

React: Tools & Resources
Copyright © 2017 SitePoint Pty. Ltd.

Cover Design: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced,
stored in a retrieval system or transmitted in any form or by
any means, without the prior written permission of the
publisher, except in the case of brief quotations embodied in
critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the
accuracy of the information herein. However, the information
contained in this book is sold without warranty, either express
or implied. Neither the authors and SitePoint Pty. Ltd., nor its
dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware
products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked
name as such, this book uses the names only in an editorial
fashion and to the benefit of the trademark owner with no
intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-
understand content for web professionals. Visit
http://www.sitepoint.com/ to access our blogs, books,
newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

http://www.sitepoint.com/

Preface
This book is a collection of in-depth guides to some some of
the tools and resources most used with React, such as Jest and
React Router, as well as a discussion about how React works
well with D3, and a look at Preact, a lightweight React
alternative. These tutorials were all selected from SitePoint's
React Hub.

Who Should Read This Book
This book is for front-end developers with some React
experience. If you’re a novice, please read Your First Week
With React before tackling this book.

Conventions Used

CODE SAMPLES
Code in this book is displayed using a fixed-width font, like
so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back

https://www.sitepoint.com/javascript/react/
https://www.sitepoint.com/premium/books/your-first-week-with-react

at school.</p>

Where existing code is required for context, rather than repeat
all of it, ⋮ will be displayed:

function animate() {
 ⋮
new_variable = "Hello";
}

Some lines of code should be entered on one line, but we’ve
had to wrap them because of page constraints. An ➥ indicates
a line break that exists for formatting purposes only, and
should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

You’ll notice that we’ve used certain layout styles throughout
this book to signify different types of information. Look out
for the following items.

TIPS, NOTES, AND WARNINGS

Hey, You!
Tips provide helpful little pointers.

Ahem, Excuse Me ...
Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...
... pay attention to these important points.

Watch Out!
Warnings highlight any gotchas that are likely to trip you up along the way.

Chapter 1: Getting Started
with Redux

BY MICHAEL WANYOIKE
A typical web application is usually composed of several UI
components that share data. Often, multiple components are
tasked with the responsibility of displaying different properties
of the same object. This object represents state which can
change at any time. Keeping state consistent among multiple
components can be a nightmare, especially if there are
multiple channels being used to update the same object.

Take, for example, a site with a shopping cart. At the top we
have a UI component showing the number of items in the cart.
We could also have another UI component that displays the
total cost of items in the cart. If a user clicks the Add to Cart
button, both of these components should update immediately
with the correct figures. If the user decides to remove an item
from the cart, change quantity, add a protection plan, use a
coupon or change shipping location, then the relevant UI
components should update to display the correct information.
As you can see, a simple shopping cart can quickly become
difficult to keep in sync as the scope of its features grows.

In this guide, I'll introduce you to a framework known as
Redux, which can help you build complex projects in way
that's easy to scale and maintain. To make learning easier, we'll
use a simplified shopping cart project to learn how Redux
works. You'll need to be at least familiar with the React library,
as you'll later need to integrate it with Redux.

Prerequisites
Before we get started, make sure you're familiar with the
following topics:

Functional JavaScript

Object-oriented JavaScript

ES6 JavaScript Syntax

Also, ensure you have the following setup on your machine:

a NodeJS environment

a Yarn setup (recommended)

You can access the entire code used in this tutorial on GitHub.

What is Redux?
Redux is a popular JavaScript framework that provides a
predictable state container for applications. Redux is based on
a simplified version of Flux, a framework developed by
Facebook. Unlike standard MVC frameworks, where data can

https://github.com/reactjs/redux
https://www.sitepoint.com/getting-started-react-beginners-guide/
https://www.sitepoint.com/introduction-functional-javascript/
https://www.sitepoint.com/oriented-programming-1/
https://www.sitepoint.com/shorthand-javascript-techniques/
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://www.sitepoint.com/yarn-vs-npm/
https://github.com/brandiqa/redux-shopping-cart

flow between UI components and storage in both directions,
Redux strictly allows data to flow in one direction only. See
the below illustration:

In Redux, all data – i.e. state – is held in a container known as
the store. There can only be one of these within an
application. The store is essentially a state tree where states for
all objects are kept. Any UI component can access the state of
a particular object directly from the store. To change a state
from a local or remote component, an action needs to be
dispatched. Dispatch in this context means sending actionable
information to the store. When a store receives an action, it
delegates it to the relevant reducer. A reducer is simply a
pure function that looks at the previous state, performs an
action and returns a new state. To see all this in action, we
need to start coding.

http://redux.js.org/docs/basics/Store.html
http://redux.js.org/docs/basics/Actions.html
http://redux.js.org/docs/basics/Reducers.html

Understand Immutability First
Before we start, I need you to first understand what
immutability means in JavaScript. According to the Oxford
English Dictionary, immutability means being unchangeable.
In programming, we write code that changes the values of
variables all the time. This is referred to as mutability. The
way we do this can often cause unexpected bugs in our
projects. If your code only deals with primitive data types
(numbers, strings, booleans), then you don't need to worry.
However, if you're working with Arrays and Objects,
performing mutable operations on them can create unexpected
bugs. To demonstrate this, open your terminal and launch the
Node interactive shell:

node

Next, let's create an array, then later assign it to another
variable:

> let a = [1,2,3]
> let b = a
> b.push(9)
> console.log(b)
[1, 2, 3, 9] // b output
> console.log(a)
[1, 2, 3, 9] // a output

As you can see, updating array b caused array a to
change as well. This happens because Objects and Arrays are
known referential data types – meaning that such data types
don't actually hold values themselves, but are pointers to a

memory location where the values are stored. By assigning a
to b, we merely created a second pointer that references the
same location. To fix this, we need to copy the referenced
values to a new location. In JavaScript, there are three
different ways of achieving this:

1. using immutable data structures created by Immutable.js
2. using JavaScript libraries such as Underscore and Lodash to execute

immutable operations
3. using native ES6 functions to execute immutable operations.

For this article, we'll use the ES6 way, since it's already
available in the NodeJS environment. Inside your NodeJS
terminal, execute the following:

> a = [1,2,3] // reset a
[1, 2, 3]
> b = Object.assign([],a) // copy array a to b
[1, 2, 3]
> b.push(8)
> console.log(b)
[1, 2, 3, 8] // b output
> console.log(a)
[1, 2, 3] // a output

In the above code example, array b can now be modified
without affecting array a. We've used Object.assign() to create
a new copy of values that variable b will now point to. We can
also use the rest operator(...) to perform an
immutable operation like this:

> a = [1,2,3]
[1, 2, 3]
> b = [...a, 4, 5, 6]

https://facebook.github.io/immutable-js/
http://underscorejs.org/
https://lodash.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

[1, 2, 3, 4, 5, 6]
> a
[1, 2, 3]

The rest operator works with object literals too! I won't go
deep into this subject, but here are some additional ES6
functions that we'll use to perform immutable operations:

spread syntax – useful in append operations

map function – useful in an update operation

filter function – useful in a delete operation

In case the documentation I've linked isn't useful, don't worry,
as you'll see how they're used in practice. Let's start coding!

Setting up Redux
The fastest way to set up a Redux development environment is
to use the create-react-app tool. Before we begin, make
sure you've installed and updated nodejs, npm and yarn.
Let's set up a Redux project by generating a redux-
shopping-cart project and installing the Redux package:

create-react-app redux-shopping-cart

cd redux-shopping-cart
yarn add redux # or npm install redux

Delete all files inside the src folder except index.js. Open
the file and clear out all existing code. Type the following:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://www.npmjs.com/package/redux

import { createStore } from "redux";

const reducer = function(state, action) {
 return state;
}

const store = createStore(reducer);

Let me explain what the above piece of code does:

1st statement. We import a createStore() function from the Redux
package.

2nd statement. We create an empty function known as a reducer. The first
argument, state, is current data held in the store. The second argument,
action, is a container for:

type – a simple string constant e.g. ADD, UPDATE, DELETE etc.

payload – data for updating state

3rd statement. We create a Redux store, which can only be constructed
using a reducer as a parameter. The data kept in the Redux store can be
accessed directly, but can only be updated via the supplied reducer.

You may have noticed I mentioned current data as if it already
exists. Currently, our state is undefined or null. To remedy
this, just assign a default value to state like this to make it an
empty array:

const reducer = function(state=[], action) {
 return state;
}

Now, let's get practical. The reducer we created is generic. Its
name doesn't describe what it's for. Then there's the issue of

how we work with multiple reducers. The answer is to use a
combineReducers function that's supplied by the Redux
package. Update your code as follows:

// src/index.js
…
import { combineReducers } from 'redux';

const productsReducer = function(state=[], action)
{
 return state;
}

const cartReducer = function(state=[], action) {
 return state;
}

const allReducers = {
 products: productsReducer,
 shoppingCart: cartReducer
}

const rootReducer = combineReducers(allReducers);

let store = createStore(rootReducer);

In the code above, we've renamed the generic reducer to
cartReducer. There's also a new empty reducer named
productsReducer that I've created just to show you how
to combine multiple reducers within a single store using the
combineReducers function.

Next, we'll look at how we can define some test data for our
reducers. Update the code as follows:

// src/index.js
…
const initialState = {

 cart: [
 {
 product: 'bread 700g',
 quantity: 2,
 unitCost: 90
 },
 {
 product: 'milk 500ml',
 quantity: 1,
 unitCost: 47
 }
]
}

const cartReducer = function(state=initialState,
action) {
 return state;
}
…
let store = createStore(rootReducer);

console.log("initial state: ", store.getState());

Just to confirm that the store has some initial data, we use
store.getState() to print out the current state in the
console. You can run the dev server by executing npm
start or yarn start in the console. Then press
Ctrl+Shift+I to open the inspector tab in Chrome in order
to view the console tab.

Currently, our cartReducer does nothing, yet it's supposed
to manage the state of our shopping cart items within the
Redux store. We need to define actions for adding, updating
and deleting shopping cart items. Let's start by defining logic
for a ADD_TO_CART action:

// src/index.js
…
const ADD_TO_CART = 'ADD_TO_CART';

const cartReducer = function(state=initialState,
action) {
 switch (action.type) {
 case ADD_TO_CART: {
 return {
 ...state,

 cart: [...state.cart, action.payload]
 }
 }

 default:
 return state;
 }
}
…

Take your time to analyze and understand the code. A reducer
is expected to handle different action types, hence the need for
a SWITCH statement. When an action of type ADD_TO_CART
is dispatched anywhere in the application, the code defined
here will handle it. As you can see, we're using the information
provided in action.payload to combine to an existing
state in order to create a new state.

Next, we'll define an action, which is needed as a parameter
for store.dispatch(). Actions are simply JavaScript
objects that must have type and an optional payload. Let's go
ahead and define one right after the cartReducer function:

…
function addToCart(product, quantity, unitCost) {
 return {
 type: ADD_TO_CART,
 payload: { product, quantity, unitCost }
 }
}
…

Here, we've defined a function that returns a plain JavaScript
object. Nothing fancy. Before we dispatch, let's add some code

that will allow us to listen to store event changes. Place this
code right after the console.log() statement:

…
let unsubscribe = store.subscribe(() =>
 console.log(store.getState())
);

unsubscribe();

Next, let's add several items to the cart by dispatching actions
to the store. Place this code before unsubscribe():

…
store.dispatch(addToCart('Coffee 500gm', 1, 250));
store.dispatch(addToCart('Flour 1kg', 2, 110));
store.dispatch(addToCart('Juice 2L', 1, 250));

For clarification purposes, I'll illustrate below how the entire
code should look after making all the above changes:

// src/index.js

import { createStore } from "redux";
import { combineReducers } from 'redux';

const productsReducer = function(state=[], action)
{
 return state;
}

const initialState = {
 cart: [
 {
 product: 'bread 700g',
 quantity: 2,
 unitCost: 90
 },
 {

 product: 'milk 500ml',
 quantity: 1,
 unitCost: 47
 }
]
}

const ADD_TO_CART = 'ADD_TO_CART';

const cartReducer = function(state=initialState,
action) {
 switch (action.type) {
 case ADD_TO_CART: {
 return {
 ...state,
 cart: [...state.cart, action.payload]
 }
 }

 default:
 return state;
 }
}

function addToCart(product, quantity, unitCost) {
 return {
 type: ADD_TO_CART,
 payload: {
 product,
 quantity,
 unitCost
 }
 }
}

const allReducers = {
 products: productsReducer,
 shoppingCart: cartReducer
}

const rootReducer = combineReducers(allReducers);

let store = createStore(rootReducer);

console.log("initial state: ", store.getState());

let unsubscribe = store.subscribe(() =>
 console.log(store.getState())

);

store.dispatch(addToCart('Coffee 500gm', 1, 250));
store.dispatch(addToCart('Flour 1kg', 2, 110));
store.dispatch(addToCart('Juice 2L', 1, 250));

unsubscribe();

After you've saved your code, Chrome should automatically
refresh. Check the console tab to confirm that the new items
have been added:

Organizing Redux Code
The index.js file has quickly grown large. This is not how
Redux code is written. I've only done this to show you how
simple Redux is. Let's look at how a Redux project should be
organized. First, create the following folders and files within
the src folder, as illustrated below:

src/
├── actions
│ └── cart-actions.js
├── index.js
├── reducers
│ ├── cart-reducer.js
│ ├── index.js
│ └── products-reducer.js
└── store.js

Next, let's start moving code from index.js to the relevant
files:

// src/actions/cart-actions.js

export const ADD_TO_CART = 'ADD_TO_CART';

export function addToCart(product, quantity,
unitCost) {
 return {
 type: ADD_TO_CART,
 payload: { product, quantity, unitCost }
 }
}

// src/reducers/products-reducer.js

export default function(state=[], action) {
 return state;
}

// src/reducers/cart-reducer.js

import { ADD_TO_CART } from '../actions/cart-
actions';

const initialState = {
 cart: [
 {
 product: 'bread 700g',
 quantity: 2,
 unitCost: 90
 },
 {
 product: 'milk 500ml',
 quantity: 1,
 unitCost: 47
 }
]
}

export default function(state=initialState,
action) {
 switch (action.type) {
 case ADD_TO_CART: {
 return {
 ...state,
 cart: [...state.cart, action.payload]
 }
 }

 default:
 return state;
 }
}

// src/reducers/index.js

import { combineReducers } from 'redux';
import productsReducer from './products-reducer';
import cartReducer from './cart-reducer';

const allReducers = {
 products: productsReducer,
 shoppingCart: cartReducer

}

const rootReducer = combineReducers(allReducers);

export default rootReducer;

// src/store.js

import { createStore } from "redux";
import rootReducer from './reducers';

let store = createStore(rootReducer);

export default store;

// src/index.js

import store from './store.js';
import { addToCart } from './actions/cart-
actions';

console.log("initial state: ", store.getState());

let unsubscribe = store.subscribe(() =>
 console.log(store.getState())
);

store.dispatch(addToCart('Coffee 500gm', 1, 250));
store.dispatch(addToCart('Flour 1kg', 2, 110));
store.dispatch(addToCart('Juice 2L', 1, 250));

unsubscribe();

After you've finished updating the code, the application should
run as before now that it's better organized. Let's now look at
how we can update and delete items from the shopping cart.
Open cart-reducer.js and update the code as follows:

// src/reducers/cart-actions.js
…

export const UPDATE_CART = 'UPDATE_CART';
export const DELETE_FROM_CART =
'DELETE_FROM_CART';
…
export function updateCart(product, quantity,
unitCost) {
 return {
 type: UPDATE_CART,
 payload: {
 product,
 quantity,
 unitCost
 }
 }
}

export function deleteFromCart(product) {
 return {
 type: DELETE_FROM_CART,
 payload: {
 product
 }
 }
}

Next, update cart-reducer.js as follows:

// src/reducers/cart-reducer.js
…
export default function(state=initialState,
action) {
 switch (action.type) {
 case ADD_TO_CART: {
 return {
 ...state,
 cart: [...state.cart, action.payload]
 }
 }

 case UPDATE_CART: {
 return {
 ...state,
 cart: state.cart.map(item => item.product
=== action.payload.product ?
 ➥action.payload : item)

 }
 }

 case DELETE_FROM_CART: {
 return {
 ...state,
 cart: state.cart.filter(item =>
item.product !== action.payload.product)
 }
 }

 default:
 return state;
 }
}

Finally, let's dispatch the UPDATE_CART and
DELETE_FROM_CART actions in index.js:

// src/index.js
…
// Update Cart
store.dispatch(updateCart('Flour 1kg', 5, 110));

// Delete from Cart
store.dispatch(deleteFromCart('Coffee 500gm'));
…

Your browser should automatically refresh once you've saved
all the changes. Check the console tab to confirm the results:

As confirmed, the quantity for 1kg of flour is updated from 2
to 5, while the the 500gm of coffee gets deleted from cart.

Debugging with Redux tools
Now, if we've made a mistake in our code, how do we debug a
Redux project?

Redux comes with a lot of third-party debugging tools we can
use to analyze code behavior and fix bugs. Probably the most
popular one is the time-travelling tool, otherwise known as
redux-devtools-extension. Setting it up is a 3-step process.
First, go to your Chrome browser and install the Redux
Devtools extension.

https://www.npmjs.com/package/redux-devtools-extension
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

Next, go to your terminal where your Redux application is
running and press Ctrl+C to stop the development server.
Next, use npm or yarn to install the redux-devtools-extension
package. Personally, I prefer Yarn, since there's a yarn.lock
file that I'd like to keep updated.

yarn add redux-devtools-extension

Once installation is complete, you can start the development
server as we implement the final step of implementing the
tool. Open store.js and replace the existing code as
follows:

// src/store.js
import { createStore } from "redux";
import { composeWithDevTools } from 'redux-
devtools-extension';
import rootReducer from './reducers';

https://www.npmjs.com/package/redux-devtools-extension

const store = createStore(rootReducer,
composeWithDevTools());

export default store;

Feel free to update src/index.js and remove all code
related with logging to the console and subscribing to the
store. This is no longer needed. Now, go back to Chrome and
open the Redux DevTools panel by right-clicking the tool's
icon:

In my case, I've selected to To Bottom option. Feel free to try
out other options.

As you can see, the Redux Devtool is quite amazing. You can
toggle between action, state and diff methods. Select actions
on the left panel and observe how the state tree changes. You
can also use the slider to play back the sequence of actions.
You can even dispatch directly from the tool! Do check out the
documentation to learn more on how you can further
customize the tool to your needs.

Integration with React
At the beginning of this tutorial, I mentioned Redux really
pairs well with React. Well, you only need a few steps to setup
the integration. Firstly, stop the development server, as we'll

https://github.com/gaearon/redux-devtools

need to install the react-redux package, the official Redux
bindings for React:

yarn add react-redux

Next, update index.js to include some React code. We'll
also use the Provider class to wrap the React application
within the Redux container:

// src/index.js
…
import React from 'react';
import ReactDOM from 'react-dom';
import { Provider } from 'react-redux';

const App = <h1>Redux Shopping Cart</h1>;

ReactDOM.render(
 <Provider store={store}>
 { App }
 </Provider> ,
 document.getElementById('root')
);
…

Just like that, we've completed the first part of the integration.
You can now start the server to see the result. The second part
involves linking React's components with the Redux store and
actions using a couple of functions provided by the react-
redux package that we just installed. In addition, you'll need
to set up an API using Express or a framework like Feathers.
The API will provide our application with access to a database
service.

https://github.com/reactjs/react-redux
https://expressjs.com/
https://feathersjs.com/

In Redux, we'll also need to install further packages such as
axios to perform API requests via Redux actions. Our React
components state will then be handled by Redux, making sure
that all components are in sync with the database API. To learn
more on how to accomplish all this, do take a look at my other
tutorial, “Build a CRUD App Using React, Redux and
FeathersJS”.

Summary
I hope this guide has given you a useful introduction to Redux.
There's still quite a bit more for you to learn, though. For
example, you need to learn how to deal with async actions,
authentication, logging, handling forms and so on. Now that
you know what Redux is all about, you'll find it easier to try
out other similar frameworks, such as Flux, Alt.js or Mobx. If
you feel Redux is right for you, I highly recommend the
following tutorials that will help you gain even more
experience in Redux:

Redux State Management in Vanilla JavaScript

Redux Logging in Production with LogRocket

Build a CRUD App Using React, Redux and FeathersJS

Dealing with Asynchronous APIs in Server-rendered React

https://www.sitepoint.com/crud-app-react-redux-feathersjs/
https://www.sitepoint.com/building-a-react-universal-blog-app-implementing-flux/
https://www.sitepoint.com/redux-vs-mobx-which-is-best/
https://www.sitepoint.com/redux-without-react-state-management-vanilla-javascript/
https://www.sitepoint.com/redux-logging-production-logrocket/
https://www.sitepoint.com/crud-app-react-redux-feathersjs/
https://www.sitepoint.com/asynchronous-apis-server-rendered-react/

Chapter 2: React Router
v4: The Complete Guide

BY MANJUNATH M
React Router is the de facto standard routing library for React.
When you need to navigate through a React application with
multiple views, you'll need a router to manage the URLs.
React Router takes care of that, keeping your application UI
and the URL in sync.

This tutorial introduces you to React Router v4 and a whole lot
of things you can do with it.

Introduction
React is a popular library for creating single-page applications
(SPAs) that are rendered on the client side. An SPA might have
multiple views (aka pages), and unlike the conventional multi-
page apps, navigating through these views shouldn't result in
the entire page being reloaded. Instead, we want the views to
be rendered inline within the current page. The end user, who's
accustomed to multi-page apps, expects the following features
to be present in an SPA:

https://reacttraining.com/react-router/

Each view in an application should have a URL that uniquely specifies that
view. This is so that the user can bookmark the URL for reference at a later
time – e.g. www.example.com/products.

The browser's back and forward button should work as expected.

The dynamically generated nested views should preferably have a URL of
their own too – e.g. example.com/products/shoes/101, where 101
is the product id.

Routing is the process of keeping the browser URL in sync
with what's being rendered on the page. React Router lets you
handle routing declaratively. The declarative routing
approach allows you to control the data flow in your
application, by saying "the route should look like this":

<Route path="/about" component={About}/>

You can place your <Route> component anywhere that you
want your route to be rendered. Since <Route>, <Link> and
all the other React Router API that we'll be dealing with are
just components, you can easily get used to routing in React.

React Router is a Third-party Library
A note before getting started. There's a common misconception that React
Router is an official routing solution developed by Facebook. In reality, it's a
third-party library that's widely popular for its design and simplicity. If your
requirements are limited to routers for navigation, you could implement a
custom router from scratch without much hassle. However, understanding the
basics of React Router will give you better insights into how a router should
work.

Overview
This tutorial is divided into different sections. First, we'll be
setting up React and React Router using npm. Then we'll jump
right into React Router basics. You'll find different code
demonstrations of React Router in action. The examples
covered in this tutorial include:

1. basic navigational routing
2. nested routing
3. nested routing with path parameters
4. protected routing

All the concepts connected with building these routes will be
discussed along the way. The entire code for the project is
available on this GitHub repo. Once you're inside a particular
demo directory, run npm install to install the
dependencies. To serve the application on a development
server, run npm start and head over to
http://localhost:3000/ to see the demo in action.

Let's get started!

Setting up React Router
I assume you already have a development environment up and
running. If not, head over to “Getting Started with React and
JSX”. Alternatively, you can use Create React App to generate
the files required for creating a basic React project. This is the
default directory structure generated by Create React App:

https://github.com/blizzerand/react-router-v4-demo
https://www.sitepoint.com/getting-started-react-jsx/
https://www.sitepoint.com/create-react-app/

 react-routing-demo-v4
 ├── .gitignore
 ├── package.json
 ├── public
 │ ├── favicon.ico
 │ ├── index.html
 │ └── manifest.json
 ├── README.md
 ├── src
 │ ├── App.css
 │ ├── App.js
 │ ├── App.test.js
 │ ├── index.css
 │ ├── index.js
 │ ├── logo.svg
 │ └── registerServiceWorker.js
 └── yarn.lock

The React Router library comprises three packages: react-
router, react-router-dom, and react-router-
native. react-router is the core package for the router,
whereas the other two are environment specific. You should
use react-router-dom if you're building a website, and
react-router-native if you're on a mobile app
development environment using React Native.

Use npm to install react-router-dom:

npm install --save react-router-dom

React Router Basics
Here's an example of how our routes will look:

<Router>
 <Route exact path="/" component={Home}/>
 <Route path="/category" component={Category}/>
 <Route path="/login" component={Login}/>
 <Route path="/products" component={Products}/>
</Router>

ROUTER
You need a router component and several route components to
set up a basic route as exemplified above. Since we're building
a browser-based application, we can use two types of routers
from the React Router API:

1. <BrowserRouter>
2. <HashRouter>

The primary difference between them is evident in the URLs
that they create:

// <BrowserRouter>
http://example.com/about

// <HashRouter>
http://example.com/#/about

The <BrowserRouter> is more popular amongst the two
because it uses the HTML5 History API to keep track of your
router history. The <HashRouter>, on the other hand, uses
the hash portion of the URL (window.location.hash) to
remember things. If you intend to support legacy browsers,
you should stick with <HashRouter>.

Wrap the <BrowserRouter> component around the App
component.

index.js

/* Import statements */
import React from 'react';
import ReactDOM from 'react-dom';

/* App is the entry point to the React code.*/
import App from './App';

/* import BrowserRouter from 'react-router-dom' */
import { BrowserRouter } from 'react-router-dom';

ReactDOM.render(
 <BrowserRouter>
 <App />
 </BrowserRouter>
 , document.getElementById('root'));

A Router Component Can Only Have a Single Child
Element
A router component can only have a single child element. The child element
can be an HTML element – such as a div – or a React component.

For the React Router to work, you need to import the relevant
API from the react-router-dom library. Here I've
imported the BrowserRouter into index.js. I've also
imported the App component from App.js. App.js, as you
might have guessed, is the entry point to React components.

The above code creates an instance of history for our entire
App component. Let me formally introduce you to history.

HISTORY
history is a JavaScript library that lets you easily manage
session history anywhere JavaScript runs. history provides a
minimal API that lets you manage the history stack, navigate,
confirm navigation, and persist state between sessions. – React
Training docs

Each router component creates a history object that keeps
track of the current location (history.location) and also
the previous locations in a stack. When the current location
changes, the view is re-rendered and you get a sense of
navigation. How does the current location change? The history
object has methods such as history.push() and
history.replace() to take care of that.
history.push() is invoked when you click on a <Link>
component, and history.replace() is called when you
use <Redirect>. Other methods – such as
history.goBack() and history.goForward() – are
used to navigate through the history stack by going back or
forward a page.

Moving on, we have Links and Routes.

LINKS AND ROUTES
The <Route> component is the most important component in
React router. It renders some UI if the current location matches
the route's path. Ideally, a <Route> component should have a

https://github.com/ReactTraining/history

prop named path, and if the pathname is matched with the
current location, it gets rendered.

The <Link> component, on the other hand, is used to
navigate between pages. It's comparable to the HTML anchor
element. However, using anchor links would result in a
browser refresh, which we don't want. So instead, we can use
<Link> to navigate to a particular URL and have the view re-
rendered without a browser refresh.

We've covered everything you need to know to create a basic
router. Let's build one.

DEMO 1: BASIC ROUTING

src/App.js

/* Import statements */
import React, { Component } from 'react';
import { Link, Route, Switch } from 'react-router-
dom';

/* Home component */
const Home = () => (
 <div>
 <h2>Home</h2>
 </div>
)

/* Category component */
const Category = () => (
 <div>
 <h2>Category</h2>
 </div>
)

/* Products component */

const Products = () => (
 <div>
 <h2>Products</h2>
 </div>
)

/* App component */
class App extends React.Component {
 render() {
 return (
 <div>
 <nav className="navbar navbar-light">
 <ul className="nav navbar-nav">

 /* Link components are used for linking
to other views */
 <Link to="/">Homes</Link>
 <Link
to="/category">Category</Link>
 <Link
to="/products">Products</Link>

 </nav>

 /* Route components are rendered if the
path prop matches the current
 URL */
 <Route path="/" component={Home}/>
 <Route path="/category" component=
{Category}/>
 <Route path="/products" component=
{Products}/>

 </div>
)
 }
}

We've declared the components for Home, Category and
Products inside App.js. Although this is okay for now, when
the component starts to grow bigger, it's better to have a
separate file for each component. As a rule of thumb, I usually
create a new file for a component if it occupies more than 10

lines of code. Starting from the second demo, I'll be creating a
separate file for components that have grown too big to fit
inside the App.js file.

Inside the App component, we've written the logic for routing.
The <Route>'s path is matched with the current location and
a component gets rendered. The component that should be
rendered is passed in as a second prop.

Here / matches both / and /category. Therefore, both the
routes are matched and rendered. How do we avoid that? You
should pass the exact= {true} props to the router with
path='/':

<Route exact={true} path="/" component={Home}/>

If you want a route to be rendered only if the paths are exactly
the same, you should use the exact props.

Nested Routing
To create nested routes, we need to have a better
understanding of how <Route> works. Let's do that.

<Route> has three props that you can you use to define what
gets rendered:

component. We've already seen this in action. When the URL is matched,
the router creates a React element from the given component using
React.createElement.

render. This is handy for inline rendering. The render prop expects a
function that returns an element when the location matches the route's path.

children. The children prop is similar to render in that it expects a function
that returns a React element. However, children gets rendered regardless of
whether the path is matched with the location or not.

PATH AND MATCH
The path is used to identify the portion of the URL that the
router should match. It uses the Path-to-RegExp library to turn
a path string into a regular expression. It will then be matched
against the current location.

If the router's path and the location are successfully matched,
an object is created and we call it the match object. The match
object carries more information about the URL and the path.
This information is accessible through its properties, listed
below:

match.url. A string that returns the matched portion of the URL. This is
particularly useful for building nested <Link>s

match.path. A string that returns the route's path string – that is, <Route
path="">. We'll be using this to build nested <Route>s.

match.isExact. A boolean that returns true if the match was exact
(without any trailing characters).

match.params. An object containing key/value pairs from the URL
parsed by the Path-to-RegExp package.

Now that we know all about <Route>s, let's build a router
with nested routes.

SWITCH COMPONENT
Before we head for the demo code, I want to introduce you to
the <Switch> component. When multiple <Route>s are
used together, all the routes that match are rendered
inclusively. Consider this code from demo 1. I've added a new
route to demonstrate why <Switch> is useful.

<Route exact path="/" component={Home}/>
<Route path="/products" component={Products}/>
<Route path="/category" component={Category}/>
<Route path="/:id" render = {()=> (<p> I want this
text to show up for all routes
 ➥ other than '/', '/products' and '/category'
</p>)}/>

If the URL is /products, all the routes that match the
location /products are rendered. So, the <Route> with
path :id gets rendered along with the Products
component. This is by design. However, if this is not the
behavior you're expecting, you should add the <Switch>
component to your routes. With <Switch>, only the first
child <Route> that matches the location gets rendered.

DEMO 2: NESTED ROUTING
Earlier on, we created routes for /, /category and
/products. What if we wanted a URL of the form
/category/shoes?

src/App.js

import React, { Component } from 'react';
import { Link, Route, Switch } from 'react-router-
dom';
import Category from './Category';

class App extends Component {
 render() {

 return (
 <div>
 <nav className="navbar navbar-light">
 <ul className="nav navbar-nav">
 <Link to="/">Homes</Link>
 <Link
to="/category">Category</Link>
 <Link
to="/products">Products</Link>

 </nav>

 <Switch>
 <Route exact path="/" component={Home}/>
 <Route path="/category" component=
{Category}/>
 <Route path="/products" component=
{Products}/>
 </Switch>

 </div>
);
 }
}
export default App;

/* Code for Home and Products component omitted
for brevity */

Unlike the earlier version of React Router, in version 4, the
nested <Route>s should preferably go inside the parent
component. That is, the Category component is the parent
here, and we'll be declaring the routes for category/:name
inside the parent component.

src/Category.jsx

import React from 'react';
import { Link, Route } from 'react-router-dom';

const Category = ({ match }) => {
return(<div>
 <Link to=
{`${match.url}/shoes`}>Shoes</Link>
 <Link to=
{`${match.url}/boots`}>Boots</Link>
 <Link to=
{`${match.url}/footwear`}>Footwear</Link>

 <Route path={`${match.path}/:name`} render=
{({match}) =>(<div> <h3>
 ➥ {match.params.name} </h3></div>)}/>
 </div>)
}
export default Category;

First, we've declared a couple of links for the nested routes. As
previously mentioned, match.url will be used for building
nested links and match.path for nested routes. If you're
having trouble understanding the concept of match,
console.log(match) provides some useful information
that might help to clarify it.

<Route path={`${match.path}/:name`}
 render= {({match}) =>(<div> <h3>
{match.params.name} </h3></div>)}/>

This is our first attempt at dynamic routing. Instead of hard-
coding the routes, we've used a variable within the pathname.
:name is a path parameter and catches everything after
category/ until another forward slash is encountered. So, a

pathname like products/running-shoes will create a
params object as follows:

{
 name: 'running-shoes'
}

The captured data should be accessible at match.params or
props.match.params depending on how the props are
passed. The other interesting thing is that we've used a
render prop. render props are pretty handy for inline
functions that don't require a component of their own.

DEMO 3: NESTED ROUTING WITH
PATH PARAMETERS
Let's complicate things a bit more, shall we? A real-world
router will have to deal with data and display it dynamically.
Assume that we have the product data returned by a server
API of the form below.

src/Products.jsx

const productData = [
{
 id: 1,
 name: 'NIKE Liteforce Blue Sneakers',
 description: 'Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
 ➥Proin molestie.',
 status: 'Available'

},
{
 id: 2,

 name: 'Stylised Flip Flops and Slippers',
 description: 'Mauris finibus, massa eu tempor
volutpat, magna dolor euismod
 ➥ dolor.',
 status: 'Out of Stock'

},
{
 id: 3,
 name: 'ADIDAS Adispree Running Shoes',
 description: 'Maecenas condimentum porttitor
auctor. Maecenas viverra fringilla
 ➥ felis, eu pretium.',
 status: 'Available'
},
{
 id: 4,
 name: 'ADIDAS Mid Sneakers',
 description: 'Ut hendrerit venenatis lacus, vel
lacinia ipsum fermentum vel.
 ➥ Cras.',
 status: 'Out of Stock'
},

];

We need to create routes for the following paths:

/products. This should display a list of products.

/products/:productId. If a product with the :productId exists, it
should display the product data, and if not, it should display an error
message.

src/Products.jsx

/* Import statements have been left out for code
brevity */

const Products = ({ match }) => {

 const productsData = [
 {
 id: 1,

 name: 'NIKE Liteforce Blue Sneakers',
 description: 'Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
 ➥ Proin molestie.',
 status: 'Available'

 },

 //Rest of the data has been left out for code
brevity

];
 /* Create an array of `` items for each
product */
 var linkList = productsData.map((product) => {
 return(

 <Link to={`${match.url}/${product.id}`}>
 {product.name}
 </Link>

)

 })

 return(
 <div>
 <div>
 <div>
 <h3> Products</h3>
 {linkList}
 </div>
 </div>

 <Route path={`${match.url}/:productId`}
 render={ (props) => <Product data=
{productsData} {...props} />}/>
 <Route exact path={match.url}
 render={() => (
 <div>Please select a product.</div>
)}
 />
 </div>
)
}

First, we created a list of <Links>s using the
productsData.ids and stored it in linkList. The route
takes a parameter in the path string which corresponds to that
of the product id.

<Route path={`${match.url}/:productId`}
 render={ (props) => <Product data=
{productsData} {...props} />}/>

You may have expected component = { Product }
instead of the inline render function. The problem is that we
need to pass down productsData to the Product
component along with all the existing props. Although there
are other ways you can do this, I find this method to be the
easiest. {...props} uses the ES6's spread syntax to pass
the whole props object to the component.

Here's the code for Product component.

src/Product.jsx

/* Import statements have been left out for code
brevity */

const Product = ({match,data}) => {
 var product= data.find(p => p.id ==
match.params.productId);
 var productData;

 if(product)
 productData = <div>
 <h3> {product.name} </h3>
 <p>{product.description}</p>
 <hr/>
 <h4>{product.status}</h4> </div>;
 else
 productData = <h2> Sorry. Product doesnt exist

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

</h2>;

 return (
 <div>
 <div>
 {productData}
 </div>
 </div>
)
}

The find method is used to search the array for an object
with an id property that equals
match.params.productId. If the product exists, the
productData is displayed. If not, a "Product doesn't exist"
message is rendered.

Protecting Routes
For the final demo, we'll be discussing techniques concerned
with protecting routes. So, if someone tries to access /admin,
they'd be required to log in first. However, there are some
things we need to cover before we can protect routes.

REDIRECT
Like the server-side redirects, <Redirect> will replace the
current location in the history stack with a new location. The
new location is specified by the to prop. Here's how we'll be
using <Redirect>:

<Redirect to={{pathname: '/login', state: {from:
props.location}}}

So, if someone tries to access the /admin while logged out,
they'll be redirected to the /login route. The information
about the current location is passed via state, so that if the
authentication is successful, the user can be redirected back to
the original location. Inside the child component, you can
access this information at
this.props.location.state.

CUSTOM ROUTES
A custom route is a fancy word for a route nested inside a
component. If we need to make a decision whether a route
should be rendered or not, writing a custom route is the way to
go. Here's the custom route declared among other routes.

src/App.js

/* Add the PrivateRoute component to the existing
Routes */
<Switch>
 <Route exact path="/" component={Home} data=
{data}/>
 <Route path="/category" component={Category}/>
 <Route path="/login" component={Login}/>
 <PrivateRoute authed={fakeAuth.isAuthenticated}
path='/products' component =
 ➥ {Products} />
</Switch>

fakeAuth.isAuthenticated returns true if the user is
logged in and false otherwise.

Here's the definition for PrivateRoute:

src/App.js

/* PrivateRoute component definition */
const PrivateRoute = ({component: Component,
authed, ...rest}) => {
 return (
 <Route
 {...rest}
 render={(props) => authed === true
 ? <Component {...props} />
 : <Redirect to={{pathname: '/login',
state: {from: props.
 ➥location}}} />} />
)
}

The route renders the Admin component if the user is logged
in. Otherwise, the user is redirected to /login. The good
thing about this approach is that it is evidently more
declarative and PrivateRoute is reusable.

Finally, here's the code for the Login component:

src/Login.jsx

import React from 'react';
import { Redirect } from 'react-router-dom';

class Login extends React.Component {

 constructor() {
 super();

 this.state = {
 redirectToReferrer: false
 }
 // binding 'this'
 this.login = this.login.bind(this);
 }

 login() {

 fakeAuth.authenticate(() => {
 this.setState({ redirectToReferrer: true })
 })
 }

 render() {
 const { from } = this.props.location.state ||
{ from: { pathname: '/' } }
 const { redirectToReferrer } = this.state;

 if (redirectToReferrer) {
 return (
 <Redirect to={from} />
)
 }

 return (
 <div>
 <p>You must log in to view the page at
{from.pathname}</p>
 <button onClick={this.login}>Log
in</button>
 </div>
)
 }
}

/* A fake authentication function */
export const fakeAuth = {

 isAuthenticated: false,
 authenticate(cb) {
 this.isAuthenticated = true
 setTimeout(cb, 100)
 },
}

The line below demonstrates object destructuring, which is a
part of the ES6 specification.

const { from } = this.props.location.state || {
from: { pathname: '/' } }

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

DEMO 4: PROTECTING ROUTES
Let's fit the puzzle pieces together, shall we? Here's the final
demo of the application that we built using React router:

CodeSandbox Example
https://codesandbox.io/embed/nn8x24vm60

Summary
As you've seen in this article, React Router is a powerful
library that complements React for building better, declarative
routes. Unlike the prior versions of React Router, in v4,
everything is "just components". Moreover, the new design
pattern perfectly fits into the React way of doing things.

In this tutorial, we learned:

how to setup and install React Router

the basics of routing and some essential components such as <Router>,
<Route> and <Link>

how to create a minimal router for navigation and nested routes

how to build dynamic routes with path parameters

Finally, we learned some advanced routing techniques for
creating the final demo for protected routes.

https://codesandbox.io/embed/nn8x24vm60

Chapter 3: How to Test
React Components Using
Jest

BY JACK FRANKLIN
In this tutorial, we'll take a look at using Jest – a testing
framework maintained by Facebook – to test our ReactJS
components. We'll look at how we can use Jest first on plain
JavaScript functions, before looking at some of the features it
provides out of the box specifically aimed at making testing
React apps easier. It's worth noting that Jest isn't aimed
specifically at React: you can use it to test any JavaScript
applications. However, a couple of the features it provides
come in really handy for testing user interfaces, which is why
it's a great fit with React.

Sample Application
Before we can test anything, we need an application to test!
Staying true to web development tradition, I've built a small
todo application that we'll use as the starting point. You can
find it, along with all the tests that we're about to write, on

https://facebook.github.io/jest/
https://facebook.github.io/react/index.html
https://github.com/sitepoint-editors/testing-react-with-jest

GitHub. If you'd like to play with the application to get a feel
for it, you can also find a live demo online.

The application is written in ES2015, compiled using
Webpack with the Babel ES2015 and React presets. I won't go
into the details of the build set up, but it's all in the GitHub
repo if you'd like to check it out. You'll find full instructions in
the README on how to get the app running locally. If you'd
like to read more, the application is built using Webpack, and I
recommend "A Beginner's guide to Webpack" as a good
introduction to the tool.

The entry point of the application is app/index.js, which
just renders the Todos component into the HTML:

render(
 <Todos />,
 document.getElementById('app')
);

The Todos component is the main hub of the application. It
contains all the state (hard-coded data for this application,
which in reality would likely come from an API or similar),
and has code to render the two child components: Todo,
which is rendered once for each todo in the state, and
AddTodo, which is rendered once and provides the form for a
user to add a new todo.

Because the Todos component contains all the state, it needs
the Todo and AddTodo components to notify it whenever
anything changes. Therefore, it passes functions down into

https://github.com/sitepoint-editors/testing-react-with-jest
https://sitepoint-editors.github.io/testing-react-with-jest
https://github.com/sitepoint-editors/testing-react-with-jest
https://webpack.github.io/docs/tutorials/getting-started/
https://medium.com/@dabit3/beginner-s-guide-to-webpack-b1f1a3638460#.f6vf3p9ag

these components that they can call when some data changes,
and Todos can update the state accordingly.

Finally, for now, you'll notice that all the business logic is
contained in app/state-functions.js:

export function toggleDone(state, id) {…}

export function addTodo(state, todo) {…}

export function deleteTodo(state, id) {…}

These are all pure functions that take the state and some data,
and return the new state. If you're unfamiliar with pure
functions, they are functions that only reference data they are
given and have no side effects. For more, you can read my
article on A List Apart on pure functions and my article on
SitePoint about pure functions and React.

If you're familiar with Redux, they're fairly similar to what
Redux would call a reducer. In fact, if this application got
much bigger I would consider moving into Redux for a more
explicit, structured approach to data. But for this size
application you'll often find that local component state and
some well abstracted functions to be more than enough.

To TDD or Not to TDD?
There have been many articles written on the pros and cons of
test-driven development, where developers are expected to

http://alistapart.com/article/making-your-javascript-pure
https://www.sitepoint.com/react-higher-order-components/

write the tests first, before writing the code to fix the test. The
idea behind this is that, by writing the test first, you have to
think about the API that you're writing, and it can lead to a
better design. For me, I find that this very much comes down
to personal preference and also to the sort of thing I'm testing.
I've found that, for React components, I like to write the
components first and then add tests to the most important bits
of functionality. However, if you find that writing tests first for
your components fits your workflow, then you should do that.
There's no hard rule here; do whatever feels best for you and
your team.

Note that this article will focus on testing front-end code. If you're looking for
something focused on the back end, be sure to check out SitePoint's course Test-Driven
Development in Node.js.

Introducing Jest
Jest was first released in 2014, and although it initially
garnered a lot of interest, the project was dormant for a while
and not so actively worked on. However, Facebook has
invested the last year into improving Jest, and recently
published a few releases with impressive changes that make it
worth reconsidering. The only resemblance of Jest compared
to the initial open-source release is the name and the logo.
Everything else has been changed and rewritten. If you'd like
to find out more about this, you can read Christoph Pojer's
comment, where he discusses the current state of the project.

https://www.sitepoint.com/premium/courses/test-driven-development-in-node-js-2932
https://facebook.github.io/jest/
https://github.com/facebookincubator/create-react-app/pull/250#issuecomment-237098619

If you've been frustrated by setting up Babel, React and JSX
tests using another framework, then I definitely recommend
giving Jest a try. If you've found your existing test setup to be
slow, I also highly recommend Jest. It automatically runs tests
in parallel, and its watch mode is able to run only tests relevant
to the changed file, which is invaluable when you have a large
suite of tests. It comes with JSDom configured, meaning you
can write browser tests but run them through Node, can deal
with asynchronous tests and has advanced features such as
mocking, spies and stubs built in.

Installing and Configuring Jest
To start with, we need to get Jest installed. Because we're also
using Babel, we'll install another couple of modules that make
Jest and Babel play nicely out of the box:

npm install --save-dev babel-jest babel-polyfill
babel-preset-es2015
 ➥ babel-preset-react jest

You also need to have a .babelrc file with Babel
configured to use any presets and plugins you need. The
sample project already has this file, which looks like so:

{
 "presets": ["es2015", "react"]
}

https://github.com/tmpvar/jsdom

We won't install any React testing tools yet, because we're not
going to start with testing our components, but our state
functions.

Jest expects to find our tests in a __tests__ folder, which
has become a popular convention in the JavaScript
community, and it's one we're going to stick to here. If you're
not a fan of the __tests__ setup, out of the box Jest also
supports finding any .test.js and .spec.js files too.

As we'll be testing our state functions, go ahead and create
__tests__/state-functions.test.js.

We'll write a proper test shortly, but for now, put in this
dummy test, which will let us check everything's working
correctly and we have Jest configured.

describe('Addition', () => {
 it('knows that 2 and 2 make 4', () => {
 expect(2 + 2).toBe(4);
 });
});

Now, head into your package.json. We need to set up npm
test so that it runs Jest, and we can do that simply by setting
the test script to run jest.

"scripts": {
 "test": "jest"
}

If you now run npm test locally, you should see your tests
run, and pass!

PASS __tests__/state-functions.test.js
 Addition
 ✓ knows that 2 and 2 make 4 (5ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 passed, 0 total
Time: 3.11s

If you've ever used Jasmine, or most testing frameworks, the
above test code itself should be pretty familiar. Jest lets us use
describe and it to nest tests as we need to. How much
nesting you use is up to you; I like to nest mine so all the
descriptive strings passed to describe and it read almost
as a sentence.

When it comes to making actual assertions, you wrap the thing
you want to test within an expect() call, before then calling
an assertion on it. In this case, we've used toBe. You can find
a list of all the available assertions in the Jest documentation.
toBe checks that the given value matches the value under
test, using === to do so. We'll meet a few of Jest's assertions
through this tutorial.

Testing Business Logic
Now we've seen Jest work on a dummy test, let's get it running
on a real one! We're going to test the first of our state

https://facebook.github.io/jest/docs/api.html#writing-assertions-with-expect

functions, toggleDone. toggleDone takes the current
state and the ID of a todo that we'd like to toggle. Each todo
has a done property, and toggleDone should swap it from
true to false, or vice-versa.

If you're following along with this, make sure you've cloned the repo and have copied
the app folder to the same directory that contains your ___tests__ folder. You'll
also need to install the shortid package (npm install shortid --save),
which is a dependency of the Todo app.

I'll start by importing the function from app/state-
functions.js, and setting up the test's structure. Whilst
Jest allows you to use describe and it to nest as deeply as
you'd like to, you can also use test, which will often read
better. test is just an alias to Jest's it function, but can
sometimes make tests much easier to read and less nested.

For example, here's how I would write that test with nested
describe and it calls:

import { toggleDone } from '../app/state-
functions';

describe('toggleDone', () => {
 describe('when given an incomplete todo', () =>
{
 it('marks the todo as completed', () => {
 });
 });
});

And here's how I would do it with test:

https://github.com/sitepoint-editors/testing-react-with-jest

import { toggleDone } from '../app/state-
functions';

test('toggleDone completes an incomplete todo', ()
=> {
});

The test still reads nicely, but there's less indentation getting in
the way now. This one is mainly down to personal preference;
choose whichever style you're more comfortable with.

Now we can write the assertion. First we'll create our starting
state, before passing it into toggleDone, along with the ID
of the todo that we want to toggle. toggleDone will return
our finish state, which we can then assert on:

const startState = {
 todos: [{ id: 1, done: false, name: 'Buy Milk'
}]
};

const finState = toggleDone(startState, 1);

expect(finState.todos).toEqual([
 { id: 1, done: true, name: 'Buy Milk' }
]);

Notice now that I use toEqual to make my assertion. You
should use toBe on primitive values, such as strings and
numbers, but toEqual on objects and arrays. toEqual is
built to deal with arrays and objects, and will recursively
check each field or item within the object given to ensure that
it matches.

With that we can now run npm test and see our state
function test pass:

PASS __tests__/state-functions.test.js
 ✓ tooggleDone completes an incomplete todo (9ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 passed, 0 total
Time: 3.166s

Rerunning Tests on Changes
It's a bit frustrating to make changes to a test file and then have
to manually run npm test again. One of Jest's best features
is its watch mode, which watches for file changes and runs
tests accordingly. It can even figure out which subset of tests
to run based on the file that changed. It's incredibly powerful
and reliable, and you're able to run Jest in watch mode and
leave it all day whilst you craft your code.

To run it in watch mode, you can run npm test -- --
watch. Anything you pass to npm test after the first --
will be passed straight through to the underlying command.
This means that these two commands are effectively
equivalent:

npm test -- --watch

jest --watch

I would recommend that you leave Jest running in another tab,
or terminal window, for the rest of this tutorial.

Before moving onto testing the React components, we'll write
one more test on another one of our state functions. In a real
application I would write many more tests, but for the sake of
the tutorial, I'll skip some of them. For now, let's write a test
that ensures that our deleteTodo function is working.
Before seeing how I've written it below, try writing it yourself
and seeing how your test compares.

Remember that you will have to update the import statement
at the top to import deleteTodo along with toggleTodo:

import { toggleTodo, deleteTodo } from
'../app/state-functions';

And here's how I've written the test:

test('deleteTodo deletes the todo it is given', ()
=> {
 const startState = {
 todos: [{ id: 1, done: false, name: 'Buy
Milk' }]
 };

 const finState = deleteTodo(startState, 1);

 expect(finState.todos).toEqual([]);
 });

The test doesn't vary too much from the first: we set up our
initial state, run our function and then assert on the finished

state. If you left Jest running in watch mode, notice how it
picks up your new test and runs it, and how quick it is to do
so! It's a great way to get instant feedback on your tests as you
write them.

The tests above also demonstrate the perfect layout for a test,
which is:

set up

execute the function under test

assert on the results.

By keeping the tests laid out in this way, you'll find them
easier to follow and work with.

Now we're happy testing our state functions, let's move on to
React components.

Testing React Components
It's worth noting that, by default, I would actually encourage
you to not write too many tests on your React components.
Anything that you want to test very thoroughly, such as
business logic, should be pulled out of your components and
sit in standalone functions, just like the state functions that we
tested earlier. That said, it is useful at times to test some React
interactions (making sure a specific function is called with the
right arguments when the user clicks a button, for example).
We'll start by testing that our React components render the

right data, and then look at testing interactions. Then we'll
move on to snapshots, a feature of Jest that makes testing the
output of React components much more convenient.

To do this, we'll need to make use of react-addons-
test-utils, a library that provides functions for testing
React. We'll also install Enzyme, a wrapper library written by
AirBnB that makes testing React components much easier.
We'll use this API throughout our tests. Enzyme is a fantastic
library, and the React team even recommend it as the way to
test React components.

npm install --save-dev react-addons-test-utils
enzyme

Let's test that the Todo component renders the text of its todo
inside a paragraph. First we'll create
__tests__/todo.test.js, and import our component:

import Todo from '../app/todo';
import React from 'react';
import { mount } from 'enzyme';

test('Todo component renders the text of the
todo', () => {
});

I also import mount from Enzyme. The mount function is
used to render our component and then allow us to inspect the
output and make assertions on it. Even though we're running
our tests in Node, we can still write tests that require a DOM.
This is because Jest configures jsdom, a library that

https://facebook.github.io/react/docs/test-utils.html
https://github.com/airbnb/enzyme
https://github.com/tmpvar/jsdom

implements the DOM in Node. This is great because we can
write DOM based tests without having to fire up a browser
each time to test them.

We can use mount to create our Todo:

const todo = { id: 1, done: false, name: 'Buy
Milk' };
const wrapper = mount(
 <Todo todo={todo} />
);

And then we can call wrapper.find, giving it a CSS
selector, to find the paragraph that we're expecting to contain
the text of the Todo. This API might remind you of jQuery,
and that's by design. It's a very intuitive API for searching
rendered output to find the matching elements.

const p = wrapper.find('.toggle-todo');

And finally, we can assert that the text within it is Buy Milk:

expect(p.text()).toBe('Buy Milk');

Which leaves our entire test looking like so:

import Todo from '../app/todo';
import React from 'react';
import { mount } from 'enzyme';

test('TodoComponent renders the text inside it',
() => {
 const todo = { id: 1, done: false, name: 'Buy
Milk' };

 const wrapper = mount(
 <Todo todo={todo} />
);
 const p = wrapper.find('.toggle-todo');
 expect(p.text()).toBe('Buy Milk');
});

Phew! You might think that was a lot of work and effort to
check that "Buy Milk" gets placed onto the screen, and, well
… you'd be correct. Hold your horses for now, though; in the
next section we'll look at using Jest's snapshot ability to make
this much easier.

In the meantime, let's look at how you can use Jest's spy
functionality to assert that functions are called with specific
arguments. This is useful in our case, because we have the
Todo component which is given two functions as properties,
which it should call when the user clicks a button or performs
an interaction.

In this test we're going to assert that when the todo is clicked,
the component will call the doneChange prop that it's given.

test('Todo calls doneChange when todo is clicked',
() => {
});

What we want to do is to have a function that we can keep
track of its calls, and the arguments that it's called with. Then
we can check that when the user clicks the todo, the
doneChange function is called and also called with the
correct arguments. Thankfully, Jest provides this out of the

box with spies. A spy is a function whose implementation you
don't care about; you just care about when and how it's called.
Think of it as you spying on the function. To create one, we
call jest.fn():

const doneChange = jest.fn();

This gives a function that we can spy on and make sure it's
called correctly. Let's start by rendering our Todo with the
right props:

const todo = { id: 1, done: false, name: 'Buy
Milk' };
const doneChange = jest.fn();
const wrapper = mount(
 <Todo todo={todo} doneChange={doneChange} />
);

Next, we can find our paragraph again, just like in the previous
test:

const p =
TestUtils.findRenderedDOMComponentWithClass(render
ed, 'toggle-todo');

And then we can call simulate on it to simulate a user
event, passing click as the argument:

p.simulate('click');

And all that's left to do is assert that our spy function has been
called correctly. In this case, we're expecting it to be called

with the ID of the todo, which is 1. We can use
expect(doneChange).toBeCalledWith(1) to assert
this, and with that we're done with our test!

test('TodoComponent calls doneChange when todo is
clicked', () => {
 const todo = { id: 1, done: false, name: 'Buy
Milk' };
 const doneChange = jest.fn();
 const wrapper = mount(
 <Todo todo={todo} doneChange={doneChange} />
);

 const p = wrapper.find('.toggle-todo');
 p.simulate('click');
 expect(doneChange).toBeCalledWith(1);
});

Better Component Testing with
Snapshots
I mentioned above that this might feel like a lot of work to test
React components, especially some of the more mundane
functionalities (such as rendering the text). Rather than make a
large amount of assertions on React components, Jest lets you
run snapshot tests. These are not so useful for interactions (in
which case I still prefer a test like we just wrote above), but for
testing that the output of your component is correct, they're
much easier.

When you run a snapshot test, Jest renders the React
component under test and stores the result in a JSON file.
Every time the test runs, Jest will check that the React

component still renders the same output as the snapshot. Then,
when you change a component's behavior, Jest will tell you
and either:

you'll realize you made a mistake, and you can fix the component so it
matches the snapshot again

or, you made that change on purpose, and you can tell Jest to update the
snapshot.

This way of testing means that:

you don't have to write a lot of assertions to ensure your React components
are behaving as expected

you can never accidentally change a component's behavior, because Jest will
realize.

You also don't have to snapshot all your components. In fact,
I'd actively recommend against it. You should pick
components with some functionality that you really need to
ensure is working. Snapshotting all your components will just
lead to slow tests that aren't useful. Remember, React is a very
thoroughly tested framework, so we can be confident that it
will behave as expected. Make sure you don't end up testing
the framework, rather than your code!

To get started with snapshot testing, we need one more Node
package. react-test-renderer is a package that's able to take a
React component and render it as a pure JavaScript object.
This means it can then be saved to a file, and this is what Jest
uses to keep track of our snapshots.

https://www.npmjs.com/package/react-test-renderer

npm install --save-dev react-test-renderer

Now, let's rewrite our first Todo component test to use a
snapshot. For now, comment out the TodoComponent
calls doneChange when todo is clicked test as
well.

The first thing you need to do is import the react-test-
renderer, and also remove the import for mount. They
can't both be used; you either have to use one or the other. This
is why we have commented the other test out for now.

import renderer from 'react-test-renderer';

Now I'll use the renderer we just imported to render the
component, and assert that it matches the snapshot:

describe('Todo component renders the todo
correctly', () => {
 it('renders correctly', () => {
 const todo = { id: 1, done: false, name: 'Buy
Milk' };
 const rendered = renderer.create(
 <Todo todo={todo} />
);
 expect(rendered.toJSON()).toMatchSnapshot();
 });
});

The first time you run this, Jest is clever enough to realize that
there's no snapshot for this component, so it creates it. Let's
take a look at
__tests__/__snapshots__/todo.test.js.snap:

exports[`Todo component renders the todo correctly
renders correctly 1`] = `
<div
 className="todo todo-1">
 <p
 className="toggle-todo"
 onClick={[Function]}>
 Buy Milk
 </p>
 <a
 className="delete-todo"
 href="#"
 onClick={[Function]}>
 Delete

</div>
`;

You can see that Jest has saved the output for us, and now the
next time we run this test it will check that the outputs are the
same. To demonstrate this, I'll break the component by
removing the paragraph that renders the text of the todo,
meaning that I've removed this line from the Todo
component:

<p className="toggle-todo" onClick={() =>
this.toggleDone() }>{ todo.name }</p>

Let's see what Jest says now:

FAIL __tests__/todo.test.js
 ● Todo component renders the todo correctly ›
renders correctly

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot
1.

 - Snapshot
 + Received

 <div
 className="todo todo-1">
 - <p
 - className="toggle-todo"
 - onClick={[Function]}>
 - Buy Milk
 - </p>
 <a
 className="delete-todo"
 href="#"
 onClick={[Function]}>
 Delete

 </div>

 at Object.<anonymous>
(__tests__/todo.test.js:21:31)
 at process._tickCallback
(internal/process/next_tick.js:103:7)

Jest realized that the snapshot doesn't match the new
component, and lets us know in the output. If we think this
change is correct, we can run jest with the -u flag, which will
update the snapshot. In this case, though, I'll undo my change
and Jest is happy once more.

Next we can look at how we might use snapshot testing to test
interactions. You can have multiple snapshots per test, so you
can test that the output after an interaction is as expected.

We can't actually test our Todo component interactions
through Jest snapshots, because they don't control their own
state but call the callback props they are given. What I've done
here is move the snapshot test into a new file,
todo.snapshot.test.js, and leave our toggling test in todo.test.js.

https://github.com/sitepoint-editors/testing-react-with-jest/blob/master/__tests__/todo.snapshot.test.js
https://github.com/sitepoint-editors/testing-react-with-jest/blob/master/__tests__/todo.test.js

I've found it useful to separate the snapshot tests into a
different file; it also means that you don't get conflicts between
react-test-renderer and react-addons-test-
utils.

Remember, you'll find all the code that I've written in this
tutorial available on GitHub for you to check out and run
locally.

Conclusion
Facebook released Jest a long time ago, but in recent times it's
been picked up and worked on excessively. It's fast become a
favorite for JavaScript developers and it's only going to get
better. If you've tried Jest in the past and not liked it, I can't
encourage you enough to try it again, because it's practically a
different framework now. It's quick, great at rerunning specs,
gives fantastic error messages and tops it all off with its
snapshot functionality.

If you have any questions please feel free to raise an issue on
GitHub and I'll be happy to help. And please be sure check out
Jest on GitHub and star the project; it helps the maintainers.

https://github.com/sitepoint-editors/testing-react-with-jest
https://github.com/facebook/jest

Chapter 4: Building
Animated Components, or
How React Makes D3
Better

BY SWIZEC TELLER
D3 is great. As the jQuery of the web data visualization world,
it can do everything you can think of.

Many of the best data visualizations you've seen online use
D3. It's a great library, and with the recent v4 update, it
became more robust than ever.

Add React, and you can make D3 even better.

Just like jQuery, D3 is powerful but low level. The bigger your
visualization, the harder your code becomes to work with, the
more time you spend fixing bugs and pulling your hair out.

React can fix that.

You can read my book React+d3js ES6 for a deep insight, or
keep reading for an overview of how to best integrate React

https://www.quora.com/What-are-the-best-visualizations-made-using-D3-js
https://github.com/d3/d3/blob/master/CHANGES.md
http://swizec.com/reactd3js/

and D3. In a practical example, we'll see how to build
declarative, transition-based animations.

A version of this article also exists as a D3 meetup talk on
YouTube.

Is React Worth It?
OK, React is big. It adds a ton of code to your payload, and it
increases your dependency footprint. It’s yet another library
that you have to keep updated.

If you want to use it effectively, you'll need a build step.
Something to turn JSX code into pure JavaScript.

Setting up Webpack and Babel is easy these days: just run
create-react-app. It gives you JSX compilation,
modern JavaScript features, linting, hot loading, and code
minification for production builds. It's great.

Despite the size and tooling complexity, React is worth it,
especially if you're serious about your visualization. If you're
building a one-off that you’ll never have to maintain, debug, or
expand, stick to pure D3. If you're building something real, I
encourage you to add React to the mix.

To me, the main benefit is that React forces strongly
encourages you to componentize your code. The other benefits

https://www.youtube.com/watch?v=47uMw-2mb4U
https://www.sitepoint.com/getting-started-react-jsx/

are either symptoms of componentization, or made possible by
it.

The main benefits of using React with your D3 code are:

componentization

easier testing and debugging

smart DOM redraws

hot loading

Componentization encourages you to build your code as a
series of logical units – components. With JSX, you can use
them like they were HTML elements: <Histogram />,
<Piechart />, <MyFancyThingThatIMade />. We'll
dive deeper into that in the next section.

Building your visualization as a series of components makes it
easier to test and debug. You can focus on logical units one
at a time. If a component works here, it will work over there as
well. If it passes tests and looks nice, it will pass tests and look
nice no matter how often you render it, no matter where you
put it, and no matter who calls it.

React understands the structure of your code, so it knows
how to redraw only the components that have changes. There’s
no more hard work in deciding what to re-render and what to
leave alone. Just change and forget. React can figure it out on
its own. And yes, if you look at a profiling tool, you'll see that
only the parts with changes are re-rendered.

Using create-react-app to configure your tooling,
React can utilize hot loading. Let's say you're building a
visualization of 30,000 datapoints. With pure D3, you have to
refresh the page for every code change. Load the dataset, parse
the dataset, render the dataset, click around to reach the state
you're testing … yawn.

With React -> no reload, no waiting. Just immediate changes
on the page. When I first saw it in action, it felt like eating ice
cream while the crescendo of 1812 Overture plays in the
background. Mind = blown.

Benefits of Componentization
Components this, components that. Blah blah blah. Why
should you care? Your dataviz code already works. You build
it, you ship it, you make people happy.

But does the code make you happy? With components, it can.
Components make your life easier because they make your
code:

declarative

reusable

understandable

organized

It's okay if that sounds like buzzword soup. Let me show you.

https://facebook.github.io/react/blog/2016/07/22/create-apps-with-no-configuration.html

For instance, declarative code is the kind of code where you
say what you want, not how you want it. Ever written HTML
or CSS? You know how to write declarative code! Congratz!

React uses JSX to make your JavaScript look like HTML. But
don't worry, it all compiles to pure JavaScript behind the
scenes.

Try to guess what this code does:

render() {
 // ...
 return (
 <g transform={translate}>
 <Histogram data={this.props.data}
 value={(d) => d.base_salary}
 x={0}
 y={0}
 width={400}
 height={200}
 title="All" />
 <Histogram data={engineerData}
 value={(d) => d.base_salary}
 x={450}
 y={0}
 width={400}
 height={200}
 title="Engineer" />
 <Histogram data={programmerData}
 value={(d) => d.base_salary}
 x={0}
 y={220}
 width={400}
 height={200}
 title="Programmer"/>
 <Histogram data={developerData}
 value={(d) => d.base_salary}
 x={450}
 y={220}
 width={400}
 height={200}

 title="Developer" />
 </g>
)
}

If you guessed "Renders four histograms", you were right.
Hooray.

After you create a Histogram component, you can use it like it
was a normal piece of HTML. A histogram shows up
anywhere you put <Histogram /> with the right
parameters.

In this case, the parameters are x and y coordinates, width
and height sizing, the title, some data, and a value
accessor. They can be anything your component needs.

Parameters look like HTML attributes, but can take any
JavaScript object, even functions. It's like HTML on steroids.

With some boilerplate and the right dataset, that code above
gives you a picture like this. A comparison of salary
distributions for different types of people who write software.

Look at the code again. Notice how reusable components are?
It's like <Histogram /> was a function that created a
histogram. Behind the scenes it does compile into a function
call – (new Histogram()).render(), or something
similar. Histogram becomes a class, and you call an
instance's render function every time you use <Histogram
/>.

React components should follow the principles of good
functional programming. No side effects, statelessness,

idempotency, comparability. Unless you really, really want to
break the rules.

Unlike JavaScript functions, where following these principles
requires deliberate effort, React makes it hard not to code that
way. That's a win when you work in a team.

Declarativeness and reusability make your code
understandable by default. If you've ever used HTML, you
can read what that code does. You might not understand the
details, but if you know some HTML and JavaScript, you
know how to read JSX.

Complex components are made out of simpler components,
which are made out of even simpler components, which are
eventually made out of pure HTML elements. This keeps your
code organized.

When you come back in six months, you can look at your code
and think, "Ah yes, four histograms. To tweak this, I should
open the Histogram component and poke around."

React takes the principles I’ve always loved about fancy-pants
functional programming and makes them practical. I love that.

Let me show you an example – an animated alphabet.

A Practical Example

We're going to build an animated alphabet. Not because it's the
simplest example of using React and D3 together, but because
it looks cool. When I show this at live talks, people always
oooh and aaah, especially when I show proof that only the
DOM elements with changes get redrawn.

This is a shortened version of a more in-depth article on React
and D3 and transitions that I posted on my blog a few months
ago. We're going to gloss over some details in this version to
keep it short. You can dive into the full codebase in the GitHub
repository.

The code is based on React 15 and D3 4.0.0. Some of the
syntax I use, like class properties, is not in stable ES6 yet, but
should work if you use create-react-app for your
tooling setup.

To make an animated alphabet, we need two components:

Alphabet, which creates random lists of letters every 1.5 seconds, then
maps through them to render Letter components

http://swizec.com/blog/using-d3js-transitions-in-react/swizec/6797
https://github.com/Swizec/react-d3-enter-exit-transitions/tree/alphabet

Letter, which renders an SVG text element, and takes care of its own
enter/update/exit transitions.

We're going to use React to render SVG elements, and we’ll
use D3 for transitions, intervals, and some maths.

THE ALPHABET COMPONENT
The Alphabet component holds the current list of letters in
state and renders a collection of Letter components in a
loop.

We start with a skeleton like this:

// src/components/Alphabet/index.jsx
import React, { Component } from 'react';
import ReactTransitionGroup from 'react-addons-
transition-group';
import * as d3 from 'd3';

require('./style.css');

import Letter from './Letter';

class Alphabet extends Component {
 static letters =
"abcdefghijklmnopqrstuvwxyz".split('');
 state = {alphabet: []}

 componentWillMount() {
 // starts an interval to update alphabet
 }

 render() {
 // spits out svg elements
 }
}

export default Alphabet;

We import our dependencies, add some styling, and define the
Alphabet component. It holds a list of available letters in a
static letters property and an empty alphabet in
component state. We'll need a componentWillMount and
a render method as well.

The best place to create a new alphabet every 1.5 seconds is in
componentWillMount:

// src/components/Alphabet/index.jsx
 componentWillMount() {
 d3.interval(() => this.setState({
 alphabet: d3.shuffle(Alphabet.letters)
 .slice(0, Math.floor(Math.random() *
Alphabet.letters.length))
 .sort()
 }), 1500);
 }

We use d3.interval(//.., 1500) to call a function
every 1.5 seconds. On each period, we shuffle the available
letters, slice out a random amount, sort them, and update
component state with setState().

This ensures our alphabet is both random and in alphabetical
order. setState() triggers a re-render.

Our declarative magic starts in the render method.

// src/components/Alphabet/index.jsx
render() {
 let transform = `translate(${this.props.x},
${this.props.y})`;

 return (
 <g transform={transform}>
 <ReactTransitionGroup component="g">
 {this.state.alphabet.map((d, i) => (
 <Letter d={d} i={i} key={`letter-${d}`}
/>
))}
 </ReactTransitionGroup>
 </g>
);
}

We use an SVG transformation to move our alphabet into the
specified (x, y) position, then define a
ReactTransitionGroup and map through
this.state.alphabet to render a bunch of Letter
components with wanton disregard.

Each Letter gets its current text, d, and index, i. The key
attribute helps React recognize which component is which.
Using ReactTransitionGroup gives us special
component lifecycle methods that help with smooth
transitions.

ReactTransitionGroup

In addition to the normal lifecycle hooks that tell us when a
component mounts, updates, and unmounts,
ReactTransitionGroup gives us access to
componentWillEnter, componentWillLeave, and a
few others. Notice something familiar?

componentWillEnter is the same as D3's .enter(),
componentWillLeave is the same as D3's .exit(), and
componentWillUpdate is the same as D3's .update().

"The same" is a strong concept; they're analogous. D3's hooks
operate on entire selections – groups of components – while
React's hooks operate on each component individually. In D3,
an overlord is dictating what happens; in React, each
component knows what to do.

That makes React code easier to understand. I think. ¯_(�)_/¯

ReactTransitionGroup gives us even more hooks, but
these three are all we need. It's nice that in both
componentWillEnter and componentWillLeave, we
can use a callback to explicitly say "The transition is done.
React, back to you".

My thanks to Michelle Tilley for writing about
ReactTransitionGroup on Stack Overflow.

THE LETTER COMPONENT
Now we're ready for the cool stuff – a component that can
transition itself into and out of a visualization declaratively.

The basic skeleton for our Letter component looks like this:

// src/components/Alphabet/Letter.jsx

https://facebook.github.io/react/docs/animation.html
http://stackoverflow.com/questions/29977799/how-should-i-handle-a-leave-animation-in-componentwillunmount-in-react

import React, { Component } from 'react';
import ReactDOM from 'react-dom';
import * as d3 from 'd3';

class Letter extends Component {
 state = {
 y: -60,
 x: 0,
 className: 'enter',
 fillOpacity: 1e-6
 }
 transition = d3.transition()
 .duration(750)
 .ease(d3.easeCubicInOut);

 componentWillEnter(callback) {
 // start enter transition, then callback()
 }

 componentWillLeave(callback) {
 // start exit transition, then callback()
 }

 componentWillReceiveProps(nextProps) {
 if (this.props.i != nextProps.i) {
 // start update transition
 }
 }

 render() {
 // spit out a <text> element
 }
};

export default Letter;

We start with some dependencies and define a Letter
component with a default state and a default transition. In most
cases, you'd want to avoid using state for coordinates and
other transient properties. That's what props are for. With
transitions we use state because it helps us keep React's reality
in sync with D3's reality.

That said, those magic default values could be default props.
That would make our Alphabet more flexible.

componentWillEnter

We put the enter transition in componentWillEnter.

// src/components/Alphabet/Letter.jsx
 componentWillEnter(callback) {
 let node =
d3.select(ReactDOM.findDOMNode(this));

 this.setState({x: this.props.i*32});

 node.transition(this.transition)
 .attr('y', 0)
 .style('fill-opacity', 1)
 .on('end', () => {
 this.setState({y: 0, fillOpacity: 1});
 callback()
 });
 }

We use reactDOM.findDOMNode() to get our DOM node
and use d3.select() to turn it into a d3 selection. Now
anything D3 can do, our component can do. Yessss!/p>

Then we update this.state.x using the current index and
letter width. The width is a value that we Just Know™. Putting
x in state helps us avoid jumpiness: The i prop changes on
each update, but we want to delay when the Letter moves.

When a Letter first renders, it's invisible and 60 pixels
above the baseline. To animate it moving down and becoming
visible, we use a D3 transition.

We use node.transition(this.transition) to
start a new transition with default settings from earlier. Any
.attr and .style changes that we make happen over time
directly on the DOM element itself.

This confuses React, because it assumes it's the lord and
master of the DOM. So we have to sync React's reality with
actual reality using a callback: .on('end', …). We use
setState() to update component state, and trigger the
main callback. React now knows this letter is done
appearing.

componentWillLeave

The exit transition goes in componentWillLeave().
Same concept as above, just in reverse.

// src/components/Alphabet/
 componentWillLeave(callback) {
 let node =
d3.select(ReactDOM.findDOMNode(this));

 this.setState({className: 'exit'});

 node.transition(this.transition)
 .attr('y', 60)
 .style('fill-opacity', 1e-6)
 .on('end', () => {
 callback()
 });
 }

This time, we update state to change the className instead
of x. That's because x doesn't change.

The exit transition itself is an inverse of the enter transition:
letter moves down and becomes invisible. After the transition,
we tell React it's okay to remove the component.

componentWillReceiveProps

The update transition goes into
componentWillReceiveProps().

// src/components/Alphabet/Letter.jsx
 componentWillReceiveProps(nextProps) {
 if (this.props.i != nextProps.i) {
 let node =
d3.select(ReactDOM.findDOMNode(this));

 this.setState({className: 'update'});

 node.transition(this.transition)
 .attr('x', nextProps.i*32)
 .on('end', () => this.setState({x:
nextProps.i*32}));
 }
 }

You know the pattern by now, don't you? Update state, do
transition, sync state with reality after transition.

In this case, we change the className, then move the letter
into its new horizontal position.

render

After all that transition magic, you might be thinking "Holy
cow, how do I render this!?". I don't blame ya!

But we did all the hard work. Rendering is straightforward:

// src/components/Alphabet/Letter.jsx
 render() {
 return (
 <text dy=".35em"
 y={this.state.y}
 x={this.state.x}
 className={this.state.className}
 style={{fillOpacity:
this.state.fillOpacity}}>
 {this.props.d}
 </text>
);
 }

We return an SVG <text> element rendered at an (x, y)
position with a className and a fillOpacity. It shows
a single letter given by the d prop.

As mentioned: using state for x, y, className, and
fillOpacity is wrong in theory. You'd normally use props
for that. But state is the simplest way I can think of to
communicate between the render and lifecycle methods.

You Know the Basics!
Boom. That's it. You know how to build an animated
declarative visualization. That's pretty cool if you ask me.

Here is what it looks like in action.

Such nice transitions, and all you had to do was loop through
an array and render some <Letter> components. How cool
is that?

https://sitepoint-editors.github.io/react-d3-enter-exit-transitions/

In Conclusion
You now understand React well enough to make technical
decisions. You can look at project and decide: "Yes, this is
more than a throwaway toy. Components and debuggability
will help me."

For extra fun, you also know how to use React and D3
together to build declarative animations. A feat most difficult
in the olden days.

To learn more about properly integrating React and D3 check
out my book, React+d3js ES6.

http://swizec.com/reactd3js

Chapter 5: Using Preact
as a React Alternative

BY AHMED BOUCHEFRA
Preact is an implementation of the virtual DOM component
paradigm just like React and many other similar libraries.
Unlike React, it's only 3KB in size, and it also outperforms it
in terms of speed. It's created by Jason Miller and available
under the well-known permissive and open-source MIT
license.

Why Use Preact?
Preact is a lightweight version of React. You may prefer to use
Preact as a lightweight alternative if you like building views
with React but performance, speed and size are a priority for
you – for example, in the case of mobile web apps or
progressive web apps.

Whether you're starting a new project or developing an
existing one, Preact can save you a lot of time. You don't need
to reinvent the wheel trying to learn a new library, since it's
similar to, and compatible with, React – to the point that you

https://github.com/developit/preact

can use existing React packages with it with only some
aliasing, thanks to the compatibility layer preact-compat.

Pros and Cons
There are many differences between React and Preact that we
can summarize in three points:

Features and API: Preact includes only a subset of the React API, and not
all available features in React.

Size: Preact is much smaller than React.

Performance: Preact is faster than React.

Every library out there has its own set of pros and cons, and
only your priorities can help you decide which library is a
good fit for your next project. In this section, I'll try to list the
pros and cons of the two libraries.

PREACT PROS
Preact is lightweight, smaller (only 3KB in size when gzipped) and faster
than React (see these tests). You can also run performance tests in your
browser via this link.

Preact is largely compatible with React, and has the same ES6 API as React,
which makes it dead easy either to adopt Preact as a new library for building
user interfaces in your project or to swap React with Preact for an existing
project for performance reasons.

It has good documentation and examples available from the official website.

It has a powerful and official CLI for quickly creating new Preact projects,
without the hassle of Webpack and Babel configuration.

https://developit.github.io/preact-perf/
https://developit.github.io/preact-perf/

Many features are inspired by all the work already done on React.

It has also its own set of advanced features independent from React, like
Linked State.

REACT PROS
React supports one-way data binding.

It's backed by a large company, Facebook.

Good documentation, examples, and tutorials on the official website and the
web.

Large community.

Used on Facebook's website, which has millions of visitors worldwide.

Has its own official developer debugging tools extension for Chrome.

It has the Create React App project boilerplate for quickly creating projects
with zero configuration.

It has a well-architectured and complex codebase.

REACT CONS
React has a relatively large size in comparison with Preact or other existing
similar libraries. (React minified source file is around 136KB in size, or
about 42KB when minified and gzipped.)

It's slower than Preact.

As a result of its complex codebase, it's harder for novice developers to
contribute.

License Concerns
Another con I listed while writing this article was that React had a grant patent
clause paired with the BSD license, making it legally unsuitable for some use

https://preactjs.com/guide/linked-state

cases. However, in September 2017, the React license switched to MIT, which
resolved these license concerns.

PREACT CONS
Preact supports only stateless functional components and ES6 class-based
component definition, so there's no createClass.

No support for context.

No support for React propTypes.

Smaller community than React.

Getting Started with Preact CLI
Preact CLI is a command line tool created by Preact's author,
Jason Miller. It makes it very easy to create a new Preact
project without getting bogged down with configuration
complexities, so let's start by installing it.

Open your terminal (Linux or macOS) or command prompt
(Windows), then run the following commands:

npm i -g preact-cli@latest

This will install the latest version of Preact CLI, assuming you
have Node and NPM installed on your local development
machine.

You can now create your project with this:

https://github.com/facebook/react/commit/b765fb25ebc6e53bb8de2496d2828d9d01c2774b
https://facebook.github.io/react/docs/context.html
https://www.sitepoint.com/beginners-guide-node-package-manager/

preact create my-app

Or with this, ff you want to create your app interactively:

preact init

Next, navigate inside your app's root folder and run this:

npm start

This will start a live-reload development server.

Finally, when you finish developing your app, you can build a
production release using this:

npm run build

Demystifying Your First Preact
App
After successfully installing the Preact CLI and generating an
app, let's try to understand the simple app generated with the
Preact CLI.

The Preact CLI generates the following directory structure

├── node_modules
├── package.json
├── package-lock.json

└

└── src
 ├── assets
 ├── components
 │ ├── app.js
 │ └── header
 ├── index.js
 ├── lib
 ├── manifest.json
 ├── routes
 │ ├── home
 │ └── profile
 └── style
 └── index.css

The components folder holds Preact components, and the
routes folder holds the page components used for each app's
route. You can use the lib folder for any external libraries,
the style folder for CSS styles, and the assets for icons
and other graphics.

Note the manifest.json file, which is like
package.json but for PWAs (progressive web apps).
Thanks to the Preact CLI, you can have a perfect-score PWA
out of the box.

Now, if you open your project's package.json file, you'll
see that the main entry point is set to src/index.js. Here
is the content of this file:

import './style';
import App from './components/app';

export default App;

As you can see, index.js imports styles, and App
component from ./components/app**, and then just
exports it as the default.

Now, let's see what's inside ./components/app:

import { h, Component } from 'preact';
import { Router } from 'preact-router';

import Header from './header';
import Home from '../routes/home';
import Profile from '../routes/profile';

export default class App extends Component {
 handleRoute = e => {
 this.currentUrl = e.url;
 };

 render() {
 return (
 <div id="app">
 <Header />
 <Router onChange=
{this.handleRoute}>
 <Home path="/" />
 <Profile path="/profile/"
user="me" />
 <Profile path="/profile/:user"
/>
 </Router>
 </div>
);
 }
}

This file exports a default class App which extends the
Component class imported from the preact package.
Every Preact component needs to extend the Component
class.

App defines a render method, which returns a bunch of
HTML elements and Preact components that render the app's
main user interface.

Inside the div element, we have two Preact components,
Header – which renders the app's header – and a Router
component.

The Preact Router is similar to the latest version of React
Router (version 4). You simply need to wrap the child
components with a <Router> component, then specify the
path prop for each component. Then, the router will take care
of rendering the component, which has a path prop that
matches the current browser's URL.

It's worth mentioning that Preact Router is very simple and,
unlike React Router, it doesn't support advanced features such
as nested routes and view composition. If you need these
features, you have to use either the React Router v3 by aliasing
preact-compat, or better yet use the latest React Router
(version 4) which is more powerful than v3 and doesn't need
any compatibility layer, because it works directly with Preact.
(See this CodePen demo for an example.)

Preact Compatibility Layer
The preact-compat module allows developers to switch
from React to Preact without changing imports from React and

https://www.sitepoint.com/react-router-v4-complete-guide/
https://codepen.io/developit/pen/BWxepY?editors=0010

ReactDOM to Preact, or to use existing React packages with
Preact.

Using preact-compat is easy. All you have to do is to first
install it via npm:

npm i -S preact preact-compat

Then set up your build system to redirect imports or requires
for react or react-dom to preact-compat. For
example, in the case of Webpack, you just need to add the
following configuration to webpack.config.js:

{
 "resolve": {
 "alias": {
 "react": "preact-compat",
 "react-dom": "preact-compat"
 }
 }
}

Conclusion
Preact is a nice alternative to React. Its community is growing
steadily, and more web apps are using it. So if you're building
a web app with high-performance requirements, or a mobile
app for slow 2G networks, then you should consider Preact –
either as the first candidate view library for your project, or as
a drop-in replacement for React.

	React: Tools Resources
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	Preface
	Who Should Read This Book
	Conventions Used

	Chapter 1: Getting Started with Redux
	Prerequisites
	What is Redux?
	Understand Immutability First
	Setting up Redux
	Organizing Redux Code
	Debugging with Redux tools
	Integration with React
	Summary

	Chapter 2: React Router v4: The Complete Guide
	Introduction
	Overview
	Setting up React Router
	React Router Basics
	Nested Routing
	Protecting Routes
	Summary

	Chapter 3: How to Test React Components Using Jest
	Sample Application
	To TDD or Not to TDD?
	Introducing Jest
	Installing and Configuring Jest
	Testing Business Logic
	Rerunning Tests on Changes
	Testing React Components
	Better Component Testing with Snapshots
	Conclusion

	Chapter 4: Building Animated Components, or How React Makes D3 Better
	Is React Worth It?
	Benefits of Componentization
	A Practical Example
	You Know the Basics!
	In Conclusion

	Chapter 5: Using Preact as a React Alternative
	Why Use Preact?
	Pros and Cons
	Getting Started with Preact CLI
	Demystifying Your First Preact App
	Preact Compatibility Layer
	Conclusion

