

Crafting HTML Email: Beautiful Emails That
Work Everywhere
Copyright © 2022 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-50-9

Author: Rémi Parmentier
Series Editor: Oliver Lindberg
Product Manager: Simon Mackie
Technical Editor: Mark Robbins
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such,
this book uses the names only in an editorial fashion and to the benefit of
the trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St, Richmond, VIC, 3121
Australia
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About the Author
Rémi Parmentier is a French front-end developer working at his own small
web development agency, Tilt Studio. He loves to learn, and enjoys even
more to teach.

This led him on a joyful quest to understand and demystify HTML email
coding. Rémi runs workshops, gives talks and writes articles on his blog to
help others code better HTML emails.

http://www.sitepoint.com/
https://www.tilt-studio.fr/
https://noti.st/hteumeuleu
https://www.hteumeuleu.com/

Preface
Who Should Read This Book?
This book is for anyone who wants to better understand how to write
effective HTML emails. No prior experience of creating emails is required,
but you should have experience of HTML and CSS.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.

</p>

You’ll notice that we’ve used certain layout styles throughout this book to
signify different types of information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at
hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky problems.
books@sitepoint.com is our email address, should you need to
contact us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

Getting Started
HTML email is a part of pretty much every project, but even many of the
most experienced web developers dread having to work with it. This book
will explore the ins and outs of coding modern HTML emails, showing you
how to love the craft rather than fear it.

Email Isn’t Dead
Email was born in 1971. And it died in 2007, according to FastCompany. Or
in 2009, according to The Wall Street Journal. Or maybe it was in 2011,
according to Mark Zuckerberg. No one really seems to know.

What we do know, however, is that email is still highly effective:

“Email drives an ROI of $36 for every dollar spent”, according to email
marketing platform Litmus.
Four billion people use email daily, according to data platform Statista.
In 2021, 41.5% of brands interrogated in the Litmus State of Email
report consider email marketing to be critical to company success—an
8.7% increase from just three years earlier.

The following diagram shows the percentage of brands for whom email
marketing is critical to success, rising from 32.8% in 2018 to 41.5% in 2021.

https://www.fastcompany.com/60037/email-is-dead
https://www.wsj.com/articles/SB10001424052970203803904574431151489408372
https://www.theguardian.com/commentisfree/2011/nov/27/john-naughton-mark-zuckerberg-email
https://www.litmus.com/resources/email-marketing-roi/
https://www.statista.com/statistics/255080/number-of-e-mail-users-worldwide/
https://www.litmus.com/resources/state-of-email/

According to Harvard law professor Jonathan Zittrain (quoted by The
Atlantic), one reason email is still so strong after all these years is that
“Email is the last great unowned technology”. This arguably makes it more
resilient and robust than any proprietary technology. So it certainly seems
that email is here to stay!

HTML Emails Aren’t Stuck in the 1990s
Discussions surrounding the coding of HTML emails on social networks
never fail: someone will always snarkily comment on how HTML emails are
stuck in the 1990s. And there’s nothing that irritates me more—because it’s
completely wrong!

https://www.theatlantic.com/technology/archive/2016/01/what-comes-after-email/422625/

A collection of snarky comments is pictured below, sourced from my 2019
“Think Like an Email Geek” presentation.

https://noti.st/hteumeuleu/16YThT/think-like-an-email-geek#s6vsySx

When I code an HTML email, I use plenty of modern styles: media queries
(including ones for dark mode), CSS gradients and background images,
Flexbox, and even CSS Grid. I also use semantic HTML: heading elements
(<h1>, <h2>, …), paragraphs (<p>), and lists elements (,).

But I also use tables—because it’s still largely recommended to use tables
for layout in HTML emails. But the one and only reason for this boils down
to one single word: Outlook. Or, rather, three words: Outlook on Windows.
(The other Outlook apps—on macOS, iOS or Android—use either WebKit
or Blink and are really fine.) In 2007, Microsoft decided to switch the
underlying rendering engine of its mail application from Internet Explorer to
… Word. And Word is not really good at rendering HTML and CSS. So the
most robust and safest way to tame Word is to use tables.

Still, this doesn’t mean we have to impose tables on everyone, in every
email client. In 2015, email developer Nicole Merlin published a
foundational article detailing how to create a responsive email without media
queries, using <div>s and conditional comments for Outlook on Windows.

The world of email clients has kept moving ever since. Later that year,
Yahoo fixed a bug preventing the use of media queries. In 2016, Gmail
followed along and added official support for media queries in almost all its
email clients. Outlook.com has been rebuilt, twice—first in 2015, then again
in 2018. Apple Mail has never ceased enriching its rendering engine with
things we barely use even on the Web, from backdrop-filter() to CSS
Scroll Snap.

In 2018, JavaScript partially made its entry into emails via dedicated
frameworks (Adaptive Cards for Outlook clients, and AMP for Email in
Gmail, AOL, Yahoo Mail and Mail.ru). And then, in 2019, email clients
turned to the dark side with the arrival of dark mode and partial support for
@media (prefers-color-scheme) media queries. The Gmail apps (on iOS
and Android) even got an auto dark theme feature, years before Chrome got
its own.

Defining an Email Client

https://twitter.com/moonstrips
https://webdesign.tutsplus.com/tutorials/creating-a-future-proof-responsive-email-without-media-queries--cms-23919
https://github.com/hteumeuleu/email-bugs/issues/49
https://cloud.google.com/blog/products/application-development/your-emails-optimized-for-every-screen-with-responsive-design
https://docs.microsoft.com/en-us/outlook/actionable-messages/adaptive-card
https://amp.dev/documentation/guides-and-tutorials/learn/email-spec/amp-email-format/
https://github.com/hteumeuleu/email-bugs/issues/68
https://developer.chrome.com/blog/auto-dark-theme/

Outlook is not an email client. Neither is Gmail. Nor is Yahoo. Yet I hear
angry bosses or helpless developers complain about their email being broken
in Outlook all the time. So what’s wrong with this?

The thing is, rather than being an email client, Outlook is a brand name. It’s
a group of different email clients. There’s Outlook on Windows, Outlook on
macOS, Outlook on iOS, Outlook on Android, and Outlook.com on the Web.
Each of these email clients has its own rendering engine (for example, Word
for Outlook on Windows, WebKit for Outlook on macOS), its own filters
and HTML and CSS restrictions, its own set of features, and its own bugs.

It’s a similar situation with Gmail. There’s Gmail’s desktop webmail, its
mobile webmail, its iOS app, and its Android app. Gmail’s webmail versions
use the rendering engine of your browser (Blink for Chrome, WebKit for
Safari, Gecko for Firefox). The mobile apps use the operating system’s
default web view engine (WebKit for iOS, Blink for Android). But then,
each of these email clients has its own variation of HTML and CSS support.
And the most egregious example of this is that, in Gmail’s mobile apps (on
iOS and Android), you get one level of CSS support if you’re using a Gmail
account (with an @gmail.com email address or on your own Google
Workspace), but a different level of support if you’re using a third-party
email address (like an @outlook.com or @yahoo.com email address). And in
the latter case, that’s pretty much the worst level of support possible, with no
<style> tags and no media queries!

A few years ago, I started drawing diagrams of CSS support across all Gmail
clients to get a better understanding of this support and better explain it to
colleagues and fellow email developers. And while things have certainly
improved in the past decade for Gmail, it’s still something unexpected and
surprising for newcomers.

The diagram below shows the different levels of CSS support for Gmail
clients.

https://www.hteumeuleu.com/2016/trying-to-make-sense-of-gmail-css-support/

In 2017, email marketer Chad White estimated that every email “has
approximately 15,000 potential renderings (and that’s using conservative
math)”. And that was before dark mode, and not even taking accessibility
into account. Personally, I consider that each recipient of an email will have
a unique way of viewing it.

So if you’re writing a brief for an agency about which email clients you want
to be supported, or if you’re giving feedback to your email developer, or if
you’re developing software related to email clients, make sure to always
provide each client’s full name, together with its family, its platform, and
(when available) its version.

“Email Developer” Is a Job
When I started web development as an amateur in the late 1990s, the Web
was all the rage. It was so exciting to be able to publish your own web pages,
laid out with bare HTML and maybe just a touch of CSS. Later generations
of developers got excited over mobile platforms (in the late 2000s), and then
over JavaScript frameworks (in the late 2010s). But no one really ever got
excited about being an email developer. No one really wakes up one day
thinking “I can’t wait to code HTML emails”. Even if you’ve looked keenly
at newsletters from a designer’s or author’s perspective, you probably
haven’t done so from a developer’s one. You don’t really plan to become an
email developer. It sort of happens to you.

Email marketer Justine Jordan captured this perfectly when she popularized
this saying:

You don’t choose email. Email chooses you.

It was even turned into a T-shirt by email developer Anne Tomlin.

https://twitter.com/chadswhite
https://www.litmus.com/blog/why-is-email-rendering-so-complex/
https://twitter.com/meladorri
https://www.emailloot.com/products/i-didn-t-choose-email-email-chose-me-1
https://twitter.com/pompeii79

The role of email developer is a job. And it’s one that I’m very proud of.

It’s one of the last refuges for those interested in HTML and CSS, but not
really JavaScript. And it’s a great area to focus on for those who code and
care about interoperability, accessibility, maintainability, and graphic design.

Email development is a craft of its own. We should embrace its quirks and
weirdness and use its unique abilities. And we should stop comparing it with
web development. It’s a trap to believe that because you can use HTML and
CSS in emails, you should be able to use any HTML and CSS.

Email client support for HTML and CSS is a spectrum that spans from
Apple Mail at the top—which supports 200 HTML and CSS features—to
Outlook on Windows at the very bottom—which supports only 51, as shown
in the Email Client Support Scoreboard from Can I email.

https://www.caniemail.com/scoreboard/

If you’re ready to face the unexpected, I can assure you coding emails will
become a joyride—even if a wild one!

Conclusion
Our journey into the world of HTML emails is just getting started. In the
following chapters, we’ll cover a lot of tips and tricks for tackling the
vagaries of email clients, and also for making our emails more accessible
and even interactive!

Although we’re going to stay focused on the coding and development side of
HTML email, there’s a whole lot more to explore around this topic—from
design to strategy and deliverability. Here are three of my favorite links for
diving deeper into all that:

Really Good Emails. A collection of over 9,000 curated emails from the
world’s top companies. And most emails also come with their HTML
code!
Email Resources by email developer Avi Goldman. Features over 400
up-to-date links to resources about email, from copywriting and design
to code and deliverability.
The #emailgeeks Slack channels. Over 12,000 email professionals chat,
share, and help each other all week long across dozens of channels
(covering code, design and marketing). You may find me over there
quite often in the #email-code channel!

In the next chapter, we’ll review some of the most important tips and tricks
for coding robust emails across email clients.

https://reallygoodemails.com/
https://emailresourc.es/
https://twitter.com/theavigoldman/
https://email.geeks.chat/

Chapter 2: Essential Best
Practices
One of the most difficult aspects of HTML email coding is that every email
client has its own quirks and features. Email clients usually end up with
these quirks through the best of intentions. For example, they might turn a
plain text website address into a clickable link. There’s also the issue of
security. Email clients need to make sure that our email’s HTML and CSS
won’t interfere with their own interface’s HTML and CSS. A malicious
email could use certain CSS properties (like absolute positioning) to lure
people into clicking on overlaid hidden links. So email clients should parse,
filter and manipulate HTML email code. But this means that we, as email
developers, must be aware of this and make our code as friendly as possible
for them.

From features to bugs, here are some of the most popular tips and tricks we
need to know.

Supporting the Outlooks
According to email analytics tool Litmus, Outlook (on both Windows and
macOS) accounted for 4.44% of email client market share in January 2022.
That may not seem much, and remember to take email analytics with a pinch
of salt, but chances are you’ll meet Outlook on Windows at some point in
your email developer journey.

Here’s what you need to know to make your HTML emails work painlessly
in the Outlooks on Windows.

How the Outlook Rendering Engine Works

Since 2007, the Outlooks on Windows have used Word as the rendering
engine for HTML and CSS. Microsoft justified the use of Word in 2009:

https://www.litmus.com/email-client-market-share/
https://www.caniemail.com/support/
https://web.archive.org/web/20110311083708/http://blogs.office.com/b/microsoft-outlook/archive/2009/06/24/the-power-of-word-in-outlook.aspx

We’ve made the decision to continue to use Word for creating e-mail
messages because we believe it’s the best e-mail authoring experience
around, with rich tools that our Word customers have enjoyed for over
25 years.

Not only is Word not very good for rendering HTML and CSS, but the
documentation on the matter is abysmal. The only official existing
documentation about Word’s rendering is a 2006 post from Microsoft
explaining HTML and CSS rendering capabilities in Outlook 2007.

It includes information on the following:

CORE: color, background-color, text properties (font, font-family,
font-style, font-size, font-weight, text-decoration, text-align,
vertical-align, letter-spacing, line-height, white-space),
border shorthand properties (border, border-color, border-style,
border-width, border-collapse) and a few others.
COREEXTENDED: text-indent and margin properties (margin,
margin-left, margin-right, margin-top, margin-bottom).
FULL: width, height, padding (as well as padding-left, padding-
right, padding-top, padding-bottom) and border longhand properties
(border-left, border-left-color, border-left-width, border-
left-style, and so on).

And each of these categories will only apply to certain HTML elements:

<body> and only support CORE properties.
<div> and <p> support both CORE and COREEXTENDED
properties.
All the other elements supported by Outlook (like <table>, <td>, <h1>,
, , and so on) support CORE, COREEXTENDED and
FULL properties.

This means we must think about which element to use to apply certain
styles. So if we have to define a width or a height on a generic container
element, we’ll use a <table>. If we need padding, we’ll also use a <table>
and a <td>.

https://docs.microsoft.com/en-us/previous-versions/office/developer/office-2007/aa338201(v=office.12)
https://docs.microsoft.com/en-us/previous-versions/office/developer/office-2007/aa338201(v=office.12)?redirectedfrom=MSDN#core

To this day, the Outlooks on Windows are the sole reason we still use tables
in HTML emails. Luckily, there are ways for us to only make those tables
visible for Outlook, hiding them from more capable email clients and
allowing us to use more semantic code.

Conditional Comments

Microsoft introduced conditional comments back in 1999 in Internet
Explorer 5. They were quite popular on the Web during the IE6–9 era, but
they were removed for Internet Explorer 10 and 11. Here’s how it works:
inside a regular HTML comment (<!-- -->), you can code a condition that
will make the rest of the content visible if that condition is fulfilled. Here’s
an example:

<!--[if IE]>

<p>This is only visible in Internet Explorer.</p>

<![endif]-->

It turns out that conditional comments are also supported in the versions of
Outlook on Windows using Word’s rendering engine. Instead of using IE as
a condition, we’re going to use the mso keyword:

<!--[if mso]>

<p>This is only visible in Outlook 2007 and above on Windows.

</p>

<![endif]-->

Conditions can also be tied to a version number. For example, mso 12 targets
Outlook 2007. Unfortunately, Microsoft has stopped incrementing this
version number in the latest Outlook releases. So mso 16 targets both
Outlook 2016 and the most recent Outlook 2019.

We can also use operators like gte (greater than or equal) or lte (less than
or equal) to create more complex conditions:

<!--[if gte mso 12]>

<p>This is visible in Outlook 2007 and above.</p>

<![endif]-->

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/ms537512(v%3dvs.85)

Another useful operator is the NOT operator (!), which lets us insert code
for every email client except Outlook on Windows:

<!--[if !mso]><!-->

<p>This is visible in every email client except the Outlooks on

Windows.</p>

<!--<![endif]-->

mso- Properties

Outlook on Windows has hundreds of proprietary CSS properties, mostly
recognizable thanks to the mso- prefix. A complete list is available in a .chm
file), but email developer Stig Morten Myre has a handy archive of it
readable online.

For a lot of standard CSS properties, Microsoft has an equivalent proprietary
version prefixed by mso- and suffixed by -alt. For example, we can define a
padding value for just Outlook on Windows with the mso-padding-alt
property. One way I often use this is when I code buttons. Ideally, the entire
visible area of a button should be clickable, so I normally add padding to
<a> elements. But Outlook on Windows doesn’t support this. So instead, I
wrap each <a> element with a <table> and apply a padding only for
Outlook on Windows with the mso-padding-alt property:

<table border="0" cellpadding="0" cellspacing="0"

role="presentation" align="center" style="margin:0 auto; max-

width:100%; background:#2ea44f; border-radius:5px; border-

collapse:separate;" class="email-btn">

 <tr>

 <td style="mso-padding-alt:14px 16px; text-

align:center;">

 <a style="padding:14px 16px; display:block; min-

width:128px; color:#fff; font:bold 16px/20px Helvetica Neue,

Roboto, sans-serif; text-decoration:none; text-align:center;"

href="https://www.example.com" target="_blank" >Call to

Action

 </td>

 </tr>

</table>

Outlook also has other unprefixed proprietary properties that can mimic their
more modern CSS equivalents. For example, text-underline-color in

https://docs.microsoft.com/en-us/previous-versions/office/developer/office2000/aa155477(v=office.10
https://twitter.com/stigm
https://stigmortenmyre.no/mso/html/concepts/ofconstyletable.htm

Outlook is the same as text-decoration-color in CSS. So if you want to
apply a specific color to a text underline, you can use both properties:

text-underline-color: red; /* Outlook version */

text-decoration-color: red; /* Standard version for clients that

supports it */

Stig Morten Myre has a great article explaining how to fix bugs with
Outlook specific CSS, including tips on how to use mso-text-raise or mso-
line-height-rule: exactly.

VML

VML is SVG’s ancestor, crafted by Microsoft in the late nineties. Just like
SVG, you can draw content with markup code. For example, if we want to
draw a red rectangle, we can use the <v:rect> element and the following
code:

<v:rect xmlns:v="urn:schemas-microsoft-com:vml"

 fillcolor="red"

 stroked="false"

 style="width:200px; height:100px;">

</v:rect>

A prerequisite for getting VML to work in Outlook on Windows is to add its
namespace declaration (xmlns:v="urn:schemas-microsoft-com:vml"). It
can either be repeated inline for each VML element we use, or it can be
added on the <html> element only once. And because VML will only work
in Outlook on Windows, we’ll make sure to wrap it in a conditional
comment. Here’s a full working example for our previous red rectangle:

<!DOCTYPE html>

<html lang="en" xmlns:v="urn:schemas-microsoft-com:vml">

<head>

 <title>VML rectangle</title>

</head>

<body>

 <!--[if mso]>

 <v:rect fillcolor="red" stroked="false" style="width:200px;

height:100px;"></v:rect>

 <![endif]-->

https://cm.engineering/fixing-bugs-with-outlook-specific-css-f4b8ae5be4f4

</body>

</html>

Of course, we can do more exciting things than red rectangles. One way we
can use VML is to fake properties unsupported by Outlook on Windows—
such as background images. If we want to show a background image on our
<body> element, we can use the <v:background> element. However, this
might be a source of accessibility issues, as it turns the content within it into
part of the VML image, which might get lost for assistive technologies like
screen readers.

Campaign Monitor’s Backgrounds.cm and Buttons.cm make extensive use
of VML to fake background images or rounded corners. And email
developer Mark Robbins provides great examples of how VML can be used
to create CSS triangles or fake absolute positioning.

Microsoft’s “How to Use VML on Webpages” and “VML Object Model
Reference” are great places to start learning about VML.

Rendering at 120dpi

On certain Windows configurations, Outlook on Windows applies DPI
scaling on emails. Email developer Courtney Fantinato has a detailed guide
to correct Outlook DPI scaling issues. Here are the three rules you need to
follow:

1. Add the Microsoft Office namespace on the <html> element:

 <html xmlns:o="urn:schemas-microsoft-com:office:office">

2. Add the following OfficeDocumentSettings declaration inside the
<head> element:

 <!--[if mso]>

 <xml>

 <o:OfficeDocumentSettings>

 <o:PixelsPerInch>96</o:PixelsPerInch>

 </o:OfficeDocumentSettings>

 </xml>

 <![endif]-->

https://docs.microsoft.com/en-us/windows/win32/vml/web-workshop---how-to-use-vml-on-web-pages-----background--element
https://www.backgrounds.cm/
https://www.buttons.cm/
https://twitter.com/M_J_Robbins/
https://www.goodemailcode.com/email-enhancements/css-triangles
https://www.goodemailcode.com/email-enhancements/faux-absolute-position
https://docs.microsoft.com/en-us/windows/win32/vml/web-workshop---specs---standards----how-to-use-vml-on-web-pages
https://docs.microsoft.com/en-us/windows/win32/vml/msdn-online-vector-markup-language-object-model-reference
https://twitter.com/CourtFantinato
https://www.courtneyfantinato.com/correcting-outlook-dpi-scaling-issues/

3. Always use dimensions defined in CSS instead of HTML attributes:

 <!-- Bad example -->

 <table align="center" role="presentation" width="600">…

</table>

 <!-- Good example -->

 <table align="center" role="presentation"

style="width:600px;">…</table>

The only exception for this is with images. In Outlook on Windows, a width
set in a style attribute is ignored on images.

Making Your Emails Work without <style>
When it comes to applying styles to any HTML content (be it for a web page
or an HTML email), there are three ways to do it, using:

a <link> element and an external stylesheet
a <style> element
an inline style attribute

Email clients are very opinionated when it comes to this, and support for
each of these techniques can vary wildly. This is usually due to security
issues. Email clients need to be very cautious about the styles they allow,
because a malicious email could use styles to deceive a user. For example,
using fixed or absolute positioning could let a malicious email developer
stack fake elements over an email client’s own interface.

Email clients employ a variety of methods for getting around this, such as
only allowing a subset of properties or values from a safe list of their own.
They also apply prefixing to CSS selectors in an HTML email to prevent
email styles from impacting the client’s interface. For example, a selector
like .button {} would become .rps_1234 .x_button {} in Outlook.com.

The <link> element is very well supported in desktop native applications
like Apple Mail (on macOS or iOS) or Outlook (on Windows or macOS).
However, it’s almost universally ignored by webmail clients (such as Gmail,
Outlook.com, Yahoo Mail, and so on) as well as a lot of mobile apps (like

https://www.caniemail.com/features/html-link/

Gmail, Outlook or Yahoo Mail, on either iOS or Android). So it’s not a
recommended way to style an HTML email. But it can have interesting use
cases, like when Litmus created a live dynamic Twitter feed in 2015.

The <style> element has way better support. But it also has a few quirks.
Gmail clients, in particular, only support style tags defined in the <head>
(not in the <body>). They’re also very picky about any syntax error, and
Gmail will remove an entire <style> that contains something it doesn’t like
(like an @ in an @ declaration, for example). It’s a common practice to use
multiple <style> elements in HTML emails. After removing the
unsupported ones, Gmail will combine them into a single one that’s limited
to 16KB.

But <style> elements are not always supported. For example, if you receive
an email in the Gmail app (on iOS or Android) with a non-Gmail address
(like an Outlook.com or Yahoo address), you won’t get <style> support.

<style> elements can also be removed contextually. For example, when you
forward an email in the desktop webmail of Gmail, all <style> tags are
removed. Gmail also removes <style> tags when an email is viewed in its
unclipped version.

So as a general rule, it’s safer and more robust to use inline styles via the
HTML style attribute. We can also use <style> tags, but only as a
progressive enhancement, especially for things like @media queries or
:hover pseudo-classes that can’t be inlined.

“Making an email work” without the <style> element can mean a lot of
different things. But it’s best to think first and foremost about the following:

Layout. An email without <style> should adjust to any width without
horizontal scroll. I usually consider going as low as 280px wide, which
reflects the width of an email viewed on Gmail on an iPhone SE.
Branding. An email without <style> should reflect the branding of the
sender.

Avoiding Automatic Links

https://www.litmus.com/blog/how-to-code-a-live-dynamic-twitter-feed-in-html-email/
https://www.caniemail.com/features/html-style/
https://github.com/hteumeuleu/email-bugs/issues/21
https://github.com/hteumeuleu/email-bugs/issues/90

Email clients automatically add links to certain keywords. This can happen
to the following kinds of text:

URLs (sitepoint.com, https://www.sitepoint.com/blog/)
email addresses (support@sitepoint.com)
phone numbers
mailing addresses
dates
flight numbers

The image below shows how Apple Mail provides detailed information on
air flights when a current flight number is clicked.

The problem is that, if we don’t plan for them, these links will come up with
their default styles (usually blue and underlined)—and this can create
unexpected and undesirable effects. For example, an automatic blue link on
an already blue background will be unreadable. Unfortunately, anticipating
these automatic links isn’t foolproof. It’s not uncommon that a custom offer
or tracking code is turned into a date or phone number link.

Here are three possible ways to avoid automatic links:

Add a specific meta declaration for Apple Mail. With this tag in the
<head> of our email, Apple Mail won’t add automatic links:

 <meta name="format-detection" content="telephone=no,

date=no, address=no, email=no, url=no">

Use a zero-width non joiner character. A zero-width non joiner is an
invisible character represented by the entity ‌ (or ͏) in
HTML. We’ll use it here to break email clients’ content detection
algorithm by placing it in the middle of text where a link might be
added:

 Visit Sitepoint‌.com for more details!

Add a link ourselves. Email clients are clever enough to not try to add
a link to text that’s already linked. So if we add a link ourselves around
text that we know might get automatically linked, we can apply our
own styles. A link would still be there, but at least not so prominently
visible:

 Visit <a href="https://sitepoint.com" style="color:#000;

text-decoration:none;">sitepoint.com for more details!

Using Real URLs
Microsoft’s Outlook.com webmail has a bug when using non-URL text as
the href value of an <a> element. For example, consider the following code:

Get the app on iOS

Get the app on Android

https://github.com/hteumeuleu/email-bugs/issues/10

This is transformed by Outlook.com into the following:

Get the app on iOS

[TBD] Get the app on Android

The entire <a> element, including its styles, is removed. And the value of the
href attribute (if it’s not empty) is added between brackets before the link
text.

I’ve been caught by this bug more than once, usually because I didn’t have
the links to put there at the time I was coding. My go-to solution now is to
always use the client’s domain or https://example.com as a temporary link.
Example.com is another handy domain that’s reserved by IANA “for use in
illustrative examples”.

Adding an Empty <head>
Yahoo Mail on Android removes the <head> element of any email. This is
very inconvenient, since this means that <style> tags, along with media
queries, can’t work there. But it was discovered that the Yahoo Mail app will
only do this for the first <head> of an email.

So this means that if we include a dummy empty <head> first in our code,
and then keep our regular <head> element, Yahoo Mail on Android will
correctly keep it and interpret it:

<!DOCTYPE html>

<html lang="en">

<head></head>

<head>

 <title>My Email</title>

 <style>

 @media (max-width: 600px) {

 …

 }

 </style>

</head>

The image below shows an example email (courtesy of Really Good Emails)
in the Yahoo Mail app on Android. Without the double <head>, the email is

https://github.com/hteumeuleu/email-bugs/issues/28
https://reallygoodemails.com/emails/soft-and-stretchy-gear-one-sought-after-shade

automatically scaled by the client. With the fix, the email renders media
queries just as expected.

Keeping Email Sizes below 102KB
Gmail’s desktop webmail has a notorious threshold of 102KB, after which it
will truncate an HTML email and show a “[Message clipped]” alert, along
with a “View entire message” link. While it’s unknown why this limitation
exists and why it’s at such an odd number precisely, it’s been measured
consistently across the years.

https://github.com/hteumeuleu/email-bugs/issues/41

This 102KB limits only accounts for the size of the HTML of our email
message. It doesn’t include other parts of an email (like the plain text
version, or all of the MIME header fields). It also doesn’t include the weight
of any distant asset like images or fonts. So if our HTML weighs 40KB with
500KB of images, we’re fine.

We want to avoid this threshold because:

Gmail will cut our email at 102KB to insert its “[Message clipped]”
alert, even if this is right in the middle of a <table>. This is very likely
to break our email in unexpected ways.
Behind the “View entire message” link, Gmail will provide inferior
support for HTML and CSS. For example, any <style> tag (and thus
media queries) will be removed in this view.

A basic way to measure this is to look at the weight of our HTML file in our
operating system. Online email tools like Alter.email or Parcel also show an
estimate of our code weight.

Keep in mind that some email service providers may also process parts of
our HTML in such a way that its weight will increase. For example, CSS
inlining or link tracking can be big offenders in making our code
overweight.

Optimizing our HTML email code can be done in several ways. Here’s what
I usually consider the most important steps:

Minify your code. But don’t use a minifier built for the Web! HTML
Crush is a good one built for emails (avoiding making lines of code
longer than 500 characters, for example). Just by removing
indentations, you can diminish your HTML weight by a good third.
Remove unused code. If your email is built from a generic template
that includes lots of styles for different components, you might end up
with styles you don’t actually use. Online tool Email Comb cleans up
unused code nicely.
Watch out for CSS inlining. If you have a CSS rule targeting the
universal selector (for example, * { color:#000; }), this will be
applied to every single HTML element in your code (including <tr>,

, and plenty of other useless places). Make sure your CSS inliner
works as you expect and inspect your code after inlining styles.
Use fewer tables. Tables are necessary for Outlook on Windows, but
they can be heavy. If we’re not using padding, border, or multiple
columns, it might be better and lighter to simply have more semantic
bits of code stack on top of each other.

https://alter.email/
https://useparcel.com/
https://htmlcrush.com/light
https://emailcomb.com/light

Gmail can also display the “[Message clipped]” alert without really clipping
your message. This can be caused by the presence of special characters like
© anywhere in our message.

Removing CSS Comments
Yahoo and AOL clients have a specific bug with CSS comments. For
example, consider the following code:

<style>

 /* Big title */

 .title {

 font-size: 32px;

 }

</style>

This is transformed by Yahoo and AOL into the following:

<style>

 #yiv1234567890

 #yiv1234567890 .yiv1234567890title {

 font-size: 32px;

 }

</style>

The email client renames every class by adding a custom prefix
(yiv1234567890) and adds a prefix to every selector (#yiv1234567890). This
is a very common practice across email clients—especially webmail
versions—and is needed to ensure that our email styles can’t affect the
webmail client’s own styles, and vice versa.

The bug here is that Yahoo also tries to add its prefix to the CSS comment.
And because it only adds it alone on a single line of code, this means it
applies to the CSS selector on the next line. Consider the following selector:

#yiv1234567890 .yiv1234567890title { }

This now gets interpreted as follows:

#yiv1234567890 #yiv1234567890 .yiv1234567890title { }

https://github.com/hteumeuleu/email-bugs/issues/25

With twice the id prefix, it no longer matches anything on the page, and thus
this makes the CSS rule void.

This bug doesn’t apply if we’ve got CSS comments inside a CSS rule
(between the curly braces). But as a general cautionary rule, it’s best to
remove all CSS comments before sending an email.

Using an HTML5 Doctype
Email clients never output your HTML email code just as is. They apply
various transformations, such as filtering unwanted tags (like <script>),
attributes and styles. And webmail clients in particular don’t keep your
entire HTML.

A webmail email is displayed in a web page that already has its own
doctype, <head> and <body>, along with other meta elements. So a webmail
client like Gmail looks for <style> tags in your head, compiles them into a
single one, and keeps the content of your <body> element.

This means that, in a lot of cases, you’ll end up with the webmail’s doctype,
not yours. And nowadays, most webmail clients use an HTML5 doctype:

<!DOCTYPE html>

One side effect of the HTML5 doctype is that elements have a line
spacing below them. This becomes clearly apparent when you slice images.

The following image demonstrates what happens when you forget to set
display:block on your images in an HTML email (courtesy of
@HTeuMeuleu on Twitter).

https://twitter.com/HTeuMeuLeu/status/909798027044507649

There are various solutions for getting around this. Here are three, by order
of personal preference:

Add vertical-align:middle in an inline style on the element.
(This might impact surrounding text if you need to align the text and
image differently.)
Add display:block in an inline style on the element. (This
changes the flow of the content and might impact sibling elements.)
Add font-size:0 to the parent element of the . (This might
impact alternative text rendering.)

Here’s an example of the first solution applied to an image with an inline
style attribute:

<img src="logo.png"

 alt=""

 style="vertical-align:middle;" />

Conclusion
Dealing with email client quirks is part of the job of an email developer. It’s
a good idea to follow email developer communities to follow the latest
updates and practices. I recommend the #emailgeeks hashtag on Twitter and
the #emailgeeks Slack channel.

It can be tough to keep up to date with the new quirks and also move beyond
the old ones. In 2015, I launched a GitHub repository to track email bugs, a
collection of issues with active discussions and potential solutions for all the
different email quirks and bugs. Over the years, it has gathered over a
hundred issues, a quarter of which have since been fixed. This gives me
good faith that by reporting what we see, email clients can improve and fix
their own code. While it’s a slow process, I do feel like HTML emails are
moving towards a better future, with more interoperability and standards
support.

And this is great news, because this can open the way for more fun and
exciting features—such as interactivity! In the next chapter, we’ll have a
look at how we can make our emails more interactive with just CSS and
HTML.

https://twitter.com/search?q=%23emailgeeks
https://email.geeks.chat/
https://github.com/hteumeuleu/email-bugs/issues

Chapter 3: Adding Interactivity
to HTML Emails
Interactive elements can greatly enhance HTML emails, making them stand
out from the crowd. Even without JavaScript, we can use CSS pseudo-
classes like :hover or :checked to create interactive components right inside
HTML emails. And we can also do things like present buttons in a more
engaging manner with hover effects, or add relevant content behind reveal
buttons.

In this third chapter, we’ll look at three examples of interactive content we
can use in HTML emails today.

Hover Effects on Link Buttons
A hover effect on a link button is a simple interaction you can add to make
your calls to action catchier and more attractive. The image below shows an
example email from Really Good Emails with a hover link button effect, as
seen in Gmail.

https://reallygoodemails.com/emails/youre-in-welcome-to-the-designbetter-co-community

All we need for this is the CSS :hover pseudo-class. And support for this in
email clients is actually pretty good. It works in Apple Mail (macOS, iOS),

Gmail (desktop webmail), Outlook (macOS), Outlook.com, and Yahoo Mail
(desktop webmail), among others.

There’s only one quirk in Outlook.com where :hover (along with other
pseudo-classes) is only supported on type selectors. So, for example,
Outlook.com won’t support .button:hover, but it will support a:hover. The
usual fix for this is to add a class attribute to a parent element and use that
element to target the link inside instead.

Here’s an example of code for a link button in an HTML email:

<table class="email-btn" border="0" cellpadding="0"

cellspacing="0" role="presentation" align="center"

style="margin:0 auto; max-width:100%; background:#2ea44f;

border-radius:5px; overflow:hidden; border-collapse:separate;">

 <tr>

 <td height="48" style="mso-padding-alt:0 16px; text-

align:center;">

 <a href="https://www.example.com" target="_blank"

style="display:block; min-width:128px; padding:14px 16px;

color:#fff; font:bold 16px/20px Helvetica Neue, Roboto, sans-

serif; text-decoration:none; text-align:center;">Call to

Action

 </td>

 </tr>

</table>

And here’s the styling to get a simple color swap when hovering over this
link button:

.email-btn a:hover {

 background-color: red !important;

}

According to Email Platform Status, only 0.02% of emails use :hover, while
66.67% of email clients tested in Can I email support it. So it’s a great option
for getting your email to stand out.

Swapping Images on Hover
Another interesting use case for :hover is to swap images. This is pretty
common on the Web on ecommerce websites—for example, to show a

https://www.emailplatformstatus.com/css/
https://www.caniemail.com/features/css-pseudo-class-hover/

different view of the same product, front by default, and back on hover.

Here’s the HTML for what’s seen in the image above:

<div class="image-swap-group">

 <div>

 <img src="https://i.imgur.com/TSuCstim.jpg" alt="T. rex

rampage box front view" width="160" height="160"

style="vertical-align:middle;" class="image-front" />

 <!--[if !mso]><!-->

 <img src="https://i.imgur.com/aaCOaRUm.jpg" alt="T. rex

rampage box back view" width="160" height="160"

style="display:none; vertical-align:middle;" class="image-back"

/>

 <!--<![endif]-->

 </div>

</div>

And here’s the CSS:

.image-swap-group div:hover .image-front {

 display:none !important;

}

.image-swap-group div:hover .image-back {

 display:block !important;

}

Here’s how it works:

1. First, we have the two images, each with its own class (image-front
and image-back).

2. Then we hide the second image by adding display:none in an inline
style.

3. We also add conditional comments (<!--[if !mso]><!-->) around that
second image to hide it from Outlook on Windows. (Another technique
is to use the property mso-hide:all. I usually avoid this, because it
doesn’t work when applied directly to elements, and it needs to
be repeated on every <table> element you want to hide. It also breaks
when replying or forwarding the email in Outlook, revealing the hidden
content in plain sight.)

4. We wrap the two images in two <div> elements. The first one has a
class of image-swap-group, which we’re going to use to target the
<div> inside. (This way, we only use a type selector, which is a
workaround for the Outlook.com bug mentioned in the first button
example.)

Toggling Content on Click
By combining HTML form controls—like checkboxes (<input
type="checkbox">) or radio buttons (<input type="radio">)—and the
CSS pseudo-class :checked, we can create more powerful interactions based
on clicks (or taps, on touch devices). Let’s see how we can create the
following interface where a click on a button reveals new content.

The following image shows content being toggled on click in Yahoo Mail.

A Basic Checkbox

To get started, here’s a basic checkbox HTML example:

<input type="checkbox" id="email-checkbox" />

<label for="email-checkbox">Toggle checkbox</label>

The for attribute is set with the value of the id from the checkbox. This
links the two together so that it’s not only better for accessibility, but it also
allows for clicking on the <label> to toggle the checkbox value.

Using the CSS pseudo-class :checked, we can apply specific styles to the
<label> when the checkbox is checked. For this, we’re using the CSS
adjacent sibling combinator (+), which allows for targeting an element (here,
the label) directly next to another (the input) in the HTML:

input:checked + label {

 background-color: green;

}

Wrapping a Checkbox inside a Label

While the solution above works well in email clients like Apple Mail or
Outlook.com, it doesn’t work in Yahoo Mail. That’s because, when parsing
our HTML email code, Yahoo Mail changes id values by adding a random
prefix. But it doesn’t apply the same process to for attributes. Here’s what
our basic checkbox code from earlier looks like in Yahoo Mail:

<input type="checkbox" id="yiv0123456789email-checkbox" />

<label for="email-checkbox">Toggle checkbox</label>

The id and for attribute values no longer match, meaning that any
interactivity between the two is lost.

To get around this, we’ll use another possible syntax where we nest the
<input> element inside the <label>:

<label>

 <input type="checkbox" />

 Toggle checkbox

</label>

Conditional Comments for Outlook

As one might expect, Outlook on Windows doesn’t support either of the
form options above. It insists on transforming form elements into plain text.

So our previous example would display as [] Toggle checkbox in Outlook
on Windows, as pictured below.

To prevent this, I recommend wrapping the <input> element with !mso (“not
mso”) conditional comments to completely hide the checkbox from Outlook:

<label>

 <!--[if !mso]><!-->

 <input type="checkbox" />

 <!--<![endif]-->

 Toggle checkbox

</label>

Hiding the Checkbox in Other Email Clients

Since we don’t want the checkbox to be visible, we’ll hide it by default.
display:none is a good starting point. (This makes our checkbox hidden for
keyboard navigation or screen readers, which might be worth considering for
accessibility. For a more accessible way to hide a checkbox, web developer
Sara Soueidan has details on how to hide a checkbox inclusively.)

<label>

 <!--[if !mso]><!-->

 <input type="checkbox" style="display:none;" />

 <!--<![endif]-->

 Toggle checkbox

</label>

This works in most email clients. But there are a few email clients (like the
French webmail clients of SFR and La Poste) that transform <input>
elements into <noinput>. I presume they do this for security to parse out
form elements. But <noinput> is not a real HTML element. And in HTML,
if you use a made-up element like this, it will behave like a <div>. But
because our <noinput> element doesn’t have a matching closing tag, it will
act as a wrapper for all the sibling content of our original checkbox. And
because we have display:none on it, all this sibling content becomes hidden
as well.

One way to get around this is to use use a display:contents declaration,
after the previous display:none. If an email client supports
display:contents, it will act as if the <input> (or <noinput>) element
wasn’t there in the first place. Otherwise, it will apply the display:none
fallback and simply hide the checkbox:

<label>

 <!--[if !mso]><!-->

 <input type="checkbox" style="display:none;

display:contents;" />

 <!--<![endif]-->

https://twitter.com/SaraSoueidan/
https://www.sarasoueidan.com/blog/inclusively-hiding-and-styling-checkboxes-and-radio-buttons/#hiding-the-checkboxes-inclusively

 Toggle checkbox

</label>

But wait! We’re not done yet! That last addition now breaks our previously
working code in the German webmail client T-Online. T-Online doesn’t
support display:contents. And it also removes any duplicate declaration
for a CSS property, so our display:none fallback isn’t there anymore. How
do we get around this? We’ll get our hands dirty and add a second style
attribute, this time with only a display:none declaration:

<label>

 <!--[if !mso]><!-->

 <input type="checkbox" style="display:none;

display:contents;" style="display:none;" />

 <!--<![endif]-->

 Toggle checkbox

</label>

A standard rendering engine would only keep the first occurrence of a
duplicated HTML attribute. But T-Online’s parser will keep the last one.

This is a great example of how HTML email coding is often a game of
whack-a-mole, where fixing a bug in one client creates a new bug in another
client. Sometimes, we need to use dirty hacks to go that extra mile and
support a few more email clients.

Using the ~ General Sibling Combinator

In order to achieve our little interactive toggle component, we need one
HTML element for the toggle button, and one for the actual content we want
to hide or show. A basic version of our HTML would look like this:

<label class="email-toggle">

 <!--[if !mso]><!-->

 <input type="checkbox" style="display:none;

display:contents;" style="display:none;" />

 <!--<![endif]-->

 <div class="email-toggle-button">

 View more details

 </div>

 <label class="email-toggle-content">

 Lorem ipsum dolor, sit amet consectetur adipisicing

elit. […]

 </label>

</label>

Using a nested <label> for the .email-toggle-content element is a nice
trick for allowing clicks inside the content without closing the accordion.

In order to target the .email-toggle-content content from the checkbox,
we use the tilde (~) general sibling combinator in CSS:

.email-toggle input:checked ~ .email-toggle-content {

 display: block;

}

Since interactivity in email requires support for embedded styles (in a
<style> element), we hide the button by default within an inline style
attribute and revert back to showing it in a <style> element. And we can
apply the same logic for the toggle content (letting it be visible by default
and only hiding it through a <style> element):

<style data-embed>

.email-toggle-button {

 display: block !important;

}

.email-toggle-content {

 display: none;

}

</style>

The data-embed attribute on the <style> tag is there to make sure these
styles don’t get inlined when using a CSS inliner.

Here’s a full working example on CodePen, complete with additional
markup and styles for presentation.

Conclusion
I love email interactivity, because it opens up a whole new world of
possibilities. The Really Good Emails website has a great gallery of
interactive emails—from live hotspots (like in this email from the BBC), to
carousels (like in this email from UGG), and even games like Minesweeper

https://developer.mozilla.org/en-US/docs/Web/CSS/General_sibling_combinator
https://codepen.io/hteumeuleu/pen/cad44827f3c1f9443a4cc1db565925d9?editors=1000
https://reallygoodemails.com/categories/interactive
https://reallygoodemails.com/emails/discover-more-with-the-bbc
https://reallygoodemails.com/emails/new-new-new
https://reallygoodemails.com/emails/whos-the-bomb

(by the email duo Camiah), or Super Mail Quest (by email developer Aaron
Simmonds).

Coding interactive emails can be both challenging and fun. Email developer
Mark Robbins—often considered the “godfather” of interactive emails—has
great resources online:

“Interactive Email”, a conference talk at beyond tellerrand.
“Build interactive emails with CSS”, an article for net magazine.
Good Email Code—Mark’s website—where he shares detailed
examples of common email code.

In the next chapter, we’ll move from interactivity to accessibility, and look at
how we can improve our emails for people with disabilities.

https://camiah.com/
https://emailpreview.co.uk/chs/super-mail-quest/
https://twitter.com/otherside_uk
https://twitter.com/M_J_Robbins/
https://www.youtube.com/watch?v=l7i7YDPcAcM
https://medium.com/net-magazine/build-interactive-emails-with-css-1d796fbe1dff
https://www.goodemailcode.com/

Chapter 4: Accessibility in
HTML Emails
Focusing on accessibility is a fundamental part of designing for the Web. It
ensures that websites are designed and coded so that they can be used by
people with disabilities. The same principles apply to emails. And I firmly
believe that, as email developers, it’s our job to make sure the emails we
code are accessible to everyone. According to a yearly survey by WebAIM,
some of the most common accessibility issues involve images and
alternative text, headings and other HTML semantics, as well as language
definitions.

In this chapter, we’ll look at three fundamental ways to make our email code
more accessible.

Using Semantic Markup
HTML is a language. (It’s right there in the name—HyperText Markup
Language.) The best thing we can do as developers is to communicate in this
language! But rather than HTML being a language spoken to other humans,
it’s primarily a language we use to communicate with other software
(software which, of course, ends up being used by other humans). HTML is
meant for browsers, search engine robots, and assistive technologies like
screen readers, so that they can figure out the structure and hierarchy of our
content. If we build a web page using only <div>s, these technologies will
have a hard time figuring out what’s important in our content, as will the
humans using these technologies. Adopting semantic markup means using
the right HTML element (or the right word) for the right content, thus
making our emails more comprehensible.

Adding role="presentation" to Tables

https://webaim.org/projects/million/

Because of Outlook on Windows, we need to use <table> elements to lay
out our emails. This is problematic, because a screen reader expects a
<table> to contain tabular data. So it reads tables by enunciating each row
and each cell. To stop it from doing this, we can use the
role="presentation" attribute on every table used for layout:

<table role="presentation" border="0" cellpadding="0"

cellspacing="0">

The role="presentation" attribute isn’t inherited by nested tables (contrary
to the lang attribute, for example). It’s only inherited by a table’s child
elements (like <tr> or <td>). So it needs to be set on every presentational
table. Some assistive technologies have heuristics for working out by
themselves which tables are definitely there for layout. For example, Apple’s
VoiceOver on macOS is clever enough to guess that a table with only one
line and one column is a layout table. But as a cautionary rule and a best
practice, it’s better to define this ourselves with the role="presentation"
attribute on every <table> used for layout.

Here’s a video of a screen reader interpreting an email without
role="presentation".

And here’s a video of a screen reader interpreting the same email with
role="presentation" added.

Using Headings, Paragraphs, and Lists

Another way to improve our email markup is by using adequate semantic
HTML for different types of text content—such as headings (<h1>, <h2>, …,
<h6>), paragraphs (<p>), and lists (, ,).

A great advantage of such semantic elements is that a screen reader can
provide additional information to users. For example, VoiceOver on macOS,
when browsing a list, will announce the position of the element in the list.

Another gain from using semantic headings is that users can get a summary
of the email they’re reading and jump from one heading to another if they
choose.

https://www.youtube.com/watch?v=8gAnE1il9QY
https://www.youtube.com/watch?v=off68QcnN-s

Adding role="article"

Using more structural semantic markup (like <header>, <footer> or
<main>) is best practice on the Web. But not all email clients support these
elements. For example, Gmail will replace <main> opening and closing tags
with <u></u>, while Outlook.com will straight out remove the element and
only leave its inner content.

Email developer Mark Robbins has been advocating for the use of a
role="article" attribute on a wrapping <div>. This creates a landmark to
make our email more easily accessible. Adding an aria-label attribute with
our email subject line helps make this more specific and useful:

<div role="article" aria-label="Your email subject line">

The alt Attribute
The alt attribute gives screen reader users a sense of the content of an
image. Let’s look at some best practices for doing this in HTML emails.

Setting an Empty alt Attribute

Images must always have an alt attribute. Otherwise, a screen reader like
VoiceOver will try to give its user clues about what the image might be
about by reading the image file name. That can end up being okay if we have
an image named logo.png, but it’s likely to result in a pretty miserable user
experience if our image name is automatically generated and looks like
a1b2-c3d4-e5f6-g7h8.jpg.

Here’s a video showing an example of VoiceOver on macOS reading out
random image names.

By setting an alt attribute, even if it’s empty, we’re making sure that we’re
in control of the alternative text. We can set empty alternative text by
specifying alt="" (with nothing between the quotes). A screen reader will
then simply ignore that image as if it isn’t there:

https://twitter.com/M_J_Robbins/
https://www.youtube.com/watch?v=UziyLxkmDwE

Any image that’s purely decorative should have an empty alt="" attribute.
This includes images such as a shadow effect, or a decorative icon or
illustration. Be careful to not have any space in there, though. Using alt="
", for example, could be picked by a screen reader as an image with a blank
alternative text instead of no alternative text.

If an image is wrapped in a link, then having an empty alt attribute isn’t a
good option. Because the image is linked, a screen reader like VoiceOver
will try to give its user a sense of what the link might be about. Unless
there’s also caption text within the link, alt text is an important means for
informing users of what’s being linked to. Otherwise, the screen reader will
tend to read out image’s file name or the link’s URL. That can work out okay
if the URL is something like example.com/contact/, but it’s going to be a
mess if the URL is automatically generated and looks something like
example.com/e5f6-g7h8-contact/.

Here’s a video showing an example of VoiceOver on macOS reading link
URLs on a linked image.

Setting Appropriate Alternative Text

If an image is actually part of the content, then it must have adequate
alternative text. WebAIM offers a set of guidelines for alternative text,
including the following:

Be accurate and equivalent. If our image contains some text, and that
text is nowhere else on the page, then it should be used as the
alternative text.
Be succinct. Don’t be overly descriptive. WebKit (Apple’s rendering
engine used on Apple Mail and across all iOS apps) hides alternative
text if it doesn’t fit in one line inside a blocked image’s width. Also, it’s
not necessary to include words like “image of …”. Assistive
technologies like screen readers will already mention the fact that this is
an image element.
Don’t be redundant. If our image is of a product and that product’s
name is right below the image, it’s best to leave the alternative text
empty.

https://www.youtube.com/watch?v=2HSIKpMphuc
https://webaim.org/techniques/alttext/

The W3C Web Accessibility initiative offers an alt “decision tree”—
pictured below—that can be very helpful if we’re unsure what to use as
alternative text.

https://www.w3.org/WAI/tutorials/images/decision-tree/

The lang Attribute
Defining the language of the HTML content helps assistive technologies like
screen readers pick the right voice for reading the content. The lang attribute
needs to be defined with a valid language code on the opening <html> tag:

<html lang="en">

But because some email clients (especially webmail versions) remove the
<html> element, the lang attribute also needs to be set on a wrapping
element (for example, a <div>) within the <body>:

<!DOCTYPE html>

<html lang="en">

 <head></head>

 <body>

 <div lang="en">

 </div>

 </body>

</html>

Without the lang attribute, a screen reader will assume the content it’s
reading is in the same language as the default language the computer it is
running on. I’m French, and my computer is set up in French. If I read an
email written in English with VoiceOver on macOS, this video shows what I
get without the lang attribute set.

And this video shows what I get with the lang attribute set.

A small attribute can make a huge difference. So remember to set languages
correctly.

And if you have an international audience, the same logic applies for the dir
attribute, which defines the direction of the text. For example, an email in
Arabic will benefit from having dir="rtl" (“right to left”) set, while an
email in English (which might end up being read in an email client that reads
right to left by default) can use the dir="ltr" (“left to right”) attribute.

Conclusion

https://www.youtube.com/watch?v=T689a3bTJfY
https://www.youtube.com/watch?v=goXU6vJXgPI

I love accessibility, because it’s another rabbit hole of its own. Following
best practices and guidelines for the Web (like the Web Content
Accessibility Guidelines from the W3C) also works for HTML emails. But
it’s only a beginning, and not an end, as every person with disabilities will
have their own needs.

To dive deeper into the subject, email developer Wilbert Heinen set up a
huge list of resources about email accessibility, from articles to online
presentations and tools.

For day-to-day work on emails, I like to use the Parcel accessibility checker
or Accessible-Email.org, an online tool that can audit our HTML email code
to improve accessibility. The latter looks for headings and landmarks, lets
you hand-check your alternative text and link text, and also guides you on
setting the document language and fixing layout tables.

In our next and final chapter in this book, we’ll see how to apply everything
we’ve learned so far by working through a template redesign case study.

https://www.w3.org/WAI/standards-guidelines/wcag/
https://twitter.com/wilbertheinen
https://github.com/wilbertheinen/accessible-email-documentation
https://parcel.io/blog/accessibility-tools
https://www.accessible-email.org/

Chapter 5: A Case Study:
Redesigning SitePoint’s Weekly
Newsletter
In this final chapter, let’s put everything we’ve learned into practice. I’m
going to do an unsolicited redesign of SitePoint’s Weekly Newsletter,
focusing on improving the code of the HTML email.

The image below shows an example of the current SitePoint Weekly
Newsletter layout.

https://www.sitepoint.com/newsletters/

A Full-width Header
Newsletters are often designed out of context. An email designed to be 600
pixels wide might look good in a Figma or Photoshop canvas. But what
about when viewed inside a webmail client like Gmail on a large desktop
screen?

In my opinion, this kind of design looks a bit floaty and is begging to expand
horizontally. One thing we can do is make the header and footer full width.
In order to achieve this, we’ll need two nested HTML containers: the outer
one for the full-width background, and the inner one with a maximum width
fixed.

Because of Outlook on Windows and Word’s rendering engine, we’ll use a
<table> for the outer container, and a <div> with a max-width:640px for the
inner one. But because Outlook on Windows doesn’t support the max-width
property on <div> elements, we’re going to need to create one more table for
Outlook with a fixed width of 640px. But this time, it will be wrapped in
conditional comments ([if mso]) and will only be visible for Outlook on
Windows.

Here’s the full code corresponding to such a full-width section:

<table style="width:100%; background-color:#ffd145;" border="0"

cellpadding="0" cellspacing="0" role="presentation">

 <tr>

 <td>

 <!--[if mso]>

 <table style="width:640px;" border="0"

cellpadding="0" cellspacing="0" align="center"

role="presentation"><tr><td>

 <![endif]-->

 <div style="max-width:640px; width:100%; margin:0

auto;">

 …

 </div>

 <!--[if mso]>

 </td></tr></table>

 <![endif]-->

 </td>

 </tr>

</table>

And here’s the result in Gmail desktop webmail.

This approach to coding email is often referred to as fluid/hybrid. Our email
is coded to be fluid by default (using percentages and max-width). The
beauty of it is that it works with just inline styles, with no <head> or media
queries required. We could add additional styles in a media query if needed
(thus making the email hybrid), but it would still be able to display properly
without it. This is progressive enhancement in action.

One downside of this approach, however, is the reliance on HTML code
inside conditional comments for Outlook on Windows. This kind of code is
often referred to as ghost tables, because they’re only visible to a select few
(the Outlooks on Windows), and because they can be quite scary for
newcomers. We need to test in Outlook on Windows to make sure we
haven’t broken anything. And if we need to change some design aspects
(say, make the width 600px instead of 640px), we need to remember to
change it in both the <div> and the <table> for Outlook.

A More Semantic Article Block
In SitePoint Weekly’s original code, an article block is made up almost
entirely of tables. Every block of text is a new table row, and even spacing is
done with new empty rows. Not only is this bad for accessibility, it’s a also a
sure way to cross Gmail’s dreaded 102KB weight limit.

https://ml.sitepoint.com/g1w4n5/1833534203950537005/z5j3/
https://github.com/hteumeuleu/email-bugs/issues/41

What I like to do to get a better sense of the structure of an HTML email is
to start with just the bare bones. I’ll first write down HTML code for the
actual content. Since I’ve used an <h1> in the header for the newsletter title,
I’m going to use an <h2> for every other block title in the newsletter. The
rest of the text would be simple paragraphs:

<p>

</p>

<p>

 Catalin Pit

</p>

<h2>

 An Introduction to Cloud Computing and AWS

Certification

</h2>

<p>

 Learn about cloud computing options […].

</p>

<p>

 Get started

</p>

Now I can start adding specific styles. I’ll start by setting the expected
margin between each block of text. And instead of using empty table rows,
I’m going to use the CSS margin property:

<p style="margin:0;">

</p>

<p style="margin:0 0 20px;">

 Catalin Pit

</p>

<h2 style="margin:0 0 40px;">

 An Introduction to Cloud Computing and AWS

Certification

</h2>

<p style="margin:0 0 40px;">

 Learn about cloud computing options […].

</p>

<p style="margin:0;">

 Get started

</p>

In order to create extra spacing around the text (but not around the image),
I’m going to group all the text elements together. And once again, because
Outlook on Windows doesn’t support padding on all elements, I’m going to
use a table:

<p style="margin:0;">

</p>

<table style="width:100%; background-color:#fff;" border="0"

cellpadding="0" cellspacing="0" role="presentation">

 <tr>

 <td style="padding:40px 40px 50px;" class="sitepoint-

mobile-padding-h-15">

 <p style="margin:0 0 20px;">

 Catalin Pit

 </p>

 <h2 style="margin:0 0 40px;">

 An Introduction to Cloud Computing

and AWS Certification

 </h2>

 <p style="margin:0 0 40px;">

 Learn about cloud computing options […].

 </p>

 <p style="margin:0;">

 Get started

 </p>

 </td>

 </tr>

</table>

Responsive versus Mobile First
One thing I’m doing here is setting the padding for the desktop view and
using a class (.sitepoint-mobile-padding-h-15) to change the value for
mobile devices in a media query:

@media only screen and (max-width: 640px) {

 .sitepoint-mobile-padding-h-15 {

 padding-left: 15px !important;

 padding-right: 15px !important;

 }

}

This is typically what email developers refer to as responsive web design:
focusing on the desktop first, and mobile second. The biggest downside is
that, for email clients that don’t support media queries or <style> elements,
the 40px horizontal desktop padding here would be pretty big.

Another approach is to code the email with a mobile-first mindset. Set the
padding for its mobile value first (15px), and then use a media query to
enhance it on desktop to a larger value (40px). When coding mobile first, we
need to consider the rendering in Outlook on Windows. Here, we use a
different proprietary property (mso-padding-alt) that will only apply in
Outlook.

Here’s the HTML:

<td style="padding:40px 15px 50px; mso-padding-alt:40px 40px

50px;" class="sitepoint-desktop-padding-h-40">

And here’s the CSS:

@media only screen and (min-width: 640px) {

 .sitepoint-desktop-padding-h-40 {

 padding-left: 40px !important;

 padding-right: 40px !important;

 }

}

The difference between responsive, fluid/hybrid and mobile-first layouts is
subtle nowadays. And in my opinion, what matters is not how well the
layout makes your email work, but how well it makes your email break.

To show the difference between these techniques, you need to look for edge-
case contexts, like these:

A mobile device with no media query support—for example, in the
Gmail apps with non-Gmail accounts, also known as GANGA. The
responsive approach will fail here and show a desktop version of the
styles, which might not work well.
A desktop client with no media query support—for example, in Mozilla
Thunderbird. The mobile-first approach will fail here and show the
mobile version of the styles.

A desktop webmail client with a small viewport. Even on a screen
offering a 1440 wide pixel resolution, for example, the default
configuration of Outlook.com only offers a width of 450 pixels for the
email display. Both the responsive and mobile-first approaches might
fail here and show a desktop version of the email, while we’d probably
want something more mobile-like.

There’s no universal answer to which approach is better here. It depends on
the context, on your audience, on their email clients, and on your own
coding abilities.

The image below compares two layouts. The left side shows Gmail on iOS,
rendering an email from a non-Gmail account, without media query support,
using a responsive layout with desktop padding. The right side shows a
layout in Thunderbird on macOS, which doesn’t offer media query support.

Conclusion
What I like about all this is that it makes the email developer’s job very
nuanced. We’re the ones making choices that will inevitably impact
rendering and support. And in the end, it makes email development a very
human job.

This Pen shows the final version of this unsolicited redesign and recode.

Our little journey into HTML emails has come to an end. I hope I’ve
successfully demonstrated that emails are still alive and well, and certainly
not stuck in the 1990s.

When you understand the quirks of the most important email clients—
especially Outlook on Windows—and the hacks for getting around them,
you’re in a good position to make your emails both more robust and more
modern—utilizing many HTML and CSS features available to the best email
clients. You can add interactive components, and you can even make your
code more accessible.

HTML email has seen a lot of new features become available over the last
decade—from responsive layout to dark mode. And there’s good reason to
get excited about what might be just around the corner for HTML email!

https://codepen.io/hteumeuleu/full/yLzpeVK/015df5b37cd2cde1e1b51ff4b6666dab

	Crafting HTML Email: Beautiful Emails That Work Everywhere
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Getting Started
	Email Isn’t Dead
	HTML Emails Aren’t Stuck in the 1990s
	Defining an Email Client
	“Email Developer” Is a Job
	Conclusion

	Chapter 2: Essential Best Practices
	Supporting the Outlooks
	How the Outlook Rendering Engine Works
	Conditional Comments
	mso- Properties
	VML
	Rendering at 120dpi

	Making Your Emails Work without <style>
	Avoiding Automatic Links
	Using Real URLs
	Adding an Empty <head>
	Keeping Email Sizes below 102KB
	Removing CSS Comments
	Using an HTML5 Doctype
	Conclusion

	Chapter 3: Adding Interactivity to HTML Emails
	Hover Effects on Link Buttons
	Swapping Images on Hover
	Toggling Content on Click
	A Basic Checkbox
	Wrapping a Checkbox inside a Label
	Conditional Comments for Outlook
	Hiding the Checkbox in Other Email Clients
	Using the ~ General Sibling Combinator

	Conclusion

	Chapter 4: Accessibility in HTML Emails
	Using Semantic Markup
	Adding role="presentation" to Tables
	Using Headings, Paragraphs, and Lists
	Adding role="article"

	The alt Attribute
	Setting an Empty alt Attribute
	Setting Appropriate Alternative Text

	The lang Attribute
	Conclusion

	Chapter 5: A Case Study: Redesigning SitePoint’s Weekly Newsletter
	A Full-width Header
	A More Semantic Article Block
	Responsive versus Mobile First
	Conclusion

