
1

YYour First Wour First Week With Reek With Reacteact
Copyright © 2017 SitePoint Pty. Ltd.

PrProduct Managoduct Manager:er: Simon Mackie CoCovver Designer:er Designer: Alex Walker

NNootictice oe of Rf Righightsts
All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embodied in
critical articles or reviews.

NNootictice oe of Liabilityf Liability
The author and publisher have made every effort to ensure the accuracy of the
information herein. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors and SitePoint
Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or
by the software or hardware products described herein.

ii Your First Week With React

TTrrademark Nademark Nooticticee
Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066

Web: www.sitepoint.com
Email: books@sitepoint.com

Your First Week With React iii

About SitAbout SiteePPoinointt
SitePoint specializes in publishing fun, practical, and easy-to-understand content
for web professionals. Visit http://www.sitepoint.com/ to access our blogs,
books, newsletters, articles, and community forums. You’ll find a stack of
information on JavaScript, PHP, Ruby, mobile development, design, and more.

iv Your First Week With React

http://www.sitepoint.com/

TTable oable of Conf Conttenentsts

PrPreeffacacee .. ixix

ChapChaptter 1:er 1: HHoow tw to To Tell if Rell if React is the Best Fit feact is the Best Fit for Yor Yourour

NNeext Prxt Projectoject ..11

What Is React?... 2

How Does the Virtual DOM Work? .. 3

Is React Good for Every Project? .. 4

Resources... 5

Conclusion ... 5

ChapChaptter 2:er 2: RReact veact vs Angular: An In-deps Angular: An In-depthth

ComparisonComparison.. 77

Where to Start? ...8

Maturity..9

Features...10

Languages, Paradigms, and Patterns .. 12

Ecosystem..15

Adoption, Learning Curve and Development Experience.................................18

Putting it Into Context...20

One Framework to Rule Them All? ...21

Table of Contents v

ChapChaptter 3:er 3: GeGetting Stting Starttarted with Red with React: A Beginner’eact: A Beginner’ss

GuideGuide .. 2323

Prerequisites .. 24

What is React?.. 24

Understanding the React DOM .. 25

Start a Blank React Project.. 26

Introducing JSX Syntax ...30

Declaring React Components ... 33

Styling JSX Elements ... 34

Stateless vs Stateful Components ... 37

ChapChaptter 4:er 4: GeGetting Rtting React Preact Projects Rojects Ready Feady Fast withast with

PrPre-ce-cononfigurfigured Buildsed Builds ..4848

How Does Create React App Work? ...49

Starting a Local Development Server ..50

Running Unit Tests ... 52

Creating a Production Bundle ... 53

Opting Out... 54

In Conclusion... 54

ChapChaptter 5:er 5: SStyling in Rtyling in React: Feact: Frrom Extom External CSS ternal CSS too

SStyled Componentyled Componentsts.. 5555

Evolution of Styling in JavaScript ..56

vi Your First Week With React

styled-components...59

Building Generic Styled React Components..60

Customizable Styled React Components ..63

Advanced Usage...65

Component Structure ..67

Conclusion ..68

ChapChaptter 6:er 6: An InAn Intrtroduction toduction to JSXo JSX..6969

What is JSX? ..70

How Does it Work? ..70

What About Separation of Concerns?.. 72

Not Just for React ... 73

ChapChaptter 7:er 7: WWorking with Daorking with Data in Rta in React: Preact: Properties &operties &

SStatattee.. 7755

ChapChaptter 8:er 8: RReact feact for Angular Deor Angular Devveloperselopers ..8484

Frameworks vs Libraries...85

Out Of The Box...85

Bootstrapping ...86

Templates..87

Template Directives...89

An Example Component .. 92

Two-Way Binding ... 97

Table of Contents vii

Dependency Injection, Services, Filters ... 100

Sounds Great. Can I Use Both!?.. 101

How About Angular 2?...102

A Complete Application..103

ChapChaptter 9:er 9: A Guide tA Guide to To Testing Resting React Componeneact Componentsts105105

Write Testable Components ..107

Test Utilities ...112

Put It All Together ..113

Conclusion .. 116

viii Your First Week With React

PrPreeffacacee
React is a remarkable JavaScript library that's taken the development
community by storm. In a nutshell, it's made it easier for developers to build
interactive user interfaces for web, mobile and desktop platforms. One of its
best features is its freedom from the problematic bugs inherent in MVC
frameworks, where inconsistent views is a recurring problem for big projects.
Today, thousands of companies worldwide are using React, including big names
such as Netflix and AirBnB. React has become immensely popular, such that a
number of apps have been ported to React --- including WhatsApp, Instagram
and Dropbox.

This book is a collection of articles, selected from SitePoint's React Hub, that will
guide you through your first week with the amazingly flexible library.

Who Should RWho Should Read This Bookead This Book
This book is for novice React developers. You’ll need to be familiar with HTML
and CSS and have a reasonable level of understanding of JavaScript in order to
follow the discussion.

ConConvvenentions Utions Usedsed
You’ll notice that we’ve used certain typographic and layout styles throughout
this book to signify different types of information. Look out for the following
items.

Preface ix

https://www.sitepoint.com/javascript/react/

Code SamplesCode Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {

⋮
new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

x Your First Week With React

Tips, NTips, Noottes, and Wes, and Warningsarnings

HeyHey, Y, You!ou!

Tips provide helpful little pointers.

Ahem, EAhem, Exxcuse Me ...cuse Me ...

Notes are useful asides that are related—but not critical—to the topic
at hand. Think of them as extra tidbits of information.

MakMake Sure Sure Ye You Always ...ou Always ...

... pay attention to these important points.

WWatatch Out!ch Out!

Warnings highlight any gotchas that are likely to trip you up along the
way.

Preface xi

bby My Maria Anaria Anttonieonietta Ptta Pernaerna

HHoow tw to To Tell ifell if
RReact is the Besteact is the Best
Fit fFit for Yor Your Nour Neextxt

PrProjectoject

ChapChaptterer

11

1 Your First Week With React

Nowadays, users expect sleek, performant web applications that behave more
and more like native apps. Techniques have been devised to decrease the
waiting time for a website to load on a user's first visit. However, in web
applications that expose a lot of interactivity, the time elapsing between a user
action taking place and the app's response is also important. Native apps feel
snappy, and web apps are expected to behave the same, even on less than ideal
internet connections.

A number of modern JavaScript frameworks have sprung up that can be very
effective at tackling this problem. ReactReact can be safely considered among the
most popular and robust JavaScript libraries you can use to create fast,
interactive user interfaces for web apps.

In this article, I'm going to talk about what React is good at and what makes it
work, which should provide you with some context to help you decide if this
library could be a good fit for your next project.

WhaWhat It Is Rs React?eact?
React is a Facebook creation which simply labels itself as being “a JavaScript
library for building user interfaces”.

It's an open-source project which, to date, has raked in over 74,000 stars on
GitHub.

React is:

DeclarDeclarativativee: you only need to design simple views for each state in your
application, and React will efficiently update and render just the right
components when your data changes.
Component-basedComponent-based: you create your React-powered apps by assembling a
number of encapsulated components, each managing its own state.
Learn Once, WritLearn Once, Write Anywhere Anywheree: React is not a full-blown framework; it's just a
library for rendering views.

How to Tell if React is the Best Fit for Your Next Project 2

https://facebook.github.io/react/

HHoow Does the Virtual DOM Ww Does the Virtual DOM Work?ork?
The Virtual DOMVirtual DOM is at the core of what makes React fast at rendering user
interface elements and their changes. Let's look closer into its mechanism.

The HTML Document Object Model or DOM is a

programming interface for HTML and XML documents. … The DOM
provides a representation of the document as a structured group of
nodes and objects that have properties and methods. Essentially, it
connects web pages to scripts or programming languages. — MDN

Whenever you want to change any part of a web page programmatically, you
need to modify the DOM. Depending on the complexity and size of the
document, traversing the DOM and updating it could take longer than users
might be prepared to accept, especially if you take into account the work
browsers need to do when something in the DOM changes. In fact, every time
the DOM gets updated, browsers need to recalculate the CSS and carry out
layout and repaint operations on the web page.

React enables developers to make changes to the web page without having to
deal directly with the DOM. This is done via the Virtual DOMVirtual DOM.

The Virtual DOM is a lightweight, abstract model of the DOM. React uses the
render method to create a node tree from React components and updates this

tree in response to changes in the data model resulting from actions.

Each time there are changes to the underlying data in a React app, React creates
a new Virtual DOM representation of the user interface.

UpdaUpdating UI Changes with the Virtual DOMting UI Changes with the Virtual DOM

When it comes to updating the browser’s DOM, React roughly follows the steps
below:

3 Your First Week With React

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

Whenever something changes, React re-renders the entire UI in a Virtual
DOM representation.
React then calculates the difference between the previous Virtual DOM
representation and the new one.
Finally, React patches up the real DOM with what has actually changed. If
nothing has changed, React won't be dealing with the HTML DOM at all.

One would think that such a process, which involves keeping two
representations of the Virtual DOM in memory and comparing them, could be
slower than dealing directly with the actual DOM. This is where efficient diff
algorithms, batching DOM read/write operations, and limiting DOM changes to
the bare minimum necessary, make using React and its Virtual DOM a great
choice for building performant apps.

IIs Rs React Good feact Good for Eor Evvery Prery Project?oject?
As the name itself suggests, React is great at making super reactive user
interfaces — that is, UIs that are very quick at responding to events and
consequent data changes. This comment about the name React made by Jordan
Walke, engineer at Facebook, is illuminating:

This API reacts to any state or property changes, and works with data of
any form (as deeply structured as the graph itself) so I think the name is
fitting. — Vjeux, "Our First 50,000 Stars"

Although some would argue that all projects need React, I think it's
uncontroversial to say that React would be a great fit for web apps where you
need to keep a complex, interactive UI in sync with frequent changes in the
underlying data model.

React is designed to deal with stateful components in an efficient way (which
doesn't mean devs don't need to optimize their code). So projects that would
benefit from this capability can be considered good candidates for React.

How to Tell if React is the Best Fit for Your Next Project 4

https://twitter.com/jordwalke
https://twitter.com/jordwalke
https://facebook.github.io/react/blog/2016/09/28/our-first-50000-stars.html
https://css-tricks.com/projects-need-react/

Chris Coyier outlines the following, interrelated situations when reaching for
React makes sense, which I tend to go along with:

LoLots ots of statf state manage management and DOM manipulationement and DOM manipulation. That is, enabling and
disabling buttons, making links active, changing input values, closing and
expanding menus, etc. In this kind of project, React makes managing stateful
components faster and easier. As Michael Jackson, co-author of React Router,
aptly put it in a Tweet:

Point is, React takes care of the hard part of figuring out what
changes actually need to happen to the DOM, not me. That's
invaluable

Fighting spagheFighting spaghettitti. Keeping track of complex state by directly modifying the
DOM could lead to spaghetti code, at least if extra attention isn't paid to code
organization and structure.

RResouresourcceses
If you're curious about how React and its Virtual DOM work, here's where you
can learn more:

React Videos from Facebook Engineers
"The Real Benefits of the Virtual DOM in React.js", by Chris Minnick
"The difference between Virtual DOM and DOM", by Bartosz Krajka
"React is Slow, React is Fast: Optimizing React Apps in Practice", by François
Zaninotto
"How to Choose the Right Front-end Framework for Your Company", by Chris
Lienert

ConclusionConclusion
React and other similar JavaScript libraries ease the development of snappy,
event-driven user interfaces that are fast at responding to state changes. One

5 Your First Week With React

https://css-tricks.com/project-need-react/
https://css-tricks.com/project-need-react/
https://twitter.com/mjackson
https://twitter.com/mjackson/status/849638783142076416
https://facebook.github.io/react/community/videos.html
https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-react-js/
http://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/
https://marmelab.com/blog/2017/02/06/react-is-slow-react-is-fast.html
https://www.sitepoint.com/choose-the-right-front-end-framework-for-your-company/

underlying goal can be identified in the desire to bridge the gap between web
apps and native apps: users expect web apps to feel smooth and seamless like
native apps.

This is the direction towards which modern web development is heading. It's not
by chance that the latest update of Create React App, a project that makes
possible the creation of React apps with zero configuration, has shipped with the
functionality of creating progressive web apps (PWAs) by default. These are
apps that leverage service workers and offline-first caching to minimize latency
and make web apps work offline.

How to Tell if React is the Best Fit for Your Next Project 6

https://facebook.github.io/react/blog/2016/07/22/create-apps-with-no-configuration.html
https://facebook.github.io/react/blog/2017/05/18/whats-new-in-create-react-app.html
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/#cache-falling-back-to-network

bby Py Paavvels Jels Jelisejeelisejevvss

RReact veact vs Angular:s Angular:
An In-depAn In-depthth
ComparisonComparison

ChapChaptterer

22

7 Your First Week With React

Should I choose Angular or React? Today's bipolar landscape of JavaScript
frameworks has left many developers struggling to pick a side in this debate.
Whether you're a newcomer trying to figure out where to start, a freelancer
picking a framework for your next project, or an enterprise-grade architect
planning a strategic vision for your company, you're likely to benefit from having
an educated view on this topic.

To save you some time, let me tell you something up front: this article won't give
a clear answer on which framework is better. But neither will hundreds of other
articles with similar titles. I can't tell you that, because the answer depends on a
wide range of factors which make a particular technology more or less suitable
for your environment and use case.

Since we can't answer the question directly, we'll attempt something else. We'll
compare Angular (2+, not the old AngularJS) and React, to demonstrate how you
can approach the problem of comparing any two frameworks in a structured
manner on your own and tailor it to your environment. You know, the old "teach a
man to fish" approach. That way, when both are replaced by a
BetterFramework.js in a year's time, you'll be able to re-create the same train of
thought once more.

WherWhere te to So Start?tart?
Before you pick any tool, you need to answer two simple questions: "Is this a
good tool per se?" and "Will it work well for my use case?" Neither of them mean
anything on their own, so you always need to keep both of them in mind. All right,
the questions might not be that simple, so we'll try to break them down into
smaller ones.

Questions on the tool itself:

How mature is it and who's behind it?
What kind of features does it have?
What architecture, development paradigms, and patterns does it employ?

React vs Angular: An In-depth Comparison 8

What is the ecosystem around it?

Questions for self-reflection:

Will I and my colleagues be able to learn this tool with ease?
Does is fit well with my project?
What is the developer experience like?

Using this set of questions you can start your assessment of any tool and we'll
base our comparison of React and Angular on them as well.

There's another thing we need to take into account. Strictly speaking, it's not
exactly fair to compare Angular to React, since Angular is a full-blown, feature-
rich framework, while React just a UI component library. To even the odds, we'll
talk about React in conjunction with some of the libraries often used with it.

MMaaturityturity
An important part of being a skilled developer is being able to keep the balance
between established, time-proven approaches and evaluating new bleeding-
edge tech. As a general rule, you should be careful when adopting tools that
haven't yet matured due to certain risks:

The tool may be buggy and unstable.
It might be unexpectedly abandoned by the vendor.
There might not be a large knowledge base or community available in case
you need help.

Both React and Angular come from good families, so it seems that we can be
confident in this regard.

RReacteact

React is developed and maintained by Facebook and used in their own products,

9 Your First Week With React

including Instagram and WhatsApp. It has been around for roughly three and a
half years now, so it's not exactly new. It's also one of the most popular projects
on GitHub, with about 74,000 stars at the time of writing. Sounds good to me.

AngularAngular

Angular (version 2 and above) has been around less then React, but if you count
in the history of its predecessor, AngularJS, the picture evens out. It's maintained
by Google and used in AdWords and Google Fiber. Since AdWords is one of the
key projects in Google, it is clear they have made a big bet on it and is unlikely to
disappear anytime soon.

FFeaeaturtureses
Like I mentioned earlier, Angular has more features out of the box than React.
This can be both a good and a bad thing, depending on how you look at it.

Both frameworks share some key features in common: components, data
binding, and platform-agnostic rendering.

AngularAngular

Angular provides a lot of the features required for a modern web application out
of the box. Some of the standard features are:

Dependency injection
Templates, based on an extended version of HTML
Routing, provided by @angular/router
Ajax requests by @angular/http
@angular/forms for building forms
Component CSS encapsulation
XSS protection
Utilities for unit-testing components.

React vs Angular: An In-depth Comparison 10

https://github.com/facebook/react/wiki/sites-using-react
https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
http://angularjs.blogspot.com/2015/11/how-google-uses-angular-2-with-dart.html

Having all of these features available out of the box is highly convenient when
you don't want to spend time picking the libraries yourself. However, it also
means that you're stuck with some of them, even if you don't need them. And
replacing them will usually require additional effort. For instance, we believe that
for small projects having a DI system creates more overhead than benefit,
considering it can be effectively replaced by imports.

RReacteact

With React, you're starting off with a more minimalistic approach. If we're
looking at just React, here's what we have:

No dependency injection
Instead of classic templates it has JSX, an XML-like language built on top of
JavaScript
XSS protection
Utilities for unit-testing components.

Not much. And this can be a good thing. It means that you have the freedom to
choose whatever additional libraries to add based on your needs. The bad thing
is that you actually have to make those choices yourself. Some of the popular
libraries that are often used together with React are:

React-router for routing
Fetch (or axios) for HTTP requests
A wide variety of techniques for CSS encapsulation
Enzyme for additional unit-testing utilities.

We've found the freedom of choosing your own libraries liberating. This gives us
the ability to tailor our stack to particular requirements of each project, and we
didn't find the cost of learning new libraries that high.

11 Your First Week With React

https://reacttraining.com/react-router/
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://github.com/mzabriskie/axios
https://github.com/MicheleBertoli/css-in-js
https://github.com/airbnb/enzyme

Languages, PLanguages, Pararadigms, and Padigms, and Paatttternserns
Taking a step back from the features of each framework, let's see what kind
higher-level concepts are popular with both frameworks.

RReacteact

There are several important things that come to mind when thinking about
React: JSX, Flow, and Redux.

JSXJSX

JSX is a controversial topic for many developers: some enjoy it, and others think
that it's a huge step back. Instead of following a classical approach of separating
markup and logic, React decided to combine them within components using an
XML-like language that allows you to write markup directly in your JavaScript
code.

While the merits of mixing markup with JavaScript might be debatable, it has an
indisputable benefit: static analysis. If you make an error in your JSX markup, the
compiler will emit an error instead of continuing in silence. This helps by instantly
catching typos and other silly errors.

FlowFlow

Flow is a type-checking tool for JavaScript also developed by Facebook. It can
parse code and check for common type errors such as implicit casting or null
dereferencing.

Unlike TypeScript, which has a similar purpose, it does not require you to migrate
to a new language and annotate your code for type checking to work. In Flow,
type annotations are optional and can be used to provide additional hints to the
analyzer. This makes Flow a good option if you would like to use static code
analysis, but would like to avoid having to rewrite your existing code.

React vs Angular: An In-depth Comparison 12

https://facebook.github.io/react/docs/introducing-jsx.html
https://flow.org/

FFurther rurther readingeading: Writing Better JavaScript with Flow

ReduxRedux

Redux is a library that helps manage state changes in a clear manner. It was
inspired by Flux, but with some simplifications. The key idea of Redux is that the
whole state of the application is represented by a single object, which is mutated
by functions called reducers. Reducers themselves are pure functions and are
implemented separately from the components. This enables better separation
of concerns and testability.

If you're working on a simple project, then introducing Redux might be an over
complication, but for medium- and large-scale projects, it's a solid choice. The
library has become so popular that there are projects implementing it in Angular
as well.

All three features can greatly improve your developer experience: JSX and Flow
allow you to quickly spot places with potential errors, and Redux will help achieve
a clear structure for your project.

AngularAngular

Angular has a few interesting things up its sleeve as well, namely TypeScript and
RxJS.

TTypeScripypeScriptt

TypeScript is a new language built on top of JavaScript and developed by
Microsoft. It's a superset of JavaScript ES2015 and includes features from newer
versions of the language. You can use it instead of Babel to write state of the art
JavaScript. It also features an extremely powerful typing system that can
statically analyze your code by using a combination of annotations and type
inference.

13 Your First Week With React

https://www.sitepoint.com/writing-better-javascript-with-flow/
http://redux.js.org/
http://facebook.github.io/flux/
https://github.com/angular-redux/store
https://www.typescriptlang.org/

There's also a more subtle benefit. TypeScript has been heavily influenced by
Java and .NET, so if your developers have a background in one of these
languages, they are likely to find TypeScript easier to learn than plain JavaScript
(notice how we switched from the tool to your personal environment). Although
Angular has been the first major framework to actively adopt TypeScript, it's also
possible to use it together with React.

FFurther rurther readingeading: An Introduction to TypeScript: Static Typing for the Web

RxJSRxJS

RxJS is a reactive programming library that allows for more flexible handling of
asynchronous operations and events. It's a combination of the Observer and
Iterator patterns blended together with functional programming. RxJS allows
you to treat anything as a continuous stream of values and perform various
operations on it such as mapping, filtering, splitting or merging.

The library has been adopted by Angular in their HTTP module as well for some
internal use. When you perform an HTTP request, it returns an Observable
instead of the usual Promise. Although this library is extremely powerful, it's also
quite complex. To master it, you'll need to know your way around different types
of Observables, Subjects, as well as around a hundred methods and operators.
Yikes, that seems to be a bit excessive just to make HTTP requests!

RxJS is useful in cases when you work a lot with continuous data streams such
as web sockets, however, it seems overly complex for anything else. Anyway,
when working with Angular you'll need to learn it at least on a basic level.

FFurther rurther readingeading: Introduction to Functional Reactive Programming with RxJS

We've found TypeScript to be a great tool for improving the maintainability of our
projects, especially those with a large code base or complex domain/business
logic. Code written in TypeScript is more descriptive and easier to follow. Since
TypeScript has been adopted by Angular, we hope to see even more projects

React vs Angular: An In-depth Comparison 14

https://www.sitepoint.com/introduction-to-typescript/
http://reactivex.io/rxjs/
http://reactivex.io/rxjs/manual/overview.html#operators
https://www.sitepoint.com/functional-reactive-programming-rxjs/

using it. RxJS, on the other hand, seems only to be beneficial in certain cases and
should be adopted with care. Otherwise, it can bring unwanted complexity to
your project.

EEccososyyststemem
The great thing about open source frameworks is the number of tools created
around them. Sometimes, these tools are even more helpful than the framework
itself. Let's have a look at some of the most popular tools and libraries
associated with each framework.

AngularAngular

Angular CLIAngular CLI

A popular trend with modern frameworks is having a CLI tool that helps you
bootstrap your project without having to configure the build yourself. Angular
has Angular CLI for that. It allows you to generate and run a project with just a
couple of commands. All of the scripts responsible for building the application,
starting a development server and running tests are hidden away from you in
node_modules. You can also use it to generate new code during development.

This makes setting up new projects a breeze.

FFurther rurther readingeading: The Ultimate Angular CLI Reference

Ionic 2Ionic 2

Ionic 2 is a new version of the popular framework for developing hybrid mobile
applications. It provides a Cordova container that is nicely integrated with
Angular 2, and a pretty material component library. Using it, you can easily set up
and build a mobile application. If you prefer a hybrid app over a native one, this is
a good choice.

15 Your First Week With React

https://cli.angular.io/
https://www.sitepoint.com/ultimate-angular-cli-reference/
http://ionic.io/2

MatMaterial design componentserial design components

If you're a fan of material design, you'll be happy to hear that there's a Material
component library available for Angular. Currently, it's still at an early stage and
slightly raw but it has received lots of contributions recently, so we might hope
for things to improve soon.

Angular univAngular universalersal

Angular universal is a seed project that can be used for creating projects with
support for server-side rendering.

@ngrx/st@ngrx/stororee

@ngrx/store is a state management library for Angular inspired by Redux, being
based on state mutated by pure reducers. Its integration with RxJS allows you to
utilize the push change detection strategy for better performance.

FFurther rurther readingeading: Managing State in Angular 2 Apps with ngrx/store

RReacteact

CrCreateate React Appe React App

Create React App is a CLI utility for React to quickly set up new projects. Similar
to Angular CLI it allows you to generate a new project, start a development
server and create a bundle. It uses Jest, a relatively new test runner from
Facebook, for unit testing, which has some nice features of its own. It also

Other TOther Toolsools

There are plenty of other libraries and tools available in the Awesome
Angular list.

React vs Angular: An In-depth Comparison 16

https://material.angular.io/
https://material.angular.io/
https://github.com/angular/universal
https://github.com/ngrx/store
https://www.sitepoint.com/managing-state-angular-2-ngrx/
https://github.com/AngularClass/awesome-angular
https://github.com/AngularClass/awesome-angular
https://github.com/facebookincubator/create-react-app
https://www.sitepoint.com/test-react-components-jest/

supports flexible application profiling using environment variables, backend
proxies for local development, Flow, and other features. Check out this brief
introduction to Create React App for more information.

React NativReact Nativee

React Native is a platform developed by Facebook for creating native mobile
applications using React. Unlike Ionic, which produces a hybrid application, React
Native produces a truly native UI. It provides a set of standard React
components which are bound to their native counterparts. It also allows you to
create your own components and bind them to native code written in Objective-
C, Java or Swift.

MatMaterial UIerial UI

There's a material design component library available for React as well.
Compared to Angular's version, this one is more mature and has a wider range of
components available.

NeNexxt.jst.js

Next.js is a framework for the server-side rendering of React applications. It
provides a flexible way to completely or partially render your application on the
server, return the result to the client and continue in the browser. It tries to make
the complex task of creating universal applications as simple as possible so the
set up is designed to be as simple as possible with a minimal amount of new
primitives and requirements for the structure of your project.

MobXMobX

MobX is an alternative library for managing the state of an application. Instead of
keeping the state in a single immutable store, like Redux does, it encourages you
to store only the minimal required state and derive the rest from it. It provides a
set of decorators to define observables and observers and introduce reactive

17 Your First Week With React

https://www.sitepoint.com/create-react-app/
https://facebook.github.io/react-native/
http://www.material-ui.com/
https://github.com/zeit/next.js/
https://github.com/mobxjs/mobx

logic to your state.

FFurther rurther readingeading: How to Manage Your JavaScript Application State with MobX

SSttorybookorybook

Storybook is a component development environment for React. It allows you to
quickly set up a separate application to showcase your components. On top of
that, it provides numerous add-ons to document, develop, test and design your
components. We've found it to be extremely useful to be able to develop
components independently from the rest of the application. You can learn more
about Storybook from a previous article.

AAdopdoption, Ltion, Learning Curvearning Curve and Dee and Devvelopmenelopmentt

ExperiencExperiencee
An important criterion for choosing a new technology is how easy it is to learn.
Of course, the answer depends on a wide range of factors such as your previous
experience and a general familiarity with the related concepts and patterns.
However, we can still try to assess the number of new things you'll need to learn
to get started with a given framework. Now, if we assume that you already know
ES6+, build tools and all of that, let's see what else you'll need to understand.

RReacteact

With React, the first thing you'll encounter is JSX. It does seem awkward to write
for some developers. However, it doesn't add that much complexity --- just

Other TOther Toolsools

There are plenty of other libraries and tools available in the Awesome
React list.

React vs Angular: An In-depth Comparison 18

https://www.sitepoint.com/manage-javascript-application-state-mobx/
https://getstorybook.io/
https://www.sitepoint.com/react-storybook-develop-beautiful-user-interfaces-with-ease/
https://www.sitepoint.com/react-storybook-develop-beautiful-user-interfaces-with-ease/
https://github.com/enaqx/awesome-react
https://github.com/enaqx/awesome-react

expressions, which are actually JavaScript, and a special HTML-like syntax. You'll
also need to learn how to write components, use props for configuration and
manage internal state. You don't need to learn any new logical structures or
loops since all of this is plain JavaScript.

The official tutorial is an excellent place to start learning React. Once you're done
with that, get familiar with the router. The react router v4 might be slightly
complex and unconventional, but nothing to worry about. Using Redux will
require a paradigm shift to learn how to accomplish already familiar tasks in a
manner suggested by the library. The free Getting Started with Redux video
course can quickly introduce you to the core concepts. Depending on the size
and the complexity of your project you'll need to find and learn some additional
libraries and this might be the tricky part, but after that everything should be
smooth sailing.

We were genuinely surprised at how easy it was to get started using React. Even
people with a backend development background and limited experience in
frontend development were able to catch up quickly. The error messages you
might encounter along the way are usually clear and provide explanations on
how to resolve the underlying problem. The hardest part may be finding the right
libraries for all of the required capabilities, but structuring and developing an
application is remarkably simple.

AngularAngular

Learning Angular will introduce you to more new concepts than React. First of
all, you'll need to get comfortable with TypeScript. For developers with
experience in statically typed languages such as Java or .NET this might be
easier to understand than JavaScript, but for pure JavaScript developers, this
might require some effort.

The framework itself is rich in topics to learn, starting from basic ones such as
modules, dependency injection, decorators, components, services, pipes,
templates, and directives, to more advanced topics such as change detection,

19 Your First Week With React

https://facebook.github.io/react/docs/hello-world.html
https://reacttraining.com/react-router/web/guides/quick-start
https://egghead.io/courses/getting-started-with-redux

11

22

zones, AoT compilation, and Rx.js. These are all covered in the documentation.
Rx.js is a heavy topic on its own and is described in much detail on the official
website. While relatively easy to use on a basic level it gets more complicated
when moving on to advanced topics.

All in all, we noticed that the entry barrier for Angular is higher than for React.
The sheer number of new concepts is confusing to newcomers. And even after
you've started, the experience might be a bit rough since you need to keep in
mind things like Rx.js subscription management, change detection performance
and bananas in a box (yes, this is an actual advice from the documentation). We
often encountered error messages that are too cryptic to understand, so we had
to google them and pray for an exact match.

It might seem that we favor React here, and we definitely do. We've had
experience onboarding new developers to both Angular and React projects of
comparable size and complexity and somehow with React it always went
smoother. But, like I said earlier, this depends on a broad range of factors and
might work differently for you.

Putting it InPutting it Intto Cono Contteextxt
You might have already noted that each framework has its own set of
capabilities, both with their good and bad sides. But this analysis has been done
outside of any particular context and thus doesn't provide an answer on which
framework should you choose. To decide on that, you'll need to review it from a
perspective of your project. This is something you'll need to do on your own.

To get started, try answering these questions about your project and when you
do, match the answers against what you've learned about the two frameworks.
This list might not be complete, but should be enough to get you started:

How big is the project?

How long is it going to be maintained for?

React vs Angular: An In-depth Comparison 20

https://angular.io/docs/ts/latest/quickstart.html
http://reactivex.io/
http://reactivex.io/
https://angular.io/docs/ts/latest/guide/template-syntax.html

33

44

55

66

77

88

99

1010

1111

Is all of the functionality clearly defined in advance or are you expected to

be flexible?

If all of the features are already defined, what capabilities do you need?

Are the domain model and business logic complex?

What platforms are you targeting? Web, mobile, desktop?

Do you need server-side rendering? Is SEO important?

Will you be handling a lot of real-time event streams?

How big is your team?

How experienced are your developers and what is their background?

Are there any ready-made component libraries that you would like to use?

If you're starting a big project and you would like to minimize the risk of making a
bad choice, consider creating a proof-of-concept product first. Pick some of the
key features of the projects and try to implement them in a simplistic manner
using one of the frameworks. PoCs usually don't take a lot if time to build, but
they'll give you some valuable personal experience on working with the
framework and allow you to validate the key technical requirements. If you're
satisfied with the results, you can continue with full-blown development. If not,
failing fast will save you lot of headaches in the long run.

One FOne Frrameamewwork tork to Ro Rule Them Allule Them All??
Once you've picked a framework for one project, you'll get tempted to use the
exact same tech stack for your upcoming projects. Don't. Even though it's a good
idea to keep your tech stack consistent, don't blindly use the same approach
every time. Before starting each project, take a moment to answer the same
questions once more. Maybe for the next project, the answers will be different or
the landscape will change. Also, if you have the luxury of doing a small project
with a non-familiar tech stack, go for it. Such experiments will provide you with

21 Your First Week With React

invaluable experience. Keep your mind open and learn from your mistakes. At
some point, a certain technology will just feel natural and right.

React vs Angular: An In-depth Comparison 22

bby Michael Wy Michael Wananyyoikoikee

GeGetting Stting Starttarteded
with Rwith React: Aeact: A

Beginner’Beginner’s Guides Guide

ChapChaptterer

33

23 Your First Week With React

In this guide, I'll show you the fundamental concepts of React by taking you
through a practical, step-by-step tutorial on how to create a simple Message App
using React. I'll assume you have no previous knowledge of React. However,
you'll need at least to be familiar with modern JavaScript and NodeJS.

React is a remarkable JavaScript library that's taken the development
community by storm. In a nutshell, it's made it easier for developers to build
interactive user interfaces for web, mobile and desktop platforms. One of its
best features is its freedom from the problematic bugs inherent in MVC
frameworks, where inconsistent views is a recurring problem for big projects.
Today, thousands of companies worldwide are using React, including big names
such as Netflix and AirBnB. React has become immensely popular, such that a
number of apps have been ported to React --- including WhatsApp, Instagram
and Dropbox.

PrPrererequisitequisiteses
As mentioned, you need some experience in the following areas:

functional JavaScript
object-oriented JavaScript
ES6 JavaScript Syntax

On your machine, you'll need:

a NodeJS environment
a Yarn setup (optional)

If you'd like to take a look first at the completed project that's been used in this
guide, you can access it via GitHub.

WhaWhat is Rt is React?eact?
React is a JavaScript library for building UI components. Unlike more complete

Getting Started with React: A Beginner’s Guide 24

https://github.com/brandiqa/message-app
https://www.sitepoint.com/introduction-functional-javascript/
https://www.sitepoint.com/oriented-programming-1/
https://www.sitepoint.com/shorthand-javascript-techniques/
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://www.sitepoint.com/yarn-vs-npm/
https://github.com/brandiqa/message-app

frameworks such as Angular or Vue, React deals only with the view layer. Hence,
you'll need additional libraries to handle things such as data flow, routing,
authentication etc. In this guide, we'll focus on what React can do.

Building a React project involves creating one or more React componentscomponents that
can interact with each other. A React component is simply a JavaScript class that
requires the render function to be declared. The render function simply outputs

HTML code, which is implemented using either JSX or JavaScript code. A React
component may also require additional functions for handling data, actions and
lifecyle events.

React components can further be categorized into containers/statcontainers/statefuleful
componentscomponents and statstateless componentseless components. A stateless component's work is simply
to display data that it receives from its parent React component. It can also
receive events and inputs, which it passes up to its parent to handle. A React
container or stateful component does the work of rendering one or more child
components. It fetches data from external sources and feeds it to its child
components. It also receives inputs and events from them in order to initiate
actions.

Understanding the RUnderstanding the React DOMeact DOM
Before we get to coding, you need to be aware that React uses a Virtual DOMVirtual DOM to
handle page rendering. If you're familiar with jQuery, you know that it can directly
manipulate a web page via the HTML DOMHTML DOM. In a lot of use cases, this direct
interaction poses little to no problems. However, for certain cases, such as the
running of a highly interactive, real-time web application, performance often
takes a huge hit.

To counter this, the concept of the Virtual DOM was invented, and is currently
being applied by many modern UI frameworks including React. Unlike the HTML
DOM, the Virtual DOM is much easier to manipulate, and is capable of handling
numerous operations in milliseconds without affecting page performance. React
periodically compares the Virtual DOM and the HTML DOM. It then computes a

25 Your First Week With React

diffdiff, which it applies to the HTML DOM to make it match the Virtual DOM. This
way, React does its best to ensure your application is rendered at a consistent
60 frames per second, meaning that users experience little or no lag.

Enough chitchat! Let's get our hands dirty …

SStart a Blank Rtart a Blank React Preact Projectoject
As per the prerequisites, I assume you already have a NodeJS environment
setup. Let's first install or update npm to the latest version.

$ npm i -g npm

Next, we're going to install a tool, Create React App, that will allow us to create
our first React project:

$ npm i -g create-react-app

Navigate to your project's root directory and create a new React project using
the tool we just installed:

$ create-react-app message-app

…

Success! Created message-app at /home/mike/Projects/github/message-app

Inside that directory, you can run several commands:

Getting Started with React: A Beginner’s Guide 26

https://github.com/facebookincubator/create-react-app

yarn start

Starts the development server.

yarn build

Bundles the app into static files for production.

yarn test

Starts the test runner.

yarn eject

Removes this tool and copies build dependencies,

configuration files and scripts into the app directory.

If you do this, you can’t go back!

We suggest that you begin by typing:

cd message-app

yarn start

Happy hacking!

Depending on the speed of your internet connection, this might take a while to
complete if this is your first time running the create-react-app command. A

bunch of packages gets installed along the way, which are needed to set up a
convenient development environment --- including a web server, compiler and
testing tools.

Navigate to the newly created message-app folder and open the package.json

file.

27 Your First Week With React

{

"name": "message-app",

"version": "0.1.0",

"private": true,

"dependencies": {

"react": "^15.6.1",

"react-dom": "^15.6.1",

"react-scripts": "1.0.12"

},

"scripts": {

"start": "react-scripts start",

"build": "react-scripts build",

"test": "react-scripts test --env=jsdom",

"eject": "react-scripts eject"

}

}

Surprise! You expected to see a list of all those packages listed as dependencies,
didn't you? Create React App is an amazing tool that works behind the scenes. It
creates a clear separation between your actual code and the development
environment. You don't need to manually install Webpack to configure your
project. Create React App has already done it for you, using the most common
options.

Let's do a quick test run to ensure our new project has no errors:

$ yarn start

Starting development server…

Getting Started with React: A Beginner’s Guide 28

Compiled successfully!

You can now view message-app in the browser.

Local: http://localhost:3000/

On Your Network: http://10.0.2.15:3000/

Note that the development build is not optimized.

To create a production build, use yarn build.

If you don't have Yarn, just substitute with npm like this: npm start. For the rest

of the article, use npm in place of yarn if you haven't installed it.

Your default browser should launch automatically, and you should get a screen
like this:

One thing to note is that Create React App supports hohot rt reloadingeloading. This means
any changes we make on the code will cause the browser to automatically
refresh. For now, let's first stop the development server by pressing Ctrl + C.

This step isn't necessary, I'm just showing you how to kill the development

29 Your First Week With React

server. Once the server has stopped, delete everything in the src folder. We'll

create all the code from scratch so that you can understand everything inside
the src folder.

InIntrtroducing JSX Soducing JSX Synyntaxtax
Inside the src folder, create an index.js file and place the following code in it:

import React from 'react';

import ReactDOM from 'react-dom';

ReactDOM.render(<h1>Hello World</h1>,

document.getElementById('root'));

Start the development server again using yarn start or npm start. Your

browser should display the following content:

Getting Started with React: A Beginner’s Guide 30

This is the most basic "Hello World" React example. The index.js file is the root

of your project where React components will be rendered. Let me explain how
the code works:

Line 1: React package is imported to handle JSX processing
Line 2: ReactDOM package is imported to render React components.
Line 4: Call to render function

<h1>Hello World</h1>: a JSX element

document.getElementById('root'): HTML container

The HTML container is located in public/index.html file. On line 28, you should

see <div id="root"></div>. This is known as the rroooot DOMt DOM because everything

inside it will be managed by the React DOMReact DOM.

JSX (JavaScripJSX (JavaScript XML)t XML) is a syntax expression that allows JavaScript to use tags
such as <div>, <h1>, <p>, <form>, and <a>. It does look a lot like HTML, but there

are some key differences. For example, you can't use a class attribute, since it's

a JavaScript keyword. Instead, className is used in its place. Also, events such

as onclick are spelled onClick in JSX. Let's now modify our Hello World code:

const element = <div>Hello World</div>;

ReactDOM.render(element, document.getElementById('root'));

I've moved out the JSX code into a variable named element. I've also replaced

the h1 tags with div. For JSX to work, you need to wrap your elements inside a

single parent tag. This is necessary for JSX to work. Take a look at the following
example:

31 Your First Week With React

const element = Hello, Jane</span;

The above code won't work. You'll get a syntax error telling you must enclose
adjacent JSX elements in an enclosing tag. Basically, this is how you should
enclose your elements:

const element = <div>

Hello,

Jane

</div>;

How about evaluating JavaScript expressions in JSX? Simple, just use curly
braces like this:

const name = "Jane";

const element = <p>Hello, {name}</p>

… or like this:

const user = {

firstName: "Jane",

lastName: "Doe"

}

Getting Started with React: A Beginner’s Guide 32

const element = <p>Hello, {user.firstName} {user.lastName}</p>

Update your code and confirm that the browser is displaying "Hello, Jane Doe".
Try out other examples such as { 5 + 2 }. Now that you've got the basics of

working with JSX, let's go ahead and create a React component.

Declaring RDeclaring React Componeneact Componentsts
The above example was a simplistic way of showing you how
ReactDOM.render() works. Generally, we encapsulate all project logic within

React components, which are then passed via the ReactDOM.render function.

Inside the src folder, create a file named App.js and type the following code:

import React, { Component } from 'react';

class App extends Component {

render(){

return (

<div>

Hello World Again!

</div>

)

}

}

33 Your First Week With React

11

export default App;

Here we've created a React Component by defining a JavaScript class that is a
subclass of React.Component. We've also defined a render function that returns

a JSX element. You can place additional JSX code within the <div> tags. Next,

update src/index.js with the following code in order to see the changes

reflected in the browser:

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

ReactDOM.render(<App/>, document.getElementById('root'));

First we import the App component. Then we render App using JSX format, like

this: <App/>. This is required so that JSX can compile it to an element that can be

pushed to the React DOM. After you've saved the changes, take a look at your

browser to ensure it's rendering the correct thing.

Next, we'll look at how to apply styling.

SStyling JSX Elementyling JSX Elementsts
There are are two ways of styling JSX elements:

JSX inline styling

Getting Started with React: A Beginner’s Guide 34

https://www.sitepoint.com/style-react-components-styled-components/

22 External Stylesheets

Below is an example of how we can implement JSX inline styling:

// src/App.js

…

render() {

const headerStyle = {

color: '#ff0000',

textDecoration: 'underline'

}

return (

<div>

<h2 style={headerStyle}>Hello World Again!</h2>

</div>

)

}

…

React styling looks a lot like regular CSS but there are key differences. For
example, headerStyle is an object literal. We can't use semicolons like we

normally do. Also, a number of CSS declarations have been changed in order to
make them compatible with JavaScript syntax. For example, instead of
text-decoration, we use textDecoration. Basically, use camel case for all CSS

keys except for vendor prefixes such as WebkitTransition, which must start

with a capital letter. We can also implement styling this way:

35 Your First Week With React

// src/App.js

…

<h2 style={{color:'#ff0000'}}>Hello World Again!</h2>

…

The second method is using external stylesheets. By default, external CSS
stylesheets are already supported. If you want to use Sass or Less, please check
the reference documentation on how to configure it. Inside the src folder, create

a file named App.css and type the following code:

h2 {

font-size: 4rem;

}

Add the following import statement to src/App.js on line 2 or 3:

// src/App.js

…

import './App.css';

…

After saving, you should see the text content on your browser dramatically
change in size.

Getting Started with React: A Beginner’s Guide 36

https://github.com/facebookincubator/create-react-app/blob/master/packages/react-scripts/template/README.md#adding-a-css-preprocessor-sass-less-etc

Now that you've learned how to add styling to your React project, let's go ahead
and learn about stateless and stateful React components:

SStatatteless veless vs Ss Statatteeful Componenful Componentsts
In React, we generally deal with two types of data: prpropsops and statstatee. Props are

read-only and are set by a parent component. State is defined within a

component and can change during the lifecyle of a component. Basically,
stateless components (also known as dumbdumb components) use props to store

data, while stateful components (also known as smartsmart components) use state.

To gain a better understanding, let's examine the following practical examples.
Inside the src folder, create a folder and name it messages. Inside that folder,

create a file named message-view.js and type the following code to create a

stateless component:

37 Your First Week With React

import React, { Component } from 'react';

class MessageView extends Component {

render() {

return(

<div className="container">

<div className="from">

From:

John Doe

</div>

<div className="status">

Status:

 Unread

</div>

<div className="message">

Message:

Have a great day!

</div>

</div>

)

}

}

export default MessageView;

Next, add some basic styling in the src/App.css with the following code:

container {

margin-left: 40px;

Getting Started with React: A Beginner’s Guide 38

}

.label {

font-weight: bold;

font-size: 1.2rem;

}

.value {

color: #474747;

position: absolute;

left: 200px;

}

.message .value {

font-style: italic;

}

Finally, modify src/App.js so that the entire file looks like this:

import React, { Component } from 'react';

import './App.css';

import MessageView from './messages/message-view';

class App extends Component {

render(){

return (

<MessageView />

)

39 Your First Week With React

}

}

export default App;

By now, the code should be pretty self explanatory, as I've already explained the
basic React concepts. Take a look at your browser now, and you should have the
following result:

I'd also like to mention that it isn't necessary to use object-orientobject-orienteded syntax for
stateless components, especially if you aren't defining a lifecycle function. We
can rewrite MessageView using functional syntax like this:

Getting Started with React: A Beginner’s Guide 40

// src/messages/message-view.js

import React from 'react';

import PropTypes from 'prop-types';

export default function MessageView({message}) {

return (

<div className="container">

<div className="from">

From:

{message.from}

</div>

<div className="status">

Status:

{message.status}

</div>

<div className="message">

Message:

{message.content}

</div>

</div>

);

}

MessageView.propTypes = {

message: PropTypes.object.isRequired

}

Take note that I've removed the Component import, as this isn't required in the

functional syntax. This style might be confusing at first, but you'll quickly learn
it's faster to write React components this way.

41 Your First Week With React

You've successfully created a stateless React Component. It's not complete,
though, as there's a bit more work that needs to be done for it to be properly
integrated with a stateful component or container. Currently, the MessageView is

displaying static data. We need to modify so that it can accept input parameters.
We do this using this.props. We're going to assign a variable named message to

props. We'll also mark the message variable as required using the prop-types

package. This is to make it easier to debug our project as it grows. Update
message-view.js with the following code:

// src/messages/message-view.js

…

import PropTypes from 'prop-types';

class MessageView extends Component {

render() {

const message = this.props.message;

return(

<div className="container">

<div className="from">

From:

{message.from}

</div>

<div className="status">

Status:

{message.status}

</div>

<div className="message">

Message:

{message.content}

Getting Started with React: A Beginner’s Guide 42

</div>

</div>

)

}

// Mark message input parameter as required

MessageView.propTypes = {

message: PropTypes.object.isRequired

}

}

…

Next, we'll create a stateful component which will act as a parent to MessageView

component. We'll make use of the state data type to store a message which

we'll pass on to MessageView. To do this, create message-list.js file inside src/

messages and type the following code:

// src/messages/message-list.js

import React, { Component } from 'react';

import MessageView from './message-view';

class MessageList extends Component {

state = {

message: {

from: 'Martha',

content: 'I will be traveling soon',

43 Your First Week With React

status: 'read'

}

}

render() {

return(

<div>

<h1>List of Messages</h1>

<MessageView message={this.state.message} />

</div>

)

}

}

export default MessageList;

Next, update src/App.js such that MessageList gets rendered instead (which in

turn renders its child component, MessageView).

// src/App.js

…

import MessageList from './messages/message-list';

class App extends Component {

render(){

return (

<MessageList />

)

}

Getting Started with React: A Beginner’s Guide 44

}

…

After saving the changes, check your browser to see the result.

Now let's see how we can display multiple messages using MessageView

instances. First, we'll change state.message to an array and rename it to

messages. Then, we'll use the map function to generate multiple instances of

MessageView each corresponding to a message in the state.messages array.

We'll also need to populate a special attribute named key with a unique value
such as index. React needs this in order to keep track of what items in the list

have been changed, added or removed. Update MessageList code as follows:

45 Your First Week With React

https://www.sitepoint.com/map-reduce-functional-javascript/
https://facebook.github.io/react/docs/lists-and-keys.html

class MessageList extends Component {

state = {

messages: [

{

from: 'John',

message: 'The event will start next week',

status: 'unread'

},

{

from: 'Martha',

message: 'I will be traveling soon',

status: 'read'

},

{

from: 'Jacob',

message: 'Talk later. Have a great day!',

status: 'read'

}

]

}

render() {

const messageViews = this.state.messages.map

➥(function(message, index) {

return(

<MessageView key={index} message={message} />

)

})

return(

<div>

<h1>List of Messages</h1>

Getting Started with React: A Beginner’s Guide 46

{messageViews}

</div>

)

}

}

Check your browser to see the results:

As you can see, it's easy to define building blocks to create powerful and
complex UI interfaces using React. Feel free to add more styling such as putting
spacing and dividers between each MessageView instance.

47 Your First Week With React

bby Py Paavvels Jels Jelisejeelisejevvss

GeGetting Rtting Reacteact
PrProjects Rojects Readyeady

FFast with Prast with Pre-e-
ccononfigurfigureded

BuildsBuilds

ChapChaptterer

44

Getting React Projects Ready Fast with Pre-configured Builds 48

Starting a new React project nowadays is not as simple as we'd like it to be.
Instead of instantly diving into the code and bringing your application to life, you
have to spend time configuring the right build tools to set up a local development
environment, unit testing, and a production build. But there are projects where all
you need is a simple setup to get things running quickly and with minimal effort.

Create React App provides just that. It's a CLI tool from Facebook that allows
you to generate a new React project and use a pre-configured Webpack build for
development. Using it, you'll never have to look at the Webpack config again.

HHoow Does Crw Does Creaeatte Re React App Weact App Work?ork?
Create React App is a standalone tool that should be installed globally via npm,
and called each time you need to create a new project:

npm install -g create-react-app

To create a new project, run:

create-react-app react-app

Create React App will set up the following project structure:

.

├── .gitignore

├── README.md

49 Your First Week With React

https://github.com/facebookincubator/create-react-app
https://www.sitepoint.com/beginners-guide-node-package-manager/

├── package.json

├── node_modules

├── public

│ ├── favicon.ico

│ └── index.html

└── src

├── App.css

├── App.js

├── App.test.js

├── index.css

├── index.js

└── logo.svg

It will also add a react-scripts package to your project that will contain all of

the configuration and build scripts. In other words, your project depends
react-scripts, not on create-react-app itself. Once the installation is

complete, you can start working on your project.

SStarting a Ltarting a Local Deocal Devvelopmenelopment Servt Serverer
The first thing you'll need is a local development environment. Running npm

start will fire up a Webpack development server with a watcher that will

automatically reload the application once you change something. Hot reloading,
however, is only supported for styles.

The application will be generated with a number of features built-in.

EES6 and ES6 and ESS77

The application comes with its own Babel preset, babel-preset-react-app, to

Getting React Projects Ready Fast with Pre-configured Builds 50

https://github.com/facebookincubator/create-react-app/tree/master/packages/babel-preset-react-app

support a set of ES6 and ES7 features. It even supports some of the newer
features like async/await, and import/export statements. However, certain
features, like decorators, have been intentionally left out.

AAssesset importt import

You can also import CSS files from your JS modules that allow you to bundle
styles that are only relevant for the modules that you ship. The same thing can
be done for images and fonts.

EESLinSLintt

During development, your code will also be run through ESLint, a static code
analyzer that will help you spot errors during development.

EEnnvirvironmenonment vt variablesariables

You can use Node environment variables to inject values into your code at built-
time. React-scripts will automatically look for any environment variables starting
with REACT_APP_ and make them available under the global process.env. These

variables can be in a .env file for convenience:

REACT_APP_BACKEND=http://my-api.com

REACT_APP_BACKEND_USER=root

You can then reference them in your code:

fetch({process.env.REACT_APP_SECRET_CODE}/endpoint)

51 Your First Week With React

https://www.sitepoint.com/up-and-running-with-eslint-the-pluggable-javascript-linter/

PrProoxying txying to a backo a backendend

If your application will be working with a remote backend, you might need to be
able to proxy requests during local development to bypass CORS. This can be
set up by adding a proxy field to your package.json file:

"proxy": "http://localhost:4000",

This way, the server will forward any request that doesn't point to a static file the
given address.

RRunning Unit Tunning Unit Testsests
Executing npm test will run tests using Jest and start a watcher to re-run them

whenever you change something:

PASS src/App.test.js

✓ renders without crashing (7ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 0.123s, estimated 1s

Ran all test suites.

Watch Usage

› Press p to filter by a filename regex pattern.

› Press q to quit watch mode.

› Press Enter to trigger a test run.

Getting React Projects Ready Fast with Pre-configured Builds 52

Jest is a test runner also developed by Facebook as an alternative to Mocha or
Karma. It runs the tests on a Node environment instead of a real browser, but
provides some of the browser-specific globals using jsdom.

Jest also comes integrated with your VCS and by default will only run tests on
files changed since your last commit. For more on this, refer to “How to Test
React Components Using Jest”.

CrCreaeating a Prting a Production Bundleoduction Bundle
When you finally have something you deploy, you can create a production bundle
using npm run build. This will generate an optimized build of your application,

ready to be deployed to your environment. The generated artifacts will be placed
in the build folder:

.

├── asset-manifest.json

├── favicon.ico

├── index.html

└── static

├── css

│ ├── main.9a0fe4f1.css

│ └── main.9a0fe4f1.css.map

├── js

│ ├── main.3b7bfee7.js

│ └── main.3b7bfee7.js.map

└── media

└── logo.5d5d9eef.svg

53 Your First Week With React

https://facebook.github.io/jest/
https://github.com/tmpvar/jsdom
https://www.sitepoint.com/test-react-components-jest/
https://www.sitepoint.com/test-react-components-jest/

The JavaScript and CSS code will be minified, and CSS will additionally be run
through Autoprefixer to enable better cross-browser compatibility.

DeploDeploymenymentt

React-scripts provides a way to deploy your application to GitHub pages by
simply adding a homepage property to package.json. There's also a separate

Heroku build pack.

OpOpting Outting Out
If at some point you feel that the features provided are no longer enough for
your project, you can always opt out of using react-scripts by running npm run

eject. This will copy the Webpack configuration and build scripts from

react-scripts into your project and remove the dependency. After that, you're

free to modify the configuration however you see fit.

In ConclusionIn Conclusion
If you're looking to start a new React project look no further. Create React App
will allow you to quickly start working on your application instead of writing yet
another Webpack config.

Getting React Projects Ready Fast with Pre-configured Builds 54

https://github.com/postcss/autoprefixer
https://github.com/mars/create-react-app-buildpack

bby Chris Laughliny Chris Laughlin

SStyling in Rtyling in React:eact:
FFrrom Extom Externalernal
CSS tCSS to So Styledtyled
ComponenComponentsts

ChapChaptterer

55

55 Your First Week With React

While many aspects oWhile many aspects of building applications with React havf building applications with React have been standare been standardizeddized
tto some degro some degree, styling is one aree, styling is one area wherea where there there are are still a loe still a lot ot of compef competingting
opoptions. Each has its prtions. Each has its pros and cons, and theros and cons, and theree''s no clear best choice.s no clear best choice.

In this article, I'll provide a condensed overview of the progression in web
application styling with regards to React components. I'll also give a brief
introduction to styled-components.

EEvvolution oolution of Sf Styling in Jtyling in JaavvaScripaScriptt
The initial release of CSS was in 1996, and not much has changed since. In its
third major release, and with a fourth on the way, it has continued to grow by
adding new features and has maintained its reputation as a fundamental web
technology. CSS will always be the gold standard for styling web components,
but how it's used is changing every day.

From the days when we could build a website from sliced up images to the times
when custom, hand-rolled CSS could reflect the same as an image, the evolution
of CSS implementation has grown with the movement of JavaScript and the web
as a platform.

Since React's release in 2013, component-built web applications have become
the norm. The implementation of CSS has, in turn, been questioned. The main
argument against using CSS in-line with React has been the separation of
concerns (SoC). SoCSoC is a design principle that describes the division of a program
into sections, each of which addresses a different concern. This principle was
used mainly when developers kept the three main web technologies in separate
files: styles (CSS), markup (HTML) and logic (JavaScript).

This changed with the introduction of JSX in React. The development team
argued that what we had been doing was, in fact, the separation of technologies,
not concerns. One could ask, since JSX moved the markup into the JavaScript
code, why should the styles be separate?

Styling in React: From External CSS to Styled Components 56

https://github.com/styled-components/styled-components

As opposed to divorcing styles and logic, different approaches can be used to
merge them in-line. An example of this can be seen below:

<button style="background: red; border-radius: 8px;

➥color: white;">Click Me</button>

In-line styles move the CSS definitions from the CSS file. This thereby removes
the need to import the file and saves on bandwidth, but sacrifices readability,
maintainability, and style inheritance.

CSS MCSS Modulesodules

buttbutton.on.csscss

.button {

background: red;

border-radius: 8px;

color: white;

}

buttbutton.json.js

import styles from './button.css';

document.body.innerHTML = `<button class="${styles.button}"

➥>test</button>`;

57 Your First Week With React

As we can see from the code example above, the CSS still lives in its own file.
However, when CSS Modules is bundled with Webpack or another modern
bundler, the CSS is added as a script tag to the HTML file. The class names are
also hashed to provide a more granular style, resolving the problems that come
with cascading style sheets.

The process of hashing involves generating a unique string instead of a class
name. Having a class name of btn will result in a hash of DhtEg which prevents

styles cascading and applying styles to unwanted elements.

indeindex.htmlx.html

<style>

.DhtEg {

background: red;

border-radius: 8px;

color: white;

}

</style>

…

<button class="DhtEg">test</button>

From the example above we can see the style tag element added by CSS
Modules, with the hashed class name and the DOM element we have that uses
the hash.

GlamorGlamor

Glamor is a CSS-in-JS library that allows us to declare our CSS in the same file as

Styling in React: From External CSS to Styled Components 58

https://github.com/css-modules/css-modules
https://github.com/threepointone/glamor

our JavaScript. Glamor, again, hashes the class names but provides a clean
syntax to build CSS style sheets via JavaScript.

The style definition is built via a JavaScript variable that describes each of the
attributes using camel case syntax. The use of camel case is important as CSS
defines all attributes in train case. The main difference is the change of the
attribute name. This can be an issue when copying and pasting CSS from other
parts of our application or CSS examples. For example overflow-y would be

changed to overFlowY. However, with this syntax change, Glamor supports

media queries and shadow elements, giving more power to our styles:

buttbutton.json.js

import { css } from 'glamor';

const rules = css({

background: red;

borderRadius: 8px;

color: 'white';

});

const button = () => {

return <button {...rules}>Click Me</button>;

};

styled-cstyled-componenomponentsts
styled-components is a new library that focuses on keeping React components
and styles together. Providing a clean and easy-to-use interface for styling both
React and React Native, styled-components is changing not only the
implementation but the thought process of building styled React components.

59 Your First Week With React

https://en.wikipedia.org/wiki/Camel_case
https://www.styled-components.com/

styled-components can be installed from npm via:

npm install styled-components

Imported as any standard npm package:

import styled from 'styled-components';

Once installed, it's time to start making styled React components easy and
enjoyable.

Building Generic SBuilding Generic Styled Rtyled React Componeneact Componentsts
Styled React components can be built in many ways. The styled-components
library provides patterns that enable us to build well-structured UI applications.
Building from small UI components — such as buttons, inputs, typography and
tabs — creates a more unified and coherent application.

Using our button example from before, we can build a generic button using
styled-components:

const Button = styled.button`

background: red;

border-radius: 8px;

color: white;

`;

Styling in React: From External CSS to Styled Components 60

class Application extends React.Component {

render() {

return (

<Button>Click Me</Button>

)

}

}

As we can see, we're able to create our generic button while keeping the CSS in-
line with the JavaScript. styled-components provides a wide range of elements
that we can style. We can do this by using direct element references or by
passing strings to the default function.

const Button = styled.button`

background: red;

border-radius: 8px;

color: white;

`;

const Paragraph = styled.p`

background: green;

`;

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/bWpoPO

61 Your First Week With React

http://codepen.io/SitePoint/pen/bWpoPO

const inputBg = 'yellow';

const Input = styled.input'yellow'`

background: ${inputBg};

color: black;

`;

const Header = styled('h1')`

background: #65a9d7;

font-size: 26px;

`Application extends React.Component {

render() {

return (

<div>

<Button>Click Me</Button>

<Paragraph>Read ME</Paragraph>

<Input

placeholder="Type in me"

/>

<Header>I'm a H1</Header>

</div>

)

}

}

"Type in me"

The main advantage to this styling method is being able to write pure CSS. As
seen in the Glamor example, the CSS attribute names have had to be changed to

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/NjNaQo

Styling in React: From External CSS to Styled Components 62

http://codepen.io/SitePoint/pen/NjNaQo

camel case, as they were attributes of a JavaScript object.

styled-components also produces React friendly primitives that act like the
existing elements. Harnessing JavaScript template literals allows us to use the
full power of CSS to style components. As seen in the input element example, we
can define external JavaScript variables and apply these to our styles.

With these simple components, we can easily build a style guide for our
application. But in many cases, we'll also need more complicated components
that can change based on external factors.

CustCustomizable Somizable Styled Rtyled React Componeneact Componentsts
The customizable nature of styled-components is the real strength. This could
commonly be applied to a button that needs to change styles based on context.
In this case, we have two button sizes — small and large. Below is the pure CSS
method:

CSSCSS

button {

background: red;

border-radius: 8px;

color: white;

}

.small {

height: 40px;

width: 80px;

}

.medium {

63 Your First Week With React

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

height: 50px;

width: 100px;

}

.large {

height: 60px;

width: 120px;

}

JavaScripJavaScriptt

class Application extends React.Component {

render() {

return (

<div>

<button className="small">Click Me</button>

<button className="large">Click Me</button>

</div>

)

}

}

When we reproduce this using styled-components, we create a Button

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/eWZeOp

Styling in React: From External CSS to Styled Components 64

http://codepen.io/SitePoint/pen/eWZeOp

component that has the basic default style for the background. As the
component acts like a React component, we can make use of props and change
the style outcome accordingly:

const Button = styled.button`

background: red;

border-radius: 8px;

color: white;

height: ${props => props.small ? 40 : 60}px;

width: ${props => props.small ? 60 : 120}px;

`;

class Application extends React.Component {

render() {

return (

<div>

<Button small>Click Me</Button>

<Button large>Click Me</Button>

</div>

)

}

}

AAdvdvancanced Ued Usagesage
styled-components provides the ability to create complex advanced

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/qmZVWm

65 Your First Week With React

http://codepen.io/SitePoint/pen/qmZVWm

components, and we can use existing JavaScript patterns to compose
components. The example below demonstrates how components are composed
— in the use case of notification messages that all follow a basic style, but each
type having a different background color. We can build a basic, styled
component and compose on top to create advanced components:

const BasicNotification = styled.p`

background: lightblue;

padding: 5px;

margin: 5px;

color: black;

`;

const SuccessNotification = styled(BasicNotification)`

background: lightgreen;

`;

const ErrorNotification = styled(BasicNotification)`

background: lightcoral;

font-weight: bold;

`;

class Application extends React.Component {

render() {

return (

<div>

<BasicNotification>Basic Message</BasicNotification>

<SuccessNotification>Success Message</SuccessNotification>

<ErrorNotification>Error Message</ErrorNotification>

</div>

)

}

Styling in React: From External CSS to Styled Components 66

}

As styled-components allows us to pass standard DOM elements and other
components, we can compose advanced features from basic components.

ComponenComponent St Structurtructuree
From our advanced and basic example, we can then build a component structure.
Most standard React applications have a components directory: we place our
styled components in a styledComponents directory. Our styledComponents

directory holds all the basic and composed components. These are then
imported into the display components used by our application. The directory
layout can be seen below:

src/

components/

addUser.js

styledComponents/

basicNotification.js

successNotification.js

errorNotification.js

Codepen ECodepen Examplexample

https://codepen.io/SitePoint/pen/JNXOjW

67 Your First Week With React

https://codepen.io/SitePoint/pen/JNXOjW

ConclusionConclusion
As we've seen in this post, the ways in which we can style our components varies
greatly — none of which is a clear winning method. This article has shown that
styled-components has pushed the implementation of styling elements forward,
and has caused us to question our thought processes with regards to our
approach.

Every developer, including myself, has their favorite way of doing things, and it’s
good to know the range of different methods out there to use depending on the
application we're working on. Styling systems and languages have advanced
greatly throughout the years, and there's no question that they are sure to
develop further and change more in the future. It’s a very exciting and interesting
time in front-end development.

Styling in React: From External CSS to Styled Components 68

bby My Maatt Burnett Burnetttt

An InAn Intrtroductionoduction
tto JSXo JSX

ChapChaptterer

66

69 Your First Week With React

When React was first introduced, one of the features that caught most people's
attention (and drew the most criticism) was JSX. If you're learning React, or have
ever seen any code examples, you probably did a double-take at the syntax.
What is this strange amalgamation of HTML and JavaScript? Is this even real
code?

Let's take a look at what JSX actually is, how it works, and why the heck we'd
want to be mixing HTML and JS in the first place!

WhaWhat is JSX?t is JSX?
Defined by the React Docs as an "extension to JavaScript" or “syntax sugar for
calling React.createElement(component, props, ...children))”, JSX is what

makes writing your React Components easy.

JSX is considered a domain-specific language (DSL), which can look very similar
to a template language, such as Mustache, Thymeleaf, Razor, Twig, or others.

It doesn't render out to HTML directly, but instead renders to React Classes that
are consumed by the Virtual DOM. Eventually, through the mysterious magic of
the Virtual DOM, it will make its way to the page and be rendered out to HTML.

HHoow Does it Ww Does it Work?ork?
JSX is basically still just JavaScript with some extra functionality. With JSX, you
can write code that looks very similar to HTML or XML, but you have the power
of seamlessly mixing JavaScript methods and variables into your code. JSX is
interpreted by a transpiler, such as Babel, and rendered to JavaScript code that
the UI Framework (React, in this case) can understand.

Don't like JSX? That's cool. It's technically not required, and the React Docs
actually include a section on using “React Without JSX”. Let me warn you right
now, though, it's not pretty. Don't believe me? Take a look.

An Introduction to JSX 70

https://en.wikipedia.org/wiki/Domain-specific_language
https://babeljs.io/
https://facebook.github.io/react/docs/react-without-jsx.html

JSX:JSX:

class SitePoint extends Component {

render() {

return (

<div>My name is {this.props.myName}</div>

)

}

}

React Sans JSX:React Sans JSX:

class SitePoint extends Component {

render() {

return React.createElement(

"div",

null,

"My name is",

React.createElement(

"span",

null,

this.props.myName

)

)

}

}

Sure, looking at those small example pieces of code on that page you might be

71 Your First Week With React

thinking, "Oh, that's not so bad, I could do that." But could you imagine writing an
entire application like that?

The example is just two simple nested HTML elements, nothing fancy. Basically,
just a nested Hello World. Trying to write your React application without JSX

would be extremely time consuming and, if you're like most of us other
developers out here working as characters in DevLand™, it will very likely quickly
turn into a convoluted spaghetti code mess. Yuck!

Using frameworks and libraries and things like that are meant to make our lives
easier, not harder. I'm sure we've all seen the overuse and abuse of libraries or
frameworks in our careers, but using JSX with your React is definitely not one of
those cases.

WhaWhat About Separt About Separaation otion of Concf Concerns?erns?
Now, for those of us who learned to not mix our HTML with our JS --- how bad it
was, and how if we did, our applications would be haunted by the Bug Gods of
the Apocalypse --- mixing your HTML inside of your JavaScript probably seems
like all kinds of wrong. After all, you have to maintain a Separation of Concerns at
all costs! The world depends on it!

I know, I was there, I was youI was you.

But, as weird as it may seem, it's really not that bad, and your concerns are still
separated. As someone who's been working with React for long enough to be
very comfortable with it, using small pieces of HTML/XML inside your JavaScript
codebase is really kinda … magical. It takes the management of HTML out of the
equation, and leaves you with nice, solid code. Just code. It helps to ease the pain
of trying to use a markup language --- which was designed for building word
documents --- for building applications, and brings it back to the control of the
application's code.

Another issue of not separating out your JavaScript from your HTML: what if

An Introduction to JSX 72

your JS fails to download or run, and the user is only left with HTML/CSS to
render? If you're building your application the React way, then your HTML (and
maybe even your CSS if you're using WebPack), is bundled in with your
JavaScript itself. So the user really only has one small HTML file to download,
then a large JavaScript payload that contains everything else.

Worrying about search engines and SEO is unfortunately still a legitimate
concern. We all know that the major search engines now render JavaScript, but
initial rendering with JavaScript can still be slower, which could have an effect on
your overall ranking. To mitigate this, it's possible to do an initial render of your
React on the server before sending it to the client. This will not only allow search
engines to pull your site quicker, but also provide your users with a quicker First
Meaningful Paint.

Doing this can become complicated quickly, but at the time of this writing,
SitePoint itself actually uses this method. Brad Denver did a fantastic write-up of
how it was done here: “Universal Rendering: How We Rebuilt SitePoint”.

Rendering server-side is still only going to help with failed loads (which are
uncommon) or slow load times (much more common). It won't help with users
who completely disable JavaScript. Sorry, but a React app is still a JavaScript-
based application. You can do a lot behind the scenes, but once you start mixing
in app functionality and state management (e.g. Flux, Redux, or MobX), your time
investment vs potential payoff starts going negative.

NNoot Just ft Just for Ror Reacteact
JSX with React is pretty great stuff. But what if you're using another framework
or library, but still want to use it? Well, you're in luck --- because JSX technically
isn't tied to React. It's still just DSL or "syntax sugar", remember? Vue.js actually
supports JSX out of the box, and there have been attempts to use it with other
frameworks such as Angular 2 and Ember.

I hope this JSX quick introduction helped to give you a better understanding of

73 Your First Week With React

https://developers.google.com/web/tools/lighthouse/audits/first-meaningful-paint
https://developers.google.com/web/tools/lighthouse/audits/first-meaningful-paint
https://www.sitepoint.com/universal-react-rendering-sitepoint/
https://vuejs.org/v2/guide/render-function.html

just what JSX is, how it can help you, and how it can be used to create your
applications. Now get back out there and make some cool stuff!

An Introduction to JSX 74

EEric Grric Greeneeene

WWorking withorking with
DaData in Rta in React:eact:

PrProperties &operties &
SStatattee

ChapChaptterer

77

75 Your First Week With React

Managing data is essential to any application. Orchestrating the flow of data
through the user interface (UI) of an application can be challenging. Often,
today’s web applications have complex UIs such that modifying the data in one
area of the UI can directly and indirectly affect other areas of the UI. Two-way
data binding via Knockout.js and Angular.js are popular solutions to this problem.

For some applications (especially with a simple data flow), two-way binding can
be a sufficient and quick solution. For more complex applications, two-way data
binding can prove to be insufficient and a hindrance to effective UI design. React
does not solve the larger problem of application data flow (although Flux does),
but it does solve the problem of data flow within a single component.

Within the context of a single component, React solves both the problem of data
flow, as well as updating the UI to reflect the results of the data flow. The second
problem of UI updates is solved using a pattern named Reconciliation which
involves innovative ideas such as a Virtual DOM. The next article will examine
Reconciliation in detail. This article is focused on the first problem of data flow,
and the kinds of data React uses within its components.

Kinds oKinds of Componenf Component Dat Datata
Data within React Components is stored as either properties or state.

Properties are the input values to the component. They are used when rendering
the component and initializing state (discussed shortly). After instantiating the
component, properties should be considered immutable. Property values can
only be set when instantiating the component, then when the component is re-
rendered in the DOM, React will compare between the old and new property
values to determine what DOM updates are required.

Working with Data in React: Properties & State 76

https://www.sitepoint.com/building-a-react-universal-blog-app-implementing-flux/

State data can be changed by the component and is usually wired into the
component’s event handlers. Typically, updating the state triggers React
components re-render themselves. Before a component is initialized, its state
must be initialized. The initialized values can include constant values, as well as,
property values (as mentioned above).

In comparison with frameworks such as Angular.js, properties can be thought of
as one-way bound data, and state as two-way bound data. This is not a perfect
analogy since Angular.js uses one kind of data object which is used two different
ways, and React is using two data objects, each with their specific usages.

PrPropertiesoperties
My previous React article covered the syntax to specify and access properties.
The article explored the use of JavaScript and JSX with static as well as dynamic
properties in various code demonstrations. Expanding on the earlier exploration,
let’s look at some interesting details regarding working with properties.

When adding a CSS class name to a component, the property name className

must be used, rather than class must be used. React requires this because

ES2015 identifies the word class as a reserved keyword and is used for defining

objects. To avoid confusion with this keyword, the property name className is

used. If a property named class is used, React will display a helpful console

message informing the developer that the property name needs to be changed
to className.

Observe the incorrect class property name, and the helpful warning message

Codepen ECodepen Examplexample

Here is a CodePen demonstration of setting the property values and
updating the DOM in consideration of updated property values.

77 Your First Week With React

http://codepen.io/SitePoint/pen/XKqQqN/
https://www.sitepoint.com/getting-started-react/

displayed in the Microsoft Edge console window.

Changing the class property to className, results in the warning message not

being displayed.

Working with Data in React: Properties & State 78

When the property name is changed from class to className the warning

message does not appear. Check out the complete CodePen demonstration:

In addition to property names such as className, React properties have other

interesting aspects. For example, mutating component properties is an anti-
pattern. Properties can be set when instantiating a component, but should not
be mutated afterwards. This includes changing properties after instantiating the
component, as well as after rendering it. Mutating values within a component are
considered state, and tracked with the state property rather than the props

property.

Codepen ECodepen Examplexample

https://codepen.io/SitePoint/pen/akGxGW/.

79 Your First Week With React

https://codepen.io/SitePoint/pen/akGxGW/

In the following code sample, SomeComponent is instantiated with

createElement, and then the property values are manipulated afterwards.

JavaScripJavaScript:t:

var someComponent = React.createElement(SomeComponent);

someComponent.props.prop1 = "some value";

someComponent.props.prop2 = "some value";

JSX:JSX:

var someComponent = <SomeComponent />;

someComponent.props.prop1 = "some value";

someComponent.props.prop2 = "some value";

Manipulating the props of the instantiated component could result in errors that

would be hard to trace. Also, changing the properties does not trigger an update
to the component, resulting in the component and the properties could be out of
sync.

Instead, properties should be set as part of the component instantiation process,
as shown below.

JavaScripJavaScript:t:

var someComponent = React.createElement(SomeComponent, {

Working with Data in React: Properties & State 80

prop1: "some value",

prop2: "some value"

});

JSX:JSX:

var someComponent = <SomeComponent prop1="some value"

➥prop2="some value" />

The component can then be re-rendered at which point React will perform its
Reconciliation process to determine how the new property values affect the
DOM. Then, the DOM is updated with the changes.

See the first CodePen demonstration at the top of this article for a
demonstration of the DOM updates.

SStatattee
State represents data that is changed by a component, usually through
interaction with the user. To facilitate this change, event handlers are registered
for the appropriate DOM elements. When the events occur, the updated values
are retrieved from the DOM, and notify the component of the new state. Before
the component can utilize state, the state must be initialized via the
getInitialState function. Typically, the getInitialState function initializes

the state using static values, passed in properties, or another data store.

var Message = React.createClass({

81 Your First Week With React

getInitialState: function() {

return { message: this.props.message };

},

Once the state is initialized, the state values can be used like property values
when rendering the component. To capture the user interactions which update
the state, event handlers are registered. To keep the React components self-
contained, event handler function objects can be passed in as properties or
defined directly on the component object definition itself.

One of the benefits of React is that standard HTML events are used. Included
with standard HTML events is the standard HTML Event object. Learning special
event libraries, event handlers, or custom event objects is not needed. Because
modern browsers are largely compatible, intermediary cross-browser libraries
such as jQuery are not needed.

To handle the state changes, the setState function is used to set the new value

on the appropriate state properties. Calling this function causes the component
to re-render itself.

As shown below in the Visual Studio Code editor, the setState function is called

from the _messageChange event handler.

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/JKvVvy/.

Working with Data in React: Properties & State 82

http://codepen.io/SitePoint/pen/JKvVvy/

ConclusionConclusion
React components provide two mechanisms for working with data: properties
and state. Dividing data between immutable properties and mutable state more
clearly identifies the role of each kind of data, and the component’s relationship
to it. In general, properties are preferred because they simplify the flow of data.
State is useful for capturing data updates resulting from user interactions and
other UI events.

The relationship between properties and state facilitate the flow of data through
a component. Properties can be used to initialize state, and state values can be
used to set properties when instantiating and rendering a component. New
values from user interaction are captured via state, and then used to update the
properties.

The larger flow of data within an application is accomplished via a pattern named
Flux.

83 Your First Week With React

http://facebook.github.io/flux/

bby My Mark Brark Broownwn

RReact feact foror
AngularAngular

DeDevveloperselopers

ChapChaptterer

88

React for Angular Developers 84

This article is fThis article is for devor developers who arelopers who are familiar with Angular 1.x and would like familiar with Angular 1.x and would like te too
learn morlearn more about React. We about React. Wee'll look at the diff'll look at the differerent apprent approaches they takoaches they take te too
building rich web applications, the obuilding rich web applications, the ovverlapping functionality and the gaps thaterlapping functionality and the gaps that
React doesn't attReact doesn't attempempt tt to fill. Skip it if you’o fill. Skip it if you’rre noe not familiar with Angulart familiar with Angular..

After reading, you'll have an understanding of the problems that React sets out
to solve and how you can use the knowledge you have already to get started
using React in your own projects.

FFrrameamewworks vorks vs Librs Librariesaries
Angular is a framework, whereas React is a library focused only on the view layer.
There are costs and benefits associated with both using frameworks and a
collection of loosely coupled libraries.

Frameworks try to offer a complete solution, and they may help organize code
through patterns and conventions if you're part of a large team. However, having
a large API adds cognitive load when you're writing, and you'll spend a lot more
time reading documentation and remembering patterns --- especially in the early
days when you're still learning.

Using a collection of loosely coupled libraries with small APIs is easier to learn
and master, but it means that when you run into problems you'll need to solve
them with more code or pull in external libraries as required. This usually results
in you having to write your own framework to reduce boilerplate.

Out Of The BoOut Of The Boxx
Angular gives you a rich feature set for building web applications. Among its
features are:

HTML templates with dynamic expressions in double curlies {{ }}

built-in directives like ng-model, ng-repeat and ng-class for extending the

capability of HTML

85 Your First Week With React

https://angularjs.org/
https://facebook.github.io/react/

controllers for grouping logic and passing data to the view
two-way binding as a simple way to keep your view and controller in sync
a large collection of modules like $http for communicating with the server

and ngRoute for routing

custom directives for creating your own HTML syntax
dependency injection for limiting exposure of objects to specific parts of the
application
services for shared business logic
filters for view formatting helpers.

React, on the other hand, gives you:

JSX syntax for templates with JavaScript expressions in single curlies { }

components, which are most like Angular's element directives.

React is unopinionated when it comes to the rest of your application structure
and it encourages the use of standard JavaScript APIs over framework
abstractions. Rather than providing a wrapper like $http for server
communication, you can use fetch() instead. You're free to use constructs like
services and filters, but React won't provide an abstraction for them. You can put
them in JavaScript modules and require them as needed in your components.

So, while Angular gives you a lot more abstractions for common tasks, React
deliberately avoids this to keep you writing standard JavaScript more often and
to use external dependencies for everything else.

BooBootstrtstrappingapping
Initializing Angular apps requires a module, a list of dependencies and a root
element.

React for Angular Developers 86

http://www.sitepoint.com/api-calls-angularjs-http-service/
http://www.sitepoint.com/introduction-to-the-fetch-api/

let app = angular.module('app', [])

let root = document.querySelector('#root');

angular.element(root).ready(function() {

angular.bootstrap(root, ['app']);

});

The entry point for React is rendering a component into a root node. It's possible
to have multiple root components, too:

let root = document.querySelector('#root');

ReactDOM.render(<App />, root)

TTemplaemplatteses
The anatomy of an Angular view is complex and has many responsibilities. Your
HTML templates contain a mix of directives and expressions, which tie the view
and the associated controllers together. Data flows throughout multiple contexts
via $scope.

In React, it's components all the way down, data flows in one direction from the
top of the component tree down to the leaf nodes. JSX is the most common
syntax for writing components, transforming a familiar XML structure into
JavaScript. Whilst this does resemble a template syntax, it compiles into nested
function calls.

const App = React.createClass({

87 Your First Week With React

http://www.sitepoint.com/getting-started-react-jsx/

render: function() {

return (

<Component>

<div>{ 2 + 1 }</div>

<Component prop="value" />

<Component time={ new Date().getTime() }>

<Component />

</Component>

</Component>

)

}

})

The compiled code below should help clarify how the JSX expressions above
map to createElement(component, props, children) function calls:

var App = React.createClass({

render: function render() {

return React.createElement(

Component,

null,

React.createElement("div", null, 2 + 1),

React.createElement(Component, { prop: "value" }),

React.createElement(

Component,

{ time: new Date().getTime() },

React.createElement(Component, null)

)

);

React for Angular Developers 88

}

});

TTemplaemplatte Dire Directivectiveses
Let's look at how some of Angular's most used template directives would be
written in React components. Now, React doesn't have templates, so these
examples are JSX code that would sit inside a component's render function. For

example:

class MyComponent extends React.Component {

render() {

return (

// JSX lives here

)

}

}

ng-rng-repeaepeatt

<li ng-repeat="word in words">{ word }

We can use standard JavaScript looping mechanisms such as map to get an array

89 Your First Week With React

of elements in JSX.

{ words.map((word)=> { word })}

ng-classng-class

<form ng-class="{ active: active, error: error }">

</form>

In React, we're left to our own devices to create our space-separated list of
classes for the className property. It's common to use an existing function such

as Jed Watson's classNames for this purpose.

<form className={ classNames({active: active, error: error}) }>

</form>

The way to think about these attributes in JSX is as if you're setting properties
on those nodes directly. That's why it's className rather than the class attribute

name.

formNode.className = "active error";

React for Angular Developers 90

https://github.com/JedWatson/classnames

ng-ifng-if

<div>

<p ng-if="enabled">Yep</p>

</div>

if … else statements don't work inside JSX, because JSX is just syntactic sugar

for function calls and object construction. It's typical to use ternary operators for
this or to move conditional logic to the top of the render method, outside of the
JSX.

// ternary

<div>

{ enabled ? <p>Enabled</p> : null }

</div>

// if/else outside of JSX

let node = null;

if (enabled) {

node = <p>Enabled</p>;

}

<div>{ node }</div>

ng-shong-show / ng-hidew / ng-hide

<p ng-show="alive">Living</p>

91 Your First Week With React

<p ng-hide="alive">Ghost</p>

In React, you can set style properties directly or add a utility class, such as
.hidden { display: none }, to your CSS for the purpose of hiding your

elements (which is how Angular handles it).

<p style={ display: alive ? 'block' : 'none' }>Living</p>

<p style={ display: alive ? 'none' : 'block' }>Ghost</p>

<p className={ classNames({ hidden: !alive }) }>Living</p>

<p className={ classNames({ hidden: alive }) }>Ghost</p>

You've got the hang of it now. Instead of a special template syntax and attributes,
you'll need to use JavaScript to achieve what you want instead.

An ExAn Example Componenample Componentt
React's Components are most like Angular's Directives. They're used primarily to
abstract complex DOM structures and behavior into reusable pieces. Below is an
example of a slideshow component that accepts an array of slides, renders a list
of images with navigational elements and keeps track of its own activeIndex

state to highlight the active slide.

<div ng-controller="SlideShowController">

<slide-show slides="slides"></slide-show>

</div>

React for Angular Developers 92

app.controller("SlideShowController", function($scope) {

$scope.slides = [{

imageUrl: "allan-beaver.jpg",

caption: "Allan Allan Al Al Allan"

}, {

imageUrl: "steve-beaver.jpg",

caption: "Steve Steve Steve"

}];

});

app.directive("slideShow", function() {

return {

restrict: 'E',

scope: {

slides: '='

},

template: `

<div class="slideshow">

<ul class="slideshow-slides">

<li ng-repeat="slide in slides" ng-class="

➥{ active: $index == activeIndex }">

<figure>

<figcaption ng-show="slide.caption"

➥>{{ slide.caption }}

➥</figcaption>

</figure>

<ul class="slideshow-dots">

<li ng-repeat="slide in slides" ng-class

➥="{ active: $index == activeIndex }">

93 Your First Week With React

<a ng-click="jumpToSlide($index)">

➥{{ $index + 1 }}

</div>

`,

link: function($scope, element, attrs) {

$scope.activeIndex = 0;

$scope.jumpToSlide = function(index) {

$scope.activeIndex = index;

};

}

};

});

The SlideshoThe Slideshow Componenw Component in Angulart in Angular

This component in React would be rendered inside another component and
passed the slides data via props.

let _slides = [{

imageUrl: "allan-beaver.jpg",

caption: "Allan Allan Al Al Allan"

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/QyNJxO/

React for Angular Developers 94

http://codepen.io/SitePoint/pen/QyNJxO/
https://medium.com/react-tutorials/react-properties-ef11cd55caa0#.cbg8xkxpe

}, {

imageUrl: "steve-beaver.jpg",

caption: "Steve Steve Steve"

}];

class App extends React.Component {

render() {

return <SlideShow slides={ _slides } />

}

}

React components have a local scope in this.state, which you can modify by

calling this.setState({ key: value }). Any changes to state causes the

component to re-render itself.

class SlideShow extends React.Component {

constructor() {

super()

this.state = { activeIndex: 0 };

}

jumpToSlide(index) {

this.setState({ activeIndex: index });

}

render() {

return (

<div className="slideshow">

<ul className="slideshow-slides">

{

this.props.slides.map((slide, index) => (

95 Your First Week With React

<li className={ classNames

➥({ active: index == this.

➥state.activeIndex }) }>

<figure>

{ slide.caption ?

➥<figcaption>

➥{ slide.caption }

➥</figcaption> : null }

</figure>

))

}

<ul className="slideshow-dots">

{

this.props.slides.map((slide, index) => (

<li className={ (index == this.

➥state.activeIndex) ?

➥'active': '' }>

 this.

➥jumpToSlide(index) }>

➥{ index + 1 }

))

}

</div>

);

}

}

React for Angular Developers 96

Events in React look like old-school inline event handlers such as onClick. Don't

feel bad, though: under the hood it does the right thing and creates highly
performant delegated event listeners.

The SlideshoThe Slideshow Componenw Component in Rt in Reacteact

TTwwo-Wo-Waay Bindingy Binding
Angular's trusty ng-model and $scope form a link where the data flows back and

forth between a form element and properties on a JavaScript object in a
controller.

app.controller("TwoWayController", function($scope) {

$scope.person = {

name: 'Bruce'

};

});

<div ng-controller="TwoWayController">

<input ng-model="person.name" />

<p>Hello {{ person.name }}!</p>

</div>

React eschews this pattern in favor of a one-way data flow instead. The same

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/ZQWmoj/

97 Your First Week With React

https://facebook.github.io/react/docs/events.html
http://codepen.io/SitePoint/pen/ZQWmoj/

types of views can be built with both patterns though.

class OneWayComponent extends React.Component {

constructor() {

super()

this.state = { name: 'Bruce' }

}

change(event) {

this.setState({ name: event.target.value });

}

render() {

return (

<div>

<input value={ this.state.name }

➥onChange={ (event)=> this.change(event) } />

<p>Hello { this.state.name }!</p>

</div>

);

}

}

The <input> here is called a "controlled input". This means its value is only ever

changed when the render function is called (on every key stroke in the example

above). The component itself is called "stateful" because it manages its own
data. This isn't recommended for the majority of components. The ideal is to
keep components "stateless" and have data passed to them via props instead.

Codepen ECodepen Examplexample

http://codepen.io/SitePoint/pen/BjKGPW/

React for Angular Developers 98

http://codepen.io/SitePoint/pen/BjKGPW/

Typically, a stateful Container Component or Controller View sits at the top of
the tree with many stateless child components underneath. For more
information on this, read What Components Should Have State? from the docs.

Call YCall Your Pour Pararenentsts

Whilst data flows down in one direction, it's possible to call methods on the
parent through callbacks. This is usually done in response to some user input.
This flexibility gives you a lot of control when refactoring components to their
simplest presentational forms. If the refactored components have no state at all,
they can be written as pure functions.

// A presentational component written as a pure function

const OneWayComponent = (props)=> (

<div>

<input value={ props.name } onChange={ (event)=> props.

➥onChange(event.target.value) } />

<p>Hello { props.name }!</p>

</div>

);

class ParentComponent extends React.Component {

constructor() {

super()

this.state = { name: 'Bruce' };

}

change(value) {

this.setState({name: value});

}

render() {

return (

'Bruce'<div>

99 Your First Week With React

https://medium.com/@learnreact/container-components-c0e67432e005#.osha0yxns
http://blog.andrewray.me/the-reactjs-controller-view-pattern/
https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html#what-components-should-have-state

<OneWayComponent name={ this.state.name }

➥onChange={ this.change.bind(this) } />

<p>Hello { this.state.name }!</p>

</div>

)

}

}

This might seem like a round-about pattern at first if you're familiar with two-way
data binding. The benefit of having a lot of small presentational "dumb"
components that just accept data as props and render them is that they are

simpler by default, and simple components have far fewer bugs. This also
prevents the UI from being in an inconsistent state, which often occurs if data is
in multiple places and needs to be maintained separately.

DependencDependency Injection, Servicy Injection, Services, Filtes, Filtersers
JavaScript Modules are a much better way to handle dependencies. You can use
them today with a tool like Webpack, SystemJS or Browserify.

// An Angular directive with dependencies

app.directive('myComponent', ['Notifier', '$filter',

➥function(Notifier, $filter) {

const formatName = $filter('formatName');

// use Notifier / formatName

}]

React for Angular Developers 100

https://github.com/webpack/webpack
https://github.com/systemjs/systemjs
http://browserify.org/

// ES6 Modules used by a React component

import Notifier from "services/notifier";

import { formatName } from "filters";

class MyComponent extends React.Component {

"services/notifier"// use Notifier / formatName

}

Sounds GrSounds Greaeat. Can I Ut. Can I Use Bose Both!?th!?
Yes! It's possible to render React components inside an existing Angular
application. Ben Nadel has put together a good post with screencast on how to
render React components inside an Angular directive. There's also ngReact,
which provides a react-component directive for acting as the glue between

React and Angular.

If you've run into rendering performance problems in certain parts of your
Angular application, it's possible you'll get a performance boost by delegating
some of that rendering to React. That being said, it's not ideal to include two
large JavaScript libraries that solve a lot of the same problems. Even though
React is just the view layer, it's roughly the same size as Angular, so that weight
may be prohibitive based on your use case.

While React and Angular solve some of the same problems, they go about it in
very different ways. React favors a functional, declarative approach, where
components are pure functions free of side effects. This functional style of
programming leads to fewer bugs and is simpler to reason about.

101 Your First Week With React

http://www.bennadel.com/blog/2902-rendering-reactjs-components-in-angularjs-using-angularjs-directives.htm
https://github.com/ngReact/ngReact

HHoow About Angular 2?w About Angular 2?
Components in Angular 2 resemble React components in a lot of ways. The
example components in the docs have a class and template in close proximity.
Events look similar. It explains how to build views using a Component Hierarchy,
just as you would if you were building it in React, and it embraces ES6 modules
for dependency injection.

// Angular 2

@Component({

selector: 'hello-component',

template: `

<h`

<h4>Give me some keys!</h4>

<input (keyup)="onKeyUp($event)" />

<div>{{ values }}</div>

`lloComponent {

values='';

onKeyUp(event) {

this.values += event.target.value + ' | ';

}

}

// React

class HelloComponent extends React.Component {

constructor(props) {

super()

this.state = { values: '' };

}

onKeyUp(event) {

const values = `${this.state.values + event.target.value} | `;

this.setState({ values: values });

React for Angular Developers 102

https://angular.io/docs/ts/latest/guide/displaying-data.html#!#showing-component-properties-with-interpolation
https://angular.io/docs/ts/latest/guide/displaying-data.html#!#showing-component-properties-with-interpolation
https://angular.io/docs/ts/latest/guide/hierarchical-dependency-injection.html#the-injector-tree

}

render() {

return (

''`${this.state.values + event.target.value} | `<div>

<h4>Give me some keys!</h4>

<div><input onKeyUp={ this.onKeyUp.bind(this) } />

</div>

<div>{ this.state.values }</div>

</div>

);

}

}

A lot of the work on Angular 2 has been making it perform DOM updates a lot
more efficiently. The previous template syntax and complexities around scopes
led to a lot of performance problems in large apps.

A CompleA Complette Applicae Applicationtion
In this article I've focused on templates, directives and forms, but if you're
building a complete application, you're going to require other things to help you
manage your data model, server communication and routing at a minimum.
When I first learned Angular and React, I created an example Gmail application
to understand how they worked and to see what the developer experience was
like before I started using them in real applications.

You might find it interesting to look through these example apps to compare the
differences in React and Angular. The React example is written in CoffeeScript
with CJSX, although the React community has since gathered around ES6 with
Babel and Webpack, so that's the tooling I would suggest adopting if you're
starting today.

103 Your First Week With React

https://github.com/jsdf/coffee-react
http://www.2ality.com/2015/04/webpack-es6.html
http://www.2ality.com/2015/04/webpack-es6.html

https://github.com/markbrown4/gmail-react
https://github.com/markbrown4/gmail-angular

There's also the TodoMVC applications you could look at to compare:

http://todomvc.com/examples/react/
http://todomvc.com/examples/angularjs/

React for Angular Developers 104

https://github.com/markbrown4/gmail-react
https://github.com/markbrown4/gmail-angular
http://todomvc.com/examples/react/
http://todomvc.com/examples/angularjs/

bby Camile Ry Camile Reeyyeses

A Guide tA Guide too
TTesting Resting Reacteact
ComponenComponentsts

ChapChaptterer

99

105 Your First Week With React

React is a framework that has made headway within the JavaScript developer
community. React has a powerful composition framework for designing
components. React components are bits of reusable code you can wield in your
web application.

React components are not tightly coupled from the DOM, but how easy are they
to unit test? In this take, let’s explore what it takes to unit test React
components. I’ll show the thought process for making your components
testable.

Keep in mind, I’m only talking about unit tunit testsests, which are a special kind of test.
(For more on the different kinds of tests, I recommend you read “JavaScript
Testing: Unit vs Functional vs Integration Tests”.)

With unit tests, I’m interested in two things: rapid and neck-breaking feedback.
With this, I can iterate through changes with a high degree of confidence and
code quality. This gives you a level of reassurance that your React components
will not land dead on the browser. Being capable of getting good feedback at a
rapid rate gives you a competitive edge --- one that you’ll want to keep in today’s
world of agile software development.

For the demo, let’s do a list of the great apes, which is filterable through a
checkbox. You can find the entire codebase on GitHub. For the sake of brevity, I’ll
show only the code samples that are of interest. This article assumes a working
level of knowledge with React components.

If you go download and run the demo sample code, you’ll see a page like this:

A Guide to Testing React Components 106

https://www.sitepoint.com/javascript-testing-unit-functional-integration/
https://www.sitepoint.com/javascript-testing-unit-functional-integration/
https://github.com/beautifulcoder/test-react-components

WWritrite Te Testable Componenestable Componentsts
In React, a good approach is to start with a hierarchy of components. The single
responsibility principle comes to mind when building each individual component.
React components use object composition and relationships.

For the list of the great apes, for example, I have this approach:

107 Your First Week With React

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

FilterableGreatApeList

|_ GreatApeSearchBar

|_ GreatApeList

|_ GreatApeRow

Take a look at how a great ape list has many great ape rows with data. React
components make use of this composition data model, and it's also testable.

In React components, avoid using inheritance to build reusable components. If
you come from a classic object-oriented programming background, keep this in
mind. React components don’t know their children ahead of time. Testing
components that descend from a long chain of ancestors can be a nightmare.

I’ll let you explore the FilterableGreatApeList on your own. It's a React

component with two separate components that are of interest here. Feel free to
explore the unit tests that come with it, too.

To build a testable GreatApeSearchBar, for example, do this:

class GreatApeSearchBar extends Component {

constructor(props) {

super(props);

this.handleShowExtantOnlyChange = this.

➥handleShowExtantOnlyChange.bind(this);

}

handleShowExtantOnlyChange(e) {

this.props.onShowExtantOnlyInput(e.target.checked);

A Guide to Testing React Components 108

https://github.com/beautifulcoder/test-react-components/blob/master/src/FilterableGreatApeList.js
https://github.com/beautifulcoder/test-react-components/blob/master/src/FilterableGreatApeList.js

}

render() {

return(

<form>

<input

id="GreatApeSearchBar-showExtantOnly"

type="checkbox"

checked={this.props.showExtantOnly}

onChange={this.handleShowExtantOnlyChange}

/>

<label htmlFor="GreatApeSearchBar-showExtantOnly"

➥>Only show extant species</label>

</form>

);

}

}

This component has a checkbox with a label and wires up a click event. This
approach may already be all too familiar to you, which is a very good thing.

Note that with React, testable components come for free, straight out of the
box. There's nothing special here – an event handler, JSX, and a render method.

The next React component in the hierarchy is the GreatApeList, and it looks like

this:

class GreatApeList extends Component {

109 Your First Week With React

render() {

let rows = [];

this.props.apes.forEach((ape) => {

if (!this.props.showExtantOnly) {

rows.push(<GreatApeRow key={ape.name} ape={ape} />);

return;

}

if (ape.isExtant) {

rows.push(<GreatApeRow key={ape.name} ape={ape} />);

}

});

return (

<div>

{rows}

</div>

);

}

}

It's a React component that has the GreatApeRow component and it’s using

object composition. This is React’s most powerful composition model at work.
Note the lack of inheritance when you build reusable yet testable components.

In programming, object composition is a design pattern that enables data-driven
elements. To think of it another way, a GreatApeList has many GreatApeRow

objects. It's this relationship between UI components that drives the design.
React components have this mindset built in. This way of looking at UI elements

A Guide to Testing React Components 110

https://en.wikipedia.org/wiki/Object_composition

allows you to write some nice unit tests.

Here, you check for the this.props.showExtantOnly flag that comes from the

checkbox. This showExtantOnly property gets set through the event handler in

GreatApeSearchBar.

For unit tests, how do you unit test React components that depend on other
components? How about components intertwined with each other? These are
great questions to keep in mind as we get into testing soon. React components
may yet have secrets one can unlock.

For now, let’s look at the GreatApeRow, which houses the great ape data:

class GreatApeRow extends Component {

render() {

return (

<div>

<img

className="GreatApeRow-image"

src={this.props.ape.image}

alt={this.props.ape.name}

/>

<p className="GreatApeRow-detail">

Species: {this.props.ape.name}

</p>

<p className="GreatApeRow-detail">

Age: {this.props.ape.age}

</p>

</div>

111 Your First Week With React

);

}

}

With React components, it's practical to isolate each UI element with a laser
focus on a single concern. This has key advantages when it comes to unit
testing. As long as you stick to this design pattern, you’ll find it seamless to write
unit tests.

TTest Utilitiesest Utilities
Let’s recap our biggest concern when it comes to testing React components.
How do I unit test a single component in isolation? Well, as it turns out, there's a
nifty utility that enables you to do that.

The Shallow Renderer in React allows you to render a component one level deep.
From this, you can assert facts about what the render method does. What's
remarkable is that it doesn't require a DOM.

Using ES6, you use it like this:

import ShallowRenderer from 'react-test-renderer/shallow';

In order for unit tests to run fast, you need a way to test components in isolation.
This way, you can focus on a single problem, test it, and move on to the next
concern. This becomes empowering as the solution grows and you're able to
refactor at will --- staying close to the code, making rapid changes, and gaining
reassurance it will work in a browser.

A Guide to Testing React Components 112

https://facebook.github.io/react/docs/shallow-renderer.html

One advantage of this approach is you think better about the code. This
produces the best solution that deals with the problem at hand. I find it liberating
when you’re not chained to a ton of distractions. The human brain does a terrible
job at dealing with more than one problem at a time.

The only question remaining is, how far can this little utility take us with React
components?

Put It All TPut It All Togeogetherther
Take a look at GreatApeList, for example. What's the main concern you're trying

to solve? This component shows you a list of great apes based on a filter.

An effective unit test is to pass in a list and check facts about what this React
component does. We want to ensure it filters the great apes based on a flag.

One approach is to do this:

import GreatApeList from './GreatApeList';

const APES = [{ name: 'Australopithecus afarensis', isExtant: false },

{ name: 'Orangutan', isExtant: true }];

// Arrange

const renderer = new ShallowRenderer();

renderer.render(<GreatApeList

apes={APES}

showExtantOnly={true} />);

// Act

const component = renderer.getRenderOutput();

const rows = component.props.children;

113 Your First Week With React

// Assert

expect(rows.length).toBe(1);

Note that I’m testing React components using Jest. For more on this, check out
“How to Test React Components Using Jest”.

In JSX, take a look at showExtantOnly={true}. The JSX syntax allows you to set

a state to your React components. This opens up many ways to unit test
components given a specific state. JSX understands basic JavaScript types, so a
true flag gets set as a boolean.

With the list out of the way, how about the GreatApeSearchBar? It has this event

handler in the onChange property that might be of interest.

One good unit test is to do this:

import GreatApeSearchBar from './GreatApeSearchBar';

// Arrange

let showExtantOnly = false;

const onChange = (e) => { showExtantOnly = e };

const renderer = new ShallowRenderer();

renderer.render(<GreatApeSearchBar

showExtantOnly={true}

onShowExtantOnlyInput={onChange} />);

A Guide to Testing React Components 114

https://www.sitepoint.com/test-react-components-jest/

// Act

const component = renderer.getRenderOutput();

const checkbox = component.props.children[0];

checkbox.props.onChange({ target: { checked: true } });

// Assert

expect(showExtantOnly).toBe(true);

To handle and test events, you use the same shallow rendering method. The
getRenderOutput method is useful for binding callback functions to components

with events. Here, the onShowExtantOnlyInput property gets assigned the

callback onChange function.

On a more trivial unit test, what about the GreatApeRow React component? It

displays great ape information using HTML tags. Turns out, you can use the
shallow renderer to test this component too.

For example, let’s ensure we render an image:

import GreatApeRow from './GreatApeRow';

const APE = {

image: 'https://en.wikipedia.org/wiki/File:

➥Australopithecus_afarensis.JPG',

name: 'Australopithecus afarensis'

};

115 Your First Week With React

// Arrange

const renderer = new ShallowRenderer();

renderer.render(<GreatApeRow ape={APE} />);

// Act

const component = renderer.getRenderOutput();

const apeImage = component.props.children[0];

// Assert

expect(apeImage).toBeDefined();

expect(apeImage.props.src).toBe(APE.image);

expect(apeImage.props.alt).toBe(APE.name);

With React components, it all centers around the render method. This makes it

somewhat intuitive to know exactly what you need to test. A shallow renderer
makes it so you can laser focus on a single component while eliminating noise.

ConclusionConclusion
As shown, React components are very testable. There's no excuse to forgo
writing good unit tests for your components.

The nice thing is that JSX works for you in each individual test, not against you.
With JSX, you can pass in booleans, callbacks, or whatever else you need. Keep
this in mind as you venture out into unit testing React components on your own.

The shallow renderer test utility gives you all you need for good unit tests. It only
renders one level deep and allows you to test in isolation. You're not concerned
with any arbitrary child in the hierarchy that might break your unit tests.

With the Jest tooling, I like how it gives you feedback only on the specific files

A Guide to Testing React Components 116

you're changing. This shortens the feedback loop and adds laser focus. I hope
you see how valuable this can be when you tackle some tough issues.

117 Your First Week With React

	Your First Week With React
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint

	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	How to Tell if React is the Best Fit for Your Next Project
	by Maria Antonietta Perna
	What Is React?
	How Does the Virtual DOM Work?
	Updating UI Changes with the Virtual DOM

	Is React Good for Every Project?
	Resources
	Conclusion

	React vs Angular: An In-depth Comparison
	by Pavels Jelisejevs
	Where to Start?
	Maturity
	React
	Angular

	Features
	Angular
	React

	Languages, Paradigms, and Patterns
	React
	JSX
	Flow
	Redux

	Angular
	TypeScript
	RxJS

	Ecosystem
	Angular
	Angular CLI
	Ionic 2
	Material design components
	Angular universal
	@ngrx/store
	Other Tools

	React
	Create React App
	React Native
	Material UI
	Next.js
	MobX
	Storybook
	Other Tools

	Adoption, Learning Curve and Development Experience
	React
	Angular

	Putting it Into Context
	One Framework to Rule Them All?

	Getting Started with React: A Beginner’s Guide
	by Michael Wanyoike
	Prerequisites
	What is React?
	Understanding the React DOM
	Start a Blank React Project
	Introducing JSX Syntax
	Declaring React Components
	Styling JSX Elements
	Stateless vs Stateful Components

	Getting React Projects Ready Fast with Pre-configured Builds
	by Pavels Jelisejevs
	How Does Create React App Work?
	Starting a Local Development Server
	ES6 and ES7
	Asset import
	ESLint
	Environment variables
	Proxying to a backend

	Running Unit Tests
	Creating a Production Bundle
	Deployment

	Opting Out
	In Conclusion

	Styling in React: From External CSS to Styled Components
	by Chris Laughlin
	Evolution of Styling in JavaScript
	CSS Modules
	Glamor

	styled-components
	Building Generic Styled React Components
	Codepen Example
	Codepen Example

	Customizable Styled React Components
	Codepen Example
	Codepen Example

	Advanced Usage
	Codepen Example

	Component Structure
	Conclusion

	An Introduction to JSX
	by Matt Burnett
	What is JSX?
	How Does it Work?
	What About Separation of Concerns?
	Not Just for React

	Working with Data in React: Properties & State
	Eric Greene
	Kinds of Component Data
	Codepen Example

	Properties
	Codepen Example

	State
	Codepen Example

	Conclusion

	React for Angular Developers
	by Mark Brown
	Frameworks vs Libraries
	Out Of The Box
	Bootstrapping
	Templates
	Template Directives
	ng-repeat
	ng-class
	ng-if
	ng-show / ng-hide

	An Example Component
	The Slideshow Component in Angular
	Codepen Example

	The Slideshow Component in React
	Codepen Example

	Two-Way Binding
	Codepen Example
	Call Your Parents

	Dependency Injection, Services, Filters
	Sounds Great. Can I Use Both!?
	How About Angular 2?
	A Complete Application

	A Guide to Testing React Components
	by Camile Reyes
	Write Testable Components
	Test Utilities
	Put It All Together
	Conclusion

