

Crafting HTML Email: Beautiful Emails That
Work Everywhere
Copyright © 2022 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-51-6

Author: Ivaylo Gerchev
Series Editor: Oliver Lindberg
Product Manager: Simon Mackie
Technical Editor: Shahed Nasser
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such,
this book uses the names only in an editorial fashion and to the benefit of
the trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St, Richmond, VIC, 3121
Australia
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About the Author
Ivaylo Gerchev isa web developer/designer from Bulgaria. In his free time
he likes to write articles and tutorials sharing his knowledge and
understanding on various web development topics. His favorite topics
include UI, UX, SVG, HTML, CSS, Tailwind, JavaScript, Node, Nest,
Adonis, Vue, React, Angular, PHP, Laravel, and Statamic. The best tools he
uses are Figma and VS Code. When he's not programming the Web, he
loves to program his own reality.

http://www.sitepoint.com/

Preface
Who Should Read This Book?
This book is for anyone who wants to better understand how to write
effective HTML emails. No prior experience of creating emails is required,
but you should have experience of HTML and CSS.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.

</p>

You’ll notice that we’ve used certain layout styles throughout this book to
signify different types of information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at
hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky problems.
books@sitepoint.com is our email address, should you need to
contact us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

Getting Started with Tailwind
CSS
There are two main types of CSS framework. One is based around
components—a group that includes frameworks such as Bootstrap,
Foundation, and Bulma. The other type of CSS framework is based around
utilities—a group that includes the likes of Tachyons, Tailwind CSS, and
Windi CSS.

Component vs Utility Classes

If you’re not clear on the difference between component and utility classes,
jump to the “What Is a Utility Class?” section below, and then continue
reading from here.

For many years, component-based frameworks were the de facto standard
for building websites quickly and easily. But all this magic comes with a
price. Without serious customization, sites built with such frameworks look
similar to each other. And customization is a real pain in the neck for anyone
who wants to build something more complex and/or creative. Component-
based styles are easy to implement, but inflexible and confined to certain
boundaries. Solving specificity issues while trying to override the default
styles of a particular framework isn’t a fun and productive job.

“Utility-first” frameworks were created to solve this problem. A utility-first
framework is built with low-level functionality in mind. Utility classes offer
much more power and flexibility than component classes.

Utility-first frameworks provide the following advantages:

Utility classes operate at a low level. This means we have more control
and flexibility over how we apply them—a concept that’s similar to the
power and flexibility offered by a low-level language like C or C++, in
contrast to high-level languages such as JavaScript or PHP.

https://getbootstrap.com/
https://get.foundation/
https://bulma.io/
https://tachyons.io/
https://tailwindcss.com/
https://windicss.org/

Utility classes are easy to customize, so we can build any design.
A utility-first approach scales well. It’s great for managing and
maintaining large projects, because we only have to maintain HTML
files, instead of a large CSS codebase. It’s already used with success by
big sites like GitHub, Heroku, Kickstarter, Twitch, and Segment.
Utility classes can be adopted to any design.
Utility classes are completely customizable and extensible. It’s easier to
build unique, custom website designs without fighting with unwanted
styles.
Utility classes allow for much easier implementation of responsive
design patterns.
Utility classes have consistent styles, which gives us a ready-to-use
design system. We can also create our own design system if we need to.
With utility classes, we can still extract common, repetitive patterns
into custom, reusable components. But in contrast to predefined
components, custom components will be exactly what we need.

In summary, we can say that a utility-first framework gives us balance
between the concrete and the abstract.

Now that we’ve seen how useful utility-first frameworks can be, it’s time to
pick one and see what it can do for us in action. In this book, we’ll explore
Tailwind CSS, which is the most popular of the utility-first frameworks.

What Is Tailwind?
Tailwind is a set of low-level, reusable utility classes that can be used like
building blocks to create virtually any design we can imagine. This utility-
first framework covers the most important CSS properties, but it can be
easily extended in a variety of ways. It can be used either for rapid
prototyping or for creating full-blown designs.

Tailwind has great documentation, covering every class utility in detail and
showing the ways it can be customized. There’s also a playground where
you can try out your ideas. You can also check out Tailwind’s screencasts if
you prefer to learn by watching.

https://tailwindcss.com/
https://tailwindcss.com/docs
https://play.tailwindcss.com/
https://www.youtube.com/tailwindlabs

As of version 2.0, Tailwind CSS supports the latest stable versions of
Chrome, Firefox, Edge, and Safari. There’s no support for any version of IE,
including IE11.

What Is a Utility Class?

As we already know, Tailwind’s main characteristic is the use of utility
classes. But what is a utility class?

While a component class is a collection of predefined CSS settings applied
in an opinionated fashion, a utility class is mostly a single CSS property or
behavior that we can use freely in a predictable way. This gives us the
freedom to combine, mix and match different settings depending on our
requirements. We have greater control over each element’s appearance. We
can change and fine-tune an element’s appearance much more effortlessly
with utility classes.

In Bootstrap, we create a button by using predefined component classes, as
in the following example:

<button class="btn btn-success">Success</button>

Here, the btn and btn-success are the so-called component classes. Each
one of them represents a collection of predefined CSS settings.

In Tailwind, we create a button by using utility classes:

<button class="py-2 px-4 bg-green-500 text-white font-semibold

rounded-lg shadow-md hover:bg-green-700 focus:outline-none

focus:ring-2 focus:ring-green-400 focus:ring-opacity-75">

 Success

</button>

Here, py-2, px-4, bg-green-500, and so on, are the so-called utility classes,
and each one of them represents just a single CSS setting. To create the
button, we use multiple utilities—which we put together like the pieces of a
puzzle in order to get the whole picture.

This CodePen demo shows these two buttons on the same page.

https://getbootstrap.com/docs/5.1/components/buttons/
https://codepen.io/SitePoint/pen/OJzxOQK?editors=1000

The buttons looks quite similar, but they’re created in different ways.

We’ve covered the basic difference between component and utility classes,
but let’s now take an even closer look at utility classes.

In Tailwind, the CSS font-style: italic is represented by the italic
utility class.

Here are some more examples:

text-align: right becomes text-right
font-weight: 700 becomes font-bold
border-radius: 0.25rem becomes rounded
width: 0.5rem becomes w-2
padding: 1.5rem becomes p-6

And here’s how classes are applied in practice. Let’s say we want to make a
paragraph bold and italic. We do it this way in CSS:

p {

 font-weight: 700;

 font-style: italic;

}

To do the same in Tailwind, we add the font-bold and italic classes
directly to the HTML element:

<p class="font-bold italic">Lorem ipsum...</p>

In Tailwind, we can also apply classes based on an element’s states, such as
hover, focus, and so on. For example, if we want the above paragraph to be
italic only on mouse hover, we can write the class like this: hover:italic.

As you can see, Tailwind utility classes are mostly self-explanatory. We can
often imagine how the styled element looks by just reading the classes.
Some class names are heavily abbreviated, admittedly, but once we’ve
grasped the pattern and had a bit of practice with them, they’re easy to
remember and recall.

What a Design System Is, and How It Can
Help Us
As Tailwind offers a sort of design system, it will be useful to say few words
about what a design system is and how it can facilitate the design process.

In simple terms, a design system is a set of rules and conventions for how a
design should be built. It includes predefined rules about sizes, colors, text,
and so on. Traditionally, when we build a design we need to make multiple
choices about things like:

the size of the design elements (text, images, etc.)
the colors and color variations
the fonts and other typographic features

… and so on.

Making a decision for every small part of a design can lead to choice
paralysis and inconsistency. It’s tedious and error-prone. It would be much
easier if we first established a design system with already predefined options
that are tested and proven to work. We can then just select from the existing,
limited set of options and combine them to produce the desired outcome.

This is actually what Tailwind gives us—a well-crafted design system that
we can use to speed up, smooth, and facilitate our design-building process.

Up and Running with Tailwind

Know Your HTML and CSS

To follow along with the rest of this tutorial, you should have a good
understanding of HTML and CSS and their concepts. If you’re not up to
speed with those yet, check out SitePoint’s HTML and CSS learning path.

The official documentation describes a bunch of different ways to install
Tailwind. In this tutorial, we’ll use the simplest one—which involves

https://uxdesign.cc/everything-you-need-to-know-about-design-systems-54b109851969
https://www.scienceofpeople.com/choice-paralysis/
https://www.sitepoint.com/premium/paths/learn-html
https://tailwindcss.com/docs/installation

including Tailwind in our projects via the Play CDN option. So just create an
HTML file and put the following content in it:

<!doctype html>

<html>

<head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

 <link href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.15.4/css/all.min.css" rel="stylesheet">

 <script src="https://cdn.tailwindcss.com"></script>

</head>

<body>

 <!-- ... -->

</body>

</html>

This is the starting template we’ll build upon throughout the rest of the
tutorial. We’ll also include a Font Awesome link that we’ll use for the icons
in our design.

Exploring Tailwind Basics
There are four main factors involved in every web design project:

Layout. It all starts with a blueprint. This defines how the whitespace
and elements of our design are organized and ordered.
Typography. This includes all text content, including messages.
Colors. This brings life to a design and defines a design’s mood and
brand.
Imagery. This includes the visuals of a design, such as icons, images,
illustrations, and so on.

In the next four sections, we’ll learn more about each one of these factors
and see how Tailwind can help us to implement them in the development
phase. The aim here is to give you a bird’s-eye view of what classes to look
for when you’re working on a particular component. Don’t worry: I’ll go
into much more detail for each class when we start exploring a practical
example later on in the chapter.

https://tailwindcss.com/docs/installation/play-cdn
https://fontawesome.com/

Responsive Web Design

Our coverage of layout, typography, color and imagery here won’t be able to
include principles and techniques relating to responsive web design, as that
topic is beyond the scope of this book. But it’s an important topic that’s
central to modern web design. For more information, see this general
overview of responsive web design, and also Tailwind’s documentation for
specific instructions.

Layout

In this section, we’ll explore briefly the most commonly used classes for
layout composition. We can group classes by their function, as follows:

Size. This includes width and height utilities for setting an element’s
dimensions.
Space. This includes margin and padding utilities for adding space in
our design.
Position. This includes an element’s positioning and coordinates.
Borders. This includes various utilities for setting an element’s borders,
such as style, width, and radius.
Display. This includes the way elements are rendered.

In modern CSS, we have also Flexbox and Grid classes for building a layout.
We’ll cover only the Flexbox utilities in this chapter, as they’re much
simpler and easier to use for beginners.

When we use Flexbox, we start by creating a flex container by adding a flex
class to a parent element. Then we add additional flex classes to configure
how the flex items inside the container (direct children) will be displayed.
For example, to render flex items vertically as a column, we add a flex-col
class along with the flex class:

<div class="flex flex-col">

 <div>1</div>

 <div>2</div>

 <div>3</div>

</div>

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://tailwindcss.com/docs/responsive-design
https://tailwindcss.com/docs/width
https://tailwindcss.com/docs/height
https://tailwindcss.com/docs/margin
https://tailwindcss.com/docs/padding
https://tailwindcss.com/docs/position
https://tailwindcss.com/docs/top-right-bottom-left
https://tailwindcss.com/docs/border-style
https://tailwindcss.com/docs/border-width
https://tailwindcss.com/docs/border-radius
https://tailwindcss.com/docs/display

This is the base for applying flex classes. There are plenty of them in
Tailwind, and it would be tedious to explain each one individually. Instead,
when we explore a practical example later on, I’ll cover the flex classes we
use in that example.

Typography

Now that we have a layout, the next step is to add the content we want to
display. This is mostly done by using text. Here are the most commonly used
text utilities grouped by function:

Font. This includes font family, size, style and weight utilities, as well
as tracking and leading settings.
Text. This includes text aligning, color and opacity, decoration and
transformation.
List. This includes list type and position styling.

Colors

We have a layout, and we have text. Now we need to bring life to them by
using some colors. Tailwind offers a large, pre-made color palette. Applying
a color is super easy. Here are the two most common uses of color:

Text. To apply a color to text we use the pattern text-[color]-
[number]. The number variable defines tints and shades. For example,
to make text dark red, we can use a text-red-900 class. To make it
light red, we can use text-red-100.
Background. To use a color as a background, we use the pattern bg-
[color]-[number].

Imagery: Icons and Images

The final spice in our design recipe is the visual imagery. Visuals are like
salt and spices: a meal isn’t tasty without them. The most commonly used
visuals are:

https://tailwindcss.com/docs/font-family
https://tailwindcss.com/docs/font-size
https://tailwindcss.com/docs/font-style
https://tailwindcss.com/docs/font-weight
https://tailwindcss.com/docs/letter-spacing
https://tailwindcss.com/docs/line-height
https://tailwindcss.com/docs/text-align
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/text-opacity
https://tailwindcss.com/docs/text-decoration
https://tailwindcss.com/docs/text-transform
https://tailwindcss.com/docs/list-style-type
https://tailwindcss.com/docs/list-style-position
https://tailwindcss.com/docs/customizing-colors
https://tailwindcss.com/docs/text-color
https://tailwindcss.com/docs/background-color

Icons. These can be based on SVGs or icon fonts. As we saw earlier,
we included Font Awesome in our template. To use an icon from, it we
use the pattern fas fa-[icon-name]. For example, to use a search icon
for a search input, we can use the fas fa-search classes. Notice that
fas placed before the icon name means that we use Font Awesome’s
solid icons collection, which is free. Font Awesome offers some base
styling for its icons, but we can style them with Tailwind’s utilities (for
color, size, etc.) as well.
Images. To style images, we can use a bunch of Tailwind classes, such
as width and height, opacity, shadows, borders, filters, and so on.

Building a Blog Starter Template
In this last section, we’ll explore how to build a simple blog starter template
from scratch. I won’t go too deeply into the detail of each individual utility
class, but I’ll provide enough explanation where it’s needed.

Here’s the final version of the blog template. You can also test it in action in
this CodePen demo.

Utility Class Help

For information about any particular utility class, you can use Jay Elaraj’s
handy Tailwind cheatsheet, or you can search for a specific class in the
Tailwind documentation.

Base Styles

As we dive into building our starter template with Tailwind, it’s important to
note that Tailwind applies an opinionated set of base styles for every project
by default.

Creating the Header

We’ll build the template from top to bottom, starting with a header. The
following image shows what we’re trying to create.

https://tailwindcss.com/docs/opacity
https://tailwindcss.com/docs/box-shadow
https://tailwindcss.com/docs/filter
https://github.com/spbooks/tailwind/blob/master/part-1/blog-starter-template.html
https://codepen.io/codeknack/pen/yLXmKyQ
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs
https://tailwindcss.com/docs/preflight

To create the header, put the following code inside the <body> element in the
starting template:

<div class="container mx-auto">

 <header class="flex justify-between items-center sticky top-0

z-10 py-4 bg-blue-900">

 <div class="flex-shrink-0 ml-6 cursor-pointer">

 <i class="fas fa-wind fa-2x text-yellow-500"></i>

 <span class="text-3xl font-semibold text-blue-

200">Tailwind School

 </div>

 <ul class="flex mr-10 font-semibold">

 <li class="mr-6 p-1 border-b-2 border-yellow-500">

 <a class="cursor-default text-blue-200"

href="#">Home

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">News

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Tutorials

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Videos

 </header>

</div>

Let’s break the header’s code into smaller blocks. First, we’ve wrapped all
the content in a container by adding the container class in the wrapping
<div> element:

<div class="container mx-auto">

</div>

https://tailwindcss.com/docs/container

This forces the design to accommodate certain dimensions depending on the
current breakpoint. We’ve also centered the design with the mx-auto utility.
This sets the left and right margins to auto.

In Tailwind, when x is used after a CSS setting abbreviation (m for margin
here), it means that the setting will be applied both on left and right. If y is
used instead, it means the setting will be applied both top and bottom.

The reason we create such a container is that, on large screens, the design
will be centered and presented in a more compact size, which in my opinion
looks much better than a fully-fluid viewport.

The next thing we’ve done is create the header with a <header> element:

<header class="flex justify-between items-center sticky top-0 z-

10 py-4 bg-blue-900">

</header>

We’ve created a flex container and used justify-between and items-
center classes to add an equal amount of space between flex items and align
them along the center of the container’s cross axis.

We’ve also used the sticky and top-0 classes to make the header fixed to
the top when users scroll down, and we’ve set a z-10 class to ensure the
header will be always on top.

We’ve added a shade of blue color as a background and some padding for
both top and bottom sides of the header.

The first item in the header’s container is the blog’s logo:

<div class="flex-shrink-0 ml-6 cursor-pointer">

 <i class="fas fa-wind fa-2x text-yellow-500"></i>

 Tailwind

School

</div>

It’s combination of a yellow colored wind icon (fas fa-wind) and light blue
colored “Tailwind School” text. We’ve made the icon bigger by using Font

Awesome’s fa-2x class. The text is made bigger and semibold by using
Tailwind’s text-3xl and font-semibold classes respectively.

For the logo’s container, we’ve added a bit of left margin and used the flex-
shrink-0 class to prevent the logo from shrinking when the design is resized
to smaller viewports.

The second item in the header’s container is the main navigation:

<ul class="flex overflow-x-hidden mr-10 font-semibold">

We’ve created it by using a ul element turned into a flex container so we can
style its items as horizontal links. We’ve used the overflow-x-hidden class
to clip the content within navigation that overflows its left and right bounds.
We’ve also added some right margin.

The mr-10 class and the ml-6 (logo) classes use the r for right and l for left
abbreviations to set right and left margin respectively. In a similar way, t and
b can be used for setting top and bottom sides of an element.

For the navigation’s links, we’ve added some right margin and a small
padding to all sides:

<li class="mr-6 p-1 border-b-2 border-yellow-500">

 Home

<li class="mr-6 p-1">

 News

<li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Tutorials

<li class="mr-6 p-1">

 Videos

When we use a setting like padding without side abbreviation (p-1 here), it’s
applied to all sides.

We’ve set the color of links to white, which changes to light blue on
hovering. We’ve also used the hover: prefix to achieve that effect.

We’ve styled the active “Home” link by adding a thin yellow border below
the text. The border is created with the border-b-2 class, where b is for
bottom and 2 is the amount of border thickness.

The Design Process

In a text-based tutorial, it’s hard to demonstrate how a design is built step by
step, and how each step is built upon the previous one. For that reason, I
suggest you watch this short video, which shows an example of the steps and
reasoning involved in the design process. It should give you some extra
insight into the process we’re following here.

https://www.youtube.com/watch?v=1OUbP0rGFNs

Chapter 2: Going Beyond the
Basics
As we learned from the chapter, Tailwind CSS is the best known of the
utility-first frameworks. It offers a rich collection of CSS class utilities that
can be combined like Lego blocks to build any kind of design. Learning the
basics of how to use these utilities is also very straightforward.

But this knowledge alone isn’t enough for building complex and flexible
designs. After grasping the basics, instead of diving deeper into what can be
done with Tailwind, many users decide to use ready-made templates or a
copy-paste approach to building their designs. The aim of this chapter is to
avoid such a scenario by providing some insights into Tailwind’s more
advanced capabilities. We’ll dive a little deeper into what we can do with
Tailwind, learning how to create reusable, utility-based components and
templates, and how to make our designs responsive. We’ll also start to
explore how Tailwind can be configured and customized—a topic we’ll
continue to explore and build on in the following chapters.

All these skills will help us create a more flexible and manageable codebase.
They’ll let us go beyond the Tailwind basics so we can build our own
components and templates with confidence.

Getting Started with Tailwind
In this section, we’ll learn how to set up a new project with Tailwind.

Project Code

You can find the finished project for this chapter in the code repo for this
book.

The project creation process described below will also be used as a starting
point in the following parts of the book. In each of the next parts, you’ll be

https://tailwindcss.com/
https://github.com/spbooks/tailwind/tree/master/part-2

redirected to this section to prepare a new project.

Getting Ready

To follow along from here onwards, you’ll firstly need to have Node
installed on your machine.

Also, make sure you have a basic knowledge of Tailwind’s utilities—
including how they work and how they’re applied to HTML—as we won’t
be explaining them in detail here. The basics of Tailwind utilities were
covered in the first chapter.

Utility Class References

For information about particular utility classes, you can use Jay Elaraj’s
handy Tailwind cheatsheet, or you can search for a specific class in the
Tailwind documentation.

Base Styles

Remember to bear in mind that Tailwind applies an opinionated set of base
styles for every project by default.

The first step is to create a new Node app. In a directory of your choice, run
this command:

npm init -y

In the chapter, we played with Tailwind by using a Play CDN link. That’s a
great way to get started when we’re doing a quick test or proof of concept
experiment. But in this chapter, we’ll use the Tailwind CLI, which will give
us a production-ready setup.

The first step is to install Tailwind:

npm install -D tailwindcss

Next, run the following command:

https://nodejs.org/en/download/
https://nerdcave.com/tailwind-cheat-sheet
https://tailwindcss.com/docs
https://tailwindcss.com/docs/preflight
https://tailwindcss.com/docs/installation/play-cdn
https://tailwindcss.com/docs/installation

npx tailwindcss init

npx

npx is a tool that’s automatically installed alongside npm and allows you to
run a command from a local or remote npm package.

This will create a minimal tailwind.config.js file, where we can put our
customization options during development. The generated file contains the
following:

// /tailwind.config.js

module.exports = {

 content: [],

 theme: {

 extend: {},

 },

 plugins: [],

}

The next thing to do is to add our template paths in the content section, so
Tailwind can compile the utilities used in our templates. In our case, we’ll
add just an index.html file, which we’ll create a bit later:

// /tailwind.config.js

module.exports = {

 content: ["index.html"],

 ...

}

The next step is to create a styles.css file, in the root directory, where
we’ll include the framework’s styles using the @tailwind directive:

/* /styles.css */

@tailwind base;

@tailwind components;

@tailwind utilities;

As the names suggest, Tailwind styles are divided into three groups. The first
group represents all the base styles—such as CSS resets. The second
represents the styles for components—where any custom components are

https://tailwindcss.com/docs/content-configuration
https://tailwindcss.com/docs/functions-and-directives#tailwind

also injected. The third group contains all of Tailwind’s default utilities, as
well as any custom-made utilities.

The next step is to build the Tailwind styles. To do this, run the following
command:

npx tailwindcss -i styles.css -o tailwind.css

This gets the styles from the styles.css file as an input and generates a
tailwind.css file as an output.

If we don’t want to run this command every time we make some changes,
we can append the -w or --watch flag at the end, which will rebuild our
styles every time we make a change:

npx tailwindcss -i styles.css -o tailwind.css -w

To facilitate the use of both commands, let’s define them as scripts in
package.json file:

// /package.json

...

"scripts": {

 "dev": "npx tailwindcss -i styles.css -o tailwind.css",

 "dev:watch": "npx tailwindcss -i styles.css -o tailwind.css -

w"

},

...

Now we’re ready to start playing with Tailwind.

Creating Tailwind Components
As you may have expected, no matter how useful Tailwind classes are, we’ll
soon realize that we have repeating groups of utilities in our code. Of course,
this makes the code error-prone and hard to maintain. This is where
components come into play.

Components are predefined sets of utilities that can be reused and adapted
for various scenarios. A component effectively allows us to reuse Tailwind’s

classes, which reduces the code repetition and improves maintainability.

Tailwind allows us to extract classes into reusable components in two major
ways. The first way is to just extract them as groups of classes. The second
way is to create a reusable component with a frontend framework like Vue
or React, or a template partial with a template engine like Twig or Blade.
We’ll explore both scenarios in the following sections.

But before we dive into the examples, let’s create an index.html file in the
root directory and add links to the generated tailwind.css file and to the
Font Awesome icons. Here’s what the starter template should look like:

<!-- /index.html -->

<!doctype html>

<html>

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

 <link rel="stylesheet" type="text/css" href="tailwind.css">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.15.4/css/all.min.css">

 </head>

 <body>

 <!-- ... -->

 </body>

</html>

Extracting Classes into Reusable Components

Extracting classes into components is as easy as grouping a series of classes
by using the @apply directive. To demonstrate how this can be done, we’ll
create an alert component. First, let’s see how our alert component looks
when it’s built only with utility classes:

<div class="flex flex-col p-4 pt-2 w-full border-l-8 border-

blue-500 bg-blue-100">

 <div class="font-semibold italic text-lg text-blue-

500">Info</div>

 <div class="leading-tight text-sm text-blue-800">Lorem ipsum

dolor sit amet consectetur adipisicing elit.</div>

</div>

https://fontawesome.com/
https://tailwindcss.com/docs/extracting-components#extracting-component-classes-with-apply

Here’s a CodePen demo of the code above.

As you can see, this code sample creates a simple “Info” alert component.
But the problem is that, if we want to create different alerts—such as
“Warning”, “Success”, and so on—we’ll need to repeat a big part of the code
for each alert. This leads to poor maintainability, because if we wanted to
change the overall styles of these alerts, we’d need to update each one
separately. To avoid such a scenario, we’ll extract the repeating patterns into
individual component classes.

Open the styles.css file and add the following code:

/* /styles.css */

...

@layer components {

 .alert {

 @apply flex flex-col p-4 pt-2 w-full border-l-8;

 }

 .alert-title {

 @apply font-semibold italic text-lg;

 }

 .alert-content {

 @apply leading-tight text-sm;

 }

 .alert-info {

 @apply bg-blue-100 border-blue-500

 }

 .alert-info-title {

 @apply text-blue-500;

 }

 .alert-info-content {

 @apply text-blue-800;

 }

 .alert-warning {

 @apply bg-red-100 border-red-500

 }

 .alert-warning-title {

https://codepen.io/SitePoint/pen/LYeepBO?editors=1000

 @apply text-red-500;

 }

 .alert-warning-content {

 @apply text-red-800;

 }

}

Here, we’ve used the @layer components { ... } directive to wrap our
custom component classes. This is to tell Tailwind which layer those styles
belong to and to avoid specificity issues. The options are base, components,
and utilities.

First, we extract the base code for each alert component part into an
individual class (.alert, .alert-title, and .alert-content). Then, we
extract the code that differs for each individual alert (the specific color
classes). For example, for the “Info” alert, the classes would be .alert-
info, .alert-info-title, and .alert-info-content. Generally, we
extract or group the utilities into smaller and more manageable component
classes.

As you might have noticed, the classes we’ve just created are pretty similar
to those in component-based frameworks such as Bootstrap or Bulma. The
advantage of Tailwind’s classes is that they’re more transparent and easier to
tweak. We can see exactly which utilities are applied and we can easily edit
them whenever we need to.

Once we’ve created the required classes, we need to build Tailwind styles
again (by running npm run dev or npm run dev:watch) for the changes to
take effect. Once that’s done, we can try out the new components in action.
Open the index.html file and add the following code:

<!-- /index.html -->

<div class="alert alert-info m-6 w-1/3">

 <div class="alert-title alert-info-title">Info</div>

 <div class="alert-content alert-info-content">Lorem ipsum

dolor sit amet consectetur adipisicing elit.</div>

</div>

<div class="alert alert-warning m-6 w-1/3">

 <div class="alert-title alert-warning-title">Warning</div>

 <div class="alert-content alert-warning-content">Lorem ipsum

dolor sit amet consectetur adipisicing elit.</div>

</div>

This code creates “Info” and “Warning” alerts.

As you can see, with our custom component classes we can create much
more manageable and maintainable code. We now have fewer classes to use
and fewer places to make changes.

Building Tailwind Components with Vue

Extracting component classes, as demonstrated above, works well for fairly
small, simple components. If we want to create a complex component with
multiple elements, we’ll need to use a more flexible approach. By “flexible”
I mean more reusable and easier to manage. As we’ve seen already, even for
our simple alert component, we needed to create many component classes
for the different states or parts of the component. Imagine if we wanted to
create a fairly complex component such as a card. Doing this by using the

@apply directive would be quite impractical. After all, we want to simplify
our code, not to make it a mess, right?

Another way we can utilize the full potential of Tailwind is by using it in
frontend frameworks (like Vue, React, Svelte) that allow us to create
reusable components. This will give us much more flexibility when we want
to build complex components. We’ll demonstrate this by creating a general
recipe card component with Vue.

https://v3.vuejs.org/

Learning Vue

If you’re not familiar with Vue, you can consult the Vue documentation, or
take a look at Jump Start Vue.js, which offers a more in-depth exploration of
Vue’s features and abilities.

For this example, we’ll need to add a link to the Vue framework:

https://v3.vuejs.org/guide/introduction.html
https://www.sitepoint.com/premium/books/jump-start-vue-js-2nd-edition/

<!-- /index.html -->

<script src="https://unpkg.com/vue@3"></script>

Let’s first see what the recipe card component’s code would look like
without Vue:

<div class="m-5 shadow-md w-80 rounded overflow-hidden">

 <img src="https://source.unsplash.com/x00CzBt4Dfk/1600x900"

alt="Pizza Margherita image">

 <div class="p-2">

 <div class="font-bold text-lg text-gray-700 leading-snug">

 Pizza Margherita

 </div>

 <p class="text-xs leading-tight tracking-wide my-2">Invented

in Naples in honor of the first queen of Italy, the Margherita

pizza is the triumph of Italian cuisine in the world.</p>

 <div class="flex pt-2 border-t border-gray-300 text-sm text-

gray-700 divide-x-2">

 <div class="flex-1 text-center">

 <i class="far fa-clock"></i>

 <p>1h 15m</p>

 </div>

 <div class="flex-1 text-center">

 <i class="fas fa-utensils"></i>

 <p>4 Servings</p>

 </div>

 <div class="flex-1 text-center">

 <i class="fas fa-signal"></i>

 <p>Easy</p>

 </div>

 </div>

 </div>

</div>

Here’s a CodePen demo of the code above.

The problem here is that, if we want to use this template for multiple recipes,
we’ll end up with lots of code repetition. Later on, if we decide to change the
card’s design, we’ll need to edit the template in multiple places. This is
error-prone and wasteful of our time. The solution is to find a way to extract
the repeating code into a reusable template. We can easily do this by creating
a reusable Vue component.

https://codepen.io/SitePoint/pen/oNppbVR?editors=1000
https://v3.vuejs.org/guide/component-basics.html

Open index.html and аdd the following code before the closing </body>
tag:

// /index.html

<script>

const app = Vue.createApp({})

app.component('recipe-card', {

 props: ['imageurl', 'imgalt', 'titleurl', 'title',

'description', 'time', 'servings', 'level'],

 template: `

 <div class="m-5 shadow-md w-80 rounded overflow-hidden">

 <div class="p-2">

 <div class="font-bold text-lg text-gray-700 leading-

snug">

 <a :href="titleurl" class="hover:underline">{{ title

}}

 </div>

 <p class="text-xs leading-tight tracking-wide my-2">{{

description }}</p>

 <div class="flex pt-2 border-t border-gray-300 text-sm

text-gray-700 divide-x-2">

 <div class="flex-1 text-center">

 <i class="far fa-clock"></i>

 <p>{{ time }}</p>

 </div>

 <div class="flex-1 text-center">

 <i class="fas fa-utensils"></i>

 <p>{{ servings }}</p>

 </div>

 <div class="flex-1 text-center">

 <i class="fas fa-signal"></i>

 <p>{{ level }}</p>

 </div>

 </div>

 </div>

 </div>`

})

app.mount('#app')

</script>

Here, we’ve put all repeating code in a template and defined props for the
recipe’s details. This way, we can provide different details for each recipe

https://v3.vuejs.org/guide/component-basics.html#passing-data-to-child-components-with-props

while the template remains the same. If we decide in the future to change the
card’s appearance, we’ll need to edit its template in only one place.

Rebuilding Styles

Build Tailwind styles again (if you don’t use the dev:watch script) for the
changes to take effect.

Chapter 3: Building Complex
Designs with Tailwind
In the first chapter, we covered the basic concepts of the Tailwind
framework and how to use it to build simple designs. We then expanded this
knowledge by learning how we can build reusable components and
responsive designs.

In this chapter, we’ll extend what we’ve learned with more advanced layout-
building and design-enhancement techniques, including creating and using:

grid layouts
drop caps
gradients
image clipping
image filters
transforms and transitions

We’ll start with several grid layouts and then we’ll build a full article layout.

Building Complex and Flexible Layouts with
Tailwind’s Grid Utilities
In this section, we’ll build several grid layouts similar to magazine or news
sites. To do that, we’ll use Tailwind’s grid utilities.

CSS Grid

If you need to get up to speed with Grid layout in CSS, you can do it quickly
by playing this fun CSS Grid Garden game. For more in-depth exploration
of CSS Grid and CSS in general, I suggest checking out CSS Master.

Project Code

https://cssgridgarden.com/
https://www.sitepoint.com/premium/books/css-master-3rd-edition/

You can find the finished project for this chapter in the code repo for this
book.

Exploring Tailwind’s Grid Utilities

Here’s a quick overview of the grid utilities we’ll use in our layouts.

To define columns and rows, you use the following classes (n is the number
of columns/rows):

grid-cols-{n}: define columns
grid-rows-{n}: define rows

To add a gap between columns and/or rows, you can use the following
classes:

gap-{size}: define gap between columns and rows at the same time
gap-x-{size}: define gap between columns
gap-y-{size}: define gap between rows

To start creating complex layouts, you’ll need the following classes:

col-span-{n}: make an element span n columns
col-start-{n}: make an element start at grid line n
col-end-{n}: make an element end at grid line n
row-span-{n}: make an element span n rows
row-start-{n}: make an element start at grid line n
row-end-{n}: make an element end at grid line n

Numbering Grid Lines

CSS grid lines start at 1, not 0. So in a four-column, three-row grid, columns
would start at column line 1 and end at column line 5, and rows would start
at row line 1 and end at row line 4—as illustrated below.

https://github.com/spbooks/tailwind/tree/master/part-3

You can also use order-{order} to display grid items in a different order
from their DOM order.

With the above utilities, we can create an endless number of layouts with
different levels of complexity. Let’s explore some examples now.

Creating Grid Layouts

We’ll borrow most of the following examples from this nice looking
Newsportal theme.

You can see the completed grid layout examples in this CodePen demo.

To follow along, let’s create a new project, just as we learned how to do in
the previous chapter.

https://newsportal.electronthemes-ghost.com/
https://codepen.io/SitePoint/pen/LYeeqdE

Next, you need to configure Tailwind to use all HTML files, by modifying
the content section in the tailwind.config.js file:

// /tailwind.config.js

module.exports = {

 content: ['*.html'],

 theme: {

 extend: {},

 },

 plugins: [],

}

Lastly, build the styles by running this command:

npm run dev:watch

Now, let’s start with the first layout. The image below shows what we want
to build.

To build the first layout, in the root directory, create a new grids.html file
with the following content:

<!-- /grids.html -->

<!doctype html>

<html>

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

 <link rel="stylesheet" type="text/css" href="tailwind.css">

 <style>

 .box {

 color: white;

 background-color: green;

 min-height: 150px;

 padding-top: 10%;

 padding-left: 15%;

 font-size: 1.5rem;

 font-weight: 700;

 }

 </style>

 </head>

 <body>

 <div class="mx-auto p-8 w-full lg:w-1/2">

 <h1 class="text-3xl font-bold">Grid Layout Examples</h1>

 <h2 class="my-6 text-2xl underline underline-offset-

2">Example #1</h2>

 <div class="grid grid-cols-3 grid-rows-2 gap-x-4 gap-y-2">

 <div class="box row-span-2 col-span-2">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 </div>

 <!-- Add the next grid examples here -->

 </div>

 </body>

</html>

Demo Styles

The box class is used here and later just for demonstration purposes, so we
can see the visual shape of our grids.

As you can see, we’ve effectively replicated the design in the earlier
screenshot.

To achieve this, we’ve firstly created a grid container and specified that our
grid will have three columns and two rows. We’ve also added different gap
spaces between columns and rows. Then we’ve made the first element span
two columns and two rows.

Let’s move on to the next layout. The final result is shown below.

As you can see, this is quite similar to the first example, but under the hood
we’ll do some different things to achieve it. Here’s the code to add after the
first example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-offset-2">Example

#2</h2>

<div class="grid grid-cols-2 grid-rows-4 gap-x-4 gap-y-2">

 <div class="box row-span-4">1</div>

 <div class="box">2</div>

 <div class="box">3</div>

 <div class="box">4</div>

 <div class="box">5</div>

</div>

This time, we’ve used two columns and four rows, and the only thing we’ve
needed to do is span the first element over four rows. Easy, huh?

The next layout is quite a bit different. This is what it looks like fully
finished.

Here’s the code to add after the second example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-offset-2">Example

#3</h2>

<div class="grid grid-cols-4 grid-rows-2 gap-x-2 gap-y-4">

 <div class="box col-span-2">1</div>

 <div class="box col-span-2">2</div>

 <div class="box">3</div>

 <div class="box">4</div>

 <div class="box">5</div>

 <div class="box">6</div>

</div>

In this example, we’ve created four columns and two rows for the grid. Then
we’ve just spanned the first two elements over two columns. Once again, it
was quite simple to achieve this result.

OK. Let’s try something more complex now.

Here’s the code to add after the third example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-offset-2">Example

#4</h2>

<div class="grid grid-cols-3 grid-rows-4 gap-x-4 gap-y-2">

 <div class="box row-span-2">1</div>

 <div class="box row-span-4">2</div>

 <div class="box row-span-2">3</div>

 <div class="box">4</div>

 <div class="box">5</div>

 <div class="box">6</div>

 <div class="box">7</div>

</div>

<hr class="my-6">

<div class="grid grid-cols-3 grid-rows-4 gap-x-4 gap-y-2">

 <div class="box row-span-2">1</div>

 <div class="box row-start-3">2</div>

 <div class="box row-start-4">3</div>

 <div class="box row-span-4">4</div>

 <div class="box row-span-2">5</div>

 <div class="box">6</div>

 <div class="box">7</div>

</div>

In this example, I’ve included two variations to show you that there’s more
than one way to create the same layout.

The first version is the easier to achieve. We’ve just spanned the first three
elements across the desired number of rows. This also creates a sort of row
ordering, as you can see from the box numbers. But what if we want the
elements to display column by column?

The second version demonstrates how this can be achieved. The first
element is easy. We’ve just spanned it over two rows. For the second, we’ve
used a row-start-{n} class to put it in the right place—below the first
element. We’ve used the same technique to put the third element below the
second one. The forth and fifth elements are also easy. We’ve spanned them
four and two rows respectively, to put them properly in the grid. The last two
elements don’t need any classes because they flow naturally into the right
places.

As we can see, to create a fairly complex layout is quite easy with these grid
utilities. Let’s create an even more complex final example. Here’s the code
to add after the fourth example:

<!-- /grids.html -->

<h2 class="my-6 text-2xl underline underline-offset-2">Example

#5</h2>

<div class="grid grid-cols-3 grid-rows-3 gap-2">

 <div class="box col-start-1 col-end-3">1</div>

 <div class="box row-start-2 row-end-4">2</div>

 <div class="box row-start-2">3</div>

 <div class="box row-start-1 row-end-3">4</div>

 <div class="box col-start-2 col-end-4">5</div>

</div>

This creates a very interesting layout. The image below is labeled so we can
more easily understand how the code works.

For this example, we’ve used a grid of three columns and three rows. We’ve
mixed the start and end classes.

We’ve told the first element that it should start at the first vertical grid line
and end at the third one. We’ve moved the second element below the first
one by making it start at the second horizontal grid line and end at the fourth.

For the third element, we’ve only needed to define its start line. We’ve
forced the fourth element to start at the first horizontal line and end at the
third. And finally, we’ve spanned the fifth element over two columns by
defining the second vertical grid line as a starting point and the fourth one as
the end.

And that’s it. It’s easy, but it needs careful planning and lots of
experimenting.

By the way, we can use a different utility combination to achieve the exact
same result. For example, here’s a variation that uses mostly span utilities
instead of start and end:

<div class="grid grid-cols-3 grid-rows-3 gap-2">

 <div class="box col-span-2">1</div>

 <div class="box row-start-2 row-span-2">2</div>

 <div class="box row-start-2">3</div>

 <div class="box row-span-2">4</div>

 <div class="box col-span-2">5</div>

</div>

The end result is the same.

As we can see, CSS grids allow us to easily build complex layouts that are
almost impossible to build with CSS 2.x without using some sort of dirty
hacks and/or complicated workarounds.

Creating a Complete Article Design
In this section, we’ll explore how to create a complete article/post design,
employing Tailwind utility classes for layout, typography, colors, images,
and a bit of interactivity. The final result is shown below.

Creating the Base Layout

OK. Let’s do some coding. In the root directory, create a new article.html
file with the following content:

<!-- /article.html -->

<!doctype html>

<html>

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width, initial-

scale=1.0" />

 <link rel="stylesheet" type="text/css" href="tailwind.css">

 </head>

 <body>

 <div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3

bg-sky-50">

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Maecenas varius vitae ipsum et commodo. In scelerisque est

magna, ut fringilla purus congue eu. Mauris id metus ac metus

porta aliquet. Aliquam quam ipsum, consequat malesuada lectus

nec, blandit condimentum enim. Donec varius mattis facilisis.

Morbi rhoncus erat vel erat pellentesque suscipit. Nunc dictum

euismod libero sed tristique.</p>

 <quote class="px-4 py-2 block border-l-4">Lorem ipsum

dolor sit amet, consectetur adipiscing elit. Maecenas varius

vitae ipsum et commodo. In scelerisque est magna, ut fringilla

purus congue eu. Mauris id metus ac metus porta aliquet.</quote>

 <p>Aliquam id nulla dignissim felis bibendum aliquam. Cras

vulputate blandit semper. Nam quam dolor, tincidunt non odio ac,

condimentum molestie justo. In ornare maximus tortor, aliquam

consequat arcu sagittis id. Vivamus condimentum varius ante,

pulvinar laoreet tortor dignissim ac. Curabitur egestas in arcu

sit amet feugiat. Aenean interdum, purus eget sodales tincidunt,

magna sem lobortis nunc, at porttitor arcu velit sed augue.

Praesent porttitor nisl enim, eget sollicitudin ipsum porta a.

Integer tincidunt, lorem sit amet gravida hendrerit, arcu felis

convallis metus, vitae vehicula diam dolor vulputate sapien.

Nulla finibus lectus nec porta faucibus. Praesent in massa

sollicitudin, dignissim quam at, volutpat mauris. Morbi in

turpis sapien. Morbi ante est, gravida vitae ipsum quis, pretium

scelerisque massa.</p>

 <img class="mr-3 w-1/2 float-left rounded"

src="https://source.unsplash.com/ZEfzyduAyJU">

 <p>Vestibulum congue felis at posuere commodo. Praesent

sapien magna, aliquet ut efficitur et, luctus at neque. Donec

vitae nunc convallis, maximus ex sit amet, consequat tellus.

Aenean eleifend cursus urna, sed fermentum felis cursus eget.

Sed accumsan hendrerit turpis at ullamcorper. Integer quam

sapien, rutrum ac pharetra eget, maximus id lacus. Vivamus

sollicitudin molestie hendrerit. Proin sem quam, tempus in felis

et, elementum dignissim felis. Integer odio tellus, semper at

commodo at, euismod id magna. Aenean nisl metus, maximus a eros

sit amet, facilisis malesuada lorem. Mauris est tortor, accumsan

ac aliquet et, sagittis vitae velit. Class aptent taciti

sociosqu ad litora torquent per conubia nostra, per inceptos

himenaeos.</p>

 <p>Aenean scelerisque urna id dictum tempor. Pellentesque

ipsum orci, convallis eget purus nec, placerat laoreet nulla.

Nullam vitae lectus porta, lacinia neque at, rutrum felis. Lorem

ipsum dolor sit amet, consectetur adipiscing elit. Morbi luctus,

magna eget gravida lobortis, elit elit rutrum urna, at volutpat

ex orci accumsan urna. Sed et ligula magna. Ut dignissim semper

ligula, at lacinia mi dignissim non. In eleifend ultricies

viverra. Nunc euismod ac lacus ac molestie. Nam sem lectus,

malesuada a ipsum vitae, viverra condimentum elit. Ut at

vulputate tortor, nec suscipit leo. In non dolor nec purus

semper tempus:</p>

 <ul class="ml-6 pl-6 space-y-3">

 First item

 Second item

 Third item

 <p>Pellentesque tincidunt non orci id congue. Donec

blandit pulvinar leo et tincidunt. Sed venenatis venenatis

justo, ut congue neque lobortis sit amet. Nam tempus vehicula

nisi, vitae commodo magna condimentum id. In quis vehicula

massa. Fusce id congue lorem. Duis imperdiet placerat metus,

vitae hendrerit lorem sollicitudin sit amet. Integer varius

justo non velit semper elementum. Donec scelerisque magna nibh,

at efficitur elit hendrerit id. Aenean sagittis lectus odio, eu

varius lectus vestibulum eget. Sed gravida mattis auctor.</p>

 <hr>

 <div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-

b-[16px]" src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3">David Smith</p>

 <p class="mt-2">Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Maecenas <a href="#"

class="underline underline-offset-1">varius vitae ipsum et

commodo.</p>

 </div>

 </div>

 </div>

 </body>

</html>

Here’s a live version of that code on CodePen.

Abbreviated Text

For brevity’s sake, from now on I won’t use the full paragraph text. But you
need to use the full text to display the example correctly.

We’ll start by creating an article container:

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-

sky-50">

</div>

We’ve added some visual space (space-y-6) between all direct children
elements. Then we’ve added two width modifiers (md:w-1/2 xl:w-1/3) that
will produce the following effect: the article will start at full width at small
screens (this is by default) up to the medium screens, where the width will
change to one and a half. This setting will prevail up to the extra large
screens and above, where the width will change to one third. Also starting
from medium screens and above, the article will be centered, thanks to the
md:mx-auto property.

Next, we’ll add the article content:

<p>Lorem ipsum dolor..</p>

<quote class="px-4 py-2 block border-l-4">Lorem ipsum dolor..

</quote>

<p>Aliquam id nulla..</p>

<img class="mr-3 w-1/2 float-left rounded"

src="https://source.unsplash.com/ZEfzyduAyJU">

<p>Vestibulum congue felis..</p>

<p>Aenean scelerisque urna.. In non dolor nec purus semper

tempus:</p>

<ul class="ml-6 pl-6 space-y-3">

 First item

 Second item

 Third item

https://codepen.io/SitePoint/pen/abEEMzO

<p>Pellentesque tincidunt non..</p>

Here, we’ve added the following elements:

a paragraph
a quote with basic styling and border
another paragraph
an rounded and floated left image with half width
another two paragraphs
a list
and the last paragraph

Finally, we’ll add the author section:

<hr>

<div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-

[16px]" src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3">David Smith</p>

 <p class="mt-2">Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Maecenas <a href="#" class="underline

underline-offset-1">varius vitae ipsum et commodo.</p>

 </div>

</div>

Here, we’ve added an hr element to divide the author section from the
article content. We’ve then wrapped the author info in a flex container.
We’ve styled the image with a polaroid-like effect by using border classes.
To achieve this, we’ve used an arbitrary value of 16px for the bottom border.
To style the link, we’ve used the underline underline-offset-1 classes,
which add a line with a small offset.

We now have a base layout that we can build upon. Let’s continue
developing the article design by adding some typographical features.

Typography

In this section, we’ll explore typographical features such as drop caps.
Here’s what the code should look like after the additions:

https://tailwindcss.com/docs/adding-custom-styles#arbitrary-properties

<!-- /article.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-

sky-50">

 <p class="first-letter:-mt-2 first-letter:mr-3 first-

letter:float-left first-letter:text-7xl first-letter:font-bold

first-line:uppercase first-line:tracking-widest">Lorem ipsum

dolor..</p>

 <quote class="px-4 py-2 block border-l-4 font-light

italic">Lorem ipsum dolor..</quote>

 <p class="indent-6">Aliquam id nulla..</p>

 <img class="mr-3 w-1/2 float-left rounded"

src="https://source.unsplash.com/ZEfzyduAyJU">

 <p class="indent-6">Vestibulum congue felis..</p>

 <p class="indent-6">Aenean scelerisque urna.. In non dolor nec

purus semper tempus:</p>

 <ul class="ml-6 pl-6 space-y-3 list-disc">

 First item

 Second item

 Third item

 <p class="indent-6">Pellentesque tincidunt non..</p>

 <hr>

 <div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-

[16px]" src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3 font-semibold">David Smith</p>

 <p class="mt-2 text-sm">Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Maecenas <a href="#"

class="underline underline-offset-1 decoration-1 decoration-

wavy">varius vitae ipsum et commodo.</p>

 </div>

 </div>

</div>

This CodePen demo shows our typography settings in action.

To create a drop cap and style the first line of the paragraph, we’ve used the
first-letter and first-line pseudo elements (first-letter:-mt-2
first-letter:mr-3 first-letter:float-left first-letter:text-7xl

first-letter:font-bold first-line:uppercase first-line:tracking-

widest).

https://codepen.io/SitePoint/pen/ZEvvPgO

We’ve also added some indent (indent-6) to all paragraphs except the first
one for easier reading.

We’ve made the text for the quote thin and italic (font-light italic).

We’ve added a disc symbol (list-disc) for the list item bullets.

We’ve made the font for the author’s name semibold (font-semibold) and
the text for author’s info small (text-sm). Finally, we’ve decorated the link
by changing its thickness and style (decoration-1 decoration-wavy).

The article is starting to look a lot nicer, but it’s still is missing a bit of
liveliness. Let’s fix that by adding some colors and gradients.

Colors and Gradients

We know already the base use of colors, but now we’ll explore how to use
gradients too. Here’s the code with added colors:

<!-- /article.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-

sky-50">

 <p class="first-letter:-mt-2 first-letter:mr-3 first-

letter:float-left first-letter:text-7xl first-letter:font-bold

first-letter:text-cyan-400 first-line:uppercase first-

line:tracking-widest first-line:text-cyan-600">Lorem ipsum

dolor..</p>

 <quote class="px-4 py-2 block border-l-4 border-cyan-400 font-

light italic bg-gradient-to-r from-teal-100 to-cyan-300">Lorem

ipsum dolor..</quote>

 <p class="indent-6">Aliquam id nulla..</p>

 <img class="mr-3 w-1/2 float-left rounded"

src="https://source.unsplash.com/ZEfzyduAyJU">

 <p class="indent-6">Vestibulum congue felis..</p>

 <p class="indent-6">Aenean scelerisque urna.. In non dolor nec

purus semper tempus:</p>

 <ul class="ml-6 pl-6 space-y-3 list-disc marker:text-cyan-400

text-gray-600">

 First item

 Second item

 Third item

 <p class="indent-6">Pellentesque tincidunt non..</p>

 <hr class="text-cyan-600">

 <div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-

[16px] border-red-600"

src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3 font-semibold text-stone-900">David

Smith</p>

 <p class="mt-2 text-sm">Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Maecenas <a href="#"

class="underline underline-offset-1 decoration-1 decoration-wavy

decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum

et commodo.</p>

 </div>

 </div>

</div>

You can see these color changes on this CodePen demo.

Firstly, we’ve added colors for the drop cap (first-letter:text-cyan-400)
and the first line of the paragraph (first-line:text-cyan-600). We’ve also
added color for the quote element’s border (border-cyan-400) and a
gradient for the body (bg-gradient-to-r from-teal-100 to-cyan-300).

The pattern for making gradients is from-{color} via-{color} to-
{color}. Let’s break it down:

from-{color}: set the starting color of a gradient
via-{color}: add a middle color (or colors) to a gradient
to-{color}: set the ending color of a gradient

https://codepen.io/SitePoint/pen/jOYYROE

The bg-gradient-to-r class defines the direction of the gradient—from left
to right.

Next, we’ve added color to the list items (text-gray-600) and their bullets
by using the marker pseudo element (marker:text-cyan-400). We’ve also
colored the hr element’s line (text-cyan-600) to fit the article theme.

We’ve made the author image border red (border-red-600) and author
name next to it dark brown (text-stone-900). And the last color change is
to the link. We’ve colored the underline and changed the text color on hover
(decoration-cyan-600 hover:text-cyan-600).

And that’s it. Now our article design looks much more vivid and alive. To
extend this further, let’s now enhance the appearance of the images with
some effects.

Adding Image Effects
In this section, we’ll explore how you can make your images more visually
appealing. We’ll add sepia and drop-shadow effects by using the
corresponding Tailwind filters. Besides that, we’ll use arbitrary values to clip
the image and make text flow around it. Here’s the code with image effects
added:

<!-- /article.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-

sky-50">

...

 <img class="mr-3 w-1/2 float-left rounded hover:sepia

hover:drop-shadow-lg [clip-path:circle(80%_at_30%_20%)] [shape-

outside:circle(80%_at_30%_20%)]"

src="https://source.unsplash.com/ZEfzyduAyJU">

 <p class="indent-6">Vestibulum congue felis..</p>

...

 <div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-

[16px] border-red-600 shadow-md shadow-red-900"

src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3 font-semibold text-stone-900">David

Smith</p>

 <p class="mt-2 text-sm">Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Maecenas <a href="#"

https://tailwindcss.com/docs/sepia
https://tailwindcss.com/docs/drop-shadow

class="underline underline-offset-1 decoration-1 decoration-wavy

decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum

et commodo.</p>

 </div>

 </div>

</div>

You can see the code live in this CodePen demo.

For the article image, we’ve firstly added two filters that will take effect on
hover (hover:sepia hover:drop-shadow-lg). Then we’ve used the power
of arbitrary values to clip the image ([clip-
path:circle(80%_at_30%_20%)]) and force the text to flow around it
([shape-outside:circle(80%_at_30%_20%)]).

https://codepen.io/SitePoint/pen/RwxxOaq

For the author image, we’ve used a regular shadow (shadow-md) with a dark
red color (shadow-red-900) for a more natural look.

Now the article looks even more attractive, but let’s take it to the limit by
adding some transforms and transitions.

Adding Effects
In this final section, we’ll see how to add some bells and whistles to our
article design. Here’s the code with the effects added:

<!-- /article.html -->

<div class="m-6 md:mx-auto p-8 space-y-6 md:w-1/2 xl:w-1/3 bg-

sky-50">

...

 <div class="flex pt-6">

 <img class="mr-6 mb-6 w-24 h-24 rounded border-4 border-b-

[16px] border-red-600 shadow-md shadow-red-900 origin-bottom-

left -rotate-6 hover:rotate-0 hover:scale-110 transition-

transform duration-500"

src="https://source.unsplash.com/WNoLnJo7tS8" />

 <div>

 <p class="-mt-3 font-semibold text-stone-900">David

Smith</p>

 <p class="mt-2 text-sm">Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Maecenas <a href="#"

class="underline underline-offset-1 decoration-1 decoration-wavy

decoration-cyan-600 hover:text-cyan-600">varius vitae ipsum

et commodo.</p>

 </div>

 </div>

</div>

You can see these effects live in this CodePen demo.

Here are the classes we’ve added to the author image (origin-bottom-left
-rotate-6 hover:rotate-0 hover:scale-110 transition duration-

500). We’ve set the transform origin to be in the bottom left of the image.
We’ve then rotated the image slightly. When the image is hovered over, the
image will be rotated to its normal position and scaled up slightly. Finally,
we’ve specified that the transform property should transition when it’s

https://codepen.io/SitePoint/pen/wvppZzw

changed (transition-transform), and we’ve also set the transition duration
(duration-500).

Great! Now our article design is complete and has a compelling look and
feel.

Conclusion
So far, we’ve learned how to build complex layout designs with Tailwind’s
grid utilities, and how we can build a complete article design by combining
many of Tailwind’s utilities for layout, typography, colors, imagery, and
interactivity.

To further explore and build on your Tailwind skills, I suggest you to try to
make different variants of the designs we’ve explored here and experiment
with your own designs too.

In the next chapter, we’ll explore various ways to customize Tailwind by
overriding or extending the base styles and default theme, and ways to create

reusable configuration presets.

Chapter 4: Customizing Tailwind
and Optimizing Your Workflow
So far we’ve explored various ways to use the existing Tailwind utilities. In
this fourth chapter, we’ll dive in even deeper and explore how we can
customize Tailwind either by adding new utilities or by tweaking existing
ones.

Customizing Tailwind
Tailwind is already like a CSS Swiss Army knife, but nevertheless there will
be times when we’ll want to add extra features to it. In this section, we’ll
explore the most common ways Tailwind can be customized to suits our
needs.

Project Code

You can find the finished project for this chapter in the code repo for this
book.

Firstly, we need to create a new Tailwind project (which we covered in the
second chapter).

Next, create an index.html file in the root directory and add the following
content to it:

<!-- /index.html -->

<!doctype html>

<html>

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <link href="tailwind.css" rel="stylesheet">

 <link href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.15.4/css/all.min.css" rel="stylesheet">

https://github.com/spbooks/tailwind/tree/master/part-4

 <link href="https://fonts.googleapis.com/css2?

family=Carter+One&display=swap" rel="stylesheet">

</head>

<body>

</body>

</html>

We have a bunch of links here:

The first link includes the compiled Tailwind styles.
The second link includes the Font Awesome icons library. We’ll use its
icons in the examples later on.
The third link includes the Carter One font from the Google Fonts
collection. We’ll incorporate this font into the examples later on.

The image below shows what this font looks like.

https://fontawesome.com/icons
https://fonts.google.com/specimen/Carter+One

To demonstrate Tailwind’s customization features, we’ll reuse the responsive
header that we created in the second chapter. We’ll copy the header section
from CodePen and add it to the index.html file:

<!-- /index.html -->

<!doctype html>

<html>

 ...

<body>

 <header class="flex items-center justify-between flex-wrap bg-

gray-800 py-4 w-full">

 <div class="flex-shrink-0 ml-6">

 <i class="fas fa-drafting-compass fa-2x text-yellow-

500"></i>

 <span class="ml-1 text-3xl text-blue-200 font-

https://codepen.io/SitePoint/pen/xxppVdv?editors=1010

semibold">WebCraft

 </div>

 <button id="nav-toggle" class="md:hidden p-2 mr-4 ml-6 my-2

border rounded border-gray-600 text-blue-200 hover:border-blue-

200">

 <i class="fas fa-bars fa-2x"></i>

 </button>

 <div class="pl-6 w-full md:w-auto hidden md:block" id="nav-

content">

 <ul class="md:flex">

 <li class="mr-6 p-1 md:border-b-2 border-yellow-500">

 <a class="text-blue-200 cursor-default"

href="#">Home

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Services

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Projects

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Team

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">About

 <li class="mr-6 p-1">

 <a class="text-white hover:text-blue-300"

href="#">Contacts

 </div>

 </header>

<script>

 document.getElementById('nav-toggle').onclick = function(){

 document.getElementById("nav-

content").classList.toggle("hidden");

 }

</script>

</body>

</html>

We need to remember to add the script part too, as otherwise the menu won’t
work.

Now we’re ready to dive into the actual customization.

Customizing the Default Tailwind Theme
As we saw in the second chapter, to create a Tailwind configuration file we
run this command:

npx tailwindcss init

Doing so creates the following file:

// tailwind.config.js

module.exports = {

 content: [],

 theme: {

 extend: {},

 },

 plugins: [],

}

We’ve already explored the content key. Now we’ll focus on the theme key.
The plugins key will be explored in the next chapter.

The default Tailwind theme can be either overridden or extended, or both.
This gives us a great amount of flexibility.

The theme key allows us to customize four base things: screens, colors,
spacing, and core plugins such as borderRadius, fontFamily, and so on.
We’ll explore each one next, starting with the screens.

Customizing Tailwind Theme’s Responsive Breakpoint
Modifiers

https://tailwindcss.com/docs/theme
https://tailwindcss.com/docs/screens

The default responsive utility variants can be overridden by adding our own
under the screens key like this:

module.exports = {

 theme: {

 screens: {

 'sm': '576px',

 'md': '960px',

 'lg': '1440px',

 }

 }

}

In this case, the default variants are discarded and won’t be available along
with the newly added ones.

If we want to keep the existing breakpoints and to extend them with one or
more variants, we have two options.

First, if we want to add larger variants, we just add them under the extend
key:

module.exports = {

 theme: {

 extend: {

 screens: {

 '3xl': '1600px',

 }

 }

 }

}

Here, the default variants are kept and the new one is added to them. This
approach can be used also to override a single breakpoint. In such a case, we
use one of the default names and replace its value with a new one. For
example:

module.exports = {

 theme: {

 extend: {

 screens: {

 'md': '960px',

 }

 }

 }

}

Here, the md variant’s value is replaced, while the rest of the variants keep
their default values.

Second, if we want to add smaller breakpoints, things get a bit more
complicated. In such a case, we first need to add our smaller breakpoints,
and then we must provide the default utilities after them like so:

const defaultTheme = require('tailwindcss/defaultTheme')

module.exports = {

 theme: {

 screens: {

 'xs': '475px',

 ...defaultTheme.screens,

 }

 }

}

Here, we first import the default theme and use its screens key to include
the default responsive utilities after the xs variant. You may notice that we
don’t use the extend key here. So in fact, we “extend” the breakpoints by
redefining them. This is because, if we use the extend key, smaller
breakpoints will be added to the end of the list and the order from smallest to
largest will be incorrect. In such a case, the breakpoints won’t work as
expected.

Customizing Tailwind’s Theme Colors

Tailwind offers a precisely selected color palette that will be enough in many
scenarios. However, in some cases, we might want to add some specific
colors or shades to it—such as our brand colors. In this case, we can extend
the default colors like so:

module.exports = {

 theme: {

 extend: {

 colors: {

 maroon: {

 50: '#e46464',

https://tailwindcss.com/docs/customizing-colors

 100: '#d05050',

 200: '#bc3c3c',

 300: '#a82828',

 400: '#941414',

 500: '#800000',

 600: '#6c0000',

 700: '#580000',

 800: '#440000',

 900: '#300000'

 },

 indigo: {

 950: '#1d1a6d'

 }

 }

 }

 }

}

Here, we’ve added our new maroon color shades to the default colors, and
also extended the default indigo color with one more darker shade.

The image below shows what the maroon color palette looks like.

To generate the palette, I’ve used the Tailwind colors online tool, which
automatically generates the required code.

If we want to completely replace the default Tailwind color palette with our
own custom colors, we can do it this way:

module.exports = {

 theme: {

 colors: {

 transparent: 'transparent',

 current: 'currentColor',

 'white': '#ffffff',

 'black': '#000000',

 'tahiti': {

 100: '#cffafe',

 200: '#a5f3fc',

 300: '#67e8f9',

 400: '#22d3ee',

 500: '#06b6d4',

https://tailwind-colors.meidev.co/

 600: '#0891b2',

 700: '#0e7490',

 800: '#155e75',

 900: '#164e63',

 }

 }

 }

}

Here, we’ve added simple white and black colors and tahiti color shades.
We’ve also included values like transparent and currentColor in case we
want to use them in our project.

If we want to use some of Tailwind’s default colors, we can do so by
importing them and using the ones we need like so:

const colors = require('tailwindcss/colors')

module.exports = {

 theme: {

 colors: {

 transparent: 'transparent',

 current: 'currentColor',

 black: colors.black,

 white: colors.white,

 gray: colors.gray,

 emerald: colors.emerald,

 indigo: colors.indigo,

 yellow: colors.yellow,

 },

 },

}

Now you can use your colors as usual—for example, text-yellow-500, bg-
indigo-300, and so on.

Naming Colors

We can use different names for our colors if we wish. For example, green:
colors.emerald. In this scenario, we would use it like this: text-green-
400, bg-green-700, and so on.

Customizing Tailwind’s Spacing Utilities

https://tailwindcss.com/docs/customizing-spacing

Tailwind has a rich set of spacing utilities—which are detailed in the
documentation on Tailwind’s default spacing scale.

However, sometimes we might need a bit more precision. In such a situation,
we can add the needed utilities again in two ways.

We can just discard the Tailwind utilities and replace them with our own:

module.exports = {

 theme: {

 spacing: {

 sm: '8px',

 md: '12px',

 lg: '16px',

 xl: '24px',

 }

 }

}

Here, we’ve overridden Tailwind’s default spacing utilities and generated
classes like w-lg and h-md instead.

Alternatively, we can add the “missing” utilities while keeping all the
defaults as well:

module.exports = {

 theme: {

 extend: {

 spacing: {

 '13': '3.25rem',

 '15': '3.75rem',

 '128': '32rem',

 '144': '36rem',

 }

 }

 }

}

We can use these new utilities in the same way as default ones. For example,
to apply our custom utilities for width and height, we write them like this: w-
15 h-13.

Customizing Tailwind’s Core Plugins

https://tailwindcss.com/docs/customizing-spacing#default-spacing-scale
https://tailwindcss.com/docs/theme#core-plugins

The last thing we can customize in the theme key is core plugins.

A core plugin is a utility with a series of different variations.

Here’s the default definition for the blur plugin/utility:

blur: {

 0: '0',

 none: '0',

 sm: '4px',

 DEFAULT: '8px',

 md: '12px',

 lg: '16px',

 xl: '24px',

 '2xl': '40px',

 '3xl': '64px',

}

The blur plugin applies a blur filter to an element. Each variation applies a
different amount of blurring.

Let’s see now how we can customize it. As with all utilities, we can either
extend a plugin or override it.

In my view, the default blurring values are way too high. I prefer to have
gentler blurring variations with a smooth transition between them. So here’s
an example of overriding a plugin’s values:

module.exports = {

 theme: {

 blur: {

 'none': 'blur(0)',

 'sm': 'blur(2px)',

 DEFAULT: 'blur(4px)',

 'md': 'blur(6px)',

 'lg': 'blur(8px)',

 'xl': 'blur(10px)'

 }

 }

}

We’ve added the plugin name as a key and provided our custom variations.
The code above will produce the following classes: blur-none, blur-sm,
blur, blur-md, and blur-lg.

https://developer.mozilla.org/en-US/docs/Web/CSS/filter

Default Key

It’s a common convention to use a key of DEFAULT for the class without a
suffix. This is supported by all core plugins.

I’ve removed the 2xl and 3xl variations because they’re too exaggerated for
me. The image below shows the difference.

The last two variations in the default version are barely visible. In my
opinion, the customized version looks much better.

You can find instructions for customization of each core plugin at the end of
each plugin’s documentation page—like this one for the blur plugin.

It’s also worth reading up on the default theme configuration for all core
plugins.

A Practical Customization Example
In this section, we’ll apply all we’ve learned so far. We’ll replace the default
responsive breakpoints with our own, we’ll extend the theme with additional

https://tailwindcss.com/docs/blur#using-custom-values
https://tailwindcss.com/docs/theme#configuration-reference

colors and spacing utilities, and we’ll add the font we included in our HTML
file earlier to the default font stack.

Open the tailwind.config.js file and replace its content with the
following:

// /tailwind.config.js

const colors = require('tailwindcss/colors')

module.exports = {

 content: ['./index.html'],

 theme: {

 screens: {

 'phone': '640px',

 'tablet': '768px',

 'laptop': '1024px',

 'desktop': '1280px',

 },

 extend: {

 colors: {

 primary: colors.yellow,

 secondary: colors.blue,

 neutral: colors.gray,

 },

 spacing: {

 '4.5': '1.125rem',

 '5.5': '1.375rem',

 '6.5': '1.625rem',

 '7.5': '1.875rem',

 '8.5': '2.125rem',

 '9.5': '2.375rem',

 },

 fontFamily: {

 'display': ['"Carter One"'],

 }

 }

 },

 plugins: [],

}

Here, we’ve firstly added index.html to the content array.

Next, we’ve added four breakpoints with custom names that completely
replace the default variants. The breakpoints are now more verbose but also
more descriptive and easy to grasp.

Next, under the extend key, we’ve created custom named colors and used
the Tailwind colors to define them. The reason here is similar. We want more
descriptive names so they can be applied more intuitively—for example,
when we create buttons.

Next, we’ve extended the spacing utilities with custom ones that give us a bit
more precision. Sometimes our design needs to be pixel-perfect, so we might
need a more precise scale.

Finally, we’ve extended the fontFamily core plugin to have a display font
set. We’ve used only the Carter One font here, but we can add as many as we
like. Using a custom font instead of the default fonts can make our design
stand out. After all, we want our designs to be unique, right?

Now, to apply the changes, we should rebuild the styles manually—if we
didn’t run the build script with the watch flag. To do so, run npm run
dev:watch.

We have the required styles, so now let’s use them. Replace the header
section in the index.htmlfile with the following:

<!-- /index.html -->

<!doctype html>

<html>

 ...

<body>

 <header class="flex items-center justify-between flex-wrap

font-display bg-neutral-800 py-4 w-full">

 <div class="flex-shrink-0 ml-6">

 <i class="fas fa-drafting-compass fa-2x text-primary-

500"></i>

 <span class="ml-1 text-3xl text-secondary-200 font-

semibold">WebCraft

 </div>

 <button id="nav-toggle" class="tablet:hidden p-2 mr-4 ml-6

my-2 border rounded border-neutral-600 text-secondary-200

hover:border-secondary-200">

 <i class="fas fa-bars fa-2x"></i>

 </button>

 <div class="pl-6 w-full tablet:w-auto hidden tablet:block"

id="nav-content">

 <ul class="tablet:flex">

 <li class="mr-5.5 p-1 tablet:border-b-2 border-primary-

500">

 <a class="text-secondary-200 cursor-default"

href="#">Home

 <li class="mr-5.5 p-1">

 <a class="text-white hover:text-secondary-300"

href="#">Services

 <li class="mr-5.5 p-1">

 <a class="text-white hover:text-secondary-300"

href="#">Projects

 <li class="mr-5.5 p-1">

 <a class="text-white hover:text-secondary-300"

href="#">Team

 <li class="mr-5.5 p-1">

 <a class="text-white hover:text-secondary-300"

href="#">About

 <li class="mr-5.5 p-1">

 <a class="text-white hover:text-secondary-300"

href="#">Contacts

 </div>

 </header>

</body>

</html>

What we’ve just done here is replace the following classes:

all md: occurrences with tablet:
yellow, blue, and gray classes with primary, secondary, and neutral
respectively
mr-6 with mr-5.5

We’ve also added a font-display class in the header.

The image below shows the final result after the changes.

Of course, visually the most notable difference is the new font. The other
changes (apart from the margin tweaks) are just class-name replacements
that affect the visual appearance, although the code is now a bit more
descriptive.

Adding Base Classes
As we already know, Tailwind automatically adds Preflight base styles to
each project by default. These settings do things like remove the default
browser styles for the headings, paragraphs, lists, and so on, which may be
unwanted.

So if we don’t want Preflight styles, we can disable them by setting the
preflight value to false:

module.exports = {

 corePlugins: {

 preflight: false,

 }

}

Usually this isn’t necessary, but it’s still worth knowing it’s an option.

In either case, with Preflight classes or without them, we can add our own
base classes that can override or extend Preflight, depending on whether a
class already exists or not.

In the next example, we’ll override the classes for <h1>, <h2>, and <p>
elements.

Open styles.css and add the following:

/* /styles.css */

@tailwind base;

@tailwind components;

@tailwind utilities;

https://tailwindcss.com/docs/adding-base-styles
https://tailwindcss.com/docs/preflight

@layer base {

 h1 {

 @apply text-2xl;

 }

 h2 {

 @apply text-xl;

 }

 h1, h2, p {

 @apply my-6 mx-4;

 }

}

Here, we’ve changed the size for some headings and added margins for the
same headings and all paragraphs.

Rebuilding Styles

You should rebuild the styles to apply the changes. To do so, run the npm
run dev:watch command.

To see this in action, open index.html and add this content below the
header:

<!-- /index.html -->

<!doctype html>

<html>

<body>

 <h1>Main Heading Is Here</h1>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Fusce quis urna vitae sapien volutpat commodo nec in nulla. Cras

consectetur lorem pharetra turpis iaculis, vel finibus ante

facilisis. Morbi auctor, elit sit amet congue sollicitudin, mi

mi aliquam neque, ac condimentum purus leo nec felis.

Pellentesque bibendum vel massa vel sodales. Nam semper dolor ac

pharetra ultrices. Etiam lectus purus, congue rutrum mi a,

gravida finibus ipsum. Donec at auctor orci. Praesent sagittis

augue in eleifend volutpat. Integer blandit consequat fermentum.

</p>

 <h2>Second Heading Is Here</h2>

 <p>Donec tempor odio sed sem porttitor, ac sodales dolor

ultrices. Phasellus nec enim et nibh vestibulum placerat. Nam

sed lobortis tortor. Etiam at ipsum risus. Vestibulum erat elit,

iaculis a pulvinar at, interdum nec mi. Aenean in consectetur

ipsum, vitae rhoncus arcu. Vestibulum quis sapien nibh.

Curabitur feugiat vestibulum lorem, vitae volutpat lectus

porttitor tincidunt. Praesent diam sem, ultrices quis nibh

luctus, pharetra tristique elit. Donec mattis velit eget nulla

hendrerit dictum. Maecenas dictum orci at sagittis interdum.

Etiam posuere, eros nec suscipit convallis, mi est tempor purus,

congue ultrices ipsum massa nec lectus. Fusce id odio vel diam

tristique iaculis. Cras dapibus facilisis suscipit. Donec rutrum

molestie nibh, in tempus augue venenatis sed. Pellentesque eget

mauris in magna ornare pharetra.</p>

 <p>Vestibulum ante ipsum primis in faucibus orci luctus et

ultrices posuere cubilia curae; Nam non urna in mi dictum

tempor. Quisque leo odio, pretium ut egestas eu, pulvinar eget

lacus. Nulla quis orci ac dui hendrerit mattis quis a ex.

Phasellus facilisis rutrum ante a auctor. Morbi non gravida

risus. Integer convallis leo odio, nec pulvinar magna

condimentum eleifend. Cras at massa a libero mattis vestibulum

eget ac purus. Pellentesque at libero eget sem sollicitudin

interdum. Interdum et malesuada fames ac ante ipsum primis in

faucibus. Nam nulla sapien, venenatis nec elit accumsan, laoreet

mattis ligula. Sed faucibus vitae ex sed ultricies. Nulla odio

nisi, pretium eget lacus nec, dapibus luctus nunc. Vestibulum

consequat est at risus faucibus consequat. Curabitur iaculis

lorem eget rutrum fermentum. Ut pulvinar condimentum dignissim.

</p>

</body>

</html>

Now, when you open it, you should see the headings and paragraphs
displayed with a space between them.

Creating Configuration Presets
If we want to reuse our configuration across different projects, Tailwind
offers us a way to do so by creating reusable configuration presets. A
configuration preset is a number of settings defined in the exact same way
as those from the tailwind.config.js file. The only difference is that
they’re put in a different, separate file.

Using presets is very useful for creating branding and/or design systems.

Let’s suppose we have brand colors that we want to use in a project or
perhaps in multiple projects. In this scenario, we can create a preset with the

https://tailwindcss.com/docs/presets

brand colors. Let’s create a brand-colors-preset.js file and put the
following content inside:

// /brand-colors-preset.js

const colors = require('tailwindcss/colors')

module.exports = {

 theme: {

 extend: {

 colors: {

 primary: colors.yellow,

 secondary: colors.blue,

 neutral: colors.gray,

 }

 }

 }

}

Here, we’ve moved the colors from the main configuration file into the
preset. To include the preset into your main configuration, add it under the
presets key, as in the example below:

// /tailwind.config.js

module.exports = {

 content: ['./index.html'],

 presets: [

 require('./brand-colors-preset.js')

],

 theme: {

 screens: {

 'phone': '640px',

 'tablet': '768px',

 'laptop': '1024px',

 'desktop': '1280px',

 },

 extend: {

 spacing: {

 '4.5': '1.125rem',

 '5.5': '1.375rem',

 '6.5': '1.625rem',

 '7.5': '1.875rem',

 '8.5': '2.125rem',

 '9.5': '2.375rem',

 },

 fontFamily: {

 'display': ['"Carter One"'],

 }

 }

 },

 plugins: [],

}

Here, we’ve removed the colors from the colors key and instead added
them as a preset defining our brand colors. This gives us more flexibility to
easily change the brand colors in future or use completely different colors if
we wish.

Rebuilding Styles

You should rebuild the styles to apply the changes. To do so, run the npm
run dev:watch command.

Merging

Just as the tailwind.config.js settings are merged with the default
configuration, the preset settings are merged with the tailwind.config.js.
You can learn more about merging in the Tailwind documentation.

We can also use multiple presets:

module.exports = {

 presets: [

 require('responsive-breakpoints-preset.js'),

 require('brand-colors-preset.js'),

 require('brand-fonts-preset.js'),

]

}

If there are overlapping classes in two or more presets, the classes specified
in the last preset will take precedence.

Conclusion
In this chapter, we explored various ways to configure Tailwind, such as
tweaking the default theme by overriding and/or extending it, creating

https://tailwindcss.com/docs/presets#merging-logic-in-depth

reusable presets, and tweaking the base Tailwind styles.

In the next chapter, we’ll end this book by exploring the use of plugins,
making custom plugins, and building a custom design system.

Chapter 5: Working with
Tailwind Plugins
In the last chapter, we learned the most important ways to customize and
extend a default Tailwind theme.

Now, in this final chapter, we’ll end our journey by exploring the one of
Tailwind’s most powerful features: plugins. We’ll firstly look at how to use
the official Tailwind plugins. Then we’ll learn how to create our own custom
Tailwind plugins.

Getting Started
Let’s prepare for this tutorial by creating a new project (a process we
covered in the Chapter 2).

Project Code

You can find the finished project for this chapter in the code repo for this
book.

Once we have our new project ready, the next step is to modify the content
key, inside tailwind.config.js, like so:

// /tailwind.config.js

module.exports = {

 content: ['./examples/*.html'],

 theme: {

 extend: {},

 },

 plugins: [],

}

We’ll create several HTML example files before the end of this tutorial, so
this tells Tailwind where to look for them to build the required styles.

https://github.com/spbooks/tailwind/tree/master/part-5

Using Official Tailwind Plugins
In this section, we’ll examine the Typography plugin—which is one of four
plugins officially maintained by the the Tailwind team.

The other three are:

Forms, which adds minimal default styles to all basic form elements
Aspect Ratio, which adds utilities for declaring a fixed aspect ratio to
elements
Line Clamp, which adds utilities for text truncating after a fixed number
of lines

The Typography plugin adds some default typographic styles that are
difficult or impossible to add manually. For example, a post content in a post
template can be included in Markdown format, which will be converted and
rendered as HTML, but we don’t have access to that HTML in the template:

<!-- A post template -->

<article>

 {{ markdown }}

</article>

In a situation like this, the Typography plugin is used to inject the required
classes dynamically in the rendered HTML.

To use the plugin, we need to install it first:

npm install -D @tailwindcss/typography

Then, add the plugin inside the tailwind.config.js file, in the plugins
array:

// /tailwind.config.js

module.exports = {

 // ...

 plugins: [

 require('@tailwindcss/typography')

]

}

https://tailwindcss.com/docs/typography-plugin
https://github.com/tailwindlabs/tailwindcss-forms
https://github.com/tailwindlabs/tailwindcss-aspect-ratio
https://github.com/tailwindlabs/tailwindcss-line-clamp

Now, create new a examples directory and add a typography.html file in it
with the following content:

<!-- /examples/typography.html -->

<!doctype html>

<html>

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>Tailwind Typography Plugin Example</title>

 <link href="../tailwind.css" rel="stylesheet">

</head>

<body>

 <div class="bg-sky-50">

 <article>

 <h1>Some Nice Title Here</h1>

 <p class="lead">Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Maecenas varius vitae ipsum et commodo. In

scelerisque est magna, ut fringilla purus congue eu. Mauris id

metus ac metus porta aliquet. Aliquam quam ipsum, consequat

malesuada lectus nec, blandit condimentum enim.</p>

 <h2>1. A Heading 2 Here</h2>

 <blockquote><p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Maecenas varius vitae ipsum et commodo.</p>

</blockquote>

 <p>Aliquam id nulla dignissim felis bibendum aliquam. Cras

vulputate blandit semper. Nam quam dolor, tincidunt non odio ac,

condimentum molestie justo. In ornare maximus tortor, aliquam

consequat arcu sagittis id.</p>

 <figure>

 <figcaption>Donec blandit pulvinar leo et tincidunt.

</figcaption>

 </figure>

 <h2>2. Another Heading 2 Here</h2>

 <p>Vestibulum congue felis at posuere commodo. Praesent

sapien magna, aliquet ut efficitur et, luctus at neque. Donec

vitae nunc convallis, maximus ex sit amet, consequat tellus.

Aenean eleifend cursus urna, sed fermentum felis cursus eget.

Sed accumsan hendrerit turpis at ullamcorper. Integer quam

sapien, rutrum ac pharetra eget, maximus id lacus.</p>

 List item

 List item

 List item

 <p>Aenean scelerisque urna id dictum tempor. Pellentesque

ipsum orci, convallis eget purus nec, placerat laoreet nulla.

Nullam vitae lectus porta, lacinia neque at, rutrum felis.</p>

 First item

 Second item

 Third item

 <p>Pellentesque tincidunt non orci id congue. Donec

blandit pulvinar leo et tincidunt. Sed venenatis venenatis

justo, ut congue neque lobortis sit amet. Nam tempus vehicula

nisi, vitae commodo magna condimentum id.</p>

 </article>

 </div>

</body>

</html>

Here, we have a bare-bones article structure with most of the elements the
plugin can style typographically. I only added a light blue background to the
<div> container to make the screenshots more distinguishable. The lead
class, in the first paragraph, will be used by the Typography plugin later on.

Run npm run dev:watch and open the file in the browser. The image below
shows what we should see.

At this stage, the article is mostly unstyled. Now it’s time to see the magic of
the Typography plugin. To use it in HTML, we need to include its classes
and to utter the magic word: prose.

prose is the base class used by the Typography plugin. All other classes also
start with this class, as we’ll see shortly.

Add the prose class to the article tag like so: <article class="prose">.
Now reload the page and behold the magic, as pictured below.

The article looks much better with the plugin’s styles applied. It’s not
perfect, but it’s a great foundation for further customization.

Now let’s try the Typography plugin’s dark mode. First, replace the bg-sky-
50 class of the container <div> with bg-sky-900 to create a dark
background. Then add the dark:prose-invert class to the article like so:
<article class="prose dark:prose-invert">.

Reload the page, and boom. The image below shows what we get now.

This little switch was just for showing you that the dark side exists, in case
you need it! Let’s now go back to the default version and continue our
journey with the light theme. Remove the dark:prose-invert class and set
the container background back to bg-sky-50.

The real power of the Typography plugin is that it provides modifiers for the
typographic elements so you can customize them individually.

Let’s try some of them now. Add the following classes to the <article> tag:

<!-- /examples/typography.html -->

<!-- ... -->

<body>

 <div class="bg-sky-50 p-6">

 <article class="prose

 prose-h1:underline prose-h1:underline-offset-8

 prose-h2:first-letter:text-cyan-600

 prose-headings:text-cyan-900

 prose-lead:text-cyan-600

 prose-p:first-line:italic

 prose-blockquote:text-cyan-600 prose-blockquote:border-cyan-

600 prose-blockquote:mx-6

 prose-figure:mx-6

 prose-figcaption:text-center

 prose-img:rounded-lg prose-img:drop-shadow-lg

 prose-li:marker:text-cyan-600

 ">

 <h1>Some Nice Title Here</h1>

 <!-- ... -->

Don’t Forget prose

The base prose class must always be present before using the other classes.

Here, I’ve added some space around the article (for a nicer look and feel) by
adding some padding (p-6) to the container <div>.

I’ve grouped the prose classes by element (for better readability and
maintainability), so each line contains classes for one specific element.

To set a utility for a particular element, we start with the prose class,
followed by a colon and then the utility: prose-h1:underline.

https://tailwindcss.com/docs/typography-plugin#element-modifiers

Only one utility can be added for a prose class instance. We can’t add a
sequence of utilities like this: prose-h1:underline underline-offset-8.

Instead, we must define them individually: prose-h1:underline prose-
h1:underline-offset-8.

When we stack prose classes with other modifiers, we start with the prose
class, followed by the modifier(s), and lastly the utility, like so: prose-
h2:first-letter:text-cyan-600.

prose-lead targets an element with class lead as the first paragraph of the
article.

Basically, these are the rules for using the prose classes.

Let’s go back to the browser now to see what we’ve achieved so far. Reload
the page and enjoy a fully styled article, as shown below.

Building Custom Tailwind Plugins
In this section, we’ll look at how to create custom Tailwind plugins.

We’ll create two small plugins:

a counters plugin, which will add the ability to automatically add
numbers to the document headings or whatever other elements we want
an arrows plugin, which will add the ability to incorporate CSS arrow
shapes/icons into our designs

Running dev:watch

From now on, we don’t need to stop and run the dev:watch command again,
because the custom plugins don’t need to be installed. But it’s good to make
sure the command is still running before we test the HTML example files.
Sometimes, while we’re making changes, a syntactic error can stop the
execution of the script. In this case, we’ll see an appropriate error message in
the terminal, such as SyntaxError: Unexpected identifier. To apply the
changes we’ve made and see a proper HTML result, we need to start the
script again with npm run dev:watch.

Creating the Counters Plugin

This plugin will take advantage of the CSS counters feature. It will add
automatic numbers for document headings by default. Also, it will allow for
automatic numbering of any other elements to be added by using the
necessary classes provided by the plugin.

To start, create a new plugins directory and add a new counters.js file in
it with the following content:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, addComponents, theme

}) {

 // put plugin logic here

})

https://tailwindcss.com/docs/plugins
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Counter_Styles/Using_CSS_counters

module.exports = counters

A plugin is created by the plugin() function (required in the beginning),
which takes an anonymous function as its first argument. The anonymous
function takes a single object as argument, which we can destructure for
convenience. The destructured properties are Tailwind functions for
customizing various layers of Tailwind’s default styles. Here’s a list of each
available function:

addBase() adds base styles
addComponents() adds static component styles
matchComponents() adds dynamic component styles
addUtilities() adds static utility styles
matchUtilities() adds dynamic utility styles
addVariant() adds custom variants
theme() provides access to values in the user’s theme configuration
config() provides access to values in the user’s Tailwind configuration
corePlugins() checks if a core plugin is enabled
e() manually escapes strings meant to be used in class names

Now, add the following addBase() function:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, theme }) {

 addBase({

 'h1': {

 counterReset: 'level-1'

 },

 'h2': {

 counterReset: 'level-2'

 },

 'h3': {

 counterReset: 'level-3'

 },

 'h2::before, h3::before, h4::before': {

 color: theme('colors.slate.600')

 },

 'h2::before': {

 counterIncrement: 'level-1',

 content: 'counter(level-1) ". "'

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://tailwindcss.com/docs/plugins

 },

 'h3::before': {

 counterIncrement: 'level-2',

 content: 'counter(level-1) "." counter(level-2) " "'

 },

 'h4::before': {

 counterIncrement: 'level-3',

 content: 'counter(level-1) "." counter(level-2) "."

counter(level-3) " "'

 },

 })

})

module.exports = counters

Here, we’ve created three counters by using the counterReset property.

Then we’ve set the counters to be used for h2, h3, and h4 heading elements
by using the counterIncrement property. We’ve set the actual numbers by
using the content property, where we’ve used the counter() function—
which returns the current value of the named counter. We’ve also
concatenated each nested heading with the previous one(s).

Finally, we’ve added a color for the numbers in the headings by using the
theme() function, which allows us to reuse the default Tailwind colors. Note
that the dash we usually see between color name and number (such as
slate-600) is replaced by a dot here: slate.600. This is because the colors
for the Tailwind theme are represented by JavaScript objects, so we need to
use dot notation to access their properties and methods.

Let’s test what we’ve achieved so far. To do so, in the examples directory,
create a new counters.html file with the following content:

<!-- /examples/counters.html -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>CSS Counters Example</title>

 <link href="../tailwind.css" rel="stylesheet">

</head>

<body class="prose">

 <div class="m-3">

 <p class="text-3xl text-red-700">Counters Based on Heading

Elements:</p>

 <h1>Web Development Languages</h1>

 <h2>HTML</h2>

 <h2>CSS</h2>

 <h3>Tailwind</h3>

 <h3>Bootstrap</h3>

 <h2>JavaScript</h2>

 <h3>Node</h3>

 <h4>Express</h4>

 <h3>Vue</h3>

 <h4>Vuetify</h4>

 <h4>Nuxt</h4>

 </div>

</body>

</html>

Here, to make things more readable, we’ve used the prose class from the
Typography plugin.

Now, add the plugin to the Tailwind configuration:

// /tailwind.config.js

module.exports = {

 // ...

 plugins: [

 require('@tailwindcss/typography'),

 require('./plugins/counters')

]

}

The .js Extension

There’s no need to add the .js extension. Tailwind automatically recognizes
the file.

Finally, open the counters.html in your browser. The image below shows
what you should see.

As you can see, with no classes added to the HTML, we get nice and proper
numbering for the heading elements.

Great! But what if we want to add numbering for different elements? We can
do this too. Let’s see how now.

Go to the counters.js file and replace its content with the following:

// /plugins/counters.js

const plugin = require('tailwindcss/plugin')

const counters = plugin(function({ addBase, addUtilities, theme

}) {

 addBase({

 'h1': {

 counterReset: 'level-1'

 },

 'h2': {

 counterReset: 'level-2'

 },

 'h3': {

 counterReset: 'level-3'

 },

 'h2::before, h3::before, h4::before': {

 color: theme('colors.slate.600')

 },

 'h2::before': {

 counterIncrement: 'level-1',

 content: 'counter(level-1) ". "'

 },

 'h3::before': {

 counterIncrement: 'level-2',

 content: 'counter(level-1) "." counter(level-2) " "'

 },

 'h4::before': {

 counterIncrement: 'level-3',

 content: 'counter(level-1) "." counter(level-2) "."

counter(level-3) " "'

 },

 })

 addUtilities({

 '.collection': {

 counterReset: 'collection'

 },

 '.item::before': {

 counterIncrement: 'collection',

 content: 'counters(collection,".") " "'

 }

 })

})

module.exports = counters

Here, we’ve added the addUtilities() function (which we first define in
the destructured object) to create two classes. The first—the collection
class—creates a new counter. The second—the item class—adds a number
before the element on which it’s used. Here, we’ve used the counters()
function (ending with s), which returns a concatenated string representing
the current values of the named counters.

To test this feature, replace the content of counters.html with the
following:

<!-- /examples/counters.html -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>CSS Counters Example</title>

 <link href="../tailwind.css" rel="stylesheet">

</head>

<body class="prose">

 <div class="m-3">

 <p class="text-3xl text-red-700">Counters Based on Heading

Elements:</p>

 <h1>Web Development Languages</h1>

 <h2>HTML</h2>

 <h2>CSS</h2>

 <h3>Tailwind</h3>

 <h3>Bootstrap</h3>

 <h2>JavaScript</h2>

 <h3>Node</h3>

 <h4>Express</h4>

 <h3>Vue</h3>

 <h4>Vuetify</h4>

 <h4>Nuxt</h4>

 <p class="text-3xl text-red-700 mt-12">Counters Based on

Class Utilities:</p>

 <div class="collection">

 <p class="item">HTML</p>

 <p class="item">CSS</p>

 <p class="item">JavaScript</p>

 <div class="collection">

 <p class="item">Node</p>

 <p class="item">React</p>

 <p class="item">Vue</p>

 <div class="collection">

 <p class="item">Nuxt</p>

 <p class="item">Vuetify</p>

 </div>

 </div>

 </div>

 </div>

</body>

</html>

Here, we’ve added a section—below the first example—in which we’re
using the plugin classes. By nesting our collections with items, we get nested
numbering for the paragraph elements.

Open or reload the counters.html file. The image below shows what you
should see.

Because of the utilities we’ve added, we can add numbering to any element
we want.

Creating the Arrows Plugin

This arrows plugin will use a technique for creating different shapes with
CSS—which shouldn’t be confused with the CSS Shapes module). It will
produce four arrows that we can use as icons in our designs.

To start, create a new arrows.js file in the plugins directory with the
following content:

https://css-tricks.com/the-shapes-of-css/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Shapes

// /plugins/arrows.js

const plugin = require('tailwindcss/plugin')

const arrows = plugin(function({ addComponents }) {

 addComponents({

 '.arrow': {

 border: 'solid black',

 borderWidth: '0 3px 3px 0',

 display: 'inline-block',

 padding: '3px',

 marginLeft: '5px'

 },

 '.arrow-up': {

 transform: 'rotate(-135deg)'

 },

 '.arrow-right': {

 transform: 'rotate(-45deg)'

 },

 '.arrow-down': {

 transform: 'rotate(45deg)'

 },

 '.arrow-left': {

 transform: 'rotate(135deg)'

 },

 })

})

module.exports = arrows

Here, we’ve used the addComponents() function to define the necessary
classes. The first arrow class adds the base for all arrows. Then we’ve added
the remaining four classes that define the four possible directions of an
arrow.

To test it, create a new arrows.html file in the examples directory with the
following content:

<!-- /examples/arrows.html -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>CSS Arrows Example</title>

 <link href="../tailwind.css" rel="stylesheet">

</head>

<body class="prose p-6">

 <h2>Tree-View Dynamic List with CSS Arrows:</h2>

 <span class="toggle cursor-pointer after:arrow

after:arrow-right">JavaScript

 <ul class="section hidden">

 Node

 React

 <span class="toggle cursor-pointer after:arrow

after:arrow-right">Vue

 <ul class="section hidden">

 Nuxt

 Vuetify

 <span class="toggle cursor-pointer after:arrow

after:arrow-right">Quasar

 <ul class="section hidden">

 Components

 Composables

 Directives

 <script>

 let toggles = document.getElementsByClassName("toggle")

 let sections = document.getElementsByClassName("section")

 for (let i = 0; i < toggles.length; i++) {

 toggles[i].addEventListener("click", function() {

 let section = sections[i]

 section.classList.contains('hidden') ?

section.classList.remove('hidden') :

section.classList.add('hidden')

 this.classList.toggle("after:arrow-down")

 })

 }

 </script>

</body>

</html>

Using prose for Readability

The prose class is used again in this example for better readability.

Here, we’ve created a dynamic tree-view list. Each list item (marked with a
toggle class), which contains a nested list or lists (marked with a section
class), gets a right arrow icon by using the arrow and arrow-right classes
and after: pseudo-element. Each nested list is hidden by default with the
help of the hidden class.

In the <script> tag, we first get all toggles and sections. Then we iterate
through toggles and add a click event listener for each one. When the
function is executed, it toggles the hidden and after:arrow-down classes.
This results in showing/hiding the corresponding nested list(s) and changes
the toggle icon accordingly.

Let’s add the plugin to the Tailwind configuration:

// /tailwind.config.js

module.exports = {

 // ...

 plugins: [

 require('@tailwindcss/typography'),

 require('./plugins/counters'),

 require('./plugins/arrows')

]

}

Now, open arrows.html in the browser. In the screenshot below, you can see
how the list should look and behave.

As you can see, the arrows help to make the tree-view list more intuitive and
descriptive.

Congratulations! You’ve just created two useful custom plugins.

Finding Community Plugins
Building your own plugin is great indeed, but it’s always a good idea to
firstly check if there’s already an existing plugin offering the functionality
you need. If such a plugin exists, it’s probably a better option to use that than
to reinvent the wheel.

The best place to check for existing plugins and other cool stuff is Awesome
Tailwind CSS.

Another one is Tailwind Toolbox.

When you choose a plugin, check if it’s still maintained, and also which
Tailwind version it’s written for. If it’s popular and widely used, this can be
huge bonus too.

I want to recommend one plugin in particular that can be very useful:
daisyUI, by Pouya Saadeghi.

https://github.com/aniftyco/awesome-tailwindcss#plugins
https://github.com/aniftyco/awesome-tailwindcss
https://www.tailwindtoolbox.com/plugins
https://daisyui.com/
https://twitter.com/saadeghi

daisyUI provides a rich set of highly customizable and themeable
components that come in two versions: styled and unstyled. This is pretty
flexible and means we can adapt it to any project.

You may be wondering why we don’t just use Bootstrap components instead
(or any other component-based framework). Well, the difference is that
daisyUI offers a much easier way to customize the components to suit our
needs. daisyUI is fully themeable and offers many pre-made themes out of
the box. It even has a theme generator for building our own themes. So, give
it a try.

There’s a full list of the components provided by daisyUI on the daisyUI
site.

Conclusion
In this chapter, we firstly looked at how to use the official Typography
plugin to add beautiful default styling to the most used typographic

https://daisyui.com/docs/customize/
https://daisyui.com/docs/themes/
https://daisyui.com/theme-generator/
https://daisyui.com/components/

elements. We then got our hands dirty by creating two useful custom
plugins.

And this marks the end of this book. Phew, it’s been a pretty long ride. If
you’ve made it through the entire book, congratulations! Let’s summarize
what’s been achieved:

1. In the first part, we learned how to create a simple website design by
using the basic Tailwind utilities.

2. In the second part, we ventured a bit deeper and learned how to create
Tailwind components.

3. In the third part, we learned even more advanced Tailwind capabilities
such as building grid layouts, creating typographic styles, and using
filters, transforms and transitions.

4. In the forth part, we explored the core of Tailwind theme customization
and extension.

5. In this fifth and final part, we learned about the last Tailwind
customization weapon: plugins. We learned both how to create custom
plugins and how to use the existing ones.

Now you can consider yourself to be an advanced Tailwind user. You have
the complete skills package necessary to build any design you can imagine.
The sky’s the limit.

Thanks for traveling with me through this book. Best of luck in your future
journey with Tailwind!

	Crafting HTML Email: Beautiful Emails That Work Everywhere
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Getting Started with Tailwind CSS
	Component vs Utility Classes
	What Is Tailwind?
	What Is a Utility Class?

	What a Design System Is, and How It Can Help Us
	Up and Running with Tailwind
	Know Your HTML and CSS

	Exploring Tailwind Basics
	Responsive Web Design
	Layout
	Typography
	Colors
	Imagery: Icons and Images

	Building a Blog Starter Template
	Utility Class Help
	Base Styles
	Creating the Header
	The Design Process

	Chapter 2: Going Beyond the Basics
	Getting Started with Tailwind
	Project Code
	Getting Ready
	Utility Class References
	Base Styles
	npx

	Creating Tailwind Components
	Extracting Classes into Reusable Components
	Building Tailwind Components with Vue
	Learning Vue
	Rebuilding Styles

	Chapter 3: Building Complex Designs with Tailwind
	Building Complex and Flexible Layouts with Tailwind’s Grid Utilities
	CSS Grid
	Project Code
	Exploring Tailwind’s Grid Utilities
	Numbering Grid Lines

	Creating Grid Layouts
	Demo Styles

	Creating a Complete Article Design
	Creating the Base Layout
	Abbreviated Text

	Typography
	Colors and Gradients

	Adding Image Effects
	Adding Effects
	Conclusion

	Chapter 4: Customizing Tailwind and Optimizing Your Workflow
	Customizing Tailwind
	Project Code

	Customizing the Default Tailwind Theme
	Customizing Tailwind Theme’s Responsive Breakpoint Modifiers
	Customizing Tailwind’s Theme Colors
	Naming Colors

	Customizing Tailwind’s Spacing Utilities
	Customizing Tailwind’s Core Plugins
	Default Key

	A Practical Customization Example
	Adding Base Classes
	Rebuilding Styles

	Creating Configuration Presets
	Rebuilding Styles
	Merging

	Conclusion

	Chapter 5: Working with Tailwind Plugins
	Getting Started
	Project Code

	Using Official Tailwind Plugins
	Don’t Forget prose

	Building Custom Tailwind Plugins
	Running dev:watch
	Creating the Counters Plugin
	The .js Extension

	Creating the Arrows Plugin
	Using prose for Readability

	Finding Community Plugins
	Conclusion

