "image/png"
 }
]
}

A list of manifest properties can be found on MDN, or you can
use the Generate Web Manifest tool.

A link to the manifest file is required in the <head> of all
your pages:

<link rel="manifest" href="/app.webmanifest">

3. CREATE A SERVICE WORKER

Service workers are programmable proxies that can intercept
and respond to network requests. They’re a single JavaScript
file that resides in the application root.

Your page JavaScript must check for service worker support
and register the file:

if ('serviceWorker' in navigator) {

 // register service worker
 navigator.serviceWorker.register('/service-
worker.js');

}

service-worker.js then triggers and reacts to events,
including:

install when the app is first run. This can be used to cache regularly
used files.

fetch when a network request is made. This can return a cached file or
make further network requests.

https://developer.mozilla.org/docs/Web/Manifest
https://pwafire.org/developer/tools/get-manifest/

const
 staticCacheName = 'cache-v1';
 filesToCache = [
 '/',
 'style/main.css',
 'js/main.js',
 'images/hero.jpg'
];

// install event: cache regularly used files
self.addEventListener('install', event => {

 event.waitUntil(
 caches.open(staticCacheName)
 .then(cache => {
 return cache.addAll(filesToCache);
 })
);

});

// fetch event: serve files from cache or network
self.addEventListener('fetch', event => {

 event.respondWith(
 caches.match(event.request)
 .then(response => {
 if (response) {
 return response; // from cache
 }
 return fetch(event.request); // from network
 })
 .catch(error => {})
);

});

This example doesn’t update cached files or attempt to cache
further requests, but it illustrates the basics of progressive web
apps. Further PWA tutorials can be found at:

Web Fundamentals: Progressive Web Apps

MDN Progressive Web Apps

Retrofit Your Website as a Progressive Web App

Power Down Inactive Tabs
Although we’re mostly concerned with page performance
when a user interacts with our site, we should also be
responsible when the tab is inactive.

https://developers.google.com/web/progressive-web-apps
https://developer.mozilla.org/docs/Web/Progressive_web_apps
https://www.sitepoint.com/retrofit-your-website-as-a-progressive-web-app/

Browsers normally throttle events such as
requestAnimationFrame, intervals, and timeouts on inactive
tabs, but we can take this further to auto-pause and resume
games, animations, video playback, Ajax polling, WebSocket
handling, background loading, notifications, and so on. The
less work an inactive tab does, the longer the smartphone
battery will last, and the more likely the user can return to your
site!

The Page Visibility API can be used to detect whether or not a
tab is active and trigger an event when visibility changes. The
following code adds a tab-active class to the <html>
element when the tab is being viewed:

console.log('tab is', isTabActive() ? 'active' :
'not active');

document.addEventListener('visibilitychange',
isTabActive);

function isTabActive() {

 if (document.visibilityState === 'visible') {
 // tab is active
 document.documentElement.classList.add('tab-
active');
 return true;
 }
 else {
 // tab is inactive

document.documentElement.classList.remove('tab-
active');
 return false;
 }

});

CSS could then be used to start or stop animations. For
example:

.myelement {
 animation: something 3s linear 1s infinite
alternate;
 animation-play-state: paused;
}

.tab-active .myelement {
 animation-play-state: running;
}

https://developer.mozilla.org/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/setInterval
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/docs/Web/API/Page_Visibility_API

Other Throttling Techniques
Similar throttling techniques could be used with these tools:

The NetworkInformation API, to determine when connection speeds could affect
performance. The API is experimental, has limited support, and may not be accurate.

The Battery Status API, to detect when device power falls below a specific threshold.
While this may be implemented in some browsers, the API was dropped as a web
standard owing to privacy concerns. An individual could be identified and tracked by
their fairly unique battery status.

The Ambient Light API, to determine whether a device is being used in strong or
dim lighting and modify the theme accordingly—such as increased contrast in strong
sunlight and dimmer colors in darker situations. The API is experimental and has
limited support.

Consider Inlining Critical CSS
Google page analysis tools often make a suggestion to “inline
critical CSS” or “reduce render-blocking style sheets”.
Loading a CSS file blocks rendering, so performance can be
improved by:

1. Extracting the styles used to render elements above the fold. Tools such
as critical and criticalCSS can help.

2. Inlining those styles in a <style> element in the HTML <head>.
3. Loading the main CSS file asynchronously using JavaScript at the

bottom of the page, or perhaps once the DOM is ready.

The technique noticeably improves performance—even on a
fast connection—and will boost audit scores. It could benefit
progressive web or single-page apps with consistent interfaces,
but may be more difficult to manage on other sites:

The “fold” is different on every device.

Many sites have a variety of page layouts. Each could require different
critical CSS, so a build tool becomes essential.

Critical CSS tools can struggle with specific frameworks, HTML
generated by client-side code, or dynamic, event-driven changes.

The technique mostly benefits the user’s first page load. CSS is cached
for subsequent pages so additional inlined styles will increase page
weight.

https://developer.mozilla.org/docs/Web/API/NetworkInformation
https://developer.mozilla.org/docs/Web/API/Battery_Status_API
https://developer.mozilla.org/docs/Web/API/Ambient_Light_Events
https://github.com/addyosmani/critical
https://github.com/filamentgroup/criticalCSS

Provide Accelerated Mobile Pages
(AMP)
The AMP project was announced in October 2015. A
collaboration between Google and more than 30 news
publishers aimed to improve mobile web performance. AMP
is an open-source web component framework which claims
that “you can easily create user-first websites, stories, emails,
and ads.”

AMP requires you to publish existing or original content as an
AMP HTML page. AMP HTML is a subset of HTML5,
providing a limited set of web components, styles, images,
videos, and advertisements. Features and styling are purposely
restricted, and you can’t add custom JavaScript. Most AMP
pages are served from Google’s AMP cache—a proxy-based
CDN that assigns a Google-specific URL to the page. This
ensures optimal delivery using Google’s global network.

AMP is fast, so it’s mentioned in this book. However, while
the project may have started with noble aims, AMP has been
criticized for serving Google more than publishers and users,
for reasons such as this:

AMP is not necessarily faster or more efficient than your own optimized
website.

Unless you go AMP-only, you must duplicate existing content pages.

Alternative URLs may be confusing to users.

Google gains control of your content, visitors, and data.

AMP could be considered a closed alternative to the open web.

Google wants the Web to be faster, yet AMP pages receive
preferential treatment in mobile search results even when the
original site is more efficient.

Ultimately, the decision is yours. There are WordPress plugins
and CDNs such as Cloudflare that can automatically create
AMP pages from your content but, for many sites, AMP will
require further development effort. Those pages may receive

https://wordpress.org/plugins/tags/amp/
https://www.cloudflare.com/

additional publicity, but whether it’s you or Google who
benefits is another matter.

AMP development guides:

amp.dev

Convert HTML to AMP

AMP development tools

Official AMP Plugin for WordPress

AMP criticisms:

Google’s AMP HTML

AMPersand

The meaning of AMP

The Two Faces of AMP

Google AMP Can Go To Hell

Kill Google AMP before it kills the web

Feeling Full Yet?
We may have lost weight, but the only way to guarantee long-
term benefits is to change our development attitude! The next
chapter provides life-changing diets.

https://amp.dev/
https://amp.dev/documentation/guides-and-tutorials/start/converting/
https://amp.dev/documentation/tools/
https://wordpress.org/plugins/amp/
https://adrianroselli.com/2015/10/googles-amp-html.html
https://ethanmarcotte.com/wrote/ampersand/
https://adactio.com/journal/13035
https://timkadlec.com/remembers/2018-02-14-the-two-faces-of-amp/
https://www.polemicdigital.com/google-amp-go-to-hell/
https://www.theregister.co.uk/2017/05/19/open_source_insider_google_amp_bad_bad_bad/

Chapter 5: Life-Changing
Diets
The performance techniques described in this chapter are more
radical and could be difficult to apply to an existing project.
Fortunately, there are no such limitations when embarking on a
new site or app, so we look deeper into CMS issues,
JavaScript optimization, DOM handling, server-side rendering,
static site generators (SSGs), and development processes.

Evaluate CMS Templates and Plugins
Content management systems such as WordPress don’t
generate bloated, badly performing pages … until you start
adding stuff!

Free or commercial templates make financial sense. Why
employ a developer when an off-the-shelf solution does
everything you need for a few dollars? Unfortunately, there’s a
hidden cost. Generic templates must sell hundreds of copies—
if not thousands—to recoup the development effort. To attract
buyers, the developers bundle every conceivable feature. Your
site may only use a fraction of those facilities, but they can
still be present in the code, so the download weight and
processing are affected.

Similarly, be wary about plugins, since their quality and
effectiveness vary. The best plugins can improve performance
by optimizing database tables, caching data, and removing
redundant code. The worst will duplicate assets, make
convoluted configuration changes (such as .htaccess files),
add unnecessary bloat, and affect responsiveness even though
they’re inactive on a particular page.

Always evaluate page cost and performance when considering
new templates and plugins. Where possible, choose more
lightweight options, even if the purchase price is higher.

Reduce Client-side Code
Blindingly obvious statement alert: smaller files results in
faster pages.

Not all assets are created equal, though. 500KB of image data
has a relatively low performance hit, since it’s downloaded
once, cached in the browser, and positioned on the page. The
same quantity of HTML, CSS, or JavaScript has a far bigger
impact, because it must be downloaded, parsed, and processed.

Ideally, the number of HTML DOM nodes should be reduced
to a minimum. A shallower tree depth means rendering and
reflows are performed more effectively. Modern layout tools
such as Flexbox and Grid allow you to remove wrapper
elements that may have been necessary in float-based designs.
Keep the document small and look out for signs of DIVitis!

Similarly, the fewer CSS rules you require, the quicker a
document can be rendered. Look our for complex selectors,
especially when using preprocessors such as Sass, which
expand deeply nested rule sets. Check your compiled style
sheet output to ensure it’s as efficient as is practical.

Try to embrace the CSS cascade rather than working against
it! A little understanding can reduce code and improve
performance. For example, you can set default fonts, colors,
sizes, tables, grids, and form fields that are universally applied
but can be tweaked for individual components.

Also be wary of using CSS resets, which means having to re-
apply default styling to every element. CSS normalization,
such as Normalize.css, could be a better alternative, since it
makes browsers render more consistently. That said, default
styling between browsers is closer than ever.

https://www.sitepoint.com/flexbox-css-flexible-box-layout/
https://www.sitepoint.com/introduction-css-grid-layout-module/
https://en.wiktionary.org/wiki/divitis
https://sass-lang.com/
https://developer.mozilla.org/docs/Web/CSS/Cascade
https://necolas.github.io/normalize.css/

Optimize JavaScript Code
HTML is a robust technology; even the oldest browsers
without HTML5 support will show content. Similarly, CSS
can fail to download or have coding errors, but the page
remains viewable. By contrast, JavaScript is fragile and
computationally expensive. A single error, unsupported
command, or long-running task can prevent further code from
running.

It’s difficult to recommend JavaScript optimizations, since all
applications will be different, but there are a few general tips
that could improve performance. That said, be wary of micro-
optimizations, which may shave a few milliseconds but aren’t
called frequently enough to make a difference. Use your
browser’s developer tools to check whether any gains have
been achieved.

USE JAVASCRIPT SPARINGLY

If a browser can do something in HTML and/or CSS alone,
that should be your preferred option. You can still apply
progressive enhancements where necessary (discussed below).

Modern browsers have implemented many regularly used
features that previously required scripting, such as form
validation, field auto-complete, animations, video, expanding
text, modal dialogs, and more. There will be challenges—ask
anyone who’s ever tried styling a <select> drop-down—but
using a native feature will always be faster and use less code.

Consider the choice of using an HTML <button> verses a
<div> as a form submit. The HTML code starts in a similar
way:

<button>submit</button>

Styling a DIV in CSS may be easier:

<div class="button">submit</div>

https://developer.mozilla.org/docs/Learn/HTML/Forms/Form_validation
https://developer.mozilla.org/docs/Web/HTML/Element/datalist
https://developer.mozilla.org/docs/Web/CSS/animation
https://developer.mozilla.org/docs/Web/HTML/Element/video
https://developer.mozilla.org/docs/Web/HTML/Element/details
https://developer.mozilla.org/docs/Web/HTML/Element/dialog

However, the HTML <button>:

1. offers default styling to look like an OS button
2. works on all browsers even when CSS or JavaScript fails
3. works immediately, as the page loads and before JavaScript has started

executing
4. will automatically submit its parent <form> (if validity checks pass)
5. can be operated with a mouse, touch screen, keyboard, or any other input

device
6. can receive focus, and accepts keypress shortcuts
7. requires no ARIA roles or other accessibility assistance

A button that’s simulated in CSS and JavaScript requires
significant effort, and it will never function as effectively as
the native HTML alternative.

AVOID LONG-RUNNING TASKS

Long-running tasks often trigger unresponsive browser
messages, which prompt the user to halt JavaScript execution.
Complex processing is best handled by a Web Worker, which
allows a script to run in a background thread.

Web Worker scripts are limited. They can’t interact with the
page DOM, and must communicate with the main script using
a message API, but they’re able to perform Ajax requests and
launch their own child workers.

BIND EVENTS SPARINGLY

Applications can have dozens of event handlers. A handler
function is registered to an event when it’s triggered on a
specific DOM element—such as running the
doSomething() function when a click is detected on the
myElement node:

myElement.addEventListener('click', doSomething);

Each bound event has a performance hit. Ideally, you should
only add events you require, return from handler functions
quickly, and unbind using removeEventListener when an event
is no longer necessary.

https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/docs/Web/API/EventTarget/removeEventListener

Also be wary of quick-firing events such as mousemove and
scroll, which can trigger rapid and wasteful rerunning of
handler functions. One way around this is to use throttling to
ensure an event is called no more than once every N
milliseconds. For example:

// thottle event to delay ms
function eventThrottle(element, event, callback,
delay = 300) {

 let throttle;
 element.addEventListener(event, (e) => {

 throttle = throttle || setTimeout(() => {
 throttle = null;
 callback(e);
 }, delay);

 }, false);

}

// call windowScrollHandler no more than once
every 300ms
eventThrottle(window, 'scroll',
windowScrollHandler);

Alternatively, debouncing can be used to ensure a handler is
only called after the event has stopped being triggered for N
milliseconds:

// debounce event until it no longer occurs for
delay ms
function eventDebounce(element, event, callback,
delay = 300) {

 let debounce;
 element.addEventListener(event, (e) => {
 clearTimeout(debounce);
 debounce = setTimeout(() => callback(e),
delay);
 }, false);

}

// call windowScrollHandler when at least 300ms
has elapsed since the last event
eventThrottle(window, 'scroll',
windowScrollHandler);

Finally, remember to make effective use of event delegation.
For example, presume you have an HTML <table> with
thousands of cells and want to react to a <td> being clicked.
Attaching an event to each cell requires significant processing
and would need to be reapplied if the table changed. Instead,
you can attach a single event handler to the <table> element
and examine the target. For example:

// handle a click on any <td> element
document.getElementById('mytable').addEventListene
r('click', (e) => {

 let t = e.target.closest('td');
 if (!t) return;

 console.log('clicked cell', t);

});

ANALYZE MODIFIED CODE

It’s rare to encounter code that hasn’t been modified before it
reaches the browser!

Minifiers attempt optimizations such as rearranging lines or expanding
loops.

Transpilers such as Babel convert ES6 to ES5 so the code runs in older
browsers.

Compilers such as TypeScript, CoffeeScript, and Flow convert
alternative or superset syntaxes to JavaScript.

Projects such as Blazor convert C# to WebAssembly—a low-level,
assembly-like language that offers near-native OS performance in
JavaScript engines.

All offer stability and performance benefits, but check that the
conversion is optimal and that it’s not unnecessarily importing
several kilobytes of transpiler library code. For example,
consider the following 32-byte ES6 for...of loop:

for (let p of n) console.log(p);

This results in 598 bytes of Babel-transpiled code. Each
additional loop adds a similar quantity of code, and none will

https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://webassembly.org/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for...of

execute in IE11—which partly defeats the point of transpiling!
Options to consider:

Use ES5 or more transpiler-efficient ES6 code to achieve the same result.

Use differential loading to serve ES6 module-based code to modern
browsers and larger transpiled scripts to older applications.

Drop support for browsers without ES6 support (primarily IE). Your site
or application can remain usable if you adopt server-side rendering and
progressive enhancement techniques.

Modify the DOM Effectively
Some modern JavaScript frameworks implement a virtual
DOM. As you change page elements, the virtual DOM works
out what’s been altered and determines how and when to make
modifications. Ultimately, it must still change the real DOM,
and you can make similar optimizations to improve
performance without the additional overhead of virtual DOM
calculations.

CACHE REGULARLY USED NODES

Regularly used DOM nodes should be stored as JavaScript
variables so they don’t need to be re-fetched. The DOM
references are retained even when other tree nodes are
modified:

const
 main = document.getElementsByTagName('main')
[0],
 heading = main.querySelector('h1'),
 tables = main.getElementsByTagName('table');

Search from Any Node
Rather than searching the whole tree from document, many DOM methods allow you to
start from any node. The example above searches for the first heading and tables within
the <main> element.

querySelector() and querySelectorAll() can find
elements using jQuery-like CSS selectors. They’re usually
slower than getElementById(),

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/docs/Web/API/Element/querySelector
https://developer.mozilla.org/docs/Web/API/Element/querySelector
https://developer.mozilla.org/docs/Web/API/Document/getElementById

getElementsByTagName() and
getElementsByClassName(), although the speed
difference is unlikely to affect most applications.

Running Benchmarks
Tools such as jsPerf.com provide a way to create code snippets and run benchmarks on
any browser to prove the efficiency—or inefficiency—of alternative functions.

getElementsByTagName() and
getElementsByClassName() also return live
HTMLCollections, which update automatically as the DOM is
modified—so that it’s not necessary to rerun the query.

MINIMIZE REFLOWS

When an element is added, modified, or removed from a page,
it can trigger a cascade of layout changes to surrounding
elements. For example, increasing a width by 1px could result
in a neighboring element wrapping to the next line, which
pushes all subsequent content down the page. It’s therefore
more efficient to make changes that can’t impact the layout.
For example:

use opacity and/or transform to translate (move), scale, or rotate an
element

limit the scope of the reflow by changing elements low in the DOM tree
(those without deeply nested children)

update elements in their own position: absolute; or
position: fixed; layer

modify hidden elements (display: none;), then show them after the
change has been applied

BATCH-UPDATE STYLES

The following example could cause three reflows:

let myelement =
document.getElementById('myelement');
myelement.width = '100px';
myelement.height = '200px';
myelement.style.margin = '10px';

https://developer.mozilla.org/docs/Web/API/Element/getElementsByTagName
https://developer.mozilla.org/docs/Web/API/Element/getElementsByClassName
https://jsperf.com/
https://developer.mozilla.org/docs/Web/API/Element/getElementsByTagName
https://developer.mozilla.org/docs/Web/API/Element/getElementsByClassName
https://developer.mozilla.org/docs/Web/CSS/opacity
https://developer.mozilla.org/docs/Web/CSS/transform

Performance can be improved by appending a class:

let myelement =
document.getElementById('myelement');
myelement.classList.add('newstyles');

This applies CSS properties in one reflow operation:

.newstyles {
 width: 100px;
 height: 200px;
 margin: 10px;
}

BATCH-UPDATE ELEMENTS

Try to minimize the number of times you interact with the
DOM. An empty DocumentFragment can be used to build
elements in memory before applying those changes to the
page. For example, you can create an unordered list with three
items like so:

// create list
let
 frag = document.createDocumentFragment(),
 ul = frag.appendChild(
document.createElement('ul'));

for (let i = 1; i <= 3; i++) {
 let li = ul.appendChild(
document.createElement('li'));
 li.textContent = 'item ' + i;
}

// append list to the DOM
document.body.appendChild(frag);

The DOM is only modified on the last line.

USE REQUESTANIMATIONFRAME

The window.requestAnimationFrame() method calls a function
just before the browser performs the next repaint—normally
once every sixtieth of a second (approximately every 17ms,
presuming no other render-blocking processes are occurring).
It’s normally used for animating frames in HTML5 games,

https://developer.mozilla.org/docs/Web/API/DocumentFragment
https://developer.mozilla.org/docs/Web/API/window/requestAnimationFrame

although running it before any DOM update will be beneficial.
For example:

function updateDOM() {
 let p = document.createElement('p');
 p.textContent = 'new element';
 document.body.appendChild(p);
}

requestAnimationFrame(updateDOM);

Consider Progressive Rendering
Rather than using a single site-wide CSS file, progressive
rendering is a technique that defines individual style sheets
for separate components. Each is loaded immediately before
the component is referenced in the HTML:

<head>

 <!-- core styles used across components -->
 <link rel='stylesheet' href='base.css' />

</head>
<body>

 <!-- header component -->
 <link rel='stylesheet' href='header.css' />
 <header>...</header>

 <!-- primary content -->
 <link rel='stylesheet' href='content.css' />
 <main>

 <!-- form styling -->
 <link rel='stylesheet' href='form.css' />
 <form>...</form>

 </main>

 <!-- header component -->
 <link rel='stylesheet' href='footer.css' />
 <footer>...</footer>

</body>

Each <link> still blocks rendering, but for a shorter time,
because the file is smaller. The page is usable sooner, since
each component renders in sequence; the top of the page can
be viewed while remaining content loads. A similar approach

is often adopted by Web Components, which encapsulate CSS
within the code.

The technique can be less practical in templates where the
content dictates the layout (Flexbox and tables), since reflows
are triggered more frequently as the page loads. Grid-based
page layouts are generally more suitable.

There’s some variation in how browsers treat progressive
rendering, but the worst-case scenario is that the browser
blocks rendering until all discovered CSS files have loaded.
That’s no worse than loading each in the <head>.

Progressive rendering could benefit large sites where
individual pages are constructed from a varied selection of
different components.

Use Server-side Rendering
Which process is quicker?

Process 1 (typically used by JavaScript frameworks):

1. Request a URL.
2. Respond with a (mostly) empty HTML file.
3. Download and execute JavaScript.
4. Use Ajax or similar techniques to fetch content according to the URL.
5. Load the content into the page body.

Process 2 (old-school method):

1. Request a URL.
2. Respond with the full HTML.

Server-side rendering is always quicker for the initial page
load.

Loading a second page can be faster in Process 1, since it’s
able to start at step 4. Assets such as style sheets, JavaScript,
and images may already be available and parsed.
Unfortunately, a large proportion of visitors may only view a

https://developer.mozilla.org/docs/Web/Web_Components
https://jakearchibald.com/2016/link-in-body/#changes-to-chrome

single page, and the payload is higher because a larger quantity
of JavaScript is necessary.

This is a better-performing process:

1. Request a URL.
2. Load HTML directly from the server into the browser.
3. Download and execute JavaScript. Some rehydration may be necessary

to initiate components with HTML data.
4. Use Ajax or similar techniques to fetch and populate content according

to URL navigation changes.

This can be more difficult to manage, since not all JavaScript
frameworks provide server-based rendering capabilities using
Node.js, PHP, Ruby, Python, and so on.

Do You Need a JavaScript or CSS
Framework?
A CSS and/or JavaScript framework can provide a good
development structure for teams working on larger sites or
applications. However, most are general-purpose tools: they
provide a range of features you may not need or may have to
adapt. Optimizing performance is often difficult because the
core code isn’t under your control.

While a framework is certainly useful for prototyping, always
question whether it’s necessary for the final site or application.
How much weight does it add? Will it improve performance?
Can it be updated easily? What happens when it’s eventually
abandoned?

Invest time in researching the choices. Without investigation,
every application looks like a nail to developers who
understand a specific hammer. You should certainly avoid
using more than one framework—with the possible exception
of server-side options, or compilers such as Svelte, which
remove themselves from production code.

Even once you settle on a chosen framework, there may be
modular or lightweight alternatives such as Preact instead of

https://svelte.dev/
https://preactjs.com/

React, or bling.js instead of jQuery.

Ultimately, the most efficient and adaptable framework will be
one written specifically for your application.

Use a Static Site Generator
Most people start web development by creating (static)
HTML, CSS, and possibly JavaScript files. The resulting
assets can be hosted anywhere and are fast because they don’t
use server- or client-side processing.

The main downside is content management: adding a new
page could involve changing hard-coded navigation menus on
every page in the site. At this point, developers often turn to
server-side languages or a database-driven CMS, both of
which have their own set of challenges.

What if you could create a fast, static site but make cross-site
changes programmatically when something is added or
removed? That’s exactly what a static site generator (SSG)
does. It takes content—typically defined in markdown files—
and builds a set of static web pages. The build-time process
can construct menus, import images, generate styles, and so
on, and can be rerun when anything changes. The resulting site
is decoupled from a server and is often referred to as using a
JAMstack: JavaScript, APIs, and markup.

Most SSGs build a set of folder-based HTML files with
associated assets that can be uploaded to any web server
capable of serving static content. The Ruby-based Jekyll was
one of the first SSGs, but StaticGen.com lists dozens of
alternatives for a range of languages. Options such as Gatsby
also create React-based JavaScript applications rather than
HTML files. (Whether or not that’s a benefit is another
matter!)

A static site can offer the best site performance, since it’s
rendered once, then delivered to all users as is. There are no

https://reactjs.org/
https://gist.github.com/paulirish/12fb951a8b893a454b32
https://jquery.com/
https://jekyllrb.com/
https://www.staticgen.com/
https://www.gatsbyjs.org/

server-side dependencies, reliability is improved, version
control is easy, and security issues can be eradicated.

There are some downsides:

configuration and setup takes time and is more difficult than a CMS

SSGs are rarely suitable for non-technical editors

there’s no concept of user roles or permission rights

site consistency can be more difficult to enforce, as editors can add any
client-side code

the rebuild process can be slow, especially on larger sites

SSGs are ideal for sites that change relatively infrequently, but
many of the issues can be overcome by importing data from a
headless CMS or automating the build process.

Use a Build System
Even the most conscientious developer can forget to minimize
a CSS file, optimize an image, or remove debugging
console statements. Whatever technology you use to create
a site or app, a build process can automate mundane tasks to
ensure there are no oversights. Additionally, they can run tests,
verify code, and deploy to staging or live servers.

Creating a build process can take a day or two, but it should
save time over the long term. Popular generic build tools
include Gulp.js, Grunt.js, Broccoli.js, and Brunch, which allow
you to define and run tasks manually or when files are
changed.

Alternatively, you could opt for web-specific module bundlers
such as webpack or Parcel, which understand HTML, CSS,
and JavaScript so they can parse and build optimized code,
through operations like these:

dead asset elimination

code splitting and dependency handling

ES6 to ES5 transpiling

minification

https://gulpjs.com/
https://gruntjs.com/
https://broccoli.build/
https://brunch.io/
https://webpack.js.org/
https://parceljs.org/

source map generation

cache-busting

live reloading

enforcing performance budgets (discussed below)

Module bundlers often promise zero configuration … although
the reality may be somewhat different!

A few tips to get started:

Choose a build system and stick with it for a while.

Automate the most frustrating tasks first.

Try not to overcomplicate your build process. Spend an hour or two
creating an initial setup, then evolve it over time.

Do as much during the build process as possible. For example, an HTML
template could be partially constructed from known data and partials
rather than parsing everything at render time.

Further reading:

A Guide to Using npm as a Build Tool

An Introduction to Gulp.js

A Beginner’s Guide to Webpack

A Beginner’s Guide to Parcel

Use Progressive Enhancement
Progressive enhancement is a development approach rather
than a technology. Each site or app feature starts with a
baseline minimum viable implementation—perhaps an
HTML-only solution. Enhancements are then added
progressively when they’re supported by the user’s device.
Consider a simple search box:

1. The base solution is an HTML <input type="search" /> field
which, when a string is entered, triggers a new page load showing search
results.

2. HTML5 constraint validation can be applied to ensure searching only
occurs when a minimum of three characters has been entered.

3. CSS styles are applied, showing basic formatting such as fonts, colors,
borders, etc.

4. When the field has focus, CSS animations could enlarge the field, show a
submit button, etc.

https://www.sitepoint.com/guide-to-npm-as-a-build-tool/
https://www.sitepoint.com/premium/books/an-introduction-to-gulp-js/read/1
https://www.sitepoint.com/premium/books/a-beginner-s-guide-to-webpack/read/1
https://www.sitepoint.com/premium/books/a-beginner-s-guide-to-parcel/read/1
https://developer.mozilla.org/docs/Web/Guide/HTML/HTML5/Constraint_validation

5. JavaScript could show suggestions as the user types characters.
6. JavaScript could show a simple list of search results without the user

having to leave the current page.
7. PWA service workers could be used to cache suggestions and search

results for later use.

Where necessary, the code tests that a feature is supported
before attempting the enhancement. For example, suggestions
could be implemented when JavaScript is running, events are
supported, and the HTML5 <datalist> element is
available.

Adding Missing Features with Polyfills
It’s often possible to use a polyfill to add a missing feature to browsers without native
support. This can range from additional prototypes, such as the String.padStart()
method, through to full APIs, such as one to provide geolocation support using IP
lookups.

Polyfill.io provides a custom set of polyfills. However, be wary about the performance
cost of attempting to polyfill everything. It may be preferable to offer IE users a fast,
rudimentary feature than a slow, fully polyfilled experience.

In the search box example above, progressive enhancement
offers the following benefits:

The search box is device agnostic and works in all browsers—old,
current, and those released tomorrow.

Assuming the HTML loads, the search box is always operational. This
includes the period before CSS and/or JavaScript is downloaded and
parsed. In performance terms, the feature is responsive immediately.

The user gets the best possible experience their device can handle.
Performance isn’t affected when an enhancement can’t be added.

The search box is fault-tolerant: any enhancement can work or fail
without breaking the system. It doesn’t matter whether CSS and/or
JavaScript are blocked, are slow to arrive, or fail to download.

It’s the responsible option, and doesn’t require more development effort
in most situations.

The approach has no downsides. Progressive enhancement
only breaks when:

1. It isn’t considered from the start. It may be difficult to retrospectively
enhance a feature that already requires a high base-level of CSS and
JavaScript.

https://developer.mozilla.org/docs/Web/HTML/Element/datalist
https://github.com/Financial-Times/polyfill-library/tree/master/polyfills/String/prototype/padStart
https://github.com/Financial-Times/polyfill-library/tree/master/polyfills/navigator/geolocation
https://polyfill.io/

2. You try to support all browsers equally. It’s futile to expect a decade-old
version of IE to behave the same as a modern application. Progressive
enhancement means you never need to worry about old browsers. Their
users may not receive the best experience, but the feature remains usable.

Adopt a Performance Budget
A performance budget imposes a limit on related metrics.
Typical options include:

quantity-based limits, such as the maximum number of fonts, images,
scripts, etc.

time-based limits, such as the first meaningful paint or interactive times

rule-based limits, such as a minimum performance and accessibility
score in Lighthouse audits

You should experiment and discuss options with stakeholders
to establish baseline criteria, such as:

the total size of a page must not exceed 500KB

a single image must be no more than 150KB

the home page must deliver less than 100KB of JavaScript

all pages must be readable within five seconds on a mid-range mobile
device operating on an average 3G connection

Ideally, these criteria can be added to your build process. Tools
such as the Lighthouse module and file size plugins can report
—and potentially block—any deviation from the budget.
Exceeding the budget means you must either:

1. optimize an existing feature/asset
2. lazy load an existing feature/asset on demand
3. remove an existing feature/asset
4. reject the new feature/asset

The limitations can help teams prioritize features. Increasing
the budget should always be tougher than implementing
another solution! For example, a budget increase must be
discussed, justified, and agreed to by a two-thirds majority at a
monthly progress meeting!

Performance budget tools:

https://www.npmjs.com/package/lighthouse

performancebudget.io: estimate file sizes according to download timings

bundlesize: calculate file sizes during the build process

SpeedCurve: track real-world performance (commercial)

Create a Style Guide
A style guide is a set of agreed brand, content, design, and
coding standards for teams generally working on large
codebases developed over a long period. A good style guide
promotes consistency and illustrates how developers should
approach solutions. Front-end components can be
demonstrated with example code that shows styling,
animation, functionality, and restrictions. The benefits include:

new team members can become productive quickly

components are reused: developers are less likely to introduce their own
HTML, CSS, and JavaScript

it becomes easier to update, maintain, and improve component
performance when the same code is used throughout

code can be tested and quality assurance becomes simpler

users receive a consistent UI experience

A style guide can be as rigid or as flexible as you require. It’s
often best to develop it as a set of HTML pages that can
demonstrate code and be updated quickly. Example documents
are available from styleguides.io.

Simplify and Streamline
Performance problems often start because stakeholders equate
more features with more customers. This is rarely the case;
most people prefer simplicity. They’re not using your site/app
on a daily basis and just want to get a task done quickly and
easily.

Average page weight reached 2MB because developers let it
happen. We’re under pressure to deliver more in a shorter
time, but are we doing the job effectively when it results in a
slow, clunky application no one wants to use? Few clients will
understand the intricacies of web performance, so it’s our

https://performancebudget.io/
https://github.com/siddharthkp/bundlesize
https://speedcurve.com/
http://styleguides.io/

responsibility to use efficient coding practices and to highlight
potential pitfalls in layman’s terms.

1. Be wary of the performance cost of any added features.
2. Use analytics to monitor and identify little-used features.
3. Fully remove unnecessary features or replace them with sleeker,

lightweight alternatives.

Look after the bytes and the megabytes will take care of
themselves!

Learn to Love the Web
The Web evolved from a document publishing platform to an
application delivery system that revolutionized the way we
distribute and use software. Unfortunately, this has resulted in
an alarming tendency to over-engineer solutions when simpler
options could be more effective. Rather than choose a native
HTML control, we import the latest JavaScript module.
Instead of adding a few styles, we copy vast quantities of CSS
from Stack Overflow and Bootstrap.

If there’s one piece of advice to take away from this book, it’s
learn the basics. Somewhat contradictorily, HTML and CSS
are either disregarded as too simplistic to warrant respect or
considered impenetrable technologies that must be fixed using
JavaScript. Yet they’re the fundamental building blocks of the
Web:

HTML5 has around 120 elements. Half of those will rarely be used, but
there’s usually a better alternative to <div> and .

There are almost 400 CSS3 properties and more are being added. No one
could name them all, but they’re modularized. The foundations can be
learned quickly, but experimentation and experience is required to
understand the concepts.

Learning HTML and CSS will make you a better web
developer and advance your JavaScript skills. A little
knowledge will considerably improve your application’s
performance.

Chapter 6: Check, Please!
I hope you’re feeling full after your extensive buffet of
performance delicacies. Not all dishes will have been to your
taste, but you should have found a few recipes to try.

The main reason we don’t have a fast and responsive web is
because we let it become slow and bloated. Performance is
rarely given equal priority with other features. In most cases,
it’s never even acknowledged until someone complains about
speed. Like SEO or usability, it’s possible to improve
performance toward the end of a project—but it’s far more
effective to implement it from the start.

Software development is a complex process, and it will always
be possible to make optimizations. However, if you target the
big, easy wins first, the tougher refactoring or rewrites will
become less necessary. Ideally, you should consider
performance every time you add a feature or asset to your site
or application. It will make you a more conscientious
developer and will win the respect of your peers and users.

Let’s strive to build a better web!

Further reading:

1. MDN web performance
2. The Cost of JavaScript
3. The Ethics of Web Performance

https://developer.mozilla.org/en-US/docs/Learn/Performance
https://v8.dev/blog/cost-of-javascript-2019
https://timkadlec.com/remembers/2019-01-09-the-ethics-of-performance/

	Jump Start Web Performance
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About SiteGround
	About Craig Buckler
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Chapter 1: Web Performance Matters
	The Cost of Poor Performance
	User Costs
	Business Costs
	Environmental Costs

	The Reason for the Woeful Web
	Excuse #1: “We Don’t Have a Performance Problem!”
	Excuse #2: “Our Users Never Complain?”
	Excuse #3: “Our Users Have High-end Devices”
	Excuse #4: “Our Customers Use Modern Browsers”
	Excuse #5: “We’ll Address Performance Later”
	Excuse #6: “Some Systems Require More Bandwidth and Processing”
	Excuse #7: “Expanding Page Weight is the Price of Progress”
	Excuse #8: “Slimming Pages Means Dumbing Down, with Fewer Features and Effects”
	Excuse #9: “Improving Performance Increases Complications and Maintenance”
	Excuse #10: “Our Client is Happy!”

	Where do I Start?

	Chapter 2: Testing Tools
	Create a Test Plan
	Identify Performance Bottlenecks
	Performance Tool Concepts
	The Browser Rendering Process

	Google Lighthouse/Chrome Audits
	DevTools’ Network Panel
	Chrome’s Performance Monitor
	Developer Tools’ Performance Panel
	DevTools’ Console Logs
	performance.now()
	Performance Marks and Measures

	WebPageTest.org
	WebPageTest API

	More Performance Assessment Tools

	Chapter 3: Quick Snacks
	Consider Your Hosting Plan
	Shared Hosting
	Dedicated Server Hosting
	Virtual Private Server (VPS) Hosting
	Cloud Hosting
	Switch to a More Appropriate Hosting Option
	Scale Resources
	Switch Hosts

	Use a Content Delivery Network
	Use Image and Video CDNs
	Asset Management
	Optimal Formatting and Compression
	Art Direction, Sizing, and Effects

	Activate Server Compression
	Activate HTTP/2
	Leverage Browser Caching
	Enable CMS Page Caching
	Are Videos Necessary?

	Check Your Primary Images
	Resize Large Bitmaps
	Choose an Appropriate Image Format
	Avoid Base64 Encoding
	Compress Images Effectively

	Concatenate and Minify CSS
	Concatenate and Minify JavaScript
	Minify HTML
	Load JavaScript at the End of the Page
	Preload Assets
	Remove Unused Assets
	Assess Analytics Performance
	Something More Substantial?

	Chapter 4: Simple Recipes
	Optimize Your Database
	Use a Query Analyzer
	Create Indexes
	Simplify Queries
	Create Additional Database Connections
	Consider a Server or Memory Upgrade
	Cache Results
	Use Background Processing
	Use Alternative Data Systems

	Remove or Optimize Social Media Buttons
	Use URL-based Share Links
	Use the Web Share API

	Be Wary of Third-party Scripts
	Use Responsive Images
	Define Responsive Image Aspect Ratios
	Implement Art Direction
	Lazy Load Images and Iframes
	Play Audio and Video on Demand
	Replace Images with CSS3 Effects
	Use SVGs Effectively
	1. Add SVGs Using an Tag
	2. Add SVGs as CSS Background Images
	3. Embed SVGs into the Page

	Consider Image Sprites
	Consider OS Fonts
	Embed Web Fonts with <link>
	Limit Font Styles and Text
	Use a Good Font-loading Strategy
	Consider Variable Fonts
	Use Modern CSS3 Layouts
	Remove Unused CSS
	Be Wary of Expensive CSS Properties
	Embrace CSS3 Animations
	Avoid Animating Expensive Properties
	Indicate Which Elements Will Animate
	Use CSS Containment
	Check the Save-Data Header
	Adopt Progressive Web App Technologies
	1. Enable HTTPS
	2. Create a Web App Manifest
	3. Create a Service Worker

	Power Down Inactive Tabs
	Consider Inlining Critical CSS
	Provide Accelerated Mobile Pages (AMP)
	Feeling Full Yet?

	Chapter 5: Life-Changing Diets
	Evaluate CMS Templates and Plugins
	Reduce Client-side Code
	Optimize JavaScript Code
	Use JavaScript Sparingly
	Avoid Long-running Tasks
	Bind Events Sparingly
	Analyze Modified Code

	Modify the DOM Effectively
	Cache Regularly Used Nodes
	Minimize Reflows
	Batch-update Styles
	Batch-update Elements
	Use requestAnimationFrame

	Consider Progressive Rendering
	Use Server-side Rendering
	Do You Need a JavaScript or CSS Framework?
	Use a Static Site Generator
	Use a Build System
	Use Progressive Enhancement
	Adopt a Performance Budget
	Create a Style Guide
	Simplify and Streamline
	Learn to Love the Web

	Chapter 6: Check, Please!

